

Lecture Notes in Computer Science 6031
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Adrian-Horia Dediu Henning Fernau
Carlos Martín-Vide (Eds.)

Language and
Automata Theory
and Applications

4th International Conference, LATA 2010
Trier, Germany, May 24-28, 2010
Proceedings

13

Volume Editors

Adrian-Horia Dediu
Carlos Martín-Vide
Universitat Rovira i Virgili
Research Group on Mathematical Linguistics
Avinguda Catalunya, 35, 43002 Tarragona, Spain
E-mail: {adrian.dediu; carlos.martin}@urv.cat

Henning Fernau
Universität Trier, Fachbereich IV - Informatik
Campus II, Behringstraße, 54286 Trier, Germany
E-mail: fernau@informatik.uni-trier.de

Library of Congress Control Number: 2010926873

CR Subject Classification (1998): F.1, J.3, I.2, I.5, I.4, F.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-13088-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13088-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

These proceedings contain all the papers that were presented at the 4th Interna-
tional Conference on Language and Automata Theory and Applications (LATA
2010), held in Trier, Germany, during May 24–28, 2010.

The scope of LATA is rather broad, including: algebraic language theory;
algorithms on automata and words; automata and logic; automata for system
analysis and program verification; automata, concurrency and Petri nets; cellu-
lar automata; combinatorics on words; computability; computational complex-
ity; computer linguistics; data and image compression; decidability questions
on words and languages; descriptional complexity; DNA and other models of
bio-inspired computing; document engineering; foundations of finite state tech-
nology; fuzzy and rough languages; grammars (Chomsky hierarchy, contextual,
multidimensional, unification, categorial, etc.); grammars and automata archi-
tectures; grammatical inference and algorithmic learning; graphs and graph
transformation; language varieties and semigroups; language-based cryptogra-
phy; language-theoretic foundations of artificial intelligence and artificial life;
neural networks; parallel and regulated rewriting; parsing; pattern matching and
pattern recognition; patterns and codes; power series; quantum, chemical and
optical computing; semantics; string and combinatorial issues in computational
biology and bioinformatics; symbolic dynamics; term rewriting; text algorithms;
text retrieval; transducers; trees, tree languages and tree machines; and weighted
machines.

LATA 2010 received 115 submissions, many among them of good quality.
Each one was reviewed by at least three Program Committee members plus, in
most cases, by additional external referees. After a thorough and vivid discussion
phase, the committee decided to accept 47 papers (which means an acceptance
rate of 40.86%). The conference program also included four invited talks. Part
of the success in the management of such a large number of submissions is due
to the excellent facilities provided by the EasyChair conference management
system.

We would like to thank all invited speakers and authors for their contribu-
tions, the reviewers for their cooperation and Springer for the collaboration and
publication.

February 2010 Adrian-Horia Dediu
Henning Fernau

Carlos Mart́ın-Vide

Organization

LATA 2010 took place in Trier, Germany under the organization of the Univer-
sity of Trier and the Research Group on Mathematical Linguistics (GRLMC),
Rovira i Virgili University, Tarragona, Spain.

Program Committee

Alberto Apostolico Atlanta, USA
Thomas Bäck Leiden, The Netherlands
Stefania Bandini Milan, Italy
Wolfgang Banzhaf St. John’s, Canada
Henning Bordihn Potsdam, Germany
Kwang-Moo Choe Daejeon, Korea
Andrea Corradini Pisa, Italy
Christophe Costa Florêncio Leuven, Belgium
Maxime Crochemore Marne-la-Vallée, France
W. Bruce Croft Amherst, USA
Erzsébet Csuhaj-Varjú Budapest, Hungary
Jürgen Dassow Magdeburg, Germany
Volker Diekert Stuttgart, Germany
Rodney G. Downey Wellington, New Zealand
Frank Drewes Ume̊a, Sweden
Henning Fernau (Co-chair) Trier, Germany
Rusins Freivalds Riga, Latvia
Rudolf Freund Wien, Austria
Paul Gastin Cachan, France
Edwin Hancock York, UK
Markus Holzer Giessen, Germany
Helmut Jürgensen London, Canada
Juhani Karhumäki Turku, Finland
Efim Kinber Fairfield, USA
Claude Kirchner Bordeaux, France
Brian Marcus Vancouver, Canada
Carlos Mart́ın-Vide (Co-chair) Brussels, Belgium
Risto Miikkulainen Austin, USA
Victor Mitrana Bucharest, Romania
Claudio Moraga Mieres, Spain
Sven Naumann Trier, Germany
Chrystopher Nehaniv Hatfield, UK

VIII Organization

Maurice Nivat Paris, France
Friedrich Otto Kassel, Germany
Daniel Reidenbach Loughborough, UK
Klaus Reinhardt Tübingen, Germany
Antonio Restivo Palermo, Italy
Christophe Reutenauer Montréal, Canada
Kai Salomaa Kingston, Canada
Jeffrey Shallit Waterloo, Canada
Eljas Soisalon-Soininen Helsinki, Finland
Bernhard Steffen Dortmund, Germany
Frank Stephan Singapore
Wolfgang Thomas Aachen, Germany
Marc Tommasi Lille, France
Esko Ukkonen Helsinki, Finland
Todd Wareham St. John’s, Canada
Osamu Watanabe Tokyo, Japan
Bruce Watson Pretoria, South Africa
Thomas Wilke Kiel, Germany
S�lawomir Zadrożny Warsaw, Poland
Binhai Zhu Bozeman, USA

External Reviewers

Andy Adamatzky
Frédéric Alexandre
Marco Antoniotti
Paolo Baldan
Miklos Bartha
Henrik Björklund
Guillaume Blin
Benedikt Bollig
Olivier Bournez
Patricia Bouyer-Decitre
Roberto Bruni
Giusi Castiglione
Loek Cleophas
Thomas Colcombet
Carsten Damm
Stéphane Demri
Alberto Dennunzio
Chiara Epifanio
Patricia Evans
Fabio Farina
Dominik Freydenberger
Fabio Gadducci

Olivemarie Garland
Laura Giambruno
Stefan Haar
Peter Habermehl
Serge Haddad
Vesa Halava
Yo-Sub Han
Tero Harju
Ulrich Hertrampf
Mika Hirvensalo
Norbert Hundeshagen
Florent Jacquemard
Asher Kach
Akinori Kawachi
Derrick Kourie
Manfred Kudlek
Manfred Kufleitner
Marco Kuhlmann
Martin Kutrib
Anna-Lena Lamprecht
Jürn Laun
Cédric Lauradoux

Organization IX

Alexander Lauser
Aurélien Lemay
Peter Leupold
Christof Loeding
Remco Loos
Florin Manea
Sebastian Maneth
Sabrina Mantaci
Daniel Marx
Tomáš Masopust
Olivier Michel
Anna Monreale
Hossein Nevisi
Joachim Niehren
Tobias Nipkow
Steven Normore
Alexander Okhotin
Matteo Palmonari
Hannu Peltola
Sylvain Perifel
Xiaoxue Piao
Przemys�law Prusinkiewicz
Svetlana Puzynina
Mathieu Raffinot
Pasi Rastas
Gwénaël Richomme
Vladimir Rogojin
Giovanna Rosone

Oliver Rüthing
Kalle Saari
David Sabel
Jacques Sakarovitch
Andrew Santosa
Saket Saurabh
Markus Schmid
Johannes C. Schneider
Thomas Schwentick
Stefan Schwoon
Marinella Sciortino
Joel Seiferas
Samvel Shoukourian
Seppo Sippu
Ralf Stiebe
Tinus Strauss
Cristina Tı̂rnăucă
Jorma Tarhio
Alain Terlutte
Dan Turetsky
Roberto Vaglica
Leonardo Vanneschi
György Vaszil
Stéphane Vialette
Marcel Vollweiler
Claudio Zandron
Martin Zimmermann

Organizing Committee

Adrian-Horia Dediu, Tarragona
Henning Fernau, Trier (Co-chair)
Maria Gindorf, Trier
Stefan Gulan, Trier
Anna Kasprzik, Trier
Carlos Mart́ın-Vide, Brussels (Co-chair)
Norbert Müller, Trier
Bianca Truthe, Magdeburg

Table of Contents

Invited Talks

Complexity in Convex Languages . 1
Janusz Brzozowski

Three Learnable Models for the Description of Language 16
Alexander Clark

Arbology: Trees and Pushdown Automata . 32
Bořivoj Melichar

Analysis of Communicating Automata . 50
Anca Muscholl

Regular Papers

Complexity of the Satisfiability Problem for a Class of Propositional
Schemata . 58

Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

A Simple n-Dimensional Intrinsically Universal Quantum Cellular
Automaton . 70

Pablo Arrighi and Jonathan Grattage

A Fast Longest Common Subsequence Algorithm for Similar Strings 82
Abdullah N. Arslan

Abelian Square-Free Partial Words . 94
Francine Blanchet-Sadri, Jane I. Kim, Robert Mercaş,
William Severa, and Sean Simmons

Avoidable Binary Patterns in Partial Words . 106
Francine Blanchet-Sadri, Robert Mercaş, Sean Simmons, and
Eric Weissenstein

