

Lecture Notes in Computer Science 6051
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Barbara Pernici (Ed.)

Advanced Information
Systems Engineering

22nd International Conference, CAiSE 2010
Hammamet, Tunisia, June 7-9, 2010
Proceedings

13

Volume Editor

Barbara Pernici
Politecnico di Milano
Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32, 20133 Milano, Italy
E-mail: barbara.pernici@polimi.it

Library of Congress Control Number: 2010927158

CR Subject Classification (1998): H.4, H.3, D.2, C.2, J.1, I.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-13093-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13093-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The CAiSE series of conferences, started in 1989, provides an established ve-
nue in the information systems engineering area for presenting and exchanging
results of design-oriented research in information systems. The 22nd CAiSE con-
ference, held in Hammamet, Tunisia, during June 7-11, 2010, continued this tra-
dition. The theme of CAiSE 2010 was Information Systems Evolution. Modern
information systems are the result of the interconnection of systems of many
organizations, are running in variable contexts, and require both a lightweight
approach to interoperability and the capability to actively react to changing re-
quirements and failures. In addition, users of information systems are becoming
more and more mobile and ubiquitous, requiring the system to adapt to their
varying usage contexts and goals. The evolution of an information system should
be a continuous process rather than a single step, and it should be inherently
supported by the system itself and the design of the information system should
consider evolution as an inherent property of the system. The papers selected
for CAiSE 2010 focus on this theme from various perspectives, from require-
ment engineering and conceptual modeling, to process and services modeling
and analysis, to themes such as security, quality, management and applications
in information systems.

The first two days consisted of pre-conference workshops and events on busi-
ness process modeling, modeling methods, requirements engineering, organiza-
tional modeling, interoperability and cooperation, ontologies, governance, empi-
rical research in process-oriented systems, and domain engineering. In addition,
in a doctoral consortium the PhD students could present and discuss their re-
search plans and in the CAiSE Forum position papers on innovative research
projects which are still at a relatively early stage and short papers describing
innovative tools and prototypes were presented.

Two invited speakers discussed the role of modeling in modern search com-
puting systems, which enable end users to perform exploratory search processes
over multi-domain data sources available on the Web, and of the impact of IT sy-
stems on the use of the earth’s resources, discussing design issues for IT systems
themselves and for systems to manage resources, such as for instance electri-
cal power in homes and enterprises, water delivery and distribution, and traffic
management.

We thank all Program Committee and Program Board members and all ad-
ditional reviewers who were essential in making this once again an excellent con-
ference, contributing their time and effort. Each submission was reviewed by at
least three reviewers. The Program Board members acted as assistant Program
Committee Chairs and coordinated on-line discussions among the reviewers. The
Program Board and Program Committee members met in January 2010 in Mi-
lan, Italy, to select papers based on the reviews and on-line discussions. Out of
299 submitted papers, 39 were accepted for the main conference.

VI Preface

We also thank everyone involved in this process. In particular, we are grateful
to the General Chairs and to all Local Organizers for managing the complex
coordination involved in organizing a conference, the Workshop and Tutorial
Chairs, the Forum Chairs, the Doctoral Consortium Chairs, and extend our
thanks to the sponsors who made the event financially feasible. Finally, we thank
the participants both from academia and industry and we hope that their active
participation in the CAiSE conference was inspiring for their research and a
good support to industrial innovation.

June 2010 Barbara Pernici

Organization

Advisory Committee

Arne Sølvberg Norwegian University of Science and Technology, Norway
Janis Bubenko Jr Royal Institute of Technology, Sweden
Colette Rolland Université Paris 1 Panthéon Sorbonne, France

General Co-chairs

Colette Rolland Université Paris 1 Panthéon Sorbonne, France
Henda Ben Ghezala ENSI, University of Manouba, Tunisia

Program Chair

Barbara Pernici Politecnico di Milano, Italy

Organization Chair

Naoufel Kraiem ENSI, University of Manouba, Tunisia

Workshop and Tutorial Chairs

Pierluigi Plebani Politecnico di Milano, Italy
Jolita Ralyté University of Geneva, Switzerland

Forum Chairs

Pnina Soffer University of Haifa, Israel
Erik Proper Radboud University Nijmegen, The Netherlands

Doctoral Consortium Chairs

Boualem Banatallah University of New South Wales, Australia
Anne Persson University of Skövde, Sweden

Publicity Chairs

Selmin Nurcan University Paris 1 Panthéon Sorbonne, France
Lida Xu Old Dominion University, USA
Rim Kaabi ISI, University El-manar, Tunisia

VIII Organization

Publication Chairs

Cinzia Cappiello Politecnico di Milano, Italy
Motoshi Saeki Tokyo Institute of Technology, Japan

Finance Chair

Yassine Jamoussi ENSI, University of Manouba, Tunisia

Local Arrangements

Moncef Gafsi MERS, Tunisia
Malek Ghenima ENSI, University of Manouba, Tunisia
Semia Sonia Selmi ENSI, University of Manouba, Tunisia
Amina Sayeb MERS, Tunisia

Website

Jamil Dimassi ISI, University El-manar, Tunisia
Slim Mesfar ISI, University El-manar, Tunisia
Samir Azzouz ISI, University El-manar, Tunisia

Program Committee Board

Hans Akkermans, The Netherlands
Sjaak Brinkkemper, The Netherlands
Valeria De Antonellis, Italy
Eric Dubois, Luxembourg
Marlon Dumas, Estonia
Pericles Loucopoulos, UK
Moira Norrie, Switzerland

Antoni Olive, Spain
Andreas Opdahl, Norway
Oscar Lopez Pastor, Spain
Anne Persson, Sweden
Klaus Pohl, Germany
Pnina Soffer, Israel

Program Committee

Wil van der Aalst, The Netherlands
Pär Ågerfalk, Sweden
Antonia Albani, The Netherlands
Marco Bajec, Slovenia
Luciano Baresi, Italy
Zorah Bellahsene, France
Boalem Benatallah, Australia
Giuseppe Berio, Italy
Claudio Bettini, Italy
Rafik Bouaziz, Tunisia

Nacer Boudjlida, France
Mokrane Bouzeghoub, France
Fabio Casati, Italy
Silvana Castano, Italy
Jaelson Castro, Brazil
Corinne Cauvet, France
João Falcãoe Cunha, Portugal
Joerg Evermann, Canada
Xavier Franch, Spain
Mariagrazia Fugini, Italy

Claude Godart, France
Mohand-Said Hacid, France
Terry Halpin, USA
Brian Henderson-Sellers, Australia
Willem-Jan van den Heuvel,

The Netherlands
Patrick Heymans, Belgium
Yassine Jamoussi, Tunisia
Matthias Jarke, Germany
Paul Johannesson, Sweden
Marite Kirikova, Latvia
Naoufel Kraiem, Tunisia
John Krogstie, Norway
Wilfried Lemahieu, Belgium
Michel Leonard, Switzerland
Kalle Lyytinen, USA
Raimundas Matulevicius, Belgium
Andrea Maurino, Italy
Jan Mendling, Germany
Isabelle Mirbel, France
Haris Mouratidis, UK
John Mylopoulos, Canada
Selmin Nurcan, France
Andreas Oberweis, Germany
Jeffrey Parsons, Canada
Mike Papazoglou, The Netherlands
Michael Petit, Belgium
Yves Pigneur, Switzerland
Geert Poels, Belgium
Erik Proper, The Netherlands

Jolita Ralyté, Switzerland
Manfred Reichert, Germany
Hajo Reijers, The Netherlands
Mart Roantree, Ireland
Michael Rosemann, Australia
Gustavo Rossi, Argentina
Matti Rossi, Finland
Motoshi Saeki, Japan
Camille Salinesi, France
Keng Siau, USA
Monique Snoeck, Belgium
Janis Stirna, Sweden
Arnon Sturm, Israel
Stefan Tai, USA
David Taniar, Australia
Ernest Teniente, Spain
Bernhard Thalheim, Germany
Farouk Toumani, France
Aphrodite Tsalgatidou, Greece
Jean Vanderdonckt, Belgium
Irene Vanderfeesten, The Netherlands
Olegas Vasilecas, Lithuania
Yair Wand, Canada
Mathias Weske, Germany
Hans Weigand, The Netherlands
Roel Wieringa, The Netherlands
Carson Woo, Canada
Eric Yu, Canada
Didar Zowghi, Australia

Additional Referees

Sofiane Abbar
Alberto Abello
Sudhir Agarwal
Ghazi Al-Naymat
Fernanda Alencar
Bernd Amann
David Ameller
Ikram Amous
Birger Andersson
Saquib Anwar
George Athanasopoulos
Ahmed Awad

Marcos Baez
Daniele Barone
Christian Bartsch
Moshe Chai Barukh
Seyed-Mehdi-Reza Beheshti
Sihem Ben Sassi
Maria Bergholtz
Maxime Bernaert
Kahina Bessai
Stefanie Betz
Angela Bonifati
Diogo Borges

Organization IX

X Organization

Quentin Boucher
Lotfi Bouzguenda
Zouheir Brahmia
Stephan Buchwald
Paolo Cappellari
Mohamed Amine Chaabene
Van Munin Chhieng
Jan Claes
Andreas Classen
Bruno Claudepierre
André van Cleeff
Remi Coletta
Marco Comerio
Chad Coulin
Madalina Croitoru
Maya Daneva
Ken Decreus
Maha Driss
Pascal van Eck
Golnaz Elahi
Cécile Favre
Alfio Ferrara
Dario Freni
Frederik Gailly
Nicolas Genon
Hanene Ghorbel
Faiza Ghozzi Jedidi
Alexander Grosskopf
Adnene Guabtni
Mariem Gzara
Hakim Hacid
Ahmed Hadj Kacem
Allel Hadjali
Abdelkader Heni
Susan Hickl
Marcel Hiel
Stijn Hoppenbrouwers
Frank Hu
Arnaud Hubaux
Ela Hunt
Elena Ivankina
Wassim Jaziri
Lei Jiang
Diana Kalibatiene
Maurice van Keulen

Paul El Khoury
Bojan Klemenc
Stefan Klink
David Knuplesch
Jens Kolb
Elena Kornyshova
Agnes Koschmider
Vera Kuenzle
Aleš Kumer
Andreas Lanz
Algirdas Laukaitis
Wim Laurier
Dejan Lavbić
Evaldas Lebedys
Maria Lencastre
Pei Li
Matthias Lohrmann
Marcia Lucena
Linh Thao Ly
Dewi Mairiza
Azzam Maraee
Sergio Mascetti
Slim Mesfar
Stefano Montanelli
Joao Mourinho
Kreshnik Musaraj
Henriqueta Novoa
Nurmuliani
Martin F. O’Connor
Marc Oriol
Sietse Overbeek
Matteo Palmonari
Michael Pantazoglou
Linda Pareschi
Cristhian Parra
Olivier Pivert
Stanislav Pokraev
Artem Polyvyanyy
Michael Predeschly
Rüdiger Pryss
Ricardo Argenton Ramos
Saoussen Rekhis
Daniele Riboni
Stefanie Rinderle-Ma
Carlos Rodriguez

Lior Rokach
Seung Ryu
Ana Šaša
Semia Selmi
Oumaima Saidani
Sherif Sakr
Khalid Saleem
Germain Saval
Samir Sebahi
Khurram Shahzad
Patŕıcia Souza Silveira
Grega Simone
Marten van Sinderen
Sergey Smirnov
Stefano Soi
Ove Sörensen
Sebastian Speiser

Marco Spruit
Peter Stürzel
Lovro Šubelj
Thein Than Thun
Justas Trinkunas
Patrick Valduriez
Gaia Varese
Hung Vu
Romain Vuillemot
Ingo Weber
Matthias Weidlich
Moe Wynn
Huayu Zhang
Christian Zirpins
Houda Zouari
Aljaž Zrnec

Organization XI

Table of Contents

Keynotes

Search Computing Systems . 1
Stefano Ceri and Marco Brambilla

The Influence of IT Systems on the Use of the Earth’s Resources 7
Jurij Paraszczak

Session 1: Business Process Modeling

Design and Verification of Instantiable Compliance Rule Graphs in
Process-Aware Information Systems . 9

Linh Thao Ly, Stefanie Rinderle-Ma, and Peter Dadam

Success Factors of e-Collaboration in Business Process Modeling 24
Peter Rittgen

Beyond Process Mining: From the Past to Present and Future 38
Wil M.P. van der Aalst, Maja Pesic, and Minseok Song

Session 2: Information Systems Quality

Dependency Discovery in Data Quality . 53
Daniele Barone, Fabio Stella, and Carlo Batini

Rationality of Cross-System Data Duplication: A Case Study 68
Wiebe Hordijk and Roel Wieringa

Probabilistic Models to Reconcile Complex Data from Inaccurate Data
Sources . 83

Lorenzo Blanco, Valter Crescenzi, Paolo Merialdo, and Paolo Papotti

Session 3: Service Modelling

Monitoring and Analyzing Service-Based Internet Systems through a
Model-Aware Service Environment . 98

Ta’id Holmes, Uwe Zdun, Florian Daniel, and Schahram Dustdar

Modeling and Reasoning about Service-Oriented Applications via Goals
and Commitments . 113

Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, and
John Mylopoulos

XIV Table of Contents

Conceptualizing a Bottom-Up Approach to Service Bundling 129
Thomas Kohlborn, Christian Luebeck, Axel Korthaus, Erwin Fielt,
Michael Rosemann, Christoph Riedl, and Helmut Krcmar

Session 4: Security and Management

Dynamic Authorisation Policies for Event-Based Task Delegation 135
Khaled Gaaloul, Ehtesham Zahoor, François Charoy, and
Claude Godart

A New Approach for Pattern Problem Detection . 150
Nadia Bouassida and Hanêne Ben-Abdallah

Comparing Safety Analysis Based on Sequence Diagrams and Textual
Use Cases . 165

Tor St̊alhane, Guttorm Sindre, and Lydie du Bousquet

Session 5: Matching and Mining

Feature-Based Entity Matching: The FBEM Model, Implementation,
Evaluation . 180

Heiko Stoermer, Nataliya Rassadko, and Nachiket Vaidya

Dealing with Matching Variability of Semantic Web Data Using
Contexts . 194

Silvana Castano, Alfio Ferrara, and Stefano Montanelli

GRUVe: A Methodology for Complex Event Pattern Life Cycle
Management . 209

Sinan Sen and Nenad Stojanovic

Supporting Semantic Search on Heterogeneous Semi-structured
Documents . 224

Yassine Mrabet, Nacéra Bennacer, Nathalie Pernelle, and
Mouhamadou Thiam

Query Ranking in Information Integration . 230
Rodolfo Stecher, Stefania Costache, Claudia Niederée, and
Wolfgang Nejdl

Session 6: Case Studies and Experiences

Validity of the Documentation Availability Model: Experimental
Definition of Quality Interpretation . 236

Raimundas Matulevičius, Naji Habra, and Flora Kamseu

Table of Contents XV

Emerging Challenges in Information Systems Research for Regulatory
Compliance Management . 251

Norris Syed Abdullah, Shazia Sadiq, and Marta Indulska

Experience-Based Approach for Adoption of Agile Practices in Software
Development Projects . 266

Iva Krasteva, Sylvia Ilieva, and Alexandar Dimov

Coordinating Global Virtual Teams: Building Theory from a Case
Study of Software Development . 281

Gaye Kiely, Tom Butler, and Patrick Finnegan

Information Systems Evolution over the Last 15 Years 296
Magne Davidsen and John Krogstie

Session 7: Conceptual Modelling

From Web Data to Entities and Back . 302
Zoltán Miklós, Nicolas Bonvin, Paolo Bouquet,
Michele Catasta, Daniele Cordioli, Peter Fankhauser, Julien Gaugaz,
Ekaterini Ioannou, Hristo Koshutanski, Antonio Maña,
Claudia Niederée, Themis Palpanas, and Heiko Stoermer

Transformation-Based Framework for the Evaluation and Improvement
of Database Schemas . 317

Jonathan Lemaitre and Jean-Luc Hainaut

Reverse Engineering User Interfaces for Interactive Database
Conceptual Analysis . 332

Ravi Ramdoyal, Anthony Cleve, and Jean-Luc Hainaut

Towards Automated Inconsistency Handling in Design Models 348
Marcos Aurélio Almeida da Silva, Alix Mougenot,
Xavier Blanc, and Reda Bendraou

Session 8: Adaptation

Dynamic Metamodel Extension Modules to Support Adaptive Data
Management . 363

Michael Grossniklaus, Stefania Leone, Alexandre de Spindler, and
Moira C. Norrie

Supporting Runtime System Evolution to Adapt to User Behaviour 378
Estefańıa Serral, Pedro Valderas, and Vicente Pelechano

Interaction-Driven Self-adaptation of Service Ensembles 393
Christoph Dorn and Schahram Dustdar

XVI Table of Contents

Session 9: Requirements

On the Semantics of the Extend Relationship in Use Case Models:
Open-Closed Principle or Clairvoyance? . 409

Miguel A. Laguna, José M. Marqués, and Yania Crespo

Situational Evaluation of Method Fragments: An Evidence-Based
Goal-Oriented Approach . 424

Hesam Chiniforooshan Esfahani, Eric Yu, and Jordi Cabot

Incorporating Modules into the i* Framework . 439
Xavier Franch

Ahab’s Leg: Exploring the Issues of Communicating Semi-formal
Requirements to the Final Users . 455

Chiara Leonardi, Luca Sabatucci, Angelo Susi, and
Massimo Zancanaro

The Brave New World of Design Requirements: Four Key Principles 470
Matthias Jarke, Pericles Loucopoulos, Kalle Lyytinen,
John Mylopoulos, and William Robinson

Session 10: Process Analysis

The ICoP Framework: Identification of Correspondences between
Process Models . 483

Matthias Weidlich, Remco Dijkman, and Jan Mendling

Process Compliance Measurement Based on Behavioural Profiles 499
Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, and
Jan Mendling

Business Trend Analysis by Simulation . 515
Helen Schonenberg, Jingxian Jian, Natalia Sidorova, and
Wil van der Aalst

Workflow Soundness Revisited: Checking Correctness in the Presence
of Data While Staying Conceptual . 530

Natalia Sidorova, Christian Stahl, and Nikola Trčka

Panel

Octavian Panel on Intentional Perspectives on Information Systems
Engineering . 545

Arne Sølvberg

Author Index . 547

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 1–6, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Search Computing Systems

Stefano Ceri and Marco Brambilla

Politecnico di Milano, Dipartimento di Elettronica ed Informazione,
V. Ponzio 34/5, 20133 Milano, Italy

{ceri,mbrambil}@elet.polimi.it

Abstract. Search Computing defines a new class of applications, which enable
end users to perform exploratory search processes over multi-domain data
sources available on the Web. These applications exploit suitable software
frameworks and models that make it possible for expert users to configure the
data sources to be searched and the interfaces for query submission and result
visualization. We describe some usage scenarios and the reference architecture
for Search Computing systems.

Keywords: Search Computing, software engineering, search engine, software
architectures, Web information systems.

1 Introduction

Throughout the last decade, search has become the most adopted way to access in-
formation over the Internet. Users are asking for queries that are more and more en-
gaging for search engines, in several senses: the user search activity assumes the form
of an interaction process instead of a single query; the single query itself becomes
more complex (in terms of amount and extension of information the user asks for);
and the information to be retrieved is often hidden in the so called "deep Web", which
contains information perhaps more valuable than what can be crawled on the surface
Web.

Different classes of solutions have emerged to cover this information need: gen-
eral-purpose search engines; meta-search engines that query several engines and build
up a unified result set; vertical search engines that aggregate domain-specific informa-
tion from a fixed set of relevant sources and let users pose more sophisticated queries
(e.g., finding proper combinations of flights, hotels, and car rental offers).

However, an entire class of information needs remains to be supported: the case in
which a user performs a complex search process [2], addressing different domains,
possibly covered by distinct vertical search engines. For example, a user may wish to
find a place where an interesting event occurs, that has good weather in a given pe-
riod, with travel and accommodation options that match given budget and quality
standards, maybe with close-by trekking opportunities. This kind of search can be
performed by separately looking for each individual piece of information and then
mentally collating partial results, to get a combination of objects that satisfies the
needs, but such procedure is cumbersome and error prone.

2 S. Ceri and M. Brambilla

We define search computing applications [4], as the new class of applications
aimed at responding to multi-domain queries, i.e., queries over multiple semantic
fields of interest, by helping users (or by substituting to them) in their ability to de-
compose queries and manually assemble complete results from partial answers. The
contribution of this paper is to provide an overview of search computing system,
comprising a description of the user roles and of the system architecture and deploy-
ment strategy.

Our work is coherent with the current trend in service-oriented architectures
(SOA). Proposals for service specification include WSDL, UML models, and ontolo-
gies (WSMO and OWL-S). Service registration is based on UDDI and its variants,
portals like XMethods.com and RemoteMethods.com, systems like Woogle,
Wsoogle.com, Web Service Crawler Engine [1], and others. A large set of languages
and tools address service orchestration too (e.g., BPMN, WS-BPEL, XPDL). The
SeCo Project is focused on the integration of search services, i.e. services producing
ranked and chunked output, allowing consumers to halt the, when enough results are
available. Research projects with comparable goals include: Microsoft Symphony,
which enables non-developers to build and deploy search-driven applications that
combine their data and domain expertise with content from search engines[7]; Google
Squared (www.google.com/squared) and Fusion Tables (tables.googlelabs.com),
which produce tabular results of searches over web and proprietary information re-
spectively; Kosmix (www.kosmix.com), a general-purpose topic discovery engine,
which responds to keyword search by means of a topic page. All these proposals miss
several significant features with respect to SeCo, including: join of results, cost
awareness, definition and optimization of query plans, and others.

2 The Search Computing Framework

A Search Computing application supports users in asking multi-domain queries; for
instance, “Where can I attend a scientific conference close to a beautiful beach reach-
able with cheap flights?”. Search Computing proposes a configurable software archi-
tecture that supports any multi-domain query. The main idea is to delegate domain-
neutral computation to a generic architecture, which is then configured with domain-
dependent information to obtain the desired Search Computing application.

Search computing applications have several distinguished aspects:

• Data sources are usually heterogeneous and distributed; they must be made avail-
able to the search computing application as search services that respond to input
queries by returning ranked results, possibly chunked into sub-lists.

• Multi-domain queries are answered by selecting a subset of the data sources, by
individually extracting their responses, and then by joining the responses thereby
building combinations that collectively constitute the results of the query; this is a
special case of Web service selection and orchestration, where novel algorithms
are needed for joining results sets. This implies that queries can be addressed
only through complex orchestration algorithms, which must scale properly.

 Search Computing Systems 3

• Combined and ranked results must be presented to the user for inspection and
query refinement, with an exploratory approach that allows augmenting complex
results with new findings. This, together with the desired wide adoption of the
applications by the user, requires scalability of the platform with respect to the
number of users and of requests per user.

• Finally, search computing applications are especially effective for improving the
visibility and economical value of so-called long-tail content, which can be used
to produce highly customized search solutions. This entails the need of extreme
scalability of the platform with respect to the number of registered services.

Figure 1 shows an overview of the Search Computing framework, constituted by
several sub-frameworks. The service mart framework provides the scaffolding for
wrapping and registering data sources. Data sources can be heterogeneous (examples
are: a Web site wrapper, a Restful data source, a WSDL web service, a YQL data
source, a materialized source, etc.); registration requires a standardization of their
interface, so to comply with a service invocation protocol. A service mart is defined
as an abstraction (e.g., Hotel) of one or more Web service implementations (e.g.,
Bookings and Expedia), each capable of accepting queries and of returning results,
possibly ranked and chunked into pages. Registration metadata describes the service
mart signature and connection information. A connection is defined as an input-output
relationship between pairs of service marts that can be exploited for joining them
(e.g., the declaration that the output city of the Hotel service mart can be used as an
input destination to the Trip service mart). The user framework provides functionality
and storage for registering users, with different roles and capabilities. The query
framework supports the management and storage of queries as first class citizens: a
query can be executed, saved, modified, and published for other users to see. The
service invocation framework masks the technical issues involved in the interaction
with the service mart, e.g., the Web service protocol and data caching issues.

Query Manager

Application
Configuration

Tool

Service
Repository

Query
Repository

Liquid Queries
UIService

Registration
Tool

User data
repository

Query Planner

Execution Engine

Service Invocation
Framework .

ServiceMart Framework

Query Framework

Query Plan
Refinement

Tool

Expert
user

Service
publisher

End
user

SeCo
expert

Controldependencies (uses)

Data flows (queries, results)
Services

Queries

Execution plans

Query
results

Orchestration

Se
rv

ic
e

m
gm

t.

Q
ue

ry
m

gm
t.

D
at

a
re

tr
ie

va
l

Service calls

Service call results

Queries & results

Read &
write

Read &
write

Cache

Cache

Cache

Cache

Cache

Client
application

Queries & results

Cache

Internal API

User Framework
Cache

Read &
write

External API (REST) Application
Repository

Read &
write

U
se

rm
gm

t.

Legend

Fig. 1. Overview of the Search Computing framework

4 S. Ceri and M. Brambilla

The core of the framework aims at executing multi-domain queries. The query
manager takes care of splitting the query into sub-queries (e.g., "Where can I attend a
scientific conference?"; "Which place is close to a beautiful beach?"; "Which place is
reachable from my home location with cheap flights?") and bounding them to the
respective relevant data sources registered in the service mart repository (in this case,
conferences could be retrieved using Eventful.com, places close to a beach using
Yelp.com, flights information using Expedia); starting from this mapping, the query
planner produces an optimized query execution plan, which dictates the sequence of
steps for executing the query. Finally, the execution engine actually executes the
query plan, by submitting the service calls to designated services through the service
invocation framework, building the query results by combining the outputs produced
by service calls, computing the global ranking of query results, and producing the
query result outputs in an order that reflects their global relevance.

To obtain a specific Search Computing application, the general-purpose architec-
ture of Figure 1 is customized by users, supported by appropriate design tools.

3 Search Computing Users

The development of Search Computing applications involves users with different
roles and expertise:

• Service Publishers: they are in charge of implementing mediators, wrappers, or
data materialization components, so as to make data sources compatible with the
service mart standard interface and expected behavior; they register service mart
definitions within the service repository, and declare the connection patterns us-
able to join them.

• Expert Users: they configure Search Computing applications, by selecting the
service marts of interest, by choosing a data source supporting the service mart,
and by connecting them through connection patterns. They also configure the
user interface, in terms of controls and configurability choices for the end user.

• End Users: they use Search Computing applications configured by expert users.
They interact by submitting queries, inspecting results, and refining/evolving
their information need according to an exploratory information seeking approach,
which we call Liquid Query [3].

The development process steps lead to the final application accessed by the end user.
The Liquid Query interface, instantiated during the application configuration phase,
supports the “search as a process” paradigm, based on the continuous evolution, ma-
nipulation, and extension of queries and results; the query lifecycle consists of itera-
tions of the steps of query submission, when the end user submits an initial liquid
query; query execution, producing a result set that is displayed in the user interface;
and result browsing, when the result can be inspected and manipulated through ap-
propriate interaction primitives, which update either the result set (e.g., re-ranking or
clustering the results) or the query (e.g., by expanding it with additional service marts
or requesting for more results). This approach to development takes into account the
trend towards empowerment of the user, as witnessed in the field of Web mash-ups
[5]. Indeed, all the design activities from service registration on do not ask to perform
low-level programming.

 Search Computing Systems 5

4 Search Computing Architecture

Given the aim of providing users with an efficient Search Computing framework and
the expected amount of services, users and methods to solve multi-domain search
queries, the adoption of a distributed paradigm is a natural consequence. This entails
dealing with the common challenges of a distributed system, e.g. heterogeneity, scal-
ability, concurrency, failure handling and transparency.

With this objective in mind, we have designed the architecture in Figure 2 in terms
of logical layers:

• The service layer offers facilities to wrap and expose existing services.
• The execution & mart layer physically orchestrates the query execution plan by

means of an engine component and provides the service mart abstraction through
a repository and an invocation environment.

• The query layer translates the high-level query description over service marts into
an optimized execution plan over service implementations. Queries and opti-
mized plans are stored in a repository for subsequent reuse.

• The application layer provides a REST API to submit queries, an application
repository to store application-specific data (such as UIs’ definitions) and liquid
query support. The latter enables a fluid user interaction thanks to client-side data
management and to asynchronous communications with the SeCo back-end.

• The tools layer transversely provides design, management and interaction facili-
ties to the levels of the proposed architecture.

Service Tier

Rest API

Query

Manager

Query

Planner

Execution

Engine

Execution

Units

Service

Environment

Wrapped

Service

Engine Tier – Cloud Infrastructure

Client Tier - Browser

Container (replicable & distributable)

Load Balancer (HTTP)

Manager

Execution Processing Unit Storage Processing Unit

Liquid Query UI Management Workbench

Tuple Space

Liquid

Query UI

Modular

Workbench

Query Plan

Ref. Tool

Application

Conf. Tool

Service

Reg. Tool

Application

Repository

Query

Repository

Mart

Registry

Fig. 2. Logical architecture and deployment diagram

6 S. Ceri and M. Brambilla

The architecture is deployed in accordance with the scalability and performance re-
quirements. We use a service-oriented architecture built on shared spaces within a
grid computing framework (Space-Based Architecture). The power of spaces comes
from not having to separate various parts of an application into discrete physical run-
times [8]. We organize the deployment in three separate tiers (Fig. 2):

• The service tier consists of the processing nodes providing access to registered
services.

• The client tier consists of client machines locally running the liquid query UI,
which is offered as a JavaScript component running inside Web browsers.

• The engine tier represents the query engine, which is invoked by clients and
executes Search Computing queries over registered services.

The deployment of the engine tier exploits a high-end application server. In order to
achieve scalability and high-performance, a load balancer distributes the execution
load over a set of available processing units. A grid manager is in charge of the moni-
toring of the infrastructure, providing the instantiation and the recovery of grid
containers according to a predefined Service Level Agreement (SLA). Finally, grid
containers host processing and storage units and communicate by means of a tuple
space. We adopt Gigaspaces XAP [6], a scalable, high-performance, reliable data grid
implementation, supporting multiple clustering topologies to provide a clustered in-
memory data repository (cache and application data), a fast message bus and a
distributed platform for running the application’s code.

Acknowledgements. This research is part of the Search Computing (SeCo) project,
funded by the European Research Council (ERC), under the 2008 Call for "IDEAS
Advanced Grants", a program dedicated to the support of frontier research. We thank
all the project contributors and the advisory board members for their work.

References

[1] Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the World Wide Web. In:
WWW 2008, Beijing, April 2008, pp. 795–804. ACM, New York (2008)

[2] Baeza-Yates, R., Raghavan, P.: Next Generation Web Search. In: Ceri, S., Brambilla, M.
(eds.) Search Computing. LNCS, vol. 5950, pp. 11–23. Springer, Heidelberg (2010)

[3] Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Liquid Query: Multi-Domain Explora-
tory Search on the Web. In: WWW 2010, Raleigh, USA, April 2010. ACM, New York
(2010) (in print)

[4] Ceri, S., Brambilla, M. (eds.): Search Computing Challenges and Directions. LNCS,
vol. 5950. Springer, Heidelberg (2010)

[5] Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Understanding
UI Integration: A Survey of Problems, Technologies, and Opportunities. IEEE Internet
Computing 11(3), 59–66 (2007)

[6] Gigaspaces XAP, http://www.gigaspaces.com
[7] Shafer, J.C., Agrawal, R., Lauw, H.W.: Symphony: Enabling Search-Driven Applications.

In: USETIM (Using Search Engine Tech. for Inf. Mgmt.) Workshop, VLDB Lyon (2009)
[8] Shalom, N.: Space-Based Architecture and The End of Tier-based Computing,

http://www.gigaspaces.com/WhitePapers

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 7–8, 2010.
© Springer-Verlag Berlin Heidelberg 2010

The Influence of IT Systems on the Use of the Earth’s
Resources

Jurij Paraszczak

IBM T.J. Watson Research Centre
Yorktown Heights, NY 10598

jurij@us.ibm.com

Information technology is so pervasive that estimates of its power usage show that
data centers, locations where computing systems are densely packed consume some
2% of available power in mature economies. Other estimates show that an additional
8% or so of power is consumed by IT systems which reside in offices and homes,
while assessments of power used consumer devices such as mobile phones and PDA’s
combined with other household appliances while charging or not deployed can add
another 6-8% of total power consumption. As computing power densities have in-
creased from a few tens of watts per square foot to hundreds of watts per square foot
considerable attention has been applied to the management of power in IT systems.

Efforts to deal with these power densities includes compute and storage system re-
designs to allow power to be controlled and managed, techniques to monitor and
understand the distribution of thermal energy in data centers and the beginning of the
integration of the grid to the IT based power demands of the data center.

Inasmuch as managing IT based power is an important issue, the same IT can
be used to help manage the planet’s resources such as electrical power in homes
and enterprises, water delivery and distribution to agriculture and industry, flooding
and sewage control, road traffic management and road charging, logistics and
manufacturing processes and many other activities which use resources and generate
waste.

In many situations where resources are used in cities, their usage is barely meas-
ured. For example the delivery of electrical power to homes is rarely measured more
than once a month. Once the bill is submitted, the consumer has no real idea where
the energy is spent and has no ability to plan how to manage that power. An even
more critical issue within electrical power distribution networks is the identification
of faults, where very little monitoring of the distribution networks results in irate
customers being the only source of information as to the location and timing of faults.
Similarly water usage by industrial, agricultural and enterprise customers and con-
sumers is not usually monitored at any detailed level and issues such as leakage and
contribute to waste and inefficiency.

Once these resource delivery systems become instrumented along with the corre-
sponding consuming systems, the resulting data can be used to manage resources
much more efficiently. This talk will address the nascent domain of resource man-
agement systems which combine the fields of data acquisition, distribution, modeling
optimization and decision support and begin to allow automated systems to manage

8 J. Paraszczak

resources within a city. Examples of the use of these integrated systems for traffic
management in cities, energy management in data centers, water management in ur-
ban and suburban areas, carbon management in the distribution of goods and other
situations will be shown. These will be shown to demonstrate the importance of mod-
els and their integration into the operation of these instrumented systems. The scope
of resource reduction, while maintaining the same levels of service, will show the
range of saving which are possible and descriptions of the IT architectures which
enable this combination of data flow, models and decisions to be made will be
provided.

Design and Verification of Instantiable
Compliance Rule Graphs in Process-Aware

Information Systems�

Linh Thao Ly1, Stefanie Rinderle-Ma2, and Peter Dadam1

1 Institute of Databases and Information Systems
Ulm University, Germany

2 Faculty of Computer Science
University of Vienna, Austria

{thao.ly,peter.dadam}@uni-ulm.de, stefanie.rinderle-ma@univie.ac.at

Abstract. For enterprises it has become crucial to check compliance
of their business processes with certain rules such as medical guidelines
or financial regulations. When automating compliance checks on pro-
cess models, existing approaches have mainly addressed process-specific
compliance rules so far, i.e., rules that correspond to a particular pro-
cess model. However, in practice, we will rather find process-independent
compliance rules that are nevertheless to be checked over process models.
Thus, in this paper, we present an approach that enables the instantiation
and verification of process-independent compliance rules over process
models using domain models. For this, we provide an intuitive visualiza-
tion of compliance rules and compliance rule instances at user level and
show how rules and instances can be formalized and verified at system
level. The overall approach is validated by a pattern-based comparison
to existing approaches and by means of a prototypical implementation.

1 Introduction

In many application domains, business processes are subject to compliance rules
and policies that stem from domain specific requirements such as standardiza-
tion or legal regulations [1]. Ensuring compliance of their business processes is
crucial for enterprises nowadays, particularly since auditing and certification has
become a competitive edge in many domains. Examples include certified family-
friendly enterprises being more attractive to prospective employees or clinics
proving a certain standard of their audited treatments to patients. Since process
models are the common way to represent business processes, business process
compliance can be ensured by verifying process models to be installed in process-
aware information systems against imposed compliance rules. Tab. 1 summarizes
quality compliance rules imposed on the software development process depicted
in Fig. 1.
� This work was done within the SeaFlows project, which is funded by the German

Research Foundation (DFG).

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 9–23, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

10 L.T. Ly, S. Rinderle-Ma, and P. Dadam

Table 1. Examples of compliance rules for software development

c1 Goals have to be defined before starting the development.

c2 Each test activity has to be documented.

c3 After the development freeze, no further development activities shall take place.

c4 Before carrying out a second usability test, a necessity check after the first us-
ability test is necessary.

c5 The testing has to be followed by an approval and the integration. Additionally,
no changes shall take place between the approval and the integration.

So far, existing approaches mainly focus on checking process-specific compli-
ance rules that correspond to certain process models [1,2,3]. One example is rule
c1 (cf. Tab. 1) over process model P (cf. Fig. 1) referring to process activities
define goals and start of development phase. However, in practice, com-
pliance rules are often specified in a more general manner and not specifically in
correspondence with a particular process model. Rule c2, for example, refers to a
general test activity and not to a functional test as present in the software
development process depicted in Fig. 1. Nevertheless, for quality assurance, it
could be desired to verify c2 over the development process. Thus, in order to
support a broad spectrum of realistic compliance rules, we must enable the veri-
fication of both, process-specific and process-independent compliance rules over
process models.

Define
goals

Design
Start of

develop-
ment phase

System
develop-

ment

GUI
develop-

ment

Develop-
ment
freeze

Functional
test

Documen-
tation

Documen-
tation

Usability
walk-

through

Usability
question-

naire

Approval

Necessity
check

GUI
develop-

ment

Integration
End of

develop-
ment phase

End of
testing

Approval

Change
process

1 2 3

4

5

6

78

9101112

13
14 15

1617

1819

Process model P

Fig. 1. Abstracted software development process (in BPMN notation)

Design and Verification of Instantiable Compliance Rule Graphs 11

Connected with supporting process-independent compliance rules, it is also
necessary to enable the definition of compliance rules at different design levels. At
user level an intuitive, high-level representation of compliance rules is desirable.
Contrary, at system level, it must be possible to conduct automatic verification
of process models against compliance rules. For this, it is necessary to instantiate
compliance rules over a particular process model and to equip them with formal
semantics for later verification.

In this paper, we present an approach for checking process-independent com-
pliance rules over process models. This is achieved by instantiating these compli-
ance rules over a particular process model using a domain model. The resulting
compliance rule instances can be verified separated from each other. This en-
ables individual compliance reports as well as individual solutions in case of
compliance violations. Furthermore, we show how compliance rules can be de-
fined at different design levels. At user level, compliance rules are specified using
an intuitive visualization based on graph structures. At system level compliance
rule graphs are equipped with formal semantics based on First Order Logic and
execution traces. The latter guarantees for independence of a particular process
meta model. The overall approach is validated by a pattern-based comparison
to existing approaches, by a general discussion on the co-existence of compliance
rules and process models, and by means of our prototypical implementation.

Sect. 2 discusses the compliance rule instantiation approach. Sect. 3 focuses
on the design of instantiable compliance rule graphs. Their counterpart formal-
ization is presented in Sect. 4. A validation of our approach is provided in Sect.
5. We close with a related work discussion in Sect. 6 and a summary in Sect. 7.

2 Compliance Rule Instantiation

Fig. 1 depicts the process model of a slightly abstracted software development
process that we discovered within several practical student projects at Ulm Uni-
versity. As discussed in Sect. 1, several compliance rules might be imposed on
the development process for quality and efficiency reasons (cf. Tab. 1). The basic
challenge is now to check whether the process complies to these compliance rules
or not. Additionally, in case of violations the system should yield helpful user
feedback in precisely reporting the reason for the problem.

Compliance rules are generally defined at different abstraction levels rang-
ing from rather abstract business policies to specific definitions [1]. To support
different levels of abstraction for compliance rules, we enable the use of do-
main models. Based on these, compliance rules can be instantiated for certain
processes. Note that domain models are demanded in many applications [4].
Moreover, we may also benefit from existing ontologies such as in the healthcare
domain [5]. Take for example compliance rules c2 and c4 (cf. Tab. 1): both refer
to test activities, where c2 is general and c4 more specific (usability test).
Fig. 2 shows an extract of the domain model belonging to the development pro-
cess. A test can be more specifically modeled as a usability or functional
test, where usability test can additionally distinguished into usability

12 L.T. Ly, S. Rinderle-Ma, and P. Dadam

Test Develop-
ment

Activity type

Usability
walk-

through

Usability
question-

naire

Usability
think
aloud

Usability
test

Functional
test

System
develop-

ment

GUI
develop-

ment

Fig. 2. An extract of the software development domain model

walkthroughs, usability questionnaires, or usability think aloud. A
development might be either a system development or a GUI development.

Without any further knowledge, compliance rule c2 cannot be evaluated over
development process P since P does not contain any test activity. In fact, c2
can only be evaluated by instantiation over P using the corresponding domain
model as depicted in Fig. 2. Based on the domain model, the general test activ-
ity referred to by c2 can be instantiated by three more specific testing activities
contained within P (i.e., usability walkthrough, usability questionnaire,
and functional test). This results in three compliance rule instances c21 , c22 ,
and c23 derived from c2 (cf. Tab. 2). The usability walkthrough and the
functional test are both documented according to the control flow of P. Thus,
c21 and c22 are satisfied. However, the usability questionnaire is not docu-
mented within P what violates instance c23 .

We see that by using instantiation the verification of c2 over P becomes pos-
sible. However, which benefits are offered by maintaining c2 and instantiating
it ”on demand” instead of replacing c2 by its instances c21 , c22 , and c23 for P
and the corresponding domain model? The different advantages become evident
when looking at the modeling, maintenance, and evolution of compliance rules
on the one side and compliance checking for process models on the other side as
depicted in Fig. 3.

First of all, for more complex domain models and processes, without instan-
tiation, the number of compliance rules might dramatically increase resulting
in huge effort for compliance rule modeling and maintenance. Moreover, sup-
porting high-level compliance rules and compliance rule instantiation eases the
evolution of compliance rules. Imagine, for example, that compliance rule c2 has
to be adapted (e.g., due to changes in the quality policies) such that each test
activity not only has to be documented but also has to be approved. In this
case, if the strategy to explicitly model all compliance rule instances of c2 was

Table 2. Compliance rule instances for c2, cf. Tab. 1

c21 The functional test has to be documented.

c22 The usability walkthrough has to be documented.

c23 The usability questionnaire has to be documented.

Design and Verification of Instantiable Compliance Rule Graphs 13

Process-specific
compliance rule instances

High-level process-
independent compliance rules

Instantiation of
compliance

rules

Compliance
checking

Individual compliance
reports

Process-independent modeling and

maintenance of compliance rules

Compliance checking for process-

specific compliance rule instances

Domain
model

Process
model

Fig. 3. The SeaFlows approach: compliance rule instantiation

applied, c21 , c22 , and c23 would have to be individually modified in order to in-
tegrate the change. By contrast, following the approach proposed in this paper,
only high-level rule c2 has to be modified resulting in modified high-level rule
c’2. c’2 then can be reinstantiated and checked for relevant process models.

Moreover, checking compliance at instance level results in fine-granule feed-
back on individual violations of rule instance (cf. Fig. 3). In turn, fine-granule
feedback enables fine-granule treatment of compliance rule instance violations.
Let us assume, for example, that c2 is only of recommendation nature (i.e.,
enforcement level low). Since c23 is violated over process model P, the process
designer might decide to completey ignore c2. However, since c21 and c22 are
actually fulfilled, he might prefer to ignore c23 instead of c2.

Altogether, using compliance rule instantiation as proposed in this paper, we
achieve minimal effort for compliance rule modeling and maintenance on the
one hand, but enable individual compliance checks and corresponding reports
for compliance rule instances on the other hand.

3 Instantiable Compliance Rule Graphs

The next challenge is to design instantiable compliance rules in a way that they
can be easily understood by users. This task includes representation of (high-
level) compliance rules as well as of compliance rule instances. We found that at
both levels, graphs provide an intuitive visualization that can be equipped with
formal semantics and verified at system level later on (cf. Sect. 4).

Process-independent Compliance Rules. To support process-independent
(i.e., high-level) compliance rule graphs and as well as their instantiation over
particular process models, a data model as depicted in Fig. 4 is needed: a process
model consists of a set of nodes distinguished by their node id to which activities
are assigned. An activity is assigned to activity types. An activity type may
be the sub-type of another activity. For example, the activity type usability
walkthrough is a sub-type of the activity type usability test (cf. domain
model in Fig. 2).

14 L.T. Ly, S. Rinderle-Ma, and P. Dadam

Execution event Activity execution Execution trace

Process Activity Activity type
1 .. *

Process node
1 1 .. * 0 .. *1 1

2 .. *

1

1 2 1 .. *

Logical model

Domain modelProcess model

0 .. *

subtype

Fig. 4. The data model for instantiable compliance rules

When looking at compliance rules c1 to c5 (cf. Tab. 1), it can be observed that
compliance rules mostly reflect certain patterns. Typically, compliance rules re-
quire the occurrence and/or the absence of certain activities (occurrence/absence
patterns). For c1, for example, activity define goals should occur before start-
ing the development. By contrast, for c3 further development activities should
be absent if activity development freeze has taken place. Furthermore, it can
be observed that the occurrence or absence of certain activities is often condi-
tional upon the occurrence or absence of other activities. Thus a compliance rule
mostly comprises a triggering part (denoted as antecedent pattern) and a con-
sequence pattern. To be able to instantiate process-inpdedendent compliance
rule graphs later on, each node of a rule graph is associated with an activity
type from the domain model (cf. Fig. 4). Directed edges connecting the nodes
represent predecessor relations.

Based on these observations compliance rules c1 to c5 can be described by
compliance rule graphs as depicted in Fig. 5. Compliance rule graph c1, for ex-
ample, states that the execution of activity start of development process
has to be directly or indirectly preceded by the execution of the activity define
goals. Compliance rule graph c5 states that the execution of activity end of
testing has to be succeeded by an execution of approval and integration. Be-
tween these two executions, however, no execution of the change process must
occur. Note that compliance rule graphs might also contain data information as
data object Test for c2. How to integrate and evaluate such data information
into compliance rules is subject to our future research.

Start of
development phase

Define goals Test Documentation Development freeze Development

Usability test Usability test

Necessity check

Compliance rule c1 Compliance rule c2 Compliance rule c3

Compliance rule c4

Results

End of testing Approval Integration

Change process

Compliance rule c5

Consequence
occurrence

Consequence
absence

Antecedent
occurrence

Antecedent
absence

vard

Data object

Fig. 5. Process-independent compliance rule graphs

Design and Verification of Instantiable Compliance Rule Graphs 15

Process-specific Instantiation of Compliance Rules . Generally, it must
be possible to define compliance rule graphs independent of a particular process
model. For later verification, however, it is necessary to instantiate independent
compliance rule graphs over process models.

The instantiation of compliance rule graphs is accomplished by “binding”
antecedent compliance rule nodes to nodes of the process model (reflected by
their node ids) with the associated activity type. Instantiation of compliance
rule c2 (cf. Fig. 5) over process model P (cf. Fig. 1) using the domain model
as depicted in Fig. 2, for example, results in three compliance rule instances as
depicted in Fig. 6. Visualizing compliance rules that way, the user is able to
locate exactly, which occurrences of a compliance rule are relevant, which are
satisfied, and which are violated.

Functional test Documentation

Results

7

Usability walkthrough Documentation

9

Usability
questionnaire

Documentation

12

Compliance rule instances of c2

Compliance rule instance c21 Compliance rule instance c22 Compliance rule instance c23

Results Results

Fig. 6. Process-specific compliance rule instances

4 Formalization and Verification of Compliance Rules

The graphical compliance rule notation provides for more intuitive modeling
of compliance rules since it hides formal details from the user. However, as we
will show in this section, each compliance rule graph corresponds to a logical
formula with defined semantics. The latter is necessary to enable the verification
of processes against imposed compliance rules.

4.1 On Formalizing Compliance Rules

We opted for first-order predicate logic (FOL) to formalize compliance rules
for several reasons. The use of a general and expressive logic such as FOL en-
ables the extension of our approach in order to support further types of com-
pliance rules not supported so far (e.g., authorization or organizational model
compliance rules). Moreover, FOL allows for the definition of the antecedent-
consequence-structure of compliance rules in a straight-forward and elegant
manner. The nodes of compliance rule graphs are mapped to variables while
properties of compliance rule graph nodes and the relations between nodes are
mapped to corresponding predicates in a FOL formula. Due to lack of space
we abstain from a complete definition here, but rather informally describe the
structure in the following. The general structure of a compliance rule is as
follows.

16 L.T. Ly, S. Rinderle-Ma, and P. Dadam

Structure 1 (Compliance rule). Let AT be the set of activity types of the
domain. Then, a compliance rule is of the following form:

[true | antecedentOccurrencePatterns | antecedentAbsencePatterns |
antecedentOccurrencePatterns ∧ antecedentAbsencePatterns]
→
consequence ∨ consequence ∨ · · · ∨ consequence

consequence :=
[consequenceOccurrencePatterns | consequenceAbsencePatterns |
consequenceOccurrencePatterns∧ consequenceAbsencePatterns]

In Struct. 1 the antecedent is either empty (i.e., the compliance rule is always
activated) or consists of an antecedent pattern. The latter can be composed from
occurrence patterns defining the occurrences of activity executions that activate
the compliance rule. Compliance rule c2 (cf. Fig. 5), for example, is activated by
the occurrence of an activity execution associated to the activity type test while
compliance rule c4 is activated by a more complex occurrence pattern (namely
the sequence of two activity executions). The antecedent pattern may also con-
sist of absence patterns defining the absence of particular activity executions.
This allows for refining the occurrence pattern by putting additional conditions
on the absence of activity executions (for example, to express patterns such as “if
no approval takes place between the end of development and the integration”).
If the antecedent of a compliance rule applies, one of the rule’s consequence pat-
terns must also apply in order to satisfy the rule. Each consequence pattern, in
turn, may consists of occurrence as well as absence patterns and corresponding
relations. Compliance rule c3 (cf. Fig. 5), for example, has a consequence ab-
sence pattern in its consequence part while the consequence part of compliance
rule c5 is composed from both consequence occurrence and consequence absence
patterns.

The formula for compliance rule c2 is given below. It expresses that each
activity execution associated to the activity type test has to be followed by
an activity execution associated to the activity type documentation with the
same results data object. This is a process-independent compliance rule, since
it only references to activity types from the domain model (cf. Fig. 2).

Compliance rule c2
∀t(ActivityT ype(t, test)→∃d : (ActivityT ype(d, documentation)∧Pred(t, d)∧
results(t) = results(d)))
Based on the development process (cf. Fig. 1), we can identify the process nodes
that are associated to the activity types referenced in the formula (namely test
and documentation). The formula for c2 can be adapted accordingly by refering
to activity executions associated to particular nodes in the process.

Process-specific compliance rule c2
∀t(ProcessNode(t, 7) ∨ ProcessNode(t, 9) ∨ ProcessNode(t, 12)→
∃d : (ActivityT ype(d, documentation) ∧ Pred(t, d) ∧ results(t) = results(d)))

Design and Verification of Instantiable Compliance Rule Graphs 17

Based on this, we obtain the resulting compliance rule instances of c2 as
follows.

c21 : ProcessNode(t, 7)→ ∃d : (ActivityT ype(d, documentation) ∧ Pred(t, d) ∧
results(t) = results(d))
c22 : ProcessNode(t, 9)→ ∃d : (ActivityT ype(d, documentation) ∧ Pred(t, d) ∧
results(t) = results(d))
c23 : ProcessNode(t, 12)→ ∃d : (ActivityT ype(d, documentation)∧Pred(t, d)∧
results(t) = results(d))

4.2 Interpretation of Compliance Rules

So far we showed that compliance rules are represented by FOL formulas. To
round up the formalization of compliance rules, we also have to provide formal
semantics for these formulas. The formal semantics has to be defined over an
adequate logical model, that serves as interface between the compliance rule
perspective and the process perspective. To support a variety of business process
models, the logical model must be independent of a particular process meta-
model. As discussed in our previous work in [6,3,7] execution traces are a suitable
logical model since they are applicable to any process meta-model with formal
execution semantics.

Generally, depending on their particular purpose, execution traces comprise
different kinds of information. At minimum, execution traces store information
on the execution of activities for a particular process instance (e.g., start, end, or
start/end events for activity executions). Additional information might comprise
actor assignments, input or output data, and timestamps (see, for example, the
MXML execution traces used in ProM [8]). In the context of this paper, it is
important to be able to instantiate compliance rules over process models. Thus,
within execution traces, it should be possible to distinguish between concepts
such as nodes and activities (cf. data model in Fig. 4). Thus, we define an ordered
execution trace σ over a process model P as follows:

σP := <e1, . . . , ek> with

ei ∈ {Start(activity, node, timestamp), End(activity, node, timestamp)} where

– activity denotes the activity event ei is associated with
– node denotes the process node an activity is associated with
– timestamp represents an abstract timestamp

For our formal interpretation of compliance rules, we need the activity-oriented
view σ′

P of event-based execution traces σP . σ′
P represents the ordered activity

executions in σP :

σ′
P := <a1, . . . , am> with

ax = (activityx, nodex, startT imex, endT imex), x = 1, .., m with ∃ei, ej ∈ σP :

– ei = Start(activityx, nodex, startT imex),
– ej = End(activityx, nodex, endT imex),

18 L.T. Ly, S. Rinderle-Ma, and P. Dadam

– i < j and �el ∈ σP : i < l < j and el = End(activityx, nodex, . . .) and
– ∀ar, ap : r < p⇒ startT imear < startT imeap

Based on the notion of execution traces and activity executions we can provide a
default interpretation of compliance rules as follows. The interpretation relates
the predicates in the compliance rule formula to activity executions in the ex-
ecution trace. In the following, we focus on correct execution traces (e.g., each
start event has a corresponding end event).

Definition 1 (Interpretation of compliance rules). Let AT be the set of
activity types of the domain model. Let σ′=<a1, . . . , am> be an activity-oriented
view of an execution trace. Then, the interpretation over σ′ over AT is a tuple
Iσ′=<Dσ′ , dσ′> with:
Dσ′ is the domain of the interpretation Iσ′ with Dσ′ := {a1, . . . , am}
Let further Nσ′ = {n|∃a = (activitya, nodea, startT imea, endT imea) ∈ Dσ′ :
n = nodea} be the set of process nodes associated to activity executions in σ′.
dσ′ is a function interpreting the predicates ActivityT ype, ProcessNode, and
Pred1 over σ′as follows:

– dσ′(ActivityT ype) 	→ {(a, A), a = (activitya, nodea, startT imea, endT imea)
∈ Dσ′ , A ∈ AT | activitya = A ∨ activitya is a subtype of A}

– dσ′(ProcessNode) 	→ {(a, n), a = (activitya, nodea, startT imea, endT imea)
∈ Dσ′ , n ∈ Nσ′ | n = nodea}

– dσ′(Pred) 	→ {(a, b), a = (activitya, nodea, startT imea, endT imea)
∈ Dσ′ , b = (activityb, nodeb, startT imeb, endT imeb) ∈ Dσ′ | endT imea <
startT imeb}

Based on Def. 1 compliance rule formulas can be interpreted over execution
traces. Def. 2 provides the formal criteria necessary for compliance verification.

Definition 2 (Satisfaction of compliance rules). Let P be a process model
and let Σ′

P be the set of all activity-oriented views on execution traces of P (i.e.,
all traces P is able to produce). Let further σ′

P ∈ Σ′
P be one activity-oriented

view of an execution trace of P .
We say σ′

P satisfies c (notation: σ′
P |= c) if and only if:

Iσ′
P
|= c.

We say P satisfies c (notation: P |= c) if and only if:
∀σ′

P ∈ Σ′
P holds σ′

P |= c.

To illustrate the formal semantics defined above, consider again compliance rule
c5 (cf. Fig. 5) and the development process (cf. Fig. 1). Based on the execution
traces that the development process can produce, Def. 1 can be applied to verify
the development process against c5. Informally, the straight-forward way to verify
compliance rules corresponds to reachability analysis as applied for checking the
soundness of process models [9]. In all execution traces of the process, there is an
1 Constants in a compliance rule formula (i.e., node identifiers in compliance rule

instances) are mapped to themself and hence, are ommitted in the interpretation.

Design and Verification of Instantiable Compliance Rule Graphs 19

occurrence of end of testing (node 14). Hence, compliance rule c5 is activated
in all executions of the development process. After end of testing, either the
upper (case 1) or the lower split branch (case 2) is executed. In the first case,
the corresponding execution trace contains the execution of the approval (node
15), directly followed by the execution of the integration (node 18). Hence, this
trace satisfies c5. In the second case, the change process (node 16) is executed
after the approval (node 15). However, another approval activity (node 17) is
executed afterwards, that is directly followed by the integration. According to
the interpretation from Def. 1, c5 is also satisfied in the second case.

5 Discussion and Validation

Generally, different scenarios of integrating business processes and compliance
rules are conceivable. At the one side of the spectrum, all relevant compliance
rules might be integrated (as far as possible) within the process model. This
might be achieved by a multitude of partly nested alternative branchings. Full
merging of rules into process models could be desirable for scenarios with simple
process models and compliance rules that are mandatory for all process models.
However, this approach has also several drawbacks. The first one is the possibly
enormous complexity of the resulting process models in case of a multitude
of compliance rules imposed on them. This can be compared to approaches
for process configuration and variants, keeping all variants or rules within one
model. As research has discussed, for many scenarios, this approach quickly
leads to overly complex process models that cannot be understood by users
any longer [10]. In addition, from our practical examples, we know that often
not all compliance rules are mandatory, but rather have a suggesting character.
Examples include medical guidelines that might be overruled by the doctor at
any time. However, if all compliance rules are ”hard-wired” within the process
models, this optional character gets lost.

On the other side of the spectrum, we could also think of representing process
models and compliance rules entirely as rules, for example within rule engines
such as ILOG JRules or by using declarative approaches such as ConDec [11].
Aside from the fact that declarative process description can be covered by our
approach, it cannot be neglected that in practice, most process models are de-
scribed and automated using graph-based notations. Specifically, in practice, we
will often find a coexistence of business process (models) and compliance rules
imposed on them. Another reason for this coexistence is that compliance rules
might be introduced after the process model has been designed and enacted.

For these reasons, we mainly aim at supporting the coexistence of process
models and compliance rules which complies to approaches that aim at bal-
ancing flexibility and control by combining imperative and declarative process
description [12]. However, since our logical model is based on execution traces
(cf. Sect. 3), SeaFlows can also deal with pure process-model-based and declar-
ative scenarios. In the latter case, execution traces are a suitable representation
of process instances defined by following the imposed constraints [13].

20 L.T. Ly, S. Rinderle-Ma, and P. Dadam

5.1 Pattern-Based Validation

We collected recurring compliance rule patterns from literature and modeled
them using the SeaFlows compliance rule formalism. Many pattern-based ap-
proaches [14,15,13] base their patterns on patterns collected by Dwyer and
Corbett [16]. Simple (particularly binary) patterns, such as global scope pres-
ence, global scope absence, after scope absence, before scope absence, response,
and precedence can be modeled similarly to some of the compliance rules from
Fig. 5 (e.g., compliance rule c3 corresponds to after scope absence). Hence, we
omit the illustration of these patterns due to space limitations. Three advanced
patterns [14,16] are depicted in Fig. 7. The response with absence rule states that
A must be followed by an occurrence of C without B occurring in the meantime.
The precedence with absence rule states that C must be preceeded by A such
that no B occurs in between. The after scope precedence chain states that the
sequence A. . . B must occur between S and a succeeding occurrence of C.

In constrast to approaches based on a limited set of patterns and respective
combinations thereof using the logical conjunction (cf. Sect. 6), the SeaFlows
approach is compositional. It allows for modeling compliance rules with an

B

A C

Response with absence Precedence with absence

C

B

A S

After scope precedence chain

C

A B

Fig. 7. Advanced compliance rule patterns [14]

Fig. 8. The SeaFlows graphical compliance rule editor

Design and Verification of Instantiable Compliance Rule Graphs 21

antecedent and a consequence part. The modeled compliance rule graphs can
be automatically mapped to logical formulas (cf. Sect. 4).

5.2 Technical Validation

Fig. 8 shows the SeaFlows compliance rule editor. It allows for separately mod-
eling the antecedent and consequence patterns of compliance rules (depicted in
separate boxes). The SeaFlows editor is integrated into the AristaFlow BPM
Suite that is based on ADEPT [6]. Each compliance rule node can be assigned
an activity type from the AristaFlow Activity Repository. The latter also pro-
vides the activity types used to model processes and serves as domain model in
our implementation. For convenient compliance rule modeling, the SeaFlows ed-
itor allows for modeling parametrized recurring compliance rules patterns. If the
user wants to model a compliance rule with the same structure, he may apply
the parametrized compliance rule pattern.

6 Related Work

Many approaches have been proposed in literature to model compliance rules. We
focus on approaches for modeling compliance rules over the occurrence and order-
ing relations of activity executions within a process with the goal of process ver-
ification. Existing approaches range from rather informal annotations of process
models with compliance rules, over formal languages, to visual patterns.

To enable the verification of processes against imposed compliance rules, the
latter have to provide formal semantics. This requirement is met by compliance
rules specified in formal languages. Among the formal languages proposed for
compliance rule modeling, we often come across temporal logics such as linear
temporal logic (LTL) or computational tree logic (CTL) [17]. Both are frag-
ments of first-order logic (FOL). Due to its linear time semantics, which is more
suitable in the business process context [18], LTL has been clearly prefered over
CTL which has branching time semantics. Albeit its expressiveness to model
compliance rules with regard to the occurrence and ordering relations of activ-
ities, pure LTL has limitations when it comes to the incorporation of context
conditions within compliance rules. This is due to the fact that one cannot di-
rectly address a particular state in LTL. Hence, to ensure the extendability of our
approach, we opted for the formalization in FOL. The formal contract language
(FCL), designed to specify business contracts, can also be applied to model com-
pliance requirements [19,20]. However, FCL is based on a rather state-oriented
than activity-oriented paradigm. In general, it requires certain skills to model
compliance rules using a formal language which might be an obstacle to the
practical application of corresponding approaches.

Due to the difficulties of modeling compliance rules using formal languages in
practice, many approaches from literature suggest visual notations to hide the
formal details from the modeler. In [18], Liu et al. propose a graphical business
property specification language (BPSL) that is based on linear temporal logic.

22 L.T. Ly, S. Rinderle-Ma, and P. Dadam

BPSL provides visual notations for logical operators. In addition, it defines dedi-
cated operators for recurring logical patterns. In contrast to our approach, BPSL
does not support the explicit structure of antecedent and consequence patterns
within a compliance rule.

Other approaches aim at establishing a set of recurring compliance rule pat-
terns. The patterns are either given visually [21,14,11] or are organized in some
kind of a pattern ontology [15,22,12]. Generally, these patterns are based on
property patterns collected by Dwyer and Corbett [16]. Each pattern, in turn,
can be mapped to a logical formula (e.g., in LTL). This enables the formal veri-
fication. Clearly, establishing set of rule patterns recurring in a business domain
is an effective approach to facilitate compliance rule modeling. This can also
be accomplished with our compliance rule language. Although the rule patterns
can usually be combined using the logical conjunction, a fixed set of patterns
can still be too restrictive for particular application scenarios. In these case,
compositional approaches such as our approach are advantageous.

7 Summary and Outlook

We presented an approach to support the design and verification of compliance
rules at different abstraction levels ranging from high-level, process indepen-
dent rules to rules specified over particular process models. The main challenge
was to enable the verification of process models against process-independent
compliance rules. We solved this by introducing the mechanism of compliance
rule instantiation using domain models and showed that instantiation results in
many advantages such as easening design, mainenance, and evolution of compli-
ance rules as well as fine-granule compliance reports. Moreover, we introduced
an intuitive visualization of compliance rules and instances together with their
formal semantics based on FOL and execution traces. Finally, we showed the
feasability of our approach based on a pattern-based validation and by means
of our powerful prototype. In future work, we will equip compliance rule graphs
with operational semantics to enable more efficient compliance checking. In ad-
dition, we will further investigate on runtime issues. At runtime when process
instances are created from process models and executed, the compliance with
imposed compliance rules may change [7]. That is why it can become necessary
to monitor the compliance during process execution.

References

1. Sadiq, S., Governatori, G., Naimiri, K.: Modeling control objectives for business
process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

2. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q
and temporal logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008)

3. Ly, L.T., Rinderle-Ma, S., Dadam, P.: Integration and verification of semantic
constraints in adaptive process management systems. Data and Knowledge Engi-
neering 64, 3–23 (2008)

Design and Verification of Instantiable Compliance Rule Graphs 23

4. Filipowska, A., Hepp, M., Kaczmarek, M., Markovic, I.: Organisational ontol-
ogy framework for semantic business process management. In: BIS 2009. LNBIP,
vol. 21, pp. 1–12. Springer, Heidelberg (2009)

5. Kumar, A., Smith, B., Pisanelli, D., Gangemi, A., Stefanelli, M.: An ontological
framework for the implementation of clinical guidelines in health care organizations.
Stud. Health Technol. Inform. 102, 95–107 (2004)

6. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by adap-
tive workflow systems. Distributed and Parallel Databases 16, 91–116 (2004)

7. Ly, L.T., Rinderle-Ma, S., Göser, K., Dadam, P.: On enabling integrated process
compliance with semantic constraints in process management systems. Information
Systems Frontiers (2009) (accepted for publication)

8. van der Aalst, W., et al.: Prom 4.0: Comprehensive support for real process analy-
sis. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494.
Springer, Heidelberg (2007)

9. van der Aalst, W.: Verification of workflow nets. In: Int’l Conf. on Application and
Theory of Petri Nets, pp. 407–426 (1997)

10. Hallerbach, A., Bauer, T., Reichert, M.: Managing process variants in the process
lifecycle. In: Proc. ICEIS 2008, pp. 154–161 (2008)

11. Pesic, M., Schonenberg, M., Sidorova, N., van der Aalst, W.: Constraint-based
workflow models: Change made easy. In: Meersman, R., Tari, Z. (eds.) OTM 2007,
Part I. LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)

12. Sadiq, S., Orlowska, M., Sadiq, W.: Specification and validation of process con-
straints for flexible workflows. Inf. Syst. 30, 349–378 (2005)

13. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to
Users. PhD thesis, Eindhoven University of Technology (2008)

14. Awad, A., Weske, M.: Visualization of compliance violation in business process
models. In: Proc. BPI 2009 (2009)

15. Yu, J., Manh, T.P., Hand, J., Jin, Y.: Pattern-based property specification and
verification for service composition. CeCSES Report SUT. CeCSES-TR010, Swin-
burne University of Technology (2006)

16. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proc. ICSE 1999, pp. 411–420 (1999)

17. Ghose, A., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180.
Springer, Heidelberg (2007)

18. Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business
process models. IBM Systems Journal 46, 335–361 (2007)

19. Governatori, G., Hoffmann, J., Sadiq, S., Weber, I.: Detecting regulatory compli-
ance for business process models through semantic annotations. In: Proc. BPD
2008 (2008)

20. Lu, R., Sadiq, S., Governatori, G.: Compliance aware process design. In: ter Hof-
stede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS,
vol. 4928, pp. 120–131. Springer, Heidelberg (2008)

21. van der Aalst, W., Pesic, M.: DecSerFlow: Towards a truly declarative service flow
language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

22. Namiri, K., Stojanovic, N.: Pattern-based design and validation of business process
compliance. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803,
pp. 59–76. Springer, Heidelberg (2007)

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 24–37, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Success Factors of e-Collaboration in Business Process
Modeling

Peter Rittgen

Vlerick Leuven Gent Management School, Reep 1, 9000 Gent, Belgium &
University of Borås, Allégatan 1, 50190 Borås, Sweden

peter.rittgen@vlerick.com

Abstract. We identify the success factors of collaborative modeling of business
processes by a qualitative analysis of the experiences of participants in group
modeling sessions. The factors and their relations form a preliminary theoretical
model of collaboration in modeling that extends existing models. The insights
from this guided the improvement of a group modeling method and tool support
which are in turn relevant outcomes of the design part of this study. We show in
field experiments that the new method outperforms the conventional one.

1 Introduction

The purpose of this paper is to identify factors of a modeling method that have an
impact on the quality of the model and the modeling process. For this purpose we
draw on the existing literature on electronic collaboration and extend and refine the
factor models that can be found there. To do this, we study collaborative modeling
sessions and interview the participants to elicit possible factors. As we assume that
participants can make valid assertions about modeling we have to show whether these
factors are indeed relevant. We did so by incorporating them into a modeling method
and accompanying tool to see whether using the factors really improves collaborative
modeling. In detail we proceed as follows.

We describe the results from 4 case studies and eight controlled field experiments
conducted at four organizations. The aim of the case studies is to find factors that
determine the success of business process modeling sessions. This is done ex post
with the help of semi-structured interviews with the participants of such sessions. The
details of that procedure and its results are described in section 4. We identify eleven
factors and their relations in the areas facilitation, motivation, group & team, and
support. The factor model is provided in section 5.

The sessions were done to improve a process modeling method and a supporting
tool. Method development was driven by the success factors (6.2). Section 6 also
shows the lessons we learnt with respect to the necessity of a co-evolution of method
and tool and the current status of the process modeling method.

The field experiments aim to validate the tool-supported method by comparing it to
the conventional method used in many organizations. This is done by a quantitative
analysis of questionnaire data. The results are reported in section 7. The factor model
itself is not validated but as the factors controlled method development, the validation

 Success Factors of e-Collaboration in Business Process Modeling 25

of the latter is an indication of the usefulness of the factor model. In the following two
sections we describe related research and the research approach that we have taken.

2 Related Research

One relevant area is that of electronic meeting systems (EMS). They are computer
systems designed to support electronic meetings (also called group support systems).
Some collaboration factors were identified in the Focus Theory of Group Productivity
[1] that refers to cognitive processes in group members. EMS’s have been found to
decrease the demand for attention and increase productivity.

The proponents of electronic meeting support claim that EMS’s have a positive ef-
fect on the outcome of meetings. There is general consent to that but there is some
debate as to the conditions for successful EMS use. Most researchers think that an
EMS has a moderating impact on the process, which then improves the output [2]. We
agree and put the focus of our research on the modeling process.

There are two mechanisms by which EMS’s can make a difference over face-to-
face meetings: anonymity and simultaneity. The former means that utterances can-
not be attributed to their originator. It is assumed that this will lead to additional ideas
that people would otherwise not have felt comfortable to share. Simultaneity means
the possibility of all team members to utter their ideas at the same time. In conven-
tional meetings only one person can speak at a time which leads to air time fragmen-
tation and thereby to a loss of ideas.

Both anonymity and simultaneity are supposed to moderate group process gains
(such as more objective idea evaluation, learning from others, etc.) and process losses
(such as air time fragmentation, production blocking, conformance pressure, free
riding, evaluation apprehension, etc.). These process characteristics are assumed to
determine outcome factors such as efficiency, effectiveness, satisfaction, consensus
and so on [3].

Experimental results were inconclusive [4] but case and field studies showed the
contributions of EMS’s in reducing meeting time and increasing meeting productivity
[5]. The application of EMS’s to group modeling has also been studied [6-8] with
similar results.

The problem with EMS’s is that they only support divergent processes but process
modeling also requires convergent processes such as filtering and integrating alter-
natives. These aspects are addressed in the COMA approach (COllaborative Modeling
Architecture).

Another closely related research area that can contribute success factors is that of
model or modeling quality. E.g. [9] suggests that modeling is a mapping procedure
where specific choices for the representation of reality have to be made along the
way. We consider modeling rather as a social construction process, though, which
offers many more choices. [10] proposes to the use of cognitive mapping techniques
as a quality factor. So the method itself can also be a factor. We have restricted our
attention on the factors within a method. This way we can engineer in the long term
an optimal method instead of making a choice between arbitrary given methods.

26 P. Rittgen

3 Research Methodology

Process modeling (or modeling, for short) is a collaborative activity that involves a
number of stakeholders possessing the required knowledge about the process or goals
of the organization. Although modeling is in principle always collaborative we call it
collaborative modeling because we want to stress the importance of a true and close
collaboration of the participants in group modeling (we come back to this later). In
this section we present the theories that have an impact on collaborative modeling and
the approach we have taken to conduct the research.

3.1 Relevant Theories

As modeling is a collaborative activity it is natural to first take a look at the literature
that deals with collaboration in general. In the section on related research we have
already pointed out the major works that deal with this topic. But here we consider
only such literature that provides some theoretic framework for explaining the factors
that determine the quality of collaboration.

An early milestone of collaboration was the work of Osborn on brainstorming [11].
He claimed that the critical factors for successful idea creation are quantity of ideas
(divergent production), absence of criticism (to stimulate ideas), encouragement of
unusual ideas (out of the box), and idea combination. Although these factors seem
logical enough, subsequent research has not found clear evidence that brainstorming
provides better ideas than other techniques. This ‘contradiction’ was solved by [12,
13] who found that the advantages were thwarted by production blocking, evalua-
tion apprehension, and social loafing.

Production blocking means that a person that explains his idea distracts other group
members from producing own ideas. Evaluation apprehension [14] means that par-
ticipants are reluctant to share their ideas because they fear social punishment. Social
loafing refers to a group member spending little effort relying on others.

One of the most elaborated theories on collaboration is Focus Theory by Briggs
[1]. It studies the individual effort a participant spends on collaboration assuming
that it can be spent on communication, deliberation, and information access, but not at
the same time. Productivity in one area therefore limits the effort that can be spent on
the others. The overall productivity depends on high productivity in all three areas
which constitutes a kind of a vicious circle. Briggs did intensive behavioral research
to concretize the factors that have an impact on individual effort.

In short his model relates the factors perceived difficulty of task, desired certainty
of success, perceived effort required, perceived effort available, self efficacy, desire
for goal, individual effort and group productivity. Briggs mentions some motivational
factors that are important for successful collaboration: desired certainty of success and
desire for goal. These intrinsic output-oriented factors are not sufficient for successful
process modeling, though, as the output (model) is not desirable for the participants.

We have therefore turned our attention to the literature in psychology dealing with
collaboration. There a distinction is made between intrinsic and extrinsic motivation,
i.e. motivation that originates in us and motivation that is imposed on us by people in
our environment. In our study we consider both of them. In our study we have also
elicited further factors and classified them.

 Success Factors of e-Collaboration in Business Process Modeling 27

Another source of knowledge that for our research is Consensus Building Theory
[15]. It specifies a few basic rules for collaboration that should lead to consensus,
which is of particular importance in process modeling. Among them are the use of a
professional and neutral facilitator, the presence of representatives of all stakeholders
and the existence of ground rules to guide participants (i.e. a method).

3.2 Research Approach

Our research mainly follows the principles of design science and combines it with
action research [16, 17] to study the collaborative creation of process models. Design
science is a framework that emphasizes the development and improvement of artifacts
in cycles, in our case a method and a tool.

The development of the artifacts was based on business needs derived from an empiri-
cal studies and applicable knowledge from theory [18, 19]. Validation and further im-
provement of the artifacts was studied in [20] in the form of a comparative experiment.

The purpose of this paper is not so much the relevance cycle which is documented
in [18, 20], but the rigor cycle, i.e. the contributions to the knowledge base. These
contributions take on the form of important factors and the way they are related to
each other. The general factors in e-collaboration were derived from relevant theories
as outlined in 3.1. Special factors for e-collaboration in modeling were derived from a
qualitative analysis of an interview study (see 3.3, 4) and confirmed in quantitative
comparative experiments (see 7). The result is a qualitative model of these factors.

3.3 Data Gathering

The data was collected in four case studies that were carried out in a sequential order
so that the lessons learned in one could be used to adapt the methodology and/or tool
before going into the next one (design cycle). The cases were done (in this order): at a
large psychiatric hospital (PH), a large insurance company (IC), a medium-sized bio-
engineering laboratory (BL), and a large public administration (PA). In total we did 5
modeling sessions lasting between 0.5 and 1.5 days. We did a to-be model for all
cases except IC, and an as-is model for PH and IC. The teams had between 7 and 12
participants that usually worked in groups of two.

Data was gathered in the form of ex-post qualitative interviews with participants
that were normally performed directly after the respective session but not later than on
the morning after. The interviews were semi-structured but we allowed interviewees
to elaborate on a point or to mention other issues. We also asked questions that came
to our mind while listening to the respondents. All 37 interviews were conducted by
the same researcher. The major questions were:

• Which factors are relevant to achieve a good model?
• Which factors are relevant for making modeling worthwhile?
• Which factors are relevant for making the output more desirable?
• What are the advantages of COMA over conventional modeling?
• What are the advantages of conventional modeling over COMA?

The answers from the respondents were coded and specific factors were taken up in
the list of relevant factors when they were mentioned by at least half of the group

28 P. Rittgen

members in a least 3 of the 5 sessions. We grouped the factors into facilitation, moti-
vation, group & team, and support factors. For further details see section 4.

4 Data Analysis

The interview data was analyzed as described above. The resulting factors have been
categorized into 4 categories: facilitation factors, motivation factors, group & team
factors, and support factors. The following sections are devoted to each category and
discuss the results from the interview in the light of relevant theories.

4.1 Facilitation Factors

Consensus building theory mentions that the facilitator has a significant impact on the
collaboration output. He should therefore be professional and neutral. Professionalism
can easily be ensured by hiring a consultant who does that work on a daily basis. But
that does not automatically ensure that he is neutral, even if he has been recruited
externally, i.e. not within the targeted organization. Facilitator bias is always present
because the facilitator has to translate the input from the participants into a process
model. His perceptions will therefore influence the way in which the model is built.

With conventional techniques such as brown paper this can hardly be avoided as
they leave the overall responsibility for the model to the facilitator who consequently
plays a role that is too dominant. Reducing facilitator dominance can be achieved by
participant involvement in model building. This also frees facilitator resources that
to be used elsewhere and removes the facilitator bottleneck that prolongs modeling
sessions. But according to conventional wisdom this is impossible because modeling
requires a highly skilled modeling expert.

Our experience in the cases has shown the contrary to be true. Unskilled people
can develop complex business process models after having played a modeling game
for about an hour. These models are not always 100 % perfect but they usually require
very little re-working, mostly to fix poorly structured layouts.

From this we conclude that facilitation has to be seen from a different perspective:
the facilitator should not elicit knowledge and transform it into a model, but he should
rather support people in modeling themselves and help them with the integration of
the different views. This approach was tested in many cases and was rated by the
participants as being both a better way of modeling and delivering a better result (see
section 7).

4.2 Motivation Factors

A fundamental problem with collaborative modeling is the fact that participants of
such an exercise have no intrinsic motivation for the result itself. Most people are not
interested in the model and do not see a need for it. But extrinsic motivation implies
the risk of shirking (i.e. underperforming when not noticed). Consequently intrinsic
motivation seems more promising, but instead of on the model we have to focus on
the modeling process. Motivation for modeling is therefore a key factor. A powerful
intrinsic motivation is that of gaming. The use of gaming for modeling has already
been suggested by [21].

 Success Factors of e-Collaboration in Business Process Modeling 29

People gladly do a tough job if it comes in the disguise of a game. Think of PC
gamers who spend days and nights without monetary reward just to reach the next
level. In terms of the modeling process we therefore need to increase the motivation
for modeling with the help of gaming elements. We have done so by introducing a
competition that consists of scoring models followed by the nomination of a winner
(i.e. the best model). In practice this means that models are not only developed by
participants but the “players” also score one another.

The latter can also be interpreted as a form of extrinsic motivation. In psychology
this is called social comparison. If I know that I will be judged by my peers I will put
much more effort into model development because nobody wants to be a loser.

4.3 Group and Team factors

For practical reasons and to improve group productivity, the whole group is split into
teams of 2. For the whole group it is paramount that members have complementary
knowledge. The obvious reason for this is that it increases the overall unique process
knowledge of the team and hence the richness of knowledge they can contribute to the
model. Together the group members should possess all required knowledge.

But there is also a more subtle mechanism at work that requires the division into
smaller, complimentary teams. Team members with complimentary, but overlapping
knowledge are likely to have some conflicting views on the process. Solving these
conflicts with the help of a constructive dialogue between two team members is much
easier than in the larger group where the air time is much more fragmented, which
prolongs conflict resolution. There is also a higher risk for the conflict to escalate
when even more different opinions collide.

In short, minor conflicts are solved more effectively and efficiently in a small team
and will then not escalate to the group level. Fundamental problems will surface to the
group level in the consolidation phase, which is the forum where problems of this
kind need to be addressed. This facilitates consensus building.

But dividing a group into small teams is not only a way of introducing two conflict
handling layers to speed up the modeling process. Discussions in a small team also
stimulate the team’s creativity (four eyes see more than two) and thereby the richness
and quality of their proposal and of the integrated model.

Another important factor is the degree of participation. It indicates the relative
number of group members that are actually active in a session. A higher degree raises
model quality by making models richer but lowers consensus by adding views.

4.4 Support Factors

When it comes to the support we mainly think of some computerized tool that can
increase the motivation for modeling and the model quality. We have found four areas
in which support is needed. They are discussed in the following sub-sections.

Modeling support
First of all we have to take a look at modeling itself. If participants are supposed to
model we obviously need some computerized tool support for them as a number of
paper versions could hardly be integrated in a structured way. This means that the tool,
called COMA, has to provide a model editor that is simple enough to allow unskilled
modelers to draw their business processes without the need for major education.

30 P. Rittgen

We have used a reduced version of the activity diagrams of UML that provides
only the most basic elements: activities, simple flows, decision points, parallel
processes, actors (as swim lanes), and notes (for comments and issues). Any other
modeling language (e.g. the Business Process Modeling Notation, BPMN) would
work just as well as long as the participants are not drowned in too many features of
the language.

In a simple modeling game that goes through all the steps of the modeling proce-
dure but uses a simple process known to everybody (getting cash from a teller
machine) we make the participants acquainted with the language, the tool and the
procedure. They learn them as a side-effect while trying to win the prize for the best
model (in some cases we actually handed out a small prize, in others the winners were
just applauded).

Competition support
Just telling the participants that a winner will be nominated is not enough as an incen-
tive. If, for example, a jury would determine the winner, or perhaps even the facilita-
tor himself, the decision process is not transparent for the participants and they might
think that other factors than model quality would influence the decision. This easily
leads to a situation of discouragement.

A jury would also be hard to find because the experts in that domain already sit
around the table. The facilitator is the worst judge because he typically possesses no
knowledge whatsoever about the targeted process (which otherwise is a plus because
it makes him more neutral).

We have therefore decided to introduce a scoring of each model proposal by the
other modeling teams. After the complete scoring round of all proposals the facilitator
shows the whole group the average scores of all teams as bars of different sizes and
numbers. This is an exciting moment for the teams as they get to know their own
scores and how they relate to the others.

Being judged by their own peers (often colleagues) makes them put as much effort
into the modeling as they can, and that is precisely what we want to achieve: the best
possible effort by all group members. Nobody can hide behind more active group
members as everybody has to deliver a model and every model is scored.

The result of the scoring round, which usually takes ten minutes, is not only a win-
ning team but also a winning model. This will be the basis for all further development
as the highest overall score clearly indicates that this model has the strongest support
and therefore the best chance of creating consensus. It cannot be taken as the final
version, though, as some details might still be missing or misrepresented. This needs
to be settled in a consolidation step.

Communication support
Verbal communication is essential in modeling [22] as the process of creating a semi-
formal representation is embedded in a natural language conversation about this rep-
resentation. If the modeling session is organized as a workshop with all participants
being in the same room at the same time, most of the conversation can take place in
the usual face-to-face manner.

If the group members are physically distributed but still working synchronously, the
face-to-face talk can be replaced by a video or teleconference. But many organizations

 Success Factors of e-Collaboration in Business Process Modeling 31

prefer the modeling work to be done off-line (asynchronously) so that the involved
employees can do the work at a time that is convenient for them. If the participants are
managers it is also very difficult to find empty time slots that coincide in everybody’s
agenda. This delays modeling work unnecessarily.

There is thus a need for asynchronous communication support. Such technologies
do exist, of course, in the form of email or even voicemail but the conversation is
related to a specific part of a particular model so the communication support has to be
linked to the modeling support.

Information access support
According to focus theory information access is one of the three building blocks of
collaboration. Collaborative modeling therefore also needs to give participants access
to vital information. The most important information is of course stored in the model
itself, but open issues expressed in natural language are also relevant information.

Both kinds of information should be accessible via a collaborative modeling tool to
facilitate distributed and asynchronous work. This means that model proposals of one
team can be opened by other teams to look at but also to reuse elements from other
models in your own. When it comes to open issues the collaborative modeling tool
has to provide a function that allows participants to log written comments with respect
to another team’s proposal they are currently reviewing.

This is further elaborated in section 6.2.

5 An Initial Model of Factors in Collaborative Modeling

If we summarize the findings from the empirical study we arrive at the factor model
that is shown in Fig. 1.

Fig. 1. Our model of collaboration factors in modeling

32 P. Rittgen

Please note that the model is not a general collaboration model but restricted to the
specific case of collaborative modeling. It is an extension of the existing models that
are connected via the variables Individual effort and Group productivity, which are
present in all of them. In our case the latter consists of model quality and consensus,
which are both important products of the modeling process.

It should be noted that the factor model is the result of qualitative research. The
model needs to be validated in a quantitative study that also determines the strength of
the links between the factors. Nevertheless, the results from the qualitative study have
allowed us to draw some interesting conclusions and to develop a modeling method
and tool that make use of the identified factors in order to improve the modeling proc-
ess as well as its result, the model.

6 Lessons Learned

The lessons that we learned from the case studies and interviews about the relevant
success factors provided valuable input for the development of a modeling method
that incorporates these factors. If the elicited factors do have an impact on the quality
of modeling and the model then this should lead to a more successful method also.
The following sub-sections describe how the method and tool were developed and
section 7 compares it to the most common existing method.

6.1 Co-evolution of Method and Tool

The first lesson was that the modeling method strongly depends on modeling steps
that some tool can support. But the development of the tool is of course also driven by
the requirements of the method. The latter is the normal way of developing methods
and tools. But the former needs explanation. Why should the tool drive the method?
The reason is that certain method steps cannot be performed (or not efficiently) with
conventional tools but require sophisticated tool support that can only be provided by
a computerized tool. They might therefore be excluded from the method.

But it is precisely these additional or modified steps that make the method superior
to others as seen in a study comparing the COMA method to the conventional method
based on brown paper. This is shown in section 7.

The conclusion we can draw from these experiences is that the development of
method and tool are so closely related that you cannot separate the one from the other.
Instead the design of both artifacts is done together. We call this co-design or co-
evolution of method and tool.

We see the tool as an inseparable part of the method which means that an empirical
evaluation of only one is not possible. We have therefore set up an experiment to
compare the COMA method + tool against the conventional method and tool (brown
paper). This is described in section 7.

6.2 Towards a Collaborative Process Modeling Method

Another important lesson told us that the new factors we have identified make it nec-
essary to develop a method that exploits these factors in order to improve both the
modeling process itself (in terms of participant satisfaction) and its result (the model).

 Success Factors of e-Collaboration in Business Process Modeling 33

The method has been developed in a design cycle where we started with the con-
ventional method and an existing modeling tool (UML Pad). We added, modified or
extended steps in the method that we thought would implement a certain factor. At the
same time we introduced the corresponding functionality in the tool. To check this we
have used the modified method and tool in action research to test whether it works
and to get feedback on the implemented factor, e.g. Did the motivation for modeling
increase? This procedure was iterated factor by factor and so far we have reached a
modeling method that contains 7 steps. Modeling is done in teams of 2 people. Each
team has a computer with the COMA tool (factor support). This tool basically offers
three tabs: One for editing your own model; one with the latest version of the group
model; and one that allows you to open models by other teams. The facilitator is
equipped with the same tool running in facilitator mode and being connected to a
beamer that projects the screen content on a blank wall that is visible to everybody.

Step 0:
Introduce participants to the COMA method and tool by playing a simple game of 1-2
hours. Instructions for the game can be found on the Internet, both for the participants
and the facilitator (anonymized). The facilitator divides the whole group into compli-
mentary teams of two supported by the responsible process or change manager that
knows the group members (factor complimentary teams).

Step 1:
Collect activities (as-is) or brainstorm for them (to-be) (similar to the conventional
method). Each team of two participants enters into the model editor an activity box for
each activity labeled with the name of the activity using the usual form verb + noun.
The time for this step is set in advance by the facilitator who also explains the scope
(where does the process start and end) and the granularity (how detailed should the
model be, e.g. in terms of a rough upper limit for the number of activities). At the end
of the time the teams post their models, i.e. they make a proposal. The facilitator
checks that all teams have made their proposals (factor degree of participation).

Step 2:
Score the activity model (factor competition). Each team opens the proposals of each
other team, one by one and gives a score on a scale from 0 to 10. The facilitator has to
specify the scoring criterion: E.g. compare the other model with your own model
w.r.t. completeness assuming a score of 5 for your own. At the end the facilitator will
show the average scores of all teams on the big screen. The model with the highest
score is chosen and becomes the new version of the group model.

Step 3:
Consolidate the best proposal (factor integration). In this step the best proposal is
adapted according to input from the participants. This is similar to model elicitation in
conventional sessions but the facilitator here has already an almost finished model
available and can concentrate on fine-tuning it. The model is visible on the big screen
(and also the facilitator’s changes) and participants can discuss in the large group to
resolve remaining issues. In most cases there is little work left to do.

34 P. Rittgen

Step 4:
Structure the activities (similar to the conventional method). The teams copy the final
set of activities into their editors and add the control flow and swim lanes (for actors).
The facilitator has to set an appropriate time when the teams post their proposals.

Step 5:
Score the process models (factor competition). This step proceeds exactly as step 2
but the scoring criterion might be different depending on the particular situation. For
an as-is model completeness and correctness are appropriate even here.

Step 6:
Consolidate the best process model (factor integration). This step proceeds as step 3.
The facilitator helps solve critical issues and improving the layout.

We have now described the method and which of the factors led to which of the
steps being affected. What remains to be shown is whether this new method, although
it worked very well in the design cases, does really outperform the conventional way
of producing models. This is done in the next section.

7 Comparative Experiments

We have carried out comparative experiments at IC that involved 8 groups with a
total of 83 members. In each experiment we had the same group model equally sized
parts of the same process. The morning session was performed using COMA; in the
afternoon the conventional approach was used. This order was chosen to avoid that
better scores for COMA could be attributed to the learning curve. Immediately after
the afternoon session each participant had to fill out a questionnaire that asked for a
ranking of COMA and conventional method with respect to 12 quality categories
concerning both the model and the modeling process.

The COMA sessions at IC were performed as described above.
The conventional sessions at IC proceeded as follows. The major tools used are a

big brown paper attached to the wall and a number of differently colored post-it notes.
In the beginning the facilitator asked the participants for the roles that are involved in
the business process and made a swim lane for each of them on the brown paper.

He then asked the group members to name the steps (activities) in the process and
wrote each one down on a post-it note that was attached to an empty space on the
brown paper, i.e. not in a particular swim lane. When all activities had been named
the facilitator would take one note after the other and ask the participants in which
swim lane it belongs. It was fixed there in an arbitrary position.

After having placed all notes the facilitator elicited the order of activities starting
from the first step. He drew an arrow from an activity to its successor and he also
introduced decision points where necessary. As the notes were not ordered within a
swim lane the resulting diagram became messy and consolidation of the model proved
often to be a difficult and time-consuming task.

After the session and off-line, the facilitator entered the diagram into a professional
modeling tool and sorted the activities as well as the arrows to get a readable layout.

 Success Factors of e-Collaboration in Business Process Modeling 35

The quality categories for our study are based on the ones used in a similar study
[23]. They have been adapted to reflect the differences between system dynamics
models and business process models.

The respondents had to check the approach that they experienced as superior in
each of the quality categories. The conventional method was coded as 0, COMA as 1.
We performed the non-parametric χ2-test to find out whether there is a significant
surplus of 0’s or 1’s in the respective category.

The χ2-statistic measures the fitness of an observed frequency with a theoretical
distribution, in our case a uniform distribution with 2 outcomes (50% 0’s and 50%
1’s) if the outcome is random. For a degree of freedom of 1 (2 outcomes) and a sig-
nificance level of 5%.the critical value is 3.84. If χ2 is lower than that the outcome is
random, otherwise it is significant.

The result is shown in Table 1 and Table 2. BP means ‘business process’.

Table 1. χ2 for the first six of twelve quality categories

More
Insight
into BP

Quicker
Insight
into BP

Better Commu-
nication

Better
Shared
View

Quicker
Shared
View

More
Commitment

χ2 6.373 0.301 0.301 24.398 0.976 0.590

Table 2. χ2 for the second six of twelve quality categories

Quicker
Commitment

Stronger
Influence

More
Ownership

Better
Result

Better Way
Of Working

More
Progress

χ2 0.108 41.940 18.325 22.277 28.928 11.578

Significant results are highlighted in bold. Some them also reach a significance of

1%. Out of the 12 quality categories COMA achieves a significant improvement in 7.
The improved categories are:

• More insight into the business process
• A better shared view
• A stronger influence of individuals on the result
• A stronger feeling of ownership of the model
• A better result (model)
• A better way of working
• More progress in modeling

In the other categories COMA scored equally well as the conventional method.

8 Conclusions

We set out to identify the relevant factors for successful modeling in the area of busi-
ness process modeling. We did so by performing four case studies and collecting

36 P. Rittgen

qualitative data on the factors by means of semi-structured interviews. While these
factors and their relations also form important insights in themselves, the major rea-
son for looking for them was for the purpose of guiding the design of artifacts that
support group modeling.

In a design cycle we therefore developed a business process modeling method and
a supporting tool. Both were employed in action research in many cases, amongst
them the ones of this study, to ensure continuous improvement. To see whether the
current artifacts really represent an improvement over existing methods we performed
field experiments. In each we used the same modeling group and the same business
process to ensure that the modeling method is indeed the only different factor. To
exclude a learning curve bias we always conducted the COMA session first.

In seven out of twelve quality categories COMA significantly outperformed the
conventional method, while there were no differences in the other five. This also
lends credence to the factor model, which we used in building the artifacts. Neverthe-
less, the factor model cannot be considered validated knowledge yet as a quantitative
study has to prove the strength of the identified links.

References

[1] Briggs, R.O.: The Focus Theory of Group Productivity and its Application to the Design,
Development, and Testing of Electronic Group Support Technology. Managemt Informa-
tion Systems Department, PhD. University of Arizona, Tucson (1994)

[2] Reinig, B.A., Shin, B.: The Dynamic Effects of Group Systems Support on Group Meet-
ings. Journal of Management Information Systems 19, 303–325 (2002)

[3] Fjermestad, J., Hiltz, S.R.: Group Support Systems: A Descriptive Evaluation of Case
and Field Studies. Journal of Management Information Systems 17, 115–159 (2001)

[4] Fjermestad, J., Hiltz, S.R.: An assessment of group support systems experimental re-
search: Methodology and results. Journal of Management Information Systems 15, 7–149
(1999)

[5] Nunamaker, J.F.J., Briggs, R.O., Mittleman, D., Vogel, D.R.: Lessons from a dozen years
of group support systems research: a discussion of lab and field findings. Journal of
Management Information Systems 13, 163–207 (1997)

[6] Dean, D., Orwig, R., Lee, J., Vogel, D.: Modeling with a group modeling tool: group
support, model quality, and validation. In: Proceedings of the Twenty-Seventh Hawaii
International Conference on System Sciences. Information Systems: Collaboration Tech-
nology Organizational Systems and Technology, January 4-7, vol. 4, pp. 214–223. IEEE
Computer Society Press, Los Alamitos (1994)

[7] Dean, D.L., Lee, J.D., Orwig, R.E., Vogel, D.R.: Technological Support for Group Proc-
ess Modeling. Journal of Management Information Systems 11, 43–63 (1994)

[8] Dean, D.L., Orwig, R.E., Vogel, D.R.: Facilitation Methods for Collaborative Modeling
Tools. Group Decision and Negotiation 9, 109–127 (2000)

[9] Mendling, J., Recker, J.: Extending the Discussion of Model Quality: Why Clarity and
Completeness may not always be enough. In: 19th International Conference on Ad-
vanced Information Systems Engineering (CAiSE 2007), pp. 109–121 (2007)

[10] Siau, K., Tan, X.: Improving the quality of conceptual modeling using cognitive mapping
techniques. Data & Knowledge Engineering 55, 343–365 (2005)

[11] Osborn, A.F.: Applied imagination: Principles and procedures of creative problem solv-
ing. Charles Scribner’s Sons, New York (1963)

 Success Factors of e-Collaboration in Business Process Modeling 37

[12] Diehl, M., Stroebe, W.: Productivity loss in brainstorming groups: toward the solution of
a riddle. Journal of Personality and Social Psychology 53, 497–509 (1987)

[13] Diehl, M., Stroebe, W.: Productivity loss in idea-generating groups: tracking down the
blocking effect. Journal of Personality and Social Psychology 61, 392–403 (1991)

[14] Cottrell, N.B.: Social Facilitation. In: McClintock, C. (ed.) Experimental Social Psychol-
ogy, pp. 185–236. Holt, Rinehart & Winston (1972)

[15] Susskind, L.: Arguing, Bargaining and Getting Agreement. In: Rein, M., Goodin, R.,
Moran, M. (eds.) Oxford Handbook of Public Poilicy. Oxford University Press, London
(2006)

[16] Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems Re-
search. MIS Quarterly 28, 75–105 (2004)

[17] March, S.T., Smith, G.: Design and Natural Science Research on Information Technol-
ogy. Decision Support Systems 15, 251–266 (1995)

[18] Rittgen, P.: Collaborative Modeling - A Design Science Approach. In: 42nd Hawaii In-
ternational Conference on System Sciences (HICSS-42), Waikoloa, Big Island, Hawaii,
USA, January 5-8, p. 10. IEEE Computer Society, Los Alamitos (2009)

[19] Rittgen, P.: Negotiating Models. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 561–573. Springer, Heidelberg (2007)

[20] Rittgen, P.: Collaborative Modeling of Business Processes - A Comparative Case Study.
In: 24th Annual ACM Symposium on Applied Computing, March 9-12, pp. 225–230
(2009)

[21] Hoppenbrouwers, S.J.B.A.: Community-based ICT Development as a Multi-Player
Game. In: What is an Organization? Materiality, Agency and Discourse. International
Communication Association (2008)

[22] Frederiks, P.J.M., van der Weide, T.P.: Information Modeling: the process and the re-
quired competencies of its participants. Data & Knowledge Engineering 58, 4–20 (2006)

[23] Rouwette, E.A.J.A., Vennix, J.A.M., Mullekom, T.v.: Group model building effective-
ness: a review of assessment studies. System Dynamics Review 18, 5–45 (2002)

Beyond Process Mining: From the Past to
Present and Future

Wil M.P. van der Aalst1, Maja Pesic1, and Minseok Song2

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology,

P.O. Box 513, NL-5600 MB, The Netherlands
w.m.p.v.d.aalst, m.pesic@tue.nl
2 School of Technology Management

Ulsan National University of Science and Technology,
100 Banyeon-ri, Ulju-gun, Ulsan Metropolitan City, 689-798, South Korea

minseok.song@gmail.com

Abstract. Traditionally, process mining has been used to extract mod-
els from event logs and to check or extend existing models. This has
shown to be useful for improving processes and their IT support. Pro-
cess mining techniques analyze historic information hidden in event logs
to provide surprising insights for managers, system developers, auditors,
and end users. However, thus far, process mining is mainly used in an of-
fline fashion and not for operational decision support. While existing pro-
cess mining techniques focus on the process as a whole, this paper focuses
on individual process instances (cases) that have not yet completed. For
these running cases, process mining can used to check conformance, pre-
dict the future, and recommend appropriate actions. This paper presents
a framework for operational support using process mining and details a
coherent set of approaches that focuses on time information. Time-based
operational support can be used to detect deadline violations, predict the
remaining processing time, and recommend activities that minimize flow
times. All of this has been implemented in ProM and initial experiences
using this toolset are reported in this paper.

1 Introduction

Processes are everywhere. Organizations have business processes to manufacture
products, provide services, purchase goods, handle applications, etc. Also in our
daily lives we are involved in a variety of processes, for example when we use our
car or when we book a trip via the Internet. More and more information about
these processes is captured in the form of event logs. Contemporary systems,
ranging from copiers and medical devices to enterprise information systems and
cloud infrastructures, record massive amounts of events. These events can be
used to make processes visible. Using process mining techniques it is possible
to discover processes [2,5]. Moreover, event logs can be checked to assess con-
formance/compliance with respect to defined processes and process models can
be modified and extended using process mining techniques. This provides the

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 38–52, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Beyond Process Mining: From the Past to Present and Future 39

insights necessary to manage, control, and improve processes. Process mining
has been successfully applied in a variety of domains ranging from healthcare
and e-business to high-tech systems and auditing.

Despite the success of process mining, a limitation is that existing techniques
are rarely used in an operational setting. Process mining is mainly used in an
offline setting where historical information is analyzed without considering the
running cases, i.e., instances of the process that have not completed yet. The goal
of this paper is to demonstrate that process mining techniques can be used for
operational decision support. Based on process models, either discovered through
process mining or (partly) made by hand, we can (a) check, (b) predict, and (c)
recommend. We can “replay” a running case on the process model and check
whether the observed behavior fits. The moment the case deviates, an appropri-
ate actor can be alerted. The process model based on historic data can also be
used to make predictions for running cases, e.g., it is possible to estimate the
remaining processing time and the probability of a particular outcome. Similarly,
this information can be used to provide recommendations, e.g., proposing the
activity that will minimize the expected costs and time.

This paper presents a general framework for operational decision support. It
shows that process mining is not limited to the “Past” but can also be used
for the “Present” and “Future”. To make this concrete, we present a new set
of approaches for time-based operational support implemented in our process
mining tool ProM [1]. These approaches center around an annotated transition
system that contains time information extracted from event logs. The annotated
transition system can be used to check (time) conformance while cases are be-
ing executed, predict the remaining processing time of incomplete cases, and
recommend appropriate activities to end users working on these cases.

In the remainder, we first present our framework for operational decision
support. Then we describe a concrete application of the framework aiming at
time-based operational support, its implementation in ProM, and some initial
experiences. Finally, we discuss related work and conclude the paper.

2 Framework for Operational Support

To position the results presented in this paper, we first introduce the classical
form of process mining typically done offline. Starting point for process mining
is the so-called event log. An event log consists of a set of traces. Each trace is a
sequence of events corresponding to a particular case. Note that a case represents
one process instance, i.e., one run of the process/system. Each event refers to
a task and typically also has a timestamp. Moreover, additional data elements,
information about resources, event types, etc. may be attached to events. For
example the trace 〈A10

John , B15
Mary , C25

Mary , D33
Pete〉 could represent a case for which

four tasks are executed A, B, C, and D. Each event also has a timestamp
and a reference to a resource. For example A10

John refers to the execution of A
by John at time 10. An example of a log consisting of three cases would be:
L = {〈A10

John , B15
Mary , C25

Mary , D33
Pete〉, 〈A12

Ivan , C16
Joe , C

24
Mary , B31

John〉, 〈A14
John , E18

Chris ,

D44
Joe〉}.

40 W.M.P. van der Aalst, M. Pesic, and M. Song

ABCD
ACBD
AED

ACBD
AED

ABCD

discover

check

modify/extendevent log model

A

B

C

DE

endstart

Fig. 1. Overview of classical forms of process mining: discover, check, modify, and
extend

check predict recommend discover check

traces/log modelfocus

action

active (“now”)
online, partial traces

passive (“history”)
offline, full traces

time
costs

…

extendmodify

Fig. 2. Overview of the process mining spectrum distinguishing between the active use
of partial traces and passive use of completed traces

As Figure 1 shows there are three types of process mining. First of all, there
are various techniques for process discovery [2,5]. These techniques aim at ex-
tracting models (for example Petri nets, EPCs, UML ADs, BPMN models) from
event logs.1 Secondly, there are techniques for conformance checking [16]. These
techniques compare the log and the model, measure the “fit”, and highlight de-
viations in the models. In a model with a fitness of 0.88, 88% of the events in
traces can be “replayed” using the model while 12% of the events can not be
“replayed” using the model.2 In the model, it could be highlighted that a par-
ticular task happened 343 times without being enabled according to the model.
Finally, there are techniques to modify or extend the model. Based on an analy-
sis of the event log there could be suggestions to change the model, e.g., to make
it better fitting. Moreover, an existing model just describing the control-flow
could be extended with temporal aspects extracted from the event log. This way
bottlenecks are highlighted and the extended model can be used for simulation
purposes [17].

The techniques just mentioned have in common that they focus on offline anal-
ysis. This means that only full traces are being considered, i.e., completed cases
that were handled in the past are used. Moreover, process mining is used only in
a passive manner not directly influencing the running cases. As Figure 2 shows,
one can also use process mining in an online setting. Now the focus is on partial

1 Note that the Petri net model shown in Figure 1 was obtained by applying the α-
algorithm [5] to the event log shown on the left-hand side of the figure. This is for
illustration purposes only; in this paper we present a generic approach and do not
favor a particular representation or discovery technique.

2 There are various definitions of fitness [16], but this conveys the basic idea.

Beyond Process Mining: From the Past to Present and Future 41

A B C D

known
past

unknown
future

current
state

A B A B ? ? A B C ?

check: B does not fit the
model (not allowed, too

late, etc.)

predict: some prediction is
made about the future (e.g.

completion date or outcome)

T=10

recommend: based on past
experiences C is recommended

(e.g., to minimize costs)

Fig. 3. Overview of operational support

traces, i.e., cases that are still running and did not yet complete. For these cases,
the active use of process mining is interesting, e.g., to check the last step exe-
cuted, to predict the future of a case, and to recommend the next task to be exe-
cuted. The right-hand side of Figure 2 shows the classical forms of process mining
(discover, check, modify, and extend) already mentioned in Figure 1. These fo-
cus on the model rather than the traces or the log, i.e., the result is reported as a
(partially) new model or annotations of an existing model. The left-hand side of
Figure 2 shows other types of analysis focusing on the traces in the log rather than
the model. The third dimension shown in Figure 2 shows the aspect the analysis
is focusing on, e.g., time, costs, logic (routing), quality, etc.

The most likely combinations are highlighted using a ✔. Note that most of the
passive forms of process mining focus on the model rather than traces. There
is one exception (see the ✔in the bottom-left cell). When doing conformance
checking one compares a model and an event log. The deviations can be high-
lighted in the model as discussed before. However, the deviations can also be
shown in the event log, i.e., parts of completed traces that do not fit into the
model are highlighted in the log.

In this paper, we focus on the active use of process mining involving partial
traces corresponding to cases that did not complete yet. As shown in Figure 2,
we identify three types of actions related to such running cases: (a) check, (b)
predict, and (c) recommend. We refer to these actions as operational support as
they aim at influencing the process while it is running.

Figure 3 illustrates the three types of operational support. Starting point is
some model and a partial trace. Note that the model is typically learned using
classical process mining techniques. The partial trace refers to a case that is
running. The left-hand side of Figure 3 shows a partial trace 〈A, B〉. Note that
we abstract from timestamps, resources, data, etc. For this case, we know that
A and B occurred, but we do not know its future. Suppose now that the partial
trace 〈A, B〉 is not possible according to the model. In this case, the operational
support system would generate an alert. Another possibility would be that B
took place three weeks after A while this should happen within one week. In
such a case another notification could be sent to the responsible case manager.
Such scenarios correspond to the check action mentioned before. Figure 3 also
illustrates the goal of predictions. Given the current state of a case, the model
is used to make some kind of prediction. For example, given the 〈A, B〉 trace it
could be predicted that the remaining processing time is ten days. This prediction

42 W.M.P. van der Aalst, M. Pesic, and M. Song

Table 1. A fragment of an event log

case id task trans. resource timestamp
1 check complete admin 2009-01-01 11:55:25

advertise complete admin 2009-01-15 14:03:18
inspect complete admin 2009-01-28 16:56:53
decide complete admin 2009-02-02 09:08:03

2 check complete admin 2009-01-01 09:36:21
process complete admin 2009-01-15 14:19:59
decide complete admin 2009-01-20 17:47:13

.

would be based on historic information both in the partial trace and in the
event log used to learn the model. Predictions are not restricted to time, but can
also refer to costs, probability of a particular outcome, resource availability, etc.
Closely related to predictions are recommendations. The main difference is that
recommendations suggest the next action based on possible continuations of the
case. Based on the model, one can try all possible actions and see which one
would lead to the best (predicted) performance. Note that recommendations are
not only used for determining the next task, but also for allocating resources to
work-items or for timing a particular action.

The process mining framework ProM aims to support the whole spectrum
shown in Figure 2. Earlier versions of ProM focused mainly on passive forms of
process mining [1]. In the new version of ProM, we aim to also support operational
decision making in a generic manner. The basic idea is that some operational
system, e.g., a workflow management system, business process management sys-
tem, or other Process-Aware Information System (PAIS), sends partial traces to
ProM as shown in Figure 3. ProM then does the appropriate checks, generates
predictions, or sends recommendations while using models derived from event
logs (or alternatively use manually created models).

3 Application of the Framework to Time-Based
Operational Support

To illustrate that process mining is not limited to passive/offline analysis, we will
use a small event log of a process for handling requests of citizens for building
permits. Using this example, we present new process mining techniques that
cover the whole process mining spectrum. Our example process contains five
tasks: (1) check for checking whether the requested building permit is compliant
to the regulations, (2) advertise for advertising the requested permit in the local
newspaper for a period of 30 days, (3) inspect for inspecting the construction site,
(4) process for handling requests that are not compliant with the regulations,
and (5) decide for deciding whether to issue or decline the permit. Table 1 shows
a fragment of the log. Each line in the event log of this process corresponds to
an event related to one of the five mentioned tasks. For each event, information

Beyond Process Mining: From the Past to Present and Future 43

ProM

event log

Transition
System

Time
Annotation

extending

discovering

checking

predicting

recommending

PAIS

process
analyst

Ti
m
e-
ba
se
d
O
pe
ra
tio
na
l

S
up
po
rt
(T
O
S
)S
er
vi
ce

Ti
m
e-
ba
se
d
O
pe
ra
tio
na
l

S
up
po
rt
(T
O
S
)C
lie
nt

elapsed time interval

remaining time

minimal remaining time

user

user

request
(partial trace, enabled events)

Fig. 4. Architecture of our system to support users based on time information in logs

about the task name, event type, resource that triggered the event and the
timestamp is available. Moreover, each event is associated to one case, i.e., a
single permit request. For example, Table 1 shows events of two cases containing
four and three events, respectively. Note that, for the purpose of simplicity, in
the remainder of this paper we will use only the task name to refer to one event.

In the remainder of this section we will use this log to show how process min-
ing techniques can be used for discovering, extending, checking, predicting and
recommending in the context of execution times of processes. Figure 4 shows
this example and the functionalities of the ProM tool that we will use in this
paper. We start with describing existing procedures (i.e., ProM plugins) for dis-
covering a transition system from an event log [3] and for extending a transition
system with time information from an event log (i.e., time annotations) [4] in
sections 3.1 and 3.2, respectively. The generated transition system and time an-
notations can be used to provide useful information about active processes. For
this purpose, we have implemented the Time-based Operational Support (TOS)
Client and Service. The TOS Client can be used by any PAIS to request tem-
poral information about active processes. The TOS Service uses the transition
system and its time annotations to generate information about active processes
and sends them to the TOS Client. The TOS Client sends the partial trace (i.e.,
all events executed until the moment of request) and currently enabled tasks
of the running case when requesting the information from the TOS Service.
The TOS Service generates three types of information about the current case.
First, the TOS Service checks whether the elapsed time of the current case is
within certain temporal boundaries calculated based on elapsed times of earlier
completed cases visiting the same state (cf. Section 3.3). Second, Section 3.4
describes how the TOS Service can predict the remaining execution time based

44 W.M.P. van der Aalst, M. Pesic, and M. Song

1. check,adv,insp,dec
2. check,insp,adv,dec
3. check,proc,dec
4. check,adv,insp,dec
5. check,adv,insp,dec
6. check,proc,dec
7. check,insp,adv,dec

{}
1,2,3,4,5,6,7

{check}
1,2,3,4,5,6,7

{check,adv,insp}
1,2,4,5,7

{check,adv,insp,dec}
1,2,4,5,7

{check,insp}
2,7

{check,adv}
1,4,5

{check,proc}
3,6

{check,proc,dec}
3,6

Fig. 5. A transition system constructed from an event log with seven traces

on the past processes. Finally, in Section 3.5 the possibility to recommend the
enabled events that, based on historic information, are most likely to lead to
minimal execution times is described.

3.1 Discovering a Transition System from History

An approach that uses various abstractions for discovering a transition system
from an event log is described in [3]. The advantage of this process mining tech-
nique is that it is very flexible as it allows for a wide range of abstractions,
i.e., the discovered model can be tailored towards the needs of the analyst. A
transition system is a triplet (S, E, T) where S is the set of states, E is the
set of event (transition) labels, and T ⊆ S × E × S is the transition relation
describing how the system can move from one state to another. For example,
Figure 5 shows a ProM screen of a transition system mined from our event log
with seven traces containing events referring to tasks check, advertise, inspect,
process and decide. The transition system has eight states (S = {s1, s2, . . . , s8}),
five event labels (E = {check, advertise, inspect, decide, process}) and eight tran-
sitions (T = {(s1, check, s2), (s2, advertise, s3), (s2, inspect, s6), (s2, process, s7),
(s3, inspect, s4), (s6, advertise, s4), (s7, decide, s8), (s4, decide, s5)}).

The transition system in Figure 5 is mined from the event log using two types
of abstractions [3]. First, an event abstraction is used when considering which
event information is relevant. For example, the transition system shown in Fig-
ure 5 is mined using the event abstraction that considers only the task name
and ignores the event type, resource and timestamp. Second, a state abstraction
is used when it comes to how a sequence of events is ‘replayed’ on the tran-
sition system. For example, the transition system shown in Figure 5 is mined
using the “set state abstraction” that considers only which tasks were executed
and ignores the execution order and frequency. The tags connected to states in
Figure 5 show two types of state-related information. First, the set abstraction
for the state is shown in the upper line. For example, state s4 refers to a trace
prefix that contains tasks check, advertise and inspect in any order. Second,

Beyond Process Mining: From the Past to Present and Future 45

the bottom line shows which traces are replayed in which state. For example,
traces 1, 2, 4, 5 and 7 all visit state s4: traces 1, 4 and 5 after executing
sequence 〈check, advertise, inspect〉 and traces 2 and 7 after executing sequence
〈check, inspect, advertise〉. It is important to note that this state considers all
traces where these three tasks were executed, regardless of the order.

3.2 Extending the Transition System with Time Information

Event logs can also be used to enrich models with information about past execu-
tions. An approach for annotating a transition system with time information from
an event log is described in [4]. This procedure starts by replaying each trace of
the event log on the transition system, and collecting three types of time informa-
tion extracted from the trace for each visited state. First, the time elapsed from
the beginning of the trace is assigned to the state as the difference between the
timestamp of the current event and the timestamp of the first event in the trace.
Second, the remaining time until the end of the trace is assigned to the state as
the difference between the timestamp of the last event in the trace and the times-
tamp of the current event. Finally, the sojourn time, the time that the trace spent
in this state is assigned to the state as the difference between the timestamp of
the next event in the trace and the timestamp of the current event.

Figure 6 shows how elapsed, remaining and sojourn times are collected from
the building permits event log and transition system in Figure 5. Note that the
actual time data extracted from the event log refers to milliseconds, but for the
reasons of simplicity displayed time data is rounded to days. Because s1 is the
initial state, elapsed and sojourn times for all traces are zero and remaining times
are equal to the total execution times at s1. The elapsed (remaining) times in the
initial state s1 correspond to remaining (elapsed) times in the two final states s5
and s8. This is expected, because the remaining time in the initial state must be
equal to the elapsed time in the final state for each trace. For example, trace 1
has a total duration time of 68 days. The elapsed, remaining and sojourn times
for this trace are shown as the first elements for the states that this trace visits: s1,
s2, s3, s4 and s5. While the remaining time value decreases from 68 in state s1 to
zero in state s5, the elapsed time increases from zero in s1 to 68 in state s5. Note
that, in each of these states, the sum of elapsed and remaining time is equal to the
trace’s total execution time. For example, the sum of elapsed and remaining times
for trace 1 in each of the visited states is 68 days. The sum of sojourn times in all
states one trace visits is equal to the total duration of that trace. For example, the
sum of sojourn times for trace 1 is 0 + 6 + 39 + 23 + 0 = 68 days.

The collected time information can be used to annotate each state with statis-
tical data for elapsed, remaining and sojourn times: average, standard deviation,
etc. In this paper we focus on elapsed and remaining time annotations. We have
used time information in our example event log to annotate the transition system
mined from this log (cf. Figure 5). Figure 7 shows the ProM screen with elapsed
and remaining times in days and hours. For example, the average elapsed time
in state s3 is 9 days and 15 hours and average remaining time in state s2 is 39
days and 1 hour.

46 W.M.P. van der Aalst, M. Pesic, and M. Song

1. check,adv,insp,dec
2. check,insp,adv,dec
3. check,proc,dec
4. check,adv,insp,dec
5. check,adv,insp,dec
6. check,proc,dec
7. check,insp,adv,dec

e:[0,0,0,0,0,0,0]
r:[68,32,50,19,14,55,21]
s:[0,0,0,0,0,0,0]

e:[0,0,0,0,0,0,0]
r:[68,32,50,19,14,55,35]
s:[6,14,11,14,9,9,9]

e:[45,27,29,17,21]
r:[23,5,21,38,14]
s:[23,5,21,38,14]

e:[68,32,50,55,35]
r:[0,0,0,0,0]
s:[0,0,0,0,0]

e:[6,14,9]
r:[62,18,26]
s:[39,13,12]

e:[11,9]
r:[39,47]
s:[18,8]

e:[14,9]
r:[5,5]
s:[5,5]

e:[19,14]
r:[0,0]
s:[0,0]

Fig. 6. Collecting elapsed (e), remaining (r) and sojourn (s) times for the transition
system from Figure 5

3.3 Checking Running Cases

The elapsed time annotations can be used to check how fast currently running
cases are being executed when compared to past cases. The procedure for check-
ing a particular running case is as follows:

1. Replay the partial trace of the case under consideration on the transition
system and identify the current state of the case under consideration.

2. Calculate the a time interval for the elapsed time in the current state. The
time interval sets upper and lower bounds. There are many ways to define
such a time interval. Here, three simple approaches are considered:
– all elapsed times seen in the past: [min, max],
– a pre-defined deviation from the average elapsed time: [μ − C, μ + C],

where μ is the average elapsed time and C is a constant, and
– standard deviation from the average elapsed time: [μ−C ∗ σ, μ + C ∗ σ],

where μ is the average elapsed time, C is a constant and σ is the standard
deviation.

3. Calculate the elapsed time of the case under consideration as the difference
between timestamps of the first and the last event in its partial trace.

4. Check the execution speed of the running case: if the elapsed time of the case
is under, within or above the time interval, then the case is considered to be
slower, as fast as, or faster than processes executed in the past, respectively.

5. Alert interested parties (e.g., employees who work on the running case, the
manager, etc) if the case is too fast or too slow.

Consider, for example, a situation where inspectors processing permit requests
want to be alerted by their TOS Clients if it takes them too long to process a
particular request. Assume that the time bounds are set by the time interval
[μ− 2 ∗ σ, μ + 2 ∗ σ]. Further, assume that an inspector is currently working on

Beyond Process Mining: From the Past to Present and Future 47

(a) elapsed times

(b) remaining times

Fig. 7. Time annotations based on Figure 5 in ProM

a request (i.e, running case) with the partial trace 〈check, advertise〉 where tasks
check and advertise were executed on 26/10/2009 and 26/11/2009, respectively.
The procedure for checking the elapsed time based on the annotated transition
system shown in Figure 6 is as follows:

1. Replaying this partial trace on the transition system leads to state s3.
2. The time interval [μ−2∗σ, μ+2∗σ] is calculated for the elapsed time in state

s3. As Figure 7(a) shows, average elapsed time in this state is μ= 9 days
and 15 hours and standard deviation is σ= 4 days and 3 hours. Therefore,
the time interval for elapsed times in this state is [1d9h,17d21h].

3. The elapsed time of the current case is 31 days (time between execution of
tasks check and advertise).

4. The elapsed time of the active process is above the upper bound set by the
time interval.

48 W.M.P. van der Aalst, M. Pesic, and M. Song

Fig. 8. Checking the elapsed time of a running case with partial trace 〈check, advertise〉

5. Figure 8 shows the alert popping up in the TOS Client. The considered case
is substantially slower than cases from the past. In addition to the alert
itself, additional information about the running case and the used statistics
are included to interpret the warning.

3.4 Predicting the Future of Running Cases

The remaining time annotations created from past cases can also be used to pre-
dict the remaining execution time of the running cases. The prediction procedure
for one running case is simple:

1. Replay the partial trace of the case under consideration on the transition
system and identify the current state of the case under consideration.

2. Take the average or median value of the remaining time annotations in the
current state as the prediction for the remaining execution time of the case
under consideration.

3. Notify interested parties about the predicted remaining time.

Assume, for example, that the inspectors working on building permits want to
be informed by their TOS Clients regarding the expected remaining processing
time. Consider, for example, a situation where a client who submitted a building
permit request (for which the partial trace is 〈check〉) is interested how much
longer it will take to get the final decision. By using the remaining time annota-
tions shown in Figure 7(b), the prediction for this running case can be generated
in the following way:

1. Replaying this partial trace on the transition system leads to state s2.
2. The predicted remaining execution time based on the average of the remain-

ing times in state s2 is 39 days and 1 hour.
3. Figure 9 shows how the result presented by the TOS Client.

Beyond Process Mining: From the Past to Present and Future 49

Fig. 9. Predicting the remaining time of a running case with partial trace 〈check〉

3.5 Recommending the Next Step for Running Cases

The remaining time annotations of a transition system can also be used to rec-
ommend steps that lead to shortest execution times in past cases. In addition to
the partial trace of the running case, this procedure also uses the set of enabled
events in the case to recommend which one of them should be executed:

1. For each enabled event, identify the state in which the transition system
would be if this enabled event would indeed be executed in the running case
using the following two steps: (a) Create a new trace by extending the partial
trace of the running case with the enabled event under consideration; and
(b) Replay the new trace in the transition system to identify the state to be
assigned to this event.

2. Create an ordered list of recommendations by sorting enabled events in the in-
creasing order of average remaining times annotated to assigned states: the
state assigned to the first recommended event has a shorter (or equal)predicted
remaining time than the state assigned to the second recommended event, etc.

3. Inform interested parties about the recommendations.

Consider, for example, a situation when inspectors working on a building per-
mit request (i.e., running case) with partial trace 〈check〉 would like to get the
recommendation whether to execute events advertise.start or inspect.start next
(i.e., enabled tasks) in order to process this request as quickly as possible. Based
on the remaining time annotations shown in Figure 7(b), the recommendation
is generated in the following way:

1. Transition system states are assigned to enabled events advertise.start and
inspect.start by extending the partial trace of the running case: (a) State
s3 is assigned to advertise.start because replaying trace 〈check, advertise〉
on the transition system leads to state s3; and (b) State s6 is assigned to
inspect.start because replaying trace 〈check, inspect〉 on the transition system
leads to state s6.

2. The list of recommended events contains advertise.start or inspect.start,
where advertise.start has higher priority than advertise.start or inspect.start,
because the state s3 has a shorter predicted remaining time (i.e., 35 days
and 6 hours) than the state s6 (i.e., 42 days and 16 hours).

3. Figure 10 shows how the recommendations are shown by the TOS Client.

50 W.M.P. van der Aalst, M. Pesic, and M. Song

Fig. 10. Recommending the next step for a running case with partial trace 〈check〉

4 Related Work

Lion’s share of process mining research has been focusing on passive forms of pro-
cess mining such as process discovery [2,5,3,6,8,9,12]. These serve as a basis for
learning good models, but are not the focus of this paper. Conformance checking
is typically also done in an off-line fashion [16] while the extension of models into
full-fledged simulation models is also not used in an operational sense [17]. See
www.processmining.org for more pointers to process mining literature.

There have been some initial attempts to support operational decision making
using process mining techniques or simulation. In [18] both techniques are com-
bined in the context of YAWL and in [10] non-parametric regression is used to pre-
dict completion times. A recommendation service that uses historic information
for guiding the user to select the next work item has been implemented in ProM
[19] and it is related to case-based reasoning [21]. A recommender for execution of
business processes based on the Product Data Model (PDM) is presented in [20].

The framework has been tested using a set of plug-ins related to time-based
operational support. This approach is most related to the flexible mining ap-
proach in [3] and the prediction approach in [4]. However, in this paper we
present an overarching approach, and a generic implementation that does not
just support prediction, but also time-based conformance checking and time-
based recommendations.

There are various approaches to run time support in the context of world wide
web. Some examples are monitoring based on business rules [13], BPEL [7], event
calculus [14], etc. Other examples are the various types of recommender systems
that support users in their decision-making [15,22]. These systems generate rec-
ommendations based on the user’s preferences/behavior and are becoming an
essential part of e-commerce and information seeking activities. Similar ques-
tions are also studied in the context of intrusion detection [11].

The main contribution of this paper is that it provides a framework for posi-
tioning the various types of process mining (cf. Figure 2 on page 40) and details
the aspect of operational support for running processes in a generic manner.
This view is supported in the new version of ProM.

www.processmining.org

Beyond Process Mining: From the Past to Present and Future 51

5 Conclusions

In this paper, we focus on the application of process mining to operational de-
cision making. We presented a generic framework and described a set of ProM
plug-ins for time-based operational support. The approaches are based on tran-
sition systems annotated with time information. These are used to check the
timely execution of cases, predict the completion time of cases, and recommend
the best steps to minimize the overall flow time. This serves as an example for
a much larger set of possible techniques for operational support. In the future,
we would like to add more techniques (not only related to time, but also costs,
quality, compliance, etc.) and apply them actively in selected domains (most
likely hospitals and municipalities). Note that the application of new techniques
requires a tight integration with existing information systems.

References

1. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., de
Medeiros, A.K.A., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W(E.), Wei-
jters, A.J.M.M.T.: ProM 4.0: Comprehensive Support for Real Process Analysis.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494.
Springer, Heidelberg (2007)

2. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves
de Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business Process Mining: An In-
dustrial Application. Information Systems 32(5), 713–732 (2007)

3. van der Aalst, W.M.P., Rubin, V., van Dongen, B.F., Kindler, E., Günther, C.W.:
Process Mining: A Two-Step Approach to Balance Between Underfitting and Over-
fitting. Software and Systems Modeling 9(1), 87–111 (2010)

4. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time Prediction Based on
Process Mining. BPM Center Report BPM-09-04, BPMcenter.org (2009)

5. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Dis-
covering Process Models from Event Logs. IEEE Transactions on Knowledge and
Data Engineering 16(9), 1128–1142 (2004)

6. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow
Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

7. Baresi, L., Ghezzi, C., Guinea, S.: Smart Monitors for Composed Services. In:
ICSOC 2004: Proceedings of the 2nd International Conference on Service Oriented
Computing, pp. 193–202. ACM Press, New York (2004)

8. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based
Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249
(1998)

9. Datta, A.: Automating the Discovery of As-Is Business Process Models: Proba-
bilistic and Algorithmic Approaches. Information Systems Research 9(3), 275–301
(1998)

10. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle Time Prediction:
When Will This Case Finally Be Finished? In: Meersman, R., Tari, Z. (eds.) OTM
2008, Part I. LNCS, vol. 5331, pp. 319–336. Springer, Berlin (2008)

52 W.M.P. van der Aalst, M. Pesic, and M. Song

11. Feng, L., Guan, X., Guo, S., Gao, Y., Liu, P.: Predicting the Intrusion Intentions by
Observing System Call Sequences. Computers and Security 23(3), 241–252 (2004)

12. Ferreira, D.R., Gillblad, D.: Discovering Process Models from Unlabelled Event
Logs. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS,
vol. 5701, pp. 143–158. Springer, Heidelberg (2009)

13. Lazovik, A., Aiello, M., Papazoglou, M.: Associating Assertions with Business Pro-
cesses and Monitoring their Execution. In: ICSOC 2004, pp. 94–104. ACM Press,
New York (2004)

14. Mahbub, K., Spanoudakis, G.: A Framework for Requirents Monitoring of Service
Based Systems. In: ICSOC 2004, pp. 84–93. ACM Press, New York (2004)

15. Resnick, P., Varian, H.R.: Recommender Systems. Communications of the
ACM 40(3), 56–58 (1997)

16. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on
Monitoring Real Behavior. Information Systems 33(1), 64–95 (2008)

17. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering Simulation
Models. Information Systems 34(3), 305–327 (2009)

18. Rozinat, A., Wynn, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.:
Workflow Simulation for Operational Decision Support. Data and Knowledge En-
gineering 68(9), 834–850 (2009)

19. Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Supporting
Flexible Processes Through Recommendations Based on History. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer,
Heidelberg (2008)

20. Vanderfeesten, I.T.P., Reijers, H.A., van der Aalst, W.M.P.: Product Based Work-
flow Support: Dynamic Workflow Execution. In: Bellahsène, Z., Léonard, M. (eds.)
CAiSE 2008. LNCS, vol. 5074, pp. 571–574. Springer, Heidelberg (2008)

21. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling Adaptive Workflow Man-
agement Through Conversational Case-Based Reasoning. In: Funk, P., González
Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 434–448. Springer,
Heidelberg (2004)

22. Zhou, B., Hui, S.C., Chang, K.: An Intelligent Recommender System Using Se-
quential Web Access Patterns. In: IEEE Conference on Cybernetics and Intelligent
Systems, pp. 393–398 (2004)

Dependency Discovery in Data Quality

Daniele Barone1, Fabio Stella2, and Carlo Batini2

1 Department of Computer Science, University of Toronto, Toronto, ON, Canada
barone@cs.toronto.edu

2 Department of Informatics, Systems and Communication,
University of Milano-Bicocca, Milano, Italy

{stella,batini}@disco.unimib.it

Abstract. A conceptual framework for the automatic discovery of de-
pendencies between data quality dimensions is described. Dependency
discovery consists in recovering the dependency structure for a set of
data quality dimensions measured on attributes of a database. This task
is accomplished through the data mining methodology, by learning a
Bayesian Network from a database. The Bayesian Network is used to
analyze dependency between data quality dimensions associated with
different attributes. The proposed framework is instantiated on a real
world database. The task of dependency discovery is presented in the
case when the following data quality dimensions are considered; accu-
racy, completeness, and consistency. The Bayesian Network model shows
how data quality can be improved while satisfying budget constraints.

Keywords: Data quality, Bayesian networks, Data mining.

1 Introduction

In the last two decades, research and practical efforts to improve data quality
did not recognize, with the exception of a few works (e.g., logical interdependence
analysis [1], tradeoff analysis [2,3,4,5,6] and data dependency analysis [7]), the
relevance of studying and analyzing potential dependencies among data quality
dimensions, namely, correlations and reciprocal influences among them. To give
an example, data that are up-to-date (thus having a low currency) have a high
chance to be incorrect too.

Nowadays, the issue of data quality and of dependencies among quality di-
mensions is gaining more and more importance in the life of organizations. For
example, concerning those Information Systems used for decision-making and
problem solving in business, i.e., Decision Support Systems (DSSs) and Manage-
ment Information Systems (MISs), it is well known [8] that their effectiveness is
strictly related to the quality of information resources involved in the decision
making process. Making correct decisions is clearly dependent on the quality
of data used [9]; however, complete knowledge regarding the quality of data
cannot be gained without knowing what the existing relationships are among
data quality dimensions. In fact, as shown in the following examples, dimensions

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 53–67, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

54 D. Barone, F. Stella, and C. Batini

can be strictly related to each other and dependencies among them can play an
important role in a decision making process:

– Accuracy and Timeliness : often the information becomes better over time,
i.e., more accurate. However, it is also possible that for a given context, the
information becomes less relevant and critical over time [2]. Consider an air
traffic control center which receives data from several controller stations.
To regulate air traffic, the traffic control center has to cope with uncertain
data. Thus, the decision process must balance the delay in receiving more
accurate data of airplane positions and the critical period of time in which
an “effective” decision must be made to regulate traffic;

– Consistency vs Completeness: often the information is based on incomplete
but consistent data or on complete but less consistent data [4]. A classic
situation concerns human resource data in which different evaluators (i.e.,
data sources), provide information regarding a particular employee. Those
evaluators could have used different attributes to characterize an employee
and could have evaluated him over a potentially extended time period. In a
scenario where the goal is to promote one out of several employees to a posi-
tion in senior management, the decision process can use different strategies;
it can use all available data even though some items are inconsistent, or only
use recent data obtained by a common evaluator.

Therefore, taking into account data quality dependencies is a basic ingredient
for rationale decision making and activity planning. Moreover, the knowledge
of data quality dependencies can also be extremely important for improvement
activities; in fact, it contributes to: i) diagnose which is the most probable cause
of the bad quality for the considered data quality dimensions and thus helps to
identify error sources in an Information System; ii) select the most effective data
quality improvement strategy, i.e., the one which maximizes data quality when
we are subject to budget constraints. Finally, since the quality of data quickly
degenerates over time1, a complete “knowledge” of quality issues represents a
fundamental set of quality requirements in those (Evolution) Information Sys-
tems [11] in which the capability to actively react to organization changes must
also take into account data quality problems2.

This paper presents the Dependency Discovery in Data Quality (D3Q) frame-
work which extends, from bivariate to multivariate, the data-driven analysis in
[7]. As shown in Fig. 1, the D3Q framework is a flexible component that can be
added as an extra layer to whatever data quality assessment solution is available.
It provides a “comprehensive” data quality knowledge for supporting improve-
ment activities. The results provided by the assessment activities (Assessment
Knowledge (AK)), are exported into the Dependency Discovery Model (DDM)

1 Experts say that 2% of the records in a customer file become obsolete in a month
because customers die, divorce, marry and move [10].

2 Data entry errors, systems migrations, and changes to source systems, generate
bucket loads of errors. Thus, the knowledge of the cause-effect structure helps to
diagnose what the error sources are.

Dependency Discovery in Data Quality 55

Fig. 1. The D3Q framework

which feeds the Dependency Discovery Algorithm (DDA) implemented by a data
mining algorithm to provide the Dependency Knowledge (DK). The assessment
activity plays a critical role for an “effective” discovery of dependencies, since the
benefit of the proposed approach is directly influenced by the results obtained
during the assessment phase. This paper focuses on the data quality dependency
discovery, while assessment that received much attention from the data quality
community is not discussed. The interested reader can refer to [12] for a rich
and comprehensive survey on data quality assessment methodologies and tech-
niques. Bayesian Networks have been used to implement the DDA component.
The D3Q framework has been tested on a real world database, namely the Ital-
ian Social Security Contributors’ Anagraph database, which is assessed along
the three most important data quality dimensions, i.e., syntactic accuracy, com-
pleteness, consistency, and the most adopted metrics3. However, it is worthwhile
to mention that it can be applied to any given number and type of data quality
dimensions.

The rest of the paper is organized as follows. Section 2 describes the D3Q
framework together with its main components, i.e., the DDM and the DDA.
Section 3 reports on the instantiation of D3Q framework to the selected database,
namely the Italian Contributors’ Anagraph database. This section describes the
main features of the Italian contributors’ anagraph database, the related assess-
ment activities and the results of a rich set of numerical experiments concerning
the task of D3Q. The last section is devoted to conclusions and directions for
further research.

2 The D3Q Framework

The proposed framework aims to discover the dependency structure of the as-
sessed data quality dimensions for a set of attributes belonging to a target
database. In this paper the authors focus their attention on the case where the
data quality dimensions are described by means of binary variables, i.e., (true,

3 In [12], about 70% of the reviewed methodologies use syntactic accuracy, and about
60% adopt the NULL value as a completeness measure. Moreover, these dimensions
and the associated metrics are also part of the ISO/IEC 25012:2008 - SQuaRE -
Data Quality Model [13], in which they appear in the first three positions of the list
of dimensions belonging to the model.

56 D. Barone, F. Stella, and C. Batini

false). However, it is possible to extend the proposed approach to include the case
where the data quality dimensions are represented through discrete multi-value
and/or continuous variables.

2.1 The Dependency Discovery Model

The Dependency Discovery Model receives the results of the data quality assess-
ment component in input in order to build the corresponding learning dataset
LDDDM , i.e., the dataset used to discover the dependency structure of the as-
sessed data quality dimensions. To clarify how the DDM is used to solve the
D3Q problem and how the LDDDM is obtained, we need to introduce several
quantities. Let X = {xi, i = 1, ..., N} be the set of instances of a database con-
sisting of M attributes A = {A1, ..., AM} on which K data quality dimensions
D = {d1, ..., dK} have been assessed. Furthermore, let the data quality dimension
dj for the attribute Al be described by means of a binary variable Y(l,j). Then, for
the instance xi we have that Y

(i)
(l,j) = true in the case where the value of the at-

tribute Al for the instance xi, Al(xi), is correct w.r.t the data quality dimension
dj . The DDM(X) = {Y i

(l,j)(X) | i = 1, ..., N, l = 1, ..., M, j = 1, ..., K} model
consists of N realizations of M ·K binary variables Y(l,j). The learning dataset
LDDDM (X) (hereafter LD(X)) is obtained exploiting the results provided by
the assessment component.

2.2 The Dependency Discovery Algorithm

The Dependency Discovery Algorithm is implemented through a Bayesian Net-
work (BN) which exploits the information stored using the DDM, i.e., the learn-
ing dataset LDDDM , to discover the dependency structure. Bayesian Networks
(BNs) implement an optimal trade-off between complexity and interpretability
when we have to cope with highly dimensional domains. BNs are an alternative
to rule based models. BNs differ from rule based models in three ways: i) instead
of modeling the knowledge of the domain expert, they model the domain; ii)
instead of using a non-coherent uncertainty calculus tailored for rules, they use
classical probability calculus and decision theory; iii) instead of replacing the ex-
pert, they support her/him. The main problem of rule based models is coherence.
Indeed, rule based models do not deal properly with uncertainty which naturally
arises for the following reasons; observations may be uncertain, the information
may be incomplete, the relations in the domain may be of a non-deterministic
type. A way to incorporate uncertainty in rule based models is to extend the
production rule to include the concept of certainty for both the left and the
right part of the rule. The rule based model must be extended with new infer-
ence rules, which shall ensure a coherent reasoning under uncertainty. However,
it is not possible to capture reasoning under uncertainty with inference rules.
Inference rules are context free; while coherent reasoning under uncertainty is
sensitive to the context in which the certainties have been established [14].

A BN B consists of n discrete random variables X1, ..., Xn and an underlying
Directed Acyclic Graph (DAG) G = (V, E), where V is the set of vertices while

Dependency Discovery in Data Quality 57

E is the set of directed links. Each random variable is uniquely associated with
a vertex of the DAG. The BN model B is fully specified by means of the DAG
G, together with a set of conditional probability tables P (Xi|pa[Xi]), i = 1,
..., n, where pa[Xi] denotes the parents of node Xi, i.e., the set of variables
which directly influence the random variable Xi. The main characteristic of the
BN model B is that the joint probability distribution for the random vector
(X1, ..., Xn) can be represented through the following factorization:

P (X1, ..., Xn) =
n∏

i=1

P (Xi|pa[Xi]). (1)

In the case where the random variable Xi has no parents (no directed links ori-
ented towards the node associated with Xi), P (Xi|pa[Xi]) is simply its marginal
probability P (Xi). One of the interesting features of BNs is that one can infer
conditional variable dependencies by visually inspecting the DAG and exploit-
ing the concept of conditional independence [15]. Another interesting aspect is
that many algorithms are available for learning their structure from data [16].
The main structural learning algorithms, namely PC and NPC [17], are based
on making dependence tests that calculate a test statistic which is asymptoti-
cally chi-squared distributed when assuming (conditional) independence. If the
test statistic is large for a given independence hypothesis, the hypothesis is
rejected; otherwise, it is accepted. The probability of rejecting a true indepen-
dence hypothesis is given by the level of significance. Heckerman [17] provides
a full discussion of how the Bayesian estimation approach can be exploited to
construct BNs from data. It is worthwhile to mention that inference and learn-
ing algorithms are available for multi-valued and continuous random variables.
However, for multi-valued random variables the complexity grows exponentially
with the number of parents for each node. While for continuous random vari-
ables, inference and learning are restricted to gaussian and conditionally gaussian
distributions.

3 Dependency Structure Discovery

This section is devoted to present the Italian Social Security Contributors’ List
database together with the corresponding BN model, learnt from the available
learning dataset. The BN model is queried to show how it can be used for
inference on data quality dimensions dependency. A simple example illustrating
how the BN model could be exploited for data quality improvement is given.

3.1 Italian Social Security Contributors’ List

The Italian Social Security Contributors’List (ISSCL) database, maintained by
the Italian social security administration, contains data related to Italian con-
tributors on social security for retirement funds. The ISSCL database consists
of the following six attributes; Social Security Number/Value Added Tax Num-
ber, Juridical/Physical Person Name, Street, ZipCode, Country, and Region. A

58 D. Barone, F. Stella, and C. Batini

portion of the ISSCL database, containing 1,483,712 records, is used; while for
privacy reasons, only the following three attributes (M = 3): ZipCode, Country,
and Region, have been included in the dataset X. Three data quality dimensions
(K = 3) have been considered: namely accuracy, completeness and consistency.
The (syntactic) accuracy has been assessed by using a comparison function,
which computes the distance between the value v of a given attribute and the
true values belonging to a domain look-up table. A relevant example of compari-
son function is offered by the Edit distance [18]. Through the DDM we addressed
only exact matching by means of binary variables. However, it is worthwhile to
mention that it is possible to use a threshold value to deal with approximate
matching. The assessment of the completeness dimension is based on i) the close
world assumption [19], which states that only the values actually present in a
relation, and no other values, represent true facts of the real world, and ii) the
relational data model with NULL values. The consistency, which is defined as
the logical coherence of different information [20], has been assessed by finding
the violations of semantic rules. A semantic rule is defined over data items (a set
of), where the items can be either tuples (e.g., xi) of relational tables or records
belonging to a given file. In regard to X, the following business rule is applied:

IF ZipCode(xi) = z THEN (Country(xi) = u AND Region(xi) = v), (2)

which means that if, for a given tuple xi, the attribute Zip equals z, then the
values of Country (u) and Region (v) are univocally determined by means of a
domain look-up table.

3.2 Bayesian Network Learning and Inference

The meanings of the binary random variables: CO-acc, CO-com, RE-acc, RE-
com, ZIP-acc, ZIP-com and Cons, belonging to the learning dataset LD(X),
are described in Table 1. It is worthwhile to mention that the variable Cons
refers to the triplet of attributes (Country, Region, ZipCode) and measures the
consistency of the entire tuple by using the business rule (2). The BN model-
ing tasks, structural learning and inference, have been accomplished by using
Hugin Ver. 6.3. The structural learning tasks, performed by using PC and NPC
with the value of the Level of Significance parameter set to 0.01, resulted in the
same BN model (Fig. 2). The BN model represents the dependency structure of

Table 1. Variables for the ISSCL dataset

Name Meaning
CO-acc Country accuracy
CO-com Country completeness
RE-acc Region accuracy
RE-com Region completeness
ZIP-acc ZIP code accuracy
ZIP-com ZIP code completeness

Cons tuple consistency

Dependency Discovery in Data Quality 59

the assessed data quality dimensions for the considered subset of attributes in
a compact and efficient way. The model summarizes qualitative and quanti-
tative knowledge extracted from the considered database. These two kinds of
knowledge are the basic elements of the DK component in Fig. 1. The qualita-
tive knowledge is associated with the graph component of the BN model, i.e.,
the DAG; while the quantitative knowledge is obtained through the inferential
process over the nodes of the BN model.

QuaLitative Knowledge (QLK) is read from the DAG by exploiting the
property of the Markov blanket of a node, i.e., the set of its parents, children
and nodes with which it shares children. Indeed, the Markov blanket property
states that a node is independent from the rest of the BN’s nodes when the state
of its Markov blanket is known.

Example 1. An example of qualitative knowledge extracted from the analyzed
database is as follows: the variable Cons is conditionally independent from the
variables ZIP − com, CO− com and RE− com, given the variables ZIP − acc,
CO − acc and RE − acc. This means that whenever the states of the variables
ZIP-acc, CO-acc, and RE-acc are known, the knowledge about the state of one or
more of the following variables ZIP-com, CO-com and RE-com brings no infor-
mation about the variable Cons. Conditional independence is symmetric. Thus,
the variables ZIP-com, CO-com and RE-com are conditionally independent from
the variable Cons, given the variables ZIP-acc, CO-acc and RE-acc.

Comments. The above example makes explicit what is known from theory, i.e.,
the completeness property is a necessary condition for the accuracy property. In
fact, we can evaluate the syntactic accuracy of a value only in the case where we

Fig. 2. BN model of the ISSCL dataset

60 D. Barone, F. Stella, and C. Batini

have some information to assess. Therefore, it is also true that a value which is
not complete is also not accurate. Notice that, a missing value does not always
represent an error of completeness. For instance, in a table of employees that
has a column for the name of the employeers’s manager, that value will be
missing for the president of the company. In this case, no value is applicable for
the president and therefore, no information can be assessed along the accuracy
dimension. However, in this scenario, the NULL value can be seen as complete
information (in referring to the semantic expressed by the employees table) but
also accurate, though we have no information to assess.

Example 2. A second example of qualitative knowledge, which refines what pre-
sented through Example 1, is as follows. Cons is conditionally independent from
CO − com and RE − com given the variables ZIP − com and RE − acc, while
it is not conditionally independent from CO − acc and ZIP − acc.

Comments. The above example enforces the statement we provided about the
completeness property as a necessary condition for the accuracy property. In
fact, Cons becomes conditionally independent from ZIP − com, CO− com and
RE−com, if we already have some accuracy values for ZIP −acc, CO−acc and
RE − acc, i.e., we had some values (complete information) on which to perform
activity assessment along the accuracy dimension.

QuanTitative Knowledge (QTK) is accessed through the inferential process
applied to the BN model. The inferential process allows to quantify multivariate
relationships between data quality dimensions, i.e., to quantify how data quality
dimensions relate to each other and impact on each other. The inferential process
includes the computation of the most probable configuration of the BN model,
the computation of the posterior distribution for a set of nodes when some
evidence is available, as well as the computation of the most probable cause
for the available evidence. This last type of inferential instance is known as BN
diagnosis and is particularly useful for selecting the correct inspection policy
when dealing with decision making under uncertainty. By inspection policy we
mean the process through which we acquire information on the BN variables to
discover what the cause of the available evidence is.

Example 3. The first information extracted from the BN model depicted in Fig. 2
concerns the most probable joint assignment of the states for the variables, i.e.,
the most probable configuration of a database record. This joint assignment is
(CO-acc=true, CO-com=true, RE-acc=true, RE-com=true, ZIP-acc=true, ZIP-
com=true, Cons=true), and it occurs with probability 0.743995. Thus, the prob-
ability that a tuple belonging to the considered database is affected by at least one
data quality problem equals 0.256005.

Comments. The above example shows how the QTK easily answers simple but
important questions, such as: “What is the probability that a tuple belonging
to the database is wrong?”. From a business point of view, if we consider the
following example, the relevance of the answer becomes clear. In fact, referring

Dependency Discovery in Data Quality 61

Table 2. Posterior probability P (RE − acc, RE − com|CO − acc, CO − com)

(CO-acc, CO-com) (RE-acc, RE-com) P (RE − acc, RE − com|CO − acc, CO − com)
(true,true) 0.964357
(true,false) 0.000000

(true,true) (false,true) 0.035640
(false,false) 0.000003
(true,true) 0.963785
(true,false) 0.000000

(false,true) (false,true) 0.036213
(false,false) 0.000002
(true,true) 0.399998
(true,false) 0.000000

(false,false) (false,true) 0.600000
(false,false) 0.000002

Table 3. Posterior probability P (CO − acc, CO − com|RE − acc, RE − com)

(RE-acc, RE-com) (CO-acc, CO-com) P (CO − acc, CO − com|RE − acc, RE − com)
(true,true) 0.962532
(true,false) 0.000000

(true,true) (false,true) 0.037464
(false,false) 0.000004
(true,true) 0.961879
(true,false) 0.000000

(false,true) (false,true) 0.038064
(false,false) 0.000057
(true,true) 0.962522
(true,false) 0.000000

(false,false) (false,true) 0.037476
(false,false) 0.000002

to a generic selling process which uses customer information to perform transac-
tions, it is possible to estimate the probability of process failure exploiting the
probability of a (customer) tuple being wrong.

Example 4. Table 2 and Table 3 report two examples of the computation of the
posterior distribution for a set of nodes when some evidence is available. Indeed,
Table 2 (Table 3) reports the posterior probability distribution of accuracy and
completeness for the attribute Region (Country) depending on the accuracy and
completeness for the attribute Country (Region). Therefore, from Table 2 we
discover that the probability for Region to be jointly accurate and complete (RE-
acc=true, RE-com=true) decreases from 0.964357, when Country is jointly ac-
curate and complete (CO-acc=true, CO-com=true), to 0.399998, when Country
is neither accurate nor complete (CO-acc=false, CO-com=false). Furthermore,
from Table 3 we discover that the probability for Country to be complete but not

62 D. Barone, F. Stella, and C. Batini

accurate (CO-acc=false, CO-com=true) increases from 0.037464, when Region is
jointly accurate and complete (RE-acc=true, RE-com=true), to 0.038064, when
Region is complete but not accurate (RE-acc=false, RE-com=true).

Comments. The QTK allows the following considerations: i) if Country is com-
plete and accurate then Region tends to be accurate; ii) if Country is not complete
and therefore not accurate, the quality of Region significantly decreases; and iii)
the probability for Country being complete but not accurate is slightly affected
by the accuracy of Country, given that Country is complete. In fact, a possible
case for i) is to suppose that a sales employee is registering information about a
new customer who lives in “Castelfiorentino” in the province of “Florence” and
that he/she is able to correctly type “Castelfiorentino” since he/she knows this
place; then there is a high probability that he/she correctly inputs the associated
Region “Florence”. Analogous cases can be found for ii) and iii).

Example 5. The last instance of the inferential process, i.e., BN diagnosis, is
probably the most interesting one. Suppose we are concerned with the most prob-
able cause of the inaccuracy for the attribute Region, i.e., we want to discover
which data quality dimension/s for which attribute/s is associated with the in-
accuracy of attribute Region. While the prior marginal probability for each vari-
able, is reported in Table 4, the BN model is queried with the following evidence
RE-acc=false to compute the posterior probability for the remaining variables
CO-acc, CO-com, RE-com, ZIP-acc, ZIP-com and Cons (Table 5). The poste-
rior probability of the variable Cons equals 1. This is obvious when recalling the
definition of tuple consistency implemented through the business rule (2). The
most probable single cause for the inaccuracy of the attribute Region is the in-
accuracy for the attribute Country (P (CO − acc = false|RE − acc = false) =
0.038065), the second most probable single cause is the inaccuracy for the at-
tribute ZipCode (P (ZIP−acc = false|RE−acc = false) = 0.028000) while the
third most probable single cause is the incompleteness for the attribute ZipCode
(P (ZIP −com = false|RE−acc = false) = 0.000624) and so on. However, ac-
cording to posterior probability values listed in Table 5, CO-acc=false is about one
and a half times more probable than ZIP-acc=false, which in turn is about fifty
times more probable than ZIP-com=false. Therefore, it is very likely that by in-
specting the attribute Country, we find it to be accurate, i.e., CO-acc=true. Then,
we can think that the next two data quality dimensions to inspect are the accuracy
and the completeness for the attribute ZipCode. However, this is not the correct
database inspection policy. Indeed, we must introduce the new evidence into the
BN model to compute the new posterior probability for the non evidenced vari-
ables Cons, ZIP-acc, ZIP-com, RE-com and CO-com (Table 6). Under the new
evidence (RE-acc=false,CO-acc=true), we deduce that the attribute ZipCode is
complete, i.e., P (ZIP − com = false|RE− acc = false, CO− acc = true) = 0.

Comments. The BN diagnosis process suggests what the right inspection policy
is to discover the cause of the observed evidence, lack of data quality. From a
data quality analyst point of view, this can be a useful instrument for discovering
cause-effect patterns in order to identify the most relevant sources of errors.

Dependency Discovery in Data Quality 63

Table 4. Prior probability

Variable P (V ariable = false)
CO-acc 0.037487

CO-com 0.000003
RE-acc 0.035663

RE-com 0.000004
ZIP-acc 0.168496

ZIP-com 0.000022
Cons 0.256005

Table 5. Posterior probability for the evidence [RE − acc = false]

Variable P (V ariable = false|RE − acc = false)
Cons 1.000000

CO-acc 0.038065
ZIP-acc 0.028000

ZIP-com 0.000624
RE-com 0.000113
CO-com 0.000057

Table 6. Posterior probability for the evidence [RE − acc = false, CO − acc = true]

Variable P (V ariable = false|RE − acc = false, CO − acc = true)
Cons 1.000000

ZIP-acc 0.013515
RE-com 0.000113
CO-com 0.000057
ZIP-com 0.000000

3.3 Data Quality Improvement

The DK component

– assists the data quality expert in discovering which the most probable sources
of non quality are. An example is described in [7], in which a positive associ-
ation between the timeliness of the Standard & Poor’s (S&P’s) and Moody’s
data sources has been discovered. This association was caused by an inap-
propriate loading process for the considered data sources; the loading pro-
cess, responsible for feeding the internal database by using the S&P’s and
Moody’s data sources, was not updated with the same frequency as that of
the external bond rating data provider;

– allows the selection of the most effective improvement activity. If the syn-
tactic accuracy of Y depends on the syntactic accuracy of X , then it could
be the case that improving the quality of Y will result in a quality improve-
ment for X , while improving the quality of X does not necessarily bring an
improvement of the quality for Y ;

– implements the correct process for decision making; it avoids redundant ac-
tivities to be performed and thus minimizes the improvement costs.

64 D. Barone, F. Stella, and C. Batini

To clarify how the DK can be used to improve data quality lets us present the
following simple example. Assume we want to maximize the probability of Con-
sistency for the ISSCL database. Suppose, for any attribute belonging to the
database, we can force the accuracy to hold true. However, to force accuracy to
be true an amount of money has to be paid, where the amount of money depends
on the attribute to act on. Furthermore, it is usual to impose an upper bound on
the budget to maximize the probability of Consistency. The amount of money re-
quired to force accuracy on the three attributes of the ISSCL database is reported
in Table 7, while the budget for each tuple of the database is set to 2.20e. If
the accuracies for the considered attributes are assumed to be independent, then
the probability of Consistency could be maximized by means of a simple ranking
procedure. Indeed, we can compute the conditional probability of Cons to be true
when the accuracy for the considered attribute is set to true. These conditional
probability values are ranked in Table 8. Information in Table 7 and in Table 8 al-
low to conclude that the solution which maximizes the probability of Consistency
consists of forcing ZIP-acc=true and CO-acc=true. This solution costs 1.50e+
0.60e= 2.10e< 2.20e, which satisfies the budget constraint, while enforcing also
RE-acc=true further maximizes the probability of Consistency but violates the
budget constraint (1.50e+ 0.60e+ 0.40e= 2.50e> 2.20e). However, this solu-
tion (ZIP-acc=true,CO-acc=true) results in a probability of Consistency equal
to 0.926090 (P (Cons = true|ZIP − acc = true, CO − acc = true) = 0.926090),
as computed through inference on the BN model. Thus, it is not the opti-
mal solution which is obtained from the BN model to be (ZIP-acc=true,RE-
acc=true). This solution is both feasible (1.50e+ 0.40e= 1.90e< 2.20e) and
optimal P (Cons = true|ZIP − acc = true, RE − acc = true) = 0.933681).

The above example emphasizes the importance of knowing the structure of
dependency between data quality dimensions when concerned with decision mak-
ing under uncertainty. The knowledge of the dependency structure between the
ZIP-acc, ZIP-com, RE-acc, RE-com, CO-acc, CO-com and Cons data quality
dimensions allows to efficiently and effectively improve the data quality of the
considered database.

Table 7. Costs to enforce accuracy for the ISSCL database

Attribute Cost

ZipCode 1.50e
Country 0.60e
Region 0.40e

Table 8. Sorted conditional probabilities P (Cons = true|V ariable = true)

Variable P (Cons = true|V ariable = true)
ZIP-acc 0.894757
CO-acc 0.772971
RE-acc 0.771509

Dependency Discovery in Data Quality 65

4 Related Work

The analysis of dependencies between data quality dimensions has been mainly
investigated in terms of tradeoff. An example of such an approach is presented in
[2], where the authors investigate how the improvement of the timeliness dimen-
sion negatively affects the accuracy dimension. The paper presents a theoretical
framework to select the most appropriate changes to data managed in infor-
mation systems. An accuracy-timeliness utility function figures prominently in
the analysis, while in the case when it is not possible to determine the utility
function, the authors describe how to identify a suitable approximation. A sim-
ilar framework, that allows the systematic exploration of the tradeoff between
completeness and consistency is presented in [4]. The relative weight (impor-
tance) of completeness and consistency to the decision maker is an input to the
analysis. In order to examine the tradeoff the authors explore various facets of
the two dimensions that produce analytical expressions for the measurement ac-
tivity. The utility of various combinations of completeness and consistency, for
fixed and variable budgets, provides guidance to evaluate the appropriate trade-
off of these factors for specific decision contexts. The main difference between
the frameworks presented in [2,4] and our approach, is that D3Q does not limit
to a tradeoff between two dimensions but addresses multi-variate dependencies.
Moreover, in [2,4], the user must provide: i) a weight, that represents the impor-
tance of a dimension versus another dimension, and ii) a functional relationship,
that defines the binding between the dimensions involved4. Instead, the D3Q
is able to learn such information (probabilities) directly from the data. In [5],
a practical case of tradeoff among timeliness and other generic data quality di-
mensions in the context of the Bureau of Labor Statistics Covered Employment
and Wages is described. The goal is to determine if data quality decreases as a
result of receiving data earlier than the current due date. No significant quality
deterioration is detected. Although this work describes a real case where depen-
dencies play an important role, a general framework is not provided. In [21] a
rigorous and pragmatic methodology for information quality assessment, called
AIMQ, is presented. The AIMQ methodology consists of three components: i)
a model representing what information quality means to information consumers
and managers; ii) a questionnaire for measuring information quality along the
dimensions; iii) analysis techniques for interpreting the assessments gathered by
the questionnaire. The results of the proposed methodology highlight the fact
that information quality is a single phenomenon where dimensions are not in-
herently independent. The table of correlations among dimensions, calculated
on the basis of answers, is reported in the paper. The AIMQ methodology shows
how knowledge on dependencies can be exploited to offer a comprehensive qual-
ity solution; however, the approach we presented here is more powerful than the
one based on correlation [21]. In [1], within the context of business scenarios,

4 When the user cannot provide such functional relationship, the framework suggests
the use of generic families of functions to approximate the required true functions;
but still, functional parameters must be provided by the user.