Equivalence and Inclusion Problem for Strongly Unambiguous Büchi
Automata . 118

Nicolas Bousquet and Christof Löding

Pregroup Grammars with Letter Promotions . 130
Wojciech Buszkowski and Zhe Lin

A Hierarchical Classification of First-Order Recurrent Neural
Networks . 142

Jérémie Cabessa and Alessandro E.P. Villa

XII Table of Contents

Choosing Word Occurrences for the Smallest Grammar Problem 154
Rafael Carrascosa, François Coste, Matthias Gallé, and
Gabriel Infante-Lopez

Agreement and Cliticization in Italian: A Pregroup Analysis 166
Claudia Casadio

Geometricity of Binary Regular Languages . 178
Jean-Marc Champarnaud, Jean-Philippe Dubernard, and
Hadrien Jeanne

On the Expressive Power of FO[+] . 190
Christian Choffrut, Andreas Malcher, Carlo Mereghetti, and
Beatrice Palano

Finding Consistent Categorial Grammars of Bounded Value: A
Parameterized Approach . 202

Christophe Costa Florêncio and Henning Fernau

Operator Precedence and the Visibly Pushdown Property 214
Stefano Crespi Reghizzi and Dino Mandrioli

On the Maximal Number of Cubic Runs in a String 227
Maxime Crochemore, Costas Iliopoulos, Marcin Kubica,
Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń

On the Hamiltonian Operators for Adiabatic Quantum Reduction of
SAT . 239

William Cruz-Santos and Guillermo Morales-Luna

Parametric Metric Interval Temporal Logic . 249
Barbara Di Giampaolo, Salvatore La Torre, and Margherita Napoli

Short Witnesses and Accepting Lassos in ω-Automata 261
Rüdiger Ehlers

Grammar-Based Compression in a Streaming Model 273
Travis Gagie and Pawe�l Gawrychowski

Simplifying Regular Expressions: A Quantitative Perspective 285
Hermann Gruber and Stefan Gulan

A Programming Language Tailored to the Specification and Solution of
Differential Equations Describing Processes on Networks 297

Reinhard Hemmerling, Kataŕına Smoleňová, and Winfried Kurth

The Inclusion Problem for Regular Expressions . 309
Dag Hovland

Table of Contents XIII

Learnability of Automatic Classes . 321
Sanjay Jain, Qinglong Luo, and Frank Stephan

Untestable Properties Expressible with Four First-Order Quantifiers 333
Charles Jordan and Thomas Zeugmann

The Copying Power of Well-Nested Multiple Context-Free Grammars . . . 344
Makoto Kanazawa and Sylvain Salvati

Post Correspondence Problem with Partially Commutative
Alphabets . 356

Barbara Klunder and Wojciech Rytter

Reversible Pushdown Automata . 368
Martin Kutrib and Andreas Malcher

String Extension Learning Using Lattices . 380
Anna Kasprzik and Timo Kötzing

The Equivalence Problem of Deterministic Multitape Finite Automata:
A New Proof of Solvability Using a Multidimensional Tape 392

Alexander A. Letichevsky, Arsen S. Shoukourian, and
Samvel K. Shoukourian

Primitive Words are Unavoidable for Context-Free Languages 403
Peter Leupold

Modal Nonassociative Lambek Calculus with Assumptions: Complexity
and Context-Freeness . 414

Zhe Lin

Hard Counting Problems for Partial Words . 426
Florin Manea and Cătălin Tiseanu

Exact Analysis of Horspool’s and Sunday’s Pattern Matching
Algorithms with Probabilistic Arithmetic Automata 439

Tobias Marschall and Sven Rahmann

SA-REPC — Sequence Alignment with Regular Expression Path
Constraint . 451

Nimrod Milo, Tamar Pinhas, and Michal Ziv-Ukelson

CD-Systems of Stateless Deterministic R(1)-Automata Accept All
Rational Trace Languages . 463

Benedek Nagy and Friedrich Otto

A Boundary between Universality and Non-universality in Extended
Spiking Neural P Systems . 475

Turlough Neary

XIV Table of Contents

Using Sums-of-Products for Non-standard Reasoning 488
Rafael Peñaloza

Restarting Automata with Structured Output and Functional
Generative Description . 500

Martin Plátek, Frantǐsek Mráz, and Markéta Lopatková

A Randomized Numerical Aligner (rNA) . 512
Alberto Policriti, Alexandru I. Tomescu, and Francesco Vezzi

Language-Based Comparison of Petri Nets with Black Tokens, Pure
Names and Ordered Data . 524

Fernando Rosa-Velardo and Giorgio Delzanno

Verifying Complex Continuous Real-Time Systems with Coinductive
CLP(R) . 536

Neda Saeedloei and Gopal Gupta

Incremental Building in Peptide Computing to Solve Hamiltonian Path
Problem . 549

Muthiah Sakthi Balan and Parameswaran Seshan

Variable Automata over Infinite Alphabets . 561
Orna Grumberg, Orna Kupferman, and Sarai Sheinvald

Some Minimality Results on Biresidual and Biseparable Automata 573
Hellis Tamm

Extending Stochastic Context-Free Grammars for an Application in
Bioinformatics . 585

Frank Weinberg and Markus E. Nebel

Chomsky-Schützenberger-Type Characterization of Multiple
Context-Free Languages . 596

Ryo Yoshinaka, Yuichi Kaji, and Hiroyuki Seki

Complexity of Guided Insertion-Deletion in RNA-Editing 608
Hans Zantema

Author Index . 621

Complexity in Convex Languages

Janusz Brzozowski

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada N2L 3G1

brzozo@uwaterloo.ca

Abstract. A language L is prefix-convex if, whenever words u and w
are in L with u a prefix of w, then every word v which has u as a prefix
and is a prefix of w is also in L. Similarly, we define suffix-, factor-, and
subword-convex languages, where by subword we mean subsequence. To-
gether, these languages constitute the class of convex languages which
contains interesting subclasses, such as ideals, closed languages (includ-
ing factorial languages) and free languages (including prefix-, suffix-, and
infix-codes, and hypercodes). There are several advantages of studying
the class of convex languages and its subclasses together. These classes
are all definable by binary relations, in fact, by partial orders. Closure
properties of convex languages have been studied in this general frame-
work of binary relations. The problems of deciding whether a language is
convex of a particular type have been analyzed together, and have been
solved by similar methods. The state complexities of regular operations
in subclasses of convex languages have been examined together, with
considerable economies of effort. This paper surveys the recent results
on convex languages with an emphasis on complexity issues.

Keywords: automaton, bound, closed, complexity, convex, decision
problem, free, ideal, language, quotient, regular, state complexity.

1 Convex Languages

We begin by defining our terminology and notation. If Σ is a non-empty finite
alphabet, then Σ∗ is the free monoid generated by Σ. A word is any element of
Σ∗, and the empty word is ε. A language over Σ is any subset of Σ∗.

If u, v, w, x ∈ Σ∗ and w = uxv, then u is a prefix of w, x is a factor of w,
and v is a suffix of w. A prefix or suffix of w is also a factor of w. If w =
w0a1w1 · · · anwn, where a1, . . . , an ∈ Σ, and w0, . . . , wn ∈ Σ∗, then x = a1 · · · an

is a subword of w. Every factor of w is also a subword of w.

Definition 1. A language L is prefix-convex if u, w ∈ L with u a prefix of w
implies that every word v must also be in L if u is a prefix of v and v is a prefix
of w; L is prefix-free if w ∈ L implies that no prefix of w other than w is in L;
L is prefix-closed if w ∈ L implies that every prefix of w is in L; L is converse
prefix-closed if w ∈ L implies that every word that has w as a prefix is also in L.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 J. Brzozowski

In a similar way, we define suffix-convex, factor-convex, and subword-convex lan-
guages, and the corresponding free, closed, and converse closed versions.

A language is bifix-convex (respectively, bifix-free or bifix-closed) if it is both
prefix- and suffix-convex (respectively prefix- and suffix-free or prefix- and suffix-
closed). The class of bifix-closed languages coincides with the class of factor-
closed languages [1].

Definition 2. A language L ⊆ Σ∗ is a right ideal (respectively, left ideal, two-
sided ideal) if it is non-empty and satisfies L = LΣ∗ (respectively, L = Σ∗L,
L = Σ∗LΣ∗). A two-sided ideal which satisfies the condition L = Σ∗ L =⋃

a1···an∈L Σ∗a1Σ
∗ · · ·Σ∗anΣ∗, where is the shuffle operator, is called an all-

sided ideal. We refer to all four types as ideal languages or simply ideals.

Ideals and closed languages are related as follows [1]: A non-empty language is
a right ideal (respectively, left, two-sided, or all-sided ideal ideal) if and only if
its complement is not Σ∗ and is prefix-closed (respectively, suffix-, factor-, or
subword-closed).

Here is a brief history of the work on the class of convex languages and its
subclasses; for more details see [1]. To avoid making many definitions of other
authors’ terms, we use our own terminology when discussing previous results.

Sets that are closed with respect to an arbitrary reflexive and transitive bi-
nary relation were introduced in 1952 by Higman [15]. His results were redis-
covered several times in various contexts; a detailed account of this history was
given by Kruskal [19] in 1972. Left and right ideals were studied by Paz and
Peleg [22] in 1965 under the names “ultimate definite” and “reverse ultimate
definite events”. In 1969 Haines [12] examined subword-free, subword-closed
and converse subword-closed languages, and also used all-sided ideals. Subword-
convex languages were introduced by Thierrin [26] in 1973, who also studied
subword-closed and converse subword-closed languages. Subword-free languages
were studied by Shyr and Thierrin in 1974 under the name of hypercodes [25].
Suffix-closed languages were examined by Gill and Kou in 1974 [11]. Prefix-
free and suffix-free languages (codes) were studied in depth in the 1985 book
of Berstel and Perrin [2] and also in an updated version of the book [3]. In
1990, de Luca and Varricchio [20] observed that a language is factor-closed if
and only if it is the complement of a two-sided ideal. In 1991 Jürgensen and
Yu [17] studied codes that are free languages with respect to many binary rela-
tions, including the prefix, suffix, factor and subword relations; that paper also
contains additional references to codes. More information about codes can be
found in the 1997 article by Jürgensen and Konstantinidis [16]. In 2001 Shyr [24]
studied right, left, and two-sided ideals and their generators in connection with
codes.

Most of the material in this paper is based on recent work on convex lan-
guages [1,5,6,7,8,9,13,14,18,27,28]. The remainder of the paper is organized as
follows: In Section 2 we define convex languages in terms of partial orders. Clo-
sure properties of convex languages are discussed in Section 3. The complexity
of decision problems about convex languages is presented in Section 4. Quotient
complexity (which is equivalent to state complexity) is defined in Section 5.

Complexity in Convex Languages 3

The quotient complexity of boolean operations in convex languages is then cov-
ered in Section 6. Section 7 summarizes the known results for the complexity
of product, star, and reversal in convex languages. The special case of unary
convex languages is treated in Section 8. The complexity of operations in closed
and ideal language classes is discussed in Section 9, and Section 10 closes the
paper.

2 Languages Defined by Partial Orders

For further details on the material in this section see [1]. The relations used
in this paper to define classes of languages are all partial orders. Let � be an
arbitrary partial order on Σ∗. If u � v and u �= v, we write u � v. Let � be the
converse binary relation, that is, let u � v if and only if v � u.

Definition 3. A language L is �-convex if u�v and v�w with u, w ∈ L implies
v ∈ L. It is �-free if v � w and w ∈ L implies v �∈ L. It is �-closed if v � w and
w ∈ L implies v ∈ L. It is �-closed if v � w and w ∈ L implies v ∈ L.

For an arbitrary partial order � on Σ∗ and a language L ⊆ Σ∗, define the closure
�L and converse closure L� of L:

�L = {v ∈ Σ∗ | v � w for some w ∈ L},

L� = {v ∈ Σ∗ | w � v for some w ∈ L}.
The following are consequences of the definitions:

Proposition 1. Let � be an arbitrary partial order on Σ∗. Then

1. A language is �-convex if and only if it is �-convex.
2. A language is �-free if and only if it is �-free.
3. Every �-free language is �-convex.
4. Every �-closed language and every �-closed language is �-convex.
5. A language is �-closed if and only if its complement is �-closed.
6. A language L is �-closed (�-closed) if and only if L = �L (L = L�).

The following special cases are of interest to us:

– Let � denote the partial order “is a prefix of”. If � is �, then we get prefix-
convex, prefix-free, prefix-closed, and right ideal languages.

– Let � denote the partial order “is a suffix of”. If � is �, then we get suffix-
convex, suffix-free, suffix-closed, and left ideal languages.

– Let � denote the partial order “is a factor of”. If � is �, then we get factor-
convex, factor-free, factor-closed, and two-sided ideal languages.

– Let � denote the partial order “is a subword of”. If � is �, then we get
subword-convex, subword-free, subword-closed, and all-sided ideal languages.

4 J. Brzozowski

3 Closure Properties

This section is based on [1]. The following set operations are defined on lan-
guages: complement (L = Σ∗ \ L), union (K ∪ L), intersection (K ∩ L), differ-
ence (K \ L), and symmetric difference (K ⊕ L). A general boolean operation
with two arguments is denoted by K ◦ L. We also define the product, usually
called concatenation or catenation, (KL = {w ∈ Σ∗ | w = uv, u ∈ K, v ∈ L}),
star (L∗ =

⋃
i�0 Li), and positive closure (L+ =

⋃
i�1 Li). The reverse wR of a

word w ∈ Σ∗ is defined as follows: εR = ε, and (wa)R = awR. The reverse of
a language L is denoted by LR and defined as LR = {wR | w ∈ L}. The left
quotient of a language L by a word w is the language Lw = {x ∈ Σ∗ | wx ∈ L}.
The right quotient of L by w is the language {x ∈ Σ∗ | xw ∈ L}.

It was shown in [1] that closure properties of convex languages can be studied
in a common framework of binary relations. We now give some examples.

Example 1. In this example there are no conditions on the partial order �. If
K, L ⊆ Σ∗ are �-convex (�-free, or �-closed), then so is M = K ∩L. It follows
then that prefix-, suffix-, factor-, and subword-convex classes are closed under
intersection, as are the corresponding free and closed versions.

Example 2. Here a condition on the partial order � is needed. A partial order
� is factoring if x � y1y2 implies that x = x1x2 for some x1, x2 ∈ Σ∗ such that
x1 � y1, x2 � y2. If � is factoring and K and L are �-closed, then so is KL. One
then verifies that � , � , � and � are factoring. From this it follows that the
prefix-, suffix-, factor-, and subword-closed classes are closed under product.

Table 1 summarizes the closure results. In case closure holds only for some of
the relations, these relations are specified in the table. In [1] it was incorrectly
stated that free languages are closed under inverse homomorphism.

Table 1. Closure in classes defined by prefix, suffix, factor, and subword relations

convex closed converse closed free

intersection yes yes yes yes
union no yes yes no
complement no no no no
product no yes yes yes
Kleene star no yes no no
positive closure no yes yes no
left quotient prefix prefix prefix prefix

subword subword subword subword
right quotient suffix suffix suffix suffix

subword subword subword subword
homomorphism no no no no
inverse homomorphism yes yes yes no

Complexity in Convex Languages 5

4 Complexity of Decision Problems

The results of this section are from [8]. Regular languages over an alphabet Σ are
languages that can be obtained from the basic languages ∅, {ε}, and {a}, a ∈ Σ,
using a finite number of operations of union, product and star. Such languages
are usually denoted by regular expressions. If E is a regular expression, then
L(E) is the language denoted by that expression. For example, E = (ε ∪ a)∗b
denotes L = ({ε} ∪ {a})∗{b}. We use the regular expression notation for both
expressions and languages. In contrast to other authors, we prefer to use the
same operator symbol in expressions as in languages. Thus ∪ denotes union,
juxtaposition denotes product, and ∗ denotes the star.

A deterministic finite automaton (DFA) is a quintuple D = (Q, Σ, δ, q0, F),
where Q is a finite, non-empty set of states, Σ is a finite, non-empty alphabet,
δ : Q×Σ → Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q
is the set of final states.

As usual, a nondeterministic finite automaton (NFA) is a quintuple N =
(Q, Σ, η, S, F), where Q, Σ, and F are as in a DFA, η : Q × Σ → 2Q is the
transition function, and S ⊆ Q is the set of initial states. If η also allows ε as
input, then we call N an ε-NFA.

The following questions were studied in [8]: If a regular language L is specified
by a DFA, how difficult is it to decide whether L is prefix-, suffix-, factor-, or
subword-convex, or -free, or -closed?

The most difficult case is that of factor-convexity. To solve this problem we
test whether L is not factor-convex, in which case there exist u, v, w ∈ Σ∗, such
that u � v � w, with u, w ∈ L and v �∈ L. Then there exist u′, u′′, v′, v′′ such
that v = u′uu′′ and w = v′vv′′ = v′u′uu′′v′′.

Suppose D = (Q, Σ, δ, q0, F) is a DFA accepting L. We define an ε-NFA
N = (Q′, Σ, δ′, {q′0}, F ′), where Q′ = Q×Q×Q×{1, 2, 3, 4, 5}, q′0 = [q0, q0, q0, 1],
F ′ = F × (Q\F)×F ×{5}, and δ′ is defined below. States of N are quadruples,
where components 1, 2, and 3 keep track of the state of N as it is processing w,
v, and u, (respectively). The last component represents the mode of operation
of N .

The ε-NFA starts with the first three components in the initial state q0, and
the fourth in mode 1. Recall that the input string we are examining has the form
w = v′u′uu′′v′′. The automatonN operates in mode 1 for a while, reading the in-
put only in component 1 using δ′([p, q0, q0, 1], a) = {[δ(p, a), q0, q0, 1]}, for all p ∈
Q, a ∈ Σ. Then it guesses nondeterministically that it has finished reading v′,
and switches to mode 2 using δ′([p, q0, q0, 1], ε) = {[p, q0, q0, 2]}, for all p ∈
Q. In mode 2, component 1 continues to read the input u′uu′′v′′ from the
state reached by v′, while component 2 reads that input from state q0 us-
ing δ′([p, q, q0, 2], a) = {[δ(p, a), δ(q, a), q0, 2]}, for all p, q ∈ Q, a ∈ Σ. At some
point N guesses that u′ has been read and switches to mode 3 using the rule
δ′([p, q, q0, 2], ε) = {[p, q, q0, 3]}, for all p, q ∈ Q. Now all three components read
the input uu′′v′, the first starting from the state reached by v′u′, the second
from the state reached by u′ and the third from q0, using δ′([p, q, r, 3], a) =
{[δ(p, a), δ(q, a), δ(r, a), 3]}, for all p, q, r ∈ Q, a ∈ Σ. A guess is then made

6 J. Brzozowski

using δ′([p, q, r, 3], ε) = {[p, q, r, 4]}, for all p, q, r ∈ Q, that u has been read. In
mode 4, component 3 stops reading since its job was to read u, and that has been
done. The first two components continue to read u′′v′′, using δ′([p, q, r, 4], a) =
{[δ(p, a), δ(q, a), r, 4]}, for all p, q, r ∈ Q, a ∈ Σ. Then N guesses that u′′ has
been read, using δ′([p, q, r, 4], ε) = {[p, q, r, 5]}, for all p, q, r ∈ Q. Now com-
ponent 2 has finished reading v, and only component 1 continues to read the
input v′′ in mode 5, to finish processing w; this uses the rule δ′([p, q, r, 5], a) =
{[δ(p, a), q, r, 5]}, for all p, q, r ∈ Q, a ∈ Σ. The input w is accepted by N if and
only if u, w ∈ L and v �∈ L. Hence L is factor-convex if and only if N accepts
the empty language.