66 D. Barone, F. Stella, and C. Batini

a set of logical interdependencies among dimensions is presented. The authors
define a taxonomy for data quality dimensions composed of direct and indirect
attributes. Direct attributes represent the main dimensions which directly influ-
ence the results of business operations when a change in their values occurs. The
indirect attributes determine and also contribute to the direct attributes; hence
indirectly influence the results. The D3Q could be used in a complementary way
with [1] to evaluate if such logical interdependencies are satisfied in a real sce-
nario and, therefore, allowing to validate such taxonomy. Finally, a data-driven
tool for data quality management is described in [22] which suggests rules and
identifies conformant and non-conformant records. The authors focused on the
discovery of context-dependent rules, namely conditional functional dependen-
cies (CFDs), i.e., that hold only over a data portion. The tool outputs a set of
functional dependencies together with the context in which they hold. To avoid
returning an unnecessarily large number of CFDs a set of interest metrics are
evaluated, and comparative results using real datasets are reported.

5 Conclusions

A framework to discover the dependency structure between data quality di-
mensions is described. The Dependency Discovery Algorithm uses the learning
dataset, compiled by the Dependency Discovery Model, to learn the BN model
for the data quality dimensions assessed on a real world database. The BN
model implements the Dependency Knowledge component. Accuracy, complete-
ness, and consistency are assessed on three attributes of the Italian Social Secu-
rity Contributors’s List database. The framework is general while the obtained
BN model is context dependent, i.e., it depends on the specific database which
has been analyzed. The obtained results allow to conclude that BNs

– provide the database analyst with an intuitive and efficient representation
of the dependency structure between data quality dimensions;

– allow consistent evaluation of the data quality level associated with each
tuple of the database to be certified;

– allow to compare alternative data quality improvement strategies, to perform
costs/benefits analysis and thus to implement optimal decision making.

Directions for future work concern the evaluation of the proposed approach on
a richer set of data quality dimensions and on a larger number of attributes. It
is relevant to study how BNs can be exploited to develop effective data qual-
ity improvement strategies in an information system, by implementing a trade-
off between the cost of non quality and the budget available for data quality
improvement.

Acknowledgments

The authors are grateful to the anonymous referees whose insightful comments
enabled to make significant improvements to the paper. Daniele Barone would
like to acknowledge the many valuable suggestions made by Fabrizio De Amicis,
BSI Bank.

Dependency Discovery in Data Quality 67

References

1. Gackowski, Z.: Logical interdependence of some attributes of data/information
quality. In: Proc. of the 9th Intl. Conference on Information Quality, Cambridge,
MA, USA, pp. 126–140 (2004)

2. Ballou, D.P., Pazer, H.L.: Designing information systems to optimize the accuracy-
timeliness tradeoff. Information Sys. Research 6(1), 51–72 (1995)

3. Han, Q., Venkatasubramanian, N.: Addressing timeliness/accuracy/cost tradeoffs
in information collection for dynamic environments. In: Proc. of the 24th IEEE
Intl. Real-Time Systems Symposium, Washington, DC, USA, p. 108 (2003)

4. Ballou, D.P., Pazer, H.L.: Modeling completeness versus consistency tradeoffs in in-
formation decision contexts. IEEE Trans. Knowl. Data Eng. 15(1), 240–243 (2003)

5. Sadeghi, A., Clayton, R.: The quality vs. timeliness tradeoffs in the BLS ES-202
administrative statistics. In: Federal Committee on Statistical Methodology (2002)

6. Fisher, C., Eitel, L., Chengalur-Smith, S., Wang, R.: Introduction to Information
Quality, p. 126. The MIT Press, Poughkeepsie (2006)

7. DeAmicis, F., Barone, D., Batini, C.: An analytical framework to analyze depen-
dencies among data quality dimensions. In: Proc. of the 11th Intl. Conference on
Information Quality, pp. 369–383. MIT, Cambridge (2006)

8. Burstein, F. (ed.): Handbook on decision support systems. Intl. handbooks on
information systems. Springer, Heidelberg (2008)

9. Berner, E., Kasiraman, R., Yu, F., Ray, M.N., Houston, T.: Data quality in the
outpatient setting: impact on clinical decision support systems. In: AMIA Annu.
Symp. Proc., vol. 41 (2005)

10. Eckerson, W.: Data Quality and the Bottom Line: Achieving Business Success
through a Commitment to High Quality Data. Technical report, The Data Ware-
housing Institute (2002)

11. Oei, J.L.H., Proper, H.A., Falkenberg, E.D.: Evolving information systems: meeting
the ever-changing environment. Information Sys. Journal 4(3), 213–233 (1994)

12. Batini, C., Cappiello, C., Francalanci, C., Maurino, A.: Methodologies for data
quality assessment and improvement. ACM Comput. Surv. 41(3), 1–52 (2009)

13. International Organization for Standardization: Software engineering – Software
product Quality Requirements and Evaluation (SQuaRE) – data quality model.
In: ISO/IEC 25012 (2008)

14. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)
15. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)
16. Baldi, P., Frasconi, P., Smyth, P.: Modeling the internet and the WEB: Probabilis-

tic methods and algorithms. Wiley, Chichester (2003)
17. Heckerman, D.: A tutorial on learning Bayesian networks. Technical Report MSR-

TR-95-06, Microsoft Research (1995)
18. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A

survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)
19. Reiter, R.: On closed world data bases. In: Logic and Data Bases, pp. 55–76 (1977)
20. Jarke, M., Jeusfeld, M., Quix, C., Vassiliadis, P.: Architecture and quality in data

warehouses: an extended repository approach (1999)
21. Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: AIMQ: a methodology for

information quality assessment. Information Management 40(2), 133–146 (2002)
22. Chiang, F., Miller, R.J.: Discovering data quality rules. PVLDB 1(1), 1166–1177

(2008)

Rationality of Cross-System Data Duplication:
A Case Study

Wiebe Hordijk and Roel Wieringa

University of Twente, The Netherlands
{hordijkwtb,roelw}@cs.utwente.nl

Abstract. Duplication of data across systems in an organization is a
problem because it wastes effort and leads to inconsistencies. Researchers
have proposed several technical solutions but duplication still occurs in
practice. In this paper we report on a case study of how and why dupli-
cation occurs in a large organization, and discuss generalizable lessons
learned from this. Our case study research questions are why data gets
duplicated, what the size of the negative effects of duplication is, and
why existing solutions are not used. We frame our findings in terms of
design rationale and explain them by providing a causal model. Our find-
ings suggest that next to technological factors, organizational and project
factors have a large effect on duplication. We discuss the implications of
our findings for technical solutions in general.

Keywords: Data duplication, design rationale, field study.

1 Introduction

Data duplication is the phenomenon that two or more systems store and maintain
representations of the same real-world fact. For example, two systems may store
a list of all the countries in the world and their names; one system may have
them in a database table and the other in a file, or the character sets in which
they are stored may differ, or the database schemas. All these cases are examples
of data duplication, because different data represent the same real-world facts
and are separately maintained (not replicated). Data duplication is an important
problem in practice, because it leads to wasted effort to keep the duplicated data
consistent, errors due to inconsistencies in data and effort to correct those errors.

Current published solutions to data duplication view it as a technical problem,
which can be solved for example by ensuring connectivity between systems over
a network, by transforming data to a different syntax, or by matching data based
on formally defined semantics [10]. Many solutions focus on automating the task
of finding out which records in one or more information systems represent the
same real-world facts. For example, some approaches match records based on
the similarity of their contents [1,3,16], or on the similarity of their relations
with other records [2]. A recent proposal uses Bayesian networks to represent
evidence for possible object matches [6]. Some approaches try to match defini-
tions in ontologies [8,14] and others use schema matching techniques [11]. Data

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 68–82, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Rationality of Cross-System Data Duplication: A Case Study 69

duplication is often cited as one of the major problems ERP systems can solve,
but integration with existing systems poses its own risks [13].

Despite this plethora of technical solutions, data duplication and its associ-
ated problems still exist in practice. One explanation for this is that different
databases can only be merged when they share an institutional world, for exam-
ple because they must interoperate in a value chain or because they report to a
common regulator [4]. In all other cases, data will remain duplicated. However,
this does not explain why data is duplicated within one (large) organization, i.e.
one institutional world. And unless we have such an understanding, we cannot
predict with reasonable certainty what technical solutions would be effective.

In order to understand the problem of data duplication better, in section 4
of this paper we will analyze a case study in-depth. This will yield an improved
understanding of the causes of duplication and the size of its effects. We de-
scribe our findings in the form of Reusable Rationale Blocks, which are tables
that summarize the arguments for and against different design options. We then
generalize our findings in the form of a cause/effect graph showing hypotheses
about the causes of data duplication, and finally speculate about organizational
and technical solutions to avoid duplication and to mitigate its negative effects.

2 Case Context

The organization in which we have performed this case study is a large not-for-
profit organization in The Netherlands with a strong international presence. It
employs about 3000 workers in The Netherlands and 2000 abroad.

During the study period the first author worked as a consultant for the or-
ganization. He was involved in application portfolio management, which deals
with improvements in the information systems in place in the organization. The
results of this study in a different form were used to shape these improvements.

3 Research Design

In our case study we try to answer the following research questions:

Q1. Why does data get duplicated?
Q2. (a) What are the negative effects of this, and (b) how costly are they?
Q3. (a) How can the negative effects of duplication be avoided, (b) what role
can existing technical solutions play in this, and (c) why are available technical
solutions not used in our case?

We started by mapping hypothesized causes and effects of cross-system data
duplication in the form of a cause/effect graph based on literature, anecdotes by
stakeholders in the organization, and our own experience. This graph shows what
organizational and technical factors lead to duplicated maintenance of data, and
problems this duplication causes (the final version is shown in figure 1). These
cause-effect relations were hypotheses in our research, i.e. we expected them to
be confirmed or falsified in this particular case.

70 W. Hordijk and R. Wieringa

In the second phase we quantified the problem by counting inconsistencies in
a number of data sets in several systems, and by estimating the effort involved
in various activities needed due to duplication of data, such as duplicate entry,
checks and corrections. In some cases the effort was recorded, in others person-
nel could give an estimate. This quantification underscores the importance of
mitigating data duplication.

The third phase is more exploratory and involves searching for the mechanisms
through which duplication is brought about. The unit of investigation was the
individual decision, made in a project, to integrate a system under design with
another system using particular technology, or not to integrate it. We assume
that such decisions are made under bounded rationality, that is, decision mak-
ers make rational decisions given the limited information and time they have
available [12]. This means that we needed to find the argumentation actually
used in past projects. To be able to compare those arguments, we will present
them in the form of reusable rationale blocks (RRBs). RRBs [5] are a simple
technique to present advantages and disadvantages of options to solve a problem
in a generalized table format so that they can be reused across similar problems.
We have derived the argumentations from project documentation and interviews
with the original stakeholders.

From the RRBs of individual projects we can see that some arguments are
more important than others, depending on the context of the project. These
context factors should appear as causes in the cause/effect graph created in the
first phase. The arguments as represented in the RRBs are the mechanisms by
which those context factors increase duplication. That way the rationale blocks
both validate and explain the cause/effect graph. From the rationale blocks we
will derive an improved cause/effect graph in the fourth phase.

In the fifth phase we analyze the generalizability of the results from the pre-
vious phase. Though our results come from a single organization, the research
design is a multiple case design with multiple embedded units of research [17]
and we can make a case for analytical generalization, also called “accumulation
of knowledge” by realist methodologists [9]. In our case we intend to accumulate
design-oriented knowledge that is true in sufficiently many cases without claim-
ing to be true always in all cases. Practical knowledge often accumulates at this
intermediate level of generalization [15].

The sixth phase consists of deriving practical solutions from our findings for
organizations to minimize cross-system data duplication and to mitigate its neg-
ative effects. We will also discuss in which contexts the technical solutions pro-
posed so far could contribute to the mitigation of the problem.

4 Results

4.1 Initial Cause/Effect Graph

A workshop was held in July 2009 with 10 representatives from the organizations
IT department, not for the purpose of this research but to identify problems and
solutions concerning application integration. The workshop was organized by the

Rationality of Cross-System Data Duplication: A Case Study 71

first author together with another consultant, and attended by system maintain-
ers, programmers, designers, an enterprise architect and a senior manager from
the organization. From the results of the workshop the first author has drawn
an initial cause/effect graph.

4.2 Identifying Duplicate Data

We have created a matrix matching systems against the data stored in those
systems, and from it we have identified the following data objects which are
used in at least three systems. We have only counted systems where the data
were maintained by users, not systems which merely store a copy of data which
they automatically receive from another system.

– Countries, including their names, sometimes in different languages, and coun-
try codes such as from ISO 3166 and national standards.

– Nationalities occur in some of the systems storing countries.
– Employees, sometimes with specific information such as phone numbers,

sometimes only with their account name for authorization purposes.
– Organizational units
– Foreign offices, a generic name for operations of the organization in other

countries. There are about 150 of them. Some systems store only a subset
because their business processes apply to specific types of offices.

– Contacts, a generic name for all kinds of external parties, including persons
and other organizations that the organization deals with. Many systems
have their own subset of contacts, but there is overlap, e.g. when a contact
occurs in the financial system, a CRM system and someones email contacts
directory.

4.3 Quantification of the Problem

We have counted the number of inconsistencies among systems concerning sev-
eral of the data sets listed above by manually comparing database dumps from
the systems and then estimated the wasted effort caused by this. We give the
results for inconsistencies between countries tables and we give estimates of the
effort wasted by duplication in general.

Inconsistencies in Country Lists. We compared the countries tables with
the ISO 31661 standard, for which the Dutch Language Union2 provides official
Dutch country names. In table 1 we list the inconsistencies per system and per
type as percentage of the total number of countries. Inconsistencies are classified
as ’unmatched’ countries, where a country is missing from either the system or
the standard, or ’spelling’ where the spelling of the name differs. We have also
estimated the size of the user groups and the usage frequency. We can make
some observations on this data.
1 http://www.iso.org/iso/country_codes.htm
2 http://taalunieversum.org/taalunie/

http://www.iso.org/iso/country_codes.htm
http://taalunieversum.org/taalunie/

72 W. Hordijk and R. Wieringa

Table 1. Inconsistencies in countries tables per system as percentage of total number
of countries

System Introduction Users Frequency Unmatched Spelling Total

System 1 1-1-1997 5000 daily 4% 8% 12%

System 2 1-1-1998 20 daily 8% 12% 20%
System 3 1-4-2001 20 daily 7% 6% 13%

System 4 1-8-2001 500 5x per year 50% 5% 55%

System 5 1-8-2002 20 daily 14% 9% 23%
System 6 1-1-2003 500 daily 8% 26% 33%

System 7 1-10-2003 5000 daily 4% 3% 7%

System 8 1-1-2004 10 ad hoc 8% 13% 21%
System 9 1-10-2006 30 daily 11% 19% 30%

System 10 1-1-2007 5000 ad hoc 7% 6% 13%

System 11 1-1-2007 500 daily 14% 14% 28%
System 12 1-7-2007 500 1x per year 9% 23% 32%

System 13 1-6-2008 10 ad hoc 10% 21% 31%

Some systems have many unmatched countries. This can be explained because
these systems only need specific subsets of countries, e.g. only those in which
the organization has offices, or because countries have ceased to exist, such as
Yugoslavia or the USSR, but have not been removed from a system. This may
not be a problem for users of a system itself, but does pose problems when trying
to integrate data from multiple systems, such as for reporting.

Spelling differences are remarkably frequent. Spelling issues arise often with
respect to geographical names, but when analyzing the data we found that many
of these inconsistencies were simple typing errors.

There is no relation between the age of a system and the number of inconsis-
tencies, though we will see some evidence in subcases 3 and 4 in paragraph 4.4
that systems built on older technological platforms are harder to integrate. We
do observe that generally systems with larger user groups have fewer inconsisten-
cies than less-used systems. This can probably be explained because much-used
systems receive more corrections at the request of their users.

Effort due to Duplication. In System 4, data about foreign offices are period-
ically aggregated from several other systems for financial and policy evaluation
and prediction. These data are exported from other systems as MS Excel files,
after which some manual polishing and formatting is done and the files are im-
ported in System 4. Examples of this ’polishing’ are removing negative numbers
and checking total amounts after importing files. This process happens 5 times
per year and takes an estimated total of 16 person-hours of all workers involved
each time. This estimate was given by the application maintenance staff.

System 12 is a reporting system in which data from a large number of other sys-
tems are brought together to create management overviews of foreign operations.

Rationality of Cross-System Data Duplication: A Case Study 73

Table 2. Integration effort per system

System Integration effort

System 1 Inconsistencies in data cause users to request corrections through service desk

System 4 File export/import, communication between maintainers, data checks, manual
corrections (estimate 16 hrs per time, 5 times per year)

System 5 Effort is hidden in large effort for periodical data consolidation

System 6 Changes in countries via service desk
System 9 Changes in countries via service desk. Manual corrections in output by users.

System 11 Manual maintenance of translation tables for systems to exchange data with.

System 12 Reporting takes 4 person-months per year.

Partly because of differences in reference data (such as countries) in the source
systems, creating these reports takes a lot of manual effort. The recurring effort
for producing these reports is 4 person-months.

Table 2 lists qualitative and some quantitative data about effort spent on
manual integration of data between systems. The total waste of effort adds up
to several person-months per year.

4.4 Identifying Mechanisms That Cause Duplication

If we want to build a system without duplicating the effort to maintain the data,
then the first thing we need to do is find out whether there is a source system to
get the data from. The data in the source system must be of sufficient quality to
serve the processes of the target system. Quality attributes of the data on which
integration options have influence are (adapted from [7]):

– Accuracy: the degree to which data correctly reflect an external truth.
– Completeness: the degree to which data reflect an entire external truth.
– Timeliness: the speed with which data are adapted to changes in an external

truth.

When a source system with suitable data quality is found, there are some options
to integrate the data between the source and target system. Each of these possi-
bilities has advantages and disadvantages which the project must weigh against
the success criteria that the stakeholders apply to this project. This can make
it logical for a project to deliver an isolated system, that duplicates data stored
elsewhere too, even if that is disadvantageous for the organization as a whole.

– Manual re-typing of the data. This is flexible and no investment is needed
but takes a lot of effort and usually leads to many typing errors.

– Manually exporting and importing files. Also very flexible and takes a small
project investment but still costs effort, and errors still occur, especially
when manual “improvements” to the data are necessary.

– Automatically exchanging files. Takes a slightly bigger investment. Errors
still occur, e.g. due to incomplete files.

74 W. Hordijk and R. Wieringa

Table 3. RRB showing the general pros and cons of integration options. ++ is very
good value and - - a very bad value for the stakeholder, respectively.

Stake- Quality Impor- Manual Manual Autom. DB Messag-
holder attribute tance typing files files link ing

Project; Owner Project investment
(+ is lower)

+ ++ + - - - - -

Project Project risk (+ is
lower)

+ ++ + - - - - -

Owner; Maintenance
team

Independence of
other systems

+ ++ + - - - -

Owner; User Business process
flexibility

+ ++ + - - - - -

User; Manager Data integration
effort (+ is lower)

++ - - - + + +

User Data accuracy ++ - - - + + +
User Data timeliness ++ - - - - - + +

Maintenance team Maintainability + + - - + ++

– Database link to the source system. The investment is often smaller than
with file export/import but the solution is less flexible because the source
system cannot change its data structure without breaking the target system.
The data are always up to date but the target system will depend for its
availability on the source system and the network.

– Messaging, e.g. using web services. This option takes the largest investment
but it is more flexible than a database link and more reliable and flexible
than file exchange.

Together with professionals from the organization we have identified general
quality attributes for these options. This general knowledge was codified in the
form of a RRB in Table 3. It should be read as follows: all else being equal, the
data integration effort will be worst (= highest) when manual typing is chosen
and best when one of the automated options is chosen; data integration effort
will usually matter more to stakeholders than the initial investment. We do not
claim that the RRB of Table 3 is true in all cases but we do claim that this
analysis method can be used in similar cases too, and will often contain very
similar decision rationales.

We have identified four decisions in past projects to integrate systems in
a certain way by interviewing the original stakeholders and reviewing project
documentation. We have investigated how the context factors of a specific project
shape the arguments that feed into the decision and lead to different outcomes.
These arguments, represented below by means of RBBs, will be used to derive
and corroborate hypotheses about causes and effects of data duplication. We
aggregate the hypotheses into a causal effect graph in Figure 1 and Table 6.

We have noticed in this phase that most project decisions are not documented
with their associated rationale (and sometimes not at all). This makes it essential

Rationality of Cross-System Data Duplication: A Case Study 75

for case study research to have access to original stakeholders, which has driven
our choice of cases.

Subcase 1. System 11: Countries. When system 11 was under development,
architects have actively looked for a suitable source system for countries and
nationalities. Documentation describes why systems 5 and 6 cannot deliver data
with the required quality. Other source systems have not been considered, and
architects involved in the process indicate that it was unknown at the time that
other systems also stored country tables. The decision was made to give System
11 its own countries table. This case leads to hypothesis H1: lack of knowledge
about the architectural landscape of the organization is a contributing factor to
data duplication by increasing the cost of search for potential source systems.

When systems 5 and 6 turned out not to have the desired data quality, the
project first tried to request from the respective owners of those systems to im-
prove the data and then share it. The owners of both systems responded in a
tactful way that they did not see this as their task. This teaches us that for
systems to integrate their data an organization first needs to establish the orga-
nizational responsibilities and capabilities to maintain and provide data with the
right quality. We postulate two hypotheses. H2: poor or unknown data quality in
potential source systems leads to data duplication. H3: Unwillingness to establish
organizational dependencies leads to data duplication.

Subcase 2. System 11: Currencies. At the same time when designing system
11, the system needed data about which currencies can be used in countries in
the world and spot rates of those currencies against the euro. The currencies
are updated about as often as countries themselves, but spot rates change daily.
System 6 is a natural source for these data because it is an ERP system used for
financial administration throughout the organization. It can be trusted to have
accurate data about currencies and rates. This is consistent with hypothesis H2.

Table 4 shows the advantages and disadvantages of integration options be-
tween systems 6 and 11, adapted from Table 3 to the specific context factors
of this project. We use the table to detect how variations in context factors for
individual projects determine which option is best in individual decisions.

System 11 is a relatively new system built on a modern development platform
and uses messaging between its own components. That makes the project in-
vestment and the project risk for the option ‘messaging’ lower. The same holds
for ‘automated file transfer’, with which the maintenance team of system 6 has
broad experience. We postulate hypotheses H4: availability of integration infras-
tructure decreases the chance of data duplication by decreasing the relative cost
of integration.

The development of system 11 was a very large project of which this partic-
ular integration formed only a small part. This reduces the importance of the
project investment. H5: High pressure on a project increases the chance of data
duplication by increasing the importance of project risk and project investment.

For the business process of system 11 it is important that currencies and
rates are received correctly each day. This increases the relative importance of

76 W. Hordijk and R. Wieringa

Table 4. Pros and cons of integration options for currencies in System 11; differences
with Table 3 in brackets

Stake- Quality Impor- Manual Manual Autom. DB Messag-
holder attribute tance typing files files link ing
Project; Owner Project investment

(+ is lower)
(-) ++ + (-) - (-)

Project Project risk (+ is
lower)

+ ++ + (-) - (-)

Owner; Maintenance
team

Independence of
other systems

+ ++ + - - - -

Owner; User Business process
flexibility

+ ++ + - - - - -

User; Manager Data integration
effort (+ is lower)

(+++) - - - + + +

User Data accuracy (+++) - - - + + +

User Data timeliness (+++) - - - - (+) + +

Maintenance team Maintainability + + - - + ++

accuracy and timeliness. Because the rates only change daily and automated
files are suitable for daily transfers, the automated files option gets a + for
timeliness. Because of the large amount of data to be transferred each day, data
integration effort is relatively important. H6: high-volume data is less susceptible
for duplication than low-volume data, because the data integration effort is higher.

In Table 4 we can see that the three automated options are still viable.
Database link was not chosen because it leads to tight coupling between the sys-
tems. Messaging was favored over automated file transfer because it was thought
to lead to more maintainable systems.

Subcase 3. System 4: Countries and financial data. System 4 is used to
make budgets and to evaluate the financial performance of the organization as a
whole. It receives financial information from system 6, the ERP system, and the
countries list in system 6 is good enough for system 4, so system 6 is a viable
source system. The advantages and disadvantages of the options to connect these
systems are listed in Table 5.

System 4 is an old system built in MS Access, which does not offer standard
messaging technology, just like the ERP system 6. Use of messaging is only
possible with a large investment in technology and would incur considerable
risk to a project. This corroborates hypothesis H4: availability of integration
infrastructure decreases duplication.

There are plans to rebuild system 4 with .NET technology to a web-based
system. This means that any investment in system 4 in the short term should be
profitable in a short time. This increases the relative importance of the quality
attribute ’Project investment’.

The data collected in system 4 and its business rules change slightly from year
to year. These changes typically are agreed upon shortly before a new version

Rationality of Cross-System Data Duplication: A Case Study 77

Table 5. Pros and cons of integration options for system 4; differences with Table 3
in brackets

Stake- Quality Impor- Manual Manual Autom. DB Messag-
holder attribute tance typing files files link ing
Project; Owner Project investment

(+ is lower)
(++) ++ + - - - (- - -)

Project Project risk (+ is
lower)

+ ++ + - - - (- - -)

Owner; Maintenance
team

Independence of
other systems

+ ++ + - - - -

Owner; User Business process
flexibility

(++) ++ + - - - - -

User; Manager Data integration
effort (+ is lower)

(+) - - (-/+) + + +

User Data accuracy ++ - - (-/+) + + +

User Data timeliness (+) - - - - - + +

Maintenance team Maintainability + + - - + ++

of the system goes live. This sometimes makes it necessary to manually change
the contents of files transferred from system 6 to system 4. This increases the
relative importance of the quality attribute ‘Business process flexibility’. This
leads to H7: required flexibility in business processes can lead to data duplication.

Data integration between these systems is performed by employees who have
been doing this for almost 10 years now. They know exactly what to do and
for what kinds of errors to check. For the systems architecture this means that
the option of manual file transfer scores better on the quality attributes ‘Data
integration effort’ and ‘Data accuracy’. We propose H8: expertise in maintaining
duplicated data keeps duplication in place by minimizing its drawbacks.

Data timeliness is less important for this integration because the whole process
happens only 5 times per year. Under these specific circumstances, manual file
transfer has the optimal balance between project investment and integration
effort. This motivates H9: frequently updated data is less likely to be duplicated
than data which is less frequently updated.

Subcase 4. System 12: Reporting data. System 12 is a system in which
large amounts of data about the organizations foreign offices are aggregated into
management information. Before this system was developed there was a lot of
uncertainty about how and in what formats source systems would be able to de-
liver their data. For those reasons, business process flexibility and independence
of other systems were very important. This corroborates hypotheses H2: poor
or unknown data quality increases duplication, and H7: required flexibility in
business processes can lead to data duplication.

The amount of data was not too large to make manual checks and corrections
unfeasible. The reports from the system were only needed once per year. This
decreases the relative importance of Data integration effort, Data timeliness and

78 W. Hordijk and R. Wieringa

Maintainability. This corroborates H6: high-volume data is duplicated less often,
and H9: more frequently updated data is duplicated less often.

The resulting rationale table for system 12 is very much like that for system
4 in Table 5, and for reasons of space we omit the specific table for system 12.
For the integration of data into system 12, manual file transfer was chosen for
much the same reasons as for system 4.

4.5 Lessons Learned

Based on the hypotheses described in the cases above we have adapted the cause-
effect graph drawn at the start of our project. The result is shown in figure 1.

H1. Architecture
landscape
unknown

H2. Poor/unknown
data quality

Cross-system data
duplication

H5. Project
pressure

H3. Organizational
dependencies
unwanted

H11. Duplicate
data entry effort

H10. Data inconsistencies

H13. Errors in
reports

H12. Effort to produce
correct reports

H7. Required
flexibility

H4. Lack of
infrastructure

H6. Data
volume

H8. Data
maintenance
expertise

H9. Data
update
frequency

Fig. 1. Final Cause/Effect graph. Nodes are observable phenomena, marked with the
hypotheses in which they play a role; arrows are positive influences

The nodes in Figure 1 are marked with the hypothesis numbers in which they
play a role. In Table 6 we summarize the hypotheses with their evidence.

4.6 Generalizability

It is not possible to find in one case study arguments for generalization to all
other cases. But it is possible to indicate which claims could be generalized to
an interesting set of other cases. We claim that our results are generalizable to,
and therefore reusable in, situations where the same mechanisms are in place as
in our case study.

4.7 Solutions

Solutions to the problems around data duplication consist of a mix of orga-
nizational, technical and project management elements, just like the problems

Rationality of Cross-System Data Duplication: A Case Study 79

Table 6. Hypotheses and their evidence

Hypothesis Evidence

H1: lack of knowledge about the ar-
chitectural landscape of the organiza-
tion is a contributing factor to data
duplication by increasing the cost of
search for potential source systems

Observation in Subcase 1. In the other subcases,
source systems were found, but the search effort
spent is unknown. Intuitive and matches anecdotal
evidence from other organizations.

H2: poor or unknown data quality
in potential source systems leads to
data duplication

In subcase 1, data was maintained for a specific busi-
ness process and did not meet the quality require-
ments of another process. In subcase 4, quality of
available data was not known at design time, which
led to duplication. In subcase 2 good data quality
enabled integration. Intuitive and matches anecdo-
tal evidence from other organizations.

H3: Unwillingness to establish orga-
nizational dependencies leads to data
duplication

In Subcase 1, a potential data supplier was unwilling
to maintain data at a higher quality than needed for
their own process. Seems organization-dependent.

H4: availability of integration infras-
tructure decreases duplication.

In subcase 2, messaging infrastructure was available.
In subcase 3 it was not; it would have made mes-
saging a more likely option. Intuitive and matches
anecdotal evidence from other organizations.

H5: High pressure on a project in-
creases the chance of data duplica-
tion by increasing the importance of
project risk and project investment

Observed only directly in subcase 2. In other sub-
cases we can see that investments for improvement
are not made until other major changes to systems
are necessary. Seems organization-dependent.

H6: High-volume data is less suscep-
tible for duplication than low-volume
data, because the data integration ef-
fort is higher

Observed in subcase 2 (high volume) and subcase 4
(also high, but outweighed by other context factors).
Intuitive and matches anecdotal evidence from other
organizations.

H7: Required flexibility in business
processes leads to data duplication

In subcases 3 and 4, required flexibility led to dupli-
cation. Seems organization-dependent.

H8: expertise in maintaining dupli-
cated data keeps duplication in place
by minimizing its drawbacks

Observed in subcase 3. Seems organization-
dependent.

H9: frequently updated data is less
likely to be duplicated than data
which is less frequently updated

Observed in subcases 3 and 4 (low frequency) and
subcase 2 (high frequency). Intuitive and matches
anecdotal evidence from other organizations.

H10: Data duplication leads to incon-
sistencies between data sets

Observed and quantified for countries and offices
in paragraph 4.3. Intuitive and matches anecdotal
evidence from other organizations.

H11: Duplication costs extra effort to
maintain data in multiple systems

Observed and quantified in paragraph 4.3. Intuitive
and matches anecdotal evidence from other organi-
zations.

H12: Due to inconsistencies between
data, making reports with data from
multiple systems takes more effort

Observed and quantified in paragraph 4.3. Intuitive
and matches anecdotal evidence from other organi-
zations.

H13: Inconsistencies between data
sets cause errors in reports

Anecdotal evidence. Intuitive and matches anecdo-
tal evidence from other organizations.

80 W. Hordijk and R. Wieringa

themselves do. In this paragraph we speculate about solutions and their merits.
Since this is not the main topic of this research effort, the solutions are presented
only briefly.

To combat the lack of information about the application landscape we need
a well-documented architecture landscape (solution S1), including information
about what data is stored in which system. This documentation should be kept
up to date and be accessible to projects.

The problem of systems only catering for their own business processes is
hard to beat. One solution could be to establish an organizational entity that is
responsible for maintaining data for the entire organization (S2). This has been
done at several organizations where properly maintaining large quantities of data
is important. This opens the extra opportunity to supply such data to other
parties for added benefit. Another solution would be to add the responsibility
for maintaining a particular data set to a department, along with the capabilities
(people, budget) to fulfill that responsibility (S3). This is easier to do in some
organizations than in others.

The relative importance of long term, organization-wide quality attributes
should be increased at the cost of short-term, project-only interests. One possible
way to achieve this is by adding an architect to the project team who gets paid
by the IT organization instead of the system owner (S4). Another way is to
use an architecture review process in which the designed system is reviewed by
organization architects against criteria which reflect long term interests (S5).

Even if data is still being maintained in multiple systems, the problems that
come with inconsistencies between the data sets can be minimized by agreeing on
standards for the data and on procedures to check data against the standard (S6).
For example, if our organization would agree on using the ISO 3166 standard
for countries and all systems were up to date then integrating other data which
uses countries as reference data would be much easier.

Central investments in infrastructure, e.g. for messaging, can decrease the
project investment needed to provide an optimal solution which would otherwise
be too expensive and too risky for a project (S7).

After all these organizational problems have been solved, the technological
solutions listed in section 1 become viable. Data warehouse technology (S8) can
make reporting easier, thus decreasing the reporting effort and reporting er-
rors. A project to introduce a data warehouse in the organization is currently
starting. First, however, inconsistencies in the data fed into the data warehouse
from different systems must be reconciled. Entity linkage technologies (S9) and
ontologies (S10) can help with that. These technologies are useful to integrate
large amounts of data, but to start using them a considerable investment in
skills will be needed. That means they are most useful in environments where
the cost of manual integration and the risk posed by inconsistencies outweigh the
investment in new technologies, that is, in situations where either the volume of
the data are large, errors are very dangerous or expensive, or new technologies
are easily integrated. Our organization does not have any of these characteris-
tics. The volume of data in our organization is such that low-tech solutions are

Rationality of Cross-System Data Duplication: A Case Study 81

adequate to solve the inconsistencies, and the organization has a policy of using
only proven technology and not be technically innovative. This means that for
our organization the risk associated with introducing new technologies outweighs
the potential benefits.

Solutions S1, S2, S5, S6, S7 and S8 have been reported to the organization
and are currently under review. Possible solutions for example involve changes
to existing systems, to infrastructure, to procedures or to organizational struc-
tures. At the time of writing, these proposed changes are being considered in the
organizations application and project portfolio management processes.

5 Discussion, Conclusions and Future Work

We have performed a series of historical case studies in a single organization.
The external validity of such a research design is always questionable. The initial
theory in the form of the cause/effect graph, the general rationale table and the
information about individual cases were all taken from the organization under
investigation. In paragraph 4.6 we have reflected on the generalizability of the
results in the cause/effect graph of Figure 1.

We have provided quantitative results about the problems caused by data
duplication. The data about the causes of data duplication is mostly qualitative
in nature. At present this is the best we can do, and given the current state of
the research we think that even such qualitative results are a contribution to the
advancement of theory in this field.

Table 3 with its advantages and disadvantages of integration options is not
meant to represent a general truth about relative preferences of these options:
we do not claim that messaging for example is always better than database
links; rather we have shown that these preferences are situation-dependent. The
methodology of rationale blocks, however, can be reused as an intuitive tool for
decision support, rationale documentation and as a research method to investi-
gate the sensitivity of option preferences to context factors, as we have done. It
is a pragmatic approach which stakeholders can quickly understand. Discussions
in the course of our investigation immediately centered on the pros and cons of
options, not about the notation technique or methodology. Rationale tables al-
low arguments for individual decisions to be reused in other situations. We have
shown that the decision to integrate or not to integrate systems can often be
explained using arguments that are rational from the standpoint of the decision
maker.

Our results show that organizational, technical and project factors can cause
data duplication across systems in an organization. We have suggested a set
of mitigation strategies to reduce data duplication and to decrease its negative
effects. These can be used by organizations to get projects to give higher priority
to organization-wide long term interests and to deliver better integrated systems.

Future work should include repeating this research in other organizations and
evaluation of the performance of the introduced solutions.

We thank the anonymous reviewers for their helpful suggestions for improving
this paper.

82 W. Hordijk and R. Wieringa

References

1. Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating fuzzy duplicates in data
warehouses. In: VLDB 2002: Proceedings of the 28th international conference on
Very Large Data Bases, pp. 586–597 (2002)

2. Bhattacharya, I., Getoor, L.: Deduplication and group detection using links. In:
Workshop on Link Analysis and Group Detection (LinkKDD 2004), Seattle, WA,
USA. ACM, New York (2004)

3. Cohen, W.W.: Integration of heterogeneous databases without common domains
using queries based on textual similarity. In: SIGMOD 1998: Proceedings of the
1998 ACM SIGMOD international conference on Management of data, pp. 201–212
(1998)

4. Colomb, R.M., Ahmad, M.N.: Merging ontologies requires interlocking institutional
worlds. Appl. Ontol. 2(1), 1–12 (2007)

5. Hordijk, W., Wieringa, R.: Reusable rationale blocks: Improving quality and effi-
ciency of design choices. In: Dutoit, A.H., McCall, R., Mistrik, I., Paech, B. (eds.)
Rationale Management in Software Engineering, pp. 353–371. Springer, Heidelberg
(2006)

6. Ioannou, E., Niederee, C., Nejdl, W.: Probabilistic entity linkage for heterogeneous
information spaces. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 556–570. Springer, Heidelberg (2008)

7. Jiang, L., Borgida, A., Mylopoulos, J.: Towards a compositional semantic account
of data quality attributes. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER
2008. LNCS, vol. 5231, pp. 55–68. Springer, Heidelberg (2008)

8. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD
Rec. 33(4), 65–70 (2004)

9. Pawson, R., Tilley, N.: Realistic Evaluation. SAGE Publications, London (1997)
10. Pollock, J.T.: Integration’s dirty little secret: It’s a matter of semantics. Technical

report, Modulant (2002)
11. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.

The VLDB Journal 10(4), 334–350 (2001)
12. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)
13. Sumner, M.: Risk factors in enterprise-wide/erp projects. Journal of Information

Technology 15(4), 317–327 (2000)
14. Uschold, M., Gruninger, M.: Ontologies and semantics for seamless connectivity.

SIGMOD Rec. 33(4), 58–64 (2004)
15. Wieringa, R.J.: Design science as nested problem solving. In: Proceedings of the

4th International Conference on Design Science Research in Information Systems
and Technology, Philadelphia, pp. 1–12 (2009)

16. Winkler, W.E.: The state of record linkage and current research problems. Tech-
nical report, Statistical Research Division, U.S. Census Bureau (1999)

17. Yin, R.K.: Case study research: design and methods, 3rd edn. Applied Social Re-
search Methods Series, vol. 5. SAGE Publications, Thousand Oaks (2003)

Probabilistic Models to Reconcile Complex Data
from Inaccurate Data Sources

Lorenzo Blanco, Valter Crescenzi, Paolo Merialdo, and Paolo Papotti

Università degli Studi Roma Tre
Via della Vasca Navale, 79 – Rome, Italy

{blanco,crescenz,merialdo,papotti}@dia.uniroma3.it

Abstract. Several techniques have been developed to extract and inte-
grate data from web sources. However, web data are inherently imprecise
and uncertain. This paper addresses the issue of characterizing the un-
certainty of data extracted from a number of inaccurate sources. We
develop a probabilistic model to compute a probability distribution for
the extracted values, and the accuracy of the sources. Our model consid-
ers the presence of sources that copy their contents from other sources,
and manages the misleading consensus produced by copiers. We extend
the models previously proposed in the literature by working on several
attributes at a time to better leverage all the available evidence. We also
report the results of several experiments on both synthetic and real-life
data to show the effectiveness of the proposed approach.

1 Introduction

As the Web is offering increasing amounts of data, important applications can be
developed by integrating data provided by a large number of data sources. How-
ever, web data are inherently imprecise, and different sources can provide con-
flicting information. Resolving conflicts and determining what values are (likely
to be) true is a crucial issue to provide trustable reconciled data.

Several proposals have been developed to discover the true value from those
provided by a large number of conflicting data sources. Some solutions extend
a basic vote counting strategy by recognizing that values provided by accurate
sources, i.e. sources with low error rates, should be weighted more than those
provided by others [10,12]. Recently, principled solutions have been introduced to
consider also the presence of sources that copy from other sources [6]. As observed
in [1], this is a critical issue, since copiers can cause misleading consensus on false
values. However, they still suffer some limitations, as they are based on a model
that considers only simple (atomic) data. Sources are seen as providers that
supply data about a collection of objects, i.e. instances of a real world entity,
such as a collection of stock quotes. Nevertheless, it is assumed that objects are
described by just one attribute, e.g. the price of a stock quote. On the contrary,
data sources usually provide complex data, i.e. collections of tuples with many
attributes. For example, sources that publish stock quotes always deliver values
for price, volume, max and min values, and many other attributes.

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 83–97, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

84 L. Blanco et al.

Existing solutions, focused on a single attribute only, turn out to be rather
restrictive, as different attributes, by their very nature, may exhibit drastically
different properties and evidence of dependence. This statement is validated by
the observation that state-of-the-art algorithms, when executed on real datasets
lead to different conclusions if applied on different attributes published by the
same web sources.

Source 1
volume min max

AAPL 699.9k 90 150
GOOG 1.1m 380 545
YHOO 125k 21 48

Source 2
volume min max

AAPL 699.9k 90 150
GOOG 1.1m 380 545
YHOO 125k 21 48

Source 3
volume min max

AAPL 699.9 90 150
GOOG 1100.0k 381 541

YHOO 125.0k 21 44

Source 4
volume min max

AAPL 699.9k 91 150
GOOG 1100.0k 381 541

YHOO 125.0k 21 44

True values
volume min max

AAPL 699.9k 90 150

GOOG 1100.0k 380 545

YHOO 125.0k 21 48

Fig. 1. Three sources reporting stock quotes values.

This behavior can be caused by two main reasons: lack of evidence (copiers
are missed) or misleading evidence (false copiers are detected). In Figure 1 we
make use of an example to illustrate the issues: four distinct sources report
financial data for the same three stocks. For each stock symbol are reported
three attributes: volume, min and max values of the stock. The fifth table shows
the true values for the considered scenario: such information is not provided in
general, in this example we consider it as given to facilitate the discussion.

Consider now the first attribute, the stock volume. It is easy to notice that
Source 1 and Source 2 are reporting the same false value for the volume of GOOG

(errors are in bold). Following the intuition from [6], according to which copiers
can be detected as the sources share false values, they should be considered as
copiers. Conversely, observe that Source 3 and Source 4 report only true values
for the volume and therefore there is not any significant evidence of dependence.
The scenario radically changes if we look at the other attributes. Source 3 and
Source 4 are reporting the same incorrect values for the max attribute, and
they also make a common error for the min attribute. Source 4 also reports
independently an incorrect value for the min value of AAPL. In this scenario
our approach concludes that Source 3 and Source 4 are certainly dependent,
while the dependency between Source 1 and Source 2 would be very low. Using
previous approaches and by looking only at the volume attribute, Source 1 and
Source 2 would been reported as copiers because they share the same formatting
rule for such data (i.e., false copiers detected), while Source 3 and Source 4 would
been considered independent sources (i.e., real copiers missed).

In this paper, we extend previous proposals to deal with sources providing com-
plex data, without introducing any remarkable computation efforts. We formally

Probabilistic Models to Reconcile Complex Data 85

describe our algorithms and give a detailed comparison with previous proposals.
Finally, we show experimentally how the evidence accumulated from several at-
tributes can significantly improve the performance of the existing approaches.

Paper Outline. The paper is organized as follows: Section 2 illustrates related
work. Section 3 describes our probabilistic model to characterize the uncertainty
of data in a scenario without copier sources. Section 4 illustrates our model for
analyzing the copying relationships on several attributes. Section 5 presents the
result of the experimental activity. Section 6 concludes the paper.

2 Related Work

Many projects have been active in the study of imprecise databases and have
achieved a solid understanding of how to represent uncertain data (see [5] for
a survey on the topic). The development of effective data integration solu-
tions making use of probabilistic approaches has also been addressed by several
projects in the last years. In [8] the redundancy between sources is exploited to
gain knowledge, but with a different goal: given a set of text documents they
assess the quality of the extraction process. Other works propose probabilistic
techniques to integrate data from overlapping sources [9].

On the contrary, so far there has been little focus on how to populate such
databases with sound probabilistic data. Even if this problem is strongly
application-specific, there is a lack of solutions also in the popular fields of data
extraction and integration. Cafarella et al. have described a system to popu-
late a probabilistic database with data extracted from the Web [4], but they do
not consider the problems of combining different probability distributions and
evaluating the reliability of the sources.

TruthFinder [12] was the first project to address the issue of discovering true
values in the presence of multiple sources providing conflicting information. It is
based on an iterative algorithm that exploits the mutual dependency between
source accuracy and consensus among sources. Other approaches, such as [11]
and [10], presented fixpoint algorithms to estimate the true values of data reported
by a set of sources, together with the accuracy of the sources. These approaches
do not consider source dependencies and they all deal with simple data.

Some of the intuitions behind TruthFinder were formalized by Dong et al. [6]
in a probabilistic Bayesian framework, which also takes into account the effects
related to the presence of copiers among the sources. Our probabilistic model is
based on such Bayesian framework and extends it to the case with sources that
provide complex data. A further development by the same authors also considers
the variations of truth values over time [7]. This latter investigation applies for
time evolving data and can lead to identify outdated sources.

3 Probabilistic Models for Uncertain Web Data

In our setting, a source that provides the values of a set of properties for a
collection of objects is modeled as a witness that reports an observation. For

86 L. Blanco et al.

example, on the Web there are several sources that report the values of price,
volume, dividend for the NASDAQ stock quotes. We say that these sources are
witnesses of all the cited properties for the NASDAQ stock quotes.

Different witnesses can report inconsistent observations; that is, they can pro-
vide inconsistent values for one or more properties of the same object. We aim at
computing: (i) the probability that the observed properties of an object assume
certain values, given a set of observations that refer to that object from a col-
lection of witnesses; (ii) the accuracy of a witness with respect to each observed
property, that is, the probability that a witness provides the correct values of
each observed property for a set of objects. With respect to the running exam-
ple, we aim at computing the probability distributions for volume, min and max
values of each observed stock quote, given the observations of the four witnesses
illustrated in Figure 1. Also, for each witness, we aim at computing its accuracies
in providing a correct value for volume, min and max property.

We illustrate two models of increasing complexity. In the first model we as-
sume that each witness provides its observations independently from all the
other witnesses (independent witnesses assumption). Then, in Section 4, based
on the framework developed in [6], we remove this assumption and consider also
the presence of witnesses that provide values by copying from other witnesses.
The first model is developed considering only one property at a time, as we
assume that a witness can exhibit different accuracies for different properties.
More properties at a time are taken into account in the second model, which
considers also the copying dependencies. As we discussed in the example of
Figure 1, considering more properties in this step can greatly affect the results
of the other steps, and our experimental results confirmed this intuition, as we
report in Section 5.

For each property, we use a discrete random variable X to model the possible
values it assumes for the observed object. P(X = x) denotes the prior probability
distribution of X on the x1, . . . , xn+1 possible values, of which one is correct,
denoted xt, and the other n are incorrect. Also, let ẋ denote the event X = x =
xt, i.e. the event “X assumes the value x, which is the correct value xt”. The
individual observation of a witness is denoted o; also, v(o) is used to indicate
the reported value. The accuracy of a witness w, denoted A, corresponds to the
conditional probability that the witness reports xt, given ẋ; that is: A = P (o|ẋ),
with v(o) = xt.

In the following we make several assumptions. First, we assume that the values
provided by a witness for an object are independent on the values provided for
the other objects (independent values assumption). Also, we assume that the
value provided by a witness for a property of an object is independent of the
values provided for the other properties of the same object, and that the accuracy
of a witness for a property is independent of the property values (independent
properties assumptions). Finally, for the sake of simplicity, we consider a uniform
distribution (then P(X = x) = 1

n+1 , ∀x), and we assume that the cardinality of
the set of values provided by the witnesses is a good estimation for n (uniform
distribution assumption).

Probabilistic Models to Reconcile Complex Data 87

Given an object, the larger is the number of witnesses that agree for the
same value, the higher is the probability that the value is correct. However, the
agreement of the witnesses’ observations contributes in increasing the probability
that a value is correct in a measure that depends also on the accuracy of the
involved witnesses. The accuracy of a witness is evaluated by comparing its
observations with the observations of other witnesses for a set of objects. A
witness that frequently agrees with other witnesses is likely to be accurate.

Based on these ideas of mutual dependence between the analysis of the con-
sensus among witnesses and the analysis of the witnesses accuracy, we have
developed an algorithm [3] that computes the distribution probabilities for the
properties of every observed object and the accuracies of the witnesses. Our al-
gorithm takes as input the observations of some witnesses on multiple properties
of a set of objects, and is composed of two main steps:

1. Consensus Analysis: based on the agreement of the witnesses among their
observations on individual objects and on the current accuracy of witnesses,
compute the probability distribution for the properties of every object
(Section 3.1);

2. Accuracy Analysis: based on the current probability distributions of the ob-
served object properties, evaluate the accuracy of the witnesses (Section 3.2).

The iterations are repeated until the accuracies of the witnesses do not signifi-
cantly change anymore.

3.1 Probability Distribution of the Values

The following development refers to the computation of the probability distribu-
tion for the values of one property of an object, given the observations of several
witnesses, and the accuracies of the witnesses with respect to that property.
The same process can be applied for every object and property observed by the
witnesses.

Given a set of witnesses w1, . . . , wk, with accuracy A1, . . . , Ak that report a

set of observations o1, . . . , ok our goal is to calculate: P
(
ẋ
∣∣∣ k
∩

i=1
oi

)
; i.e. we aim

at computing the probability distribution of the values an object may assume,
given the values reported by k witnesses.

First, we can express the desired probability using the Bayes’ Theorem:

P
(
ẋ
∣∣∣ k
∩

i=1
oi

)
=

P
(
ẋ
)
P

(
k
∩

i=1
oi

∣∣∣ẋ)
P

(k
∩

i=1
oi

) (1)

The events ẋj , with j = 1 . . .n + 1, form a partition of the event space. Thus,
according to the Law of Total Probability:

P
(

k
∩

i=1
oi

)
=

n+1∑
j=1

P
(
ẋj

)
P

(
k
∩

i=1
oi

∣∣∣ẋj

)
(2)

88 L. Blanco et al.

Assuming that the observations of all the witnesses are independent,1 for each
event ẋ we can write:

P
(k
∩

i=1
oi

∣∣∣ẋ)
=

k∏
i=1

P
(
oi

∣∣∣ẋ)
(3)

Therefore:

P
(
ẋ
∣∣∣ k
∩

i=1
oi

)
=

P
(
ẋ
) k∏

i=1
P

(
oi

∣∣∣ẋ)
n+1∑
j=1

P
(
ẋj

) k∏
i=1

P
(
oi

∣∣∣ẋj

) (4)

P (ẋ) is the prior probability that X assumes the value x, then P (ẋ) = P(ẋ) =
1

n+1 ; P (oi|ẋ) represents the probability distribution that the i-th witness reports
a value v(oi). Observe that if v(oi) = xt (i.e. the witness reports the correct
value) the term coincides with the accuracy Ai of the witness. Otherwise, i.e. if
v(oi) �= xt, P (oi|ẋ) corresponds to the probability that the witness reports an
incorrect value. In this case, we assume that v(oi) has been selected randomly
from the n incorrect values of X .

Since P (oi|ẋ) is a probability distribution:∑
v(oi) �=xt

P (oi|ẋ) = 1−Ai.

Assuming that every incorrect value is selected according to the uniform prior
probability distribution, we can conclude:

P (oi|ẋ) =

{
Ai , v(oi) = xt

1−Ai

n , v(oi) �= xt

. (5)

Combining (4) and (5), we obtain the final expression to compute P
(
ẋ
∣∣∣ k
∩

i=1
oi

)
.

3.2 Witnesses Accuracy

We now illustrate the evaluation of the accuracy of the witnesses with respect to
one property, given their observations for that property on a set of objects, and
the probability distributions associated with the values of each object computed
as discussed in the previous section.

Our approach is based on the intuition that the accuracy of a witness can be
evaluated by considering how its observations for a number of objects agree with
those of other witnesses. Indeed, assuming that a number of sources indepen-
dently report observations about the same property (e.g. trade value) of a shared
set of objects (e.g. the NASDAQ stock quotes), these observations unlikely agree
by chance. Therefore, the higher are the probabilities of the values reported by
a witness, the higher is the accuracy of the witness.
1 This assumption is a simplification of the domain that we will remove later by

extending our model to deal with witnesses that may copy.

Probabilistic Models to Reconcile Complex Data 89

We previously defined the accuracy Ai of a witness wi as the probability
that wi reports the correct value. Now, given the set of m objects for which
the witness wi reports its observations oj

i , j = 1 . . .m, and the corresponding

probability distributions Pj(ẋ|
k
∩

q=1
oj

q), computed from the observations of k

witnesses with the equation (4), we estimate the accuracy of wi as the average
of the probabilities associated with the values reported by wi:

Ai =
1
m

m∑
j=1

Pj

(
X = v(oj

i) |
k
∩

q=1
oj

q

)
(6)

where v(oj
i) is the value of the observation reported by wi for the object j.

Our algorithm [3] initializes the accuracy of the witnesses to a constant value,
then it starts the iteration that computes the probability distribution for the
value of every object (by using equations (4) and (5)) and the accuracy of wit-
nesses (equation (6)).

4 Witnesses Dependencies over Many Properties

We now introduce an extension of the approach developed in [6] for the analysis
of dependence among witnesses that removes the independent witnesses assump-
tion. The kind of dependence that we study is due to the presence of copiers:
they create “artificial” consensus which might lead to misleading conclusions.

As we consider witnesses that provide several properties for each object, we
model the provided values by means of tuples. We assume that a copier either
copies a whole tuple from another witness or it does not copy any property at all
(no-record-linkage assumption). In other words, we assume that a copier is not
able to compose one of its tuple by taking values (of distinct properties) from
different sources. Otherwise, note that a record-linkage step would be needed to
perform its operation, and it would be more appropriate to consider it as an
integration task rather than a copying operation.

As in [6], we assume that the dependency between a pair of witnesses is
independent of the dependency between any other pair of witnesses; the copiers
may provide a copied tuple with a-priori probability 0 ≤ c ≤ 1, and they may
provide some tuples independently from other witnesses with a-priori probability
1− c (independent copying assumption).

Under these assumptions, the evidence of copying could greatly improve by
considering several properties, since it is much less likely that multiple values
provided by two witnesses for the same object coincide by chance.

4.1 Modeling Witnesses Dependence

In order to deal with the presence of copiers, in the following we exploit the ap-
proach presented in [6] to modify the equations obtained with the independency
assumption.

90 L. Blanco et al.

Let Wo(x) be the set of witnesses providing the value x on an object and let Wo

be the set of witnesses providing any value on the same object, the equation (3)
can be rewritten as follows:

P
(k
∩

i=1
oi

∣∣∣ẋ)
=

∏
w∈Wo(x)

Aw

∏
w∈W0−Wo(x)

1−Aw

n
=

∏
w∈Wo(x)

n · Aw

1−Aw

∏
w∈Wo

1−Aw

n

(7)
Among all the possible values x1, . . . , xn+1, assuming as before a uniform a-priori
probability 1

n+1 for each value, the equation (2) can be rewritten as follows:

P
(k
∩

i=1
oi

)
=

n+1∑
j=1

P
(k
∩

i=1
oi

∣∣∣ẋj

)
P (ẋj)=

1
n + 1

n+1∑
j=1

∏
w∈Wo(xj)

n · Aw

1−Aw

∏
w∈Wo

1−Aw

n

The probability that a particular value is true given the observations (equa-
tion (4)), denoted P (x), can be rewritten as follows:

P (x) = P
(
ẋ
∣∣∣ k
∩

i=1
oi

)
=

P
(k
∩

i=1
oi

∣∣∣ẋ)
1

n+1

P (
k
∩

i=1
oi)

=

∏
w∈Wo(x)

n·Aw

1−Aw

n+1∑
j=1

∏
w∈Wo(xj)

n·Aw

1−Aw

The denominator is a normalization factor, it is independent of Wo(x) and it
will be denoted ω to simplify the notation.

For taking into account the witnesses’ dependency, it is convenient to rewrite
P (x) = eC(x)

ω where C(x) is the confidence of x, which is basically the probability
expressed according to a logarithmic scale:

C(x) = lnP (x) + lnω =
∑

w∈Wo(x)

ln
n · Aw

1−Aw

If we define the accuracy score of a witness w as:

A′
w = ln

n ·Aw

1−Aw

it arises that we can express the confidence of a value x as the sum of the accuracy
scores of the witnesses that provide that value for independent witnesses:

C(x) =
∑

w∈Wo(x)

A′
w

We can now drop the independent witnesses assumption; to take into account
the presence of copiers the confidence is computed as the weighted sum of the
accuracy scores:

C(x) =
∑

w∈Wo(x)

A′
wIw

Probabilistic Models to Reconcile Complex Data 91

where the weight Iw is a number between 0 and 1 that we call the probability of
independent opinion of the witness w. It essentially represents which “portion” of
the opinion of w is expressed independently of the other witnesses. For a perfect
copier Iw equals to 0, whereas for a perfectly independent witness Iw equals to 1.

Iw can be expressed as the probability that a value provided by w is not
copied by any other witness:

Iw =
∏

w′ �=w

(1− cP (w→ w′))

where P (w → w′) is the probability that w is a copier of w′, and c is the a-priori
probability that a copier actually copies the value provided.

Next, we will discuss how to compute a reasonable value of P (w → w′) for a
pair of witnesses.

4.2 Dealing with Many Properties

In [6] it is illustrated a technique to compute the probability P (w1 → w2) that
w1 is copier of w2, and the probability P (w1⊥w2) that w1 is independent of w2
starting from the observations of the values provided by the two witnesses for
one given property.

Intuitively, the dependence between two witnesses w1 and w2 can be detected
by analyzing for which objects they provide the same values, and the overall
consensus on those values. Indeed, whenever two witnesses provide the same
value for an object and the provided value is false, this is an evidence that the
two witnesses are copying each other. Much less evidence arises when the two
have a common true value for that object: those values could be shared just
because both witnesses are accurate, as well as independent.

We consider three probabilities, P (w1⊥w2), P (w1 → w2), P (w2 → w1), cor-
responding to a partition of the space of events of the dependencies between two
witnesses w1 and w2: either they are dependent or they are independent; if they
are dependent, either w1 copies from w2 or w2 copies from w1. P

(
w1⊥w2

∣∣Φ)
=

P
“
Φ

˛̨
w1⊥w2

”
P

`
w1⊥w2

´

P
“
Φ

˛̨
w1⊥w2

”
P

`
w1⊥w2

´
+ P

“
Φ

˛̨
w1 → w2

”
P

`
w1 → w2

´
+ P

“
Φ

˛̨
w2 → w1

”
P

`
w2 → w1

´

Here Φ corresponds to
k
∩

i=1
oi, i.e. the observations of the values provided by the k

witnesses, and namely, oi corresponds to the observation of the tuples provided
by the witness wi on the object.

The a-priori knowledge of witnesses dependencies can be modeled by consider-
ing a parameter 0 < α < 1, and then setting the a-priori probability P

(
w1⊥w2

)
to α; P

(
w1 → w2

)
and P

(
w2 → w1

)
are both set to 1− α

2 .2

2 A similar discussion for P
(
w1 → w2

∣∣Φ)
, and P

(
w2 → w1

∣∣Φ)
is omitted for space

reasons.

92 L. Blanco et al.

The probabilities P
(
Φ
∣∣w1⊥w2

)
, P

(
Φ
∣∣w1 → w2

)
, P

(
Φ
∣∣w2 → w1

)
can be

computed with the help of the independent values assumption: the values inde-
pendently provided by a witness on different objects are independent of each
other.

For the sake of simplicity, here we detail how to compute, given the assump-
tions above, and considering our generative model of witnesses, P

(
Φ
∣∣w1⊥w2

)
,

i.e. the probability that two independent witnesses w1 and w2 provide a cer-
tain observation Φ in the case of two properties denoted A and B for which
they respectively exhibit error rates3 of εA

1 , εB
1 , εA

2 , εB
2 . A similar develop-

ment would be possible in the case of witnesses providing more than two
properties.

Given the set of objects O for which both w1 and w2 provide values for
properties A and B, it is convenient to partition O in these subsets: Ott ∪Otf ∪
Oft∪Off ∪Od = O. For objects in Ott∪Otf ∪Oft∪Off , w1 and w2 provide the
same values of properties A and B, whereas for objects in Od the two witnesses
provide different values for at least one property. In the case of objects in Ott,
the witnesses agree on the true value for both properties; for objects in Otf they
agree on the true value of A and on the same false value of B; similarly for Oft

they agree on the same false value of A and on the true value of B; finally, in
the case of Off they agree on the same false values for both properties.

We first consider the case of both witnesses independently providing the same
values of A and B and these values are either both true or both false. According
to the independent properties assumption, wi provides the pair of true values
for A and B with probability (1 − εA

i)(1 − εB
i), and a particular pair of false

values with probability εA
i

nA

εB
i

nB
, with nA (respectively nB) being the number of

possible false values for the property A (resp. B). Given that the witnesses are
independent, and there are nA · nB possible pairs of false values on which the
two witnesses may agree, we can write:

P (o ∈ Ott|w1⊥w2) = (1− εA
1)(1 − εA

2)(1− εB
1)(1− εB

2) = Ptt

P (o ∈ Off |w1⊥w2) = εA
1 εA

2
nA

εB
1 εB

2
nB

= Pff

A witness wi independently provides a true value of A and a particular false
value for B with probability (1− εA

i) εB
i

nB
(similarly for P (o ∈ Oft|w1⊥w2)):

P (o ∈ Otf |w1⊥w2) = (1− εA
1)(1− εA

2) εB
1 εB

2
nB

= Ptf

P (o ∈ Oft|w1⊥w2) = (1− εB
1)(1 − εB

2) εA
1 εA

2
nA

= Pft

All the remaining cases are in Od:

P (o ∈ Od|w1⊥w2) = 1− Ptt − Ptf − Pft − Pff = Pd

3 The error rate ε of a witness with respect to a property is the complement at 1 of
its accuracy A with respect to the same property: ε = 1 − A.

Probabilistic Models to Reconcile Complex Data 93

The independent values assumption allows us to obtain P
(
Φ
∣∣w1⊥w2

)
by mul-

tiplying the probabilities and appropriately considering the cardinalities of the
corresponding subsets of O:

P
(
Φ
∣∣w1⊥w2

)
= P

|Ott|
tt · P |Otf |

tf · P |Oft|
ft · P |Off |

ff · P |Od|
d .

Now we detail how to compute P
(
Φ
∣∣w1 → w2

)
, but we omit P

(
Φ
∣∣w2 → w1

)
since it can be obtained similarly. Recall that, according to our model of copier
witnesses, a copier with a-priori probability 1− c provides a tuple independently.
In this case, we can reuse the probabilities Ptt, Pff , Ptf , Pft, Pd obtained above
for independent witnesses with weight 1−c. However, with a-priori probability c, a
copier witness w1 provides a tuple copied from the witness w2 and hence generated
according to the same probability distribution function of w2. For instance, w2
would generate a pair of true values with probability (1−εA

2)(1−εB
2). Concluding:

P (o ∈ Ott|w1 → w2) = (1− εA
2)(1 − εB

2)c + Ptt(1− c)
P (o ∈ Off |w1 → w2) = εA

2 εB
2 c + Pff (1 − c)

P (o ∈ Otf |w1 → w2) = (1− εA
2)εB

2 c + Ptf (1− c)
P (o ∈ Oft|w1 → w2) = (1− εB

2)εA
2 c + Pft(1− c)

For the remaining cases, we have to consider that since the witnesses are provid-
ing different values for the same object, it cannot be the case that one is copying
the other.

P (o ∈ Od|w1 → w2) = (1− Ptt − Ptf − Pft − Pff)(1 − c)

Again, the independent values assumption allows us to obtain P
(
Φ
∣∣w1 → w2

)
by multiplying these probabilities raised to the cardinality of the corresponding
subset of O.

5 Experiments

We now describe the settings and the data we used for the experimental evalua-
tion of the proposed approach. We conducted two sets of experiments. The first
set of experiments was done with generated synthetic data, while the second set
was performed with real world data extracted from the Web.

For the following experiments we set α=0.2 and c=0.8.

5.1 Synthetic Scenarios

The goal of the experiments with synthetic data was to analyze how the algo-
rithms perform with sources of different quality.

We conducted two sets of experiments EXP1 and EXP2 to study the perfor-
mances of the approach with different configurations as summarized in Figure 2.
In the two sets there are three possible types of sources: authorities, which pro-
vide true values for every object and every attribute; independents, which make

94 L. Blanco et al.

#authorities #independents #copiers A

EXP1 0 8 10 0.1 - 0.9
EXP2 1 7 10 0.1 - 0.9

Fig. 2. Configurations for the synthetic scenarios

mistakes according to the source accuracy A; copiers, which copy according to
a copying rate r from the independents, and make mistakes according to the
source accuracy A when they report values independently. The experiments aim
at studying the influence of the varying source accuracies and the presence of an
authority source (notice that the authority is not given: the goal of the experi-
ments is to detect it).

In all the experimentswe generated sourceswithN =100 objects, eachdescribed
by a tuple with 5 attributes with values for all the objects; the copiers copy from an
independent source with a frequency r=0.8. In all the scenarios each copier copies
from three independents, with the following probabilities: 0.3, 0.3, 0.4.

In order to evaluate the influence of complex data, for each of these configu-
rations we varied the number of attributes given as input to the algorithm with
three combinations: 1, 3, and 5 attributes. We remark that our implementation
coincides with the current state of the art when only one attribute is consid-
ered [6]. To highlight the effectiveness of our algorithm, we also compared our
solution with a naive approach, in which the probability distribution is computed
with a simple voting strategy, ignoring the accuracy of the sources.

To evaluate the performance of the algorithms we report the Precision (P),
i.e. the fraction of objects on which we select the true values, considering as
candidate true values the ones with the highest probability.

Results. The results of our experiments on the synthetic scenarios are illus-
trated in Figure 3. For each set of experiments we randomly generated the
datasets and applied the algorithms 100 times. We report a graphic with the
average Precision for the naive execution and for the three different executions of
our approach. We used in fact executions of MultiAtt(1) with only one attribute
given as input, executions of MultiAtt(3) with three attributes, and executions
of MultiAtt(5) with five.

From the two sets it is apparent that the executions with multiple attributes al-
ways outperform the naive execution and the one considering only one attribute. In
the first set EXP1, MultiAtt(3) and MultiAtt(5) present some benefits compared
to previous solutions, but are not able to obtain excellent precision in presence of
high error rates. This is not surprising: even if MultiAtt(3) and MultiAtt(5) are
able to identify perfectly what sources are copiers, there are 8 independent sources
reporting true values with a very low frequency and for most of the objects the evi-
dence needed to compute the true values is missing. The scenario radically changes
in EXP2, where an authority exists and MultiAtt(5) is able to return all the cor-
rect values even for the worst case, while MultiAtt(3) and MultiAtt(1) start signif-
icantly mixing dependencies at 0.8 and 0.5 error rates, respectively.

Probabilistic Models to Reconcile Complex Data 95

Fig. 3. Synthetic experiments: MultiAtt(5) outperforms alterative configurations in all
scenarios

It is worth remarking that our algorithm does not introduce regressions with
respect to previous solutions. In fact, we have been able to run all the synthetic
examples in [6] obtaining the same results with all the configurations of MultiAtt.
This can be explained by observing that in those examples the number of copiers
is minor than the number of independent sources and MultiAtt(1) suffices for
computing correctly all the dependencies. In the following, we will show that
real data are significantly affected by the presence of copiers, but there are
cases where considering only one attribute does not suffice to find the correct
dependencies between sources.

5.2 Real-World Web Data

We used collections of data extracted from web sites about NASDAQ stock
quotes.4 All the extraction rules were checked manually, and the pages were
downloaded on November 19th 2009.5

The settings for the real-world experiments are reported in Figure 4, which
shows the list of attributes we studied. Among hundreds of available stock quotes
we have chosen the subset that maximizes the inconsistency between sources.

It is worth observing that in this domain an authority exists: it is the offi-
cial NASDAQ website (http://www.nasdaq.com). We ran our algorithm over the
available data and we evaluated the results considering the data published by
that source as the truth. The experiments were executed on a FreeBSD machine
with Intel Core Duo 2.16GHz CPU and 2GB memory.

To test the effectiveness of our approach we executed the algorithm consider-
ing one attribute at a time, considering all the 10 possible configurations of three
attributes, and, finally, considering five attributes at the same time. In Figure 5.a
are reported the average of the precisions obtained over the five attributes by
these configurations. The worst average precision (0.39) is obtained considering
only one attribute at a time: this is due to the lack of clear majorities in the

4 We relied on Flint, a system for the automatic extraction of web data [2].
5 Since financial data change during the trading sessions, we downloaded the pages

while the markets were closed.

96 L. Blanco et al.

Attribute #sites %null #symbols #objects

last price 39 0.3 544 250
open price 34 16.09 568 250

52 week high 34 16.59 531 250
52 week low 34 16.59 487 250

volume 39 1.98 1259 250

Fig. 4. Settings for the real-world experiments

(a) (b)

Fig. 5. Real-world experiments results

setting and the consequent difficulty in the discovery of the dependencies. We
obtained interesting results considering the configurations of three attributes.
In fact, it turned out that some configurations perform significantly better than
others. This is not surprising, since the quality of the data exposed by an at-
tribute can be more or less useful in the computation of the dependencies: for
example, an attribute does not provide information to identify copiers if either
all the sources provide the correct values or all the sources provide different val-
ues. However, it is encouraging to notice that considering all the five attributes
we obtained a good precision (0.84). This shows that even if there exist at-
tributes that do not contribute positively (or provide misleading information),
their impact can be absorbed if they are considered together with the good ones.

Figure 5.b reports the average precision scores for the three configurations
compared with their execution times (the average in the cases with one and
three attributes). It can be observed that the execution times increase linearly
with the number of attributes involved in the computation, with a maximum of
16 minutes for the configuration with five attributes.

6 Conclusions and Future Work

We developed an extension of existing solutions for reconciling conflicting data
from inaccurate sources. Our extension takes into account complex data, i.e.

Probabilistic Models to Reconcile Complex Data 97

tuples, instead of atomic values. Our work shows that the dependence analysis
is the point in which the state-of-the-art models can be extended to analyze
several properties at a time. Experiments showed that our extension can greatly
affect the overall results.

We are currently studying further developments of the model. First, we are
investigating an extension of the model beyond the uniform distribution assump-
tion. Second, we are studying more complex forms of dependencies such as those
implied by integration processes that include a record linkage step.

References

1. Berti-Equille, L., Sarma, A.D., Dong, X., Marian, A., Srivastava, D.: Sailing the
information ocean with awareness of currents: Discovery and application of source
dependence. In: CIDR (2009)

2. Blanco, L., Crescenzi, V., Merialdo, P., Papotti, P.: Flint: Google-basing the web.
In: EDBT (2008)

3. Blanco, L., Crescenzi, V., Merialdo, P., Papotti, P.: A probabilistic model to char-
acterize the uncertainty of web data integration: What sources have the good data?
Technical report, DIA - Roma Tre - TR146 (June 2009)

4. Cafarella, M.J., Etzioni, O., Suciu, D.: Structured queries over web text. IEEE
Data Eng. Bull. 29(4), 45–51 (2006)

5. Dalvi, N.N., Suciu, D.: Management of probabilistic data: foundations and chal-
lenges. In: PODS, pp. 1–12 (2007)

6. Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating conflicting data: The role
of source dependence. PVLDB 2(1), 550–561 (2009)

7. Dong, X.L., Berti-Equille, L., Srivastava, D.: Truth discovery and copying detection
in a dynamic world. PVLDB 2(1), 562–573 (2009)

8. Downey, D., Etzioni, O., Soderland, S.: A probabilistic model of redundancy in
information extraction. In: IJCAI, pp. 1034–1041 (2005)

9. Florescu, D., Koller, D., Levy, A.Y.: Using probabilistic information in data inte-
gration. In: VLDB, pp. 216–225 (1997)

10. Galland, A., Abiteboul, S., Marian, A., Senellart, P.: Corroborating information
from disagreeing views. In: Proc. WSDM, New York, USA (2010)

11. Wu, M., Marian, A.: Corroborating answers from multiple web sources. In: WebDB
(2007)

12. Yin, X., Han, J., Yu, P.S.: Truth discovery with multiple conflicting information
providers on the web. IEEE Trans. Knowl. Data Eng. 20(6), 796–808 (2008)

Monitoring and Analyzing Service-Based Internet
Systems through a Model-Aware Service Environment

Ta’id Holmes1, Uwe Zdun1, Florian Daniel2, and Schahram Dustdar1

1 Distributed Systems Group, Institute of Information Systems
Vienna University of Technology, Vienna, Austria

{tholmes,zdun,dustdar}@infosys.tuwien.ac.at
2 Information Engineering and Computer Science Department

University of Trento, Trento, Italy
daniel@disi.unitn.it

Abstract. As service-based Internet systems get increasingly complex they be-
come harder to manage at design time as well as at runtime. Nowadays, many
systems are described in terms of precisely specified models, e.g., in the context
of model-driven development. By making the information in these models ac-
cessible at runtime, we provide better means for analyzing and monitoring the
service-based systems. We propose a model-aware repository and service envi-
ronment (MORSE) to support model access and evolution at both design time and
runtime. MORSE focuses on enabling us to monitor, interpret, and analyze the
monitored information. In an industrial case study, we demonstrate how compli-
ance monitoring can benefit from MORSE to monitor violations at runtime and
how MORSE can ease the root cause analysis of such violations. Performance and
scalability evaluations show the applicability of our approach for the intended use
cases and that models can be retrieved during execution at low cost.

1 Introduction

In the Internet of services, systems get increasingly complex. Often it is hard to manage,
analyze, and monitor such complex service-based systems at runtime. This is, (1) the
complexity of service-bases systems needs to be mastered and (2) requirements that are
imposed on such systems have to be monitored.

For various reasons, many systems (cf. [1,2]) and requirements (cf. [3,4]) today are
modeled with precisely specified and detailed models. One of these reasons is the in-
creasing use of model-driven development (MDD) [5] that helps to master the com-
plexity of systems during development. Management, analysis, and monitoring results
could be improved by making the information in the precisely specified models accessi-
ble at runtime. We propose a repository-based approach, in which the MDD models of a
service-based system and its system requirements can be used at runtime to interactively
interpret or analyze the monitored information.

As an illustrative case for system requirements, consider compliance to regulations:
A business information system needs to comply with regulations, such as Basel II [6]
or the Sarbanes-Oxley Act (SOX) [7]. Runtime monitoring of service-based business
processes can be used to detect violations of such regulations at execution time. If a

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 98–112, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Monitoring and Analyzing Service-Based Internet Systems 99

violation is detected, a report can be generated and a root cause analysis started. In
order to trace back from process instances that have caused a violation to the model
elements that have driven the execution of those instances, information described in
models of the system needs to be queried.

In addition, service-based systems not only require read access to the models, but
also write access. In the compliance management case, for example, once a root cause
analysis indicates a problem in a model, the developer should be able to (1) open the
respective model for modification, (2) perform the modifications on-the-fly, and (3) add
the new model version to the running system so that newly created model instances can
immediately use the corrected, evolved version.

In this paper, we propose to address these issues using an architecture and soft-
ware environment called the Model-Aware Repository and Service Environment
(MORSE) [8]. MORSE supports the tasks of the MDD life cycle by managing MDD
artifacts, such as models, model instances, and transformation templates. Models are
first-class citizens in MORSE, and they can be queried, changed, and updated both at
design time and runtime. That is, the models in the repository can be used by the gen-
erated service-based system (e.g., the compliance monitoring infrastructure) via Web
services to query and change the models while the system runs. Thanks to its generic,
service-based interfaces, MORSE can be integrated in various monitoring and analysis
infrastructures. We have evaluated our prototype using exhaustive performance and
scalability tests to validate the applicability of the approach in practice.

This paper is structured as follows: In the next section we will give a motivat-
ing example and illustrate the monitoring architecture employed for our approach. In
Section 3 we present MORSE the Model-Aware Repository and Service Environment
and describe how Internet-based systems can be enhanced with traceability informa-
tion for monitoring and analyzing these systems. Next, in Section 4 we illustrate our
work with a case study. Performance and Scalability evaluations are then presented in
Section 5. Section 6 compares our approach to related work, and in Section 7 we con-
clude and refer to future work.

2 A Model-Aware Service Environment in Compliance Monitoring
and Analysis

First we outline a concrete example motivating the need for a model-aware repository
and service environment for monitoring and analysis purposes. We consider the prob-
lem of monitoring and analyzing business processes to identify compliance violations.
In particular, we focus on a monitoring infrastructure that observes a business IT system
while it is running business processes modeled, for instance, as BPEL [9] processes. Us-
ing a dedicated model for compliance concerns, the system knows about how to identify
violations. A simple example of a compliance rule is the four eyes principle, which re-
quires that a single operation in a business process must be performed by two different
actors. If the monitoring infrastructure observes a violation of a compliance concern, it
reports it to the user via a compliance dashboard.

Upon the detection of a violation, the user typically wants to understand which pro-
cess has caused the violation and why. Hence, the user should access the process model

100 T. Holmes et al.

that has caused the violation. However, sometimes the process model is not the only
relevant information or not the root cause of the violation. Other models linked to the
process model might carry the answer to the violation; hence, they must be accessed,
too. Examples are the model specifying the compliance rule that has been violated or
the models of the processes that have invoked the process leading to the violation.

Finally, once the root cause has been identified, it is likely that the user will fix
the affected models. Then, the corrected models should from then on be used for new
instances of the business processes. Here, a transparent versioning support is crucial, as
it is typically not possible to automatically migrate running process instances from one
model to another. Old model versions must be supported as long as instances of them
are running, unless the execution of such instances is halted.

To enable using models at runtime as described in this scenario, we propose the
following runtime features:

Model-aware repository and service environment. The repository contains all mod-
els of the system. These can be queried and changed via service-based interfaces at
runtime (see also Figure 2).

Eventing infrastructure. In our approach, the code setting up the emission of events
is generated via MDD from process and compliance models. That is, the process
engine is instrumented to emit events, such as process started, process ended, or
process activity entered. Each of these events includes a unique identifier to the
model artifact, such as process model P or activity A in the process model P , that
is the source of the event.

Monitoring infrastructure. A monitoring infrastructure is required to continuously
observe and analyze emitted events to check compliance. Runtime requirements-
monitoring systems, such as proposed by Feather et al. [10] and Skene and Em-
merich [3], can be integrated with MORSE and used for the compliance checking.
If a violation occurs, the model responsible for the violation can easily be identified
using the identifier contained in the event(s) that caused the violation.

In the MORSE repository, the various models are linked via relationships. Hence, the
root cause of the violation can be determined by traversing these relationships. For in-
stance, a process model can be annotated in different models exogenously with compli-
ance concerns, and the monitoring infrastructure needs to resolve what concern has been
violated. To do so, another service-based request is sent to the repository for retrieving
the compliance concerns that annotate the source model. In a number of interactive
steps, the root cause of a violation can be detected.

Figure 1 shows the application of our approach for our illustrative case study in an
event-driven architecture [11] for compliance monitoring combining both online moni-
toring (on-the-fly analysis of events at runtime) and offline monitoring (analysis of audit
trails and event logs) in an service-oriented environment. Online monitoring and on-the-
fly event analysis is necessary to react as quickly as possible to violations. However, not
all violations of compliance in service-based Internet systems can be determined online
(consider, e.g., long-running processes). Such violations typically require offline anal-
ysis such as an investigation of the event history.

Figure 1 shows a representative example of a monitoring infrastructure combining
the two monitoring approaches with MORSE: The execution of services and business

Monitoring and Analyzing Service-Based Internet Systems 101

Instrumented
Services

Application Server

Business
Process
Engine

Model-
Aware

Repository

ESB

Reporting/
Analysis

Event
Log

Compliance
Governance

Web UI

Runtime
Compliance
Monitoring

analysis
results

data

data

events

alerts,
violations

Audit
Trail

events

events

events

Extract,
Transform,
Load (ETL)

Monitoring Infrastructure
create/modify models and DSLs

query/get
process models and
compliance rules

query/get
eventing instructions

query/get
process models

query/get
process models and
compliance rules

transform
models

and DSLs

Data
Warehouse

execution data

Fig. 1. MORSE Combined with an Online and Offline Monitoring Infrastructure

processes emits events, which provide information about the concrete execution of ser-
vices and process instances. Events are, therefore, emitted by the business process en-
gine and by the instrumented services and published via a central enterprise service bus
(ESB). The ESB provides publish/subscribe support for events consumed by the moni-
toring components. In the proposed architecture, the event log component is subscribed
to any event that is relevant for monitoring and further processing. Additional process
execution data (e.g., data that is not carried with events, such as engine-internal events)
are stored in a dedicated audit trail.

Starting from the event log and the audit trail, the analysis components such as the data
warehouse (that stores all execution data), the extract/transform/load (ETL) procedures
(that are responsible for extracting the data needed for the compliance analyses from the
event log and the audit trail, transform them into the data format of the data warehouse,
and load them into the warehouse), and the compliance governance Web user interface
(UI), which includes a compliance governance dashboard for human users.

Processes and compliance concern models are stored in the MORSE repository and
deployed onto the compliance monitoring infrastructure for execution, monitoring, and
analysis. Specifically, the process engine and instrumented services query the model-
aware repository for process models and eventing instructions. Eventing instructions are
automatically generated from the compliance concerns in the repository. The runtime
compliance monitoring component and the ETL procedures query the repository for
process models and compliance concern models for compliance evaluation. Finally, the
user of the compliance governance UI creates and modifies models and compliance
concerns on-the-fly, directly working on the MORSE repository.

3 Model-Aware Repository and Service Environment

The integration of MORSE into the compliance governance infrastructure with its on-
line and offline monitoring features poses a variety of requirements to its model man-
agement capabilities. As most stringent we specifically highlight the following:

102 T. Holmes et al.

– It is necessary to store, deploy, maintain and evolve process and service models as
well as compliance annotations (expressed via dedicated DSLs) in a way that al-
lows one to keep consistent relationships among these artifacts, which are typically
subject to change over time. For instance, it is necessary to be able to associate a set
of compliance rules to a process model and to correctly maintain such association
even after the modification of the process model or the addition, modification or
deletion of individual compliance rules.

– For the online analysis of compliance violations, it is necessary to be able to drill
down from high-level process models down to individual activities or event anno-
tations, associated with the process model. It is therefore necessary that the repos-
itory is aware of the hierarchical composition of process definitions and that each
element in the model can be properly indexed. Given a violation of a compliance
rule in a process instance, it might, for example, be necessary to retrieve the pro-
cess definition and to drill down to the specific activity that caused the violation, in
order to understand how to mitigate future violations.

– Finally, given its use at runtime of the monitoring infrastructure, fast response times
and high query throughput are paramount. Individual compliance rules associated
with a given process model might, for instance, be queried at each instantiation of
the process, in order to set up the runtime compliance monitoring module (based
on complex event processing [11]).

MORSE supports the above compliance governance scenario (and similar cases) in that
it suitably addresses these requirements, going beyond simple file system based model
management. In particular, the main features of MORSE that simplify the development
of the monitoring infrastructure include:

– The MORSE repository stores and manages models, model elements, model in-
stances, and other MDD artifacts. It offers read and write access to all artifacts at
runtime and design time. Moreover, it stores relationships among the MDD arti-
facts, e.g., model-relationships such as instance, inheritance, and annotation rela-
tions (for details see also Figure 5 in [8]).

– Information retrieval (i.e., the querying of models) is supported for all MDD arti-
facts and relationships via service-based interfaces, which ease the integration of
MORSE into service-oriented environments (for details see also Table I in [8]). For
reflectively exploiting the relationships of MDD artifacts, the MORSE information
retrieval interface provides various methods, too. An example of such a reflective
relationship access is to retrieve all model instances for a model. By traversing the
relationships and exploiting properties, complex queries can be constructed in an
interactive, stepwise manner.

– The MORSE repository provides versioning capabilities not only to the artifacts,
but also to their relationships. This way, models can be manipulated at runtime of
the client system with minimal problems regarding maintenance and consistency.
New versions and old versions of the models can be maintained in parallel, so that
old model versions can be used until all their model instances are either deleted or
migrated to the new model version.

Monitoring and Analyzing Service-Based Internet Systems 103

MORSE Repository

Web Service
Interfaces

Generic
Repository
Interface

MDD Project
Administration

Interface

Resource
Management

Interface

Information
Retrieval
Interface

Runtime Client

Modeling Tools

create/modify models

query models & projects

MDD Project
Admin Client

build, deploy project

access

access

Persistence
Backend

Builder
Service

Deployment
Service

invoke

access

access

Fig. 2. MORSE Architecture

Figure 2 shows the internal architecture of MORSE that can be used by various clients
via its Web service interfaces. The models are created by human modelers using model-
ing tools. Using admin clients, MDD projects in the MORSE repository can be created.
Import clients allow the modelers to add models, model elements, and model relation-
ships, or to provide them in a new version.

The model repository is the main component of MORSE and has been designed
with the goal to abstract from specific technologies. Thus, while concepts are taken
from, e.g., UML [12], and also version control systems such as Subversion [13],
MORSE is particularly agnostic to specific modeling frameworks or technologies. The
model repository itself has been realized with technologies such as Eclipse Modeling
Framework (EMF) [14], Teneo [15], EclipseLink [16], PostgreSQL [17], and Apache
CXF [18].

CSource source = Singletons.FACTORY.createCSource();

source.setDescription(”SOX Sec.409”);

CRisk risk = Singletons.FACTORY.createCRisk();

risk.setDescription(”Penalty”);

risk.setImpact(EnumWeight.HIGH);

risk.setProbability(EnumWeight.LOW);

CRequirement requirement = Singletons.FACTORY.createCRequirement();

requirement.setDescription(”Rapid publication of Form 8−K”);

CRequirementService requirementService = new CRequirementWSProxy(requirement);

requirementService.create();

requirementService.addSources(source);

requirementService.addRisks(risk);

Listing 1. Populating MORSE with Instances of Compliance Domain Concepts

104 T. Holmes et al.

MORSE can also generate Web services for domain concepts that are expressed in
EMF models. This is, for every concept a service is generated with basic create, re-
trieve, update, delete and query operations. For the different relations between con-
cepts appropriate add and remove operations are generated in addition for associating
and deassociating role instances.

Besides these service implementations, MORSE provides developers with Java
libraries that are distributed using a Maven [19] repository. Listing 1 shows an ex-
ample from a script that populates MORSE with instances of compliance domain
concepts using the generated libraries. In the example a compliance source that relates
to SOX Section 409 as well as a compliance risk are associated with a compliance
requirement.

3.1 The MORSE Approach for Service-Based Internet Systems

Our approach applies MDD to generate services and process code, deployment artifacts,
and monitoring directives. Usually, in MDD there are no backward or traceability links

<process name=”ReportIntrusion”>

<extensions>

<extension mustUnderstand=”yes”

namespace=”http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd”

/>

</extensions>

<import importType=”http://www.w3.org/2001/XMLSchema”

namespace=”http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd”

location=”http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd”

/>

<morse:traceability

build=”56810150−5bd8−4e8e−9ec5−0b88a205946b”>

<row query=”/process[1]”

queryLanguage=”urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0”>

<uuid>6338b114−3790−4566−a5c4−a35aa4efe41b</uuid>

<uuid>cd2865e2−73a7−4c8d−8235−974057a40228</uuid>

<uuid>4bcf3d70−9c23−4713−8602−3b64160c45e8</uuid>

<uuid>c568c290−e03e−46c8−9a9a−d7afde80cc3a</uuid>

</row>

<row query=”/process[1]/sequence[1]/receive[1]”>

<uuid>354b5161−dfab−44ef−9d52−3fb6a9d3411d</uuid>

</row>

<row query=”/process[1]/sequence[1]/invoke[3]”>

<uuid>7d32b4f4−4f63−4223−8860−db213f7e0fe1</uuid>

</row>

</morse:traceability>

<sequence>

<!−− ... //−−>

</sequence>

</process>

Listing 2. BPEL Process with an Extension for MORSE Traceability

Monitoring and Analyzing Service-Based Internet Systems 105

in the sense that the generated source code “knows” from which model it has been
created. For correlating model instances or code at runtime with source models or model
instances, respectively, traceability of model transformations is essential.

To achieve traceability, models (as the output of the generator) can hold a reference
to their source models. As MDD artifacts in MORSE repositories are identifiable by
Universally Unique Identifiers (UUIDs) [20], MORSE annotates the destination models
with the UUIDs of the models. The generator can automatically weave references to
these UUIDs into the generated source code or configuration instructions, so that the
corresponding models can be identified and accessed from the running system. Please
note, that UUIDs are transparently created and used in the MORSE repository (e.g.,
the create operation returns the assigned UUID). Particularly, a user or developer (cf.
Listing 1) does not necessarily have to specify UUIDs for interacting with MORSE.

The code in Listing 2 shows a generated BPEL process that contains traceability
information as a BPEL extension. The executing BPEL engine emits events for, e.g.,
the process activities that contain matching UUIDs. Finally, the events are processed by
the monitoring infrastructure.

4 Case Study: Compliance to Regulations

Let us consider an industrial case study in which MORSE has been applied: A US credit
card company that wants to comply with Section 409 (Real Time Issuer Disclosures) of
SOX [7]. Section 409 requires that a publicly traded company discloses information re-
garding material changes in the financial condition of the company in real-time (usually
meaning “within two to four business days”), see also Figure 3. Changes in the financial
condition of a company that demand for disclosure are, for example, bad debts, loss of
production capacity, changes in credit ratings for the company or large clients, mergers,
acquisitions, or major discoveries.

For the case of the credit card company, we consider the following reference sce-
nario regarding the change in the financial condition: security breaches are detected in
the company’s IT system, where personal information about customers might get stolen
or lost. The business process in the lower part of Figure 3 shows a possible practice
that the company may internally follow to react to a detected intrusion. After an initial
assessment of the severity of the intrusion, the company immediately starts the neces-
sary response action to mitigate risks and prevent similar future intrusions. After the
response, if personal information got lost or stolen, the disclosure procedure is started.
As detailed in the process, the actual disclosure is performed by filing a so-called Form
8-K report, a specific form used to notify investors and the U.S. Securities and Exchange
Commission (who is in charge of controlling the compliance with SOX).

Note that full compliance with Section 409, of course, requires that all business prac-
tices in the company are compliant; the case of stolen or lost personal information rep-
resents only one out of multiple business practices in the credit card company that are
subject to Section 409 of SOX.

The sole implementation of the compliant business process does not yet guarantee
compliance: failures during process execution may happen (e.g., due to human errors,

106 T. Holmes et al.

Fig. 3. SOX Example

system failures, or the like), and the preparation and publication of the Form 8-K might
be delayed, erroneous, or even forgotten. Awareness of such problems is of utmost im-
portance to the company, in order to be able to react timely and, hence, to assure busi-
ness continuity. In this regard, the ability to perform root cause analyses to understand
the reason for specific compliance violations is needed.

We assume that the monitoring infrastructure in Figure 1 is used throughout the
architecture and that MDD is used to make sure, all models are placed in the MORSE

repository, and the UUIDs are used in all events emitted in the system. The MORSE

repository can be used to support creating reports and running root cause analyses by
making all MDD artifacts accessible at runtime. Once the cause of a violation has been
understood, the developers of the company should be able to redesign the MDD artifacts
(e.g., the business processes) to avoid similar violations in the future.

Figure 4 illustrates the interplay of MORSE, the monitoring infrastructure, and the
compliance governance Web UI when dealing with compliance violations. All mod-
els are placed in the MORSE repository. A model of a business process is annotated
by compliance models. They relate to a certain regulation or specify details for an im-
plementation. In our example, a ComplianceConcern annotates the process and a
PublishDeadline annotates the process activity Publish Form 8-K. These anno-
tation models will be retrieved and evaluated by the monitoring infrastructure for de-
tecting violations during runtime. From MORSE, the business process is automatically
deployed on a business process engine (1). The business process engine emits various
events such as when a process is initialized or when an activity is invoked or com-
pleted (2). These events contain the corresponding UUIDs and are intercepted by the

Monitoring and Analyzing Service-Based Internet Systems 107

2. Emit events

Before: sequential task execution; slow, lots of violations

MORSE Repository
UUID 1

formID = „Form8K“
duration = 2
unit = BusinessDays
...

: PublishDeadline

UUID 5

Business
process
engine

1. Deploy process models

Monitoring
Infrastructure

UUID 3UUID 2UUID 1

3. Get compliance models
(rules) for process

UUID 1

Violation
detected

5. Retrieve responsible /
corresponding models

ID = „Sec 409 Real time issuer disclosures“
...

: ComplianceConcern

UUID 4

Compliance
governance

Web UI

6. Report violation

7. Root cause analysis / manipulation of model(s)

Assess
Intrusion End

yes

no

Personal info
lost or stolen?

Response Write
Form 8-K

Approve
Form 8-K

Publish
Form 8-K

!
UUID 3

UUID 2

UUID 4

UUID 5

Assess
Intrusion End

yes

no

Personal info
lost or stolen?

Response

Write
Form 8-K

Approve
Form 8-K

Intrusion
detected

Publish
Form 8-K!After: parallel task execution; faster, fewer violations

UUID 1

4. Process
and

analyze
events

Fig. 4. Resolved SOX Example

monitoring infrastructure, which requests the compliance rules related to the intercepted
events from MORSE (3).

Validation then takes place in online or offline operation mode (4). In case of a vio-
lation (i.e., Form 8-K has not been published within two business days according to the
PublishDeadline), it is signaled in the dashboard. To present meaningful information
to the user of the dashboard, the models responsible for the violation are retrieved from
the MORSE repository and shown to the user (5). That is, the monitoring infrastructure
first requests the original MDD artifact by UUID and then explores its relationships.
Particularly, a compliance concern model instance that relates to the process or process
activity can be identified and displayed for adequate feedback towards the user (6).

The user can now analyze the violation by traversing the models and/or performing
additional queries. That is, the dashboard or the user consults the repository for resolv-
ing and identifying the root cause of the violation. In our example, the root cause lies
in the sequential structure of the control flow of the process. The user can now improve
the responsible model so that new processes may not violate the compliance concern
any longer (7). In our example, the business expert improves the process so that in-
dependent tasks are executed in parallel. As a result the execution becomes faster and
fewer violations occur. Using the MORSE versioning capabilities, the new model can
be added to the repository, and used in MDD generations henceforth.

5 Performance and Scalability Evaluation

For determining how many queries per second can be processed by the MORSE reposi-
tory, we have conducted runtime performance and scalability tests on our prototype as

108 T. Holmes et al.

0 5 10 15 20

5
10

15
20

25
30

ld(n(Models) [])

ld
(Q

ue
ry

 E
xe

cu
tio

n
T

im
e

[m
s]

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R² = 0.991
 y = 0.05 x² + 0.36 x + 3.38

●

●

●

●
● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

y = 0.05 x² + −0.64 x + 13.38

4xIntel Xeon 3.20GHz
 Ubuntu 8.04 (2.6.24−23−server #1 SMP Wed Apr 1 22:14:30 UTC 2009 x86_64 GNU/Linux)
 PostgreSQL 8.3.7
 OpenJDK 64−Bit Server VM (build 1.6.0_0−b11, mixed mode)

(17 , 16.04)

●

n(Queries) = n(Models)
1024 Queries

Fig. 5. MORSE Performance and Scalability

shown in Figure 5. We measured the execution time for queries (ordinate) of a repository
containing a given number of models (abscissa) and found polynomial execution time
(R2 > 0.99). For example, to interpret Figure 5, a MORSE repository with up to 217

(131 072) models can process at least 15 queries (≤ (216.04/1024/103)−1) within one
second. This means, performance and scalability is far better than what is needed in
scenarios similar to our case study that work with long-running process instances which
emit events only from time to time.

Thus, models can be retrieved during execution at a low cost, especially when as-
suming typical Web service invocation latency. Limitations of our prototype and hard-
ware arise with increased number of models, process instances, and events that trigger
lookups, e.g., huge MORSE repositories with more than ≈ 217 models cannot perform
106 lookups per day (arising, e.g., from 102 processes with 102 instances each that
generate 102 events per day each). Further scalability, however, can be achieved using
clusters and caches.

6 Related Work

In our approach we assume that a monitoring infrastructure is used throughout the archi-
tecture for observing and analyzing runtime events (cf. Section 2). While such monitor-
ing infrastructure can be integrated with MORSE and used for the compliance checking,
our work particularly focuses on relating to models, the monitored systems have been
generated from. Thus, our work makes such models accessible at runtime. Note, that not
only, e.g., process models but also compliance concern models are managed by MORSE.
This allows for the novel and direct linkage and correlation of model-driven system and
requirements models. In this section we refer and relate to work in the areas of runtime
requirements-monitoring and model management in form of model repositories.

Monitoring and Analyzing Service-Based Internet Systems 109

Feather et al. [10] discuss an architecture and a development process for monitoring
system requirements at runtime. It builds on work on goal-driven requirements engi-
neering [21] and runtime requirements monitoring [22].

Skene and Emmerich [3] apply MDD technologies for producing runtime require-
ments monitoring systems. This is, required behavior is modeled and code is generated
for, e.g., the eventing infrastructure. Finally, a meta-data repository collects system data
and runs consistency checks to discover violations. While in our work we also show-
case the generation of code for the eventing infrastructure (see Section 3), our approach
assumes an existent monitoring infrastructure. In case of a violation the MORSE ap-
proach not only allows us to relate to requirement models but also to the models of the
monitored system.

Chowdhary et al. [4] present a MDD framework and methodology for creating Busi-
ness Performance Management (BPM) solutions. This is, a guideline is described for
implementing complex BPM solutions using an MDD approach. Also, with inter alia
the specification of BPM requirements and goals the framework provides runtime sup-
port for (generating) the eventing infrastructure, data warehouse, and dashboard. The
presented approach allows for the monitoring and analysis of business processes in re-
spect of their performance. Thus, similarly to our approach, compliance concerns such
as quality of service concerns as found in service level agreements can be specified
and monitored by the framework. Besides the monitoring of business processes and
service-based systems in general, our approach particularly focuses on also relating to
conceptual models of the systems from the runtime, not only their requirements. As a
consequence, the system and end-users can directly relate to the MDD artifacts of a
system in case of a violation. This allows for the subsequent reflection, adaptation, and
evolution of the system. In contrast, the BPM solution supports compensation, i.e., the
execution of business actions according to a decision map.

Another model-based design for the runtime monitoring of quality of service aspects
is presented by Ahluwalia et al. [23]. Particularly, an interaction domain model and an
infrastructure for the monitoring of deadlines are illustrated. In this approach, system
functions are abstracted from interacting components. While a model-driven approach
is applied for code generation, the presented model of system services is only related to
these in a sense that it reflects them. This is, it is not a source model for the model-driven
development of the services. In contrast, MORSE manages and is aware of the real
models, systems are generated from. This allows for root cause analysis and evolution
of as demonstrated in the presented case study (see Figure 4).

Besides the monitoring of runtime requirements in form of compliance concern
models, the MORSE approach particularly focuses on the management of models of
service-based systems and their accessibility during runtime. For this reason, a model
repository with versioning capabilities is deployed (see Section 3). It abstracts from
modeling technologies and its UUID-based implementation allows for a straightfor-
ward identification of models and model elements. Other model repositories such as
ModelBus [24] and ModelCVS [25] primarily aim at model-based tool integration.
AMOR [26,27] and Odyssey-VCS 2 [28] particularly have a focus on the versioning
aspect of model management (see also [29]), e.g., for the conflict resolution in col-
laborative development (cf. [30]). These works mainly focus on the design time: e.g.,

110 T. Holmes et al.

ModelBus addresses the heterogeneity and distribution of modeling tools and focuses
on integrating functionality such as model verification, transformation, or testing into a
service bus. MORSE, in contrast, focuses on runtime services and processes and their
integration, e.g., through monitoring, with the repository and builds on the simple iden-
tification for making models accessible at runtime.

7 Conclusion

Monitoring and analysis of models and model elements at runtime is a real and urgent
requirement in complex, Internet-based systems. Given the continuously growing adop-
tion of model-driven development practices and the rising complexity of service-based
systems, we have shown the usefulness of shifting the focus of model management
from design time to runtime. As a first step into this direction, in this article we have
presented MORSE, an implementation of a model-aware repository and service envi-
ronment concept that treats models as first-class citizens at runtime of a service-based
system. The MORSE approach significantly eases the management of complex service-
based systems by improving the analyzability, e.g., of monitoring data. This has been
demonstrated in an industrial case study for compliance management. The benefits of
our approach can be achieved with acceptable performance and scalability impacts.
While our approach facilitates monitoring, it can also be beneficial to other fields of
application that profit from accessing models at runtime, e.g., in adaptive systems.

Acknowledgments

This work was supported by the European Union FP7 project COMPAS, grant no.
215175.

References

1. Mayer, P., Schroeder, A., Koch, N.: MDD4SOA: Model-driven service orchestration. In:
EDOC, pp. 203–212. IEEE Computer Society, Los Alamitos (2008)

2. Zdun, U., Hentrich, C., Dustdar, S.: Modeling process-driven and service-oriented architec-
tures using patterns and pattern primitives. TWEB 1(3) (2007)

3. Skene, J., Emmerich, W.: Engineering runtime requirements-monitoring systems using mda
technologies. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 319–
333. Springer, Heidelberg (2005)

4. Chowdhary, P., Bhaskaran, K., Caswell, N.S., Chang, H., Chao, T., Chen, S.K., Dikun, M.J.,
Lei, H., Jeng, J.J., Kapoor, S., Lang, C.A., Mihaila, G.A., Stanoi, I., Zeng, L.: Model driven
development for business performance management. IBM Systems Journal 45(3), 587–606
(2006)

5. Völter, M., Stahl, T.: Model-Driven Software Development: Technology Engineering Man-
agement. Wiley, Chichester (2006)

6. Bank for International Settlements: Basel II: International Convergence of Capital Measure-
ment and Capital Standards: A Revised Framework - Comprehensive Version (June 2006),
http://www.bis.org/publ/bcbsca.htm (accessed in February 2010)

http://www.bis.org/publ/bcbsca.htm

Monitoring and Analyzing Service-Based Internet Systems 111

7. Congress of the United States: Public Company Accounting Reform and Investor Protection
Act (Sarbanes-Oxley Act), Pub.L. 107-204, 116 Stat. 745 (July 2002),
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/
content-detail.html (accessed in February 2010)

8. Holmes, T., Zdun, U., Dustdar, S.: MORSE: A Model-Aware Service Environment. In: Pro-
ceedings of the 4th IEEE Asia-Pacific Services Computing Conference (APSCC), December
2009, pp. 470–477. IEEE Computer Society Press, Los Alamitos (2009)

9. Organization for the Advancement of Structured Information Standards: Web service busi-
ness process execution language version 2.0. OASIS Standard, OASIS Web Services Busi-
ness Process Execution Language (WSBPEL) TC (January 2007) (accessed in February
2010)

10. Feather, M., Fickas, S., van Lamsweerde, A., Ponsard, C.: Reconciling system requirements
and runtime behavior. In: Proceedings of Ninth International Workshop on Software Speci-
fication and Design, April 1998, pp. 50–59 (1998)

11. Michelson, B.: Event-Driven Architecture Overview: Event-Driven SOA Is Just Part of the
EDA Story (February 2006),
http://www.omg.org/soa/Uploaded%20Docs/EDA/bda2-2-06cc.pdf (ac-
cessed in February 2010)

12. International Organization for Standardization: ISO/IEC 19501:2005 information technology
– open distributed processing – unified modeling language (UML), v1.4.2 (April 2005),
http://www.omg.org/cgi-bin/doc?formal/05-04-01 (accessed in February
2010)

13. The Apache Software Foundation: Apache Subversion (2000),
http://subversion.apache.org (accessed in February 2010)

14. Eclipse Modeling Framework Project (EMF) (2002),
http://www.eclipse.org/modeling/emf/ (accessed in February 2010)

15. The Elver Project: Teneo (2005),
http://www.eclipse.org/modeling/emf/?project=teneo
(accessed in February 2010)

16. Eclipse Persistence Services Project (EclipseLink) (2008),
http://www.eclipse.org/eclipselink (accessed in February 2010)

17. PostgreSQL Global Development Group: PostgreSQL (1997),
http://www.postgresql.org (accessed in February 2010)

18. The Apache Software Foundation: Apache CXF: An Open Source Service Framework,
http://cxf.apache.org (accessed in February 2010)

19. The Apache Software Foundation: Apache Maven, http://maven.apache.org (ac-
cessed in February 2010)

20. International Telecommunication Union: ISO/IEC 9834-8 information technology – open
systems interconnection – procedures for the operation of OSI registration authorities: Gen-
eration and registration of universally unique identifiers (UUIDs) and their use as ASN.1
object identifier components (September 2004),
http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf (ac-
cessed in February 2010)

21. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci.
Comput. Program. 20(1-2), 3–50 (1993)

22. Cohen, D., Feather, M.S., Narayanaswamy, K., Fickas, S.S.: Automatic monitoring of soft-
ware requirements. In: ICSE 1997: Proceedings of the 19th International Conference on Soft-
ware Engineering, pp. 602–603. ACM, New York (1997)

23. Ahluwalia, J., Krüger, I.H., Phillips, W., Meisinger, M.: Model-based run-time monitoring
of end-to-end deadlines. In: Wolf, W. (ed.) EMSOFT, pp. 100–109. ACM, New York (2005)

http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/content-detail.html
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/content-detail.html
http://www.omg.org/soa/Uploaded%20Docs/EDA/bda2-2-06cc.pdf
http://www.omg.org/cgi-bin/doc?formal/05-04-01
http://subversion.apache.org
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/?project=teneo
http://www.eclipse.org/eclipselink
http://www.postgresql.org
http://cxf.apache.org
http://maven.apache.org
http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf

112 T. Holmes et al.

24. Sriplakich, P., Blanc, X., Gervais, M.P.: Supporting transparent model update in distributed
case tool integration. In: Haddad, H. (ed.) SAC, pp. 1759–1766. ACM, New York (2006)

25. Kramler, G., Kappel, G., Reiter, T., Kapsammer, E., Retschitzegger, W., Schwinger, W.: To-
wards a semantic infrastructure supporting model-based tool integration. In: GaMMa 2006:
Proceedings of the 2006 international workshop on Global integrated model management,
pp. 43–46. ACM, New York (2006)

26. Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W., Seidl, M., Schwinger, W., Wim-
mer, M.: AMOR – towards adaptable model versioning. In: 1st International Workshop on
Model Co-Evolution and Consistency Management, in conjunction with MODELS 2008
(2008)

27. Brosch, P., Langer, P., Seidl, M., Wimmer, M.: Towards end-user adaptable model version-
ing: The by-example operation recorder. In: CVSM 2009: Proceedings of the 2009 ICSE
Workshop on Comparison and Versioning of Software Models, Washington, DC, USA, pp.
55–60. IEEE Computer Society, Los Alamitos (2009)

28. Murta, L., Corrêa, C., Prudêncio, J., Werner, C.: Towards Odyssey-VCS 2: Improvements
over a UML-based version control system. In: CVSM 2008: Proceedings of the 2008 in-
ternational workshop on Comparison and versioning of software models, pp. 25–30. ACM,
New York (2008)

29. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning approaches.
IJWIS 5(3), 271–304 (2009)

30. Brosch, P., Seidl, M., Wieland, K., Wimmer, M., Langer, P.: We can work it out: Collaborative
conflict resolution in model versioning. In: ECSCW 2009: Proceedings of the 11th European
Conference on Computer Supported Cooperative Work, pp. 207–214. Springer, Heidelberg
(2009)

Modeling and Reasoning about Service-Oriented
Applications via Goals and Commitments

Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos

Department of Information Engineering and Computer Science, University of Trento
{chopra,dalpiaz,paolo.giorgini,jm}@disi.unitn.it

Abstract. Service-oriented applications facilitate the exchange of business ser-
vices among participants. Existing modeling approaches either apply at a lower
of abstraction than required for such applications or fail to accommodate the au-
tonomous and heterogeneous nature of the participants. We present a business-
level conceptual model that addresses the above shortcomings. The model gives
primacy to the participants in a service-oriented application. A key feature of the
model is that it cleanly decouples the specification of an application’s architecture
from the specification of individual participants. We formalize the connection be-
tween the two—the reasoning that would help a participant decide if a specific
application is suitable for his needs. We implement the reasoning in datalog and
apply it to a case study involving car insurance.

Keywords: Business modeling, Commitments, Goals, Service engagements,
Service-oriented architecture.

1 Introduction

Service-oriented applications exemplify programming-in-the-large [8]: the architecture
of the application takes precedence over the specification of services. An individual
service may be designed using any methodology in any programming language as long
as it structurally fits in with the rest of the system. Component-based systems embody
this philosophy, but service-oriented applications are fundamentally different in that
they represent open systems [16,21]. A service-oriented application is characterized by
the autonomy and heterogeneity of the participants. Application participants engage
each other in a service enactment via interaction. Applications are dynamic implying
that participants may join or leave as they please. The identity of the participants need
not even be known when designing the application. In a sense, open systems take the
idea of programming-in-the-large to its logical extreme.

An example of a service-oriented application are auctions on eBay. Multiple au-
tonomous and heterogeneous participants are involved: eBay itself, buyers, sellers, pay-
ment processors, credit card companies, shippers, and so on. eBay (the organization)
specified the architecture of the application in terms of the roles (seller, bidder, shipper,
and so on) and the interaction among them without knowing the identity of the specific
participants that would adopt those roles.

For service-oriented applications, it is especially useful to treat the architecture as
being largely synonymous with the application itself. The auctions application on eBay

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 113–128, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

114 A.K. Chopra et al.

Fig. 1. A service-oriented application is specified in terms of roles. It is instantiated when partic-
ipants adopt those roles; it is enacted when participants interact according to the adopted roles.

exists whether some auction is going on or not. The application is instantiated when
participants adopt (play) roles in the application. The application is enacted when par-
ticipants interact according to the roles (see Figure 1). Moreover, the application is, in
general, specified independently from the specification of the individual participants.
Clearly, the notion of roles, participants, and interaction are key elements in the model-
ing of service-oriented applications.

The real value of service-oriented computing is realized for applications in which
participants engage each other in business transactions, for example, in an auction on
eBay. Each individual participant has his own business goals, and he would need to
interact flexibly with others so as to be able to fulfill his goals. Ideally, we would want
to model both applications and participants in terms of business-level abstractions. We
would also want to characterize and reason about properties critical to doing business,
such as goal fulfillment, compliance, interoperability, and so on, in similarly high-level
terms. This is key to alleviating the business-IT gap.

Existing conceptual modeling approaches either (i) lack the notion of roles, partic-
ipants, and interactions altogether, or (ii) are lacking in business-level abstractions—
they are typically rooted in control and data flow. Workflow-based modeling of appli-
cations, as is done using BPMN (the Business Process Modeling Notation), exemplifies
the former; choreography-based modeling, as is done using WS-CDL (the Web Ser-
vices Choreography Description Language), exemplifies the latter. Many approaches
fall somewhere in between (discussed extensively in Section 5).

We propose a conceptual model for service-oriented applications that addresses both
the above concerns. It gives primacy to the autonomy and heterogeneity of participants,
and works at the business-level. The key insight behind the model is this. A participant
will have business goals that he wants to achieve. However, given his autonomy, a par-
ticipant cannot force another to bring about any goal. In fact, a participant wouldn’t even
know the internal construction—in the forms of business rationale, rules, goals, strate-
gies, procedures, or however otherwise specified—of any other participant. In such sit-
uations, the best a participant can do is to deal in commitments (concerning the goals he

Modeling and Reasoning about Service-Oriented Applications 115

wants to achieve) with other participants. For example, a bidder on eBay cannot force a
seller to deliver even if he has won the auction; the interaction between them proceeds
on the understanding that there is a commitment from the seller to deliver if the bidder
has won.

This paper synthesizes results from two influential lines of research: goal-oriented
requirements engineering [24] and agent communication [19]. Specifically, we spec-
ify participants in terms of their goal models, and application architecture in terms of
commitments. The conceptual model enables reasoning about properties at a business-
level. In this paper, we focus on axiomatizing the supports relation, which essentially
formalizes the notion of whether adopting a role in a particular application is compat-
ible with a participant’s goals. We implement a prototype reasoning tool that encodes
the supports relation in datalog. We evaluate the usefulness of our conceptual model by
modeling a car insurance scenario, and describe how we may encode and reason about
the model. We also report on experiments that show the scalability of the reasoning.

The rest of the paper is organized as follows. Section 2 describes our conceptual
model in detail and shows the relation between individual participants and the appli-
cation. Section 3 shows how we reason about compatibility between the commitments
a participant might be party to and his goals. Section 4 evaluates our approach. We
model elements of a car insurance application, and show some queries one may run.
The section also reports on the scalability results. Section 5 summarizes our contribu-
tion, discusses the relevant literature, and highlights future directions.

2 Conceptual Model

From here on, we refer to the participants in an application as agents. This term is
appropriate given their autonomous and heterogeneous nature. Figure 2 shows the pro-
posed conceptual model: the left box concerns a service-oriented application, the right
box is about an agent’s requirements.

Service
Engagement

Commitment Role

WorldState

Agent

Goal

HardGoal SoftGoal

++S, --S

Decomposition
types: AND / OR

Application
(Architecture)

Agent (Requirements)

1
hasCreditor

1
hasDebtor

0..*

0..*

1..*

1

0..*

1..*

1

2..*

0..*

0..*

1
decomposesTodecomposesTo

reflects

capableOf

contributesTo

has

plays

hasConsequent

hasAntecedent

involves
specifies

Fig. 2. Conceptual model for service-oriented applications and participating agents

116 A.K. Chopra et al.

2.1 Specifying Agents via Goal Models

An agent is specified in terms of a goal model, as formalized in the Tropos methodology
[2]. Goal modeling captures important aspects of requirements—not just what they are,
but why they are there. An agent’s goal model represents his motivations, and abstracts
away from low-level details of control and data flow. We now briefly revisit the aspects
of goal modeling relevant to this paper.

As shown in Figure 2, an Agent has some goals. A Goal may be a HardGoal or a
SoftGoal. A softgoal has no clear-cut criteria for satisfaction (its satisfaction is subjec-
tively evaluated). A goal reflects a state of the world desired by the agent. A goal may
contribute to other goals: ++S(g, g′) means g contributes positively to the achievement
of g′; −−S(g, g′) means g contributes negatively to the achievement of g′. Both hard
and soft goals may be AND-decomposed or OR-decomposed into subgoals of the same
type. Additionally, an agent may be capable of a number of hard-goals; the notion of
capability abstracts the means-end relation in Tropos.

2.2 Specifying Applications via Service Engagements

Conceptually, the commitment C(Debtor, Creditor, antecedent, consequent) means that
the debtor is committed to the creditor for the consequent if the antecedent holds.
The antecedent and consequent are propositions that refer to the states of the world of
relevance to the application under consideration. A commitment is discharged when
its consequent is achieved; it is detached when the antecedent holds. An unconditional
commitment is one where the antecedent is � (true).

For example, in an auction application, one can imagine a commitment C(Bidder,
Seller, wonBid, paymentMade). Informally, it means that the bidder commits to the
seller that if the world state is such that he has won the bid, then he will bring about the
world state where the payment has been made.

We use commitments as the basis of architectural connections. As Figure 2 shows,
a Service Engagement involves two or more roles and specifies one or more commit-
ments among the involved roles. A Role role can be debtor (creditor) in one or more
commitments; each commitment has exactly one debtor (creditor). A commitment has
an antecedent and a consequent, each representing some state of the world. Table 1
introduces the message types by which agents update commitments [5]. In the table,
x, y, . . . are variables over agents, and p, q, . . . are variables over propositions.

Table 1. Messages and their effects; a commitment is understood as a contractual relation

Message Sender Receiver Effect Business Significance

Create(x, y, r, u) x y C(x, y, r, u) brings about a relation
Cancel(x, y, r, u) x y ¬C(x, y, r, u) dissolves relation
Release(x, y, r, u) y x ¬C(x, y, r, u) dissolves relation
Delegate(x, y, z, r, u) x z C(z, y, r, u) delegates relation to another debtor
Assign(x, y, z, r, u) y x C(x, z, r, u) assigns relation to another creditor
Declare(x, y, p) x y p informs about some aspect of state

Modeling and Reasoning about Service-Oriented Applications 117

Conceptually, a service engagement is a business-level specification of interaction. It
describes the possible commitments that may arise between agents adopting the roles,
and via the standard messages of Table 1, how the commitments are updated. An en-
gagement should not be interpreted to mean that by simply adopting roles in this en-
gagement the agents will become committed as stated. The commitments themselves
would come about at runtime via exchange of messages. Moreover, whether an agent
sends a particular message is solely his own decision.

Commitments are made in a certain sociolegal context and represent a contractual
relationship between the debtor and the creditor. They yield a notion of compliance ex-
pressly suited for service-oriented applications. Agent compliance amounts to the agent
not violating any of his commitments towards others. A service engagement specified
in terms of commitments does not dictate specific operationalizations (runtime enact-
ments) in terms of when an agent should send or expect to receive particular messages;
as long as the agent discharges his commitments, he can act as he pleases [9].

Figure 3 shows the (partial) service engagement for an auction application. Figure 4
shows a possible enactment for the service engagement of Figure 3. The bidder first
creates cB. Then he places bids, possibly increasing his bids (indicated by the dotted
bidirectional Bidding arrow). The seller informs the bidder that he has won the bid,
which detaches cB and causes the unconditional commitment cUB = C(Bidder, Seller,
�, paymentMade) to hold. Finally, the bidder discharges his commitment by sending
the payment.

cB = C(Bidder, Seller, wonBid, paymentMade)
cS = C(Seller, Bidder, paymentMade, itemDelivered)
cA = C(Auctioneer, Bidder,�, itemCheckedForAuthenticity)

Fig. 3. A (partial) service engagement depicting an auction ap-
plication. The labels are for reference purposes only. Figure 4
shows an enactment of this engagement between a bidder agent
and a seller agent.

Fig. 4. An enactment

Where do service engagements come from? Domain experts specify these from
scratch or by reusing existing specifications that may be available in a repository. In
eBay’s case, presumably architects, experts on the various kinds of businesses (such
as payment processing, shipping, and so on) and processes (auctions) involved, and
some initial set of stakeholders got together to define the architecture. How applica-
tion requirements (as distinct from an individual participant’s requirements) relate to
the specification of service engagements is studied in [9].

2.3 Binding

As Figure 2 shows, an agent may choose to play, in other words, adopt one or more
roles in a service engagement. Such an agent is termed an engagement-bound agent.
Adopting a role is the key notion in instantiating an application, as shown in Figure 1.

118 A.K. Chopra et al.

However, before a bound agent may start interacting, he may want to verify that he is
compatible with the engagement. The semantic relationship between a service engage-
ment and an agent’s goals is the following. To fulfill his goals, an agent would select
a role in some service engagement and check whether adopting that role is compatible
with the fulfillment of his goals. If it is compatible, then the agent would presumably
act according to the role to fulfill his goals; else, he would look for another service
engagement. For example, the bidder may have the requirement of a complete refund
from the seller if the seller delivers damaged goods. The bidder must check whether the
service engagement with the seller includes a commitment from the seller to that effect;
if not, he may try a different service engagement. We formalize compatibility via the
notion of supports in Section 3.

Notice in Figure 2 that both commitments and goals are expressed in terms of world
states. This provides the common ontological basis for reasoning between goal and
commitments.

3 Goal and Commitment Support

The conceptual model supports two kinds of compatibility reasoning. Given some role
in a service engagement and some goal that the agent wants to achieve, goal support ver-
ifies whether an agent can potentially achieve his goal by playing that role. Commitment
support checks if an agent playing a role is potentially able to honor the commitments
he may make as part of playing the role.

Note the usage of the words support and potentially. Goal (commitment) support
is a weaker notion than goal fulfillment; support gives no guarantee about fulfillment
at runtime. And yet, it is a more pragmatic notion for open systems, where it is not
possible to make such guarantees anyway. For instance, a commitment that an agent
depends upon to fulfill his goal may be violated.

Goal support. Agent x (at runtime, or his designer) may execute a query to check
whether playing a role ρ in the service engagement under consideration supports x’s
goal g. Intuitively, a goal g is supported if (i) no other goal g′ that x intends to achieve
negatively contributes to g; and (ii) either of the following holds:

1. x is capable of g, or
2. x can get from some other agent playing role ρ′ the commitment C(ρ′, ρ, g′, g) and

x supports g′ (akin to x requesting an offer from ρ′), or
3. x can make C(ρ, ρ′, g, g′) to some agent playing ρ′; in other words, x commits to

g′ if the other agent agent achieves g (akin to x making an offer to ρ′), or
4. g is and-decomposed (or-decomposed) and x supports all (at least one) subgoals,

or
5. some other supported goal that x intends to achieve positively contributes to g.

Notice the difference between clauses 2 and 3. In clause 2, x can get a commitment to
support a goal g only if x supports the antecedent; in other words, x cannot realistically
hope that some agent will play ρ′ and will benevolently bring about g. According to
clause 3, x can support g without supporting the consequent g′ of the commitment.

Modeling and Reasoning about Service-Oriented Applications 119

Table 2. Datalog (DLV-complex) axiomatization of the supports relation

-gs(X) :- goal(X), not v(X). R1. Goals out of the scope cannot be supported.
do(X) v -do(X) :- cap(X). R2. Capabilities can be exploited or not.
gs(X) :- do(X). R3. Using a capability implies goal support.
gs(X) :- v(X), gs(Y), pps(Y,X).
-gs(X) :- v(X), gs(Y), mms(Y,X).

R4. ++S and - -S apply from and to visible
goals.

v(X) :- v(Y), anddec(Y,L), goal(X), #member(X,L).
v(X) :- v(Y), ordec(Y,L), goal(X), #member(X,L).

R5. A subgoal is visible if its parent is visible.

gs(X) :- ordec(X,L), #member(Y,L), gs(Y).
R6. An or-decomposed goal is supported if any
of its subgoals is supported.

gs(X) :- anddec(X,Y), suppAllS(X,Y).
wand(X,Y) :- anddec(X,Y).
wand(X,Y) :- wand(X,[A|Y]), goal(A).
suppAllS(A,X) :- wand(A,X), #length(X,N), N=0.
suppAllS(A,X) :- wand(A,X), #length(X,N),
N>0, #memberNth(X,1,E), gs(E), #tail(X,X1),
suppAllS(A,X1).

R7. An and-decomposed goal is supported if all
of its subgoals are supported. These rules split
the subgoals list into atomic goals.

comm(X,Y,C) :- cc(A,B,X,Y,C), plays(B).
comm([],X,C) :- cc(A,B,X,Y,C), plays(A).

R8. The agent can exploit only those commit-
ments where it plays debtor or creditor.

e(X) v -e(X) :- comm(, ,X).
-e(C) :- comm(L,Y,C), not suppAll(C,L).

R9. Commitments can be exploited only if the
precondition is supported.

gs(Y) :- comm(X,L,C), #member(Y,L), goal(Y), sup-
pAll(C,X), e(C).

R10. A goal is supported by a commitment if
it is in the consequent, the antecedent is sup-
ported, and the commitment is exploited.

suppAll(C,X) :- wcomm(X, ,C), #length(X,0).
suppAll(C,X) :- wcomm(X, ,C), #length(X,N),
N>0, #memberNth(X,1,E), gs(E), #tail(X,X1),
suppAll(C,X1).
wcomm(L1,L2,C) :- comm(L1,L2,C).
wcomm(L1,L2,C) :- wcomm([A|L1],L2,C), goal(A).

R11. A commitment’s antecedent is supported
if all the goals in the antecedent are supported.
These rules split the antecedent into atomic
components.

Support of the consequent by the debtor (here x) is a matter of checking for commitment
support, as explained below.

An important aspect in our reasoning is that of visibility (or scope). Visibility roughly
amounts to the goals that an agent intends to achieve. The content of a goal query defines
the reasoning scope, namely which are the goals that the agent intends to achieve. Given
a query for a goal g, the query scope consists of all the subgoals of the tree starting from
the top-level goal ancestor of g. Visibility is important in order to rule out contributions
from goals which are not intended.

Goal support is presented with respect to a single goal for the sake of exposition, but
this notion is easily generalized to propositions. For instance, one might query for the
support of a goal proposition g1 ∧ g2. In this case, the query scope is the union of the
scopes of g1 and g2. Similarly, the antecedent and consequent of a commitment can be
expressed using propositions.

Table 2 axiomatizes the above rules as a logic program in datalog1 (any sufficiently
expressive logic programming language would have sufficed for our present purposes).

1 www.mat.unical.it/dlv-complex

120 A.K. Chopra et al.

A goal is expressed as an atomic proposition. Antecedent and consequent of commit-
ments are expressed as lists of atomic propositions (the list is interpreted as a conjunc-
tion). Given (i) an agent’s goal model; (ii) a service engagement; and (iii) the role played
by the agent in the engagement, the predicate gs(g0 ∧ . . . ∧ gn) is true if and only if
each of g0,. . . ,gn is supported.

A goal model is defined by the following predicates: goal(g) states that g is a goal;
anddec(g, [g1, . . . , gn]) (ordec(g, [g1, . . . , gn])) denotes that g is and-decomposed
(or-decomposed) to g1, . . . , gn; pps(g1, g2) (mms(g1, g2)) represents a ++S (- -S) con-
tribution from g1 to g2; cap(g) says that the agent is capable of goal g. The predi-
cate cc(r1, r2, [g1, . . . , gl], [gm, . . . , gn]) indicates the commitment C(r1, r2, g1 ∧ . . .∧
gl, gm ∧ . . .∧ gn). The predicate plays(r) states that the considered agent plays role r.

The query scope (the visibility predicate v) is manually defined for what concerns
the top-level goals; then it is propagated top-down by rule R5. This may be automated
by macros.

Commitment support. It makes sense to check whether an agent will be able to support
the commitments it undertakes as part of a service engagement. In other words, let’s say
to support g, x makes C(x, y, g, g′) to an agent y. Now if y brings about g, x will be
unconditionally committed to bringing about g′. If x is not able to support g′, then x
will potentially be in violation of the commitment. Commitment support reduces to goal
support for the commitment consequent.

A reckless or malicious agent may only care that his goals are supported regardless
of whether his commitments are supported; a prudent agent on the other hand would
ensure that the commitments are also supported.

Reasoning for support as described above offers interesting possibilities. Some ex-
amples: (i) x can reason that C(x, y, g0, g1) is supported by C(z, x, g2, g1) if x supports
g2; (ii) x can support a conjunctive goal g0 ∧ g1 by getting commitments for g0 and g1
from two different agents, (iii) to support g in a redundant manner, x may get commit-
ments for g from two different agents; and so on.

4 Evaluation

First, we model a real-life scenario using our conceptual model, and show how we may
reason about it. Second, we demonstrate the scalability of the supports reasoning.

4.1 Case Study: Insurance Claim Processing

We show how the model and the reasoning techniques can be used to model a real
life setting concerning car insurance claim processing. We base our scenario on the
documentation that the Financial Services Commission of Ontario (FSCO) provides
online, specifically on the description of the claim process2. The process describes the
perspective of a driver involved in a car accident in Ontario; it also highlights what
happens behind the scenes. It describes a service engagement that is independent of
specific insurance companies, car repairers, and damage assessors. We assume the car
driver is not at fault and his policy has no deductible.

2 http://www.fsco.gov.on.ca/english/insurance/auto/after auto accident ENG.pdf

Modeling and Reasoning about Service-Oriented Applications 121

Fig. 5. Role model for the insurance claim processing scenario. Commitments are rectangles that
connect (via directed arrows) debtors to creditors.

Table 3. Commitments in the car insurance service engagement

c1 insurer to repairer: if insurance has been validated and the repair has been reported, then the
insurer will have paid and approved the assessment

c2 insurer to assessor: if damages have been reported, the assessment will have been paid
c3 assessor to repairer: if damages have been reported and the insurance has been validated, a

damage assessment will have been performed
c4 supplier to repairer: if parts have been paid for, new parts will have been provided
c5 repairer to customer: if the insurance has been validated, then the car will have been repaired

Fig. 6. Visual representation of Tony’s insurance-engagement bound specification. Tony plays
repairer.

122 A.K. Chopra et al.

Table 4. Datalog representation of Figure 6

% AGENT-ROLE plays relation
plays(repairer).

% GOALS: each goal node is declared, only three shown below
goal(servicePerformed). goal(carRepaired). goal(receiptSent).

% CAPABILITIES
cap(receiptSent). cap(damagesReported). cap(partsPaid).
cap(oldPartsFixed). cap(repairPerformed). cap(repairReported).

% GOAL MODEL: DECOMPOSITIONS
anddec(servicePerformed,[carRepaired,receiptSent,serviceCharged]).
anddec(carRepaired,[assessmentPerformed,assessmentApproved,

partsEvaluated,repairPerformed]).
anddec(assessmentPerformed,[damagesReported,assessmentDone]).
ordec(partsEvaluated,[newPartsUsed,oldPartsFixed]).
anddec(newPartsUsed,[partsPaid,newPartsProvided]).
ordec(serviceCharged,[insuranceCovered,paymentDone]).
anddec(insuranceCovered,[insuranceValidated,repairReported,paymentDone]).

% GOAL MODEL: CONTRIBUTIONS
mms(newPartsProvided,lowCostService). pps(newPartsProvided,highQualityParts).
pps(oldPartsFixed,lowCostService). mms(oldPartsFixed,highQualityParts).

% COMMITMENTS IN THE SERVICE ENGAGEMENT
cc(insurer,repairer,[insuranceValidated,repairReported],

[assessmentApproved, paymentDone],c1).
cc(insurer,assesser,[damagesReported],[assessmentPaid],c2).
cc(assesser,repairer,[damagesReported,insuranceValidated],[assessmentDone],c3).
cc(supplier,repairer,[partsPaid],[newPartsProvided],c4).
cc(repairer,customer,[insuranceValidated],[carRepaired],c5).

Figure 5 describes the service engagement in the car insurance claim processing sce-
nario. The engagement is defined as a set of roles (circles) connected via commitments;
the commitments are labeled ci. Table 3 explains the commitments.

Figure 6 shows an agent model where agent Tony plays role repairer. The main goal
of Tony is to perform a repair service. This is and-decomposed to subgoals car repaired,
receipt sent, and service charged. The goal model contains two variation points: the
or-decompositions of goals parts evaluated and service charged. The former goal is or-
decomposed to subgoals new parts provided and old parts fixed. Note the softgoals low
cost service and high quality parts. Using new parts has a negative contribution to low
cost service and a positive one to high quality parts, whereas fixing old parts contributes
oppositely to those soft goals.

Table 4 show the insurance engagement-bound specification of Tony in datalog. Even
though both the service engagement and Tony’s requirements are in a single table, we
remark that they are independently defined artifacts. The binding of Tony to the repairer
role in the engagement in indicated by plays(repairer) at the beginning of the specifica-
tion. We now demonstrate the reasoning.

Table 5 shows some queries for support of particular goals and their solutions. The
solutions represent the output that our implementation provides; each solution is a pos-
sible strategy to support a goal. A strategy consists of a set of exploited capabilities and

Modeling and Reasoning about Service-Oriented Applications 123

Table 5. Queries (and their solutions) against Tony’s insurance-engagement bound specification

Query 1: Can Tony support “service performed”?
v(servicePerformed).
gs(servicePerformed)?
Solutions:
1: {do(receiptSent), do(repairPerformed), do(damagesReported), do(oldPartsFixed), do(partsPaid),
do(repairReported), e(c1), e(c3), e(c4), e(c5)}
2: {do(receiptSent), do(repairPerformed), do(damagesReported), do(partsPaid), do(repairReported), e(c1),
e(c3), e(c4), e(c5)}
3: {do(receiptSent), do(repairPerformed), do(damagesReported), do(oldPartsFixed), do(partsPaid),
do(repairReported), e(c1), e(c3), e(c5)}
4: {do(receiptSent), do(repairPerformed), do(damagesReported), do(oldPartsFixed), do(repairReported),
e(c1), e(c3), e(c5)}
Query 2: Can Tony support “service performed” and “high quality”?
v(servicePerformed). v(highQualityParts).
gs(servicePerformed), gs(highQualityParts)?
Solutions:
1: {do(receiptSent), do(repairPerformed), do(damagesReported), do(partsPaid), do(repairReported), e(c1),
e(c3), e(c4), e(c5)}
Query 3: Can Tony support “service performed” with “high quality” and “low cost”?
v(servicePerformed). v(highQualityParts). v(lowCostService).
gs(servicePerformed), gs(lowCostService), gs(highQualityParts)?
Solutions: none

a set of commitments that the agent can get or make to other agents. Below, we describe
the posed queries and we provide some details to explain why the alternatives are valid
solutions to the query. The queries pertain to the insurance engagement-bound Tony.

Query 1. Can Tony support service performed?

This query has four solutions (see Table 5). Solution 1 includes both options to fix cars
(to support goal parts evaluated): new parts are bought and old parts are fixed. Tony
can make commitment c5 to a customer in order to support insurance validated; he
can get c4 from supplier since Tony supports the antecedent by using his capability for
parts paid. In order to get commitments c1 and c3, Tony has to chain commitments:
get or make other commitments in order to support the antecedent of another commit-
ment. Tony can get c3 from an assessor by using his capability for damages reported
and chaining c5 to support insurance validated. Tony can get c1 from insurer by using
his capability for repair reported and chaining c5 for insurance validated. Solution 1
contains redundant ways to achieve a goal, thus might be useful in order to ensure re-
liability. Solution 2 involves buying new parts only, and it has the same commitments
of solution 1. Solution 4 involves fixing old parts only. Solution 3 includes fixing old
parts and also paying new parts, but not c4. This option is legitimate, even though not a
smart one. Notice how solution 1 and solution 3 are not minimal: indeed, solution 2 is
a subset of solution 1, while solution 4 is a subset of solution 3.

124 A.K. Chopra et al.

Query 2. Can Tony support service performed with high quality?

Verifying this query corresponds to checking goal support for the conjunction of the two
goals. This means that goal high quality is in the scope. The effect of this modification
is that three solutions for Query 1 are not valid for Query 2. The only valid solution is
the former Solution 2. The reason why the other three solutions are not valid is simple:
they include goal old parts fixed, which contributes negatively (- -S) to high quality.

Query 3. Can Tony support service performed with high quality and low cost?

The third query adds yet another goal in the scope, namely low cost. The effect is that
Tony cannot support the conjunction of the three queried goals. The reason for this is
that goal new parts provided has a negative contribution to low cost, therefore the only
valid solution for Query 2 is not valid for Query 3.

4.2 Scalability Experiments

We evaluated the applicability of our reasoning to medium- and large-sized scenarios by
performing some experiments on goal models and service engagements of growing size.
Our tests are not intended to assess the absolute performance of the reasoner, rather they
aim to check empirically if the query execution time grows linearly or exponentially
with the size of the problem.

We create our experiments using a scenario cloning technique: a basic building block
is cloned to obtain larger scenarios. The building block consists of a goal model with
9 goals (with one top-level goal, 3 and-decompositions and 1 or-decomposition) and
a service engagement with 2 commitments. Cloning this scenario produces a new sce-
nario with 2 top-level goals, 18 goals and 4 commitments; another cloning operation
outputs 3 top-level goals, 27 goals and 6 commitments, and so on. The posed query
consists of the conjunction of all the top-level goals in the cloned scenario.

Note that cloning linearly increases the number of goals and commitments, whereas
it exponentially increases the number of solutions. Cloning is a useful technique to
check scalability for our reasoning, given that the important thing is not the number of
goals and commitments but the number of solutions. The cloned scenario is character-
ized by high variability.

The experiments were run on a machine with an AMD Athlon(tm) 64 X2 Dual Core
Processor 4200+ CPU, 2GB DIMM DDR2 memory, Linux version 2.6.31-15-generic
kernel, DLV-Complex linux static build 20090727. We executed three runs for every
experiment; we consider the average time; time was measured using the linux time
utility and summing the user and sys values.

Table 6 present the results of the scalability experiments. The first three columns
show the number of goals, commitments and solutions, respectively. Notice how the
number of solutions grows exponentially: the biggest experiment has almost two mil-
lions solutions. The fourth column shows the total time needed to run the experiment;
the reasoning is applicable at design time to medium-large models, given that 2 millions
solutions are computed in 200 seconds on a desktop computer. The most significant
result, however, is in the last column. It shows the average time to derive one solution
in microseconds. Notice how the time per solution does not grow exponentially. The

Modeling and Reasoning about Service-Oriented Applications 125

Table 6. Experiments evaluating the scalability of goal support reasoning

goals # comms # solutions time (s) time
#sol

(µs)
9 2 5 0.009 1866

18 4 25 0.013 533
27 6 125 0.033 266
36 8 625 0.112 179
45 10 3125 0.333 107
54 12 15625 1.361 87
63 14 78125 7.017 90
72 16 390625 37.043 95
81 18 1953125 199.920 102

average time for smaller experiments is higher because initialization time has a strong
impact; time grows pseudo-linearly for bigger experiments.

5 Discussion

The principal contribution of this paper lies in formulating a conceptual model for
service-oriented applications that accommodates the autonomy and heterogeneity of
their participants, and applies naturally at a business level. We accomplish this by spec-
ifying the participants in terms of goals, and the engagements between them in terms
of commitments. Our conceptual model has the following salient features. (1) Applica-
tion architecture is specified in terms of commitments. (2) Commitment are conditional
and capture the reciprocal nature of business relationships. (3) Commitments decouple
agents: if an agent has a commitment from another, it may not care what goals the other
has. We also encoded the reasoning relationship between goals and commitments in
datalog, and applied it to a real car insurance scenario. The reasoning helps determine
if a chosen service engagement is suitable for a participant’s requirements.

Prominent goal-oriented methodologies such as Tropos [2] and KAOS [23] do not
distinguish between application architecture and the requirements of individual agents.
The reason is their basis in traditional information systems development where stake-
holders cooperate in building a fully specified system. Gordijn et al. [10] combine goal
modeling with profitability modeling for the various stakeholders; however, their ap-
proach shares the monolithic system-development point of view.

One may understand dependencies between actors in i* [24] as an architectural de-
scription of the application. However, dependencies do not capture business relation-
ships as commitments do. Guizzardi et al. [11] and Telang and Singh [22] highlight
the advantages of commitments over dependencies for capturing relationships between
roles. Both Telang and Singh [22] and Gordijn et al. [10] especially note that depen-
dencies do not capture the reciprocal nature of a business transaction. Bryl et al. [3]
use a planning-based approach to explore the space of possible alternatives for satisfy-
ing some goal; however, unlike us, they follow goal dependencies inside the dependee
actors, thus violating heterogeneity. Castro et al. [4] highlight the lack of modularity
in goal models. Since commitments decouple agents, they significantly alleviate the
modularity problem.

126 A.K. Chopra et al.

Compatibility between a participant and a service engagement is a different kind
of correctness criterion compared to checking for progress or safety properties over
procedural specifications, as is done for example, in [7]. Mahfouz et al. [14] consider
the alignment between the goal model of an application, in terms of both dependencies
between the actors and their internal goals, and the choreography under consideration.
Their approach could be applied in the design of choreographies, that might be then
made available as architectural specifications.

Abstractions such as goals and intentions have been used to describe services [13,18];
however such approaches violate heterogeneity by making assumptions about other par-
ticipants’ internals. Specifications of service engagements are eminently more reusable
than the goal models of actors [9]. Liu et al. [12] formalize commitments in a weaker
sense—as a relation between an actor and a service, not between actors, as in done in our
approach.

Workflow-based approaches for business processes, for example, [15,17], capture in-
teraction from the viewpoint of a single participant. As such, they may be used to code
up individual agents—either as an alternative to goal models or as their operational-
ization. Benatallah et al. [1] formalize properties such the similarity and replaceability
for choreographies. Although such approaches are valuable, they are at a lower level of
abstraction than service engagements. Such properties have begun to be formalized for
service engagements [20]. Especially interesting is the formalization of interoperabil-
ity in terms of commitments in completely asynchronous settings [5]. The formalization
therein completely obviates the need for control flow constructs in service engagements,
for example, that an Accept or Reject should follow the Order.

One feature that distinguishes our model from some others in the literature, for exam-
ple [6], is the emphasis on roles and participants as opposed to on the service itself. In our
approach, a service is something that is realized when participants interact according to
the service engagement. Notice that there is no “service” entity in our conceptual model.

Our approach opens up interesting directions of work. An agent would ideally mon-
itor both his goals and commitments. Compliance with legal and contractual require-
ments may be formulated directly in terms of commitments, instead of in terms of
following a process. An agent would adapt in case some goal is threatened by adopt-
ing new strategies; however, in doing so it should ideally also consider his outstanding
commitments, else it risks being noncompliant.

Acknowledgments. Research partially supported by FP6-EU project SERENITY con-
tract 27587.

References

1. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing web service
protocols. Data and Knowledge Engineering 58(3), 327–357 (2006)

2. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

3. Bryl, V., Giorgini, P., Mylopoulos, J.: Designing socio-technical systems: From stakeholder
goals to social networks. Requirements Engineering 14(1), 47–70 (2009)

Modeling and Reasoning about Service-Oriented Applications 127

4. Castro, J., Kolp, M., Liu, L., Perini, A.: Dealing with complexity using conceptual models
based on Tropos. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Mylopoulos
Festschrift. LNCS, vol. 5600, pp. 335–362. Springer, Heidelberg (2009)

5. Chopra, A.K., Singh, M.P.: Multiagent commitment alignment. In: Proceedings of AAMAS
2009, pp. 937–944 (2009)

6. Colombo, M., Di Nitto, E., Di Penta, M., Distante, D., Zuccalá, M.: Speaking a common
language: A conceptual model for describing service-oriented systems. In: Benatallah, B.,
Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 48–60. Springer, Heidelberg
(2005)

7. Decker, G., Weske, M.: Behavioral consistency for B2B process integration. In: Krogstie, J.,
Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 81–95.
Springer, Heidelberg (2007)

8. De Remer, F., Kron, H.H.: Programming-in-the-large versus programming-in-the small.
IEEE Transactions on Software Engineering 2(2), 80–86 (1976)

9. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A methodology for modeling and evolution
of cross-organizational business processes. ACM Transactions on Software Engineering and
Methodology 19(2) (2010)

10. Gordijn, J., Yu, E., van der Raadt, B.: E-service design using i* and e3value modeling. IEEE
Software 23(3), 26–33 (2006)

11. Guizzardi, R.S.S., Guizzardi, G., Perini, A., Mylopoulos, J.: Towards an ontological account
of agent-oriented goals. In: Choren, R., Garcia, A., Giese, H., Leung, H.-f., Lucena, C., Ro-
manovsky, A. (eds.) SELMAS. LNCS, vol. 4408, pp. 148–164. Springer, Heidelberg (2007)

12. Liu, L., Liu, Q., Chi, C.-H., Jin, Z., Yu, E.: Towards a service requirements modelling on-
tology based on agent knowledge and intentions. International Journal of Agent-Oriented
Software Engineering 2(3), 324–349 (2008)

13. Lo, A., Yu, E.: From business models to service-oriented design: A reference catalog ap-
proach. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS,
vol. 4801, pp. 87–101. Springer, Heidelberg (2007)

14. Mahfouz, A., Barroca, L., Laney, R., Nuseibeh, B.: Requirements-driven collaborative chore-
ography customization. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave
2009. LNCS, vol. 5900, pp. 144–158. Springer, Heidelberg (2009)

15. Nguyen, D.K., van den Heuvel, W.-J., Papazoglou, M.P., de Castro, V., Marcos, E.: GAM-
BUSE: A gap analysis methodology for engineering SOA-based applications. In: Borgida,
A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Mylopoulos Festschrift. LNCS, vol. 5600,
pp. 293–318. Springer, Heidelberg (2009)

16. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M.P., Pohl, K.: A journey to highly dy-
namic, self-adaptive service-based applications. Automated Software Engineering 15(3-4),
313–341 (2008)

17. Ouyang, C., Dumas, M., Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Mendling, J.: From
business process models to process-oriented software systems. ACM Transactions on Soft-
ware Engineering and Methodology 19(1), 1–37 (2009)

18. Rolland, C., Kaabi, R.S., Kraı̈em, N.: On ISOA: Intentional services oriented architecture. In:
Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495,
pp. 158–172. Springer, Heidelberg (2007)

19. Singh, M.P.: Agent communication languages: Rethinking the principles. IEEE Com-
puter 31(12), 40–47 (1998)

20. Singh, M.P., Chopra, A.K.: Correctness properties for multiagent systems. In: Baldoni, M.,
van Riemsdijk, M.B. (eds.) DALT 2009. LNCS, vol. 5948, pp. 192–207. Springer, Heidelberg
(2010)

128 A.K. Chopra et al.

21. Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Semantics, Processes, Agents. John
Wiley & Sons, Chichester (2005)

22. Telang, P.R., Singh, M.P.: Enhancing Tropos with commitments: A business metamodel and
methodology. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Mylopoulos
Festschrift. LNCS, vol. 5600, pp. 417–435. Springer, Heidelberg (2009)

23. van Lamsweerde, A.: From system goals to software architecture. In: Bernardo, M., Inver-
ardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 25–43. Springer, Heidelberg (2003)

24. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements engineer-
ing. In: Proceedings of ISRE 1997, pp. 226–235 (1997)

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 129–134, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Conceptualizing a Bottom-Up Approach
to Service Bundling

Thomas Kohlborn1, Christian Luebeck2, Axel Korthaus1, Erwin Fielt1,
Michael Rosemann1, Christoph Riedl2, and Helmut Krcmar2

1 Faculty of Science and Technology, Queensland University of Technology,
126 Margaret Street, 4000 Brisbane, Australia

{t.kohlborn,axel.korthaus,e.fielt,m.rosemann}@qut.edu.au
2 Lehrstuhl für Wirtschaftsinformatik, Technische Universität München

85748 Garching b. München, Germany
c.luebeck@mytum.de,

{riedlc,krcmar}@in.tum.de

Abstract. Offering service bundles to the market is a promising option for ser-
vice providers to strengthen their competitive advantages, cope with dynamic
market conditions and deal with heterogeneous consumer demand. Although
the expected positive effects of bundling strategies and pricing considerations
for bundles are covered well by the available literature, limited guidance can be
found regarding the identification of potential bundle candidates and the actual
process of bundling. The contribution of this paper is the positioning of bun-
dling based on insights from both business and computer science and the propo-
sition of a structured bundling method, which guides organizations with the
composition of bundles in practice.

Keywords: Service, service-orientation, bundling.

1 Introduction

The creation of bundled offers of services and goods with distinguishing and superior
characteristics compared to existing offers has long been recognized as an opportunity
for companies to increase their competitive advantages over rival contenders in the
market [1]. Generally, a bundle represents a package that contains at least two ele-
ments and presents a value-add to potential consumers.

While a considerable amount of literature addressing the process of service design
or new service development can be found today, less is known about approaches that
facilitate the creation of superior service bundles. Despite the fact that companies
across all industry sectors with increased market pressures are challenged by the issue
of service bundling [2], Moreover, little guidance has been provided so far for the
identification of potential bundle candidates and for the actual process of bundling.
The single work that specifically targets service bundling is from Baida [3].The au-
thor used an ontology-based approach “to facilitate the automation of the service
bundling task”. Using a given customer demand by expressing required resources, the

130 T. Kohlborn et al.

configuration method (“Serviguration”) creates service bundles that satisfy the
demand and adhere to the predefined set of dependencies between services.

In this paper, we provide insights into the foundation and the process of bundling.
We propose a new service bundling method that supports organizations in identifying
potential service bundles that they could offer to consumers.

The remainder of this paper is structured as follows. Based on the problem descrip-
tion that has been provided in this section, we first define and clarify the term bun-
dling along with related terms from business and computer science to explicate the
underlying understanding of the concept of bundling for this work. Subsequently, core
aspects and foundations of a proposed approach are presented. The paper ends with a
conclusion and directions for further research.

2 Positioning Service Bundling

In order to be able to elaborate further on what service bundling entails, we derive the
meaning of the terms service and bundle mainly from marketing, while we refer to the
field of computing for characterizing the terms aggregation and composition. Fig. 1
provides an overview of how the concepts denoted by these terms relate.

Description Logic

Relationship

Attribute

Language

Service

based on

relates

1

1

1

1

1
*

based on

based on

*

*

Service

AtomicService Composition

*

integrates

Component

Aggregation

-+ Marketing
Bundle

1

markets

2…

*

aggregates

2…

Fig. 1. Conceptual Relationships (in Unified Modeling Language notation)

Service: The term “service” is loaded with different meanings depending on the spe-
cific context and universe of discourse. There is no overall standardized definition of
service [4]. Taking a marketing perspective, the most cited service characteristics are
intangibility, inseparability (of production and consumption), heterogeneity (or non-
standardization), and perishability (or exclusion from inventory) [5]. However, these
characteristics are more and more critiqued. Therefore, Edvardsson et al. [6] conclude
that “we should not generalize the characteristics to all services, but use them for
some services when they are relevant and in situations where they are useful and
fruitful.” They conclude that at a general level, a service is better conceived as a ‘per-
spective’ on value creation.

Aggregation: The generic term “aggregation” is defined as “a group, body or mass
composed of many distinct parts or individuals” [7]. Hereby, the distinct elements
may be loosely associated with each other or share certain attributes. However, the

 Conceptualizing a Bottom-Up Approach to Service Bundling 131

elements within are distinctively identifiable, only sharing certain commonalities in
their characteristics. Elements may be ordered along a process or integrated to a cer-
tain extend as long as the elements are still distinctively identifiable. The typical un-
derstanding in the computer science domain is that an aggregation will still exist, even
if component services are removed from the aggregate [8]. That also relates to the
business domain, where an aggregation comprises multiple services and provide ac-
cess to them in a single location [9].

Composition: A service can either be an atomic service, which is not composed of
other services, or it can be a composite service, which comprises other services. Thus,
a composition can be regarded as a “condition consisting in the combination or union
(material, practical, or ideal) of several things” [10]. Similar to the term “aggrega-
tion”, the term “composition” can be found in the domain of software engineering as
well. However, in contrast to an aggregation, which still exists if one component
element is removed from the aggregation, a composition ceases to exist in case a
constituent component service is removed, based upon structural dependencies be-
tween these elements [8]. A composition refers to a tightly-coupled integration of sub-
services, thus adding value not present in the individual constituent services [9].

Bundle: The generic definition of a bundle is “a collection of things bound or other-
wise fastened together” [11]. While the generic definition basically forms no con-
straints on the elements within the bundle, the marketing literature is more specific
and generally agrees on the definition by Stremersch and Tellis [12], who define bun-
dling as “the sale of two or more separate products in one package”. The authors
further define separate products as products for which separate markets exist. With
this definition they try to draw a distinct line between compositions and bundles to
preserve the strategic importance of bundling. Thus, bundling adds marketing aspects
to aggregations. A bundle is not equivalent to an aggregation, as an aggregation does
not possess additional properties (e.g. price) for the whole. Although a pure composi-
tion is also characterized by additional properties, it is not equivalent to a bundle, as a
bundle consists of distinguishable components and a composition tightly integrates its
components to form a single new service.

3 Conceptual Framework for a Service Bundling Method

The proposed method is targeted at the identification of possible service bundles by
supporting the early stages of the bundle creation process. The method therefore fo-
cuses on limiting the solution space of possible bundles, using indicators that express
some form of bundling motivation. It is important to point out that this method is not
supposed to omit the evaluation of bundles by a domain expert. It has to be acknowl-
edged that the domain expert is still needed to evaluate the overall feasibility of bun-
dles, since this requires complex analysis, often utilizing tacit knowledge across a
range of different disciplines (e.g. economy, marketing, legal). Rather, the aim of
this method is to limit the scope of the necessary evaluation for the domain expert.
This is in particular relevant with a large number of services and, therefore, many
bundling options. The proposed approach leverages existing service descriptions and
does not necessitate a time-consuming step of (manually) explicating relationships
between services as it is the case with the method described by Baida [3]. Instead,

132 T. Kohlborn et al.

commonalities of attributes indicate such a relationship. As long as services are con-
sistently described and attributes relevant for this bundling approach are present, the
proposed method can be employed. Moreover, Baida [3] relies on a given customer
demand to drive the creation of service bundles. While useful for situations where
customer demand is well known and understood, poor performance can be expected
from this approach when demand is hard to capture or anticipate. Furthermore, the
economically desirable situation where customer demand is induced by a new service
offering is not supported at all. Our proposed method explicitly targets the latter case
by focusing on the creation of new and innovative service bundles. Therefore, cus-
tomer demand is not utilized to reason about the suitability of potential bundles in this
method. Instead, the driving source of this method is a repository of services that are
available for bundling. Depending on the given context, this repository might consist
of the services of a single provider, a provider network or even contain all available
services in a service ecosystem.

Herrmann et al. [13] found that functionally complementary components in a bun-
dle lead to high intentions to purchase compared to bundles in which no complemen-
tary components are present. The authors state that, “as the relationship among the
components increased from ‘not at all related’ through ‘somewhat related’ to ‘very
related’, intention to purchase also increased”. The proposed method builds upon
these findings and the conjecture that other commonalities or relationships between
services can also indicate potentially useful bundles. We define the term relationship
as a connection, whose existence can be evaluated by a logic expression utilizing
service description attributes. Every relationship refers to previously specified attrib-
utes (e.g. location of the hotel, destination of the flight) and evaluates them using a
given logic (e.g. distance between destination airport and location of the hotel). This
evaluation can be realized ranging from simple value comparisons of single attributes
to complex algorithms using multiple attributes. The right side of Figure 1 illustrates
the corresponding conceptual model using UML.

We distinguish between two types of relationships, namely generic and domain-
specific relationships. A generic relationship is used independently of a concrete do-
main. These relationships evaluate connections of a general nature that can be found
across a range of different domains. The evaluation of generic relationships does not
require a domain-specific awareness. A specific relationship only applies to certain
domains and can be tailored for concrete bundling scenarios. In this context the notion
of domains refers to distinguishable spheres of knowledge that have their own distinct
terminologies and semantics. Thus, generic relationships relate to concepts that are
similar across existing domains.

Based on given service descriptions and derived relationships, the vast amount of
possible service bundles can be filtered in a structured manner to finally extract the
most promising bundling candidates. Service bundling can be seen as a configuration
task [3] assembling a bundle from a set of services that can only be connected to-
gether in certain ways. Ten Teije et al. [14] consider a configuration task as a search
problem. The authors state that the configuration space can be restricted in multiple
steps. Restricting the configuration space by the possible connections leads to the
possible configuration space. Applying further constraints leads to the valid configu-
ration space. Based on this, user requirements are applied to form the suitable con-
figuration space. The approach of constraining a solution space by adding require-
ments in multiple steps (Fig. 2) adequately supports the act of service bundling.

 Conceptualizing a Bottom-Up Approach to Service Bundling 133

Fig. 2. Constraining the Solution Space

The service repository containing all available services serves as a starting point to
form the overall solution space. Possible bundles refers to all possible combinations
of these services, regardless of validity or feasibility. Generic bundles are a subset of
all possible bundles which have generic relationships. Since generic relationships do
not have to be created or tailored for a specific scenario or domain, they can be easily
applied. These bundles are called generic, as the indication to bundle is of general
nature and oblivious of the domain. Bundles that do not fulfill the requirements of
applied generic relationships (e.g. a bundle containing two services that are offered in
different cities) are excluded from this set. Based on the set of generic bundles, spe-
cific relationships that are specific to the domain are evaluated, which leads to a set of
specific bundles. These bundles are called specific, as domain-specific relationships
are strong indicators for bundling (compared to generic relationships), since they take
a specific environment into account. Once specific bundles are identified, further
domain knowledge has to be applied to extract a set of feasible bundles. This includes
the validation of the bundles with regard to internal and external requirements. Inter-
nal requirements might include the strategic alignment of the bundle, quality, service
level and risk assessments and other aspects along these lines. External requirements,
for example customer demand, market saturation and legislation, also have to be
evaluated. The value of a bundle increases with each step-up into a smaller subset of
the solution space. As this work focuses on the identification of bundling candidates,
the creation of feasible bundles is out of the scope of this work. While generic and
specific bundles can be identified using the presented notion of relationships, feasible
bundles require a domain expert, as the final compilation of a bundle requires com-
plex analysis, which can only be supported to a certain extent by analyzing the rela-
tionships between services.

4 Conclusion

This paper defines service bundling and related concepts and proposes a novel ap-
proach for service bundling that identifies service bundle candidates. While the proc-
ess of new service development has been extensively researched and conceptualized,
the process of finding suitable service bundling candidates is still ill-defined. The
proposed method facilitates the creation of bundles by providing organizations with
systematic and practical approach. The developed method builds on service bundling
concepts from both the marketing and the technological literature, thereby addressing
the increased need for multi-disciplinary approaches and business-IT alignment.
Multiple directions for further research can be identified. First, research in the area
of service descriptions has to be conducted to develop a universal language that is

134 T. Kohlborn et al.

applicable across industries and covers business as well as software services. Second,
strategies and rationales of service bundling need to be analyzed further, to provide
valuable insights for the internal and external validation of initially identified bundles.
At this stage, the proposed relationships have to be seen as a working set, which will
evolve as additional studies and evaluations are carried out.

Acknowledgements. This research was carried out as part of the activities of, and
funded by, the Smart Services Cooperative Research Centre (CRC) through the Aus-
tralian Government’s CRC Programme (Department of Innovation, Industry, Science
and Research).