One verifies that N has 3n3 + n2 + n reachable states and (3|Σ| + 2)n3 +
(|Σ|+1)(n2 +n) transitions, where |Σ| is the cardinality of Σ. Since we can test
for the emptiness of the language accepted by N using depth-first search in time
linear in the size of N , we can decide if a given regular language L accepted by
a DFA with n states is factor-convex in O(n3) time, assuming |Σ| is a constant.

To test for prefix-convexity of L, we construct an ε-NFA N that checks
whether any word of the form w = uu′u′′ is accepted, where u, w ∈ L and
v = uu′ �∈ L. Then L is prefix-convex if and only if N accepts the empty lan-
guage. This construction is very similar to that for factor convexity, and the
decision about prefix-convexity can also be done in O(n3) time.

For suffix convexity of L, we construct N to test whether w = u′′u′u is
accepted, where u, w ∈ L and v = u′u �∈ L. This can be done in O(n3) time.

For subword convexity we use an NFA N = (Q′, Σ, δ′, q′0, F
′), where Q′ =

Q×Q×Q, q′0 = [q0, q0, q0], F ′ = F × (Q \ F)× F , and

δ′([p, q, r], a) = {[δ(p, a), q, r], [δ(p, a), δ(q, a), r], [δ(p, a), δ(q, a), δ(r, a)]},

for all p, q, r ∈ Q and a ∈ Σ. The test can again be done in O(n3) time.
The properties of closure, freeness and converse closure can be decided in

O(n2) time using similar methods.
A related problem studied in [8] is to find the length of a shortest word

(witness) demonstrating that a language is not convex, not closed or not free. The
results summarized in Table 2 are best possible, except in the case of subword
convexity, where it is not known whether the bound can be reached.

The complexities of the convexity, closure, and freeness decision problems
under the assumption that the language is specified by other means are also
considered in [8]. For languages specified by NFA’s or regular expressions, the

Table 2. Sizes of shortest witnesses denying convexity, closure and freeness

convexity closure freeness
factor Θ(n3) Θ(n2) Θ(n2)
prefix 2n − 1 n 2n − 1
suffix Θ(n3) Θ(n2) Θ(n2)
subword 3n − 2 n 2n − 1

Complexity in Convex Languages 7

convexity and closure problems are PSPACE-complete, but for an NFA with n
states and t transitions, freeness can be decided in O(n2+t2) time. For additional
references to these problems, see the bibliography in [8].

5 Quotient Complexity

For a detailed discussion of general issues concerning state and quotient com-
plexity see [5,27] and the reference lists in those papers.

The quotient complexity of L is the number of distinct left quotients of L,
and is denoted by κ(L). From now on we refer to left quotients simply as
quotients.

We now describe the computation of quotients of a regular language. First, the
ε-function Lε of a regular language L is equal to ε if ε ∈ L, and to ∅ otherwise.
The quotient by a letter a in Σ is computed by structural induction: ba = ∅ if
b ∈ {∅, ε} or b ∈ Σ and b �= a, and ba = ε if b = a; (L)a = La; (K ∪ L)a =
Ka∪La; (KL)a = KaL∪KεLa; (K∗)a = KaK∗. The quotient by a word w ∈ Σ∗

is computed by induction on the length of w: Lε = L; Lw = La if w = a ∈ Σ;
and Lwa = (Lw)a. Quotients computed this way are indeed the left quotients of
L [4,5]. A quotient Lw is accepting if ε ∈ Lw; otherwise it is rejecting.

The quotient automaton of a regular language L is D = (Q, Σ, δ, q0, F), where
Q = {Lw | w ∈ Σ∗}, δ(Lw, a) = Lwa, q0 = Lε = L, F = {Lw | Lε

w = ε},
and Lε

w = (Lw)ε. So the number of states in the quotient automaton of L is
the quotient complexity of L. The state complexity of a regular language L is
the number of states in the minimal DFA recognizing L. Evidently, the quotient
complexity of L is equal to state complexity of L.

The quotient complexity of a regular operation in Q is defined as the worst case
size of the quotient automaton for the language resulting from the operation,
taken as a function of the quotient complexities of the operands in Q.

Although quotient and state complexities are equal, there are advantages in
using quotients. The following formulas [4,5] for quotients of regular languages
can be used to establish upper bounds on quotient complexity of operations:

Proposition 2. If K and L are regular languages, u, v ∈ Σ+, w ∈ Σ∗, then

(L)w = Lw, (K ◦ L)w = Kw ◦ Lw, (1)

(KL)w = KwL ∪KεLw ∪ (
⋃

w=uv

Kε
uLv), (2)

(L∗)ε = ε ∪ LL∗, (L∗)w = (Lw ∪
⋃

w=uv

(L∗)ε
uLv)L∗ for w ∈ Σ+. (3)

In the sequel we consider the quotient complexity of operations in various classes
of convex languages.

8 J. Brzozowski

6 Quotient Complexity of Boolean Operations

Table 3 shows the complexities of union and intersection. The results are from
the following sources: regular languages [28] (for union of regular languages see
also [21]), ideals [6], closed languages [7], prefix-free languages [14], suffix-free
languages [13], and the other free languages [9]. Since the complexity of union
for all four types of closed languages and for regular languages is mn, we have
the same complexity for all four types of convex languages. Similarly, since the
complexity of intersection for all four types of ideal languages and for regular
languages is mn, we have the same complexity for all four types.

Table 3. Complexities of union and intersection

K ∪ L K ∩ L

right, two-sided, all-sided ideals mn − (m + n − 2) mn
left ideals mn mn

prefix-, factor-, subword-closed mn mn − (m + n − 2)
suffix-closed mn mn

prefix-free mn − 2 mn − 2(m + n − 3)
suffix-free mn − (m + n − 2) mn − 2(m + n − 3)
bifix-, factor-, subword-free mn − (m + n) mn − 3(m + n − 4)
convex mn mn

regular mn mn

Table 4 shows the results for difference and symmetric difference.

Table 4. Complexities of difference and symmetric difference

K \ L K ⊕ L

right, two-sided, all-sided ideals mn − (m − 1) mn
left ideals mn mn

prefix-, factor-, subword-closed mn − (n − 1) mn
suffix-closed mn mn

prefix-free mn − (m + 2n − 4) mn − 2
suffix-free mn − (m + 2n − 4) mn − (m + n − 2)
bifix-, factor-, subword-free mn − (2m + 3n − 9) mn − (m + n)
convex mn mn

regular mn mn

The sources for the difference operations are: regular languages [5], ideals [6],
closed languages [7], and free languages [9]. Since the complexity of symmetric
difference for all four types of closed languages and for regular languages is mn,
we have the same complexity for all four types.

Since the complexity of difference for suffix-closed languages and for regular
languages is mn, we have the same complexity for suffix-convex languages. This

Complexity in Convex Languages 9

leaves the difference of the other three types of convex languages, which we now
address.

Proposition 3. If K and L are prefix-convex (respectively, factor-convex or
subword-convex) with κ(K) = m and κ(L) = n, then κ(K \ L) � mn, and this
bound is tight if |Σ| � 2.

Proof. Let Σ = {a, b}, K = (b∗a)m−1Σ∗ = Σ∗ am−1 and L = (a∗b)n−1Σ∗ =
Σ∗ bn−1. Then K and L are all-sided ideals and L is subword-closed. Thus
both K and L are subword-convex, and we know from [6] that κ(K ∩L) = mn;
thus κ(K \ L) = mn. �
In summary, the complexities of all four boolean operations in all four classes of
convex languages are mn.

7 Complexities of Product, Star and Reversal

Table 5 shows the results for product, star, and reversal. In the product column,
k denotes the number of accepting quotients of K. The sources are: regular
languages [21,28], ideals [6], closed languages [7], prefix-free languages [14], suffix-
free languages [13], and the other free languages [9]. The bounds for convex
languages are still open.

Table 5. Complexities of product, star and reversal

KL L∗ LR

right ideals m + 2n−2 n + 1 2n−1

left ideals m + n − 1 n + 1 2n−1 + 1
two-sided, all-sided ideals m + n − 1 n + 1 2n−2 + 1
prefix-closed (m + 1)2n−2 2n−2 + 1 2n−1

suffix-closed (m − k)n + k n 2n−1 + 1
factor-, subword-closed m + n − 1 2 2n−2 + 1
prefix-free m + n − 2 n 2n−2 + 1
suffix-free (m − 1)2n−2 + 1 2n−2 + 1 2n−2 + 1
bifix-, factor-, subword-free m + n − 2 n − 1 2n−3 + 2
regular m2n − k2n−1 2n−1 + 2n−2 2n

8 Unary Convex Languages

Because product is commutative for unary languages, they have very special
properties. Here, the concepts of prefix, suffix, factor, and subword all coincide.
Therefore we can discuss convex unary languages in the terminology of prefix-
convex languages. Let Σ = {a}, and suppose that L ⊆ Σ∗ is prefix-convex.
If L is infinite and its shortest word is ai, then L = aia∗. If L is finite, then
L = ai ∪ ai+1 ∪ · · · ∪ aj , for 0 � i � j.

10 J. Brzozowski

If L is a unary right ideal with shortest word ai, i � 0, then L = aia∗.
If L is unary and prefix-closed, then it is L = a∗, or L = {ε, a, . . . , ai}, i � 0.
If L is unary and prefix-free, then it is L = ai, for some i � 0.
Table 6 shows the complexities of boolean operations. Here κ(K) = m, and

κ(L) = n. The results for the union and intersection of regular unary languages
are from [27]; for difference and symmetric difference see [5]. The bounds for
boolean operations on convex languages are all max(m, n). For example, if K =
ai ∪ai+1 ∪ · · · ∪am−2 and L = aj ∪aj+1 ∪ · · · ∪an−2, then κ(K) = m, κ(L) = n,
and κ(K ∪ L) = max(m, n). If K = am−1a∗ and L = an−1a∗, then κ(K) = m,
κ(L) = n, and κ(K ∩ L) = max(m, n).

Table 6. Complexity of boolean operations on unary convex languages

K ∪ L K ∩ L K \ L K ⊕ L

unary ideal min(m,n) max(m, n) n max(m,n)
unary closed max(m, n) min(m,n) m max(m,n)
unary free max(m, n) m = n m max(m,n)
unary convex max(m, n) max(m, n) max(m, n) max(m,n)
unary regular mn mn mn mn

The complexities of product, star and reversal are given in Table 7. The results
for these operations on regular unary languages are from [28]. The bound for the
star of a unary convex language is derived below.

Table 7. Complexity of product, star and reversal on unary convex languages

KL L∗ LR

unary ideal m + n − 1 n − 1 n
unary closed m + n − 2 2 n
unary free m + n − 2 n − 2 n

unary convex m + n − 1 n2 − 7n + 13 n

unary regular mn n2 − 2n + 2 n

Proposition 4. If L is a unary convex language with κ(L) = n, then κ(L∗) �
n2 − 7n + 13, and the bound is tight if n � 5.

Proof. If L = ∅, then κ(L∗) = 2.
If L is infinite, then it has the form L = an−1a∗, and κ(L) = n. If n = 1, then

L = a∗ = L∗, and κ(L∗) = 1. If n = 2, then L = aa∗ and L∗ = a∗ again. For
n > 2, L∗ = ε ∪ an−1a∗, and κ(L∗) = n.

Now consider the case where L consists of only one word. If L = ε, then κ(L) =
2, L∗ = ε, and κ(L∗) = 2. If L = a, then κ(L) = 3, L∗ = a∗, and κ(L∗) = 1. If
L = an−2, for n � 4, then κ(L) = n, L∗ = (an−2)∗, and κ(L∗) = n− 2.

Next suppose that L is finite, and contains at least two words. Then L has
the form L = ai ∪ ai+1 ∪ · · · ∪ an−2. If a ∈ L, then L∗ = a∗, and κ(L∗) = 1.

Complexity in Convex Languages 11

Hence assume that i � 2, which implies that n � 5. The integers i and j = i + 1
are relatively prime, and the largest integer k that cannot be expressed as a
non-negative linear combination of i and j is the Frobenius number [23] of i and
j, which is ij− i− j = i2− i−1. This means that ai2−i−1 �∈ (ai∪aj)∗ ⊆ L∗, and
ai2−ia∗ ⊆ L∗. If we add words of length greater than j, the length of the longest
word not in L∗ can only decrease. Hence the worst case for the complexity of L∗

occurs when L = an−3∪an−2. Here κ(L∗) = (n−3)(n−2)−(n−3+n−2)+2 =
n2 − 7n + 13. �

9 Closed and Ideal Language Classes

Let L be the class of left ideals, and let L∅ = L ∪ {∅}. The class L∅ has been
studied by Paz and Peleg [22] under the name ultimate definite events. They
observed that, if I is some index set and Li are left ideals, then

⋃
i∈I Li and⋂

i∈I Li left ideals as well. They also showed the following:

Proposition 5. The algebra L = (L∅,∪,∩, ∅, Σ∗) is a complete lattice with
least element ∅ and greatest element Σ∗. Moreover, (L∅, ·, ∅) is a semigroup with
zero ∅, and L∅ is closed under positive closure.

Now let S be the class of suffix-closed languages. Then we have:

Proposition 6. The algebra L′ = (S,∩,∪, Σ∗, ∅) is a complete lattice, and it is
isomorphic to L, with complementation acting as the isomorphism. Moreover,
the algebra (S, ·, {ε}, ∅) is a monoid with unit {ε} and zero ∅, and S is closed
under star.

Proposition 7. The algebra L′′ = (L∅ ∪ S, ·, {ε}, ∅) is a monoid with unit {ε}
and zero ∅, and L∅ ∪ S is closed under complementation.

Proof. We need only verify that L′′ is closed under product. First, suppose that
one of K and L is ∅; then KL = ∅ and ∅ is in L∅ ∩ S. Hence assume that K and
L are non-empty. Because we know that L and S are closed under product, we
only need to consider the cases KL, where K is a left ideal and L is suffix-closed
or vice versa. In the first case, KL = Σ∗KL is a left ideal. In the second case,
since K is closed, it contains ε; thus KL ⊇ L. But we also have KL ⊆ Σ∗L = L.
Hence KL = L = Σ∗L is a left ideal. �
If R is the class of right ideals, let R∅ = R ∪ {∅}, and let P be the class of
prefix-closed languages. Then results analogous to Propositions 5–7 also hold for
the algebras (R∅,∪,∩, ∅, Σ∗), (R∅, ·, ∅), (P,∩,∪, Σ∗, ∅), (P, ·, {ε}, ∅), and (R∅ ∪
P, ·, {ε}, ∅). Similar statements hold for the class T of two-sided ideals with the
class F of factor-closed languages, and the class A of all-sided ideals with the
class W of subword-closed languages.

The close relationship between ideals and closed languages is reflected in quo-
tient complexity. If we know the complexity κ(K∩L), where K and L are ideals,
then we also know κ(K ∩L) = κ(K ∪ L) = κ(K ∪L), where K and L are closed

12 J. Brzozowski

PC

W∪,⊕

S ∩, \

T

R L∪, \

A∩,⊕

F

P

convex

idealclosed

W ∪ A \

SC

BC

FC

WC

Fig. 1. Maximal complexities for boolean operations on convex languages

languages, and vice versa. Similar statements hold for the other boolean oper-
ations. Also, since reversal commutes with complementation, the complexities
of the reversal of ideal languages are identical to those of closed languages. In
Fig. 1, PC, SC, BC, FC, and WC stand for prefix-, suffix-, bifix-, factor-, and
subword-convex languages, respectively.

The figure shows how the maximal bound mn for boolean operations can be
reached in the convex hierarchy. For symmetric difference, it is reached at the
bottom of both the closed and the ideal hierarchies. For union, it is reached in
subword-closed languages in the closed hierarchy, but we have to go as high as
left ideals in the ideal hierarchy. Intersection is dual to union, as shown in the
figure. For difference, we can either go as high as suffix-closed languages or left
ideals, or we can reach the bound in W ∪ A, as witnessed by the languages in
the proof of Proposition 3.

Since star and reversal are unary, the complexity of each of these operations
in the union of a closed class with the corresponding ideal class is the maximum
of the complexities in the closed and the ideal classes. This also holds for the
product, as we now show.

Proposition 8. If K ⊆ Σ∗ and L ⊆ Σ∗ are languages with κ(K) = m, κ(L) =
n, and k is the number of accepting quotients of K; then the following hold:

1. If K, L ∈ L∅ ∪ S, then κ(KL) � (m− k)n + k, and the bound is tight in S.
2. If K, L ∈ R∅ ∪ P, then κ(KL) � (m + 1)2n−2, and the bound is tight in P.
3. If K, L ∈ T∅∪F, then κ(KL) � m+n−1, and the bound is tight in T and F.
4. If K, L ∈ A∅ ∪W, then κ(KL) � m + n− 1; the bound is tight in A and W.

Complexity in Convex Languages 13

Proof. The case when one of K and L is empty is trivial.

1. Consider the product of a left ideal K with a suffix-closed language L. It
was shown in [7] that, for any language K and a suffix-closed language L,
κ(KL) � (m − k)n + k, and that this bound is met by K and L that are
both suffix-closed.

In case K is suffix-closed and L is a left ideal, then KL = L, as we have
shown in the proof of Proposition 7. Hence κ(KL) = n, which is less than
the complexities in L and S.