References

1. Lawless, M.W.: Commodity Bundling for Competitive Advantage: Strategic Implications.
Journal of Management Studies 28, 267–280 (1991)

2. Akkermans, H., Baida, Z., Gordijn, J., Peiia, N., Altuna, A., Laresgoiti, I.: Value Webs:
Using Ontologies to Bundle Real-World Services. IEEE Int. Systems 19, 57–66 (2004)

3. Baida, Z.: Software-Aided Service Bundling. Intelligent Methods & Tools for Graphical
Service Modeling. In: Dutch Graduate School for Information and Knowledge Systems.
Vrije Universiteit, Amsterdam (2006)

4. Baida, Z., Gordijn, J., Omelayenko, B.: A Shared Service Terminology for Online Service
Provisioning. In: Proceedings of the 6th International Conference on Electronic Commerce
(ICEC), pp. 1–10 (2004)

5. Zeithaml, V.A., Parasuraman, A., Berry, L.L.: Problems and Strategies in Services Market-
ing. Journal of Marketing 49, 33–46 (1985)

6. Edvardsson, B., Gustafsson, A., Roos, I.: Service Portraits in Service Research: A Critical
Review. International Journal of Service Industry Management 16, 107–121 (2005)

7. Anonymous: Aggregation, Merriam-Webster Online Dictionary (2009),
http://www.merriam-webster.com/dictionary/aggregation

8. Evermann, J., Wand, Y.: Ontology Based Object-Oriented Domain Modelling: Fundamen-
tal Concepts. Requirements Engineering 10, 146–160 (2005)

9. O’Sullivan, J., Edmond, D., ter Hofstede, A.: What’s in a Service? Distributed Parallel Da-
tabases 12, 117–133 (2002)

10. Anonymous: Composition. In: Oxford English Dictionary. Oxford University Press, Ox-
ford (1989)

11. Anonymous: Bundle, n. In: Oxford English Dictionary. Oxford University Press, Oxford
(1989)

12. Stremersch, S., Tellis, G.J.: Strategic Bundling of Products and Prices: A New Synthesis
for Marketing. Journal of Marketing 66, 55–72 (2002)

13. Herrmann, A., Huber, F., Coulter, R.H.: Product and Service Bundling Decisions and
Their Effects on Purchase Intention. In: Fuerderer, R., Herrmann, A., Wuebker, G. (eds.)
Optimal Bundling: Marketing Strategies for Improving Economic Performance, pp. 253–
268. Springer, Heidelberg (1999)

14. ten Teije, A., van Harmelen, F., Schreiber, A.T., Wielinga, B.J.: Construction of Problem-
Solving Methods as Parametric Design. International Journal of Human-Computer Stud-
ies 49, 289–363 (1998)

Dynamic Authorisation Policies
for Event-Based Task Delegation

Khaled Gaaloul, Ehtesham Zahoor, François Charoy, and Claude Godart

LORIA - Nancy University - UMR 7503
BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France

{kgaaloul,zahoor,charoy,godart}@loria.fr

Abstract. Task delegation presents one of the business process security
leitmotifs. It defines a mechanism that bridges the gap between both
workflow and access control systems. There are two important issues re-
lating to delegation, namely allowing task delegation to complete, and
having a secure delegation within a workflow. Delegation completion and
authorisation enforcement are specified under specific constraints. Con-
straints are defined from the delegation context implying the presence of
a fixed set of delegation events to control the delegation execution.
In this paper, we aim to reason about delegation events to specify dele-
gation policies dynamically. To that end, we present an event-based task
delegation model to monitor the delegation process. We then identify rel-
evant events for authorisation enforcement to specify delegation policies.
Moreover, we propose a technique that automates delegation policies us-
ing event calculus to control the delegation execution and increase the
compliance of all delegation changes in the global policy.

Keywords: Workflow, task, delegation, policy, event calculus.

1 Introduction

The pace at which business is conducted has increased dramatically over recent
years, forcing many companies to re-evaluate the efficiency of their business pro-
cesses. The restructuring of organisational policies and methods for conducting
business has been termed ”Business Process Re-engineering” [1]. These refined
business processes are automated in workflows that ensure the secure and effi-
cient flow of information between activities and users that constitute the business
process. Workflows aim to model and control the execution of business processes
cross organisations. Typically, organisations establish a set of security policies,
that regulate how the business process and resources should be managed [2].

In previous work, we argued that business processes execution are determined
by a mix of ad-hoc as well as process-based interactions. This highly dynamic
environment must be supported by mechanisms allowing flexibility, security and
on-the-fly shift of rights and responsibilities both on a (atomic) task level and on
a (global) process level [3]. To address those issues, we present a task delegation
approach as a mechanism supporting organisational flexibility in workflow man-
agement systems, and ensuring delegation of authority in access control systems

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 135–149, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

136 K. Gaaloul et al.

[4]. However, most of the work done in the area of business process security does
not treat delegation in sufficient details. On one hand, Atluri et al. presented the
Workflow Authorisation Model (WAM) that concentrates on the enforcement of
authorisation flow in the domain of workflow security [5]. WAM remains static
in time and poor in terms of delegation constraints within a workflow. On the
other hand, existing work on access control systems do not consider dynamic
enforcement of authorisation policies [6].

Moreover, a secure task delegation model has to separate various aspects of
delegation within a workflow, where the interactions between workflow invariants
(e.g., users, tasks and data) are triggered by delegation events. These delegation
events will imply appropriate authorisation requests from access control systems.
At present, responses arising from access control requests are stateless such that
a response is given to an access request depending on predefined policies during
the planning phase. If, however, this response changes due to a policy adaptation
for delegation, no mechanism currently exists that allows the new response to be
generated in the authorisation policy dynamically. Currently, when delegating
a task, often the reasoning behind this is dependent on transient conditions
called events. When one of these conditions changes during execution, our access
policy decision may change. We do believe that delegation events define dynamic
constraints for authorisation policies that should not be neglected in advanced
security mechanisms supporting delegation.

The scope of the paper is to investigate the potential of delegation events to
ensure a secure task delegation within a workflow. Securing delegation involves
the definition of authorisation policies which are compliant with the workflow
policy. In order to tackle these problems we need to address two important
issues, namely allowing the delegation task to complete, and having a secure
delegation within a workflow. Allowing task delegation to complete requires a
task model that forms the basis of what can be analysed during the delegation
process within a workflow. Secure delegation implies the controlled propagation
of authority during task execution. Based on specific events, we define delegation
policies in an automatic manner. In order to control the delegation behaviour
and to specify its authorisation policies dynamically, we gather relevant events
that will define both the task execution path and the generated policies for the
delegation of authority. Using Event Calculus (EC), we will present a technique
to monitor the delegation execution. Afterwards, we will briefly discuss the event
calculus formalism to generate delegation policies, and finally, we explain how
generated policies will change dynamically in response to task delegation events.

The remainder of this paper is organised as follows. Section 2 presents a
workflow scenario to motivate our work. In section 3, we give an overview of our
approach to reason about events to specify authorisation policies for delegation.
In section 4, we present our task delegation model and explain how events will
control its execution. Section 5 focuses on security requirements for delegation
and its authorisation policy specifications using EC. In section 6, we motivate our
technique to support delegation automation. Section 7 discusses related work.
Finally, we conclude and outline several topics of potential future work.

Dynamic Authorisation Policies for Event-Based Task Delegation 137

2 Motivating Example: A Use Case Requiring Delegation
Policies Integration

To understand the motivation of our research, we present a real world processes
from an e-government case study requiring delegation. Mutual Legal Assistance
(MLA) defines a workflow scenario involving national authorities of two Euro-
pean countries. Here we describe the MLA process part in the Eurojust organi-
sation A. Users with roles Prosecutor and Assistant are assigned to execute the
MLA process and activities that are part of the process are represented as tasks
(see Figure 1).

In this scenario, the task ”Translate Documents” T3 is originally only accessi-
ble by the user member of role Prosecutor, a fact defined in the workflow policy.
We define a workflow policy as a level of defining access to task resources. We de-
note P an authorisation policy for the MLA process. This task is a long-running
task and is expected to take 5 working days to complete. The Prosecutor is un-
available to execute this task due to illness, and will delegate it to a subordinate
involved in the MLA process. Assistant is a subordinate to Prosecutor in the
organisational role hierarchy. During delegation, the policy P is updated so that
user with role Assistant is now allowed to complete task T3. To that end, he
issues an access control request to the policy P to grant the access, and executes
the task T3. As such, users with roles Prosecutor and Assistant are here the
delegator and the delegatee, respectively.

The authorisation policy P needs to reflect the new requirements for dele-
gation. In order to derive a delegation policy from the existing policy, we have
to specify additional authorisation rules to support delegation, where a rule
defines the policy decision effect (e.g., Permit, Deny). Considering a user-to-
user delegation, we motivated that such delegation is done in ad-hoc manner,
thereby supporting a negotiation protocol. We consider negotiation as a funda-
mental step for delegation. It involves all the principals (delegator and delegatee)
and negotiation specifications (e.g., time, evidence). Our intention is to envisage
a wide-ranging request that gives flexibility for the delegation request. Subse-
quently, such specifications have to be included in the delegation policy to define
specific conditions to validate the policy decision effect.

Returning to our example, the delegator Prosecutor sends a delegation re-
quest for all users members of role ”Assistant”. This defines a push delegation
mode, where a delegatee is chosen dynamically based on the negotiation step.
An acceptance of delegation inquires a new access control enforcement in the
existing policy, thereby adding a new authorisation rule for the delegatee under
defined conditions (i.e., time) and/or obligations (i.e., evidence) agreed between
the delegation principals. The Prosecutor may need to review all the transla-
tions done by his Assistant for validation. Validation is done based on evidence
defined during negotiation. Evidence can be related to the language of trans-
lated documents or the number of translated documents within 5 day. To that
end, an authorisation rule permitting the access (e.g, read, write, execute) to the
legal document in the MLA Information Service, is constrained by an obligation
allowing to investigate whether evidence were satisfactorily met. If however,

138 K. Gaaloul et al.

Fig. 1. MLA delegation scenario

evidence are not satisfied, a revoke action may be triggered including a deny
result for the previous policy effect.

In traditional access control frameworks no mechanism exists that would sup-
port such delegation constraints. Delegation constraints are meant to automate
delegation policies from existing policy specifications. Accordingly, it is not pos-
sible to foresee a deny rule for revocation during the policy definition. Moreover,
a manual review of the current access control rights and task executions is costly,
labor intensive, and prone to errors. With an automated mechanism, when the
policy changes to reflect delegation, the delegation policy will be derived auto-
matically based on specific facts related to the delegation process. A delegation
process defines a task delegation life cycle within the existing process. It is en-
riched with additional constraints to be compliant with the organisational poli-
cies. Organisational policies establish a set of security policies, that regulate how
the business process and resources should be managed. Delegation constraints
will inquire the need to support specific interactions that would be automatically
captured, and specified in the delegation policies for appropriate actions. We do
believe that such interactions are intermediate states in the delegation process
driven by specified events to control the delegation behaviour within a workflow.

Dynamic Authorisation Policies for Event-Based Task Delegation 139

3 The Proposed Framework

The scope of the paper is to investigate the potential of delegation events to
ensure a secure task delegation within a workflow. Securing delegation involves
the definition of authorisation policies which are compliant with the global pol-
icy of the workflow. Therefore, these delegation events will imply appropriate
authorisations on the delegatee side for further actions as well as contain spe-
cific constraints for those actions (e.g., mode, time, evidence). In order to tackle
these problems we need to address two important issues, namely allowing the
delegation task to complete, and having a secure delegation within a workflow.
To that end, we introduce a delegation model that forms the basis of what can
be analysed during the delegation process in terms of monitoring and security.

The monitoring of task delegation is an essential step to ensure delegation
completion. A delegated task goes through different states to be terminated.
States depends on generated events during the delegation life cycle. Events such
as revoke or cancel are an integral part of the delegation behaviour. Revoking
a task may be necessary when a task is outdated or an access right is abused.
Moreover, additional events such as validate may be required when a delegation
request is issued under a certain obligation where the delegatee has to perform
specific evidence to validate the task execution. For instance, the delegation of
T3 can generate evidence related to the number of translated documents within
a period of 5 day. Subsequently, evidence validation will be an important step
in the delegation process. Dealing with that, we came up with an event-based
task delegation model (TDM) that can fulfill all these requirements. Our model
aspires to offer a full defined model supporting all kind of task delegation for
human oriented-interactions [3].

Additionally, we consider task delegation as an advanced security mechanism
supporting policy decision. We define an approach to support dynamic delega-
tion of authority within an access control framework. The novelty consists of
reasoning on authorisation based on task delegation events, and specifying them
in terms of delegation policies. When one of these events changes, our access pol-
icy decision may change implying dynamic delegation of authority. Existing work
on access control systems remain stateless and do not consider this perspective.
We propose a task delegation framework to support automated enforcement of
delegation policies. Delegation policies are defined from existing policy and are
specified from triggered events. For instance, T3 evidence are not satisfied and
the validation will trigger the event revoke for the delegatee. T3 is not anymore
authorised to be executed by the delegatee. In this case, another rule has to be
integrated in policy with an effect of deny for the authorisation.

In order to control the delegation behaviour and to specify its authorisation
policies in an automated manner, we gather specific events that will define both
the task execution path and the generated policies for the delegation of author-
ity. Using Event Calculus, we will present a technique to monitor the delegation
execution. Afterwards, we will briefly discuss the event calculus formalism to gen-
erate delegation policies, and finally, we explain how generated policies change
dynamically in response to task delegation events.

140 K. Gaaloul et al.

4 Task Delegation Model (TDM)

In this section, we present our task delegation model to monitor the delegation
execution. Our model is based on events that covers different aspects of dele-
gation. It defines how delegation request is issued and then executed depending
on delegation constraints. The idea is to offer a technique to monitor delegation
execution based on the triggered events. Using Event Calculus, we can foresee
the delegation behaviour within its process.

4.1 Introduction to TDM

First, we present a detailed model of task execution that illustrates the delegation
process. The task life cycle is based on additional events. The figure below depicts
a state diagram of our TDM from the time that a task is created through its final
completion, cancellation or failure. It can be seen that there are series of potential
states that comprise this process. A task, once created, is generally assigned to
a user. The assigned user can choose to start it immediately or to delegate it.
Delegation depends on the assignment transition, where the assigned user has
the authority to delegate the task to a delegatee in order to act on his behalf.

Our model is based on events that covers different aspects of delegation. It
defines how a delegation request is issued. Pull mode assumes that a delegator
has at his disposal a pool of delegatees to be selected to work on his behalf. Push
mode assumes that a delegator is waiting for an acceptance from a potential
delegatee [4]. Moreover, delegation of privileges can be classified into grant or
transfer [7]. A grant delegation model allows a delegated access right (privileges)
to be available for both delegator and delegatee. As such, the delegator is still
having the control to validate or revoke the task, and the delegatee to execute
it. However, in transfer delegation models, the ability to use a delegated access
right is transferred to the delegatee; in particular, the delegated access right is
no longer available to the delegator. There is no validation required and the task
is terminated (complete/fail) by the delegatee.

Each edge within the diagram is prefixed with either an S or U indicating
that the transition is initiated by the workflow system or the human resource
respectively, with (u1,u2) ∈ U where U is a set of users, u1 the delegator and u2
the delegatee. In the following, we define a task delegation relation as follows:

Definition 1. We define a task delegation relation RD = (t,u1,u2,DC), where t
is the delegated task and t ∈ T a set of tasks that composes a workflow, and
DC the delegation constraints.

For instance, delegation constraints can be related to time or evidence specifica-
tions. Moreover, a role hierarchy (RH) defines the delegation relation condition
in a user-to-user delegation. Returning to the example, the delegation relation
(T3,Prosecutor,Assistant,(RH,5 days)) ∈ RD.

Dynamic Authorisation Policies for Event-Based Task Delegation 141

4.2 Modelling Task Delegation in Event Calculus

Background and motivations: The proposed approach for the representation
of task delegation process relies on the Event Calculus (EC) [8]. The choice of EC
is motivated by several reasons for delegation. Actually, given the representation
of the task delegation model, policies and the corresponding events that trigger
policy changes specified in the EC, an event calculus reasoner can be used to
reason about them.

Event Calculus is a logic programming formalism for representing events and
is being widely used for modeling different aspects such as flexible process design,
monitoring and verification [9]. It comprises the following elements:A is the set of
events (or actions),F is the set of fluents (fluents are reified1), T is the set of time
points, and X is a set of objects related to the particular context. In EC, events
are the core concept that triggers changes to the world. A fluent is anything
whose value is subject to change over time. EC uses predicates to specify actions
and their effects. Basic event calculus predicates used for modelling the proposed
framework are:

– Initiates(e, f, t) - fluent f holds after timepoint t if event e happens at t.
– Terminates(e, f, t) - fluent f does not hold after timepoint t if event e hap-

pens at t.
– Happens(e, t) is true iff event e happens at timepoint t.
– HoldsAt(f, t) is true iff fluent f holds at timepoint t.
– Initially(f) - fluent f holds from time 0.
– Clipped(t1, f, t2) - fluent f was terminated during time interval [t1, t2].
– Declipped(t1, f, t2) - fluent f was initiated during time interval [t1, t2].

The reasoning modes provided by event calculus can be broadly categorised into
abductive, deductive and inductive tasks. In reference to our proposal, given a
TDM and authorisation policies one may be interested to find a plan for task del-
egation, that allows to identify what possible actions (policy changes) will result
from the task delegation and may opt to choose the optimal plan in terms of min-
imal policy changes, this leads to the ”abduction reasoning”. Then, one may also
be interested to find out the possible effects (including policy changes) for a given
set of actions (a set of events that will allow task delegation), this leads to the
choice of ”deduction reasoning” and using the event calculus is thus twofold.

The event calculus models discussed in this paper are presented using the
discrete event calculus language [10] and we will only present the simplified
models that represent the core aspects. In the models, all the variables (such as
task, time) are universally quantified and in case of existential quantification, it
is represent with variable name within curly brackets, {variablename}.

Event calculus based model: The basic entities in the proposed model are
tasks. In terms of discrete event calculus terminology they can be considered
1 Fluents are first-class objects which can be quantified over and can appear as the

arguments to predicates.

142 K. Gaaloul et al.

Fig. 2. Task delegation model

as sorts, of which instances can be created. Then, each task can be in different
states during the delegation execution. In reference to the task delegation model
presented earlier (see Figure 2), the possible task states include Initial, Assigned,
Delegated, Completed and others. As task states change over time, they can
thus be regarded as fluents in event calculus terminology. Further, the state
change is governed by a set of actions/events and in relation to task delegation
model, the task state changes from Initial to Assigned as a result of assign
event occurring. Finally the task delegation model introduces a set of orderings,
such as the state of a task cannot be assigned, if it is not created earlier. In
reference to event calculus model, we will introduce a set of axioms to handle
these dependencies. The event calculus model below introduces the fluents, basic
events and dependency axioms:

The event calculus model presented above, first defines sort and fluents that
marks the different task states. Then we define an event Create(task), and an
Initiates axiom that specifies that the fluent Initial(task) continues to hold after
the event happens at some time. Similarly, we define the event/axiom for the

sort task
fluent Initial(task), Assigned(task), Delegated(task), Started(task)...

event Create(task)
[task, time] Initiates(Create(task), Initial(task) ,time).
event Assign(task)
[task, time] Initiates(Assign(task), Assigned(task) ,time).
[task, time1] Happens(Assign(task), time1) → {time2} HoldsAt(Initial(task), time2)
& time1 > time2

Fig. 3. Event calculus based task delegation model

Dynamic Authorisation Policies for Event-Based Task Delegation 143

assignment event and fluent. We further introduce an axiom that specifies that
in order to assign some task at time1, that task must already be created and thus
in Initial state at time2, and time1 is greater than time2. In a similar fashion,
we can define events and associated Initial axioms for the complete TDM model,
space limitations restrict us to discuss them further.

For the basic event calculus model above, the solutions (plans) returned by the
reasoner may also include the trivial plans which does not enforce the delegation
and directly start or abort the task once assigned. In order to give the user
ability to choose the delegation mode once the task is assigned (see Figure 2),
we enrich the model to include the following axioms:

[task, time] !Happens(Abort(task), time).
[task, time] !Happens(Start(task), time).
[task, time] !Happens(PullDelegate(task), time).

Fig. 4. Delegation mode choice

The event calculus model above, specifies that the task does not either Start,
Abort or requires PullDelegation once assigned (and thus the only option for
the reasoner is to conclude that the model requires a PushDelegation mode).
We can similarly restrict the delegation permission (Grant/Transfer), once the
task is in the WaitingCompletion state.

5 Authorisation Policies for TDM

In this section, we analyse security requirements that need to be taken into ac-
count to define delegation policies based-events. Additional requirements such
as pull/push mode and grant/transfer type may be a source to a policy change
during delegation. Using Event Calculus, we present a technique capable of com-
puting and generating new policy rules automatically.

5.1 Building Policies for Delegation

We define delegation transitions as events ruling delegation behaviour. The inter-
nal behaviour is based on events defined in our TDM, and may be a source to a
policy change, thereby requiring the integration of additional authorisation rules.

Definition 2. We define a policy P = (target,rule,C), where target defines where
a policy is applicable, rule is a set of rules that defines the policy decision result,
and C the policy constraints set that validates the policy rule. A delegation
policy is a policy PD = (targetD,ruleD,CD), where targetD = RD, ruleD ⊆ rule
and CD ⊂ C and CD = DC

⋃
events.

A policy rule may include conditions and obligations which are used to identify
various conditions or cases under which a policy may become applicable. Based on

144 K. Gaaloul et al.

Table 1. Push delegation policy rules-based events

Delegation Events Push Delegation Adding Policy Rule
Grant Transfer

u1:delegate � � No add
u2:accept � � Add rules based on execution type
u1:cancel � � No add

u2:execute/Grant � (Permit,Push,Grant:Evidence)
u2:execute/Transfer � (Permit,Push,Transfer:NoEvidence)

u1:validate � No add
u1:revoke � (Deny,Push,Grant)
u2:fail � (Deny,Push,Transfer)

u2:complete � No add

the result of these rules different policies can become applicable. We define a rule as
a tuple (effect,condition,obligation), where effect returns the policy decision result
(permit, deny), condition defines the delegation mode (push, pull) and obligation
checks evidence. In the following, we analyse security requirements that need to
be taken into account in a push mode to define delegation policy rules based on
our TDM (see Figure 2). We present a table that gathers specific events for push
delegation and analyse them in terms of policy rules. Adding rules in the workflow
policy will ensure the delegation of authority, thereby adding the required effect
(permit, deny) to the delegation policy rules (see Table 1).

Returning to the example, we can observe a dynamic policy enforcement dur-
ing delegation. Initially, T3 is delegated to the Assistant u2 and the delegation
policy for T3: PD = (RD,Permit,(Push,5 days)) (see Table 1/u2:execute/Grant).
In the meanwhile, the Prosecutor u1 is back to work before delegation is done
and is not satisfied with the work progress and would revoke what was performed
by his assistant so far. The Prosecutor is once again able to claim the task and
will revoke the policy effect (permit) for the Assistant. The event revoke will
be updated in the policy, and a deny rule is then updated in the policy. Thus,
the delegation policy for T3 needs to generate a new rule and the delegation
policy is updated to: PD = (RD,Deny,(Push,Grant)) (see Table 1/u1:revoke).
Note that the generated rule depends on the RD relation to check access rights
conflicts. We determined access rights granting based on the current task status
and its resources requirements using a task-based access control model for del-
egation presented in previous work [3]. Our access control model ensures task
delegation assignments and resources access to delegatees corresponding to the
global policy constraints.

5.2 Modelling Delegation Policies in Event Calculus

In order to model the delegation policy rules-based events, we introduce new
sorts called effect, condition, obligation to the event calculus model for the table
defined above and specify instances of each sort to be the possible effects, con-
ditions and obligations. Possible effects include Deny and Permit results, and

Dynamic Authorisation Policies for Event-Based Task Delegation 145

sort task, effect, condition, obligation
effect Permit, Deny condition Push, Pull obligation Grant, Transfer, ..

fluent RuleAdded(effect, condition, obligation)
event AddPolicyRule(effect, condition, obligation)
[effect, condition, obligation, time]
Initiates(AddPolicyRule(effect, condition,obligation),
RuleAdded(effect, condition, obligation) ,time).

;policy change
[task, time] Happens(PushDelegateAcceptExecuteGrant(task), time) →
Happens(AddPolicyRule(Permit, Push, Evidence), time)
[task, time] Happens(PushDelegateAcceptFailTransfer(task), time) →
Happens(AddPolicyRule(Deny, Push, Transer), time)

Fig. 5. Delegation policy

conditions define the Push and Pull mode. The possible instances for obliga-
tions include Grant, Transfer, Evidence and NoEvidence which are constraints
related to delegation type and mode. We further add an action AddRule(effect,
condition, obligation) and corresponding axiom and enrich the model to specify
the policy changes as a result of events (see Figure 5).

The policy change axioms presented above specify that once certain actions
happen, they cause policy change and thus we add a new rule to the global
policy. The name of actions/events depicts their invocation hierarchy, PushDel-
egateAcceptExecuteGrant is the execute event with a grant permission once the
PushDelegation request has been accepted by a delegatee and has to be validated
before completion (see Table 1).

6 Delegation Automation

In this section, we motivate our event-based approach supporting delegation au-
tomation. Automation is necessary for both the task completion and the policy
specification. Reasoning on delegation events using Event Calculus offers a solu-
tion to foresee the delegation execution and increase the control and compliance
of all delegation changes.

6.1 Benefits

Through this paper, we motivated the event-based approach for monitoring and
securing task delegation. We observed that based on specific assumptions we are
able to control any delegation request. We defined different valid orders of execu-
tions for delegation. The order of executions are computed automatically based
on events. Events can distinguish between the order of execution by checking
the delegation mode and type. For instance, an execution expects a validation
transition if and only if we are in a grant delegation.

146 K. Gaaloul et al.

Additionally, we defined a technique to specify delegation policies automati-
cally. By reasoning on specific events, we are able to address the policy stateless
issue. We can compute delegation policies from triggered events during task ex-
ecution. Policy automation offers many benefits. Actually, it reduces efforts for
users and administrators. Administrator efforts can be related to processes def-
inition and policies specification. Moreover, it increases control and compliance
of all delegation changes. Subsequently, a delegation request is accomplished
under constraints which are compliant to the global policy. For instance, time
constraint has to be taken into account when granting a temporal access for
delegation (i.e.,T3 deadline in Figure 2).

6.2 Reasoning

In our study, we utilise the Discrete Event Calculus Reasoner (DECReasoner2)
for performing automated commonsense reasoning using the event calculus, a
comprehensive and highly usable logic-based formalism. It solves problems effi-
ciently by converting them into satisfiability (SAT) problems.

The event calculus based on the task delegation model and policy specifica-
tions can be used to reason about the delegation process. As we discussed earlier,
the reasoning task can either be abductive or deductive. For the abductive rea-
soning, a plan is sought for the specified goal. In reference to our proposal, the
goal is to have either the task in completed, cancelled or failed state, so we add
the goal [task] HoldsAt(Completed(task),15) | HoldsAt(Failed(task),15) | Hold-
sAt(Cancelled(task),15) to the event calculus model presented above and add an
instance of the delegated task T3. The invocation of the event calculus reasoner
will then give us a set of possible solutions (called plans) for achieving the goal.
Let us first consider the case, when the chosen delegation mode is PushDelega-
tion with the grant of permissions to the delegatee, the event calculus reasoner
returns the plan as follows.

The execution plan follows the delegation of T3 described in the use case. It
shows the action that need to be taken for delegation and most importantly, it
shows the possible policy changes as a result of delegation. Steps from 1 to 11
depicts the delegation process execution. Having a push mode as a condition, we
derive the relevant rules to add in the policy. For instance, step 8 and 9 show
when a delegatee request the task T3 for execution. Delegatee acceptance went
through the ”WaitingDelegation”, ”WaitingAcceptance” and ”WaitingComple-
tion” states (see Figure 2). Based on those events, we deduce that an authorisa-
tion rule is added at this stage under a certain obligation (evidence validation),
and finally a task validation complete the delegation execution (see steps 10 and
11 in Figure 6).

All the defined axioms using the DECReasoner language can be given to the
reasoner for finding a solution (if exists) to support policy changes, which au-
tomatically orients these axioms into delegation rules. Then, given as inputs
the specification of the conditions and obligations expressed when adding rules

2 For more details: http://decreasoner.sourceforge.net/

Dynamic Authorisation Policies for Event-Based Task Delegation 147

1389 variables and 7290 clauses
relsat solver
1 model
—
model 1:
0 Happens(Create(T3), 0).
1 +Initial(T3).
2 Happens(Assign(T3), 2).
3 +Assigned(T3).
4 Happens(PushDelegate(T3), 4).
5 +WaitingDelegation(T3).
6 Happens(PushDelegateAccept(T3), 6).
7 +WaitingCompletion(T3).
8 Happens(PushDelegateAcceptExecuteGrant(T3), 8).
Happens(AddPolicyRule(Permit, Push, Evidence), 8).
9 +RuleAdded(Permit, Push, Evidence).
+WaitingValidation(T3).
10 Happens(PushDelegateAcceptExecuteGrantValidate(T3), 10).
11 +Completed(T3).
—
;DECReasoner execution details
0 predicates, 0 functions, 12 fluents, 20 events, 90 axioms
encoding 3.1s - solution 0.7s - total 5.8s

Fig. 6. Delegation plan

(using EC), the generated plan by the reasoner shows that either the authorisa-
tion rules result in a permit or a deny decision3.

In concrete policy changes, there are two possible scenarios. The first scenario
is the integration of a new authorisation policy because the conjectures (condi-
tions or obligations) are valid. The second one concerns cases corresponding to
an overriding of this rule to a deny result. Note that, we can leverage the trace
of DECReasoner to give all necessary information (events, fluents and time-
points) to help designer (policy administrator) to detect policies problems in the
deployed process. Finally, the event calculus model can further be enriched to
ensure minimal policy changes in the execution plans using auditing techniques.
Space limitations restrict us to discuss them further.

7 Related Work

The Workflow Authorisation Model (WAM) presents a conceptual, logical and
execution model that concentrates on the enforcement of authorisation flows in
task dependency and transaction processing [5]. In addition, Atluri et al. dis-
cussed the specification of temporal constraints in a static approach, which is

3 For space reasons, verification results and encoding details can be found at
http://webloria.loria.fr/∼kgaaloul/caise2010/DelegReasoner.rar

148 K. Gaaloul et al.

not sufficient to support workflow security in general and task delegation in
particular. This is due to workflows needing a more dynamic approach to syn-
chronise the flow of authorisations during the workflow execution. The Workflow
Authorisation Model does not discuss the order of operation flow such as our
task delegation process. In a workflow, we need to investigate the delegation con-
trol in different aspects such as tasks, events and data by leveraging delegation
constraints to support authorisation policies.

Role-based Access Control (RBAC) is recognised as an efficient access control
model for large organisations. Most organisations have some business rules re-
lated to access control policy [11]. In [12,13], authors extend the RBAC96 model
by defining some delegation rules. They proposed a flexible delegation model
named Permission-based Delegation Model (PBDM), where users may want to
delegate a piece of permission from a role [13]. However, neither RBAC nor
PBDM support offer a suitable solution to support task delegation constraints.
We do believe that constraints such as Push/Pull mode or Grant/Transfer privi-
leges are essential for delegation and have an impact on the security requirements
during policies specification [3].

The eXtensible Access Control Markup Language (XACML) is an XML-
based, declarative access control policy language that lets policy editors specify
rules about who can do what and when. Policies comprising rules, possibly re-
stricted by conditions, may be specified and targeted at subjects, resources and
actions. Subjects, resources, actions and conditions are matched with informa-
tion in an authorisation request context using attribute values and a rich set
of value-matching functions. The outcome or effect of a policy evaluation may
be Permit, Deny, NotApplicable or Indeterminate. In [14], Seitz and Firozabadi
added new structured data-types to express chains of delegation and constraints
on delegation using XACML. The main result of their research is an adminis-
trative approach that does not support ad-hoc delegation and lacks of explicit
support for task delegation constraints.

8 Conclusion and Future Work

Providing access control mechanisms to support dynamic delegation of authority
in workflow systems, is a non-trivial task to model and engineer. In this paper
we have presented problems and requirements that such a model demands, and
proposed a technique for delegation to specify delegation policies automatically.
The motivation of this direction is based on a real world process from an e-
government case study, where a task delegation may support changes during
execution. Delegation policies may change according to specific events. We de-
fined the nature of events based on task delegation constraints, and described
their interactions with policies decisions. When relevant events occur, we define
how delegation will behave and how policy rules change dynamically in response
to this change. Using Event Calculus formalism, we implemented our technique
and deployed a use case scenario for task delegation ensuring the required au-
thorisation policy changes.

Dynamic Authorisation Policies for Event-Based Task Delegation 149

The next stage of our work is the implementation of our framework using
XACML standard. We propose an extension supporting task delegation con-
straints with regards to the XACML conditions and obligations specifications.
Future work will look also at enriching our approach with additional delega-
tion constraints supporting historical records. Delegation history will be used to
record delegation that have been made to address administrative requirements
such as auditing.

References

1. Venter, K., Olivier, M.S.: The delegation authorization model: A model for the dy-
namic delegation of authorization rights in a secure workflow management system.
In: CCITT Recommendation X.420, Blue Book (2002)

2. Vijayalakshmi, A., Janice, W.: Supporting conditional delegation in secure work-
flow management systems. In: SACMAT 2005: Proceedings of the Tenth ACM
Symposium on Access Control Models and Technologies, pp. 49–58. ACM, New
York (2005)

3. Gaaloul, K., Charoy, F.: Task delegation based access control models for work-
flow systems. In: I3E 2009: Proceedings of Software Services for e-Business and
e-Society, 9th IFIP WG 6.1 Conference on e-Business, e-Services and e-Society,
Nancy, France, September 23-25. IFIP, vol. 305. Springer, Heidelberg (2009)

4. Gaaloul, K., Miseldine, P., Charoy, F.: Towards proactive policies supporting event-
based task delegation. In: The International Conference on Emerging Security In-
formation, Systems, and Technologies, pp. 99–104 (2009)

5. Atluri, V., Huang, W., Bertino, E.: An execution model for multilevel seccure
workflows. In: Proceedings of the IFIP WG11.3 Eleventh International Conference
on Database Security, pp. 151–165. Chapman & Hall, Ltd., London (1998)

6. Bertino, E., Castano, S., Ferrari, E., Mesiti, M.: Specifying and enforcing access
control policies for xml document sources. World Wide Web 3(3), 139–151 (2000)

7. Crampton, J., Khambhammettu, H.: Delegation in role-based access control. In:
Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp.
174–191. Springer, Heidelberg (2006)

8. Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Generation
Comput. 4(1), 67–95 (1986)

9. Zahoor, E., Perrin, O., Godart, C.: A declarative approach to timed-properties
aware Web services composition, INRIA internal report 00455405 (February 2010)

10. Mueller, E.T.: Commonsense Reasoning. Morgan Kaufmann Publishers Inc., USA
(2006)

11. Sandhu, R., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control
models. IEEE Computer 29(2), 38–47 (1996)

12. Barka, E., Sandhu, R.: Framework for role-based delegation models. In: ACSAC
2000: Proceedings of the 16th Annual Computer Security Applications Conference,
Washington, DC, USA, p. 168. IEEE Computer Society, Los Alamitos (2000)

13. Zhang, X., Oh, S., Sandhu, R.: PBDM: a flexible delegation model in RBAC. In:
SACMAT 2003: Proceedings of the Eighth ACM Symposium on Access Control
Models and Technologies, pp. 149–157. ACM Press, New York (2003)

14. Seitz, L., Rissanen, E., Sandholm, T., Firozabadi, B., Mulmo, O.: Policy admin-
istration control and delegation using xacml and delegent. In: Proceedings of 6th
IEEE/ACM International Conference on Grid Computing (GRID 2005), Seattle,
Washington, USA, November 13-14, pp. 49–54 (2005)

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 150–164, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A New Approach for Pattern Problem Detection

Nadia Bouassida1 and Hanêne Ben-Abdallah2

Mir@cl Laboratory,
1 Institut Supérieur d’Informatique et de Multimédia

2 Faculté des Sciences Economiques et de Gestion
Sfax University, Tunisia

Nadia.Bouassida@isimsf.rnu.tn, Hanene.BenAbdallah@fsegs.rnu.tn

Abstract. Despite their advantages in design quality improvement and rapid
software development, design patterns remain difficult to reuse for inexperi-
enced designers. The main difficulty consists in how to recognize the applica-
bility of an appropriate design pattern for a particular application. Design
problems can be found in a design with different shapes, unfortunately, often
through poor solutions. To deal with this situation, we propose an approach that
recognizes pattern problems in a design and that assists in transforming them
into their corresponding design patterns. Our approach adapts an XML docu-
ment retrieval technique to detect the situation necessitating a pattern usage.
Unlike current approaches, ours accounts for both the structural and semantic
aspects of a pattern problem. In addition, it tolerates design alterations of
pattern problems.

Keywords: Design pattern identification, design pattern problem, pattern
instantiation.

1 Introduction

It is irrefutable that the quality of a design highly impacts the quality of the code and,
possibly, the performance and maintenance of software products. This vital impor-
tance of design quality justifies several efforts invested to define design techniques
based on reuse of proven solutions, e.g., components, design patterns [6], frameworks
and models [23]. Reusing such solutions allows a designer to profit from prior ex-
periences to produce a higher quality design more rapidly. Design patterns are among
the highly advocated reuse techniques, which are also exploited in all recent reuse
techniques; they can be instantiated and composed by a designer in order to produce a
component, a framework and/or an application model.

However, to benefit from design patterns, a designer must have a thorough under-
standing of and a good practice with design patterns in order to identify the pattern
problem and thereafter the appropriate patterns to instantiate for its application. The
absence of such high-level of expertise motivated several researchers to propose assis-
tance through the detection of patterns (cf., [13]), spoiled patterns or anti-patterns (cf.,
[1], [2]) and pattern problems (cf., [10]) in a design. The proposed approaches differ
mainly in the pattern concepts they consider (i.e., only the structure, the structure and

 A New Approach for Pattern Problem Detection 151

the method invocations/declarations [21]) and the degree of structural discordance
they tolerate: exact match [12] or partial match [16], [13] [21]. These differences can
be justified by the objectives behind each approach: code improvement through re-
engineering (cf., [12],[9],[14]) vs. design improvement (cf., [8],[10]).

In our work, we are interested in improving design during its construction. In this
context, a designer (inexperienced with design patterns) may inadvertently specify a
design fragment that “resembles” a design pattern. The resemblance can be mani-
fested as: 1) a correct, but extended and/or reduced, structural instantiation of a pat-
tern; 2) a close representation of a pattern problem; or 3) a poor/spoiled instantiation
of a pattern. In fact, while a design pattern is considered as a “good” design solution
for a frequent design problem, the second and third cases are considered as “bad”
design solutions. In addition, a pattern problem can be found in different shapes and
forms; unfortunately, they are often represented in designs through poor solutions
[10]. Hence, we argue that a design pattern problem identification technique would
help designers in all three resemblance cases. One limit of existing identification
approaches is that they can handle only one of the above three resemblance cases with
no tolerance to variability in the design.

Furthermore, contrary to design patterns, the detection of design pattern problems
requires an analysis of the semantics in addition to the structure. Indeed, the names of
the classes and their operations distinguish one pattern problem from another. For
instance, even though the State and Strategy patterns have the same structure [3], they
represent different problems through different class and operation names. Hence, to
detect and correct a pattern problem, one needs to identify first the structure of the
problem (or one that is similar to it) and validate the identification through the prob-
lem’s semantics.

In this paper, we illustrate how our approach based on an XML document retrieval
technique (presented in [21]) can be fine-tuned to identify all three design resem-
blance cases. Being based on an XML retrieval technique, our approach identifies the
similarities between the structure of the pattern problem (i.e., pattern misuses) and a
given application design. It offers two advantages over graph/matrix matching and
constraint propagation based approaches used by other researchers. First, it can detect
similarities between a group of classes in the application and the pattern problem.
Secondly, it can tolerate controlled alterations of the pattern problem in the design.

The remainder of this paper is organized as follows. Section 2 overviews currently
proposed approaches for pattern and pattern problem identification. Section 3 pre-
sents our technique for pattern problem identification which adapts an XML retrieval
approach. Section 4 presents the pattern problem identification through examples of
pattern problems or bad solutions and their transformation into a pattern solution.
Section 5 summarizes the paper and outlines future work.

2 Related Work

2.1 Current Works for Pattern Detection

Several works have been interested in pattern identification but for different purposes.
The main purpose of detecting design patterns in a reverse engineering context is to

152 N. Bouassida and H. Ben-Abdallah

obtain information to understand and possibly restructuring a program. As an exam-
ple, the work of Tansalis [13] aims at the identification of design patterns as part of
the reengineering process. It proposes a design pattern detection methodology based
on similarity scoring between graph vertices. For this, it encodes the pattern and de-
sign information as matrixes and relies on a graph matching algorithm to detect the
pattern. Source code analysis is applied too late in the development process to offer a
valuable assistance in the design phase.

On the other hand, for design analysis purposes, Dong et al. [20] also use matrixes
to encode the pattern information. They use a template matching method to calculate
the normalized cross correlation between the two matrices. A normalized cross corre-
lation shows the degree of similarity between a design pattern and an analyzed part of
the design.

Albin-Amiot et al. [9] present a set of tools and techniques to help OO software
practitioners design, understand, and re-engineer a piece of software, using design-
patterns. A first prototype tool, Patterns-Box, provides assistance in designing the
architecture of a new piece of software, while a second prototype tool, Ptidej, identi-
fies design patterns used in existing software.

2.2 Current Works for Pattern Problem Detection

The work of Mili and Boussaidi [10] [15] represents the design problem that the pat-
tern is meant to solve explicitly. This explicit representation is one step towards the
automatic detection and application of patterns. In fact, this work aims at recognizing
occurrences of the problem solved by the design patterns which are then transformed
according to the solution proposed by the design pattern. It uses an MDA approach
where it identifies instances of pattern problems in a given model using a meta-model
of the problem, marks the appropriate entities, and finally applies an appropriate
transformation to get the pattern solution. The models are considered as graphs and
model transformations are a special kind of graph transformations. The transformation
is seen as a rule-based implementation of graph grammars. The current implementa-
tion is in the ECLIPSE Modeling Framework.

El-Boussaidi et al. [10] consider that design problems solvable by design patterns
are sometimes badly understood, which often produces poor solutions to modeling
requirements. To limit bad designs, this work proposes a semi-automatic tool for
marking models (with the variable parts), identifying pattern problems using con-
straint satisfaction techniques, and then transforming the design by instantiating the
appropriate design patterns. The tool relies on an explicit representation of design
problems solved by design patterns. It uses a meta-model of the pattern problem
structure to look for an exact match of the pattern problem. In other words, this work
does not handle incomplete designs or designs similar to the pattern problem. More-
over, since it does not capture the behavioral aspect of patterns, it may not be as effi-
cient for behavioral patterns.

Alikacem et al. [19] propose an approach to detect design problems using metrics
to evaluate the source code quality. Their objective is to detect violations of quality
rules in object-oriented programs. On the other hand, Ciupke [20] model the quality
rules using fuzzy rule based systems. This approach is used to detect automatically
design problems in an OO reengineering context using logic programming. In both of

 A New Approach for Pattern Problem Detection 153

these works, design problems are defined as violations of OO code-quality rules and,
hence, are of a lower level of abstraction than the design problems solved by design
patterns [10].

Bouhours et al. [2] propose a detection approach for “bad smells in a design” that
can be remodeled through the use of design patterns. The automatic detection and the
explanation of the misconceptions are performed thanks to spoiled patterns. A spoiled
pattern is a pattern that allows to instantiate inadequate solutions for a given problem:
requirements are respected, but architecture is improvable. Thus, this work considers
only the structural information, while the behavior is very important.

Moha et al. [4][5] are interested in design smells which are poor solutions to recur-
ring design problems. They present detection algorithms for design smells and vali-
date the detection algorithms in terms of precision and recall.

Overall, none of the proposed approaches and tools allows pattern problem detec-
tion and its similar structures using structural and behavioral information.

3 Pattern Problem Identification

As argued previously, the structural similarity to a pattern problem is insufficient to
decide upon the necessity of a particular design pattern. Semantics, in terms of pattern
class names and method declarations within the classes, is also required to confirm the
presence of a pattern problem and, hence, the necessity of a corresponding design
pattern.

This justifies the operation of our approach in three steps:

• The structural pattern problem identification: As mentioned in the intro-
duction, in order to tolerate structural variations of the pattern problem,
we adapt an XML document retrieval approach: we consider a pattern
problem as an XML query and the design as the target XML document
where the pattern problem is searched. This adaptation is feasible since
the transformation of UML diagrams into XML documents is straight-
forward and can be handled by all existing UML editors.

• The semantic correspondences of class names: it relies on linguistic and
typing information to identify the classes of the pattern problem. It con-
firms the first step’s results and resolves any non deterministic identifica-
tion when necessary.

• The identification of method declaration patterns: one characteristic of
pattern problems is the repeated declaration of certain methods, for in-
stance, by redefining abstract versions, combining abstract methods, etc.

3.1 Structural Pattern Problem Identification

For this first step of pattern problem identification, we use the same XML technique
for the identification of a design pattern and which we presented in [21]. For the sake
of completeness of this paper, we next briefly review it and we will illustrate it
through an example in the next section.

In XML document retrieval, the document can be considered as an ordered, labeled
tree. Each node of the tree represents an XML element. The tree is analyzed as a set

154 N. Bouassida and H. Ben-Abdallah

of paths starting from the root to a leaf. In addition, each query is examined as an
extended query – that is, there can be an arbitrary number of intermediate nodes in the
document for any parent-child node pair in the query. Documents that match the
query structure closely by inserting fewer additional nodes are given more preference.

A simple measure of the similarity of a path cq in a query Q and a path cd in a
document D is the following context resemblance function [12]:

⎪
⎪
⎩

⎪⎪
⎨

⎧

+

+

=

dq

dq
q

dqR

cc

cc
cd

c

ccC

match not does if 0

 matches if
1

1

),(

where:

• |cq| and |cd| are the number of nodes in the query path and document path, re-
spectively, and

• cq matches cd if and only if we can transform cq into cd by inserting additional
nodes.

Note that the value of CR(cq, cd) is 1 if the two paths are identical. On the other hand,
the more nodes separate the paths, the less similar they are considered, i.e., the
smaller their context resemblance value will be.

In XML document retrieval in general, the context resemblance function CR is cal-
culated based on an exact match between the names of the nodes in the query and the
document paths. However, for pattern problem detection, the nodes representing the
classes in the design are application domain dependent, while those in the design are
generic. Thus, in our identification algorithm [21], we operate as follows:

• First, we need to calculate the resemblance values for the various matches be-
tween the class nodes in the query (pattern problem) and those in the design. In
addition, for a given path, we consider that the match between the pattern
problem path and the design path may not necessarily start at the root node; for
this, we need to consider all possible sub-paths of the design.

• Secondly, we need to take into account: 1) the number of times a given match
between two class nodes is used to calculate CR; and 2) the importance of each
relation in the pattern.

The structural resemblance between a pattern problem and a design starts by calculat-
ing the resemblance scores between each path of the pattern problem to all the paths
in the design (stored as matrix called CRMatrix). In this calculation, we assume that
the structural variability should be limited between the pattern problem and a poten-
tial instantiation in the design. That is, we assume that a design path may differ from
a pattern problem path by adding at most N nodes compared to the longest path of the
pattern problem. The larger the N, the more scattered the pattern problem would be in
the design.

In addition, to account for multiple matches of a class, the CRMatrix is normalized
with respect to the total number of classes in the design. Thus, the final result of the
structural identification algorithm is the matrix NormalizedCRMatrix whose columns
are the pattern problem classes and whose rows are the classes of the design. Given
this matrix, we can decide upon which correspondence better represents the pattern

 A New Approach for Pattern Problem Detection 155

problem instantiation: For each pattern problem class, its corresponding design class
is the one with the maximum resemblance score in the NormalizedCRMatrix. There
might be more than one such class. This non-deterministic correspondence could be
resolved through the following step, which is the semantic correspondence of class
names.

Note that in a worst case instantiation, each pattern problem class must be matched
to at least one class in the design; thus, on average, the sum of the normalized resem-
blance scores of the matched classes should not be less than the number of classes in
the pattern divided by the number of classes in the design.

3.2 Semantic Correspondences of Class Names

In order to identify different pattern problems, we have to determine the correspon-
dences between the class names. This part differs from our previous pattern identifica-
tion approach [21]. For design pattern identification, recognizing the structure and
the behavior of the pattern is sufficient. However, in a pattern problem, the class
names reflect semantic relationships and the presence of methods in general and in
some cases the presence of the same method in different classes is very important.

Thus, we propose to determine semantic correspondences between the class names
by using an adapted version of our class name comparison criteria to construct
frameworks [22]. These latter express linguistic relationships between class names.
We define five types of relations between classes (however, the list can be extended):

• N_equiv(C1,...,Cn): implies that the names are either identical or synonym, e.g.,
Person-Person and Individual-Person.

• N_variation(C1,...,Cn): implies that the names are a variation of a concept, e.g.,
employee-contractual, employee-permanent, employee-vacationer.

• N_comp(C1; C2,...,Cn): implies that the name C1 is a composite of the compo-
nents C2,…,Cn, e.g., House- Room.

• Gen_Spec(C1; C2,...,Cn): implies the name C1 is a generalization of the specific
names C2 ,…, Cn, e.g., Person-Employee.

• Str_extension (C1; C2): implies that the name C1 is a string extension of the
name of the class C2, e.g., XWindow- IconXWindow.

The determination of the above linguistic/semantic relations can handled through
either a dictionary (e.g., Wordnet [24]), or a domain ontology when available.

3.3 Method Declaration Pattern Identification

The structural resemblance and the name comparison steps managed in the previous
sections are insufficient to identify the design problems. To determine the overall
resemblance, we combine theses steps with method identification. In fact, in some
pattern problems, the presence of methods repeated within a subset of classes in a
particular pattern is essential. This last step should reinforce the quality of the identi-
fication results.

To determine the presence of methods in a design D and a pattern problem Pb,
we will compare the method names for each pair of classes that were already identi-
fied as similar during the structural and semantic identification steps. First, note that,

156 N. Bouassida and H. Ben-Abdallah

according to our DTD, each XML path for the class methods is composed of the class
name node, the XML tag “method” node and the method name. Thus, the resem-
blance score function is not very useful.

Instead, to compare the method declaration pattern, we proceed as follows: First,
for each class Cp in Pb that is matched to a class Cd in D, we derive from the path
starting at Cp a set of paths representing all possible matches with the methods in Cd;
these paths will be directly compared to all the paths in D. Secondly, the comparison
results are collected into a matrix where the columns are the derived pattern problem
paths and the rows are the design paths. A perfect match occurs when each column of
this matrix contains at least one. A column with all zeros indicates a missing method;
that is, the design lacks the redefinition of this pattern problem method and the pattern
problem should therefore be reconsidered.

Note that, in addition to detecting missing re-declaration of methods, our approach
tolerates the declaration of additional methods in the design.

4 Pattern Problem Identification Examples

To illustrate the steps of our approach for pattern problem identification, let us con-
sider two examples: the bridge pattern problem and an altered version of this problem.

4.1 The Bridge Problem Case

The Bridge pattern (Figure 1) generally consists of three roles: Abstraction, Imple-
mentor, and ConcreteImplementor. The Implementor class provides an interface for
the Abstraction class. Its children, ConcreteImplementor, need to implement the
interface.

The Bridge pattern applies when an abstract class defines the interface to the
abstraction and concrete subclasses implement it in different ways. Consider the im-
plementation of a window abstraction in a user interface toolkit (Figure 2). This

Fig. 1. The Bridge pattern[6]

 A New Approach for Pattern Problem Detection 157

Window

DrawText()
DrawRect()

IconWindow

DrawBorder()

PMWindow

DrawText()
DrawRect()

XWindow

DrawText()
DrawRect()

PMIconWindow

DrawText()
DrawRect()
DrawBorder()

XIconWindow

DrawText()
DrawRect()
DrawBorder()

Fig. 2. A design that could be improved by the Bridge pattern

abstraction should enable us to write applications that work on both the XWindow
system and IBM's presentation manager (PM), for example. Using inheritance, we
could define an abstract class Window and subclasses XWindow and PMWindow that
implement the window interface for different platforms. However, it is inconvenient
to extend the window abstraction to cover different kinds of windows or new plat-
forms. In the example, the IconWindow is a subclass of Window that specializes the
window abstraction for icons. To support IconWindows for both platforms, we have
to implement two new classes XIconWindow and PMIconWindow. The bridge pat-
tern solves this problem by putting the window abstraction and its implementation in
separate class hierarchies as shown in Figure 3.

Window
Window: WindowImp

DrawText()
DrawRect()

IconWindow

DrawBorder()

PMWindow

DevDrawText()
DevDrawRect()

WindowImp

DevDrawText()
DevDrawRect()

XWindow

DevDrawText()
DevDrawRect()

imp

Fig. 3. The solution with the bridge pattern

158 N. Bouassida and H. Ben-Abdallah

Note that, at an abstract level, the Bridge pattern problem applies when : 1) there is
an abstract class A with at least two levels of inheritance underneath it, and 2) one of
the inheriting classes, say B, adds specific methods and has one or more inheriting
classes (say C and D) redefining the methods of A and B.

An abstraction of the Bridge pattern problem is illustrated in Figure 4. We next il-
lustrate the steps of our identification approach, which can be applied to improve the
design fragment shown in Figure 2.

Abstraction

+Operation1()

RefinedAbstraction

+OperationRefined()

RefinedAbstractioImplementorA

+Operation1()
+OperationRefined()

ImplementorA

+Operation1()

ImplementoB

+Operation1()

RefinedAbstractionImplementorB

+Operation1()
+OperationRefoned()

Fig. 4. Abstraction of the pattern problem

A) The structural identification step

The first step relies on the computation of resemblance function scores between the
XML paths of the pattern problem and the design. The XML tree of the design is
illustrated in a graphical format in Figure 5.

A sample of the context resemblance scores of the paths of the design (Figure 2)
with the Bridge pattern problem paths (Figure 4) are shown in Table1. The class
names are abbreviated because of space limitations.

inherits

IconWindow

Window

inherits

PMWindow

inherits

XWindow

inherits

XIconWindow

inherits

PMIconWindow

Fig. 5. XML trees for the design (Figure 2)

 A New Approach for Pattern Problem Detection 159

Table 1. Context similarity function scores

Abst
inherits

RefAbst RefAbst
inherits

RefAbstImpA RefAbst
inherits

RefAbstImpB
Window

inherits

IconWindow

CR(cq , cd) =1
if Abst=Window

RefAbst=IconWindow

CR(cq , cd) =1
if Refabst=Window

RefAbstImpA= IconWindow

CR(cq , cd)=1
if RefAbst=Window

RefabstImpB=IconWindow

IconWindow
inherits

 XIconWindow

CR(cq , cd)=1
if Abst=IconWindow
RefAbst=XIconWindow

CR(cq , cd) =1
if RefAbst= IconWindow
RefAbstImpA=XIconWindow

CR(cq , cd)) =1
if RefAbst=IconWindow

RefAbstImpB=XIconWindow

IconWindow
inherits

 PMIconWindow

CR(cq , cd)=1
if Abst= IconWindow
RefAbst=PMIconWindow

CR(cq , cd)=1
if RefAbst = IconWindow
RefAbstImpA= PMIconWindow

CR(cq , cd)) =1
if RefAbst=IconWindow
RefAbstImpB=PMIconWindow

Once the above context resemblance scores are computed, we find the normalized
similarity matrix which sums up the values of the context resemblance scores for each
class in the design with respect to a class in the pattern problem and divides it by the
number of classes in the design. In our example, we obtain the following normalized
similarity matrix:

 /6

1

1

75.1

75.1

0

0

11 110

11 110

75.12.75 75.175.10

75.11.75 2.751.750

01 156

00 0 10 15

XWindow

PMWindow

owPMIconWind

wXIconWindo

IconWindow

Window

 Design) atternPb,CRMatrix(PNormalized

 ImpBImpA BRefAbstImpA RefAbstImpRefAbst Abst

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

The normalized CR matrix identifies the Bridge pattern problem and indicates that the
class Window matches the Abst class, the class IconWindow is the RefAbst class, XI-
conWindow is refAbstImpA, PMIconWindow is refAbstImpB. However, note that the
class PMWindow and XWindow were identified as either ImpA or ImpB since the
resemblance score of the classes is equal to 1, while their resemblance score to re-
fAbstImpA is equal to 1.75 which was already identified as XIconWindow. The next,
semantic-based correspondence step will assist in deciding the best match and validat-
ing the determined matches.

B) Semantic correspondence

In the pattern problem abstraction, the semantic correspondence of class names uses
the following relations:

• Str_extension(implementorA;RefinedAbstractionImplementorA),
• Str_extension (RefinedAbstraction;RefinedAbstractionImplementorA),
• Str_extension (implementorB;RefinedAbstractionImplementorB),
• Str_extension (RefinedAbstraction; RefinedAbstractionImplementorB)

Now, we verify that these semantic relations exist for the classes of the design
that were identified by the structural step. In fact, in the design fragment (Figure 2),
we noticed that the class names of the inheritance hierarchy at the second level

160 N. Bouassida and H. Ben-Abdallah

(i.e., XIconWindow and PMIconWindow) are composed of the class names of the
hierarchy at the first level (i.e., IconWindow et PMWindow). In addition, the follow-
ing semantic relations hold:

• Str_extension(XWindow; XIconWindow),
• Str_extension(IconWindow; XIconWindow),
• Str_extension (PMWindow; PMIconWindow), and
• Str_extension (IconWindow; PMIconWindow)

Thus, we can deduce that this is a Bridge pattern problem.

C) Method declaration pattern identification

The third step in our pattern problem identification examines the respect of the
method presence pattern among the identified classes. That is, this step identifies if
the methods are present in the design as required in the pattern problem abstraction.

In the Bridge problem abstraction, the classes XIconWindow and PMIconWindow
implement the methods of the abstract class IconWindow and those of XWindow and
PMWindow, respectively.

Due to space limitation, Table 2 shows a sample of the resemblance function scores
comparing the Design of Figure 2 and the Bridge pattern problem abstraction (Figure 4).

Recall that this step uses the identification results of the previous two steps. For
example, since the class Window was identified as Abstraction, then we have either
operation1=DrawText() or operation1=DrawRect(). Also since RefinedAbstraction is
IconWindow, then we have Operationrefined= DrawBorder().

Table 2. Identification of method declaration patterns

Abstraction

contains

DrawText

Abstraction

contains

DrawRect

ImplementorA

contains

DrawText

ImplementorB

contains

DrawText
…

Window

contains

DrawText()

1 0 0 0

Window

contains

DrawRect()

0 1 0 0

IconWindow

contains

DrawBorder()

0 0 1 0

XWindow

contains

DrawText()

0 0 0 1

PMWindow

contains

DrawText()

0 0 0 0

XWindow

contains

DrawRect()

0 0 0 0

PMWindow

contains

DrawRect()

0 0 0 0

 A New Approach for Pattern Problem Detection 161

Now, to conduct this last identification step, we substitute the method names of the
problem abstraction by their potentially equivalent methods in the design (the various
paths derivation step). Then, we verify that the presence of the methods in the design
is conforming to the pattern problem abstraction: For a design to cover all the meth-
ods of the pattern problem, we need to find, in each column, at least one entry in this
table that has the value of 1. Otherwise, the column that is missing a one indicates that
the corresponding message exchange is missing in the design and the pattern problem
identification is reconsidered.

On the other hand, our approach tolerates additional, methods in the design. In our
example, we tolerated the additional method DrawRect().

At the end of the method declaration pattern identification step, the designer has
more confidence in the results of the structural and semantic name identification
steps.

4.2 Identification of an Altered Bridge Pattern Problem

In this section, we show how our approach (unlike others) can detect altered/similar
pattern problems. Let us consider the altered version of the Bridge pattern problem as
abstracted in Figure 4; and let us consider the design fragment of Figure 6 to analyze.
In fact, the classes Emptystyle, WithIconstyle and Applicativestyle are added, yet it
remains an instance of the Bridge pattern problem. In addition, we omitted the meth-
ods in Figure 6 and we illustrate the pattern problem identification using the structural
determination and the semantic correspondences of class names.

After collecting the context resemblance scores, the normalized similarity matrix
is computed.

 Abst RefAbst RefAbstImpA RefAbstImpB ImpA ImpB

 NormalizedCRMatrix(PatternPb, Design)

Window 26.75 12.5 0 0

EmptyWindow

WindowwithIcon

ApplicativeWindow

EmptyStyle

WithIconStyle

 ApplicativeStyle

XWindowEmpty

PMEmpty

XWindowWithIcon

PMWithIcon

XWindowApplicative

PMApplicative

=

0

11.5 8 1 1 1

11.5 8 1 1 1

11.5 8 1 1 1

6 8 2.75 2.75 1.75

6 8 2.75 2.75 1.75

 6 8 2.75 2.75 1.75

0 1.75 2.75 2.75 1.75

0 1.75 2.75 2.75 1.75

0 1.75 2.75 2.75 1.75

0 1.75 2.75 2.75 1.75

0 1.75 2.75 2.75 1.75

0 1.75 2.75 2.75 1.75

 /15

0

1

1

1

1.75

1.75

 1.75

1.75

1.75

1.75

1.75

1.75

1.75

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

We noticed in the normalized CRMatrix that the class Abstraction matches Win-

dow since it has the most important score (26.75). Moreover, the match score of the
classes EmptyWindow, WindowWithIcon, ApplicativeWindow, EmptyStyle, WithIcon-
Style, ApplicativeStyle to RefAbst is equal to (8), while the score matching these
classes to Abstraction is 11.5; however these six classes are identified as RefAbst,
since Window has been already identified as Abstraction with a greater matching
score. Finally, the classes PMEmpty, PMWIcon, PMApplicative are identified as Re-
fAbstImpB and the classes XwindowEmpty, XWindowWIcon, XWindowApplicative are
identified as RefAbstImpA.

162 N. Bouassida and H. Ben-Abdallah

Window

EmptyWindow WindowWithIcon ApplicativeWindow

EmptyStyle WithIconStyle
ApplicativeStyle

XWindowEmpty

PMWindowEmpty

XWindowWithIcon

PMWindowWithIcon

XWindowApplicative
PMWindowApplicative

XWindowPMWindow

Fig. 6. Altered Bridge pattern problem

The results of the structural determination will be confirmed by the semantic corre-
spondence step. For the semantic correspondence of class names, we remark that the
following semantic relations hold:

Str_extension(EmptyWindow;XWindowEmpty),

Str_extension (EmptyWindow;PMWindowEmpty)

Str_extension(WindowWithIcon;XWindowWithIcon)

Str_extension (WindowWithIcon;PMWindowWithIcon)

Str_ extension(ApplicativeWindow;PMWindowApplicative) and

Str_ extension(ApplicativeWindow;XWindowApplicative)

Thus, the class names of the inheritance hierarchy at the fourth level (i.e., XWin-
dowEmpty) are composed of the class names of the hierarchy at the second level (i.e.,
EmptyWindow, XWindow). As a conclusion, this step confirms that the design is also
a representation of the Bridge pattern problem.

Note that, even though the above examples use the inheritance relation, our
approach works in the same way for all types of UML class relations. The reader
is referred to [21] where the Composite pattern is illustrated with the composition
relation.

6 Conclusion

The paper first overviewed existing works for pattern problem detection. Secondly, it
presented a new approach based on a structural identification followed by a semantic
identification of class names (based on linguistic correspondences) and method pres-
ence pattern verification. This approach is applicable for all patterns and pattern prob-
lems that can be modeled through UML class diagrams or any UML profile language
whose class diagrams can be stored as XML documents.

 A New Approach for Pattern Problem Detection 163

The paper illustrated the proposed approach through the Bridge pattern problem. In
addition, to emphasize one advantage of our approach, it was applied to show its
capacity to detect also an altered version of the Bridge pattern problem. The illus-
trated examples were automatically treated through our prototype toolset.

The current version of our structural identification algorithm runs in an exponential
time in terms of the number of relations among the classes of the design. One practi-
cal way to manage this complexity is to decompose a large design and treat it one
fragment at a time; a simple heuristic decomposition strategy is to consider the con-
nected components of the class diagram, starting from an abstract class.

We are examining how to add more intelligence in the structural identification al-
gorithm: how to alleviate the analysis of paths by adding priorities, and how to reduce
the number of possible method correspondences in the last step.

References

1. Bouhours, C., Leblanc, H., Percebois, C.: Structural variants detection for design pattern
instantiation. In: 1st International Workshop on Design Pattern Detection for Reverse En-
gineering, Benevento, Italy (October 2006)

2. Bouhours, C., Leblanc, H., Percebois, C.: Bad smells in design and design patterns. Jour-
nal of Object Technology 8(3) (May-June 2009)

3. Kampffmeyer, H., Zschaler, S.: Finding the Pattern You Need: The Design Pattern Intent
Ontology. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007.
LNCS, vol. 4735, pp. 211–225. Springer, Heidelberg (2007)

4. Moha, N., Guéhéneuc, Y.G., Leduc, P.: Automatic generation of detection algorithms for
design defects. In: Uchitel, S., Easterbrook, S. (eds.) Proceedings of the 21st Conference
on Automated Software Engineering, September 2006, pp. 297–300. IEEE Computer So-
ciety Press, Los Alamitos (2006)

5. Moha, N., Guéhéneuc, Y.-G., Le Meur, A.-F., Duchien, L.: A domain analysis to specify
design defects and generate detection algorithms. In: Fiadeiro, J.L., Inverardi, P. (eds.)
FASE 2008. LNCS, vol. 4961, pp. 276–291. Springer, Heidelberg (2008)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of reusable
Object Oriented Software. Addisson-Wesley, Reading (1995)

7. Florijin, G., Meijers, M., Van Winsen, P.: Tool support for object oriented patterns. In:
Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 472–495. Springer,
Heidelberg (1997)

8. Bergenti, F., Poggi, A.: Improving UML design pattern detection. In: Proceedings of the
12th International Conference on Software Engineering and Knowledge Engineering
SEKE (2000)

9. Albin Amiot, H., Cointe, P., Guéhéneuc, Y.G.: Un meta-modele pour coupler application
et détection des design patterns. L’objet 8, 1–18 (2002)

10. El Boussaidi, G., Mili, H.: Detecting patterns of poor design solutions by using constraint
propagation. In: MODELS, Proceedings of the 11th International Conference on Model
Driven Engineering Languages and Systems (September 2008)

11. Pagel, B.U., Winter, M.: Towards pattern-based tools. In: Proceedings of EuropLop (1996)
12. Brown, K.: Design reverse-engineering and automated design pattern detection in Small-

talk. Technical Report TR- 96-07, University of Illinois at Urbana-Champaign (1996)
13. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T.: Design pattern detection

using similarity scoring. IEEE Transactions on Software Engineering 32(11) (2006)

164 N. Bouassida and H. Ben-Abdallah

14. Lee, H., Youn, H., Lee, E.: A design pattern detection technique that aids reverse engineer-
ing. International Journal of Security and Applications 2(1) (January 2008)

15. Mili, H., El Boussaidi, G., Salah, A.: Représentation et Mise en oeuvre de patrons de con-
ception par représentation explicite des problèmes. In: LMO, Suisse (2005)

16. Dong, J., Sun, Y., Zhao, Y.: Design pattern detection by template matching. In: SAC 2008,
Ceara, Brazil, March 16-20 (2008)

17. XML Metadata Interchange: OMG Document ad/98-07-03 (July 6, 1998)
18. Manning, C.D., Raghavan, P., Schütze, H.: An introduction to information retrieval. Cam-

bridge University Press, England (2008)
19. Alikacem, E., Sahraoui, H.A.: Détection d’anomalies utilisant un langage de description

règle de qualité. In: Rousseau, R., Urtado, C., Vauttier, S. (eds.) LMO 2006, pp. 185–200
(2006)

20. Ciupke, O.: Automatic Detection of Design Problems in Object-Oriented Reengineering.
In: TOOLS 30, pp. 18–32. IEEE Computer Society Press, Los Alamitos (1999)

21. Bouassida, N., Ben-Abdallah, H.: Structural and behavioral detection of design patterns.
In: International Conference on Advanced Software Engineering & Its Applications
(ASEA), Jeju Island, Korea, December 10-12. LNCS Proceedings. Springer, Heidelberg
(2009)

22. Bouassida, N., Ben-Abdallah, H., Gargouri, F.: Stepwise framework design by application
unification. In: IEEE International Conference on system man and Cybernetics, Tunisia
(2003)

23. http://www.omg.org/mda/
24. http://wordnet.princeton.edu/

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 165–179, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Comparing Safety Analysis Based on Sequence Diagrams
and Textual Use Cases

Tor Stålhane1, Guttorm Sindre1, and Lydie du Bousquet2

1 Dept of Computer and Info. Science, Norwegian Univ. of Sci. and Tech (NTNU)
2 Laboratoire d'Informatique de Grenoble (LIG)

{stalhane,guttors}@idi.ntnu.no, lydie.du-bousquet@imag.fr

Abstract. Safety is of growing importance for information systems due to in-
creased integration with embedded systems. Discovering potential hazards as
early as possible in the development is key to avoid costly redesign later. This
implies that hazards should be identified based on the requirements, and it is
then useful to compare various specification techniques to find out the strengths
and weaknesses of each with respect to finding and documenting hazards. This
paper reports on two experiments in hazards identification – one experiment
based on textual use cases and one based on systems sequence diagrams. The
comparison of the experimental results reveal that use cases are better for iden-
tifying hazards related to the operation of the system while system sequence
diagrams are better for the identification of hazards related to the system itself.
The combination of these two techniques is therefore likely to uncover more
hazards than one technique alone.

Keywords: safety analysis, sequence diagrams, misuse cases, experiment.

1 Introduction

Systems safety is concerned with the avoidance or mitigation of harmful accidents, as
opposed to security which addresses malicious attacks against the system. Safety has
traditionally been more of a concern for embedded systems than for information sys-
tems. However, increasing convergence and integration between different kinds of
systems, as well as trends towards ubiquitous information systems and “internet of
things” [1] means that the border between information systems and embedded sys-
tems is getting more blurred. An increasing number of safety-critical systems are to a
large degree realized in software. Thus, safety analysis of software gets more and
more important. Safety analysis needs to include a wide variety of participants – not
just the safety analysis specialists. Two important groups that always need to be in-
volved are the customers with their domain knowledge and the developers who have a
firm understanding of all the decisions needed to develop a software system.

As a consequence of this, the safety analysis must apply methods and documents
that are easy to understand for everybody involved. In our opinion, both sequence
diagrams and textual use cases belong to this category. It might, however, not be
without consequences to choose one over the other. It might be the case that one of

166 T. Stålhane, G. Sindre, and L. du Bousquet

these methods is uniformly better than the other or they may each have their strong
and weak sides. In any case, one or more experiments are needed in order to see how
these two methods behave when used as the starting point for a safety analysis. In
order to shed some light over this, we have run an experiment partly in Grenoble –
system sequence diagrams – and partly at NTNU – textual use cases.

The rest of this paper is structured as follows: Section 2 goes through related work.
Section 3 presents the two safety analysis techniques to be compared. Section 4 de-
scribes the experimental design and section 5 the analysis of the results. Section 6
discusses threats to validity, whereupon section 7 concludes the paper.

2 Related Work

As far as we have found out, there are few experiments comparing textual (mis)use
cases and sequence diagrams. This is no surprise, since there are few controlled ex-
periments about use cases to be found in the literature at all. There are experiments
comparing the effectiveness of representation languages, for instance ER or EER
diagrams with relational tuples [2]. However, the two forms of representation com-
pared contained the same information but were on different life-cycle levels, ER be-
ing an analysis stage language, while relational tuples belong to the design stage. The
relationship between use case diagrams and systems sequence diagrams is different:
both are requirements stage representations but the textual use case and the systems
sequence diagram have different focus. The textual use case focuses on the exchange
of messages between system and user, while the systems sequence diagram also in-
cludes the exchange of messages between system components.

An experiment more directly targeting the comparison of diagrams and tables and
textual representations is [3], confirming claims about advantages of diagrams previ-
ously made analytically in [4]. Experiments have also found diagrams superior for
presenting procedural instructions [5], which is closely related to conceptual model-
ing. More generally, the empirical evidence is not so consistently in favor of dia-
grams. As reported in [6], some experimental studies have shown advantages for
diagrams, but others have shown advantages for tables, or given mixed results. One
particular study also showed the outcome to be dependent on the subject group, busi-
ness students solving problems more effectively with tables while engineering stu-
dents solved problems more effectively with graphs [7].

There are several papers published on the use of UML diagrams as a basis for
safety analysis. A good example is [8], where Guiochet and Vilchis use the full range
of UML diagrams – use case diagrams, sequence diagrams, class diagrams, state dia-
grams and deployment diagrams. In [9] Long and Jinglun use event sequence charts
for safety analysis. C. Ren also uses several UML diagrams – among them the se-
quence diagram – for safety inspection of mine equipment [10]. Unfortunately, none
of authors have performed experiments. All three papers, and others related to the
same area, are case studies to see if the chosen diagrams can be used in a safety
analysis. Similarly, Allenby and Kelly propose a technique for safety analysis based
on scenarios [11].

 Comparing Safety Analysis Based on Sequence Diagrams and Textual Use Cases 167

A more comparative work is done by T.A. Alspaugh et al [12]. Their focus is un-
fortunately not safety problems but defects. What makes their paper interesting is that
they compare the ease of identifying defects using use cases, sequence diagram and
scenarios formulated in ScenarioML. Their conclusion is clear – scenarios are better
than both sequence diagrams and use cases. Their experiment had only four partici-
pants and no statistically significant results were thus obtained. On the other hand,
they ran a series of interviews with the participants and thus gained a lot of insight
into the reasons behind the results. The reason why use cases did not work well was
that “the numbering scheme for the steps can be confusing”. For the sequenced dia-
grams, some of the participants had problems with the notation – especially branches
and options. On the other hand, the participants had no problems with the Sce-
narioML documents which they found easy to read and understand.

In addition to the safety and reliability related experiments cited above, there has
been a lot of research on other facets of use cases such as authoring – see for in-
stance the well-known work of Achour et al [21] and the follow-up work of Cox
et al. [22].

3 The Techniques to Be Compared

3.1 Textual Use Cases – TUC

TUC can be used to identify possible failure modes, using the textual misuse case
analysis. The misuse case was originally proposed for collecting security require-
ments. They can, however, also be used for safety analysis where focus is on
accidents causing harm to the system and its environment. A simple example is an
automated system used to keep the water level in a tank constant while delivering
steam to an industrial process. This is done by filling the tank through one valve and
emptying it through another valve when needed. If the pressure in the tank exceeds
the critical pressure pre-set by the operator, a relief valve should open automatically.
The operator may also manually empty the tank (for instance if the relief valve fails to
work when the pressure becomes too high) or manually fill the tank (if the automatic
adjustment of water level does not work).

A misuse case such as “Set too high pressure” may have a “threatens” relationship
to one or more use cases – in this case “Set critical pressure”. It is also possible that
one misuse case may “aggravate” the effect of another, or that a use case may have a
“mitigates” relationship to that misuse case. An example of a textual representation is
shown in Table 1. Here, threats corresponding to misuse cases can be added in a third
column called “Threats”, and mitigations can be added in a fourth column. An essen-
tial idea of misuse case analysis is that the representation format causes only a limited
overhead if use cases are already applied in a project, which is often the case in main-
stream software projects. In addition, the informality and simplicity of the technique
makes it suitable for supporting brainstorming on threats at an early stage of devel-
opment. For a more complete coverage of misuse case analysis, the reader is referred
to [13] and [14].

168 T. Stålhane, G. Sindre, and L. du Bousquet

Table 1. Column format use case with safety issues for the boiler

Use case name “Empty tank manually”
User actions System response Threats Mitigations
 System alarms

operator of high
Pressure

System fails to raise
alarm;
Operator fails to notice
alarm

2 independent alarms;
Use both sound and
blinking lights

Operator issues
command to empty
tank

 Operator fails to react
(e.g., incapacitated?)
Operator gives wrong
command, e.g., filling
tank

Alarm backup
operator;
Auto sanity check,
disallow filling at high
Pressure

 System opens
valve to sewer

System fails to relay
command to valve;
Valve is stuck

Operator reads
pressure

 Operator misreads
and stops tank
emptying too soon

Maintain alarm
blinking until situation
normal

 Pressure returns
to normal

This is not achieved,
see exceptions

Operator stops tank
emptying and logs
the event. This ends
the use case.

Exceptional paths

 Opening valve is
insufficient to
normalize
pressure

Operator issues
command to reduce
temperature

 Operator gives wrong
command, e.g.,
increase temperature

Automatic sanity
check, disallow temp
increase at high
pressure

 Pressure returns
to normal

Operator logs the
event. This ends the
use case.

3.2 System Sequence Diagrams - SSD

The sequence diagram is an UML diagram used to show the dynamic properties of a
system. A sequence diagram shows the messages that are passed between two compo-
nents in a system. In order to be a strict sequence diagram, these two parts have to be
objects – instances of classes. In the early phases of system development, however, the
components used in the diagram can be e.g. GUI, database servers, internets or subsys-
tems. Sequence diagrams applied in this way are called system sequence diagrams or
SSD [15]. Even though they have no formal standing in the UML 2.0 definition they
are widely used in the industry. One of the factors that make them both useful in an
industrial context and important for our research on safety analysis is that the SSDs,
just as the textual use cases, can be constructed early in the development process.

 Comparing Safety Analysis Based on Sequence Diagrams and Textual Use Cases 169

An SSD is close to a textual use case and can be constructed using the same struc-
ture and words as a textual use case. The SSD has, however, one advantage over the
textual use cases. With the advent of UML 2.0 [16], sequence diagrams in general and
thus also the SSDs can contain alternatives – if….then…else… (alt or opt) and loops
– for… (loop). These constructs enable us to insert info into an SSD that it might be
difficult to include in a textual use case. The diagram below contains the same info as
the use case in table 1 except for the last two rows.

Fig. 1. SSD for the function shown in table 1

The SSD can be used for safety analysis by going through each message sent or re-
ceived and ask questions like “what will happen if the message is not sent” and “what
will happen if the message has the wrong content”?

4 The Experiment

4.1 Research Approach

Both our previous experiments have focused on the question “Is representation A
better than representation B for the identification of failure modes?” In both cases it
turned out that the answer was not a simple yes or no. Even though we could conclude
that in general representation A was better than representation B, there were still areas
where representation B was better and areas where they were equal. Thus, we will
look at both whether textual use cases are better than sequence diagrams and, if this is
the case, are there still areas where sequence diagrams are better? We will try to throw
some light over this by answering the following research questions:

• RQ1: Is TUC in general better then SSD for identifying failure modes?
• RQ2: If we conclude in RQ1 that one of the representations in general is bet-

ter than the other, are there still any problem areas where this does not hold?

170 T. Stålhane, G. Sindre, and L. du Bousquet

• RQ3: If we conclude in RQ2 that in general representation A is better than
representation B, then:

o RQ3-1: Are there still failure modes where representation B is bet-
ter than representation A?

o RQ3-2: What can be the reasons for this?

The two first of these research questions can be reformulated as hypotheses. In order
to test these hypotheses, we will use the t-test for RQ1 and proportion test for RQ2.
The reasons for these choices are that for RQ1 we need to compare the number of
failure modes identified while for RQ2 we need to compare the proportion of partici-
pants that have identified a single failure mode.

To use the proportion test, we define the following parameters:

• xi is the number of successes observed in sample i.
• πi is the portion of success events in sample i.
• ni is the size of sample i.
• Δ is the difference that we want to test for. In our case Δ is set to zero.
• π is the portion of successes in both samples viewed together – see equation (1).

21

21

nn

xx

+
+=π (1)

The proportion test is based on the following statistics, where z is assumed to be nor-
mally distributed (0, 1):

)
11

)(1(
21

21

nn

z

+−

Δ−−=
ππ

ππ
 (2)

RQ3-1 is answered by studying the results from the t-tests used to answer RQ2. How-
ever, when trying to answer RQ3-2 we will use the areas defined in our experiment
coding as a starting point. RQ3-2 cannot be answered using any statistical approach
since the focus is why – not what. Assuming that representation A in general is better
than representation B, we will do as follows:

1. For each failure mode where representation B is better than representation A,
write down the characteristics of the failure mode that can be related to both rep-
resentations.

2. Identify what it is in representation B that makes it easy to discovery the failure
mode and what it is in representation A that makes it difficult to discover.

3. If we are able to identify a convincing set of factors in the representations that re-
spectively hide and reveal the failure mode under consideration, we will claim that
the reason why the failure mode was found by the participants using representation
B and not by the participants using representation A stem from these factors.

4.2 Experiment Design

4.2.1 The Preparation
The experiment using SSDs were done at the University J. Fourier - Grenoble I (UJF),
France by the Laboratoire d’Informatique of Grenoble (LIG) and the experiments on

 Comparing Safety Analysis Based on Sequence Diagrams and Textual Use Cases 171

TUC were done in Trondheim at the department of Information and Computer Sci-
ence at NTNU. Since the participants in the two sites had different background, the
preparation phase for the two experiments differed while the rest of the experiment
design was the same at both sites.

At UJF, the participants were in the first year of a Master in Computer Sciences,
where courseware is offered in English1. Students were gathered in an auditorium,
where they received a short introduction on safety issues and safety analysis. An ex-
ample of safety analysis was illustrated. This part lasts 1 hour and 30 minutes. Then
participants were asked to fill in the pre-experiment questionnaire, read the document
and fill in the post-experiment questionnaire. They then had 1 hour and 30 minutes to
do it but most of the participants left the room before the end of the period.…

At NTNU, the participants were gathered in an auditorium where they receive a
short introduction to safety analysis and why it was important to be able to do this at
an early stage. They then had 15 minutes to refresh their knowledge of textual use
cases and misuse cases before filling in the pre-experiment questionnaire.

When the pre-experiment questionnaire was finished the participants worked on
their task at identifying failure modes based on the textual use cases and a system
diagram, showing the main components of the train control system and how the com-
ponents – radio, operators, trains and track side equipment – cooperated in order to
run the railway in a safe and efficient manner.

For both experiments, each participant documented the identified failure modes in
free text on the sheet of paper where the TUC or SSD was shown.

4.2.2 The Coding Process
The researchers read the failure mode descriptions and related it to one of the failure
modes used in the coding schema. If several failure modes could apply, the research-
ers reached a common understanding of the category that was more close to the par-
ticipant’s intentions. In order to reduce variation in the application of the coding
schema, all the forms turned in by the experiment participants were coded by the
same researcher and controlled by another. The coding schema was designed in ad-
vanced, based on an analysis of the failure mode categories used by the respondents in
pervious experiments. The schema has three levels and the top level contains the
following categories:

• OP – Operator problems
• CS – Computer system problems
• EP – Engineer problems
• MP – Maintenance personnel problems
• TC – Technical communication problems
• TE – Track-side equipment problems

Each of these categories has two or more subcategories. The subcategories also
have a set of sub-subcategories, which is not shown here. This coding schema has 104
failure modes and gave us a flexible way to categorise the experiment results. The
subcategories for operator problems – OP – are shown below:

1 http://mosig.imag.fr/MainEn/HomePage

172 T. Stålhane, G. Sindre, and L. du Bousquet

• OP100 Incoming messages
• OP200 Operator action
• OP300 Operator scheduling
• OP400 Operator equipment problems
• OP500 Operator knowledge
• OP600 Operator overload, e.g. due to panic
• OP700 Communication problems

The responses were registered in an Excel worksheet – each failure mode category at
the lowest level has a line in the worksheet and each participant has a column. The
entries for each participant are binary – found a certain failure mode or not. I.e. there
is no “bonus” for identifying the same failure mode several times.

5 Experiment Results and Analysis

The best participant in the TUC experiment found 25 failure modes while the one that
did worst found only 8. Thus, the identification probability ranges from 24% to 8%. For
those who used the SSD, the best participant found 19 failure modes while the one who
did worst found only 4. In percentages this gives us a range of 18% to less than 4%.

In order to test whether a difference between two representations is important, we
need to look at the significance level α and the effect size ES. Even though the signifi-
cance level – the p-values – are below 0.05, the difference may still be uninteresting if
the effect size is low. Thus, we will base our discussions both on the significance level
and the effect size. Let t be the value of the t statistics and df the number of degrees of
freedom. We will use the following expression to calculate the effect size ES:

df

t
ES

2= (3)

RQ1 is answered using the t-test. The result is as follows:

Table 2. t-test for total number of failure modes identified

t-Test: Two-Sample Assuming Unequal Variances

 TUC SSD

Mean 15.07 11.70

Variance 10.92 24.46

Observations 29.00 10.00

Hypothesized Mean Difference 0.00

Df 12.00

t Stat 2.01

P(T<=t) one-tail 0.03

t Critical one-tail 1.78

P(T<=t) two-tail 0.07

t Critical two-tail 2.18

 Comparing Safety Analysis Based on Sequence Diagrams and Textual Use Cases 173

Based on this, the answer to RQ1 is that the experiment participants using TUCs
found significantly more failure modes that those that used SSDs. The effect size is
1.16 which indicates a large effect.

Of the 104 failure modes, 70 were related to human behaviour, 28 were related to
the technical systems and six were related to operational conditions. If we look at
each category separately we find that the difference is significant only for the human
related failure modes with a p-value less than 0.01 and an effect size of 1.1. For the
two other categories, we find no significant differences.

To answer RQ2, we first need to consider the differences in proportion of experi-
ment participants that identify the failure modes for each main area.

TUC - SSD

-0,10

-0,05

0,00

0,05

0,10

0,15

0,20

O
P

1
0
0

O
P

2
0
0

O
P

3
0
0

O
P

4
0
0

O
P

5
0
0

O
P

6
0
0

O
P

7
0
0

C
S

E
P

1
0
0

E
P

2
0
0

E
P

3
0
0

E
P

4
0
0

E
P

5
0
0

E
P

6
0
0

E
P

7
0
0

M
P

1
0
0

M
P

2
0
0

M
P

3
0
0

M
P

4
0
0

M
P

5
0
0

T
C

T
E

Fig. 2. Frequency differences between TUC and SSD

Our answer to RQ2 is that everywhere where there is a statistically significant dif-
ference between the areas, failure mode identification based on textual use cases is
better or just as good as the one based on SSD with α = 0.10. TUC is significantly
better than SSD for the areas listed below:

Table 3. t-test for number of failure modes identified for each main area

Failure mode p-value ES
OP 300 Operator scheduling 0.02 0.88
OP 500 Operator knowledge 0.02 0.90
EP 500 Engineer knowledge 0.04 0.92
EP 700 Communication problems 0.02 1.15
MP 200 Maintenance action 0.01 1.01
MP 500 Maintenance personnel knowledge 0.00 1.22

We see that all the effect sizes are moderate to large. Note that a large part of the

areas where TUC is significantly better than SSD are related to knowledge and ac-
tions – factors that relate to how personnel use the system.

174 T. Stålhane, G. Sindre, and L. du Bousquet

In order to get a clearer picture of the experimental results related to RQ2, we need
to look at the results for each single failure mode. These results are shown in table 4
below, while the plot of individual failure modes shows the more detailed picture
shown in figure 3. We see that half of the frequency effect sizes are small – 0.10 and
that roughly a third are moderate to large – 0.30 to 0.50.

Table 4. Proportion tests for each failure mode

Failure mode p value Δfreq
OP 204 Wrong ack 0.067 0.10
OP 212 Do not save changes to schedule etc. 0.002 0.24
OP 302 Wrong train scheduling * 0.007 0.42
OP 501 Wrong situation analysis * 0.013 0.39
OP 503 Wrong interpretation of system’s functionality 0.067 0.10
CS 100 Does not save or deletes info 0.006 -0.46
EP 209 Enters wrong info to operator 0.094 0.29
EP 504 Lack of training * 0.006 0.21
EP 700 Communication problems * 0.067 0.10
MP 209 Enters wrong info * 0.003 0.46
MP 212 Do not save changes to schedule etc. * 0.067 0.10
MP 401 Lack of person-to-person trust or
 personnel conflicts

0.067 0.10

MP 402 Problems with telephone or radio 0.067 0.10
MP 501 Wrong situation analysis * 0.000 0.49
MP 504 Lack of training * 0.031 0.14
TC 400 Other technical communication problems 0.067 0.10

In order to answer RQ3, we start with the table above. As we see, the only failure

mode where SSD is significantly better than TUC is for CS100 – Does not save or delete
info. Thus, the answer to RQ3-1 is that for CS100, SSD is doing significantly better than
TUC. In addition we see that the frequency difference is 0.46, indicating a large effect.

TUC - SSD

-0,60

-0,40

-0,20

0,00

0,20

0,40

0,60

O
P

1
0

0

O
P

1
0

5

O
P

2
0

3

O
P

2
0

8

O
P

3
0

0

O
P

4
0

0

O
P

5
0

2

O
P

7
0

0

C
S

3
0

0

C
S

7
0

0

E
P

1
0

4

E
P

2
0

2

E
P

2
0

7

E
P

2
1

2

E
P

4
0

1

E
P

5
0

3

E
P

7
0

2

M
P

1
0

3

M
P

2
0

1

M
P

2
0

6

M
P

2
1

1

M
P

3
0

1

M
P

4
0

3

M
P

5
0

4

T
E

1
0

0

T
E

4
0

0

Fig. 3. Frequency differences for all failure modes

 Comparing Safety Analysis Based on Sequence Diagrams and Textual Use Cases 175

An alternative way to look at the results of the experiment is to consider all failure
modes that have been identified by more than 50% of the participants in each group.
This gives us the results shown in table 5.

Table 5. Top ten failure modes identified for each representation

Percentage of participants

 TUC SSD
OP209 82.76 80.00 CS400
CS400 79.31 70.00 OP209
EP209 79.31 60.00 CS100
EP102 72.41 60.00 CS700
EP702 65.52 50.00 OP203
MP209 65.52 50.00 CS300
OP302 62.07 50.00 EP102
OP501 58.62 50.00 EP209
MP501 58.62

The table shows that for TUC there is only one computer system (CS) failure mode

among the top 10 failure modes, while we have four CS failure modes for the SSD.
These failure modes are:

CS100 Does not save or deletes info
CS300 Reacts wrongly to command or do not react at all
CS400 Shows wrong info, including false alarms – both TUC and SSD
CS700 Other software errors

For all of these failure modes SSD is better than TUC although the significance level
and frequency differences are small, except for CS700 where we have a difference of
-0.22. The p-value, however, is 0.22. We should also note that while there is 11%
computer system related failure modes among the top ten found for TUC, the corre-
sponding value for SSD is 50%. The same effect has been observed in previous ex-
periments. We have found that FMEA outperform misuse case diagrams [17] when it
comes to network problems and that misuse cases based on both diagrams and text
score low on the failure modes “software unavailable”, “network down” and “delete
files” [18]. Thus, as a general conclusion, we will claim that TUC is better than SSD
for all failure modes except those pertaining to the inner working of the computer
system.

We will use the process suggested for RQ3-2 in chapter 4.1 in order to understand
why we get this result.

1. Characteristics of CS failure modes: The main characteristic of a CS fail-
ure mode is that it describes computer system failure modes. The user and
his behaviour are not involved.

176 T. Stålhane, G. Sindre, and L. du Bousquet

2. What in SSD helps us to discover CS failure modes and what in TUC hin-
ders this discovery? The answer to this question is that SSD makes ex-
plicit the sending and receiving of messages – e.g. commands – between
actors and one or more subsystems. The TUC, on the other hand has all its
focus on the user and how the system reacts to his commands. Sending
and receiving messages is only included indirectly.

3. Based on this, we will conclude that TUC helps the analyst to focus on
user / system interactions, while SSD helps the user to focus on how the
user / system interactions are performed – e.g. via sending and receiving
messages.

6 Threats to Validity

We will use the categories defined in [19] as a starting point for our discussion on
threats to validity. We will look at each threat in a short section before giving a sum-
up of our validity claims.

6.1 Conclusion Validity

Conclusion validity is concerned with our ability to draw the right conclusions about
the relationship between the treatment and the outcome. An important question here is
sample size. For the main failure mode categories, we have seen a medium to large
effect – ES values from 0.88 to 1.22.

If we denote the type I error probability by α and the type II error probability by β,
and let N be the sample size, the following relationship holds:

2

2
2/)(4

ES

uu
N βα +

= (4)

If we use α = 0.05 and β = 0.20, we get for smallest effects N = 26/0.92 which gives
use an N-value of 32. Since we have a total of 39 participants, we have a sufficient
number of observations for our conclusion.

For proportions, a large effect size is 0.40 or more. The only single failure mode
which departs from the general picture – TUC better than SSD – is failure mode
CS100. In this case the ES is large – 0.46. If we use the same notation as in equation
(4) except that N now is the sample size of each part of the experiment, we have for
proportions that:

2
2)1()1(

)(2
22112

2/ ++−+−+=
dd

pppp
uuN βα (5)

For CS100 we have p1 = 0.60 and p2 = 0.14 and thus d = 0.46. If we, as before use α
= 0.05 and β = 0.20, we get N = 19.7 Thus, we need 40 observations in order to ob-
serve the difference for CS100. We have 39 observations, which is so close to
40 that we will accept the result as valid. We only have to increase the risks of a type
II error from 0.20 to 0.21 in order to reduce the number of observations necessary
to 39.

 Comparing Safety Analysis Based on Sequence Diagrams and Textual Use Cases 177

6.2 Internal validity

Internal validity is concerned with the relationship between treatment and outcome –
was it the treatment that caused the outcome?

The main discussion point is whether the two groups of experiment participants are
equal. In order to answer this question we will look at results from the pre-experiment
questionnaire. Out of the eight questions in pre-experiment questionnaire, there are
significant differences between the two groups in the answers to only three of them.
The two groups score the same for knowledge of sequence diagrams, analysis of
safety, reliability and misuse cases plus the number of months of practical experience
with IT work.

The three questions where the two groups differ are questions PQ1, where the SSD
group has less experience with class diagrams, PQ5, where the SSD group has less
experience with writing use cases and PQ7, where the SSD group on the average has
completed six semesters of their studies while the TUC has completed only 4.8. The
important difference, however, is the difference between the two groups’ knowledge
of their respective methods – the SSD group’s knowledge of sequence diagrams and
the TUC group’s knowledge of use cases. On a Likert scale from 1 (no knowledge) to
5 (good knowledge) the SSD group has an average score of 2.1 for sequence diagram
experience while the TUC group has an average score of 1.6 for use cases. The differ-
ence is significant at the 0.05 level. The effect size, however, is just 0.5 – a small to
moderate effect. As an aside, we know there are purists who do not like to use arith-
metic on Likert scale values. We will not take up this discussion here but point the
reader to John W. Tukey’s article [20] on this topic.

Besides the factors mentioned above, cultural differences may have influenced the
results. There is, however, no way that we can assess the size of this influence.

6.3 Construct Validity

Construct validity is concerned with the relationship between theory and observations.
The theory is in our case about the relationship between the number of failure modes
identified and the documents used in this process – TUC or SSD. Counting the num-
ber of failure modes enables us to observe any differences in the effect of the two
ways to represent the situation – TUC or SSD. Since we have already shown that
there are no or just small differences between the participants’ capabilities, we will
claim that the observed effect stems from the different representations.

6.4 External Validity

External validity is concerned with generalization – where and when are the conclu-
sions applicable and can we generalize from our experiments to industrial practice?
External validity is threatened in two ways: the experiment participants received little
training in the new method and the quality of the result has no influence, neither on a
real product nor on the participant’s working situation. However, these threats will
influence both methods in the same way. Since we are only looking for differences
and not for any absolute measure this will not influence our conclusions on the rela-
tive merits of the two methods.

178 T. Stålhane, G. Sindre, and L. du Bousquet

6.5 Our Claims to Validity

Based on the discussions above, and besides a possible caveat for cultural differences,
we claim that there are no serious threats to validity for our conclusions on the num-
ber of identified failure modes.

7 Conclusion

Based on our data analysis we will conclude that TUC is better than SSD when it
comes to identifying failure modes related to required functionality and operator be-
haviour. The systems sequence diagrams outperform textual use cases when it comes
to failure modes pertaining to the system’s internal working. Based on this, we rec-
ommend that, for hazard analysis in the early phases, we should provide a set of
documents that enables the analysts to focus on each area under consideration.

A natural direction for further work would be to do more experiments, for instance
using industry practitioners in addition to students. It would also be interesting to
compare various techniques in bigger case studies, since controlled experiments nec-
essarily limit the size of the tasks that can be performed, thus lacking the realism and
complexity of information systems development projects.

References

1. Gershenfeld, N., Krikorian, R., Cohen, D.: The Internet of Things. Scientific Ameri-
can 291(44), 76–81 (2004)

2. Batra, D., Hoffer, J.A., Bostrom, R.P.: Comparing Representations with Relational and
EER Models. Communications of the ACM 33, 126–139 (1990)

3. Cheng, P.C.-H.: Why Diagrams Are (Sometimes) Six Times Easier than Words: Benefits
beyond Locational Indexing. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Dia-
grams 2004. LNCS (LNAI), vol. 2980, pp. 242–260. Springer, Heidelberg (2004)

4. Larkin, J.H., Simon, H.A.: Why a Diagram is (Sometimes) Worth Ten Thousand Words.
Cognitive Science 11 (1987)

5. Boekelder, A., Steehouder, M.: Selecting and Switching: Some Advantages of Diagrams
over Tables and Lists for Presenting Instructions. IEEE Transactions on Professional
Communication 41, 229–241 (1998)

6. Allmendinger, L.: Diagrams and Design Tools in Context. ACM SIGDOC Asterisk Jour-
nal of Computer Documentation 18, 25–41 (1994)

7. Coll, R.A., Coll, J.H., Thakur, G.: Graphs and tables: a four factor experiment. Communi-
cations of the ACM 37, 77–84 (1994)

8. Guiochet, J., Vilchis, A.: Safety Analysis of a Medical Robot for Tele-echography
9. Long, Z., Jinglun, Z.: Analysis and Study of System Safety Based on Event Sequence Dia-

gram. International Journal of Computer Science and Network Security 8(2) (February
2008)

10. Ren, C.: A Safety Inspection Management System for Mine equipment Based on UML. In:
2009 International Conference on Signal Processing Systems (2009)

11. Allenby, K., Kelly, T.: Deriving Safety Requirements Using Scenarios. In: Proc. RE 2001,
Toronto, Canada, August 27-31. IEEE, Los Alamitos (2001)

 Comparing Safety Analysis Based on Sequence Diagrams and Textual Use Cases 179

12. Alspaugh, T.A., et al.: Clarity for Stakeholders: Empirical Evaluation of ScenarioML, Use
cases and Sequence Diagrams. In: Fifth International Workshop on Comparative Evalua-
tion in Requirements Engineering (2007)

13. Sindre, G., Opdahl, A.L.: Eliciting Security Requirements with Misuse Cases. Require-
ments Engineering 10, 34–44 (2005)

14. Alexander, I.F.: Misuse Cases, Use Cases with Hostile Intent. IEEE Software 20, 58–66
(2003)

15. Larman, C.: Applying UML and Patterns – An Introduction to Object-Oriented Analysis
and Design and Iterative Development, 3rd edn. Pearson Education Inc., London, ISBN 0-
13-148906-2

16. Pender, T.: UML Bible, Wiley Publishing Inc., Indianapolis, Indiana, US (2003), ISBN 0-
7645-2604-9

17. Stålhane, T., Sindre, G.: A comparison of two approaches to safety analysis based on use
cases. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS,
vol. 4801, pp. 423–437. Springer, Heidelberg (2007)

18. Stålhane, T., Sindre, G.: Safety Hazard Identification by Misuse Cases: Experimental
Comparison of Text and Diagrams. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A.,
Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 721–735. Springer, Heidelberg
(2008)

19. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimenta-
tion in Software Engineering: An Introduction. Kluwer Academic, Norwell (2000)

20. Tukey, J.W.: Data analysis and behavioral science or learning to bear the quantitative man
burden by shunning badmandments. In: Jones, L.W. (ed.) The Collected Works of John W.
Tukey, Wadsworth, Monterey, CA, vol. III, pp. 187–389 (1986)

21. Achour, C.B., et al.: Guiding Use Case Authoring: Results of an Empirical Study. In: Pro-
ceedings of the 4th IEEE International Symposium on Requirements Engineering – RE
1999, Limerick, Ireland (1999)

22. Cox, K., Phalp, K.: Replicating the CREWS use case Authoring Guidelines Experiment.
Empirical Software Engineering 5, 245–267 (2000)

Feature-Based Entity Matching: The FBEM Model,
Implementation, Evaluation�

Heiko Stoermer, Nataliya Rassadko, and Nachiket Vaidya

University of Trento,
Dept. of Information and Communication Tech.,

Trento, Italy
{stoermer,rassadko,vaidya}@disi.unitn.it

Abstract. Entity matching or resolution is at the heart of many integration tasks
in modern information systems. As with any core functionality, good quality of
results is vital to ensure that upper-level tasks perform as desired. In this paper we
introduce the FBEM algorithm and illustrate its usefulness for general-purpose
use cases. We analyze its result quality with a range of experiments on heteroge-
neous data sources, and show that the approach provides good results for entities
of different types, such as persons, organizations or publications, while posing
minimal requirements to input data formats and requiring no training.

Keywords: Entity resolution, record linkage, information integration.

1 Introduction

The question whether two pieces of structured or semi-structured data refer to the same
object (or entity) has been the objective of substantial work over several decades, and
good solutions are the prerequisites for high-quality automatic integration or linkage of
data, information and knowledge. This integration topic and the related quality issues
are receiving increased attention by work performed in the context of the Semantic Web,
or more generally, the linkage of entity-related information in more general-purpose
web information systems.

The problem, which appears in literature under names such as record linkage, entity
linkage, entity resolution, etc., poses substantial challenges to automated approaches,
particularly when faced with a heterogeneous environment. In open, de-centralized en-
vironments that are emerging on the Web, we can find an increasing amount of (semi-)
structured information. But especially this lack of centralization – which is one of the
reasons for the dynamic development of the web and thus one of its strengths – leads to
difficult situations where for example creators of structured information published on
the web refer to the entities they describe with arbitrary, self-issued identifiers, making
it impossible for an automated system to perform efficient, syntactical integration of
information from different sources [4].
� The authors would like to thank Barbara Bazzanella for her excellent work on [2], and for the

permission to reproduce Table 1. This work is partially supported by the FP7 EU Large-scale
Integrating Project OKKAM – Enabling a Web of Entities (contract no. ICT-215032). For
more details, please visit http://www.okkam.org

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 180–193, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Feature-Based Entity Matching: The FBEM Model, Implementation, Evaluation 181

Nonetheless, the demand for high-quality integration comes naturally from the side
of users and producers of progressive information systems alike. The cost-efficient cre-
ation of a news and article dossier about a certain person (which can then be sold against
a micropayment), the linkage of contacts between social networks, the collection of
opinions about a certain product from different sources, and many more examples all
require good-quality, easy-to-use automated approaches for entity resolution.

In this paper we present a novel approach for entity resolution, named FBEM (feature-
based entity matching). The approach is a generalization of earlier work[17], and com-
bines probabilistic as well as ontological methods for deciding whether two records
describe the same entity, taking into account intensional and extensional aspects of the
entities at hand. The approach aims at general-purpose usefulness with special focus on
web information systems, and bases on empirical findings about what are commonly
used entity types, and how they are usually described.

The rest of this article is organized as follows: the following section makes an at-
tempt at giving a concise account of the vast amount of related work from several fields.
Section 3 explains the background knowledge underlying the FBEM approach and its
representation in an ontology which serves as input to the algorithm. Sect. 4 then in-
troduces the algorithm, proposing a formal model for entity similarity and describing
its implementation. In Sect. 5 we perform a thorough investigation of the usefulness of
the algorithm, presenting a series of experiments in entity resolution which cover entity
types such as organizations, persons and scientific publications in datasets of different
sizes. The article closes with a discussion of the results and a description of further
work that is planned for improving the approach.

2 Related Work

In contrast to schema-level integration, entity-level integration deals with the actual in-
dividuals, not with integration of class structures or entity types. Entity level integration
has to deal with deciding whether two entity descriptions refer to the same individual.
Approaches to the problem of entity resolution can be broadly categorized into two
main categories: one requires training data to adapt the matching procedure with ma-
chine learning techniques, the other depends on domain knowledge for matching. The
approach presented in this paper falls in the latter category.

Approaches of entity-level integration have been proposed under several names,
ranging from duplicate detection [9], entity resolution [3, 11], merge/purge [12], ob-
ject identifcation [18], reference reconciliation [8]. Extensive surveys are available [9,
5, 19]. A related group of algorithms are the ones that aim at matching entity names
by computing the distance between the string values of corresponding entity names.
The algorithms included in this group suggest general-purpose methods for computing
the similarity between strings [14]. These algorithms are considered important since
they are currently used as the basic metric on which more sophisticated approaches
are based on. [7] describes and provides an experimental comparison of various string
distance metrics. Other approaches involve schema matching [16] in cases where the
entities to be matched are described with a different schema, also employing domain
knowledge from ontologies, where available [15].

182 H. Stoermer, N. Rassadko, and N. Vaidya

3 Knowledge about Entities

3.1 Background Knowledge

In her work on the foundations of entity representation [2], Bazzanella establishes six
top-level entity types that are both specialized and generic enough to serve as a basic
model for entity representation and matching in general-purpose environments such
as the (Semantic) Web. These are: PERSON, ORGANIZATION, EVENT, ARTIFACT,
LOCATION, OTHER.

In a feature-listing experiment with more than 350 participants, [2] compiles back-
ground knowledge about how humans describe entities, which – for the sake of com-
pleteness – we cite in Table 1.

Table 1. Relevance of features for describing basic entity types. (cf. [2]).

Entity Type (e) Attribute type (a) p(e|a) Entity Type (e) Attribute type (a) p(e|a)
Person surname 0.97 Artifact artifact type 0.97

first name 0.96 artifact name 0.94
full name 0.96 brand 0.93
affiliation 0.85 model 0.91
occupation 0.83 features 0.83

Organization organization name 0.98 Location location name 0.98
activity 0.85 location type 0.89
organization type 0.85 use 0.63
part of 0.49 place:province 0.59
place:country 0.15 attraction 0.55

Event event type 0.97
event name 0.96
date:year 0.92
date:month 0.84
protagonist:surname 0.79

From these data we develop the following working hypothesis: we have two types
of features (i) generic ones (“name” and “type”), that say nothing about the entity type
but have an average importance in the model that is still higher than the one of an “un-
known” feature, and (ii) type-discriminative ones that help us infer an entity type from
its description; these features and their relevance values can be used beneficially to
perform general-purpose entity resolution, by attempting to map two given records de-
scribing the same entity to the above model, and using the relevance values to influence
the calculation of record similarity between the two.

3.2 An Ontology of Entity Description

In order to make use of the results described in the previous section in an actual algo-
rithm, the FBEM OWL-ontology has been created which captures the aspects of features
and feature weights in entity descriptions. The ontology defines concepts for Entity and
Feature, as well as the necessary relations between them, as depicted in Fig. 1.

Feature-Based Entity Matching: The FBEM Model, Implementation, Evaluation 183

Fig. 1. Class structure of the background KB

Fig. 2. Example individual of class Entity describing the Artifact type

The actual content of the ontology is in the individuals of the class Entity and its
subclasses. One example is given in Fig. 2, which represents the entity type ORGANI-
ZATION and its features such as activity, type or partof. Each of those feature individuals
has a set of datatype properties containing the feature weights of type float, and – in or-
der to support synonymity and multilinguality – also a set of so-called label patterns
which contain the primary name of a feature as established in Sect. 3.1, as well as
possible synonyms and natural language versions.

These label patterns are used by the FBEM implementation to attempt establishing
a mapping of feature names of the given entities into the FBEM ontology, which is in
fact a coarse, but very efficient way of schema matching, which we have implemented
for different natural languages (currently German, Italian and English).

4 A Feature-Based Entity Similarity Model

4.1 The FBEM Similarity Score

To present a ranked list of candidate entities that match a reference entity (or a query),
we require a score that serves as parameter for ranking, which expresses the closeness
of a candidate entity to the reference entity, relative to all other candidates.

In our setting, the representation of a reference entity Q and candidate entity E is
modeled as the set of features F plus an optional type t. The type information is not
required to follow any form or (natural) language, but is free text:

Q ≡ E ≡< F, t >;

184 H. Stoermer, N. Rassadko, and N. Vaidya

The first part of the representation of Q and E is in the form of a set F of features,
which are represented as <name, value> pairs that are independent in content and size
(i.e. they don’t necessarily share a vocabulary or schema, or even a natural language):

f =< n, v >;
F = {f1, f2, ...};

We define the following functions:

n(f): returns the name part of a feature f of an E or Q;
v(f): returns the value part of a feature f of an E or Q;
typeof(E): returns the ontological type of an E or Q.

In order to establish similarity between two entities, we require additional operators and
functions that are later used for the computation.

mapsto(f) =def ∃x, f(FEATURE(x) ∧ f ∈ F ∧ HASLABELPATTERN(x, n(f)) (1)

Axiom 1 provides the definition of a function that maps a feature of Q or E into the
background KB. The function must return the feature into which f has been mapped,
or NIL.

typeDesc(f) =def ∃x(DISCRIMINATIVEFEATURE(x) ∧mapsto(f) ≡ x) (2)

Axiom 2 provides the definition of a boolean function that determines whether a feature
of Q or E is type-descriminative. It does so by determining whether a feature can be
mapped into the set of type-descriminative features of the background KB.

We furthermore define three boolean operators that describe whether Q and E are
type-compatible(cE), incompatible (ciE), or of unknown compatibility (cuE):

cE(Q, E) =def typeof(Q) ≡ typeof(E) (3)

Axiom 3 states that Q and E are considered compatible if they have the same ontological
type.

ciE(Q, E) =def typeof(Q) �= typeof(E) (4)

Axiom 4 defines that Q and E are considered incompatible if they have different onto-
logical types in the background KB.

cuE(Q, E) =def ¬ciE(Q, E) ∧ ¬cE(Q, E) (5)

Axiom 5 defines that Q and E are considered of unknown compatibility if they are
neither compatible nor incompatible.

In order to involve background knowledge into the calculation of entity similarity,
we also need to define a set of operators that indicate whether a pair of features fQ

and fE are name-identical(cidf), name-compatible(cf), name-incompatible (cif) or of
unknown compatibility (cuf):

Feature-Based Entity Matching: The FBEM Model, Implementation, Evaluation 185

cidf(fQ, fE) =def

(cE(Q, E) ∨ cuE(Q, E)) ∧ ((mapsto(n(Q)) ≡ mapsto(n(E)))) (6)

Axiom 6 defines that two features are known to be name-identical with respect to the
feature name, if their respective records Q and E are not incompatible, and if the features
map into the same ontological feature of the background KB.

cf (fQ, fE) =def

(cE(Q, E) ∨ cuE(Q, E)) ∧ (n(Q) ≡ n(E)) (7)

Axiom 7 defines that two features are name-compatible if their respective records Q
and E are not incompatible, and the respective feature names are identical strings (but
unknown with respect to our background KB).

cif (fQ, fE) =def

(ciE(Q, E)) ∨ (mapsto(n(Q)) �= mapsto(n(E))) (8)

Axiom 8 defines that two features are name-incompatible if their respective records Q
and E are incompatible, or if they map into different ontological features of the back-
ground KB.

cuf(fQ, fE) =def

¬cidf (fQ, fE) ∧ ¬cf (fQ, fE) ∧ ¬cif (fQ, fE) (9)

Axiom 9 defines that two features are of unknown compatibility if they are neither
name-identical, name-compatible or name-incompatible.

Now, we define fsim(fQ, fE), a function that computes the similarity of two fea-
tures fQ, fE , taking into account the similarity of the value parts of fx, as well as our
background knowledge base:

fsim(fQ, fE) =def

sim (v(fQ), v(fE)) ∗

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wc + p(E|fE), for cidf (fQ, fE);
wc, for cf (fQ, fE);
wu, for cuf (fQ, fE);
0, otherwise .

(10)

Equation 10 relies on the following functions and parameters:

sim(x, y) : a suitable string similarity measure between x and y.
p(E|fE) : the relevance of the feature to describe a given entity type, as defined in the

background KB (see Sect. 3.1); please note that p(Q|fQ) = p(E|fE) because the
model requires that the features map into the same element of the background KB;

wc : the importance which is given to the fact that a pair of features is compatible;
wu : the importance which is given to the fact that a pair of features is of unknown

compatibility.;

186 H. Stoermer, N. Rassadko, and N. Vaidya

At this point we are able to establish the similarity between individual features. To
compute the complete feature-based entity similarity, which finally expresses to which
extend E is similar to Q, we proceed as follows.

Let maxv(V) be a function that computes the maximum value in a vector1. We then
span the matrix M of feature similarities between Q and E, defined as

M := (fsim (Q, E))|Q|×|E| → Q ≥ 0

with fsim as defined above, |Q|, |E| being the number of elements of the vectors Q
and E, respectively, and Q is set of rational numbers.

The feature-based entity similarity score fs is defined as the sum of all the maximum
similar feature combinations between Q and E:

fs (Q, E) =
|Q|∑
i=1

maxv(Mi) (11)

Here Mi is ith row of the matrix M . Please note that when type of entity E and that of
query Q are given or can be infered and found to be not matching, E and Q will be in-
compatible. Our approach is modeled in such a way that when Q and E is incompatible,
the similarity score for them will be zero.

Taking into account that Mi is a weighted value, we use a dot-notation denote its
weight w as Mi.w. Using a mathematical normalization of the similarity score, the
final entity similarity measure esim(Q, E) can be defined as follows:

esim(Q, E) =
fs(Q, E)∑|Q|

i=1 maxv(Mi).w
(12)

In the last formula, we divided a sum of weighted values on a sum of corresponding
weights. This allows us to normalize similarity score within the range of [sim(x, y)min,
sim(x, y)max], e.g., [0, 1].

4.2 Implementation

For implementing an algorithm that can provide the entity similarity defined in Eq. 12,
there are several variables to set and operators to implement which can not be trivially
derived from the definitions in the previous section. In the following we give details
about their implementation.

typeof(E): An implementation of the the typeof operator is required to return the on-
tological type of the entity E or the intended ontological type of the desired entity
that is described by Q. Compatibility of types will later influence the similarity that
is established between a Q and an E (especially type-incompatibility will lead to
a significantly lower score). The ontological type of Q or E can be inferred from
a successful mapping of a given feature into an individual of class Discriminative-
Feature in the FBEM ontology, or by an explicit specification of the type. Please

1 Trivially defined as maxv (V) = max
|V |
i=1 (Vi), with |V | being the number of elements of V .

Feature-Based Entity Matching: The FBEM Model, Implementation, Evaluation 187

note that due to the flexibility of this model, the involvement of a sophisticated
schema-matching component from such a freely specified type to one of the types
in our knowledge model may be of benefit. For the results presented in this article,
the implementations of various functions are given below.

mapsto(f): The mapsto function establishes a mapping between a feature f and an
instance of the class FEATURE of our background ontology. It does so by checking
whether it is possible to establish a string match between n(f) and one of the values
of the HASLABELPATTERN property of the instance.

sim(x, y): This operator returns a similarity measure between the strings x and y, in
the range of [0,1].

p(E|fE)): The relevance of a feature for a certain entity is retrieved from the back-
ground KB, using the mapsto operator. If the mapsto function fails, this value
will be unknown.

wc: This weight can be empirically optimized, default is 0.5.
wu: This weight can be empirically optimized, default is 0.25.

The algorithm implements certain optimizations, e.g. the reasoning that is required to
derive the necessary facts from the background ontology is being performend at loading
time of the algorithm, materialized and then cached in very efficient memory structures
because direct interaction with the OWL model has proven to be unsustainable in terms
of runtime performance.

5 Evaluation

5.1 Evaluating String Similarity Measures

As explained in the previous sections, the FBEM algorithm performs string similar-
ity matching between a selection of values of the entities that are to be compared.
To understand what is the impact on the selection of a string similarity measure on
the overall performance of the algorithm, an experiment has been performed that runs
FBEM on the Eprints and Rexa datasets (see Sect. 5.5) using four different metrics: the
well-known Levenshtein [13] and Soundex algorithms, as well as Monge-Elkan [14]
and TagLink [6]. The results reported in Table 2 illustrate quite drastically that a poor
choice of string similarity measure has a negative impact on the quality of matching
results. While Levenshtein delivers good results, it does so in very few cases. Other
approaches such as Soundex or Monge-Elkan fail our requirements completely. Only
the TagLink measure provides acceptable results, and a possible reason may be that the
algorithm establishes similarities between tokens of strings which makes it less vulner-
able to difference in token sequence (as is the case for names, such as “Barack Obama”
vs. “Obama, Barack. T.”).

5.2 Record Identity Tests

To perform a baseline evaluation of the FBEM algorithm, a test of record identity has
been performed to measure the quality of the algorithm when no difference between
records exist. The dataset that was used is a collection of 50,000 entity profiles taken

188 H. Stoermer, N. Rassadko, and N. Vaidya

Table 2. FBEM performance using different string similarity measures

Levenshtein Soundex Monge-Elkan TagLink
Precision 0.95 0.00 0.01 0.72
Recall 0.05 0.16 0.48 0.77
F-Measure 0.10 0.01 0.02 0.75

Table 3. Experimental results analyzing the matching of identical records (full duplicates)

Experiment 1 Experiment 2
Dataset A size 100 Dataset A size 100
Dataset B size 100 Dataset B size 50,000
Overlap A ∩ B 100 Overlap A ∩ B 100
Precision 1 Precision 1
Recall 1 Recall 1

from the Entity Name System2, which contains a majority of geographic entities, as
well as some organizations and persons. The records are represented in a flat list of
free-form name/value pairs that follow no particular schema [1].

Starting from this basic dataset, we performed two experiments. One is a random
selection of 100 samples that were matched against each other (carthesian product).
A second experiment evaluates result quality of 100 random samples when matched
against the complete dataset of 50,000 records. The results are reported in Table 3.

5.3 Aligning Restaurant Records

The restaurant dataset3 is composed of about 864 restaurant records from two different
data sources (Fodor’s and Zagat’s restaurant guides), which are described by name,
street, city, phone and restaurant category. Among these, 112 record pairs refer to the
same entity, but usually display certain differences. An example is given in Table 4.

The objective of this experiment was to use real-world data that do not cover the
“usual suspects” such as scientific articles or authors. In detail, the data were organized
in a way that the 112 records from Fodor’s which had a counterpart in Zagat’s were
added to a dataset A, and all the others were merged into a dataset B. Then we performed
an evaluation using the FBEM algorithm without any modifications, to measure how
many entries in dataset A could be successfully found in dataset B. The quality of
results is very promising, both recall and precision are above 0.95; more details are
reported in Table 5.

5.4 Aligning Person Records

The people2 dataset4 contains two files, A with original records of people and B another
with modified records from the first file. B contains maximum 9 modified entries for

2 http://www.okkam.org
3 Originally provided by Sheila Tejada, downloaded from
http://www.cs.utexas.edu/users/ml/riddle/data.html

4 Febr project: http://sourceforge.net/projects/febrl/

http://www.okkam.org
http://www.cs.utexas.edu/users/ml/riddle/data.html
http://sourceforge.net/projects/febrl/

Feature-Based Entity Matching: The FBEM Model, Implementation, Evaluation 189

Table 4. Example records of the restaurants data set

Fodor’s Zagat’s
name carmine’s name carmine’s
street 2450 broadway between 90th and 91st sts. street 2450 broadway
city new york city new york city
phone 212/362-2200 phone 212-362-2200

Table 5. Evaluation results of FBEM on the restaurant dataset

Dataset details Results
Dataset A size 112 False positives 2
Dataset B size 744 False negatives 4
Overlap A ∩ B 112 Recall 95%

Precision 98%

an original records in A, with maximum 3 modifications per attribute, and maximum
10 modifications per record. The original file contains 600 records, while B contains
400 records which are modifications of 95 original records from A. The attributes of the
records are record id, given name, surname, street number, address, suburb, postcode,
state, date of birth, age, phone number, social security number. An example is given in
Table 6. It is evident from the example that there substantial modifications per record.
Still, the results show precision and recall both above 0.77; more details are reported
in Table 7.

Table 6. Example records of the people2 data set

A B
rec id 2280 rec id 2285
given name kate given name katrh
surname peat surname peat
street number 111 street number 1
. . .
address 1 duffy street address 1 street duffy
suburb robina suburb robivna
date of birth 19450303 date of birth 19450033
phone number 02 90449592 phone number 04 03014449
. . .

As evident in table 8 there are 505 entries which are not present in the alignment.
This dataset was used to test for true negatives, i.e. the ability of the algorithm to decide
that a searched entity is not present in the target data. This experiment is important for
scenarios where concrete decisions have to be taken, instead of delivering only a list
potential matches without giving further information about their quality. The results for
the experiment are promising, with accuracy at 95% for the given dataset. Table 8 gives
the details of the experiment.

190 H. Stoermer, N. Rassadko, and N. Vaidya

Table 7. Evaluation results of FBEM on the people2 dataset

Dataset details Results
Dataset A size 600 False positives 71
Dataset B size 400 False negatives 93
Overlap A ∩ B 400 Recall 77%

Precision 81%
F-Measure 79%
Fallout 19%

Table 8. Results characterizing the ability to decide about true negatives

Total number of entities in dataset A size 600
Number of entities which have no correspondence in B 505
Total number of entities which have no duplicate in our result 488
Number of missing entities 26
Number of falsely detected entities 9
Accuracy 95%

5.5 Aligning Bibliographic Databases

For the experiments described in this section we used benchmarks provided by the in-
stance matching contest of the Ontology Alignment Evaluation Initiative 2009 (OAEI)5.
Each benchmark is accompanied with a gold standard in alignment format [10]. The
gold-standard alignment is the set of pairs of entities that are known to match, which is
then used to evaluate precision and recall of the alignment produced by the experiment.

The benchmark consists of three datasets containing instances from the domain of
scientific publications, i.e. information about authors and their publications in proceed-
ings, journals and books.

Eprints contains data about papers produced for the AKT research project. The dataset
contains around 1000 entities.

Rexa is generated from the search results of the search server Rexa. The dataset con-
tains over 20000 entities.

SWETO-DBLP is a version of DBLP modeled against the SWETO ontology. The
dataset contains over 1000000 entities.

For this experiment, the data are homogenized into the flat name/value pair format that
the FBEM algorithm accepts as input. Note that the homogenization is not an integral
part of the FBEM algorithm, and thus can be customized. However, a simple, generic
homogenizer for RDF data was used for the described experiments in order to produce
comparable results. This homogenizer performs no particular reasoning or encodes any
kind of knowledge about the underlying data, it only converts the long WWW-style
URIs into short names, and removes relations that point to other classes or individuals,
thus maintaining only datatype properties directly associated to the entity at hand.

5 All data are available from http://oaei.ontologymatching.org/2009/

http://oaei.ontologymatching.org/2009/

Feature-Based Entity Matching: The FBEM Model, Implementation, Evaluation 191

Table 9. Matching results for the Eprints-Rexa-DBLP benchmark

Precision Recall F-Measure Fallout
Eprints – Rexa 0.72 0.78 0.75 0.28
Eprints – DBLP 0.91 0.78 0.84 0.09
Rexa – DBLP 0.83 0.94 0.88 0.17

Table 10. Type-specific matching results between the Eprints and Rexa datasets

Precision Recall F-Measure Fallout
Person 0.70 0.81 0.73 0.30
Article 0.77 0.71 0.74 0.23
Inproceedings 0.96 0.69 0.80 0.04

In the experiment, the datasets Eprints, Rexa and DBLP were were aligned pairwise.
In order to achieve a result within a reasonable timeframe, the large amount of data con-
tained in DBLP was reduced to the entities that are actually contained in DBLP-related
gold standard, and then aligned w.r.t. eprints and rexa datasets. Finally, the resulting
alignments were evaluated against the corresponding golden standard provided with
the datasets.

The matching results are reported in Table 9, and give a positive overall picture. Im-
portant to note are the values for Fallout, which is defined as (1-Precision) and reflects
the amount of wrong mappings.

In order to gain a better understanding of the detailed strengths and weaknesses of
FBEM w.r.t. entity types that are being matched, an additional experiment was per-
formed that does typed matching between the Eprints and Rexa data. The three types
that were selected from the datasets are “person”, “article” and “inproceedings”. The
results in Table 10 does however not exhibit a very clear trend that could lead to a solid
identification of entity types for which FBEM is particularly (un)usable. In terms of
precision it behaves better on the larger records that describe publications, and less well
on Person data, whereas recall behaviour is the opposite.

6 Discussion and Future Work

One important result presented in this paper is the strong influence that a string similar-
ity metric has on the quality of the matching results. In Sect. 5 we have experimented
with a selection of metrics which showed quite drastic differences in outcome. For this
reason, one of the next steps will be to work on a component for FBEM that imple-
ments heuristics which will allow to select a suitable similarity measure for a given
feature value. Such heuristics can base on aspects such as single-token vs. multi-token
strings, well-known patterns, and the detection of specific names, e.g. for persons or
companies, for which highly specialized algorithms exist.

A second goal is to further broaden the scope of the evaluation of the approach. While
this aspect has been substantially expanded since the publication of the predecessor
approach, the analyses we have performed have not yet shown results diverse enough

192 H. Stoermer, N. Rassadko, and N. Vaidya

to understand which kind of data and/or entity types FBEM is particularly suitable for.
For this reason, more heterogeneous benchmarks will be performed.

A further, mid-term goal is to address more in detail the aspects of large-scale, high-
performance entity resolution. Several performance aspects have already been kept in
mind during the development of the FBEM implementation. Nonetheless, several addi-
tional aspects have to be adressed. First, a good selection of stopping techniques needs
to be compiled which will allow the algorithm to cease comparing features when a
highly relevant match has been found (e.g. an identical social security number). Fi-
nally, blocking techniques will be analyized to limit the amount of entity-to-entity com-
parisons. For example, the Entity Name System [4] implements a high-performance,
index-based preselection of candidates, which are then further compared with more so-
phisticated, but also more costly methods. This approach will be one of the first to be
evaluated.

7 Conclusion

In this paper we have presented a probabilistic, general-purpose approach for entity res-
olution which bases on background knowledge about entities and their representation.
We have illustrated the important role that entity resolution plays in the engineering of
applications that require good quality data integration, and have shown in a series of
experiments that for common entity types such as people, organizations or locations,
the FBEM approach delivers satisfying results, both in recall and in precision. While
already performing at a good level of quality, several areas of improvement have been
identified and discussed. These will be addressed in future evolutions of the approach.

In preparing this work it has proven quite difficult to collect suitable datasets which
include evaluation standards, even though related work has been performed for many
years. Publication not only of evaluation results, but also of benchmarks, seems vital
in this context. The authors thus plan to compile the data used in this and future ex-
periments in a coherent way, so that benchmarking of related approaches is rendered
considerably more easy.

References

[1] Bazzanella, B., Chaudhry, J.A., Palpanas, T., Stoermer, H.: Towards a General Entity Rep-
resentation Model. In: Proceedings of the 5th Workshop on Semantic Web Applications
and Perspectives (SWAP 2008), Rome, Italy (December 2008)

[2] Bazzanella, B., Stoermer, H., Bouquet, P.: Top Level Categories and Attributes for Entity
Representation. Technical Report 1, University of Trento, Scienze della Cognizione e della
Formazione (September 2008)

[3] Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E., Widomr, J., Jonas,
J.: Swoosh: A Generic Approach to Entity Resolution. Technical report, Stanford InfoLab
(2006)

[4] Bouquet, P., Stoermer, H., Niederee, C., Mana, A.: Entity Name System: The Backbone of
an Open and Scalable Web of Data. In: Proceedings of the IEEE International Conference
on Semantic Computing, ICSC 2008, August 2008, pp. 554–561. IEEE Computer Society,
Los Alamitos (2008), CSS-ICSC 2008-4-28-25

Feature-Based Entity Matching: The FBEM Model, Implementation, Evaluation 193

[5] Brizan, D.G., Tansel, A.U.: A Survey of Entity Resolution and Record Linkage Method-
ologies. Communications of the IIMA 6(3), 41–50 (2006)

[6] Camacho, H., Salhi, A.: A string metric based on a one to one greedy matching algorithm.
In: Research in Computer Science number, pp. 171–182 (2006)

[7] Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A Comparison of String Distance Metrics for
Name-Matching Tasks. In: Proceedings of the IJCAI 2003 Workshop IIWeb, Acapulco,
México, August 9-10, pp. 73–78 (2003)

[8] Dong, X., Halevy, A., Madhavan, J.: Reference Reconciliation in Complex Information
Spaces. In: SIGMOD 2005: Proceedings of the 2005 ACM SIGMOD international confer-
ence on Management of data, pp. 85–96. ACM Press, New York (2005)

[9] Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate Record Detection: A Survey.
IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)

[10] Euzenat, J.: An api for ontology alignment. In: McIlraith, S.A., Plexousakis, D., van Harme-
len, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg (2004)

[11] Garcia-Molina, H.: Pair-wise entity resolution: overview and challenges. In: Yu, P.S., Tso-
tras, V.J., Fox, E.A., Liu, B. (eds.) Proceedings CIKM 2006, Arlington, Virginia, USA,
November 6-11, p. 1. ACM, New York (2006)

[12] Hernández, M.A., Stolfo, S.J.: The merge/purge problem for large databases. SIGMOD
Rec. 24(2), 127–138 (1995)

[13] Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady 10, 707–710 (1966)

[14] Monge, A.E., Elkan, C.: An Efficient Domain-Independent Algorithm for Detecting Ap-
proximately Duplicate Database Records. In: DMKD (1997)

[15] Noy, N.F.: Semantic Integration: a Survey of Ontology-based Approaches. SIGMOD
Rec. 33(4), 65–70 (2004)

[16] Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching.
VLDB Journal: Very Large Data Bases 10(4), 334–350 (2001)

[17] Stoermer, H., Bouquet, P.: A Novel Approach for Entity Linkage. In: Zhang, K., Alhajj,
R. (eds.) Proceedings of IRI 2009, the 10th IEEE Internationational Conference on Infor-
mation Reuse and Integration, Las Vegas, USA, August 10-12. IRI, vol. 10, pp. 151–156.
IEEE Systems, Man and Cybernetics Society (2009)

[18] Tejada, S., Knoblock, C.A., Minton, S.: Learning object identification rules for information
integration. Inf. Syst. 26(8), 607–633 (2001)

[19] Winkler, W.E.: The State of Record Linkage and Current Research Problems. Technical
report, Statistical Research Division, U.S. Census Bureau, Washington, DC (1999)

Dealing with Matching Variability of
Semantic Web Data Using Contexts

Silvana Castano, Alfio Ferrara, and Stefano Montanelli

Università degli Studi di Milano,
DICo, via Comelico 39, 20135 Milano, Italy

{castano,ferrara,montanelli}@dico.unimi.it

Abstract. Goal of this paper is to propose a reference modeling frame-
work to explicitly identify and formalize the different levels of variability
that can arise along all the involved dimensions of a matching execution.
The proposed framework is based on the notion of knowledge chunk, con-
text, and mapping to abstract the variability levels and related operations
along the source-dataset, the matching-dataset, and the mapping-set di-
mensions, respectively. An application of the proposed framework with
instantiation in the HMatch 2.0 systems is illustrated.

Keywords: Variability modeling, matching, semantic web, knowledge
management.

1 Introduction

Techniques for matching semantic web data are an essential component of mod-
ern information management and evolution architectures, to correctly compare
and integrate disparate resource descriptions and to promote effective resource
sharing and integration on the global scale [1]. Several tools and approaches
have been proposed in the literature for performing ontology and schema match-
ing [2,3], and, more recently, also for performing instance matching [4,5]. A key
demand for effective matching tools and techniques is the capability to deal with
different kinds of variability that can emerge during a matching execution on a
certain dataset. For example, one must be able to deal with variability of data
representations both from a linguistic and a structural point of view, with the
purpose of dynamically isolating only the subset of data relevant for a certain
matching goal. As another example, the output of the matching process can
result in mappings at different levels of granularity, providing just a similarity
measure expressing that pairs of concepts or instances match as a whole, or more
detailed information about mapping rules to convert their matching properties
one to another. For effective matching of semantic web data, a systematic anal-
ysis and modeling of the various kinds of variability that influence a matching
execution are required, and a conceptual framework for their classification is still
missing in the field.

Goal of this paper is to propose a reference modeling framework to explicitly
classify and formalize the different levels of variability that can arise along all

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 194–208, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Dealing with Matching Variability of Semantic Web Data Using Contexts 195

the involved dimensions of a matching execution. The proposed framework is
based on the notion of knowledge chunk, context, and mapping to abstract and
formalize the variability levels and related operations along the source-dataset,
the matching-dataset, and the mapping-set dimensions, respectively. An appli-
cation of this framework to show its instantiation in the HMatch 2.0 system is
also illustrated. We want to stress that we do not propose yet another matching
approach, rather we want to focus on the problem of modeling the matching vari-
ability per se’. To the best of our knowledge, this is a novel contribution in the
field of matching, with can be taken as a reference for i) providing a disciplined
guidance for the design of new matching tools/techniques, flexibly customizable
to operate in different situations at both schema and instance level and ii) defin-
ing a conceptual framework to analyze and compare existing systems/approaches
with respect to the degree of variability actually supported.

The paper is organized as follows. After discussing related work in Section 2,
in Section 3, we introduce the basic notions of the proposed Matching Variability
Framework. Details about the formalization of contexts for modeling matching
variability along each dimension are presented in Section 4, 5, and 6. In Sec-
tion 7, we discuss an example of instantiation in the HMatch 2.0 system. Finally,
concluding remarks are provided in Section 8.

2 Related Work

Relevant work on matching variability exists in the literature on ontology and
schema matching [2,3,6]. However, we observe that in most of the existing ap-
proaches, variability is only partially supported or it is considered but in an im-
plicit way by the various tools and prototypes. In particular, variabilities at the
matching-dataset level are “embedded” in the tools through some level of config-
urability of the matching process. In this direction, a relevant example is provided
by tools like ASMOV [7], RiMOM [8], and DSSim [9], as well as in mostly theo-
retical approaches like [10]. More recent work in the field of ontology matching is
mainly focused on investigating the variabilities at the level of the mapping-set.
In particular, recent approaches are being proposed to discuss how the mappings
produced by different tools can be combined on the basis of different similarity
measures. In [11], the variability of the possible mapping combinations is ex-
ploited to improve the mapping quality in terms of precision and recall, rather
than to work on the modeling aspects of mapping combination. In this respect,
interesting work are provided in [12,13], where the focus is more on presenting
the possible operations that can be performed over a mapping-set, rather than
on discussing the variabilities of the matching execution that originates them.
Two other kinds of approaches to the problem of mapping exploitation are given
in the framework of query answering [14] and of reasoning-based mapping vali-
dation [15,16]. In both the cases, however, the proposed techniques do not take
into account the problem of modeling different mapping exploitation/validation
strategies in correspondence of different matching contexts and/or goals. We
note that all the presented tools/approaches are mainly focused on discussing

196 S. Castano, A. Ferrara, and S. Montanelli

the aspects of variability at the level of both matching-dataset and mapping-
set, while matching variabilities at the level of the source-dataset have not been
formalized yet. With respect to the related work, this paper is a first attempt
to give a comprehensive formalization of matching variability, by considering all
the different dimensions involved in a matching execution.

3 Modeling Matching Variability

Data and ontology matching is frequently invoked in different scenarios and with
different purposes. For this reason, the requirements and conditions under which
matching is performed can vary from one case to another according to the specific
goal that needs to be satisfied. This means that different types and different levels
of variability characterize each matching execution. We represent these levels of
variability along the following three dimensions: variability of the source-dataset,
variability of the matching-dataset, and variability of the mapping-set.

Variability of the source-dataset. This kind of variability describes the dif-
ferent customizations that can be performed over the initial (i.e., source) dataset
considered for matching. In particular, this variability dimension expresses the
possible filtering operations that can be applied to the source-dataset to restrict
and to better focus on the data of interest for the considered matching execution.
We distinguish two different levels of variability along this dimension:

– Abstract selection (α). It allows to filter out the source-dataset by select-
ing for matching only a subset of the data properties according to a given
criterion.

– Concrete selection (χ). It allows to filter out the source-dataset by selecting
for matching only those data that exhibit a certain value for a given (set of)
property.

As a result of the application of these levels of variability to the source-dataset,
the so-called matching-dataset is produced.

Variability of the matching-dataset. This kind of variability describes the
different customizations on the accuracy/deepness of the matching execution
that can be performed over the matching-dataset. We distinguish three different
levels of variability along this dimension:

– Constraint matching (κ). It allows to specify a precondition (i.e., a con-
straint) that has to be verified by the data in the matching-dataset for being
matched. This way, it is possible to subordinate the matching execution to
those data that satisfy the given constraint.

– Scope matching (π). It allows to specify at which level of deepness the match-
ing execution has to be performed in terms of number and kind of features
to consider for the data comparison.

Dealing with Matching Variability of Semantic Web Data Using Contexts 197

– Weight matching (ω). It allows to assign a different level of relevance to the
properties of the data to be matched. This way, it is possible to specify that
one or more properties have a higher relevance than others within a given
matching execution.

Variability of the mapping-set. This kind of variability captures the different
customizations on the mappings that are returned as result of a matching execu-
tion. We distinguish three different levels of variability along this dimension:

– Mapping ranking (ρ). It allows to specify a minimum threshold that should
be satisfied by a mapping to consider its corresponding elements as matching
elements.

– Mapping cardinality (δ). It allows to specify the number of correspondences
that are admitted in the matching result for a given element e. The choice
spans from the one-to-one option, where only the mapping with the best
matching element of e is included in the result, up to the many-to-many
option, where all the discovered mappings with the matching elements of e
are included in the result.

– Mapping granularity (γ). It allows to specify the level of granularity of the
mappings produced as a result of the matching execution. The choice spans
from a generic element-to-element correspondence, up to a complete map-
ping table of correspondences between the single properties of two matching
elements.

The levels of variability along the three dimensions described above can be differ-
ently combined to obtain a specific configuration of the matching execution. All
the possible matching variabilities are described by the three-dimension schema
of Figure 1(a), where the nature of a matching execution is determined by the
variability levels activated (+) or not activated (-) along the three dimensions.
A given combination of choices depends on the specific target to satisfy. As an
example in a bibliographic scenario, we consider the retrieval of publications of
the same authors in the years from 2000 to 2003. This matching target can be
satisfied by the combination 〈+α, +χ,−κ, +π,−ω, +ρ, +δ,−γ〉 (Figure 1(b)).
The abstract selection (+α) allows to restrict the matching execution to the
comparison of authors, while the concrete selection (+χ) allows to consider only
publications from 2000 to 2003, respectively. The scope matching (+π) allows to
set the maximum level of deepness for the comparison of authors of two publica-
tions by considering all the information available in the corresponding semantic
web representations. Finally, the mapping ranking (+ρ) and the mapping cardi-
nality (+δ) allow to specify a matching threshold t and a many-to-many option
for mapping cardinality, respectively. This way, for a given publication, all the
publications with a matching value over t will be returned in the matching result.
As another example, the matching configuration for discovering all the biblio-
graphic records referring to the same real publication is shown in Figure 1(c)
and it will be discussed in Section 7.

198 S. Castano, A. Ferrara, and S. Montanelli

3.1 The Matching Variability Framework

To model matching variabilities modeling, we introduce the Matching Variability
Framework, based on the notions of knowledge chunk, mapping, and context.

Knowledge chunk. A knowledge chunk kc represents an element of interest
for matching, either concept or instance. Given a semantic web resource O, like
a RDF(S) repository or an OWL ontology, let N be the set of element names in
the signature of O, P is a set of property/relation names, L the set of datatypes
and literal values in O, and id the identifier of O, such as its URI. A knowledge
chunk kc provides a synthetic representation of an element e ∈ O in terms of
its constituent axioms/assertions, both explicitly and implicitly defined in O.
To this end, kc is defined as a set of axioms kc = {a1(kc), a2(kc), . . . , an(kc)}
constituting the specification of the corresponding element e. An axiom ai(kc),
with i ∈ [1,n] has the form ai(kc) = 〈n(kc), r(ai), v(ai), id〉 where:

– n(kc) ∈ N is the name of the knowledge chunk kc, which coincides with the
name of e.

– r(ai) ∈ P ∪ {≡,�} is a semantic relation contained in the definition of e.
– v(ai) ∈ N ∪ L is the value of the corresponding relation r(a1).
– id is the provenance of kc, namely the identifier of the resource from which

kc is generated.

Given O, a set of knowledge chunks is derived to provide a synthetic representa-
tion of concepts and instances contained in O. In particular, a knowledge chunk
kcu is created for each URI u ∈ O. An axiom ai(kcu) is defined for each path
u → v between u and a terminal node v in the RDF graph of the resource.
The semantic relation r(ai) is defined as the concatenation of the labels of the
properties p1 and pn in u → v, while the value v(ai) is set to v. An example
of knowledge chunk is given in Section 3.2, while a detailed description of the
construction of knowledge chunks from RDF(S) and OWL resources is provided
in [17].

Mapping. A mapping m denotes a semantic correspondence between two knowl-
edge chunks kci and kcj and it is a tuple of the form m = 〈n(kci), n(kcj), SA,
U〉, where:

– n(kci) and n(kcj) are the names of the matching knowledge chunks kci and
kcj , respectively.

– SA ∈ [0, 1] is the semantic affinity value denoting the level of matching
between kci and kcj .

– U is a (possibly empty) set of mapping rules, each one denoting the corre-
spondence between pairs of matching axioms of kci and kcj .

Context. A context defines a variability level in terms of operations on knowl-
edge chunks and on mappings between them. The idea of using contexts to
model matching variability derives from the field of conceptual modeling where

Dealing with Matching Variability of Semantic Web Data Using Contexts 199

 abstract
 selection

 concrete
 selection

 mapping
 granularity

 mapping
 cardinality

constraint
matching

scope
matching

weight
matching

 mapping
 ranking

 abstract
 selection

 concrete
 selection

 mapping
 granularity

 mapping
 cardinality

constraint
matching

scope
matching

weight
matching

 mapping
 ranking

(b)

 abstract
 selection

 concrete
 selection

 mapping
 granularity

 mapping
 cardinality

constraint
matching

scope
matching

weight
matching

 mapping
 ranking

(a) (c)

Fig. 1. Graphical representation of variability dimensions of matching (a), and exam-
ples of matching configurations (b) (c)

AKT EPrints
eprints:p1 sweto:author: O’Hara, Dr Kieron, Shadbolt, Prof Nigel, Tennison, Dr Jeni

rdf:label: APECKS: Using and Evaluating a Tool for Ontology Construction
with Internal and External KA Support.
sweto:journal name: International Journal of Human-Computer Studies
sweto:year: 2002

eprints:p2 sweto:author: Alani, Dr Harith, Dasmahapatra, Dr Srinandan, Gibbins, Dr
Nicholas, Glaser, Hugh, Harris, Steve, Kalfoglou, Dr Yannis, O’Hara, Dr Kieron,
Shadbolt, Prof Nigel
rdf:label: Managing Reference: Ensuring Referential Integrity of Ontologies for
the Semantic Web.
sweto:book title: 13th International Conference on Knowledge Engineering
and Knowledge Management (EKAW’02)
sweto:year: 2002

eprints:p3 sweto:author: Carr, Dr Leslie, Kampa, Dr Simon, Miles-Board, Mr Timothy
rdf:label: Hypertext in the Semantic Web.
sweto:book title: ACM Conference on Hypertext and Hypermedia 2001
sweto:year: 2001
sweto:pages: pp. 237-238

Rexa
rexa:p1 sweto:author: Kieron O’Hara, Nigel R. Shadbolt

sweto:journal name: International Journal of Human-Computer Studies
sweto:year: 2002

rexa:p2 sweto:author: Harith Alani, Srinandan Dasmahapatra, Nicholas Gibbins, Hugh
Glaser
rdf:label: Ensuring referential integrity of ontologies for the semantic web.
sweto:book title: Managing reference
sweto:year: 2002
sweto:pages: 317-334

Fig. 2. A portion of the AKT EPrints and of the Rexa datasets

200 S. Castano, A. Ferrara, and S. Montanelli

(a)

kci r(ai) v(ai) id

eprints:p1

author name Shadbolt, Prof Nigel eprints
author name Tennison, Dr Jeni eprints
author name O’Hara, Dr Kieron eprints

label APECKS: Using and Evaluating a Tool for Ontol-
ogy Construction with Internal and External KA
Support.

eprints

journal name International Journal of Human-Computer Stud-
ies

eprints

year 2002 eprints
(b)

Fig. 3. Example of RDF description of a publication (a) and the corresponding knowl-
edge chunk (b)

it has been introduced for the purpose of dealing with domain variability and
requirements engineering [18,19].

In the Matching Variability Framework, we abstract a matching execution
Match as Match(D) → M, where D is a source-dataset, namely the set of
knowledge chunks considered for the matching execution, andM is a mapping-
set, namely the set of mappings produced as a result of the matching execution.

3.2 Matching Example

To classify matching variability and to illustrate our proposed framework, we
consider bibliographic data based on the ARS benchmark datasets provided by
the instance matching track of OAEI 20091.

In particular, we focus on a test case that includes two datasets in the domain
of scientific publications, namely AKT EPrints and Rexa2. A portion of the
1 Ontology Alignment Evaluation Initiative: http://oaei.ontologymatching.org/2009
2 Both the datasets are available at http://www.intancematching.org/

Dealing with Matching Variability of Semantic Web Data Using Contexts 201

test case is shown in Figure 2 where we report data extracted from the RDF
description of three publications from AKT EPrints and two publications from
Rexa, respectively. An example of the RDF representation for the publication
eprints:p1 (see Figure 2) is shown in Figure 3(a) according to the SWETO-DBLP
ontology3, an extension of FOAF4 for the domain of scientific publications and
related authors. In particular, the properties rdf:label and sweto:author are used
to represent the title and the author of publications, respectively. An example
of the knowledge chunk corresponding to the bibliographic record eprints:p1 is
shown in Figure 3(b).

In the following sections, we introduce the contexts that formalize the vari-
ability levels along each dimension of Figure 1.

4 The Source-Dataset Contexts

Variability along the source-dataset dimension is formalized through the follow-
ing two contexts.

Definition 1. Abstract context. The abstract context of a knowledge chunk
kc is a unary operation αc(kc)→ 2kc that returns the set of axioms kc ⊆ kc that
satisfy the abstract context condition c associated with αc(kc). The condition c is
an arbitrary combination of conjunctions and/or disjunctions of property names
p ∈ P. Each component of the condition c is satisfied if ∃r(ai) ∈ kc | r(ai) = p.

Abstract contexts filter data with respect to the data structure, that is the
set of properties and relations associated with a given knowledge chunk. For
example, in order to focus only on journal papers and their titles for matching
publications, we apply the abstract context αjournal name∧label to the knowledge
chunks of eprints in Figure 2. As result, we have that only eprints:p1 satisfies the
abstract condition and will be included in the matching operation (see Figure 4).

kci r(ai) v(ai) id

eprints:p1 label APECKS: Using and Evaluating a Tool for Ontology Construc-
tion with Internal and External KA Support.

eprints

journal name International Journal of Human-Computer Studies eprints

Fig. 4. Example of abstract context result

Definition 2. Concrete context. The concrete context of a knowledge chunk
kc is a unary operation χc(kc) → {kc, ∅} that returns the knowledge chunk kc
itself if the axioms of kc satisfy the concrete context condition c, and returns the
empty set otherwise. The concrete context condition c is an arbitrary combination
of conjunctions and/or disjunctions of boolean predicates of the form 〈v(ai) θ k〉,
where k is a constant value, and θ is a comparison operator in {>, <, =, ≥, ≤,
�=, LIKE}, where LIKE denotes a pattern matching operator for strings (such
as in SQL).
3 http://lsdis.cs.uga.edu/projects/semdis/swetodblp/august2007/opus august2007.rdf
4 http://xmlns.com/foaf/spec/

202 S. Castano, A. Ferrara, and S. Montanelli

Concrete contexts filter source data with respect to their contents, that is the
property values associated with a given knowledge chunk. Still referring to
publications, we would focus the matching execution only on the publications
produced after 2001. We apply the concrete context χyear > 2001 to eprints pub-
lications of Figure 2, by selecting only eprints:p1 and eprints:p2.

5 The Matching-Dataset Contexts

Variability along the matching-dataset dimension is formalized through three
specific contexts as follows.

Definition 3. Constraint context. The constraint context is a binary oper-
ation κc(kc, kc′) → {(kc, kc′), ∅} that, given two knowledge chunks kc and kc′

submitted to matching, returns the pair (kc, kc′) if kc and kc′ satisfy the con-
straints c, and returns the empty set otherwise. The constraint c is an arbitrary
conjunction/disjunction of boolean predicates of the form 〈p θ p′〉, where θ is
a comparison operator in {>, <, =,≥,≤, �=} and p and p′ denote two property
names in P, respectively. The predicate p θ p′ is satisfied if ∃ai(kc), aj(kc′) |
r(ai) = p, r(aj) = p′, (v(ai) θ v(aj)) = true.

A constraint context defines pre-condition(s) that must be satisfied by two knowl-
edge chunks submitted to matching in order to be further considered for the
purpose of matching. Conditions under which two knowledge chunks are con-
sidered as comparable (and thus can be further matched according to the scope
and weight contexts) are expressed by the constraints in c. A very common con-
straint that could be required is the equality constraint p = p′, stating that
two knowledge chunks kci and kcj are equality-comparable only if their prop-
erties p and p′ have the same value. For example, with respect to publications
of Figure 2, if we want to match only records of publications appeared in the
same year, we apply the constraint context κkci.year=kcj .year(kci, kcj) to pairs of
knowledge chunks in (AKT EPrints × Rexa), resulting in the following set KC
of comparable knowledge chunk pairs.

KC = {(eprints : p1, rexa : p1), (eprints : p1, rexa : p2),

(eprints : p2, rexa : p1), (eprints : p2, rexa : p2)}

Definition 4. Scope context. The scope context is defined as a binary op-
eration πc(kc, kc′) that, given a pair of knowledge chunks kc and kc′ re-
turns the scope-projection (kc, kc′) of kc and kc′ under the scope c, with c ∈
{terminological, structural, full}. The scope-projection (kc, kc′) is defined
according to the following rules:

– If c = terminological then
• kc = {ni | ∃ai(kc), r(ai) = ni ∨ ∃aj(kc), v(aj) = ni}
• kc′ = {n′

i | ∃ai(kc′), r(ai) = n′
i ∨ ∃aj(kc′), v(aj) = n′

i}

Dealing with Matching Variability of Semantic Web Data Using Contexts 203

– If c = structural then
• kc = {〈nj, r(aj)〉 | ∃ai(kc), r(ai) = r(aj), n(kc) = nj}
• kc′ = {〈n′

j , r(aj)′〉 | ∃ai(kc′), r(ai) = r(aj)′, n(kc′) = n′
j}

– If c = full then
• kc ≡ kc
• kc′ ≡ kc′

The scope context has the purpose of keeping only the features of the knowledge
chunk representation that are of interest for comparison and matching evalu-
ation. In particular, the terminological scope limits to the terms appearing
in the knowledge chunk. In the Matching Variability Framework, we call this
set of terms terminological equipment of a knowledge chunk, which represents
the (unstructured) terminological information available in a knowledge chunk.
The structural scope produces the set of properties of kc and kc′ by cutting
off their values. In this case, only the knowledge chunk structure is considered
during matching. Finally, the full scope considers all the information avail-
able in a knowledge chunk. As an example, if we are interested in matching the
publications of Figure 2 eprints:p1 and rexa:p1 on the basis of their structure
only, we apply the scope context σstructural(eprints : p1, rexa : p1) that returns
the scope-projection eprints : p1 = {〈eprints : p1, author name〉, 〈eprints :
p1, label〉, 〈eprints : p1, journal name〉, 〈eprints : p1, year〉} and rexa : p1 =
{〈rexa : p1, author name〉, 〈rexa : p1, journal name〉, 〈rexa : p1, year〉}.

Definition 5. Weight context. The weight context ωc(kc)→ KC is defined as
a unary operation that, given a knowledge chunk kc returns a weighted knowledge
chunk kc defined according to the weighting set c. The weighting set c is composed
by pairs of the form (pi, wi), where pi is a property name in P and wi is a weight in
the range [0,1]. For each weighting pair (pi, wi), the resulting weighted knowledge
chunk kc is defined as kc = {〈ai(kc), wi〉 | ∃ai(kc) = ai(kc) ∧ r(ai) = pi}.

The weight context allows to discriminate the relevance to be assigned to ax-
ioms for knowledge chunk comparison. The higher the weight is, the highest the
relevance of the axiom is. An important usage of the weight context is to assign
more relevance to axioms having capability of identifying objects. Axioms hav-
ing strong identification power can be set to have higher relevance with respect
to the others in determining the final level of matching. For example, consider-
ing publications of Figure 2, we want to set titles and authors as more relevant
properties for identification than book titles and years, while pages should not
be taken into account at all. To this end, we define the weight context condition
(author name, 1.0), (label, 1.0), (book title, 0.5), (year, 0.5), (pages, 0.0).

6 The Mapping-Set Contexts

Variability along the mapping-set dimension is addressed by the following
contexts.

204 S. Castano, A. Ferrara, and S. Montanelli

Definition 6. Ranking context. The ranking context ρc(M)→ 2M is defined
as a unary operation that, given a mapping-set M returns a ordered list L of
mappings of M filtered according to the threshold c ∈ [0,1]. In particular, L is
defined as follows:

L = (m0, m1, . . . , mn) | ∀mi, mj , j > i⇒ SAj ≥ SAi ≥ c

The ranking context is used to cut off mappings whose level of semantic affinity is
lower than a given threshold. For example, referring to publications of Figure 2,
if we execute matching of eprints against rexa by applying the abstract context
αauthor name, we obtain the following mappings:

m1 = 〈eprints : p1, rexa : p1, 0.8, ∅〉

m2 = 〈eprints : p2, rexa : p1, 0.4, ∅〉

m3 = 〈eprints : p2, rexa : p2, 0.67, ∅〉

This result can be refined by cutting off mappings with a low semantic affinity
value, by applying the ranking context ρ0.5 that returns only the mappings m1
and m3.

Definition 7. Cardinality context. The cardinality context δc(M) → 2M is
defined as a unary operation that, given a mapping-setM returns a mapping-set
M⊆M that contains only mappings compatible with the cardinality constraint
c ∈ {one, many}. The resulting mapping-set M is defined according to the fol-
lowing rules:

– c = one:M = {mi = 〈n(kci), n(kc′), SAi,Ui〉 | ∃!kc′, 〈n(kci), n(kc′), SAi,Ui〉
– c = many:M≡M

The cardinality context regulates the maximum number of target knowledge
chunks that can match a single source knowledge chunk in a mapping-set. This
number (called cardinality) ranges from the value ‘unbounded’ allowing to keep
all the mappings discovered during the matching execution to ‘exactly one’,
which takes only the “best matching” mapping, where the notion of best match-
ing is defined according to the requirements of the matching task at hand. With
respect to the previous example, if we do not apply any ranking context, the
knowledge chunk eprints:p2 matches with both rexa:p1 and rexa:p2. This situa-
tion can be handled by applying the cardinality context δone and by selecting as
best matching element the one with the highest semantic affinity. This results
in keeping only the mapping 〈eprints : p2, rexa : p2, 0.67, ∅〉.

Definition 8. Granularity context. The granularity context γc(M) → 2M

is a unary operation that, given a mapping-set M returns a mapping-set M ⊆
M defined according to the granularity condition c ∈ {simple, complex}. The
resulting mapping-set M is defined according to the following rules:

Dealing with Matching Variability of Semantic Web Data Using Contexts 205

– c = simple: M = {mi = 〈n(kc), n(kc′), SAi,Ui〉 | mi ∈ M,Ui = ∅
– c = complex: M = {mi = 〈n(kc), n(kc′), SAi,Ui〉 | mi ∈M,Ui �= ∅

The granularity context determines the kind of mapping that holds between two
knowledge chunks in a mapping-set, ranging from a simple correspondence at
the whole knowledge chunk level to more complex mappings specifying also
mapping rules, which state how to transform the axioms of one knowledge
chunk into the matching ones of the other knowledge chunk. As an example we
consider a mapping mi between eprints:p2 and rexa:p2. A complex granularity
mapping specifies the following mapping rules: (eprints : p2).author name ⇔
(rexa : p2).author name, (eprints : p2).label ⇔ (rexa : p2).book title + (rexa :
p2).label, (eprints : p2).book title ⇔ NULL, (eprints : p2).year ⇔ (rexa :
p2).year, NULL⇔ (rexa : p2).pages. The mapping rules state that the label of
eprints:p2 corresponds to the concatenation of book title and label of rexa:p2; the
book title in eprints:p2 does not have a corresponding value in rexa:p2; pages in
rexa:p2 does not have a corresponding value in eprints:p2.

7 Matching Semantic Web Data with Contexts

In this section, we show an instantiation of the Matching Variability Frame-
work in HMatch 2.0 [20]. HMatch 2.0 is developed as a flexible matching suite
where a number of matching techniques are implemented and organized in
different modules providing linguistic (HMatch(L)), concept (HMatch(C)), and
instance (HMatch(I)) matching techniques. These HMatch 2.0 modules can be
differently combined to provide four matching models, namely surface, shallow,
deep, and intensive, which allows the implementation of the contexts along the
matching-dataset variability dimension. Finally, the mapping-set contexts can
be realized by proper configuration of HMatch(M), the mapping-manager module
of HMatch 2.0. As an example of matching semantic web data with contexts, we
report the HMatch 2.0 performance in the OAEI 2009 instance matching con-
test, where we exploited HMatch 2.0 for matching the whole AKT Eprints and Rexa

sources. Goal of this matching execution was to find the bibliographic records
referred to the same real publications between 2000 and 2003. This conceptual
target corresponds to the contexts 〈−α, +χ,−κ, +π, +ω, +ρ, +δ, +γ〉, which has
been obtained with the combination of the properly configured HMatch 2.0 tech-
niques/modules shown in Figure 5.