2. If K is a right ideal and L is prefix-closed, then KL = K by an argument
similar to that in the proof of Proposition 7. So κ(KL) = m, which is smaller
than the bounds in R and P.

If K is prefix-closed and L is a right ideal, then ε ∈ K. Note that a
prefix-closed language is either Σ∗ or has ∅ as a quotient. In the first case,
KL = Σ∗LΣ∗ and κ(KL) � 2n−2 + 1 [6], which is smaller than the bounds
in R and P. Now assume that K �= Σ∗, which implies that K has m − 1
accepting quotients and ∅.

If Kw is accepting, then so is Ku for every prefix u of w. From Equation (2),
(KL)w = KwL∪Lw∪(

⋃
w=uv Lv). Then each quotient of KL is determined by

a quotient of K and a union of quotients of L that always contains L. Because
L has Σ∗ as a quotient, 2n−1 unions are equal to Σ∗. Thus for each accepting
quotient of K we have 2n−2 possible unions plus Σ∗. Altogether there are at
most (m− 1)2n−2 + 1 quotients of KL of this type.

If Kw = ∅ is the one rejecting quotient of K, then (KL)w is a union of
quotients of L, which is non-empty because of Lw. Since unions that contain
Σ∗ have already been taken into account, we have (2n−1 − 1) additional
quotients, for a total of at most (m+1)2n−2. This bound is reached in P [7].

3. If K is a two-sided ideal and L is factor-closed, then KL = K. If K is factor-
closed and L is a two-sided ideal, then KL = L. In either case, this bound
is lower than the bound in T and F.

4. The argument of the last case works here as well. �
Given any language L of complexity n, it is natural to ask what is the worst-case
complexity of the prefix-closure of L and the converse prefix-closure of L, which
is the right ideal generated by L. The same questions apply to the other closed
languages. The results [6,18] for these two closures are summarized in Table 8.

The complexities of ideals in terms of their minimal generators and of minimal
generators in terms of ideals are also discussed in [6].

Table 8. Complexities of closure and converse closure

closure converse closure
prefix relation n n
suffix relation 2n − 1 2n−1

factor relation 2n−1 2n−2 + 1
subword relation 2n−2 + 1 2n−2 + 1

14 J. Brzozowski

10 Conclusions

It has been demonstrated that the class of convex languages and its subclasses are
interesting from several points of view, and that studying these classes together
is very worthwhile.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research
Council of Canada under Grant No. OGP000871.

I am grateful to Galina Jirásková for a very careful reading of the manuscript,
and to Jeff Shallit for the reference to Frobenius numbers.

References

1. Ang, T., Brzozowski, J.: Languages convex with respect to binary relations, and
their closure properties. Acta Cybernet. 19(2), 445–464 (2009)

2. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, London (1985)
3. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Encyclopedia of

Mathematics and its Applications. Cambridge University Press, Cambridge (2010)
4. Brzozowski, J.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
5. Brzozowski, J.: Quotient complexity of regular languages. In: Dassow, J.,

Pighizzini, G., Truthe, B. (eds.) Proceedings of the 11th International Workshop
on Descriptional Complexity of Formal Systems, Magdeburg, Germany, Otto-von-
Guericke-Universität, pp. 25–42 (2009), Extended abstract at
http://arxiv.org/abs/0907.4547

6. Brzozowski, J., Jirásková, G., Li, B.: Quotient complexity of ideal languages. In:
López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 208–221. Springer, Hei-
delberg (2010)

7. Brzozowski, J., Jirásková, G., Zou, C.: Quotient complexity of closed languages. In:
Proceedings of the 5th International Computer Science Symposium in Russia, CSR.
LNCS, Springer, Heidelberg (to appear, 2010), http://arxiv.org/abs/0912.1034

8. Brzozowski, J., Shallit, J., Xu, Z.: Decision problems for convex languages. In:
Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457,
pp. 247–258. Springer, Heidelberg (2009)

9. Brzozowski, J., Smith, J.: Quotient complexity of bifix-, factor-, and subword-free
languages (In preparation)

10. Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic oper-
ations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS,
vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

11. Gill, A., Kou, L.T.: Multiple-entry finite automata. J. Comput. Syst. Sci. 9(1),
1–19 (1974)

12. Haines, L.: On free monoids partially ordered by embedding. J. Combin. The-
ory 6(1), 94–98 (1969)

13. Han, Y.S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theoret. Comput. Sci. 410(27-29), 2537–2548 (2009)

http://arxiv.org/abs/0907.4547
http://arxiv.org/abs/0912.1034

Complexity in Convex Languages 15

14. Han, Y.S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free
regular languages. In: Ésik, Z., Fülöp, Z. (eds.) Automata, Formal Languages, and
Related Topics, pp. 99–115. University of Szeged, Hungary (2009)

15. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math.
Soc. 3(2), 326–336 (1952)

16. Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, Word, Language, Grammar, vol. 1, pp. 511–607.
Springer, Heidelberg (1997)

17. Jürgensen, H., Yu, S.S.: Relations on free monoids, their independent sets, and
codes. Internat. J. Comput. Math. 40, 17–46 (1991)

18. Kao, J.Y., Rampersad, N., Shallit, J.: On NFAs where all states are final, initial,
or both. Theoret. Comput. Sci. 410(47-49), 5010–5021 (2009)

19. Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept.
J. Combin. Theory A 13(3), 297–305 (1972)

20. de Luca, A., Varricchio, S.: Some combinatorial properties of factorial languages. In:
Capocelli, R. (ed.) Sequences: Combinatorics, Compression, Security, and Trans-
mission, pp. 258–266. Springer, Heidelberg (1990)

21. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk SSSR 194, 1266–1268 (1970) (Russian); English translation: Soviet Math.
Dokl. 11, 1373–1375 (1970)

22. Paz, A., Peleg, B.: Ultimate-definite and symmetric-definite events and automata.
J. ACM 12(3), 399–410 (1965)

23. Ramı́rez Alfonśın, J.L.: The Diophantine Frobenius Problem. Oxford Lectures Se-
ries in Mathematics and its Applications, vol. 30. Oxford University Press, Oxford
(2005)

24. Shyr, H.J.: Free Monoids and Languages. Hon Min Book Co., Taiwan (2001)
25. Shyr, H.J., Thierrin, G.: Hypercodes. Information and Control 24, 45–54 (1974)
26. Thierrin, G.: Convex languages. In: Nivat, M. (ed.) Automata, Languages and

Programming, pp. 481–492. North-Holland, Amsterdam (1973)
27. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234

(2001)
28. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)

Three Learnable Models
for the Description of Language

Alexander Clark

Department of Computer Science,
Royal Holloway, University of London

Egham TW20 0EX
alexc@cs.rhul.ac.uk

Abstract. Learnability is a vital property of formal grammars: repre-
sentation classes should be defined in such a way that they are learnable.
One way to build learnable representations is by making them objective
or empiricist: the structure of the representation should be based on the
structure of the language. Rather than defining a function from repre-
sentation to language we should start by defining a function from the
language to the representation: following this strategy gives classes of
representations that are easy to learn. We illustrate this approach with
three classes, defined in analogy to the lowest three levels of the Chomsky
hierarchy. First, we recall the canonical deterministic finite automaton,
where the states of the automaton correspond to the right congruence
classes of the language. Secondly, we define context free grammars where
the non-terminals of the grammar correspond to the syntactic congruence
classes, and where the productions are defined by the syntactic monoid;
finally we define a residuated lattice structure from the Galois connec-
tion between strings and contexts, which we call the syntactic concept
lattice, and base a representation on this, which allows us to define a
class of languages that includes some non-context free languages, many
context-free languages and all regular languages. All three classes are
efficiently learnable under suitable learning paradigms.

1 Introduction

“Formal language theory was first developed in the mid 1950’s in an
attempt to develop theories of natural language acquisition.”

This statement, in [18], may not be entirely accurate historically, but the point it
makes is valid: language theory has its roots in the modelling of learning and of
language. The very name of language theory betrays its origins in linguistics. Yet
it has moved far from its origins – formal language theory is now an autonomous
part of computer science, and only a few papers at the major conferences in
Formal Language Theory (FLT) are directly concerned with linguistics. From
time to time, the requirements of linguistics impinge on FLT – for example,
the discovery of non-context free natural languages [32] inspired much study in

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 16–31, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Three Learnable Models for the Description of Language 17

mildly context sensitive grammar formalisms; Minimalist grammars are a direct
offshoot of interest in Chomsky’s Minimalist Program [5]; and so on.

Learnability is another aspect which has been put to one side. As a model of
language acquisition, the original intention was for phrase-structure grammars
to be learnable. The PSGs were meant to represent, at a suitable level of ab-
straction, the linguistic knowledge of the language that the child learner could
infer from his or her exposure to the ambient linguistic environment. Chomsky
[6] says (p. 172, footnote 15):

The concept of “phrase structure grammar” was explicitly designed to
express the richest system that could reasonable be expected to result
from the application of Harris-type procedures to a corpus. . . .

The “Harris-type procedures” refer to the methods of distributional learning de-
veloped and partially formalised by Zellig Harris [17] following on the ideas of
earlier American structuralist linguists. So PSGs in general, and CFGs in par-
ticular, were intended, were designed, to be learnable by distributional methods
— but they weren’t. Even the class of regular grammars, equivalent to non-
deterministic finite state automata, is not learnable under very easy learning
schemes [2]. This is not a problem for distributional methods, but rather a prob-
lem with these formalisms. The natural question is therefore whether there are
other formalisms, different from the Chomsky hierarchy, that are learnable.

Before we answer this question it is a good idea to be clear about what we
mean by learning, and why we think it is so important. Informally learning
means that we want to construct our representations for the language from in-
formation about the language. From a formal point of view, this means that we
wish to define representations, and algorithms for constructing those represen-
tations from a source of information about the language, and prove, under a
suitable regime, that these algorithms will converge to the right answer. Given a
language L, we want to prove that the hypothesised representation will converge
to a representation G such that the language defined by G is equal to L. Our
focus in this paper is on the computational complexity of learning and so we will
assume that we have a very good source of information. We will assume that we
have a source of examples of strings from the language, and that additionally
the algorithm can query whether a particular string is in the language or not. In
the terminology of grammatical inference we have positive data and membership
queries. Under some assumptions this is sufficient to learn any class of languages
if we neglect computational issues – here we will be considering algorithms that
are efficient. For simplicity of exposition we will use a slightly inadequate for-
malisation: we will merely require that the algorithms use a polynomial amount
of computation, in the size of the observed data, at each step of the algorithm.

Of course, not all potential application areas of language theory are linguistic.
Linguistics might be considered a special case, where the representations are un-
known, as they are cognitive structures and as yet we cannot hope to probe their
natures directly. But it is worth considering where the grammars or representa-
tions of the languages come from in various other domains. There are broadly
speaking two cases: one where we have information about the language, but not

18 A. Clark

about the representation, and the second is where we have direct information
about the representation. In almost all the engineering cases we are interested in,
we will have some data that we want to model; in computational biology these
might be strings of bases or amino acids, or in other areas they might represent
sequences of actions by a robot or a human, or any other sequence of events.
But we do not know what the representation is – in none of these cases do we
have any direct information about the representation. Indeed, there is no “right”
representation, unlike in linguistics. There are merely models that fit the data
to a greater or lesser extent.

The only situation where this is not the case is where the language is a pro-
gramming language or mark up language – in that case, we know what the
structure of the language is. In almost all other cases, we will be using languages
to represent some sequence of symbols or events, where the representation class
is unknown. In these cases, just as in the case of linguistics, learnability is not
a tangential property – it is absolutely essential. A representation without some
plausible story about how it can be acquired from data is of limited interest. Effi-
cient learning should, in our view, be as important a property of a representation
class as efficient parsing.

One way of modelling the data is for a domain expert to construct it by hand.
If they are written by a linguist then there are a number of clear desiderata.
The grammars should be concise and make it easy for the linguist to express
whatever generalisations he or she wishes; it should be easy for humans to rea-
son with consciously, and ideally have a nice graphical representation, perhaps
as a tree. Modularity is also a useful property. Following this path we end up
with grammatical formalisms being effectively just special-purpose declarative
programming languages: DATR [14] and to a lesser extent HPSG [29] are exam-
ples of this. There is no reason to think that such formalisms could be or should
be learnable. If, on the other hand, we consider the grammar to be the output of
a learning process, it need not be particularly convenient for humans to reason
about consciously. The properties of a formal grammar are thus radically differ-
ent, even diametrically opposed depending on whether we envisage them being
produced manually or automatically by a process of inference.

2 How

If we accept this argument, then the goal becomes clear – we should construct
representations that are intrinsically learnable. Putting this as a slogan: “Put
learnability first!” We should design representations from the ground up to be
learnable.

Here we present a number of different ways of doing this that follow the same
basic strategy: they are objective or “empiricist”. We define the representational
primitives of the formalism in a language theoretical way. The basic elements
of the formalism, whether they are states in an automaton, or non-terminals
in a phrase structure grammar, must have a clear definition in terms of sets of
strings, in a way that does not depend on the representation.

Three Learnable Models for the Description of Language 19

Rather than defining a representation, and then defining a function from the
representation to the language, we should go backwards. If we are interested first
in learnability, then we should start by defining the map from the language to
the representation. For example, in a CFG, we define a derivation relation ∗⇒;
for each non-terminal N we define the set of strings that can be derived from
that non-terminal: Y (N) = {w|N ∗⇒ w}. We then define the language as the set
of strings derived from the start symbol or symbols. Thus we define a function
from a non-terminal N , to a set of strings Y (N), and thus from the set of context
free grammars to the set of context free languages: from G to L(G).

There is however an insurmountable obstacle to going in the reverse direction:
Y (N) is almost completely unconstrained. Suppose we have some context free
language L, and a grammar G such that L(G) = L and N is a non-terminal in G.
What constraints are there on Y (N)? We can say literally nothing about this set,
other than that it is a context free language. If we restrict the CFG so that all
non-terminals are accessible, then it must be a subset of the set of substrings of L,
but beyond that we can’t say anything. Consider for example the degenerate case
when L is Σ∗. There are clearly many CFGs with one non-terminal that define
this language, but there are also infinitely many other ones, with non-terminals
that correspond to arbitrary context-free subsets of Σ∗. We need some way of
identifying some relevant subsets that will correspond to the primitive elements
of our representation. We should start by defining some suitable sets of strings;
only then can we construct a grammar. If we define some set of strings then the
structure of the representation will follow: given an objective definition of the
“reference” of the non-terminal or symbol, the derivation process will be fixed.

We will define three representations; we will start with a basic representation
that is quite standard, and turns out to be equivalent to a subclass of DFAs;
indeed to the canonical automata. In this case we base the representation on the
right congruence classes, as used in the Myhill-Nerode theorem. The next step
is to define context free grammars where the non-terminals correspond to the
syntactic congruence classes of the language; the third and final representation
uses what we call the syntactic concepts of the language – elements of a resid-
uated lattice – as the representational primitives, and the resulting formalism
can represent some non-context-free languages.

3 Canonical DFA

We will start by considering a classic case [16,4,11], where the learnability prob-
lems are well understood: the case of regular languages. We will end up with a
class of representations equivalent to a subclass of deterministic finite automata.
We present this standard theory in a slightly non-standard way in order to make
the step to the next class of representations as painless as possible.

We will define our notation as needed; we take a finite non-empty aphabet
Σ, and the free monoid Σ∗; we use λ to refer to the empty string. A language
is a subset of Σ∗. Let L be some arbitrary language; not necessarily regular,
or even computable. We define the residual language of a given string u as
u−1L = {w : uw ∈ L}.

20 A. Clark

Consider the following relation between strings: u ∼L v iff u−1L = v−1L. This
is an equivalence relation and additionally a right congruence: if u ∼L v then for
all w ∈ Σ∗, uw ∼L vw.

We can consider the equivalence classes under this relation: we will write [u]R

for the congruence class of the string u under this right congruence. It is better
to consider these classes not just as sets of strings but as pairs 〈P, S〉 where P is
a congruence class, and S is the residual language of all the strings in P . That
is to say we will have elements of the form 〈[u]R, u−1L〉. One important such
element is 〈[λ]R, L〉.

Suppose we define a representation that is based on these congruence classes.
Let us call these primitive elements of our representation states. The state
〈[λ]R, L〉 we will denote by q0. A few elementary observations: if u ∈ L then
every element of [u]R is also in L. We will call a state 〈P, S〉 such that λ ∈ S a
final state. Thus if we can tell for each string in the language which congruence
class it is in, then we will have predicted the language. Our representation will
be based on this idea: we will try to compute for each string w not just whether
it is in L but which congruence class it is in.

We have now taken the first step: we have defined the primitive elements of
the representation. We now need to define a derivation of some sort by exploiting
the algebraic structure of these classes, in particular the fact that they are right
congruence classes. Since it is a right congruence, if we have a string that we
know is in the congruence class [u]R and we append the string v we know that it
will be in the class [uv]R. Thus we have a “transition” from the state [u]R to the
state [uv]R labelled with the string v. It is clear that we can restrict ourselves
to the case where |v| = 1, i.e. where the transitions are labelled with letters.
We now have something that looks very like an automaton. We let Q be the,
possibly infinite set of all these states, q0 the initial state, δ a transition function
defined by δ([u]R, a) = [ua]R, and let F be the set of final states {[u]R|u ∈ L}.
We now define R(L) to be this, possibly infinite, representation. We have defined
a function from L to R(L).

We extend δ recursively in the standard way and then define the function
from the representation to the language L(R(L)) = {w : δ(q0, w) ∈ F}. Given
this, we have that for any language L, L(R(L)) = L. In a strict sense, this
“representation” is correct. Of course we are interested in those cases where we
have a finite representation, and R(L) will be finite if and only if L is regu-
lar, by the Myhill-Nerode theorem. Thus while we have that for any language
this representation is correct, we can only finitely represent the class of regular
languages.

It is possible to infer these representations for regular languages, using a num-
ber of different techniques depending on the details of the source of information
that one has about the language. The recipe is then as follows:

– Define a set of primitive elements language theoretically – in this case the
right congruence classes: [u]R.

– Identify a derivation relation of some sort based on the algebraic structure
of these elements: [u]R →a [v]R.

Three Learnable Models for the Description of Language 21

– Construct a representation R(L) based on the language and prove that it is
correct L(R(L)) = L.

– Identify the class of languages that can be finitely represented in this way:
the class of regular languages. Happily, in this case, it coincides with an
existing class of languages.