As a first step, we translated the original RDF datasets into a collection of
knowledge chunks D. The KC-Wrap tool embeds functionalities for the derivation
of knowledge chunks from OWL ontologies and RDF repositories. Moreover, KC-

Wrap also implements the abstract and concrete contexts defined in our Match-
ing Variability Framework. We exploited a concrete context in order to limit the
matching task to data referred to the years between 2000 and 2003. As a result
of this step, the source-dataset D containing all the records in AKT Eprints and
Rexa has been transformed into a smaller dataset D (i.e., matching-dataset)
containing only the bibliographic records of interest for the considered matching

206 S. Castano, A. Ferrara, and S. Montanelli

KC-Wrap

Rexa
EPrints

source
dataset (D)

Rexa
EPrints

matching
dataset (D)

- + - + + + + +

+ : years from
 2000 to 2003

+ : t=0.8
+ : many
+ : simple

+ : full
+ : (label, 1.0)
 (author_name, 1.0)
 (book_title, 0.5)
 (year, 0.5)
 (pages, 0.0)

mapping-set

(M)

mapping-set

(M)

HMatch(I)

HMatch(L) HMatch(C) HMatch(M)

Fig. 5. Instantiation of the Matching Variability Framework in HMatch 2.0

target. Then, we exploited a full scope context, corresponding to the inten-
sive matching model of HMatch 2.0, and a weight context in order to configure
the matching process. In particular, the full scope-projection has been chosen
in order to take into account all the information available about bibliographic
records, while a weight context has been enforced to set properties label and
author name as the most relevant for object identification, followed by year
and book title (see Figure 5). The value of the property pages has not been
taken into account, by setting its weight to 0.0. According to this configura-
tion, the matching process is executed, leading to a resulting mapping-set M.
Then, HMatch(M) is exploited to select the mappings with a semantic affinity
value greater then or equal to 0.8 (i.e., mapping ranking context). Moreover, we
adopted a many cardinality context and a simple granularity context. The cardi-
nality represents the fact that we can have more than one record representing the
same publication in the original source-dataset, while the choice of the granular-
ity context was indicated by OAEI 2009 regulations. The resulting mapping-set
M contains the bibliographic records referred to the same real publications and
it has been validated against the set of expected mapping provided by OAEI
2009, obtaining a precision of 0.95 and a recall of 0.46, that is the second best
performance of OAEI 20095.

8 Concluding Remarks

In this paper, we discussed the notion of matching variability and we presented
the Matching Variability Framework for its formal representation and classifi-
cation. An example of instantiation of this framework in our matching system
HMatch 2.0 has been described by considering a test case of bibliographic records
of OAEI 2009. Ongoing work is mainly devoted to the integration in the HMatch

5 http://islab.dico.unimi.it/content/oaei2009

Dealing with Matching Variability of Semantic Web Data Using Contexts 207

2.0 system of the wrapping tools and related contexts at the source-dataset level.
Moreover, we plan to use the Matching Variability Framework for a comparative
analysis of recently developed instance matching tools.

References

1. Nikolov, A., Uren, V., Motta, E., Roeck, A.D.: Handling Instance Coreferencing in
the KnoFuss Architecture. In: Proc. of the 1st ESWC Int. Workshop on Identity
and Reference on the Semantic Web (IRSW 2008), Tenerife, Spain (2008)

2. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4), 334–350 (2001)

3. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
4. Isaac, A., van der Meij, L., Schlobach, S., Wang, S.: An Empirical Study of Instance-

Based Ontology Matching. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
253–266. Springer, Heidelberg (2007)

5. Bleiholder, J., Naumann, F.: Data Fusion. ACM Computing Surveys 41(1) (2008)
6. Shvaiko, P., Euzenat, J.: Ten Challenges for Ontology Matching. In: Meersman,

R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 1164–1182. Springer,
Heidelberg (2008)

7. Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology Matching with Se-
mantic Verification. Web Semantics: Science, Services and Agents on the World
Wide Web 7(3), 235–251 (2009)

8. Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A Dynamic Multistrategy Ontology Align-
ment Framework. IEEE Transactions on Knowledge and Data Engineering 21(8),
1218–1232 (2009)

9. Nagy, M., Vargas-Vera, M., Motta, E.: Managing Conflicting Beliefs with Fuzzy
Trust on the Semantic Web. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008.
LNCS (LNAI), vol. 5317, pp. 827–837. Springer, Heidelberg (2008)

10. Doshi, P., Thomas, C.: Inexact Matching of Ontology Graphs Using Expectation-
Maximization. In: Proc. of the 21st National Conference on Artificial Intelligence
(AAAI 2006), Boston, Massachusetts, pp. 1277–1282 (2006)

11. Cruz, I.F., Antonelli, F.P., Stroe, C.: AgreementMaker: Efficient Matching for
Large Real-World Schemas and Ontologies. In: Proc. of the 35th Int. Conference
on Very Large Data Bases (VLDB 2009), Lyon, France, pp. 1586–1589 (2009)

12. Zimmermann, A., Krötzschand, M., Euzenat, J., Hitzler, P.: Formalizing Ontology
Alignment and its Operations with Category Theory. In: Proc. of the 2006 Confer-
ence on Formal Ontology in Information Systems, Amsterdam, The Netherlands,
pp. 277–288 (2006)

13. Euzenat, J.: Algebras of Ontology Alignment Relations. In: Sheth, A.P., Staab, S.,
Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 387–402. Springer, Heidelberg (2008)

14. Gal, A., Martinez, M.V., Simari, G.I., Subrahmanian, V.S.: Aggregate Query An-
swering under Uncertain Schema Mappings. In: Proc. of the IEEE Int. Conference
on Data Engineering (ICDE 2009), Washington, DC, USA, pp. 940–951 (2009)

15. Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning Disjointness for Debugging
Mappings between Lightweight Ontologies. In: Gangemi, A., Euzenat, J. (eds.)
EKAW 2008. LNCS (LNAI), vol. 5268, pp. 93–108. Springer, Heidelberg (2008)

208 S. Castano, A. Ferrara, and S. Montanelli

16. Castano, S., Ferrara, A., Lorusso, D., Näth, T.H., Möller, R.: Mapping Valida-
tion by Probabilistic Reasoning. In: Bechhofer, S., Hauswirth, M., Hoffmann, J.,
Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 170–184. Springer, Hei-
delberg (2008)

17. Castano, S., Ferrara, A., Montanelli, S.: The iCoord Knowledge Model for P2P
Semantic Coordination. In: Proc. of the 6th Conference of the Italian Chapter of
AIS, Costa Smeralda (Nu), Italy (2009)

18. Lapouchnian, A., Mylopoulos, J.: Modeling Domain Variability in Requirements
Engineering with Contexts. In: Proc. of the 28th Int. Conference on Conceptual
Modeling (ER 2009), Gramado, Brazil. Springer, Heidelberg (2009)

19. Van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour.
In: Proc. of the 5th IEEE Int. Symposium on Requirements Engineering (RE 2001),
Washington, DC, USA (2001)

20. Castano, S., Ferrara, A., Montanelli, S.: Matching Ontologies in Open Networked
Systems: Techniques and Applications. Journal on Data Semantics, JoDS V (2006)

GRUVe: A Methodology for Complex Event
Pattern Life Cycle Management

Sinan Sen and Nenad Stojanovic

FZI Research Center for Information Technology
Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany

{sinan.sen,nstojano}@fzi.de
http://www.fzi.de/ipe

Abstract. With the rising importance of recognizing a complex situa-
tion of interest near real-time, many industrial applications have adopted
Complex Event Processing as their backbone. In order to remain useful
it is important that a Complex Event Processing system evolves ac-
cording to the changes in its business environment. However, today’s
management tasks in a Complex Event Processing system related to the
management of complex event patterns are performed purely manually
without any systematic methodology. This can be time consuming and
error-prone.

In this paper we present a methodology and an implementation for the
complex event pattern life cycle management. The overall goal is the ef-
ficient generation, maintenance and evolution of complex event patterns.
Our approach is based on a semantic representation of events and complex
event patterns combined with complex event pattern execution statistics.
This representation enables an improved definition of relationships be-
tween patterns using semantic descriptions of patterns and events.

1 Introduction

Complex Event Processing (CEP) is the analysis of events from different event
sources in near real-time in order to generate immediate insight and enable im-
mediate response to changing business conditions [1]. For example Transporta-
tion and Logistics, Financial Front Office, Telecommunication or Customer Risk
Management are successful application areas of CEP. Events are classified into
simple (atomic) events and complex events. According to Chandy et. al. [2] an
event indicates a significant change in the state of the universe. Sensor data,
network signals, credit card transactions or application processing information
are examples for simple events. A simple event is atomic and does not contain
further events. In comparison to a simple event, a complex event is composed
of other simple or complex events. For example, a credit card fraud event is de-
tected from incoherent use of a single credit card in different places by combining
these events into a complex event.

To detect a pattern over events properly is the most important capability of
CEP systems. This capability enables a just-in-time reaction to occurred situ-
ations. In order to recognize these situations so called complex event patterns

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 209–223, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.fzi.de/ipe

210 S. Sen and N. Stojanovic

(CEPATs) have to be defined. These patterns1 are used in order to process the
events and aggregate them to more high level complex events. A pattern is an
expression formed by using a set of events (either simple or complex) and a set of
event operators [3]. They resemble knowledge about the reactivity of the system.
For example the pattern2

(A AND B) happen WITHIN 2 Minutes

contains two events A and B, a logical Operator AND and a window operator
WITHIN.

In order to cope with the evolving nature of business environments we need ef-
fective and efficient support for advanced CEPAT management. However, today’s
management tasks in a CEP system related to the generation, maintenance and
evolution of CEPATs are performed manually without any systematic methodol-
ogy and tool support. So far there exists no academic approach dealing with the
management and evolution of CEPATs. Also the vendors providing CEP systems
neglect the issue of management and evolution. They are focused rather on run-
time than on design time issues. CEPATs can be compared to business rules in
the sense that they both are indispensable for today’s business. In the business
rules domain the management and the evolution of rules have been proven to
be crucial in order to optimize the process of rule generation, modification and
evolution (see [4],[5],[6],[7]). However, a straightforward application of existing
business rule management systems to CEPAT management is not a viable solu-
tion. This is due to the nature of CEPATs. Moreover, the existing business rule
evolution approaches do not tackle capabilities such as recommendation of new
rules, the reusability of existing rules, especially for large rule sets, and finally
the usage-driven evolution of rules which is part of our methodology.

In this paper we present a methodology for the management of CEPATs
which supports the whole life cycle of a CEPAT: starting from its generation,
throughout its usage including its evolution. The methodology treats CEPATs
as knowledge artefacts that must be acquired from various sources, represented,
shared and evaluated properly in order to enable their evolution. We argue that
such a methodology is a necessary condition for making a CEP system efficient
and keeping it alive. In a nutshell our approach is a semantic-based representa-
tion which enables us to a) make the relationships between CEPATs explicit in
order to reuse existing pattern artefacts b) automatically suggest improvements
in a CEPAT, based on necessity derived from usage statistics.

The paper is organized as follows: In section 2 we present related work. In
section 3 we define requirements for a CEPAT management methodology fol-
lowed by section 4 where we describe our methodology consisting of different
phases including the semantic CEPAT representation and where we outline its
importance. In section 5 we present the implementation state of our work and
in section 6 we conclude the paper and give an outlook for the continuation of
this line of research.
1 Pattern and complex event pattern are used synonymously in this article.
2 For the sake of convenience the pattern is represented in a pseudocode form.

Complex Event Pattern Life Cycle Management 211

2 Related Work

In the followed section we discuss related work from different fields of research
relevant for this paper, namely current approaches in event representation, busi-
ness rule evolution and rule management. We also take a look at the existing
CEP systems.

Event representation: There exist different approaches for event representa-
tion. Distributed publish/subscribe architectures like presented in [8], [9] and
[10] represent an event as a set of typed attributes. Each individual attribute
has a type, name and value. The event as a whole has purely syntactical and
structural value derived from its attributes. Attribute names and values are sim-
ple character strings. The attribute types belong to a predefined set of primitive
types commonly found in programming languages. In our opinion this kind of
event model is not sufficient for CEPAT management since it does not provide
any explicit semantics. The only justification for choosing this typing scheme
is the scalability aspect. The event stream engine AMIT (see [11] and [12]) is
targeting the high-performance situation detection mechanism. Via the offered
user interface one can model business situations based on event, situations, lifes-
pans and keys. Within AMIT an event is specified with a set of attributes and
it is the base entity. All events belong to a certain class (a class contains events
with similar characteristics) and have relationships to other events. Attributes
can be references to other objects as well. This approach is close to ours in
the sense that it describes the importance of generalization, specialization and
relationships of events.

Event representation in existing CEP systems: There is a large number of
CEP systems, both academic and commercial. The Aurora/Borealis [13] system
has the goal to support various kinds of real-time monitoring applications. Data
items are composed of attribute values and are called tuples. All tuples on a
stream have the same set of attributes. The system provides a tool set including
a graphical query editor that simplifies the composition of streaming queries
using graphical boxes and arrows. The Cayuga [14] system can be used to detect
event patterns in the event stream as well. An event here is a tuple of attribute
value pairs according to a schema. The goal of the Stream [15] project is to
be able to consider both structured data streams and stored data together.
The Esper [16] CEP engine supports events in XML, Java-objects and simple
attribute value pairs. There are also many commercial CEP vendors like Tibco,
Coral8/Aleri, StreamBase or Progress Apama providing tool suites including
development environments and a CEP engine. Most of the described systems
use different SQL-like or XML based complex event pattern definitions, which
makes it difficult to understand and read them. They do not provide a semantic
model for events and event patterns either. The management of event patterns
is restricted to create, modify and delete. Furthermore they do not use any
underlying management methodology and do not tackle the issues of reusability
and evolution of patterns.

212 S. Sen and N. Stojanovic

(Business) Rule evolution and its importance: The Agile Business Rule
Development methodology [17] is aimed at harvesting rules and producing an
executable (albeit incomplete) rule set as early as possible. It is based on five
cycles: Harvesting, Prototyping, Building, Integration and Enhancing. Within
the cycles, the activities are Discovery, Analysis, Authoring, Validation and De-
ployment. The methodology considers mostly the harvesting of rules and does
not consider their evolution. Also the refinement and the reusability of rules are
not part of the methodology. There are also many other approaches in the area
of (business) rules evolution or management like [4], [5], [6], [7], [15], [17]. They
consider either some aspects of (business) rules or describe the necessity of evo-
lution and maintenance. We of course incorporate relevant aspects from these
works in our methodology where applicable.

3 Requirements: What Do We Need and Why Is It
Important?

Compared to other IT-systems, CEP systems still lack in support of tools allow-
ing users to reconfigure a system easily or to refactor services and components
[18]. This is also valid for CEPAT generation, maintenance and management.
David Luckham3 considers the validation and the management of event process-
ing rules especially when dealing with large sets of event processing rules as one
of the challenges in the area of CEP [19]. Luckham defines CEPAT management
as writing correct patterns, their efficient execution, correct changes, ensuring
logical consistency and absence of redundancies.

From our point of view the management of CEPATs requires two basic func-
tionalities: efficient generation of patterns, including the incremental develop-
ment of new patterns and the continual improvement of existing patterns. These
functionalities in turn require methods and tools for: checking the validity of
new patterns, including the entire repository, reuse of existing patterns and dis-
covery of the need for changes in patterns and realizing them. In the following
we briefly describe each of these requirements:

– Ensure an anomaly-free repository: Anomalies in general are symptoms
of probable errors. Efficient generation of patterns means that the newly cre-
ated patterns semantically suit to the existing patterns. This can be ensured
through resolving two types of anomalies: contradiction and redundancy. In
order to ensure an anomaly-free repository a formal model is needed that is
expressive enough to detect anomalies.

– Deal with weak information needs and reuse of existing knowledge:
The creation of new patterns can be augmented by an incremental approach
which will enable smooth refinements of existing patterns in order to sustain
patterns being as relevant as possible for the problem at hand.

3 David Luckham is one of the most prominent experts in the area of CEP -
http://www-ee.stanford.edu/∼luckham/

Complex Event Pattern Life Cycle Management 213

– Enable continual improvement: As already explained patterns will change
in time and there is a need for methods of continually updating patterns in or-
der to ensure their relevance for new situations. CEP systems are designed for
near real-time environments. Iterative refinement of the generated CEPATs
enables a smooth modification of an initial CEPAT in order to make it as rel-
evant as possible to the given task of the CEPAT. A continual improvement of
the CEPATs enables an adaptation of the patterns to the internal or external
changes in order to keep the CEP system useful. The methodology should also
consider the effective detection of problems in the usage of patterns, to enable
suggesting how to evolve them.

These requirements cause some additional requirements for the implementation
of the methodology that are described below:

– High level graphical representation of events and patterns: In or-
der to express rules succinctly in a way that makes them understandable,
we need proper graphical development environments. A business expert (a
non-technician) should be able to express her/his need for a complex event
pattern by using this environment. The complexity of underlying CEP en-
gines needs to be hidden from the user in order to increase the usability of the
tool. Furthermore the tool must support the refinement and the reusability
of patterns in a graphical way as well.

– Independent modeling of events and patterns: The event and pattern
model has a major impact on the flexibility and usability of a CEP system.
Nowadays event patterns are mostly realized in XML, Java-Objects or SQL-
like CEP languages. However, these representations do not support the man-
agement of event patterns. In order to assure that, a model is needed which
allows the explicit definition of event and event pattern semantics and which
supports reasoning about events and event patterns. This model is used at
design time for event and event pattern representation and is transformed
into the CEP engine specific languages during the pattern deployment phase.

We believe a methodology and a tool-set based on these requirements will shorten
the time of the CEPAT development, improve the quality of CEPATs and enable
also non-domain experts to develop, maintain and evolve CEPATs. In the next
section we present a methodology implementing these requirements.

4 GRUVe: The Methodology

We define the CEPAT life cycle management as a process covering the genera-
tion, the refinement, the execution and the evolution of CEPATs. The focus is
on supporting the user by creating new patterns, increasing the reusability of
existing pattern artefacts and to give hints for pattern evolution. As illustrated
in figure 1, the GRUVe4 methodology consists of four main phases. These phases

4 Acronym for Generation Refinement Usage eVolution of complex (e)vent patterns.

214 S. Sen and N. Stojanovic

Fig. 1. Phases of the CEPAT life cycle

form a feedback loop enabling continual flow of information collected in the en-
tire life cycle of a CEPAT. The main idea is to enable non-technicians to search
incrementally for the most suitable form of requested CEPATs and to contin-
ually improve their quality taking into account changes that might happen in
the internal or external world. Obviously the basis for the development of the
methodology were the requirements given in the previous section. The methodol-
ogy has been influenced by our past work in the area of knowledge management
and ontology evolution [20], [21]. Below we describe these phases in more detail.

4.1 Generation Phase

The life cycle of CEPATs starts with their development which is classified into
three categories (see figure 1 block Generation). The simplest way to develop a
CEPAT is a manual development which can be done only by business experts.
However, we cannot expect that an arbitrary user spends time finding, grouping
and ordering the events in order to create their desired CEPAT. In order to do
that the user must be aware of the way of combining events, he/she must find
the right type of events, foresee and solve the intermediate conflicts that might
appear and order events in a right way. A more user-oriented approach can be
obtained by reusing existing CEPATs, the so-called search-based approach. Here,
the users should be able to specify their complex goals without considering how
they can be realized. By selecting similar existing CEPATs at the start of the
CEPAT development process, the users could realize their request much faster.
For instances if the user intends to generate a new pattern for a fraud situation

Complex Event Pattern Life Cycle Management 215

he/she can search for events which belong to the type fraud from a certain
event source. In that way the generation of a CEPAT could be realized as a
straightforward search method, where the specificities of the CEPAT domain
are used to define a search space and to restrict the search in this space. Besides
CEPATs developed by experts or users explicitly, there are also implicit CEPATs
in the domain, reflected in the behavior of the system. These can be discovered
through the analysis of log files, etc. Various data mining methods can be used for
the extraction of such knowledge. Independent of how CEPATs are identified, in
order to deal with them they have to be represented in a suitable format which
supports their management. Therefore, the generated complex event patterns
must be represented in an internal, CEP platform independent way.

RDFS-based complex event pattern representation. A well defined event
pattern model has a major impact on the flexibility and usability of CEP tools
[18]. Contemporary event and pattern models lack the capability to express the
event semantics and relationships to other entities. Although the importance of
such a semantic event representation is demonstrated in practice [12], there does
not exist any systematic work on this topic so far. Still most of the existing
event models consider an event as an atomic unstructured or semistructured en-
tity without explicitly defined semantics. Also the existing CEP languages are
product specific languages designed solely for the matching process rather than
for their own management and evolution. Our semantic model for event and pat-
tern representation is based on RDFS5. RDFS in general has the advantage that
it offers formal and explicit definitions of relations between concepts. We use
our RDFS based pattern representation at different stages within the methodol-
ogy: increasing the reusability of existing pattern artefacts, validation of defined
patterns and identification of relations between two patterns in order to evolve
them. We believe the explicit representation of events through RDFS will enable
CEP tools to provide a qualitatively new set of services such as verification,
justification and gap analysis. These systems will be able to weave together a
large network of human knowledge and will complement this capability with ma-
chine processability. Various automated services will then aid users in achieving
their goals by accessing and providing information in a machine understandable
form. It is important to note that semantic-based representations not only define
information but also add expressiveness and reasoning capabilities. In general,
reasoning tasks can be used to verify a model (i.e. a set of CEPATs). Consistency
checking, detection of redundancies and refinement of properties are just some
of these reasoning capabilities.

The upper-level ontology contains a set of concepts Event, EventOperator,
EventSource, EventType and a set of event properties. Each property may have
a domain (denoted by � ∃) concept as well as a range (denoted by − �) concept
(see figure 2). These concepts can be specialized in order to define new types,
sources and operators.

5 RDF Schema (RDFS) is an extensible knowledge representation language providing
basic elements for the description of ontologies.

216 S. Sen and N. Stojanovic

Fig. 2. Upper-level event and CEPAT ontology

Definition 1: An event is defined as a 7-tuple E := (I, N, ST, ET, ES, EO, T)
where:

– I is a numeric event id
– N is a alphanumeric event name
– ST is numeric event start time of an event
– ET is numeric event end time of an event
– EO is a reference to the event operator concept
– ES is a reference to the event source concept
– T is a reference to the the event type concept

A concrete event occurrence, simple or complex, is an instantiation of E. It has
an unique id and an event name. The start time indicates when the event oc-
curred. The end time of an event is relevant only for complex events and indicates
the triggering of a complex event which might be different from the start time
for an event with a duration. In comparison to a complex event that contains
a complex event pattern via a reference to the concept EO a simple event does
not contain any reference to the concept EO. In this sense the concept EO indi-
cates whether an event is simple or complex with a proper complex event pattern.

In order to classify events of similar characteristics we use event types and event
sources. The event type characterizes a class of event objects.

Definition 2: The event type is defined as a tuple T := (Ht, At) where:

– Ht is an acyclic event type hierarchy
– At is a set of event type specific attribute < at1, ..., atn >

Complex Event Pattern Life Cycle Management 217

An event source is an entity that sends events e.g., a software module, a sensor,
a web service etc. The definition of the event source is similar to the definition
of the event type.

Definition 3: The event source is defined as a tuple ES := (Hes, Aes) where:

– Hes is an acyclic event source hierarchy
– Aes is a set of event type specific attribute < as1, ...asn >

A complex event is composed of an event operator via the consistsOf property.
An event operator is further classified into operator classes according to the
nature of the operator. Currently the model contains operators defined in [3]. An
event operator again has events as input. This allows us to build more complex
event patterns recursively.

Definition 4: The event operator is defined as a tuple EO := (Heo, Aeo) where:

– Heo is an acyclic event operator hierarchy
– Aeo is a set of event operator specific attribute < ao1, ...aon >

One of the key idea of the approach is having a well defined representation of the
complex event patterns in order to recognize different relations between them.
The information about the relation can be used for getting more precise infor-
mation on top of the pattern statistics knowledge.

A pattern is formed as a tuple (E, EO) where E is a set of events and EO
is a set of event operator.

Let:

– Γ be the set of all CEPAT triples within the Knowledge Base (KB) repre-
senting all defined CEPATs.

– εi represent all event triples and σi all operator triples created for a CEPAT
instance.

– τi be the set triples of a CEPAT instance containing all event and operator
triples, i.e. τi = εi ∪ σi.

Then a CEPAT instance can be seen as a finite subset of Γ , i.e τi ⊆ Γ . On top
of that definition we define the relations between two CEPATs:

– subsumption: A complex event pattern CEPAT1 subsumes another complex
event pattern CEPAT2, i.e. τ1 ⊂ τ2

– overlapping: A complex event pattern CEPAT1 have a common overlap
with another complex event pattern CEPAT1, i.e ∃x, y ∈ ε : (x ⊂ τ1 ∧ x ⊂
τ2) ∧ (y ⊂ τ1 ∧ y �⊂ τ2)

– disjointness: Two complex event patterns do not have an overlap, i.e τ1 ∩
τ2 = ∅

– equalness: Two complex event patterns represent the same situation, i.e.
τ1 ≡ τ2

218 S. Sen and N. Stojanovic

Regarding the Generation phase, the main strength of our approach lies in the
presented semantic-based nature of our CEPAT representation which enables for-
mal representation of the relations between existing CEPATs and consequently
better understanding of that information space. It increases the reusability of
existing patterns enabling a faster development of new patterns.

4.2 Refinement Phase

As we already mentioned the process of creating CEPATs is a kind of weakly-
defined search operation in an information space rather than a search with very
precisely defined queries. Lessons learned from the Information retrieval com-
munity show that the right mechanism for the former case is the incremental
refinement of queries [20], based on various feedbacks that can be obtained in
that process. It would mean that the main task in the CEPAT creation process
is not the very precise formulation of a pattern in the first place but an iterative
improvement of the CEPAT. This corresponds to the second requirement from
section 3. As presented in figure 1 this phase has the CEPAT as input created
in the previous phase. It allows the user to fine tune the CEPAT if he/she is not
sure about the quality of the created CEPAT. Let us assume our goal is to build
new patterns N1 and N2. We further assume that there exist two CEPATs, P1
and P2, in the repository6.

P1- Stock.VW.value=117 AND Stock.Daimler.value=34.78
AND Stock.Porsche.value=47.90

P2- Blog.Twitter.Tweet.Person="Barack Obama" AND
Blog.Twitter.Tweet.Person="Nicolas Sarkozy"

We can use the previously defined relations in order to demonstrate the refine-
ment for the following new patterns and show how relevant hints can be given
about related patterns.

N1- Stock.VW.value=117 AND Stock.Porsche.value=47.90
N2- Blog.Twitter.Person="Angela Merkel"

AND Blog.Twitter.Person="Barack Obama"

The following relations exist between the four patterns:

– subsumption(P1, N2)=true
– disjoint(P1,N2)=true
– disjoint(P2,N1)=true
– overlapping (P2, N2)=true

The result of this relation detection is that in the first case P1 is presented to the
user in order to be reused. In the second case P2 can be shown in order to inform
the user that there exists another pattern that can be relevant for him as well. By
using the RDF relation RDF:instanceOf we also can identify patterns that are
different at the instance level but equivalent at the class level. For instance if we
6 The pattens in this example are presented in a pseudocode form.

Complex Event Pattern Life Cycle Management 219

change the pattern artefact Stock.VW.value=117 into Stock.VW.value=118 we
are still able to detect the subsumption relation based on the class information
although they differ at the instance level.

4.3 Usage Phase

Once created, CEPATs must be deployed in a CEP engine, after being trans-
formed into the corresponding syntax. However in order to ensure the quality
of created patterns, it is necessary to monitor what happens to a CEPAT or a
set of CEPATs in a CEP engine at runtime. Nowadays there is no monitoring of
the defined CEPATs e.g., if they had been executed in a CEP engine. It is not
obvious to see how often certain patterns have been triggered and which parts
of the pattern have been executed how often. It is not available either which
patterns are going to be executed next. However we believe information of how
often a pattern was triggered or how high the current degree of fulfillment is
might be essential for the pattern evolution. The goal of this phase is to track as
much as possible of this information and process it in the context of the defined
CEPATs. For this reason we think a component may be developed that might
capture all the pattern related information. These statistics can be used within
the Evolution phase in order to evolve and optimize a pattern.

4.4 Evolution Phase

A pattern that has not become rapidly obsolete must change and adapt to the
changes in its environments, user’s needs, etc. Therefore, if a pattern aims at
remaining useful it is essential that it is able to accommodate the changes that
will inevitably occur. Developing patterns and their applications is expensive
but evolving them is even more expensive. The experiences show that the tra-
ditional software system maintenance costs exceed the development costs by
a factor of between two and four. There is no reason to assume this should
be any different for CEP systems when they are used during a longer period
of time. Facilitating those changes is complicated if large quantities of events
and CEPATs are involved. The Evolution phase is responsible for coping with
changes that may impact the quality of a CEPAT. The causes of the changes
usually lay in the highly changeable internal and external factors. In a more open
and dynamic business environment the domain knowledge evolves continually.
The basic sources that can cause changes in a business system are:

– The environment: The environment in which systems operate can change.
– The user: Users’ requirements often change after the system has been built,

warranting system adaption. For example hiring new employees might lead
to new competencies and greater diversity in the enterprise which the system
must reflect.

– The process: The business applications are coupled around the business
processes that should be reengineered continually in order to achieve better
performances.

220 S. Sen and N. Stojanovic

The goal of this phase is to use the analytics provided by the Usage phase and
suggest to the user some improvements to evaluated CEPATs. While a good
design may prevent many CEPAT errors, some problems will not pop out before
CEPATs are in use. Therefore, the relationship with the usage of a CEP-based
system is paramount when trying to develop useful CEPATs and cannot be
neglected. One of the key ideas of the approach is having a well defined repre-
sentation of the complex event patterns in order to recognize different relations
between them. The information about the relations can be used for getting more
precise information on top of the pattern statistics knowledge.

The most important analysis is the comparison with the usage data of related
patterns. We give here an example: Let us assume that P1 and N1 (from the
previously section) are in the event repository. Let us further assume that P1
has been triggered 10 times in a period and N1 1000 times. Obviously there
might be a problem in the usage of the pattern P1. What can be concluded by
comparing usage data from these two patterns is that part Stock.VW.value=117
AND Stock.Porsche.value=47.90 in the pattern N1 had been fulfilled many times
but the combination with the simple subpattern Stock.Daimler.value=34.78 is
rather critical. The system can discover such a discrepancy and suggest the user
to replace this event. Moreover, the system can suggest which similar event is
the most appropriate one. Obviously, judging whether a pattern is still correct
based on its usage requires a kind of metrics. Our next step will be to develop
a comprehensive notion of the quality of a CEPAT, which will alleviate the
Evolution phase.

5 Implementation of the Methodology

The current version of our CEPAT life cycle management environment supports
the Generation and Refinement phase implemented as a web application. The
implementation supports the transformation of patterns and events into our
RDFS representation, as described in section 4.1.

The CEPAT management environment consists of the CEPAT Input Section,
the CEPAT Design Section, the CEPAT Refinement Section and the CEPAT
Statistics Section (see figure 3). The pattern input section provides the event
nodes and the operator nodes in order to build a new CEPAT.

Within the pattern design section new patterns can be created. Patterns can be
generated by selecting the required event or operator nodes from the pattern Input
Section and connect them. Event nodes should be connected to an operator node
where each event node is connected to at most one operator node. An operator
node can be connected to several event nodes but can only be connected to either
an action node or another operator node. The pattern generated in fig. 3 shows
the pattern N1 from section 4.2. The results of the refinement are shown in the
CEPAT Refinement Section. It shows the pattern P1 from section 4.2. As soon
as the user starts building a new pattern our system calculates the next similar
patterns related to his current situation based on the relations. The results are
presented in a graphical way. The user can see the details of the presented patterns
by klicking on them and reuse parts or all of the selected pattern.

Complex Event Pattern Life Cycle Management 221

Fig. 3. Complex event pattern management environment including the pattern N1
from section 4.2

6 Conclusion and Future Work

The most important capability of CEP (Complex Even Processing) systems is
to detect an occurred situation properly. Today’s management tasks in CEP
systems related to the evolution of complex event patterns (CEPATs) are per-
formed manually without any systematic methodology and tool support. So far
there is not any academic approach dealing with the management and evolution
of CEPATs. In this paper we presented a methodology for CEPAT life cycle
management supporting the generation, maintenance and evolution of CEPATs.
In a nutshell the approach is a semantic-based representation of CEPATs which
enables us to make the relationships between CEPATs explicit in order to reuse
existing pattern artefacts and automatically suggest improvements for a CEPAT,
in the case that it is necessary, based on usage statistics. We present the current
implementation status of our methodology that supports the generation and the
refinement phase.

Our long-term goal is to underline the importance of a methodology for
CEPAT management through a proper reference implementation. Therefore we
will extend the phases of our methodology presented in this paper in the follow-
ing way:

222 S. Sen and N. Stojanovic

– Generation phase: To cover also the implicit knowledge within the domain
we will use existing data mining technologies for generating CEPATs auto-
matically. They can be adapted by the expert later on. Furthermore we will
develop advanced CEPAT search strategies in order to find existing pattern
knowledge in the pattern repository.

– Refinement phase: Beside the reusability of patterns it is also useful to
give experts hints about missing patterns for closing the pattern knowledge
gap and to be up-to-date.

– Usage phase: In order to support the evolution we will develop a statistical
manager component that monitors the execution of patterns and build some
proper analytics for the evolution phase.

– Evolution phase: For the evolution of patterns we will introduce quality
metrics for patterns in order to identify CEPAT candidates for update.

Acknowledgments. The research presented in this paper was partially funded
by the European Commission in the project VIDI (http://www.vidi-project.eu/),
EP-08-01-014.We would like to thank to Ljiljana Stojanovic for her comments
and contribution to this work. We also would like to thank Dominik Riemer,
Ruofeng Lin and Weiping Qu for their contribution to the implementation.

References

1. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston (2001)

2. Chandy, K.M., Charpentier, M., Capponi, A.: Towards a theory of events. In: DEBS
2007: Proceedings of the 2007 inaugural international conference on Distributed
event-based systems, pp. 180–187. ACM, New York (2007)

3. Chakravarthy, S., Mishra, D.: Snoop: An expressive event specification language
for active databases. Data Knowl. Eng. 14(1), 1–26 (1994)

4. Sobieski, J., Krovvidy, S., McClintock, C., Thorpe, M.: Karma: Managing business
rules from specification to implementation. AAAI/IAAI 2, 1536–1547 (1996)

5. Wan-Kadir, W.M.N., Loucopoulos, P.: Relating evolving business rules to software
design. J. Syst. Archit. 50(7), 367–382 (2004)

6. Lin, L., Embury, S., Warboys, B.: Business rule evolution and measures of business
rule evolution. In: IWPSE 2003: Proceedings of the 6th International Workshop on
Principles of Software Evolution, Washington, DC, USA, p. 121. IEEE Computer
Society, Los Alamitos (2003)

7. Lin, L., Embury, S.M., Warboys, B.C.: Facilitating the implementation and evolu-
tion of business rules. In: ICSM 2005: Proceedings of the 21st IEEE International
Conference on Software Maintenance, Washington, DC, USA, pp. 609–612. IEEE
Computer Society, Los Alamitos (2005)

8. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM Trans. Comput. Syst. 19(3), 332–383 (2001)

9. Pietzuch, P.R., Bacon, J.: Hermes: A distributed event-based middleware archi-
tecture. In: ICDCSW 2002: Proceedings of the 22nd International Conference on
Distributed Computing Systems, Washington, DC, USA, pp. 611–618. IEEE Com-
puter Society, Los Alamitos (2002)

Complex Event Pattern Life Cycle Management 223

10. Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., Chandra, T.D.: Matching
events in a content-based subscription system. In: PODC 1999: Proceedings of the
Eighteenth Annual ACM Symposium on Principles of Distributed Computing, pp.
53–61. ACM, New York (1999)

11. Adi, A., Etzion, O.: Amit - the situation manager. The VLDB Journal 13(2), 177–
203 (2004)

12. Adi, A., Botzer, D., Etzion, O.: Semantic event model and its implication on situ-
ation detection. In: ECIS (2000)

13. Abadi, D., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Erwin, C.,
Galvez, E., Hatoun, M., Maskey, A., Rasin, A., Singer, A., Stonebraker, M., Tatbul,
N., Xing, Y., Yan, R., Zdonik, S.: Aurora: a data stream management system. In:
SIGMOD 2003: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, p. 666. ACM, New York (2003)

14. Brenna, L., Demers, A., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riedewald, M.,
Thatte, M., White, W.: Cayuga: a high-performance event processing engine. In:
SIGMOD 2007: Proceedings of the 2007 ACM SIGMOD International Conference
on Management of Data, pp. 1100–1102. ACM, New York (2007)

15. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R.,
Srivastava, U., Widom, J.: Stream: The stanford data stream management system.
Technical Report 2004-20, Stanford InfoLab (2004)

16. Esper: Esper version 3.2.0, espertech inc. (2009), http://esper.codehaus.org/

(last visited: January 2010)
17. IBM-ILOG: Agile business rule development methodology (2010),

https://www.ibm.com/developerworks/mydeveloperworks/

blogs/isis/?lang=en us (last visited: January 2010)
18. Rozsnyai, S., Schiefer, J., Schatten, A.: Concepts and models for typing events

for event-based systems. In: DEBS 2007: Proceedings of the 2007 Inaugural Inter-
national Conference on Distributed Event-Based Systems, pp. 62–70. ACM, New
York (2007)

19. Luckham, D.C.: What’s the difference between esp and cep? (August 2006),
http://complexevents.com/?p=103 (last visited: January 2010)

20. Stojanovic, N.: Ontology-based information retrieval. Ph.D. Thesis, University of
Karlsruhe, Germany (2005)

21. Stojanovic, L.: Methods and tools for ontology evolution. Ph.D. Thesis, University
of Karlsruhe, Germany (2004)

http://esper.codehaus.org/
https://www.ibm.com/developerworks/mydeveloperworks/blogs/isis/?lang=en_us
https://www.ibm.com/developerworks/mydeveloperworks/blogs/isis/?lang=en_us
http://complexevents.com/?p=103

Supporting Semantic Search on Heterogeneous
Semi-structured Documents

Yassine Mrabet1,2, Nacéra Bennacer2, Nathalie Pernelle1,
and Mouhamadou Thiam1,2

1 LRI, Université Paris-Sud 11, INRIA Saclay, F-91893 Orsay cedex, France
{Yassine.Mrabet,Nathalie.Pernelle,Mouhamadou.Thiam}@lri.fr

2 SUPELEC Systems Sciences (E3S), F-91192 Gif-sur-Yvette cedex, France
Nacera.Bennacer@supelec.fr

Abstract. This paper presents SHIRI-Querying1, an approach for se-
mantic search on semi-structured documents. We propose a solution
to tackle incompleteness and imprecision of semantic annotations of
semistructured documents at querying time. We particularly introduce
three elementary reformulations that rely on the notion of aggregation
and on the document structure. We present the Dynamic Reformula-
tion and Execution of Queries algorithm (DREQ) which combines these
elementary transformations to construct reformulated queries w.r.t. a de-
fined order relation. Experiments on two real datasets show that these
reformulations greatly increase the recall and that returned answers are
effectively ranked according to their precision.

1 Introduction

The research advances on automating ontology population and document an-
notation are promising. But even for named entity-based approaches [1, 2] or
pattern-based approaches [5] it remains difficult to locate precisely instances
since some of them may be blended in heterogeneous semi-structured docu-
ments. The granularity of the annotation could be precise, at the term level,
or imprecise, at the node level, in a semi-structured document [5]. In the worst
case, the annotated unit is the whole document. Semantic imprecision may also
appear when associated annotations are not accurate enough (e.g. using Event
metadata instead of Conference metadata). From another hand, annotations
are often incomplete since automatic annotators do not find all instances and re-
lations. To alleviate these problems, some semantic search systems try to gather
answers satisfying the user query by going beyond the simple use of available
metadata. Some approaches [4, 6] deal with semantic imprecision by approximat-
ing the concepts and the relations expressed in user queries using an ontology
(e.g. exploiting subsomption, contextual closeness, path of semantic relations).
Other works combine ontology-based search and classical keyword search [3, 7]
in order to deal with incomplete annotations. The use of keywords increases the
1 SHIRI : Digiteo labs project (LRI, SUPELEC).

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 224–229, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Supporting Semantic Search on Heterogeneous Semi-structured Documents 225

recall by retrieving instances that are not reachable using semantic annotations,
but some semantic constraints of the query are relaxed.

In this paper, we propose an ontology-based search approach called SHIRI-
Querying. Our contributions are: (i) a reformulation method to query incomplete
and imprecise semantic annotations of semi-structured documents (ii) an order
relation that ranks the constructed queries according to their relevance and (iii)
a dynamic algorithm which builds and executes reformulated queries w.r.t. the
defined order. The SHIRI-Querying system uses the standard W3C languages
RDF/OWL for representing resources and SPARQL for their querying. It has
two main components. The adapter is designed to conform the provided an-
notations to the SHIRI annotation model. It uses a set of logical rules and
generates automatically the annotations base to be queried. The Query Engine
processes ontology-based queries and reformulates them using the SHIRI anno-
tation model. In this generic model [5] the granularity of the annotation is the
document node (e.g. XML and HTML tags). Each node is annotated as contain-
ing one or several instances of different concepts of a given domain ontology. This
allows bypassing the imprecise localisation of instances at the term level. The
annotation model also allows representing structural links between document
nodes, which enables dealing with the incompleteness of semantic relations in
the provided annotations. We define three elementary query reformulations: the
SetOfConcept and PartOfSpeech reformulations which allow retrieving instances
that are aggregated in the same node and the neighborhood-based reformulation
which allows retrieving instances located in close nodes that may be related
by the required semantic relations. Reformulations of the user query are then
obtained by combining these elementary transformations. The Dynamic Refor-
mulation and Execution of Queries algorithm (DREQ) constructs these com-
binations and executes them w.r.t an order relation. This order relation gives
priority to answers where nodes contain homogeneous instances and answers
where nodes are linked by the required semantic relations. In contrast to most
approaches which work on answers and/or whole annotated datasets, the an-
swers are ranked as the reformulated queries are constructed. Experiments on
two real datasets show that these reformulations greatly increase the recall and
that the answers are effectively ranked according to their precision.

2 Annotation Model

Let O(CO,RO,�,DO) be the domain ontology where CO is the set of concepts,
RO is the set of relations between concepts (Rf

O, Rif
O are resp. functional and

inverse functional relations), � denotes the subsumption relation between con-
cepts or relations and DO defines the domain and the range for each relation.
The annotation model, denoted A(CA,RA,�,DA), is generated automatically
from the domain ontology. CA = CO ∪ CS , RA = RO ∪ RS . CS and RS are
the concepts and the relations defined for the annotation task. In this model,
concept instances are identified by URIs of document nodes and the literals as-
sociated by the hasValue attribute are the textual contents of annotated nodes.

226 Y. Mrabet et al.

We define the following aggregate metadata in CS and RS :
- The PartOfSpeech concept is used to annotate document nodes containing

several instances of different concepts.
- The SetOfConcepts metadata is used to annotate document nodes containing

several instances of the same concept. A concept SetOfci is defined as a subclass
of SetOfConcepts for each concept ci ∈ O. Moreover, we define relations denoted
rSet and rSet−1 in RS derived from (inverse) functional relations r in RO in
order to represent relations between an instance and a set of instances.

- The neighborOf relation expresses a path in a XML/HTML document tree.

Instances of these metadata are generated by the adapter using a set of logical
rules. If a document node contains only one instance of a domain concept c, it
is annotated by c. The datatype properties of this instance become properties
of the node. Else, it is annotated either by SetOfci metadata or PartOfSpeech
metadata. The property isIndexedBy is instantiated for PartOfSpeech nodes. The
provided annotations of domain relations r ∈ RO are instantiated between nodes
whose types are in CO (domain concepts). In the case where r links a node of
type cj ∈ CO with a node of type SetOfci, r is substituted by rSet or rSet−1.

3 Query Reformulations

Preliminary Definitions: Consider the pairwise disjoint infinite sets I, B, L
and V (IRIs, Blank nodes, Literals and Variables). A triple pattern is a triple
(s, p, o) ∈ (I ∪ V) × (I ∪ V) × (I ∪ V ∪ L). A basic graph pattern P is a set
of triple patterns. ?v in a triple indicates that v is a variable. An RDF query is
a basic graph pattern or a constructed graph pattern (using constructors such
as union or intersection). To facilitate the reading of this paper, we consider
only queries described by basic graph patterns. The filters that we consider use
equality and inclusion operators between variables and literal values.

We define a model-based query q as a quadruplet (P, S, F, D) where :
- P is a basic graph pattern which complies with a model (i.e. O or A). V (P)
denotes the set of variables of P and C(P) denotes the set of concepts of P .
-F is a constraint defined by a logical combination of boolean-valued expressions.
-S is the set of variables that appear in the SELECT clause of the query.
-D is an A-compliant RDF dataset to be matched with P and F .

Example: The O-based query q0 is defined by (P0,F0,S0,D) where :
P0 ={ (?art, rdf:type, Article), (?aut, rdf:type, Person), (?aut, hasName,
?aName), (?conf, rdf:type, Conference), (?art, publishedIn, ?conf)
(?art, authoredBy, ?aut), (?conf, hasName, ?cName)}
F0 : {?cName = ”WWW2008”} and S0 : { ?art , ?aut, ?aName }
Neighborhood-based Reformulation: The aim of the neighborhood-based
reformulation is to exploit the structural neighborhood of document nodes in
order to find nodes that may be related by the semantic relations expressed in
the user query. The neighborhood-based reformulation, denoted fnr, substitutes
the ontological relation of a given triple by a neighborOf relation.

Supporting Semantic Search on Heterogeneous Semi-structured Documents 227

Example: fnr(q0, (?art, authoredBy, ?aut)) = q′1(P
′
1, F0, S0, D) where P ′

1 =
{(?art, rdf :type, Article), ...(?art, neighborOf, ?aut), ... }. Applying fnr may
generate semantically-independent subgraph patterns.

Definition 1. p is a semantically-independent subgraph pattern of P if :
−∀v1, v2 ∈ V (p), (?v1, r, ?v2) ∈ P → (?v1, r, ?v2) ∈ p
−∀(?v1, r, ?v2)∈P s.t. v1(resp. v2) ∈V (p), v2(resp. v1)/∈V (p)→r=neighborOf
Splitting a query into semantically-independent subgraph patterns allows ap-
plying distinct aggregative reformulations on distinct sub-parts of a query.

PartOfSpeech Reformulation: The PartOfSpeech reformulation denoted fpr

assumes that the required semantic relations can be found between instances ag-
gregated in the same node. It is applied on semantically-independent subgraph
patterns. The target subgraph must be O-based, i.e. it does not contain meta-
data from CS or RS (this constraint is part of the reformulations construction
plan). fpr substitutes all filter constraints of the subgraph pattern by filter con-
straints on the textual contents of PartOfSpeech nodes. Equality constraints
are relaxed into inclusion constraints.

Example: for p ∈ P ′
1 s.t. p = {(?art, rdf :type, Article), (?conf, rdf :type,

Conference), (?conf, hasName, ?cName), (?art, publishedIn, ?conf)},
fpr(q′1, p) = q′2(P

′
2, F

′
2, S

′
2, D) s.t.

P ′
2 = {(?pos, rdf:type, PartOfSpeech), (?pos, isIndexedBy, Conference), (?pos,

isIndexedBy, Article), (?pos, hasValue, ?lPos), (?pos, neighborOf, ?aut), (?aut,
rdf:type, Person), (?aut, hasName, ?aName) }
F ′

2 : {(?lPos contains ”WWW2008”)}, S′
2 : {?aut, ?aName, ?pos}

SetOfConcept Reformulation: The SetOfConcept reformulation, denoted
fsr, substitutes the ontological type c of a given variable v by the setOfc type if
for all triples of P : (1) if v is the subject, the relation r is not inverse functional
and (2) if v is the object, the relation is not functional. The relation r is then
substituted by rSet−1 (case 1) or rSet (case 2).

Example: fsr(q0, ?aut) = q′3(P
′
3, F0, S0, D) s.t.

P ′
3 = {(?art, rdf:type, Article), (?aut, rdf:type, SetOfPersons), (?conf, rdf:type,

Conference), (?art, publishedIn, ?conf), (?art, authoredBySet, ?aut), (?aut, has-
Value, ?aName), (?conf, hasName, ?cName)}
Reformulations Construction Plan: The reformulation of a query q0(P0,
F0, S0, D) is a query qi(Pi, Fi, Si, D) obtained by the composition of elementary
PartOfSpeech, SetOfConcept and neighborhood-based reformulations. We con-
sider that a set of document nodes is more relevant if its nodes do not contain
aggregated instances and if they are related by the expected semantic relations.

Definition 2. Let N(q), Pos(q) and Sets(q) be resp. the number of neighborOf ,
PartOfSpeech and SetOfc metadata in a query q. The (well) order � is defined
s.t. qi � qj ↔ ((N(qi) > N(qj)) ∨ ((N(qi) = N(qj)) ∧ ((Pos(qi) > Pos(qj))∨
((Pos(qi) = Pos(qj)) ∧(Sets(qi) ≥ Sets(qj))))

228 Y. Mrabet et al.

Dynamic Reformulation and Execution of Queries Algorithm (DREQ)
DREQ allows constructing and executing the reformulated queries with respect
to �. When DREQ is stopped at a given order, the answers are those retrieved by
the best constructed queries. DREQ computes all reformulations in EXPTIME
w.r.t the number of variables of the user query, but, as the algorithm is dynamic,
we obtain a new set of equally-ordered reformulations in PTIME.

4 Experimental Results

SHIRI-Querying has been implemented and experimented to study how the preci-
sion and the recall measures vary according to the order relation. The neighborOf
relation is defined as an undirected path of length d in the HTML /XML tree. We
also study how d influences the results. The reformulations proposed in our ap-
proach can introduce wrong answers which may appear when the query is refor-
mulated using fsr and fpr which relax filters in PartOfSpeech or SetOfConcepts
nodes or using fpr and fnr which relax semantic relations. The two experimented
datasets belong to the scientific conferences and publications domain.

The first dataset is composed of annotated publication references provided by
the DBLP XML repository, the INRIA HTML server and the HAL XML repos-
itory. It consists of more than 10.000 RDF triples describing 1000 publications.
We submitted a set of queries looking for conferences, their dates, locations, pa-
pers and authors. A precision of 100% and a recall of 100% were reached with
an order threshold of 9 and d ≤ 3. A smaller order threshold leads to a smaller
recall and a higher distance d leads to almost 0% precision. In this case (d > 3),
in two data sources, each paper is associated to all conferences. The 100% values
for the recall and the precision measures are due to the regular structure of the
data sources. However, each data source has a different and specific structuring
and the DREQ reformulations were able to integrate answers from all sources.

The second corpus consists of RDF annotations of 32 call-for-papers web sites
and is consequently very heterogeneous. These annotations (consisting of 30.000
RDF triples) were generated automatically using SHIRI − Extract [5]. We then
submitted a set of 15 queries. Without reformulation, all queries have no answers
(0% recall), while we obtained a 56% recall by using the DREQ algorithm for d
≤ 7. At the same distance threshold (d ≤ 7) the precision is still 72%. The results

(a) Precision according to d (b) Precision according to order

Fig. 1. Answers’ Precision

Supporting Semantic Search on Heterogeneous Semi-structured Documents 229

show thatdomain relations canoftenbe retrievedbetween instances located in close
documentnodes. Figure1(b)presents the averageprecisionvalue for the same setof
user queries, for several values of d, by varying the order threshold from 1 to 18. The
precision variations show that the order relation is relevant to rank the answers.

5 Conclusion and Future Work

In this paper, we presented the SHIRI-Querying approach to support seman-
tic search on heterogeneous semi-structured documents. Ontology-based user
queries are reformulated to gather document nodes from documents that were
annotated in an imprecise and incomplete manner by semantic annotation tools.
These reformulations allow retrieving instances that are related by the requested
semantic relations even if these relations are not available in the knowledge base.
We defined an order relation between reformulated queries to give priority to
queries that preserve most the semantics of the user query. All reformulations
are constructed dynamically w.r.t this order relation in the DREQ algorithm.
Experimental results show that the recall greatly increases and that the preci-
sion decreases reasonably as the ordered reformulated queries are performed. In
the near future we plan to combine keyword-based search with our reformula-
tion approach to increase the recall without losing the semantics of the query.
We also plan to use semantic-based heuristics exploiting functional properties of
relations in order to avoid some wrong answer cases.

References

1. Borislav, P., Atanas, K., Angel, K., Dimitar, M., Damyan, O., Miroslav, G.: KIM -
Semantic Annotation Platform. J. of Nat. Lang. Engineering 10(3-4), 375–392 (2004)

2. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked, T., Soderland,
S., Weld, D., Yates, A.: Unsupervised named-entity extraction from the web: An
experimental study. Artificial Intelligence 165(1), 91–134 (2005)

3. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid Ser-
ach: Effectively Combining Keywords and Semantic Searches. In: Bechhofer, S.,
Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021,
pp. 554–568. Springer, Heidelberg (2008)

4. Corby, O., Dieng-Kuntz, R., Gandon, F., Faron-Zucker, C.: Searching the semantic
web: Approximate query processing based on ontologies. IEEE Intelligent Systems
Journal, Computer Society 21(1), 20–27 (2006)

5. Thiam, M., Bennacer, N., Pernelle, N., Lo, M.: Incremental Ontology-Based Extrac-
tion and Alignment in Semi-Structured Documents. In: Bhowmick, S.S., Küng, J.,
Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 611–618. Springer, Heidelberg
(2009)

6. Hurtado, C.-A., Poulovassilis, A., Wood, P.-T.: A Relaxed Approach to RDF Query-
ing. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold,
M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 314–328. Springer, Hei-
delberg (2006)

7. Castells, P., Fernàndez, M., Vallet, D.: An adaptation of the vector-space model for
ontology-based information retreival. IEEE T. on Know. and Data Eng. 19(2) (2007)

Query Ranking in Information Integration

Rodolfo Stecher, Stefania Costache, Claudia Niederée, and Wolfgang Nejdl

L3S Research Center, Appelstr. 9a, 30167 Hannover, Germany
{stecher,costache,niederee,nejdl}@L3S.de

Abstract. Given the growing number of structured and evolving on-
line repositories, the need for lightweight information integration has
increased in the past years. We have developed an integration approach
which relies on partial mappings for query rewriting and combines them
with a controlled way of relaxation. In this paper we propose a novel
approach for ranking results of such rewritten and relaxed queries over
different sources, by punishing lack of confidence in mappings used for
rewriting, as well as punishing higher degrees of controlled relaxation
introduced, and present the performed evaluation.

Keywords: Query Ranking, Information Systems, Query Relaxation.

1 Introduction

A growing number of structured large information collections is made accessible
over the Internet, e.g. Freebase, Linked Data, also in the area of Personal Infor-
mation Management, new repositories as Flickr, YouTube are increasingly used.
Efforts in adding structure and giving semantics to the available information,
result into further information collections (e.g. UMBEL, DBPedia). The easy ex-
ploitation of such sources, however, requires approaches for flexible, lightweight
integration of distributed and evolving structured information sources. Thus,
lightweight approaches are required for query answering over evolving informa-
tion systems with reasonable result quality, even when only partial mapping
information is available (incomplete mappings with various confidences). We
follow a lightweight approach similar to a pay-as-you-go (results are as good as
possible given the available evidences) integration, which uses partial mappings
for rewriting and relaxing structured (triple-based) queries and learning of new
mappings from the results, as described in more detail in [1].

Even with such a solution at hand, the multitude of data within information
systems makes finding the needed results still difficult, since relaxed queries do
not always provide an exact set of results, but rather an extended, more permis-
sive set of results. When information comes from various sources with different
degrees of confidence, an ordering among the results reflecting this confidence
is needed. In this paper we propose a ranking algorithm which punishes lack of
confidence in the used partial mappings and query rewriting strategies.

The main contributions of our approach can be summarized as follows: 1) An
innovative query ranking approach for our lightweight information integration

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 230–235, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Query Ranking in Information Integration 231

approach [1]; 2) An evaluation of the proposed ranking approach using large real
world data sets showing its applicability in realistic settings.

Next, Section 2 presents our query ranking approach, its evaluation is pre-
sented in Section 3, Section 4 presents the related work, and Section 5 summa-
rizes our conclusions and future work.

2 Ranking for Lightweight Information Integration

After applying our relaxation strategies [1], we use the ranking of queries to rank
results from different information sources. Considering that complete and confi-
dent mappings can only give correct results (the ideally rewritten query), our ap-
proach for a query ranking function is based on introducing punishments to each
of the aspects which might introduce errors. Intuitively, the higher the difference
of the resulting query from the ideally rewritten query, the more “punishment”
we add to the results obtained from executing it. Due to space constraints we
refer to the definitions presented in [1].

2.1 Punishment Derived from Mappings

The higher the confidence in the correctness of a mapping is, the lower the prob-
ability of introducing an error when this mapping is used to rewrite the user
query. For reflecting this, and also considering that mappings are independent,
we define a factor called Query Mapping Confidence (Qmc), reflecting the
probability of introducing errors by the product of the confidences of all map-
pings actually used in the rewriting of Qu, multiplied once (as also done in [2]):

Qmc =
∏

v|(e, e′, v) ∈M ′
i (1)

The rationale for this is that each successfully applied mapping will avoid that
this element is relaxed with a wildcard, but it will also possibly add some incor-
rect results, depending on the confidence of this mapping.

2.2 Punishment Derived from Relaxation

Our query relaxation might introduce errors by allowing bound expressions in
the user query Qu to become unbound in the reformulated query QSi . The com-
putation of the punishment considers the number of introduced variables which
remain bound and the number of variables introduced which do not even have a
value constraint. The computation relies on the following additional notations:

– qL: the number of triple elements in Qu: qL = Number of triples ∗3
– LU : the element names in Qu not part of Au ∪ τ ∪ V ARQu (i.e. Literals and

URI’s not belonging to the schema)
– nb and nu: the number of bound and unbound variables introduced in the

relaxation process (defined below)

232 R. Stecher et al.

Next we define the introduced number of bound and unbound variables:

– nb: For < s, p, o >, p is replaced with varp: < s, varp, o > ∧o ∈ LU , then
nb = nb + 1 once for varp. This is, nb will be incremented by one the first time
varp is introduced, even though any other occurrence of p will also be replaced
with the same varp. The idea is that we are introducing a wildcard, but the
values it can take are restricted by s and the given value of o which is fixed.

– nu: we have two options: 1) For < s, τ, o >, o is replaced with varc: <
s, τ, varc > ∧o ∈ AC , nu = nu + 1 for every usage of varc. We increase
nu for every occurrence, since more relaxation is added with every replace-
ment. In this case we are allowing s to be of any type, as well as any other
thing originally specified to have the same type as s, so we are relaxing the
“essence” specification of things; and 2) For < s, p, varo >, p is replaced with
varp: < s, varp, varo > ∧varo ∈ V ARQu , nu = nu + 1 for every occurrence
of varp. We increase nu since each occurrence increases the degree of relax-
ation because we had already only the relation p as a restriction between the
values that s and varo could get, and now we are even relaxing this last re-
striction. In this case the relaxed query expresses the fact that there must be
some connection between s and varo, but without saying which connection.

With these measures, we can compute a punishment for bound variables as:

Pnb = 1− nb

qL
(2)

We need this factor, since even though the variables are bound, their number
influences the relaxation relative to the query joins (therefore the normaliza-
tion to the query length). Also, the correlation between nb and the ranking is
indirect, since the less bound variables are introduced, the higher we can rank
that query. The introduction of unbound variables has a higher influence on the
accurateness of the query results than the bounded ones, because they introduce
more relaxation to the query, and therefore more penalty is needed. We define
the punishment for unbound variables as:

Pnu = α1−
√

nu
qL − 1, (3)

where α, the relaxation penalty, has to be defined. It grows differently than
the one computed for bound variables: errors introduced by unbound variables
make the query less accurate than introduction of bound variables, and therefore
this factor should have a more dramatic decrease when the number of unbound
variables is high. We experimented with different functions for the exponent
factor of Pnu, but they all behaved similarly.

2.3 Ranking Function

Based on the factors presented above, we define a ranking function, giving higher
ranking to results of queries with likely less errors. The factors presented in Equa-
tions 1, 2 and 3 are probabilistically independent and therefore the ranking func-
tion canbe computed as a product of the possible punishments (errors) introduced:

Query Ranking in Information Integration 233

R(Qu) = Qmc ∗ Pnb ∗ Pnu (4)

R(Qu) estimates the expected correctness of the modified query results, by con-
sidering the confidence of the mappings, and the effects of applying a “wildcard”
strategy on the original query. The combination of these values leads to a mea-
sure of how much the modified query “deviates” from the ideally rewritten query.

3 Evaluation

By computing the precision for different top-k results, we prove the ranking
method to be efficient in ordering the results. Since for the ideal query, all results
are equally correct, we could not compare our results against a ranked ground
truth, instead, we used the complete ground truth. As strategies SUB2 and SUB4

presented similar behavior as SUB6 they will not be discussed in detail.

3.1 Evaluation Setting

Information Sources. The heterogeneous information sources considered with
the number of contained triples are presented in Table 1. In detail they are:

Virtual Personal Desktop (VPD) obtained from crawling 16 desktops (PDFs,
Word documents, Emails, Wiki pages, FOAF profiles) using the crawling ap-
proach and ontologies presented in [1], each with their own user ontology and
query set (see [1] for details).
UMBEL (http://www.umbel.org/) provides an ontology and its instances,
along with many definitions of equality (using “sameAs” relations) to instances
in the other datasets used for this experiment - YAGO and DBPedia. Therefore,
the instances provided by UMBEL were used to compute the ground truth. The
UMBEL Ontology was taken as the user ontology (in a filtered version), and
will be denoted from now on as user ontology Ou. In order to construct the
UMBELInstances data source and its ontology, original references to concepts
and properties, as well as to resources in the instances were modified program-
matically, simulating in this way a new source, from now on UMBEL.

YAGO [3] - from the provided instances a simple ontology (YAGO Ontology)
describing them was extracted.

DBPedia (http://wiki.dbpedia.org/) - two sources were created: the DB-
PediaPersons containing all available “Persondata” files which are represented
using the FOAF ontology, and the DBPediaInfoboxes containing the “Infoboxes”
and “Types” files which are represented using the DBPedia Ontology.

Table 1. Information Sources Overview

Source VPD UMBEL YAGO DBPediaPersons DBPediaInfoboxes
No. triples 3, 329, 376 6, 740, 428 460, 418, 591 812, 339 9, 877, 564

http://www.umbel.org/
http://wiki.dbpedia.org/

234 R. Stecher et al.

InitialMappings.Were computedbetween theUMBELOntology and theontolo-
gies of the sources using [4], and later randomly modified to serve as initial partial
mappings. Partial mappings were also computed for the VPDs, between the user
ontology specified in [1] and the ontologies describing the different crawled sources.

Queries. Our query set is an extension of the queries used in [1] and consists of
more than 70 queries containing mainly 1 to 3 joins.

Ground Truth. For each query there is a ground truth, which contains all
correct results expected. In order to have comparable query results from the
different sources, explicit equivalences between resources have been exploited.

3.2 Experiments

For each information source, we employ relaxation strategies (wildcard based)
together with rewriting strategies (mapping based), and the techniques for simu-
lating user feedback and learning of mappings as described in [1]. We compared
the top-k integrated results of the same query over all available information
sources with the ground truth and measured the precision at top-k (top-1 to
top-5) using a precomputed value of α = 2 (the experiments for determining the
α value are not presented due to space constraints). The mean results obtained
from running this evaluation over all presented datasets, iterations and strategies
is presented in Figure 1(a), and by strategy in Figure 1(b). We computed pre-
cision by considering all queries, also the ones having less than k results. There
is not much difference between the obtained precision results at top-1 to top-5,
all of them being around 0.9, which we consider to be a good precision for our
lightweight integration approach. Most of the strategies have high precision, be-
ing notable that strategies SUB1 and SUB5 give the best results in our settings.
Strategy SUB3 shows the worst precision results at top-1, which is an indicator
that the usage of this strategy for our presented settings needs to be revised.

(a) Mean Precision at Top-K (b) Precision for Top-K

Fig. 1. Overall Precision

4 Related Work

Ranking is mostly known from Information Retrieval approaches which rank the
results from structured queries, nevertheless, none to our knowledge combine
rewriting queries using wildcards and partial mappings, with ranking. Ranking is
computed on relaxed or malleable queries in [5], by considering the quantification

Query Ranking in Information Integration 235

of the correlations existing between attributes (of duplicate entities detected in
the data), and ranking higher the results based on relaxations using higher corre-
lated attributes. This is similar to our idea to use the confidence of the mapping in
computing the ranking function, but we don’t require data access to detect corre-
lations. In [6], a technique for ranking query results on the semantic web takes into
consideration the inferencing processes that led to each result, where the relevance
of the returned results is computed based upon the specificity of the links used
when extracting information from the knowledge base. This approach is comple-
mentary to our approach, since the confidence values from the inferencing process
could be an additional confidence to the computation of our ranking. [2] aims also
at integrating distributed sources containing RDF data described by ontologies.
An important difference to this approach is that only rewriting without relaxation
of queries is produced, so, the ranking for the results of queries only considers the
confidence of the used mappings. Due to space constraints many other related ap-
proaches had to be left out of this section.

5 Conclusions and Future Work

We presented an approach for ranking results of rewritten and relaxed queries
executed over different repositories. We use the confidence of employed map-
pings in combination with heuristics which consider the amount and position
of wildcards introduced. These factors are combined in a weighted fashion, to
produce a ranking value for the results of executing the modified query on a
specific information source. Our evaluations performed over real world datasets
show the efficiency of our introduced ranking function.

The usage of the query ranking value for deciding on executing a query (or
not) on a given information source is an interesting idea to be explored. It could
serve for finding a trade-of between result precision and recall of unknown but
relevant information. A future idea would be to take into account in the ranking
computation a factor reflecting the confidence of the used data sources.

References

1. Stecher, R., Niederée, C., Nejdl, W.: Wildcards for lightweight information integra-
tion in virtual desktops. In: CIKM (2008)

2. Straccia, U., Troncy, R.: Towards distributed information retrieval in the semantic
web: Query reformulation using the oMAP framework. In: Sure, Y., Domingue, J.
(eds.) ESWC 2006. LNCS, vol. 4011, pp. 378–392. Springer, Heidelberg (2006)

3. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge.
In: International World Wide Web Conference, New York, NY, USA (2007)

4. van Elst, L., Kiesel, M.: Generating and Integrating Evidence for Ontology Map-
pings. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004.
LNCS (LNAI), vol. 3257, pp. 15–29. Springer, Heidelberg (2004)

5. Zhou, X., Gaugaz, J., Balke, W.T., Nejdl, W.: Query relaxation using malleable
schemas. In: SIGMOD: International Conference on Management of Data (2007)

6. Stojanovic, N., Studer, R., Stojanovic, L.: An approach for the ranking of query
results in the semantic web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC
2003. LNCS, vol. 2870, pp. 500–516. Springer, Heidelberg (2003)

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 236–250, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Validity of the Documentation Availability Model:
Experimental Definition of Quality Interpretation

Raimundas Matulevičius1,2, Naji Habra1, and Flora Kamseu1

1 PReCISE, Computer Science Faculty, University of Namur
rue Grandgagnage 21, 5000 Namur, Belgium

{nha,fka}@info.fundp.ac.be
2 Institute of Computer Science, University of Tartu,

J. Liivi 2, Tartu, Estonia
rma@ut.ee

Abstract. System and software documentation is a necessity when making se-
lection and acquisition decisions, when developing new and/or improving exist-
ing system and software functionality. A proper documentation becomes even
more crucial for open source systems (OSS), where, typically, stakeholders
from different communities are involved. However there exist only limited or
no methodology to assess documentation quality. In this paper we present a
quality model and a comprehensive method to assess quality of the OSS docu-
mentation availability (DA). Our contribution is threefold. Firstly, based on the
criteria defined by Kitchenham et al. we illustrate the theoretical validity of the
DA model. Secondly, we execute the first step towards the empirical validity of
the DA model. Finally, our work results in a comprehensive and empirically
grounded interpretation model of the documentation quality.

Keywords: Documentation availability, theoretical and empirical validity, qual-
ity metrics and indicators, open source software documentation.

1 Introduction

Nowadays, information systems (ISs) are based on open source software (OSS) prod-
ucts either partially or fully. OSS applications might vary from the middleware and
platform levels (e.g., operating systems, software development environment) used to
support ISs' development to the direct management and dissemination of information
(e.g., calendars, text editing and Web applications). Working with a system of interre-
lated products implies the necessity to have and maintain a high-quality documenta-
tion. This is true for any system and software products, but especially this becomes
critical for the OSS products, where documentation is also used for communication
[6] between distributed stakeholders.

There exist a number of quality models (e.g., ISO-9126 [13], McCall [19], Boehm
et al [1]) addressing software product criteria like maintainability, usability, and reli-
ability. Other models (e.g., CMM [20], SPICE [5]) consider software process criteria
like maturity or capability with the underlying hypothesis that good process would
result in a good product. Although it is recognised that a high-quality documentation

 Validity of the DA Model: Experimental Definition of Quality Interpretation 237

is necessary to different stakeholders (users, developers and acquirers) [15], little is
done to consider the quality criteria of the documentation itself.

A proper assessment of the software documentation is necessary for several rea-
sons. Firstly, it is a part of the overall product assessment at the decision making
process during product acquisition. Secondly, assessing documentation can help a
choice between several alternatives. Thirdly, assessment results might help developers
to improve the documentation quality per se. Documentation quality assessment is
also important in agile approaches, which apparently contradict the absolute necessity
of extensive documentation and focus on delivering the workable software products
as the main measure of software process progress. Even in such cases, software prod-
uct and process quality depends on a minimal documentation while the inherent rule
is to avoid unnecessary documentation. Therefore, a quality approach necessitates
some means (i.e., some precise criteria) to evaluate whether the documentation is
really adequate or too excessive with respect to the context of use.

To achieve a documentation assessment, one needs a comprehensive quality model
comprising precise guidelines and criteria which are (i) consensually admitted by the
different stakeholders as reflecting their perception of documentation quality, (ii) easy
to apply, and which produce (iii) quality indicators in a repeatable and reproducible
manners. To our knowledge, there is no an established model today. Thus, our long-
term research goal is to establish such a model.

In a previous work [18] we have elaborated a method to assess documentation
availability (DA). Our method with its underlying model supports investigation of the
documentation context and judges about the completeness of the information. In this
paper, we make a step towards the theoretical and empirical validation of the DA
method. As the part of the empirical validation we report on the performance test,
where we have applied our DA method to assess documentation quality of 28 OSS
projects. The findings help us to define the quality interpretation model. In this paper
we report a number of observations resulting from our assessment.

The structure of the paper is as follows: in Section 2 we present the documentation
availability model and estimation method. In Section, 3 we discuss theoretical and
empirical validity of this model. In Section 4, we continue our discussion of the em-
pirical validity by describing the performance test, which investigates the feasibility
of our proposal. Finally, Section 5 discusses the findings, presents the conclusions and
future work.

2 Documentation Availability

In this section we overview the DA model. We present metrics, indicators, estimation
method, and quality interpretation model.

2.1 Documentation Availability Model

The quality model for the OSS documentation availability is presented in [18]. It is a
part of the bigger effort to develop the QualOSS1 assessment method [3, 23]. In

1
 QualOSS stands for Quality of Open Source Software. Project is funded by European Com-
mission under the FP6-2005-IST_5 Framework, Contract number N° 33547.

238 R. Matulevičius, N. Habra, and F. Kamseu

QualOSS, the OSS product is described through four dimensions: (i) the software
product, defined by software code, documentation and test; (ii) the community, char-
acterised by interconnected community members; (iii) the development process, ex-
pressed by rules that community members should follow when performing activities,
and (iv) the tools used by the community to build, manage and maintain the OSS.
Hence, the documentation quality is a part of the aggregated product quality.

For documentation quality a distinction could naturally be done between two levels
(Fig. 1). Firstly one needs to identify characteristics related to the content of docu-
mentation and determining its accuracy with respect to what documentation is sup-
posed to describe [21], what is the purpose of documentation, and what stakeholders’
behaviour the documentation might lead. Secondly, one needs to investigate charac-
teristics related to the form and determining completeness and availability of different
structural parts [4]. Although theoretically both aspects are important, assessing the
first one appears to be difficult as long as we admit that the documentation could be
written manually and/or in a non-formal style. In this work we focus on the second
aspect, thus, we develop a systematic method [18] to assess documentation availabil-
ity (DA) using two indicators (Fig. 1): documentation type availability and documen-
tation information availability.

Fig. 1. The Documentation Assessment Model

2.2 Documentation Type Availability

In [18] we define thirteen document types and classified them to four categories:
presentation documents, product installation and application documents, documents
of product development process, and management and copyright documents. Docu-
ment type availability (DTA) characterises availability of documents belonging to a
certain document type:

DTA = DF

DN
 (1)

here, DN is the number of considered document types (i.e., chosen from the set of 13
identified types), DF is a number of documents types for which documents are found.

This indicator tells that there should exist a set of documents allowing the stake-
holders to achieve their goals. We indicate that a single stakeholder can play four
different roles: product acquirer (interested in presentation documents), product user
(concerned by the product installation and application document), product developer
(interested in documents of product development) and product contractors (concerned

 Validity of the DA Model: Experimental Definition of Quality Interpretation 239

by management and copyright document). Depending on the stakeholder’s goal, dif-
ferent documents would be evaluated. For example, to achieve the goal of product
acquirer, one needs to consider presentation documents; to reach the goal of product
user, one needs to evaluate availability of product installation and application docu-
ments. In this paper we will focus on the overall documentation assessment taking all
four stakeholders’ goals together.

It is very important to know the location of these documents. It might be situations
when a document actually exists, but the stakeholder is not able to find where this
document is stored. This means that the document is still not available for the stake-
holder.

2.3 Documentation Information Availability

Document information availability (DIA) indicates whether the documents contain
organised and complete information, presented at the complete level of detail:

DIA =
(dori + dcoi)

i=1

DN

∑
2DN

(2)

here dori – is an aggregated metric representing the organisation of documents be-
longing to document type i; dcoi – is an aggregated metric representing the complete-
ness of documents belonging to document type i; DN – is the number of considered
document types.

Document organisation can be estimated as easiness to locate information and
logical relationships among adjacent chapters, sections and subsections [18]. Hence
we defined a number of simple “Yes/No” questions (e.g., Is there a table of content in
the document?; Is the document divided to chapters?, etc) that help estimate docu-
ment organisation. The value is calculated as a ratio between the number of positively
answered questions and the number of considered questions (recall that some ques-
tions could be non applicable and should be disregarded):

dor =
ri

i=1

N

∑
N

(3)

here {r1 ... rN} are answers (“Yes” ≡ 1, “No”≡ 0) to questions about document organi-
sation, N – number of questions having answers “Yes” or “No”, and dor – organisa-
tion of a single document.

A document is complete with respect to its content (content completeness) if it con-
tains all the information necessary for the concerned stakeholder to satisfy his/her
goal(s). Following software development standards [7, 8, 9, 10, 11, 12] we have de-
veloped a number of content templates describing the content structure of different
document types [18]. When analysing a single document, an evaluator checks if this
document contains the information units (sections, subsections, and paragraphs) as
suggested in these templates.

Document is said to be at the complete level of detail (information completeness) if
it defines all information units at the high level of detail. Information units, identified

240 R. Matulevičius, N. Habra, and F. Kamseu

when analysing content completeness, here, are considered for their information com-
pleteness. The level of detail is considered on an ordinal scale of four values (“null” ≡
0, “low” ≡ 1, “average” ≡ 2, and “high” ≡ 3).

Document completeness is an aggregated measure of document content complete-
ness and document information completeness [18]. It is expressed as the sum of mul-
tiplications between content completeness and information completeness, divided by
the tripled number of analysed information units:

dco =
cidi

i=1

M

∑
3M

(4)

here {c1 ... cM} are the values {0, 1} assigned to the answers to questions about con-
tent completeness, {d1 ... dM} are estimations of the information completeness accord-
ing to the ordinal scale {0<1<2<3}, M – number of information units (questions), and
dco – completeness of documents.

2.4 Documentation Availability Estimation Method

The application of the DA model consists of six steps (Fig. 2). Firstly, evaluator de-
fines the purpose and the scope of the evaluation. This first step produces the scoped
document types according to which a search for documents is performed in the sec-
ond step. When screening for documents (step 2), one records the location of the
found documents in order to access them after. The second step results in the (refer-
ences to) documents which availability is under assessment. In the third step the
evaluator assigns documents to the document types. The fourth step is the review of
the document-document type pairs. This step should ensure that concerned documents
are found and these are correctly assigned to the document types. In the fifth step,
each pair is analysed for both the document organisation and document completeness.
In the sixth step the evaluator computes the DTA and DIA indicators. As discussed
above, DTA is estimated (equation 1) according to the number of found documents
(resulting from step 4) and the number of considered document types (decided in step
1); DIA is computed (equation 2) from the document organisation (equation 3) and
document completeness (equation 4) estimated in step 5.

2.5 Indicator Interpretation

Both DTA and DIA indicator values are estimated on the percentage interval (0 to
100% of availability), higher value means the documentation availability is higher.
Following the guidelines of the QualOSS project [3, 23] we defined the indicator
interpretation model (Table 1) both at the interval and at the ordinal scales (by map-
ping the former one to the latter one) [18]. The reason to define interpretation model
at two scales is the simplicity to classify things into few categories. For the targeted
audience it is much simpler to understand a given category (e.g. Yellow), than to
judge about some number, received after calculation is done.

 Validity of the DA Model: Experimental Definition of Quality Interpretation 241

Fig. 2. Documentation Availability Estimation Method

Table 1. Interpretation of DA Indicators

Interval scale (%) Ordinal scale (colour) Explanation
[0 … 9,99] Black Not available

[10 … 39,99] Red DA is limited
[40 … 69,99] Yellow DA is average
[70 … 100] Green DA is high

However this interpretation model has several limitations. Firstly, its definition
(e.g., thresholds and their suggested explanation) is highly subjective, provided with-
out extensive testing of indicators on the OSS assessments. Secondly, the two indica-
tors cannot be interpreted at the same scale, because their natures, measurement, and
estimation inputs are different as defined in the above sections. Finally, although
being applied to assess few OSS projects [18], the DA method itself was not yet ap-
plied to a sufficiently large extend. Thus, its validity needs to be investigated at a
more coarse-grained level.

The main goal of this paper is twofold. Firstly, we need to validate the DA model
[18]. Secondly, we need to establish an empirically grounded interpretation model for
the DA indicators.

242 R. Matulevičius, N. Habra, and F. Kamseu

3 Validity of the Documentation Availability Model

In order for a quality model to be valid, all its metrics (including aggregated metrics
and indicators) have to be valid. For a metric to be valid, the following two conditions
must hold [16]: (i) this metric must not violate any necessary properties of its ele-
ments, and (ii) each model used in the measurement process must be valid. In other
words to validate the DA method we need to show validity of

• the metrics (e.g., chapter, section used to gather data about document complete-
ness; information units used to gather date on document organisation), aggregated
metrics (e.g., document organisation (see equation 3) and document completeness
(see equation 4)), and indicators (e.g., DTA and DIA);

• the measurement scales; and
• the estimation method, presented in Section 2.4.

Kitchenham et al. [16] define two major methods to check metrics validity (Fig. 3):

• Theoretical validation, which confirms that the measurement does not violate any
required properties of measurement elements or of the definition models [16].

• Empirical validation, which corroborates that measured attributes are consistent
with the values predicted by the models involving the attribute [16].

Fig. 3. Theoretical and Empirical Validation

3.1 Theoretical Validation of the Documentation Availability Model

Theoretical methods of validation allow us to say that a metric is valid to a certain
defined criteria. Such a list of criteria is presented in [16]. We present them hereafter
together with theoretical validity of our DA model.

Validity of the metrics. Four criteria are defined for the metric validity:

• For the metric to be measurable it must allow different entities to be differentiated
from each other [16]. By definition [18] (also see Section 2.2) the DA metrics al-
low distinguishing different documents according to their document types;

• A valid metric must obey the representation condition [16]. For instance, the DA
metrics preserve the intuitive notions about the document type’s property and the
way in which document type properties distinguish between document types.

• All scales contributing to a valid metric are equivalent [16]. It is possible to define
different valid scales for the DA metrics. For instance, in Section 2 we define in-
formation units that are measured in the scale of [“null” ≡ 0, “low” ≡ 1, “average” ≡
2, and “high” ≡ 3]. However this sale could be extended with intermediate values

 Validity of the DA Model: Experimental Definition of Quality Interpretation 243

(e.g., [“null” ≡ 0, “low” ≡ 1, “somehow low” ≡ 1.5, “average” ≡ 2, “somehow
high” ≡ 2.5, and “high” ≡ 3]). Hence both scales contribute to a valid measure.

• Different entities can have the same metric value [16]. Applying the DA model, we
estimate document organisation using the same set of metrics. These metrics can
receive the same value for different documents of different document types. Thus,
we say that the document organisation metrics satisfy all this validity criteria.

Validity of the aggregated metrics and indicators. The aggregated metrics (e.g.,
document organisation and document completeness) and indicators (e.g., DTA and
DIA) are valid theoretically because:

• They are based on a model (e.g., content templates when calculating documenta-
tion completeness) concerning the relationships among document properties.

• They are based on a dimensionally consistent model (as defined in [16]), estimat-
ing the aggregated metrics and indicators on the percentage scale.

• The discontinuities are not possible because metric values are received by normal-
ising (always larger or equal) numbers of the considered entities (e.g., for the DTA
the number of documents found is always either equal or lower to the number of
considered document types).

• They include the correct measurement scales, characterised as interval.

Validity of the documentation availability estimation method (or measurement
protocol as called in [16]) is usually validated by peer acceptance. As mentioned in
Section 2, the DA model and the estimation method are the parts of larger effort to
construct a standard QualOSS assessment method. The DA estimation method was
reviewed by the project partners several time [23]. It has also been tested in few mi-
nor OSS assessments [18]. Our experience shows that the DA estimation method is
unambiguous, self-confident, and prevents the problems such as double counting.

Our theoretical validation corresponds to the application of [16] reported in [17].
But we also admit that the full consensus could be reach only through the iteration of
discussions with the community (in this case, partners of the QualOSS project).

3.2 Empirical Validation of the Documentation Availability Model

To corroborate a metric empirically, one needs to perform experiments to show
whether people agree that a measurable property exists and whether a mapping to
value captures the understanding of the property [16]. In general, empirical validation
could be performed through perception, performance and correctness tests.

The perception test involves investigation of the artefact usability, ease of use, and
user satisfaction. Currently, this approach is not applicable for our DA model, because
the model is a novel proposal and there is no sufficient experience to report on its
perception on a large extend. The performance test describes the application of
the artefact to see its feasibility. In this work we apply the performance test and we
assess documentation availability of 28 of OSS projects. We report our experience in
Section 4. Finally, currently we are designing the correctness test. We plan to contact
the OSS community members in order to receive their feedback on the results re-
ceived during the performance test. We hope to show that the performance of the DA
model is indeed correct and corresponds to the perception of the experts.

244 R. Matulevičius, N. Habra, and F. Kamseu

4 Performance Test

In this section we present the first step towards the empirical validation of the DA
model: a performance test to investigate our model feasibility. In Section 4.1 we de-
scribe its performance test design. Section 4.2 discusses validity threats. Section 4.3
presents the major results. Finally, in Section 4.4, we will refine the DA interpretation
model on basis of the performance test results.

4.1 Design

As discussed in Section 2, one of our research goals is also to define an empirically
grounded interpretation model for the documentation quality. We formulate the
following research question:

How do the current indicators help to understand and interpret quality of the open
source documentation availability?

Firstly, this research question challenges the application of the DA method to assess
the DA of the OSS products. This shows the DA method validation through the per-
formance test, as discussed in Section 3.2. Secondly, we will investigate whether the
indicator values received for the sample of OSS projects cover the whole range of the
ordinal scale defined for these indicators. If it is not the case, based on the assessment
results we will refine the initial interpretation model (Table 1).

The research method is pretty straightforward. First, we formulated the research
question presented above. Then, we defined a sample of the OSS projects. Next, we
applied our DA model and calculated the values of DTA and DIA for each selected
project. Finally, we analysed and interpreted the received results.

The assessment sample includes 28 OSS projects (see Table 2). We selected them
based on the OSS survey provided in [14]. The selected OSS projects cover different
Information System application domains, such as content management systems (e.g.,
Plone, JetSpeed, and Jakarta Structs), email systems, calendar systems, and address-
book systems (e.g., Thunderbird, Evolution, and Sup), text viewing/editing systems
(e.g., Open Office writer, xEmacs, Evince, and xPDF), Web application support sys-
tems (e.g., Zope, Httpd, jMeter, and Galeon), operating and their management sys-
tems (e.g., FreeBSD, NetBSD, and Nautilus), programming languages and their envi-
ronments (e.g., Python, Eclipse platform, gcc backend, and Findbugs).

4.2 Threats to Validity

Before presenting the performance test results, we discuss some validity threats [24]:

• Reliability of the QA model could be seen as the internal validity threat. However,
as we illustrated in Section 3.1 our proposal is theoretically valid. In addition it
was developed systematically based on existing system and software development
standards [7, 8, 9, 10, 11, 12]. Based on the assumption that the used system and
software development standards (that provide also guidelines for the documenta-
tion preparation) also apply to the documentation of the OSS products, the QA
model is systematically developed as illustrated in [18].

 Validity of the DA Model: Experimental Definition of Quality Interpretation 245

• Reliability of the assessment data on the 28 OSS projects could be found as the
conclusion validity threat. Collecting of these data (step 5, Fig. 2) is a manual task,
thus, it contains a certain degree of subjectivity. To mitigate this threat the
assessment was always executed by at least two assessors. The first assessor was
taking the actual metrics on the OSS documents. The purpose of the second asses-
sor was to monitor and to review the assessment results. For some projects the
assessment step (step 5, Fig. 2) was iterated few time in order to ensure the
assessment quality and to decrease the result subjectivity.

• The majority of the OSS assessments was done by the same assessor (who was not
the author of the DA model). Thus, there might be the internal validity threat of
maturation [24], meaning that over the time the assessor learned how to take
measurement and this resulted in the better/worse scores for the later projects. To
mitigate this risk the measurement was monitored by a second evaluator who is
one of the authors of the DA model.

• The internal validity might be influenced by the selection of the OSS projects for
the evaluation. Our sample was selected according to the results of the larger sur-
vey [4]. This means that we selected the projects that are already quite popular ei-
ther when developing Information Systems or when working with them.

• A possible threat to external validity is the nature of our experiment. We did not
wish to select any OSS for an actual practical application (e.g., to support real de-
cision). Here, we are only interested in testing the feasibility of the DA model.

4.3 Results

Table 2 presents the assessment results. Following the interpretation model presented
in Section 2, the documentation type availability is high (green) for 19 projects, and it
is average (yellow) for 9 projects. The documentation information availability is aver-
age (yellow) for 11 projects and limited (red) for 17 projects. Those assessment re-
sults confirm that:

• The range of each interpretation category is too broad. For example DTA interpre-
tation is green both in the case when documents were not found for 4 document
types (score 76.92%), and also when documents for all document types are found
(score 100%). Similar situation can also be observed for the DIA indicator: the dif-
ference between the best and the worst evaluated projects at the red category is
relatively large (e.g., DIA of gcc is 39.76%, DIA of Omitux is 15.56%, difference
is 24.2%)

• The full range of the assessment is not covered for neither of the indicators. For
instance none documentation was interpreted as limited (red) or as unavailable
(black) for the DTA indicator; none documentation was found of high (green)
availability, nor unavailable (black) with respect to the DIA indicator.

To mitigate these limitations of the interpretation model we refined it. The major idea
is to assign to each category of the ordinal scale a sufficient number of values from
the internal scale. In addition we observed (specifically for the DIA indicator) that it is
possible to define four groups of data that is relatively close to each other.

246 R. Matulevičius, N. Habra, and F. Kamseu

Table 2. Documentation Assessment Results

Interval scale Ordinal scale
OSS projects

DTA, % DIA, % DTA, colour DIA, colour

Python 92.31 52.45 Green Yellow
PLONE 84.62 52.08 Green Yellow
Thunderbird (Mozilla) 100 50.46 Green Yellow
Zope 84.62 49.47 Green Yellow
FreeBSD 84.62 47.31 Green Yellow
PhPMyAdmin 76.92 46.56 Green Yellow
NetBSD 84.62 43.25 Green Yellow
Eclipse 84.62 42.98 Green Yellow
Writer (OpenOffice) 76.92 42.20 Green Yellow
Hadoop 100 41.72 Green Yellow
Xemacs 100 41.28 Green Yellow
Gcc 76.92 39.76 Green Red
VLC 76.92 38.74 Green Red
HTTPD1.3 69.23 34.95 Yellow Red
Jetspeed 84.62 34.83 Green Red
Jakarta Struts 76.92 34.27 Green Red
Evolution 92.31 32.72 Green Red
Jmeter 92.31 32.08 Green Red
k3b 69.23 31.52 Yellow Red
Evince 84.62 30.85 Green Red
xPDF 69.23 28.96 Yellow Red
Findbugs 69.23 27.62 Yellow Red
Nautilus 76.92 26.98 Green Red
CVSanaly 69.23 24.54 Yellow Red
Yanolc 46.15 18.41 Yellow Red
Galeon 61.54 17.01 Yellow Red
Sup 61.54 16.15 Yellow Red
Omnitux 53.85 15.56 Yellow Red

The refined interpretation model is shown in Table 3. Here the mapping between

interval scale and ordinal scale is different for both indicators, and, thus, correspond-
ing to our empirical findings. In Table 4 we present a matrix that define correspon-
dence between two DA indicators based on the refined interpretation model.

Table 3. Refined Interpretation Model for the DA Indicators

Indicators Interval scale (%) Ordinal scale (colour) Explanation
[0,00 … 57,99] Black Not available
[58,00 … 72,49] Red DA is limited
[72,50 … 88,49] Yellow DA is average

Documentation
type
availability [88,50 … 100] Green DA is high

[0,00 … 21,49] Black Is not available
[21,50 … 36,99] Red DA is limited
[37,00 … 44,99] Yellow DA is average

Documentation
information
availability [45,00 … 100] Green DA is high

 Validity of the DA Model: Experimental Definition of Quality Interpretation 247

Table 4. Matrix of the OSS Project Assessment

Documentation information availability (DIA)
Indicators Black Red Yellow Green

Green -
Evolution and

jMmeter
Hadoop and

Xemacs
Python and

Thunderbird

Yellow -
Jetspeed, Jakarta

Struts, Evince,
Nautilus

NetBSD, Eclipse,
Writer, gcc and

VLC

PLONE, Zope,
FreeBSD and
PhPMyAdmin

Red Galeon and
Sup

HTTPD1.3, k3b,
xPDF, Findbugs
and CVSanalY

- -

D
oc

um
en

ta
ti

on
 t

yp
e

av

ai
la

bi
lit

y
(D

T
A

)

Black Yanolc and
Omnitux

- - -

“-” means that sample project is not found.

5 Discussion and Conclusions

In this section we discuss our results and present conclusions. We also situate our
proposal into the state of the art, and provide some future research directions.

5.1 Conclusions

In this paper we presented a quality model to assess documentation availability for the
OSS products. Our major discussion includes the analysis of the validity both at theo-
retical and at empirical level. Firstly, following the criteria defined in [16] we confirm
the theoretical validity of the DA model, including its metrics, metric scales, and qual-
ity estimation process.

Next, we investigate the empirical validity through the performance test that helps
to assess feasibility of our proposal. Our work results in the refinement of the inter-
pretation model for the documentation availability indicators, as shown in Table 3.
The new interpretation model is based on the empirical results and is more flexible to
judge about the quality of the documentation itself: for example, using the refined
model one gets the assessment data that are clustered into nine categories (using pre-
vious model it was separated to only three). This expands the assessment scale and
gives more flexibility to judge about the documentation quality, especially, when the
assessment purpose is selection and acquisition of OSS software to practice.

Although in the performance test we did not have as goal to select the best-
documented OSS projects, the results points out few important suggestions for the
OSS documentation improvement. For instance, availability of documents of a certain
type does not guarantee availability of the information within these documents (e. g.,
Evolution and jMeter). This means that, although there are many documents for these
OSS projects, those documents do not contain a sufficient level of guidelines, help,
instructions, and etc. for the stakeholders.

We can also notice an opposite trend: some documents contain a lot of useful in-
formation, where the overall project documentation availability might be of a lower

248 R. Matulevičius, N. Habra, and F. Kamseu

degree (e.g., PLONE, Zope, FreeBSD and PhPMyAdmin). This means that the exist-
ing project documentation is of high quality to satisfy goals only for a limited group
of stakeholders (for instance, there exist high-quality product installation and applica-
tion documents to satisfy goals of product acquirers, but there is no product develop-
ment documentation to fulfil goals of product developers).

A limitation of the refined interpretation model is that there is missing sample of
projects that would illustrate its full feasibility (some of the cells in Table 3 are still
empty). This does not mean that there is no such sample of project documentation; it
might be the case that we did not happen to select such.

5.2 Related Work

Software development standards [7, 8, 9, 10, 11, 12] suggest documentation templates
for different development stages. These templates include structural guidance to pre-
pare documentation, however the standards do not explain how to assess quality of
the documentation. Following the software development standards, the DA method
suggests the guidelines on how to assess the structural completeness of documenta-
tion. Later, based on the structural completeness results, the information completeness
is investigated.

Literature reports on few proposals to measure documentation quality. Davis et al.
[2] define a set of qualitative characteristics (e.g., non-ambiguity, completeness, cor-
rectness, consistency, verifiability, traceability, modifiability, and others) to measure
quality of requirements specifications. Further in [4] a comprehensive metrics, like
page count, readability, pages per day and software dependent metrics, are proposed.
However both works do not go beyond the metric definition phase. Elsewhere in [22],
a process to assess documentation content quality is defined. The documentation
content is assessed through the following characteristics: ownership, readability, accu-
racy, thoroughness, format, accessibility, currency, effectiveness, accountability, and
ease of update. The assessment is summarised into a quality/value matrix comprising
four subjective values: poor, fair, good, and excellent.

The DA method is specifically dedicated to assess the documentation availability.
Similarly to [2] it relies on the qualitative characteristics, and analyses organisation
and structure of the documentation like in [4]. During measurement the evaluators
need to deal with the certain degree of subjectivity. Differently from the mentioned
works, the DA method provides a systematic and comprehensive process (Fig. 1) to
assess documentation of different document types and to fulfil goals of various stake-
holders. In addition to all these works the DA method also provides the indicators and
explains how it is possible to interpret these indicators.

5.3 Future Work

In this paper we have described the performance test to investigate the feasibility of
the DA model. This is the first step towards a model empirical validation. The next
step is the correctness test, where we are planning to perform an interview of commu-
nity members on the documentation quality of the selected OSS projects. This would
allow us to compare two sets of the data for the documentation availability and will
answer the question about the empirical validity of the DA model.

 Validity of the DA Model: Experimental Definition of Quality Interpretation 249

Although we have developed the availability assessment model for the documenta-
tion quality of the OSS product, our future plan is to adapt it for documentation as-
sessment of any type of systems. This is possible because we have based our model
on the standards of the software development, like [7, 8, 9, 10, 11, 12]. The major
difference for the measurement process stands in the definition of the measurement
goals and scope. For example for the general software documentation assessment, the
goal of becoming a member of the community might not be applicable. However
other goals – like obtaining the products (especially for the commercial-of-the-shelf
product selection), using the (general) product, or improving the current product – are
often within the scope of the general system assessment.

Finally our long-term research plan includes expansion of quality model (Fig. 1)
with the accuracy measurement. This will require understanding of the various
metrics for documentation readability, understandability, consistency and others [2].

Acknowledgments. We would like to thank Judith Chambou Simo for her contribu-
tion to this research. We also thank the partners of the QualOSS project for the stimu-
lating discussions on the OSS quality.

References

1. Boehm, B., Brown, J.R., Kaspar, J.R., Lipow, M., MacLoed, G.J., Merritt, M.J.: Character-
istics of Software Quality, TRW Series of Software Technology. North-Holland Pub., Am-
sterdam (1978)

2. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G., Lede-
boer, G., Reynolds, P., Srimani, P., Ta, A., Theofanos, M.: Identifying and Measuring
Quality in a Software Requirements Specification. In: Proceeding of the 1st International
Software Metrics Symposium, pp. 141–152 (1993)

3. Deprez, J.-C., Haaland, K., Kamseu, F.: QualOSS Methodology and QualOSS Assessment
Method, Deliverable D4.1, http://www.qualoss.org/deliverables (last checked
28.02.2010)

4. Le Vie Jr., D.S.: Documentation Metrics: What Do You Really Want to Measure?
http://www.stc.org/intercom/PDFs/2000/200012_06-09.pdf (last
checked 28.02.2010)

5. El Emam, K., Drouin, J.-N., Melo, W.: SPICE. In: The Theory and Practice and Software
Process Improvement and Capability Determination. IEEE Computer Society, Los Alami-
tos (1998)

6. Forward, J.A., Lethbridge, T.C.: Qualities of Relevant Software Documentation: an Indus-
trial Study, http://www.site.uottawa.ca/~tcl/gradtheses/aforward/
papers/aforward_icse2003_sub.pdf (last checked 28.02.2010)

7. IEEE: IEEE Recommended Practice for Software Design Descriptions, IEEE Std 1016-
1998 (1998)

8. IEEE: IEEE Standard for Software Maintenance, IEEE Std 1219-1998 (1998)
9. IEEE: IEEE Recommended Practice for Software Requirements Specification, IEEE Std

830-1998 (1998)
10. IEEE: IEEE Standard for Software Project Management Plans, IEEE Std 1058-1998

(1998)
11. IEEE: IEEE Standard for Software Test Documentation, IEEE Std 829-1998 (1998)
12. IEEE: IEEE Standard for Software User Documentation, IEEE Std 1063-2001 (2001)

250 R. Matulevičius, N. Habra, and F. Kamseu

13. ISO/IEC: Information Technology – Software Product Evaluation– Quality Characteristics
and Guide Lines for their Use. ISO/IEC IS 9126, Switzerland (1991)

14. Izquierdo, D., Herraiz, I.: Qualoss 3.1 measurement Targets, Deliverable D3.2,
http://www.qualoss.org/deliverables (last checked 28.02.2010)

15. Jazzar, A., Scacchi, W.: Understanding the Requirements for Information System Docu-
mentation: an Empirical Investigation. In: Proceedings of the ACM Conference on Organ-
izational Computing Systems (COOCS 1995), pp. 268–279. ACM, New York (1995)

16. Kitchenham, B., Pfeeger, S.L., Fenton, N.: Towards a Framework for Software Measure-
ment Validation. IEEE Trans. on Soft. Eng. 21(12) (1995)

17. Loconsole, A., Borstler, J.: Theoretical Validation and Case Study of Requirements Man-
agement Measures. Technical report UMINF-03.02, Department of Computing Science,
Umea University (2003)

18. Matulevičius, R., Kamseu, F., Habra, N.: Measuring Open Source Documentation Avail-
ability. In: Proceedings of the 12th International Conference on Quality Engineering in
Software Technology (CONQUEST 2009), dpunkt.verlag GmbH, pp. 83–102 (2009)

19. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality, RADC TR-77-
369, Vols I, II, III, US Rome Air Development Center Reports NTIS AD/A-049 014, 015,
055 (1977)

20. Paulk, M.C., Curtis, B., Chrissis, M., Weber, C.: Capability Maturity Model for Software:
Version 1.1. Technical Report SEI-93-TR-24, Software Engineering Institute, Carnegie
Mellon University (1993)

21. Singh, N.: Maintaining Quality Control in Documentation. In: Proceedings of Society for
Technical Communication (2002)

22. Schiesser, R.: How does your process documentation measure up?,
http://articles.techrepublic.com.com/5100-10878_11-1053164.html
(last checked 28.02.2010)

23. Soto, M., Ciolkowski, M., Deprez, J.-C., Ruiz, J., Herraiz, I., Campos, C.G., Matulevičius,
R.: Metrics and Indicators of the Standard QualOSS Assessment Method, Deliverable
D4.2, http://www.qualoss.org/deliverables (last checked 28.02.2010)

24. Wohlin, C., Runeson, P., Høst, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimenta-
tion in Software Engineering. Kluwer Academic Publishers, Boston (2002)

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 251–265, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Emerging Challenges in Information Systems Research
for Regulatory Compliance Management

Norris Syed Abdullah1, Shazia Sadiq1, and Marta Indulska2

1 School of Information Technology & Electrical Engineering, The University of Queensland,
4072 Brisbane, Australia

{norris,shazia}@itee.uq.edu.au
2 UQ Business School, The University of Queensland, 4072 Brisbane, Australia

m.indulska@business@uq.edu.au

Abstract. Managing regulatory compliance is increasingly challenging and
costly for organizations world-wide. While such efforts are often supported by
information technology (IT) and information systems (IS) tools, there is evi-
dence that the current solutions are inadequate and do not fully address the
needs of organizations. Often such discrepancy stems from a lack of alignment
between the needs of the industry and the focus of academic research efforts. In
this paper, we present the results of an empirical study that investigates chal-
lenges in managing regulatory compliance, derived from expert professionals in
the Australian compliance industry. The results provide insights into problem-
atic areas within the compliance management domain, as related to regulatees,
regulations and IT compliance management solutions. By relating the identified
challenges to existing activity in IS research, this exploratory paper highlights
the inadequacy of current research and presents the first industry-relevant
compliance management research agenda for IS researchers.

Keywords: Regulatory Compliance, Business Information Systems, Empirical
Study.

1 Introduction

Compliance involves ensuring that business processes, operations and practice are in
accordance with a prescribed and/or agreed set of norms. Even though predominantly
viewed as a burden by organisations [1], failing to comply is no longer an option [2,
3]. Non-compliance may not only result in the possibility of losing customers and
damaging reputation, but can also lead to legal action. A number of corporate scan-
dals - Enron, WorldCom (USA), HIH (Australia), Societe Generale (France) and,
most recently, Satyam (India), to name a few - have exhibited this situation.

In addition, there is a general consensus that there will be an upsurge of regulatory
reform as a response to the events that led to the global financial crisis. Developing
strategies to manage inevitable regulatory shifts that emerge from government
and global reactions to the financial crisis is going to be high on corporate agendas in
the coming years. This situation is bound to put pressure on organisations already
struggling with the economic downturn.

252 N. Syed Abdullah, S. Sadiq, and M. Indulska

With compliance expectations on the increase, evidence suggests that organisa-
tions experience difficulties in managing compliance expectations and are increas-
ingly concerned with high costs associated with compliance [4]. Indeed, spending on
compliance is steadily increasing [5, 6]. With each new introduced regulation new
challenges arise [7-9]. The inevitability of coping with compliance pressures identi-
fies a need for new IT and IS solutions to compliance management and denotes a
need for evolution of current IT and IS approaches such that they are better able to
support the fast-changing regulatory compliance management field. Any developed
solutions, to be adequate, need to be informed by industry practice and expert advice.
The development of solutions in this domain without input from industry experts and
professionals will only serve to increase compliance management spending without
delivering on the promise of suitable IT and IS tools to alleviate compliance
management problems.

In this paper we take steps to address this need through an empirical study with
compliance management professionals. The main goal of the reported study is to
investigate compliance management issues and challenges faced by industry, as per-
ceived by compliance management experts, to investigate where IS research can con-
tribute and how IS tools should evolve to support industry. We conduct a gap analysis
of the perceived challenges with existing research in IS and identify a set of issues
and challenges that should drive the future agenda of IS researchers.

2 Approach and Methodology

To extract issues and challenges, we utilise semi-structured interviews. Interviews are
an established and popular means of carrying out qualitative enquiry in the fields of
social sciences. We use a semi-structured interview type to provide the opportunity
for participants to think about the challenges in compliance management and reflect
on and relate their experiences [10]. The interview team consisted of two experienced
empirical researchers, one with the role of the main interviewer and the other with a
support role of note taking and further probing. The interviewers’ domain knowledge
and expertise with the interview method is an essential element for success in these
semi-structured interviews.

2.1 Data Sampling, Participants and Protocol

The nature of the study led us to adopt a deliberately selective sampling approach to
participant involvement. We were motivated to ensure that participants had extensive
experience in the domain and would therefore provide an insightful and accurate
reflection of the state of compliance management in practice. To that end, we enlisted
the help of the Australasian Compliance Institute (ACI) and obtained a selection of
experienced contacts with insight into both the mature and immature stages of com-
pliance management in organisations. Eleven participants were invited to participate
and all eleven agreed with no incentives present for participation. Accordingly, eleven
Australian compliance management experts were interviewed in the last quarter of
2007. Typical roles interviewed were those of senior compliance management

 Emerging Challenges in IS Research for Regulatory Compliance Management 253

advisors and consultants in large organizations that provide both advisory and audit-
ing services in the context of regulatory compliance. Among the eleven, nine possess
more than 10 years of experience in the field and the other two have five and seven
years of experience in the field respectively.

The semi-structured interview protocol1 was designed and pilot tested to elicit free
flowing information from the interviewees. The protocol consisted of high level
questions that captured the experience of the interviewee, their opinions relating to
regulations and related challenges, as well as their experiences and observations of
challenges in compliance management practice. The questions were open-ended in
nature so as not to bias the interviewees. The researchers relied on probing to identify
specific challenges when an interviewee indicated a limitation they had experiences.

The protocol included three main sections. The first section aimed to establish the
context of the interview session. This section consisted of demographic inquiry such
as role, experience and organisation description. The second section asked interview-
ees to provide opinions about heavily regulated industry sectors, what compliance
responsibilities existed in their organisation and their awareness and experience with
current IT- and IS-related tools in use. The third section of the protocol aimed to ob-
tain explanation about the compliance-related factors - such as issues, hurdles and
solutions. Interviewees were asked to identify these factors in relation to customers,
regulations and solutions. In addition, participants were also encouraged to incorpo-
rate examples during elaboration of key points.

2.2 Data Analysis

All interviews were transcribed, annonymised, and analysed using a multi-coder ap-
proach and NVivo as the supporting tool. The multi-coder approach was used to re-
duce coder bias in the analysis of the text and multiple rounds of analysis were carried
out for each transcription. As the study was exploratory in nature, all factors emerged
from the interview data. To facilitate the exploration of factors, an initial meta-level
node structure was derived from the interview protocol – viz. responses related to
regulatees, regulations and solutions. This structure was used and expanded upon each
time a new issue, challenge, problem, regulation, etc, was identified.

The detailed coding, using the initial node structure as the basis, was conducted in
the first round by a third researcher, in a few iterations of the full transcripts so as to
capture the most detail. After each iteration, the coding node structure and associated
interview data was examined and revised before the next iteration of interview data
coding took place. The final coding and the resulting expanded coding structure were
then independently reviewed and re-coded separately by two researchers who identi-
fied the initial node structure. Following this individual analysis, the two researchers
then jointly discussed each node and its contents and refined the coding structure to
reduce overlaps and refine aspects of some identified issues (i.e. split nodes). The
researchers then jointly again analysed each transcript to ensure that all relevant detail
was captured and correctly codified.

1

 Due to space limitations the interview protocol is omitted from this paper. The interview
protocol is available from the authors on request.

254 N. Syed Abdullah, S. Sadiq, and M. Indulska

3 Results

In the following we present an in-depth discussion of the main challenges identified in
the interview sessions. Based on the analysis of the expert interviews, Figure 1 shows
the number of participants referring to each regulation and number of references made
respectively. Among all regulations referred to by the participants, Anti-Money
Laundering (AML) was the most frequently referred to and also the only one dis-
cussed by all the participants. This finding is perhaps not surprising given the recent
introduction of the regulation. Australian Standards was the second most frequently
discussed, followed by Financial Services Regulation (FSR), Organisational Health
and Safety (OHS), Trade Practices Act, Corporation Act and Sarbanes-Oxley (SOX).

 Fig. 1. Regulations Identified by Experts Fig. 2. Industry Sectors Identified by Experts

In terms of the industry sectors that are considered to be highly regulated, Figure 2
similarly depicts the number of references/participants regarding identification of the
most regulated markets. The experts indicated that the financial sector is the most
heavily regulated industry - addressed by all the participants with a total of 24 sup-
ported references. This finding correlates the earlier indication of a strong AML focus.

After understanding the landscape of various sectors and their compliance re-
quirements, we turned to investigating the challenges that organisations face in their
compliance management activities. The discussion of the identified challenges and
expert opinion is provided in the next sub-sections, logically separated into challenges
and problems related to customers (i.e. regulatees), regulations and solutions. We
precede the discussion of the challenges with the table showing the challenges and the

Table 1. Customer Factors

FACTORS SOURCES REFERENCES
Lack of Compliance Culture 10 46
High Cost 9 43
Lack of Efficient Risk Management 9 37
Difficulties in Creating Evidence of Compliance 8 29
Lack of Perception of Compliance as a Value-add 8 25
Lack of Understanding of its Relevance to Business 6 12
Lack of Communication among Staff 4 4

11 10 8 7 7 5 3 8

80

30
14 20 23

10 9
31

Sources References

11
6

2
7

24

8
3

19

Finance Utilities Health Mining,
Gambling, Oil,

Transport,
Insurance, etc

Sources References

 Emerging Challenges in IS Research for Regulatory Compliance Management 255

number of participants who identified them, as well as the frequency of the
identifications (number of references). Tables 1, 2 and 3 present factors relating to
customers, regulations, and solutions respectively.

3.1 Factors Relating to Customers

Lack of Compliance Culture. All the participants indicated that culture plays a vital
role in inculcating compliance. One of the participants indicated: “… compliance
doesn’t mean a thing if the culture isn’t right within the organisation.” Culture refers
to the overall compliance culture of the organisation, which involves employees’
perspective towards the organisation, what the organisation stands for, its customers,
investors, regulators and fellow colleagues [11]. A good culture, though difficult to
achieve [12] can promote a positive attitude towards legal compliance activity at all
levels within an organisation.

Several issues relating to culture were identified from the expert interviews. The
core issues related to top level management beliefs and mindset. The board often sees
compliance as one of the least value-added activities for the organization. Conse-
quently, the operational level often lacks guideline and advice, which further results
in naive and inexperienced compliance approaches among employees. This situation
is made worse because compliance officers often have little influence in the manage-
ment board of organisations. A participant indicated that: “… they need to get top
level buy in and then try – if there’s no buy in from senior management, it’s not going
to run.” This issue has also been highlighted by KPMG [13], where it is suggested
that balancing risk and controls with business improvement begins with the identifica-
tions of priorities and opportunities from a high-level, or so called “top-down”
perspective.

Similarly, the corporate mindset is affected directly by belief of employees. One
participant stated: “… Even if it’s a black letter law, it’s still a mindset. … Like you
don’t want to know that you’re reporting valid financial information to the market…”
This statement illustrates that some organisations lack willingness to accept compli-
ance activities within business operations. Further, one of the participants pointed out
that some organisations tend to allocate junior (those who “either had nothing to do in
projects once projects finished or were being managed”) and “non-star” resources to
risk and compliance section. The experts also indicate that some organisations are
reluctant to provide IT/IS tool support for compliance staff. Another culture related
issue is the lack of pro-active culture that leads to low compliance achievement for
the organisation. The problem is propagated to the mindset of the organisation, in
which “compliance is done for the sake of compliance instead of compliance for the
sake of good business.”

High Cost. Cost of compliance is one of the vital issues that make organisations hesi-
tant to get a compliance framework in place [14]. According to experts, one of the
compliance cost-related issues is the size of the company, especially affecting small to
medium sized companies (SMEs). Due to human resource and financial capital limita-
tions, these companies are found to struggle to put a compliance framework in place -
“… the smaller you are, the less capacity you’ve got to even feel confident about it

256 N. Syed Abdullah, S. Sadiq, and M. Indulska

because you haven’t got the skills either in capital, technology, or finance to actually
put that control framework in place” (interview data). In other words, despite differ-
ences in organisational size, small companies those have an equivalent “complexity
function” to that of large enterprises have to pay for an equivalent compliance frame-
works without an equivalent budget.

Lack of Efficient Risk Management. Another issue recognised by participants is
that of reluctance to allocate adequate resources to manage the risks, while being
aware that those risks exist. As one of the participants stated: “… in a risk identifica-
tion sense, you identified your risks and you said we’ve got to look at these, but then
you didn’t resource to actually address that…”

On the other hand, it is also possible that the issue is linked to the mindset of the
employees. The employees might see that it is too risky to be a compliance officer:
“… There’s personal liability attaching to everything now. If you look at money laun-
dering legislation for example, I’ve got clients who say “Who’d want to be the money
laundering reporting officer? You could go to jail…” Complicating this issue is the
fact that regulatory risk is not transferable (e.g through purchasing insurance). In risk
management, there are several approaches that organisations use in dealing with risk:
reduce, mitigate, accept or transfer the risks [15, 16]. Organizations have to rely on an
effective approach to reduce regulatory risks given that the consequence of failing to
report breaches is severe.

According to the findings, organisations tend to see compliance as being one of the
risk management frameworks - this situation is found to be consistent with general
organisation structure [13]. Developing effective risk management begins with a clear
understanding of an organisation’s appetite for risk [17]. However, this is difficult to
achieve. It depends on the ability of the risk assessment framework to keep up with
legislative and regulatory changes. It is a nature of legislations and regulations to
change in order to capture changes and growth in business. Risk assessment, on the
other hand, needs to be monitored and updated on an ongoing basis so that it can
capture those changes. As a result, organisations are faced with high monitoring costs,
which, in turn, prevent them from having effective risk management.

Difficulties in Creating Evidence of Compliance. One of the experts highlighted
“…got to do the right thing and not only they have to do the right thing, they have to
demonstrate that they’re doing the right thing.” This revealed that organizations need
for effective techniques to demonstrate their business conformity to obligations. Other
experts also agreed, e.g. “… People need systems to improve the internal efficiency to
be able to demonstrate that compliance and document stuff.” These views confirm the
need for an appropriate control framework to facilitate internal controls, especially
incident recording and reporting.

Lack of Perception of Compliance as a Value-add. Many organisations see little (or
no) value-add of compliance controls being embedded in their business processes.
Those organisations, having documented their business activities, argue that they see
no returns for the time consuming and expensive documentation: “The business never
gets anything back, so there’s no value provided back to the business from the data
that’s collected and then heaven forbid, stuff gets reported to the board without the

 Emerging Challenges in IS Research for Regulatory Compliance Management 257

business knowing about it.” Moreover, some organisations believe that risk and
compliance frameworks add complexity to business: “risk and compliance actually
makes it harder because they can’t visualize the business so they get attracted to add-
ing systems into the processes that serve their purposes but don’t serve businesses
purposes.” Furthermore, some organisations claim that the only business benefit de-
rived from compliance frameworks is that they avoid getting fined by regulators.

Lack of Understanding of its Relevance to Business. Organisations face difficulties
in relating obligations to their business; that is, which rule(s) is/are relevant to which
business objective(s) and activities. To overcome such difficulties, it is required that
regulations and legislations are interpreted in relation to, and mapped to, business
processes by experts who deeply understand both the legal and the operational aspects
of the organisation. Experts also recognise this issue, e.g. - “The rules and obligations
are not the problem; it’s the organisation’s capacity to understand how it needs to run
its business to achieve its objectives.” As a result of lack of understanding on how to
correctly embed rules and obligations in their business, organisations are found [18].

Lack of Communication among Staff. Based on the interview data, the lack of effi-
cient communication channels within the organisation is one aspect that prevents an
organisation from having an effective compliance framework in place is. Once there
is a change in obligation, organisations find it complicated to communicate the
change: “… you can’t really have people in a business unit just by themselves … So
they have to be linked somehow and another situation is the fact that if they are not
linked into that business unit somehow, they tend to be left … they don’t participate
in team meetings, people sort of isolate them and that’s a real danger ….” In addition,
another communication issue is associated with compliance monitoring, where risks
and compliance problems that are identified in business operations are not reported
back to the board.

3.2 Factor Relating to Regulations

Frequent Changes in Regulations. The fact that regulations, legislations, government
rules and laws regularly change means that organisations struggle to keep up with the
new requirements [13, 19, 20]. Updates of existing compliance frameworks and
internal controls to comply with the new obligations are a key problem, as highlighted
by one of the participants: “… because of the rapid change around regulatory reform,
we’re finding organisations becoming more inefficient in trying to meet these
obligations.”

Table 2. Regulations Factors

FACTORS SOURCES REFERENCES
Frequent Changes in Regulations 7 12

Legislation Weaknesses 6 11
Inconsistencies 5 8
Overlap in Regulations 3 7

258 N. Syed Abdullah, S. Sadiq, and M. Indulska

Legislation Weaknesses. According to the experts, the challenges related with legis-
lations were mostly found in principle-based legislation. Principle-based legislation puts
the approach on meeting the legal obligations to be decided by the regulated party. Al-
though this approach allows organisation to be creative in applying the legislations, it
exposes the organisation to the risk of making inappropriate interpretations of legislation.

Inconsistencies. The problem of consistent application of common standards across
several jurisdictions (states and territories) is recognized as one of the central prob-
lems of regulation [21]. As a result, some organisations choose to comply with those
inconsistent regulations, which generate negative consequences, particularly compli-
ance cost [22]. Not only are regulations inconsistent domestically, but also interna-
tionally. For example, “… most countries impose regulation for those entities that
they regulate, not only in the home jurisdiction, but offshore, and if, let’s take
Deutchse Bank, if the German authorities impose restrictions or regulatory frame-
works on Deutchse Bank, they’ve got to apply it here in Australia. That may or may
not be consistent with domestic law here.”

Overlap in Regulations. One of the main challenges with regulations is the problem
of duplication. In the Australian context, for example, the duplication is mainly
between the states and the Commonwealth [21], due to multiple legal parties.
Organisations are affected because they are required to demonstrate evidence of
compliance multiple times. As one expert exemplifies: “… I kept on seeing that I was
going to organisations exactly the same obligations coming through in five different
pieces of legislation and then the people out of the business pushing back saying ‘But
I’ve already answered this in relation to …”

3.3 Factor Relating to Solutions

Lack of Holistic Practices. Even if a high-quality compliance framework is in place,
organisations can be stagnant in terms of improvement if the framework is not
properly managed. It is believed that compliance must be cascaded through every
layer in the organisation, starting with clear direction from the top, and then deployed
appropriately at each level [23]. The relationship between the two is captured by a
quote of one of the participants: “… governance is around the right behaviors,
appropriate risk management, corporate social responsibility, ethics, managing,
reporting to stakeholders, …,.”

Table 3. Solutions Factors

FACTORS SOURCES REFERENCES
Lack of Holistic Practices 5 8
Lack of IT Support/Tools 11 103
Lack of Compliance Knowledge Base 7 35

Lack of IT Support/Tools. Despite the rising investment from software vendors and
entrepreneurs in governance, risk and compliance (GRC) software products, organi-
sations are struggling to correctly identify the tools and its suitability to their

 Emerging Challenges in IS Research for Regulatory Compliance Management 259

requirements. The features identified by Gartner [24] - reporting, dash-boarding,
remediation management, business process modelling, risk management and support
for multiple regulations across multiple business units - were mostly also identified by
the participants. The participants also highlighted that lack of IT support/tools are
related to usability and comprehensiveness of the tools, the supported learning and
training program, tools features such as monitoring and reporting, self-assessment,
management, newsfeed, alert, and updates. Participants highlighted a need for tools
relating to reporting/monitoring, self assessment, newsfeeds/alert, learning and man-
agement. Moreover, participants also stressed that tools should include the ability to
deliver not only regulatory compliance but also business benefits.

In particular, participants emphasized the important role played by monitoring
tools in compliance management: “… you can’t monitor customer’s transactions
manually, … there’s millions of transactions.” It is also important that monitoring
tools be able to oversee all business operations so that anomalies can be traced back to
the source of the problem if a breach occurs. This requirement leads to the need of
breach reporting and incident recording functionality. Furthermore, as one participant
pointed out – “…reporting tools should be able to effectively filter out irrelevant data
and provide meaningful reports to the audit committees”. So that instead of acquiring
an external audit firm, organisations can obtain internal audit management tools that
can provide regular audits, and keep the risk library small.

Lack of Compliance Knowledge Base. Generally, the advisory program provides the
necessary guidance to handle complex regulatory requirements. Experts highlighted
that advisory related challenges centered on the development of compliance knowl-
edge base, linking regulations to business processes, and the reliance to comprehen-
sive guidelines and frameworks. Many consulting firms offer such a service including
of course - the Big Four - i.e. KPMG, PricewaterhouseCoopers, Ernst & Young and
Deloitte Touche Tohmatsu. According to the experts, some organisations that already
have compliance frameworks in place continue to have difficulties in carrying out
tasks properly as a result of lack of comprehensive knowledge. Advisory services
contribute in this space by assisting on compliance strategies, and to overseeing and
evaluating the overall performance of compliance outcomes. One of the main foci of
the above is to define an appropriate training program. The experts confirmed the lack
of effective training programs.

Issues related business processes were also identified – in particular linking or
embedding controls/regulations to processes – and are focused on advisory services
that analyse existing processes wrt. relevant regulations.

4 Information Systems Research on Compliance Management

In [8], the first comprehensive snapshot of the development and focus of compliance
management related research in the Information Systems (IS) discipline is presented.
The study includes papers from premium Information Systems journals (as promoted by
the Association for Information Systems), and some additional popular journals in the
discipline. Aiming to introduce a well-informed research agenda, we further extend the
report to include reputed conferences in the discipline. Our target is to further identify
the existing IS research that contributes to solving compliance management problems.

260 N. Syed Abdullah, S. Sadiq, and M. Indulska

The results are presented within a framework that was developed to establish rele-
vance and analyse the contributions2. Within this framework, case study and explora-
tory papers are differentiated from papers that provide a solution to a compliance
management related problem.

Table 4 shows the breakdown of papers relevant to compliance management and
their source of publication. Out of 19637 articles, 232 articles matched the context.
Although the number is relatively low, the roles of IS or IT as enablers of regulatory
compliance have increased year by year (details below).

Table 4. Sources and Frequency of Publication

SOURCES
(Journals)

TOTAL Relevant
Articles

% SOURCES
(Conferences)

TOTAL Relevant
Articles

%

CAIS 659 16 2.4 BPM 189 7 3.7
BPMJ 336 5 1.5 ACIS 906 28 3.1
JAIS 158 2 1.3 CAiSE 346 9 2.6
JI&M 502 4 0.8 ICIS 959 14 1.5
CACM 2178 17 0.8 PACIS 1025 14 1.4
JISR 199 1 0.5 AMCIS 3822 46 1.2
EJIS 382 2 0.5 HICSS 4517 49 1.1
MISQ 281 1 0.4 ECIS 1489 17 1.1

 ER 400 2 0.5

The next step in the analysis carried out the classification with respect to the type of
publication, viz. case study/exploratory and solution. As expected in an emerging re-
search domain, the majority of the publications were found to be in the case study or
exploratory paper category - 188 (81%) of the articles are case study/exploratory arti-
cles and 40 (17.2%) are solution articles. However, there are four (1.7%) articles that
matched both types of articles. The results suggest that research on regulatory compli-
ance solution has being initiated but remains still in the early exploratory stages.

Furthermore, we were interested to determine the emergence of compliance man-
agement research in Information Systems publication outlets. The breakdown of com-
pliance management research per year of publication is shown in Figure 3.

0

10

20

30

40

50

60

70

2001 2002 2003 2004 2005 2006 2007 2008

Overlapped Solution Case Study / Exploratory

Fig. 3. Distribution of Article per Type per Year

2 Each paper was prepared and included in a full text search for the purposes of identifying

contributions relevant to the compliance management domain. Full text searches were con-
ducted on the data set, using a keyword of “compliance” and “compliant”.

 Emerging Challenges in IS Research for Regulatory Compliance Management 261

The figure shows an upward trend in compliance management research in Informa-
tion Systems, with a spike of publications in 2007. We posit that this finding is in line
with the increased focus on SOX Act of 2002 and also an early focus on HIPAA,
given the lag of publishing in the Information Systems discipline. Prior to this event,
little literature on compliance management exists, despite some other regulations
having already been proposed.

Following this analysis, we carried out further classification for the articles that
were classified as solution articles. This classification involved 44 solution articles
and also 4 articles that contain both (case study and solution) discussion. These arti-
cles were reviewed to identify the focus of the solution in relation with challenges
identified in section 3. The study reveals that 29 out of 44 articles offer a preventive
(before-the-fact) solution, 14 offer a detective (after-the-fact) solution, while the re-
maining (one) offers both solutions.

5 Research Agenda for Compliance Management

In this section we present an analysis of the gaps between expert opinion and current
status of IS literature with regard to published Information Systems compliance man-
agement solutions. A summary is provided in Table 5.

Due to space limitations it is not possible to discuss the contributions of the 44 pa-
pers identified as contributing to compliance solutions. The actual solutions presented
in the papers vary substantially. Some of the papers, for example, [25] addressed
detective types of solution and introduced the Hippocratic Database Compliance Au-
diting component, which facilitates audits in E-health records.

In [26] the researchers introduce the ‘compliance by design’ approach that pro-
poses a compliance regimen with a preventative focus. Similarly [14] present a high
level view of regulatory compliance through a policy-based framework for integrating
regulatory compliance tasks with business processes.

We observe that the growing focus on technical aspects of compliance, is balanced
by research on business or management aspects. For example, [27] detailed the devel-
opment and application of an evaluative data model for ISO 9000 compliance. On the
call to facilitate compliance with HIPAA, [28] introduce a framework that provides a
useful way of identifying and analysing the training needs of organisations with di-
verse user communities and continuous change.

As shown in Table 5, the solution challenges, i.e. lack of holistic practices, lack of
IT supports/tools, and lack of compliance knowledge base, have received most atten-
tion from the IS researchers with 13, 14 and 10 matching solutions respectively. This
demonstrates that the focus of IS research community is slanted towards providing
solutions either in form of best practices, automation, or guidelines. The analysis also
exposed that regulatee challenges viz. high cost, lack of efficient risk management,
and lack of perception of compliance as a value-add; despite receiving high attention
from the experts, have not yet been addressed adequately. Difficulties in evidencing
compliance, although addressed in research in 2002 and 2003, shows drought from
2004 to 2008. This is contrary to experts’ opinion, which stresses difficulties in evi-
dencing compliance and the need for appropriate incident recording and reporting
mechanisms.

262 N. Syed Abdullah, S. Sadiq, and M. Indulska

Table 5. Industry Challenges vs. Current Research Focus

SOLUTIONS (by year)
INDUSTRY CHALLENGES

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

Lack of Compliance Culture 1 1
High Cost
Lack of Efficient Risk Management
Difficulties in Creating Evidence of Compliance 1 1
Lack of Perception of Compliance as a Value-add
Non-proactive
Lack of Understanding of its Relevance to Business 1 2 1

C
us

to
m

er
s

Lack of Communication among Staff
Frequent Changes in Regulations 1 1 1
Legislation Weaknesses
Inconsistencies

R
eg

ul
at

io
ns

Overlap in Regulations
Lack of Holistic Practices 4 1 6 3
Lack of IT Support/Tools 2 1 1 1 1 5 1 3

So
lu

ti
on

s

Lack of Compliance Knowledge Base 2 3 4 1

In terms of solutions for regulations related challenges, very few solutions can be
found and all (three) relate coping with frequent changes. Other challenges i.e. legis-
lation weaknesses, inconsistencies, and overlap in regulations are not addressed,
which is not surprising as this is more in the legal arena and controlled by government
agencies, legislation authority or standardisation bodies.

The review of the related papers as well as the interview transcripts allowed us to
extract key aspects where IS research can create results and value for organizations in
meeting their compliance obligations. In the discussion below, we highlight the key
challenges that need attention from the IS research community and indicate how the
challenges relate to addressing industry challenges:

First and foremost, there is an urgent need for proper benchmarking studies to
help address the challenge of high cost. Particularly for SMEs, there is high cost and
great difficulty in measuring the adequacy of controls for principles based regula-
tions where the onus is on the organization to design an appropriate compliance regi-
men. Benchmarking and best practice studies will allow improvement of controls
effectiveness, a reduction of costs, and an improved potential to deal with resistance
to change through demonstrating methods used by others. Such additional knowledge
can further help alleviate the perception of legislation weaknesses in principles based
regulations and consequently promote regulation acceptance.

In a related manner, there is also a need for investigation of process reference
models relating to various regulations. A focus on the development of such reference
models and the study of the impact of the use of such models in organizations (i.e.
impact on compliance management spending, frequency of breaches, etc) is largely
missing in Information Systems research. The development of proven reference

 Emerging Challenges in IS Research for Regulatory Compliance Management 263

models, however, may significantly lessen the cost of compliance management in
organizations.

The culture of compliance is ingrained in the daily rituals of each of the firm’s em-
ployees, including senior management, who must learn to lead by example [12].
There is a clear lack of Information Systems research on organisational behaviour.
In particular we see a need for investigation of how IT and IS tools can be used to
incentivize employees to ‘do the right thing’ and adapt their practices. There is also a
need for the development of relevant IT and IS tools that can help facilitate employee
training for compliance management, promote communication among staff and in-
crease organizational capacity to manage its compliance knowledge base.

How the compliance (and risk) factor interrelates with the operations of business
units is understudied, with only a small number of researchers working on the con-
ceptualisation of compliance and risk requirements per se let alone their inter-
relationships with business processes and business activities. A comprehensive and
well-grounded conceptual model for compliance and risk is needed.

Further to the point above, tools and methods are needed to annotate, enhance,
analyse and simulate business models with compliance and risk modeling elements.
This will facilitate better coordination between an organization’s compliance and
business functions and help employees understand compliance value and business
relevance.

Although reporting and monitoring tools of high sophistication are available, there
is little development towards tools that provide specialized solutions in monitoring
and analysing compliance related data (partly due the absence of any generic concep-
tual models for GRC), thus causing big problems for organisations required to create
evidence of compliance. Accordingly, we see a need for affordable IT and IS tools
that facilitate compliance management self-audits and compliance monitoring activi-
ties in general. Furthermore, there is also a clear need for tools that facilitate the iden-
tification of non-compliance processes with respect to a given regulation.

Although frequency of change, as well as inconsistency and overlaps in regulations
is beyond the realm of IS research, studies to understand the impact of regulation
changes (inconsistencies and overlaps) can promote better understanding of the cost
of compliance and allow business to lobby for regulatory reform where needed. Multi
disciplinary research is warranted in order to cover legal, business and IT aspects.
From an Information Systems perspective, there is a need for solutions that can filter
out updates that are not relevant to a given organization or industry sector, thus reduc-
ing the amount of information that the organization has to process in order to update
or assess their compliance management initiatives.

In conclusion, this paper presents insights into the issues and challenges perceived
by experts involved in managing compliance. In addition, we present a snapshot of IS
research activity since 2001 and contrast it against the challenges identified by indus-
try experts. The findings, and related discussion, are expected to be beneficial to the
research community in particular as they communicate the opinion of industry experts
that should be taken into consideration when undertaking research in the field, thereby
resulting in research activity that has the potential to impact and contribute to practi-
cal problems faced by organizations.

One of the limitations of our work, beyond the geographic limitation to Australia,
is the focus on experienced consultants. The consideration of views from various roles

264 N. Syed Abdullah, S. Sadiq, and M. Indulska

in organisations will be a complement to the study in the future. Further we will un-
dertake a review of contributions from computer science research (in particular re-
search in the database community) as anecdotal evidence indicates that there have
been substantial contributions with respect to e.g. solutions leading to automated
monitoring and analysis of business /transactional data.

Further limitations of the work relate to the qualitative aspect of the study. Qualita-
tive studies in particular can suffer from subjectivity in data analysis. In our study,
through using multiple coding rounds, together with multiple coders, we have taken
measures to ensure objectivity of the analysis.

References

1. Lu, R., Sadiq, S., Governatori, G.: Compliance Aware Business Process Design. In: ter
Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS,
vol. 4928, pp. 120–131. Springer, Heidelberg (2008)

2. Anon, J.L., Filowitz, H., Kovatch, J.M.: Integrating Sarbanes-Oxley Controls into an In-
vestment Firm Governance Framework. The Journal of Investment Compliance 8, 40–43
(2007)

3. Pershkow, B.I.: Sarbanes-Oxley: Investment Company Compliance. The Journal of In-
vestment Compliance 3, 16–30 (2003)

4. Bace, J., Rozwell, C., Feiman, J., Kirwin, B.: Understanding the Costs of Compliance.
Gartner Research. Gartner, Inc. (2006)

5. McGreevy, M.: AMR Research Finds Spending on Governance, Risk Management, and
Compliance Will Exceed $32B in 2008. AMR Research, Inc. (2008)

6. Reilly, K.: AMR Research Finds Spending on Sarbanes-Oxley Compliance will Remain
Steady at $6.0B in 2007. AMR Research (2007)

7. Robinson, K.T., Hawkins, R.W.: Investment Company and Investment Adviser Compli-
ance Programs: New Requirements in a Changed Regulatory Environment. The Journal of
Investment Compliance 4, 14–19 (2004)

8. Syed Abdullah, N., Indulska, M., Sadiq, S.: A Study of Compliance Management in In-
formation Systems Research. In: The 17th European Conference on Information Systems
(ECIS 2009), Verona, Italy (2009)

9. Turner, R., Florio, C.D.: Investment Management Compliance: The Dawn of A New Era?
The Journal of Investment Compliance 4 (2005)

10. Kramp, M.K.: Exploring Life and Experience through Narrative Inquiry. In: Marrais, K.d.,
Lapan, S.D. (eds.) Foundations for Research: Methods in Education and the Social Sci-
ences, pp. 103–121. Erlbaum, Mahwah (2004)

11. Australian Competition & Consumer Commission: Trade Practices Compliance Programs.
Commonwealth of Australia (2008)

12. Morton, J.C.: The Development of A Compliance Culture. The Journal of Investment
Compliance 6, 59–66 (2005)

13. KPMG: The Compliance Journey: Leveraging Information Technology to Reduce Costs
and Improve Responsiveness. KPMG International (2006)

14. Kharbili, M.E., Stein, S., Markovic, I., Pulvermüller, E.: Towards a Framework for Se-
mantic Business Process Compliance Management. In: GRCIS 2008, Montpellier, France
(2008)

15. SAI Global Research: Risk and Compliance in Australia: The Issues and Trends as Seen
by Practitioners (2008)

 Emerging Challenges in IS Research for Regulatory Compliance Management 265

16. Sadiq, S., Indulska, M.: Driving Compliance through BPM. The University of Queensland
(2008)

17. Abrams, C., Känel, J.v., Müller, S., Pfitzmann, B., Ruschka-Taylor, S.: Optimized Enter-
prise Risk Management. IBM Systems Journal 46, 219–234 (2007)

18. Governatori, G., Milosevic, Z., Sadiq, S., Orlowska, M.: On Compliance of Business Proc-
esses with Business Contracts. ITEE Technical Report. The University of Queensland,
Brisbane (2007)

19. Karagiannis, D., Mylopoulos, J., Schwab, M.: Business Process-Based Regulation Com-
pliance: The Case of the Sarbanes-Oxley Act. In: 15th IEEE International Requirements
Engineering Conference (RE 2007), pp. 315–321 (2007)

20. Liu, Y., Müller, S., Xu, K.: A Static Compliance-checking Framework for Business Proc-
ess Models. IBM Systems Journal 46, 335–361 (2007)

21. Wilkins, R.: The Problems of Duplication and Inconsistency of Regulation in a Federal
System. In: Grabosky, P., Braithwaite, J. (eds.) Business Regulation and Australia’s Fu-
ture. Australian Institute of Criminology, Canberra (1993)

22. Harmer, R.: Current Views on Compliance & Governance. Rob Harmer Consulting Ser-
vices (2004)

23. Paul, S.: Demand for Governance, Risk and Compliance Products on The Rise. The Hindu
Business Line (2008)

24. Caldwell, F., Eid, T.: Magic Quadrant for Enterprise Governance, Risk and Compliance
Platforms. Gartner Research. Gartner, Inc. (2008)

25. Agrawal, R., Grandison, T., Johnson, C., Kiernan, J.: Enabling the 21st Century: Health
Care Information Technology Revolution. Communications of the ACM 50, 35–42 (2007)

26. Sadiq, S., Governatori, G., Naimiri, K.: Modeling Control Objectives for Business Process
Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

27. Kim, H.M., Fox, M.S., Sengupta, A.: How to Build Enterprise Data Models to Achieve
Compliance to Standards or Regulatory Requirements (and share data). Journal of the
AIS 8, 105–128 (2007)

28. Davis, C.J., Hikmet, N.: Training as Regulation and Development: An Explora-
tion of the Needs of Enterprise Systems Users. Information & Management 45,
341–348 (2008)

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 266–280, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Experience-Based Approach for Adoption of Agile
Practices in Software Development Projects

Iva Krasteva, Sylvia Ilieva, and Alexandar Dimov

Sofia University St.Kliment Ohriski, 65 Akad. J.Boucher str.,
Sofia, Bulgaria

iva.krasteva@rila.bg, sylvia@acad.bg, aldi@fmi.uni-sofia.bg

Abstract. The agile approach for software development has attracted a great
deal of interest in both academic and industry communities in the last decade.
Nevertheless the wide adoption of agile methods in ever growing number of
software development projects, shifting the development process of an
organization to an agile one is not straightforward. Certain considerations for
the applicability of agile practices should be taken into account when this
transition is performed. In this paper, an approach for situational engineering of
agile methods is proposed. The approach is based on the experience gained in
adopting agile practices in both internal and external projects of organizations.
A knowledge-base supporting the selection of agile practices that are suitable
for certain project is introduced. Automated generation of appropriate software
development process is included as well. Particular realization of the approach
supported by SPEM-based tools is also presented in the paper.

Keywords: agile practices, method engineering, project situation, context,
SPEM.

1 Introduction

The agile approach for software development has attracted a great deal of interest in
both academic and industry communities in the last decade. Based on common sense
values and principles of collaboration, trust and the potential of the individuals, a
number of agile practices have been proposed and a good number of agile methods
have been developed. The agile software development has arisen as an alternative to
the traditional development practice. A lot of success stories of its adoption in
continuously growing number of domains and projects have been published.
Nevertheless its wide adoption, shifting the development process of an organization to
an agile one is not straightforward [1] [2] and certain considerations of the
applicability of agile practices should be taken into account [3] [4]. In addition, the
agile approach encourages adaptation and customization of the development method
throughout the execution of the project, which makes the adoption process a
continuous and interactive activity [5] [6] [7].

The objective of this research is to support organizations in introducing agile
practices in their development methods and in further adoption and improvement

 Experience-Based Approach for Adoption of Agile Practices 267

through the whole project. We propose a situational method engineering approach
which is based on the experience gained in adopting agile practices in both internal
and external projects. The suggested approach incorporates knowledge for agile
practices applicability and suggests different mechanisms for knowledge acquisition.
There are two major activities in the approach. The first one is selection of agile
practices that are suitable for particular project. Creation of a new agile development
method is the second one. Due to space limitations the paper presents the overall
approach and describes in details the selection process, while the creation of the
development method is discussed briefly.

The approach we propose supports iterative and incremental process for
methodology creation and adaptability through a number of method engineering
milestones during the execution of the development process. Our approach is built on
an instance of a Software Process Engineering Meta-Model (SPEM) 2.0 meta-model
[8] and its execution is supported by several tools implemented as extensions to
Eclipse Process Framework (EPF) Composer [9]. Models that are used as input and
output for the method engineering process are fully compatible with the standardized
instance of SPEM 2.0 Meta-Model- the SPEM 2.0 Base Plug-in [8], and thus can be
freely distributed among different SPEM-based tools.

The rest of the paper is organized as follow. Section 2 makes an overview of the
related work and comparison between other approaches and this study is made. In
Section 3 the method engineering process is presented as well as basic concepts and
models used. Organization of the knowledge-base and the selection of applicable
agile practices are described in details in Section 4. How the generation of new agile
method is specified and realized is presented in Section 5. Section 6 proposes
validation of the approach through comparison with an external source and a case
study. Section 7 concludes the paper and makes suggestions for future work.

2 Related Work

Method engineering is an approach for conceptualization, construction and adaptation
of methods and tools for information systems development [10]. Situational method
engineering (SME) deals with the creation of project-specific method or tailoring
existing ones to a particular project situation. Project situation is defined [11] as a
combination of the (external) context of the project and the project type. We are
adhering to this terminology throughout the whole paper.

A recent overview of the existing approaches for method engineering can be found
in the works of Ralyte et al. [12] and Nehan et al. [13]. Depending on the method
construction techniques a number of approaches can be distinguished. Assembly-
based approach is based on the reuse of preexisting method components (in different
approaches referred to as fragments [10] or chunks [12] with difference in the
meaning). Components are selected to suit particular situation and are assembled
using appropriate technique to form new development methods. The extension-based
approach combines instantiation and extension techniques to form new methods by
applying extension patterns. Another approach, the paradigm-based approach lies on
the abstraction strategy by either abstracting from existing method or by instantiating
a metamodel.

268 I. Krasteva, S. Ilieva, and A. Dimov

Two approaches which focus on method tailoring are developing recently. The
practice-driven approach [14] enforces particular rules to configure company’s
development method. In the Method for Method Configuration (MMC) approach [15]
particular process is customized by applying appropriate configuration patterns. As
outlined in [14], different SME approaches differ in their ability to execute by
providing sufficient details on how the approach actually works. In the presentation of
our approach we describe in parallel its specification as well as its realization. Of
course, due to space limitation the realization doesn’t reveal all the details. Our
approach is realized on SPEM 2.0 Meta-Model specification and the EPF Composer
tool. By utilizing standardized and open source tools and specifications, we believe
that the applicability and extendibility of the approach is greatly enhanced. In [16]
[17] SPEM is used to represent agent oriented methodologies following the method
engineering approach. They extend SPEM in appropriate way to support modeling of
method fragments and agent design processes. Our approach, however, is different in
the way the realization model is instantiated from SPEM 2.0 Meta-Model and the
design of the development process.

The value of introducing a knowledge-base to SME approaches is recognized by
others [18] [19]. Keeping track on how the method has been previously applied in
different project situations gives the possibility to execute various analyses based on
particular metrics. Klooster et al. [18] have introduced eighteen performance
indicators to measure the success of a project which is determined by the
dependencies among situation factors. Qumer et al. [19] argue on the importance of
introducing a knowledge-base when creating agile methods and state that agile
knowledge engineering and management approach should be integrated with an agile
software development approach. Our knowledge-base is especially designed to
support introduction of agile practices to a given project situation based on the
experience of practices applicability from both outside and inside of an organization.

Comprehensive studies on the applicability of the agile approach by utilizing
OPEN framework [22] have been published by Qumer et al. [19] [20] and
Hendersson-Seller et al. [21]. In [19] a complete framework to assist managers in
assessing the degree of agility they require and how to identify appropriate ways to
introduce agility into their organization is presented. The Agile Software Solution
Framework (ASSF) consists of agile conceptual aspect model and tools. The agile
conceptual aspect model represents the aspects of knowledge, governance and method
core; which are linked to business via a bridge that aligns business goals and agile
software development goal. In addition to the framework, Agile Adoption and
Improvement Model (AAIM) is suggested to support method adoption and further
software process improvement efforts. Our approach shares some common points in
the assessment of agile practices. However, while the ASSF focuses on assisting
managers to decide on appropriate transition and the way to execute it, we are only
focusing on method engineers whose objectives are to design and further tailor the
method through its execution to best suit the people involved in the project and the
particular project situation. It should support method engineers who are not experts in
agile adoption to select appropriate practices and guide them in the creation of the
new agile method.

 Experience-Based Approach for Adoption of Agile Practices 269

3 Description of the Approach

The section makes an overview of the new experience-based situational method
engineering approach suggested by us. First, the method engineering process is
described. The concepts and models that are involved in the formal specification of
the approach are presented in the second subsection.

3.1 The Method Engineering Process

The introduction of agile practices to the development methods of an organization
should involve iterative and incremental process of adoption while continuously
reviewing and customizing the practices to the particular project [6] [5] [19]. This
process is based on two types of adaptation [7] - adaptation to the characteristics of the
project and self-adaptation which is guided by the way the team responds to different
development practices used in the project. For that reason our method engineering
process is interleaved with the software development process and thus supporting the
method engineer to adapt the process continuously either by manually tailoring it or by
executing the method engineering process for any process iteration. The projects are
described by a set of factors that characterizes particular project situation.

Fig. 1. The method engineering process

Three major parts constitutes the method engineering process proposed by our
approach - method creation phase, process execution phase and knowledge-base
population activity. The method creation phase begins with selection of agile
practices that are applicable to the given project situation. The activity involves a
number of steps for evaluation of practices applicability based on the information in a
knowledge-base. The knowledge-base stores data for theoretical and empirical

270 I. Krasteva, S. Ilieva, and A. Dimov

adoption of agile practices when certain project and environmental factors are present.
Appropriate practices are then assembled with the current development process in a
number of possible processes which are further evaluated and one particular is
chosen. The adoption is performed in a number of process iterations each of which
ends with a method engineering milestone. If the iteration is not the last one, decides
whether the next iteration should be changed or not. The method engineer can
optionally customize some of the elements of the iteration or execute the method
engineering process with a new set of practices. After the last iteration two additional
method engineering tasks are performed- the information for the project is added to
the knowledge-base and stakeholders’ satisfaction is surveyed. The method
engineering process is presented in Figure 1.

3.2 Concepts, Models and Tools

Our situational method engineering approach is based on SPEM 2.0, which is defined
as a MOF 2.0-based Meta-Model as well as a UML 2 Superstructure-based Profile.
SPEM is designed to provide the necessary concepts for modeling, documenting,
presenting, managing, interchanging, and enacting development methods and
processes [8]. In SPEM distinction between reusable method components (called
Method Content) and instantiation of such components in particular processes is
drawn. The method content provides the ‘building blocks’ such as tasks, work
products, roles, tools, guidance, etc., while the process elements specify parts or the
whole development process as a work breakdown structure (including activities as
well as work products and roles) by implementation and further customization of the
elements from the method content. In this sense a development method consists of
different method content elements and process elements. Methods can be specified by
reusing, extending and customizing method and process elements from other already
defined methods by means of Method Configurations. The repository for methods is
called Method Library. Figure 2 illustrates these concepts and their relationships.

Our method engineering approach is based on four metamodels. Two of them are
standardized models- the SPEM 2.0 Meta-Model and the SPEM 2.0 Base Plug-in. We
define the other two models- the Specification and the Realization metamodels. These
models are derived from the SPEM metamodel by extension and/or instantiation.

Fig. 2. Definition of SPEM 2.0 basic concepts

 Experience-Based Approach for Adoption of Agile Practices 271

Most of method engineering concepts and reuse mechanisms can find their
corresponding ones in SPEM elements. One such mapping assumed by us is presented
in Table 1. The knowledge-base that we introduce in the approach is modeled using
standard UML. However, it imports certain process and method content elements
from our SPEM-based metamodels. The other way relation is not provided explicitly.

Table 1. Mapping of method engineering concepts to SPEM 2.0 Meta-Model elements

Method Engineering concepts SPEM 2.0 Meta-model elements
Method component Method content; Process
Method repository; Method library
Aggregation;
Configuration;
Instantiation

Variability types;
extension mechanisms

Specification metamodel presents the basic concepts of our approach and

relationships between them. In order to execute our approach we have specified three
tools that are realized as extensions to EPF Composer. EPF Composer utilizes the
SPEM 2.0 Base Plug-in which is a standardized instantiation of SPEM 2.0 Meta-
Model and provides commonly used instances for many SPEM concepts for the
domain of Software Engineering [8]. For that reason we specify another model- the
Realization metamodel, which imports the concepts form the Base Plug-in as well as
certain design rules and validations to ensure that the model conforms to the
Specification model. By introducing a second metamodel, the modeled elements that
come as an input or output of our approach can be transferred to any SPEM-based
tools for modeling software development processes. Figure 3 presents the
relationships between different models used in our approach.

Fig. 3. Models introduced in the approach and their relationships

The three tools that are realized by us as extensions to EPF Composer are: the APA
tool, the ConfCheck tool and the EBAGen tool. The Agile Practices Applicability
(APA) tool supports all the operations with the knowledge-base of agile practices-
feeding up data, editing data, configuring the situation parameters, analyzing the data.
The tool also exposes a wizard-like interface to help the method engineer in the
selection of agile practices appropriate for a particular project. The (Experience-Based

272 I. Krasteva, S. Ilieva, and A. Dimov

Approach method GENerator) EBAGen tool guides the generation of the new agile
process from particular set of agile practices and a number of requirements specified
by a method engineer. The Conformity Check (ConfCheck) tool is used mainly by the
other tools to check the conformity of input method elements with the specification
model.

4 Method Content Selection

As discussed in the introductory section the applicability of agile practices is heavily
dependent on characteristics of the projects. Certain practice can be applied in one
context while other cannot. For that reason in our approach we maintain a knowledge-
base which stores information for applicability of particular agile practice when given
project situation is present. The organization of the knowledge-base as well as
different mechanisms that are used to analyze it and are used in the selection of
appropriate agile practices for the project in hand are described in the subsections
below.

4.1 Organization of the Knowledge-Base

Currently, there is no standard taxonomy of projects in the software industry that can
be used to identify and categorize projects based on common factors. A lot of studies
are published but there is no consistent and complete set of factors that are used to
describe particular project situation. Jones [23] identifies 36 important context factors
have been documented by Software Productivity Research (SPR) and used for
benchmarking projects. However, this classification lacks some important factors that
are relevant for agile development while introducing others that are not so important.
Thus we use this project characterizing set of factors as a starting point and map,
adjust, add and remove factors that are identified in related studies considering agile
practices applicability [18] [20] [3] [24] [25]. As an outcome of we have identified 45
factors to be included as characteristics of different projects situations [26].

Once we have identified the relevant factors, the knowledge-base is designed to
support the analysis of the applicability of agile practices according:

• Theoretical inapplicability
• Experience reports of other companies
• Experience of the company

The theoretical inapplicability analysis is based on the characteristics of a practice
and makes assumptions about how appropriate is to apply certain practice when
particular factor is present. We have defined 7-point scale {-5,-3,-1, 0, 1, 3, 5} to
measure the levels of applicability- from highly inapplicable (-5) to highly applicable
(5). Zero means that applicability of certain practice is not affected by the presence of
a factor. In previous works of ours [27] [28] we have studied theoretical applicability
of agile practices when particular social, technological and business factors are
present as well as their adoption in the development and usage of reusable
components. In order to start populating the knowledge-base we are examining and
synthesizing relevant theoretical research by us and others.

 Experience-Based Approach for Adoption of Agile Practices 273

However deep and systematic those theoretical analysis are, the assumptions drawn
by them can be validated through further empirical studies. The knowledge-base
stores information of projects in which agile practices have been applied. Relevant
data is taken from published experienced reports on agile adoption through systematic
review of literature. The projects are described by means of the set of situational
factors we have identified, and practice applicability is recorded in a 5-point scale
{N/A, 0, 1, 3, 5} showing the extent to which the practice is used (‘N/A’ stands for
‘Unknown’). The evidence of the success or failure of practice usage is also recorded
in the knowledge-base. The information in the knowledge-base can be further
analyzed and conclusions based on the experiences of other companies of the
applicability of agile practice when certain factor is present can be made. We are
currently researching appropriate statistical methods to analyze the data. Although
based on empirical reports, there are a couple of issues that should be considered
when this type of analysis is made. Such issues consider the high level of uncertainty
and subjectivity of the information, as well as the quality of the reports. The presence
of certain situational factors might not be explicitly revealed in the report however
they can influence applicability of given practice in the real situation. Mapping
project descriptions to situational factors, deciding the level of applicability and the
evidence of success or failure involves speculative reasoning and its effect on
the results should be taken into account. The last consideration is about the quality of
the empirical reports. In a systematic review [29] of empirical studies up to and
including 2005 year, out of 270 studies only 36 of them satisfied certain quality
criteria. In order to mitigate the impact of such issues the statistical significance and
quality of the data in the sample is examined as part of the statistical analysis.
Furthermore, as an additional step a statistical analysis on a set of situational factors
to a set of practices is introduced. In this way influences among practices are also
taken into consideration and sets of practices are suggested for application. For the
purpose of comparing how close one project situation is to the other, we introduce the
measure of situation proximity. Situation proximity of two situations is measured as a
sum of:

• ‘1’ for each factor that are the same in both situations
• ‘0’ for each factor that is different
• when a factor is not known, the value of the probability this factor to match

the one in the other situation (this is dependent on the cardinality of the scale
for particular factor).

An additional feature of the knowledge-base is the information about incompatible
agile practices, which is based on theoretical research of the characteristics of agile
practices like the one made by us [27]. Such information is useful when the set of
practices is evaluated.

The knowledge-base contains also information for applicability of agile practices
in the past projects of the organization. This is the most reliable information however
not available for first-time agile adoption. The information from internal projects
contains complete project situations and thus the uncertainty level is not an issue. The
records in this part of the knowledge-base can contain customized practices as well as
general ones. Also for this type of information we can collect additional information
on results of practice application. In [18] eighteen performance indicators are
suggested to measure the success of particular practice applicability. We would like to

274 I. Krasteva, S. Ilieva, and A. Dimov

keep our information repository light and measure the success of a given practice by
the satisfaction of project stakeholders.

4.2 The Selection Process

The knowledge acquisition and analysis is supported by the APA tool. The selection
of agile practice to be used in the project is iterative procedure and is based on a
number of parallel analysis steps. A precondition to the selection procedure is the
method content that contains the agile practices we want to be analyzed. As a first
optional step of the selection procedure the state of the knowledge-base is set – it
could be either fed up with data, or the data can be updated, or just reviewed. This
data, however, is not stored in some dedicated repository. Once the information about
theoretical and empirical applicability of practices is specified by the means of the
tool, it is serialized as text (according predefined by us format) and attached to a
dedicated text attribute in each agile practice. In such a way the information about
agile practices applicability is attached to them and can be read by appropriate parser
tool. On a second step the method engineer specifies the project by the set of
situational factors.

The third step includes several parallel or sequential analyses:

• Theoretical analysis per practice per situational factor
• Empirical analysis per practice per situational factor
• Empirical analysis per project situation for external projects (according to

situation proximity)
• Empirical analysis per project situation for internal projects (according to

situation proximity)

The method engineer selects several sets of practices which are checked for
incompatibilities. The data for theoretical incompatibility of two practices is stored in
the knowledge-base. Some of the practices are substituted with custom practices from
the internal records. The method engineer can decide to run some of the analyses
again and change the preliminary sets of practices. At the end, one set is selected to be
used in creating the development method. The output of the selection procedure is a
new method configuration in EPF Composer that contains selected agile practices.
The description of the project situation is attached to an appropriate text attribute in
the new development process, which is to be populated in the next step.

5 Development Process Creation

Once the appropriate set of agile practices is selected they can be adopted with the
existing practice of the organization in a particular development process. How the
new development process is generated is presented in the current section. We first
present the specification metamodel.

5.1 The Specification Metamodel

The metamodel we define specifies the basic concepts and the relationships between
them to support our approach. The basic concepts that are introduced in the

 Experience-Based Approach for Adoption of Agile Practices 275

metamodel are presented in Figure 4. We introduce AgilePractices and
CustomAgilePractices elements as SPEM Guidance. Any custom agile practice
customizes one of the general agile practices. AgileValues are SPEM Metrics that
present agile values such as collaboration and simplicity [30] [7] [19] associated with
each agile practice. Agile practices are categorized further depending on their purpose
in the development method- either they are part of the development or project
management activities in the software process, or they support the collaboration
[7].We introduce three breakdown elements to support the method engineering
process- the MEPhase and MEActivity as SPEM Activities and MEMilestone as
SPEM Milestone.

Fig. 4. Basic concepts in the experienced-based approach- specification metamodel

We use the process patterns as described in [31] to present and build our agile
development process, which are modeled with Process, Phase, Stage and Task
Description elements. The Task Description element is reused as-is from SPEM
specification. A particular pattern of higher level can only contain patterns of the lower
levels. An association of process pattern with AgilePractice guidance specifies an agile
development process pattern. Each pattern of a higher level is associated with one
input and one output Work Product Description. The Task Descriptions are associated
with at least one Role Description and one Work Product Use. The Task Descriptions,
Role Descriptions and Work Product Uses that are used in the process are instances of
elements in the Method Content. Qualifications of Roles are specified with predefined
enumeration of skills and competences, which is serialized in a text attribute of a
Describable Element. In this way they are compatible with the model but are reused in
our knowledge-base to model persons as part of the project situation. Work Product
Definitions are categorized as Formal Work Product or Informal Work Products.

We also introduce the notion of Abstract Patterns and abstract Work Products. An
abstract pattern is an activity of higher level- Process, Phase or Stage, in whose
breakdown structure there is a leaf element which is also abstract. An abstract work
product is a more general work product which needs to be instantiated in the process.
Such general relationship among Work Products Definitions is expressed by A Work
Product Definition Relationship in the SPEM Meta-Model.

276 I. Krasteva, S. Ilieva, and A. Dimov

5.2 Generation of Development Method

As discussed earlier, in order to provide compatibility of our approach with the SPEM
2.0 Base Plug-in implemented in EPF Composer, a number of design and validation
rules are introduced. One such design rule is the use of specific custom categories
instead of new stereotypes. The ConfCheck tool is used to check whether method and
process elements that are inputs to the generation procedure conform to the specified
design and validation rules. The EBAGen tool guides the method engineer in the
generation of a new development process by introducing certain set of agile practices
to the current development process. Two types of inputs are expected- the method and
relevant process content for a set of agile practices and for the development method
used in the organization. In addition, the method engineer should specify abstract
patterns for the current development method as well as a number of disciplines that
are domain specific and utilizes some of those patterns. The particular instance of the
current development method should provide instantiation for these abstract patterns.
Process generation algorithm uses a number of instantiations and assembly
mechanisms to create new processes.

In the beginning, the method engineer specifies the number of method engineering
phases and milestones. Then for each of them an abstract pattern to be instantiated is
specified. The abstract patterns are available from the current method as well as from
agile practices. Abstract patterns can be specified by the method engineer and can be
included in the configuration to be used in the method engineering process. At the
next step, the method engineer specifies abstract work products. If any tasks or work
products should be preserved in the new method they are specified as mandatory. The
method engineer also defines the roles to be used in the process by either selecting
them from the predefined roles based on the available skills or by specifying new
roles. Based on the skill set during process generation new roles are assigned to the
tasks. Different variants of non-abstract methods are generated after selecting those
roles, work products, tasks and lower level abstract patterns that can instantiate
abstract patterns and their abstract work products. The method engineer evaluates the
generated processes according:

• abstraction level- depends on the extent to which abstract patterns are
instantiated. More abstract processes are liable to customization [7]

• business values of the included agile practices
• coverage of the disciplines of the domain
• lightness of the process from the involved types of work products

The method engineer can select one process or start the generation from the beginning
with different initial parameters. When the method engineer chooses one particular
process a new method configuration is created and project characteristics are copied
to the delivery process. From any method engineering milestone the following ME
phases can be regenerated starting from the initial configuration. After the
regeneration the method configuration is updated accordingly.

 Experience-Based Approach for Adoption of Agile Practices 277

6 Validation

We have designed and implemented our approach having in mind the methodology
design principles and concepts identified by Cockburn [6].Cockburn mention four
things that should be taken into account when designing a methodology:

• Variations in people
• Variations across projects
• Long debug cycles
• Changing technologies, techniques, and cultures

With the exclusion of the long debug cycles, the other three considerations are
addressed in our approach by identification of project situation and people as part of
it, and by supporting adaptation of the methodology throughout the project execution.
Most of the methodology elements identified by Cockburn are either explicitly
included in our approach or can be easily derived. Table 2 presents how the
methodology elements are supported in our approach.

Table 2. Methodology elements and their support by the experience-based approach

Methodology Elements
[Cockburn]

Supported by:

Process Metamodel element Process
Milestone Metamodel element Milestone
Activity Metamodel element Stage
Technique Metamodel element Task with associated Guidance
Skills Metamodel element Skills and knowledge-base element
Role Metamodel element Role
Team Metamodel element Team profile
Tool Metamodel element Tool
Standards Work products and tools that are precondition for the creation of

the development process
Product Metamodel Element Work Product Description, Work Product Use
People Knowledge-base- situation factors
Quality Knowledge-base – satisfaction

Currently we are in a process of verifying our approach in a case study of the

applicability of agile practices in the domain of component-based development. The
case study we are currently completing examines the adoption of agile development
in the implementation of both components and systems based on components. We
have previously studied the theoretical adoption [28] by systematic analysis of the
applicability of the agile approach in the development processes of components and
systems. As a second step, we conducted an empirical research [32] in which the
assumptions made in the first study were verified by an industry survey. As we had
expected, some of the assumptions was confirmed by the answers of the professional,
while others were not. Most of the situational factors were included in the structure of
the survey and the data is suitable to feed up the knowledge-base with a number of
relevant experience reports. We have received 43 complete answers, from which 33

278 I. Krasteva, S. Ilieva, and A. Dimov

are related to development of components and component-based systems. The
structure of the questionnaire as well as the data is available as technical report [33].
The preliminary analysis of the results has shown that most of the agile practices are
applicable in projects for implementation of components and systems based on
components. In addition, the practitioners have expressed strong preference towards
using the agile practices more rigorously.

7 Conclusion and Future Work

The paper presented an experience-based approach for situational engineering of agile
methods. The approach supports systematic adoption of agile practices to the
development method of organizations by analyzing experience reports on
applicability of agile practices when particular situation factors are present. It
introduces iterative and incremental method engineering process, adaptable to project
characteristics and customizable through the execution of the project. Its realization is
supported by a number of tools which are specified as extensions to EPF Composer
tool. Method and process elements, used as input and produces as an output of the
method engineering process, are fully compatible with the standardized SPEM 2.0
Base Plug-in and can be further managed by any other SPEM-based tool.

We are currently implementing the tools by the specifications, described briefly in
the paper. As well, we are developing appropriate criteria for systematic review of
available empirical and theoretical studies on agile practices adoption, which is to be
used for knowledge-base initialization. In future, we want to add more formal
presentation and evaluation of methodology conceptual terms such as ceremony, and
weight. Introduction of simulations for evaluation of generated development
processes is another extension to our approach planned for the near future.

Acknowledgments. The work is funded by Bulgarian Ministry of Education and
Science, National Science Fund. The authors want to thank the anonymous reviewers
for their valuable feedback.

References

1. Hodgetts, P.: Refactoring the development process: experiences with the incremental
adoption of agile practices. In: Agile Development Conference, Salt Lake City, pp. 106–
113 (2004)

2. Krasteva, I., Ilieva, S.: Adopting an Agile Methodology - Why It Didn’t Work. In: ICSE:
International workshop on Scrutinizing agile practices or shoot-out at the agile corral, pp.
33–36 (2008)

3. Kruchten, P.: Keynote: Situated Agility. In: 9th International Conference on Agile
Processes and eXtreme Programming in Software Engineering (2008)

4. Koch, A.: Agile Software Development Evaluating the Methods for Your Organization.
Artech House Publishers (2004)

5. Beck, K.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-Wesley
Professional, Reading (2004)

 Experience-Based Approach for Adoption of Agile Practices 279

6. Cockburn, A.: Agile Software Development: The Cooperative Game, 2nd edn. Addison-
Wesley Professional, Reading (2006)

7. Highsmith, J.: Agile Software Development Ecosystems. Addison-Wesley Professional,
Reading (2002)

8. Software process engineering metamodel. Version 2.0. formal/2008-04-01, OMG (2008)
9. EPF Composer. In: Eclipse Process Framework, http://www.eclipse.org/epf/

10. Brinkkemper, S.: Method engineering: engineering of information systems development.
Information and Software Technology 38(7), 275–280 (1996)

11. Butcher, T., Klesse, M., Kurpjuweit, S., Winter, R.: Situational Method Engineering on the
Differentiation of “Context” and “Project Type”. In: Ralyte, J., Brinkkernper, S.,
Henderson-Sellers, B. (eds.) IFIP International Federation for Information Processing,
Situational Method Engineering: Fundamentals and Experiences, vol. 244, pp. 33–48
(2007)

12. Ralyté, J., Deneckère, R., Rolland, C.: Towards a Generic Model for Situational Method
Engineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 95–110.
Springer, Heidelberg (2003)

13. Nehan, Y.-R., Deneckere, R.: Component-based Situational Methods A framework for
understanding SME. In: IFIP International Federation for Information Processing,
Situational Method Engineering: Fundamentals and Experiences, vol. 244, pp. 161–175
(2007)

14. Bajek, M., Vavpotic, D., Krisper, M.: Practice-driven approach for creating project-
specific software developmnet methods. Information and Software technology (49), 345–
365 (2007)

15. Karlsson, F., Agerfalk, P.: Towards structured flexibility in information systems development:
Devising a method for method configuration. Journal of Database Management 20(3), 51–75
(2009)

16. Seidita, V., Cossentino, M., Gaglio, S.: Using and Extending the SPEM Specifications to
Represent Agent Oriented Methodologies. In: Luck, M., Gomez-Sanz, J.J. (eds.) AOSE
2008. LNCS, vol. 5386, pp. 46–59. Springer, Heidelberg (2009)

17. Cossentino, M., Gaglio, S., Henderson-Sellers, B., Seidita, V.: A Metamodelling-based
Approach for Method Fragment Comparison. In: International Workshop on Exploring
Modeling Methods in Systems Analysis and Design at CAISE 2006, pp. 419–432 (2006)

18. Klooster, M., Brinkkemper, S., Harmsen, F., Wijers, G.: Intranet facilitated knowledge
management: a theory and tool for defining situational methods. In: Conference on
Advanced Information Systems Engineering, Barcelona, Spain, pp. 303–317 (1997)

19. Qumer, A., Henderson-Sellers, B.: A framework to support the evaluation, adoption and
improvement of agile methods in practice. The Journal of Systems and Software (81),
1899–1919 (2008)

20. Firesmith, D.G., Henderson-Sellers, B.: The OPEN Process Framework. Pearson
Education, London (2002)

21. Qumer, A., Henderson-Sellers, B.: Agile software solution framework: An analysis of
practitioners’ perspectives. In: Information Systems: Modeling Development and
Integration: Third International United Information Systems Conference, UNISCON 2009,
pp. 41–52 (2009)

22. Henderson-Sellers, B., Serour, M.K.: Creating a Dual-Agility Method: The Value of
Method Engineering. Journal of Database Management 4(14), 1–16 (2005)

23. Jones, C.: Software Assessments Benchmarks and Best Practices. Addison-Wesley
Professional, Reading (2000)

280 I. Krasteva, S. Ilieva, and A. Dimov

24. Turk, D., France, R., Rumpe, B.: Assumptions underlying agile software-development
processes. Journal of Database Management 16(4), 62–87 (2005)

25. Cockburn, A., Highsmith, J.: Agile software development, the people factor.
Computer 34(11), 131–133 (2001)

26. Krasteva, I., Ilieva, S.: Characterizing Agile Projects. Internal Report, Sofia Uniresity ‘St.
Kliemnt Ohridski’, Sofia (2009)

27. Krasteva, I., Ilieva, S.: Rush into Agile- Analytical Framework for Agile Practices
Applicability. In: IET Conference Publications (528 CP), Durham, pp. 229–237 (2007)

28. Krasteva, I., Branger, P., Land, R.: Challenges for agile development of COTS
components and COTS-based systems A theoretical examination. In: International
Conference on Evaluation of Novel Approaches to Software Engineering, Funchal,
Madeira, pp. 99–106 (2008)

29. Dyba, T., Dingsyr, T.: Empirical studies of agile software development: A systematic
review. Information and Software Technology 50(9-10), 833–859 (2008)

30. Manifesto for Agile Software Development, http://agilemanifesto.org/
31. Tasharofi, S., Ramsin, R.: Process Patterns for Agile Methodologies. In: IFIP International

Federation for Information Processing, Situational Method Engineering: Fundamentals and
Experiences, vol. 244, pp. 222–237 (2007)

32. Krasteva, I., Land, R., Sajeev, A.S.M.: Being Agile when Developing Software
Components and Component-Based Systems- Experience from Industry. In: EuroSPI
Conference, vol. Industrial Proceedings, pp. 8.7-8.17 (2009)

33. Causevic, A., Krasteva, I., Land, R., Sajeev, A.S.M., Sundmark, D.: An Industrial Survey
on Software Process Practices, Preferences and Methods. Malardalen University, Sweden
(2009)

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 281–295, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Coordinating Global Virtual Teams: Building Theory
from a Case Study of Software Development

Gaye Kiely1, Tom Butler1, and Patrick Finnegan2

1 University College Cork, Ireland
gaye.kiely@ucc.ie, tbutler@afis.ucc.ie

2 University of New South Wales, Sydney, Australia
p.finnegan@unsw.edu.au

Abstract. Global Virtual Teams (GVTs) enable organizations to operate across
national, economic and social, and cultural boundaries. However, this form of
teamwork presents issues for traditional project management coordination
mechanisms. There is a significant body of research on these challenges. How-
ever, relatively little attention has been paid to the specific impact these issues
may have on coordination mechanisms in GVTs. This paper seeks to address
this gap by applying a theoretical model drawn from extant research to explore
the coordination mechanisms used by a software development GVT in a For-
tune 100 telecommunications manufacturer. The study employs a mixed meth-
odology grounded theory approach to examine the effect that specific virtual
team issues have on the effectiveness of team coordination mechanisms. It then
develops a refined conceptual model to guide future research on GVTs involved
in software development. The findings also inform practice on the problems
encountered in ensuring the effective coordination of such teams.

Keywords: Global Virtual Teams, Coordination Mechanisms, Software
Development, Project Management.

1 Introduction

The use of global virtual teams (GVTs) in software development (SD) has become
standard practice for many organizations [1]. GVTs are a specific type of virtual team
which are, typically, geographically, temporally and organizationally dispersed; they
also tend to be culturally diverse in their constitution [2, 3, 4]. There has been exten-
sive research into some aspects of virtual teams [37, 16]. However, there is relatively
little empirical research on GVTs and associated team structures [16, 36] such as
coordination mechanisms. Existing studies on GVTs and coordination mechanisms,
for the most part, employ small, student teams and little focus has been given to
long-term virtual teams [16] which limits the applicability to SD GVTs in practice. In
addition, it is clear from extant research that the increased use of GVTs [5, 6, 7, 8, 9,
10, 11, 3] and the development of increasingly complex software artefacts have com-
bined to bring new challenges to the SD environment [1, 5, 38]. In order to shed light
on virtual team structures there is a clear need for new theory development. The

282 G. Kiely, T. Butler, and P. Finnegan

objective of this research study is to investigate the use of traditional coordination
mechanisms in GVT SD projects and apply theory to explain the impact that specific
GVT issues have on the effectiveness of such mechanisms. To facilitate this objec-
tive, a theoretical model and associated propositions will be developed from extant
research findings. The resultant model will be used as a theoretical lens through
which to study the phenomena and derive a set of hypotheses.

2 Towards a Theoretical Model for Studying the Coordination of
Virtual Teams

2.1 Coordination Mechanisms

This study employ’s Sabherwal’s [13] classification of coordination mechanisms as a
foundation for a conceptualist theoretical model. While Sabherwal’s study does con-
cern itself with coordination mechanisms, its primary focus is on the relationship be-
tween client and vendor in outsourced SD projects and how coordination mechanisms
evolve in the course of the relationship. Nevertheless, we argue that Sabherwal’s syn-
thesis of existing research on coordination in SD provides a useful foundation for the-
ory building on GVTs. Four constructs are posited by Sabherwal as key mechanisms to
coordinate teamwork in SD teams [14, 15]: these are (i) coordination by standards, (ii)
coordination by plans, (iii) coordination by formal mutual adjustment and (iv) coordi-
nation by informal mutual adjustment. Coordination by standards refers to those
mechanisms which are used to direct team members to uniform practice such as meth-
odologies, codes of practice etc. Coordination by plans refers to any documentation
which may be employed to coordinate and direct team members (schedules, project
plans etc.). Coordination by formal mutual adjustment (FMA) are those mechanisms
which require team members to interact in a pre-defined manner such as project meet-
ings. In contrast, coordination by informal mutual adjustment (IMA) involves team
members interacting in an informal manner through ad-hoc meetings, impromptu
communications, or co-location.

2.2 Factors That Affect Global Virtual Teamwork

Several factors or issues have been identified as influencing project outcomes in
GVTs viz. distance [16], time zones [7], leadership [9], language [5], knowledge
sharing [11], culture [3] and trust [8]. Based on our extensive analysis of extant
research, we selected five of these issues to study their impact on coordination mecha-
nisms in a GVT. There is significant support in existing literature to suggest that Dis-
tance, Time Zones, Language, Culture and Trust impact the coordination of a GVT as
well as influencing project outcomes [5, 16, 40]. While there are a number of other
issues (such as leadership and knowledge sharing) that influence project outcomes
they were excluded from the study, in order to focus on issues which have been iden-
tified as having a negative impact on coordination of GVTs. Hence, we propose the
following constructs:

• Distance: Defined as the physical separation of team members across
geographically dispersed project sites [17].

 Coordinating GVTs: Building Theory from a Case Study of Software Development 283

• Time zones: Defined as the time difference(s) between the project sites [18].
• Language: Conceptualized as the difficulties arising when the GVT’s work-

ing language is not the native language team members across all project
sites [8].

• Culture: GVT coordination will be affected by the fact that team members
may possess diverse ethnic, national, and organizational backgrounds [19].

• Trust: Defined as the willingness to be vulnerable to the actions of another
party based on the expectation that the other will perform a particular action
important to the trusting party, irrespective of the ability to monitor or
control that trusted party [20]

Though it is widely assumed that these constructs influence project outcomes through
their effects on project team coordination mechanisms, there is a paucity of support-
ing evidence in the literature. In the next four sections, we draw on extant research on
GVTs and project team coordination to theorize on the relationships between the
proposed constructs and the effectiveness of different types of coordination mecha-
nisms in GVTs (see Figure 1). Several theoretical propositions are then offered; these
describe and explain the posited relationships.

Fig. 1. Theoretical Propositions

The constructs of distance, time zones, language, trust and culture are generally
viewed as having a negative impact on a virtual team’s ability to successfully interact
and complete a SD project. The issues that arise from these factors create obstacles
for the coordination of teamwork in particular [21]. There is general agreement that
team coordination is a key activity in producing successful outcomes for project
teams [22, 23].

As indicated, Standards, Plans, FMA and IMA are categories of coordination
mechanism employed in SD teams [13]. Standards are typically established at the out-
set of a project, communicated to the SD team and, because they are typically deter-
mined at corporate level, they tend to be altered only in exceptional circumstances.

284 G. Kiely, T. Butler, and P. Finnegan

Plans are typically project specific and are formulated before the commencement of a
project and communicated to the entire virtual team; because they are project-based,
they may be subject to ongoing modification throughout the life cycle of a project.
Unlike Standards and Plans, both FMA and IMA depend on a high degree of team
member interaction and communication to be effective as a coordination mechanism.
Scheduled weekly meetings, status calls and shared calendars are examples of FMA
while IMA is exemplified by casual face-to-face meetings, ad-hoc phone calls or
emails. Existing literature suggests that these four types of coordination mechanism are
not immune from virtual team issues and experience a negative impact in terms of their
effectiveness (Table 1).

Table 1. GVT issues on Coordination Mechanisms (from extant literature)

 Distance Trust Time Zones Language Culture
Standards 7, 10 24 16 25 21, 24
Plans 7, 16 2, 5 7, 41 6, 10 3, 24
Formal Mutual
Adjustment (FMA)

26 2 5, 24, 41 5, 41 3, 41

Informal Mutual
Adjustment (IMA)

16, 26 2, 5 21 5, 8 3, 27

However, there is a paucity of research which specifically looks at the impact of

GVT issues on specific coordination mechanisms. While a number of studies point to
the issue of coordination in GVTs [42], few studies focus specifically on coordination
itself or its associated mechanisms. In addition, existing literature on GVTs is limited
in its treatment. For example, while there are a number of GVT-based studies which
focus on SD, the majority are concerned with short-term projects [2, 5, 10, 24, 28],
operating over a relatively small number of geographical locations [2, 5, 7, 24]. Few
studies look at GVT projects that span longer time periods, which are argued to be the
norm for such initiatives [3]. In addition, a number of existing studies into GVTs
employ simulated virtual team projects using university students [21, 24]. While such
studies may contribute to theory building, we argue that their findings are not gener-
alisable to industry contexts and thus may be irrelevant to practitioners. There is,
therefore, a need to look specifically at industry GVTs (with relatively large teams,
dispersed over multiple geographical locations) involved in long-term SD projects of
12 months or more and to identify the specific impact of GVT issues on coordination
mechanisms. Given the foregoing observations, we posit the following propositions:

Proposition 1: The effectiveness of Standards is impacted by distance, trust, language,
time zones and culture.

Proposition 2: The effectiveness of Plans is impacted by distance, trust, language,
time zones and culture.

Proposition 3: The effectiveness of Formal Mutual Adjustment is impacted by dis-
tance, trust, language, time zones and culture

Proposition 4: The effectiveness of Informal Mutual Adjustment is impacted by dis-
tance, trust, language, time zones and culture

 Coordinating GVTs: Building Theory from a Case Study of Software Development 285

The independent and dependant constructs described above are presented in the
conceptual model presented in Figure 1: the relationships between these constructs are
presented as the above propositions.

3 Research Method

The objective of this research study is to investigate the use of traditional coordination
mechanisms in virtual SD projects and to explore the impact that GVT issues such as
distance, trust, language, culture and time zones have their effectiveness. As an initial
step in theory building, a conceptual model (based on extant research) with associated
propositions was presented in the previous section. Following the specification of the
propositions, the next step in theory building is to determine empirical indicators and
subsequently produce hypotheses for empirical testing [29]. We now describe the
research design on which this study is based. A ‘single’ case study research approach
was selected as the most appropriate vehicle for theory building and refinement [30,
31, 32]. Case studies are particularly well suited to IS research [33]. In addition, case
research, which emphasizes the understanding of empirical data in natural settings, is
a suitable method for studying IS issues and practices [31]. A single case study is
viewed as being a potentially rich and valid source of data and is a particularly good
fit for the purpose of exploring relationships between variables in context [32].

The case organization is a Fortune 100 telecommunications company with ap-
proximately 66,000 staff worldwide. The organization was purposively chosen for
study on the basis of its predominant use of GVTs for software development. Out of
several possible ongoing software development projects, one specific project was
selected for study. The specific software development project was also purposefully
selected, as it met several important criteria. That is it possessed a GVT that operated
over, several geographically dispersed project locations with multiple time zones—
also, the team was culturally diverse. The project focused on the SD of a network
operations and maintenance interface for 3G technology. The project had a planned
18 month duration with team members located in six geographical locations—the
USA, Ireland India, Israel, Malaysia and China. There were upwards of 48 team
members working on the software project in different locations at any point in time.
The development team was split into a number of distinct development functions;
requirements engineering, systems engineering, software test, development, customer
support, deployment, quality control, project management etc. Team sub-units in
different geographical locations had distinct responsibilities viz. Israel (development),
USA (development), Malaysia (development/test), China (development/test), India
(development) and Ireland (project management/development). Data collection was
conducted over a twelve-month period and concluded towards the end of the project
development cycle during the software testing and implementation phases. Ten inter-
viewees were purposively selected using the key informant approach in order to
gather data from a wide variety of team members. Thus, respondents were selected
from all project sites (excluding Malaysia) and those participating in the study
performed a range of project roles within the team (project manager, development
manager, software developer, system engineer, test team leader, software tester). An
interview guide was used to structure interviews [34]. Follow-up interviews, emails

286 G. Kiely, T. Butler, and P. Finnegan

and phone calls were used to clarify and refine issues which emerged from primary
interview transcripts. The study utilised concepts from a priori theory in formulating
the interview guide and in specifying ‘seed categories’ to inform the content analysis
[35]. Opening coding and axial coding were used to determine hypotheses about the
relationships between the categories identified. This process continued in an iterative
manner, and resulted in the modification of categories and relationships. Selective
Coding was undertaken to identify the relationships between categories (constructs)
using hypothesized conditions, context, strategies and consequences. A context rating
scale [39] combined with frequency counts were used to attribute a high, moderate or
low impact to identified hypotheses. Discriminate sampling [35] was used to select
data to examine strong and weak connections between categories. The issues of valid-
ity, reliability, and objectivity [32] were addressed through: (a) Prolonged engage-
ment and persistent observation; (b) triangulation techniques, which were extensively
used to provide insights into events, relationships, etc. between data sets; (c) a data
analysis approach based on rigorous coding and the use of memos, which together
provided an audit trail; and, finally, (d) member checks were also employed as the
findings were presented to team members for subsequent feedback [34].

4 Case Study Analysis

This section presents the findings of the case study. From the analysis of the data we
were able to (i) identify empirical indicators for virtual team issues (Table 1); (ii)
identify empirical indicators for coordination mechanisms (Table 2) and (iii) illustrate
how the effectiveness of coordination mechanisms is impacted by virtual team issues
(distance, time zones, language, culture and trust). All coordination mechanisms iden-
tified in the case organization were mapped to categories highlighted by existing
research; hence, we find support for our conceptual model (see Table 2).

4.1 Coordination Mechanisms Employed within the Case Organisation

A range of coordination mechanisms were used by the virtual team. Exemplars of
Standards employed as coordination mechanisms were: an explicitly defined software
development lifecycle; an extensive repository of document templates; and code in-
spections. Exemplars of Plans were: a project plan that included a software configura-
tion plan (SCM); a quality control plan for the project, and a project Gantt chart. Ex-
emplars of FMA included weekly, pre-scheduled conference calls; local weekly site
meetings and use of mail aliases and shared calendars. Exemplars of IMA included
ad-hoc phone calls between team members; unscheduled emails between team mem-
bers and ad-hoc conversations between co-located team members.

4.2 The Impact of Virtual Team Issues on the Effectiveness of Standards

The conceptual model (Figure 1) proposes that the effectiveness of Standards is im-
pacted by GVT issues which include Distance, Time Zones, Language, Culture and
Trust. However, the findings indicate that some virtual team issues have a greater
impact than others on specific coordination mechanisms. The analysis of case study
data revealed that Standards are impacted by language, physical distance, and team

 Coordinating GVTs: Building Theory from a Case Study of Software Development 287

member trust but time zones and cultural differences appear to have no perceived
impact on Standards. Language had the greatest negative impact on the use of project
documentation such as bug reports and templates. A project manager explained that in
a number of instances documents had to be reviewed and they had to work out what
the non-native language speaking member meant before rewriting the document for
general consumption. Team members also reported the creation of additional docu-
mentation which acted as guidelines for members across different project sites. The
test team leader created a set of documents for his team which detailed how to write
an email, ask a question etc. He described this as “documents to show how to use
documents”.

In relation to Distance, the moderately negative impact is observed in the instance
of project sites diverging in terms of development processes and forming distinct
methodologies. A development manager was particularly concerned about this diver-
gence. He explained “when you have teams in different geographic regions you may
have different kinds of standards and therefore some non-uniformity in terms of the
quality”. In relation to project documentation and Standards, team members expressed
high levels of distrust with members at other sites. When documentation was not
updated in a timely fashion, it decreased the confidence the members had in the
documentation and thus decreased its usefulness as a coordination mechanism. How-
ever, case study analysis found no support for Culture and Time Zones having an
impact on the effectiveness of Standards. We can therefore continue the theory build-
ing process by specifying three hypotheses:

H1: Distance has a moderately negative impact on the effectiveness of Standards
H2: Trust has a highly negative impact on the effectiveness of Standards
H3: Language has a highly negative impact on the effectiveness of Standards

4.3 The Impact of Virtual Team Issues on the Effectiveness of Plans

The case study data revealed that Plans are greatly impacted by Distance, Time
Zones, Culture and team member Trust. The data analysis revealed, however, that
Language appeared to have no impact on Plans. The impact of Distance on Plans was
evident in the need of team members at different project locations to maintain local
project schedules as well as feeding into one global project schedule. In addition,
project estimates were required from each project location. This meant that the project
team spent a lot of time “going around in circles”. Culture was perceived as having a
highly negative impact on the effectiveness of Plans as a coordination mechanism
with some team members observing that those with different cultural backgrounds in
other sites tended to avoid saying ‘no’ to work requests. This behaviour had serious
ramifications for the project schedule and completion, due to inadvertent over-
commitment through an inability to say ‘no’. A project manager provided an example
of members in another location agreeing to a task even though they knew from the
outset it was not feasible with the given schedule. The project manager perceived this
as being a “cultural issue” as members in the other project sites would “generally say
no to work which was not feasible straightaway”.

288 G. Kiely, T. Butler, and P. Finnegan

Table 2. Indicators for GVT Issues (Language, Trust, Distance, Time Zones and Culture)

Construct Indicator
Language Team members think that others:

i. have a poor command of the working language
ii. write the working language poorly
iii. comprehend the project working language poorly

Team members do not understand others accents
Trust Team members assume that other team members:

i. do not lie
ii. do not withhold information
iii. will do their work to the best of their abilities
iv. will complete their work even if they are not physically

present to monitor work
Distance Team members cannot:

i. meet face-to-face in the same room regularly or not at all
ii. cannot monitor other team members work

Team members do not have direct access to all team resources
Team members operate in different countries

Time Zones Team members :
i. cannot work a full day together
ii. access to other team members and project sites is limited
iii. meetings will occur at irregular hours to facilitate

different team locations
iv. experience a 24/48 hour delay can occur for queries

across project locations
v. in some project locations must work irregular hours to

facilitate other project locations
vi. operate across multiple time zones

All team members cannot attend one joint project meeting
Culture Team members:

i. perceive others as having different work and social
etiquette to their own

ii. have different vacation time, religious holidays, public
holidays across different project locations

iii. use different phrasing (slang) and employ language
differently across project locations

iv. perceive others as having preference for specific
electronic communication

The case data indicated that operating in different Time Zones had a highly nega-

tive impact on effectiveness of Plans as coordination mechanisms. The project man-
ager explained the problems associated with receiving estimates, or addressing project
plan issues that needed to be answered quickly, but being unable to act because key
team members were not available as their site was off-line. A Technical Architect on
the team echoed this view, explaining that on occasions when the team was under
pressure to get something done quickly, they encountered problems because that work
was dependent on tasks being completed by members in different geographical loca-
tions. If those sites had a holiday period, which was often the case, team members

 Coordinating GVTs: Building Theory from a Case Study of Software Development 289

were not available to take action. The negative impact of Trust on Plans was also in
evidence. The development manager commented that it was difficult to trust any team
members due to a number of project issues which another project site had been slow
to bring to light. The data also revealed that in the initial stages of work relationships
team members would require other dispersed members to “prove themselves”. It was
also apparent that team members would heavily monitor others at related project sites.
The less physical contact members had with others the more rigorous they would be
in the conduct of this activity. We therefore continue theory building by specifying
four hypotheses:

H4: Distance has a moderately negative impact on the effectiveness of Plans
H5: Trust has a highly negative impact on the effectiveness of Plans
H6: Time Zones have a highly negative impact on the effectiveness of Plans
H7: Culture has a highly negative impact on the effectiveness of Plans

4.4 The Impact of Virtual Team Issues on the Effectiveness of Formal Mutual
Adjustment

The analysis of the case data confirmed that the effectiveness of Formal Mutual Ad-
justment (FMA) was impacted by Language, Time Zones, Trust, Culture and Dis-
tance. However, the level of impact differs. While Culture and Trust impacted the
effectiveness of FMA mechanisms, Distance, Time Zones and Language had a greater
perceived impact. Distance negatively impacted on the effectiveness of FMA by the
physical separation of team members. An example of related communication prob-
lems was reported by a Development Manager who noticed during one project con-
ference that a key participant had “gone quiet”. Both he and his colleagues could not
tell if this developer had left the call or was silent through disagreement. It took
longer to work out that this team member was dissatisfied with aspects of the project.
Another issue was the high usage of conference calls. A software engineer stated that
large-scale conference call meetings could not focus on specific technical issues and
missed many related project problems “unless they were glaringly obvious”. To re-
solve this issue, she often ended up having to call team members one-to-one in order
to resolve specific technical items. Time Zones were also revealed as having a highly
negative impact on the effectiveness of FMA as a coordination mechanism. A devel-
opment manager illustrated this through an example of team members at two sites
taking project conference calls at 10:30 pm (local time) in order to facilitate members
based in other project sites, due to the size of the communication window. A systems
engineer echoed this by stating that “usually one team or the other has to pay for it
with very early morning meetings or late night-time meetings”. In relation to these
working hours, team members were concerned about overly long days and the
inability to perform their work at optimum levels. Language was found to have a
highly negative impact on the effectiveness of FMA. For example, a software engi-
neer stated that “even though everyone speaks the same language in meetings, phone
calls...words and context are often confused and it is harder to get the message
across”.

290 G. Kiely, T. Butler, and P. Finnegan

Table 3. Indicators for Coordination Mechanisms (Standards, Plans, FMA and IMA)

Construct Indictor
Standards • Team members follow the organization defined development

process
• Team members use designated templates to create documentation

at each phase of the development project
• Team members pass project documentation from one sub-team to

another (requirements engineering, software engineering, software
test etc.)

• Team members review documentation to ensure consistency
across the team

• Team members use a set of guidelines to author an email
• Team members conduct different project phases in parallel with

other project phases
• Team members use designated synchronization points to ensure

the defined development process is being adhered to
Plans • The team authors and maintains a project plan for the project

• The team authors and maintains a software configuration
management (SCM) plan for the project

• The team authors and maintains a quality control plan for the
project

• The team calculates and publishes project estimates for the project
• The team authors and maintains a requirements document
• The team authors and maintains a Gantt Chart for the project

Formal
Mutual
Adjustment
(FMA)

• Team members participate in a weekly scheduled project
conference call

• Team members participate in scheduled, weekly status calls
• Team members at local sites attend weekly, scheduled site

meetings
• Team members participate in weekly, scheduled meetings for their

functional area (development, test, project management etc.)
• Team members maintain and share calendars
• Team members author, send and/or receive emails via mail aliases

Informal
Mutual
Adjustment
(IMA)

• Team members make and receive ad-hoc phone calls from other
team members

• Team members author, send and/or receive instant messages to
other team members

• Team members author, send and/or receive ad-hoc emails from
other team members

• Team members make and receive ad-hoc mobile phone calls from
other team members

• Team members at local project sites hold face-to-face
conversations with other local team members

A project manager at one site commented on the type of communication problems

that arose between team members from different geographical locations and cultures
viz. where the project working language is not the first or native language, team
members do not contribute to conference calls. “People who can write reasonably
legible emails, they might not speak the same. Accent and pronunciation make it

 Coordinating GVTs: Building Theory from a Case Study of Software Development 291

difficult to understand what they are actually saying” (Senior Software Engineer).
Culture was also observed to have an impact on the effectiveness of FMA. The test
team leader, for example, stated that other sites reported that team members at his site
“don’t say anything. They just listen. They do not provide any active feedback!”
Whereas, this could be ascribed to language difficulties, another Senior Software
Engineer explained that “cultural differences have implications on how people com-
municate”. Trust was also found to impact the effectiveness of FMA. Team members
at the sites studied argued that it took a longer period of time to build trust with team
members in other project sites as opposed to co-located team members. Once trust
was established, however, it could be eroded or lost when colleagues at other sites did
not respond to emails, instant messages or phone calls in a timely fashion. The ab-
sence of face-to-face contact made it more difficult to rebuild trust. These findings
suggest five further hypotheses:

H8: Distance has a highly negative impact on the effectiveness of FMA
H9: Trust has a moderately negative impact on the effectiveness of FMA
H10: Language has a highly negative impact on the effectiveness of FMA
H11: Time zones have a highly negative impact on the effectiveness of FMA
H12: Culture has a moderately negative impact on the effectiveness of FMA

4.5 The Impact of Virtual Team Issues on the Effectiveness of Informal Mutual
Adjustment

Data from the case supported the proposition that Informal Mutual Adjustment (IMA)
is significantly impacted by issues of Distance, Culture, Time Zones, Language and
Trust. Distance and Time Zones have the greatest impact on IMA with other factors
having a relatively lesser impact. The effectiveness of IMA is significantly impeded
by Distance as team members cannot have ad-hoc, face-to-face meetings. Close face-
to-face and ad-hoc interaction tends to be replaced by less effective communication
mechanisms such as emails, instant messages etc. Operating in different Time Zones
minimized opportunities for problem-solving interactions between team members
across project locations. The Senior Development Manager on the project explained
that “You could find that an issue is raised by the test team who are located in two
locations. Team members, located in three separate sites should reply. They reply
asking for clarification so you are back into another 24 hours”. Language was also
revealed as having a moderately negative impact on the effectiveness of IMA. For
example, IMA among team members was negatively affected due to the lack of flu-
ency by those whose native tongue was not the working language. Trust was also
revealed as having an impact on the effectiveness of IMA. A software developer ex-
plained that trust was difficult to build because she could not engage with colleagues
face-to-face and quickly resolve issues. She was entirely dependent on the team
member answering their phone, replying to her emails, or using Instant Messenger.
viz. “In a virtual team everyone is isolated -we are all outsiders to other sites so trust
is there but it is harder to build”. Thus, as indicated previously, it was perceived that
team members took longer to build trust with team members in other locations. Cul-
ture was found to have a negligible influence on IMA. However, one developer felt
that team members in some locations acted deferentially in their interactions with

292 G. Kiely, T. Butler, and P. Finnegan

him, he stated: “There is no need to be apologetic. If you made a mistake, you made a
mistake. There is no need to beg my leave to do something”. We therefore conclude
our theory building process by presenting five more hypotheses:

H13: Distance has a highly negative impact on the effectiveness of IMA
H14: Trust has a moderately negative impact on the effectiveness of IMA
H15: Language has a moderately negative impact on the effectiveness of IMA
H16: Time zones have a highly negative impact on the effectiveness of IMA
H17: Culture has a low negative impact on the effectiveness of IMA

In conclusion, the case study data allowed us to (i) refine our theoretical propositions,
(ii) define empirical measures for our constructs (Table 1 and Table 2), and (iii) re-
present this paper’s theoretical model with accompanying hypotheses (see Figure 2).

Fig. 2. Revised Theoretical Model (with associated hypotheses)

5 Summary and Conclusions

This paper has sought to contribute to a cumulative body of research on the Coordina-
tion Mechanisms employed in Global Virtual Teams (GVTs). The study focused on
SD project in a multi-national telecommunications manufacturer that employed a
GVT to develop a software sub-system for its 3G infrastructure product. Thus, the
unit of analysis in this study provides unique insights into the complex nature of pro-
ject management in a global context as it focuses on a long-term SD project. This has

 Coordinating GVTs: Building Theory from a Case Study of Software Development 293

implications for both theory and practice. The paper first presented a-priori theory
based on prior research on project Coordination Mechanisms and extant research on
the constructs of Distance, Time Zones, Language, Culture and Trust. This theory
building activity resulting in (i) a bounded theory and (ii) the definition of constructs
and their relationships in the form of propositions. We then employed the case study
method to validate the propositions, refine the theory, and to derive empirical indica-
tors for the constructs, and to specify hypotheses on the relationships between the
constructs. This process resulted in a conceptual model of high empirical fidelity. In
addition, we have shown that specific coordination mechanisms are more susceptible
to the impact of GVT issues than traditional influences. The revised conceptual model
presented in this paper may be employed in future research as lens through which to
test the impact of virtual team issues on coordination mechanisms. While the “uptake”
in the use of GVTs has increased, our understanding of the underlying team structures
and processes is limited, as is our knowledge of the project management, coordination
and control, of such initiatives. Thus, this study’s findings have a number of implica-
tions for practice. First, organizations looking to use GVTs for SD projects need to
recognize the impact of the issues described herein on the effectiveness of coordina-
tion mechanisms. Second, organizations may need to review the coordination mecha-
nisms employed in their GVTs. Considering the high level of task-interdependency
associated with software development should a set of coordination mechanisms be
tailored specifically for a global virtual team? If traditional coordination mechanisms
are heavily impacted by issues such as those described, there are implications for
controlling project outcomes.

References

1. Nunamaker Jr., J.F., Reinig, B.A., Briggs, R.O.: Principles for Effective Virtual Team-
work. Communications of the ACM 52(4), 113–117 (2009)

2. Jarvenpaa, S.L., Leidner, D.E.: Communication and Trust in Global Virtual Teams. Or-
ganization Science 10(6), 791–815 (1999)

3. Maznevski, M.L., Chudoba, K.M.: Bridging Space Over Time: Global Virtual Team Dy-
namics and Effectiveness. Organization Science 11(5), 473–492 (2000)

4. Ramachandran, S.: Effect of Cultural Norms on Media Choice in Global Virtual Teams.
In: Proceedings of the Eleventh Americas Conference on Information Systems, Omaha,
NE, USA, p. 1420 (2005)

5. Sarker, S., Sahay, S.: Implications of space and time for distributed work: an interpretive
study of US-Norwegian systems development teams. European Journal of Information
Systems 13(1), 3–20 (2004)

6. Majchrzak, A., Rice, R.E., Malhotra, A., King, N., Sulin, B.A.: Technology Adaptation:
The Case of a Computer-Supported Inter-organizational Virtual Team. MIS Quar-
terly 24(4), 569–600 (2000)

7. Espinosa, J.A., Cummings, J.N., Wilson, J.M., Pearce, B.M.: Team Boundary Issues
Across Multiple Global Firms. Journal of Management Information Systems 19(4), 157–
190 (2003)

8. Dubé, L., Paré, G.: Global Virtual Teams. Communications of the ACM 44(12), 71–73
(2001)

294 G. Kiely, T. Butler, and P. Finnegan

9. Kristof, A.L., Brown, K.G., Sims, H.P., Smith, K.A.: The Virtual Team: A Case Study and
Inductive Model. In: Beyerlein, M.M., Johnson, D.A., Beyerlein, S.T. (eds.) Advances in
Interdisciplinary Studies of Work Teams: Knowledge Work in Teams, vol. 2, pp. 229–253.
JAI Press, Greenwich (1995)

10. Cramton, C.: The Mutual Knowledge Problem and its Consequences for Dispersed Col-
laboration. Organization Science 12(3), 346–371 (2001)

11. Kanawattanachai, P., Yoo, Y.: The impact of Knowledge Coordination on Virtual Team
Performance Over Time. MIS Quarterly 31(4), 783–808 (2007)

12. Ewusi-Mensah, K.: Software Development Failures. MIT Press, Cambridge (2003)
13. Sabherwal, R.: The Evolution of Coordination in Outsourced Software Development Pro-

jects: A Comparison of Client and Vendor Perspectives. Information and Organisa-
tion 13(4), 153–202 (2003)

14. Thompson, J.D.: Organization in Action. McGraw Hill, Chicago (1967)
15. Kraut, R., Streeter, L.A.: Coordination in Software Development. Communications of the

ACM 38(3), 69–81 (1995)
16. Powell, A., Piccoli, G., Ives, B.: Virtual Teams: A Review of Current Literature and Direc-

tions for Future Research. ACM SIGMIS Database 35(1), 6–36 (2004)
17. Saunders, C., Van Slyke, C., Vogel, D.R.: My Time or Yours? Managing Time Visions in

Global Virtual Teams. Academy of Management Executive 18(1), 19–31 (2004)
18. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: Distance, Dependencies and De-

lay in a Global Collaboration. In: Proceedings of the ACM Conference on Computer-
Supported Cooperative Work, Philadelphia, PA, December 2-7, pp. 319–328 (2000)

19. Kotlarsky, J., Oshri, I.: Social Ties, Knowledge Sharing and Successful Collaboration in
Globally Distributed System Development Projects. European Journal of Information Sys-
tems 14(1), 37–48 (2005)

20. Mayer, R.C., Davis, J.H., Schoorman, F.D.: An Integrative Model of Organizational Trust.
Academy of Management Review 20(3), 709–734 (1995)

21. Sutanto, J., Kankanhalli, A., Tan, B.C.Y.: Task Coordination in Global Virtual Teams. In:
Proceedings of the Twenty-Fifth International Conference on Information Systems (ICIS),
Washington DC, USA, pp. 807–819 (2004)

22. Chen, H., Jiang, J.J., Klein, G., Chen, J.V.: Reducing Software Requirement Perception
Gaps Through Coordination Mechanisms. Journal of Systems and Software 82(4), 650–
655 (2009)

23. Parolia, N., Goodman, S., Yuzhu, L., Jiang, J.J.: Mediators Between Coordination and IS
Project Performance. Information & Management 44(7), 635–645 (2007)

24. Kayworth, T.R., Leidner, D.E.: The Global Virtual Manager: A Prescription for Success.
European Management Journal 18(2), 183–194 (2000)

25. Mortensen, M., Hinds, P.J.: Conflict and Shared Identity in Geographically Distributed
Teams. International Journal of Conflict Management 12(3), 212–238 (2001)

26. Espinosa, J.A., Carmel, E.: Modeling Coordination Costs Due to Time Separation in
Global Software Teams. In: Proceedings of the International Workshop on Global Soft-
ware Development, part of the International Conference on Software Engineering Work in
Portland, Oregon, USA (2003)

27. Zakaria, N., Amelinckx, A., Wilemond, D.: Working Together Apart? Building a Knowl-
edge-Sharing Culture for Global Virtual Teams. Creativity and Innovation Manage-
ment 13(1), 15–29 (2004)

28. Johansson, C., Dittrich, Y., Juustila, A.: Software Engineering Across Boundaries: Student
Project in Distributed Collaboration. IEEE Transactions on Professional Communica-
tion 42(4), 286–296 (1999)

 Coordinating GVTs: Building Theory from a Case Study of Software Development 295

29. Wheeler, B.C.: A Dynamic Capabilities Theory for Assessing New-Enablement. Informa-
tion Systems Research 13(2), 125–146 (2002)

30. Carroll, J.M., Swatman, P.A.: Structured-case: A Methodological Framework for Building
Theory in Information Systems Research. European Journal of Information Systems 9(4),
235–242 (2000)

31. Eisenhardt, K.M.: Building Theories from Case Study Research. Academy of Management
Review 14(4), 532–550 (1989)

32. Yin, R.K.: Case Study Research, Design and Methods, 2nd edn. Sage, Newbury Park
(1994)

33. Benbasat, I., Goldstein, D.K., Mead, M.: The Case Research Strategy in Studies of Infor-
mation Systems. MIS Quarterly 11(3), 369–386 (1987)

34. Patton, M.Q.: Qualitative Evaluation and Research Methods, 2nd edn. Sage Publications,
Inc., Newbury Park (1990)

35. Strauss, A., Corbin, J.: Basics of Qualitative Research: Grounded Theory Procedures and
Techniques. Sage Publications, Newbury Park (1990)

36. Massey, A.P., Montoya-Weiss, M.M., Hung, Y.: Because Time Matters: Temporal Coor-
dination in Global Virtual Project Teams. Journal of Management Information Sys-
tems 19(4), 129–155 (2003)

37. Martins, L.L., Gilson, L.L., Maynard, M.T.: Virtual Teams: What Do We Know and
Where Do We Go From Here? Journal of Management 30(6), 805–835 (2004)

38. Herbsleb, J.D.: Global Software Engineering: The Future of Socio-technical Coordination.
In: Briand, L., Wolf, A. (eds.) Future of Software Engineering 2007. IEEE-CS Press, Los
Alamitos (2007)

39. Jehn, K.A.: Qualitative Analysis of Conflict Types and Dimensions in Organizational
Groups. Administrative Science Quarterly 42(3), 530–557 (1997)

40. Olson, G.M., Olson, J.S.: Distance Matters. Human-Computer Interaction 15(2/3), 139–
178 (2000)

41. Ó’Conchúir, E., Ågerfalk, P., Olsson, H., Fitzgerald, B.: Global Software Development:
Where are the Benefits? Communications of the ACM 52(8), 127–131 (2009)

42. Herbsleb, J.D.: Global Software Engineering: The Future of Socio-technical Coordination.
In: Future of Software Engineering, International Conference on Software Engineering,
Washington, DC, USA, May 23-25, pp. 188–198. IEEE Computer Society, Los Alamitos
(2007)

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 296–301, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Information Systems Evolution over the Last 15 Years

Magne Davidsen and John Krogstie

IDI, NTNU, Trondheim, Norway
Magne.davidsen@gmail.com, krogstie@idi.ntnu.no

Abstract. The information systems we see around us today are at first sight
very different from those that were developed 15 years ago and more. On the
other hand, it seems that we are still struggling with many of the same prob-
lems. To understand how we can evolve future ISs, we should have good under-
standing of the existing application portfolios. In this article we present selected
data from survey investigations performed in 1993, 1998, 2003 and 2008
among Norwegian organizations on how they conduct information systems de-
velopment and evolution. A major finding is that even if we witness large
changes in the underlying implementation technology and approaches used, a
number of aspects such as the overall percentage of time used for maintaining
and evolving systems in production compared to time used for development is
stable, and should be taken into account in the planning of information systems
evolution for the future.

Keywords: Information systems evolution, maintenance.

1 Introduction

Modern information systems are the result of the interconnection of systems of many
organizations, which are running in variable contexts, and require the capability
to actively react to changing requirements and failures. Large changes in how we
develop information systems have been witnessed over the last 15-20 years. The
prevalent development methods, programming languages and general technological
infrastructure have changed a lot. In the early nineties, one was going from mainframe
solutions to a client-server, and then to an internet architecture for most applications.
Usage of packages has been on the rise. Lately SOA, free and open source software,
outsourcing and agile development are also expected to have impact. According to [9]
one of the impacts on the state of IS-development is the increasing amount of time
used for maintenance and support of systems, contrary to what is claimed to be the
impact of e.g. the introduction of SOA.

In this paper, we present descriptive results from a survey-investigation performed
in Norwegian organizations in this area during the end of 2008, comparing with simi-
lar investigations done in 2003, 1998 and 1993. We will first give definitions of im-
portant terms used within information systems evolution. We describe the research
method, before the main descriptive results from our investigation are presented and
compared with previous investigations. The last section summarizes our results.

 Information Systems Evolution over the Last 15 Years 297

2 Definition of Core Concepts

Maintenance is defined as the process of modifying a software system or component
after delivery to production. It has traditionally been divided into three types: correc-
tive, adaptive and perfective [8] inspired by, e.g. [21]. Corrective maintenance is
performed to correct faults in hardware and software. Adaptive maintenance is per-
formed to make the computer program usable in a changed environment Perfective
maintenance is performed to improve the performance, maintainability, or other at-
tributes of the program. This has been divided into enhancive maintenance [2] and
non-functional perfective maintenance. Enhancive maintenance implies changes and
additions to the functionality offered to the users by the system. Non-functional per-
fective maintenance implies improvements to the quality of the system. In addition to
the temporal distinction between development and maintenance, we have introduced
the concepts application portfolio evolution and application portfolio upkeep (previ-
ously termed functional development and functional maintenance [10]).

1. Application portfolio evolution: Development or maintenance where changes in
the application increase the functional coverage of the total application systems
portfolio of the organization. This includes development of new systems that
support new areas and enhancive maintenance.

2. Application portfolio upkeep: Work made to keep up the functional coverage of
the information system portfolio of the organization. This includes corrective
adaptive and non-functional perfective maintenance and development of re-
placement system

We note that some writers provide more detailed overview of maintenance tasks
[3, 9]. Jones [9] has in total 21 categories, also including user-support to be part of
maintenance (a view shared with, Dekleva [4], but not with us).

3 Research Methodology

Our survey form was implemented in the SurveyMonkey web-tool and invitations
were distributed by e-mail to 278 Norwegian organizations. The organizations were
randomly selected from the list of member organizations of The Norwegian Computer
Society – NCS. (NCS has currently around 1000 member organizations), using the
same approach as in the previous investigations. The contents of the form were based
on previous investigations within this area; especially those described in [7, 10, 12,
15, 16, 18, 22]. 79 responses were returned, giving a response rate of 28%. Out of
these, 67 responses could be used for the analysis since the additional 12 responses
were incomplete. This was a higher response rate than in previous investigations.

The forms were filled in by people with long experience with IT-related work
(average 17.5 years), most filling the role as IT director in the company. We will
compare some of the results with the results of similar investigations in particular.

1. The investigation carried out by Krogstie, Jahr and Sjøberg in 2003 [12].
2. The investigation carried out by Holgeid, Krogstie and Sjøberg [7] in 1998.
3. The investigation carried out by Krogstie [10, 11] in 1993.

298 M. Davidsen and J. Krogstie

These surveys contain the results from 54, 52 and 53 organizations, respectively.
A number of similar investigations of this type were performed earlier in the USA
[16, 18, 22]. Comparisons with these surveys have been done in [12]. A number of
later investigations have been done, but they only look on the distribution of mainte-
nance tasks [6, 13, 17, 19], looking on the situation in a few organization.

4 Selected Results

First, we present some of the overall demographics of the survey. Similar results from
our previous surveys conducted in 2003, 1998, and 1993 are included in parenthesis
where the numbers are comparable. The mean number of main systems in the organi-
zations was 7.8 (2003-4.5; 1998-9.6; 1993-10.3). The mean user population of these
systems was 4661 (2003– 314; 1998-498; 1993-541). It is in particular the number of
external users that has increased dramatically (also relative to number of employees in
the organizations); the average number of internal users was 944. The average age of
the systems was 4.9 years (2003-3.9; 1998-6.4; 1993-4.6).

In 1993, 58% of the systems were developed by the IS-organization, and only one
percent was developed in the user organization. In 1998, however, 27% of the sys-
tems were developed by the IS-organization and 27% as custom systems in the user
organization. In 2003 23 % of the systems are developed in the IS-organization,
whereas in 2008 only 12% was developed in the IS organization. The percentage of
systems developed by outside firms is higher (40% vs. 35% in 2003, vs. 22% in 1998
vs. 12 % in 1993). The percentage of systems developed based on packages with
small or large adjustments is also comparatively high (41% vs. 39% in 2003 vs. 24%
in 1998 vs. 28% in 1993). The new category we introduced in 1998, component-based
development (renamed “use of external web services” in 2008) is still small (5%)
although increasing (1.0 % in 2003, 0.4% in 1998) of the total systems.

From being dominant ten to fifteen years ago COBOL is almost not used anymore.
The languages that are used in most organizations and for most systems are now Java
(40%, 27% in 2003) and C++ (33%, 24% in 2003). Java was just starting to be in
widespread use in 1998 and C++ was barely included in 1993. The percentage of
organizations reporting to have COBOL applications has decreased from 73% in 1993
to 26% in 1998 to 5% in 2008.

94 new systems were currently being developed; 60 of these systems (64 %) were
regarded as replacement systems. (2003-60%; 1998-57%; 1993-48%). 13% of the
current portfolio was being replaced. (2003-13%; 1998-9%; 1993-11%). The average
age of systems to be replaced was 7 years (2003 - 5.5; 1998 - 7.7; 1993 - 8.5).

Reasons for system replacements have changed slightly from earlier investigations.
The most important reasons for replacement are need for integration and burden to
maintain and operate, a bit surprising giving the relatively young age of the systems
that are replaced. One area which is expected to influence the software development
and maintenance landscape is Service Oriented Architecture (SOA) [14]. Transfer to
SOA was very important as a reason to create replacement systems for only two or-
ganizations. Less than 20% of the organizations had started implementing SOA, and
we could not find any significant impact on the use of SOA on maintenance figures.

 Information Systems Evolution over the Last 15 Years 299

Work on application systems was in the survey divided into the six categories pre-
sented in section 2. The same categories were also used in 1993, 1998 and 2003. We
also asked for the time used for user-support and for systems operations which took
up the additional time for the work in the IS departments.

In earlier investigation of this sort between 50% and 60% of the effort is done to
enhance systems in operation (maintenance) when disregarding other work than de-
velopment and maintenance. An exception from this was our study in 1998 that was
influenced particularly by the amount of Y2K-oriented maintenance. The numbers for
Dekleva [4] and those reported by Capers Jones [9] were also higher than this, but
these also include user support as part of maintenance.

Table 1 summarizes the descriptive results on the distribution of work in the cate-
gories in our investigation, comparing to previous investigations.

Table 1. Distribution of the work done by IS-departments in percentage

Category 2008 2003 1998 1993
Corrective 8.2 8.8 12.7 10.4

 Adaptive 6.2 7.3 8.2 4
Enhancive 11.3 12.9 15.2 20.4
Non-functional perfective 9.1 7.6 5.4 5.2

Total maintenance 34.9 36.7 41,4 40
Replacement 9.7 9.9 7.7 11,2
New development 11.4 12.6 9.5 18,4

Total development 21.1 22.5 17.1 29.6
Technical operation 23.7 23.8 23 NA
User support 20.1 17.1 18.6 NA

Total other 44.0 40.8 41.6 30.4

When disregarding other work than development and maintenance of application

systems, the percentages are as follows: maintenance activities: 65, 7%, develop-
ment activities: 34.3%. This is at the same level as in 2003. 63% of development and
maintenance work was application portfolio upkeep, and 37% was application portfo-
lio evolution. This is almost the same as in 2003 and 1998, which in turn was signifi-
cantly different from the situation in 1993 where application portfolio upkeep- and
application portfolio evolution respectively amounted to 44% and 56% of the work.

Looking in detail on the distribution of maintenance activities, a number of later
studies have been looking at this in particular. As stated in [5] corrective efforts is
time-consuming. As reported in [1], it appears to be very large differences reported in
different studies. Whereas Lientz/Swanson [16] reported 60% perfective, 18% adap-
tive and 17% corrective maintenance when asking about selected systems from a
large number of organizations (one per organization), Sousa [33] reported (based on a
number of systems in one organization) 49% adaptive, 36% corrective, and 14 %
perfective maintenance. [17] reported 53% corrective, 36% perfective and 4% adap-
tive maintenance, based on data on three open source products. [13] reported 62%
perfective, 32% corrective, and 6% adaptive maintenance based on data from one
application in production. Most interesting for comparison with other surveys is

300 M. Davidsen and J. Krogstie

looking at corrective, adaptive, and perfective maintenance, which appears to be
much more stable than the numbers reported from others above when looking upon
this across our investigations looking on the application portfolios of a number of
organizations.

5 Conclusions and Further Work

There are a number of differences in the underlying technology, which is as expected.
This is very clearly witnessed in the distribution of programming languages used,
where procedurally languages like COBOL have to a large extent been suppressed by
object-oriented languages like Java, C++ and C#. New architectural trends such as
SOA have yet to make a noticeable impact on the use of resources. Another marked
difference is that less and less of IT is done internally in organizations (this applies to
development, maintenance, operations and use), which will make appropriate soft-
ware evolution harder to do. On the other hand, even if most organizations outsource
part of the IT-activities, most still do some of the activities in house. Overall percent-
age of time used for evolving systems in production compared to time used for devel-
opment is remarkably stable on average (these numbers differs a lot from year to year
within individual organizations). The same can be said about the rate of replacement,
although slightly increasing, more than 60% of ‘new’ systems to be developed are
actually replacement systems, constituting around 13% of the current application
portfolio. Since more complex infrastructures are supporting the information systems,
more and more of the resources are used for other tasks such as operations and user-
support, less and less time is available for providing new information systems support
in organization, although it seems to have plateau on 20% of the overall time, a level
reached already ten years ago in Norway (i.e. earlier than indicated in [9]). Even when
using new approaches where evolution is better supported by the system itself and the
design of the information system consider evolution as an inherent property of the
system, it will take quite some time until such technology is used broadly. Waiting for
this, we have to keep the system operational and continuously evolving, addressing
new needs currently not known.

Several of our results have spurred new areas that could be interesting to follow up
on in further investigations, and we are currently performing several detailed case
studies. A long-term plan is to do a similar investigation in 2013.

References

1. Benestad, H.C., Anda, B.C.D., Arisholm, E.: Understanding software maintenance and
evolution by analyzing individual changes: A literature review. Journal of Software Main-
tenance and Evolution: Research and Practice (2009)

2. Chapin, N.: Software Maintenance Types – A Fresh View. In: Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM 2000), pp. 247–252 (2000)

3. Chapin, N., Hale, J., Khan, K., Ramil, J., Tan, W.-T.: Types of Software Evolution and
Software Maintenance. Journal of Software Maintenance (13), 3–30 (2001)

4. Dekleva, S.M.: Software Maintenance: 1990 Status. Journal of Software Maintenance 4,
233–247 (1992)

 Information Systems Evolution over the Last 15 Years 301

5. Ghazarian, A.: A Case Study of Defect Introduction Mechanisms. In: van Eck, P., Gordijn,
J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 156–170. Springer, Heidelberg
(2009)

6. Gupta, A., Slyngstad, O.P., Conradi, R., Mohagheghi, P., Rønneberg, H., Landre, E.: An
Empirical Study of Software Changes in Statoil ASA - Origin, Priority Level and Relation
to Component Size. In: Proceedings of the international Conference on Software Engineer-
ing Advances, ICSEA, Washington, DC, October 29-November 03, p. 12. IEEE Computer
Society, Los Alamitos (2006)

7. Holgeid, K.K., Krogstie, J., Sjøberg, D.I.K.: A study of development and maintenance in
Norway: Assessing the efficiency of information systems support using functional mainte-
nance. Information and Software Technology 42, 687–700 (2000)

8. IEEE Standard Glossary of Software Engineering Terminology (1991)
9. Jones, C.: The Economics of Software Maintenance in the Twenty First Century (2006),

http://www.compaid.com/caiinternet/ezine/
capersjones-maintenance.pdf (last accessed February 2010)

10. Krogstie, J., Sølvberg, A.: Software maintenance in Norway: A survey investigation. In:
Muller, H., Georges, M. (eds.) Proceedings of the International Conference on Software
Maintenance (ICSM 1994), Victoria, Canada, pp. 304–313. IEEE CS Press, Los Alamitos
(1994)

11. Krogstie, J.: On the distinction between functional development and functional mainte-
nance. Journal of Software Maintenance 7, 383–403 (1995)

12. Krogstie, J., Jahr, A., Sjøberg, D.I.K.: A Longitudinal Study of Development and Mainte-
nance in Norway: Report from the 2003 Investigation. Information and Software Technol-
ogy 48, 993–1005 (2006)

13. Lee, M.-G., Jefferson, T.L.: An Empirical Study of Software Maintenance of a Web-Based
Java Application. In: ICSM 2005 (2005)

14. Lewis, G.A., Smith, D.B.: Service-oriented Architecture and its Implications for Software
Maintenance and Evolution Frontiers of Software Maintenance. In: FoSM 2008 (2008)

15. Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics of application software
maintenance. Communications of the ACM 21(6), 466–471 (1978)

16. Lientz, B.P., Swanson, E.B.: Software Maintenance Management. Addison-Wesley, Read-
ing (1980)

17. Mohagheghi, P., Conradi, R.: An Empirical Study of Software Change: Origin, Accep-
tance Rate and Functionality vs. Quality Attributes. In: International Symposium on Em-
pirical Software Engineering (ISESE 2004), pp. 7–16 (2004)

18. Nosek, J.T., Palvia, P.: Software maintenance management: Changes in the last decade.
Journal of Software Maintenance 2, 157–174 (1990)

19. Schach, S.R., Jin, B., Yu, L., Heller, G.Z., Offutt, J.: Determining the Distribution of
Maintenance Categories: Survey versus Measurement. Empirical Software Engineer-
ing 8(4), 351–365 (2003)

20. Sousa, H., Moreira, H.: A Survey of the Software Maintenance Process. In: Proceedings of
ICSM 1998, Bethesda, Maryland, pp. 268–274. IEEE CS Press, Los Alamitos (1998)

21. Swanson, E.B.: The dimensions of maintenance. In: Proceedings of the Second Interna-
tional Conference on Software Engineering, San Francisco, USA, August 1976, pp. 492–
497 (1976)

22. Swanson, E.B., Beath, C.M.: Maintaining Information Systems in Organizations. Wiley
Series in Information Systems. John Wiley & Sons, Chichester (1989)

From Web Data to Entities and Back

Zoltán Miklós1, Nicolas Bonvin1, Paolo Bouquet2, Michele Catasta1,
Daniele Cordioli3, Peter Fankhauser4, Julien Gaugaz4, Ekaterini Ioannou4,

Hristo Koshutanski5, Antonio Maña5, Claudia Niederée4, Themis Palpanas1,
and Heiko Stoermer1

1 Ecole Polytechnique Fédérale de Lausanne (EPFL)
name.surname@epfl.ch

2 DISI, University of Trento
{stoermer,bouquet,themis}@disi.unitn.it

3 ExpertSystem s.p.a, Modena, Italy
dcordioli@expertsystem.it

4 L3S Research Center, Leibniz Universität Hannover
surname@L3S.de

5 Universidad de Málaga
{hristo,amg}@lcc.uma.es

Abstract. We present the Entity Name System (ENS), an enabling in-
frastructure, which can host descriptions of named entities and provide
unique identifiers, on large-scale. In this way, it opens new perspectives
to realize entity-oriented, rather than keyword-oriented, Web informa-
tion systems. We describe the architecture and the functionality of the
ENS, along with tools, which all contribute to realize the Web of entities.

Keywords: entity, Web, unique identifier.

1 Introduction

The information need of Web users is often related to their understanding and
interpretation of real-world entities and their relationships. For example, some-
one might be interested in information about Paris, the picturesque capital of
France. This mental interpretation of humans is very challenging to capture,
thus information systems need a simplified representation.

The information on the Web is present mainly in the form of unstructured or
semi-structured documents, thus it is very natural to model the Web data as a
list of keywords, organized in documents, which might have links to each other.
This simplified model was extremely successful, the Web search engines built
around this model are used by millions of users every day.

This simple model however has a number of limitations, including the problem
that the keywords are ambiguous. For example, if the keyword“Paris”appears on a
page, it is not immediately clear, if this refers to the capital of France, to a city Paris
in Texas, US or to the first name of Paris Hilton. This ambiguity is very problem-
atic for human users, but it can cause more problems, if one intends to process the

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 302–316, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

From Web Data to Entities and Back 303

page automatically. There are numerous efforts to address this ambiguity problem,
notably the Semantic Web community has proposed a number of solutions.

In this paper we present an information system, accompanied by a number
of extendable tools, which enables to realize the “Web of entities”. As opposed
to the keyword-based model, in the Web of entities the keywords pointing to
named entities, such as persons, geographic locations, etc., are annotated with
a reference to an entity description. These entity descriptions contain important
information about the entities and also have a unique identifier (OKKAM ID).
The basic idea of the Entity Name System (ENS), is to provide a free, open
service to the users of the (Semantic) Web, such that they can annotate the
Web content with references to entities.

We describe the design and architecture of the ENS. The main functionality
of the ENS is to process entity search requests and return a unique identifier
(OKKAM ID) of the entity. In this way one can annotate the page or the key-
word with this unique identifier, so later this unique ID can be used to avoid
ambiguities. We designed the ENS in a way such that it can work on web-scale
and provide well within second response time even in the presence of a large
number of users. The services of the ENS are openly available via Web Services,
thus enabling Web application developers to adopt an entity-oriented, rather
than keyword-oriented model. We already integrated this support into a num-
ber of popular tools, such as gmail, blogging, MS Word, etc. We populated the
repository with an initial set of entities (with data related to LOD1), but the
goal is to further continuously populate the entity descriptions, with the help of
the tools, or through manual entity creation: similar to wikipedia, anyone can
enter new entity descriptions to ENS. As entity descriptions might naturally
evolve over time, ENS has support to accommodate these activities.

The rest of the paper is organized as follows. Section 2 discusses entity-oriented
information systems, Section 3 explains the architecture and the functionality
of the ENS. Section 4 presents a set of tools, which both use the services of the
ENS and contribute to populate the entity repository. Section 5 evaluates how
the ENS and the tools contribute towards realizing a Web of entities. Section 6
provides related work and finally Section 7 concludes the paper.

2 Entity-Oriented Information Systems

The ENS was developed in the course of the OKKAM 2 project. The overall goal
of the project is to enable the Web of entities, a global digital space for publishing
and managing information about real-world entities, where each entity is linked
to a unique identifier, named OKKAM id. The ENS plays a central role achieving
this goal: the ENS can store a large number of entity descriptions, it assigns the
unique OKKAM identifers to the descriptions (entity profiles). Furthermore,
the ENS provides an entity search service, which returns the unique identifier of
the requested entity.
1 Linked Open Data, http://linkeddata.org/
2 http://www.okkam.org

http://linkeddata.org/
http://www.okkam.org

304 Z. Miklós et al.

This infrastructure intends to open the possibility to develop entity-oriented
applications, by reusing the unique identifier one can avoid a number of ambiguity-
related problems. We envision a continuous feedback between entity use and
content creation.The OKKAM empowered tools (Section 4) shall recognizenamed
entities in plain text documents and obtain the corresponding unique identifiers.
This process is often calledOKKAMization.On the one hand, the ID canbe reused,
but on the other hand, the user can provide feedback, enter or update entity de-
scriptions into the ENS. In this way, the entity population of the ENS will be con-
tinuously improved and enlarged, for the profit of the whole community.

3 The Entity Name System

In this section we give an overview of the functions of the ENS and its main com-
ponents. In particular, Section 3.1 describes the main components of the system,
Section 3.2 discusses the data population (currently available in the ENS) and
its representation, Section 3.3 gives details about the storage infrastructure, Sec-
tion 3.4 provides an overview of the entity search functionality, while the entity
lifecycle management is discussed in Section 3.5. Finally, Section 3.6 discusses
the security infrastructure of the ENS.

3.1 Overall System Architecture

The ENS consists of the following four main components:

1. Entity Store. This component is responsible for the low-level tasks of
storing and managing entity data, as well as relevant metadata which are
necessary for finding existing identifiers. It follows the usual create-read-
update-delete pattern (CRUD) [16] of serialized entity data accessed via a
primary key.

2. Index. Search operations for an identifier via an entity profile in the ENS
are accelerated using index structures.

3. ENS Core. This component is implementing the services that are exposed
by the ENS, namely, entity creation and update, matching, as well as pro-
cesses relevant to the entity lifecycle management.

4. Offline Processing. This component handles tasks which shall be per-
formed offline rather than request processing time, including statistics com-
putations, data quality related jobs, etc.

The ENS Core itself consists of several parts that we describe in the following.
The Storage API abstracts from the complexities of accessing the Entity Store
and Index components mentioned above. In particular, the underlying strategies
for addressing the individual, load-balanced clusters and retrieving all relevant
data are hidden from upper layers. The Matching component is responsible
for ensuring a high top-k precision of entity identifier search results. It has two
main tasks: (i) parsing, analyzing and – if necessary rewriting or expanding –
the search request coming from a client, and (ii) applying specific ranking mech-
anisms with the aim to establish the best match between the search request and

From Web Data to Entities and Back 305

the candidate entities. The Lifecycle Manager takes care of the entity creation-
and update-related tasks, and the important aspects of data quality and data
lifecycle management. The Access Manager ensures that the requirements of
access control and privacy are fulfilled. It performs, among other things, query
and result set filtering to avoid undesired use of the system. All services that the
ENS offers as its public API are exposed through the Web Services compo-
nent, which constitutes the uppermost layer of the ENS component stack. The
ENS also equipped with an end-user frontend for identifier search and entity
creation, which is available at http://api.okkam.org/search/.

3.2 Data

Entity Representation and Request Language. In the ENS, an entity is
identified by an entity identifier, oid, assigned by the system. This ID is often
referred as OKKAM ID. Along with this identifier, we store a set of alternative
ids, Aid -s, that other systems have assigned to the same entity, which can also
be used to access the entity or produce same-as statements for the LOD commu-
nity (see Sect. 4.2). The preferred id, prid, is one of the above identifiers that we
use when displaying the entity3. The descriptive part of the entity profile con-
tains a set of attribute name value pairs that describe the entity. Some of these
descriptive attribute-value pairs might contain external references, such as for
example links to Web documents describing the entities. Finally, we also store
a set of metadata for each entity, that include usage statistics, and provenance
and access control metadata. All the above information is individually indexed
to allow fast access to it, and then stored as a single XML file on disk.

Our goal in ENS is to keep the entity representation simple and at the same
time as general as possible, without imposing a fixed schema of entity types
or attributes [24]. In order to reach a compromise between the generality of the
description and the precision in the functionality of the system, we use an internal
classification of all entities in six broad, top-level categories, namely, person,
organization, location, event, artifact, and other. For each one of these entity
types, we have identified a set of default attributes that are most commonly
used to describe them [2]. These default attributes are suggested to users during
entity creation, but they are of course optional. Nevertheless, we expect that
most of the created entities will use (at least some of) the default attributes (for
example, give a name for a person), which in turn will have positive influence
on the performance of the system.

We adopted a simple syntax for the entity ID request language: a request may
contain a (list of) keywords and a (list of) attribute value pairs. For example,
“Paris” or “first name=Paris”. For a more precise description of the syntax
we refer to http://community.okkam.org/index.php/Documentation/APIs/
entity-id-request-language.html.

3 The only guaranteed, unique identifier is still the oid, which is always used internally
in the ENS.

http://api.okkam.org/search/
http://community.okkam.org/index.php/Documentation/APIs/entity-id-request-language.html
http://community.okkam.org/index.php/Documentation/APIs/entity-id-request-language.html

306 Z. Miklós et al.

Entity Population. We populated the repository of the ENS in two different
ways. We imported openly available datasets (using their structured representa-
tions available online), such as Wikipedia (ca.700 000 entities) and Geonames4

(ca. 6.5 million entities) to have an initial rich population5. We also added further
entities manually, through the administrative interface of the ENS, so the current
size of the entity population (as of February 2010) of the ENS is ca. 8 million.

3.3 Storage

The storage layer provides efficient means to store entity profiles and serves
as an underlying infrastructure for the ENS. The storage layer also provides
services for other components of the ENS, for example to realize entity search.
The ENS adopts a two phase entity search approach. As a response to a (possibly
reformulated) user query the storage layer first obtains a list of top-k candidates,
which is then further processed in the search component (see Section 3.4). Thus,
the primary goal of the storage layer to answer these queries with a very high
recall, i.e. whenever a matching entity profile exists in the repository, it should
be returned with a high probability.

The storage layer consists of two main building blocks: a key-value store and
an inverted index [20]. The inverted index is used for query processing, to find
the relevant documents (i.e. entity profiles), while the key-value store contains
the entity profiles themselves. This organization of components is similar to the
architecture of Web search engines [8]. The ENS shares many requirements with
search engines, for example storing a large collection of files, having a high avail-
ability, fault tolerance, being able to process queries well below a second, even in
the case of high query load, etc. To address these requirements we employed the
same or similar techniques which are -to best of our knowledge- used to build
Web search engines [8]. These techniques include the distribution of both the
index and the data over several machines, replication of both the data and the
inverted index and document partitioning.

There are however important differences to Search engines. The request lan-
guage supported in the ENS allows to specify attributes to keywords (see Sec-
tion 3.2). For example, the user might issue a query “city:Paris country:France”,
not just a simple keyword oriented query “Paris France”. In order to support
these queries, we apply a specific index structure. As opposed to the inverted
indexes used by the Web search engines, our posting lists also contain the at-
tribute information in addition to the document identifer, where the keyword
occurs, for each element in the posting list. The other main difference is the
ranking: we developed a ranking scheme specifically tailored for entity profiles.

The implementation of our storage relies on Hadoop6, while we have chosen
Apache Solr7 to realize the large and distributed retrieval indexes.
4 http://www.geonames.org/
5 Overlaps between the datasets were eliminated by limiting the wikipedia import to

entities of type person and organization.
6 http://hadoop.apache.org/
7 http://lucene.apache.org/solr/

http://www.geonames.org/
http://hadoop.apache.org/
http://lucene.apache.org/solr/

From Web Data to Entities and Back 307

3.4 Entity Search

A core functionality of the ENS is effective entity search: given a description of
an entity, identify and return the corresponding entity already from the ENS’s
repository and then return the respective OKKAM identifier. Internally this
translates into the matching of the requested entity with the entity descriptions
available in the repository of the ENS.

At first sight, the entity search task has a strong similarity with entity linkage
techniques [14], also known as data matching [4,9], deduplication [27], resolution
[3], merge-purge [13], entity identification [21], and reference reconciliation [10].
Entity Linkage is the process that decides whether two descriptions refer to
the same real world entity (see [12] for an overview). Actually, state-of-the-art
methods from this area have also been reused and adapted in implementing
entity search.

However, there are some major additional challenges, since —in contrast to
the ENS— entity linkage typically relies on a well-defined schemata. In the
ENS, the need for such an agreement on a joint schema or ontology has been
deliberately omitted, since it is generally accepted that such an agreement is not
viable in a large, heterogeneous, and evolving environments that involve various
user communities. Instead, our entity search assumes a flexible data model, also
envisioned for dataspaces [11] (see also Section 3.2).

Entity search will accept entity requests from a wide variety of agents, includ-
ing humans as well as applications. The employed very loose schema commit-
ment and constraints within the repository, along with the variety of requesters,
imposes a set of additional challenges on the described search task:

A. Over-Specification. The agent requesting an entity is not expected to have
knowledge about the repository’s data. Thus, the agent will use the information
available to him, for example, extracted from text, for describing the searched
entity. As a result, the information of the requested entity might have more or
other knowledge about the entity than the ENS repository. Due to this, the
interpretation of ENS requests deviate from the traditional query processing,
which expects to only receive information that their systems contain. Entity
search of ENS is forced to always consider that a given entity might contain
information which the repository does not have.

B. Under-Specification. An opposite situation with over-specification is when
the information of the requested entity is not sufficient to do a full disambigua-
tion. This missing information can be collected in different ways, for example
user interaction, analysis of repository entities (statistics), or analysis of previ-
ously requested entities.

C. Schema Heterogeneity. Omitting the commitment to an agreement on a
common schema will leads to schema heterogeneity, which we have to deal with
when processing the entity requests.

As explained in Section 3.3, the search process in the ENS is divided into
two main phases. First a set of candidates is selected, then they are ranked with

308 Z. Miklós et al.

the help of additional domain knowledge an heuristics. Below, we explain this
second phase, which relies on a Generic Matching Module (explained in the next
paragraphs). This module is extensible, one can implement additional modules
for specific types of entity profiles.

The input to the Generic Matching Module is a request in our simple
request language see Section 3.2. A request consists of segments, which may
either be attribute value pairs or unqualified values. The requests intend to
find an entity profile, that we interpret such that that each segment of a request
should match the sought entity, much like usually done in Information Retrieval.
It takes into account fuzzy matches between attribute names and values, and
also partial mismatches, which may arise due to over-specification.

Given a request and a candidate entity, the Generic Matching Module com-
putes a final matching score resulting from the aggregation of several features of
two kinds: attribute level features and entity level features. The attribute level
features are attribute label similarity, attribute value similarity and an attribute
boosting factor. These three features are aggregated into attribute similarity. For
each request segment, the entity attribute with the maximum attribute similar-
ity is chosen, and the individual segment similarities are aggregated to obtain
the first entity level feature: the entity similarity. The second kind of entity level
feature is the entity popularity, which further differentiates matching entities es-
pecially for under-specified queries. Finally, in order to deal with geographical
entities, two special entity level features are dedicated to them: the location type
and location population. This gives four entity level scores which are aggregated
to the final score for each candidate matching entity.

At all levels, feature scores are aggregated by a weighted log-based tempered
geometric mean. Given the scores to aggregate S = {s1, . . . , st} and their re-
spective weights W = {w1, . . . , wt}, the aggregated score is

εGM(S, W) = exp
∑t

i=1 wi log(si + ε)∑t
j=1 wi

− ε

This is a weighted version of the ε-adjusted geometric mean proposed by Robert-
son et al. in [26]. According to [25] the geometric mean is less affected by outlying
values than the arithmetic mean, and since it is based on multiplication, there is
no requirement that the scores are on the same scale. The ε-adjustment avoids a
null score forcing the aggregation to zero, and computing in the log space helps
avoiding underflows.

The label and value similarities are standard string similarity metrics8 from
the SimMetrics library9. The attribute boosting factor is a combination of two
values: attribute selectivity and attribute popularity. We determined these
factors through statistics on the data and query logs and through extensive
experimentation.

8 Respectively Needleman-Wunch and a combination of Levensthein and Monge-Elkan
9 http://www.dcs.shef.ac.uk/~sam/stringmetrics.html

http://www.dcs.shef.ac.uk/~sam/stringmetrics.html

From Web Data to Entities and Back 309

3.5 Entity Lifecycle Management

Lifecycle management of entities in the ENS includes aspects of entity represen-
tation, data quality, repository evolution, and online monitoring of the use of
the repository, which we are going to illustrate in the following.

Data Quality. The aim of data quality at entity creation time is to ensure that
the new entities satisfy a minimal set of quality requirements. This assessment
also takes place when a new entity profile is created or when an existing entity
is being modified.

The data quality assessment process at creation time that is currently in place
within ENS, consists of the following three types of checks.

1. Attribute value quality, where we want to ensure that the values entered for
the various attributes in the entity description are correct and valid (when
possible). For example, we check that the provided attribute value is not
empty or overly long, and that date and time attributes adhere to some
known format.

2. Intra-entity description quality, where we check the quality of the entity
description as a whole. For example we check whether attributes appear
with the same name and different value (that would lead to a warning), etc.

3. Inter-entity description quality, where we check that changes in the reposi-
tory will not degrade the overall quality performance of the system. In par-
ticular, we make sure that modifications do not introduce duplicate entity
profiles, which would degrade the quality of search results. The duplicate
detection relies on the matching techniques, discussed in Section 3.4.

Evolution of Identifiers. Even though the identifier of an entity should never
change, in some special circumstances this may happen. For example, if we realize
that two different entity profiles refer to the same real world entity, or when
the same entity profile is already being used to refer to two distinct real world
entities. In these cases, we would like to take corrective action, by performing a
merge and a split, respectively.

The ENS supports the merge and split operations as follows. In the case of
a merge operation, we select one of the existing identifiers (i.e., the one that
according to the system statistics belongs to the most popular entity of the two)
to be the identifier of the merged entity. The other identifier will still exist, so
that users can refer to it, but only the selected identifier will be returned as
a result. When splitting an entity representation into two new ones, we have
no option but creating two new identifiers, since the old identifier has been
used to refer to a non-existing (wrong) entity. In both cases, the system keeps
the history of changes in order to be able to undo these operations. We also
provide a service that makes the information about these changes available for
users (and/or machines) to read, however in the current version the merge/split
operations can be performed only manually.

Monitoring of Repository Usage. The way that users access the system and
interact with it may provide useful insight on what actions to take in order to

310 Z. Miklós et al.

improve the performance of the ENS. Therefore, we monitor the data streams
relevant to the usage patterns of the system. We have extended and adapted
algorithms that can operate in an online fashion, and are flexible enough to
allow effective and efficient data analysis of the incoming data streams [28,19].
By monitoring and analyzing the way users interact with the ENS we can further
improve the ENS services.

3.6 Security and Trust

To provide services for a large number of users, the ENS has a specific set of
security requirements. These include access control requirements (fine grained
policies, easy policy specification, automated access control enforcement), legal
and privacy requirements (to be able to control in a confidential way, who can
modify entity profiles) and usability requirements.

Our security architecture is based on advanced use of certificate technologies.
Figure 1 shows a high-level view of the main elements of the security infrastruc-
ture and their interactions. Trust in ENS community is based on certificate au-
thorities that qualify the ENS, third party service providers and users by means
of identity and attribute certificates, compliant with X.509 [29] standard. The
infrastructure adopts several widely-used security technologies such as https10,
Web Services security standards11, and secure e-mail12.

Fig. 1. ENS Security Architecture

All communications between a user and the ENS are realized through security
proxies located at both at the ENS and the user sides. We have chosen a proxy-
based solution to decouple all security management and technological aspects
from application-level development. The proxy component allows transparent
security management, so that also thin ENS-empowered tools (e.g., MS Word
plug-in, see Section 4) can achieve a high level of secure communications. The
proxy implements latest WS security standards13 and advanced authorization
process based on certificate-based automated trust negotiation model [17].
10 Secure HTTP communications based on SSL/TLS standards.
11 WS-Security, WS-SecureConversation etc. at http://www.oasis-open.org/specs
12 OpenPGP-compliant e-mail security http://tools.ietf.org/html/rfc4880
13 Using Metro high-performance Web Services stack at https://metro.dev.java.net

http://www.oasis-open.org/specs
http://tools.ietf.org/html/rfc4880
https://metro.dev.java.net

From Web Data to Entities and Back 311

4 Tools

This section discusses tools, which benefit from the services of the ENS. OKKAM
Empowered Tools are extensions of existing tools that both use the services of
ENS, to enrich the processed plain text with entities and at the same time
enable content creation: if an entity description does not exist in the ENS, the
user might decide to create it. In this way, while they benefit from ENS, the ENS
and the whole community benefits from the new content. This mutual feedback
mechanism is intentional and shall foster the adoption of the ENS.

In the course of the OKKAM EU project, a whole suite of such tools is
developed. These tools include an extension to ontology editors Protege and
NeON [18], plugins for office products (MS word, outlook, Open Office), plugins
for popular browsers (e.g. Firefox). In the following we demonstrate the use of
OKKAM-plugins for popular Web tools.

Fig. 2. Okkam4Gmail plugin

4.1 For Web Users

The use of Okkam4Gmail, the Okkam plugin for Google’s webmail is depicted
in Figure 2. The user can enrich and automatically annotate the text he enters.
The extension identifies precisely and automatically entities by linguistic dis-
ambiguation techniques. They include morphological, grammar, syntactic and
semantic analysis of the text. All fundamental information for the disambigua-
tion process, i.e. the whole system knowledge, is represented as a concept-based
semantic network. Expert System’s semantic network, called Sensigrafo14, is a
rich conceptual representation of the language containing more than 400,000
concepts and millions of links between these concepts. Once an entity is identi-
fied by linguistic and semantic analysis, the plugin returns its unique identifier
from the ENS and injects it in an RDFa annotation inside the document. If the
14 Sensigrafo is a trademark of Expert System S.p.A., Italy.

http://www.expertsystem.it/

http://www.expertsystem.it/

312 Z. Miklós et al.

ENS does not contain a record about the entity, a new identifier can be gen-
erated. Okkam4Blogger is a web plugin for the free blog application Blogger15

from Google.

4.2 For the Linked Data Community

The goal of the Linked Open Data16 community is to connect several openly
available datasets on the Web. The initiative is closely related to the Seman-
tic Web community, indeed many of the datasets are published in the form of
RDF/OWL. A link among two URLs shall be interpreted as a owl:sameAs state-
ment. Identifying such links is a very work-intensive task and typically requires
data-source specific heuristics17.

The ENS can help the Linked Data community in particular to store and
represent the links, as the correspond to equivalent entities. The ENS implements
a functionality exposed through the method getAlternativeIDs() (accessible
via Web services), which allows someone working with Linked Data to retrieve
all the alternative identifiers known to the ENS for the same entity18.

5 Evaluation

In this section we report about some of our evaluation experiments, which sup-
port that the ENS can cope with large entity profile collections, show scalable
behavior and high search quality.

5.1 Scalability and Performance

For our scalability experiments we used a large dataset, which we syntactically
generated based on the US Census statistics19. The dataset consists of 100 mil-
lion entities and has a size of ca. 300GB. We queried the system using concurrent
clients. For the performance and scalability evaluation we used a synthetic query
set. Figure 3 depicts the average query throughput figures we measured with a
population of 1, 10 and 100 million entities, with 1-100 clients. For this measure-
ments we used the following configuration: 1 Index server with 8 cores (2.66GHz),
16GB RAM, 1TB disk, Solr 1.4, Tomcat 6, and 16 HBase nodes with 8 cores
(2.66GHz), 8GB RAM, 2x1TB disks, HBase 0.20.2.

5.2 Search Quality

We evaluated the quality and performance of entity resolution on different kinds
of queries over a storage containing 6.5 million entities, include people, orga-
nizations, and locations. We aimed at using queries covering a wide user and
15 http://www.blogger.com/
16 http://linkeddata.org/
17 http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/

EquivalenceMining
18 This function is inspired by what has been called “coreference service” by Glaser

et al. in [15].
19 http://www.census.gov/genealogy/names/

http://www.blogger.com/
http://linkeddata.org/
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/EquivalenceMining
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/EquivalenceMining
http://www.census.gov/genealogy/names/

From Web Data to Entities and Back 313

10 100
Concurrent Clients

50

100

150

200

250

300

350

400

R
eq

ue
st

s
pe

r
S

ec
on

d

1 Million
10 Millions
100 Millions

Fig. 3. Average query throughput

1 3 7
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

rank

su
cc

es
s

ra
te

human msn
human historical
extracted
resolution

Fig. 4. Okkam entity search success rates
for various query sets

applications range. For this reason, we collected query sets from four different
sources. The first query set, named ’human msn’, contains 610 queries from the
MSN Search query Log (RFP 2006 dataset)20. These queries are quite short in
length that user provided as input in web search engines, e.g., “whitney hous-
ton”, and “Bloody Mary of England”. The next set, named ’human historical’,
are queries created from text that people included on web pages, for example to
describe members of organizations, e.g., “Patrick de Gayardon French skydiver
skysurfing pioneer”. Our third set, named ’extracted’ contains 315 queries cre-
ated from data extracted from web blogs and news articles. We used two extrac-
tion tools, the OpenCalais, and the Expert System’s21 Cogito. Examples of the
resulted queries are name=“Hillary R. Clinton”, and name=“Barack Obama”.
The last set, named “resolution”, has 1000 queries created from structured DB-
Pedia data. In contrast to the previous sets, these queries provide much informa-
tion for matching while also providing the attribute values. For all queries, we
manually or automatically retrieved the Okkam identifier. Queries are available
upon request.

Figure 4 shows the success rate at different ranks, which measures the per-
formance of Okkam for returning the requested entity in the rank position, i.e.,
as the first answer, third, and seventh. Except for resolution queries, we observe
that the success rate stabilizes relatively quickly around rank 3 at values above
90%. Resolution queries show lower success rates, even though 80% at rank 7 is
acceptable. The difference between resolution and extracted queries is that reso-
lution queries tend to be over-specified, and a wider range of attribute label are
used than in extracted queries. It is interesting to note that for those structured
queries over-specification performs worse than under-specification, whereas for
human keyword queries the inverse is true. This might indicate a problem with
the attribute label similarity. Schema matching techniques will be investigated
to correct this. The average time for processing queries is bellow 0.5 seconds,
which means that Okkam can process up to 1̃20 queries per minute.

20 http://research.microsoft.com/en-us/um/people/nickcr/WSCD09/
21 http://www.expertsystem.net

http://research.microsoft.com/en-us/um/people/nickcr/WSCD09/
http://www.expertsystem.net

314 Z. Miklós et al.

6 Related Work

This paper presents the overall ENS and demonstrates through experiments,
that the system can cope with large entity profile collections and high number
of users. Thus, together with the OKKAM-empowered tools it can contribute
to realize entity oriented information systems. The conceptual model for reusing
OKKAM identifiers on the Web is discussed in [5]. The paper [7] presents and
early prototype of the ENS, the system and the corresponding ecosystem we are
presenting in this paper has significantly improved since these early versions.
The paper [6] focuses business-oriented use cases, scenarios and application pro-
totypes that might benefit from the use of the ENS.

OpenCalais [22] is a popular plugin for Web browsers. Using the plugin, the
identified named entities are highlighted on the Web page. The entities have an
identifier, however this might be not globally unique. The entity descriptions (if
they exist) are kept private and the Web users are not allowed to enter or edit
their own entities. On the contrary, the ENS provides unique identifiers and also
one can edit the entity profiles, under some access restrictions.

The zemanta [30] plugin, which is available for popular email and blog soft-
ware, empowers their users to automatically associate the text they are writing
with resources on the web, such as pictures, wikipedia links, etc. As far as we
know, they do not use globally unique identifiers.

Bautin et al. [1] propose an entity search engine. They construct concordance
documents for each entity consisting all sentences, which contain references to the
entity from their large text corpus. They do not provide tools or the possibility
of editing entity profiles (concordance documents) and also they do not use
globally unique identifiers. On the other hand they try to discover and depict
the relations among entities, which the ENS does not support in this version.

OpenID [23] uses unique identifiers, but for a very different goal: they try to
realize that users can identify themselves at different services with the same id
and password.

7 Conclusion and Future Work

We implemented an enabling infrastructure, the Entity Name System, which
opens the possibility to realize the web of entities. Our scalability and search
quality experiments suggest that the ENS is able to serve a larger user com-
munity. The ENS is accompanied by a number of tools, which both exploit the
services of the ENS, thus improving application experiences for users through
disambiguation, and offer the possibility of content creation. In this way the
whole user community can benefit from the individual contributions, and shall
result a continuous entity population growth.

The ENS is currently used in several pilot projects including the semantic in-
formation mashup Sig.ma 22 and at the Italian new agency ANSA23. The unique
22 http://sig.ma
23 http://ansa.it

http://sig.ma
http://ansa.it

From Web Data to Entities and Back 315

identifiers provided by ENS are also utilized in a private setting to manage pub-
lication records at Elsevier24 and to manage a large software product portfolio at
SAP25. The ENS is also used to link physical entities to electronic ones, through
QR codes, in the city of Manor, Texas, US.

Acknowledgements

This work is partially supported by the by the FP7 EU Large-scale Integrating
Project OKKAM – Enabling a Web of Entities (contract no. ICT-215032).
More details are available here: http://www.okkam.org. The authors would like
to express their gratitude to all members of the OKKAM consortium for their
contributions.

References

1. Bautin, M., Skiena, S.: Concordance-Based Entity-Oriented Search. Web Intelli-
gence and Agent Systems 7(4), 303–320 (2007)

2. Bazzanella, B., Chaudhry, J.A., Palpanas, T., Stoermer, H.: Towards a general
entity representation model. In: SWAP (2008)

3. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E., Widom,
J.: Swoosh: a generic approach to entity resolution. The VLDB Journal 18(1),
255–276 (2009)

4. Bilenko, M., Mooney, R.J., Cohen, W.W., Ravikumar, P., Fienberg, S.E.: Adap-
tive name matching in information integration. IEEE Intelligent Systems 18(5)
(September 2003)

5. Bouquet, P., Palpanas, T., Stoermer, H., Vignolo, M.: A Conceptual Model for
a Web-Scale Entity Name System. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.)
ASWC 2009. LNCS, vol. 5926, pp. 46–60. Springer, Heidelberg (2009)

6. Bouquet, P., Stoermer, H., Barczynski, W., Bocconi, S.: Entity-centric Semantic
Interoperability. In: Cases on Semantic Interoperability for Information Systems
Integration: Practices and Applications, pp. 1–21. IGI Global (2009)

7. Bouquet, P., Stoermer, H., Bazzanella, B.: An Entity Name System (ENS) for the
Semantic Web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M.
(eds.) ESWC 2008. LNCS, vol. 5021, pp. 258–272. Springer, Heidelberg (2008)

8. Dean, J.: Challenges in building large-scale information retrieval systems (invited
talk). In: Proceedings of the Second ACM International Conference on Web Search
and Data Mining, WSDM (2009)

9. Doan, A., Lu, Y., Lee, Y., Han, J.: Object matching for information integration: A
profiler-based approach. In: Proceedings of IJCAI 2003 Workshop on Information
Integration on the Web (IIWeb 2003), pp. 53–58 (2003)

10. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex informa-
tion spaces. In: SIGMOD, pp. 85–96 (2005)

11. Dong, X., Halevy, A.Y.: Indexing dataspaces. In: SIGMOD, pp. 43–54 (2007)
12. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate Record Detection: A

Survey. IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)

24 http://www.elsevier.com
25 http://www.sap.com

http://www.elsevier.com
http://www.sap.com

316 Z. Miklós et al.

13. Hernández, M.A., Stolfo, S.J.: Real-world Data is Dirty: Data Cleansing and The
Merge/Purge Problem. Data Min. Knowl. Discov. 2(1), 9–37 (1998)

14. Ioannou, E., Niedere, C., Nejdl, W.: Probabilistic entity linkage for heterogeneous
information spaces. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 556–570. Springer, Heidelberg (2008)

15. Jaffri, A., Glaser, H., Millard, I.: URI Identity Management for Semantic Web Data
Integration and Linkage. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS
2007, Part II. LNCS, vol. 4806, pp. 1125–1134. Springer, Heidelberg (2007)

16. Kilov, H.: Business Specifications: The Key to Successful Software Engineering.
Prentice Hall PTR, Upper Saddle River (1998)

17. Koshutanski, H., Massacci, F.: A negotiation scheme for access rights establishment
in autonomic communication. Journal of Network and System Management 15(1)
(March 2007)

18. Liu, X., Stoermer, H., Bouquet, P., Wang, S.: Supporting the Reuse of Global
Unique Identifiers for Individuals in OWL/RDF Knowledge Bases (demo paper).
In: Proceedings of the 6th European Semantic Web Conference on The Semantic
Web: Research and Applications (ESWC). LNCS, vol. 5554, pp. 868–872. Springer,
Heidelberg (2009)

19. Manerikar, N., Palpanas, T.: Frequent Items in Streaming Data An Experimental
Evaluation of the State-of-the-Art. Data Knowl. Eng. 68(4), 415–430 (2009)

20. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

21. Morris, A., Velegrakis, Y., Bouquet, P.: Entity Identification on the Semantic Web.
In: Proceedings of the 5th Workshop on Semantic Web Applications and Perspec-
tives, SWAP 2008 (2008)

22. OpenCalais, http://www.opencalais.com/
23. OpenID, http://openid.net/
24. Palpanas, T., Chaudhry, J.A., Andritsos, P., Velegrakis, Y.: Entity Data Man-

agement in OKKAM. In: Proceedings of the 2008 19th International Conference
on Database and Expert Systems Application (DEXA), pp. 729–733. IEEE, Los
Alamitos (2008)

25. Ravana, S.D., Moffat, A.: Score aggregation techniques in retrieval experimenta-
tion. In: ADC, pp. 59–67 (2009)

26. Robertson, S.: On gmap: and other transformations. In: CIKM 2006: Proceedings
of the 15th ACM International Conference on Information and Knowledge Man-
agement, pp. 78–83. ACM, New York (2006)

27. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 269–278 (2002)

28. Tantono, F.I., Manerikar, N., Palpanas, T.: Efficiently Discovering Recent Fre-
quent Items in Data Streams. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM
2008. LNCS, vol. 5069, pp. 222–239. Springer, Heidelberg (2008)

29. X.509. The directory: Public-key and attribute certificate frameworks, ITU-T Rec-
ommendation X.509:2005 | ISO/IEC 9594-8:2005 (2005)

30. Zemanta, http://www.zemanta.com/

http://www.opencalais.com/
http://openid.net/
http://www.zemanta.com/

Transformation-Based Framework for the
Evaluation and Improvement of Database

Schemas

Jonathan Lemaitre and Jean-Luc Hainaut

Laboratory of Database Application Engineering - PReCISE research Center
Faculty of Computer Science, University of Namur
Rue Grandgagnage 21 - B-5000 Namur, Belgium

{jle,jlh}@info.fundp.ac.be
http://www.fundp.ac.be/precise

Abstract. Data schemas are primary artefacts for the development and
maintenance of data intensive software systems. As for the application
code, one way to improve the quality of the models is to ensure that they
comply with best design practices. In this paper, we redefine the process
of schema quality evaluation as the identification of specific schema con-
structs and their comparison with best practices. We provide an overview
of a framework based on the use of semantics-preserving transformations
as a way to identify, compare and suggest improvement for the most sig-
nificant best design practices. The validation and the automation of the
framework are discussed and some clarifying examples are provided.

Keywords: Database schema, schema evaluation, schema improvement,
schema transformation.

1 Context and Motivation

Modeling activities are increasingly important in software engineering. Accord-
ing to the Model Driven Engineering (MDE) paradigm, database schemas are
considered first-class artefacts. Due to the increasing cost of software design
flaws, early evaluation techniques, that are quite common in software engineer-
ing, also prove necessary in the domain of database schema design. The use of
software metrics have long been adapted to schema evaluation. They provide a
synthetic measure of the quality of a schema by comparing some of its global
characteristics to those of a set of reference schemas. The authors believe that
the next step in schema evaluation should be the precise identification of schema
defects according to a set of commonly agreed best practices that are to ensure
specific requirements such as expressiveness, maintainability, evolutivity, perfor-
mance, etc. From these defects and their scaling against best practices, it should
be possible to measure the quality of a schema and to suggest improvement.

Considering these best practices, the scope of the work described in this paper
is the evaluation and the improvement of database schemas for both existing

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 317–331, 2010.
© Springer-Verlag Berlin Heidelberg 2010

http://www.fundp.ac.be/precise

318 J. Lemaitre and J.-L. Hainaut

and under development systems. It relies on the use of semantics preserving
transformations and on the identification of schema structures that have been
defined to express specific application domain fact types. This analysis is used
for evaluating the schema by comparing its structural content to a reference
frame and the requirements of the schema context. The improvement activity
will modify the schema structure in order to increase its compliance with the
context while preserving its semantics.

In section 2, we present the conceptual background of our work, specifically
the abstraction/paradigm space, the representation of heterogeneous schemas
and the concept of schema transformation. In section 3, we define the concepts
at the basis of the framework, namely equivalence classes of constructs, best
practices, schema context and construct ranking. In section 4, we illustrate the
framework through an example of alternative representations of a common data
schema construct. In section 5, we suggest a possible application of the framework
for the evaluation and the improvement of schemas. In section 6, we provide some
hints about the limits identified so far. Section 7 shows how the framework can
alleviate the problem of quality framework validation through field case studies.
Sections 8 (Related works) and section 9 (Conclusions) are as usual.

2 Background

In this section we briefly (re)define some basic concepts and techniques that will
be used to build our framework.

2.1 Abstraction Levels, Modeling Paradigms and Semantics

Database engineering processes generally rely on a hierarchy of abstraction levels.
Currently called Model-Driven Engineering, multi-level approaches have been
described since the seventies, when the terms conceptual, logical and physical
were coined by several authors in the database realm. A formal description of
the information/data structures of a database, be it in construction or in use, is
called a schema.

A schema is positioned at a certain level of abstraction, depending on the
technical detail it provides. In addition, a schema is expressed in a specification
language, based on a definite paradigm (table 1). Entity-relationship (ER) with
its many variants, UML class diagrams, relational, object-relational, XML, IMS,
standard files and even schema-less, are some of them. The database community
calls them models (e.g., the relational model), a term we will use in this paper.
There is an agreement on which abstraction level a given paradigm best fits. For
instance, the Entity-relationship model is as its best at the conceptual level while
the object-relational model should be used at the logical level. This defines a
two-dimension space in which an arbitrary schema can be located and evaluated.

Transformation-Based Framework 319

Table 1. A part of the abstraction/paradigm space

Abstraction Paradigms
Conceptual Historical ER, rich ER, Merise (Individual model), EER, UML class diagrams,

OO, Bachman DS, NIAM, ORM, binary ER, etc.
Logical Relational, object-relational, OO, hierarchical, network, shallow, standard files,

XML DTD, UML class diagrams, XML Schema, binary ER, etc.
Physical Oracle, DB2, SQL Server, PostgreSQL, MySQL, COBOL files, IMS, IDS2, IDMS,

Caché, ZODB, ADO.NET, etc.

A schema will be considered suitable if the constructs1 it is made up of comply
with the usual way of doing according to the dimensions that define its position
in this space.

Though a paradigm is considered suitable at some, but generally not all,
abstraction levels (e.g., binary ER), we sometimes observe some cultural border
crossover when a construct of one paradigm is used at an unusual position, in
a foreign paradigm or in a non standard abstraction level. We mention three
examples. A foreign key, which typically is a relational construct, could be found
in an ER schema to avoid spaghetti-like schemas, for instance to reference DATE,
LANGUAGE or NOTE general-purpose entities from hundreds of places in the
schema. Some developers, quite familiar with XML processing tend to build
database conceptual schemas that closely resemble a collection of tree structures.
Finally, many current databases result from the straightforward migration from
an obsolete technology, so that their schemas exhibit structural idiosyncrasies
inherited from this technology.

The position of a schema construct in this space must be further refined by
considering whether the intention of the designer has been translated adequately.
In other terms, given a construct C, does C best expresses its intended seman-
tics? We will call this property semantic expressiveness. A simple example will
clarify the point. In modern ER models there is a wide agreement on representing
sub-categories C11, C12, . . . , C1n of a reference category C1 in the application do-
main by an is-a relation between supertype C1 and subtypes C11, C12, . . . , C1n.
However, there are other ways to express these subcategories, such as by dis-
tributing the supertype components among the subtype (downward inheritance),
by integrating the subtype components within the supertype (upward inheri-
tance) and by representing is-a relation by one-to-one relationship types (is-a
materialization). Therefore, there are often several ways to translate the idea of
sub-category, but some can be considered more expressive than others.

To summarize, a schema is positioned at a certain level of abstraction, is
expressed in a certain paradigm and is intended to translate the intention of the
designer. A construct C of this schema can be evaluated through three questions:
Does C naturally belong to this paradigm? Does C feel comfortable (so to speak)
at this abstraction level? Does it best translate the intention of the designer? Our
1 A construct is a distinct part of a schema considered as a whole for the purpose of the

discussion. Typically it is a data structure (entity type, foreign key, is-a relation, the
set of columns of a table, index) or a constraint. We consider in this paper constructs
whose structure can be defined formally in a generic way, that is, through a pattern.

320 J. Lemaitre and J.-L. Hainaut

research consists in converting the answers to these questions into a fine-grained
evaluation of a schema and into opportunities for improvement.

2.2 Schema Expression: The GER Model

Considering the multi-dimensional framework described above, we must be able
to express non standard schemas that do not meet the ideal rule only one
paradigm at only one abstraction level. In addition, a transformation can move a
construct across abstraction levels and paradigm boundaries. Therefore, we will
base the evaluation framework on a large spectrum data model encompassing
all the abstraction levels and paradigms, namely the Generic Entity-relationship
model, GER in short [1]. The GER is an extended Entity-Relationship model
including, among others, the concepts of entity type, domain, attribute, rela-
tionship type, method, inheritance, primary and foreign keys, index, as well as
various constraints. It also serves as a generic pivot model between the major
database paradigms. In fig. 1, we illustrate the graphical notation of the GER ob-
jects used afterward. The graphical notation also supports informal notes (yellow
boxes), which will be used to provide information that is not expressed struc-
turally. For instance, a foreign key expressed informally through a note will not
be declared in SQL-DDL but will be implemented in the application code. Such
constructs are called implicit constructs [2]. For instance, in fig. 4, schema (e) in-
cludes two explicit foreign keys IdA and IdB to A, denoted by keyword ref, while
in schema (f), these attributes form implicit foreign keys, defined through two
informally noted inclusion constraints. Among both foreign key specifications,
the first one clearly is of better quality.

An operational model M , that is, a model that is actually used in the design
environment, can be described by a GER submodel, comprising a subset of the
GER constructs together with a set of assembly rules that valid schemas must
satisfy. A M-compliant schema is a GER schema that includes only constructs
allowed in M and that satisfies all the assembly rules of M.

2.3 Schema Transformation

In this paper, we will address the multiplicity of representations of a given con-
cept. The most appropriate tool to study this phenomenon is the transforma-
tional framework according to which a construct C in a schema can be replaced
with another construct C’ in a way that preserves some characteristics of C.
In particularly, we are interested in semantics preserving, or reversible, trans-
formations that produce constructs C’ that model exactly the same application
domain situations as C does. A transformation is reversible iff there exists a
function g with inverse g’ such that, for each valid instance c of C, g(c) is a
valid instance of C’ and c = g’(g(c)). Provided we have at our disposal an ap-
propriate set of reversible transformation operators, a fairly large collection of
constructs equivalent to C can be generated. The interested reader is referred to
reference [1] for a more detailed description of the transformational approach.

Transformation-Based Framework 321

Entity Type

Atomic attribute

Multivalued attribute

Primary identifier

Is-A hierarchy (disjoint)

Subtype

Role

Binary relationship

CUSTOMER.Category in
{A1, A2, A3, B1, B2, C}

1-1

0-N

from

D

PERSON

PID
Name
Phone[0-5]
id: PID

SUPPLIER
Account

ORDER

ONum
Date

CUSTOMER
Category

CUSTOMER.Category in
{A1, A2, A3, B1, B2, C}

1-1

0-N

from

D

PERSON

PID
Name
Phone[0-5]
id: PID

SUPPLIER
Account

ORDER

ONum
Date

CUSTOMER
Category

Fig. 1. Sample of GER schema at the conceptual level

3 Definitions

When a designer expresses an application domain fact type in a schema, s/he
uses the data model construct that best fits its intention. The construct that
most, if not all, skilled designers would choose in this situation is called a best
practice2. Best practices are defined considering the possible alternative rep-
resentations and the context in which the schema is used.

3.1 Semantic Equivalence Classes and Best Practices

Semantic equivalence class of a construct. We consider K, the collection
of all the constructs of the GER that are pertinent in some engineering pro-
cesses and a set of transformations T . Let us also consider a construct C from
K and all the equivalent constructs that can be derived through the reversible
transformations of T . All these constructs, together with C, form an equiva-
lence class called ec(C). Since only reversible transformations have been applied,
∀C′ ∈ ec(C), ec(C′) = ec(C). We now consider the function sec : K → (K×2K)
which associates to each construct in K its semantic equivalence class (sec).
sec(C) is an equivalence classes in which the specific element C has been tagged.
We call C the intention of this equivalence class. sec(C) provides all the con-
structs a designer can introduce in a schema to express the semantics (the appli-
cation domain fact type) of C, hence the name semantic equivalence class or sec.

The concept of best practice. Let us consider a structure comprising a cate-
gory A together with two of its sub-categories A1 and A2. It typically translates
into an is-a relation construct. However, under certain circumstances, other
equivalent constructs can be used instead as we have shown it in section 2.1.
If we call C the is-a relation, sec(C) includes all the constructs that express
2 Intuitively, a best practice is a common practice among skilled designers.

322 J. Lemaitre and J.-L. Hainaut

category/sub-category structures, including C itself. C is the intention of its
semantic equivalence class. For a seasoned designer, the is-a relation is the pre-
ferred translation but others can be used instead, though with a lower preference
level. To better describe the notion of preference, we assign to each member C′ of
sec(C) a preference score expressing the extent to which an expert designer will
accept to use C′ to express the semantic of C. The higher the score, the better
C′ will be to express this semantics. The preference score can be defined by a
number or, more simply, by a partial order relation (C” < C′ if C′ is preferred
to C′′ to express the semantics of C). However, as we will discuss it later on,
the preference scoring of sec is context dependent. We will call best practices of
sec(C) the constructs with the highest preference score. It must be noted that,
depending on the context, C may not be the best practice in sec(C).

Generation of SEC. The equivalence class of a construct C can be obtained
by recursively applying the transformations of T until no new construct can be
produced. However, this naive approach can lead to a very large (and, depending
on T , possibly infinite) set of constructs of which only a small subset would be of
interest. Appropriate meta-rules are necessary to keep the process into reason-
able limits. Considering the is-a pattern, one can adopt a regularity of treatment
meta-rule according to which each sub-category of a given category must be
expressed in the same way. For example, a construct obtained by applying the
upward inheritance transformation to one sub-category and the materialization
transformation to another one would be rejected. Another example: when an en-
tity type EA results from the transformation of an attribute A, the attribute(s)
of the latter cannot be further transformed through the same transformation
(figure 2).

E
IdE
A
id: IdE

E
IdE
A
id: IdE

1-1

1-1
E_A

E
IdE
id: IdE

EA
A

1-1

1-1
E_A

E
IdE
id: IdE

EA
A

1-1

1-1
E_A

1-1

1-1
EA_A

E
IdE
id: IdE

EA

EAA

A

1-1

1-1
E_A

1-1

1-1
EA_A

E
IdE
id: IdE

EA

EAA

A

...

Fig. 2. Infinite transformation of an attribute

3.2 Context and Best Practices

The context of a schema S under evaluation is the external conditions that de-
fines its intended use. S has been designed for the abstraction level A, according
to the paradigm P and to meet design criterion D3. We call (A, P, D) the context
of S. Given a construct C that can appear in schema S, a scoring function is
assigned to sec(C) for a given context.

3 For simplicity, we consider that a schema is to meet one design criterion only.

Transformation-Based Framework 323

(a) (c)(b)

B -> C

R
A
B
C
id: A

B -> C

R
A
B
C
id: A

R(B) ⊆ S(B)

S
B
C
id: B

R
A
B
id: A

R(B) ⊆ S(B)

S
B
C
id: B

R
A
B
id: A

R(B,C) ⊆ S(B,C)

S
B
C
id: B

R
A
B
C
id: A

Fig. 3. (a)Relational schema with functional dependency. (b) Normalized schema. (c)
Optimized schema.

Any model M is a point in the abstraction/paradigm space illustrated in
table 1 (e.g., (conceptual, “binaryER”), (logical, “SQL3”)). The members of
sec(C) comply with the GER, but, being independent of any abstraction level
and paradigm, they may not all comply with M . So, we introduce the concept
of projection of a set of constructs on a model. Let us consider KM ⊆ K and
model M , such that KM is the set of constructs that are valid in M . KM is the
projection of K on M . The projection can be applied to semantic equivalence
classes. We note secM (C) the subset of constructs in sec that are M-compliant,
i.e., secM (C) = sec(C) ∩KM .

Now, we classify the members of secM (C), (∀C ∈ KM) according to the
evaluation criterion D. We assign (in a way that will be discussed later) each
member of secM (C) an order number, or, best, a numeric score in the range
[0− 1]. The first member(s) being the most appropriate according to D and the
last one(s) the worst one(s). As we have said above, the intention can be, but
need not be, the first member. For instance, in the sec of a foreign key at the
conceptual level, the one-to-many relationship type will probably be assigned
the highest score for D = Expressivity. Figure 3 describes a simple sec of
unnormalized relation R for the SQL2 logical model. Considering access time
optimization criterion, schema (c) can be assigned the highest score, since it is
optimized for R∗S join while being easy to implement through a (non minimal)
foreign key4. It is followed by schema (a), itself followed by schema (b). Of
course, the Normalization criterion would have yielded quite different scores.

Considering construct C, the bestpractice for C in a given context (A, P, D)
is the member (or members) of sec(C) with the highest score.

4 Illustration

In this section, we illustrate the concepts of semantic equivalence class and
schema context.

Figure 4 represents eight typical constructs that translate the category/subca-
tegory structure where subcategories are pairwise disjoint. In these subschemas,
AttX stands for a set of attributes of the entity type X ; AttX[0-1] means that
all these attributes are optional; tag id in the 3rd compartment declared a
4 This pattern is known as the Elementary Key Normal Form.

324 J. Lemaitre and J.-L. Hainaut

(a) (b)

(d)

(c)

(g)

(e)

(f)

(h)
COEXISTENCE in AttsB

COEXISTENCE in AttsC

EXACTLY-1 between
AttsB and AttsC

A
IdA
AttsA
AttsB[0-1]
AttsC[0-1]
id: IdA

COEXISTENCE in AttsB

COEXISTENCE in AttsC

EXACTLY-1 between
AttsB and AttsC

A
IdA
AttsA
AttsB[0-1]
AttsC[0-1]
id: IdA

A
IdA
AttsA
AttsB[0-1]
AttsC[0-1]
id: IdA
coex: AttsB
coex: AttsC
exact-1: AttsB

AttsC

A
IdA
AttsA
AttsB[0-1]
AttsC[0-1]
id: IdA
coex: AttsB
coex: AttsC
exact-1: AttsB

AttsC

{B.IdA} and {C.IdA} are disjoint

{B.IdA} included in {A.IdA}

{C.IdA} included in {A.IdA}

A
IdA
AttsA
id: IdA

acc

B
IdA
AttsB
id: IdA

acc

C
IdA
AttsC
id: IdA

acc

{B.IdA} and {C.IdA} are disjoint

{B.IdA} included in {A.IdA}

{C.IdA} included in {A.IdA}

A
IdA
AttsA
id: IdA

acc

B
IdA
AttsB
id: IdA

acc

C
IdA
AttsC
id: IdA

acc

A

IdA
AttsA
B[0-1]

AttsB
C[0-1]

AttsC
id: IdA
exact-1: B

C

A

IdA
AttsA
B[0-1]

AttsB
C[0-1]

AttsC
id: IdA
exact-1: B

C

P

A

IdA
AttsA
id: IdA

B
AttsB

C
AttsC

P

A

IdA
AttsA
id: IdA

B
AttsB

C
AttsC

{B.IdA} and {C.IdA} are disjoint

B
IdA
AttsA
AttsB
id: IdA

C
IdA
AttsA
AttsC
id: IdA

{B.IdA} and {C.IdA} are disjoint

B
IdA
AttsA
AttsB
id: IdA

C
IdA
AttsA
AttsC
id: IdA

0-1

1-1

A_B

0-1

1-1

A_C

A

IdA
AttsA
id: IdA
exact-1: A_C.C

A_B.B

B
AttsB

C
AttsC

0-1

1-1

A_B

0-1

1-1

A_C

A

IdA
AttsA
id: IdA
exact-1: A_C.C

A_B.B

B
AttsB

C
AttsC

{B.IdA} and {C.IdA} are disjoint

C
IdA
AttsC
id: IdA

ref

B
IdA
AttsB
id: IdA

ref

A
IdA
AttsA
id: IdA

{B.IdA} and {C.IdA} are disjoint

C
IdA
AttsC
id: IdA

ref

B
IdA
AttsB
id: IdA

ref

A
IdA
AttsA
id: IdA

Fig. 4. SEC representing the category/subcategory with a partition constraint

primary key; coex means that the attributes must all be null or all not null;
exact-1 means that exactly one attribute must be not null; ref declared a for-
eign key. Since constructs (b) to (h) can be derived from construct (a) through
semantics-preserving transformations, this set can be considered the sec of any
of its members, in particular (a). The constructs (b), (c) and (d) are com-
mon alternative representations of is−a relations that are obtained respectively
with the materialization, downward inheritance and upward inheritance trans-
formations. (e) and (f) are derived from (b). In (e), the primary/foreign keys
translate the relationship types of (b). In (f), the foreign keys are not declared
but the referential constraints are expressed informally. (g) and (h) are obtained
by the transformation of (d). In ER-like models, (b) will be considered the most
expressive construct.

Let us now project this set of constructs on some point in the (A,P) space,
namely: conceptual extended entity-relationship, logical IMS, logical relational
(SQL2) and logical object-relational (SQL3). In table 2, we indicate the results of
the projections on these four models. For convenience, we consider that models
EER, SQL2 and SQL3 each include a language or a mechanism (OCL-like, check,
triggers) to express coex and exact-1 constraints.

Transformation-Based Framework 325

Table 2. Suitability of the structures of fig. 4 in 4 projections

(a) (b) (c) (d) (e) (f) (g) (h)
Conceptual EER X X X X - X X X
Logical IMS - X X - - X - X
Logical Relational - - X - X X X X
Logical Object-relational X - X - X X X X

One can observe that nearly all structures of the sec are compatible with the
EER model. The only exception is the foreign key. The IMS model is the most
restrictive, as it imposes a strongly constrained tree-like structure between entity
types (called segment types in IMS vocabulary). The relational model accepts
five constructs. Its restrictions come from unsupported object types: relationship
types, is-a relations and complex attributes. Finally the object-relational model
is able to represent all sec constructs but relationship types and compound
attributes.

We can classify the constructs of the four sec resulting from these projections
according to a fitness criterion combining expressivity (specially for EER) and
ease of implementation (specially for logical models). The goal of such ranking
is to associate a score to the constructs, that will help for the evaluation of
the schema and in the choice between alternatives. There are different ways
to determine the scores. Among them, we are turning toward the collection of
expert opinions. It aims at placing the structure on a quality scale. We apply the
fitness criterion after a projection on the logical relational model. As a rough
guide, we place the remaining structures in a 5 grades ordinal scale (very bad,
bad, average, good and very good) as follow: (h) < (f) < (c) < (g) < (e).
Obviously, the quality rating can be based on a numerical scale, in order to
provide a more precise classification.

5 Framework Application

An important issue in software engineering is the evaluation of the quality of a
system. Software metrics have long been the favourite techniques to evaluate this
quality. Though they are not always easy to interpret, metrics are easy to com-
pute and they provide an immediate quantitative result [3,4,5]. However, when
applied to database schemas, they are generally based on counting atomic ob-
jects such as entity types, tables, attributes, etc. independently of their intended
meaning.

The approach described in this paper makes it possible to integrate seman-
tic aspects in qualitative and quantitative evaluations. A qualitative evaluation
requires a classification based of a simple order relation among the members of
each sec. Such classification is easy to achieve. However it will neither provide
a global score for the schema quality, nor allow one to quantify the difference
between two schemas. It allows one to identify construct instances, that are not
a best practice and that can be improved, together with the possible changes.
The quantitative evaluation requires a classification based on a more or less pre-
cise numeric scale. The grading will obviously require more effort from experts.

326 J. Lemaitre and J.-L. Hainaut

Though defining metrics, their computation and their interpretation are beyond
the scope of this paper, we will suggest two metrics to develop quantitative
evaluations based on this framework.

The first suggested metrics is the Individual sec evaluation. It computes
the average quality score of a schema S for a particular sec, defined by its
intention I. We note sec(I) the semantic equivalence class, M the model of S
and D the criterion according to which secM (I) has been classified. The metrics
is defined as follows:

IndividualScoresecM (S, I) =
∑

c∈secM (I) �{inst(c,S)}×scoreD(c)∑
c∈secM (I) �{inst(c,S)}

where inst(c, S) is the set of all instances of the construct c in the schema S and
scoreD(c) is the score of c according to criterion D.

The second metric is the Global sec evaluation. It evaluates the average
score of a schema in a particular context using the sec of the most significant
constructs of M . We note II the set of these significant constructs. We associated
a weight to each construct I (and its corresponding sec) in order to define their
importance. We define normalized weights weight(I) in the range [0− 1] so that
their sum is equal to 1. The metric is defined as:

GlobalScoreM(S) =
∑

I∈II weight(I)× IndividualScoresec(M)(S, I)

The evaluation of the schema through the identification of deviations from best
practices naturally leads to its improvement according to a definite criterion D.
The improvement process takes into account the classification of the sec of the
most significant constructs (II) in order to maximize the schema quality. Though
the specification of a complete improvement method is beyond the objective
of this paper, we will sketch a tentative heuristics: for a specific I ∈ II, we
transform each instance of I into the instance of secM (I) that has the highest
score. Figure 5, represents the sec of is-a relation expressions of fig. 4 projected
on the SQL2 model, that is, secSQL2(Cis−a). Edges represent standard reversible
transformations, acting as improvement paths, and scores translate numerically
from 1 to 5 the very bad to very good scale of section 4. In some cases, the
improvement path uses transformations that lead out of secM . In this case, the
transformation chain has to form a path that goes back in the projected sec
(e.g., transform (c) into (e)).

In the remainder of this section, we apply this approach on a small schema.
In fig. 6, we represent 2 equivalent EER schemas. We identify in schema (a)
two significant constructs which, considering the expressiveness criterion, are
of poor quality (they have a low quality score in their respective sec). The
optional attribute DiscontinuedDate is the date from which the product has
been discontinued. Its sec contains, among others, a representation based on
an is-a relation, suggesting that the attribute represents a specific category of
product. We note CAtt the attribute construct and Cisa its is-a alternative. The
construct comprising entity types DETAIL, DET_ORD and DET_PRO, together with
their relationship types, is a complex but valid expression of a single many-to-
many relationship type very common in some legacy IMS databases. We note
CRTs this complex construct and CMM the many-to-many relationship type.

Transformation-Based Framework 327

a b

d

h
[1]

SEC category/
subcategory

Logical Relational
projection

f
[2]

c
[3]

g
[4]

e
[5]

Fig. 5. Transformation associated to a semantic equivalence class

1-1

0-N

Ro 1-1

0-N

Rp

1-1

1-1

Rd2

1-1

1-1

Rd1

PRODUCT
ProNum
Name
Price
Stock
DiscontinuedDate[0-1]

DET_PRODET_ORD

DETAIL

Quantity

ORDER
OrderNum
Date

1-1

0-N

Ro 1-1

0-N

Rp

1-1

1-1

Rd2

1-1

1-1

Rd1

PRODUCT
ProNum
Name
Price
Stock
DiscontinuedDate[0-1]

DET_PRODET_ORD

DETAIL

Quantity

ORDER
OrderNum
Date

0-N0-N
DETAIL

Quantity

PRODUCT
ProNum
Name
Price
Stock

ORDER

OrderNum
Date

DISC_PROD
Date

0-N0-N
DETAIL

Quantity

PRODUCT
ProNum
Name
Price
Stock

ORDER

OrderNum
Date

DISC_PROD
Date

(a) (b)

Fig. 6. Evaluation and improvement of a conceptual EER schema

For the purpose of the example, we consider the same 1 to 5 coarse-grained
classification as above. The classification assigns the score 2 to CAtt and 5 to
Cisa. CRTs receives the score 1, while CMM gets a 5. Cisa and CMM are the
only constructs in their sec with the maximum score. These scores allow to
compute the IndividualScore metric. The results are trivial since they correspond
to the score of the only construct of the sec present in the schema. As a rough
guide, we assign CAtt and CRTs respectively scores 0.4 and 0.6. The results are
the following: GlobalScore(EER,expressiveness)(a) = 0.4 × 2 + 0.6 × 1 = 1.4 and
GlobalScore(EER,expressiveness)(b) = 0.4× 5+0.6× 5 = 5. The expressiveness of
(a) tends to be very bad while the score of (b) is maximum. The improvement
process transforms (a) into (b).

6 Limits

The framework described in this paper is under evaluation through a collection
of case studies. Though is is too early to draw definitive conclusions and to
specify precisely its application domain, we have identified some issues that will
be addressed in the near future. We will mention two of them.

Interactions are possible between the constructs of two distinct sec. We distin-
guish two types of interactions. In the first one, a construct appears in different
SEC. In this case, an in-depth analysis has to be done in order to determine the
very purpose of the structure. This can be performed using reverse engineering
methods, and particularly the conceptualization step, through which the seman-
tics of a technical construct is elicited. This implies that the identification of
some sec construct instances may not be fully automated and requires human

328 J. Lemaitre and J.-L. Hainaut

(a) (b)

1-1

0-1

is

1-10-1 has0-1

1-1

uses
HISTORY

Statistics
Description

TECHNICAL EXPERT
Speciality
Stock Access

CAR
Car #
Class EMPLOYEE

Employee #
National #
First Name
Last Name
Address
Phone[1-5]
id: Employee #
id': National #

1-1

0-1

is

1-10-1 has0-1

1-1

uses
HISTORY

Statistics
Description

TECHNICAL EXPERT
Speciality
Stock Access

CAR
Car #
Class EMPLOYEE

Employee #
National #
First Name
Last Name
Address
Phone[1-5]
id: Employee #
id': National #

1-1

0-1uses

TECHNICAL EXPERT
Speciality
Stock Access

EMPLOYEE
Employee #
National #
First Name
Last Name
Address
Phone[1-5]
Statistics[0-1]
Description[0-1]
id: Employee #
id': National #
coex: Statistics

Description

CAR
Car #
Class

1-1

0-1uses

TECHNICAL EXPERT
Speciality
Stock Access

EMPLOYEE
Employee #
National #
First Name
Last Name
Address
Phone[1-5]
Statistics[0-1]
Description[0-1]
id: Employee #
id': National #
coex: Statistics

Description

CAR
Car #
Class

Fig. 7. Relations between constructs of different semantic equivalence classes

intervention. This problem is illustrated in the Fig. 7, where the 1-to-1 rela-
tionship type can be involved in an category/subcategory relation, a relation
between two different concepts (employee-car) or a concept fragmentation.

The second type of interactions concerns structures that have a common part
or structures included in others. We use the structure (a) in the fig. 4 in order
to illustrate the problem. The attribute AttsA can be transformed into an entity
type independently of entity type A and the is-a relation. Such transformation
is used to extract a concept included in an other. The construct involved in this
transformation should only take into account entity type A and its internal com-
ponents (excluding the is-a relation) and is included in (a). As in the previous
case, such problems may require some interactions with a designer.

As a second example of challenge already identified, it appears that addressing
several criteria may lead to a conflicting situation. For example, the minimality
criterion may contradict “expressivity". Normalization versus optimization is
another popular example.

7 Validation of the Framework

The validation and tuning of an evaluation framework is such a complex, costly
and time-consuming task that it is seldom carried out according to standard
validation methodologies. Ideally, one should collect dozens of real schemas of
realistic size, that is, including at least 40-50 entity types or tables, and submit
them to dozens of experts in data modeling who are asked to evaluate them
according to various quality criteria such as expressivity, readability (for differ-
ent stakeholders), maintainability, evolvability, time/space performance, DBMS-
independence, etc. Considering that good experts are both scarce and very busy,
proceeding in this way is quite unrealistic. As a consequence, many proposals are
tested on closed systems comprising a teacher in IS design together with his/her
students, a procedure sometimes considered unreliable.

The framework described in this paper makes it possible to lower the cost of
the validation process.

Transformation-Based Framework 329

1. First, the framework relies on the concept of sec, the generation of which
can be, to a large extent, automated. However, the ordering of their mem-
bers must be performed by experts. We can formulate two observations. (1)
Though K can be an infinite set of patterns (depending on T), practice has
shown that only a subset of about 20 constructs is sufficient to built most
real schemas. (2) This provides us with about 20 sec, most of them com-
prising from 5 to 10 members. Ordering these sets of constructs is much
easier and more deterministic than evaluating complete schemas. According
to a first experiment involving four high level industrial experts5, assigning
value scores to one sec according to one criterion (e.g. expressiveness) takes
about 15 minutes and the results show very little variation among experts.
Processing the most useful sec for one major criterion requires less than one
day per expert, so that the complete parametrization of the framework can
be performed in a matter of one or two weeks.

2. Evaluating a schema according to a set of ordered sec is an automatic task.
Identifying constructs and their intention depends on the (still unknown)
quality of the schema, so that a conceptualization step may be necessary.
This process is automatic to a large extent6.

3. It remains to check the validity of the framework. Here, relying on teach-
ers and students makes sense. (Last year) students form a realistic sample
of designers of various skills, ranging from desperately inapt to experienced
and ingenious. On the other hand, teachers are expected to be expert in
evaluating the quality of medium size schemas. Therefore, comparing and
aligning academic and automated evaluations allow the tuning of the eval-
uation framework. These validation and alignment processes still are under
investigation.

8 Related Work

In the context of data schemas, very few authors seem to have explored the use
of reversible transformations to deal with schema quality. Among them, Codd
proposed the concept of relational normalization [6]. The normalization process
relies on the use of transformations in order to eliminate problematic functional
dependencies. Compared with our framework, it deals with a no redundancies cri-
terion. An early synthesis of the existing normal forms was proposed by Kent [7].
Another proposal was made by Assenova and Johanesson [8], who used reversible
transformations to increase the understandability of the conceptual models, a cri-
terion they decomposed into smaller quality criteria. In their work, a qualitative
quality indicator is associated to transformations for each criterion. In our frame-
work, we choose to relate the quality to the structure itself and develop more
precise indicators. Burton and Weber [9] realized a study on the use of attributes
in relationship types and its impact on schema clarity. Their observations were
5 From the ReveR company, specialized in database reengineering.
6 The DB-MAIN CASE tool we have been developing since 1993 includes pro-

grammable assistants that support this process.

330 J. Lemaitre and J.-L. Hainaut

based on equivalent schemas. A similar work was carried out by Gemino and
Wand [10] on the use of mandatory properties and subtypes on ER schemas.
Both proposals deal with schema quality and propose solutions to increase it,
but none highlights the use of reversible transformations. Outside the context
of data schemas, Bouhours et al. proposal focuses on the transformation of soft-
ware architecture according to quality requirements [11]. Their transformations
consist in applying design patterns that best satisfy the requirements (another
name for design criteria). Finally, Kurtev [12] uses the concept of transformation
space for dealing with schema quality. Such space represents a transformation
by its initial and resulting structures and allows to link it with quality indica-
tor. However, studied objects are atomic, while we consider semantically richer
constructs.

9 Conclusion

The framework described in this paper intends to improve the precision and the
automation of the evaluation of a database schema according to a definite crite-
rion. Built on the transformational paradigm, it provides a sound and rigorous
basis to develop evaluation strategies (including metrics-based ones) and im-
provement techniques. In particular, it makes explicit and implements the idea
that a designer chooses, among a collection of candidate constructs (semantic
equivalence class), which best fits its intention, that is, the fact type from the
application domain. A defect in a schema occurs when this choice does not prove
to be optimal. The framework makes it possible to identify this collection and
the best choice, called best practice.

The framework also shows the importance of the three components of the
context of a schema: the level of abstraction, the paradigm (that both form the
data model) and the design criterion.

At the present time, we are parameterizing and validating the framework
through practical case studies and with the help of a community of expert
designers. We intend to compare the results of our framework with synthetic
metrics-based approaches. In addition, we are developing a tool, built on the
DB-MAIN platform, to identify significant patterns in a schema, to associate
with each of them a quality score according to a definite criterion and to suggest
improvement transformations.

References

1. Hainaut, J.L.: The transformational approach to database engineering. In: Läm-
mel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 95–143.
Springer, Heidelberg (2006)

2. Cleve, A., Lemaitre, J., Hainaut, J.L., Mouchet, C., Henrard, J.: The role of implicit
schema constructs in data quality. In: Proc. of the International Workshop on
Quality in Databases and Management of Uncertain Data, Auckland, New Zealand,
pp. 33–40 (2008)

Transformation-Based Framework 331

3. Genero, M., Piattini, M., Manso, M.E.: Finding “early" indicators of uml class
diagrams understandability and modifiability. In: ISESE, pp. 207–216. IEEE Com-
puter Society, Los Alamitos (2004)

4. Manso, M.E., Genero, M., Piattini, M.: No-redundant metrics for uml class dia-
gram structural complexity. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS,
vol. 2681, pp. 127–142. Springer, Heidelberg (2003)

5. Si-Said Cherfi, S., Akoka, J., Comyn-Wattiau, I.: Perceived vs. measured quality
of conceptual schemas: An experimental comparison. In: ER (Tutorials, Posters,
Panels & Industrial Contributions), pp. 185–190. Australian Computer Society
(2007)

6. Codd, E.F.: Normalized data structure: A brief tutorial. In: SIGFIDET Workshop,
pp. 1–17. ACM, New York (1971)

7. Kent, W.: A simple guide to five normal forms in relational database theory. Com-
mun. ACM 26(2), 120–125 (1983)

8. Assenova, P., Johannesson, P.: Improving quality in conceptual modelling by the
use of schema transformations. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157,
pp. 277–291. Springer, Heidelberg (1996)

9. Burton-Jones, A., Weber, R.: Understanding relationships with attributes in entity-
relationship diagrams. In: ICIS 1999: Proc. of the 20th international conference on
Information Systems, Atlanta, GA, USA, pp. 214–228 (1999)

10. Gemino, A., Wand, Y.: Complexity and clarity in conceptual modeling: comparison
of mandatory and optional properties. Data Knowl. Eng. 55(3), 301–326 (2005)

11. Bouhours, C., Leblanc, H., Percebois, C.: Alternative models for a design review
activity. In: Proc. of the 2nd workshop on Quality in Modeling, Nashville, TN
(USA), pp. 65–79. Springer, Heidelberg (2007)

12. Kurtev, I.: Adaptability of model transformations. PhD thesis, University of
Twente, Enschede (2005)

Reverse Engineering User Interfaces for
Interactive Database Conceptual Analysis

Ravi Ramdoyal1, Anthony Cleve2, and Jean-Luc Hainaut1

1 Laboratory of Database Application Engineering - PReCISE Research Center
Faculty of Computer Science, University of Namur, Belgium

{rra,jlh}@info.fundp.ac.be
2 INRIA Lille-Nord Europe, LIFL CNRS UMR 8022

University of Lille 1, France
anthony.cleve@inria.fr

Abstract. The first step of most database design methodologies con-
sists in eliciting part of the user requirements from various sources such
as user interviews and corporate documents. These requirements formal-
ize into a conceptual schema of the application domain, that has proved
to be difficult to validate, especially since the visual representation of the
ER model has shown understandability limitations from the end-users
standpoint. In contrast, we claim that prototypical user interfaces can
be used as a two-way channel to efficiently express, capture and validate
data requirements. Considering these interfaces as a possibly populated
physical view on the database to be developed, reverse engineering tech-
niques can be applied to derive their underlying conceptual schema. We
present an interactive tool-supported approach to derive data require-
ments from user interfaces. This approach, based on an intensive user
involvement, addresses a significant subset of data requirements, espe-
cially when combined with other requirement elicitation techniques.

Keywords: Information systems engineering, Requirements engineer-
ing, Database engineering, Human-computer interfaces reverse
engineering.

1 Introduction

Data modeling plays a pivotal role in Requirements engineering, as it defines
the semantic core of the future application. Accurately eliciting and validating
user requirements are vital to build reliable specifications of the data application
domain. Database engineering precisely focuses on data modeling, where these
requirements are typically expressed by means of a conceptual schema, which
is an abstract view of the static objects of the application domain. Designing
databases often relies on various requirements elicitation techniques such as the
analysis of corporate documents and interviews of stakeholders. However beyond
the initial collection of the requirements, these techniques usually do not actively
and interactively involve end-users.

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 332–347, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Reverse Engineering User Interfaces 333

Still, the necessity to associate end-users of the future system with its speci-
fication and development steps has long been advocated [1]. End-users can per-
ceive the qualities and the flaws of the information systems currently used, and
since they know “how business is done” in the developing environment, they have
the ability to state what could be done to improve it [2]. Involving them in the
expression of their needs and in the definition of an appropriate solution can
therefore reduce their resistance toward a new information system infrastruc-
ture and stimulate productivity [3]. As for the validation of these data require-
ments, their formal graphical representation is often difficult to grasp for the
end-users. Indeed, while analysts focus on building requirements meeting vari-
ous expectations (correctness, completeness, consistency, ...), requirements from
the end-users standpoint need to be understandable and expressive enough.

In order to tackle this issue, we present an approach to elicit and validate
database requirements, based on end-users involvement through interactive pro-
totyping, and adapting techniques coming from various fields of study. By taking
advantage of their expressiveness and understandability, we adopt form-based
user interfaces as a two-way channel to efficiently express, capture and validate
data requirements with end-users. In particular, we capitalize on the transfor-
mational power of data structure Reverse engineering techniques, which aim at
extracting specifications from existing artifacts.

This approach relies on the principles of the ReQuest framework [4,5], which
provides a complete methodology and a set of tools to deal with the analysis,
development and maintenance of web applications. This approach proved that
it is possible to efficiently and swiftly involve end-users in the definition of their
needs. Whereas ReQuest deals with data modeling and the dynamic aspects of
the future application (such as task analysis, behavior of the application, etc.),
while providing generators for several of its components (database, framework
skeleton, etc.), here we focus specifically on improving the data requirements
process, leading the interfaces to appear as a means rather than an end product.

The remainder of the paper is structured as follows. Section 2 delineates the
research context, while Section 3 describes the related works. The main principles
of the proposal are detailed in Section 4. In Section 5, we elaborate on key
aspects of our approach, namely Reverse engineering, modular refinement, view
integration and transformational approach. Section 6 briefly presents the tool
kit supporting the proposed methodology. Finally, in Section 7, we discuss the
merits and limitations of our proposal and anticipate future work.

2 Research Context

The process of designing and implementing a database that has to meet specific
user requirements has been described extensively in the literature [6] and has
been available for several decades in CASE tools. It consists of four main sub-
processes: (1) Conceptual design through which user requirements are translated
into a conceptual schema; (2) Logical design, which produces an operational log-
ical schema that translates the constructs of the conceptual schema according

334 R. Ramdoyal, A. Cleve, and J.-L. Hainaut

to a specific technology family; (3) Physical design, which augments the logical
schema with performance-oriented DBMS-specific constructs and parameters;
(4) Coding, which translates the physical schema (and some other artifacts) into
the DDL (Data Definition Language). Transformational and generative tech-
niques allow one to automate the production of logical and physical counterparts
of the conceptual schema [7], as well as artifacts of the final application [8], such
as database code, program fragments, interface forms, etc.

In this paper, we focus on the primordial conceptual design, for which the
Entity-Relationship (ER) model has long been the most popular medium to ex-
press conceptual requirements [9]. Its simplicity, its graphical representation, the
availability of numerous CASE tools that include an ER schema editor (should)
make it the ideal communication medium between designers and users. However,
despite its merits, the ER formalism often fails to meet its objectives as an effec-
tive end-users communication medium. The reason is easy to grasp: a conceptual
ER schema is actually a graphical presentation of a large and complex set of 1st
and 2nd order predicates, and implicitly conveys non trivial concepts such as
sets, non-1st normal form relations (NF2), algebraic operators, candidate keys
and functional dependencies. Fig. 1(a) shows a small conceptual schema and its
NF2 relational interpretation according to the GER formalism [7]. The intrinsic
complexity of the requirements has been concealed by the apparent intuitiveness
of the ER graphical notation but has not disappeared.

On the other hand, most users are quite able to deal with complex data struc-
tures, provided they are organized according to familiar layouts. In particular,
electronic forms have proved to be more natural and intuitive than usual concep-
tual formalisms to express data requirements [10], while making the semantics

Fig. 1. (a) An ER schema and its formal expression. (b) An almost equivalent electronic
form and its informational contents.

Reverse Engineering User Interfaces 335

of the underlying data understandable [11]. This naturally leads to ponder the
idea of using such forms as the preferred way to describe data structures in
requirements engineering processes.

3 State of the Art

The strong link existing between graphical interfaces and data models is usu-
ally exploited in forward engineering. Indeed, as we have seen, it is relatively
straightforward to produce artifacts such as form-based interfaces from a con-
ceptual schema. Conversely, a form contains data structures that can be seen as
a particular view of the conceptual schema. The transition from one to another
has been shown to be tractable [12], so that database Reverse engineering tech-
niques can be applied to recover a fragment of the conceptual schema. These
techniques can be combined with prototyping, which may also act as a basis for
interviews or group elicitation [13], while providing early feedback [14].

Deriving requirements from prototype artifacts has a long tradition. In 1984,
Batini et al. studied paper forms as a widely used means to collect and commu-
nicate data in the office environment. Later on, Choobineh et al. [10] explored a
form-based approach for database analysis and design, and developed an analyst-
oriented Form Definition System and an Expert Database Design System that
incrementally produced an ER diagram based on the analysis of a set of forms.
Kösters et al. [15] introduced a requirements analysis method combining user
interface and domain analysis. Rollinson and Roberts studied the problem of
non-expert customization of database user interfaces in [12], and developed a set
of graph-oriented transformations to extract an Extended Entity-Relationship
schema describing an interface’s information content. More recently, Yang et al.
inquired about the WYSIWYG user-driven development of Data Driven Web
Applications, while transparently generating their underlying application model
on the fly [16]. We can observe that all these approaches rely on the same core
principles: (1) build a set of form-based interfaces; (2) extract the underlying
form model; (3) translate the form model into a working data model; (4) pro-
gressively build an integrated data model by looking for structural redundancies
as well as constraints and dependencies.

We also notice that the number of studies on the subject is limited (especially
recently), and that several limitations must be underlined in most of them. First
of all, the tools provided for the drawing of the interfaces are not dedicated
to this purpose and/or not convenient for end-users. Secondly, the underlying
form model of the interfaces must often be constructed by analyzing the phys-
ical composition (layout) before the informational composition (content) of the
form, and in parallel, the prototypical form-based interfaces do not use a generic
language that would enable GUI generation of an application on any target plat-
form. Regarding the coherence of the interfaces, it is assumed that the labels are
used consistently through out the different forms, and little care is given to pos-
sible lexical variation (paronymy, feminine, plural, spelling, mistakes, etc.) and
ontological ambiguity (polysemy, homography, synonymy). The use of examples

336 R. Ramdoyal, A. Cleve, and J.-L. Hainaut

(either through static statements or dynamic interaction) is not systematically
used to elicit constraints and dependencies. And last but not least, the final
output is limited to the prototype itself and the final version of underlying in-
tegrated data model is not systematically submitted to the end-users in a way
enabling easy validation.

4 Proposal

To alleviate understandability limitations of the ER model, we propose to use
form-based user interfaces as a two-way channel to efficiently capture and vali-
date static data requirements with end-users by providing the latter with ade-
quate techniques to draw the interfaces describing the underlying key concepts
of their application domain. This approach benefits from the advantages of rapid
prototyping (such as visual expressiveness, early feedback and clarification) [17],
while making the user a central actor of the process.

Our RAINBOW approach involves end-users in a simple and interactive way
while providing the analysts with semi-automatic tools. The approach is formal-
ized into a seven step process whose aim is to support the development of future
applications and answer most of the concerns raised in Section 3. To illustrate
these steps, let us consider the example of a small sales company wanting to
develop a simple IT solution to manage its customers and their orders. Each
order is created in a given shop and specifies a list of products.

1. Represent : End-users are invited to draw a set of form-based interfaces to
perform usual tasks of their application domain. Such interfaces are typically
entry forms to capture data on, say, a new customer or a new product. The
end-users must at least provide basic properties regarding the interface elements
(typically a label and description). Advanced users may also provide other prop-
erties such as the size of a field, the expected type of values, default or predefined
values, existence constraints, as well as links between the concepts. Note that
the objective is not to let end-users draw the interfaces of a future application1,
but to capture requirements through a medium they are familiar with. A dedi-
cated drawing tool provides them with a limited set of primitive widgets, namely
interfaces, group boxes, tables, input fields, selection fields and button panels
(Fig. 2). These simple but usual form widgets can indeed be used to express any
other complex widget. Fig. 3(a) illustrates the key concepts (Customer, Order,
Product, Shop) that the end-users might draw for the running example.

2. Adapt : Once the interfaces are drawn, database Reverse engineering tech-
niques are applied to recover the underlying conceptual schema of the domain.
The interfaces (Fig. 3(a)) are automatically analyzed to extract data models
using mapping rules, a subset of which is presented in Fig. 2. The stereotype
<R> indicates an attribute associated to a button panel. Then, each individual
entity type (Fig. 3(b)) is transformed into a primitive conceptual schema by
transforming complex attributes (Fig. 3(c)). The structure of the data models is
very simple, but, as we will discuss it, there is no semantic loss.
1 Which is the case in the ReQuest framework.

Reverse Engineering User Interfaces 337

Fig. 2. Available graphical widgets with their mapping rules to data structures

Fig. 3. (a) Example of user-drawn interfaces. (b) Translation of the interfaces into raw
entity types. (c) Translation of the raw entity types into independent schemas.

338 R. Ramdoyal, A. Cleve, and J.-L. Hainaut

Fig. 4. Integrated schema of our running example

3. Investigate: Cross-analyzing each individual schema usually brings to light
possible ambiguities as well as redundant information in the interfaces. In par-
ticular, semantic and syntaxic redundancies are automatically identified and
presented to end-users for manual validation.

4. Nurture: To elicit possible constraints and dependencies among data struc-
tures, induction techniques are applied on positive and negative data samples
provided by end-users.

5. Bind : Validated redundancies, constraints and dependencies are processed
to integrate the individual schemas into a pure conceptual schema that repre-
sents the data requirements. A dedicated approach has been developed, based
on transformational techniques. Fig. 4 illustrates the result of the integration for
our running example.

6. Objectify: A lightweight prototype application is generated from the in-
tegrated conceptual schema. It comprises a simple data manager that uses the
interfaces drawn by the end-users and allows them to manipulate the concepts
that have been expressed, typically to inspect, create, modify and remove data.

7. Wander : Finally, the end-users are invited to “play” with the prototype in
order to ultimately validate the requirements, or identify remaining flaws.

5 Methodological Specificities

In this section, we describe in more detail four basic techniques at the core of the
RAINBOW approach, namely Reverse engineering, Modular refinement, View
integration and Transformational approach. We will show how the context in
which they are used has lead to specialize them.

5.1 Reverse Engineering

Reverse engineering consists, among other things, in recovering or reconstructing
the functional specifications from a piece of software, starting mainly from the

Reverse Engineering User Interfaces 339

source code of the programs [18,19]. Such a process is typically required when an
existing database has to be refactored or migrated toward a different technology.
Reverse engineering hence aims at recovering a conceptual schema that is the
most faithful to the original one, working from multiple system artifacts, such as
documentation (when available), the DDL code of the database, data instances,
screens, reports and forms, source code of application programs.

However, our objective is here to “build the truth” rather than “find the truth”,
as in traditional Reverse engineering situations. In particular, the interfaces are
used as a specification language as opposed to the usual Reverse engineering
of existing screens. This requires to significantly adapt the usual database Re-
verse engineering (DBRE) methodology [20]. Indeed, as depicted in Figure 5
(a), DBRE typically comprises the following four sub-processes: (1) Physical
extraction, which consists in parsing the DDL code in order to extract the raw
physical schema of the database; (2) Refinement, which enriches the raw physical
schema with additional constructs and constraints elicited through the analysis
of the application programs and other sources; (3) Cleaning, which removes the
physical constructs (such as indexes) for producing the logical schema; (4) Con-
ceptualization, which aims at deriving the conceptual schema that the logical
schema implements.

Such a methodology is not applicable as is in the context of the RAIN-
BOW approach, as shown in Figure 5 (b). Starting from a set of user interfaces

Fig. 5. (a) Standard database Reverse engineering methodology. (b) Reverse engineer-
ing methodology of the RAINBOW approach.

340 R. Ramdoyal, A. Cleve, and J.-L. Hainaut

(UI1, UI2, · · · , UIN), the physical extraction does not allow one to derive a com-
plete physical schema, but a set of partial views of this schema (PS1, PS2, · · · ,
PSN). Similarly, the refinement process may not rely on additional available
artifacts such as application programs or database contents. However, it can
take benefit from data samples provided by the users through the interfaces
they have drawn, leading to the identification, among others, of candidate de-
pendency constraints and attribute domains. The recovered constraints, once
validated, are used to enrich the physical schemas PSi in order to obtain a set of
logical schemas LSi. The cleaning phase, as defined above, does not make sense
in the absence of an initial DDL code. Instead, the conceptualization step allows
one to derive a set of partial conceptual schemas (CSi) from the logical schemas
obtained so far. In particular, the logical schemas are normalized in order to ease
the identification of similarities between them. This important process relies on
transformation techniques that will be developed in Section 5.4. During the in-
tegration phase, the partial conceptual schemas are merged, based on structural
and semantic similarity criteria. This process, further described in Section 5.3,
produces a single complete conceptual schema.

5.2 Modular Refinement

One of the key assets of our approach is its flexibility, especially regarding the
enrichment of the data models. As we have seen, proficient end-users can al-
ready provide technical properties (such as size and type of attributes, domain
of values, existence constraints, reference keys, ...) during the drawing phase.
For non expert end-users, such properties can be discovered later on, as well as
functional dependencies, from a set of positive and negative data samples [21,22]
provided by end-users. Several algorithms have been proposed to support such
a task [23]. However, a major limitation of these techniques comes from the fact
that they rely on massive preexisting data sets, whereas we are working in a
context where there is potentially no pre-existing data (or the (re)encoding cost
would be too high). We therefore use a simplified version of such a mining al-
gorithm to build Armstrong relations [24], by first asking end-users to provide
data samples through the interfaces they have drawn. From these data, candi-
date constraints and dependencies are identified. Subsequently, using additional
data samples and generated examples that the end-users may validate or reject,
the constraints and dependencies are progressively enforced, discarded or refined
for each entity type.

5.3 View Integration

In this section, we focus on the non standard integration process of our method.
First of all, elements of integration (ambiguities, similarities, ...) are gradually
collected, in order to be resolve later on.

The first element that retains our attention is the semantic redundancy and
ambiguity. This issue arises due to the previously mentioned limitations of writ-
ten natural language and possible mistakes, which lead to unclear labels in the

Reverse Engineering User Interfaces 341

interfaces. In our example, one can for instance notice the closeness of the la-
bels Orders (from the interface Customer) and Order. Moreover, consider for
instance the strings “primary provider” and “alternative supplier”, which could
be used as labels. They are not lexically close, but one may notice the nearness
of meaning of the words “provider” and “supplier”.

Identifying similar labels and words is a well-known problem that can be
dealt with using String Metrics [25], ontologies and similarity dictionaries. First
of all, we extract the set Wi of relevant words contained in each label li of the
interfaces elements, by typically casting away articles and conjunctions. Then,
by combining these techniques, we identify ambiguously labeled elements within
user-drawn interfaces.

For a given string distance metric s and threshold t, we declare two labels l1
and l2 as lexically similar iff :

s(l1, l2) ≤ t ∨ ∃ w1i ∈ W1, w2i ∈ W2 : s(w1i , w2i) ≤ t

Within a set of labels L = {l1, l2, ..., ln}, we also define a subset of lexically
similar labels Li as a subset {li1 , li2 , ..., lim} ⊆ L verifying:

∀ lij ∈ Li, ∃ lik
∈ Li : “lij and lik

are lexically similar ”
∧ ∀ lij ∈ Li, lk ∈ L\Li : “lij and lk are not lexically similar ”

Among the wide variety of reliable string distance metrics, Jaro-Winkler’s dis-
tance dw [26] has proved to be a good fit for short strings. It uses a prefix scale
which gives more favorable ratings to strings that match from the beginning for
a set prefix length. We use a variant sw of this distance, also taking the longest
suffix into account. We define it for two strings s1 and s2 as:

sw(s1, s2) = 1−max(dw(s1, s2), dw(s
′
1, s

′
2))

where s
′
i is the reversed version of the string si

and tw = 0.2 was found to be a reasonable threshold.

Since we want to partition the set L of all the labels available in the user-drawn
interfaces into subsets of semantically similar labels, we confront each label to
the others using sw for string distance and the lexical reference system WordNet
[27] for synonymy. We hence build the set of the lexically similar subsets, then
visually point out the discovered similarities between concepts in the user-drawn
interfaces in order to ask the end-users to validate or reject them.

Another issue concerns structural redundancy, which occurs when two entity
types share a pattern. We define a pattern as a bijection between two sets of
attributes belonging to different entity types. For instance, Customer and Order
share a pattern based on the labels First Name and Last Name. The similarity
between pairs of attributes from each set is measured using several indicators
(e.g., the label). For each indicator, we define a similarity index, the values of
which fall between 0 (strictly different) and 1 (strictly identical). The similarity
of two attributes is computed as a weighted average of the similarity indicators.

342 R. Ramdoyal, A. Cleve, and J.-L. Hainaut

Given the hierarchical structure of the interfaces, and thus the tree-like struc-
ture of the underlying models, the problem of extracting structural redundancies
constitutes a particular case of frequent embedded subtrees mining in rooted un-
ordered trees, which is similar to pattern mining in XML documents. This com-
plex issue is described by Jimenez et al. [28], who also list related algorithms
such as Zaki’s SLEUTH or Asai et al.’s UNOT. In this context, entity types
can be seen as root nodes, compound attributes as intermediary nodes, simple
attributes as leaves, and the attribute order is irrelevant, as we explored in [5].

While tree-based approaches are suitable for complex and deep graphs, we
observe that the structure of user-drawn interfaces is usually quite simple (no
more than four levels of imbrication), if only by concerns of legibility and usabil-
ity [10]. Instead of considering such heavy algorithms, we use a simple algorithm
that consists in comparing one by one each entity type to elicit patterns and
visually point them out. The end-users are then invited to arbitrate them by
classifying the relation between the concepts sharing a pattern among one of
these most usual cases: equality (the entity types represent the same concept),
union (the entity types partially represent the same concept, which may translate
the specialization of a higher-level concept non explicitly expressed), comprehen-
sion (one of the entity types is a specialization of the other), complementarity
(one of the entity types actually refers to the other) or difference (the entity
types fortuitously share a set of attributes).

Once the knowledge of the domain is enriched thanks to the end-user input,
that validates or rejects ambiguities, similarities and dependencies, the inte-
gration process can take place. Transformational techniques have proved to be
particularly powerful to carry out this task, which is a typical case of database
schema integration [29]. They enable the integration of similar objects into a
unique, non-redundant structure, without any loss of semantics. For simplicity,
we consider in this paper that two similar objects refer to the same concept
and can therefore be merged. Hence, the entity types of the logical schemas
are integrated pairwise, and whenever needed, end-users are invited to choose
which attributes of the two objects are relevant and should thus be kept during
the merging process. However, as mentioned in the structural analysis, there is
not always a strict identity between two concepts and other integration tech-
niques must then be used to resolve integration conflicts [30]. At this point, it
is clear that this process cannot be fully automated and that the analysts must
be actively involved.

5.4 Transformational Approach

Finally, our approach heavily relies on the transformational engineering
paradigm, according to which most (if not all) database engineering processes
can be modeled as a chain of schema transformations [7]. A transformation oper-
ator is defined by a rewrite rule that substitutes a target schema construct for a
source construct. The most interesting operators are said semantics-preserving,
in that the source and target constructs convey the same semantics. Recall for
instance Fig. 1. The schema on top of subfigure (a) is claimed to be a more

Reverse Engineering User Interfaces 343

expressive but equivalent version of the schema on the right of subfigure (b), the
latter representing the information contents of the electronic form on the left of
subfigure (b). Two questions naturally arise: (1) how has the schema with entity
types Department, Employee, Clerk and Worker been produced from the sole
Employee aggregate and (2) what guarantee do we have that both structures are
equivalent?

Fig. 6 illustrates two important operators in the context of user interface
Reverse engineering, namely attribute to entity type mutation and upward inher-
itance. Both are reversible or semantics preserving, so that they can be applied
from left to right and from right to left. The first one (T1) transforms an entity
type into an equivalent attribute (and conversely). The second transformation
(T2) integrates the subtypes of an entity type as complex attributes of the latter
(and conversely). They lack some necessary pre- and post-conditions to be fully
semantics preserving, but they are sufficient considering the scope of this paper.

When applied successively to the schema of Fig. 1(a), transformation T1 (on
entity type Department) and transformation T2 (on subtypes Clerk and Worker)
yield the schema of Fig. 1(b). Since the transformations are semantics-preserving,
their inverse can be applied to the schema of Fig. 1(b), which is transformed in
that of Fig. 1(a). This simple scenario illustrates the use of transformations
in the Conceptualization process. It also shows how the expressive schemas of
Fig. 3(c) can be extracted from raw physical schemas of Fig. 3(b) by a chain of
semantics-preserving transformations.

Besides, ER schemas, be they conceptual or logical, can be given a formal
semantics in several ways. Fig. 1(a) suggests an approach based on an ex-
tended NF2 relational model. This semantics makes it easy to demonstrate the
equivalence of two schemas by building a chain of algebraic operators, such as
project/join and nest/unnest [7]. This formal framework is essential to evaluate
the applicability of transformation in specific contexts, notably to identify miss-
ing parts in pre-conditions. For example, the functional dependency DeptNbr →
Location in Fig. 1(b) is a part of the pre-condition to recover the Department
entity type. Should this property be missing, the resulting schema would have
been different (as suggested by Fig. 6(a)).

Fig. 6. T1 (a) and T2 (b), variants of two (almost) semantics-preserving
transformations

344 R. Ramdoyal, A. Cleve, and J.-L. Hainaut

6 Tool Support

The RAINBOW Tool Kit is a user-oriented development environment, intended
to assist end-users and analysts in the definition and validation of database
requirements through prototyping. It therefore supports the first steps of our
approach by offering ready-to-use widgets and mapping rules with the ER model.
The tool kit interacts with the repository of DB-Main, a database engineering
CASE Tool [31] providing all the necessary functionalities to support a complete
database design process (from conceptual analysis to DDL code generation).
It provides transformation tools and supports database Reverse engineering.
The interaction between these tools allows one to cover the whole database
engineering process from both the end-user and the analyst perspectives.

7 Concluding Remarks

7.1 Contributions

This paper has presented a comprehensive interactive approach to bridge
the gap between end-users and analysts during the requirements analysis phase
of database engineering. This approach supports the elicitation and validation of
static data requirements with end-users, while overcoming several limitations of
existing prototyping methods. It relies on the expressiveness and understandabil-
ity of form-based user interfaces, used jointly with tailored Reverse engineering
techniques to acquire data specifications from existing artifacts. We offer a very
simple interface model, inspired by high level abstract models such as UsiXML
[32]. Since any interface widget dedicated to data representation can be expressed
using these basic components, limiting the number of available widgets appears
to ease the user interaction without restricting it. The process of drawing and
specifying the interfaces takes in account possible labeling variations, and offers
an incremental and flexible enrichment of the underlying data models.

The RAINBOW approach lies within broader perspectives, such as the Re-
Quest Framework. While offering a precious user empowerment and involvement
in the data requirements elicitation, it provides an expressive and interactive part
of user requirements thanks to the RAINBOW Tool Kit and its connection to
DB-Main. The requirements are materialized as a documented application do-
main (the conceptual model) and a documented database (DDL, queries, etc.).
The simple yet operational generated prototype can serve as a basis for further
application development over the database.

7.2 Limitations and Future Work

Although our approach addresses a significant subset of data requirements, it
does not cover all of its aspects, typically the dynamic ones. Therefore, our
approach does not replace more traditional task and information analysis ap-
proaches, but rather complements them. For instance, the form-based graphical
representation of the underlying data model can be used during interviews to

Reverse Engineering User Interfaces 345

stimulate the discussion. As for the generated prototype, it can be used during
the task analysis to capture real-time use cases and define the expected behav-
ior of the system. In addition, analyzing how the tasks are performed using the
prototype in comparison to the legacy information system (if any), can help
to support the Reverse engineering of existing artifacts and even induce more
general considerations on the definition of the target information system.

This work assumes that end-users are able, with proper training, to represent
simple and intuitive concepts. However, while limiting the approach to basic
data structures can be seen as a “positive” simplification, we intend to push our
investigation further to allow the users to also express complex structures such
as temporal or semi-structured data.

A more general issue concerns the feasibility of involving different levels of
users in our approach. A software engineering process may indeed involve stake-
holders ranging from casual (or even novices) to experts users, such as analysts,
designers or programmers, all of which may lack proper expertise in Database
engineering. Still, to ensure the quality of the requirements, none of these users
can be cast away, and each of them should be provided with adequate means to
express their needs. We therefore intend to continue working on our approach
and our tools, in order to make them even more intuitive and adaptative, ac-
cording to the category of all our potential users.

Acknowledgments. This work was carried out during the tenure of an ERCIM
“Alain Bensoussan” Fellowship. Partial support was also received from the Ré-
gion Wallonne (through the ReQuest project) and the Interuniversity Attrac-
tion Poles Programme of the Belgian State, Belgian Science Policy (through the
MoVES project).

References

1. Rosson, M.B., Carroll, J.M.: Usability Engineering: Scenario-Based Development of
Human-Computer Interaction. Morgan Kaufmann, San Francisco (October 2001)

2. Fischer, G.: Beyond ‘couch potatoes‘: From consumers to designers and active
contributors. First Monday 7 (2002)

3. Vosburgh, J., Curtis, B., Wolverton, R., Albert, B., Malec, H., Hoben, S., Liu, Y.:
Productivity factors and programming environments. In: ICSE, pp. 143–152 (1984)

4. Brogneaux, A.F., Ramdoyal, R., Vilz, J., Hainaut, J.L.: Deriving user-requirements
from human-computer interfaces. In: Proc. of 23rd IASTED Int’l Conf., pp. 77–82
(2005)

5. Vilz, J., Brogneaux, A.F., Ramdoyal, R., Englebert, V., Hainaut, J.L.: Data con-
ceptualisation for web-based data-centred application design. In: Dubois, E., Pohl,
K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 205–219. Springer, Heidelberg (2006)

6. Batini, C., Ceri, S., Navathe, S.B.: Conceptual database design: an Entity-
relationship approach. Benjamin-Cummings Publishing Co., Inc. (1992)

7. Hainaut, J.L.: The transformational approach to database engineering. In: Läm-
mel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 95–143.
Springer, Heidelberg (2006)

346 R. Ramdoyal, A. Cleve, and J.-L. Hainaut

8. Pizano, A., Shirota, Y., Iizawa, A.: Automatic generation of graphical user in-
terfaces for interactive database applications. In: Proc. of the 2nd Int’l Conf.
on Information and Knowledge Management (CIKM 1993), pp. 344–355. ACM,
New York (1993)

9. Shoval, P., Shiran, S.: Entity-relationship and object-oriented data modeling-an
experimental comparison of design quality. Data Knowl. Eng. 21(3), 297–315 (1997)

10. Choobineh, J., Mannino, M.V., Tseng, V.P.: A form-based approach for database
analysis and design. Communications of the ACM 35(2), 108–120 (1992)

11. Terwilliger, J.F., Delcambre, L.M.L., Logan, J.: The user interface is the conceptual
model. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp.
424–436. Springer, Heidelberg (2006)

12. Rollinson, S.R., Roberts, S.A.: Formalizing the informational content of database
user interfaces. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS,
vol. 1507, pp. 65–77. Springer, Heidelberg (1998)

13. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proc.
of the Conf. on The Future of Software Engineering, pp. 35–46. ACM Press,
New York (2000)

14. Davis, A.M.: Operational prototyping: A new development approach. IEEE
Softw. 9(5), 70–78 (1992)

15. Kösters, G., Six, H.W., Voss, J.: Combined analysis of user interface and domain
requirements. In: Proc. of the 2nd Int’l Conf. on Requirements Engineering, pp.
199–207. IEEE Computer Society, Los Alamitos (1996)

16. Yang, F., Gupta, N., Botev, C., Churchill, E.F., Levchenko, G., Shanmugasun-
daram, J.: WYSIWYG development of data driven web applications. Proc. of the
VLDB Endowment 1(1), 163–175 (2008)

17. Ravid, A., Berry, D.M.: A method for extracting and stating software requirements
that a user interface prototype contains. Requir. Eng. 5(4), 225–241 (2000)

18. Chikofsky, E.J., Cross, J.H.: Reverse engineering and design recovery: A taxonomy.
IEEE Software 7(1), 13–17 (1990)

19. Hall, P.A.V.: Software Reuse and Reverse Engineering in Practice. Chapman &
Hall, Ltd., Boca Raton (1992)

20. Hainaut, J.L.: Introduction to database reverse engineering. LIBD Publish (2002),
http://www.info.fundp.ac.be/~dbm/publication/2002/DBRE-2002.pdf

21. Tseng, V.P., Mannino, M.V.: Inferring database requirements from examples in
forms. In: Proc. of the 7th Int’l Conf. on ER Approach, pp. 391–405 (1988)

22. Ram, S.: Deriving functional dependencies from the entity-relationship model.
Commun. ACM 38(9), 95–107 (1995)

23. Yao, H., Hamilton, H.J.: Mining functional dependencies from data. Data Min.
Knowl. Discov. 16(2), 197–219 (2008)

24. De Marchi, F., Petit, J.M.: Semantic sampling of existing databases through infor-
mative armstrong databases. Information Systems 32(3), 446–457 (2007)

25. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: Proc. of IJCAI 2003 Workshop on Information
Integration on the Web (IIWeb 2003), pp. 73–78 (2003)

26. Winkler, W.E.: String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage. In: Proc. of the Section on Survey Research
Methods, pp. 472–477 (1990)

http://www.info.fundp.ac.be/~dbm/publication/2002/DBRE-2002.pdf

Reverse Engineering User Interfaces 347

27. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge
(1998)

28. Jiménez, A., Berzal, F., Cubero, J.C.: Mining induced and embedded subtrees in
ordered, unordered, and partially-ordered trees. In: An, A., Matwin, S., Raś, Z.W.,
Ślęzak, D. (eds.) ISMIS 2008. LNCS (LNAI), vol. 4994, pp. 111–120. Springer,
Heidelberg (2008)

29. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies
for database schema integration. ACM Computing Surveys 18(4), 323–364 (1986)

30. Spaccapietra, S., Parent, C., Dupont, Y.: Model independent assertions for inte-
gration of heterogeneous schemas. The VLDB Journal 1(1), 81–126 (1992)

31. DB-Main: The official website, http://www.db-main.be
32. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.:

Usixml: A language supporting multi-path development of user interfaces. In:
EHCI/DS-VIS, pp. 200–220 (2004)

http://www.db-main.be

Towards Automated Inconsistency Handling in
Design Models

Marcos Aurélio Almeida da Silva1,�, Alix Mougenot1,
Xavier Blanc1, and Reda Bendraou1

LIP6, UPMC Paris Universitas, France

Abstract. The increasing adoption of MDE (Model Driven Engineer-
ing) favored the use of large models of different types. It turns out that
when the modeled system gets larger, simply computing a list of incon-
sistencies (as provided by existing techniques for inconsistency handling)
gets less and less effective when it comes to actually fixing them. In fact,
the inconsistency handling task (i.e. deciding what needs to be done in
order to restore consistency) remains largely manual. This work is a step
towards its automatization. We propose a method for the generation of
repair plans for an inconsistent model. In our approach, the depth of the
explored search space is configurable in order to cope with the underlying
combinatorial characteristic of this problem and to avoid overwhelming
the designer with large plans that can not be fully checked before being
applied.

1 Introduction

As an effect of the increasing adoption of MDE (Model Driven Engineering),
large-scale industrial projects are currently being developed by hundreds of
people and make use of several models instance of different meta-models (e.g.
SysML, UML, Petri nets, architecture, work, business process) [1]. In such a
context, it turns out that inconsistencies that may exist in models have been re-
vealed as one of the main development problems [2] and that is why developing
techniques for inconsistency management becomes so important.

A model is considered to be inconsistent if and only if it contains undesirable
patterns, which are specified by the so called inconsistency rules [3]. Even if there
are several variants of inconsistency rules such as well-formedness rules of [4],
structural rules of [5], detection rules of [6], syntactic rules of [7], and inconsis-
tency detection rules of [8], approaches that deal with detection of inconsisten-
cies irremediably consists in browsing the model in order to detect undesirable
patterns. However, as defined by [4], inconsistency management not only con-
sists in the detection of inconsistencies but also in their handling. Indeed, once
inconsistencies have been detected on models, they have to be resolved.

The work we present in this paper focuses on the handling of inconsistencies,
which consists in automating the modification of a model in order to make
� This work was partly funded by ANR project MOVIDA Convention N◦ 2008 SEGI

011.

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 348–362, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards Automated Inconsistency Handling in Design Models 349

it consistent again. The first challenge we address, in order to make a model
consistent, is to identify the potential changes that can be applied to fix detected
inconsistencies. Regarding this challenge, Nentwich has clearly shown that, for
any given set of inconsistencies, there exists an infinite number of possible ways
of fixing it [9]. Therefore for efficiency reasons, this challenge is more related to
narrowing the scope of the identification rather than to enumerate all possible
resolutions.

The second challenge we address is to measure the impact of a given identified
change. Indeed, as Mens has shown in [6], a change that fixes one inconsistency
may introduce new ones and therefore will be counter productive. This second
challenge consists then in filtering out non productive changes in order to keep
only productive ones.

The last challenge we address consists in computing the execution order of a
set of productive changes that do solve a set of inconsistencies and that do not
introduce new ones. This last challenge consists in choosing an appropriate order
of execution of the potential productive changes and is therefore a combinatorial
challenge. To sum up, we argue that the handling of inconsistencies aims at
providing what we call repair plans, which are sequences of concrete changes to
be performed over a given model and that fix existing inconsistencies without
introducing new ones.

In this paper we propose an approach for automatic generation of repair plans.
Our main motivation is to assist the developers while they build their models.
We argue that in such context being able to generate partial short plans very
quickly is a desirable feature.

Our proposal is based on Praxis[8], our model inconsistency detection ap-
proach. In Praxis, the model is represented as the sequence of actions executed
by the user in order to build it. The repair plans we propose to generate are
then sequences of Praxis actions. The key contribution of our work is leveraging
a search algorithm that is optimized to find the best plan (the shortest plan that
fixes the bigger number of inconsistencies) by exploring a limited and config-
urable subset of all possible plans. Our approach has been prototyped into the
Praxis environment that runs on top of the Eclipse EMF plataform. It proposes
repair plans to UML developers while they build their UML models.

This paper is organized as follows: in Section 2, we present a motivating
example of the inconsistency handling task. In Section 3, we present the Praxis
formalism. In Section 4, we present our approach for automated inconsistency
handling. In Section 5, we present our prototype implementation of this approach
and the runtime results in applying these techniques in a series of randomly
generated UML2 models. In Section 7, we conclude this paper after the section
6 that presents the related works.

2 Motivating Example

This section illustrates the problem of inconsistency handling in an example. All
models in this paper are instances of the subset of the UML2 meta-model[10]
displayed in Figure 1.

350 M.A. Almeida da Silva et al.

Fig. 1. A simplified fragment of the UML2 meta-model

The root concept of UML21 is the one of model element that is represented by
the meta-class Element. Everything in a UML2 model is an instance of Element.
An Element may contain a set of other elements. The NamedElement meta-
class represents the elements that have a name (stored in the string attribute
name). A Namespace is a named model element that serves as a space of names
for the named elements it contains. Three classes inherit from Namespace:
Package, Class and Operation. A Package is a container for other elements.
A Class represents the object-oriented concept of a class of objects and serves
as a namespace for its operations. An Operation represents an operation that is
provided by the instances of a class and represents a namespace for its param-
eters. Every Parameter has a direction of one of four kinds: in, out, inout and
return.

Figure 2 presents a UML model used as an example in this paper. This model
contains a package called Azureus that owns two classes: Client and Server.
The Server class defines an operation called send(). Figure 3 presents this model
after some changes have been done on it in order to make it inconsistent. Those
changes break the following well-formedness rule defined in the UML2 specifica-
tion: “All the members of a Namespace are distinguishable within it”.

In the changed model, a new class named Client has been added. This creates
an inconsistency since there is now two classes with the same name. In the rest of
this paper, this first inconsistency is named namespace-1. In the changed model,
a new operation named send() has been added in the class Server. This creates
another inconsistency since there is now two operations with the same name. In
the rest of this paper, this second inconsistency is named namespace-2.

Towards Automated Inconsistency Handling in Design Models 351

Fig. 2. Sample UML2 model Fig. 3. Sample modified UML2 model

The first step in handling these inconsistencies is enumerating the repair
changes that could solve the detected inconsistencies (i.e. deciding how to solve
them). In this example, at least four sample repair changes1 can be enumerated:

1. Rename one of the Client classes to class1.
2. Rename one of the Client classes to Server.
3. Rename one of the send() operations to operation1().
4. Rename one of the send() operations to operation2().

Each of the four repair changes fix some particular inconsistency by renaming
one of the offending elements: repair changes 1 and 2 fix namespace-1 and repair
changes 3 and 4 fix namespace-2. The next step is thus to analyze what are the
impacts of each repair change. Notice that the repair change 2 introduces a new
inconsistency of the same kind by making the old class Client indistinguishable
with the the old class Server (let us name this inconsistency namespace-3).

Finally, a analyze has to be done in order to decide when each of the repair
change has to be executed, i.e. which change will be executed to fix each in-
consistency and in which order. For example, if the repair changes 2 and 4 are
executed in this order, this will solve both original inconsistencies, but will lead
to a new one: namespace-3. This analyze will result that, for this sample, four
possible repair plans can be executed: 1− 3, 1− 4, 3− 1, and 4− 1.

3 The Praxis Formalism

As described in [8], in the Praxis formalism, models are represented as sequences
of elementary actions needed to construct each model element. Each action is

1 Notice that these are just four among the infinite number of repair changes that
actually solve one of the inconsistencies in the model. For instance, for every string
s different from Client the plan “Rename one of the Client classes to s.” is a valid
one.

352 M.A. Almeida da Silva et al.

create(p1,package,1)
addProperty(p1,name, ‘Azureus’,2)
create(c1,class,3)
addProperty(c1,name, ‘Client’,4))
create(c2,class,5)
addProperty(c2,name,‘Server’,6)
addReference(p1,ownedMember,c1,7)
addReference(p1,ownedMember,c2,8)
addReference(p1,ownedElement,c1,9)
addReference(p1,ownedElement,c2,10)
create(o1,operation,11)
addProperty(o1,name, ‘send’, 12)
addReference(c2, ownedProperty, o1, 13)
addReference(c2, ownedElement, o1, 14)

Fig. 4. Model construction operation sequence

annotated with a timestamp which indicates the moment when it was executed
by the user. The actions are inspired by the MOF reflective API [11].

The create(me, mc, t) and delete(me, t) actions respectively create and delete
a model element me, that is an instance of the meta-class mc at the times-
tamp t. The addProperty(me, p, value, t) and remProperty(me, p, value, t) add
or remove the value value to or from the property p of the model element
me at timestamp t. Similarly, the actions addReference(me, r, target, t) and
remReference(me, r, target, t) add or remove the model element target to or
from the reference r of the model element me at timestamp t.

Figure 4 presents the sequence of basic actions that construct the model pre-
sented in Figure 2. The action at timestamp 1 creates the package p1. The second
action sets its name to Azureus. The actions with the timestamps 3 and 4 and
those withe the timestamps 5 and 6 create the classes c1 and c2 and set their
names to Client and Server respectively. The actions with the timestamps 7
and 10 state that both classes are owned by the package p1. The actions with
the timestamps 10 and 11 create the operation o1 whose name is send and the
actions with timestamp 13 and 14 add it to the class c2.

Notice that this sequence is not unique, in the sense that there are usually
many sequences that construct the same model. For example, changing the places
of the actions with timestamps 7 and 10 and the actions with the timestamps
11 and 14 would result in the same model.

3.1 Inconsistency Detection in Praxis

In Praxis, inconsistencies are detected by the means of logic rules over the se-
quence of model construction actions that identify undesired patterns in it. The
actions in the sequence are referenced by the means of logical predicates (ex-
pressed in Prolog in our prototype) that match them. For example, the Prolog

Towards Automated Inconsistency Handling in Design Models 353

namespaceOCL1(ME1, ME2) :-

lastAddReference(NS,ownedmember,ME1),

lastAddReference(NS,ownedmember,ME2),

ME1 \== ME2,

not(distinguishable(ME2,ME1)).

Fig. 5. Inconsistency detection rule in Praxis

query create(X, package, 1) would result in the answer X=p1 in the model
represented in Figure 4.

As syntactic shortcuts, the ‘last’ prefix denotes actions that are not followed
by other actions canceling their effects. Moreover, for each predicate referring
to a Praxis operation, there is a similar one without the timespamp parameter.
For instance, a lastCreate(me, class) operation is defined as a create(me,
class,t) operation that is not followed by a delete(me,t) operation; and a
lastAddProperty(me, name, val) operation is defined as a addProperty(me,
name, val,t) operation for which the value of the name property of me in the
model corresponds to val.

Figure 5 displays an example of inconsistency detection rule. This rule defines
the predicate namespaceOCL1(ME1, ME2) that detects pairs of model elements
ME1 and ME2 that are owned by the same namespace NS but are not distin-
guishable. The rules defining the predicate distinguishable(ME1, ME2) were
omitted for the sake of brevity. Let us just consider that it holds if and only if
ME1 and ME2 are instances of different meta-classes or if they are instances the
same meta-classes but have different names.

4 An Approach for Inconsistency Handling in Praxis

In Praxis, it is worth to assume that model inconsistencies are introduced by
user’s actions that violate some of its constraints or by not executing actions
required by these constraints.

In order to generate a repair plan to fix these inconsistencies (either by un-
doing undesired actions or by adding omitted ones), our approach answers the
three following questions (i) how to detect the actions that caused inconsisten-
cies? (ii) how to enumerate the possible ways of changing a given inconsistent
action? and (iii) how to generate a repair plan for the model sequence from the
list of possible ways of changing the model?

4.1 How to Detect the Actions That Caused Inconsistencies?

Our approach to this problem is to adapt the inconsistency rules presented in
Section 3.1 so that, instead of pointing out the problematic elements in the
model they are going to identify the problematic actions which have (probably)
caused the problem.This is done by the means of the cause detection rules.

354 M.A. Almeida da Silva et al.

namespaceOCL1(Cause) :-

lastAddReference(NS,ownedmember,ME1, TS1),

lastAddReference(NS,ownedmember,ME2, TS2),

lastAddProperty(ME1, name, NM1, TS3),

lastAddProperty(ME2, name, NM2, TS4),

ME1 \== ME2,

not(distinguishable(ME2,ME1)),

Causes = [addReference(NS,ownedmember,ME1, TS1),

addReference(NS,ownedmember,ME2, TS2),

addProperty(ME1, name, NM1, TS3),

addProperty(ME2, name, NM2, TS4)],

member(Cause, Causes).

Fig. 6. Cause detection rule in Praxis

Figure 6 presents the cause detection rule written from the inconsistency de-
tection rule initially displayed in Figure 5. This new rule identifies four possible
causes for the detected inconsistencies: the actions that added the model ele-
ments ME1 or ME2 to the same namespace NS or the actions that defined their
names. Notice that, for this rule, the version of the Praxis predicates with explicit
timestamps has been used because there is a need to identify unambiguously the
action that caused the inconsistency.

In most cases a trivial cause detection rule can be generated from an incon-
sistency detection rule: just point all actions used to prove an inconsistency as
possible causes of it. This is a possible strategy, although suboptimal, since not
all involved actions are necessarily responsible for an incoherence. For example,
let us take the following well-formedness rule from the UML2 metamodel: “The
visibility of all features owned by an interface must be public.”

This rule is specified as the following cause detection rule:

interfaceOCL1(Cause) :-

lastCreate(X,interface),

lastAddReference(X,feature, F),

lastAddProperty(F,visibility,V,TS),

not(V=’public’),

Cause = addProperty(F,visibility,V, TS).

This rule states that if X is an interface and F is one of its features and its
visibility is not public then the cause of this inconsistency is the action that
defines its visibility. For each inconsistency of such kind that is proved, three
actions need to be inspected: a create, an addReference and an addProperty;
although only one of them is actually responsible for the inconsistency. Therefore,
our manually written rule would prune two thirds of the search space, by avoiding
looking for repair plans that fix actions that did not caused the problem.

Towards Automated Inconsistency Handling in Design Models 355

4.2 How to Enumerate the Possible Ways of Changing a Given
Inconsistent Action?

We propose to use generator functions that determine a set of lists of actions
that cancel the effects of a given inconsistency causing action in the model. These
manually written rules are mostly independent of the cause detection rules, since
they do not have to consider impact of the changes they propose, neither to other
inconsistencies that might exist in the model nor to the set of cause detection
rules.

Let us analyze the following partial definition of the generator function:

generate(addProperty(E, name, OldName, TS),

[remProperty(E,name, OldName),

addProperty(E, name, NewName)]) :-

lastCreate(E, C),

randomNameGenerator(C, NewName).

generate(addProperty(E, visibility, ’public’, TS),

[remProperty(E, visibility, ’public’),

addProperty(E, visibility, ’private’)]).

generate(addProperty(E, visibility, OldVisibility, TS),

[remProperty(E, visibility, OldVisibility),

addProperty(E, visibility, ’public’)])

:- not(OldVisibility=’public’).

The first rule cancels inconsistencies in a addProperty action to
the name field of a model element E. It says that every time a
addProperty(E, name, OldName, TS) action is a source of inconsistency there
is a simple plan that may fix it: removing the old value of the property by execut-
ing the action remProperty(E,name, OldName) and setting its name to another
value NewName by the means of the action addProperty(E, name, NewName).

Observe that this new name is generated using a random name generator
accessible by the predicate randomNameGenerator(C, Name) such that it gen-
erates a name Name taking the meta-class C as a reference (e.g. generating a
metaclassX name for a metaclass named metaclass).

The second and third rules fix inconsistencies in the visibility property
of a model element E: if it was public the second rule suggests changing it to
private, otherwise the third rule changes it to public.

As it is shown in [12], brute force generation of choices is not scalable, there-
fore, a well-written generator function needs to be custom-tailored in order to
reduce the number of proposed choices while not introducing obvious inconsis-
tencies (i.e. removing all values of a non-optional property).

4.3 How to Generate a Repair Plan for the Model Sequence?

The Iterative Deepening Depth-first Search Strategy (IDDFSS) [13] is a depth-
first tree search algorithm that allows exploring the tree of possible repair plans

356 M.A. Almeida da Silva et al.

by taking into consideration the first suggested change for the first cause of
inconsistency and going thus deeper and deeper in the search three until ei-
ther a consistent model is found or until there is no possible action and thus
backtracking.

The case when no action is possible happens when the algorithm reaches the
maximum allowed depth in the search tree (i.e. when a previously defined maxi-
mum number n of execution steps has been reached, this is called a depth-limited
search). This strategy is therefore capable of finding any repair plans that can
be constructed after executing at most n steps. Indeed, if no complete repair
plan exists in this limited search space, partial plans may also be constructed
by recording the best (e.g. the one that generates a final model with less incon-
sistencies) plan found during the search.

In IDFSS, the maximum number of steps n is iteratively incremented, e.g.
if the max number of steps is defined to be m, then a depth-limited search
will be executed for every n between 1 and m until a repair plan that fixes all
inconsistencies is found. This makes sure that the final plan was obtained with
the least number of steps as possible.

On top of IDFSS we propose to adopt an heuristics that decides the next
action to be fixed by ordering the inconsistency causes from the most recent
to the least recent one. This design decision is based on the assumption that
the user tries to maintain the model as consistent as possible at most of the
time. Taken into account that inconsistencies are introduced in the model by
actions executed later in the design process, it is reasonable to assume that the
actions that were executed more recently are more likely to have introduced new
inconsistencies that were not there before.

Finally, if there exists a repair plan that can be constructed with less than m
execution steps the IDDFSS algorithm is guaranteed to find it. The remaining
problem is thus determining the optimal value of m that is going to find a
complete repair plan.

In fact, this problem is simpler then it seems at first sight since defining a
precise value for m is not necessary. The value of m just needs to be set to be big
enough to allow us to find a solution. Choosing a value that is bigger than needed
has no impact on the actual execution time, since the depth-limited search will
be repeated for all values from 1 to m until a complete solution is found, i.e. if a
complete repair plan is found for some n = k before reaching m the rest of the
possible depths will not be tested.

4.4 Running Example

This section highlights our approach on the sample model displayed in Figure 3.
Let us suppose that its model sequence is composed by the sequence displayed
in Figure 4 appended with the following sequence:

create(c3, class, 15)
addReference(p1, ownedMember, c3, 16)
addReference(p1, ownedElement, c3, 17)
addProperty(c3, name, ‘Client’, 18)

Towards Automated Inconsistency Handling in Design Models 357

create(o2, operation, 19)
addReference(c2, ownedProperty, o2, 20)
addReference(c2, ownedElement, o2, 21)
addProperty(o2, name, ‘send’, 22)

This sequence defines an inconsistent model, because c2 and c3 and o1 and o2
and indistinguishable in their respective namespaces. Let us detail the execution
of one iteration of depth-limited search in the IDFSS algorithm in which the
depth of the search tree is limited to 2.

Step 1
At this point, the cause detection rules are used to compute the list of causes
of inconsistencies in the model. The list is organized in the inverse order of
timestamps:

addProperty(o2, name, send, 22)

addReference(c2, ownedmember, o2, 21)

addProperty(c3, name, ’Client’, 18)

addReference(p1, ownedmember, c3, 17)

addReference(c2, ownedelement, o1, 14)

addProperty(o1, name, send, 12)

addReference(p1, ownedmember, c1, 7)

addProperty(c1, name, ’Client’, 4)

The search tree is going to be explored in a depth-first search, this means that
each step fixes the possible causes of inconsistencies from the most recent to
the older one. If no consistent model was found after exploring one possibility,
the next cause should be tried. At this point, the first cause of inconsistency
(addProperty(o2, name, send, 22)) is taken. The generator function is then
used to obtain a list of possible actions to fix it.

In this case, the generator function returns only one possibility composed of
two actions:

remProperty(o2, name, send, 23)

addProperty(o2, name, operation1, 24)

Those actions are then appended to our model sequence.

Step 2
Like in the step 1, this step starts by computing the new ordered list of incon-
sistencies. The following list is then computed:

addProperty(c3, name, ’Client’, 18)

addReference(p1, ownedmember, c3, 17)

addReference(p1, ownedmember, c1, 7)

addProperty(c1, name, ’Client’, 4)

Then, this process process is repeated by using the generator function in order to
fix the first cause of inconsistency (addProperty(c3, name, ’Client’, 18))
and getting the following list of actions:

358 M.A. Almeida da Silva et al.

remProperty(c3, name, ’Client’, 25)

addProperty(c3, name, class1, 26)

At this point there are no more inconsistencies left on the model sequence so,
the final repair plan is:

remProperty(o2, name, send, 23)

addProperty(o2, name, operation1, 24)

remProperty(c3, name, ’Client’, 25)

addProperty(c3, name, class1, 26)

Two depth levels were explored in the search tree and it was enough to find a
repair plan that fixed all inconsistencies in the model. If at the end of this limited
exploration no solution is found, the execution would restart from scratch, but
would explore a larger search space (e.g. a search limited to depth 3) and so on.

5 Prototype Implementation

In [8], we present the Praxis prototype. It is composed of two components: the
Sequence Builder (which integrates to Eclipse EMF Framework and builds the
model sequence from the actions executed by the user while creating a model)
and the Check Engine (which is responsible for detecting inconsistencies).

This prototype has been extended in order to support the generation of repair
plans. In particular, the Model Fixing Agent component has been integrated
within Praxis. This component is an intelligent agent that proposes real time
repair plans in order to fix the inconsistencies found in the model. The core
functionalities of this component is entirely implemented in a set of Prolog rules
that are packaged into an Eclipse Plug-in that interfaces with the existing Praxis
plug-ins.

Figure 7 displays a screenshot of this integration. In (1) we show the class
diagram presented in Figure 3 drawn using the Papyrus UML Tool integrated to
Praxis. While the user is building the model, the Sequence Builder component
in Praxis builds the sequence of actions. The Model Fixing Agent then watches
this sequence and checks for inconsistent actions in it regularly. In (2) we see
that it displays the list of inconsistencies found in the current model.

After detecting and showing the list of inconsistent actions, the Model Fixing
Agent computes a repair plan for them. In (3) the four actions needed to repair
the current model are listed in the order they need to be executed.

5.1 Case Study

Our approach has been stress tested with models that have been automatically
generated by a mathematically grounded random model sampler [14]. These tests
were executed with models of different sizes (varying from 20 to 10,000 model
elements), and using different depths in the explored search space (1, 5, 10 and
15 levels) to show the impact of this parameter on the plan generation time

Towards Automated Inconsistency Handling in Design Models 359

Fig. 7. Screenshot of integration with Praxis

Fig. 8. Timing results in seconds Fig. 9. Fixed inconsistencies results

and in the number of fixed inconsistencies. We manually implemented a subset
of 4 of the UML2 well-formedness rules as cause detection rules and a set of 7
generator functions. Each test was executed 10 times and the average time was
recorded.

Figure 8 shows the timing results of our tests. The graph clearly shows the
exponential characteristic of our problem. Notice that the ID1 line (the results
for exploring just one level in the search tree) is equivalent to current existing
inconsistency detection approaches that are only capable of suggesting fixes for
one inconsistency at a time.

Figure 9 shows the relative number of inconsistencies that is solved by our
approach for each model for each maximum level of exploration. This graph

360 M.A. Almeida da Silva et al.

shows that the deeper is the level of the exploration the bigger is the proportion
of solved inconsistencies. It also shows that for each level of exploration, there
is a number of inconsistencies, such that, beyond that, only partial repair plans
can be found.

6 Related Work

In [12], an approach for fixing inconsistencies in UML models is presented. In
short, this approach uses a model profiler that monitors the parts of the model
that were touched when consistency rules are evaluated. Those parts are then
considered to be natural candidate for fixing actions when the rules are eval-
uated to be inconsistent. For each inconsistency, the approach explores all the
possibilities of changing the monitored model parts in order to make the model
consistent. The identification of possible changes are guided by the choice gen-
eration functions. The choices that turn the model into a consistent state are
then presented to the user. Instead of trying to automatically identify the causes
of the inconsistencies, our approach asks for their definition thanks to Cause
detection rule. This definition may be automatically generated from existing in-
consistency detecting rules, however, from our experience, it seems that is needs
to be manually optimized afterwards. The choice generation functions of Egyed’s
approach inspired our generator functions. However, instead of generating just
options for changing the model graph, our generator functions deliver alternative
fixing plans for given actions in the model sequence.

In [9], Nentwich et al describe a framework for repairing inconsistent docu-
ments in a distributed setting. Their approach consists of defining a mapping
from the logical language used to describe the inconsistency rules into a set of
repair actions that, after being executed, will make the model consistent again.
In [6], Mens et al present an approach for inconsistency management on top of
graph transformation tool AGG. They detect the inconsistencies in the model
by the means of the inconsistency detection rules (that tags model elements as
conflicted) and fix inconsistencies by the means of the resolution rules (for each
possible resolution of every kind of inconsistency there is one rule that describe
how should be the model after fixed). They use then a critical pair analysis algo-
rithm to infer dependencies between rules and aid the user in the task of fixing
the model. Both approaches automate the process of defining how to deal with
the inconsistency by proposing a set of actions that fix each of them, and they
automate the definition of what are the impacts of the suggested repairs: they
detect inconsistencies among different plans and thus discourage their applica-
tion at the same time. However, the decision on the order of the execution of
the proposed repair actions (or plans) is left to the user. In our proposal, we
cope with this problem by exploring the set of generated choices and actually
delivering a plan of execution of the proposed actions.

It is still noticeable that, as pointed out by [12], the use of choice functions
reduces significantly the programming effort when compared to the resolution
rules approach used in [6]. In that case, the number of “repair rules” is bounded

Towards Automated Inconsistency Handling in Design Models 361

by O(#R ∗ #LT) (where #R is the number of consistency rules and #LT is
the number of location types) where in our approach it reduces to O(#LT).
Notice also that the generator functions are manually custom-tailored to the
syntactical constraints of the particular meta-model. This avoids the problem of
non-scalability of approaches that compute all possible choices (such as [9] and
[15]) as pointed out in [12].

7 Conclusion

In this paper we propose an approach for obtaining automatic generated repair
plans for a given inconsistent model. Our approach is base on three main mech-
anisms, which are the Cause detection rules, the Generator functions and the
search algorithm. Cause detection rules are used to identify actions that make
the model inconsistent. Once those actions are identified, they can be repaired.
It should be noted that Cause detection rules are directly derived from inconsis-
tency detection rules employed in Praxis and can substitute them. Even if, for
the sake of efficiency, they currently have to be manually written, they should
be automatically generated from detection rules. This automatical generation is
however left as as future work. Generator functions are used to dive the genera-
tion of repair actions and are therefore loosely coupled with the Cause detection
rules. The search algorithm is used to efficiently generate repair plans, which
are composed of sequence of repair action. It is fitted to build repair plans that
start by fixing the most recent causes of inconsistencies. This algorithm is also
parameterizable in such a way that the size of the search space to be explored
during its execution can be decided beforehand.

Thanks to these three mechanisms, the modeler can, besides obtaining repair
plans that correct all inconsistencies in his model, get partial plans that start by
proposing fixes to the inconsistencies that were more recently introduced in the
model. We argue that this capacity helps the developer when correcting models
that have too much inconsistency and which would therefore require too much
time to compute a complete repair plan.

Our approach is integrated into the existing Praxis environment on top of
Eclipse EMF and thus is accessible to modelers using any compatible EMF
based Eclipse UML Editor (such as Papyrus, that was used in this study). We
currently elaborating a empirical study in order to measure the effect of our
approach for industrial developers who works on UML models.

References

1. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5),
19–25 (2003)

2. Hessellund, A., Czarnecki, K., Wasowski, A.: Guided development with multiple
domain-specific languages. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 46–60. Springer, Heidelberg (2007)

3. Balzer, R.: Tolerating inconsistency. In: Proc. Int’ Conf. Software engineering
(ICSE 1991), vol. 1, pp. 158–165 (1991)

362 M.A. Almeida da Silva et al.

4. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering:
Survey and open research issues. In: Handbook of Software Engineering and Knowl-
edge Engineering, pp. 329–380. World Scientific, Singapore

5. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description
logics to maintain consistency between UML models. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg
(2003)

6. Mens, T., et al.: Detecting and resolving model inconsistencies using transformation
dependency analysis. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 200–214. Springer, Heidelberg (2006)

7. Elaasar, M., Brian, L.: An overview of UML consistency management. Technical
Report SCE-04-18 (August 2004)

8. Blanc, X., Mougenot, A., Mounier, I., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: Robby (ed.) Proc. Int’l Conf.
Software engineering (ICSE 2008), vol. 1, pp. 511–520. ACM, New York (2008)

9. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair
actions. In: Proc. Int’l Conf. Software Engineering (ICSE 2003), Washington, DC,
USA, pp. 455–464. IEEE Computer Society, Los Alamitos (2003)

10. OMG: Unified Modeling Language: Super Structure version 2.1 (January 2006)
11. OMG: Meta Object Facility (MOF) 2.0 Core Specification (January 2006)
12. Egyed, A., Letier, E., Finkelstein, A.: Generating and evaluating choices for fixing

inconsistencies in UML design models. In: Proc. ACM/IEEE Int’l Conf. Automated
Software Engineering (ASE 2008), pp. 99–108. ACM, New York (2008)

13. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Ed-
ucation, London (2003)

14. Mougenot, A., Darrasse, A., Blanc, X.: Uniform random generation of huge meta-
model instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 130–145. Springer, Heidelberg (2009)

15. Dam, K.H., Winikoff, M.: Generation of repair plans for change propagation. In:
Luck, M., Padgham, L. (eds.) AOSE 2007. LNCS, vol. 4951, pp. 132–146. Springer,
Heidelberg (2008)

Dynamic Metamodel Extension Modules to
Support Adaptive Data Management

Michael Grossniklaus1, Stefania Leone2,
Alexandre de Spindler2, and Moira C. Norrie2

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano
I-20133 Milano, Italy

grossniklaus@elet.polimi.it
2 Institute for Information Systems, ETH Zurich

CH-8092 Zurich, Switzerland
{leone,despindler,norrie}@inf.ethz.ch

Abstract. Databases are now used in a wide variety of settings resulting
in requirements which may differ substantially from one application to
another, even to the point of conflict. Consequently, there is no database
product that can support all forms of information systems ranging from
enterprise applications to personal information systems running on mo-
bile devices. Further, domains such as the Web have demonstrated the
need to cope with rapidly evolving requirements. We define dynamic
metamodel extension modules that support adaptive data management
by evolving a system in the event of changing requirements and show
how this technique was applied to cater for specific application settings.

1 Introduction

Nowadays, database systems support everything from enterprise applications to
personal information management on mobile devices. These systems vary greatly,
not only in terms of the scale, but also data management requirements, which
may differ dramatically from one application to another. Currently, database
products tend to dedicate themselves more or less explicitly to a given domain
with major vendors offering either a family of products or means for design-
time configurability. For example, the open-source database MySQL addresses a
segment of the database market that differs substantially from that of products
such as Oracle Database or IBM DB2, which were designed to support large-scale
enterprise applications. In contrast, MySQL was originally developed to support
Web applications and its kernel optimised for a subset of SQL to meet the
requirements of that domain. MySQL also provides less support for transactional
query processing since it is less relevant in typical Web applications.

In some cases, the requirements of one domain may even conflict with the re-
quirements of another, making it impossible for one database product to support
all domains. One reason for very different and even contradicting requirements
is the fact that some of the features that are desirable during the design and de-
velopment phase of a database application may be undesirable during operation.

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 363–377, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

364 M. Grossniklaus et al.

For example, features such as schema evolution and versioning facilitate proto-
typing but often have adverse effects on system performance and may not be
required for system operation. Moreover, many Web applications evolve rapidly
and as a result the requirements may change dramatically during the operation.

The need for adaptation has already been recognised by the database com-
munity [1] and various proposals exist for tailor-made data management [2].
Traditional DBMS tended to be monolithic in structure and static in functional-
ity. Over the last decades, there have been different approaches to allow a DBMS
to be tailored to the requirements of particular applications and settings. The
general goal was to find ways in which database systems could be made exten-
sible and more configurable. While most of these approaches provide support
for design-time adaptation, more recently approaches based on service-oriented
architectures have been proposed that also support run-time adaptation.

Most existing approaches support adaptation through adaptable database ar-
chitectures. In this paper, we propose a different approach, showing how adapta-
tion in database systems can be supported by basing their implementation on a
well-defined system metamodel that can be evolved through dynamic metamodel
extension modules. Metamodel extension modules can be loaded and unloaded
dynamically, thus uniformly providing database system adaptation at design-
time and run-time. While our approach is generally applicable, we demonstrate
it in the setting of an object database system.

We begin in Sect. 2 with a discussion of related work. Our approach together
with the specification of metamodel extension modules is introduced in Sect. 3.
The application of the proposed approach is demonstrated in Sect. 4 and 5 where
the core metamodel and an example metamodel extension module are presented,
respectively. Implementation details are presented in Sect. 6. Concluding remarks
are given in Sect. 7.

2 Related Work

Adaptation of data management systems has been addressed in terms of light-
weight, configurable database management architectures. The emergent trend
of service-oriented architectures (SOA) has led to a number of proposals for
service-oriented database architectures (SODA), e.g. [3,4], that allow applica-
tion developers to configure a DBMS by linking together all services required for
a given application domain. The general ideas for these architectures are very
close to that of earlier configurable DBMS [5].

In [3], a service-oriented DBMS (SDBMS) architecture is described based on
the layered architecture proposed in [6]. In addition to being able to extend func-
tionality, it allows for the selection of an alternative service or service composition
in the case of service failure. This could also involve introducing a wrapper to
adapt the interface of a service. While the proposed architecture promises the
flexibility required, there are no details about the mechanisms used to achieve the
different kinds of flexibility and the implementation of the architecture. Further,
it is not clear if and how run-time adaptation would be supported.

Dynamic Metamodel Extension Modules 365

The CoBRA DB project [7] aims at providing run-time adaptation for DBMS.
The focus lies on modularizing a DBMS and supporting module exchange at
run-time in a transparent and atomic way. The authors experimented with two
methods of enabling dynamic adaptation, namely dynamic aspect-oriented pro-
gramming (d-AOP) and a second approach where a component implementation,
or part of it, is exchanged in order to adapt the component while the interface
remains valid. In [8], they present how a Transaction Manager can be added
and removed at run-time using the d-APO approach which the authors argue
in [7] has several disadvantages in terms of performance, code maintenance, lim-
ited functionality and testing. Therefore the approach of component replacement
has been adopted in the CoRBA framework. In this approach, the adaptation
manager is responsible for registering services offered by the components as well
as for managing and triggering all adaptation requests.

In mobile applications, computing resources may be limited and it is there-
fore important that a DBMS can be configured and optimized for a particular
application setting. COMET [9] is a component-based real-time database for
automotive systems that represents a typical example of a DBMS that can be
statically configured for a given application or target device. FAME-DBMS [10]
is an approach to configurable DBMS in the area of embedded systems that fol-
lows the idea of software product lines with static system composition. DBMS
functionality is tailored after the application has been developed to provide the
minimal functionality required based on code analysis. For example, if the join
operation is never used, the configured DBMS will not provide the operator. This
approach is a design-time approach and run-time adaptation is not supported.

In summary, the ability to support various types of adaptation in database
systems has been recognised as desirable, if not essential, in modern DBMS.
Architectural solutions such as configurable DBMS are capable of supporting
design-time adaptation, but they are not suited to run-time adaptation. While
approaches based on SOA do support run-time adaptation, their motivation has
mainly been to develop self-healing and self-managing systems in order to im-
prove reliability. In contrast, our work focuses on supporting different and/or
changing requirements of information systems brought about by wide variation
in application settings and system evolution. We believe that in a setting where
a DBMS is not distributed, for example applications on mobile devices, services
are not ideally suited to solving the particular problem of adaptation since the
fact that they are loosely coupled can have an adverse impact on system perfor-
mance. Further, since many proposals adopt service-based approaches in which
specific services are replaced or extended, it is difficult to support the types of
adaptation that require adaptation across services such as storage, query pro-
cessing and constraint management. For example, the kinds of adaptation that
require changes to the basic structures of the data model to support spatial
information or versioning may require changes to many parts of the system, es-
pecially if all data is to be handled uniformly. We therefore decided to investigate
how a DBMS could be adapted through changes to the metamodel rather than
to specific services.

366 M. Grossniklaus et al.

3 Approach

The development of a database application typically involves defining a model
of the application domain and implementing the means to create, retrieve, up-
date and delete instances of the application domain concepts. The application
model is itself defined in terms of the DBMS metamodel that specifies the core
constructs supported by the system. In the case of relational technologies, the
metamodel includes the concepts of relations and attributes, while object meta-
models describe object types and their properties. Therefore, a DBMS must offer
the basic database operations to create, retrieve, update and delete instances of
the metamodel concepts in order to specify an application model. Also, most
DBMS offer a database language (DBL) including data definition, data manip-
ulation and data retrieval components.

Our approach assumes that data and metadata are handled uniformly, so
that both the data model that defines the functionality of the DBMS and the
application model are represented explicitly as data. This means that, not only
may all database functionality such as storage management, query processing
and constraint management be applied to metadata as well as data, but also
they can be updated dynamically at run-time. The key to our approach to DBMS
adaptation is to allow the core metamodel, corresponding database operations
and the DBL to be changed or extended. This can be done either through a
configuration process at design-time or by extending functionality dynamically
at run-time to allow the DBMS to adapt to new requirements.

We claim that many requirements imposed by database applications can be
met by extending the metamodel with additional concepts. Therefore, we decided
to address the requirement of adaptive data management through a modular
system metamodel. An overview of this approach is shown in Fig. 1.

The core database module Modulecore is shown on the left-hand side of Fig. 1.
It comprises the core metamodel MMcore as well as the component to create,
retrieve, update and delete core metamodel concepts (CRUDcore) and the core
database language DBLcore. MMcore is a set of meta concepts {MC1, ..., MCn}.

MM1

DBL1

CRUD1

MM2

DBL2

CRUD2

MM3

DBL3

CRUD3A
pp

lic
at

io
ns

M
od

ul
e

R
un

tim
e

P
er

si
st

en
tS

to
ra

ge

MMcore

DBLcore

CRUDcore

Fig. 1. Metamodel extension modules

Dynamic Metamodel Extension Modules 367

As seen in Fig. 1, the definition of metamodel extension modules follows the
design of the core system in the sense that each module also provides metamodel
concepts, operations to manipulate them and an extension to the database lan-
guage. The additional manipulation operations and database language exten-
sion for the new metamodel concepts are required to make the new functionality
available to other parts of the system as well as to the application developer or
end-user. In summary, database extensions consist of three components which,
together, form what we refer to as a metamodel extension module.

More formally, a module can be defined as a triple

Moduleext = 〈MMext,CRUDext,DBLext〉

where MMext is a set of additional concepts made available to the application
developer to model the application domain according to application-specific re-
quirements, CRUDext refers to the database operations and DBLext refers to the
extensions to the database language.

In general, such an extension is a set of concepts {C1, ..., Cm} where each
concept Ci ∈ MMext is an instance of a meta concept MCj ∈ MMcore, formally
written as Ci � MCj . Note that, once the metamodel extensions have been added
to the metamodel by loading the module, they become part of it and remain
indistinguishable from the perspective of an application or developer. Therefore,
the application developer can easily take advantage of these additional concepts
in order to model the application domain.

The term CRUDext refers to those facilities required for an application or
developer to manage the instances of all concepts defined by the module.

∀ Ci ∈ MMext ∃ CRUDext(Ci) ∈ CRUDext

where CRUDext(Ci) allows for instances of the concept Ci to be created, re-
trieved, updated and deleted. When a module is loaded, the set of its operators
CRUDext are registered with the database in such a way that they can be re-
trieved and used by the developer or application. In a more general sense, the
database operations can be seen as forming the API of the module.

The component DBLext is a set of symbols extending the core database lan-
guage DBLcore to allow access to the operations offered by CRUDext. In general,
a database language is defined by a grammar G consisting of a set N of non-
terminal symbols, a set Σ of terminal symbols and the set P of production rules
where each rule maps from one string of symbols to another. In short, the gram-
mar can be written as G = (N, Σ, P). Consequently, with each module loaded,
the core language DBLcore defined by the core grammar Gcore is extended by
DBLext by unifying its grammar with the core grammar as

Gcore ∪Gext = (Ncore ∪Next, Σcore ∪Σext, Pcore ∪ Pext).

Moreover, there may exist dependencies among modules. By default, all mod-
ules are dependent on the core module. However, a module may additionally be
dependent on other modules which means that they must be loaded first. Simi-
larly, a module cannot be unloaded if other loaded modules depend on it. In order

368 M. Grossniklaus et al.

for the module run-time to check dependencies, a list [Module1, . . . ,Modulen] of
all dependent modules is defined as part of each module declaration.

Since the core components of our system also include a metamodel, database
operations and a language, our system is built so that the core itself is defined
as a module and loaded accordingly. In contrast to all other modules, the core
module cannot be unloaded at run-time since all other modules depend on it.
Nevertheless, the core module can be configured at design-time to adapt it, for
example, to a mobile environment requiring lightweight databases or a heavily-
used Web application relying on additional concepts to increase performance.

4 Core Metamodel

In this section, we present an example of a core database module consisting of a
core metamodel MMcore, core management functionality CRUDcore and a core
database language DBLcore. Based on this, we will show the use of metamodel
extension modules in the next section. As initially stated, our approach works
independently of the given data model of a system as long as it is defined through
a metamodel. Therefore, the approach can be equally applied to relational, XML
and object databases. We have implemented the approach in the object database
system OMS Avon [11] and therefore will present the details of the approach
using this as an example.

We begin by introducing the concepts of the core metamodel MMcore shown
in Fig. 2, which is based on the OM data model [12]. Essentially, the OM data
model is an integration of entity-relationship (ER) and object-oriented models.
In contrast to ER models where the concepts of entity types and entity sets
are often merged, OM introduces a clear separation between the typing and
classification of entities by using a two-level model. Each object has at least one
object type that specifies the representation and behaviour of the object in terms
of attributes and methods. Note that OM supports subtyping and also multiple
instantiation which means that an object can be said to have multiple types.
Objects are classified through membership in collections and each collection
has a membertype that restricts membership to objects of a particular type.
A collection is represented graphically as a shaded box with the membertype
specified in the shaded part.

Just as types can be specialised through subtyping, classifications can be
specialised through subcollections. A collection may have multiple subcollections
and classification constraints such as disjoint, cover, partition and intersect may
be placed over these. Note that for reasons of legibility, not all classification
constraints are shown in Fig. 2.

Relationships in OM are represented by bi-directional associations that are
defined in terms of a source and a target collection. Associations are a first-
order concept of the model and are represented by binary collections. As in some
extended ER models, cardinalities over associations are specified in terms of a
minimum and maximum value that expresses the number of objects to which
an object can be linked. Associations can also be specialised over collections.
Associations are represented graphically as shaded ovals.

Dynamic Metamodel Extension Modules 369

(1:*)
type

Types

collection

Collections
Has

MemberType

(0:*)

assocation

Associations

objectTypeISA

ObjectType
ISAs

collectionISA

Collection
ISAs

classification

Classifi-
cations

partition

objectType

ObjectTypes

baseType

BaseTypes

object

Objects

classification

Disjoint

classification

Covers

classification

Intersects

classification

Partitions

Fig. 2. Graphical representation of the core metamodel

create(Name): ObjectType
retrieve(Name): ObjectType
getName(ObjectType): Name
addAttribute(ObjectType, Name, Type)
remove Attribute(ObjectType, Name)
getAttributes(ObjectType): Collection
delete(ObjectType)

ObjectTypes

create(Name, MemberType): Collection
retrieve(Name): Collection
getName(Collection): Name
getMemberType(Collection): MemberType
addMember(Collection, Member)
removeMember(Collection, Member)
delete(Collection)

Collections

create(Name, Domain, Range, Relation, ...): Association
retrieve(Name): Association
getName(Association): Name
getDomain(Association): Collection
getRange(Association): Collection
getRelation(Association): Collection
addMember(Association, Member, Member)
removeMember(Association, Member, Member)
delete(Association)

Associations

Fig. 3. UML class definitions of the core system operators

As can be seen in Fig. 2, the instances of all constructs of the core model—
types, collections, associations, ISA relationships (subtypes and subcollections)
and also classification constraints—are represented as objects. These objects are
classified through membership of the corresponding metadata collections.

Formally, the concepts defined by the core metamodel MMcore are given by
its set of types, its set of collections and its set of associations.

MMcore = {{object, type, collection, association, . . .},
{Objects,Types,Collections,Associations, . . .},
{HasMembertype, . . .}}

It is beyond the scope of this paper to describe all aspects of the OM model in
detail.

In Fig. 3, we show UML type definitions of the manipulation operators for
these concepts. These diagrams show the methods to create, retrieve, update
and delete instances of the corresponding type. For example, the creation of
a collection takes the name and membertype of the collection as argument,
internally creates an object, dresses it with the collection type, sets the name
and membertype attributes and returns this object. Given a collection object, its
name and membertype can be retrieved using the getName and getMemberType

370 M. Grossniklaus et al.

methods. An object dressed with this membertype can be added to or removed
from the collection using the addMember and removeMember methods. Finally,
the delete method is used to delete a collection object.

The third part of the core module is the database language DBLcore. Asso-
ciated with the OM data model, we have defined the OML language [13] which
encompasses a data definition, data manipulation and query language. The query
language is based on a collection algebra that defines a set of operators to manip-
ulate and process collections and associations. Apart from being used for data
definition, manipulation and querying, OML also serves as a declarative object-
oriented implementation language for the methods of database objects as well as
for stored procedures and triggers. An example of an OML script is given below.

/* data definition language */

create type contact (name : string, phone : string);

create collection Contacts as set of contact;

/* data manipulation language */

$obj := create object;

dress $obj with contact (name = "Fred Bloggs", phone = "555-2223344");

insert [$obj] into Contacts;

/* query language */

$fred := first(all $c in Contacts having ($c.name like "(F|f)red.*"));

In the data definition section, the application developer creates an object type
contact, which is used as membertype for collection Contacts. The first statement
creates an object of type objectType in the core metamodel, while the second
statement creates a collection object. The data manipulation section demon-
strates how an object is created and instantiated with the contact type using the
dress operation. Then the object is inserted into the Contacts collections. Fi-
nally, a simple selection query over the Contacts collection is shown that selects
the previously created object. Formally, OML is defined by a grammar expressed
as a set of productions Pcore. For reasons of space, only a subset of Pcore is given
below.

statements → statement { ";" statement }
statement → [ddl statement | dml statement | query expression]

ddl statement → create statement

create statement → "create" [create object | create objecttype | . . .]

create object → "object"

create objecttype → "type" name "(" attribute list ")"

. . .

Correspondingly, the DBLcore component is given by

DBLcore = {{statements, statement, ddl statement, . . .},
{"create", "object", "type", . . .}, Pcore}.

Dynamic Metamodel Extension Modules 371

5 Metamodel Extension Module

In this section, we show how we produced an object database with integrated
support for Web content management by defining the appropriate metamodel
extension module based on previous work [14] that established four information
concepts for content management: content, view, structure and layout. Content
elements represent the objects that are to be published on the Web, view ele-
ments define which attributes and relationships of these objects are displayed,
structure elements provide support for arbitrarily nested content hierarchies,
and layout elements govern the presentation of content and structure. Due to
space limitations, we will omit further discussion of view elements here. As all of
these elements are context-aware, the resulting system is very flexible and well-
suited to support personalisable and multi-channel Web applications. Context-
awareness is supported based on a version model [15] that manages each object
as a set of variants which are defined for specific context states. At runtime, the
client context state is matched against the variant context states and the best
matching variant is selected to represent the object.

The metamodel of the extension module is shown in Fig. 4. On the left, the
hierarchy of content management concepts is shown. On the right, the object
variants for context-awareness are shown. Note that we support object variants
based on multiple instantiation similar to the approach presented in [16]. To
publish an existing data object on the Web, it is simply dressed with an instance
of type variant that augments the object with context state information. Then
it is associated with an instance of type content that assigns a resource name to
the content for referencing it based on a URL. Elements and variants are linked
with two associations. HasVariants captures all context variants of an element,
while DefaultVariant designates a fallback representation of the object that can
be used, for example, in the absence of a client context state. In order to make
the application of layout elements to content elements type-safe, both concepts
are associated with a type. Since Types is a concept of the core metamodel, the
content management metamodel is an extension of the core.

(0:*)

|Contains|

(0:*)

partition

partition

structure

Structures

(1:*)
HasTemplate (0:*)

component

Com-
ponents

variant

Variants

(1:*) HasVariants (1:1)

Default
Variant

(1:1) (0:1)

element

Elements

layout-var

Layout
Variants

structure-var

Structure
Variants

partition

type

Types(1:1)
OfType

(0:*)

(1:1)

ForType (0:*)content

Contents

layout

Layouts

Extension Module Core Module

Fig. 4. Graphical representation of the content management metamodel

372 M. Grossniklaus et al.

To implement this system as a module, the three module components have
been defined as follows. The metamodel is a definition of the types, collections
and associations introduced above.

MMcm = {{element, variant, component, layout, structure, . . .},
{Elements,Variants,Components,Layouts,Structures, . . .},
{HasVariants,DefaultVariant,HasTemplate, . . .}}

Note that the collections Elements and Variants are subcollections of the Objects
collection (not shown in the figure) of the core metamodel. The system opera-
tors providing the creation, retrieval, update and deletion of these metamodel
concepts are defined as

CRUDcm = {Content,Structures,Layouts,Variants}.

Those operators relevant to the client of the content management system are
shown in Fig. 5. Note that the operators shown implement just the management
operations required in order to interact with the content management system.
The part of the system that publishes the content on the Web is outside the
scope of this paper. The presented operations make use of the core operators
in CRUDcore in order to implement their functionality. For example, the create
operation in Variants calls the create operation in Objects, takes the returned
object and dresses it with the variant type before returning it.

create(String): Structure
getName(Structure): String
getChildren(Structure): List
addChild(Structure, int, Component)
removeChild(Structure, int)
delete(Structure)

Structures

create(String, Object): Content
getName(Content): String
delete(Content)

Contents

create(String, Document): Layout
getName(Layout): String
getDocument(Layout): Document
delete(Layout)

Layouts

create(): Object
delete(Object)

Objectsuses

create(Context): Variant
getContext(Variant): Context
delete(Variant)

Variants

uses uses uses

Extension Module Core Module

Fig. 5. UML class definitions of the content management system operators

Finally, the database language extension DBLcm provides the vocabulary al-
lowing the operations offered by CRUDcm to be invoked. The example below
shows how to setup the content management to publish a created object $obj
on the Web.

Dynamic Metamodel Extension Modules 373

/* Create content element*/

create content fred from $obj context (lang = "english") default;

/* Create main structure */

create structure index context (lang = "english") default;

insert [fred] into index;

/* Create a template for person content */

create layout contact_layout for content context (lang = "english")

[<xsl:template match="..."> ... </xsl:template>];

The extensions to the core language as defined in the previous section are for-
mally defined by the set of productions Pcm. Again, we limit ourselves to a subset
due to space limitations.

create statement → "create" [. . . | create content | create structure | create layout]

create content → "content" name "for" object ref [context]

create structure → "structure" name [context]

create layout → "layout" name "for" type ref [context] "[" template "]"

context → "context" value list ["default"]

insert statement → "insert" [collection insert | structure insert]

structure insert → component ref "into" structure ref

. . .

These productions lead to the definition of the DBLcm component as

DBLcm = {{create content, create structure, create layout, context, . . .},
{"content", "structure", "layout", "context", . . .}, Pcm}.

To conclude this section, we note that the approach has also been used to de-
velop an object database that allowed personal information to be integrated with
Web 2.0 data sources, to extend an object database to support event-based pro-
gramming [17] and to develop a platform for peer-to-peer data sharing in mobile
applications [18].

6 Implementation

As shown in Fig. 1, the module runtime of our adaptive database system is
built on top of a low-level persistent storage designed to provide flexible data
management. The flexibility is achieved by means of the data model outlined in
Fig. 6. We distinguish the notion of an object which strictly identifies a real-world
object and an instance which bears the attribute values declared by an object
type. An extent is a bulk of values that are described by an extent type and used
to support collections and associations. Note that attribute values and extent
members may be objects, extents or built-in values such as integer or string.

The persistent storage implements persistent data management according to
this data model and exposes the API shown in Fig. 7. Object types are createdwith
a list of attribute definitions, each declaring the name and type of an attribute. An
extent type is created by providing the membertype. In both cases, an object must
be provided which will serve as an identifier referring to the created type.

374 M. Grossniklaus et al.

Object Instance Value

name: String

ObjectType
name: String
type: Type

Attribute

Extent

Object

BuiltIn
Value

BuiltInType

memberType: Type

ExtentType
TypeExtent

Value

Object

Extent

Fig. 6. Data model of persistent storage

createObjectType(Object, Attribute[])
createExtentType(Object, Type)

createObject(): Object
dress(Object, ObjectType)
strip(Object, ObjectType)
setAttributeValue(Object, ObjectType, Attribute, Value)
getAttributeValue(Object, ObjectType, Attribute): Value

createExtent(ExtentType): Extent
add(Extent, Value)
remove(Extent, Value)
iterator(Extent): Iterator

Storage API

Fig. 7. Persistent storage API

The API offers methods to manage objects and extents. Once an object has
been created, instances can be added or removed using the dress and strip
methods, respectively. Attribute values can be set and retrieved by providing the
object, the object type declaring the attribute to be accessed and the attribute
itself. An extent is created by providing the extent type. Given an extent, values
can be added and removed as well as accessed by means of an iterator. Methods
for the deletion of types, objects and extents as well as a query facility are also
provided, but not shown in the figure.

The module runtime provides a single Java class OMObject that represents all
metamodel concepts uniformly in terms of the notion of an object as defined by
the persistent storage data model. It offers means to add and remove instances
as well as to access and manipulate attribute values. Another class OMExtent
wraps the notion of an extent and allows for members to be added, accessed
and removed. By separating the metamodel concepts from the actual concept
representation within the programming language, we achieve the flexibility of
being able to alter and extend the metamodel at runtime. Therefore, altering
and extending the metamodel in the database does not require any changes to
the in-memory Java representations of metamodel concepts.

To manage modules, the module runtime provides a ModuleManager that offers
methods to load and unload modules. When the manager is initialised, it reads
a configuration file where modules may be specified at design-time. The module
manager requires that a module implementation follows the Module interface that
is also defined by the runtime. This interface defines four methods that correspond
to the lifecycle of modules. To load a module, the module concepts are created by
the bootstrap method, then the operators are initialised with registerCRUDs
and, finally, generateDBL loads the database language. If no longer required, the
manager disposes of modules by invoking the unload method.

In the remainder of this section, we discuss the implementation of the core
and the extension modules presented in Sects. 4 and 5, respectively. Due to
the fact that all extension modules are implemented using the core module, the
implementation of the core module differs from that of an extension module.
For both modules, we will present an excerpt of the bootstrap and the operator
implementation. To illustrate the discussion, Fig. 8 gives a UML interaction
diagram that shows the communication between all involved actors.

Dynamic Metamodel Extension Modules 375

Module Runtime OMObject OMExtent Persistent
Storage

typeId = createObject()

objectType = createObjectType(typeId,)

extentTypeId = createObject()

extentType = createExtentType(extentTypeId, objectType)

extent = createExtent(extentType)

Objects Object
TypesCollections

getAttributeValue(object, objectType,)

getName(object)

elementType = create(,)

variantType = create(,)

elements = create(, elementType)

variants = create(, variantType)

Variants

variantObject = create()

variantObject.dress(variantType)

variants.add(variantObject)

variantObject.setAttributeValue(variantObject, variantType, , context)

create(
context)

C
or

e
B

oo
ts

tra
p

C
or

e
C

R
U

D
s

E
xt

en
si

on
B

oo
ts

tra
p

E
xt

en
si

on
C

R
U

D
s

Fig. 8. UML interaction diagram of core and extension bootstrap and operators

The core metamodel is implemented entirely using the persistent storage
shown in Fig. 7. The bootstrap process creates the core concepts represented in
terms of types and collections and their relationships using the methods exposed
by the persistent storage. As shown at the top of Fig. 8, the core database module
creates the type objectType using the createObjectType method. The collec-
tion ObjectTypes is created by first creating the extent type using the method
createExtentType and then creating the extent using createExtent. All other
types and collections are created similarly.

Below the excerpt of the core bootstrap, Fig. 8 shows how the core opera-
tors make use of the persistent storage API to implement their concept-specific
services. They take an OMObject instance as argument—or return one—and en-
capsulate the creation, deletion, attribute access and manipulation implemented
using the methods of the persistent storage. For example, the object type op-
erator to create an object type gathers the required arguments and calls the
createObjectType method. The read and manipulation operations make use
of the setAttributeValue and getAttributeValue methods. In the figure, we
give an example of the latter, showing how the getName method of ObjectTypes
uses the storage to retrieve that name of an object type. Finally, retrieval is im-
plemented using the querying facility.

Extension modules are completely decoupled from the persistent storage as
they only interact with the module runtime and the core module. The exten-
sion bootstrap procedure shown near the bottom of Fig. 8 consists of using the

376 M. Grossniklaus et al.

core operators to create instances of the core metamodel representing extension
concepts. For example, the content management module uses the core opera-
tor ObjectTypes to extend the metamodel with object types such as element
and variant. In the same way, it uses the Collections operator to create the
corresponding collections, i.e. Elements and Variants.

Finally, at the bottom of Fig. 8, we present how the extension operators use
the core operators to provide the creation, attribute access and manipulation, re-
trieval and deletion facilities of the extension concepts. We use the example of the
Variants operator to show how its create method has been implemented based
on the core operator Objects as well as the module runtime classes OMObject
and OMExtent.

To generate the database language of a module, we currently use JavaCC1

and, therefore, the grammar is expressed in terms of the JavaCC syntax. Each
module provides its grammar as a single file that is merged with the correspond-
ing grammar files of other modules to obtain a comprehensive grammar before
generating the parser. As a consequence, we can only support design-time adap-
tation for modules that require a language extension since parser generation
requires an additional compilation step. To the best of our knowledge, there are
no compiler compilers available at the moment that overcome this limitation
and we are investigating how to engineer a solution that also provides runtime
adaption of the database language.

7 Conclusions

We have motivated the need for adaptive database management systems to sup-
port configuration at design-time and evolution at run-time and proposed an
approach that is based on revisions to the system metamodel. We have shown
how this can be implemented and also demonstrated the use of the approach
by means of an example. Even though the paper describes the application of
the approach in the setting of an object database, it is important to emphasise
that the approach generalises to all systems that use well-defined metadata to
describe the data that they manage. While our main focus to date has been on
achieving the desired functionality, we recognise that such flexibility of adapta-
tion comes at a price in terms of performance and are now investigating exactly
what the overhead is and how it can be reduced.

References

1. Stonebraker, M., Cetintemel, U.: “One Size Fits All”: An Idea Whose Time Has
Come and Gone. In: Proc. Intl. Conf. on Data Engineering, ICDE (2005)

2. Apel, S., Rosenmüller, M., Saake, G., Spinczyk, O. (eds.): Proc. EDBT Workshop on
Software Engineering for Tailor-made Data Management. University of Magdeburg
(2008)

1 http://javacc.dev.java.net/

http://javacc.dev.java.net/

Dynamic Metamodel Extension Modules 377

3. Subasu, I.E., Ziegler, P., Dittrich, K.R., Gall, H.: Architectural Concerns for Flex-
ible Data Management. In: Proc. EDBT Workshop on Software Engineering for
Tailor-made Data Management, SETMDM (2008)

4. Tok, W.H., Bressan, S.: DBNet: A Service-Oriented Database Architecture. In:
Proc. Intl. Conf. on Database and Expert Systems Applications, DEXA (2006)

5. Dittrich, K.R., Geppert, A. (eds.): Component Database Systems. Morgan Kauf-
mann, San Francisco (2001)

6. Härder, T.: DBMS Architecture – New Challenges Ahead. Datenbank-Spektrum 14
(2005)

7. Irmert, F., Fischer, T., Meyer-Wegener, K.: Runtime Adaptation in a Service-
Oriented Component Model. In: Proc. Intl. Workshop on Software Engineering for
Adaptive and Self-managing Systems, SEAMS (2008)

8. Irmert, F., Lauterwald, F., Neumann, C.P., Daum, M., Lenz, R., Meyer-Wegener,
K.: Semantics of a Runtime Adaptable Transaction Manager. In: Proc. Intl.
Database Engineering & Applications Symposium, IDEAS 2009 (2009)

9. Nyström, D., Nolin, M., Norström, C., Hansson, J.: COMET: A Component-Based
Real-Time Database for Automotive Systems. In: Proc. Workshop on Software
Engineering for Automotive Systems (2003)

10. Rosenmüller, M., Siegmund, N., Schirmeier, H., Sincero, J., Apel, S., Leich, T.,
Spinczyk, O., Saake, G.: FAME-DBMS: Tailor-Made Data Management Solutions
for Embedded Systems. In: Proc. EDBT Workshop on Software Engineering for
Tailor-made Data Management, SETMDM (2008)

11. Norrie, M.C., Grossniklaus, M., Decurtins, C., de Spindler, A., Vancea, A., Leone,
S.: Semantic Data Management for db4o. In: Proc. Intl. Conf. on Object Databases,
ICOODB (2009)

12. Norrie, M.C.: An Extended Entity-Relationship Approach to Data Management in
Object-Oriented Systems. In: Elmasri, R.A., Kouramajian, V., Thalheim, B. (eds.)
ER 1993. LNCS, vol. 823. Springer, Heidelberg (1994)

13. Lombardoni, A.: Towards a Universal Information Platform: An Object-Oriented,
Multi-User, Information Store. PhD thesis, ETH Zurich, Zurich, Switzerland (2006)

14. Grossniklaus, M., Norrie, M.C.: Information Concepts for Content Management.
In: Proc. Intl. Workshop on Data Semantics in Web Information Systems (2002)

15. Grossniklaus, M., Norrie, M.C.: An Object-Oriented Version Model for Context-
Aware Data Management. In: Benatallah, B., Casati, F., Georgakopoulos, D., Bar-
tolini, C., Sadiq, W., Godart, C. (eds.) WISE 2007. LNCS, vol. 4831, pp. 398–409.
Springer, Heidelberg (2007)

16. Beech, D., Mahbod, B.: Generalized Version Control in an Object-Oriented
Database. In: Proc. Intl. Conf. on Data Engineering (1988)

17. Grossniklaus, M., Leone, S., de Spindler, A., Norrie, M.C.: Unified Event Model
for Object Databases. In: Proc. Intl. Conf. on Object Databases, ICOODB (2009)

18. de Spindler, A., Grossniklaus, M., Norrie, M.C.: Development Framework for Mo-
bile Social Applications. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE
2009. LNCS, vol. 5565, pp. 275–289. Springer, Heidelberg (2009)

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 378–392, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Supporting Runtime System Evolution to Adapt to
User Behaviour*

Estefanía Serral, Pedro Valderas, and Vicente Pelechano

Centro de Investigación en Métodos de Producción de Software (ProS)
Universidad Politécnica de Valencia, Valencia, Spain
{eserral,pvalderas,pele}@dsic.upv.es

Abstract. Using a context-aware approach, we deal with the automation of user
routines. To do this, these routines, or user behaviour patterns, are described us-
ing a context model and a context-adaptive task model, and are automated by an
engine that executes the patterns as specified. However, user behavior patterns
defined at design time may become obsolete and useless since users needs may
change. To avoid this, it is essential that the system supports the evolution of
these patterns. In this work, we focus on supporting this evolution by confront-
ing an important challenge in evolution research: raise the level in which evolu-
tion is applied to the modelling level. We develop mechanisms to support the
pattern evolution by updating the models at runtime. Also, we provide end-
users with a tool that allows them to carry out the pattern evolution by using
user-friendly interfaces.

Keywords: Context adaptation, models, tasks, user behaviour pattern
automation.

1 Introduction

Context-aware systems are those capable of adapting its behaviour according to con-
text and performing actions on behalf of users without being intrusive. Using a
context-aware approach, we deal with the automation of user routines. A routine, or
behaviour pattern, is a set of tasks characterized by habitual repetition in similar con-
texts [1]. Some patterns are determined by our lifestyle, e.g. reading electronic mail
and opening certain web pages as soon as we have access to internet; others are reac-
tions to things happening around us, e.g. lowering every blind and winding up every
awning when it starts to rain.

Several works [2, 3] have dealt with inferring these patterns from user action ob-
servation by using machine-learning algorithms. However, they require a lot of train-
ing data and may automate actions that users do not want to be automated because
algorithms do not know the semantics of user-performed actions. Moreover, note that
many patterns are well known before the system is implemented. These patterns can

* This work has been developed with the support of MEC under the project SESAMO

TIN2007-62894 and co financed by FEDER, in the grants’ program FPU.

 Supporting Runtime System Evolution to Adapt to User Behaviour 379

be described at design time and automated under the adequate context conditions. Our
approach [22] achieves this. It presents a context-adaptive task model that allows each
behaviour pattern to be specified through a set of tasks that have to be carried out to
automate it. These tasks are modelled according to context, which is previously speci-
fied in a context model. Both the context model and the task model are also used at
runtime. A Model-based Automation Engine (MAtE) interprets them to execute the
patterns as specified.

However, this is not enough to automate user behaviour patterns since user needs
may change in the future. It is essential that the system supports the evolution of the
designed patterns to adapt to user behaviour changes; otherwise, their automation may
become a burden on users instead of a way of helping them. In this work, we focus on
supporting this evolution. To do this, we confront one of the most important chal-
lenges identified in software evolution according to works such as [4, 5]: raise the
level of abstraction in which evolution is applied to the modelling level, i.e. perform
system evolution by evolving the models that specify it. Since the research in model-
driven development started, this challenge becomes increasingly more relevant, and
new approaches and tools for dealing with it are urgently needed. However, although
many advances have been done in software evolution research, almost all existing
approaches for supporting it are primarily targeted to source code, including the pro-
posed approaches for automating user routines that supports evolution. In contrast, we
propose applying runtime evolution at modelling level, which allows us to manage it
at a high level of abstraction.

To do this, we take advantage of the design of our approach. Since the task model
and the context model are interpreted at runtime to execute the corresponding behav-
iour patterns, as soon as the models are modified, the changes are applied by the sys-
tem. Thus, we design and implement mechanisms to support the update of both
models at runtime [6] using the same high level concepts used for building the mod-
els. Furthermore, we provide end-users with a user-friendly tool to evolve the pat-
terns. This end-user tool uses the provided mechanisms to carry out the evolution.
Note that these mechanisms could also be automatically applied, for instance, by
using machine-learning algorithms that detect changes in user behaviour. However,
this may lead to applying changes that do not correspond to user desires and to auto-
mating tasks that users do not want to be automated. This may be annoying to users
and may cause users to feel loss of control of the system.

The remainder of the paper is organized as follows. Section 2 gives an overview of
our approach. Section 3 describes real examples of behaviour patterns. Section 4
describes the context model and the task model. Section 5 presents the mechanisms to
address pattern evolution. Section 6 explains the end-user tool. Section 7 evaluates
our approach. Section 8 presents the related work. Section 9 presents the conclusions
and the future work.

2 Automating User Behaviour Patterns: An Overview

Our approach, which is shown in Fig. 1, deals with automating the routines that users
want to be automated, according to their desires and demands. To achieve this, ana-
lysts first interview end-users to determine the tasks that they perform and identify

380 E. Serral, P. Valderas, and V. Pelechano

behaviour patterns in these tasks. Also, the analysts determine the context in which
the pattern has to be triggered and the context in which its tasks are performed. Thus,
the analysts describe the needed context information by using a context model.
With the participation of users, the analysts then specify the context situation that
triggers the execution of the pattern, the tasks to be executed for each one of the iden-
tified patterns, and the temporal relationships that must be accomplished for the exe-
cution of these tasks. The behaviour pattern tasks and their relationships are specified
using the context information of the context model, in such a way that the task execu-
tion automatically adapt according to context.

In addition, the tasks to be executed are related to a pervasive service that can carry
it out. A pervasive service is a piece of software that is in charge of controlling de-
vices in order to achieve a task goal. For instance, if a task whose goal is to lower the
blinds has been defined, this task is associated to a pervasive service that executes this
action by interacting with the blind device. These services are also in charge of updating
the context model when context changes arise (e.g. indicating the current state of blinds:
open or closed). To implement these pervasive services, a MDD method that generates
them in Java/OSGi [7] technology from models is used. As an example, Figure 1 shows a
partial view of a Java/OSGi-based pervasive service implementation. This method is out
of the scope of this paper; more information about it can be found in previous works
[8, 9].

Once the behaviour patterns have been specified using the Context Model and the
Task Model, a Model-based user task Automation Engine (MAtE) is in charge of
automating the patterns when needed. To do this, MAtE uses a Context Monitor that
monitors the context changes reflected by changes on the context model. When a
context change is arisen, MAtE checks whether some context situations are fulfilled
by interpreting the task model and querying the context model at runtime. If so, MAtE
interprets the task model to perform the tasks of the corresponding pattern according
to their specification. To perform each task, MAtE executes the pervasive service
related to it.

public void lowerBlinds(){
if(pre_lowerBlinds()){

try{
disableNotificacions();
Implementation_lowerBlinds ();
if (post_lowerBlinds()){

HashMap parameters = null;
this.updateSTDState("lowerBlinds"

,parameters)}}
finally {

enableNotifications();
if (changeState()==true)

notifyConsumers();}}
}

Fig. 1. Overview of the approach

However, without explicit support for pattern evolution, system may become pro-
gressively less satisfactory. In this work, we deal with this problem by allowing end-
users to be able to evolve the behaviour patterns according to their needs. To do this,
our approach provides a set of mechanisms to allow behaviour patterns to be evolved
by updating the task model and the context model at runtime. Moreover, we provide
end-users with a tool that allows them to evolve these patterns by using user-friendly
interfaces. This tool uses the provided mechanisms to carry out the evolution.

 Supporting Runtime System Evolution to Adapt to User Behaviour 381

3 User Routines: A Case Study

We present some user examples in the smart home domain, since it is close to readers.
A married couple (we will refer to them as Bob and Sarah), was first interviewed to
determine their domestic behaviour patterns. We next present four representative
examples of the behaviour patterns identified for the case study:

1. WakingUp: At 7.00 a.m. on working days, the system wakes Bob up with his
preferred music and raises the bedroom blinds to the middle.

2. GoingOut: When Bob and Sarah left the house, the system closes all the win-
dows and doors, and switches off all the lights. If it is a working day, the system
puts the air and heating conditioner in energy-saving mode; otherwise, the sys-
tem switches it off, turns the water off at the mains and turns the gas off. Finally,
the system reminds users to enable security (they prefer to activate the security
themselves; therefore, the system only sends them a notification to remind them
to do this).

3. Recording: If Sarah is not at home at 18.30 p.m., her favourite program is re-
corded.

4. StormSecurity: If it starts to rain, the system lowers all the blinds and winds
up all the awnings. If it does not stop raining and the garden sprinklers are
switched on, the system switches them off. When it stops raining, the system
calculates the cubic meters of rainfall and updates the irrigation timetable
according to it.

4 The Context Model and the Task Model

The context model and the task model are used at design time for specifying the be-
haviour patterns that users want to be automated and their context; and also at runtime
for supporting the specified behaviour pattern automation and evolution.

4.1 Ontology-Based Context Model

The context model semantically describes the Context required for properly automat-
ing the user behaviour patterns. This model is based on an ontology proposed in pre-
vious works [8], which defines classes such as User, EnviromentProperty or Location
to capture context. We used an ontology-based approach because it provides a formal
analysis of the domain knowledge and allows common understanding of the structure
of context. At design time, we use the EODM plugin [10] to graphically specify the
context. EODM provides a tree graphic editor and also stores the model in the Web
Ontology Language (OWL) [11]. OWL is an ontology language that greatly facilitates
knowledge automated reasoning and is a W3C standard. At runtime, we use the model
representation in OWL. In OWL, the classes of the ontology are defined by OWL
classes, and the context of the system is represented by OWL individuals, which are
instances of these classes. Fig. 2 shows an example of context model in its both repre-
sentations (design and run time).

382 E. Serral, P. Valderas, and V. Pelechano

Fig. 2. An example of context model (graphical and OWL representation)

4.2 Context Adaptive Task Model

This model describes the behaviour patterns that have to be automated. Each pattern
is specified by a task hierarchy. The root task represents the behaviour pattern and
has an associated context situation, which defines the set of context conditions whose
fulfilment triggers the execution of the pattern. It is broken down into Composite
Tasks (which are intermediate tasks that can be broken down), and/or System Tasks
(which are leaf tasks). Composite Tasks are used for grouping subtasks that share a
common behaviour or goal. System tasks can be supported by a pervasive service.
Both types of task can have a context precondition, which defines the context condi-
tions that must be accomplished so that a task is performed (if the precondition is not
accomplished, the task is not executed). Each task also inherits the context precondi-
tions of its parent task.

As examples, the modelling of the GoingOut and StormSecurity patterns (Section 3)
using the task model is shown at the top of Fig. 3. For instance, the StormSecurity
behaviour pattern is triggered when it starts to rain as indicated in the context situation.
The pattern is split into four tasks: the lower blinds, wind up awnings and switch sprin-
klers off System Tasks, and the modify irrigation system Composite Task, which is also
split into the calculate rainfall and update irrigation timetable System Tasks. In addi-
tion, the switch sprinklers off System Task has a context precondition (which is shown
between brackets before the name of the task) that indicates that this task will be only
executed when it is raining and the system is watering the garden.

Tasks with the same father task are related by temporal relationships. They de-
scribe how the tasks are executed. For instance, the temporal relationship between the
wind up awnings and switch sprinklers off tasks indicates that the sprinklers will be
switched off 3 minutes after the awnings have been wound up (provided the context
precondition fulfils).

At design time, the task model is specified by means of an editor developed
using the Eclipse platform and the EMF and GMF plugins [10]. By using this editor,
the model can be graphically edited (as the top section of Fig. 3 shows) and is also
stored in XMI (XML Metadata Interchange). At runtime, we use its representation in
XMI. The bottom section of Fig. 3 shows part of the XMI representation of the

 Supporting Runtime System Evolution to Adapt to User Behaviour 383

StormSecurity pattern, where the properties of the lower blinds and wind up awnings
tasks are shown. Note that the service property is a reference to the service in charge
of executing the task; e.g. the lower blinds task is related to the lowerBlinds method,
which was presented in Section 2.

<?xml version="1.0" encoding="UTF-8"?>
<org.pros:TaskModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:org.pros="http:///org/pros/taskModel.ecore">
…
<Task xsi:type="org.pros:SystemTask" name="lower blinds" ID="StormSecurity_LB" isChildOf="//@Task.0">

<TemporalRelationship TemporalRelationshipType="|||"
TemporalRelationshipTo="//@Task.2" TemporalRelationshipFrom="//@Task.1"/>

<serviceMethod href="SmartHomeServices.serviceModel#// @Service.3"/@Method.LowerBlinds>
</Task>
<Task xsi:type="org.pros:SystemTask" name="wind up awnings" ID="StormSecurity_WUA" isChildOf="//@Task.0">

<TemporalRelationship TemporalRelationshipType=">>[3 min]>>"
TemporalRelationshipTo="//@Task.3" TemporalRelationshipFrom="//@Task.2"/>

<serviceMethod href="SmartHomeServices.serviceModel#// @Service.2"/@Method.WindUpAwnings>
</Task>
…
</org.pros:TaskModel>

Fig. 3. Examples of behaviour pattern modelling (graphical and XMI representation)

5 Addressing the Evolution of User Behaviour Automation

The design of our approach facilitates to perform system evolution at modelling level,
which is one of the top challenges in software evolution research. This is because
MAtE automates the patterns by interpreting the models (the context model and the
task model) where they have been specified, at runtime. Thus, if the models are
changed to adapt the patterns, the changes are also taken into account by MAtE.
Therefore, our approach gives us three immediate benefits to perform system evolu-
tion: 1) we do not have to maintain the consistency between the system modelling and
system implementation as modifications are applied; 2) the evolution can be managed
at a high level of abstraction (modelling level); 3) models can provide us with a richer
semantic base for runtime decision-making related to system adaptation.

From these premises, we address the pattern evolution by adapting the models
where they are specified. We provide mechanisms capable of evolving the task model
and the context model at runtime. These mechanisms use the concepts of the own

384 E. Serral, P. Valderas, and V. Pelechano

language (task, behaviour pattern, user, etc.) used for specifying the models, which
facilitates understand and handle the evolution. In addition, the mechanisms ensure
that the changes are in accordance with their metamodel definition and, therefore,
syntactically correct. In this way, these mechanisms define how the patterns can be
changed over time and maintain software quality characteristics. Note that the use of
such mechanisms raises the evolution level to the modelling level which allows the
system to be evolved at runtime by using high level abstraction concepts instead of by
changing lines of code. Furthermore, the mechanisms are implemented in Java apply-
ing software design patterns [21] and are provided as APIs; therefore, they can be
imported and used by any Java application.

5.1 Supporting the Task Model Evolution

Each automated behaviour pattern is specified by a task hierarchy in the context-
adaptive task model. Thus, to support the system adaptation to new user automation
requirements, we have implemented a set of Model-Based User Task evolution
mechanisms (MUTate) that allows evolving these patterns. For instance, MUTate
allows the following: adding new tasks to a pattern; modifying the context precondi-
tion that must be accomplished so that a task can be executed; creating a new behav-
iour pattern; etc. To do this, MUTate provides an API that allows any elements of the
specified task model (which are those specified in its metamodel, such as Behaviour
Patterns, Tasks, Relationships between tasks, etc.), to be created, modified, or deleted.
Specifically, this API consists of a Java class for each one of the elements of the task
model metamodel. Each class provides:

- An attribute for each one of the properties and relationships of the metamodel
element that the class represents; e.g., the BehaviourPattern class has name and
task as attributes.

- Get, set and delete methods for each one of these attributes; e.g., getName.
- An add method for the attributes whose type is a List. This method allows an ele-

ment to be directly added to the list; e.g., addTask method.
- Get and delete methods for access to a certain element of the attributes whose type

is a list. These methods allow us to get and delete an element of the list by search-
ing for it by using one of its identifier properties; e.g. getTaskByID.

In addition, the API provides a Factory class for creating new instances (of the classes
defined in the task metamodel) of a task model.

We have used the EMF, EMF Model Query (EMFMQ), and EMF Model Transac-
tion (EMFMT) plugins of the Eclipse Platform [10] to implement MUTate. From the
metamodel of the task model in ecore, EMF generates a basic API for managing a
task model. This API provides the Factory and Model classes, as well as a Java inter-
face and an implementation class for each one of the classes of the metamodel. These
implementation classes provide get and set methods to access and change the infor-
mation of the instances specified in the model. We have extended these classes by
implementing the methods explained above. EMFMQ is used to search for and get the
instances of the model that need to be modified. EMFMT provides us with mecha-
nisms for making transactions, reading and writing models on multiple threads,

 Supporting Runtime System Evolution to Adapt to User Behaviour 385

and validating the semantic integrity of the modified model by detecting invalid
changes. We have also extended the implementation provided classes in order to:
1) add, modify, and delete a complete behaviour pattern as a unique transaction; 2)
allow the reading and writing of the task model at the same time; and 3) semantically
validate the changes in the task model.

Figure 4 shows a partial view of the source code of MUTate. As an example, the
figure shows the getBehaviourPatternByID method of the TaskModel class. This
method returns the behaviour pattern whose ID is the same that the behaviourPat-
ternID argument value. To find the pattern, it searches for it by using a query state-
ment build with EMFMQ.

Fig. 4. Partial view of MUTate source code

5.2 Supporting the Context Model Evolution

New automation requirements may require new context information to support them.
In our approach, Context is captured in the OWL context model as OWL individuals.
To change the context model, we have implemented a set of Ontology-based Context
model Evolution mechanisms (OCEan) that allows evolving these individuals. For
instance, if a change in a pattern requires knowing the preferred environmental tem-
perature of Bob and Sarah, OCEan allows us to create this new user preference (e.g.
idealTemperature) to the User individuals that represent Bob and Sarah. To do this,
OCean provides an API that allows any individual of the context model to be created,
obtained, modified, and deleted. Specifically, this API consists of a Model class that
allows us to open the context model, save it, and manage its individuals (addIndi-
vidual, getIndividual and deleteIndividual) in a generic way. The API also provides
an implementation class (and its Java interface) for each one of the OWL classes
defined in the context ontology. Each Java class provides:

- An attribute for each one of the properties and relationships of its OWL class; e.g.,
the User OWL class has DNI and preference as attributes.

- Get and set methods for each one of these attributes; e.g., getDNI.
- An add method for the attributes whose type is a List. This method allows an ele-

ment to be directly added to the list; e.g., addPreference method.

386 E. Serral, P. Valderas, and V. Pelechano

- Get and delete methods for access to certain element of the attributes whose type
is a List. These methods allow us to get or delete an element of the list by search-
ing for it using one of its identifier properties; e.g. getPreferenceByName.

- The new method that creates an individual of the corresponding OWL class and
calls the addIndividual method of the Model class to add it to the context model.

We have used the OWL API 2.1.1 [11], SPARQL [12] and the Pellet reasoner 1.5.2
[13] to implement OCean. The OWL API is an open-source API that provides facili-
ties for creating, examining and modifying any element of an OWL ontology.
SPARQL is a graph-matching query language recommended by the W3C that allows
queries to be built to search for certain individual. Pellet is an open-source OWL
reasoner that provides reasoning services. Pellet allows us to launch a SPARQL query
against the model.

Figure 5 shows a partial view of the source code of OCean. As an example, the
figure shows the deleteIndividual method of the ContextModel class. Using the OWL
API, this method first creates a remover entity, it then gets the individual that is to be
deleted, and passes it to the remover entity for deletion. Finally, the method applies
the changes in the context model.

Fig. 5. Partial view of OCean source code

5.3 Using the Evolving Mechanisms

In this subsection, we present an example of how the presented mechanisms are used
(see Figure 6). In this example, we add a new preference (wakeUpTime) to the user
Bob. This preference indicates the time he prefers to wake up. To do this, we simply
create a new preference, search for the user that represents Bob and add the created
preference to his list of preferences. Afterwards, we change the context situation of
the WakingUp pattern in order to indicate that it must be triggered when the time
is the value indicated in the wakeUpTime preference. Thus, MUTate and OCEan
allow the models to be evolved by using concepts of a high level of abstraction (Pref-
erence, ContextSituation, etc.), which are easy for developers to understand and use.
However, these mechanisms are still difficult for end-users. For this reason, we have
also developed an end-user tool that allows them to evolve the patterns by using intui-
tive interfaces.

 Supporting Runtime System Evolution to Adapt to User Behaviour 387

//Create a new user preference
Preference preference= new Preference("wakeUpTime","8:00");
User user= contextModel.getUserByName("Bob");
user.addPreference(preference);
//Using this preference in the context situation of a pattern
BehaviourPattern behaviourPattern = taskModel.getBehaviourPattern("WakingUp");
behaviourPattern.setContextSituation("currentTime=wakeUpTime AND workingDay=true");

Fig. 6. Code example for model evolution

6 End-User Toolkit for Evolving the System

To carry out the pattern evolution, we provide end-users with a tool that allows them
to use MUTate and OCEan in a user friendly way. This tool provides users with the
following functionalities:

• Context Specification: the tool shows users the context information for which they
have permission. It also allows a user to add new individuals corresponding to his/her
information, modify them, and delete them if they are not used in the task model.

• Pattern Specification: the tool allows users to add, modify, or delete behaviour patterns
by facilitating the information necessary to do this. If users do not want certain patterns
to be executed during a period of time, they also can enable or disable specified
patterns.

To provide user interfaces with this functionality, we have been inspired by the Natu-
ral Programming and Visual Programming end-user development approaches [14].
Based on these approaches, we have developed an interface for each one of the pro-
vided functionalities by using the SWT (Standard Widget Toolkit) [10] plugin in
Eclipse. All of them follow a similar style. At the top of the interface, we guide users
by using tabs that indicate the previous, current, and next steps to perform in order to
achieve the corresponding goal. At the bottom of the interface, a text message is
shown where help and explanations are provided to end-users. The rest of the inter-
face is divided into two main frames: the left frame, which represents the work area
where users specify the corresponding information; and the right frame, which shows
users the information that they need for each step. Thus, end-users just need to select
the information from the right frame and drag it to the proper location in the left
frame.

Figure 7 shows a snapshot of an interface of our prototypical tool. This snapshot
shows the first step for creating a new behaviour pattern in the task model: the speci-
fication of the context situation whose fulfilment triggers the execution of the pattern.
The current tab and the other tabs that allow the user to navigate through the steps to
be accomplished are shown at the top of the interface. On the right side, the context
information that is available for Bob (who is using the interface) is shown in a tree
form, going from more general information to more specific. In the work area, we
facilitate the needed operators to form the context situation. Finally, the information
area is provided at the bottom of the interface. This area shows what the pattern will
do in a language close to natural language.

By using these interfaces, end-users can carry out the changes that they need.
However, to preserve software quality characteristics, these changes are validated
before they are applied to the system. Up to date, these changes are revised by

388 E. Serral, P. Valderas, and V. Pelechano

analysts; however, we are currently developing a tool to ensure the reliability of the
system without the participation of analysts. This tool generates all the possible con-
text situations that may play a part in the behaviour patterns changed by users. Then,
it builds a set of tests that have to be passed by the system before these changes can
be taken into account. If any of these tests are not passed, the system notifies the users
about the possible mistakes so that they can be corrected. Finally, once the changes
are validated, the tool updates the task model and the context model accordingly. The
tool uses MUTate and OCEan to do this at runtime.

Also, we are currently working in incorporating the possibility of using machine
learning algorithms to infer new behaviour patterns from user behaviour observation.
These algorithms could automatically apply the mechanisms to evolve the patterns
according to the inferred patterns. However, in this way we would not take into ac-
count users’ desires since the repeated execution of an action does not imply that
users want its automation. Thus, instead of this, the tool will present the inferred pat-
terns to users once a month allowing them to modify or add these patterns if users
regard them as appropriated.

Fig. 7. Snapshot of the end-user tool

7 Evaluation

In order to evaluate our approach, we carried out two evaluation studies. First of all,
we evaluated the feasibility of using models at runtime in our approach. Second, we
performed a case study-based evaluation to test our approach in supporting user be-
haviour automation and evolution. To perform these evaluations, we use a Pentium 4,
3.0 GHz processor and 2 GB RAM with Windows XP Professional Edition SP3 and
Java 1.5 installed. In addition, we used the implementation of OSGi Prosyst Embed-
ded Server 5.2 [15], the EMF 2.3, EMFMQ 1.1, EMFMT 1.1 eclipse plugins, Pellet
and the OWL API.

7.1 System Evolution by Using Models at Runtime

We evaluated the feasibility of using models at runtime in the evolution mechanisms.
The model operations that they perform have to be efficient enough so that the system

 Supporting Runtime System Evolution to Adapt to User Behaviour 389

response is not drastically affected. Thus, we performed an experiment to get the
temporal cost of the operations of MUTate and OCEan that access to models. We
used our context model and an empty task model to be randomly populated by means
of an iterative process. The context model was populated with 100 new individuals
each iteration, while the task model was populated with one new pattern whose task
structure formed a perfect binary tree, varying its depth and the width of the first level
each iteration.

Fig. 8. Temporal cost of task model operations

After each iteration, we tested all the model operations of MUTate and OCEan 20
times and calculated the average temporal cost of each one. As an example, the opera-
tion over the context model with the highest temporal cost was the getIndividual opera-
tion, which took 7 milliseconds with 100 individuals and 10 milliseconds with 6000
individuals. This is because this operation has to get the individual by using a SPARQL
query, which determines the temporal cost of the operation. Figure 8 shows the tempo-
ral cost of the task model operations with the highest cost. At the top of the figure, we
show the time required to add a behaviour pattern according to the number of tasks.
This operation took less than 50 milliseconds to add a pattern of 2296 tasks. At the
bottom, we show the getTask, updateTask and deleteTask operations. Their costs are
very similar since all of them make the same query to get the corresponding task. Even
with a model population of 45612 tasks, these model operations provide a fast response
(<250 milliseconds). Thus, the response time of using models at runtime is adequate.

7.2 A Case Study-Based Evaluation

As a case study-based evaluation of our approach, we developed a prototype to sup-
port the automation of the daily tasks that Bob and Sarah perform in their home (ex-
amples of these daily tasks have been presented in Section 3). To develop the case
study, we specified the behaviour patterns that the system had to automate (with the
participation of Bob and Sarah), using the proposed task model. To facilitate the par-
ticipation of the users, we briefly explained the main concepts of the model and how
we modelled the identified behaviour patterns. We found that this model was intuitive

390 E. Serral, P. Valderas, and V. Pelechano

enough for users and expressive enough to model all the identified automation re-
quirements. However, the end-users found it a little difficult to understand some of
the used temporal relationships.

To support the functionality needed to execute the system tasks of the patterns, we
used the MDD strategy presented in [8] to obtain the code of the required services
used to execute the system tasks. To evaluate the feasibility of our approach, we ran
the system in real-life deployment sessions using Prosyst. In the experimental set-up,
a scale environment with real devices was used to represent the Smart Home [16].

In addition, we evaluated the usability of the tool for evolving the system automa-
tions. To do this, we arranged several sessions in which Bob and Sarah used the tool
under our supervision. An observer sat side by side with them and measured (without
intervening in their activity) their number of errors and their number of help requests.
Since the users had participated in the modelling of the behaviour patterns, it was easy
for them to change it. Specifically, 85% of the updates of the patterns were correctly
performed; however, they needed particular help to properly establish the temporal
relationships between the tasks of a new behaviour patterns. Finally, we measured
errors in terms of “wrong clicks” which were, on average, 13% of the overall set of
interactions.

8 Related Work

Current approaches for automating users’ behaviour patterns are predominantly ma-
chine learning-based approaches. Some examples are: the MavHome project [2] or
the iDorm project [3]. The MavHome project uses prediction algorithms to identify
common sequential patterns from data captured from the sensors of a smart home.
From this learning, Mavhome builds a Markov model of user behaviour in which
patterns are specified through a series of states linked by transitions with certain prob-
abilities. If changes in user behaviour are detected by the algorithms or user feedback,
the system is rebooted to obtain an improved Markov model using a new set of obser-
vations. The iDorm project models user behaviour by learning fuzzy rules that map
sensor state to actuator readings representing inhabitant action. If changes in the user
behaviour are detected by the algorithms, rules can be added, modified, and deleted.
Thus, the evolution of these models is performed at a low level of abstraction. In
addition, these techniques present some problems that can cause the loss of user ac-
ceptance of the system, e.g.:

• The algorithms used require a great amount of training data and make mis-
takes during the learning process, causing frustration to users;

• Lack of knowledge about user performed tasks may lead to automating tasks
which the user may not want automation or reach generalizations in such a
way that the automation becomes a burden on the user; e.g., the actions pre-
dicted by these algorithms for the WakingUp pattern (Section 3) would be:
switch on the light, raise the blinds and switch the light off again, instead of di-
rectly raising the blinds.

In addition, these approaches could not predict some patterns of our case study be-
cause users do not perform these actions (Sarah does not record her favourite program
when she is not at home), or they are not performed in the same context (the actions

 Supporting Runtime System Evolution to Adapt to User Behaviour 391

to be automated when it starts to rain are performed when Sarah and Bob are at home,
but not when they are out). In our approach, the evolution is performed at modelling
level using concepts of a high level of abstraction, such as task or behaviour pattern,
instead of adding states or rules as the above presented approaches. Moreover, users
participate in the modelling of the system automation and in its evolution; therefore,
the system only automates the tasks that users want automated and without requiring a
learning process.

Other approaches try to specify proactive behaviour by using rule-based systems.
Some examples are the proposal by García-Herranz et al. [17] and the proposal by
Henriksen and Indulska [18]. These approaches are not focused on the automation of
whole user behaviour patterns and do not cover the evolution of the rules once the
system is running. In contrast, our approach automates whole user behaviour patterns
by modelling them using a context-adaptive task model. This model considerably
improves the expressivity of the above approaches by using the task concept and the
temporal relationships among tasks. Thus, our approach allows users to view the
automated actions as a whole task and not as isolated actions that are triggered when
some conditions arise.

9 Conclusions and Further Work

In this work, we have presented and evaluated a novel approach for confronting the
challenge of automating users’ behaviour patterns end evolving them at runtime.
These patterns are specified in a context-adaptive task model and automated by an
engine (MAtE) that interprets the models to execute the patterns as specified. To deal
with the evolution of these behaviour patterns, we have implemented MUTate and
OCEan that are mechanisms capable of updating these models at runtime [6]. Since
these models are interpreted at runtime by MAtE, as soon as they are modified, the
changes are applied by the system. In addition, we provide an end-user tool that, by
using MUTate and OCEan, allows users to change the patterns by using user-friendly
interfaces. Thus, users can update the automated behaviour patterns without having to
stop the system using this tool.

As further work, we plan to extend our end-user toolkit to provide interfaces that
adapt according to the user preferences, skills and knowledge of the system [20]. Ac-
cording to this information (stored in the context model), the interfaces will provide
users with the appropriate end-user techniques to change the automated behaviour
patterns.

References

[1] Neal, D.T., Wood, W.: Automaticity in Situ: The Nature of Habit in Daily Life. In:
Bargh, J.A., Gollwitzer, P., Morsella, E. (eds.) Psychology of action: Mechanisms of
human action (2007)

[2] Cook, D.J., Youngblood, M., Heierman, I.E.O., Gopalratnam, K., Rao, S., Litvin, A., et
al.: MavHome: An agent-based smart home. In: PerCom 2003, pp. 521–524 (2003)

[3] Hagras, H., Callaghan, V., Colley, M., Clarke, G., Pounds-Cornish, A., Duman, H.: Cre-
ating an Ambient-Intelligence Environment Using Embedded Agents. IEEE Intelligent
Systems 19(6), 12–20 (2004)

392 E. Serral, P. Valderas, and V. Pelechano

[4] Mens, T.: The ERCIM Working Group on Software Evolution: the Past and the Future.
In: IWPSE-Evol 2009 (2009)

[5] Bennett, K., Rajlich, V.: Software Maintenance and Evolution: A Roadmap. In: 22nd In-
ternational Conference on Software Engineering, pp. 75–87 (2000)

[6] Blair, G., Bencomo, N., France, R.B.: Models@run.time. IEEE Computer 42, 22–27
(2009)

[7] OSGI, http://www.osgi.org/
[8] Serral, E., Valderas, P., Pelechano, V.: Towards the Model Driven Development of con-

text-aware pervasive systems. In: Pervasive and Mobile Computing (2009)
[9] Serral, E., Valderas, P., Pelechano, V.: A Model Driven Development Method for devel-

oping Context-Aware Pervasive Systems. In: Sandnes, F.E., Zhang, Y., Rong, C., Yang,
L.T., Ma, J. (eds.) UIC 2008. LNCS, vol. 5061, pp. 662–676. Springer, Heidelberg
(2008)

[10] Eclipse Platform, http://www.eclipse.org
[11] Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide. W3C

Recommendation February 10 (2004), http://www.w3.org/TR/owl-guide/
[12] SPARQL Query Language (2008),

http://www.w3.org/TR/rdf-sparql-query/
[13] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL

reasoner. Journal of Web Semantics (2007)
[14] Pérez, F., Valderas, P.: Allowing End-users to Actively Participate within the Elicitation

of Pervasive System Requirements through Immediate Visualization. In: REV (2009)
[15] Prosyst, http://www.prosyst.com/
[16] EIB, http://www.knx.org/
[17] García-Herranz, M., Haya, P.A., Esquivel, A., Montoro, G., Alamán, X.: Easing the

Smart Home: Semi-automatic Adaptation in Perceptive Environments. Journal of Uni-
versal Computer Science 14 (2008)

[18] Henricksen, K., Indulska, J.: A Software Engineering Framework for Context-Aware
Pervasive Computing. In: PerCom (2004)

[19] Lieberman, H.: Programming by example (introduction). Commun. ACM 43(3), 72–74
(2000)

[20] Pribeanu, C., Limbourg, Q., Vanderdonckt, J.: Task Modelling for Context-Sensitive
User Interfaces. In: Johnson, C. (ed.) DSV-IS 2001. LNCS, vol. 2220, pp. 49–68.
Springer, Heidelberg (2001)

[21] Shalloway, A., Trott, J.R.: Design Patterns Explained: A New Perspective on Object-
Oriented Design. Addison-Wesley, Reading (2004)

[22] Serral, E.: Automating User Behaviour Patterns. Technical Report, PROS - UPV (2009),
http://oomethod.dsic.upv.es/labs/media/techreports/
TechnicalReport-AutomatingBP.pdf

Interaction-Driven Self-adaptation of Service Ensembles

Christoph Dorn and Schahram Dustdar

Distributed Systems Group
Vienna University of Technology

1040 Vienna, Austria
lastname@infosys.tuwien.ac.at

Abstract. The emergence of large-scale online collaboration requires current in-
formation systems to be apprehended as service ensembles comprising human
and software service entities. The software services in such systems cannot adapt
to user needs based on autonomous principles alone. Instead system requirements
need to reflect global interaction characteristics that arise from the overall col-
laborative effort. Interaction monitoring and analysis, therefore, must become a
central aspect of system self-adaptation. We propose to dynamically evaluate and
update system requirements based on interaction characteristics. Subsequent re-
configuration and replacement of services enables the ensemble to mature in par-
allel with the evolution of its user community. We evaluate our approach in a case
study focusing on adaptive storage services.

1 Introduction

Over the past years we have observed a trend towards online collaboration. Web sites
for social networking (e.g., Facebook, LinkedIn), collaborative tagging (e.g., Digg,
Del.ici.us), content sharing (e.g., Youtube), or knowledge creation (e.g., Wikipedia)
have attracted millions of users. People increasingly utilize such tools to pursue joint
interests and shared goals.

The scientific community in particular comes to profit from a tight interweaving of
social networks and technological networks [1]. Barabasi [2] highlights the tendency
for research teams to grow in size. Guimera et al. [3] describe the impact of social
network dynamics on team performance. Scientific teams emerge in an ad-hoc fashion,
gather the persons with the required expertise, conduct research, and dissolve again.

The scientific community is one example where collaboration emerges in large-scale,
heterogeneous systems. Kleinberg [4] notices the opportunity to observe the dynamics
and complexity of such systems that arise from the convergence of social and technical
networks in general. We refer to such systems as service ensembles.

The scale of online collaborations prevents a single ensemble entity from obtain-
ing a complete picture of the overall service ensemble. Simultaneously, services lack
adequate mechanisms that derive global-level interaction characteristics. Services will
exhibit poor performance and slow reaction to a changing environment: promising col-
laborations dissolve prematurely; helpful services remain unavailable as nobody be-
comes aware of the demand. As a result, enabling interaction-driven adaptivity is a
prime concern in evolving information systems.

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 393–408, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

394 C. Dorn and S. Dustdar

Several challenges need to be addressed before a service system can adapt to global-
level ensemble interaction characteristics. Users apply both direct and indirect interac-
tion means as well as exchange services as they feel suitable. Any interaction metric
needs to abstract from these low-level interaction details and has to derive user prox-
imity across activities, services, and shared artifacts. Any distance measurement needs
to take into account also the focus and magnitude of interaction among humans, among
services, and between humans and services. Existing work on social network analysis
(e.g., [5,6]) provides insight into the community structure. Deriving requirements from
this data, however, is non-trivial.

In this paper we provide models and mechanisms to align configuration and pro-
vided functionality of software services with the ensemble’s interaction structure. The
main goal is to establish the set of required service capabilities - i.e., what function-
ality and adaptability services need to support - but not how services achieve specific
adaptation. Our mechanisms, for example, discover that ensemble users tend to inter-
act in co-located groups, and derive requirements demanding location-aware services.
We do not, however, specify how these services exploit information about the ensemble
interaction structure.

Specifically, we extend the traditional autonomic feedback loop with a secondary
loop to monitor and analyze interactions across the complete service ensemble (Sec-
tion 2). Interaction analysis relies on our bipartite interaction graph that tracks relations
between humans and services across activities and artifacts. Distance measurements on
this graph consider the interaction focus and global significance of individual ensem-
ble entities (Section 3.2). Significant changes in the users’ interaction structure trigger
an update of the system’s configuration via requirements rules. These rules take the
interaction structure to derive necessary service capabilities (Section 3.3). Finally, we
validate our approach (Section 4) based on the case study presented in the following
section (Section 1.1).

1.1 Motivating Scenario

We observe a service ensemble comprising a group of 20 scientists working together
closely on a research proposal. They utilize various services to coordinate their work,
communicate on- and off-line, manage documents and figures, update and revise finan-
cial tables for example. In this scenario, we focus on the requirements and adaptation
particular to storage services.

In such a relatively small service ensemble already, individual users find it consid-
erably hard to gain an overview of the underlying interaction structure and the system
requirements emerging from that structure. During the proposal drafting phase (Fig. 1a)
users will collaborate on the various proposal sections in an ad-hoc manner, giving rise
to short-lived interactions between a subset of users that dissolve again. A storage ser-
vice will, therefore, need to provide maximum cooperation flexibility. A suitable service
enables simple file storage and exchange between participants without requiring exten-
sive configuration of file versioning or access control.

Let us assume, the proposal is accepted and the regular project phase commences
(Fig. 1b). As the number of project participants rises, we expect stable subgroups
to form that work on various project tasks. Subsequently, users require services that

Interaction-Driven Self-adaptation of Service Ensembles 395

(a) Phase 1

(b) Phase 2

(c) Phase 3

Fig. 1. Scenario: (Colors online) - (a) Phase 1: single cluster, dense interactions. (b) Phase 2: intra
organizational interaction with ties to the coordinator. (c) Phase 3: task-centric interaction, feed-
back from T1 (upper left) to T2 (right) and T3 (bottom). Line thickness indicates the amount
of interactions. Red links denote cross-cluster interaction, blue links represent intra-cluster
interactions.

reflect this structure. A suitable service, for example, reduces information overload of
individual users by focusing the interactions to users within a subgroup. Other adap-
tation dimensions include services keeping content within user proximity, limiting re-
source access to users of the same organization, or providing notifications to users with
specific roles or skill.

Towards the end of the project (Fig. 1c), users have to collaborate across organi-
zational boundaries again to integrate their research results and prototypes. Commu-
nication remains mostly within the scope of the various tasks, with users involved in
demonstration activities giving feedback to users working on scientific dissemination
as well as to users planning industrial exploitation. Derived requirements demand a
shift from organization-centric to task-centric services.

Throughout the evolution of the ensemble, no single user obtains a complete overview
of interactions and respective system requirements. Continuous interaction monitoring
and analysis is therefore quintessential to enable software services to evolve in line with
the overall ensemble structure.

2 From Autonomous to Evolving Service Ensembles

A service ensemble consists of humans (i.e., the users), software services, and a service
infrastructure. The infrastructure typically provides a service registry and a graphical
user portal. The registry contains a comprehensive set of service descriptions. At any
time, however, only a subset of those services is actively deployed in the ensemble. We
refer to the complete set of software elements as the system. Whereas an autonomous
system aims to fulfill a static set of requirements, an evolving system replaces and
reconfigures its parts (i.e., services) to match the dynamically changing requirements
of the ensemble’s user base. Here, dynamic system requirements ultimately cause the
replacement, deployment, removal, or reconfiguration of services.

396 C. Dorn and S. Dustdar

Most traditional autonomous systems follow a Monitor- Analyze- Plan- Execute+
Knowledge (MAPE-K) approach [7,8] - although these phases are sometimes named
differently [9,10]. The core cycle in Fig. 2 visualizes the basic MAPE-K steps 1a, 2a,
3a, and 4. In a service ensemble, System Monitoring observes changes in services ca-
pabilities and QoS parameters, service dependencies, and service load. System Analysis
compares the current requirements with the current system state. System Planning ini-
tiates changes when capabilities or QoS degrade, with System Execution enforcing the
replacement and reconfiguration of the actual service instances.

We introduce a parallel (incomplete) MAPE-K cycle to turn an autonomous system
into an evolving system (Fig. 2). Ensemble Monitoring (1b) observes the interactions
and properties of the user set. Ensemble Analysis (2b) extracts interaction patterns and
changes thereof. Given the structure of collaboration, user properties, shared artifacts,
and service usage, Ensemble Planning (3b) updates the system requirements to match
the dynamic user characteristics. Direct Ensemble Control of human behavior is not
possible, thus the outer MAPE-K cycle remains incomplete. Any desirable impact is
induced via system reconfiguration. Consequently, the system MAPE-K cycle reacts
not only to system events but also to updates of the system requirements.

Interactions play a most important part in our approach. Extraction of the ensemble
structure from interactions not only reveals relevant system requirements but also pro-
vides the additional information on the system level to analyze service dependencies in
more detail. In the following sections we will, therefore, focus on the interaction-centric
models and mechanisms for realizing steps 1b, 2b, 3b, and 3a. Specific adaptation and

Service Ensemble

Ensemble
Planning

System
Monitoring Knowledge

System Analysis System Planning

System
Execution

Ensemble
Monitoring

Ensemble
Analysis

2a

1b 1a

2b 3b

3a 4 Ensemble
Control

Fig. 2. Approach: from autonomous to evolving service ensembles

Interaction-Driven Self-adaptation of Service Ensembles 397

reconfiguration mechanisms in step 4 or within individual services remain outside the
scope of this paper.

3 Interaction-Based Continuous Adjustment

3.1 Interaction Monitoring

The key to extracting meaningful information from interaction data is monitoring the
context in which the various interactions take place (Fig. 2 Step 1b). Introduced in
previous work [11], the principle interaction event is an action that describes the co-
occurrence of users, services, and artifacts (e.g., documents) in a common activity at the
given time. In this manner, actions describe interaction among users, among services,
and between users and services.

Additional information sources from the environment such as user profiles available
from online social platforms or enterprise directories (in corporate settings) comple-
ment action events by putting them in perspective. The raw events are captured by
distributed logging [12], monitoring [13], or sensing [14] mechanisms. Within individ-
ual services, autonomous toolkits (e.g., [15,16,17]) provide monitoring techniques to
provide an up-to-date view on capabilities and QoS values.

3.2 Interaction Structure

We propose to integrate multiple interaction types into a single distance measurement to
reflect more accurately the tight inter-dependency between humans and services (Fig. 2
Step 2b). Most existing approaches to interaction analysis observe one interaction type
only, for example, either emails, friendship links, or posting threads. Furthermore, little
attention is put on the focus and magnitude of links between entities, i.e. the distri-
bution of re-occurring interactions across established links, respectively the amount of
re-occurring interactions. The key aspect of our approach is weighting the entity’s local
interactions according to its global significance.

We map the captured actions into a bipartite interaction graphAG2(V, E). Our bipar-
tite graph defines two vertex categories: actions (Va) and ensemble entities (Ve). Edges
are undirected and exist only between vertices of different category. Fig. 3a displays an
example bipartite interaction graph comprising actions (a1, a2, a3, a4) and ensemble
entities of type user (u1, u2, u3, u4), activity (t1, t2), artifact (o1, o2), and service (s1,
s2, s3). An action’s weight w(a) corresponds to the number of times that action has oc-
curred. Two actions are considered identical when they exhibit the same set of involved
ensemble entities.

We measure the distance between two vertices of the same ensemble entity type by
aggregating their involvement in shared and related actions. The distance, for example,
between two users is based on actions involving joint activities, joint resources, and
joint artifacts. In the example graph (Fig. 3a) users u2 and u3 become linked to user u4
through the shared artifacts o1 and o2. The process of calculating the distance between
two entities requires determining the similarity between any two actions first.

398 C. Dorn and S. Dustdar

t1 u1 u2 u3 u4

a1

s1

a2 a3

s2 s3

1x

t2

o2o1

a4
3x4x2x

0.60.5 0.25

0.125

a1

a2

a3

a4

u1

u2

u3

u4

a) b) c)

1.5

0.375

3.5 0.375

1.5

0.2

0.50.50.50.50.5

0.50.50.01.0

1.0

Fig. 3. Bipartite interaction graph (a) combining user, activities, artifacts, service, and actions;
action similarity graph (b); user distance graph (c)

Action similarity. For each pair of actions (ai, a j), we consider the amount of shared
entities. The set of common entities, however, is insufficient to accurately establish
the distance between two actions. We also consider the global significance of a shared
entity in contributing to the overall distance measurement. For example, service s2 has
edges to all actions. It should not be considered as it does not add any information to
distinguish the similarity of two actions.

We apply Shannon’s entropy definition [18] H(w) = −∑(w ∗ log(w)) to describe the
information content of an entity’s edge set, thus deriving the global significance sig(v) .
The significance of entity v is defined as1:

sigv = 1 − log(deg(v))
log(|a|) ∀ v ∈ Ve and deg(v) > 1 (1)

where deg(v) is the degree of vertex v and |a| denotes the total number of actions. The
normalization yields a significance value in the interval [0, 1]. When a vertex v links to
all actions, it exhibits no focus (i.e., minimum entropy) and thus significance becomes
0. Vertices with one neighbor yield sig(v) = 1. Italic numbers in Fig. 3a provide the
global significance values for the example entities.

The Jaccard similarity metric determines the similarity of two actions based on their
common entities. We consider, however, only those entities which exceed a given signif-
icance threshold γ. The Jaccard similarity is defined as 1 minus the difference between
set union and set intersection, divided by the set union:

Jδ = 1 − |A ∪ B| − |A ∩ B|
|A ∪ B| (2)

where sets A and B contain the references to users, services, activities, and artifacts
when comparing two actions ai and ai. Jδ becomes 1 when the two sets contain the
same entities and yields 0 when the two sets are completely disjoint. The complete
action similarity graph is denoted AGaction(Va, Ea) shown in Fig. 3b for the example
bipartite graph with γ = 0.3.

1 Reduced from sigv = 1 − −deg(v)∗(1
deg(v) ∗log(1

deg(v)))

log(|a|) .

Interaction-Driven Self-adaptation of Service Ensembles 399

Interaction distance. The distance measurement between two ensemble entities of
same type takes two aspects into account:

– The distance between two entities decreases with increasing number of shared ac-
tions. A large amount of shared actions, however, does not necessarily imply low
distance.

– The distance between two entities decreases with increasing re-occurrence of in-
teractions. The more often two entities have interacted (i.e., high action weight)
the closer they become. Two entities having interacted only once in the scope of
three actions, yield higher distance than two entities having interacted 10 times
via a single action. Users u2 and u3, for example, yield lower proximity than u2
and u1.

In the case of user distance, we take measurements across services, activities, and ar-
tifacts to derive interaction distance for direct and indirect communication. One user,
for example, uploads a document, while another user downloads it. This process con-
sists of two actions, each involving a single user, and the same document. Total dis-
tance disttotal(ui, u j) between two users derives, thus, not only from shared actions
(dist1(ui, u j)), but also related actions (dist2(ui, u j)):

disttotal(ui, p j) = dist1(ui, u j) + dist2(ui, u j) (3)

We define two action sets. Set Ai contains all neighboring actions of ui. There exists an
analogous set A j. The shared action distance is defined as the sum of actions weights w:

dist1(ui, u j) =
|N|∑

n

w(n) (4)

where N(ui, u j) is the interaction of Ai and A j.
The related actions distance dist2(ui, u j) defines the edge set Ea(ak, al) in the action

similarity graphAGaction such that ak ∈ Ai, al ∈ A j, and ak � al.

dist2(ui, u j) =
∑

E(we ∗min[w(ak),w(al)])
|E| (5)

The set of pairwise distance measurements generates the entity interaction distance
graph AGuser(VP, EP) — here specific to users — required in the subsequent analy-
sis step (Section 3.3). The corresponding graph for the four users in the example is
displayed in Fig. 3c.

3.3 Interaction-Driven Requirements Adjustment

System requirements need to reflect the significant changes in the ensemble’s interac-
tion structure (Fig. 2 Step 3b). One important structural property of service ensembles
is the number and the size of subgroups that emerge from the interaction distance graph
and what factors cause this structure. Graph analysis based on interaction affinities (e.g.,
[19]) or community detection algorithms (e.g., [20] or [21]) describes the underlying

400 C. Dorn and S. Dustdar

tMetrics
«attribute» EnsembleURI : anyURI

tEntity
Type : tEntityType
GlobalActionSignificance : decimal [0..1]
GlobalInteractionCentrality : decimal [0..1]
«attribute» EntityURI : anyURI

Entity
1..1

tClusterAnalysis
MemberType : tEntityType
«attribute» ImpactPropertyType : anyURI [0..1]

ClusterAnalysis
0..*

tCluster
«attribute» InteractionDensity : decimal [0..1]
«attribute» AverageInteractionCardinality : decimal [0..1]
«attribute» InteractionImpact : decimal [0..1]
«attribute» ClusterName : anyURI [0..1]

Cluster
1..*

tElement
URI : anyURI
«attribute» Membership : decimal [0..1] = 1
«attribute» IntraClusterInteractionCentrality : decimal [0..1]

Element
0..*

Fig. 4. Excerpt of the ensemble model specifying the in-
teraction analysis result

a)
Limit a Limit b Limit dLimit c

b)
#cluster #person*0.25 DOUBLE_max

1

0

1

0

c)
0 50 / 100 DOUBLE_max

1

0

Fig. 5. Utility function: (a) generic
form, (b) fct. utilized in the exam-
ple rule, and (c) fct. used in the
evaluation

structure from which we subsequently derive appropriate system requirements. Fig. 4
displays the UML representation of the interaction analysis data model. The model lists
the set of involved entities of type users, activities, artifacts, and services. It states for
each entity the centrality in the overall interaction graph and the global significance
value applied during distance calculation. Each ClusterAnalysis element describes the
observed entity type and the context property that most likely caused the clusters to form
(e.g., location, organization, task, or role). Each detected Cluster states the interaction-
centric metrics such as density, average cardinality, interaction direction (interaction
within the cluster [0 → 1] or external [0 → −1]), and cluster name (e.g., the organi-
zation’s name, particular location, or role identifier). The membership degree specifies
the degree to which an entity belongs to a particular cluster, and its centrality within
that cluster.

Our previous work [22] introduced a capability model for services. The capabil-
ity model specifies non-functional properties such as storage space per user, cost, or
a service’s adaptability of resource access to location or organization context. System
requirements are expressed in terms of necessary capabilities. Coupling these system
requirements with rules enables us to dynamically adjust the system configuration to
match the interaction structure of the service ensemble.

The example requirement rule in Listing 1 demands common storage space for each
tightly connected subgroup (i.e., a cluster with interaction impact between 0 and 1). A
requirements rule consists of four parts:

Interaction-Driven Self-adaptation of Service Ensembles 401

1. the interaction-based condition triggering the rule. In the example we wait for two
or more clusters of users. Simultaneously, we limit that number to a quarter of the
total number of users to mitigate potential errors during the clustering process.

2. the computation of utility function parameters (optional).
3. the generation of the desired capability constraints. A constraint specifies the de-

sired capability, the utility function type, utility function parameters, and the im-
portance of the constraint. Fig. 5 visualizes the general utility function (a), and
the instance (b) utilized in requirement req2. In this example, we require a storage
service to be aware of the source causing the clustering (e.g., clusters mapping to
organization, locations, or roles). We also demand that the service supports as many
folders as there are clusters, and that each folder can be accessed simultaneously
by at least as many users as contained in the largest cluster.

4. the update of the knowledge component of the system’s MAPE-K cycle.

1 rule "StorageClusterSupport"
2 dialect "java"
3 when
4 em : EnsembleMetrics ((UserCA.clusters.size() >= 2) &&
5 (UserCA.clusters.size() <
6 (0.25*em.getEntities().getUsers().size()))
7 then
8 int clusterCount = UserCA.clusters.size();
9 int maxClusterSize = 0;

10 for (int i = 0; i<clusterCount; i++)
11 {
12 int size = UserCA.cluster.get(i).elements.size()
13 if (size > maxClusterSize) maxClusterSize = size;
14 if (UserCA.cluster.get(i).getImpact() < 0) clusterCount --;
15 }
16 URI impactTypeURI = UserCA.getImpactPropertyType();
17 TCapabilitySelectionRequirement req1 = RequirementsFactory.getSelectConstraint(
18 "Require Adaptability to Interaction Cluster Impact",
19 URIs.SELECTCAP_ADAPTABILITY ,
20 new String[]{impactTypeURI},
21 ChoiceUtilityHigh.class.getSimpleName(), ChoiceUtilityHigh.UTILITY_TYPE
22 0.8d);
23 TSimpleDecimalConstraint req2 = RequirementsFactory.getConstraint(
24 "Support folders for all clusters",
25 URIs.CAP_ResStorage , URIs.PROP_MaxFoldersPerAccount_ResStorage ,
26 ValueUtility.UTILITY_TYPE , ValueUtility.class.getSimpleName()
27 new double[]{ clusterCount , 0.25*em.getEntities().getUsers().size(),
28 Double.MAX_VALUE , Double.MAX_VALUE},
29 0.5d);
30 TSimpleDecimalConstraint req3 = RequirementsFactory.getConstraint(
31 "Support sufficient concurrent users within folders",
32 URIs.CAP_ResStorage , URIs.PROP_MaxConcurrentUsersPerFolder_ResStorage ,
33 ValueUtility.UTILITY_TYPE , ValueUtility.class.getSimpleName()
34 new double[]{ maxClusterSize*0.9, maxClusterSize*2,
35 Double.MAX_VALUE , Double.MAX_VALUE},
36 0.4d);
37 knowledge.addRequirement(em.getEnsembleURI(), req1);
38 knowledge.addRequirement(em.getEnsembleURI(), req2);
39 knowledge.addRequirement(em.getEnsembleURI(), req3);
40 end

Listing 1. Example DROOLS requirement rule generating three storage capability constraints
when interaction clusters have emerged

402 C. Dorn and S. Dustdar

3.4 System Planning and Execution

The new capability constraints need to be matched against the current system configura-
tion (Fig. 2 Step 3a). Along with the capability model, we have introduced a constraint
matching and selection algorithm in [22].

The ultimate execution of adaptation plan involves removal, replacement, or deploy-
ment of new services. Dynamic invocation frameworks such as VRESCO [23] provide
the appropriate mechanisms to exchange service endpoints during runtime. We rely on
VRESCO’s runtime SOAP message interceptors to perform necessary message trans-
formation operations. This addresses potential service interoperability problems and
allows interaction-based requirements analysis to work on a common capability model
without having to take heterogeneous service interfaces into account.

4 Case Study Evaluation

We base our evaluation on the three phases of the motivating scenario in Section 1.1.
Throughout the evaluation we focus on a limited number of requirements and service
specific storage capabilities for sake of clarity. Table 1 (upper part) lists the monitored
capabilities and their support by ten example services (S1 ... S10). The underlying in-
teraction data (Fig. 1a-c) for the three phases are synthetic, but yield the same global
interaction characteristics we observed in our past research projects. Excerpts from the
corresponding bipartite action graphs are visualized in Fig. 6a-c. Table 7 provides the
results of the cluster analysis subsequently applied to the rules in Listing 1. We also ap-
ply an additional cost constraint. The respective cost utility function yields maximum
utility at $0 , and minimum utility from $50 (Phase 1), respectively $100 (Phase 2 and
3), onwards. Table 1 (lower part) lists the final service ranking result, while the right
part supplies the parameters for the respective utility functions. The ranking process uti-
lizes the Logic Scoring of Preferences (LSP) algorithm [24] - a weighted sum of utility
scores.

Phase 1: During the project proposal drafting the 20 initial participants interact closely
without being affected by location, their role, or organizational boundaries (Fig. 1a).
The bipartite action graph excerpt for phase 1 (Fig. 6a) has most users involved in
every action using an email service (sig(S 0) = 0) . S0 is thus not considered for action
similarity measurements. The corresponding interaction cluster analysis for users does
not reveal emergence of distinct subgroups, thus the only task of preparing the proposal
becomes the best explanation for the dense interaction graph (Fig. 7). As outlined in
the motivation, services which are cheap and offer the minimum required amount of
support for users and folders rank highest. Here, we select service S2.

Phase 2: The participant number raises sharply shortly after the project kickoff. In our
scenario, ten organizations allocate between 6 and 18 members for a total number of
100 participants. Project coordinator is Organization 10, exhibiting a neutral impact due
to a balance of organization internal and external interaction. Most members keep inter-
action organizations internal, with exception to Organization 2, who’s members focus
purely on coordinating members in Organization 8 (Fig. 1b). The underlying bipartite

Interaction-Driven Self-adaptation of Service Ensembles 403

s0

u0 u1

a1 a2

u2

a3 a20

o1 o2

u19

o3
1.0 0.80.0 1.0

0.1 0.10.2 0.1

(a) Phase 1

s2 s0

u97 u7

a24 a30

u0

a33a1

o21

u86

o22

a8 a23

u8 u92

a40 a50 a56 a60 a62 a99

o11 o12 o13s2

Organization 10

Organization 9

0.35

0.85 0.85

0.400.41

0.150.20

(b) Phase 2

s7 s0

u26 u5

a1 a10

u14

a11 a23

o31

u9

o32

a24 a44

u28 u6

a66 a70 a99a45 a64 a65

o33 o34 s7s0

Task 3Task 1

0.2 0.15

0.350.35 0.30

0.80

(c) Phase 3

Fig. 6. Bipartite action graph excerpt - activities omitted and services s2 and s7 split for the sake
of clarity. Significance values are given only for a subset of entities and are based on the complete
bipartite graph.

Phase Property ClusterName Impact Size
1 Task Proposal 1 20
2 Org. Org. 1 1 9

Org. 2 -1 6
Org. 3 1 10
Org. 4 1 10
Org. 5 1 13
Org. 6 1 18
Org. 7 1 11
Org. 8 1 8
Org. 9 1 8
Org. 10 0 7

3 Task Dem. (T1) 0.83 22
Dissem. (T2) 1 12
Exploit. (T3) 1 16

Fig. 7. Interaction Cluster Analysis

100

1000

10000

M
ill

is
ec

on
ds

100

1

10

100

1000

10000

100 1000 5000 10000 20000

M
ill

is
ec

on
ds

Ensemble entities

100

50

10

Fig. 8. Interaction analysis performance mea-
surements (in milliseconds) for service ensem-
ble graphs exhibiting 100 to 20000 entities,
featuring 10, 50, and 100 properties

action graph (Fig. 6b) emphasizes the uptake of service S2 in Phase 1 as an indirect
interaction tool via shared artifacts. Simultaneously, users continue to utilize the email
service (S0), albeit, mostly for organization internal communication. Both services thus
provide useful (but low significance) information for the calculation of action simi-
larity. The subsequent cluster analysis reveals a strong impact of the organizational
topology on the interaction structure (Fig. 7). The same requirement rule of Phase 1
will now request services exhibiting adaptability to the organizational structure, while

404 C. Dorn and S. Dustdar

Table 1. Storage service capabilities, utility function parameters, constraint weight, and ranking
results (top services in bold font)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Para 1 Para 2 Para 3 w
Org-adaptability - - x - - - x - x x - x - 0.8
Loc-adaptability - - - x - - x - - x - - - 0.8

Task-adaptability - - - - x - - x x x - - x 0.8
Role-adaptability - - - - - x - x x x - - - 0.8

FoldersPerAccount 5 5 20 50 50 100 50 250 100 250 1;5 9;25 3;12.5 0.5
UsersPerFolder 10 50 100 20 50 10 10 50 100 100 18;40 16.2;36 19.8;44 0.4

Costs $ 0 0 60 50 20 100 50 30 90 200 0;50 0;100 0;100 0.5
Rank Phase 1 56 100 44 3 78 0 0 36 44 44
Rank Phase 2 0 25 98 49 34 41 100 46 94 76
Rank Phase 3 0 19 42 44 100 10 18 98 89 71

supporting the required number of users within each cluster. In our scenario, we conse-
quently switch from service S2 to S7.

Phase 3: The number of project participants decreases to 50 towards the end of the
project (Fig. 1c). The bipartite action graph (Fig. 6c) draws attention to the task internal
direct communication, and cross-task indirect interaction via shared artifacts. We also
note the switch of storage services as recommended in the previous phase (S7 instead
of S2). Interaction analysis now identifies the task structure as the most likely factor to
give rise to clusters (Fig. 7). Derived requirements demand a change from organization-
centric to task-centric services. Subsequently, we replace service S7 with service S5.

Discussion. During the scenario users switch between different communication types
(direct such as email, and indirect such as shared artifacts). They also exchange ser-
vices. Nevertheless, we are still able to track those interactions and thus derive accurate
user proximity as we map all actions onto our bipartite graph. The significance of par-
ticular entities changes throughout the scenario. Dynamically assessing their impact on
similarity guarantees accurate distance measurements during all scenario phases.

A global-level view on interactions is vital to establish the underlying interaction
structure such as emerging clusters. The interaction analysis detects the cause of clus-
tering, such as organizational, spatial, or task-related constraints. The respective re-
quirements demand exactly those services that are able to adapt to and support these
constraints. Observation of individual user or service properties alone can never reveal
such requirements.

The performance evaluation of the interaction analysis algorithm for various con-
figurations of service ensemble size and property count is displayed in Figure 8. The
algorithm exhibits exponential runtime behavior as expected for a growing interaction
network. However, even for the most complex scenario of 20000 entities each exhibiting
100 properties, the interaction impact is derived within 10 seconds which is sufficiently
fast.

Interaction-Driven Self-adaptation of Service Ensembles 405

5 Related Work

Interaction-based adjustment of service systems builds on concepts and techniques from
the autonomic computing domain and service adaptation community. Current general-
purpose autonomic techniques and toolkits (e.g., [15,16,17]) primarily apply context
about the software environment. These frameworks adhere to the basic MAPE-K feed-
back loop, limiting the application of user context to properties such as location or
device.

Jennings et al. [25] propose an architecture for autonomic management of commu-
nication networks that comes close to our approach of monitoring a large-scale system.
No human interaction characteristics, however, are considered.

Colman [26] proposes a hybrid approach to self-organization services through hier-
archical structuring of autonomic managers and services. An autonomic manager mon-
itors and controls all composed services, but lacks insight into the interaction charac-
teristic of the environment. In our work, adaptation to the environment is sensed and
analyzed in parallel to regular system monitoring. Any effect on the environment, how-
ever, can only be achieved through the system MAPE-K cycle.

The main shortcoming of the presented autonomic computing approaches is their
fixed set of requirements. These remain valid throughout the system’s lifetime or re-
quire manual configuration. In large-scale ensembles neither the services’ providers nor
individual users can grasp the system functionality required by the overall ensemble.

Specifically in service-oriented systems, extensive research efforts focus on service
selection based on Quality-of-Service (QoS) attributes (e.g., [27,28,29]), context infor-
mation (e.g.,[30,31]), or trust (e.g., [32,33,34]). Recently, Skopik et al. [35] extended
the notion of trust to cover both humans and services in mixed service-oriented systems.

These approaches consider only a subset of an ensemble context during composi-
tion. Adaptation and selection criteria usually build upon QoS metrics or context about
the service execution environment. Involved user context comprises mostly location,
devices, and preferences. None of these efforts evaluates the complex user interaction
structure within the service ensemble.

Social network analysis investigates the interaction characteristics of online commu-
nities. Information (e.g., [5,6]) that potentially serves as context for adaptation is usu-
ally not available in near-realtime, nor does it include aspects beyond human-to-human
communication. Our approach derives similarity from users’ involvement in joint ac-
tivities, use of common services, or modification of shared artifacts. Additionally, we
take into consideration the global significance of individual elements when computing
distance measurements.

6 Conclusion and Outlook

We have demonstrated the importance of monitoring global-level user interaction char-
acteristics to adapt system requirements. Based on captured user actions, our bipartite
interaction graph enables proximity measurements across users, activities, resources,
and artifacts. Subsequent interaction analysis identifies those properties that determine
the emergence of clusters. Clustering results and other interaction metrics provide

406 C. Dorn and S. Dustdar

meaningful data for interaction-centric requirements rules. These rules generate ser-
vice capability constraints which serve as system requirements. Final matching against
service capability profiles provides recommendations for system reconfiguration.

The current approach evaluates the strongest interaction impact for the complete ser-
vice ensemble. We plan to introduce context-dependent analysis that observes different
parts of the ensemble independently to simultaneously adapt to multiple impact fac-
tors. The second line of future research activities focuses on deriving and describing
reoccurring global-level interaction patterns. So far changes in the interaction structure
cannot be anticipated. We expect that prediction techniques combined with patterns
enable the early detection of structural changes and facilitate such transitions through
a-priori service reconfiguration.

Acknowledgment

This work has been partially supported by the EU STREP project Commius (FP7-
213876).

References

1. Jones, B.F., Wuchty, S., Uzzi, B.: Multi-University Research Teams: Shifting Impact, Geog-
raphy, and Stratification in Science. Science 322, 1259–1262 (2008)

2. Barabasi, A.L.: SOCIOLOGY: Network Theory-the Emergence of the Creative Enterprise.
Science 308(5722), 639–641 (2005)

3. Guimera, R., Uzzi, B., Spiro, J., Amaral, L.A.N.: Team Assembly Mechanisms Deter-
mine Collaboration Network Structure and Team Performance. Science 308(5722), 697–702
(2005)

4. Kleinberg, J.: The convergence of social and technological networks. Commun. ACM 51(11),
66–72 (2008)

5. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email social net-
works. In: MSR 2006: Proceedings of the 2006 international workshop on Mining software
repositories, pp. 137–143. ACM Press, New York (2006)

6. Valverde, S., Solé, R.V.: Self-organization and hierarchy in open source social networks.
Technical report, DELIS – Dynamically Evolving, Large-Scale Information Systems (2006)

7. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

8. IBM: An architectural blueprint for autonomic computing (2005)
9. Parashar, M., Hariri, S.: Autonomic computing: An overview. In: Banâtre, J.-P., Fradet, P.,

Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 257–269. Springer, Hei-
delberg (2005)

10. Dobson, S., Denazis, S., Fernández, A., Gaı̈ti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre,
F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications. ACM Trans. Auton.
Adapt. Syst. 1(2), 223–259 (2006)

11. Schall, D., Dorn, C., Dustdar, S.: Viecar - enabling self-adaptive collaboration services.
In: 34th EUROMICRO Conference on Software Engineering and Advanced Applications
(SEAA). IEEE Computer Society, Los Alamitos (2008)

Interaction-Driven Self-adaptation of Service Ensembles 407

12. Dorn, C., Truong, H.L., Dustdar, S.: Measuring and analyzing emerging properties for au-
tonomic collaboration service adaptation. In: Rong, C., Jaatun, M.G., Sandnes, F.E., Yang,
L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp. 162–176. Springer, Heidelberg (2008)

13. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for
ws-bpel. In: WWW 2008: Proceeding of the 17th international conference on World Wide
Web, pp. 815–824. ACM, New York (2008)

14. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks.
IEEE Communications Magazine 40(8), 102–114 (2002)

15. Sterritt, R., Smyth, B., Bradley, M.: Pact: personal autonomic computing tools. In: EASe
Workshop at ECBS 2005, pp. 519–527 (2005)

16. Bigus, J.P., Schlosnagle, D.A., Pilgrim, J.R., Mills, W.N., Diao, Y.: Able: A toolkit for build-
ing multiagent autonomic systems. IBM Systems Journal 41(3) (2002)

17. IBM: Autonomic computing toolkit: Developer’s guide (2004),
http://www-128.ibm.com/developerworks/autonomic/books/fpy0mst.htm

18. Shannon, C.E.: A mathematical theory of communication. Bell system technical journal 27
(1948)

19. Dorn, C., Schall, D., Dustdar, S.: A model and algorithm for self-adaptation in service-
oriented systems. In: IEEE European Conference on Web Services, ECOWS (November
2009)

20. Capocci, A., Servedio, V., Caldarelli, G., Colaiori, F.: Detecting communities in large net-
works. Physica A: Statistical Mechanics and its Applications 352(2-4), 669–676 (2005)

21. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci.
USA 103, 8577 (2006)

22. Dorn, C., Schall, D., Dustdar, S.: Context-aware adaptive service mashups. In: IEEE Asia-
Pacific Services Computing Conference (APSCC) - (short paper) (December 2009)

23. Michlmayr, A., Rosenberg, F., Platzer, C., Treiber, M., Dustdar, S.: Towards recovering the
broken soa triangle - a software engineering perspective. In: 2nd International Workshop on
Service-oriented Software Engineering (IW-SOSWE 2007 @ ESEC/FSE 2007) (September
2007)

24. Dujmovic, J.J.: Continuous preference logic for system evaluation. IEEE Transactions on
Fuzzy Systems 15, 1082–1099 (2007)

25. Jennings, B., van der Meer, S., Balasubramaniam, S., Botvich, D., Foghlu, M., Donnelly, W.,
Strassner, J.: Towards autonomic management of communications networks. IEEE Commu-
nications Magazine 45(10), 112–121 (2007)

26. Colman, A.: Exogeneous management in autonomic service compositions. In: ICAS 2007:
Proceedings of the Third International Conference on Autonomic and Autonomous Systems,
Washington, DC, USA, p. 25. IEEE Computer Society, Los Alamitos (2007)

27. Yu, T., Lin, K.J.: Adaptive algorithms for finding replacement services in autonomic dis-
tributed business processes. In: Proceedings of Autonomous Decentralized Systems, ISADS
2005, pp. 427–434 (2005)

28. Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A qos-aware selection model for semantic web
services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 390–401.
Springer, Heidelberg (2006)

29. Rosenberg, F., Leitner, P., Michlmayr, A., Celikovic, P., Dustdar, S.: Towards composi-
tion as a service - a quality of service driven approach, March 29-April 2, pp. 1733–1740
(2009)

30. Yang, Y., Mahon, F., Williams, M.H., Pfeifer, T.: Context-aware dynamic personalised ser-
vice re-composition in a pervasive service environment. In: UIC, pp. 724–735 (2006)

http://www-128.ibm.com/developerworks/autonomic/books/fpy0mst.htm

408 C. Dorn and S. Dustdar

31. Baresi, L., Bianchini, D., Antonellis, V.D., Fugini, M.G., Pernici, B., Plebani, P.: Context-
aware composition of e-services. In: Benatallah, B., Shan, M.-C. (eds.) TES 2003. LNCS,
vol. 2819, pp. 28–41. Springer, Heidelberg (2003)

32. Vu, L.H., Hauswirth, M., Aberer, K.: Qos-based service selection and ranking with trust
and reputation management. In: Meersman, R., Tari, Z. (eds.) OTM 2005, Part I, LNCS,
vol. 3760, pp. 466–483. Springer, Heidelberg (2005)

33. Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selection. In:
ICSOC 2004: Proceedings of the 2nd international conference on Service oriented comput-
ing, pp. 212–221. ACM, New York (2004)

34. Maximilien, E., Singh, M.: Self-adjusting trust and selection for web services, pp. 385–386
(June 2005)

35. Skopik, F., Schall, D., Dustdar, S.: The cycle of trust in mixed service-oriented systems. In:
35th Euromicro Conference on Software Engineering and Advanced Applications, SEAA
(August 2009)

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 409–423, 2010.
© Springer-Verlag Berlin Heidelberg 2010

On the Semantics of the Extend Relationship in Use
Case Models: Open-Closed Principle or Clairvoyance?

Miguel A. Laguna, José M. Marqués, and Yania Crespo

Department of Computer Science, University of Valladolid, Valladolid
{mlaguna,jmmc,yania}@infor.uva.es

Abstract. A use case is a description of the interactions of a system with the ac-
tors that use it. The Achilles' heel of use cases is the unclear UML semantics, in
particular the definition of the extend relationship. This article is an attempt to
clarify the semantics of the extension mechanism. In particular, we advocate for
the application of the open-closed principle, adding modification details in the
extending use case, instead of in the base case. A revision of the UML standard
would be impractical, but a disciplined reinterpretation of the extend and exten-
sion point concepts could represent a great improvement. Textual and graphical
approaches (based in the UML Behavior meta-model) are considered. Using
these recommendations, the base use cases can be independently described,
while the extending use cases will be self-contained.

Keywords: use case, extend relationship, extension point, UML meta-model.

1 Introduction

Ivar Jacobson proposed use cases and incorporated them into his OOSE development
method [13], being recognized as a useful technique to elicit and record user require-
ments. A use case describes the possible interactions that can occur between an actor
and the future system. It also describes the responsibilities of the system under design,
without getting into implementation techniques or system internal details.

The inclusion of use cases in the first versions of UML as standard modeling lan-
guage [20] is probably the main reason of its widespread acceptation. Nowadays use
cases are one of the preferred techniques for the representation of user requirements
(and the external behavior of an information system considered as a black box). They
are essential in the Unified Process, as this development method was evolved from
the ideas of Jacobson [12]. One of the major controversies is the UML’s explanations
of include and extend relationships. In particular, extend concept remains vague, and
apparently contradictory. Precise and unambiguous definitions are missing in the
numerous UML documents. The original motivation of the extend relationship was
the aspiration of never touching the requirements of a previous version of a system.
But the presence of the extension point concept in UML violates the original purpose.
In UML you must anticipate in the base use case those places at which extensions are
permitted (i.e, the extension points). Therefore, UML's explanations for extend rela-
tionship are still subject to debate. Some conferences have been devoted to these and
other conflicting aspects [7].

410 M.A. Laguna, J.M. Marqués, and Y. Crespo

Cashier

Process Sale

Payment
extension points

Cash Payment

Credit Payment

<<extend>>

<<extend>>

Cashier

Process Sale

Payment
extension points

Cash Payment

Credit PaymentCheck Payment

<<extend>>

<<extend>>
<<extend>>

Cashier

Process Sale

Payment
extension points

Rebate Product

<<extend>>

Evolution 1:
extension point exist

Evolution 2:
No extension point exist

Fig. 1. UML extension (only possible if an extension point exists) and unanticipated extension
(not possible in UML)

Figure 1, inspired in the example of Point-Of-Sale used by Larman [15], shows the
differences between the original intention and the UML concept of extension. While
the original extension could be considered as an enhancement of existing require-
ments (leaving untouched the original version), as depicted in evolution 2 of Figure 1,
UML requires a previously defined extension point to incorporate a new extension. In
the example of the base case of Figure 1, a new payment method (“Check payment”)
is possible in UML but not the evolution 2 of Figure 1. In this situation, the system
evolution requires a new use case that allows the application of discounts to certain
products, as introduced by the cashier. If “Process Sale” does not have an adequate
extension point, UML forbids the direct extension. The original intention is clearly
more useful and we suggest recovering it in the UML context. As the alteration of
UML meta-model is not an easy mission and we want to use conventional CASE
tools, we propose to use some of the existing UML mechanisms to incorporate the
original semantics of extend.

The rest of the paper is as follows: The next section briefly summarizes the UML
vision of the extend relationships. Section 3 discusses the problems with the extend
relationship, under the prism of the open-closed principle, and proposes a semantic
reinterpretation of the extension point concept. Section 4 uses the UML Activity
Package elements to visually represent an unanticipated extension. Section 5 presents
related work and section 6 concludes the paper and proposes additional work.

 On the Semantics of the Extend Relationship in Use Case Models 411

2 The Extend Relationship in the UML Documentation

A use case describes an interaction between one or more actors and the system as a
sequence of messages. Thus, a use case diagram has two types of nodes: actors and
use cases, connected by association relationships. The original proposal of Jacobson
also included two kinds of relationships between use cases: The uses and extends
relationships, both indicated with generalization arrows. This syntax was initially
preserved in primitive UML versions [20] but, beginning with the refined 1.3 version,
a new set of relationships was proposed and this definition has essentially been kept,
with minor changes, until the actual UML 2.1.2 version. From UML 1.3, relationships
between use cases can be expressed in three different ways: generalization, include,
and extend relationships. An extend relationship defines those instances of a use case
that may be augmented with some additional behavior defined in an extending use
case. While, the semantics of include relationship has always been reasonably clear,
the extend relationship has generated a lot of controversy. Several modifications have
been added to the different versions of UML. Attempts at removing these difficulties
have been proposed in these documents. From here until the end of the article, we
base the discussion on the official UML documentation, version 2.1.2 [19].

In the UML 2.1.2 meta-model, Actor and UseCase are both BehavioredClassifier,
which itself is a descendent of Classifier. As UML documentation states, the extend
relationship specifies how and when the behavior defined in the extending use case
can be inserted into the behavior defined in the extended use case (at one extension
point). Two important aspects are: a) this relationship is intended to be used when
some additional behavior can be added to the behavior defined in another use case; b)
the extended use case must be independent of the extending use case.

Analyzing the meta-model (see the white meta-classes of Figure 3), the exten-
sionLocation association end references the extension points of the extended use case
where the fragments of the extending use case are to be inserted. An extensionPoint is
an owned feature of a use case that identifies a point in the behavior of a use case
where it can be extended by another use case. The extend condition is an optional
Constraint that references the condition that must hold for the extension to take place.
The notation for conditions has been changed in UML 2: the condition and the refer-
enced extension points are included in a Note attached to the extend relationship.

Semantically, the concept of an “extension location” is left underspecified in UML
because use cases “are specified in various idiosyncratic formats”. UML documenta-
tion refers to the typical textual use case description to explain the concept: “The use
case text allows the original behavioral description to be extended by merging in
supplementary behavioral fragment descriptions at the appropriate insertion points”.
Thus, an extending use case consists of behavior fragments that are to be inserted into
the appropriate spots of the extended use case. An extension location, therefore, is a
specification of all the various (extension) points in a use case where supplementary
behavioral increments can be merged.

The next sections are devoted to analyzing this relationship and the connected ex-
tension point concept, including its necessity. Then, in section 4, we make use of the
UML Behavior meta-model package to visualize the notion of use case extension.

412 M.A. Laguna, J.M. Marqués, and Y. Crespo

3 The Extend Relationship and the Open-Closed Principle

In this section, we try to answer a preliminary question: Is the presence of the exten-
sion point concept in the use case models really indispensable? From the point of
view of the semantics of the dependence relationship, the mere presence of an exten-
sion point in the base use case is confusing. Removing (or perhaps reinterpreting) the
extension point concept could be a way of avoiding many problems.

The first intention of a dependence relationship is to establish a directed relation-
ship between an independent element (the base or extended use case) and a dependent
element (the extending use case). Therefore, if the base use case must have no infor-
mation a priori about its possible modification, the obligation of predetermining an
extension point is contradictory.

Meyer, as long ago as 1988 coined the open-closed principle [16], that states:

• "software entities (classes, modules, functions, etc.) should be open for
extension, but closed for modification"

This definition applied originally to the object-oriented programming languages. In
this context, an entity can allow its behavior to be extended without altering its source
code. Open for extension means that the behavior of the entity can be extended (we
can make the module behave in different ways as the requirements change, or to meet
the needs of new requirements). Closed for modification means that the source code
of such an entity is not modifiable. The well known solution to this dilemma is the use
of inheritance in object-oriented languages. This idea applies directly to the speciali-
zation relationship among classes in object-oriented designs and can also be adopted
in requirements artifacts. In a wider vision, a broader definition can be stated. If we
substitute the concept of entity by generic software artifacts, we can affirm:

• "software artifacts (requirements, designs, implementations, test cases,
etc.) should be open for extension, but closed for modification"

In the use case context, open for extension means that the behavior of the use case can
be extended (we can make a use case behave in different ways as the requirements
change, or to meet the needs of new requirements). Closed for modification means
that the details of this use case (the textual or graphical description of the behavior)
are not modifiable. We are ready to map the open-closed principle from object-
oriented programming languages to use cases. We will try to apply the same approach
in two parallel situations:

• A base class is extended by redefinition of an operation in a specialized
class (the simple addition of a new operation is a less problematic
situation)

• A base use case is extended by an extending use case

Figure 2 presents two situations that share the idea of extension: In a typical Sales
application, a previously existent (cash) payment is extended by a new type of pay-
ment. In structural models we will need probably one or several new classes. We will
need also to redefine the pay()operation, adding details of the credit card, authoriza-
tion codes, etc. In the use case diagrams we solve the situation with a extend relation-
ship and a new use case that incorporates the new steps (including the introduction of
the credit card number, the connection with and external authorization service, etc.).

 On the Semantics of the Extend Relationship in Use Case Models 413

Process Sale

Payment
extension points

<<extend>>

Credit Payment

Process sale is extended in Credit Payment
but the reference is in the base use case

Payment

+pay()

CreditPayment

+pay()

pay() is redefined in CreditPayment
the extension and the reference are in
the specialized class

Authorization
Service

Fig. 2. The extend and specialization mechanisms in UML 2.1.2 [19]

If we consider Figure 2, we can appreciate that all the extension details of a class in
a structural design diagram are defined in the extending class: The original Payment
class in unaware of the redefinition of the pay method in the new class. The Eiffel
version is absolutely clear (Java or C# versions are similar but not so explicit):

Class Payment

 feature
 pay(…) is do…end
 end

Class CreditPayment
 inherit Payment

 redefine pay end
 feature
 pay(…) is do…end
 end

Nothing in the original Payment class make reference to a hypothetical future
modification and the class is closed. The two basic elements of the extension are the
specialization relationship itself (and this is associated with the source element, i.e.
the new class inherit the old) and the reference to the operation that need modification
(and this is indicated by the redefine clause in Eiffel, or simply by duplicating the
original name of the operation in UML diagrams).

The parallel version in the use case diagram is different: the details of the extension
are in the new use case but, and here is the difference, an extension point must be
previously defined in the original use case (in disagreement with the enunciated open-
closed principle).

The open closed principle is feasible in object-oriented programming languages
because they provide the adequate mechanism: the extension point (really a reference
to the redefined method) and the extension itself (the new version) are both in the
specialized class. The base class is unaware of the extension. Nevertheless, in
use cases the extension is described in the new use case but the point of insertion is

414 M.A. Laguna, J.M. Marqués, and Y. Crespo

defined in the base class. The situation is loosely similar to the old C++ implementa-
tion of inheritance using virtual functions (the “clairvoyance principle” as opposite to
the open-closed principle).

In the context of use cases, the situations we want to solve are, for example: a use
case can evolve during the development of several versions of a software system; the
requirements can change; new constraints or business rules can appear, etc. The es-
sence of these situations is that the evolution usually occurs “in an unexpected way”.
While the user requirements are being elicited, we have a possible solution with plain
use cases: add an alternative sequence of steps to the set of exceptions of the use case,
referring to a step of the main scenario.

The generalization of the idea is exactly the extension concept, useful when a) the
use case is already completely developed through a collaboration that involves analy-
sis or design models, or b) the complexity of the steps that must be added recom-
mends separating this piece of behavior in a new use case. In both cases, as in the
plain solution, we must be able to indicate where the new sequence must be inserted
(after the original step n) and where the original scenario must continue (at the origi-
nal step m). This can be as complex as needed, as in the idea of extension points with
several fragment insertions.

The concept of scenario, as sequence of steps, is not directly present in the UML
meta-model Use Case Package, probably in order to allow different particular imple-
mentations of the Behavior meta-class (visual or textual, formal, structured or infor-
mal). However, independently of the concrete format, the concept of sequence of
steps could be present in this Use Case Package.

Extend

UseCase

ExtensionPoint

+extendedCase

+extend

+extensionLocation

+extensionPoint

Step +steps {ordered}

1..*

+extensionLocation

Include

+addition+including Case

+include

+inclusionLocation
1

Fig. 3. The Step concept added to the UML Use Case Package meta-model

 On the Semantics of the Extend Relationship in Use Case Models 415

Consider provisionally the minimal variation of the meta-model shown in Figure 3:
Only a new meta-class is added, representing the concept of Step and a UseCase owns
an ordered set of steps. (A more complete version, considering all the possible alter-
native sequences, would include the intermediate Scenario concept as a set of ordered
steps, owned by a UseCase.) This simple addition would allow defining the extension
directly in function of the steps of the base use case, instead of a predefined extension
point. As collateral effect (beneficial in this case), the exact position where the In-
clude relationship is located can be made visible.

As we do not foresee immediate changes in the UML meta-model, we suggest an
apparently incorrect solution to deal with this problem. Taking into account that the
Step and ExtensionPoint definitions in Figure 3 are very similar from the viewpoint of
the Extend meta-class, we consider that a use case has a set of steps (or sequences of
inseparable steps) called extension points. If we think this way, all the steps of a use
case are extensible. This interpretation implies that the use cases are completely open
to future extensions (in the same way an unaffected class can be extended by a new
one using inheritance in object oriented languages).

Really, this discussion about the meta-model is only conceptual. The details are in
the textual step-based description of the use cases. In fact, this proposal assumes that
the extension point concept is not used in the diagrams. In its place, we must indicate
in the textual documentation of the extending use case:

a) The base use case that is extended.
b) The step where the extended use case is modified, using the same conventions

of the alternative/exception fragments of the monolithic use cases; in other words, the
precise step number must be referred.

c) The “rejoin point” in the extended use case in order to continue with the normal
sequence of steps. The last step of the extension must indicate it.

The adoption of this approach means that all the possible situations must be docu-
mented in the textual information of the extending use case. The extended use case
remains unchanged and unaware of the extensions. All the exceptions related with the
new extension must be treated (and solved) in the new use case.

Summarizing the idea, in many cases (in particular in agile developments), it is
preferable not to use extension points with the original UML semantics. Or, changing
the point of view, all the steps of a use case can be considered as extension points.
This version smoothes the learning curve of the technique by beginners (in fact we
use this approach with our undergraduate students, avoiding many confusing discus-
sions in the requirements gathering sessions).

In this Section we have dealt with the textual specification of the use case details.
The next Section examines the alternative (and less informal) graphical representation
of the extension notion using the behavioral concepts of the UML meta-model.

4 The Extend Relationship and the Use Case Behavior
Specification

As visible in the meta-model of UML, a BehavioredClassifier (and hence a UseCase)
has an associated Behavior that can have a set of activities, actions, messages, states,

416 M.A. Laguna, J.M. Marqués, and Y. Crespo

etc. The sequence of steps of the use case textual representation can be seen as a way
of describing this behavior and many authors advocate for this perspective. This Sec-
tion explores the possibilities that UML 2 have opened to specify the use case details
in a graphical representation. The use of an Interaction as the representation of use
case details is a familiar strategy. Larman [15] distinguishes the system sequence
diagrams to specify the external behavior (requirements level) from the complete
interaction that is the way the classes’ new operations are discovered (the idea of
collaboration as realization of the use cases).

The interaction diagrams have an evident problem: it is difficult to represent simul-
taneously all the alternative paths (in spite of the combined fragments possibilities). A
better option is to use activities as the behavior specification of the use case. In the
UML meta-model fragment of Figure 4 it can be realized that:

a) Activity is a subtype of Behavior.
b) Activity owns ActivityNodes (control or executable nodes), ActivityEdges,

and ActivityGroups.
c) ActivityNode or Action can be used as representation of a step of the use

case scenarios. As UML states: “An action represents a single step within
an activity, that is, one that is not further decomposed within the activity”.
Other specialized control nodes, such as InitialNode or DecisionNode, can
be used to organize the alternative paths.

d) ActivityPartition (shown as a swimlane or a stereotype) can represent the
actors that interact with the system (and the system itself). The swimlane
graphical representation allows associating easily each Action with an ac-
tor or the system.

UseCase

Actor

BehavioredClassifier

Behavior

+ownedBehavior

Interaction

Constraint

+precondition

Activity

+postcondition

0..1*

ActivityEdge

+redefinedElement

ActivityPartition

ActivityNode

Action

ActivityGroup

+containedNode
*

*

+redefinedElement

InitialNode DecisionNode

StructuredActivityNode

ExecutableNode

SequenceNode LoopNode ConditionalNode

ControlNode

...

Fig. 4. Meta-model fragment of UML Activities and Use Case Packages

A fragment of the Process Sale use case (cash payment, following the example of
Larman [15]) is shown in Figure 5. Only a successful scenario is represented and no
extension points are provided.

 On the Semantics of the Extend Relationship in Use Case Models 417

S
ys

te
m

C
as

hi
er

«A
ct

or
»

Cashier starts a new sale

System records line and
presents description,

price, and running total.

System presents total
and asks for paymentSystem ask item

idenfifier

Cashier enters item
identifier

Cashier indicates
end of sale

ActivityInitial
Cashier enters the

cash amount

System presents the
balance due and
releases the cash

drawer

System records the payment
and completed sale, and

presents receipt.

Cashier deposits cash
and closes drawer

Fig. 5. A simplified fragment (successful scenario) of the Process Sale use case of Figure 1

To handle the extension points, all the potential of the Activity Packages of Figure
4 must be used. Note that an ActivityNode can be redefined. This opens the possibility
of replacing a node with a StruturedActivityNode, indicating that the original node is
substituted by a group of nodes. The semantics of this element refers to a basic se-
quence of nodes (SequenceNode specialization) or a complex construction (Condi-
tionalNode and LoopNode). The key is that StructuredActivityNode is simultaneously
a specialization of ActivityNode, ActivityGroup (pag. 309 of [19]) and Action (pag.
310 of [19]). At the same time, StructuredActivityNode contains a set of ActivityNodes
(pag. 309 of [19]), where each node can be itself a StructuredActivityNode, configur-
ing a typical composite pattern.

The strategy for representing the extension mechanism can be seen in Figure 6: A
stereotyped node represents the extension point in the base activity and each extend-
ing use case requires an activity that redefines the extension point node (<<extend>>
stereotyped dependency). This interpretation is consequent with the UML semantics:
a pre-defined “hook” allows inserting the new behavior at the extension point.

As in the previous section discussion, this is approach is only valid if we known a
priori the details of the future extension. A set of alternatives are imaginable to con-
form to the open-closed principle. The original use case can be described with no
mention to future extensions and the activity diagram will be similar to Figure 5. If a
later evolution of the system requires an alternative payment form, two respectful
variants of the previous solution are sketched in Figure 7. The first solution uses the
generalization relationship between use cases, adding the extension point to the spe-
cialized use case. This variation does not change the original use case and divides the
new information between the two new use cases: the intermediate Advanced Process
Sale and the extending Credit Payment. However, the UML generalization semantics
implies lost of control over the changes in the new version. The second variant uses
the package merge mechanism of UML 2: The new version package contains a use
case named as the original but with an added extension point. The package merge

418 M.A. Laguna, J.M. Marqués, and Y. Crespo

C
a

sh
ie

r

«
A

ct
o

r»

S
ys

te
m

Cashier indicates
payment form

System logs
completed sale

Credit Payment Cash Payment

 Sales

«extension point»
payment

«extend» «extend»

Fig. 6. A variant of the Process Sale use case with an extension point and two extensions

Cashier

Advanced Process Sale

Payment
extension points

Credit PaymentCheck Payment

<<extend>>

<<extend>>

ProcessSale

Authorization
Service

Sales System

Cashier

Process Sale

Sales System (new version)

<<merge>>

Process Sale

Payment
extension points

Credit PaymentCheck Payment

<<extend>>

<<extend>>

Authorization
Service

Fig. 7. The Use Case Process Sale and two reinterpretations of the Process Payment extension
as an a posteriori addition

operation yields a full extensible use case. This is a valuable solution for the develop-
ing of product families, as new features can be incorporated gradually.

Although these solutions are semantically correct and complies with the open-
closed principle, the overload is manifest. A slightly modification of the scheme
of Figure 6 can exploit the node redefinition mechanism of the UML meta-model.
Figure 8 shows how an activity node (not an extension point) can be replaced by a

 On the Semantics of the Extend Relationship in Use Case Models 419

structured activity (<<redefine>> stereotyped dependency). The simplicity of the
solution is appealing but it is only applicable to situations where all the sequence of
elements can be neatly inserted in the position of the original node. Therefore, several
problems remain unsolved: How to insert a new sequence when there is not a clear-
cut node to be substituted? And, what if there are one or more “rejoin points” differ-
ent of the extension point? Note that, if it is difficult to anticipate an extension point,
it is yet more difficult to foresee the several possible “rejoin points” as the extension
can include several success and fail scenarios

C
a

sh
ie

r

«
A

ct
o

r»

S
ys

te
m System handles cash

payment

Cashier indicates
payment form

System logs
completed sale

Credit Payment

 Sales

«redefine»

Fig. 8. Activity node replaced by a structured activity

The solution emerges if we recognize that an extension is really an alternative path
(group of elements or ActivityGroup) that complements another existing path (another
group). Therefore, the extend relationship is better formulated between the original
unchanged activity and the extension activity. Inside the new activity, the connecting
points must be referenced. The concrete graphical representation is an open issue, and
varies with the concrete facilities of CASE tools. Taking into account these considera-
tions, the use cases behavior specification could be depicted as shown in Figure 9,
where an activity (“Process Sale”) is extended by another activity (“Rebate Product”),
in parallel with the use case diagram. The inner region delimits the extension and the
nodes outside this region are references to the original activity nodes that connect the
old and new paths. The use of the associated Note indicates the extend condition (as
in the standard) and the list of parameter values that serve to reference the connection
points. This parameterization allows the reuse of the extending use cases with differ-
ent base cases. The main advantage is the exclusion of the extension details from the
original use case. In this sense, the final conclusion is that the UML meta-model pro-
vides the extensibility elements we need to apply the open-close principle in use case
evolution.

420 M.A. Laguna, J.M. Marqués, and Y. Crespo

<<extend>>
extension points

Cashier

Process Sale

Payment

Rebate Product

<<extend>>

act Rebate Product

3.1: Cashier
indicates
discount

3.2: The system
asks the

percentage

3.4:The system
recalculates price

3.3: Cashier enters
percentage

3.4.1: Error in
percentage

4

3

«flow»

«exception»

act Process Sale

1

2

3: Cashier enters item
identifier

4: The system
records sale line

item and presents
item description...

5

Condition:{If Rebate}
extension location (3, 4)

Fig. 9. Not anticipated use case extension with inclusion of the connection points

5 Related Work

Many suggestions for modification of the UML meta-model have been proposed,
including the use of ontologies instead [9]. Some authors, such as Berard [1] or
Simons [24] have been detractors of use cases, thought Simons (in a work with van
der Berg [27]) proposed control flow semantics for use case scenarios. Conversely,
there are many works that try to improve or at least clarify them, such as the classical
book of Cockburn [4] or the work of Williams et al. [29]. Metz et al. distinguish sev-
eral textual variants for clarifying the semantics of extension points and rejoin points
[17].

Many authors, such as Cockburn [4], have suggested that the most important char-
acteristics of use cases are the textual details to be discussed with the end users while
neglecting the visual representation and semantics proposed by UML. Others, such as
Rumbaugh and Jacobson, insist on the graphics aspects [23].

 On the Semantics of the Extend Relationship in Use Case Models 421

Some additional relationships between use cases have been proposed. Rosenberg
[21] uses precedes and invokes constructs to factor out common behavior. Con-
versely, other authors such as Larman [15] advocate not using the extend relationship
or using only when it is undesirable to modify the base use case.

The BehavioredClassifier specialization of the use cases has been analyzed in [7]:
The Behavior meta-class is a specification of how its context classifier (use case)
changes over time and the BehavioredClassifier is a classifier that can have behavior
specifications. In other words, a BehavioredClassifier is rather an ordinary classifier
that can own behaviors [7]. The conclusion is that the formalization of use cases as
classifiers in UML has obscure points: Two contradictory notions of use cases coexist
in UML 2: “set of interactions” vs. “set of entities”. The authors propose the meta-
model should be changed to make UseCase a subtype of Behavior, not of Behavio-
redClassifier. Alternatively, they admit that the meta-model may be kept as it is, but it
should be recognized that a use case is the specification of a role. Williams et al. also
analyze the UML 2 meta-model and propose changing UseCase to a subclass of Be-
havior [29]. Isoda states that UML 2 has a correction about the relationship between
use cases and actors, which effectively means that UML has finally abandoned the
idea of “actors call operations of a use case”, but the details of UML 2 in fact still
retain those defects [10]. Jacobson believes that integrating use cases and aspect ori-
ented programming (AOP) will improve the way software is developed. The idea is to
slice the system and keep the use cases separate all the way down to the code. “In the
long term we will get more of extension-based software-extensions from requirements
all the way down to code and runtime; and extensions in all software layers, for ex-
ample, application, middleware, systemware, and extensions across all these layers”
[11]. Other approaches different from UML have considered the behavior extension.
For example, the Taxis semantic model defines transactions as class hierarchies [18].

Sousa et al. adapt use-cases in order to explicitly provide the separation of cross-
cutting concerns in requirements artifacts. They propose crosscutting use-cases to
separate crosscutting behavior (for example, security) from the main scenario [26]. In
the same line, Somé and Anthonysamy [25] present an approach for modeling use
cases with aspect-oriented techniques. Cross-cutting requirements are modeled in
addition to functional requirements using a new relationship stereotyped as <<as-
pect>>. The composition is based in Petri nets properties. In both cases, new elements
are proposed to complete the UML meta-model or to represent the details of use case
composition.

Araujo et al. compose aspectual and non-aspectual scenarios instead use cases.
Non-aspectual scenarios are modeled as UML sequence diagrams. Aspectual scenar-
ios are modeled as Interaction or State Machine Pattern Specifications [6]. Then,
aspectual and non-aspectual scenarios are composed at sequence diagram and state
machine levels [1]. Whittle proposes use case charts with the aim of formally defining
the semantics of scenarios [28]. These proposals are close to our vision of composing
fragments of models but introduce additional complexity and separates from UML
standard.

As a general observation about these advances, in spite of the utility of considering
early aspects (for example to model repetitive requirements as security or audit steps),
we think that extension problems should not be treated inevitably as aspects.

422 M.A. Laguna, J.M. Marqués, and Y. Crespo

Braganza et al., discuss the semantics of use case relationships and their formaliza-
tion using activity diagrams in the context of variability specification. They propose
an extension to the extend relationship that supports the adoption of UML 2 use case
diagrams into model driven methods. The proposal results from the 4 Step Rule Set, a
model driven method in which use cases are the central model for requirements speci-
fication and model transformation [3].

The common conclusion of most of the work done in use case semantics is that the
question is not well solved in UML and a redefinition of the concepts is needed. We
believe that our contribution can help in this redefinition.

6 Conclusions and Future Work

In this article, the problems of interpretation of the extend semantics in use case mod-
els are analyzed. An improvement of the extension notion is proposed, based in the
open-closed principle, by adding the Step concept or alternatively using as substitute
the extension point concept itself.

The second part of the article presents a possible graphical approach, using the Be-
havioral aspects of the UML meta-model. We have shown that UML provides the
extensibility elements we need to apply the open-close principle in use case extension.
We think that, without neglecting major future modifications in the UML meta-
model, these proposals can help in the process of elicitation and specification of func-
tional requirements, clarifying the intention of the final users.

In conclusion, we believe that the set of semantic reinterpretations proposed in this
article can help to solve many of the practical extension problems the requirements
engineers face in their daily work. The empirical validation is a work in progress to
check the usefulness of the approach. We are defining a set of problems so that di-
verse groups (from undergraduate students to experts) can use these techniques to
compare (via controlled experiments) the comprehensibility and feasibility of the
diverse variants of the extension concept.

References

1. Araujo, J., Whittle, J., Kim, D.: Modeling and Composing Scenario-Based Requirements
with Aspects. In: Proceedings of the 12th IEEE international Requirements Engineering
Conference (2004)

2. Berard, E.V.: Be Careful with Use Cases. Technical report. The Object Agency, Inc. (1995)
3. Braganca, A., Machado, R.J.: Extending UML 2.0 Metamodel for Complementary Usages

of the «extend» Relationship within Use Case Variability Specification. In: Proceedings of
the 10th international on Software Product Line Conference, pp. 123–130. IEEE Computer
Society, Washington (2006)

4. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Professional, Reading (2000)
5. Constantine, L., Lockwood, L.: Software for Use. Addison-Wesley, Reading (1999)
6. France, R., Kim, D., Ghosh, S., Song, E.: A UML Based Pattern Specification Technique.

IEEE Transactions on Software Engineering 30(3), 193–206 (2004)
7. Génova, G., Llorens, J., Metz, P., Prieto-Díaz, R., Astudillo, H.: Open Issues in Industrial

Use Case Modeling. In: Jardim Nunes, N., Selic, B., Rodrigues da Silva, A., Toval Alvarez,
A. (eds.) UML Satellite Activities 2004. LNCS, vol. 3297, pp. 52–61. Springer, Heidelberg
(2005)

 On the Semantics of the Extend Relationship in Use Case Models 423

8. Génova, G., Llorens, J.: The Emperor’s New Use Case. Journal of Object Technol-
ogy 4(6), 81–94 (2005); Special Issue: Use Case Modeling at UML 2004

9. Genilloud, G., William, F.: Use Case Concepts from an RM-ODP Perspective. Journal of
Object Technology 4(6), 95–107 (2005); Special Issue: Use Case Modeling at UML 2004

10. Isoda, S.: A Critique of UML’s Definition of the Use-Case Class. In: Stevens, P., Whittle,
J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 280–294. Springer, Heidelberg
(2003)

11. Jacobson, I.: Use Cases and Aspects—Working Seamlessly Together. Journal of Object
Technology (2003), http://www.jot.fm

12. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addi-
son-Wesley, Reading (1999)

13. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object-Oriented Software Engi-
neering, A Use Case Driven Approach. Addison-Wesley, Reading (1994)

14. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse. In: Architecture, Process and Organi-
zation for Business Success, ACM Press/Addison Wesley Longman (1997)

15. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process, 3rd edn. Addison Wesley, Reading (2004)

16. Meyer, B.: Object Oriented Software Construction. Prentice-Hall, Englewood Cliffs
(1988)

17. Metz, P., O’Brien, J., Weber, W.: Specifying Use Case Interaction: Clarifying Extension
Points and Rejoin Points. Journal of Object Technology 3, 87–102 (2004)

18. Mylopoulos, J., Bernstein, P.A., Wong, H.K.: A language facility for designing database-
intensive applications. ACM Trans. Database Syst. 5(2), 185–207 (1980)

19. OMG, Unified Modeling Language: Superstructure, version 2.1.2. formal doc. 2007-11-01.
2007 (2007)

20. Rational Software Corporation Unified Modelling Language Version 1.1 (1997)
21. Rosenberg, D., Scott, K.: Applying Use Case Driven Object Modeling with UML: A

Practical Approach. Addison Wesley, Reading (1999)
22. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-Oriented Mod-

eling and Design. Prentice Hall, Englewood Cliffs (1991)
23. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Man-

ual, 2nd edn. Addison-Wesley Professional, Reading (2004)
24. Simons, A.J.H.: Use Cases Considered Harmful. In: 29th Conf. Tech. Obj-Oriented Prog.

Lang. and Sys. (TOOLS-29 Europe), pp. 194–203. IEEE Computer Society, Los Alamitos
(1999)

25. Somé, S.S., Anthonysamy, P.: An approach for aspect-oriented use case modeling. In:
Proceedings of the 13th international Workshop on Software Architectures and Mobility,
pp. 27–34 (2008)

26. Sousa, G., Soares, S., Borba, P., Castro, J.: Separation of crosscutting concerns from re-
quirements to design: Adapting the use case driven approach. In: Proceedings of the Early
Aspect Workshop at AOSD, pp. 93–102 (2004)

27. van den Berg, K.G., Simons, A.J.H.: Control flow semantics of use cases in UML. Infor-
mation and Software Technology 41(10), 651–659 (1999)

28. Whittle, J.: Precise specification of use case scenarios. In: Dwyer, M.B., Lopes, A. (eds.)
FASE 2007. LNCS, vol. 4422, pp. 170–184. Springer, Heidelberg (2007)

29. Williams, C., Kaplan, M., Klinger, T., Paradkar, A.: Toward Engineered, Useful
Use Cases. Journal of Object Technology 4(6), 45–57 (2005); Special Issue: Use Case
Modeling at UML 2004

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 424–438, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Situational Evaluation of Method Fragments:
An Evidence-Based Goal-Oriented Approach

Hesam Chiniforooshan Esfahani1, Eric Yu2, and Jordi Cabot3

1 Department of Computer Science, University of Toronto
2 Faculty of Information, University of Toronto

3 INRIA - École des Mines de Nantes
hesam@cs.toronto.edu, yu@ischool.utoronto.ca,

jordi.cabot@inria.fr

Abstract. Despite advances in situational method engineering, many software
organizations continue to adopt an ad-hoc mix of method fragments from well-
known development methods such as Scrum or XP, based on their perceived
suitability to project or organizational needs. With the increasing availability of
empirical evidence on the success or failure of various software development
methods and practices under different situational conditions, it now becomes
feasible to make this evidence base systematically accessible to practitioners so
that they can make informed decisions when creating situational methods for
their organizations. This paper proposes a framework for evaluating the suit-
ability of candidate method fragments prior to their adoption in software pro-
jects. The framework makes use of collected knowledge about how each
method fragment can contribute to various project objectives, and what requi-
site conditions must be met for the fragment to be applicable. Pre-constructed
goal models for the selected fragments are retrieved from a repository, merged,
customized with situational factors, and then evaluated using a qualitative
evaluation procedure adapted from goal-oriented requirements engineering.

Keywords: Software Development Methodology, Situational Method
Engineering, Goal-Oriented Modeling, Method Evaluation.

1 Introduction

One of the common concerns of project managers is to ensure that their development
processes fit well with the particular needs of their projects. Despite the proposal of
elaborate frameworks for building situational methods [1-4], many software compa-
nies still follow ad-hoc methods of software development, which are built intuitively
by adopting some fragments from different methodologies and tailoring them to their
development method [5, 6]. With this approach, the best case scenario is that the
company will benefit from all advocated advantages of selected method fragments.
Unfortunately, this is not always the case, and there are numerous reports of project
failure that were due to the improper choice of development method [7].

For instance, suppose that a software organization wants to incorporate “Pair Pro-
gramming” [8] as part of its development method. It is known that pair programming
usually helps to achieve some objectives such as “reduced defect rate” and “real-time

 Situational Evaluation of Method Fragments 425

knowledge transfer”. But, are these objectives fully achievable in all project situa-
tions? Could other method fragments, when combined with pair programming, facili-
tate (or hamper) these objectives? There are increasing empirical studies that have
addressed such questions, and investigated the success or the failure of different
method fragments in different project situations. For instance, there exist over 100
empirical studies about “Pair Programming” in various situations1. Considering the
large number of existing method fragments and their volume of supporting studies, the
need arises for a solution that can systematically make this evidence-based information
available to practitioners, and help them during the process of method construction.

This paper proposes a framework for evaluating software development processes.
The proposed framework considers a development method as a set of method frag-
ments [2], and helps project managers anticipate whether the expected benefits in
adopting the selected fragments will be attainable given the particular circumstances
faced by the project. Starting from a set of candidates fragments, the framework leads
the user to consider their objectives and requisites. Then, method objectives will be
evaluated by reflecting the impacts of situational factors on method requisites, and
propagating the achievement status of method requisites to method objectives.

In order to take advantage of existing situational knowledge of different method
fragment, the proposed framework provides evidence-based repositories, which con-
tain a structured representation of results from empirical studies. The contents of these
repositories are gathered through systematic literature review [9]. The evidence base
of this framework visualizes the collected knowledge of method fragments in a goal-
oriented representation. The framework reuses its ready-made goal models to facili-
tate the process of method evaluation. The proposed framework can be deployed as a
complement to existing method engineering frameworks, and due to its simplicity, it
can also be used by project managers who are not willing to become involved in the
detailed steps of situational method construction. In the rest of this paper, we will
explain the framework using an illustrative scenario, introduced in the next section.

2 Motivating Scenario

As an illustrative scenario, consider a project manager facing the following circum-
stances in her project: (1) Technology used in the project is new to the company; (2)
Developers are mainly junior programmers; (3) Team members are distributed, with a
project wiki and email-lists being the main communication channels; (4) the project
manager serves as the customer representative; and (5) Developers do not have access
to the target device on which the product software will be installed, and can only test
the software on a limited emulator.

The project manager is attracted to agile methods as they are said to lead to faster
time to market, improved communication, more reliable project planning, and more
effective teamwork (e.g. efficient self-organizing). Based on what she knows about
agile methods and the characteristics of her organization, the manager is planning to
adopt the following method fragments from XP [8] and Scrum [10]: (1) Daily Scrum
Meeting: Short daily meetings to explain performed activities and to discuss obsta-
cles; (2) Short Iterations: Delivering an increment of software every three weeks;

1 The search was run on libraries of IEEE Explorer, Springer, and Elsevier in November 2009.

426 H. Chiniforooshan Esfahani, E. Yu, and J. Cabot

(3) Iteration Planning: Selecting high priority requirements at the beginning of each
iteration, and breaking them down to smaller tasks; (4) Pair Programming: Assigning
two programmers to work together on each software component. However, she is
unsettled by many questions, such as:

• Will the selected method fragments work well together or will they conflict? (e.g.
should pair programming be used together with iteration planning?)

• Does my team and project environment satisfy the necessary requisites to take
advantage of the selected method fragments?

• Will the combined set of fragments produce the desired results and meet project
objectives?

3 Evaluation Framework

This section introduces a framework for evaluating a set of candidate method frag-
ments to be a part of organization development method. The framework helps project
managers to anticipate the achievement of method objectives, and find answer for
questions, such as those mentioned in previous section. Fig. 1 shows the overall struc-
ture of the framework. The existing knowledge about method fragments will be kept
in an Evidence Base, which is composed of two repositories: (1) Method Fragment
Repository that holds objectives and requisites of method fragments, along with situ-
ational evidences; and (2) Model Fragment Repository that holds the graphical repre-
sentations of method fragments.

To evaluate a number of candidate method fragments, their corresponding model
fragments will be retrieved from the Model Fragment Repository, and will be merged
based on their objectives. Then the integrated models will be customized and initialized
with respect to the project situational attributes. During this step, the situational evi-
dences that have been stored in Method Fragment Repository will be reused. At the end,
the integrated models will be evaluated, to anticipate the satisfaction degree of method
fragments’ objectives. The framework makes its evidence base available to software
organizations, and process designers are responsible for performing the evaluation steps.

Fig. 1. Evaluation Framework

3.1 Evidence Base

The evidence base of this framework is inspired by the assembly-based SME frame-
works [2, 11]. But, unlike current method repositories (e.g. OPF [12]) that store the
specification of method fragments, the evidence base of this framework contains the

 Situational Evaluation of Method Fragments 427

experience results of empirical studies that have been conducted for different method
fragments. This framework follows the definition of Method Fragment as explained
in [2], which classifies method fragments into process and product fragments, respec-
tively referring to the elements of development process and structure of products.
Another category of method fragments has been introduced in [12], called producer,
which represent methodology roles played by persons or tools. As mentioned before,
the evidence base is composed of two repositories that will be explained in the next
two subsections.

3.1.1 Method Fragment Repository
The Method Fragment Repository stores the textual information of method fragments.
The information has been collected through systematic literature review of published
empirical studies, which have tested the enactment of method fragments in different
situations. For each method fragment, this repository holds two datasets: Objectives
Dataset, and Requisites Dataset.

3.1.1.1 Objectives Dataset. For each method fragment, the repository provides an
objectives dataset, which represents the quality goals that are expected to be achieved
by the enactment of the method fragment. These objectives have been extracted from
published empirical studies on method fragments (i.e., the dataset does not include
quality goals that were just claimed for a method fragment without any supporting
empirical evidence). This dataset stores method objectives in two categories: major
and minor. A major objective is defined as a quality goal that can be decomposed
into a number of sub-goals, called minor objectives. Perhaps the classification of
quality goals could be performed more elaborately; however, for the sake of
simplicity this framework considers only these two levels. The objectives dataset also
provides situational evidences for the contribution of method fragment to its objec-
tives. Besides, for every contribution relation, the dataset provides the reference

Table 1. A subset of major and minor objectives that “Daily Scrum Meeting” contributes to
them, with reference to the investigating empirical studies, and particular situational evidences

Major
Objective Minor Objective

Contribution
Type from
Fragment

Study Situation

 ++ [S1] Default

++ [S1] Default Improved awareness
(of what others are
doing) - [S1]

Large projects, as they
may need extensive
number of meetings

+ [S8] Default
Real-time knowledge
transfer - [S2,

S12]

Distributed Development:
use of email and wiki
pages for comm.

Enhanced
Communication with
business people /
project leader

++ [S3,
S8]

Existence of multi-level
Scrum in case of many
scrum teams

E
ffe

ct
iv

e
C

om
m

un
ic

at
io

n

Better understanding
of customer needs

+ [S8] Default

428 H. Chiniforooshan Esfahani, E. Yu, and J. Cabot

to the study that provided the empirical evidence, and possibly the description of the
situation of study. Table 1 shows a portion of the objective dataset for method frag-
ment “Daily Scrum Meeting”.

Typically the contribution of a method fragment to its objectives is positive. How-
ever, there might be some situations where a method fragment adversely impacts its
objectives. For instance, although “Daily Scrum Meetings” usually makes strong
positive contribution to the “Improved Awareness” of a team about the activities of
other team members, as studied in [S1], in the case of large projects with multiple
development teams, daily meetings can cause confusion by bringing up excessive
details, which are not relevant for a large portion of developers. The framework pro-
poses four possible types of contribution relations: strongly positive (++), positive (+),
negative (-), and strongly negative (--).

3.1.1.2 Requisites Dataset. The other dataset kept for each method fragment is the
requisites dataset. This dataset contains the conditions that should be met for the
successful enactment of a method fragment (e.g., resources to be provided, tasks to be
performed, or personnel qualifications to be met). The framework defines the relation
of a method fragment to its requisites as decomposition relation, since the successful
enactment of a method fragment is due to the successful achievement of its requisites.
Similar to the objectives dataset, this dataset represents method requisites in two lev-
els of abstraction (major and minor), also sets the contribution relation of minor
requisites to major ones. Besides the dataset provides situational evidences for each
requisite, by referencing to the studies in which the requisite was satisfied or denied
(partially or fully). In most cases it explains the significant situational factors of the
referenced empirical studies that affected the fulfillment of method requisites. Fig. 2
(a) shows the metamodel of the method fragment repository.

Table 2. A subset of requisites of “Pair Programming“, Contribution of Minor to Major Requi-
site; Situational Fulfillment Status [Satisfied(), Denied(), or Partially Denied()]

Major
Req. Minor Requisite

Contrib.
to Major

Req.

Situa.
Fulfill.
Status

Study Situation

+ [S15] Pairing programmers with
equal expertise Equal

engagement in
coding + [S15]

Pairing programmers with
different expertise (weaker
programmer became passive)

Joint Decision
Making + [S15]

Similar pairs; the one who had
the control of machine usually
had a significant advantage
w.r.t decision making

 [S17] Pairs with heterogeneous
personality profile Collaboration be

viable +

 [S17] Pairs with homogenous
personality profile

E
ffe

ct
iv

e
C

ol
la

bo
ra

tio
n

Similar working
and resting
hours

+ [S30] Pairs with different times for
starting their job or resting

 Situational Evaluation of Method Fragments 429

Table 2 shows a subset of the requisites of “Pair Programming”, focused on “Effec-
tive Collaboration”. For instance, it shows that “Equal engagement (of pairs) in Cod-
ing” is a minor requisite that contributes positively to the major requisite “Effective
Collaboration”. However, not every situation can satisfy this requisite. For example,
the empirical study [S15] has shown that pairing programmers with different levels of
expertise can result in passiveness of the weaker programmer, thus partial denial of
the requisite. The objectives dataset also takes a goal-oriented approach in represent-
ing method requisites in order to facilitate their modeling and evaluation in later
stages of the framework.

3.1.2 Model Fragment Repository
The Model Fragment Repository of this framework contains the pre-constructed
graphical representations of method fragments. For each method fragment, this re-
pository contains a number of models, called model fragments, each visualizing a
subset of its objectives and requisites (which were textually stored in the method
fragment repository). In fact, each model fragment is a piece of a comprehensive
model that could represent the whole knowledge of a method fragment. The main
reason for breaking down the visualization of each method fragment was to avoid the
potential complexities that could have emerged if the whole knowledge of a method
fragment was represented in a single model.

The suitable modeling language for representing model fragments should have
enough constructs to model method objectives and requisites, and also contribution
and decomposition relations. We found the i* modeling language [13] as an appropri-
ate choice, especially by considering its prior use for modeling the intentional aspects
of software processes [14]. For developing model fragments, the following set of i*
constructs are used: Task, representing method fragments; Softgoal, representing
method objectives and requisites; Contribution Link, representing contribution rela-
tions; and Decomposition Link, representing decomposition relations. We defer the
representation of actors to future work.

Fig. 2 (b) shows an example model fragment, developed for the method fragment:
“Iteration Planning” and the major objective: “Effective Project Planning”. This
model fragment shows that conducting iteration planning sessions would help to en-
hance the Effective project planning by positively contributing to the (1) realistic
prioritization of tasks; (2) clear definition of iteration goals; and (3) accurate project
scheduling. The meaning of contribution links used in model fragments corresponds
to their counterparts in method fragment repository: Some+ and Help contribution
links represent strong (++) and normal (+) positive contributions; Some- and Hurt
contribution links represent strong (--) and normal (-) negative contributions.

Since a model fragment usually represents only one of the major objectives of a
method fragment, it contains a limited set of fragments’ requisites – those that are
somehow related to the major objective. For instance, in Fig. 2 (b) if the objective of
model fragment was “Effective Communication” (rather than “Effective Project Plan-
ning”), then requisites that were related to the capability of team members in task
estimation and task breakdown, should have been discarded.

430 H. Chiniforooshan Esfahani, E. Yu, and J. Cabot

Help

HelpHelp

Help

H
el

p Help

Some +

So
m

e
+

So
m

e
+

Some +

So
m

e
+Help

Som
e +

S
om

e
+

He
lp He

lp

S
om

e
+

Ev
id

en
tia

l s
itu

at
io

n

Fig. 2. (a) Metamodel of method fragment repository; (b) An instance of model fragment re-
pository, representing the method fragment: “Iteration Planning” and the objective: “Effective
Project Planning”

3.2 Situational Evaluation

So far we have described the evidence base of the framework. In the following sub-
sections we describe the steps to be taken to evaluate a set of method fragments being
considered for a given organization/project.

3.2.1 Model Merging
This framework evaluates a set of candidate method fragments by anticipating the
extent to which their objectives will be satisfied. Some objectives of a method frag-
ment may be in common with those of other method fragments. Thus, for correct
anticipation of method objectives we have to consider the contribution of all candi-
date method fragments to those objectives. Model merging is intended to develop
integrated views of model fragments, which highlight their contribution to the com-
mon set of objectives. In order to develop integrated models, process designers should
first specify a set of major objectives that they want to be evaluated. Then, retrieve the
relevant model fragments from the Model Fragment Repository, and for every in-
tended major objective, merge the related model fragments by following these steps:

1) Identify its minor objectives that are contributed to by candidate method fragments
2) Set the contribution relations from minor objectives to the major ones
3) Set contributions of method fragments to the minor objectives

While merging method fragments based on their objectives, we should also consider
the potential contributions that may exist between the requisites of method fragments.
Such contribution relations (if detected) should be represented in integrated models.

 Situational Evaluation of Method Fragments 431

The contribution relation of minor objectives to major ones (with respect to the
method fragment) is proposed in the model fragment repository.

In our motivating scenario, project manager was interested to anticipate the satis-
faction (or denial) degree of three major objectives: “Effective Communication”,
“Effective Project Planning”, and “Efficient Self-Organizing”. Fig. 3 shows the result
of merging three of our model fragments based on the common objective: “Effective
Communication”.

Fig. 3. Merging model fragments based on the common objective: “Effective Communication”
(Requisites are not shown in this model)

Integrated models serve as intermediate artifacts in this framework. They can help
process designers identify (1) method objectives that receive contradictory contribu-
tions via different method fragments; (2) method objectives that are strongly contrib-
uted, typically by different method fragments; and (3) method objectives that are
weakly contributed, typically by only one method fragment. For instance, Fig. 3 shows
that “Better Understanding of Customer Needs” is a method objective that receives
contributions from two fragments “Daily Meeting” and “Iteration Planning”, thus we
would expect its successful achievement according to the generic knowledge from
the evidence base. However, will the specific situation of this project affect this as-
sessment? To answer this question we need to first customize the integrated model
according to the project situational factors and then complete its evaluation.

3.2.2 Model Customization
This phase is intended to customize the integrated goal models, in order to reflect the
impacts of situational factors on them. The customization process takes place in two
complementary stages: Model Refinement, which modifies the structure of the goal
model; and model initialization, which assigns initial values to the requisites of
method fragments. This framework proposes two strategies for model refinement:

o Changing the type of contribution links – regarding the specific situation of a soft-
ware project, the types of contributions that a method fragment makes to its objec-
tives may differ from their default contribution types (stored in the model
fragments repository). In such cases, the contribution type should be altered to rep-
resent the specific situational attributes of software project. For instance, the
default contribution of method fragment “Conduct Daily Meetings” (as defined in
Scrum [10]) to its objective “Improved Awareness (of what others are doing)” is

432 H. Chiniforooshan Esfahani, E. Yu, and J. Cabot

“Help”. However, in an organization where the size or the number of development
teams is too large, this contribution should be altered to “Hurt” (explained in the
reference [S1] of the Appendix).

o Adding new softgoals to the requisites – situational factors that impact the fulfill-
ment of method requisites will be represented as new softgoals, contributing to the
existing method requisites. Different categories of situational factors have been
proposed in [2, 15, 16]. These can be represented as softgoals. For instance, “Es-
tablished Standards” is a situational factor [2] that can be represented as softgoal
“Standard X be followed”.

Different project situations imply different initial values for the achievement status of
method requisites. This framework identifies two types of initialization for method
requisites:

o Evidential – initializations that are supported by solid evidence(s). For instance, in
distributed projects where development teams have substantial time zone differ-
ences, the achievement status of method requisite “Meetings be face-to-face” will
be initialized with “Denied” value.

o Assumptive – Initializations that are based on assumptions with no significant evi-
dence. For example, in situation that most of team members have just met each
other, the achievement status of method requisite “Collaboration be Viable” cannot
be predicted for sure, yet it can be assumed to become at least “Partially Satisfied”.

The empirical evidences, which have been populated in the repository of method
fragments, can be quite helpful during model refinement and initialization, provided
that a similar situation has been expressed.

Table 3. Significant situational factors, their category based on [2] (Project/Organization,
Project, Constraint, Environment), and their impact on customizing the goal model

Situational Factor Category Model Customization
Developers have little
experience of software
development

Project /
Org.

Initialize the softgoal “Experienced
Programmers” to “Denied”

The technology is new to the
company

Project /
Org.

Initialize softgoal “High Tech
Knowledge” to “Partially Denied”

Developers are not always
working at the same time/place

Project /
Org.

Initialize the softgoal “Team members
be Co-located” to “Partially Denied”

Face-to-face meeting with
Scrum Masters are accessible
only at certain times

Constraint Add softgoal “Scrum Master be
Available”, initialize to “Partially
Denied”

Wiki pages are used for
implementing daily meetings

Project Add softgoal “Wiki Pages be
Deployed” / Change the value of
contrition links that connects “Daily Meet-
ing” to “Higher Frequency of
Com. With Business People”, and “Real-
Time Knowledge Transfer” to “Hurt”

Use of emulator instead of
actual devices

Environ-
ment

Add softgoal “Resources be
Adequate” with initial value of
“Partially Denied”

 Situational Evaluation of Method Fragments 433

Table 3 describes a number of significant situational factors of the illustrating sce-
nario, their category (based on [2]), and their impact on model refinement. For ini-
tialization of model, both evidential and assumptive initializations have been used.
For instance, since developers are junior programmers, we have enough evidences to
initialize the “Experienced Programmers” to “Denied”. For requisites that we do not
have solid evidences, we use assumptive initializations. For example, we assume the
initial values of “Joint Decision Making” and “Collaboration be Viable” to be “Satis-
fied”. Fig. 4 shows the evidential initializations with green labels, and assumptive
ones with red labels.

3.2.3 Model Evaluation
This phase iteratively propagates the initial (achievement) value of method requi-
sites into the higher level elements of the integrated model. The proposed value
propagation algorithm mainly follows the i* forward evaluation algorithm [17] [18].
Value propagation will be performed with respect to the current value of contribut-
ing element and the value of contribution link, based on the propagation rules de-
fined in Table 4. Since a contributed element might receive various values in this
procedure, its “value bag” will be resolved based on the following value resolution
rules [17]:

• Use the single label if the value bag has only one label
• Use the full label if:

• The value bag has multiple labels of the same value
• The value bag has labels with the same polarity with at least one full label
• The previous human judgment produced a full label and new contribution is

of the same value
• Use the minimum label if the bag has been filled through decomposition links.

(Satisfied > Partially Satisfied > Conflict > Unknown > Partially Denied > Denied)
• Otherwise, use human judgment

Giorgini et al. in [19] introduced the concepts of symmetric and asymmetric contri-
butions. When an element of a goal model symmetrically contributes to a softgoal,
both its satisfaction and denial will be propagated to the softgoal. But in asymmetric
contribution, the propagation will be performed either when the contributor is satis-
fied, or denied. The i* forward evaluation algorithm considers all of the contribu-
tion relations as symmetric. However, this may not be appropriate for negative
contributions (Hurt, Some-). For instance, when a method fragment (e.g. “Pair Pro-
gramming”) makes a Hurt contribution to a softgoal (e.g. “More LOC per program-
mer per hour”), the denial of method fragment would not necessarily result in
partial satisfaction of softgoal, while its satisfaction would result in partial denial of
softgoal. Here, we modified the i* forward evaluation algorithm by considering
positive contributions (Help, Some+) as symmetric, and negative contributions
(Hurt, Some-) as asymmetric, applicable only when the contributor is (Partially)
satisfied.

434 H. Chiniforooshan Esfahani, E. Yu, and J. Cabot

Table 4. Propagation Rules for Contribution Links (adopted from [17])

Scenario: As an example of automatic resolution (not requiring human judgment),
consider the objective “Better Understanding of Customer Needs”. The method
fragment “Conduct Daily Meeting” has a “Help” contribution to this softgoal,
and had been evaluated to “Partially Satisfied”. Therefore, based on the propagation
rules of Table 4, a “Partially Satisfied” label will be added to the value bag of
this softgoal. A similar label will be added to this bag, through the contribution of
method fragment “Conduct Iteration Planning”. Therefore, this softgoal will be auto-
matically evaluated to “Partially Satisfied”.

Manual resolution is needed where the automatic approach cannot be applied. In
such cases, human judgment determines the value of the element, considering its
value bag and status of its contributing elements. For example, consider the requisite
softgoal “Be Productive” (a requisite of “Pair Programming”). This softgoal had re-
ceived two “Partially Denied” and one “Partially Satisfied” labels through its contrib-
uting elements. We evaluated this softgoal to “Partially Denied”, based on the percep-
tion that the contributions of adequate resources and programming experience to the
productivity of programmers are more significant than the similarity of their personal-
ity. Fig. 4 shows the result of evaluating an integrated model, developed for the “Effec-
tive Communication”.

4 Validity of Framework

Although the motivating scenario introduced in Section 2 was fictitious, we had ex-
perienced a similar scenario in a classroom setting. A software development method
was created by combining the above-mentioned method fragments, and used for the
major project in a second-year undergraduate computer science course, with 40 4-
person teams. The project was to build an application for Blackberry devices. Most
team members had little programming experience. Furthermore, the Scrum masters,
who were course teaching assistants (TAs), had limited availability (their office
hours), and were not so familiar with mobile programming.

As an initial test of framework validity, we compared the evaluation results gener-
ated by framework with what was observed in the classroom. For this comparison, we
considered 18 minor objectives that were contributing to the three major objectives.

 Situational Evaluation of Method Fragments 435

Help

Help

So
m

e
+

So
m

e
+

S
o m

e
+

Som
e +

So
m

e
+

He
lp

H
el

p

Som
e +

H
el

p

Some +

So
m

e
+

H
el

p

Some +

Help

He
lp

H
el

p

Help

Help

Help

H
el

p
He

lp

Help He
lp

H
el

p

Hurt

So
m

e
+

So
m

e
+

So
m

e
+

Hurt

He
lp

So
m

e
+

So
m

e
+

So
m

e
+

Fig. 4. Modification, Initialization, and Evaluation of an integrated model

The comparison showed that for 12 softgoals (66%), the framework-generated values
were the same as the observed ones. For 4 of the softgoals (22%), the observed status
of method objectives were better than what the framework suggested. In most cases
the framework-generated values were “Partially Denied”, whereas the observed values
were “Partially Satisfied”. For 2 of the softgoals (12%), the observed values were
worse that what the framework anticipated. Thus overall, the framework produced
results that were more conservative than actually observed.

5 Discussion and Future Work

This paper proposed a framework for anticipating the attainability of the objectives of
a development method in a particular project situation. The framework aims to help
project managers in deciding on a set of suitable method fragments. Methods for
selecting method fragments have been proposed, e.g. Situation-Scenario-Success (S3)
[2] and Assembly Process Model (APM) [3], but they do not focused on the evalua-
tion of objectives. A method fragment evaluation technique was proposed in [20],
which also deals with capturing the evaluation experiences in method fragments
repository. The proposed framework adopts a goal-oriented approach for analysis,
modeling, and evaluation of method fragments. Similar approaches have been
acknowledged in [19, 21, 22].

436 H. Chiniforooshan Esfahani, E. Yu, and J. Cabot

The reliance of this framework on the results of empirical studies has both positive
and negative sides. On the positive side, it can help project managers by providing an
evidence base, supported by the experiences of many practitioners and researchers on
deploying different method fragments. On the negative side, reliance on the extensive
body of empirical evidence can be subject to misinterpretation, inadequate or unreli-
able evidential data, and conflicting scenarios (e.g., same situation, different results).
These negative effects can be moderated by relying mostly on empirical studies that
had been peer reviewed and published in highly regarded conferences or journals and,
if possible, whose results have been replicated.

One of the important factors that we considered in the design of this framework is
that it should not impose excessive overhead to software organization. The provision
of a model fragment repository is an initiative towards this end. Although this claim
needs to be verified in our further industrial case studies, we expect that the pre-
constructed model fragments facilitate the use of framework. So far, we have popu-
lated the framework repositories with an initial collection of 15 method fragments.
More are being added in an ongoing project. As future work, we are developing
automated tools to support the process of model merging, and will take advantage of
the OpenOME2 tool for the evaluation of goal models.

An underlying premise for this framework is to focus on method fragments rather
than on the prescription of an entire process. This approach is in line with the idea of
agility while doing software process improvement (SPI) [23]. Unlike traditional SPI
frameworks that focus on improving the maturity of software processes, a goal-
oriented agile SPI framework would focus on improving the effectiveness of software
processes with respective to stated objectives. In future work, we intend to use the
method fragment evaluation framework as a part of an agile SPI framework, in which
the local improvements (improving method fragments) provide the basis for global
optimization (improved overall process).

Limitations of the framework include reliance on human judgment during qualita-
tive evaluation, and when there is no adequate evidential data. For instance, during
the model refinement and initialization phase, the correct identification of significant
situational factors is crucial. This issue has been widely studied in situational method
engineering [2]. In this framework we have tried to propose a simple approach for
modeling project situation factors. Another limitation of this framework is the value
propagation and resolution phase, in which the manual resolution of value bags is
subject to personal judgments. Of course the experience of model evaluator is impor-
tant here, but we hope to reduce the risks of such subjective decisions by enriching
the evidence base. However, the evidence base is unlikely to cover all possible situa-
tions as there might be always some short-cuts to achieve goals, or some hidden
factors that impede certain objectives of method fragments, regardless of their
stated requisites. Nevertheless, the proposed framework can potentially help process
managers make better-informed decisions based on the growing body of empirical
evidence.

2

 An Eclipse-based tool for modeling and evaluation of i* goal models, available on-line at:
https://se.cs.toronto.edu/trac/ome

 Situational Evaluation of Method Fragments 437

Appendix: List of Referenced Studies

Code Approach Reference

S1
web-based
survey

Begel, A., & Nagappan, N. (2007). Usage and Perceptions of Agile
Software Development in an Industrial Context: An Exploratory
Study. First International Symposium on Empirical Software
Engineering and Measurement, 2007 (ESEM 2007). , 255-264.

S2
Observa-
tory

Sutherland, J., Viktorov, A., Blount, J., & Puntikov, N. (2007).
Distributed Scrum: Agile Project Management with Outsourced De-
velopment Teams. 40th Annual Hawaii International Conference on
System Sciences, 274a.

S3
Experi-
ence
Report

Given, P. (2006) Scrum in a Fixed-Date Environment. accessed via:
http://www.scrumalliance.org/articles/29-scrum-in-a-fixeddate-
environment, in May, 2009

S8
Experi-
ence
Report

Moore, R., Reff, K., Graham, J., & Hackerson, B. (2007). Scrum at a
Fortune 500 Manufacturing Company. Agile, 175 - 180.

S12
Experi-
ence
Report

Berczuk, S. (2007a). Back to Basics: The Role of Agile Principles in
Success with an Distributed Scrum Team. Agile, 382-388.

S15
Ethno-
graphic
study

Chong, J., & Hurlbutt, T. (2007). The Social Dynamics of Pair
Programming. Proceedings of the 29th international conference on
Software Engineering, 354-363, IEEE Computer Society.

S17
Controlled
Experi-
ment

Sfetsos, P., Stamelos, I., Angelis, L., & Deligiannis, I. (2009). An
experimental investigation of personality types impact on pair
effectiveness in pair programming. In Empirical Software Engineering,
14(2), 187-226.

S30
Experi-
ence
Report

O’Donnell, M. J., & Richardson, I. (2008). Problems Encountered
When Implementing Agile Methods in a Very Small Company.
(Ed.).In: Software Process Improvement (pp. 13-24). Springer

References

1. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Information and Software Technology 38(4), 275–280 (1996)

2. Harmsen, A.F.: Situational Method Engineering, Utrecht, Moret Ernst & Young Manage-
ment Consultants (1997)

3. Ralyté, J., Rolland, C.: An Assembly Process Model for Method Engineering. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 267–283.
Springer, Heidelberg (2001)

4. Saeki, M.: CAME: The first step to automated method engineering. In: Workshop on Proc-
ess Engineering for Object-Oriented and Component-Based Development, Anaheim, CA
(2003)

5. Henderson-Sellers, B.: Method engineering for OO systems development. Communica-
tions of the ACM 46(10), 73–78 (2003)

6. Bajec, M., Vavpotic, D., Krisper, M.: Practice-driven approach for creating project-
specific software development methods. Information and Software Technology 49(4),
345–365 (2007)

438 H. Chiniforooshan Esfahani, E. Yu, and J. Cabot

7. Linda, W., Mark, K.: Software project risks and their effect on outcomes. Communications
of ACM 47(4), 68–73 (2004)

8. Beck, K., Beedle, M., Bennekum, A.V., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mel-
lor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile Software Develop-
ment (2001)

9. Kitchenham, B.A., Dyba, T., Jorgensen, M.: Evidence-Based Software Engineering. In:
Proceedings of the 26th International Conference on Software Engineering. IEEE Com-
puter Society, Los Alamitos (2004)

10. Schwaber, K., Beedle, M.: Agile Software Development with Scrum, p. 158. Prentice Hall
PTR, Englewood Cliffs (2001)

11. Ralyté, J., Deneckère, R., Rolland, C.: Towards a Generic Model for Situational Method
Engineering. In: Advanced Information Systems Engineering, p. 1029 (2003)

12. Firesmith, D.: Open Process Framework (OPF), accessible via: date accessed (November
2009)

13. Yu, E.: Towards modelling and reasoning support for early-phase requirements engineer-
ing. In: Proceedings of the Third IEEE International Symposium on Requirements Engi-
neering (received Most Influential Paper After 10 Years Award at RE 2007) (1997)

14. Yu, E., Mylopoulos, J.: Understanding “why” in software process modelling, analysis and
design. In: Proceedings of the 16th international conference on Software engineering, Sor-
rento, Italy. IEEE Computer Society Press, Los Alamitos (1994)

15. Slooten, K.V., Brinkkemper, S.: A Method Engineering Approach to Information Systems
Development. In: Proceedings of the IFIP WG8.1 Working Conference on Information
System Development Process. North-Holland Publishing Co., Amsterdam (1993)

16. Coulin, C., Zowghi, D., Sahraoui, A.-E.-K.: A situational method engineering approach to
requirements elicitation workshops in the software development process. Software Process
Improvement and Practice 11(5), 451–464 (2006)

17. Horkoff, J., Yu, E.: Using the i* Evaluation Procedure for Model Analysis and Quality
Improvement presentation. In: Second International Workshop on i* / Tropos. University
College London, London (2005)

18. Horkoff, J., Yu, E.: A Qualitative, Interactive Evaluation Procedure for Goal- and Agent-
Oriented Models. In: Proceedings of CEUR Workshop in CAiSE 2009 (2009)

19. Gonzalez-Perez, C., Giorgini, P., Henderson-Sellers, B.: Method Construction by Goal
Analysis. In: Proceedings of Int. Conf. on Information System Development. Springer, US
(2007)

20. Ralyté, J., Jeusfeld, M.A., Backlund, P., Kühn, H., Arni-Bloch, N.: A Knowledge-based
Approach to Manage Information Systems Interoperability. Information Systems, Special
issue on Advances in Data and Service Integration 33(7-8), 754–784 (2008)

21. Ågerfalk, P.J., Fitzgerald, B.: Exploring the concept of method rationale: A conceptual tool
for method tailoring. In: Advanced Topics in Database Research, pp. 63–78 (2006)

22. Rossi, M., Ramesh, B., Lyytinen, K., Tolvanen, J.: Managing Evolutionary Method Engi-
neering by Method Rationale. Rationale Journal of the Association for Information Sys-
tems 5(9), 356–391 (2004)

23. Aaen, I., Borjesson, A., Mathiassen, L.: SPI agility: How to navigate improvement pro-
jects. Software Process: Improvement and Practice 12(3), 267–281 (2007)

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 439–454, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Incorporating Modules into the i* Framework*

Xavier Franch

Universitat Politècnica de Catalunya (UPC)
c/Jordi Girona, 1-3, E-08034 Barcelona, Spain

franch@lsi.upc.edu

Abstract. When building large-scale goal-oriented models using the i* frame-
work, the problem of scalability arises. One of the most important causes for
this problem is the lack of modularity constructs in the language: just the con-
cept of actor boundary allows grouping related model elements. In this paper,
we present an approach that incorporates modules into the i* framework with
the purpose of ameliorating the scalability problem. We explore the different
types of modules that may be conceived in the framework, define them in terms
of an i* metamodel, and introduce different model operators that support their
application.

Keywords: goal-oriented models, i*, modularization, modules, scalability.

1 Introduction

The i* framework [1] is currently one of the most widespread goal- and agent-
oriented modelling and reasoning frameworks. It has been applied for modelling or-
ganizations, business processes, system requirements, software architectures, among
others.

Several challenges have been identified with the goal of overcoming different re-
ported problems (see e.g. [2]). Among them, one of the most important issues is to
make i* models more manageable and scalable by defining modularity constructs.
This paper presents a proposal for converting i* into a modular language. This is a
basic notion for any language expected to create big models as i* is, but it has been
not yet proposed for i* except for some proposals of new constructs in the language.
Instead, we do not propose to extend the language, but to add modularity facilities to
the metamodel of i* in a loosely coupled way.

The rest of the paper is structured as follows. Section 2 provides the background on
case studies and empirical evaluation as well as related work. Section 3 presents an i*
metamodel to be used for reference the rest of the paper. Section 4 proposes the dif-
ferent types of modules for the i* language. Section 5 defines two module operations,
combination and application. Section 6 includes some discussion about the presented
work. Finally, Section 7 states the conclusions and future work.

Basic knowledge of i* is assumed in the paper, see [1] and the i* wiki
(http://istar.rwth-aachen.de) for a thorough presentation.

* This work has been partially supported by the Spanish project TIN2007-64753.

440 X. Franch

2 Background and Related Work

2.1 Use of i* in Industrial Projects

Some industrial experiences on the use of i* have been documented. In [3], a report is
presented about three air traffic management projects in which i* was applied to
model requirements for new socio-technical systems. Among other remarks, the prob-
lem of managing large SR models is highlighted. This large size cannot be lowered
due to the absence of structuring mechanisms.

In [4] an experience is reported about how to support the continuous alignment of
corrective software maintenance processes with the strategic goals of a Software De-
sign Maintenance Organization at Ericsson Marconi Spa. The authors used a model
slicing technique to break the model into pieces. However, this partition was done by
hand since the authors did not bring the notion of module into the i* framework, with
the inherent drawbacks of proceeding this way.

In [5], the authors report the use of i* for architecting hybrid systems in two indus-
trial experiences at the Etapatelecom Ecuadorian company. One of the cornerstones of
the proposed method is the reconciliation of the individual models that the different
stakeholders build. The models have not been encapsulated into modules due to the
absence of this capability in the i* framework, making this process more difficult to
implement. Also reusability is highlighted as a key concept, but at the time being it
has been supported simply by manual management of the models.

As a summary of these cases, the existence of modularity constructs in the i*
framework’s language could help to ameliorate some of the problems mentioned.

2.2 Empirical Evaluation of i*

At the time being, the only in-depth empirical evaluation of the i* framework reported
in the community we are aware of is [2]. The authors propose a feature-based evalua-
tion scenario and they assess i* with respect to these features in the light of three
industrial projects. The results of the analysis is that i* supports well the expressive-
ness and domain applicability features, provides some insufficient support to the re-
finement, repeatability, complexity management and traceability features, and does
not support at all modularity, reusability and scalability features. It is also stated that
reusability and scalability have a causal relationship with modularity, which means
that providing some solution to the latter feature impacts on the former. We may con-
clude then that providing a solution to the modularity problem can be a topmost pro-
ductive effort in terms of improving the evaluation of the i* framework.

2.3 Existing Approaches to Model Modularity

Although we have stated that the i* framework does not include modularity con-
structs, there are some lines of research addressing this issue. The two most remar-
kable contributions at this respect are the incorporation of aspects and services into i*.

Concerning the first point, a line of research [6][7] proposes the use of aspects for
modelling cross-cutting concerns. Although it is true that separation of concerns may
help to structure the i* models, the proposal still does not include modules to support

 Incorporating Modules into the i* Framework 441

the basic concept of stepwise refinement. Also, the addition of aspects into i* results
in a framework that is more complex and may eventually require a steeper learning
curve. Therefore we do not consider this proposal as a general solution for the modu-
larization problem.

In [8], the concept of service is incorporated into the i* framework. This type of
modularity unit is closer to the concepts managed in the domain (i.e., business ser-
vices) and from this point of view fits better than aspects to the natural stepwise re-
finement process. However it is true that this particular proposal introduces a lot
of complexity to the framework, with the fundamental concepts of “service” and
“process”, and also with the configuration of services inside SR boundaries using a
variability-like model with mandatory and optional features combined in several
ways.

In this work, we have preferred to search for other solutions that do not require the
addition of new constructs into the i* framework and that are basic enough to be
bound to different concepts in different methods.

3 The i* Metamodel

The i* community has defined several dialects of i* that add new constructs for par-
ticular purposes (e.g., trust constructs, temporal constructs, …), remove some that are
not of primary interest for their purposes (e.g., types of actors) or modify some condi-
tions of use (e.g., which type of intentional element is a valid end for a means-end
relationship). In [9][10] we provide a thorough analysis of these variations. Also, in
[11] we may find a survey of variations used by the community in several proposals.
Variations occur both in Strategic Dependency (SD) and Strategic Rationale (SR)
diagrams. This diversity makes advisable to identify which constructs we do consider.

Following our previous work [9][12], we propose in this section an i* metamodel
that is used as reference in the rest of the paper. The metamodel is built under the
principles of generality (i.e., trying to host as most as possible the existing variations),
extensibility (for incorporating future extensions) and suitability for modularity (being
this the goal of the paper). As a result, we remark here the most important innovations
with respect to the metamodel we have proposed so far:

– We have added an abstract Link class that holds binary relationships among Nodes
(being Node the general concept of i* model element). This Link class generalises
the concepts of link among actors (e.g., is-A relationships), among SR elements
(e.g., means-end link) and among dependums (and thus dependencies). These
three particularizations are considered abstract links themselves specialized into
the available types of links in a uniform way. As a modelling decision and for
clarity purposes, we provide the conditions that each particular type of link may
impose (e.g., Covers is a many-to-many association from position Actors to role
Actors) as OCL constraints instead of graphically (although we show the resulting
dependencies to make evident this relationship).

– For illustration of dependum links, and considering the goal of this paper, we have
added a class for the Support dependum link as introduced in [13]. A dependum
d1 supports another dependum d2 when d1 has been introduced in a later devel-
opment stage than d2 in a way that d1 provides details about the form that d2 has.

442 X. Franch

This proposed construct keeps track of refinement of dependums in a similar way
than means-end and task-decomposition links do for SR elements.

– Due to the objectives of the paper, it will become necessary to work with depend-
encies in which either the depender or the dependee are temporarily unknown. We
have modified the core of the dependency concept to support this need, by defin-
ing Dependency as a class with two specializations. Again for clarity, we have
preferred to model the restrictions on each subclass with OCL constraints instead
of graphically (i.e., instead of redefining the associations).

– We have included a class Model that records the Nodes that compose an i* model
(and transitively also the links, i.e. those that connect two nodes from the model).

Fig. 1. The i* metamodel

Table 1. Constraints on the i* metamodel: a sample

Constraints on the i* metamodel
context Link inv Nodes_Are_From_The_Same_Model:
 self.from.model = self.to.model -- both ends of link belong to the same model
context SR-Link inv Nodes_Are_SR_Elements:
-- both ends of an SR-Link are SR elements
 self.from.oclAsType(IntentionalElement)->oclIsTypeOf(SR-Element) and
 self.to.oclAsType(IntentionalElement)->oclIsTypeOf(SR-Element)
context TaskDecompositon inv To_Node_Is_Task:
-- the node object of a Task Decomposition (“to” role) is a Task
 self.to.oclAsType(IntentionalElement).type = task

 Incorporating Modules into the i* Framework 443

The resulting metamodel is shown in Fig. 1. We also show some representative
OCL constraints, especially to illustrate how the different levels of abstraction in the
class diagram have also their counterpart in the OCL constraints (see Table 1). In
the following sections, we will define new classes and associations corresponding to
the modularity constructs that will be linked with the required elements of this
metamodel.

4 Types of Modules

In this section we present the two types of modules we envisage for encapsulating
meaningful i* model pieces: SR modules and SD modules. Both types are subclasses
of a more general class that declares the common attributes of interest, at least the
name of the module and other required information not relevant for this paper (e.g.,
metadata as author, date, etc.). In addition, also the whole model can be encapsulated
in a module, in which case the metamodel of Fig. 1 describes the allowed contents.

4.1 SR Modules

SR modules are the most obvious type of module because the elaboration of SR mod-
els relies upon the application of several kinds of refinement operators.

According to the metamodel presented in Section 3, the two usual kinds of refine-
ment operators are decomposition of tasks and identification of means for an end.
Also, softgoal contributions need to be considered. However, aligning with the gen-
eral guidelines of our approach, we define first the general concept of SR module and
then show how to customize it to the cases above, leaving open the door for incorpo-
rating further types of modules if new decomposition operators are proposed.

Fig. 2 shows the connexion of SR modules to the i* metamodel and Table 2 lists
some additional integrity constraints expressed in OCL, which need to be considered
as additions to the ones already defined in the metamodel. In its more basic form, an
SR module is composed of SR elements and links among them. Upon this basic struc-
tural form, we have added as few additional constraints as possible to allow defining
in the future different types of SR modules:

– Multiplicities show that the module shall contain at least two SR elements. Also,
an OCL constraint (not shown) requires at least one link among them.

– At least one of the SR elements shall be a root (see the definition of root at
Table 2). We have considered that constraining to one single root could be unnec-
essarily restrictive (as illustrated below).

– From the root elements, all other intentional elements shall be reachable (see
All_SR_Elements_Reachable_From_Roots in Table 2). That is, no unconnected
partitions are allowed since we consider that they would represent different con-
ceptual units that would require encapsulation in different modules.

– We remark that we do not impose any restriction on the decomposition depth.
This means that the decomposition complexity is left up to the modeller’s
decision.

444 X. Franch

Fig. 2. Integrating SR modules with the i* metamodel

Table 2. Constraints over SR modules

General constraints on SR Modules
context SR-Module inv All_SR_Elements_Reachable_From_Roots:

let descendants(x: Set(SR-Element)): Set(SR-Element) =
 x->union(descendants(x.from)) in

 descendants(self.root)->includesAll(self->boundary)
context SR-Module inv All_Dependencies_Are_Without_Dependees:
 self.boundary->forAll(x | x.dependency[depender]
 ->forAll(d | d.oclIsTypeOf(DependencyWithoutDependee))

Particular constraints on particular types of SR Modules
context TaskDecomposition-Module inv Valid_Task-Decomposition_Module:

self.root->select(x | x.type = task)->size() = 1 and
self.root->reject(x | x.type = task)->forAll(x | x.type = softgoal) and
self.root->select(x | x.type = task).link[to]
 ->forAll(l | l.oclIsTypeOf(TaskDecomposition)) and
self.root->select(x | x.type = softgoal).link[to]
 ->forAll(l | l.oclIsTypeOf(Contribution))

context MeansEnd-Module inv Valid_Means-End_Module:
 ...similar to the one above

context Contribution-Module inv Valid_Contribution_Module:
 self.root->size()= 1 and any(self.root).type = softgoal and
 self.root.link[to]->forAll(l | l.oclIsTypeOf(Contribution))

This basic form could be enough in those cases where the intentional elements may
fulfil the required goals by themselves. But most often, they will require the collabo-
ration of other actors and this will be represented, as usual, by dependencies. The
fundamental point here is just to show the dependers and dependums of those depend-
encies, not the dependees (see All_Dependencies_Are_Without_Dependees). As a

 Incorporating Modules into the i* Framework 445

result, the SR module does not include any assumption about what intentional element
will collaborate with these dependers. The connection of the dependencies defined in
the SR module and the surrounding actors will be established as part of the module
operations (see Section 5). The structure itself of the enlarged metamodel ensures that
dependers are always SR elements (i.e., dependencies at the level of actor are not
allowed when decomposing at the SR level).

SR modules in general may contain any arbitrary decomposition of elements. From
this general form, we define three different types of SR modules that appear as spe-
cializations of the SR module class in the class hierarchy (we remark that the partition
is incomplete). Their particular constraints are shown in Table 2.

– Task-decomposition SR modules. The intentional element of interest is a task
decomposed into subelements. These subelements may be further decomposed.
The intentional elements that appear in this multi-level decomposition may con-
tribute to softgoals (that are also roots in the diagram), and these contributions
may also be included in the module.

– Means-end SR modules. The intentional element of interest is a goal whose means
are tasks. As happened above, tasks may be further decomposed and all the inten-
tional elements may contribute to softgoals.

– Contribution SR modules. They identify intentional elements that contribute to
one softgoal. In this case, we consider methodologically convenient to allow just
one root, namely the softgoal of interest. Also just intentional elements that di-
rectly contribute to the root softgoal are included.

New types of modules could be eventually defined by adding specializations with the
corresponding integrity constraints.

Fig. 3 shows examples of these modules. At the left we have a contribution module
with no stemming dependencies, whilst on the right a means-end module states the
need of collaboration with some undefined actor and a contribution to softgoal.

Avoid
Meetings on

Friday

All Attendees
Present

Successful
Meeting

Some+High-Tech
Resources

Some+

Critical
Deadline
Context

Some+

Some-
Avoid

Meetings on
Friday

Avoid
Meetings on

Friday

All Attendees
Present

All Attendees
Present

Successful
Meeting

Some+High-Tech
Resources
High-Tech
Resources

Some+

Critical
Deadline
Context

Critical
Deadline
Context

Some+

Some- Pay by
Credit Card

Validate
Payment

Order
Payment

Pay Good

Authorise
Credit Card

Payment
Security

Pay by
Cash

Some-

Some+

(a) Successful Meeting Contribution Module (b) Pay Good Means-End Module

Fig. 3. Examples of SR modules

4.2 SD Modules

This type of module is conceived to contain subsets of actors and dependencies
among them. In their general form, SD modules encapsulate actors and dependencies
without any restriction. From a methodological point of view, it is interesting to

446 X. Franch

Fig. 4. Integrating SD modules with the i* metamodel

designate some particular types of SD modules that seem convenient to define,
namely actor diagram modules and dependency modules.

Fig. 4 shows the integration of SD modules into the i* metamodel and Table 3
shows some representative constraints. Some similarities may be established with SR
modules: (1) a minimum of two actors are required (since recursive dependencies are
not allowed by the metamodel), as well as at least one link or dependency among
them (by an OCL constraint not shown); (2) all the actors should be interconnected
somehow, otherwise they would represent different abstractions and should be encap-
sulated in different modules; (3) there is no restriction about the number of actors,
links or dependencies, it’s up to the modeller to decide the appropriate size of the
module; (4) dependencies are established among actors, not intentional elements; (5)
there may be some dependencies from actors that have not dependees inside the mod-
ule, mixed with dependencies whose both ends are actors belonging to the module
(see Fig. 5, (a)). Furthermore, for methodological reasons (see [13]) we allow actors
to include a primary objective in the form of an intentional element inside their
boundaries. This way, the SD diagram may declare the overall intention of its en-
closed actors. Even in this case, the dependencies are between actors. To reinforce
that these goals are roots, SR links are not allowed in SD diagrams. OCL constraints
take care of these conditions.

The two specializations of the general concept of SD module are defined as:

– Actor diagrams SD modules. The module just contains actors and links among
them, i.e. no dependencies are included, see [14]. This module recognizes the
rich variability of actor types and their relationships by creating networks of roles,

 Incorporating Modules into the i* Framework 447

positions and agents with specialization and aggregation information. See Fig. 5
(b) for an example.

– Dependency SD modules. The module just contains a dependency of interest
between two actors and then some supporting dependencies (making use of the
support dependum link), that may be decomposed at their turn. Therefore, we can
refine dependencies in a similar way than SR elements. In Fig. 5 (c) we show an
example that reflects the refinement process as mutual needs of both actors.

Table 3. Constraints over SD modules

General constraints on SD Modules
context SD-Module inv All_Actors_Are_Connected:
 self.actor->forAll(x,y | existsPath(x, y)) -- auxiliary function not included
context SD-Module inv There_Are_Not_Dependencies_Without_Depender:
 not self.actor.dependency[dependee].oclIsTypeOf(DependencyWithoutDepender)
context SD-Module inv No_SR-Links_Allowed:
 self.actor.root->forAll(SR-Link[from]->isEmpty() and SR-Link[to]->isEmpty)

Particular constraints on particular types of SD Modules
context ActorDiagramModule inv No_Dependencies_Allowed:
 self.actor.dependency[depender]->isEmpty() and
 self.actor.dependency[dependee]->isEmpty()
context DependencyModule inv Just_Two_Actors: self.actor->size() = 2

User
Organi
zation

Hazardous
Information not

Submitted

Own Digital
Information
Preserved

Undesired
Information not

Submitted

Information
Hazards
Identified

(a) General SD Module

Software
Engineer

QA
Engineer

Review
Team

Software
Professio-

nal

Judy

is-part-of occupies

is-a ins

User Information
Checked Trans-

parently

Organi
zation

Digital
Information

Hazardous
Information not

Submitted

Warning when
Hazardous
Information

User Information
Checked Trans-

parently

Organi
zation

Digital
Information

Digital
Information

Hazardous
Information not

Submitted

Warning when
Hazardous
Information

(b) Actor Diagram Module (excerpt) (c) Dependency Module

Fig. 5. Examples of SD modules

448 X. Franch

5 Module Composition

Once module types and their valid contents have been defined, it is necessary to for-
mulate the operations needed to manage them. Basically we need to cover two parti-
cular needs: merging two modules into one, and including a module into a model.

5.1 Model Combination

Fig. 6 defines an abstract module combination operation at the level of the i*-Module
superclass. This operation fixes common preconditions and postconditions with some
protected auxiliary functions (refinement not included), to be enriched in the subc-
lasses. It is worth noting along the section that, since modules and models are defined
as composition of elements, node comparison is done not by oid but by identifier.

combine(a1: i*-Module, a2: i*-Module, name: String, other info...)
 /* there is not a module with the name of the new one */
pre not i*-Module.allInstances().label->includes(name)
 /* common nodes are of the same type */
pre compatibleNodes(allNodes(a1), allNodes(a2))
 /* the new module has been created */
post oclIsNew(s) and
 s.label = name and s.otherInfo = other info... and oclIsTypeOf(i*-Module)
 /* nodes in the new module are the union of those from starting modules */
 and sameNodes(allNodes(s), allNodes(modelUnion(a1, a2)))
 /* nodes in the new module are compatible to those from the starting mods. */
 and compatibleNodes(allNodes(s), allNodes(modelUnion(a1, a2)))

Fig. 6. The combination operation in the superclass

A question arises to know which type of module results from the combination of
two modules. In some cases the question is straightforward, e.g. the case of combina-
tion of Actor Diagram modules, which results in another module of the same type if
preconditions hold. In other cases the answer depends on the contents of the module,
e.g. when combining two Task Decompositions modules A and B, if A’s task root
appears as a leaf inside B, then the operation yields another Task Decomposition
module, otherwise the result does not comply with the constraints on this type and
needs to be considered as an instance of the more general concept of SR module.

combine(a1: ActorDiagramModule, a2: ActorDiagramModule,
 name: String, other info...)
 /* there is at least one actor in common */
pre a1.actor.label->intersection(a2.actor.label)->isNotEmpty()
 /* the result is also an Actor Diagram Module */
post oclIsNew(s) and s.label = name and s.oclIsTypeOf(ActorDiagramModule)

Fig. 7. Module combination operation: the Actor Diagram Module case

Fig. 7 illustrates the refinement for the case of Actor Diagram modules combina-
tion. A new precondition demanding at least one common actor is requested to ensure
the invariant of this type of module. Also, the type of this kind of combination is
detailed. The rest of conditions are fulfilled by inheriting the superclass definition

 Incorporating Modules into the i* Framework 449

(which is more general than needed, e.g. Actor Diagram modules do not have SR
links, but this is not a problem). This particular example of combination refinement is
quite straightforward since by definition this type of module does not have dependen-
cies, see 5.2 for this case.

5.2 Module Application

Application of a module over an i* submodel or element relies on the same principles
and in fact, several auxiliary functions appearing in the OCL definition will be
shared.

apply(m: Model, a: i*-Module, depMtch: Set(dpdm: Dependum, x: DependableNode))
 /* common nodes are of the same type */
pre compatibleNodes(allNodes(m), allNodes(a)) -- nodes in m not in a are not
 /* the dependency matching is correct */ -- considered
pre depMtch->forAll(
 allNodes(a)->includes(dpdm) and
 dpdm.dependency.isOclTypeOf(DependencyWithoutDependee) and

 allNodes(m)->includes(x) and not allNodes(m).label->includes(dpdm.label)
 and compatibleLinkEndPoints(dpdm.dependency.depender, x))
 /* the nodes in the module are included in the model */
post hasNodes(m, allNodes(a))
 /* the nodes keep being compatible after the application */
post compatibleNodes(allNodes(m), allNodes(a))
 /* the matching has been applied in the model */
post depMtch->forAll(
 allNodes(m).label->includes(dpdm.label)) and
 allNodes(m)->select(label = dpdm.label).
 dependency.depender.label = dpdm.dependency.depender.label and
 allNodes(m)->select(label = dpdm.label).dependency.dependee = x))

Fig. 8. Applying an i* module to an i* model

User
Organi
zation

Hazardous
Information not

Submitted

Own Digital
Information
Preserved

Undesired
Information not

Submitted

Information
Hazards
Identified

depMtch = {<Information Hazards Identified, Information Expert>}

User
Organi
zation

Hazardous
Information not

Submitted

Own Digital
Information
Preserved

Undesired
Information not

Submitted

Information
Hazards
Identified

Informa
tion

Expert

Fig. 9. Example of application of an SD module (left, from Fig. 5) to a model excerpt (an actor)

Informa
tion

Expert

450 X. Franch

Fig. 8 shows the general application function. We remark here the connection of
dependencies stemming out of the module. The header of the function includes a
matching from dependums of the module to dependable nodes of the model. Correct-
ness of this matching requires the dependum to correspond to a dependency without
dependee, and compatibility of the already defined depender and the proposed de-
pendable node that acts as dependee in the resulting node. Note that the matching may
be partial, meaning that after its application some dependencies may remain without
dependee (of course, this means that the model is still incomplete).

Fig. 9 provides a very basic example applying the module in Fig. 5(a) to a model
that includes an actor, being in this case the matching: Information Hazards Identified
→ Information Expert.

In Fig. 10 we refine the general application function to the particular case of apply-
ing a Task Decomposition module to an i* model. In this case it is necessary to add a
precondition to check that the task decomposed in the module is not yet decomposed
in the model.

apply(m: Model, a: TaskDecompositionModule)
let theTask: SR-Element = a.root->select(type = task) in -- the root task of a
 /* the task is in the model and it is not decomposed (it is a leaf) */
pre m.boundary.label->includes(theTask.label) and
 m.boundary->select(label = theTask.label).to->isEmpty()

Fig. 10. Module application operation: the Task Decomposition Module case

6 Discussion and Further Issues

In Sections 4 and 5 we have presented the types of modules and two basic module
management operations. We have presented in detail the structure of the modules and
the specification of operations. But there are some additional issues that we have not
tackled due to lack of space that we enumerate below.

Relationships among modules. In the proposal, relationships between modules are
implicit: a module is related with another if some component of the former is bound
somehow with some component of the latter. This kind of relationship is quite basic
and could be improved by defining semantic ones. We envisage two types of
such relationships. On the one hand, adding rationale to the implicit relationship men-
tioned above. On the other hand, refinement-related relationships, in which it may be
established, for instance, that a module refines another, or that it is a different version,
etc.

In addition to this, structural relationships among modules can be convenient, e.g.
composition or nesting. The UML metamodel may be a source of inspiration with the
objective of having a uniform treatment with respect to this widespread modelling
notation. Nevertheless, trade-offs need to be assessed (see future work at Section 7).

Concept-driven modularization. The proposal presented here is not much linked to
the problem domain, since the criteria used to identify the modules is not established
explicitly. In the specializations of SR modules, it may be argued that the criterion is
the intentional element to be decomposed. This also happens in Dependency modules.

 Incorporating Modules into the i* Framework 451

But in the general case, the criterion is missing. A simple solution to this problem is
to add the Property class from the metamodel to the modules metamodel. For in-
stance, going back to Section 2, one property could be Business Service, and then
each different business service in [8] could be represented by a module. The same
applies to the Etapatelecom case, where the property could simply be Stakeholder and
then each stakeholder may have her own model encapsulated in a module.

Model matching and model integration. In this work, operations defined in Section 5
are binding elements by name. But more sophisticated forms may be defined. The
most immediate extension is to provide a mapping of names. In fact, this extension is
almost mandatory if we think about reusability (see below). But also we may think of
more sophisticated integrations. For instance, one possibility is to consider i* model
merging as proposed in [15]. We remark that the consideration of these proposals
impacts on the definition of the module combination and application operations but
not in the proposal of modules presented in this paper.

Reusability. A natural consequence on having a modularization structure available is
thinking about reusability. Currently, reusability is just a copy-and-paste process due
to this lack of modularity. Having modules available makes it easier to organize re-
positories of modules. Several consequences can be listed.

First, new types of modules could be considered, for instance, a specialization of
SR module called Actor module that contains all the rationale of an actor, ready to be
reused. In this reusability context, the most general type of module, corresponding to
a whole model (as mentioned at the beginning of Section 4), would surely play a
prominent role.

Second, it may be convenient to add incoming dependencies to modules. These in-
coming dependencies would synthesise the intentionality provided by the (sub)model
encapsulated in the module. Therefore, it would not be necessary to analyse any sin-
gle intentional element inside that (sub)model to reuse the actors.

Last, as mentioned above, in the reusability context, binding by name as proposed
here is clearly insufficient and at least a name mapping is required.

Views. The proposal of this paper is oriented to provide support to the modeller whilst
developing the models, and facilitate their latter understandability and maintainability.
Another possibility could have been to define views over i* models that could eventu-
ally be stored in modules if required. Views are a powerful mechanism to extract
information from models and in fact it is natural to think in this to make modular
existing models. This is the idea followed in [6][7] to create aspects from existing i*
models. But still the problem to build the model remains, and scalability is still an
issue. Therefore, we see views not as a different alternative but complementary to our
proposal.

Tool-support. At the bottom line, modules are a model management mechanism and
not a fundamental ontological construct in i*. Because of their operational nature, tool
support is fundamental to make them usable. In fact, a good tool support for this pro-
posal should hide the metamodel details presented here and provide functionalities
that represent practical needs for the modeller whilst constructing her model.

452 X. Franch

7 Conclusions and Future Work

In this paper we have proposed some modularity constructs for structuring i* models.
These constructs have taken the form of building blocks, i.e. modules, together with a
model combination operator. We have determined the i* metamodel, and then defined
those modules as new classes that refer those metamodel elements. Finally, we have
defined some module operations and outlined some further issues.

In the rest of the section, we assess the modularity proposal using the features de-
fined in [2].

Features considerably improved
– Modularity. According to [2], this feature is not currently supported by i*. The

main rationale was “[…] i* doesn’t have mechanisms for using building modules
[…]”. We have tackled this issue in the paper. In [2] the emphasis was on defining
building modules for business processes. In our approach, we have adopted a more
neutral view, presenting the building modules more related to the structure of the
models than to the ontology of the domain. As a consequence, modules may be
eventually bound to whatever concept may be considered of primary interest.

– Refinement. [2] states the need of “[…] incrementally add more detail […] until
we reach concrete models of business processes and their actor dependencies”.
Having building modules impacts positively in this stepwise refinement of i*
models, since modules can be used to encapsulate elements that are at the same
level of abstraction.

– Complexity Management. This feature is defined in [2] as “the capability of the
modelling method to provide a hierarchical structure for its models, constructs and
concepts”. In this proposal, since an element that appears in a module may, at its
turn, be decomposed itself, there is an implicit hierarchy of models (i.e., those that
are enclosed in the modules) and thus of constructs and concepts (as part of the
models).

– Reusability. As stated in [2], “this feature is causally related to modularity”, thus it
can be said that the existing modules are providing the basic foundations for reus-
ability of models and model elements.

– Scalability. Also there is a causal relationship to modularity, therefore we may
argue that the existence of building modules is expected to improve the scalability
of the i* framework.

Features slightly improved
– Expressiveness. Although not a fundamental issue in this work, it must be remar-

ked that a couple of characteristics of the metamodel enhance expressiveness.
First, the capability of linking model nodes to any external concept represented in
the Property class. Property instances may represent ontological concepts (e.g.,
the concept of business process) or instances of these concepts (e.g., a particular
business process). Second, the high-level abstraction classes Node, Intentional
Element and especially Link support extension of the language from the syntactic
point of view (the most fundamental perspective in this modularity-related work).

– Traceability. The Support dependum link increments the degree of traceability in
i* models, although of course this is a quite limited contribution. More fundamen-
tal traceability mechanisms are still missing.

 Incorporating Modules into the i* Framework 453

Features not affected. Repeatability and Domain Applicability are not related to this
work.

Our future work moves along three main directions. First, to enrich the modularity
constructs especially by supporting module nesting and a language of module rela-
tionships. This second feature may help to record semantic relationships among mod-
els (a way to support traceability), e.g. a model for a socio-technical system derived
from a pure social model. Second, to settle an experimentation program oriented to
gain insights about the advantages and possible obstacles of the proposal, whilst ob-
taining quantitative feedback about production time, learning curve, etc. Assessment
of some decisions taken (e.g., to force all elements in a module to form a connected
graph) will be stem from this program. Third, to implement the framework both in i*
edition tools (our HiME, http://www.essi.upc.edu /~llopez/hime/, but also try to in-
corporate it in OME, jUCMNav, REDEPEND, etc.) and in the iStarML interchange
format [16]. This is a critical point, since most of the concepts presented here at the
modeling level need to be naturally generated by adequate tool support, as transpar-
ently as possible for the final user.

References

1. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD Dissertation,
University of Toronto (1995)

2. Estrada, H., Martínez, A., Pastor, O., Mylopoulos, J.: An Empirical Evaluation of the i*
Framework in a Model-Based Software Generation Environment. In: Dubois, E., Pohl, K.
(eds.) CAiSE 2006. LNCS, vol. 4001, pp. 513–527. Springer, Heidelberg (2006)

3. Maiden, N.A.M., Jones, S., Ncube, C., Lockerbie, J.: Using i* in Requirements Projects:
Some Experiences and Lessons Learned. In: Yu, E., Giorgini, P., Maiden, N.A.M.,
Mylopoulos, J. (eds.) Social Modeling for Requirements Engineering. The MIT Press,
Cambridge (2010)

4. Annosi, M.C., De Pascale, A., Gross, D., Yu, E.: Analyzing Software Process Alignment
with Organizational Business Strategies using an Agent- and Goal-oriented Analysis
Technique - an Experience Report. In: Procs. 3rd i* International Workshop, CEUR Work-
shop Proceedings, vol. 322 (2008)

5. Carvallo, J.P., Franch, X.: On the use of i* for Architecting Hybrid Systems: A Method
and an Evaluation Report. In: Procs. 2nd PoEM International Conference. LNBIP, vol. 39
(2009)

6. Alencar, F., Castro, J., Moreira, A., Araújo, J., Silva, C., Ramos, R., Mylopoulos, J.: Inte-
gration of Aspects with i* Models. In: Kolp, M., Henderson-Sellers, B., Mouratidis, H.,
Garcia, A., Ghose, A.K., Bresciani, P. (eds.) AOIS 2006. LNCS (LNAI), vol. 4898, pp.
183–201. Springer, Heidelberg (2008)

7. Alencar, F., Castro, J., Lucena, M., Santos, E., Silva, C., Araújo, J., Moreira, A.: Towards
Modular i* Models. In: Procs. 25th SAC International Conference – RE Track. ACM, New
York (2010)

8. Estrada, H.: A Service-oriented Approach for the i* Framework. PhD Dissertation, Uni-
versidad Politécnica de Valencia (2008)

9. Ayala, C.P., Cares, C., Carvallo, J.P., Grau, G., Haya, M., Salazar, G., Franch, X., Mayol,
E., Quer, C.: A Comparative Analysis of i*-Based Goal-Oriented Modeling Languages. In:
Procs. 17th SEKE International Conference, KSI (2005)

454 X. Franch

10. Cares, C., Franch, X., Mayol, E., Quer, C.: A Reference Model for i*. In: Yu, E., Giorgini,
P., Maiden, N.A.M., Mylopoulos, J. (eds.) Social Modeling for Requirements Engineering.
The MIT Press, Cambridge (2010)

11. Horkoff, J., Golnaz, E., Abdulhadi, S., Yu, E.: Reflective Analysis of the Syntax and Se-
mantics of the i* Framework. In: Song, I.-Y., Piattini, M., Chen, Y.-P.P., Hartmann, S.,
Grandi, F., Trujillo, J., Opdahl, A.L., Ferri, F., Grifoni, P., Caschera, M.C., Rolland, C.,
Woo, C., Salinesi, C., Zimányi, E., Claramunt, C., Frasincar, F., Houben, G.-J., Thiran, P.
(eds.) ER Workshops 2008. LNCS, vol. 5232, pp. 249–260. Springer, Heidelberg (2008)

12. Franch, X., Grau, G.: Towards a Catalogue of Patterns for Defining Metrics over i* Mod-
els. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 197–212.
Springer, Heidelberg (2008)

13. Franch, X., Grau, G., Mayol, E., Quer, C., Ayala, P., Cares, C., Haya, M., Navarrete, F.,
Botella, P.: Systematic Construction of i* Strategic Dependency Models for Socio-
technical Systems. IJSEKE 17(1) (2007)

14. Leite, J., Werneck, V., de Pádua Albuquerque Oliveira, A., Cappelli, C., Cerqueira, A.L.,
de Souza Cunha, H., González-Baixauli, B.: Understanding the Strategic Actor Diagram:
an Exercise of Meta Modeling. In: Procs. 10th WER International Workshop (2007)

15. Sabetzadeh, M., Easterbrook, S.: View Merging in the Presence of Incompleteness and In-
consistency. Requirements Engineering Journal 11(3) (2006)

16. Cares, C., Franch, X., Perini, A., Susi, A.: Towards interoperability of i* models using
iStarML. Computer Standards & Interfaces (2010),
http://dx.doi.org/10.1016/j.csi.2010.03.005

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 455–469, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Ahab’s Leg: Exploring the Issues of Communicating
Semi-formal Requirements to the Final Users

Chiara Leonardi, Luca Sabatucci, Angelo Susi, and Massimo Zancanaro

Fondazione Bruno Kessler – IRST CIT
Via Sommarive, 18 I-38050 Povo, Trento

{cleonardi,sabatucci,susi,zancana}@fbk.eu

Abstract. In this paper, we present our experience in using narrative scenarios
as a tool to communicate and validate semi-formal requirements with the stake-
holders in a large software project. The process of translating the semi-formal
language of Tropos into the narrative form of scenarios is introduced and some
unintended implications of this process are discussed. In particular, we define
the notion of Ahab’s leg to describe the necessity to introduce new constraints
or features in a description when moving to a different representational lan-
guage. Starting from the lessons learned with this specific case study, we derive
some general implications concerning the issue of requirement translation for
validation tasks and we propose some methodological guidelines to address the
Ahab’s leg dilemma.

Keywords: Goal-Oriented Requirements Engineering, User-Centred Design,
Persona, Scenario.

1 Introduction

The focus group with the stakeholders was proceeding in a satisfactory way when
suddenly in discussing a scenario one of the nurses commented negatively about the
use of sensors located on the doors. She complained that the doors in their facilities
are wider than the one depicted in the scenario and that for security reasons they
should never be closed. A very lively discussion began about the possibility of lock-
ing the doors in a nursing home while the facilitator tried to focus the attention of the
group to the functional requirement to be validated: that is, the need to trigger an
alarm if a guest leaves a common room.

Situations like this happen very often when a design team wants to validate late re-
quirements with stakeholders: although narrative scenarios are powerful tools to rep-
resent and communicate requirements to non-technical people, it may be the case that
stakeholders focus their attention on non-central aspects. This paper discusses our
experience in using narration as a tool to communicate and validate semi-formal re-
quirements with the stakeholders of a large software project. We encountered the kind
of problems above in different forms when we had to decide how to instantiate the
formal concepts in a narrative form and which details have to be added to make the
story more engaging for the stakeholders. In this paper, we present the process of

456 C. Leonardi et al.

translating the semi-formal language of Tropos into the narrative form of scenarios
and some unintended implications of this process.

The importance of narration for mediating and discussing requirements with
stakeholders has already been discussed in requirements engineering (RE)
[1,4,10,13,14,15]. While several studies addressed the issue of integrating scenarios in
the requirements elicitation phase, few works specifically considered the challenge of
using scenarios—and in particular scenarios represented in a narrative form—to
communicate and validate requirements with stakeholders. Efficient communication
and iterative validation of requirements with stakeholders is a key challenge for RE.
The issue of adequately communicating and negotiating requirements with stake-
holders and software engineers still challenges approaches based on formal represen-
tation of requirements.

In the context of a large software project, we used narrative visual scenarios to ef-
ficiently communicate requirements collected in the field and to provide all partici-
pants—both software engineers and professionals—with adequate information to
envision innovative and useful services. The semi-formal methodology Tropos was
used to filter information, maintain traceability and provide tools for requirements
conflict analysis. This paper addresses the advantages and shortcomings of the com-
plementary use of semi-formal descriptions and narrative informal descriptions for the
purposes of requirements validation focusing on the challenges posed by the transla-
tion between the two. Starting from the lessons learned within a specific case study,
we derive some general implications concerning the issue of requirement translation
for validation tasks.

In Section 2 we introduce the conceptualization of the Ahab’s Leg dilemma, that
is, the necessity to add more constraints or features to a description when moving to a
different representational language. Section 3 briefly summarizes the methodology
and the techniques used for requirement elicitation and management in our project
and the issue we encountered. Section 4 introduces a post-analysis of the scenarios
used and a proposal for a methodological framework to limit and manage the impact
of Ahab’s legs in a validation process.

2 The Ahab’s Leg Dilemma

In the famous novel Moby Dick, the main character, Captain Ahab, has a peg–leg.
The author, Herman Melville, told us that it is made from a whale jaw but nothing is
said whether it is the left leg or the right one. In 1956, John Houston directed a film
adaptation of the book starring Gregory Peck as Captain Ahab. He and the screen-
writer, the novelist Ray Bradbury, were forced, because of the constraint of the visual
media, to decide that the left leg was the whale bone peg. Although the peg-leg is a
fundamental part of the story (you cannot imagine any adaptation of the book for
which Ahab does not have a peg-leg), knowing which one has no bearing on it. Yet,
when the peg-leg is instantiated, this decision may generate a lot of consequences,
some of them might be harmless and some might not1.

1 The Ahab’s leg example was introduced by Eco [7] in discussing the problem of translation.

 Ahab’s Leg: Exploring the Issues of Communicating Semi-formal Requirements 457

The Ahab’s leg dilemma consists of the necessity to add more details to the origi-
nal storyline, because of the different characteristics of the target media (visual vs.
textual, in the case of Moby Dick) or because of the use of a different communication
style, dramatization vs. neutral description, that requires the story to be engaging (as
in our example above). Ahab’s legs are often unavoidable and they do not necessarily
represent a problem unless they bring the viewers (or the stakeholders) to draw un-
wanted inferences that can contradict other aspects of the story or, as in our example
above, divert their attention from the important aspects of the story.

In the case of scenarios derived from requirements, Ahab’s legs may be introduced
because abstract requirements, summarized as short and clear sentences, are translated
into full-fledged narrations. In this process, usually information must be added in
order to raise the dramatic tension to the story (the importance of engagement in sce-
narios is well known in literature [8]) and to instantiate requirements in a concrete
spatial-temporal context.

It is worth noting that not every problem encountered when validating scenarios
during group discussions can be classified as Ahab’s legs. Problems may, for exam-
ple, be related to the group dynamics rising in focus groups that possibly drift the
topic of discussion. Actually, focus groups, different from other methods, require
greater attention and the role of moderator is crucial in keeping the group discussion
on track [12]. In other cases, when stakeholders complain about a specific aspect of a
scenario, it may be the case that the corresponding requirement is wrong or not well
understood by the designers. Indeed, spotting these problems in the requirements is
precisely the purpose of scenarios as we used them.

The problems raised by Ahab’s legs do not correspond to any part of an actual re-
quirement and therefore any discussion about them is a useless waste of time. It is
worth noting that Ahab’s legs do not necessarily induce shortcomings in validating
requirements. In many cases stakeholders are able to avoid discussions deemed irrele-
vant, especially, as noted above, if the focus groups are effectively moderated by a
professional facilitator.

The Ahab’s legs can thus be recognized as translation challenges. The possibility
of such problems is also recognized by authors in the field of RE (see for example
[14]). Interesting suggestions are given by Marasco [11] who underlines the short-
comings but at the same time the necessity to create different views of requirements,
highlighting the importance of bridging the gap between text-based and visual re-
quirements representation to improve the quality of requirements in terms of com-
pleteness and validity. Still, no systematic analysis has been done to understand and
provide concrete solutions to help designers and analysts cope with different views of
requirements, in particular between semi-formal representation and narration.

3 Methodology and Techniques

ACube is a large research project funded by the local government of the Autonomous
Province of Trento in Italy with the aim of designing a highly technological smart
environment to be deployed in nursing homes as a support to medical and assistance
staff. An activity of paramount importance was the analysis of the system require-
ments for what concern cost containment and quality improvement of services in
specialized centers for people with severe motor or cognitive impairments. From a

458 C. Leonardi et al.

technical point of view, the project envisages a network of sensors distributed in the
environment or embedded in users’ clothes. This technology should allow monitoring
the nursing home guests unobtrusively, that is, without influencing their usual daily
life activities. Through advanced automatic reasoning algorithms, the data acquired
through the sensor network will be used to promptly recognize emergency situations
and to prevent possible dangers or threats for the guests themselves.

The ACube project consortium has a multidisciplinary nature, involving software
engineers, sociologists and analysts, and is characterized by the presence of profes-
sionals representing end users directly engaged in design activities. A User Centered
Design (UCD) approach was implemented to manage the multidisciplinary effort of
balancing stakeholders’ needs and technical constraints. The integration of UCD
methods with the goal-oriented requirements engineering methodology Tropos was
meant to assure the validity, completeness and traceability of requirements.

In the following we briefly discuss the two methodologies employed in our study
and how they were jointly used during the project.

3.1 Tropos

The Tropos methodology [3,17] relies on a set of concepts, such as actors, goals,
plans, resources, and dependencies to formally represent the knowledge about a do-
main and the system requirements. An actor represents an entity that has strategic
goals and intentionality within the system or the organizational setting. An actor is
used to model both human stakeholders and software and hardware systems. Goals
represent states of affairs an actor wants to achieve. Executing a plan can be a means
to realize a goal. Actors may depend on other actors to attain some goals or resources
or for having plans executed. Tropos models are visualized through actor and goal
diagrams. The former are graphs whose nodes represent actors and arcs are strategic
dependencies between pairs of actors. A goal diagram represents an individual actor
perspective in terms of its main goals, and their decomposition into sub-goals. Fur-
thermore, plans and resources that provide means for goal achievement are depicted
through means-end relationships.

Tropos distinguishes five phases in the software development process: Early Re-
quirements, where the organizational domain is described, Late Requirements, where
the system-to-be is introduced in the organization, System Architecture Design, Sys-
tem Design and System Implementation. In the project, we applied the first two phases
of the methodology to describe the nursing homes organizational setting and stake-
holders’ needs and to investigate the technical requirements for the ACube system.

3.2 Personas and Visual Scenarios

Usually, in the practice of requirements engineering, scenarios have been intended
mainly as abstract descriptions of systems functionalities. In this project, we took a
slightly different stance by employing narrative scenarios and personas in the way
they are used within the field of Interaction Design (ID) [6]. Narrative scenarios are
stories characterized by their brevity and simplicity which represent people acting in a
specific context and supported by technologies. Scenarios make concrete the behavior
of a service as experienced by specific, though fictional, users. They help design

 Ahab’s Leg: Exploring the Issues of Communicating Semi-formal Requirements 459

teams in negotiating a shared representation of the domain and hence a more effective
elicitation of requirements. In ID, scenarios are proposed to be used in several phases
of the design, from early requirement elicitation to design validation. Actually, as
recently stressed by Katasonov et al. [9], a major problem in requirement quality
control is the achievement of a satisfactory level of understanding on the requirements
by stakeholders especially when they lack technical expertise and do not share the
same (formal and abstract) language of analysts and engineers. Due to the assumption
that validating requirements is more an issue of efficiently communicating and itera-
tively negotiating knowledge than a linear process of checking a given corpus of data,
in our study we designed visual scenarios as communication tools to allow technical
and non-technical partners to symmetrically contribute to requirements validation and
refinement. We adopted the specific scenarios approach as developed by Carroll and
Rosson [4] and subsequently enriched by Cooper with the notion of personas [5],
Personas are rich descriptions of archetype users meant to draw attention on users’
goals and motivations. Introducing personas in scenarios-based approach provides an
anchor against self-referentiality in design and makes scenarios more concrete. Perso-
nas (an example of personas is given later in Section 3.3) are created starting from
data gathered from actual users interviewed and observed through contextual inquir-
ies. They are usually evaluated with respect to their believability for the stakeholders
before creating the actual scenarios. It is worth noting the difference between Tropos
actors and personas. While actors are abstract entities and they are not sufficiently
concrete to provide understanding of empathy with users, personas are expected to
engage the empathy that helps the designers, stakeholders and software engineers to
make decisions on both the cognitive and emotional sides.

Table 1. Main characteristic of TROPOS and ID methods

TROPOS PERSONAS/SCENARIOS
 Exhaustive picture of the domain.
 Abstract representation of the domain.
 Static and invariant picture of the

domain.
 Do not provide specific tools for finer

prioritizing requirements than the rea-
soning on alternatives and contribu-
tions.

 Neutral representation that do not
engender an emotional response.

 Do not provide information about the
physical context.

 Provides a general representation of
invariant dependencies among actors.

 Support traceability.

 Selection of specific situations that are described
in a narrative form (coverage problem).

 Concrete representation of the domain.
 Dynamic representation involving the spatio-

temporal dimension.
 Stories provide a support for prioritizing require-

ments.
 “Dramatic” representation that engenders empa-

thy.
 Provide details about the physical context in

which people act.
 Provide details about how interactions occur in a

given specific situation.
 Do not support traceability.

3.3 Joint Process: Concurrent Use of Tropos and ID

In ACube, we made joint use of the semi-formal Tropos language and ID methods
throughout the whole project lifecycle, in particular from early requirements
identification to final validation with stakeholders.

460 C. Leonardi et al.

The two approaches explore different dimensions of the domain and of the design
space of the system using complementary approaches, tools and languages (see
Table 1). In this context, one of the most relevant problems is the perspective and
foucs of the two research approaches: ID methods strongly emphasize users and the
contexts in which they behave while Tropos focuses on roles and goals, promoting a
more abstract level of description that is typical in software engineering techniques. In
order to effectively integrate the different methods we developed a framework to
allow for the alignment of the approaches, their languages and to facilitate a shared
representation of data. Table 2 illustrates the four phases that caracterized the process:
Early exploration, Problem identification, Envisioning, and Validation. For each
phase of the process the table shows the contributions of the two methodologies and
artifacts that allowed to maintain an alignement between the two representations.

Table 2. The four phases that characterized the process and artifacts used for communica-
tion/integration issues

Phases/
methods

1. Early explo-
ration

2. Problem
identification

3. Envisioning 4. Validation

UCD
methods Contextual inquiries

Definition of
personas

Participative work-
shops to develop
envisioning scenar-
ios

Scenarios discus-
sion with the
stakeholders

Descriptive table
(narrative)

Personas
Narrative techno-
logical scenarios
and storyboards

Narrative descrip-
tion and story-
boards

Communi-
cation/
integration
tools Actor-Action-

Resource-Goal
Analysis

Critical Aspects
Positive-negative
contributions

Functional and
Non-functional
Requirements

Tropos
methods

Domain knowledge,
Early actor model-
ing

Early Requirements
Phase

Late Requirement
Phase

Requirements
Refinement

Table 3. Some of the personas used in ACUBE Project

Piera Age: 90

She’s lived in a Nursing Home for 6 years. She is not
self-sufficient because of health and motion disabilities.
She suffers from low level depressing that causes her
frequent anxiety and agitation. She wishes for more
human relationships with caregivers, nurses and rela-
tives.

Sabrina Age: 40

Health operator, she assists hosts in daily
activities. Her activities: (i) monitor
dangerous events, analysis of the kind of
event, (ii) raise up an alarm via phone or
direct contact with operators, (iii) moni-
tor patient conditions.
She likes the human side of her work but
she complains to spend too much time in
bureaucratic matters. Problems: hard to
follow the hosts in absence of an ade-
quate number of health workers.

Maria Age: 85

She’s lived in a Nursing Home for 1 year. She suffers
from Alzheimer’s at middle level with lack of memory
and confusion. She tried to leave the institute to go back
home once, thus caregivers look at her movements with
a special attention.

 Ahab’s Leg: Exploring the Issues of Communicating Semi-formal Requirements 461

1. Early exploration. The process started with the investigation of the domain to
understand the organizational setting in representative sites and to derive possible
needs and a set of possible services that the system may provide to users. In the
ACube project, contextual interviews [2] were performed in 4 different nursing homes
and involved about 40 health professionals including health workers, nurses, medical
staff and managers. Information retrieved via contextual inquiry are represented via
Tropos actor-goal early requirement models.

2. Problem setting. The analysis of critical aspects has been developed to highlight
the main problems that professionals of nursing homes experience in their job. We
defined a set of personas (see Table 3) and generated narrative descriptions of these
personas deploying their daily working activities in a specific context, using resources
to reach their goals. The aim was to represent criticalities that may be addressed
through a technological intervention. Here, Tropos models support the representation
of critical aspects via the characteristics of actors and goals.

3. Envisioning. A participative workshop has been organized to analyze how technol-
ogy could positively intervene in activities thus supporting the achievement of goals
and resolving critical issues identified in the problem identification phase. It is worth
noting, that in this phase our main goal was investigating high level requirements and
not producing design ideas. About 10 participants attended the workshop including
the ID team and representatives of stakeholders and technologists. The heterogeneity
of the group was meant to guarantee the generation of creative but feasible ideas, to
provide concrete solutions to problems identified by nursing home professionals as
well as to provide solutions that could meet engineers’ expectations and their research
interests. Outcomes were pursued at multiple levels: to expand the designer’s perspec-
tive and to see the problems from different points of view, to figure out how their
ideas can work in a real context, to identify design criticalities and open issues, to
generate requirements of the system-to-be. The workshop ended with the definition of
5 different macro-services the ACube system might provide.

As a consequence of the envisioning focus group, and the introduction of the sys-
tem into the organization, the Tropos process moved from the early requirement phase
to the late requirement phase. Figure 1 shows an excerpt of the Tropos model, de-
scribing a small part of the goals and the activities of the SeniorOSS actor (a caregiver
in the nursing home). In particular the actor Senior OSS has the goal to [prevent dan-
gerous behavior in patients] that can be AND decomposed in [monitor patients in her
visual area] and [coordinate interventions in the nursing home area].

This latter goal is delegated to the ACube System actor via the goal delegations
[identify a guest dismissing the group] and [receive alerts of relevant events]. These
goals are two requirements to be satisfied by the system that must instantiate
them (means-ends relationships) via the plans [monitor patients] and [send alarms]
respectively.

4. Validation. Two focus groups were organized with stakeholders and the technical
staff for validating the list of requirements produced in the previous phase. Due the
importance of this step for the topic of the paper, this is part is discussed in detail in
the following subsection.

462 C. Leonardi et al.

Fig. 1. An excerpt of the Tropos model for the nursing home

3.4 The Validation Phase

After the preparation of the Tropos late requirement diagrams, and the corresponding
list of requirements, we started the validation phase. Simple visual scenarios were
designed to make the list of requirements more understandable by partners. To gener-
ate scenarios we imagined how the system could support personas to cope with prob-
lematic situations during their daily work. Macro-services emerged in the envisioning
phase have been instantiated into concrete – but non exhaustive – representations of
the system functionalities. Eventually, 5 visual scenarios were generated, each ad-
dressing a problematic situation identified in nursing homes accompanied by one of
the possible technological solutions.

A first focus group was held with the representatives of the 10 research groups in-
volved in ACube project, 27 people attended the meeting. The second focus group
was organized with the stakeholders, 3 managers of nursing homes previously in-
volved in the early exploration phase attended the meeting. The goal of these meet-
ings was to assess of the validity, acceptability and feasibility of requirements and to
envision alternatives not considered in the scenarios.

The structure of the two meetings was the following: first, a general presentation
was given to introduce the goals of the meeting and to discuss general results col-
lected in the fieldwork. Then, for each of the five scenarios generated we introduced:
the context of the scenario – organization context and personas acting in those con-
texts, the rationale for the scenario, which is the criticality we wanted to address with
that specific scenario. Subsequently, the scenarios were represented in a visual form
through storyboards (see Figure 2). Finally, criticalities the scenarios could rise – in
terms of technological feasibility and acceptability for end-users – and the underlying
abstract requirements that the scenarios instantiate were presented to trigger the dis-
cussion. For each scenario, 20 minutes of discussion followed. A moderator was in
charge of driving the discussion on the specific dimensions we wanted to assess.

The workshop with technological partners was focused on technical feasibility and
research interest, and on the envisioning of original solutions to the critical situations
identified. Acceptability and usefulness were instead the pivots of the workshop with

 Ahab’s Leg: Exploring the Issues of Communicating Semi-formal Requirements 463

Fig. 2. A scenario extracted from the Tropos model of the domain

end-users representatives. Expected outcomes of the two focus groups were the emer-
gence of design criticalities, the resolution of open problems and the identification of
new propositions and ideas, in order to collect additional elements to elaborate an
organic description of the technological architecture. The role of the moderator was
also to focus participants’ attention on specific aspects of the scenarios (those directly
related to requirements) and to cut discussions concerning non relevant aspects. The
output of this phase was the agreement on certain requirements and the refinement of
Tropos late requirement diagrams.

Besides the general positive output and the satisfaction of the partners – principally
satisfied of the rich discussion emerged around scenarios – several secondary (collat-
eral) issues emerged. Several times the discussion of participants focused on aspects
non-relevant for technological purposes. Beside traditional shortcomings usually
found when conducting focus groups [12], we identified other impasses pertaining to
the kind of information communicated through visual scenarios, leading participants
to lose repeatedly the focus of attention. As discussed above, we defined as Ahab’s
Legs the translation and communication shortcomings rising from the necessity to
translate information from one media to another.

4 Re-thinking the Approach

The issues we experienced during the focus groups with technological partners and
with stakeholders were mainly due to Ahab’s legs (AL). This section reports the
analysis we conducted, after the validation phase, in comparing the knowledge ex-
pressed in the requirements documents with the knowledge mediated by the visual
scenarios.

464 C. Leonardi et al.

4.1 Ahab’s Leg Classification

In order to identify the ALs in our 5 scenarios we compared each frame of each sce-
nario with the corresponding requirement. For example, Table 4 illustrates the case of
the requirement [The system identifies when a guest is dismissing the group]. This
requirement has been visually represented in the scenario for the emergency monitor-
ing and prevention of falls. This scenario shows a guest of the institute that wears a
sensor that sends a signal. This is captured by a receiver that is placed near the door of
the room, where the guest is passing through.

This simple piece of scenario includes four ALs: 1) the definition of the time and
place in which the scene is set: a wide common room with one door; 2) the couple
wearing sensor/receiver is an AL cause it is not yet defined by design how to track
guest movements; 3) the receiver placed on the door is another AL, because it refers
to a decision to set the device in a precise position of the environment; and 4) the use
of arcs going out from the sensor to the receiver is a graphical means for communicat-
ing the presence of an interaction in a symbolic way.

With this procedure, we collected 34 ALs from the 28 frames of the 5 scenarios.
An analysis based on similarities of occurrences results in 6 different categories of
AL. Three of these categories relate to the cause of the difference in translation: (i)
the need to introduce a design feature to visualize a part of the system, (ii) the need to
make concrete an abstract representation and (iii) the use of symbols that may be
misleading. The other three categories related to the impact that the AL has on the
target language: (i) the resource used, (ii) the context in which the scene takes place
and (iii) the working practice that is represented. These categories are not exclusive
and an AL can be classified as belonging to one or more categories.

An AL is generated by an early design when the scenario is constrained to show
some design solutions that have not been explicitly chosen but that have been repre-
sented in order to elicit underlying problems and suggest concrete solutions. For in-
stance the use of a wearable sensor that sends signals does not come out from the
requirements list, but the design team decided to make concrete the presence of the
system in such a way. Nevertheless, the presented technical solution is only a possible
alternative among others; other solutions could be designed, for instance, the use of
cameras spread in the environment was going to be evaluated too. Starting from ab-
stract requirements (such as “The system alerts caregivers of relevant events”), one of
the possible design solutions has been visualized (“a PDA in the caregiver’s pocket
vibrates to signal the event”) to communicate to stakeholders one of the possible de-
sign solution that could meet that requirement.

An AL can be generated by the level of details due to the specific media used for
representing the scene. The typical example is the one that inspired the name of
Ahab’s leg: the cinematographic version of the novel requires a decision about which
is the peg–leg. An example from the project concerns the decision to set the scene in a
specific kind of environment, a common room, close to a door.

This kind of AL can be minimized by carefully translating abstract information to a
concrete scene. While a certain contextualization is necessary to create a credible
story, the designer should however pay attention to convey only the necessary infor-
mation, and to maintain abstract those contents that could generate a discussion on
non relevant details. In our case it was important to communicate the information that

 Ahab’s Leg: Exploring the Issues of Communicating Semi-formal Requirements 465

the scene was taking place in a common room but we decided to keep all the other
information on the environment implicit in order to let stakeholder focus only on the
relevant event, such as common room with several patients and few health profes-
sional available.

An AL is generated by the use of symbols, typical of comics, that communicates
something abstract in a scene, as well as an interaction, a mood, the act of thinking
and so on. The twofold risk is to use a symbol whose meaning is not commonly rec-
ognized by people, or to communicate in a concrete way something that would be
better to maintain abstract. An example of AL in this category is the use of arcs for
representing a wireless communication or signal connecting the sensor with the re-
ceiver. This graphical expedient is used to show an interaction between two devices,
but the risk is stakeholder focus on the direction of the communication (who is the
transmitter, who is the receiver). This problem pertains to a more general issue well
known within the semiotic research area, that is, inter-semiotic translation, occurring
every time a linguistic sign is translated by means of non-linguistic signs (visual or
audio texts).

Table 4. Requirements, scenarios and Ahab's legs in our example

Requirement Scenario Frame Ahab’s Leg
1. The system
identifies when a
guest is dismissing
the group

3.00 pm, common room. The scene
shows a guest of the institute that
wears a sensor that sends a signal.
This is captured by a receiver that is
placed near the door of the room,
where the guest is passing through

AL1: time and place
AL2: resources - wearable
sensor and receiver
AL3: receiver on the door

2. The system alerts
caregivers of rele-
vant events

The scene shows (and describes) a
PDA in the caregiver’s pocket that
vibrates

AL4: resource - PDA
AL5: caregivers have a de-
vice in their pocket
AL6: vibration for alerting
the caregiver

Among impact we identify: (i) resource, (ii) context and (iii) working practices.

An AL may influence a resource (typically a technological device) that the system
will introduce in the environment, or already existing in the domain. An example is
the introduction of a sensor in the environment that tracks guest movements. An AL
may influence the context represented in a scenario, adding details about the time (for
instance by specifying when the scene is set: ‘at 3:00 pm’), about the space (for in-
stance by specifying where the scene is set: ‘in the common room’), about a condition
or an event that is occurring (for instance ‘the guest is moving through the door’) or a
quantity (for instance specifying how many guest and caregivers are present). An AL
may also add details about a working practice or a methodology that caregivers will
adopt as a consequence of the system-to-be. The scene provides details (for instance
about decisions that are taken or activities that are executed) just because the dramati-
zation of the story needs a plot in which personas act for solving emergencies.

466 C. Leonardi et al.

This classification has been developed starting from a specific case and it has not
yet been completely investigated. Therefore, we cannot at this stage claim that it is of
general purpose. However this classification is coherent with the categories identified
by Eco [7]. Table 5 reports a subset of the ALs we identified in this project.

This analysis has been used to provide a rationale to each AL found in the 5 sce-
narios and to decide whether it could have been removed or not. The scenario-
authoring activity should be iterated by considering the evidence of each AL and
considering the relevance of the corresponding detail in the scene. If the detail can be
removed without losing important data that designers want to communicate, the sce-
nario should be redefined. For example, in the case of the AL3 [the receiver placed on
the door], this detail could have easily been removed reducing the risk to focus stake-
holders’ attention to technological details that were not yet discussed.

Table 5. Classification of the Ahab’s Legs in our example

 Early
Design

Level of
Details

Use of
Symbols

Resource Context Working
Practice

AL1: time and place √ √

AL2: wearable sensor and
receiver

√ √ √

AL3: receiver on the door √ √

AL4: resource - PDA √ √

AL5: caregivers have a
device in their pocket

 √ √

AL6: vibration for alerting
the caregiver √ √

The categorization of the AL dilemma brought us to propose some guidelines to

systematically approach the elimination of some irrelevant details from scenarios. In
the cases in which removing an AL is not possible or too complicated, it is very im-
portant to frame the scenario (for example with an introductory description) in such a
way that the discussion from the AL is averted as much as possible.

4.2 Toward a Methodology for Translating Requirements into Scenarios

When we prepared our narrative scenarios we were aware of the possible communica-
tion problems that may occur during the validation phase, thus we spent a lot of effort
in preparing the meeting, to direct the conversation in the desired direction. Despite
this preliminary work, we have been unable to avoid having stakeholders sometimes
concentrate on some secondary aspects of the narration (for example the discussion
about the doors of the room in the introduction). The post-analysis conducted on the
scenario before the validation experience revealed a bigger number of ALs than we
recognized at the beginning. This suggested to introduce a scenario-refinement activ-
ity in our analysis process in order to consider whether the use of each AL was really
beneficial to the scenario (because it supported a greater level of engagement or made
a requirement clearly visible, for example) or was just a distracting narrative element.

 Ahab’s Leg: Exploring the Issues of Communicating Semi-formal Requirements 467

Design phase Authoring phase

Validation phase Refinement phase

Fig. 3. A methodology for translating requirements into scenarios

 The methodology for moving from requirements to their validation with stak-
holder can be summarized as (see Figure 3): a design phase in which requirements are
draft, a scenario authoring phase in which these requirements are represented in a
narrative (and often visual) format. Finally, the validation meeting in which scenarios
are presented and discussed with stakeholders. We propose to introduce a refinement
phase after the scenario authoring and before the validation meeting. For each sce-
nario an AL detection activity is executed, that may lead to re-elaborate the scenario
representation in order to reduce the number of irrelevant details. The steps can be
summarized as follows. (i) Sort requirements by the scenario in which they are repre-
sented; (ii) divide the scenario in frames, each is a self-explicatory part of the story;
(iii) compare the requirement with the frame and record each detail that is added for
enriching the story as an AL; (iv) use the classification schema for evaluating the
importance of the presence of the AL to the aim of telling the story; (v) proceed to the
elimination of the surplus details from the story or to their modification. It is worth
noting that scenarios and not requirements are subject to changes during the refine-
ment phase.

As we already mentioned removing ALs from a narrative description is by no
means the only way to manage ALs. For example, when a fieldwork analysis was
conducted before the requirement phase, the illustrative material (photos, sketches,
interviews, etc.) may be used to add details to the narrative scenarios that result “natu-
ral” and therefore less distractive for the stakeholders. Finally, the remaining ALs
may be the properly framed by the facilitator to reduce the risk to discuss them for too
long.

5 Conclusion

In this paper, we discussed some issues that emerged in a large research project when
we tried to validate our requirements with the stakeholders by using narrative scenar-
ios instead of the textual version of the requirements themselves. This practice is
sometimes used in RE, nevertheless several authors acknowledged the problem of
running into misunderstanding when minor details are added to the narration to enrich
it and make the presentation concrete and easy to understand. We identified this trans-
lation challenge as the Ahab’s leg problem.

Although only a few ALs creates problems during validation with stakeholders,
several more were identified in a post-analysis of the scenarios generated. Six non-
exclusive categories of ALs have been identified by the analysis. Consequently we

468 C. Leonardi et al.

propose a methodology to manage the insurgence of ALs that consists in a scenario-
refinement phase in which every AL is checked and, when possible, is eliminated or
modified in order to be understandable by stakeholder without conveying undesired
meanings. It is worth noting that to some extent ALs may also be considered benefi-
cial. In a ID perspective, showing a hypothetical vision of the system-to-be is a way to
open up the discussion on design in order to redefine the problem with stakeholders.
In this respect, ALs may help to foster the discussion on some not-central but still
very relevant dimensions of the problem. This approach is recommended by a modern
approach to ID [19]. Yet, even in these cases, ALs should still to be carefully man-
aged by clearly communicating the goals and motivations behind their introduction.

Finally, the problem of generalization is still an open question on our work. By
comparing them with categories identified in semiotics studies, we assume that they
are general enough to be applied in other contexts but more data is needed for assess-
ing the classification. Another aspect that still needs attention is how to relate the AL
categories identified in the post analysis to systematic procedures for controlling (lim-
iting or encouraging) the occurrence of ALs in the scenario specification.

Acknowledgments

The research was funded by the Autonomous Province of Trento, project ACube
(Grandi Progetti 2006).

References

1. Aoyama, M.: Persona-and-Scenario Based Requirements Engineering for Software Em-
bedded in Digital Consumer Products. In: Proc. of 13th IEEE International Requirements
Engineering Conference (RE 2005), pp. 85–94 (2005)

2. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Mor-
gan Kaufmann, San Francisco (1998)

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

4. Carroll, J.M., Rosson, M.B.: Getting around the task-artifact cycle: How to make claims
and design by scenario. ACM Transaction on Information Systems 10, 181–212 (1992)

5. Cooper, A.: The Inmates are Running the Asylum. SAMS Publishing, USA (1991)
6. Cooper, A., Reimann, R., Cronin, D.: About Face 3: The Essential of Interaction Design.

Wiley Publishing, Chichester (2007)
7. Eco, U.: Kant and the platypus: essays on language and cognition. Harvest Books (2000)
8. Grudin, J., Pruitt, J.: Personas, participatory design and product development: an infra-

structure for engagement. In: Proceedings of Participatory Design Conference 2002 (June
2002)

9. Katasonov, A., Sakkinen, M.: Requirements Quality Control: a Unifying Framework. Re-
quirements Engineering Journal 11(1) (2006)

10. Liu, L., Yu, E.: Designing Information Systems in Social Context: A Goal and Scenario
Modelling Approach Information Systems 29(2), 187–203 (April 2004)

 Ahab’s Leg: Exploring the Issues of Communicating Semi-formal Requirements 469

11. Marasco, J.: The requirements translation challenge,
http://articles.techrepublic.com.com/
5100-10878_11-6128696.html

12. Morgan, D.: Focus groups as qualitative research. Sage Publications, Thousand Oaks
(1997)

13. Pohl, K., Haumer, P.: Modelling Contextual Information about Scenarios. In: Proceedings
of the Third International Workshop on Requirements Engineering: Foundations of Soft-
ware Quality REFSQ 1997 (1997)

14. Potts, C., Takahashi, K., Antòn, A.: Inquiry-Based Requirements Analysis. IEEE Software
archive 11(2), 21–32 (1994)

15. Rolland, C., Achour, C.B., Cauvet, C., Ralyté, J., Sutcliffe, A., Maiden, N., Jarke, M.,
Haumer, P., Pohl, K., Dubois, E., Heymans, P.: A proposal for a scenario classification
framework. Requir. Eng. 3(1), 23–47 (1998)

16. Seyff, N., Maiden, N., Karlsen, K., Lockerbie, J., Grünbacher, P., Graf, F., Ncube, C.: Ex-
ploring how to use scenarios to discover requirements. Requir. Eng. 14(2), 91–111 (2009)

17. Susi, A., Perini, A., Giorgini, P., Mylopoulos, J.: The Tropos Metamodel and its Use. In-
formatica 29(4), 401–408 (2005)

18. Uchitel, S., Chatley, R., Kramer, J., Magee, J.: Goal and scenario validation: a fluent com-
bination. Requir. Eng. 11, 123–137 (2006)

19. Wolf, T.V., Rode, J.A., Sussman, J., Kellogg, W.A.: Dispelling “design” as the black art of
CHI. In: Proceedings of CHI 2006 (2006)

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 470–482, 2010.
© Springer-Verlag Berlin Heidelberg 2010

The Brave New World of Design Requirements:
Four Key Principles

Matthias Jarke1, Pericles Loucopoulos2, Kalle Lyytinen3,
John Mylopoulos4, and William Robinson5

1 RWTH Aachen University, Germany
2 University of Loughborough, U.K.

3 Case Western Reserve University, USA
4 University of Toronto, Canada
5 Georgia State University, USA

Abstract. Despite its undoubted success, Requirements Engineering (RE) needs
a better alignment between its research focus and its grounding in practical
needs as these needs have changed significantly recently. We explore changes
in the environment, targets, and the process of requirements engineering (RE)
that influence the nature of fundamental RE questions. Based on these explora-
tions we propose four key principles that underlie current requirements proc-
esses: (1) intertwining of requirements with implementation and organizational
contexts, (2) dynamic evolution of requirements, (3) architectures as a critical
stabilizing force, and (4) high levels of design complexity. We make recom-
mendations to refocus RE research agenda as to meet new challenges based on
the review and analysis of these four key themes. We note several managerial
and practical implications.

1 Introduction

The genesis of Requirements Engineering (RE) research around 30 years ago was
motivated by practitioner who noticed the urgent need for disciplined RE in large
software projects [1, 2]. Much of RE research since then has focused on artifacts that
help capture, share, represent, analyze, negotiate, and prioritize requirements as a
basis for design decisions and interventions (for recent reviews see e,g, [21, 22, 23]).
This is evidenced by the volume and impact of a plethora of requirements topics pa-
pers published in top the level software engineering and computing conferences and
journals (for a survey see [4, 23] . Due to its practical origins it is not surprising that
some of its findings, like the use of business and system modeling (ERD, use cases),
risk driven methodologies, structured requirements documents, and simple require-
ments tracing, have found their way into practice[3].

Yet, the environment in which RE is practiced has changed dramatically. Partly,
this is due to increases in computing speed, lowering of computing cost, and advances
in functionality, which has made software common in all walks-of-life. Partly, this is
due to the changes in technological, task, and organizational environments where

 The Brave New World of Design Requirements: Four Key Principles 471

software is either produced or deployed. The field’s focus and scope has shifted from
engineering of individual systems and components towards the generation and adapta-
tion of software intensive ecosystems. Accordingly, a term design requirements rather
than software requirements is needed as an inclusive term to denote all common sets
of requirements issues within these ecosystems that need to be addressed at the cross-
roads of business development, software engineering, and industrial design. This shift
has created a strong need to re-think and re-align RE practices to meet the new chal-
lenges. Both academia and industry need to understand more deeply issues that under-
lie current RE and address associated challenges. We posit that answers cannot come
just from doing more of the same—i.e., traditional RE research focusing on notations
and tools alone. The research scope of RE has to become more interdisciplinary, and
it needs to carefully evaluate some of its critical assumptions. This essay aims to iden-
tify some of these challenges based on a detailed field and content analysis of exten-
sive expert discussions and feedback on current RE practices [4]. Based on these
explorations we propose four principles that underlie future requirements processes
and influence their successful resolution. Finally, new research challenges and practi-
cal implications are identified.

2 The Changing Nature of Requirements

Current RE landscape is marked by new challenges and opportunities [3]. Its envi-
ronment, target technologies, processes, and fundamental problems have undergone a
tectonic shift. The environment of RE now involves elements that were not there 20
or 30 years ago [5]. First, the economics of RE has changed. Large systems like ERP
systems need more rigorous ROI, but at the same time horizons for ROI have reduced
to 18-20 months thanks to massive reuse and COTS deployment. Second, there is
practically no green-field software development; RE acts more like the Roman god of
gates—Janus, with one face, looking at new business and technological challenges
and opportunities and another face gazing at existing (technological, organizational,
social and political) environments and resource sets. Third, the scaling towards soft-
ware intensive ecosystems results in exceedingly complex and non-linear dynamic
dependencies between system components and their natural, technical and social
environment—“green IT” being just one of the latest buzzword that characterize this
trend. Fourth, speed and agility, time to market, low-cost iterative, or even end-user
development have become critical factors leading to search for new design trade-offs
between efficiency, openness, and flexibility. This has also increased outsourcing and
off-shoring, which requires disciplined evolution and management of explicit specifi-
cations as a basis for delegation and framing design problems. Fifth, RE now cuts
across industrial design (e.g., pervasive applications), media design (e.g., e-commerce
and media applications), interaction design (e.g., new modalities of interaction in
mobile computing, telematics etc.), and business process design (e.g., open business
platforms), and regulatory and juridical issues (e.g. management and control of multi-
ple licenses in software platforms). Overall, design requirements need to capture and
coordinate increasingly diverging and dynamic needs of users and other stakeholders
during the evolution of a product, a service, or a platform.

472 M. Jarke et al.

Table 1. Summary of Critical Design Requirements Issues (adopted from [4])

 Critical
Requirements Issues

Brief description

Business process focus Requirements focus simultaneously on the business
process, and requirements for technological artifact
driven by that business process.

Systems transparency Requirements involve the demand for a seamless user
experience across applications.

Integration focus Requirements focus on integrating applications rather
than development of new ones (i.e., less green-field
development).

T
ar

ge
t

pl
at

fo
rm

Packaged software Purchase of commercial off-the-shelf (COTS) software
and components rather than internal development. This
has lead to market driven vendor-led requirements and
knowledge brokering.

Distributed
requirements

In addition to increasingly diverse stakeholders,
requirements processes are distributed across multiple
organizations, groups and social worlds globally.

Centrality of
architecture

Architectural considerations and associated
evolutionary paths take a central role and drive
business, product and application requirements.

Layers of requirements Requirements need to be iteratively developed across
multiple levels of abstraction, design focus, or
temporal horizon.

Interdependent
Complexity

While some forms of design complexity have been
reduced (loosely coupled components), the overall
interaction complexity of the design ecology has risen
enormously.

D
ev

el
op

m
en

t
pr

oc
es

s

Fluidity of design Requirements process must accommodate the need for
continued evolution of the artifact and the solution
after initial implementation.

What are the critical issues that emerge during RE in this brave new world?

Table 1 presents nine critical issues that were solicited in a field study in Fortune 500
companies [4]. These are divided into the changing nature of the object of RE (target
platform), and the process of RE (development process). Overall, these issues reso-
nate well with the debate Simon engages in his design classic, The Sciences of the
Artificial [6]. On the one hand, software designs resemble increasingly continuous
and dynamic searches for satisficing solutions—not an optimized and fixed solution at
one time point conforming to a fixed set of requirements. On the other hand, they go
beyond Simon’s original model in that they emphasize sense-making in shifting and
complex environments [7] and associated problem framing over focused problem
solving in a bounded context. To wit, these changes in the environment and the object
and process of RE are changing the three classic RE problems as follows:

First, the design requirements problem already pointed out in [1, 2] can be stated as
follows: What is the emergent behavior and dynamics of the software artifact and its
environment in their evolutionary trajectory? Now users, designers and other stake-
holders need to ask: will the system continue to satisfy emergent goals, and what

 The Brave New World of Design Requirements: Four Key Principles 473

those goals could be expected to be during the artifact’s life-time; in contrast to the
older problem: What are the goals of the system and what is expected to do

Second, the specification problem can be stated as follows: How can designers an-
ticipate and represent the emergent behaviors of the system and its components and
how does the resulting system behavior conform and relate to the emerging environ-
ments and the notations used to represent and predict it? Accordingly, now designers
need to ask how they can represent, communicate and analyzed increasingly complex
and dynamics systems and their emergent requirements in contrast to the older prob-
lem: how to represent the system components, their relationships and behaviors and
guarantee that they meet functional and non-functional requirements?

Third, the predictability problem of designs can be stated as follows: How does the
artifact and its behavior change the environment as to make our predictions of the
system behaviors faithful? In other words, now designers need to attend more to
the dynamic composition of the system and environment and do they together differ
from the environment alone, and can he/she accordingly predict faithfully the impact
of the system on the environment, and vice versa? This is a different problem from
those faced earlier where the system was assumed to not affect the environment, or
the environment the system, but in some rare cases [14].

3 Four Requirements Principles

Past RE research has been informed by a few key principles such as those of: separa-
tion of what, why and how [1], information hiding (see e.g. [2], and the principle of
abstraction (see e.g. [22]). These principles reduced design complexity by localizing
design decisions. They also helped reduce their interference and analyze and predict
system behaviors and structure from specific viewpoints [21, 22].

But, what are the key principles that will underlie successful design and RE in the
brave new world we face? What principles will help us address the design require-
ments problem, the specification problem, and the predictability problem in the new
context? We propose next four principles that were gleaned from our analysis of
expert opinions and related discussions, and a review of the literature dealing with
design dynamism and complexity. These four principles are:

Intertwine Requirements and Contexts: The necessity to intertwine design and
requirements with design and implementation across multiple dimensions.

Rationale: This principle observes the design requirements problem and the new
demands for understanding evolutionary trajectories.

Evolve Designs and Ecologies: The necessity to view design and design processes
as evolving elements in an ecology.

Rationale: This principle observes the new design requirements and specification
problem and increasing demands to analyze evolutionary principles of a large set of
heterogeneous elements comprising the requirements space.

Manage through architectures: Architectures have a critical role of as enablers and
constraints in the constant creation and shaping of design ecologies.

474 M. Jarke et al.

Rationale: This principle recognizes the specification problem and the shifting focus
towards ecologies where increased emphasis must be placed on antecedent factors
that affect the organization and evolution of the ecology.

Recognize complexity: The heightened interaction complexity of requirements proc-
esses demands new ways to approach design problems and manage requirements.

Rationale: This principle recognizes the predictability problems and that the new
interaction complexity requires designers to heed on the external relationships of the
software and their evolution as reflected in the requirements.

We will next describe each principle in more detail in terms of the content of the
principle, related research questions, and emerging research.

3.1 Intertwine Requirements and Contexts

The debate about the role of requirements is as old as the field itself. Whilst a rough
consensus has been reached that requirements are a pre-requisite for downstream
development, there is a great deal of controversy on how ‘problem’ and ‘solution’
spaces interplay during the evolution. One school of thought regards the influence of
implementation on requirements as being harmful [8]. They argue that understanding
the system’s context, such as its organizational and social factors and goals can pro-
vide a sufficient set of functional and non-functional requirements, which can then be
mapped onto appropriate implementation models. This school regards requirements as
the “downward” bridge between the ‘subject’ and ‘system’ worlds by assuming that
there exists a high degree of stability on business, organizational, and community
goals. An opposing view stresses the need for revisiting requirements as implementa-
tion progresses and emphasizes the dynamics and intertwining of these activities [9].

The review of existing practice [4] shows that implementation and its requirements
specification are now necessarily intertwined. In fact, many requirements emerge
from existing solution spaces. Accordingly, the concept needs to be extended to the
whole system context. In addition, the salient factors shaping RE seem to be innova-
tion and effective differentiation. The interplay between the two worlds has thus be-
come more intricate, complex, dynamic, and generative. In these innovation-driven
settings, requirements become part of both the business solution and the system solu-
tion, and they constantly bridge new solutions to organizational and societal prob-
lems. The evolving designs need to reduce the distance between a problem and a
solution through novel and dynamic thinking, acting, and innovating. In such a de-
sign-thinking culture, design requirements become increasingly central and need to be
understood as part of a multi-system, socio-technical ecology, which drives organiza-
tional innovation. Therefore, software requirements need to be dynamically situated
between these spaces as they intertwine organizational and implementation considera-
tions, providing leverage to influence both.

Due to this constant intertwining some systems and ecologies may be reaching a
practical world-model limit. While prior design efforts could rely on an adequate,
stable, world-model as the basis for specifying nearly stable software designs, now,
software must be agile—rapidly evolving to meet changing needs. The level of stabil-
ity of the world-assumptions is less limited in context-aware, customer-focused appli-
cations. The unavoidable intertwining between requirements and contexts will make

 The Brave New World of Design Requirements: Four Key Principles 475

designers constantly seek correspondence between the models in software and its
world context. Only software embedding an adequate, flexible, and evolvable world-
model is likely to survive. The idea of evolutionary software and variability selection
aims to partially meet this need. But, little attention has been given to the challenge of
formulating evolutionary world models that form the basis for the necessarily simpli-
fying, but evolving model assumptions in the software. Software developers must thus
monitor and evolve their understandings of the world, and sustain an adequate corre-
spondence between the world and the modeled world.

Overall, RE processes face a new kind of uncertainty that goes beyond traditional
RE uncertainty characterized by: (1) requirements identity (knowing requirements),
(2) requirements volatility, and (3) requirements complexity [10]. In addition, design-
ers need to devote their efforts: (1) requirements fidelity uncertainty, which denotes
the uncertainty about the level of intertwining between the world and the software
model. Examples of techniques that help mitigate fidelity uncertainty are exception
and event-based analysis; software tailoring and user-based development, and case-
based learning; and (2) requirement monitoring uncertainty, which denotes uncer-
tainty of the level and mode of observation, and analysis necessary to assess the
world, the model, the requirements, and their alignment. Examples of monitoring
include ethnographic methods, business activity monitoring (BAM), and software
instrumentation. These two new levels of uncertainty highlight the need for increased
run-time monitoring to maintain the fidelity of the world-model intertwining with
requirements.

3.2 Evolve Designs and Ecologies

Meeting stakeholder needs is fundamental to requirements activity. When require-
ments increasingly intertwine with organizational and implementation concerns, they
will constantly and non-linearly evolve as part of the “ecology”. Traditional causes of
software evolution have been classified into: (1) the software, (2) the documentation,
(3) the properties of the software, and (4) customer-experienced functionality[11].
Evolution has been studied mainly as a software design problem and it has been ad-
dressed by improving methodological support (e.g., how can development activities
most effectively incorporate evolution?) and its management (e.g., how one can one
record and trace software releases or link the code to changing domain knowledge?).
Now, the reality of an ever incomplete and evolving design needs to be addressed. We
need to ask: what are the principles that guide developers evolve ‘incomplete designs’
so that they remain functionally adequate, but offer flexibility? What are appropriate
co-evolutionary design methods to achieve these goals? How does one determine the
impact of co-evolutionary design change?

Activities in open source development, such as inter-project merging and the crea-
tion of new software artifacts, for example, compound the need for new frameworks
to cope with requirements evolution. Another example is agile methods and scenario
based modeling which offer a means to better cope with the fast paced evolution of
requirements ecologies [12]. Likewise research into co-evolution and co-design [13]
has addressed drivers and interaction laws that deal with the intertwining of contexts
and requirements. Yet, such studies are in early stages, and agile methods only deal
with micro-level evolution of local tasks, but ignore their recursive nature as the

476 M. Jarke et al.

change propagates across the higher levels of architectures and systems. Here we
clearly need longitudinal studies of the dynamics of software ecologies and how dif-
ferent causes ranging from technological, user level learning, organizational policies,
market based, and regulatory changes intertwine and generate new evolutionary paths.

3.3 Managing through Architectures

Architecture is concerned with blueprints that connect high level organizational, busi-
ness, or implementation considerations with a long-term evolutionary perspective.
Organizations now increasingly conform to business or information architectures that
provide stability, scale and change to their data, business rules and decision models.
Designers have, for some time relied on implementation architectures while evolving
their designs. In its variety of forms an architecture provides the stepping-stone neces-
sary to understand and evolve any system functionality across different domains.
Through release planning, requirements play a central role in systems evolution,
where architectures provide “nearly” fixed points of reference to moderate, constrain
and enable evolution. Such dependence on architecture is inherent in Lehman’s law
that “the incremental growth (growth rate trend) of evolutionary software systems is
constrained by the need to maintain familiarity” [14].Architectural dependencies arise
also in approaches like IKIWISI (I’ll Know It When I See It), and COTS (Commer-
cial off-the-shelf) based software deployment [15].

Though RE research in the past has paid significant attention to ‘software architec-
tures’, it offers limited insight to the role of architectures in the new RE terrain. Many
of the past studies focus on organizing sets of design elements and their components
in the context of a single system. Accordingly, they approach architectural design
akin to generating a blueprint for a single house. In the context of dynamic software
ecologies, such an analogue fails. In the brave new world, managing through architec-
tures is about generating and evaluating multiple and multifaceted plans similar to
urban planning. Like urban planning blueprints, architectural models provide the key
artifact for coordinating components, functionalities, and their evolution. As in urban
planning, the architectures in RE may have alternative and overlaying variation points
that influence the evolution of the software ecology. As in urban planning, architec-
tures embody specific business models or design visions, and come in different forms
in different design contexts. By doing so, they integrate the needs of multiple stake-
holder groups with varying roles. Finally, like urban plans they involve the same level
of complexity and interdependencies. Therefore, in the new RE, we see an increasing
need to understand the variation between types of architectural models needed and
how they relate to specific families of systems and their ecologies.

Recent attempts to deal with architectural considerations include the transfer of in-
dustrial concepts, such as product lines to the software field [16]. They help manage
and cope with continuous and rapid change in software by defining the scale, scope,
and direction of its variance and selection. Other architectural models such as busi-
ness architectures [3] help stakeholders to envision the impact of proposed changes on
business by providing contextual information that allows for selecting variation points
across multiple stakeholders. Yet, many research challenges remain in taking the
advantage of the idea of architecture: How do architectures influence the evolution of
requirements and their identification? What is the nature of requirements discovery

 The Brave New World of Design Requirements: Four Key Principles 477

and elicitation under varying architectural principles? Is it possible or even desirable
to construct a single common ontology of business, information and technology archi-
tectures? How to relate different architectural presentations and reason around them?
How can architectures help in flexible composition of systems and ecologies?

3.4 Recognize and Mitigate against Design Complexity

Complexity is borne out of the existence of multiple uncertain futures that relate to
software and their evolving ecologies [17]. A mix of human, social, political, eco-
nomical, technological, and organizational factors has a bearing on the level of com-
plexity associated with RE. Overall a new sort of interaction or systemic complexity1
needs to be reckoned and managed during the RE, where design becomes a problem
solving and framing process with inherent uncertainties driven by the partial un-
knowns. Dealing with such design complexity impacts two areas of RE: (1) the stra-
tegic decision-making in generating and selecting requirements, and understanding
their impact on the ecology; and (2) selecting tractable design-approaches that make
complex system designs possible. The former is the concern of how to relate com-
plexity with stakeholders within their ‘subject’ world, whereas the latter influences
behaviors within the ‘design’ world.

In the brave new world of RE the implementation of requirements impacts not only
on the technical systems, but also on their organizational and social settings that in-
creases interaction complexity. In addition, the increased variety of requirements that
emanate from diverse communities need to be negotiated, evaluated, and selected
compounding the complexity. Qualitative and often structural conceptual models like
goal or business models, whilst rich and useful in representation and analysis for
design are less helpful for stakeholder evaluation and understanding the interaction
complexity. Due to the design complexity, it is also difficult for some stakeholders to
visualize and understand the system’s behavior. It is tempting to think that “stake-
holders understand a description when they don’t really understand it at all”. There-
fore, many questions remain poorly understood concerning design complexity: What
is the nature of design complexity and increased interaction complexity, and how can
we identify, analyze and measure it?

One way of coping with design complexity is through architectural designs and
control that allow ‘nearly’ decomposable system designs. This mitigates complexity
by ensuring that interactions among components are weak, though not negligible.
Thus, designing a nearly decomposable system in the face of uncertain requirements
becomes a difficult satisficing problem. Perhaps, not surprisingly, a new look at de-
sign methodologies can play the central role here. An emergent design methodology
will be an improvement over conventional a priori methodologies. Open source sys-
tems, following nontraditional methodologies, for example evolve systems faster than
traditional life cycle and requirements driven development approaches [18]. The
co-design and co-evolution of the system and its stakeholders seems to play here a
pivotal role, as does the fact that “open source systems entail internal architectures
with orthogonal features, sub-systems, or modules, as well as external system release

1 This should not be confused with computational complexity as defined by well-known com-

plexity notions like NP hard problems.

478 M. Jarke et al.

Table 2. Four key requirements principles

Principle Description Rationale

Intertwine
Requirements
and Contexts

Requirements are interdependent
with their social and technical
contexts. As boundary objects in
the intersection of the technical and
social domains, design
requirements seek to constantly
resolve the gap between problems
and solutions. Specification and
implementation intertwining is long
recognized, but the social context
and specification intertwining is
growing in importance.
RE Problem addressed: design
requirements problem.

Intertwining between business,
organizational, community context
and requirements is as important as
it is between requirements and
software.

New RE Issues : Fluidity of
designs, , Business process focus;
Integration focus, Distribution of
requirements

Evolve
Designs and

Ecologies

Design ideas and artifacts evolve,
from stakeholder preferences to the
implementations. Evolution needs
to be managed through selectively
freezing some aspects while
changing other aspects thus
allowing increased variation,
dynamic selection and diffusion of
structures and behaviors.

RE Problem addressed: design
requirements problem,
specification problem.

Everything evolves, but at different
rates. Design around relatively
fixed evolutionary paths that allow
for increased but controlled
variation and effective selection
and diffusion.

New RE issues : Fluidity of
designs, Layers of requirements,
Distribution of requirements,
Packaged software

Manage
through

architectures

Architecture is the least evolving
and most widely referenced anchor
of the design, be it business
architecture, or implementation
architecture.

RE Problem addressed: specifica-
tion problem

If well-designed, the architecture
(business or software) evolves
slowly, and influences and interacts
with many requirements. We know
poorly however how architectures
shape, allow and constrain
evolution.

New RE issues : Interdependent
complexity, business process focus,
Centrality of architecture

Recognize and
mitigate

against design
complexity

The necessity to consider
simultaneously a large number of
issues and their non-linear
interactions during design raises
design and requirements
complexity beyond what a single
designer can understand or
visualize.

RE Problem addressed:
predictability problem.

Historically, tools aided a single
designer or a small group in design
decision making. New design tools
need to be extended to monitor and
analyze the dynamic design
evolution, highlighting its
trajectory and helping negotiate at
the team and community level.

New RE issues : Interdependent
Complexity, Fluidity of designs,
Business process focus, Layers of
requirements

 The Brave New World of Design Requirements: Four Key Principles 479

architectures that span multiple deployment platforms”[18]. A better understanding of
complexity can be obtained, if system descriptions are tested against concepts familiar
to stakeholders, and multiple scenarios are played out by fixing key parameters as
proposed by the architecture. Experimenting with different scenarios has proved a
powerful means for discovering and refining requirements with heightened complex-
ity [19]. Still, we need to examine: What types of interdependencies influence and
affect system change and create higher levels of design complexity? How can archi-
tectural models be exploited mitigate against design complexity, and to what extent
they are a cause of it?

3.5 Summary of Four Key Design Principles

The four principles are summarized in Table 2 together with the rationale for using
each principle, as well as what critical RE issues motivate each. We do not claim that
they all apply in all design contexts, or even that some will apply in all contexts. In
contrast, when e.g. designs are expected to be fluid, when they integrate with business
process, or involve significant distribution of requirements we can expect the princi-
ple of intertwining of requirements and contexts to be instrumental. Finally, these are
similar to threshold indicators as used in claiming that abstraction is important, when
the size and the number of dependencies within the software system goes beyond a
certain threshold.

4 Implications

Over its thirty-year history, the idea of design requirements has changed from single,
static and fixed-point statements of desirable system properties into dynamic and
evolving rationales that mediate change between the dynamic business environments
and the design and implementation worlds. As Fred Brooks noted in the Dagstuhl
workshop: “Design is not about solving fixed problems; it is constant framing of
solution spaces”. This evolution has now probably reached a new turning point char-
acterized by unprecedented scale, complexity, and dynamism. This calls for new ways
to think about requirements and their role in the design. Like earlier turning points,
such as the software crisis in the 1970s, it will demand a resolute and careful intellec-
tual response. The four requirements principles discussed have numerous implications
for research of which only a tip of the iceberg has been addressed. There are also
multiple implications for RE practice both at the management and at the engineering
level. For the sake of brevity, we discuss below three closely related practical strate-
gies being pursued and exposed by the four principles.

Service orientation and task distribution: The life cycle of systems must now be
aligned more closely with the business process lifecycle. Service oriented architec-
tures, possibly combined with model-driven code and test generation, are now rea-
sonably well established at the programming level to do the job. The situation is quite
different, however, at the level of business services, despite their ongoing standardiza-
tion. The decomposition of monolithic business process systems into freely configur-
able business services has turned out to be far more complex task than expected due
to the need to make business semantics explicit that were hitherto hidden in the code.

480 M. Jarke et al.

This is, however, not only true for runtime service configurations, but also when out-
sourcing and especially when off-shoring. The design challenge is how to tackle the
domain of business semantics, which is often culture dependent. Intercultural compe-
tencies become a must for requirements engineers in such settings, where pilot cases
can be a promising means to establish cultural understanding. Legal aspects are also
forming an increasingly important aspect, not only in terms of how to protect intellec-
tual property (IP)—what should I not offshore, if IP handling is doubtful? —but also
in terms of protecting oneself against being sued by customers due to imprecise con-
tractual agreements or.e.g not honoring open source licenses in some parts of the
code.

Importance of the Edge: In the increasingly complex environments the distinction
between users and developers is vanishing, and the user networks and the developer
networks are becoming increasingly fuzzy and intermingled. Many contributors to
system designs, and even implementations are no longer located in the kernel, but at
the network edge. This situation— characterized as an evolution from user to citizen—
enables greater diversity of system variants and system uses, especially in cross-
cultural environments. Web-based social networks have proven to be the infrastructure
of choice for such settings, and quick and dirty testing of incremental changes in lim-
ited market portions is the necessary requirements testing strategy. Accordingly, design
incentives now go beyond monetary ones. Bricoleurs at the edge must be harnessed to
contribute to usability and functionality beyond the initial enthusiasm. Thus, transpar-
ency, accountability, and maintenance of a core vision in ecologies become more im-
portant. Requirements traceability within such evolutionary processes often involves
runtime monitoring towards the requirements. Finally, new design goals enter the
stage. For example, industrial design ideals such as innovativeness or aesthetics of the
user experience play often a larger role than pure functionality.

Capability-based platforms: For the past twenty years, the dominant trend design
has been business process modeling and optimization that go together within mono-
lithic COTS, or software product lines. As noted, we witness a move towards capa-
bility-based evolutionary platforms defined by consumption and production networks.
Such networks need to analyze or define their core capabilities, and seek opportunities
(often initiated from the edge, as noted above) to exploit for market or process inno-
vations in a speedy and flexible manner. Capability-based platforms define core capa-
bilities that can be competitively delivered with and by the networks. These platforms
also hold the networks together. By fixing ‘core’ requirements and the related archi-
tecture for the efficient core implementation, the platform designer makes bets on
assumptions about the speed of change related to different requirements sets associ-
ated with the platform (and the network). For example, platform strategies have been
a critical success factor in the automotive industry, but this advantage can turn into a
deadly trap, when economic considerations mandate that the company must be split in
a manner orthogonal to the original platform and related network. Software platform
strategies go thus beyond the idea of product lines as a means to manage efficiently
variability in software. They need to consider distinctions between core processes
(supported in the platform) and context processes (around it). These distinctions must
be based on a careful analysis of market power and network strength, and anticipate
technology evolution in the underlying technological standards and architectures.

 The Brave New World of Design Requirements: Four Key Principles 481

To sum up, the good news is that the RE has never been more important and its criti-
cality will continue to grow. The bad news is that RE is a different beast now. Ac-
cordingly, we need to consider RE in new ways that take into consideration the need
for the alignments with business processes, the need to understand core capabilities,
the need to ensure legal protection or, the need to create user buy-in, or the need to
minimize training costs. In consequence, we need to expand RE research into new
directions —including complexity science, industrial design, organization design, and
economics- and engage these fields in a honest intellectual exchange why and how
design requirements matter in the design of complex software and world.

Acknowledgments

We thank Sean Hansen, Nicholas Berente, Dominik Schmitz, and Anna Glukhova for
helping to organize the workshops, and the workshop participants for inspiring dis-
cussions and Sol Greenspan for constructive comments. This research was in part
funded by National Science Foundation’s “Science of Design” initiative, Grant Num-
ber: CCF0613606, by DFG project CONTICI and by BMBF project ZAMOMO.

References

1. Ross, D.T., Schoman Jr., K.E.: Structured analysis for requirements definition. Transac-
tions on Software Engineering SE-3(1), 6–15 (1977)

2. Frederick, J., Brooks, P.: The Mythical Man-Month. Addison Wesley, Reading (1995)
3. Lyytinen, K., et al.: Design Requirements Engineering: A Ten-Year Perspective. In: De-

sign Requirements Workshop, Cleveland, OH, USA, June 3-6 (2007); Revised and Invited
Papers, p. 495. Springer, Heidelberg (2009)

4. Hansen, S., et al.: Principles of Requirements Processes at the Dawn of 21st Century. In-
génierie des Systèmes d’Information 13(1), 9–35 (2008)

5. Schuler, D., Namioka, A.: Participatory design. In: Proc. Lawrence Erlbaum Assoc. (1993)
6. Simon, H.: The Sciences of the Artificial. MIT Press, Cambridge (1996)
7. Schon, D.: The reflective practitioner: How professionals think in action. Basic Books,

New York (1983)
8. Bowen, J.P., Hinchey, M.G.: Ten Commandments of Formal Methods (1995)
9. Swartout, W., Balzer, R.: On the inevitable intertwining of specification and implementa-

tion. CACM 25(7), 438–440 (1982)
10. Mathiassen, L., et al.: A Contigency Model for Requirements Development. Journal of the

Association for Information Systems 8(11), 569–597 (2007)
11. Chapin, N., et al.: Types of software evolution and software maintenance. Journal of Soft-

ware Maintenance and Evolution Research and Practice 13(1), 3–30 (2001)
12. Cockburn, A.: Agile Software Development. Addison-Wesley, Reading (2002)
13. Berger, C., et al.: Customers as co-designers. Manufacturing Engineer 82(4), 42–45 (2003)
14. Lehman, M.M.: Software Evolution. Encyclopedia of Software Engineering 2, 1507–1513

(2002)
15. Nuseibeh, B.: Weaving together requirements and architectures. Computer 34(3), 115–119

(2001)
16. Pohl, K., et al.: Software Product Line Engineering: Foundations, Principles and Tech-

niques. Springer, Heidelberg (2005)

482 M. Jarke et al.

17. Godet, M.: Scenarios and strategic management. Butterworth-Heinemann, Butterworths
(1987)

18. Scacchi, W.: Understanding Open Source Software Evolution. In: Software Evolution and
Feedback, Theory and Practice. Wiley, New York (2006)

19. Carroll, J.M.: Scenarios and design cognition. In: Proceedings of IEEE Joint International
Conference on Requirements Engineering, pp. 3–5 (2002)

20. Glasser, B., Strauss, A.: The development of grounded theory. Alden, Chicago (1967)
21. Zave, P.: Classification of research efforts in requirements engineering. ACM Comp.

Surv. 29(4), 315–321 (1997)
22. van Lamsweerde, A.: Requirements Engineering in the Year 00: A Research Perspective.

In: Proceedings of the 22nd International Conference on Software Engineering, pp. 5–19
(2000)

23. Cheng, B., Atlee, J.: Current and Future Research Directions in Requirements Engineering.
In: Lyytinen, K., Loucopoulos, P., Mylopoulos, J., Robinson, W. (eds.) Design Require-
ments Engineering – A Ten-Year Perspective. LNBIP, vol. 14. Springer, Heidelberg
(2009)

Appendix: Data Collection and Analysis

The new requirements engineering challenges reported in this essay were discussed in
a series of workshops, designed to accomplish three objectives: (1) engage separate
research communities in a dialogue, (2) strengthen design science principles, and (3)
open new vistas for the research on design requirements. The first workshop was held
in the United States in June 2007, while the second workshop was held in October
2008 in Germany (see [3] for more detailed description). The discussions were re-
corded in the workshop Wikis (see e.g. http://weatherhead.case.edu/requirements;
http://www.dagstuhl.de/Materials/index.en.phtml?08412). In addition we undertook a
field study to understand the perspectives of practitioners on successful requirements
practices, anticipated developments, and new challenges in design environments [5].

The ICoP Framework: Identification of
Correspondences between Process Models

Matthias Weidlich1, Remco Dijkman2, and Jan Mendling3

1 Hasso-Plattner-Institute, University of Potsdam, Germany
matthias.weidlich@hpi.uni-potsdam.de

2 Eindhoven University of Technology, The Netherlands
r.m.dijkman@tue.nl

3 Humboldt-Universität zu Berlin, Germany
jan.mendling@wiwi.hu-berlin.de

Abstract. Business process models can be compared, for example, to
determine their consistency. Any comparison between process models
relies on a mapping that identifies which activity in one model corre-
sponds to which activity in another. Tools that generate such mappings
are called matchers. This paper presents the ICoP framework, which
can be used to develop such matchers. It consists of an architecture and
re-usable matcher components. The framework enables the creation of
matchers from the re-usable components and, if desired, newly developed
components. It focuses on matchers that also detect complex correspon-
dences between groups of activities, where existing matchers focus on
1:1 correspondences. We evaluate the framework by applying it to find
matches in process models from practice. We show that the framework
can be used to develop matchers in a flexible and adaptable manner and
that the resulting matchers can identify a significant number of complex
correspondences.

1 Introduction

Organisations compare business process models to identify operational common-
alities and differences. Such comparisons are, for example, necessary when or-
ganisations merge and need to determine and resolve the differences between
their operations, and when an organisation needs to check whether its opera-
tions conform to an company-wide or industry-wide standard. The first step
when comparing business process models is always to determine which activities
in one business process model correspond to which activities in the other. This
step is called the matching step and can be supported by tools that are called
matchers. This paper presents a framework that can be used to develop such
matchers.

A major challenge for matchers is that business process models often do not
use the same level of detail and the same words to describe activities. For exam-
ple, there is a problem with level of detail if one business process model contains
an activity ‘Check Invoice’, whereas the other describes the same activity us-
ing a sequence of ‘Verify Customer Data’, ‘Decide on Correctness of Data’, and

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 483–498, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

484 M. Weidlich, R. Dijkman, and J. Mendling

‘Approve Invoice’. This problem relates to refinement and meronymy. There is
a problem with the words used to describe an activity if there are two labels
‘Check Invoice’ and ‘Verify Bill’ that point to the same activity, although using
very different words. These are problems of synonymy and homonymy. This prob-
lem of heterogeneous representation and description is of striking relevance in
practice [1,2], because organisations usually do not align the way in which they
describe their business processes. It also is the major reason why the comparison
of related processes requires an extensive amount of manual preprocessing.

Therefore, this paper presents automated assistance for this ‘preprocessing’
step, by proposing a re-usable framework for identifying correspondences be-
tween activities in one process and equivalent activities in a similar process,
while taking into account that equivalent activities may be modelled at different
levels of granularity, have different labels, and have different control-flow rela-
tions to other activities. The framework is specifically tailored to also deal with
complex 1:n matches (i.e., each activity can be matched to an arbitrary number
of other activities), where existing matchers focus on elementary 1:1 matches
(i.e., each activity can be mapped to at most one other activity). The framework
consists of an architecture and a set of re-usable matcher components. Matchers
can be developed in the framework by composing them from existing components
and, if desired, newly developed ones. We present matchers that we implemented
within the framework, and we evaluate them using models from practice. Our
contribution is a framework with re-usable components to automatically find
both 1:1 and 1:n matches between activities from similar business processes.

While this contribution is significant to the process model matching field, it
also has implications for schema matching in general [3]. The research area of
schema matching covers a broad set of techniques, including structural analysis
and natural language processing to automatically identify the elements of one
schema (which are activities of a process model in our case) that match to those
of a second schema. Unfortunately, there has been a predominant focus on 1:1
matches in the schema matching community, such that ‘1:n and n:m mappings
[..] are currently hardly treated at all’ [3]. Although there are notable exceptions,
like iMAP [4], these techniques cannot be applied in our context as they have
been tailored for data models and partially also use the extension of a database.
We further discuss this issue when reviewing related work in section 5.

The paper is structured as follows. Section 2 describes the background of the
problem by an example of process models with activity correspondences. Sec-
tion 3 introduces the ICoP framework for developing matchers. It describes both
the framework itself and the techniques that are implemented as components of
the framework. Section 4 presents the evaluation of the framework. Section 5
assesses our contribution in the light of related work. Section 6 concludes.

2 Background

The relevance of finding matches in pairs of corresponding process models has
been described before [1,2]. In this section, we aim to illustrate the problem and

The ICoP Framework 485

M
an

uf
ac

to
rin

g
U

ni
t

Gather
Installation

Requirements

Negotiate
Support

Contracts

Create Laser
Specification

Develop
Laser Unit

Transfer
to Test

Bay

Adjust
Optical

Components

Preliminary
Tests of Optical

Components

Review
Test

Results

Prepare
Laser Unit

for Shipping

Complete
Shipping

Documents

Request Support
from Second

Production Line

Set up Laser
Component
Production

Conduct
Standard
Testing

Laser
Specification

Test Results

Lo
ca

l Q
M

K
ey

-
A

cc
ou

nt

M
ng

r

M
an

uf
ac

to
rin

g
M

an
ag

er

Specification
for Laser

Component

Order
Mechanical

Parts

Develop
Optical Parts

Assemble
Laser

Component

Configure
Laser

Component

Run Default
Test Cases

Shipping
Documents

Log Test
Results

Results for
Test Cases

Set up incorporates identification of installation requirements and the creation of the specification
document. In case support agreements are also negotiated, the key-account manager is involved.

Develop mechanical,
electrical, and optical
parts of the laser unit.

Note that standard testing includes
the configuration of the unit before
the standard test cases are run.

While adjusting the
components, they are
also cleaned.

Usually done
by a
subcontractor.

Final Laser
Unit

Installation

Final Laser
Installation

Fig. 1. Two BPMN process models with one 1:1 and three 1:n correspondences

the underlying combinatorial challenges using a pair of example processes. We
also introduce terminology that we will use throughout the paper.

Figure 1 shows the operations of a company that produces lasers. The upper
model depicts the process in a way that hand-overs between different depart-
ments can easily be traced. The lower process focusses more on the operational
details as being conducted in the manufacturing unit. Roughly speaking, both
processes describe that first the component production is set up, then the laser
units are developed, assembled, tested, prepared for shipment, and finally in-
stalled at the sight of the customer. There are matches of different complexity
between the activities of the two models. In the general case, a match refers to a
correspondence, which is an element of the powerset of activities of a first model
times the powerset of activities of a second model. Thus, a match is denoted by
a tuple (A1, A2) of two sets of activities. A match (A1, A2) is called elementary
match, if |A1| = |A2| = 1. An example are the ‘Final Laser Unit Installation’
(FLUI) and the ‘Final Laser Installation’ (FLI) activities. We say that FLUI
matches or corresponds to FLI. This match pair can be easily identified due to
the syntactic similarity of the labels and the same position at the end of the
processes.

Figure 1 also highlights three complex matches by dotted lines. A match
(A1, A2) is called complex if at least one activity set in the pair contains more
than one element, i.e., |A1| > 1 or |A2| > 1. The first complex match on the
left-hand side shows that ‘Set up Laser Component Production’ of the lower
model describes the same activities as the set of ‘Gather Installation Require-
ments’, ‘Negotiate Support Contract’, and ‘Create Laser Specification’ in the
upper model, but at a different level of granularity. Thus, it is a 1:3 match as
there is one activity corresponding to three activities in the upper model.

486 M. Weidlich, R. Dijkman, and J. Mendling

The goal of automatic process model matching is to find all those matches
that are meaningful. Usually, there are conditions that a collection of meaningful
matches has to obey, for instance, that the matches do not overlap. That is, for
every pair of matches (A1, A2) and (A3, A4) in the mapping it holds A1∩A3 = ∅
and A2∩A4 = ∅. We call this collection of matches a mapping. From a structural
point of view, a mapping is an element of the powerset of matches.

Identification of complex matches imposes serious challenges. For the case of
1:1 matches, it might be feasible to analyse the whole set of potential matches,
which corresponds to the Cartesian product of activities of two process models.
In contrast, the possibility of 1:n matches increases the size of the set of po-
tential matches significantly. For two process models with n and m activities,
respectively, the number of 1:x matches is given by n ∗

(
m
x

)
+ m ∗

(
n
x

)
. Here, the

binomial coefficient
(
n
x

)
defines the number of x-element subsets of an n-element

set. For instance, the two process models depicted in Fig. 1 consist of 13 and 8
activities, respectively, which, in turn, yields 104 potential 1:1 matches. However,
considering the possibility of 1:2 and 1:3 matches in addition increases the set
of potential matches by 13 ∗

(8
2

)
+ 13 ∗

(8
3

)
= 1092 matches for one direction,

and 8 ∗
(13

2

)
+ 8 ∗

(13
3

)
= 2912 matches for the other direction. One might argue

that for the case of process models, the value of x might be bound by some
threshold instead of the number of nodes of the respective model. However, our
experience shows that this threshold must not be set too low (we encountered
up to 1:9 matches), such that the amount of possible combinations still hinders
any attempts to analyse the whole set of potential matches. These observations
call for adequate search heuristics and an architecture that evaluates efficiently.

3 The ICoP Framework

This section introduces the ICoP framework for automatic derivation of matches
between two process models. Section 3.1 discusses the overall architecture. We
elaborate on the four types of components, namely searchers, boosters, evalua-
tors, and selectors, in detail and present exemplary realisations in Sections 3.2
to 3.5.

3.1 Architecture

The overall architecture of the ICoP framework stems from the observation that
the number of (1:n) matches between two business process models is potentially
large and therefore it is not feasible to explore all possible matches exhaustively.
Instead, the ICoP framework proposes a multi-step approach, which is illustrated
in Fig. 2. Given two process models, searchers extract potential matches based
on different similarity metrics and heuristics for the selection of activities. The
result of the search stage is a multiset of matches due to the possibility of multiple
searchers identifying the same potential matches. Each match is assigned a match
score, which results from the scoring function implemented by the searcher to

The ICoP Framework 487

Pair Searchers

Searcher 1

Searcher n

Score
for Set

Process
Graph 2

Process
Graph 1

Multiset
(overlapping)

Scored
Match n

Scored
Match 1

Boosters

Booster 1

Booster n

Set
(overlapping)

Scored
Match n

Scored
Match 1

Set (non-overlapping)

Match nMatch 1

Set
(non-overlapping)

Match n

Match 1
Selector

Evaluator

Fig. 2. The architecture of the ICoP framework

select potential matches. Note that a searcher may use the knowledge about
potential matches that have been identified by other searchers already.

After completion of the search stage, the scored potential matches are con-
veyed to boosters. These components ‘boost’ the matches that are returned by the
searchers using certain heuristics in order to aggregate matches, remove matches,
or adapt the score of a match. As part of the boosting stage the multiset of po-
tential matches is transformed into a set of potential matches by aggregating
matches that have been identified by multiple searchers.

Subsequently, a selector builds up the actual mapping from the set of po-
tential matches. That is, it selects the best matches from the set of potential
matches, in such a way that the constraint that matches are not overlapping is
satisfied. The selection of the best matches can be guided by two kinds of scores.
On the one hand, the individual match scores of the potential matches can be
exploited. On the other hand, an evaluator can be utilised, which assigns a single
mapping score to a mapping. An evaluator may use knowledge about the origi-
nal process models to compute this score. The selection is an iterative process.
In each iteration the selector selects a set of matches, the evaluator computes
the score for this set, upon which the selector either decides to modify the set
of matches and continue the selection, or to complete the selection. Once the
selection procedure completes, the selector produces the final mapping between
elements of the process models.

3.2 Match Searchers

Searchers identify potential 1:1 and 1:n matches between two process models
along with a score that indicates the quality of the match. Such a match is
denoted by (A1, A2, s) with s being the match score based on the similarity of
the matched activities. Therefore, we will also refer to the similarity score of a
match. The similarity of a match can be determined based on various aspects,
including the labels or descriptions of the matched activities and structural or
behavioural relations between those activities.

We now introduce four searchers that have been implemented in the ICoP
framework. Although a similarity score for the activity labels is at the core of all
searchers, they incorporate similarity metrics for different aspects of labelling.

488 M. Weidlich, R. Dijkman, and J. Mendling

(a)

Virtual Document

manufactor
configur
compon
case (2)
result (2)

unit
laser
run
log
default
test (3)

(b)

Fig. 3. (a) groups of activities for the lower model of Fig. 1, (b) virtual document for
‘Sequence E 2’

Similar Label Searcher. The purpose of this searcher is to identify straight-
forward 1:1 matches based on a high syntactic similarity of activity labels. It
computes the Cartesian product of activities of two process models and selects
all pairs of activities for which the string edit similarity of their labels is above a
given threshold. For two strings s1 and s2 the string edit similarity is defined as
sim(s1, s2) = 1− ed(s1,s2)

max(|s1|,|s2|) with ed(s1, s2) as the string edit distance, i.e., the
minimal number of atomic character operations (insert, delete, update) needed
to transform one string into another [5]. As the string edit similarity is a rather
strict criterion (different orders of words and linguistic phenomena such as syn-
onymy are neglected), the potential matches are identified with high confidence,
such that the initial score for these matches is set to one by the searcher. For the
scenario illustrated in Fig. 1 and a threshold of 0.8, for instance, the searcher
identifies the match between the activities describing the installation of the laser.
Clearly, the runtime complexity of this searcher depends solely on the number
of activities of the respective process models.

Distance Doc Searcher. This searcher follows a two step approach in order
to identify potential 1:n matches. First, activities of both process models are
grouped heuristically. Second, the similarity between such a group of activities
in one model and all single activities in the other model is assessed. Assuming
that it is more likely that activities that are closer to each other should be in the
same group, we use the graph distance to group activities. The graph distance
between two activities is the number of edges on the shortest path from one
activity to the other. Given a base activity and a distance, we look for four
types of groups:

– Sequences, which are determined by a base activity and the activities on a
directed path of the given length (distance) from the base activity.

– Splits, which are determined by a base activity and the activities that can
be reached from the base activity and that are within the given distance.
The base activity can or cannot be considered in such groups, depending on
whether the choice leading to the split is or is not modelled explicitly.

– Joins, which are determined by a base activity and the activities from which
the base activity can be reached and that are within the given distance. The
base activity can or cannot be considered in such groups.

The ICoP Framework 489

A

B

C D E F G H

P1

P3

P2

P4
B2

B1

(a)

P1

B1 B2

P2 P3 P4

(b)

Fig. 4. (a) RPST fragments for the lower model of Fig. 1, (b) the corresponding RPST

– Others, which are the groups that consist of all activities that are within the
given distance of a base activity (not considering the direction of edges). In
contrast to sequences, these activities are not necessarily on a path.

For the lower model of Fig. 1, Fig. 3(a) shows examples of a group that is a
sequence with base ‘E’ and distance 2, a split with base A and distance 2, and
an ‘other’ with base F and distance 2. The distance doc searcher identifies all
groups of activities in a process model by taking each of the activities as a basis
and creating each possible type of group for each possible graph distance value.
A maximum distance value can be set as a parameter. The groups are collected
in a set to avoid duplication.

Once all groups of activities have been identified, the notion of ‘virtual docu-
ments’ is used to score their similarity. Virtual documents were introduced for
aligning ontologies [6]. A virtual document of a node consists of the words from
all textual information that is related to that node. Given two virtual documents,
their similarity can be calculated based on their distance in a vector space, in
which the dimensions are the terms that appear in the documents and the val-
ues for the dimensions are computed using term frequency [7]. In our setting,
a virtual document for an activity consists of the terms that are derived from
the activity label and, if this information is available, the labels of the roles that
are authorized to perform the activity, the assigned input and output data, and
a textual description of the activity. For a group of activities, the virtual doc-
ument is derived by joining the documents of the respective nodes. Note that
the creation of virtual documents includes a normalization of terms, filtering of
stop-words, and term stemming [8]. Fig. 3(b) illustrates the terms of the virtual
document for the group ‘Sequence E 2’. These terms originate from the activity
labels, the label of the associated role, and the data output of one activity, while
we also applied stop-word filtering and term stemming. Note that the runtime
complexity of this searcher is heavily influenced by one parameter besides size
and structure of the models. The maximal graph distance value for grouping
activities might increase complexity significantly.

Fragment Doc Searcher. This searcher is similar to the distance doc searcher,
except that it relies on the Refined Process Structure Tree (RPST) [9] for group-
ing activities. The RPST parses a process model into a hierarchy of fragments
with a single entry node and a single exit node. Fig. 4(a) depicts these fragments
for the lower process model in Fig. 1. The fragments are defined in such a way

490 M. Weidlich, R. Dijkman, and J. Mendling

that they do not overlap. Consequently, they form a tree-structure, as illustrated
in Fig. 4(b) (cf., [9]). We leverage the hierarchy of fragments in order to select
the groups of activities that will be considered by the searcher. Starting with the
leaf fragments of the RPST, the tree is traversed upwards up to a height that is
given as a parameter. All traversed fragments are considered by the searcher that
creates two virtual documents for each fragment, one containing all activities of
the fragment and one containing all activities except those that are boundary
nodes of the fragment. As in case of the Distance Doc Searcher, the similarity of
the virtual documents is assessed using a vector space approach. For the example
in Fig. 4 and a height threshold of two, the searcher considers the fragments B1,
B2, P2, P3, and P4. The runtime complexity of this searcher mainly depends,
besides size and structure of the models, on the height up to which the RPST is
traversed upwards for identifying groups of activities.

Wrapup Searcher. This searcher resembles the Similar Label Searcher, as it
also aims at deriving potential 1:1 matches by analysing the string edit similarity
for the labels of a pair of activities. In contrast to the Similar Label Searcher,
however, not the whole Cartesian product of activities of two process models
is considered. In fact, solely activities that have not been addressed in poten-
tial matches retrieved by other searchers are taken into account. Obviously, the
Wrapup Searcher has to be run after all other searchers. In addition, the thresh-
old for the similarity of two activity labels is typically set to a lower value than
for the Similar Label Searcher.

3.3 Match Boosters

After potential 1:1 and 1:n matches have been identified, the multiset of scored
matches is propagated to a set of boosters. We implemented the following four
boosters as part of the ICoP framework.

Cardinality Booster. This booster reduces the multiset of potential matches to
a set by aggregating the similarity scores for potential matches that associate the
same (sets of) activities to each other. Two matches (A1, A2, s1) and (A3, A4, s2)
with A1 = A3 and A2 = A4 are replaced by a match (A1, A2, sa), such that
sa = s1 + (1 − s1) ∗ s2 is the first score increased by the second relative to
its current value. Note that the operation is symmetric and can iteratively be
applied if more than two scores need to be aggregated.

Subsumption Booster. The idea behind this matcher is that a 1:n match
(A1, A2, s1) might subsume another match (A3, A4, s2), such that A1 = A3 and
A4 ⊂ A2. As similarity scoring based on vector spaces tends to favour documents
consisting of a small number of terms, the subsumed matches will have higher
initial similarity scores on average. To countervail this effect, we boost a 1:n
match, if it subsumes other matches. If the match (A1, A2, s1) subsumes the
match (A3, A4, s2), its similarity score is increased relative to the current value,
such that s1 := s1 + ws ∗ (1− s1) ∗ s2 with ws ∈ [0..1] as a weighting factor.

The ICoP Framework 491

Tree Depth Ratio Booster. In contrast to the aforementioned boosters, this
booster considers solely a single match and boosts the score of a match, if its
activities show a certain structural property that is evaluated based on the RPST.
Given a match (A1, A2, s1), we determine the least common ancestors (LCA) of
A1 and A2 in the RPST of the respective process model, denoted by lca(A1) and
lca(A2). Further on, let maxDepth1 and maxDepth2 be the maximal depths of a
fragment in the RPSTs of the two process models. Based thereon, we determine
two ratios by relating the depth of the LCA to the maximal depth of the tree,
i.e., r1 = lca(A1)

maxDepth1
and r2 = lca(A2)

maxDepth2
, with r1, r2 ∈ [0..1]. Boosting the match

takes places, if the average of the two ratios is above a threshold, which indicates
that both LCAs are relatively low in the tree. That, in turn, can be interpreted
as a hint for a good quality of the match. In this case, the similarity score of
the match is increased according to the average of the two ratios, relative to
the current similarity score, i.e., s1 := s1 + (1 − s1) ∗ wr ∗ 0.5 ∗ (r1 + r2) with
wr ∈ [0..1] as a weighting factor.

Distance Ratio Booster. This booster also considers solely single matches.
Here, the structural property that is evaluated relates to the graph distance
as mentioned above. For each of the sets of activities A1 and A2 of a match
(A1, A2, s1), we determine the maximal distance between two activities of this set.
That is, for each activity we compute the distance from or to all other activities
and select the minimal distance. Then, the maximal value of all these minimal
distances is chosen, denoted by maxDistance(A1) and maxDistance(A2), re-
spectively. Furthermore, let maxDistance1 and maxDistance2 be the maxi-
mal distances that can be observed between two activities that are connected
by a path in the two process models. Again, we define two ratios r1 = 1 −
maxDistance(A1)

maxDistance1
and r2 = 1− maxDistance(A2)

maxDistance2
, with r1, r2 ∈ [0..1]. If the average

of both ratios is above a threshold, the similarity score of the match is increased
according, i.e., s1 := s1 + (1 − s1) ∗ wd ∗ 0.5 ∗ (r1 + r2). Here, wd ∈ [0..1] is the
weighting factor.

3.4 Mapping Selectors

Once the match similarities have been adapted by the match boosters, a selector
extracts a mapping from the set of scored potential matches. As mentioned above,
any mapping has to satisfy the constraint of non-overlapping matches. While
selectors follow different notions of quality for a mapping, they have in common
that the derivation of the optimal mapping (w.r.t. to the chosen quality criterion)
is a computationally hard problem. Therefore, our selectors follow a greedy or
1-look-ahead strategy. Experiments in a similar context revealed that results
obtained by a greedy matching strategy are close to those obtained with an
exhaustive strategy [10]. The ICoP framework consists of the following selectors.

Match Similarity Selector. This selector selects a non-overlapping mapping
solely based on the similarity scores assigned to potential matches. The match
with the highest score is selected (in case of multiple matches with an equal

492 M. Weidlich, R. Dijkman, and J. Mendling

score one is chosen arbitrarily) and the set of potential matches is reduced by
the matches that are overlapping with the selected match. The mapping is con-
structed iteratively until the highest score for a potential match is below a given
threshold. Besides this greedy strategy, we also implemented a 1-look-ahead strat-
egy, which optimizes the score for the succeeding iteration in case of multiple
matches with equal scores.

Mapping Similarity Selector. This selector neglects the scores assigned to
potential matches and relies solely on the score for a (partial) mapping as pro-
vided by an evaluator. The matches to build the mapping are iteratively selected
such that in each step the match leading to the maximal score for the mapping is
selected. In case of multiple matches meeting this requirement, one is chosen ar-
bitrarily. The procedure terminates once the mapping score cannot be increased
any further. Again, we implemented this greedy strategy and a 1-look-ahead
variant that selects the match that leads to the maximal mapping score in the
succeeding iteration.

Combined Selector. This selector uses both, match scores and mapping scores
as provided by an evaluator. In a first step, the highest match score is deter-
mined. All potential matches having assigned this score are then selected for
the mapping (in case this is not possible due to overlapping matches, selection
is randomised). In a second step, the mapping is iteratively extended with the
match that maximises a combined score that is built from its individual match
score and the mapping score as computed by the evaluator. Here, both scores
are combined in a weighted way (e.g., the mapping score might have a bigger
impact than the match score). The procedure terminates if the combined score
cannot be increased any further. Again, the second step of the selector has been
implemented as a greedy and as a 1-look-ahead strategy.

3.5 Mapping Evaluators

A mapping selector can use a mapping evaluator to score mappings. Given a
(partial) mapping, the evaluators return a single score for the quality of the
mapping. Of course, different notions of quality can be considered. In the ICoP
framework, we implemented the two following evaluators.

Graph Edit Distance Evaluator. This evaluator scores a given mapping
based on the graph edit distance of the two original process models that is in-
duced by the mapped activities. For a pair of graphs and a mapping between
their nodes, the graph edit distance defines the minimal number of atomic graph
operations (substitute node, insert/delete node, (un)grouping nodes, substitute
edge, insert/delete edge) needed to transform one graph into another [11]. For
these operations, only mapped nodes are considered to be substituted and poten-
tially grouped. For example, to transform the upper process to the lower process
in Fig. 1, considering the mapping that is represented in the figure, operations
that have to be performed include: substituting ‘Final Laser Unit Installation’
by ‘Final Laser Installation’; grouping ‘Order Mechanical Parts’ and ‘Develop

The ICoP Framework 493

Mechanical Parts’; and inserting ‘Assemble Laser Component’. Optionally, oper-
ations can be weighted instead of just counted (e.g.: a node insertion can count
for 0.8 instead of 1). The graph edit distance can be leveraged to define a similar-
ity score according to [12]. This score is computed as 1 minus the fraction of the
given mapping and a hypothetical ideal mapping. The ideal mapping matches
each node and each edge in one process with a node or an edge in the other pro-
cess with a quality of 1.0. The similarity score defines the quality of the mapping
according to the Graph Edit Distance Evaluator.

Path Relation Evaluator. The evaluator scores a given mapping based on
whether the path relations are preserved for the activities of a pair of matches of
the mapping. For a pair of matches M1 = (A1, A2, s1) and M2 = (A3, A4, s2), we
derive the number of preserved path relations pre(M1, M2) = |{(a1, a2, a3, a4) ∈
(A1 × A2 × A3 × A4) | path(a1, a3) ⇔ path(a2, a4)}| with path(x, y) being a
predicate that denotes the existence of a path from activity x to activity y.
Then, the evaluation score for the pair of matches M1 and M2 is defined as
s(M1, M2) = pre(M1,M2)

|A1×A2×A3×A4| . Based thereon, the score for the mapping is com-
puted by iterating over the Cartesian product of matches and computing the
average of their scores.

4 Evaluation

We evaluate the matchers by comparing the matches that they discover to
matches that business process analysts found in a collection of 20 pairs of pro-
cess models. 3 pairs are taken from a merger in a large electronics manufacturing
company. Each of these pairs represents two processes that have to be merged.
17 pairs are taken from municipalities. Each of these pairs represents a standard
process [13] and an implementation of this standard process by a municipality.
Each process model from the collection has, on average, 31.1 nodes, with a min-
imum of 9 nodes and a maximum of 81 nodes for a single process model. The
average number of arcs pointing into or out of a single node is 1.2 and the average
number of words in the label of a single node is 2.8.

For the 20 process model pairs, process analysts determined a total of 520
matched activity pairs. Of these 520 pairs, 221 were part of a complex match.
However, the distribution of these complex matches in our model collection shows
a high variation. For instance, for 3 out of the 20 model pairs (the model pairs
from the merger), more than 90% of the activity pairs relate to complex matches.
In turn, 6 model pairs contain solely elementary 1:1 matches.

We evaluate the performance of the matchers in terms of precision and recall.
The precision is the fraction of found activity matches that that is correct (i.e.,
that is also found by process analysts). The recall is the fraction of correct activity
matches that is found. The F-Score combines precision and recall in one value. We
also compute the Overall score, an alternative metric that has specifically been
developed for measuring the quality of schema matches [14]. Note that all metrics
are based on activity pairs. Thus, complex matches are split up into activity pairs,
e.g., ({a, b}, {x}) yields two activity pairs ({a}, {x}) and ({b}, {x}).

494 M. Weidlich, R. Dijkman, and J. Mendling

Ch = Activity pairs identified by human observer
CCh ⊆ Ch = Activity pairs that are part of a complex match
CEh ⊆ Ch = Activity pairs that are elementary matches (CCh and CEh partition Ch)
Cm, CCm, and CEm are analogously defined as the sets of activity pairs, complex
matches, and elementary matches identified by matcher m.
precision = |Cm ∩ Ch|/|Cm| recall = |Cm ∩ Ch|/|Ch|
recall-elementary = |CEm ∩ CEh|/|CEh| recall-complex = |CCm ∩ CCh|/|CCh|
F -score = 2 · (precision · recall)/(precision + recall)
Overall = recall · (2 − 1/precision)

For our evaluation, we created five matchers within the ICoP framework.

Baseline Matcher. This matcher represents the greedy graph matcher pre-
sented in [12] and consists of a Wrapup Searcher, a Graph Edit Distance
Evaluator, and a Mapping Similarity Selector. This matcher identifies solely
elementary matches and achieves high precision and recall in doing so. There-
fore, we use it as a baseline benchmark for our framework, which focuses on
improving results with respect to complex matches.

Matcher A. This matcher consists of all searchers (cf., Section 3.2) and a Look
Ahead Match Similarity Selector. Thus, it demonstrates the pure perfor-
mance of our searchers.

Matcher B. This matcher extends Matcher A by incorporating all four match
boosters introduced in Section 3.3. Therefore, this matcher shows the impact
of the boosters on the matching process.

Matcher C. This matcher consists of all searchers, but in contrast to matcher
A, it takes the evaluation of (partial) mappings into account when selecting
a mapping. That is, it relies on the Path Relation Evaluator, while a Look
Ahead Combined Selector is used to demonstrate its effect.

Matcher D. This matcher consists of all searchers and evaluates partial map-
pings, but uses another mapping evaluator than matcher C, i.e., a Graph
Edit Distance Evaluator.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Precision Recall Recall
Elementary

Recall
Complex

F-Score Overall

Baseline Matcher A Matcher B Matcher C Matcher D

Fig. 5. Metrics derived for the whole model collection

Note that matchers A
and B, as well as C
and D, are very similar.
The former rely solely
on the scores assigned to
matches in order to build
up the mapping, whereas
the latter use a combined
approach that also con-
siders the scores derived
by evaluating a (partial)
mapping.

Fig. 5 depicts the re-
sults of applying these
five matchers to the set
of 20 model pairs, by

The ICoP Framework 495

showing the precision, recall, F-Score, and Overall as defined above for one spe-
cific configuration of each matcher that maximises the F-score for the whole
model collection. In addition to presenting the recall as a whole, it presents the
recall for the complex 1:n matches and the elementary 1:1 matches separately.
Note that, although the baseline matcher is not meant to detect complex matches,
it does return some, due the fact that some activity pairs that it identifies as 1:1
matches are actually part of a complex match.

The results show that the architecture works and, while it has a more adapt-
able modular setup, produces the same results as were obtained by the more rigid
matcher that we developed in prior work [12]. The results also show that the
architecture can be used to produce matchers that detect complex 1:n matches
and that their recall is better than that of our baseline matcher. Unfortunately,
the complex matchers improve recall at the expense of precision, leading to an
F-Score that is slightly lower than that of the baseline matcher. The comparison
of the results for matchers A and B reveals that the application of match boost-
ers increases the precision, at the cost of decreased recall. Similarly, the Path
Relation Evaluator in matcher C leads to a better precision than the Graph Edit
Distance Evaluator in matcher D, which, again, is traded for recall to a certain
extent.

There is a large difference between the results with respect to the use-case
from which they were derived. As indicated 3 model pairs originated from a
comparison in a merger, while 17 originated from a comparison of standard
processes to their implementations. The results for the merger model pairs are
much worse than the results for the standard process comparison pairs. With
an F-Score of around 0.3 the results for the merger model pairs are so bad that
we conclude that the matchers cannot be used for this use-case. Qualitative
analysis of the results shows that the reason for the bad performance of the
matchers for this use-case mainly stems from the fact that the activity labels of
matched tasks are very different. This leads to the conclusion that, in order for
the current matchers to work, there must be some level of similarity between
activity labels of similar activities; a pre-condition that is met in the standard
process implementation use-case, but not in the merger use-case.

5 Related Work

Our work can be related to two main areas of research, namely process model
similarity and database schema matchers that aim at finding complex matches.

Work on process model similarity can be traced back to formal no-
tions of behavioural equivalence (see [15]) and integration of process models
(see [16,17,18,19,20]). These works assume that correspondences between pro-
cess models have been identified, but do not discuss how these correspondences
can be found. Recent research in this area provides promising solutions to au-
tomatically match activities in pairs of process models, mainly as a vehicle to
automatically calculate a similarity value for the models altogether. Structural
and semantic information is used in [21], behavioural information in [22], and

496 M. Weidlich, R. Dijkman, and J. Mendling

graph-edit distance techniques are used as well [10]. All these approaches only
identify 1:1 matches between activities, just as many approaches from schema
matching do [3,7]. With our ICoP framework we address the need to automati-
cally propose complex matches between process model activities, which has been
identified in [1].

One of the few database schema matching approaches that consider complex
matches is the iMAP system [4]. iMAP inspired our work, as it introduces the
idea of searching the space of potential complex matches using a set of searchers
implementing different search heuristics. Subsequently, the similarity of target
entities and potential matches is analysed in order to select the final mapping. In
contrast to our work, iMAP searchers exploit the value distribution of instance
data and also take domain knowledge (e.g., domain constraints) into account.
Another fundamental difference is the search result, as iMAP searchers derive
(linguistic, numeric, structural) mapping expression. While these expressions are
of crucial importance for relating database entities to each other, they might
be derived automatically in case of process model correspondences. Given a
match between one activity in one process model and multiple activities in a
second model, the model structure can be leveraged to decide whether the former
corresponds to the conjunction, disjunction, or another logical combination of
the latter. Similarly, the approach presented by Xu and Embley [23] relies on
the discovery of characteristics for the instance data, the application of domain
ontologies that describe expected data values, and further external knowledge
(i.e., WordNet relations). Other work that aims at finding complex matches
uses correlation mining techniques. The DCM framework [24] proposes to mine
web query interfaces in order to identify grouping attributes, i.e., attributes
that tend to be co-occurring in web interfaces. This knowledge is exploited to
mine negative correlations between groups of attributes, which, in turn, hint at
potential complex matches. Note that there are other matchers, e.g., Cupid [25],
that retrieve complex matches by just applying a static similarity threshold
for the selection of matches. Given a similarity matrix for all model elements,
various match combinations for a single element might show similarity values
above the threshold, such that complex matches are created. However, such an
approach does not hint at strategies that are used to identify complex matches,
as it assumes this knowledge to be already encoded in the similarity matrix.

We summarize that the few existing approaches for finding complex matches
extensively rely on instance data and external knowledge. The former is not
always available for process models, while the latter raises the question of how
to utilize external knowledge for a dedicated domain. Nonetheless, the use of
instance data and external knowledge are promising directions for future work.

6 Conclusion

This paper presents the ICoP framework, which provides a flexible and adapt-
able architecture for the implementation of matchers, by splitting up matchers
into searcher, booster, evaluator and selector components. Also, it enables the

The ICoP Framework 497

development of matchers that detect complex 1:n matches, where existing match-
ers focus on detecting elementary 1:1 matches. Experimental results show that
the framework can reproduce results of existing matchers by composing them
from separate searcher, booster, evaluator, and selector components. The results
also highlight that we are able to identify a significant number of complex 1:n
matches. While this demonstrates the potential of our framework for improving
matching results, we also explicated that, compared to existing 1:1 matchers,
the increase in recall is often traded for a decrease in precision. Finally, the ex-
periments show that a minimal level of label similarity for similar activities is
required for the matchers to produce acceptable results. This level is met in case
matches are determined between standard processes and their implementations,
but not for the use-case in which matches are determined between processes that
must be merged.

We aim at addressing this phenomenon in future work. In order to counteract
the decrease in precision when considering complex matches, we plan to integrate
the usage of external knowledge into the ICoP framework. The usefulness of ap-
plying such knowledge in general, and WordNet in particular, has been demon-
strated by the aforementioned approaches for matching data schemas [4,23]. It is
worth to mention that external knowledge for the domain of business processes
is also available in terms of several reference models such as the MIT Process
Handbook. Moreover, we aim at extending the framework towards n:m matches.
That requires new heuristics to select groups of activities for analysis, as the
combinatoric problem is increased even further for this kind of matches.

References

1. Dijkman, R.: A Classification of Differences between Similar Business Processes.
In: Proceedings of IEEE EDOC, pp. 37–50 (2007)

2. Dijkman, R.: Diagnosing differences between business process models. In: Dumas,
M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 261–277.
Springer, Heidelberg (2008)

3. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4), 334–350 (2001)

4. Dhamankar, R., Lee, Y., Doana, A., Halevy, A., Domingos, P.: imap: Discovering
complex semantic matches between database schemas. In: SIGMOD, pp. 383–394
(2004)

5. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

6. Qu, Y., Hu, W., Cheng, G.: Constructing virtual documents for ontology matching.
In: Carr, L., et al. (eds.) WWW, pp. 23–31. ACM, New York (2006)

7. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
8. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
9. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: Dumas,

M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 100–115.
Springer, Heidelberg (2008)

10. Dijkman, R.M., Dumas, M., Garćıa-Bañuelos, L.: Graph matching algorithms for
business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)

498 M. Weidlich, R. Dijkman, and J. Mendling

11. Bunke, H.: On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters 18(8), 689–694 (1997)

12. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L., Käärik, R.: Aligning business pro-
cess models. In: Proceedings of IEEE EDOC, pp. 45–53 (2009)

13. Documentair structuurplan (February 20, 2009), http://www.model-dsp.nl/
14. Do, H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In:

Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS 2002. LNCS,
vol. 2593, pp. 221–237. Springer, Heidelberg (2003)

15. van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica 37(4/5), 229–327 (2001)

16. Preuner, G., Conrad, S., Schrefl, M.: View integration of behavior in object-oriented
databases. Data & Knowledge Engineering 36(2), 153–183 (2001)

17. Basten, T., Aalst, W.: Inheritance of Behavior. Journal of Logic and Algebraic
Programming 47(2), 47–145 (2001)

18. Grossmann, G., Ren, Y., Schrefl, M., Stumptner, M.: Behavior based integration of
composite business processes. In: van der Aalst, W.M.P., Benatallah, B., Casati, F.,
Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 186–204. Springer, Heidelberg
(2005)

19. Pankratius, V., Stucky, W.: A formal foundation for workflow composition, work-
flow view definition, and workflow normalization based on petri nets. In: Hartmann,
S., Stumptner, M. (eds.) APCCM. CRPIT, vol. 43. Austral. Comp. Soc. (2005)

20. Mendling, J., Simon, C.: Business Process Design by View Integration. In: Eder,
J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 55–64. Springer,
Heidelberg (2006)

21. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic
business process models. In: APCCM. CRPIT, vol. 67, pp. 71–80. Austral. Comp.
Soc. (2007)

22. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring similarity between
business process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

23. Xu, L., Embley, D.W.: Discovering direct and indirect matches for schema elements.
In: DASFAA, pp. 39–46. IEEE Computer Society, Los Alamitos (2003)

24. He, B., Chang, K.: Automatic complex schema matching across web query inter-
faces: A correlation mining approach. ACM Trans. Database Syst. 31(1), 346–395
(2006)

25. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In: Apers, P., et al. (eds.) VLDB, pp. 49–58 (2001)

http://www.model-dsp.nl/

Process Compliance Measurement Based on
Behavioural Profiles

Matthias Weidlich1, Artem Polyvyanyy1, Nirmit Desai2, and Jan Mendling3

1 Hasso Plattner Institute at the University of Potsdam, Germany
{Matthias.Weidlich,Artem.Polyvyanyy}@hpi.uni-potsdam.de

2 IBM India Research Labs, India
Nirmit123@in.ibm.com

3 Humboldt-Universität zu Berlin, Germany
Jan.Mendling@wiwi.hu-berlin.de

Abstract. Process compliance measurement is getting increasing atten-
tion in companies due to stricter legal requirements and market pressure
for operational excellence. On the other hand, the metrics to quantify
process compliance have only been defined recently. A major criticism
points to the fact that existing measures appear to be unintuitive. In
this paper, we trace back this problem to a more foundational question:
which notion of behavioural equivalence is appropriate for discussing
compliance? We present a quantification approach based on behavioural
profiles, which is a process abstraction mechanism. Behavioural profiles
can be regarded as weaker than existing equivalence notions like trace
equivalence, and they can be calculated efficiently. As a validation, we
present a respective implementation that measures compliance of logs
against a normative process model. This implementation is being evalu-
ated in a case study with an international service provider.

1 Introduction

Compliance management is becoming increasingly important. Companies seek
for a better control of their processes not only to satisfy new legal requirements
but also to leverage cost-saving opportunities through standardization of busi-
ness operations. Once non-compliant cases of operations are detected, the com-
pany can either update its process model to cover the respective case or it can
impose new mechanisms to enforce best practice execution. In this way, com-
pliance management is a central piece in the puzzle of advancing a company
towards a higher degree of process maturity.

In order to make compliance management work in practice, it is required to
gather detailed information on the execution of particular business processes.
In recent years, process mining has emerged as a technique that automatically
reworks process logs data such that managerial decision making can be sup-
ported [1]. Most importantly, certain key measures of compliance management
can easily be quantified. Therefore, some compliance metrics have been proposed
in recent literature, e.g., by Medeiros et al. [2], and Rozinat and van der Aalst [3].

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 499–514, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

500 M. Weidlich et al.

These metrics check a set of logs against a normative process model to calculate
the degree of compliance.

The aforementioned metrics have a few drawbacks. On the one hand, they rely
on state-based techniques that involve replaying the logs. They are based on the
notion of trace equivalence, which is a weak notion in the linear time – branching
time spectrum [4]. As a consequence, these approaches have to cope with the
state explosion problem in order to achieve efficient computation [5]. That, in
turn, leads to the application of heuristics that have to be tuned for a certain
setting. On the other hand, these metrics have been tested by Gerke et al. [6]
for their applicability in a case study with a German air carrier. As it turned
out, these metrics yielded non-compliance values that are significantly smaller
than the degree of non-compliance perceived by the business users. While adap-
tations to the metrics have been proposed, the conceptual basis in terms of trace
equivalence remains unchanged. These results, along with the inherent complex-
ity of state-space based approaches, suggest to choose a different approach for
measuring compliance.

In this paper, we approach the problem from the perspective of relations be-
tween pairs of activities or log events, respectively, instead of trying to replay logs
according to a rather strict notion of equivalence. Thus, our contribution is a foun-
dation of compliance measurement in a notion that is more relaxed than trace
equivalence. We utilize behavioural profiles as a base line to calculate novel com-
pliance metrics. As behavioural profiles can be calculated efficiently, we avoid per-
formance issues of existing state-based metrics. We implemented our approach
and validated it on an industry case study. In this context, our metrics showed a
good approximation of the compliance as perceived by the business users.

Against this background, the paper is structured as follows. Section 2 discusses
the challenge of measuring compliance by means of an example and elaborates on
existing compliance metrics. Subsequently, Section 3 presents preliminaries for
our investigations. Section 4 introduces compliance metrics based on behavioural
profiles. Based thereon, Section 5 presents findings from our validation, for which
we implemented a prototype and tested it on real-world logs. Section 6 discusses
our approach in the light of related work. Finally, Section 7 concludes the paper
and identifies topics for future research.

2 Background

In this section, we discuss the challenges of measuring behavioural compliance.
Fig. 1 shows the example of a BPMN process model that includes 11 activities,
all named with a capital letter. The diamonds define the routing behaviour of the
BPMN model. Once I and A have been executed, there is a choice being made
whether the branch including B is executed or as an exclusive alternative, the
branch leading to the diamond with the plus sign. The latter option leads to a
parallel execution of the sequences C, D, E and F , G, H . Finally, these branches
are synchronized and control is passed through the merge node (with the X in the
diamond) towards the completion of the process after execution of O.

Process Compliance Measurement Based on Behavioural Profiles 501

I A
EC D

HF G

J

B

O

Fig. 1. Example of a BPMN process model

The challenge of compliance measurement is to quantify the degree to which
a certain set of logs matches a normative process model. Logs (or log files)
represent observed execution sequences of activities from the normative process
model. In the desirable case the logs completely comply with the behaviour
defined by the process model. In this case, the logs are valid execution sequences.
In practice, however, observed execution sequences often deviate from predefined
behaviour. This may be the case when the execution order is not explicitly
enforced by the information system that records the logs. In fact, it is also
possible that people deliberately work around the system [1]. This may result in
logs such as the following for the process model in Fig. 1.

◦ Log L1 = I, A, C, D, F, G, E, H, O
◦ Log L2 = I, A, C, B, E, F, H, O
◦ Log L3 = I, A, E, D, C, H, G, O, F
◦ Log L4 = I, C, D, F

From these four logs, only the first one is also a valid execution sequence, i.e., it
can be completely replayed by the process model. Still, the other logs capture a
good share of the behaviour defined in the model. Such cases make it necessary
to measure compliance a posteriori.

Compliance measurement has recently been approached using state-based con-
cepts from the Petri nets theory. The idea of the fitness measure proposed by
Medeiros et al. [2] is to replay the log through the model. Activities that are
enabled in the model when they appear in the log are counted and related to the
overall number of activities. If an activity is not enabled, the respective Petri net
transition is forced to fire, which produces a token on each of its output places.
In this way, one can quantify compliance of the logs against the process model
as a ratio of enabled activities to the total number of activities. For example,
in Fig. 1, log L1 can be completely replayed and has therefore a compliance
value of 1. Instead, log L2 can be replayed solely until B appears in the log.
This activity is then fired without being enabled. The same holds for E and
H . Therefore, three firings are non-compliant from the eight firings altogether,
yielding a fitness value of 0.63. In log L3, activities E, D, H , and G are forced
to fire although they are not enabled. Thus, altogether, only I, A, C, O, and
F are fired correctly from nine tasks. Therefore, the fitness is 0.56. Finally, for

502 M. Weidlich et al.

log L4, the absence of activity A in the log implies a non-compliant firing of C
and D, such that fitness is two out of four, which is 0.5.

As mentioned above, the metrics proposed by Medeiros et al. are based on
computationally hard state space exploration, which has to be addressed using
heuristics for the general case. In addition, other work reports on these metrics as
yielding compliance values which are significantly lower than what is considered
to be correct by domain experts [6]. Therefore, for our notion of log compliance,
we do not try to replay the log through the model. Instead, we identify different
types of constraints that a process model can impose for a pair of activities on the
execution order activities, such as exclusiveness (B and C in Fig. 1) and order (C
and E in Fig. 1). Based thereon, the preservation of these constraints is leveraged
to assess the compliance of a given log. Besides constraints in terms of execution
order, we also take the obligation to execute a single activity in a process model
into account. Evidently, activities that are defined as being mandatory in the
process model have to occur in a log, or can be expected to occur in future if
the process has not yet completed. An example for such a mandatory activity in
the model in Fig. 1 is activity A. A third group of constraints that we evaluate
relates to the causal coupling of executions for a pair of activities. That is, the
occurrence of one activity implies the occurrence of another activity. For instance,
both activities, C and E, are optional for the completion of the example process.
Still, the occurrence of C implies the occurrence of E, i.e., their execution is
causally coupled.

While these behavioural constraints are not addressed in existing compliance
metrics, we show how they can be leveraged in order to assess the compliance of
a log in the remainder of this paper.

3 Preliminaries

This section gives preliminaries for our work in terms of a formal framework.
For our investigations we use a notion of a process model that is based on a
graph containing activity nodes and control nodes, which, in turn, captures the
commonalities of process description languages. Thus, the subset of BPMN used
in our initial example can be traced back to the following definition of a process
model.

Definition 1. (Process Model) A process model is a tuple P = (A, ai, ao, C, F, T)
with
◦ A as a non-empty set of activity nodes, and C as a set of control nodes, A

and C are disjoint,
◦ ai ∈ A as an initial activity, ao ∈ A as a final activity,
◦ F ⊆ ((A \ {ao}) ∪ C)× ((A \ {ai}) ∪ C) as the flow relation, and
◦ T : C 	→ {and, or, xor} as a function that assigns a type to control nodes.

In the remainder of this paper, the identity relation for activities is denoted
by idA, i.e., (a, a) ∈ idA for all a ∈ A. Further on, we do not formalise the
execution semantics of a process model, but assume an interpretation of the

Process Compliance Measurement Based on Behavioural Profiles 503

model following on common process description languages, such as BPMN, EPCs,
or UML activity diagrams. It is worth to mention that we do not assume a
certain definition of semantics for the inclusive OR construct, which raises serious
issues in cyclic structures. We solely assume the existence of such a definition.
Under the assumption of a definition of execution semantics, the set of all valid
execution sequences, as well as the notion of a process log, can be defined as
follows.

Definition 2. (Execution Sequence, Execution Log) The set of execution se-
quences EP for a process model P = (A, ai, ao, C, F, T) is the set of all lists of
the form {ai}·A∗ ·{ao}, that can be created following on the execution semantics
of P . An execution log LP that has been observed for P is a non-empty list of
the form A∗.

Note that we speak of an execution sequence of a process model, solely in case the
sequence is valid regarding the process model, i.e., it can be completely replayed
by the model. In contrast, a log is a non-empty sequence over the activities of a
process model. As a short-hand notation, we use AL ⊆ A to refer to the subset
of activities of a process model that is contained in log L.

In order to capture the constraints imposed by a process model on the order
of activity execution, we rely on the concept of a behavioural profile [7]. Be-
havioural profile defines relations for all pairs of activities of a process model.
These relations, in turn, might be interpreted as the essential behavioural char-
acteristics specified by the models. All behavioural relations are based on the
notion of weak order. That is, two activities are in weak order, if there exists an
execution sequence in which one activity occurs after the other. Here, only the
existence of an execution sequence is required.

Definition 3 (Weak Order (Process Model)). Let P = (A, ai, ao, C, F, T)
be a process model and EP its set of execution sequences. The weak order relation
�P ⊆ (A×A) contains all pairs (x, y), such that there is an execution sequence
σ = n1, . . . , nm in EP with j ∈ {1, . . . , m − 1} and j < k ≤ m for which holds
nj = x and nk = y.

Based thereon, we define the relations of the behavioural profile for pairs of
activities. Each pair can be related by weak order in three different ways.

Definition 4 (Behavioural Profile (Process Model)). Let P = (A, ai, ao,
C, F, T) be a process model. A pair (x, y) ∈ (A × A) is in at most one of the
following relations:
◦ The strict order relation �P , iff x �P y and y ��P x.
◦ The exclusiveness relation +P , iff x ��P y and y ��P x.
◦ The interleaving order relation ||P , iff x �P y and y �P x.

The set BP = {�P , +P , ||P } is the behavioural profile of P .

Note that we say that a pair (x, y) is in reverse strict order, denoted by x �−1
P y,

if and only if y �P x. Interleaving order is also referred to as observation con-
currency. Further on, the relations of the behavioural profile along with reverse

504 M. Weidlich et al.

strict order partition the Cartesian product of activities [7]. We illustrate the
relations of the behavioural profile by means of our example model in Fig. 1.
Here, for instance, it holds I � D. Evidently, strict order does not imply the
actual occurrence, i.e., activity D might not be executed. Further on, B + C
as both activities will never occur in a single valid execution sequence of the
model, and C||G as C might occur before G and vice versa. Note that it holds
B||J due to the control flow cycle. That is, an occurrence of J is followed by an
occurrence of B. Further on, an activity is either said to be exclusive to itself
(e.g., I +I) or in interleaving order to itself (e.g., B||B). The former holds, when
an activity cannot be repeated, whereas the latter implies that the activity is
part of a control flow cycle.

The concept of a behavioural profile relates pairs of activities according to
their order of potential occurrence, whereas further behavioural characteristics
are not considered. Both, the fact that an activity is mandatory for process
completion and causality between activities are not covered. Causality, in turn,
involves two orthogonal aspects, i.e., the order of activity occurrences and their
causal coupling (the occurrence of one activity enforces the occurrence of another
activity). While the former is already addressed by the behavioural profile in
terms of the (reverse) strict order relation, the latter is not captured. In order to
cope with these aspects, the behavioural profile is extended by a fourth relation,
yielding the causal behavioural profile.

Definition 5 (Causal Behavioural Profile (Process Model))
Let P = (A, ai, ao, C, F, T) be a process model.
◦ A pair (x, y) ∈ (A × A) is in the co-occurrence relation P , iff for all

execution sequences σ = n1, . . . , nm in EP it holds ni = x with 1 ≤ i ≤ m
implies that there is an index j ∈ {1, . . . , m}, such that nj = y.
◦ The set B+

P = BP ∪ { P } is the causal behavioural profile of P .

Given a process model P = (A, ai, ao, C, F, T), the set of mandatory activities
AM ⊆ A is given by all activities that are co-occurring with the initial activity,
that is, AM = {a ∈ A | ai P a}. Moreover, causality holds between two
activities a1, a2 ∈ A, if they are in strict order, a1 �P a2 and the occurrence of
the first implies the occurrence of the second, a1 P a2. Again, we refer to the
example in Fig. 1 for illustration purposes. In this model, there are only three
mandatory activity, namely AM = {I, A, O}. Moreover, it holds C E and
E C. Thus, all complete execution sequences of the process model that contain
activity C are required to also contain activity E, and vice versa. In addition,
the model specifies a strict order relation between both activities, C � E, such
that we speak of a causal dependency from C to E.

4 Measuring Compliance Based on Behavioural Profiles

This section introduces compliance metrics based on behavioural profiles. First,
Section 4.1 shows how the concepts introduced in the previous section can be
lifted to logs. Second, we elaborate on a hierarchy between the relations of the

Process Compliance Measurement Based on Behavioural Profiles 505

behavioural profile in Section 4.2. Based thereon, we introduce the compliance
metrics in Section 4.3.

4.1 Causal Behavioural Profiles for Logs

In order to lift the concept of behavioural profiles to logs, first and foremost,
we have to clarify the notion of weak order for logs. Following on the definition
given for process models, two activities are in weak order in a log, if the first
occurs before the second.

Definition 6 (Weak Order (Log)). Let LP = n1, . . . , nm be a log of a process
model P = (A, ai, ao, C, F, T). The weak order relation �L ⊆ (AL×AL) contains
all pairs (x, y), such that there exists two indices j, k ∈ {1, . . . , m − 1} with
j < k ≤ m for which holds nj = x and nk = y.

Based thereon, we define the behavioural profile of a log.

Definition 7 (Behavioural Profile (Log)). Let LP = n1, . . . , nm be a log of
a process model P = (A, ai, ao, C, F, T). A pair (x, y) ∈ (AL ×AL) is in at most
one of the following relations:
◦ The strict order relation �L, iff x �L y and y ��L x.
◦ The interleaving order relation ||L, iff x �L y and y �L x.

The set BL = {�L, ||L} is the behavioural profile of L.

Again, the pair (x, y) is in reverse strict order, denoted by x �−1
L y, if and

only if y �L x. The relations of the behavioural profile along with reverse strict
order partition the Cartesian product of elements of a log. For the exemplary
log L3 = I, A, E, D, C, H, G, O, F , for instance, it holds C � F and D �−1 A.

It is worth to mention that there are fundamental differences when interpret-
ing the behavioural profile for a process model and a log. On the one hand,
in contrast to the profile of a process model, we cannot observe exclusiveness
between two activities in a single log. On the other hand, activities that might
be enabled concurrently in a process model (e.g., C and G in our example) are
related by interleaving order in the behavioural profile of the model (C||G). How-
ever, if both activities are not part of a control-flow cycle, they might be related
by strict order or reverse strict order in the profile of a corresponding log. For
instance, for the log L3 = I, A, E, D, C, H, G, O, F , we observe C � G as the
behavioural relation for activities C and G.

Moreover, we can also lift the definition of a causal behavioural profile to
process logs. Obviously, all elements of a log are co-occurring.

Definition 8 (Causal Behavioural Profile (Log)). Let LP = n1, . . . , nm be
a log of a process model P = (A, ai, ao, C, F, T)
◦ The co-occurrence relation L= (AL × AL) contains all pairs of log

elements.
◦ The set B+

L = BL ∪ { L} is the causal behavioural profile of L.

506 M. Weidlich et al.

4.2 A Hierarchy of Behavioural Relations

As mentioned above, there is a fundamental difference between behavioural pro-
files of process models and of logs. The former defines relations based on the
set of all possible execution sequences, whereas the latter considers only one
observed execution sequence as defined by the log. In order to cope with this
phenomenon, we introduce a hierarchy between the relations of behavioural pro-
files (we neglect the co-occurrence relation at this stage). The idea is to order
the behavioural relations based on their strictness. We consider the exclusive-
ness relation as the strongest relation, as it completely disallows two activities
to occur together in an execution sequence. In contrast, the interleaving order
relation can be seen as the weakest relation. It allows two activities to occur in
any order in an execution sequence. Consequently, the strict order and reverse
strict order relation are intermediate relations, as they disallow solely a certain
order of two activities. We formalize this hierarchy between behavioural relations
as a subsumption predicate. Given two behavioural relations between a pair of
two activities, this predicate is satisfied, if and only if the first relation is equal
or weaker than the second.

Definition 9 (Subsumption Predicate). Given two behavioural relations
R, R′ ∈ {�, �−1, +, ||} of the same or different behavioural profiles, the sub-
sumption predicate S(R, R′) is satisfied, iff (R ∈ {�, �−1} ∧ R′ = +) or
R = R′ or R = ||.

Again, we illustrate this concept using the example model in Fig. 1 and the log
L3 = I, A, E, D, C, H, G, O, F . As mentioned above, for activities C and G, it
holds C||G in the profile of the process model and C � G in the profile of the
log. The former specifies that C and G might occur in any order in an execution
sequence, owing to the interleaving semantics of activities that are enabled con-
currently. The latter, in turn, captures the fact that the occurrences of C and
G in the log are ordered. However, we see that there is a subsumption relation
between both relations, as S(||, �) is satisfied. Evidently, this information has
to be taken into account when assessing compliance of logs. This stems from the
fact that logs do not hint at potential interleaving execution of activities.

4.3 Compliance Metrics

For our measurements of compliance between a process model and a log, we
consider three aspects separately, namely execution order, mandatory activities,
and casual coupling. While the last two aspects address the question what should
be contained in the log (activities that are mandatory in a global sense or that are
implied by the occurrence of other activities in the log), the first aspect clarifies
how these activities should be ordered in the log. While each of these aspects is
assessed by a separate compliance degree, their values may be aggregated into a
single compliance degree.

Execution order compliance is motivated by the fact that the order of exe-
cution of activities as specified by the log should be in line with the ordering

Process Compliance Measurement Based on Behavioural Profiles 507

constraints as imposed by the process model. Evidently, the question whether
there is such a difference is of limited usefulness. Instead, any deviation has
to be quantified to allow for thorough compliance analysis. We achieve such a
quantification based on the notion of behavioural profiles and the hierarchy of
behavioural relations. That is, we analyse the Cartesian product of activities
that are contained in a log and determine, whether the behavioural relation for
a pair of activities in the log is subsumed by the relation specified in the process
model. Based thereon, the degree of behavioural compliance is defined as a ratio
of consistent behavioural relations relative to the number of activity pairings in
the log. Note that for the case of a behavioural relation that holds between an
activity and itself, the subsumption predicate cannot be applied. If an activity
can occur at most once in the process model (it is exclusive to itself), it is not
allowed to occur multiple times in the log (it cannot be in interleaving order
to itself), whereas the opposite case (exclusive in the log, in interleaving order
in the model), as well as equal relations, are considered to be compliant. Based
thereon, we define execution order compliance.

Definition 10 (Execution Order Compliance). Let LP = n1, . . . , nm be a
log of a process model P = (A, ai, ao, C, F, T). Then, the set SR ⊆ (AL × AL)
contains all pairs of activities (x, y), for which the behavioural relation in LP

is subsumed by the relation in P , i.e., ∀ R ∈ (BP ∪ {�−1
P }), R′ ∈ (BL ∪ {�−1

L

}) [(xRy∧xR′y)⇒ (S(R, R′) ∨ (x = y ∧ R = ||P ∧ R′ = +L))]. The degree
of execution order compliance of LP to P is defined as

ECLP =
|SR|

|(AL ×AL)| .

Note that the compliance degree ECLP for a log is between zero, i.e., no execution
order compliance at all, and one indicating full execution order compliance. It is
worth to mention that this degree is independent of the size of the process model,
as solely the activity pairs found in the log are considered in the computation.
Given the log L3 = I, A, E, D, C, H, G, O, F and our initial example (cf., Fig.1),
we see that various order constraints imposed by the model are not satisfied.
For instance, D � E and G � H are specified in the model, whereas we have
D �−1 E and G �−1 H in the profile of the log. That, in turn, leads to an
execution order compliance degree of EC = 67

81 ≈ 0.83 for this particular log.
Due to the fact that execution order compliance relates solely to the ordering

constraints, we embrace further process characteristics for compliance measure-
ments. In particular, we take the mandatory activities that are required for
completion of the process into account. The ratio of mandatory activities of the
process model that are contained in the log, and all mandatory activities would
be a straight-forward measure for this aspect. However, we want to consider also
logs that might not have completed yet, such that missing mandatory activities
might be added later on. In order to cope with this, not all mandatory activi-
ties of the process model are required to occur in the log. Instead, we consider
only those mandatory activities, for which we can deduce from the log that they

508 M. Weidlich et al.

should have been observed already. That is, a mandatory activity is considered,
if it is either in the log, or it is in strict order with one of the activities in the
log.

Definition 11 (Mandatory Execution Compliance). Let LP = n1, . . . , nm

be a log of a process model P = (A, ai, ao, C, F, T) and AM = {a ∈ A | ai P a}
the set of mandatory activities of P . Then, the set EAM ⊆ AM contains all
mandatory activities a1 that are in the log or can be expected to be in the log,
i.e., a1 ∈ AL or ∃ a2 ∈ AL [a1 �= a2 ∧ a1 �P a2]. The degree of mandatory
execution compliance of LP to P is defined as

MCLP =

{
1 if EAM = ∅,
|AL∩AM |
|EAM | else.

Consider the log L4 = I, C, D, F of our initial example. The process model in
Fig. 1 specifies three mandatory activities, i.e., activities I, A, and O. While
activity I is in the log, activity A is not, although we know that it should have
been observed already owing to the strict order relation between A and C, D,
and E, respectively. The mandatory activity O is not required to occur in the log,
as the log does not contain any activity that is in strict order with O. Therefore,
the log contains one out of two expected mandatory activities, such that the
execution compliance degree is MC = 0.5. Note that the mandatory execution
compliance degree might be overestimated. That is, a mandatory activity might
be part of a control flow cycle, while the log does not contain any activity that is
in strict order with the mandatory activity. In this case, the mandatory activity
will not be considered in the mandatory execution compliance degree. This holds,
even though the log might already contain activities that can only be reached
after executing the mandatory activity in the process model.

The mandatory execution compliance relates to activities that should be ob-
served in each log as they are required for completion of the process. Still, there
might be dependencies between the occurrences of activities even though they
are not mandatory. In the model in Fig.1, for instance, neither activity C nor E
are mandatory for completion. However, there is a causal relation between both,
as the occurrence of C implies the occurrence of E. While the correctness of
the order of occurrence for both activities has already been incorporated in the
notion of execution order compliance, the causal coupling of their occurrences
has still to be taken into account. Therefore, for each activity a in the log, we
also check whether activities for which the occurrence is implied by a are also
in the log. Again, we have to consider the eventuality of incomplete logs, such
that this requirement must hold only in case there is sufficient evidence that the
implication is not satisfied. That is, there is another activity in the log for which
the model specifies strict order to the activity under investigation.

Definition 12 (Causal Coupling Compliance). Let LP = n1, . . . , nm be a
log of a process model P = (A, ai, ao, C, F, T). Then, the set ECM ⊆ (P \idA)
contains all pairs of co-occurring activities (a1, a2), such that the first activity is
in the log, while the second activity is in the log or can be expected to be in the

Process Compliance Measurement Based on Behavioural Profiles 509

Table 1. Compliance results for the logs of the initial example (cf., Section 2)

EC MC CC C
Log Execution Mandatory Causal Overall

Order Execution Coupling Compliance

L1 = I, A,C, D, F, G, E, H, O 1.00 1.00 1.00 1.00
L2 = I, A,C, B, E, F, H, O 0.88 1.00 0.80 0.89
L3 = I, A,E, D, C, H,G, O, F 0.83 1.00 1.00 0.94
L4 = I, C, D, F 1.00 0.50 0.69 0.73

log, i.e., a1 ∈ AL and a2 ∈ AL ∨ ∃ a3 ∈ AL [a2 �P a3]. The degree of causal
coupling compliance of LP to P is defined as

CCLP =

{
1 if ECM = ∅,
|(AL×AL)\idAL

∩	P |
|ECM | else.

We illustrate causal coupling compliance using our initial example and the log
L2 = I, A, C, B, E, F, H, O. Although all mandatory activities are contained in
the log, we see that, for instance, C D is not satisfied. This is penalised
as the log contains E and it holds D � E in the process model. In other
words, the occurrence of E in the log provides us with evidence that we should
have observed D, too. Thus, the absence of this activity impacts on the causal
coupling compliance. Note that the same holds true for all co-occurrence relations
involving activity G, such that the degree of causal coupling compliance is CC =
33
41 ≈ 0.80 for this particular log. It is worth to mention that the causal coupling
compliance degree might be overestimated. An example for this phenomenon
would be the log I, A, J for the model in Fig. 1. There is a causal coupling
J B in this model. However, the absence of B would not be penalised as
there is no activity in the log that is in strict order for B and, therefore, would
provide us with sufficient evidence that B should have been observed already.

Given compliance degrees for the three aspects, execution order, mandatory
activities, and casual coupling, we can aggregate the compliance degree of a log.

Definition 13 (Log Compliance). Let LP = n1, . . . , nm be a log of a process
model P = (A, ai, ao, C, F, T). The compliance of LP to P is defined as

CLP =
1
3
(ECLP +MCLP + CCLP).

Applied to our example process model and the four exemplary logs introduced
in Section 2, our compliance metrics yield the results illustrated in Table 1. As
expected, the first log L1, which represents a valid execution sequence of the
process model satisfies all constraints, such that our metric indicates full overall
compliance. In contrast, the execution order constraints are not fully satisfied in
the second log L2 (e.g., the exclusiveness in the model between B and C is broken
in the log). In addition, the causal coupling is not completely respected in the

510 M. Weidlich et al.

Create
issue

Customer
extension

Issue
details

Resolution
plan

Change
management

Monitor
target dates

Risk
management

Proposal to
close (PTC)

Close
issue

Reject
PTC

Fig. 2. BPMN model of the Security Incident Management Process (SIMP)

log either, as discussed above. Further on, for the log L3, the execution order is
not completely in line with the process model. Regarding the log L4, we already
discussed the absence of a mandatory activity that should have been observed,
leading to a mandatory execution compliance degree below one. Note that this
also impacts on the causal coupling compliance. Thus, a mandatory execution
compliance degree smaller than one, will also be reflected in the causal coupling
compliance degree. However, the opposite does not hold true, as illustrated for
the log L2. Although this log shows full mandatory execution compliance, its
causal coupling compliance degree is below one.

5 Case Study: Security Incident Management Process

To demonstrate and evaluate our approach, we apply it to the Security Incident
Management Process (SIMP) — which is an issue management process used in
global service delivery centres. The process and the logs have been minimally
modified to remove confidential information. Fig. 2 shows the BPMN model of
SIMP solicited from domain experts.

SIMP is used in one of IBM’s global service delivery centres that provides in-
frastructure management and technical support to customers. When a customer
reports a problem or requests a change, an issue is created, spawning a new in-
stance of the process. Details about the issue may be updated, a plan to resolve
the issue must be created, and change management related activities may be
performed if required. Then, target dates for issue resolution may be monitored
and relevant risks may be documented. A Customer Extension of target dates
may be processed during any of the above activities (parallel path). Once the
steps for resolution are taken and verified, the resolver must propose to close the
issue. Based on the evidence that the issue is indeed resolved, the issue creator
may close the issue. Otherwise, the proposal must be rejected.

For the SIMP process we analysed 852 logs, each consisting of a set of log
entries. Such a log entry has an activity name, activity description, and the
time-stamp marking the time of execution of the activity. Although the process
is standardized and documented, it is not orchestrated via workflow tools in the
IBM’s global service delivery centre under investigation. Instead, it is manually

Process Compliance Measurement Based on Behavioural Profiles 511

Table 2. Compliance results for the SIMP process derived from 852 logs

EC MC CC C
Execution Mandatory Causal Overall

Order Execution Coupling Compliance

Average Value 0.99 0.96 0.95 0.96
Min Value 0.31 0.60 0.50 0.61
Max Value 1.00 1.00 1.00 1.00
Logs with Value of 1.00 78.64% 84.15% 84.15% 76.17%

carried out. Hence, the employees are free to deviate from the process. As a
result, the logs may or may not specify valid execution sequences of the process
model.

For each log, we analysed its compliance using the metrics proposed in this
paper. Table 2 gives a summary of this analysis in terms of the average com-
pliance value of all logs, the observed minimal and maximal compliance values,
and the share of fully compliant logs. The compliance values were discussed with
the manager of the process. The average values reflect the manager’s perception
that SIMP is running satisfactory and most cases are handled in a compliant
way. As the minimum values show, it was also possible to identify cases of low
compliance.

We are not able to directly compare our results with the approach proposed
in [2]. This is mainly due to the inherent complexity of the state space explo-
ration, which is exponential in the general case. Even a maximally reduced Petri
net of our SIMP process contains a lot of silent steps owing to several activities,
for which execution is optional. That, in turn, leads to a significant increase of
the state space to investigate when trying to replay a log. While compliance
values might still be derived following the most greedy strategy, these results
are of a limited validity as they highly underestimate the degree of compliance.
However, it is worth to mention that even with the most greedy strategy, compu-
tation of the compliance values for all logs took around 15 seconds. In contrast,
computing the compliance metrics proposed in this paper for all logs, in turn,
could be done within milliseconds. Moreover, an isolated analysis of a sample
of 30 logs for which computation of the fitness metric is possible with a 5-step-
ahead strategy revealed that the fitness compliance values are all lower than the
values derived by our metrics. This is in line with the criticism of [6] that the fit-
ness concept appears to be too strict. These differences probably stem from the
different normalisation of any behavioural deviation. The fitness metric relates
tokens additionally created (removed) to the number of all consumed (produced)
tokens when replaying a log. In contrast, our approach considers violations on
the level of relations between activities. Therefore, a single violation according
to our notion, can be reflected multiple times in the fitness metric.

The adaptations of [6] could not be compared either to our values since the
respective implementation is not publicly available. But as they are also defined
on state concepts, we can assume results similar to those obtained above.

512 M. Weidlich et al.

6 Related Work

In this section we discuss the relation of our work to compliance measurement,
behavioural equivalence, and process similarity.

Compliance measures are at the core of process mining. Similar relations, but
not exactly those of behavioural profiles, are used in [8] to characterise a pro-
cess as a pre-processing step for deriving a model. As mentioned before, the
work in [2,3] proposes a fitness measure for process mining, while, based thereon,
adaptations are discussed in [6]. In this paper, we demonstrated that our ap-
proach benefited from the efficient calculation of the behavioural profiles from
free-choice process models as defined in [7]. In fact, behavioural profiles can be
derived in O(n3) time with n as the number of activities of a process model.
Therefore, in contrast to the fitness calculation, our metrics can be computed
within milliseconds. Further on, following on the criticism of [6], our case study
provided us with evidence that our metrics are close to managers’ perception of
compliance. The detection of differences between process models, not their mea-
surement, is also discussed in related work. The approaches presented in [9,10]
provides a systematic framework of diagnosis and resolution of such mismatches.

The concept of behavioural profile in general relates to different notions of
behavioural equivalence such as trace equivalence and bisimulation. These no-
tions build on state concepts and can often not be calculated as efficiently as
behavioural profiles. They also yield only a true or false answer and they are
not directly applicable to execution sequences [11,12]. Behaviour inheritance is
closely related to these notions. Basten et al. [13] define protocol inheritance and
projection inheritance based on labelled transition systems and branching bisim-
ulation. A model inherits the behaviour of a parent model, if it shows the same
external behaviour when all actions that are not part of the parent model are
either blocked (protocol inheritance) or hidden (projection inheritance). Similar
ideas have been presented in [14,15]. The boolean characteristics of these notions
have been criticized as inadequate for many process measurement scenarios [2].

The question of process similarity has been addressed from various angles.
Focussing on behavioural aspects, [16,17] introduce similarity measures based
on an edit distance between workflows. Such an edit distance might be based
on the language of the workflow, the underlying automaton, or based on the
n-gram representation of the language. A similar approach is also taken in [18],
in which the authors measure similarity based on high-level change operations
that are needed to transform one model into another. Close to our behavioural
abstraction of a behavioural profile are causal footprints as introduced in [19].
The authors also show how the footprints can be leveraged to determine the sim-
ilarity between process models. All these similarity notions are either expensive
in terms of calculation, whereas behavioural profiles can be calculated efficiently.

7 Conclusion

In this paper, we have discussed the challenges of providing compliance measure-
ments in an appropriate and efficient way. Our contribution is a novel proposal

Process Compliance Measurement Based on Behavioural Profiles 513

for metrics based on behavioural constraints on pairs of tasks for compliance
measurement. In this way, we avoided performance problems of state-based met-
rics by using behavioural profiles as the underlying equivalence notion. Our log
compliance metric covers three aspects including execution order, mandatory exe-
cution, and causal coupling, which can all be derived from the causal behavioural
profile. We implemented these metrics and tested them in a case study.

In future work, we aim to study the merits of our novel approach in further
industry collaborations. The performance gain of using behavioural profiles is of
serious importance for various use cases. Up until now, compliance measurement
had to be conducted offline in a batch mode due to being very time consuming.
We aim to investigate those scenarios where an instantaneous compliance mea-
surement is valuable. In particular, compliance measurement in the financial
industry might eventually benefit from this innovation, e.g., to cancel running
transactions that exhibit non-compliant behaviour.

References

1. van der Aalst, W., Reijers, H., Weijters, A., van Dongen, B., de Medeiros, A.,
Song, M., Verbeek, H.: Business process mining: An industrial application. Inf.
Syst. 32(5), 713–732 (2007)

2. de Medeiros, A., van der Aalst, W., Weijters, A.: Quantifying process equivalence
based on observed behavior. Data Knowl. Eng. 64(1), 55–74 (2008)

3. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

4. Glabbeek, R.: The Linear Time – Brancing Time Spectrum I. The semantics of con-
crete, sequential processes. In: Handbook of Process Algebra. Elsevier, Amsterdam
(2001)

5. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)

6. Gerke, K., Cardoso, J., Claus, A.: Measuring the compliance of processes with
reference models. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009, Part
I, LNCS, vol. 5870, pp. 76–93. Springer, Heidelberg (2009)

7. Weidlich, M., Mendling, J., Weske, M.: Computation of behavioural profiles of
process models. Technical report, Hasso Plattner Institute (June 2009)

8. Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering process models
from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

9. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process
model differences in the absence of a change log. In: [20], pp. 244–260

10. Dijkman, R.M.: Diagnosing differences between business process models. In: [20],
pp. 261–277

11. Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for concur-
rent systems. Acta Inf. 37(4/5), 229–327 (2001)

12. Hidders, J., Dumas, M., Aalst, W., Hofstede, A., Verelst, J.: When are two work-
flows the same? In: CATS. CRPIT, vol. 41, pp. 3–11 (2005)

13. Basten, T., Aalst, W.: Inheritance of behavior. JLAP 47(2), 47–145 (2001)
14. Ebert, J., Engels, G.: Observable or Invocable Behaviour - You Have to Choose.

Technical Report 94-38, Leiden University (December 1994)

514 M. Weidlich et al.

15. Schrefl, M., Stumptner, M.: Behavior-consistent specialization of object life cycles.
ACM Trans. Softw. Eng. Methodol. 11(1), 92–148 (2002)

16. Wombacher, A.: Evaluation of technical measures for workflow similarity based on
a pilot study. In: Meersman, R., Tari, Z. (eds.) OTM 2006, Part I, LNCS, vol. 4275,
pp. 255–272. Springer, Heidelberg (2006)

17. Wombacher, A., Rozie, M.: Evaluation of workflow similarity measures in service
discovery. In: Service Oriented Electronic Commerce. LNI, vol. 80, pp. 51–71 (2006)

18. Li, C., Reichert, M., Wombacher, A.: On measuring process model similarity based
on high-level change operations. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.)
ER 2008. LNCS, vol. 5231, pp. 248–264. Springer, Heidelberg (2008)

19. Dongen, B., Dijkman, R.M., Mendling, J.: Measuring similarity between busi-
ness process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

20. Dumas, M., Reichert, M., Shan, M.-C. (eds.): BPM 2008. LNCS, vol. 5240. Springer,
Heidelberg (2008)

Business Trend Analysis by Simulation

Helen Schonenberg, Jingxian Jian, Natalia Sidorova, and Wil van der Aalst

Eindhoven University of Technology,
Department of Mathematics & Computer Science,

Den Dolech 2, 5600 MB Eindhoven, The Netherlands
{m.h.schonenberg,n.sidorova,w.m.p.v.d.aalst}@tue.nl

Abstract. Business processes are constantly affected by the environ-
ment in which they execute. The environment can change due to sea-
sonal and financial trends. For organisations it is crucial to understand
their processes and to be able to estimate the effects of these trends on
the processes. Business process simulation is a way to investigate the
performance of a business process and to analyse the process response
to injected trends. However, existing simulation approaches assume a
steady state situation. Until now correlations and dependencies in the
process have not been considered in simulation models, which can lead
to wrong estimations of the performance. In this work we define an adap-
tive simulation model with a history-dependent mechanism that can be
used to propagate changes in the environment through the model. In ad-
dition we focus on the detection of dependencies in the process based on
the executions of the past. We demonstrate the application of adaptive
simulation models by means of an experiment.

1 Introduction

Business processes are often the result of a fit between the needs and capabilities
of the internal stakeholders of the business and the opportunities and threats
the business identifies in its environment [14]. The environment in which these
processes operate is typically unstable and business processes should be robust
enough to cope with a variable and changing environment. The behaviour of the
environment can be subject to seasonal or financial trends, such as customers not
booking expensive holidays due to financial crisis. The most interesting question
from the business point of view is: “How will these trends affect the performance
of my business process?”.

This paper aims at detecting dependencies in the business process that can
be used to accurately analyse the effects of environmental trends on the busi-
ness process performance. Nowadays, most business processes are supported by
information systems that store information about the process execution in logs.
We can use this historical information to estimate the effect of trends on busi-
ness process performance and to help organisations with obtaining insight in
questions such as: “Do we have enough resources available to execute the process
during the holiday season?”.

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 515–529, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

516 H. Schonenberg et al.

Real-life business processes usually contain many execution alternatives due
to choices, parallelism, iterations and (data) dependencies in the process. For
example the choice the environment makes in some part of the process might
be correlated with a choice that the environment made earlier in the process,
i.e. a customer who books an expensive mean of transportation is more likely
to book more expensive hotels. Performance analysis of such systems by using
analytical models is often intractable and simulation is used instead. For accurate
simulation, i.e. simulation that is close to reality, it is of crucial importance to
capture the real behaviour of the process. It is not sufficient to only include the
actual execution alternatives in the simulation model to analyse performance,
also information about decisions, costs, resources and stochastic aspects of the
behaviour need to be included [17].

In most simulation tools for business process management, simulation param-
eters, like activity cost, duration and probability, are variables that are assumed
to be independent, which is often not the case. Incorrect assumptions about
correlations and dependencies can lead to over or underestimation of the out-
come [9, 18, 12]. In this paper we show how dependencies are mined from a log
of a business process and how they are incorporated into the simulation model.
Our approach is to create an adaptive simulation model with parameters that
adapt according to the information obtained by the simulation steps executed
so far (history-dependency), based on the dependencies found in the log.

An adaptive simulation model is created from two components. The first com-
ponent is the control flow model that can be either given (predefined models)
or mined from the log using standard process mining techniques [2]. The second
component consists of information about the simulation parameters. Again, the
parameters can be predefined or the log can be used to determine the param-
eters. In this paper we focus on the latter case, where we consider the simula-
tion parameters as random variables that we are going to estimate on the log.
Both components are integrated into an adaptive simulation model by a history-
dependent mechanism, that, for each instance, estimates the parameters on the
(partial) simulation trace of that instance.

The outline of the paper is as follows. First we give some preliminaries in
Section 2. In Section 3 we describe the adaptive simulation model. In prac-
tice abstractions will be needed to detect dependencies and Section 4 gives an
overview of some elementary abstractions and shows how they can be combined.
Section 5 illustrates the use of adaptive simulation models in the experimental
setting. Related work will be presented in Section 6. Finally, we conclude the
paper in Section 7.

2 Preliminaries

N denotes the set of natural numbers. A bag (or multiset) over some set S
is a mapping B : S → N that maps each element to the number of times it
occurs. The size of a bag |B| is the total number of elements in the bag including
duplicates. [a2, b4, c] represents the bag with B(a) = 2,B(b) = 4,B(c) = 1 and

Business Trend Analysis by Simulation 517

B(d) = 0, where a, b, c, d ∈ S and |[a2, b4, c]| = 7. The bag where all elements
occur exactly once corresponds to a set. A sequence of length n over elements
of set S is a mapping σ ∈ {1, . . . , n} → S. We denote the empty sequence by
ε and non-empty sequences by listing their elements, e.g. σ = 〈e1, e2, . . . , en〉,
where ei = σ(i) for 1 ≤ i ≤ n. The size of a sequence |σ| corresponds to the
length of the sequence. σ ↑ S is the projection of σ onto elements of set S, e.g.
〈a, b, e, a, b, c〉 ↑ {a, c} = 〈a, a, c〉. The set of all sequences over S is denoted as
S∗, the set of all sets over S as 2S and the set of all bags over S as NS . The
Parikh vector parikh(σ) ∈ B(S) denotes the number of occurrences of element s
in a sequence σ, i.e. for s ∈ S : parikh(σ)(s) = |σ ↑ {s}|. The set : S∗ → 2S is
a function that transforms a sequence over S to a set of S, i.e. set(σ) = {a|a ∈
σ}. Functions can be composed by function composition. Let f : A → B and
g : B → C, then g ◦ f : A→ C, such that ∀x ∈ A : (g ◦ f)(x) = g(f(x)).

Current information systems log their activities (process steps) occurring in
the context of the business processes they support. We assume that events in
the log are uniquely associated with the activities in the process.

Definition 1 (Event). Let E be the universe of events, i.e. the set of all possible
event identifiers. Events are executed in the context of an instance of a process.
Let I be the universe of process instance identifiers. We assume there is a func-
tion pid : E → I that maps each event to its process instance. Events can have
additional parameters such as activity name, time stamp, executing resource and
data attributes. We use Vθ to denote the universe of values for a parameter θ.
For each parameter θ we assume there exists a function π that maps an event to
its parameter value, i.e. πθ : E → Vθ, e.g. πcost : E → Z.

Events are linked (by pid) to a particular instance (or case) of a process. A log is
basically a sequence over events from which event traces can be derived: A trace
is an ordered sequence of events belonging to the same process instance where
time is non-decreasing.

Definition 2 (Event trace). An event trace is sequence of events σ ∈ E∗, such
that each event belongs to the same process instance, appears only once in the
sequence and time is non-decreasing, i.e., σ is such that for 1 ≤ i < j ≤ |σ| :
pid(σ(i)) = pid(σ(j)), σ(i) �= σ(j) and πtime(σ(i)) ≤ πtime(σ(j)). The universe
of all event traces over E is denoted as T E .

In absence of time stamps, we assume events are ordered by their occurrence in
the log, i.e. πtime(σ(i)) = i.

Definition 3 (Event log). An event log (in the remainder referred to as log)
is a set over event traces, formally L ⊂ T E , such that each event occurs in at
most one trace. ∀σ1, σ2 ∈ L : set(σ1) ∩ set(σ2) = ∅ or σ1 = σ2.

3 Adaptive Simulation Model

In this section we will elaborate on the definition of an adaptive simulation model
that supports the (re-)estimation (adaptation) of simulation parameters during
execution.

518 H. Schonenberg et al.

Reg

Coach

Flight

Cheap
Hotel

Exp
Hotel

Avg
Hotel

No
Pickup

Pickup

Book
More

Confirm

No
Install
ment

Install
ment

No Gift

Gift

Finish

Fig. 1. The travel agency process

As running example, we consider a simple travel agency process where cus-
tomers can compose a trip by booking a flight or coach transport, and a hotel
(luxury, middle class or budget), for one or more days. The trip can be com-
posed of multiple transport-hotel combinations. For each hotel stay customers
can make use of a pickup service that transports them to the city centre or the
airport. Clients may choose to pay their holidays by installment. In addition cus-
tomers who spend much money are rewarded with a gift. A good estimation for
the number of pickups is necessary for arranging a suitable contract with one of
the local taxi companies. The agency would also like to estimate the number gifts
to be purchased. Early market research indicates a trend towards a decreasing
budget for clients. The agency has disposal of a log containing information about
customers of the past years. How will the expected trend affect the number of
pickups and gifts for the next year?

Figure 1 depicts the control flow for the travel agency. It contains all typical
routing constructs such as sequentiality, parallelism, iteration, synchronisation,
deterministic and non-deterministic choices of the environment. For meaningful
analysis parameters (e.g. activity durations and probabilities) should be added
to the control flow that reflect the real execution of the process. Moreover, for
accurate simulation, we need to incorporate existing execution dependencies into
the model. We use the log of the process that contains past executions to detect
dependencies and to estimate the simulation parameters.

Static models cannot capture correlations between the parameters, such as
a decreasing probability to choose going on with booking after every iteration,
or a correlation between the choice of transportation and the hotel class. This
results in inaccuracies of the analysis, e.g. the estimation of the number of gifts
that should be ordered.

In adaptive simulation models, we incorporate dependencies into the model.
This allows simulation parameters to be updated during the simulation execu-
tion by considering the predictors that influence the parameter value and some
equation describing how the simulation parameter changes in terms of the val-
ues of the predictors, e.g. the probability for booking an expensive hotel for
customers who booked a flight is 60%, and for those who chose a coach it is
10%. Historical execution data, captured in a log, is used to find an equation

Business Trend Analysis by Simulation 519

that predicts the parameter value based on the value the predictor chosen for
this parameter. During the simulation, predictor values are derived from the
trace of the running simulation instance, e.g. flight is the transportation type
booked for some instance. The equations to determine the values of simulation
parameters and the equations for deriving predictor values from the (prefix)
of the simulation trace are included in the model. Note that each parameter
can depend on multiple predictors and different parameters can have different
predictors.

Note that predictors are not simply case variables that are defined by the
designer of the process, nor are correlations the decision rules for the process.
For example, the duration of an activity is the time that is actually needed for
its execution rather than a predefined value. Different resources might need dif-
ferent time periods to execute the activity, which is also not something typically
predefined.

In the remainder of this section we represent steps of the business process
as activities in the simulation model, e.g. a (coloured) Petri net or any other
formalism with clear execution semantics that allow for simulation. Activities
can be associated to parameters such as cost, duration and execution probability.

Definition 4 (Model Parameters). Let A be the universe of activities. The
set of activities in model M is denoted as AM , where AM ⊆ A. Activities can
have additional parameters and we use ΘM to denote the parameters of model
M . The domain of parameter values of M is denoted as VΘ. The values for the
parameters of the model are stochastical values that we estimate based on a log
(L) of some process associated to M .

One can annotate the model with fixed values for each simulation parameter,
following e.g. the approach proposed in [17].

Definition 5 (Annotated Static Model). Let M be a model describing the
relation between the set of activities A ⊆ A. The static annotated version of M
is described by Ms = (M, vals) where vals : ΘM → VΘ is a function that maps
parameters to parameter values.

Parameters are mapped to the average value of this parameter in the log. The
values of the static model are fixed, regardless the current simulation instance.

In adaptive models we assume that the values of simulation parameters depend
on the state of the instance and can change during the development of the
instance. A regression equation describes the relation between a response variable
(here simulation parameter) and explanatory (or predictor) variables in a data
set.

Definition 6 (Regression Equation for Parameters). The regression equa-
tion for a parameter θ is a function fθ : X→ Vθ, describing the response of pa-
rameter θ to some experimental setting specified by a vector of predictor variables
x ∈ X. We use R to denote the universe of regression equations.

The selection of fθ is a choice that should be carefully matched with the data
set and assumptions on the data. A general additive multiple regression model

520 H. Schonenberg et al.

which relates a dependent variable y to k predictor variables x1, x2, . . . , xk, is
given by the model equation y = a + β1x1 + β2x2 + . . . + βkxk + e, where a
is the intercept, e is random deviation and each βi is a population regression
coefficient for predictor xi [7]. In this model the right hand side of the equation
is the population regression function (fθ) that determines the outcome given a
vector of predictor variables x. Qualitative predictors variables (e.g. the name
of an activity) can be encoded [7]. To predict the probability we use the gen-
eralized logit model for multinomial response [3]. Statistical packages such as
R [13], a software environment for statistical computing and graphics, contain
functionality for encoding data and fitting models on data.

Definition 7 (Predictor Value Function). The predictor value function ϑ
is a function that maps a trace to a vector of predictor values, ϑ : T E → X. We
use V to denote the universe of predictor value functions.

The predictor value function extracts the value of the predictor from a partial
trace. For example for pickup probability in Figure 1 the predictor value function
could be defined as ϑ(η) = [lastHotel(η), lastTravel(η)], where η is the partial
trace of the instance, lastHotel determines the type of the last hotel that was
booked and lastTravel determines the type of the last travel that was taken.

Definition 8 (Annotated Adaptive Model). Let M be a model describ-
ing the control flow based on the selection of activities A ⊆ A. The adap-
tive annotated version of M is described by Ma = (M, vala, regr , pred) where
vala : Θ×T E → VΘ is a function that maps parameters to parameter values, de-
pending on a (partial) simulation trace, regr : Θ →R is a function that maps pa-
rameters to corresponding regression functions and pred : Θ → V maps a param-
eter to a predictor value function. Assume regr(θ) = fθ and pred(θ) = ϑ. Then
the parameter value for θ, given trace η ∈ T E , is defined as vala(θ, η) = fθ◦ϑ(η).

Values for parameters of the adaptive model can be obtained by applying the
associated regression equation on the current predictor values.

Example 1 (Adaptive Parameter Value). Consider again the travel agency pro-
cess depicted in Figure 1. From the log we derive a regression equation for the
pickup probability parameter. Suppose the regression equation to estimate the
pickup probability is based on the type of the last booked hotel and the type
of the last travel. The predictor value function extracts this property from the
instance history. The parameter is estimated by applying the regression function
on the current predictor values obtained from the current simulation trace, i.e.
vala(prob Pickup, η) = fprob Pickup ◦ ϑ(η), where the predictor value function
is defined by ϑ(η) = [lastHotel(η), lastTravel(η)] and extracts the type of the
last booked hotel and the type of the last travel from the trace. The regression
function fprob Pickup predicts the value of the pickup probability, given the last
type of hotel and travel.

Business Trend Analysis by Simulation 521

4 Mining Dependencies

For model M with parameters ΘM and log L we mine an adaptive simulation
modelMa = (M, vala, regr , pred), where we set the adaptive parameter value for
each parameter according to the current simulation trace η using the predictor
value function and the regression function. Using regression analysis we can find
dependencies between parameter and predictor values.

What can be suitable predictor candidates in terms of event traces of busi-
ness processes? An obvious predictor candidate seems to be the partial trace of
the instance. For real-life processes however, the log contains a wide variety of
traces, but typically not many of them follow the same execution scheme and
not all possible traces are contained in the log. As we showed in [18], trace ab-
stractions can be applied to tackle this issue. Such abstractions consider some
characteristics of the trace rather than the exact trace; the occurrence of a single
activity, or a choice that was made at some point in the process are examples
of abstractions that can be used as predictor. The goal is to find those trace
characteristics (captured by a trace abstraction) that are good predictors for a
simulation parameter. We do this by applying existing statistical methods where
we define regression models for different predictor combination and determine
which regression model fits the data set best. During simulation, parameters
in the adaptive simulation model are determined by the associated regression
model, based on the abstraction values for the current simulation trace.

Abstractions we consider are functions that map one representation of a par-
tial trace to another, leaving out irrelevant details. Regression analysis is used to
detect which abstractions are good predictors for a parameter. The input values
for the regression equation are defined by the predictor value function ϑ (cf.
Definition 7).

Definition 9 (Predictor values for Abstractions). Let the predictors for
a regression equation be given by a vector of k abstractions [α1, . . . , αk]. Then
for all traces η ∈ T E the input for the regression equation is defined as ϑ(η) =
[α1(η), . . . , αk(η)], where αi(η) denotes the value of the ith abstraction applied
to η.

4.1 Abstractions

This section presents an overview of elementary abstractions and compositions
thereof.

Property projection (propertyα
p : T E → V∗) converts a sequence of events to

a sequence of their properties, e.g. a sequence of data attributes or time stamps,
i.e. propertyα

p (〈a1, . . . , an〉) = 〈πp(a1), . . . , πp(an)〉.

Event projection is an abstraction that can be used to extract specified el-
ements from a trace. Event projection is a function (eventα

A : V∗ → V∗) that
retains elements of σ ∈ V∗ that are in A, i.e. eventα

A(σ) = σ ↑ A.

522 H. Schonenberg et al.

Window abstraction defines the region of interest within a trace as sub-
trace. Window abstraction takes some (or all) consecutive elements of the trace
(windowα : V∗ → V∗). The window can be specified by an interval between
two points (denoted as windowα

P1,P2
), or by one point, a direction and a width

(denoted as windowα
P,d,w). A point P can be a concrete event (e.g. the last oc-

currence of an event with a certain event name) or it can be characterised by
some condition on the event (e.g. the ith event from the trace). The direction d
of the window is specified prior to (<) or after (>) the point. The width w of
the window is specified by a time interval or some condition.

Bag, set and cardinality abstractions Abstraction from the event order-
ing can be done by the bag abstraction. Set abstraction abstracts both from event
ordering and their frequencies. Cardinality abstraction can be used to focus on
the size of sequences, sets and bags.

Bag abstraction (bagα : V∗ → NV) is a function that transforms a sequence
σ ∈ V∗ into a bag, i.e. bagα(σ) = par(σ).

Set abstraction (setα : V∗ → 2V) is a function that transforms a sequence
σ ∈ V∗ into a set, i.e. setα(σ) = set(σ).

Cardinality abstraction (cardinalityα : C → N) is a function that gives the
size of a collection C, where C is V∗, 2V , or NV , i.e. ∀c ∈ C : cardinalityα(c) = |c|.

Last occurrence abstraction considers the last occurring element from a
specified set. This abstraction allows us to look, for example, at the most recent
value of a data element associated with an activity that can re-occur in an
iterative process, such as the last test outcome in Figure 2.

Last occurrence abstraction (lastα
A : V∗ → A ∪ {⊥}) is a function that gives

the last occurring element of set A in trace σ over E, if any, otherwise undefined
⊥.

lastα
A(σ) =

{
t , if ∃t ∈ (A ∩ E), γ ∈ E∗, δ ∈ (E \A)∗, such that σ = (γ; t; δ)
⊥ , if σ ∈ (E \A)∗.

Existence abstraction detects the occurrence of a specified event. For exam-
ple, for an insurance company the probability that the extensive procedure for
handling claims will be chosen is higher if the person has already committed
fraud. Existence abstraction is a function (existanceα

e : V∗ → {true, false}) that
indicates whether element e is part of a sequence, i.e. existanceα

e (σ) = e ∈ σ.

Duration abstraction can be used to obtain the duration between two events,
e.g. the shorter the test procedure is, the more likely its result will be negative
and another repair try will be needed. Duration abstraction (durationα

e1,e2
:

V∗ → N) is a function that indicates the time duration between two events e1
and e2, i.e. durationα

e1,e2
(σ) = πtime(eventα

e2
)− πtime(eventα

e1
).

In practical applications combinations of abstractions, constructed as function
compositions, are often used.

Business Trend Analysis by Simulation 523

Response variable : parameter θ
Predictors variables: α1...αn

α1(σ) ... θαn(σ)

Regression data

Apply
abstractions
on log traces

Regression
Analyses

Log

Result: estimations for pickup
pickup no pickup
0.77018414 0.22981586

fθ (Flight, ExpHotel)

Fig. 2. Mining predictors (abstractions)

Example 2 (Combination of abstractions). The number of iterations alreasy taken
when executing a process from Figure 1 can be computed from a partial trace
as the number of occurrences of the BookMore transition, i.e. cardinalityα ◦
eventα

{BookMore}(σ).

4.2 Mining Predictors

Section 4.1 identifies a collection of possible abstraction candidates that can be
used to predict a parameter. For the selection of suitable predictors for a param-
eter we can define regression models with different combinations of predictors
and find the model that best fits the data set that is derived from the execution
log. In fact the execution log is converted into a list of parameter observations
where each observation contains the value of the parameter and the values of
all predictors under consideration. The predictor values for a parameter can be
obtained by applying each predictor on the prefix of the parameter. The data
set consists of the observations of all log traces for a parameter and a collection
of abstractions.

Suppose, we want to observe the probability of selecting option c1, c2 or c3 (in a
free choice construct) where we consider the set abstraction setα and cardinality
abstraction cardinalityα, which is used to count the number of times activity a
occurs. Consider the observations for log trace σ = 〈a, b, e, c1, b, f, c3, a, b, f, c1〉.
In this trace there are three observations, one for each occurrence of c1, c2 or c3.
For the first occurrence of c1 the observation is [{a, b, e}, 1, c1], determined by the
setα and cardinalityα on prefix 〈a, b, e〉, similarly we can observe [{a, b, e, f}, 1, c3]
and [{a, b, e, f}, 2, c1].

The data set, which can be obtained by traversing the log once, is the input
for regression analysis. There are different methods to systematically determine
the model with the best combination of predictors for a data set. One can step-
wise eliminate or add predictors to the model based on statistical relevance with
respect to a reference model, or define all models, based on the power set of pre-
dictors, and find the best fitting model. In the adaptive simulation model the best
fitting regression model is used for predicting the parameter value. Recall that the
predictors of a regression model are in fact abstractions. Applying these abstrac-
tions on the simulation trace yields the predictor values for the regression model.

524 H. Schonenberg et al.

5 Experiments

In this section we illustrate and validate our approach by using adaptive sim-
ulation models to analyse the effect of trends on a business process. Since it is
infeasible to expose a real-life process to trends for the purpose of validating our
approach, we conduct our experiments on a reference model which is based on
the control flow given in Figure 1. From the log of the reference model (Mr)
we derive a static simulation model (Ms) and an adaptive simulation model
(Ma). The three models are then exposed to the same trend and the results are
compared.

5.1 Experiment Set-Up

For the experiments we define a reference model Mr that emulates a real pro-
cess and produces logs. From these logs we build a static Ms and an adaptive
simulation model Ma. To evaluate the suitability of the simulation models for
evaluating business trends we expose the business process (the reference model)
and the simulation models to some trends, i.e. a change in the environment of the
processes such as a customer bias towards cheaper transportation. We compare
the capabilities of the adaptive and static model by comparing their perfor-
mance with respect to the performance of the reference model. The performance
is measured in occurrence ratio of Pickup and Gift transitions.

Reference Model. The role of the reference model is to produce logs by emulating
a real life process and its environment. A complex stochastic scheme has been
added to the control flow depicted in Figure 1 in order to equip the process with
non-trivial dependencies, so that it became impossible to analytically compute
dependencies between different choices and parameter values. In real life these
dependencies are not known; in the reference model we in fact use them to
emulated human decisions. Furthermore the reference model has been equipped
with logging functions that log every activity that is executed during simulation.

We run 30 replications of 10.000 instances on Mr, each replication creating a
log. We randomly select one of these logs to detect dependencies and to create
an adaptive model Ma and a static model Ms. To create these models one can
annotate the control flow of the travel agency process based on the log of Mr.
(Note that the control flow can also be mined from this log by standard process
mining techniques.) It is important to note that these models are created based
on the log without using any knowledge of the stochastic scheme of Mr.

Static Model. We mine the log of Mr to find the values for the parameters of
the static model Ms, using techniques from [17]. From the log of Mr we can
determine such parameters as the probability to book an expensive hotel as the
percentage of cases in which expensive hotels were booked and annotate the
control flow to obtain the static model, cf. Def. 5. Recall that in the static model
the values are fixed and that the partial simulation trace (or the history) is not
used to estimate their values.

Business Trend Analysis by Simulation 525

Adaptive Model. For the adaptive model we use the log of Mr to determine the
regression model that best fits the log, cf. Section 4. We annotate the control
flow model with the obtained model, and the predictors (abstractions), cf. Def.
8, so that the parameter values can now be determined during the simulation,
depending on the partial simulation trace.

Mining Simulation Model Parameters. The probabilities for the static model for
firing the Pickup and the Gift transitions can be mined using the Performance
Analysis with Petri net plugin of ProM [1]. For the adaptive model parameters
we determine suitable predictors for those transitions with regression analysis
using the multinom function from the nnet library in R [13]. The R data is
created using our ProM R Data plugin [1]. This function fits multinomial logit
models with nominal response categories.

Injecting the Trend. To evaluate the suitability of the simulation models for
evaluating business trends we expose the reference model to a lower customer
budget, affecting the way of travelling, hotel type and number of composed
travel-hotel combinations. On the reference model the trend results in decreasing
the share of flights from 50% to 10%. The shares of expensive, medium and cheap
hotels change from 33% to 10%, 25% and 65%, respectively. Finally, the number
of booked combinations drops. The trend of booking less flights is injected in
the simulation models in a consistent manner; the bounds for the guards that
control the transportation choice are set to the mentioned probabilities. Note
that, except for the injected trend, the simulation models do not change.

Running the simulations. All models have been implemented as coloured Petri
net in CPN tools [11], which is a well established tool for modelling and anal-
ysis of Coloured Petri Nets. We refer the interested reader for implementation
details of the models to [12]. For each model we run 30 replications of 10.000
instances. For each replication we determine the occurrence ratio of Pickup and
Gift transitions. The result of all the replications are depicted as confidence
intervals.

5.2 Results

The procedure to mine correlations starts with the definition of the response
variable and the predictors for the estimation for the response variable.

Estimating the Pickup Probability. To convert the log into regression data, the
response variable and the predictor variables have to be chosen. For the proba-
bility of Pickup we consider the following abstractions: (1) which hotel was the
last one that was booked, (2) last type of travel and (3) the number of iterations.
We convert the log for these abstractions to a data format that can be used for
regression analysis. The data is imported into R where we fit the data using
multinom function from the nnet library. For each combination of abstractions
we defined a logit model. From the models with a single predictor, the model

526 H. Schonenberg et al.

Fig. 3. Simulating the effect of clients becoming more poor. Mr is the reference model,
Ma is the history-dependent model and Ms a history-independent model. After insert-
ing the new trend referred to as M ′

r, M
′
a and M ′

s. (a) Depicts the effect on the number
of Pickup using the last occurrence of the hotel type as predictor and (b) depicts the
effect on percentage clients that get a Gift, using the number of iterations as predictor.

that considered the last hotel fitted the data best. Moreover, adding more pre-
dictors did not significantly improve the results. Therefore, only the last hotel
was used for estimating the response probabilities for all predictor combinations,
e.g. the probability for Pickup given that the last hotel was an expensive hotel
is 53%, for a budget hotel this probability is 44%.

The conversion of the log took 1 minute and 24 seconds and the execution
of all R commands (including the fitting and testing of other models) took 39
seconds.

Estimating the Gift Probability. Similarly we determine the predictors for esti-
mating the probability for gifts. Different abstractions and combinations thereof
have been considered, including (1) the set abstraction on the hotels, (2) the
sequence of the last two hotels, (3) the set abstraction on the travel types and
(4) the sequence of the last two travel types and (5) the number of booked com-
binations. The model using the last abstraction as predictor was the one with
the best fit.

Simulated Process Performance. Figure 3 depicts the results of simulation of
the different models before and after the injected trend of customers with a
lower budget. The results are depicted as 95% confidence intervals, that depict
the occurrence ratios of the Pickup and the Gift transitions. On the left side of
the figures we depict the value for the log produced by Mr that was (randomly)
selected to derive the adaptive Ma and static model Ms. The confidence intervals
shown for Mr, Ma and Ms are based on simulation without introducing the trend;
here both Ma and Ms approximate the behaviour of Mr well. After the trend is
introduced, only Ma is able to follow the direction of the trend whereas Ms is
unable to do so, because essential correlations are not taken into account as all
choices are considered mutually independent.

Business Trend Analysis by Simulation 527

Notice that Ma slightly underestimates the number of pickups. This is caused
by the fact that the log randomly selected from 30 replications contains slightly
less pickups than obtained on all the 30 logs on average. Also note that Ma

overestimates the number of gifts for the new situation due to the fact that we
try to capture a complex data dependency by a very simple abstraction, which
does not exactly captures the dependency but approximate it.

It is clear the the adaptive model gives a much better approximation than
the static model. Our experiments show that the history-dependent mechanism
adapting simulation parameters according to the developments in the running
instance is able to propagate environmental changes in the simulation. For logs
containing data, abstractions on data can be used to obtain even more precise
results.

6 Related Work

Business Process Simulation (BPS) has been indicated by [10] as an essential
technique for Business Process Re-engineering (BPR) where it is not only im-
portant to understand the static behaviour of the process, but also to accurately
predict the outcome of proposed and/or expected changes for the process to
judge the effect on the organisation performance. This does not only apply to
the area BPR, which traditionally focuses on complete redesign of existing pro-
cesses, but it is also interesting in a less radical setting: “How will a trend affect
the performance of my existing business process?”. Simulation offers support for
randomness, uncertainty and interdependencies, making it a valuable technique
for business process management.

The biggest challenge in the development of a simulation model is obtaining
an accurate model that is close to reality. To tackle the problem of creating
realistic simulation models, [17] present a method to generate simulation models
based on actual information from logs. The authors create simulation models in
CPN tools [11] capturing the control flow perspective, the resource perspective
and the data perspective and the current state. In their approach they assume
all variables to be independent. This assumption is, however, unrealistic for real-
life business processes, as [5] explains, dependencies and correlations present in
business processes.

History-dependent Petri nets [18] (HDSPNs) are an extension of classical Petri
nets [6,16] that use a history-dependent mechanism to model history-dependent
choices. This approach can easily be extended to model cost and dependencies
for activities.

Detection of correlations from process logs and using them for business process
simulation has not been studied extensively yet. Usually assumptions are made
about the dependency and/or distributions of the variables [4, 17, 15]. Correla-
tions between quantitative variables in business processes can be used to obtain
more accurate settings for cost and durations of variables. These correlations
can be derived from data with simple statistical techniques. When qualitative
variables (e.g. resource and activity names) are involved, more advanced tech-
niques such as regression analysis are required. Closest related work is the one

528 H. Schonenberg et al.

on predictions in business processes [8]. There non-parametric regression anal-
ysis is used to predict the finishing time of an instance. Intermediate process
dependencies are not considered. The complexity of constructing the regression
model is a serious limitation of that approach.

7 Conclusion

In this paper we focused on analysing the effects of trends on existing business
processes. The analysis is performed on simulation models based on information
obtained by actual executions (a log) of the process. The main idea is that
dependencies need to be included into the simulation model to accurately predict
the global effect of new trends. For this purpose we introduce adaptive simulation
models that have simulation parameters (re-)estimated during execution. We
discussed how dependencies can be derived from a log of a business process using
regression analysis. We use abstractions on traces to balance between the amount
of data available in the log and the amount of information necessary to make
good predictions. The conversion of log data to R data, for selected abstractions
candidates is implemented as the R Data plugin in the ProM framework [1]. This
data can used directly in R to determine the best fitting regression model.

The obtained dependencies are included into the simulation model by means
of a history-dependent mechanism that uses the partial simulation trace to de-
termine further simulation parameters. We have demonstrated the application
of dependencies in adaptive simulation models on a reference model from whose
log we created an adaptive and a static simulation model. Only the adaptive
simulation model was able to propagate the trend into the correction direction.

An important direction for future work goes into the direction of the genera-
tion of R data given some abstractions. Currently abstractions can have many
values (levels) and the generated data can be sparse, making it unsuitable for
regression. As future work we plan to look into data mining techniques to cluster
abstraction levels. Furthermore, we will focus on doing experiments that con-
sider the probability, cost and duration of parameters and predictors and where
more complex abstraction compositions are considered.

References

1. ProM Nightly Builds (2006), http://prom.win.tue.nl/tools/prom/nightly/
2. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,

Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering 47(2), 237–267 (2003)

3. Agresti, A.: Categorical Data Analysis, 2nd edn. Wiley Series in Probability and
Statistics. Wiley-Interscience, Hoboken (2002)

4. Baccelli, F., Konstantopoulos, P.: Estimates of Cycle Times in Stochastic Petri
Nets. Rapport de recherche 1572, INRIA, Rocquencourt (1992)

5. Barros, A.P., Decker, G., Grosskopf, A.: Complex Events in Business Processes. In:
Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 29–40. Springer, Heidelberg
(2007)

Business Trend Analysis by Simulation 529

6. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)

7. Devore, J., Farnum, N.: Applied Statistics for Engineers and Scientists, 1st edn.
Duxbury, Boston (1999)

8. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle Time Prediction:
When Will This Case Finally Be Finished? In: Meersman, R., Tari, Z. (eds.) OTM
2008, Part I. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008)

9. Ferson, S., Burgman, M.A.: Correlations, Dependency Bounds and Extinction
Risks. Biological Conservation 73(2), 101–105 (1995); Applications of Population
Viability Analysis to Biodiversity

10. Gladwin, B., Tumay, K.: Modeling Business Processes with Simulation Tools. In:
WSC 1994: Proceedings of the 26th conference on Winter simulation, San Diego,
CA, USA, pp. 114–121. Society for Computer Simulation International (1994)

11. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Soft-
ware Tools for Technology Transfer 9(3-4), 213–254 (2007)

12. Jian, J.: Mining Simulation Models with Correlations. Master’s thesis, Eindhoven
University of Technology, Eindhoven, The Netherlands (2009)

13. R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2006), ISBN
3-900051-07-0

14. Regev, G., Wegmann, A.: Why Do We Need Business Process Support? Balanc-
ing Specialization and Generalization with BPS Systems (Introductory note). In:
CAiSE Workshops (2003)

15. Reijers, H.A.: Case Prediction in BPM Systems: A Research Challenge. Journal of
the Korean Institute of Industrial Engineers 33, 1–10 (2006)

16. Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg
(1998)

17. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering Simulation
Models. Inf. Syst. 34(3), 305–327 (2009)

18. Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P., van Hee, K.M.: History-
Dependent Stochastic Petri Nets. In: Voronkov, A. (ed.) PSI 2009. LNCS, vol. 5947,
pp. 366–379. Springer, Heidelberg (2010)

Workflow Soundness Revisited:
Checking Correctness in the Presence of Data

While Staying Conceptual

Natalia Sidorova, Christian Stahl, and Nikola Trčka

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{N.Sidorova,C.Stahl,N.Trcka}@tue.nl

Abstract. A conceptual workflow model specifies the control flow of a
workflow together with abstract data information. This model is later
on refined to be executed on an information system. It is desirable that
correctness properties of the conceptual workflow would be transferrable
to its refinements. In this paper, we present classical workflow nets ex-
tended with data operations as a conceptual workflow model. For these
nets we develop a novel technique to verify soundness. This technique
allows us to conclude whether at least one or any refinement of a con-
ceptual workflow model is sound.

1 Introduction

Information systems are a key technology in today’s organizations. Prominent
examples of information systems are Enterprise Resource Planning Systems and
Workflow Management Systems. Processes are the core of most information sys-
tems [9]. They orchestrate people, information, and technology to deliver prod-
ucts. In this paper, we focus on workflows—processes that are executed by an
IT infrastructure.

A workflow is usually iteratively designed in a bottom-up manner. First the
control flow of the workflow is modeled. The control flow consists of a set of co-
ordinated tasks describing the behavior of the workflow. Later the control flow is
extended with some data information. The resulting model is an abstract or con-
ceptual workflow model, which is typically constructed by a business analyst. This
conceptual model can be used for purposes of documentation, communication,
and analysis. It may abstract from concrete data values, such as the condition
of an if-then-else construct, and it does usually not specify how concrete data
values are stored.

To actually execute this workflow on a Workflow Management System, the
conceptual workflow model is instantiated with full details, a task typically done
by business programmers (who often have insufficient background knowledge
of the process) and not by the business analysts themselves. For instance, the
business programmer specifies concrete data values and how they are stored.

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 530–544, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Workflow Soundness Revisited 531

Modeling both abstract and executable workflows is supported by industrial
workflow modeling languages available on the market.

Designing a workflow model is a difficult and error-prone task even for expe-
rienced modelers. For a fast and thus cost-efficient design process it is extremely
important that errors in the model are detected during the design phase rather
than at runtime. Hence, verification needs to be applied at an early stage—that
is, already on the level of the conceptual model.

Formal verification of a conceptual workflow model imposes the following two
challenges. First, it requires an adequate formal model. With adequate we mean
that the model captures the appropriate level of abstraction and enables efficient
analysis. So the question is, how can we formalize commonly used conceptual
workflow models? Second, verification must not be restricted to the control flow,
but should also incorporate available data information. Thereby the conceptual
workflow model may specify abstract data values that will be refined later on.
Here the question is, can we verify conceptual workflows in such a way that
the results hold in any possible data refinement (i.e., in all possible executable
versions)?

In this paper, we investigate these two questions. We focus on one of the most
important requirements for workflow correctness, namely the soundness prop-
erty [1]. Soundness guarantees that every task of the workflow can be potentially
executed (i.e., it is not dead), and that the workflow can always terminate (i.e.,
it is free of deadlocks and livelocks). However, current techniques for verifying
soundness are restricted to control flow only.

To answer the first question, we propose workflow nets with data (WFD-nets)
as an adequate formalism for modeling conceptual workflows. A WFD-net is basi-
cally a workflow net (i.e., a Petri net tailored towards the modeling of the control
flow of workflows) extended with conceptual read/write/delete data operations.
WFD-nets generalize our previous model in [18,19] by means of supporting arbi-
trary guards (previously only predicate-negation and conjunctions were allowed).
As a second contribution, we develop a novel technique for analyzing soundness
of WFD-nets. Unlike existing approaches which could give false positives (i.e.,
the analysis gives sound, but the workflow is actually unsound when the data
information is refined) or false negatives (i.e., the analysis gives unsound, but
the workflow with refined data is sound), our proposed technique gives neither
false positives nor false negatives. It is based on may/must semantics [14] that
guarantees the results to be valid in any concrete data refinement. If a WFD-net
is proven must-sound, then it is sound in any possible data refinement; if it is not
may-sound, then no data refinement can make it sound. In case where a WFD-
net is may-sound but not must-sound, our approach gives an honest answer “I
do not know; it is sound in some data refinement and unsound in some other”.
We interpret WFD-net as hyper transition systems, not as standard may/must
transition systems. Doing this we achieve much better precision (i.e., less “I do
not know” answers).

The paper is structured as follows. In Sect. 2, we show the potential problems
with soundness verification for conceptual workflow models by means of two

532 N. Sidorova, C. Stahl, and N. Trčka

examples. Afterwards, we introduce the conceptual workflow model in Sect. 3
and its semantics in Sect. 4. In Sect. 5, we define soundness for workflow nets
with data in the may/must setting. Finally, Sect. 6 draws the conclusion and
discusses future work.

2 Motivating Examples

We illustrate the idea of modeling conceptual workflows with WFD-nets on the
WFD-net in Figure 1 modeling a shipping company. Ignoring the transition
guards (shown within squared brackets above transitions), and the read and
write operations (denoted by rd and wt inside the transitions), Figure 1 depicts
an ordinary workflow net that consists of 10 places (depicted as circles) and 9
transitions (depicted as squares). There are two distinguished places start and
end modeling the initial and the final state, respectively.

Initially there is a token on start. The shipper receives goods from a client
(receive good) to be shipped. In the model, transition receive good writes
the data of the client (cl), the goods (gds), and the destination of the goods
(ads). Then the shipper calculates the price (calculate price). Afterwards the
shipment department and the customer adviser execute their tasks concurrently.
If the price of the goods is high (i.e., isHigh(price) evaluates to true; the exact
bound is left unspecified), express shipment is used (ship express). Otherwise,
the cheaper standard shipment is used (ship normal). Based on the same con-
dition, the customer advisor either calculates a bonus (calculate bonus) for
the client and registers this bonus (register bonus) or no bonus is calculated
(no bonus). In addition, clients sending goods of a high price are notified about
their bonus and the shipment (inform by call), other clients receive only a
notification of the shipment (inform by mail).

Clearly, this WFD-net is sound, i.e., starting with a (colored) token on initial
it is always possible to reach a marking where only one token is on place end.
In contrast, if we abstract from data and consider only the underlying workflow
net, the net may deadlock. For example, without data the shipment department
may decide to use express shipment, but the customer advisor does not calcu-
late any bonus. This yields a token in p5 and in p8, and the net gets stuck. This
shows that ignoring data information in verification can lead to obtaining false
negatives.

Suppose now that instead of the same predicate isHigh(price), two pos-
sibly different predicates (say isHighLeft(price) and isHighRight(price))
are used in the left and the right part of the workflow (this is realistic, because
these parts correspond to two different departments of the shipper). As we did
not change the control flow, the classical WF-net method would still say that
the workflow is not sound. Our previous work [19] on soundness of (simplified)
WFD-nets would give the same verdict: the workflow is not sound due to the
possibility that the predicates can have different truth values. With the meth-
ods we will introduce in this paper we will be able to give the correct answer:
“I do not know—the workflow is sometimes sound (when isHighLeft(price)

Workflow Soundness Revisited 533

start

receive goods

wt: cl, gds,
ads

calculate price

rd: gds
wt: price

calculate bonus

rd: price
wt: bon

no bonus

register bonus

rd: cl, bon
wt: cl

end

inform by call

rd: bon, cl

ship normal

rd: gds, ads

ship express

rd: gds, ads

[isHigh(price) [¬isHigh(price)]

[isHigh(price)

[¬isHigh(price)]

p1

p2 p3

p4

p5 p6 p7 p8

rd: cl

inform by mail

Fig. 1. WFD-net modeling a shipper – The workflow is sound, but verification ignoring
data leads to the verdict “unsound”

and isHighRight(price) always evaluates to the same values), and sometimes
it is not (when isHighLeft(price) and isHighRight(price) valuations can
differ)”.

It is also possible to construct examples where the verification of classical WF-
nets (without data information) would give a false positive, and our previous
work on WFD [19] would give a false negative. For instance, consider the loop

534 N. Sidorova, C. Stahl, and N. Trčka

start p1 p2
t1 t2

wt: d
end

t4

del: d

[not pred(d)]

t3

[pred(d)]

Fig. 2. WFD-net that is (non-)sound in some, but not in all, data refinements

in Figure 2 that is exited when some predicate depending on a data element d
evaluates to true. The data element d is initialized inside this loop (transition t2)
and it is deleted (denoted by del inside transition t4) and written in every loop
cycle. In this case, proper termination is only possible if d eventually sets the
exiting predicate to true. Therefore, the correct answer is again, “I do not know”,
as the soundness property depends on the concrete data refinement. However,
when using classical WF-nets, the data information is ignored and the possibility
to exit the loop is considered to be available, which results in the verdict that the
WF-net is sound. Similarly, the previous WFD-net method would see that there
is a possible bad execution sequence (namely the infinite looping) and would
report non-soundness.

Remark 1. It is important to note that the problems addressed in this paper
are independent of the actual version of workflow soundness definition used.
Although we restrict ourselves to classical soundness, ignoring data when con-
sidering other notions of soundness can result in obtaining false positive or false
negative answers. If we, for example, consider relaxed soundness (requiring that
for every task there is a completing path executing this task) (see [8]), the work-
flow in Figure 1 would be correctly reported relaxed sound. However, if we used
different predicates in the left and in the right side, the workflow was not relaxed
sound. The verification result on the workflow without data is then obviously
incorrect. Moreover, by swapping the guards on the right side of the net in
Figure 1 we construct a workflow that has no completing execution at all. Note
that also the unfolding of a workflow to have the data information incorporated
into the control-flow (by the means of [18,19]) does not help in this situation
either: Consider again the example in Figure 2. Unfolding the workflow, we ob-
tain a relaxed sound net. It is, however, obvious that there are data refinements
that certainly prevent t4 from being ever executed. Similar problems arise with
all other soundness notions. These problems can also be addressed by using the
may/must approach we are going to present in this paper.

3 Workflow Nets with Data

Given the motivation for incorporating data into workflow nets, this section
formally defines workflow nets with data (WFD-nets). WFD-nets are based on
Petri nets and workflow nets, so we define these two models first.

Workflow Soundness Revisited 535

Definition 1 (Petri net). A Petri net N = 〈P, T, F 〉 consists of two disjoint
non-empty, finite sets P of places and T of transitions and of a flow relation
F ⊆ (P × T) ∪ (T × P).

For a transition t ∈ T , we define the pre-set of t as •t = {p | (p, t) ∈ F}, and the
post-set of t as t• = {p | (t, p) ∈ F}. Analogously we define the pre-set •p and
the post-set p• for a place p ∈ P . A place p is called a source place if •p = ∅,
and a sink place if p• = ∅.

At any time a place contains zero or more tokens, depicted as black dots. A
state of a Petri net, called a marking, is a distribution of tokens over its places.
Formally, a marking is defined as a mapping m : P → N, i.e., as a multiset over
P . We use standard notation for multisets and write, e.g., m = [2p + q] for a
marking m with m(p) = 2, m(q) = 1, and m(x) = 0 for x ∈ P \{p, q}. We define
+ and − for the sum and the difference of two markings and =, <, >,≤,≥ for
comparison of markings in the standard way. For the marking m above we have,
e.g., m ≤ [3p + 2q + r] and m + [q + 3r] = [2p + 2q + 3r]. A pair (N, m), where
N is a Petri net and m is a marking, is a marked Petri net.

A transition t ∈ T is enabled at a marking m, denoted by m
t→, if m ≥ •t.

An enabled transition t may fire, which results in a new marking m′ defined by
m′ = m− •t + t•. This firing is denoted as m

t→ m′.
Workflow nets [1] impose syntactic restrictions on Petri nets to comply to the

workflow concept. The notion was triggered by the assumption that a typical
workflow has a well-defined starting point and a well-defined ending point.

Definition 2 (WF-net). A Petri net N = 〈P, T, F 〉 is a Workflow net (WF-
net) if it has a single source place start and a single sink place end, and if every
place and every transition is on a path from start to end (i.e., if (start, n) ∈ F ∗

and (n, end) ∈ F ∗, for all n ∈ P ∪ T , where F ∗ is the reflexive-transitive closure
of F).

Transitions in a WF-net are called tasks. A case is a workflow instance, i.e., a
marked WF-net in which the place start is marked with one token and all other
places are empty. Executing a workflow means to create a running instance of
this workflow. Such an instance is a called a case. Several cases of a workfow
may coexist. Cases are assumed to be completely independent from each other
(they only possibly share resources). Hence, each case is modeled as a copy of
the corresponding workflow net N . We refer to the properties of (N, [start]) as
the properties of N .

Example 1. Ignoring the transition guards and the read and write operations,
Figure 1 depicts a WF-net. Places start and end are the source place and the sink
place, respectively. Clearly, every place and transition is on a path from start to
end. Each transition, such as Inform by call, models a task. The pre-set of
Inform by call is the set {p5, p7}, and the post-set is the set {end}.

Adding data information. A workflow net with data elements is a workflow
net in which tasks can read from, write to, or delete data elements. A task can

536 N. Sidorova, C. Stahl, and N. Trčka

also have a (data dependent) guard that blocks its execution when it is evaluated
to false.

We assume a finite set D = {d1, . . . , dm} of data elements, and we fix a set
of predicates Π = {π1, . . . , πn}. We also assume a function � : Π → 2D, called
the predicate labeling function, that assigns to every predicate the set of data
elements it depends on. When �(π) = {d1, . . . , dn} for some predicate π ∈ Π ,
we sometimes write π(d1, . . . , dn) to emphasize this fact. A guard is constructed
from predicates by means of the standard Boolean operations; the set of all
guards (over Π) is denoted by GΠ . The function � naturally extends to guards.

We now define a workflow net with data as a WF-net where every transition t
is annotated with at most four sets: a set of data elements being read when firing
t, a set of data elements being written when firing t, a set of data elements being
deleted when firing t, and a transition guard. Note that we do not explicitly
consider the update of data elements, because this is simply the combination of
read and write at the same transition.

Definition 3 (WFD-net). A workflow net with data (WFD-net) N =
〈P, T, F, rd, wt, del, grd〉 consists of a WF-net 〈P, T, F 〉, a reading data labeling
function rd : T → 2D, a writing data labeling function wt : T → 2D, a delet-
ing data labeling function del : T → 2D, and a guard function grd : T → GΠ ,
assigning guards to transitions.

Example 2. An example of a WFD-net is the workflow of a shipper in Fig-
ure 1. Its data elements are D = {cl, gds, ads, price, bon}. Consider transition
calculate bonus, for instance. The labeling functions are rd(calculate bonus)
= {price}, wt(calculate bonus) = {bon}, del(calculate bonus) = ∅, and
grd(Ship normal) = ¬isHigh(price).

The next section assigns formal semantics to WFD-nets.

4 Semantics of WFD-nets

The model of WFD-nets is a conceptual model, a schema for characterizing
several executable workflows. In this section we introduce a special semantics
for WFD-nets that is based on hyper transition systems [14,17] and allows us to
capture all possible refinements of a WFD-net in one graph.

4.1 Behavior of WFD-nets

In a WFD-net data values are not specified, but we can distinguish non-created
data values from created ones. In our semantics we choose to keep the exact value
for the predicates in a state. Predicates and guards can be evaluated to true,
false, or undefined (if some data element assigned to them does not have a value).
This is formalized by the three abstraction functions assigning abstract values
to the data elements, the predicates, and the guards, respectively. Function σD :
D → {�,⊥} assigns to each data element d ∈ D either � (i.e., defined value) or

Workflow Soundness Revisited 537

⊥ (i.e., undefined value); Function σΠ : Π → {T, F,⊥} assigns to each predicate
one of the values true, false, and undefined. A consistency requirement that
σ(π) = ⊥ whenever σ(d) = ⊥ and d ∈ �(π) is imposed. A pair σ = (σD , σΠ) is
called a state, and the set of all states is denoted by Σ. We use the following
simplified notation: σ(d) = σD(d) for d ∈ D, and σ(π) = σΠ(π) for π ∈ Π . As
a guard g ∈ GΠ is built from Boolean operations, σ(grd) ∈ {T, F,⊥} can be
evaluated with the help of functions σD and σΠ .

The next definition lifts the definition of a state of a WF-net to a WFD-net.
We refer to a state of a WFD-net as a configuration1. A configuration consists
of a marking m of a WFD-net and a state.

Definition 4 (Configuration). Let N = 〈P, T, F, rd, wt, del, grd〉 be a WFD-
net. Let m be a marking of N , and let σ be as defined above. Then, c = 〈m, σ〉 is
a configuration of N . The start configuration of N is defined by 〈[start], ({d1 	→
⊥, . . . , dn 	→ ⊥}, {π1 	→ ⊥, . . . , πn 	→ ⊥})〉. With Ξ we denote the set of all con-
figurations, and Cf = {〈[end], σ〉 | σ ∈ Σ} defines the set of final configurations.

In the initial configuration, only place start is marked, all data elements are
undefined, and all predicates are evaluated to undefined. A configuration is a
final configuration if it contains the final marking [end].

Example 3. The initial configuration of the shipper in Figure 1 is defined to be
〈[start], σ〉, where σ assigns ⊥ to all data elements cl, gds, ads, price, bon. In
addition, predicate isHigh(price) is ⊥. Note that in Figure 1 no data element
is deleted. However, we assume that upon reaching a final configuration (i.e., the
case is completely executed), all data elements are deleted.

As Definition 4 lifts the notion of a state of a WF-net to a configuration of
a WFD-net, we have to define the behavior of a WFD-net. For this purpose,
we define when a transition t of a WFD-net N is enabled at a configuration
c = 〈m, σ〉 of N .

The enabling of a transition t requires two conditions to be fulfilled. The first
condition takes the control flow into account and requires that transition t must
be enabled at marking m. The second condition considers the data values in
configuration c. Any data element that is read by t or that is assigned to a
predicate of t must be defined. In addition, the guard of t must evaluate to true.

An enabled transition t may fire. Firing of t changes the marking as well as
the values of the data elements that have been written or deleted. As we do
not know the concrete operations nor the values of the predicates, we have to
consider any evaluation of the predicates. Hence, the firing of t yields a set of
successor configurations 〈m′, σ′〉. Each of these successor configurations has a
marking m′, where firing t at marking m yields marking m′.

On the data level, we assign undefined (i.e., ⊥) to each data element d that
has been deleted when firing t, and we assign undefined to each predicate that

1 The meaning of the term configuration here is “a state that includes data informa-
tion”, and not the one related to configuring processes.

538 N. Sidorova, C. Stahl, and N. Trčka

contains a data element that has been deleted. The reason is that reading always
precedes writing, and writing always precedes deleting. Thus, no matter whether
this data element has been also written, it is undefined after the firing of t. In
addition, we assign defined (i.e., �) to each data element d that has been written
and not deleted when firing t, and evaluate each predicate that contains at least
one data element that has been written and no data elements that have been
deleted. The different evaluations of the predicates actually result in a set of
successor configurations. This is formalized in the following definition.

Definition 5 (Firing rules for WFD-nets). Let N = 〈P, T, F, rd, wt, del, grd〉
be a WFD-net. A transition t ∈ T of N is enabled at a configuration c = 〈m, σ〉
of N if m

t→, all data elements d ∈ rd(t) are defined, all data elements as-
signed to any predicate occurring in the transition guard grd(t) of t are de-
fined, and σ(grd(t)) = T. Firing t yields a set C ⊆ Σ of configurations with
C = {〈m′, σ′〉 | m t→ m′ ∧ (∀d ∈ del(t) : σ′(d) = ⊥ ∧ ∀π ∈ Π : d ∈ �(π) =⇒
σ′(π) = ⊥)∧ (∀d ∈ wt(t)\del(t) : σ′(d) = �∧ (∀π ∈ Π : ∀d̄ ∈ �(π)\ {d} : σ(d̄) =
�) =⇒ σ′(π) ∈ {T, F})} and is denoted by c

t→ C.

Example 4. Consider transition calculate price in Figure 1. Suppose there
is a token in place p1. Transition calculate price is enabled if data element
gds is defined. Firing this transition means that the token in p1 is removed,
and a token in p2 and in p3 is produced. In addition, calculate price takes
data element gds as its input and stores its output in data element price. We
implicitly assume that inside a task reading always precedes writing, and writing
always precedes deleting. As price did not have a value before the occurrence
of calculate price, a new value of price is created (otherwise it would have
been updated). Moreover, as price is assigned to predicate isHigh(price), this
predicate is evaluated to either true or false, yielding two configurations.

4.2 Reachability

Definition 5 defines the semantics of firing a single transition. Now we extend
the firing of a single transition to sequences of transitions. In other words, we
define the set of reachable configurations of N . To take into account that we do
not know the concrete values of predicates a priori, we define may- and must-
reachability. May-reachability guarantees that the reachability holds in at least
one data refinement, whereas must-reachability guarantees that the reachability
holds in every data refinement.

Given a configuration c, a may-step from c specifies the existence of a successor
configuration c′ of c. Accordingly, a may-path of length n specifies the existence
of a sequence of n may-steps from c to a configuration c′. In this case, c′ is
may-reachable from c. A must hyper-path of length n from c defines the set C
of all configurations c′ such that a may-path of length n exists from c to c′. In
case there exists a may-path of length n− 1 from c to a configuration c′′, and c′′

has no successor configuration (i.e., c′′ is a deadlock), then c′′ is also contained
in the set C of configurations being reachable via a may-path of length n. In

Workflow Soundness Revisited 539

other words, a must hyper-path of length n contains both the configurations
that are reachable from c via a may-path of length n and all the deadlocks that
are may-reachable from c. We refer to the set C as the set of configurations that
are must-reachable from c.

Whenever a configuration c has due to the data abstraction more than one
successor configuration, may-reachability considers always one successor—that
is, it considers only one data refinement. In contrast, a must hyper-path contains
all successor configurations of c. Hence, it considers all possible data refinements.

Definition 6 (Reachability). Let N = 〈P, T, F, rd, wt, del, grd〉 be a WFD-
net, c, c′ be configurations of N , and C, C′ ⊆ Ξ be sets of configurations of N .

– A set C of configurations is reachable from a configuration c, denoted by
c → C, if and only if there is a transition t ∈ T being enabled at c and the
firing of t yields C (i.e., c

t→ C).
– There is a may-step from a configuration c to a configuration c′, denoted by

c→may c′, if and only if c′ is an element of a set C of configurations that is
reachable from c.

– A may-path (of length n) from a configuration c is a sequence of configu-
rations c1, . . . , cn of N , n ≥ 0, where c1 = c and ci →may ci+1 for every
i = 1, . . . , n−1; we denote the existence of a may-path c1, . . . , cn with c1 = c
and cn = c′ by c→∗

may c′.
– A must hyper-path (of length n) from a configuration c is a set of may-paths

from c inductively defined as follows: Ω1 = {c} and Ωi+1 = {ω, c′ | ω ∈
Ωi ∧ ∃C : c→ C ∧ c′ ∈ C} ∪ {ω | ω ∈ Ωi ∧ c �→ } for i = 1, . . . , n− 1.

– By c �must C we denote the existence of a must hyper-path Ωn such that, for
every c′ ∈ C, there is a may-path c1, . . . , cn ∈ Ωn with c1 = c and cn = c′.

Example 5. The state space of the shipper is depicted in Figure 3. From the start
configuration c0 only the singleton set {c1} can be reached by firing transition
receive goods. Configuration c1 consists of a marking [p1], and the abstraction
function σ assigns the value � to data elements cl, gds, and ads. Predicate
isHigh(price) is undefined in c1. Transition calculate price is enabled at
c1. Firing this transition yields the set {c2, c3} of successor configurations. The
difference between both configurations is that in c2 predicate isHigh(price) is
evaluated to true (denoted isHigh), whereas in c3 this predicate is evaluated to
false (denoted ¬isHigh). From c0 → c1 → {c2, c3}, we conclude that there is
a may-step from c0 to c1, a mat-step from c1 to c2 as well as from c1 to c3. So
there is a may-path of length 2 from c0 to c2 and from c0 to c3. Consequently,
{c2, c3} but also {c1} is must-reachable from c0, because a must hyper-path of
length 2 and 1 exists, respectively. Observe that there is also a must hyper-path
(of length 5) from c0 to {c11, c12}. Only configuration c13 is may-reachable
from c11. Unlike c11, configuration c12 does not have any successor. Hence,
we conclude from the definition of a must hyper-path that there exists a must
hyper-path of length 6 from c0 to {c13, c12}.

540 N. Sidorova, C. Stahl, and N. Trčka

c0: [start]
—

c1: [p1]
cl,gds,ads

c13: [end]
cl,gds,ads,price,bon

isHigh

c12: [end]
cl,gds,ads,price

¬isHigh

c2: [p2,p3]
cl,gds,ads,price

isHigh

c4: [p5,p3]
cl,gds,ads,price

isHigh

c8: [p5,p4]
cl,gds,ads,price,bon

isHigh

c5: [p2,p4]
cl,gds,ads,price,bon

isHigh

c11: [p5,p7]
cl,gds,ads,price,bon

isHigh

c9: [p2,p7]
cl,gds,ads,price,bon

isHigh

c3: [p2,p3]
cl,gds,ads,price

¬isHigh

c6: [p6,p3]
cl,gds,ads,price

¬isHigh

c7: [p2,p8]
cl,gds,ads,price

¬isHigh

c10: [p6,p8]
cl,gds,ads,price

¬isHigh

receive goods

ship express calculate bonus ship normal no bonus

ship normal no bonusship express
calculate bonus register bonus

register bonus ship express inform by mail

calculate price

inform by call

Fig. 3. State space of the shipper in Fig 1. Each rounded rectangle specifies a con-
figuration of the shipper. In the first line, the identifier of the configuration and the
marking is depicted, the second line presents all defined data elements, and the third
line evaluates the predicate isHigh(price).

5 Soundness

With the help of may- and must-reachability we can formalize soundness for
WFD-nets. The soundness property, originally defined for WF-nets, ensures that
from any reachable marking the final marking can be reached, and every task can
potentially be executed. In this section, we extend the definition of soundness
to WFD-nets. We present two notions: may-soundness and must-soundness. A
WFD-net is may-sound if and only if there exists a data refinement such that
the concrete workflow model (that contains all data information) is sound. In
contrast to may-soundness, the notion of must-soundness guarantees that the
WFD-net is sound in all possible data refinements.

Definition 7 (May- and Must-soundness). Let N = 〈P, T, F, rd, wt, del, grd〉
be a WFD-net, let c0 be the start configuration of N , and let Cf ⊆ Ξ denote the
set of final configurations of N . N is

Workflow Soundness Revisited 541

– may-sound if and only if for every set C of configurations of N being must-
reachable from the start configuration c0 (i.e., c0 �must C), there exists a
configuration c ∈ C such that a configuration cf ∈ Cf is may-reachable from
c (i.e., c→∗

may cf).
– must-sound if and only if for every configuration c being may-reachable from

the start configuration c0 of N (i.e., c0 →∗
may c), there exists a set C ⊆ Cf

of final configurations that is must-reachable from c (i.e., c �must C).

May-soundness ensures that for any set C of configurations that are must-
reachable from the start configuration, there exists a configuration c ∈ C from
which a final configuration is may-reachable. The set C contains all configura-
tions that are reachable from the initial configuration in any data refinement
(because must-reachability considers all may-paths). The existence of a configu-
ration c ∈ C from which a final configuration is may-reachable guarantees that
there exists at least one data refinement of N (i.e., one may-path) in which a
final marking can be reached.

Must-soundness ensures that from any configuration c that is may-reachable
from the start configuration, a subset of the final configurations is must-reachable.
That means, from every marking that is reachable in the WFD-net N , a final con-
figuration can be reached in any data refinement of N (because must-reachability
considers all may-paths).

Example 6. Consider again the state space of the shipper in Figure 3. As pre-
viously mentioned, there exists a must hyper-path from the start configuration
c0 to the set {c13, c12} of configurations. Both configurations, c13 and c12, are
final configurations (and clearly c13 is may-reachable from c13 and c12 is may-
reachable from c12). As this is the longest must hyper-path in the state space,
we conclude that from any other must hyper-path, there always exists a state
from which either c13 or c12 is may-reachable. Thus, the shipper is may-sound.
It can also be easily seen that from each state being may-reachable from c0,
there exists a must hyper-path to a final configuration. Hence, we conclude that
the WFD-net of the shipper is also must-sound. In other words, the soundness
property holds in any data refinement of the WFD-net in Figure 1.

Let us now come back to the modification of the shipper (cf. Section 2) where
different predicates (isHighLeft(price) and isHighRight(price)) are used in
the left and the right part of the shipper. In this case, c2 corresponds to a con-
figuration where both predicates are true, and c3 corresponds to a configuration
where both predicates are false. In addition, c1 has two more successors, say
c2′ and c3′, corresponding to configurations where isHighLeft(price) is true
and isHighRight(price) is false and vice versa. In configuration c2′ transitions
ship express and no bonus are enabled. Firing these transitions yields a con-
figuration, say c, where the shipper is in the marking [p5, p8]. Configuration c is a
deadlock, and it is may-reachable from the start configuration. Hence, there does
not exist a must hyper-path from c to a final configuration, and thus the modified
shipper is not must-sound. However, the modified shipper is may-sound: there
exists a data refinement in which a final configuration can be reached, namely, if

542 N. Sidorova, C. Stahl, and N. Trčka

c0: [start]
—

t1 c1: [p1]
—

c3: [p2]
d

pred

c2: [p2]
d

¬pred
t2

t3 c4: [end]
d

pred

t4

Fig. 4. State space of the example from Figure 2

the two predicates isHighLeft(price) and isHighRight(price) always eval-
uate to the same value.

Figure 4 shows the state space of the WFD-net from Figure 2. As there is no
guarantee that both branches of t2 will lead to proper completion (there exists
an infinite sequence c1 → c2 → c1 → c2 . . .), we conclude that this WFD-net is
not must sound. However, we see that one branch of t2, namely the one going
to c3, always leads to completion. Therefore, the workflow is may-sound.

6 Conclusion

In this paper we showed how to obtain reliable verification results when verifying
conceptual workflow nets with data information. Our work is in fact a cross-
fertilization of design and modeling frameworks coming from the field of Process-
Aware Information Systems (PAIS), and verification and abstraction approaches
developed in the field of Formal Methods.

The final target of researchers working in the area of formal methods is usually
the verification of programs/systems which may contain complex data coming
from large or infinite data domains, consist of a large number of distributed com-
ponents, etc. To cope with the complexity of the objects to be verified, many
abstraction techniques [4,5,6,7,10,15] such as predicate abstractions, and ab-
straction methodologies, such as CEGAR (counter-example guided abstraction
refinement) [3,13], are proposed. The concept of may/must transition systems
was defined in this area [14] and then found multiple applications there.

In our work, the verification target is not a refined system but a conceptual
model, which may later on be refined in different ways. We do not need to apply
abstractions to cope with the complexity of data, as it is done in [16,11,12] for
WS-BPEL processes—the data is still underdefined, abstract, in the models we
consider.

We use WFD-nets to specify conceptual workflows. As we showed in [19],
WFD-nets can be seen as an abstraction from notations deployed by popular
modeling tools, like Protos of Pallas Athena, which uses a Petri-net-based mod-
eling notation and is a widely-used business process modeling tool. (It is used
by more than 1500 organizations in more than 20 countries and is the leading

Workflow Soundness Revisited 543

business process modeling tool in the Netherlands.) By building on the classi-
cal formalism of Petri nets, we keep our framework easily adaptable to many
industrial and academic languages.

Future work. For the future work we plan to integrate our implementation of
the may/must-based soundness verification of WFD-nets in the process analy-
sis/discovery framework ProM [2]. As a basis, we use the generic CTL model-
checking algorithm presented in [17], and restrict it to the soundness property.
This algorithm shall then replace the standard algorithm [19] for checking sound-
ness. As ProM provides import functionality for many industrial process model-
ing languages, by integrating our implementation in ProM we will achieve direct
applicability of our framework to real-world conceptual workflows.

Another item for the future work concerns the diagnostic methods for the
identification of possible causes of incorrectness in the workflow, which would be
fit to work within the may/must framework.

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

2. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., Alves de
Medeiros, A.K., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W., Weijters,
A.J.M.M.: ProM 4.0: Comprehensive Support for Real Process Analysis. In: Kleijn,
J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer,
Heidelberg (2007)

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
Abstraction Refinement for Symbolic Model Checking. Journ. of the ACM 50(5),
752–794 (2003)

4. Clarke, E.M., Grumberg, O., Long, D.E.: Model Checking and Abstraction. ACM
Transactions on Programming Languages and Systems 16(5), 1512–1542 (1994); A
preliminary version appeared in the Proc. of the POPL 1992

5. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. of
the 4th ACM SIGACT-SIGPLAN Symp. on Principles of programming languages
(POPL 1977), pp. 238–252. ACM Press, New York (1977)

6. Dams, D.: Abstract Interpretation and Partition Refinement for Model Checking.
PhD dissertation, Eindhoven University of Technology (July 1996)

7. Dams, D., Gerth, R., Grumberg, O.: Abstract Interpretation of Reactive Systems.
ACM Transactions on Programming Languages and Systems (TOPLAS) 19(2),
253–291 (1997)

8. Dehnert, J., Rittgen, P.: Relaxed soundness of business processes. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 157–170.
Springer, Heidelberg (2001)

9. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems: Bridging People and Software through Process Technology. Wiley &
Sons, Chichester (2005)

10. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

544 N. Sidorova, C. Stahl, and N. Trčka

11. Heinze, T.S., Amme, W., Moser, S.: Generic CSSA-based pattern over boolean
data for an improved WS-BPEL to petri net mappping. In: Mellouk, A., Bi, J.,
Ortiz, G., Chiu, D.K.W., Popescu, M. (eds.) Third International Conference on
Internet and Web Applications and Services, ICIW 2008, Athens, Greece, June
8-13, pp. 590–595. IEEE Computer Society, Los Alamitos (2008)

12. Heinze, T.S., Amme, W., Moser, S.: A restructuring method for WS-BPEL business
processes based on extended workflow graphs. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 211–228. Springer, Heidelberg
(2009)

13. Lakhnech, Y., Bensalem, S., Berezin, S., Owre, S.: Incremental Verification by
Abstraction. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
98–112. Springer, Heidelberg (2001)

14. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

15. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property Preserving
Abstractions for the Verification of Concurrent Systems. Formal Methods in System
Design 6(1), 11–44 (1995)

16. Moser, S., Martens, A., Görlach, K., Amme, W., Godlinski, A.: Advanced verifica-
tion of distributed WS-BPEL business processes incorporating CSSA-based data
flow analysis. In: 2007 IEEE International Conference on Services Computing (SCC
2007), Salt Lake City, Utah, USA, July 9-13, pp. 98–105. IEEE Computer Society,
Los Alamitos (2007)

17. Shoham, S., Grumberg, O.: Monotonic abstraction-refinement for ctl. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 546–560. Springer,
Heidelberg (2004)

18. Trčka, N.: Workflow Soundness and Data Abstraction: Some negative results and
some open issues. In: Workshop on Abstractions for Petri Nets and Other Models
of Concurrency (APNOC), pp. 19–25 (2009)

19. Trčka, N., van der Aalst, W.M.P., Sidorova, N.: Data-Flow Anti-Patterns: Discov-
ering Data-Flow Errors in Workflows. In: van Eck, P., Gordijn, J., Wieringa, R.
(eds.) CAiSE 2009. LNCS, vol. 5565, pp. 425–439. Springer, Heidelberg (2009)

Octavian Panel on Intentional Perspectives on
Information Systems Engineering

Arne Sølvberg

NTNU — Norwegian University of Science and Technology, Trondheim, Norway

Octavian panel is a round table-table discussion with 8 (Octavian) people on
the scene and an audience. Only those people can talk who are on the scene. The
talk time is restricted to 3 minutes. Panelists may leave the scene at any time
to join the audience, thus opening for a new panelist on the scene. Questions
from outside can be forwarded through the moderator. The moderator cannot
leave the scene. The moderator’s contribution is limited to 1 minute. The first
two rounds of the panelists are pre-selected what does not mean that this will
be the order of making contributions.

Themes for Discussion

The panel is challenged to discuss the relationships among intention oriented
information system development and methods for

– goal specification
– requirements engineering
– implementation methods, e.g., agile approaches

The panel is challenged to discuss intention oriented approaches with respect to

– practical use, state-of-the-art
– cross-disciplinary systems development
– quality assurance, security
– other relevant themes that come up during the discussions

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, p. 545, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Author Index

Aalst, Wil M.P. van der 38, 515
Almeida da Silva, Marcos Aurélio 348

Barone, Daniele 53
Batini, Carlo 53
Ben-Abdallah, Hanêne 150
Bendraou, Reda 348
Bennacer, Nacéra 224
Blanco, Lorenzo 83
Blanc, Xavier 348
Bonvin, Nicolas 302
Bouassida, Nadia 150
Bouquet, Paolo 302
Brambilla, Marco 1
Butler, Tom 281

Cabot, Jordi 424
Castano, Silvana 194
Catasta, Michele 302
Ceri, Stefano 1
Charoy, François 135
Chiniforooshan Esfahani, Hesam 424
Chopra, Amit K. 113
Cleve, Anthony 332
Cordioli, Daniele 302
Costache, Stefania 230
Crescenzi, Valter 83
Crespo, Yania 409

Dadam, Peter 9
Dalpiaz, Fabiano 113
Daniel, Florian 98
Davidsen, Magne 296
Desai, Nirmit 499
de Spindler, Alexandre 363
Dijkman, Remco 483
Dimov, Alexandar 266
Dorn, Christoph 393
du Bousquet, Lydie 165
Dustdar, Schahram 98, 393

Fankhauser, Peter 302
Ferrara, Alfio 194
Fielt, Erwin 129

Finnegan, Patrick 281
Franch, Xavier 439

Gaaloul, Khaled 135
Gaugaz, Julien 302
Giorgini, Paolo 113
Godart, Claude 135
Grossniklaus, Michael 363

Habra, Naji 236
Hainaut, Jean-Luc 317, 332
Holmes, Ta’id 98
Hordijk, Wiebe 68

Ilieva, Sylvia 266
Indulska, Marta 251
Ioannou, Ekaterini 302

Jarke, Matthias 470
Jian, Jingxian 515

Kamseu, Flora 236
Kiely, Gaye 281
Kohlborn, Thomas 129
Korthaus, Axel 129
Koshutanski, Hristo 302
Krasteva, Iva 266
Krcmar, Helmut 129
Krogstie, John 296

Laguna, Miguel A. 409
Lemaitre, Jonathan 317
Leonardi, Chiara 455
Leone, Stefania 363
Loucopoulos, Pericles 470
Luebeck, Christian 129
Ly, Linh Thao 9
Lyytinen, Kalle 470

Maña, Antonio 302
Marqués, José M. 409
Matulevičius, Raimundas 236
Mendling, Jan 483, 499
Merialdo, Paolo 83
Miklós, Zoltán 302

548 Author Index

Montanelli, Stefano 194
Mougenot, Alix 348
Mrabet, Yassine 224
Mylopoulos, John 113, 470

Nejdl, Wolfgang 230
Niederée, Claudia 230, 302
Norrie, Moira C. 363

Palpanas, Themis 302
Papotti, Paolo 83
Paraszczak, Jurij 7
Pelechano, Vicente 378
Pernelle, Nathalie 224
Pesic, Maja 38
Polyvyanyy, Artem 499

Ramdoyal, Ravi 332
Rassadko, Nataliya 180
Riedl, Christoph 129
Rinderle-Ma, Stefanie 9
Rittgen, Peter 24
Robinson, William 470
Rosemann, Michael 129

Sabatucci, Luca 455
Sadiq, Shazia 251
Schonenberg, Helen 515

Sen, Sinan 209
Serral, Estefańıa 378
Sidorova, Natalia 515, 530
Sindre, Guttorm 165
Sølvberg, Arne 545
Song, Minseok 38
St̊alhane, Tor 165
Stahl, Christian 530
Stecher, Rodolfo 230
Stella, Fabio 53
Stoermer, Heiko 180, 302
Stojanovic, Nenad 209
Susi, Angelo 455
Syed Abdullah, Norris 251

Thiam, Mouhamadou 224
Trčka, Nikola 530

Vaidya, Nachiket 180
Valderas, Pedro 378

Weidlich, Matthias 483, 499
Wieringa, Roel 68

Yu, Eric 424

Zahoor, Ehtesham 135
Zancanaro, Massimo 455
Zdun, Uwe 98

	Title Page
	Preface
	Organization
	Table of Contents
	Keynotes
	Search Computing Systems
	Introduction
	The Search Computing Framework
	Search Computing Users
	Search Computing Architecture
	References

	The Influence of IT Systems on the Use of the Earth’s Resources

	Session 1: Business Process Modeling
	Design and Verification of Instantiable Compliance Rule Graphs in Process-Aware Information Systems
	Introduction
	Compliance Rule Instantiation
	Instantiable Compliance Rule Graphs
	Formalization and Verification of Compliance Rules
	On Formalizing Compliance Rules
	Interpretation of Compliance Rules

	Discussion and Validation
	Pattern-Based Validation
	Technical Validation

	Related Work
	Summary and Outlook
	References

	Success Factors of e-Collaboration in Business Process Modeling
	Introduction
	Related Research
	Research Methodology
	Relevant Theories
	Research Approach
	Data Gathering

	Data Analysis
	Facilitation Factors
	Motivation Factors
	Group and Team factors
	Support Factors

	An Initial Model of Factors in Collaborative Modeling
	Lessons Learned
	Co-evolution of Method and Tool
	Towards a Collaborative Process Modeling Method

	Comparative Experiments
	Conclusions
	References

	Beyond Process Mining: From the Past to Present and Future
	Introduction
	Framework for Operational Support
	Application of the Framework to Time-Based Operational Support
	Discovering a Transition System from History
	Extending the Transition System with Time Information
	Checking Running Cases
	Predicting the Future of Running Cases
	Recommending the Next Step for Running Cases

	Related Work
	Conclusions
	References

	Session 2: Information Systems Quality
	Dependency Discovery in Data Quality
	Introduction
	TheD3Q Framework
	The Dependency Discovery Model
	The Dependency Discovery Algorithm

	Dependency Structure Discovery
	Italian Social Security Contributors’ List
	Bayesian Network Learning and Inference
	Data Quality Improvement

	Related Work
	Conclusions
	References

	Rationality of Cross-System Data Duplication: A Case Study
	Introduction
	CaseContext
	Research Design
	Results
	Initial Cause/Effect Graph
	Identifying Duplicate Data
	Quantification of the Problem
	Identifying Mechanisms That Cause Duplication
	Lessons Learned
	Generalizability
	Solutions

	Discussion, Conclusions and Future Work
	References

	Probabilistic Models to Reconcile Complex Data from Inaccurate Data Sources
	Introduction
	Related Work
	Probabilistic Models for Uncertain Web Data
	Probability Distribution of the Values
	Witnesses Accuracy

	Witnesses Dependencies over Many Properties
	Modeling Witnesses Dependence
	Dealing with Many Properties

	Experiments
	Synthetic Scenarios
	Real-World Web Data

	Conclusions and Future Work
	References

	Session 3: Service Modelling
	Monitoring and Analyzing Service-Based Internet Systems through a Model-Aware Service Environment
	Introduction
	A Model-Aware Service Environment in ComplianceMonitoring and Analysis
	Model-Aware Repository and Service Environment
	The MORSE Approach for Service-Based Internet Systems

	Case Study: Compliance to Regulations
	Performance and Scalability Evaluation
	Related Work
	Conclusion
	References

	Modeling and Reasoning about Service-Oriented Applications via Goals and Commitments
	Introduction
	Conceptual Model
	Specifying Agents via Goal Models
	Specifying Applications via Service Engagements
	Binding

	Goal and Commitment Support
	Evaluation
	Case Study: Insurance Claim Processing
	Scalability Experiments

	Discussion
	References

	Conceptualizing a Bottom-Up Approach to Service Bundling
	Introduction
	Positioning Service Bundling
	Conceptual Framework for a Service Bundling Method
	Conclusion
	References

	Session 4: Security and Management
	Dynamic Authorisation Policies for Event-Based Task Delegation
	Introduction
	Motivating Example: A Use Case Requiring Delegation Policies Integration
	The Proposed Framework
	Task Delegation Model (TDM)
	Introduction to TDM
	Modelling Task Delegation in Event Calculus

	Authorisation Policies for TDM
	Building Policies for Delegation
	Modelling Delegation Policies in Event Calculus

	Delegation Automation
	Benefits
	Reasoning

	Related Work
	Conclusion and Future Work
	References

	A New Approach for Pattern Problem Detection
	Introduction
	Related Work
	Current Works for Pattern Detection
	Current Works for Pattern Problem Detection

	Pattern Problem Identification
	Structural Pattern Problem Identification
	Semantic Correspondences of Class Names
	Method Declaration Pattern Identification

	Pattern Problem Identification Examples
	The Bridge Problem Case
	Identification of an Altered Bridge Pattern Problem

	Conclusion
	References

	Comparing Safety Analysis Based on Sequence Diagrams and Textual Use Cases
	Introduction
	Related Work
	The Techniques to Be Compared
	Textual Use Cases – TUC
	System Sequence Diagrams - SSD

	The Experiment
	Research Approach
	Experiment Design

	Experiment Results and Analysis
	Threats to Validity
	Conclusion Validity
	Internal validity
	Construct Validity
	External Validity
	Our Claims to Validity

	Conclusion
	References

	Session 5: Matching and Mining
	Feature-Based Entity Matching: The FBEM Model, Implementation, Evaluation
	Introduction
	Related Work
	Knowledge about Entities
	Background Knowledge
	An Ontology of Entity Description

	A Feature-Based Entity Similarity Model
	The FBEM Similarity Score
	Implementation

	Evaluation
	Evaluating String Similarity Measures
	Record Identity Tests
	Aligning Restaurant Records
	Aligning Person Records
	Aligning Bibliographic Databases

	Discussion and Future Work
	Conclusion
	References

	Dealing with Matching Variability of Semantic Web Data Using Contexts
	Introduction
	Related Work
	Modeling Matching Variability
	The Matching Variability Framework
	Matching Example

	The Source-Dataset Contexts
	The Matching-Dataset Contexts
	The Mapping-Set Contexts
	Matching Semantic Web Data with Contexts
	Concluding Remarks
	References

	GRUVe: A Methodology for Complex Event Pattern Life Cycle Management
	Introduction
	Related Work
	Requirements: What Do We Need and Why Is It Important?
	GRUVe: The Methodology
	Generation Phase
	Refinement Phase
	Usage Phase
	Evolution Phase

	Implementation of the Methodology
	Conclusion and Future Work
	References

	Supporting Semantic Search on Heterogeneous Semi-structured Documents
	Introduction
	Annotation Model
	Query Reformulations
	Experimental Results
	Conclusion and Future Work
	References

	Query Ranking in Information Integration
	Introduction
	Ranking for Lightweight Information Integration
	Punishment Derived from Mappings
	Punishment Derived from Relaxation
	Ranking Function

	Evaluation
	Evaluation Setting
	Experiments

	Related Work
	Conclusions and Future Work
	References

	Session 6: Case Studies and Experiences
	Validity of the Documentation Availability Model: Experimental Definition of Quality Interpretation
	Introduction
	Documentation Availability
	Documentation Availability Model
	Documentation Type Availability
	Documentation Information Availability
	Documentation Availability Estimation Method
	Indicator Interpretation

	Validity of the Documentation Availability Model
	Theoretical Validation of the Documentation Availability Model
	Empirical Validation of the Documentation Availability Model

	Performance Test
	Design
	Threats to Validity
	Results

	Discussion and Conclusions
	Conclusions
	Related Work
	Future Work

	References

	Emerging Challenges in Information Systems Research for Regulatory Compliance Management
	Introduction
	Approach and Methodology
	Data Sampling, Participants and Protocol
	Data Analysis

	Results
	Factors Relating to Customers
	Factor Relating to Regulations
	Factor Relating to Solutions

	Information Systems Research on Compliance Management
	Research Agenda for Compliance Management
	References

	Experience-Based Approach for Adoption of Agile Practices in Software Development Projects
	Introduction
	Related Work
	Description of the Approach
	The Method Engineering Process
	Concepts, Models and Tools

	Method Content Selection
	Organization of the Knowledge-Base
	The Selection Process

	Development Process Creation
	The Specification Metamodel
	Generation of Development Method

	Validation
	Conclusion and Future Work
	References

	Coordinating Global Virtual Teams: Building Theory from a Case Study of Software Development
	Introduction
	Towards a Theoretical Model for Studying the Coordination of Virtual Teams
	Coordination Mechanisms
	Factors That Affect Global Virtual Teamwork

	Research Method
	Case Study Analysis
	Coordination Mechanisms Employed within the Case Organisation
	The Impact of Virtual Team Issues on the Effectiveness of Standards
	The Impact of Virtual Team Issues on the Effectiveness of Plans
	The Impact of Virtual Team Issues on the Effectiveness of Formal Mutual Adjustment
	The Impact of Virtual Team Issues on the Effectiveness of Informal Mutual Adjustment

	Summary and Conclusions
	References

	Information Systems Evolution over the Last 15 Years
	Introduction
	Definition of Core Concepts
	Research Methodology
	Selected Results
	Conclusions and Further Work
	References

	Session 7: Conceptual Modelling
	From Web Data to Entities and Back
	Introduction
	Entity-Oriented Information Systems
	The Entity Name System
	Overall System Architecture
	Data
	Storage
	Entity Search
	Entity Lifecycle Management
	Security and Trust

	Tools
	For Web Users
	For the Linked Data Community

	Evaluation
	Scalability and Performance
	Search Quality

	Related Work
	Conclusion and Future Work
	References

	Transformation-Based Framework for the Evaluation and Improvement of Database Schemas
	Context and Motivation
	Background
	Abstraction Levels, Modeling Paradigms and Semantics
	Schema Expression: The GER Model
	Schema Transformation

	Definitions
	Semantic Equivalence Classes and Best Practices
	Context and Best Practices

	Illustration
	Framework Application
	Limits
	Validation of the Framework
	Related Work
	Conclusion
	References

	Reverse Engineering User Interfaces for Interactive Database Conceptual Analysis
	Introduction
	Research Context
	State of the Art
	Proposal
	Methodological Specificities
	Reverse Engineering
	Modular Refinement
	View Integration
	Transformational Approach

	Tool Support
	Concluding Remarks
	Contributions
	Limitations and Future Work

	References

	Towards Automated Inconsistency Handling in Design Models
	Introduction
	Motivating Example
	The Praxis Formalism
	Inconsistency Detection in Praxis

	An Approach for Inconsistency Handling in Praxis
	How to Detect the Actions That Caused Inconsistencies?
	How to Enumerate the Possible Ways of Changing a Given Inconsistent Action?
	How to Generate a Repair Plan for the Model Sequence?
	Running Example

	Prototype Implementation
	Case Study

	Related Work
	Conclusion
	References

	Session 8: Adaptation
	Dynamic Metamodel Extension Modules to Support Adaptive Data Management
	Introduction
	Related Work
	Approach
	Core Metamodel
	Metamodel Extension Module
	Implementation
	Conclusions
	References

	Supporting Runtime System Evolution to Adapt to User Behaviour
	Introduction
	Automating User Behaviour Patterns: An Overview
	User Routines: A Case Study
	The Context Model and the Task Model
	Ontology-Based Context Model
	Context Adaptive Task Model

	Addressing the Evolution of User Behaviour Automation
	Supporting the Task Model Evolution
	Supporting the Context Model Evolution
	Using the Evolving Mechanisms

	End-User Toolkit for Evolving the System
	Evaluation
	System Evolution by Using Models at Runtime
	A Case Study-Based Evaluation

	Related Work
	Conclusions and Further Work
	References

	Interaction-Driven Self-adaptation of Service Ensembles
	Introduction
	Motivating Scenario

	From Autonomous to Evolving Service Ensembles
	Interaction-Based Continuous Adjustment
	InteractionMonitoring
	Interaction Structure
	Interaction-Driven Requirements Adjustment
	System Planning and Execution

	Case Study Evaluation
	Related Work
	Conclusion and Outlook
	References

	Session 9: Requirements
	On the Semantics of the Extend Relationship in Use Case Models: Open-Closed Principle or Clairvoyance?
	Introduction
	The Extend Relationship in the UML Documentation
	The Extend Relationship and the Open-Closed Principle
	The Extend Relationship and the Use Case Behavior Specification
	Related Work
	Conclusions and Future Work
	References

	Situational Evaluation of Method Fragments: An Evidence-Based Goal-Oriented Approach
	Introduction
	Motivating Scenario
	Evaluation Framework
	Evidence Base
	Situational Evaluation

	Validity of Framework
	Discussion and Future Work
	References

	Incorporating Modules into the i* Framework
	Introduction
	Background and Related Work
	Use of i* in Industrial Projects
	Empirical Evaluation of i*
	Existing Approaches to Model Modularity

	The i* Metamodel
	Types of Modules
	SR Modules
	SD Modules

	Module Composition
	Model Combination
	Module Application

	Discussion and Further Issues
	Conclusions and Future Work
	References

	Ahab’s Leg: Exploring the Issues of Communicating Semi-formal Requirements to the Final Users
	Introduction
	The Ahab’s Leg Dilemma
	Methodology and Techniques
	Tropos
	Personas and Visual Scenarios
	Joint Process: Concurrent Use of Tropos and ID
	The Validation Phase

	Re-thinking the Approach
	Ahab’s Leg Classification
	Toward a Methodology for Translating Requirements into Scenarios

	Conclusion
	References

	The Brave New World of Design Requirements: Four Key Principles
	Introduction
	The Changing Nature of Requirements
	Four Requirements Principles
	Intertwine Requirements and Contexts
	Evolve Designs and Ecologies
	Managing through Architectures
	Recognize and Mitigate against Design Complexity
	Summary of Four Key Design Principles

	Implications
	References

	Session 10: Process Analysis
	The ICoP Framework: Identification of Correspondences between Process Models
	Introduction
	Background
	The ICoP Framework
	Architecture
	Match Searchers
	Match Boosters
	Mapping Selectors
	Mapping Evaluators

	Evaluation
	Related Work
	Conclusion
	References

	Process Compliance Measurement Based on Behavioural Profiles
	Introduction
	Background
	Preliminaries
	Measuring Compliance Based on Behavioural Profiles
	Causal Behavioural Profiles for Logs
	A Hierarchy of Behavioural Relations
	Compliance Metrics

	Case Study: Security Incident Management Process
	Related Work
	Conclusion
	References

	Business Trend Analysis by Simulation
	Introduction
	Preliminaries
	Adaptive Simulation Model
	Mining Dependencies
	Abstractions
	Mining Predictors

	Experiments
	Experiment Set-Up
	Results

	Related Work
	Conclusion
	References

	Workflow Soundness Revisited: Checking Correctness in the Presence of Data While Staying Conceptual
	Introduction
	Motivating Examples
	Workflow Nets with Data
	Semantics of WFD-nets
	Behavior of WFD-nets
	Reachability

	Soundness
	Conclusion
	References

	Panel
	Octavian Panel on Intentional Perspectives on Information Systems Engineering

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