4 CFGs with Congruence Classes

We can now move on from representations that are regular to ones that are
capable of representing context-free languages. We do this using the idea of dis-
tributional learning. These techniques were originally described by structuralist
linguists who used them to devise mechanical procedures for discovering the
structure of natural languages. As such, they are a reasonable starting point for
investigations of learnable representations.

Some notation and basic terminology: we define a context to be a pair of
strings (l, r) where l, r ∈ Σ∗. We combine a context with a substring so (l, r)�u =
lur; We will sometimes refer to a context (l, r) with a single letter f . A string
u occurs in a context (l, r) in a language if lur ∈ L. If L, R are sets of strings
then we use (L, R), (L, r) etc to refer to the obvious sets of contexts: L × R,
L × {r} and so on. We define the distribution of a string in a language as the
set of all contexts that it can occur in: CL(w) = {(l, r)|lur ∈ L}. We will extend
the notation � to contexts: (l, r)� (x, y) = (lx, yr), so (f � g)�u = f � (g�u).
We will also use it for sets in the obvious way.

We now define the crucial notion for this approach: two strings u and v are
syntactically congruent iff they have the same distribution: u ≡L v, iff CL(u) =
CL(v). We write [u] for the congruence class of u. We note here a classic result –
the number of congruence classes is finite if and only if the language is regular.

Given the discussion in the previous section we hope that it is obvious what
the next step is: our primitive elements will correspond to these congruence
classes. Immediately this seems to raise the problem that we will be restricted
to regular languages, since we are interested in finite representations, and thus
can only represent a finite number of congruence classes. This turns out not to
be the case, as we shall see.

Clearly the empty context (λ, λ) has a special significance: this context is
in the distribution of a string if and only if that string is in the language;
(λ, λ) ∈ CL(u) means that u ∈ L. So if we can predict the congruence class
of a string, we will know whether the string is in the language or not. Given this
fixed interpretation of these symbols, we can now proceed to determine what
the appropriate derivation rules should be. We have mentioned that this is a
congruence: this means that for all strings u, v, x, y if u ≡L v then xuy ≡ xvy.
This means that if we take any element of [u] say u′ and any element of [v]
say v′, and concatenate them, then the result u′v′ will always be in the same
congruence class as [uv]. This means that if we want to generate an element of
[uv] we can do this by generating an element from [u] and then generating an
element from [v] and then concatenating the results. In other words, we have a

22 A. Clark

context free production [uv] → [u][v]. Additionally we know that for any string
w we can generate an element of [w] just by producing the string w. Given the
previous productions, it is clearly sufficient just to have these productions for
strings of length 1: i.e. to have productions [a]→ a.

Another way of viewing this is to note that the concatenation of the con-
gruence classes is well defined – or alternatively that since the relation ≡L is a
monoid congruence, we can use the quotient monoid Σ∗/ ≡L which is the well
known syntactic monoid. The production rules then can be viewed as saying
that X → Y Z is a production if and only if X = Y ◦ Z, and that X → a iff
a ∈ X . Here, we can see even more clearly that the structure of the representa-
tion is based on the structure of the language – in this case we have a CFG-like
formalism that corresponds exactly to the syntactic monoid of the language. We
therefore define our representation as follows: C(L) consists of the, possibly in-
finite, set of congruence classes [u] together with a set of productions consisting
of {[uv] → [u], [v]|u, v ∈ Σ∗} and {[a] → a|a ∈ Σ} and [λ] → λ. We identify a
set of initial symbols I = {[u]|u ∈ L}, and we define derivation exactly as in a
context free grammar.

It is then easy to see that given these productions, [w] ∗⇒ v iff v ∈ [w].
Thus the productions are well behaved. We then define L(C(L)) = {w|∃N ∈
I such that N

∗⇒ w}. We can then prove that L(C(L)) = L, for any language L.
We have used the two schemas [uv]→ [u][v] and [a]→ a; these are sufficient.

But it is conceivable that we might want to have different schemas – we can have
schemas like [w] → w, [lwr] → l[w]r, [aw] → a[w] or even [uvw] → [u][v][w],
which will give us finite grammars, linear grammars, regular grammars and so
on. All of these schemas maintain the basic invariant that they will only derive
strings of the same congruence class.

We thus end up with something that looks something like a context free
grammar in Chomsky normal form. It differs in two respects, one trivial and one
extremely important. The trivial difference is that we may have more than one
start symbol: we wish to maintain the nice map between the representation and
the structure.

The second point is that the number of congruence classes will be infinite, if
the language is not regular. Consider the language Lab = {anbn|n ≥ 0}. This
is a non-regular context free language. It is easy to see that we have an infinite
number of congruence classes since ai is not congruent to aj unless i = j. It
appears therefore that we have only achieved another representation for regular
languages. We can consider this as the canonical context free grammar for a
regular language.

Let us suppose we maintain the structure of the representation but only take
a finite set of congruence classes V consisting of the classes corresponding to a
finite set of strings K: V = {[u]|u ∈ K}. We will assume that K contains Σ and
λ and finitely many others strings. The binary productions will thus be limited
to the finite set {[uv] → [u][v]|[u], [v], [uv] ∈ V }. This will then give us a finite
representation, which we denote C(L, K) We can prove that if we have only a

Three Learnable Models for the Description of Language 23

subset of the productions, then [w] ∗⇒ v implies v ∈ [w], and therefore our repre-
sentation will always generate a subset of the correct language: L(C(L, K)) ⊆ L.

The class that we can represent is therefore the set of all languages L such
that there is some finite set of strings K such that C(L, K) defines the correct
language.

Lccfg = {L|∃ finite K ⊂ Σ∗ such that L(C(L, K)) = L}
This class clearly includes the class of regular languages. It also includes some
non-regular context free languages. In the case of our example Lab it is suffi-
cient to have the following congruence classes: [a], [b], [λ], [ab], [aab], [abb]. Not all
context free languages can be described in this way. The context free language
{anbm|n < m} is not in Lccfg, as the language is the union of an infinite num-
ber of congruence classes. Lccfg is therefore a proper subclass of the class of
context free languages; by restricting the non-terminals to correspond exactly to
the congruence classes, we lose a bit of representational power, but we gain effi-
cient learnability. Note the very close relationship to the class of NTS languages
[30]; indeed we conjecture that these classes may be equal. The first results on
learning using this approach [9,7,10] have shown that various subclasses can be
learned under various non-probabilistic and probabilistic paradigms. Note that
we have lost the canonical nature of the formalism – there will often be more
than one possible minimal choice of K or V . Nonetheless, given that the defini-
tion of the primitives is fixed this is not a problem: any sufficiently large set of
congruence classes will suffice to define the same language.

4.1 Regular Languages

Let us briefly return to the case of regular languages. We know that the set of
congruence classes is finite, but we can get some insight into the structure of this
set by looking at the proof. Let A be the minimal deterministic finite automaton
for a language L. Let Q be the set of states of this automaton; let n = |Q|.
A string w defines a function from Q to Q: fw(q) = δ(q, w). Clearly there are
only nn possible such functions. But if fu = fv then u ≡L v, and so there can
be at most nn possible congruence classes. Indeed Holzer and Konig [19] show
that we can approach this bound. This reveals two things: one that using one
non-terminal per congruence class could be an expensive mistake as the number
might be prohibitively large, and secondly, that there is often some non-trivial
structure to the monoid.

Since these congruence classes correspond to functions from Q to Q it seems
reasonable to represent them using some basis functions. Consider the set of
partial functions that take qi → qj : there are only n2 of these. Each congruence
class can be represented as a collection of at most n of these that define the
image under f of each q ∈ Q.

If we represent each congruence class as a n by n boolean matrix T ; where
Tij is 1 iff fu : qi �→ qj , then the basis functions are the n2 matrices that have
just a single 1; and we represent each congruence class as a sum of n such basis
functions.

24 A. Clark

Suppose the language is reversible [1]: i.e. uv, u′v, uv′ ∈ L implies u′v′ ∈ L.
Then for each state qi we can define a pair of strings li, ri that uniquely pick
out that state: in the sense that δ(q0, li) = qi and only qi has the property that
δ(qi, ri) is a final state.

Thus we can represent the basis functions using the finite set of contexts (li, rj)
that represents the transition function qi → qj . This gives us an important clue
how to represent the syntactic monoid: If we have a class that maps qi → qj and
another which maps qj → qk then the concatenation will map qi → qk. Thus
rather than having a very large number of very specific rules that show how
individual congruence classes combine, we can have a very much smaller set of
more general rules which should be easier to learn. This requires a representation
that contains elements that correspond not just to individual congruence classes
but to sets of congruence classes.

5 Distributional Lattice Grammars

The final class of representations that we consider are based on a richer algebraic
structure; see [8] for a more detailed exposition. Note that the congruence classes
correspond to sets of strings and dually to sets of contexts: a congruence class
[u] also defines the distribution CL(u) and vice versa. It is natural to consider
therefore as our primitive elements certain ordered pairs which we write 〈S, C〉
where S is a subset of Σ∗ and C is a subset of Σ∗×Σ∗. Given a language L we
will consider only those pairs that satisfy two conditions: first that C � S is a
subset of L, and secondly that both of these sets are maximal, while respecting
the first condition. If a pair satisfies these conditions, then we call it a syntactic
concept of the language.

We have chosen to define it in this way to bring out the connection to the
Universal automaton [12,24], which has the same construction but using a prefix-
suffix relation, rather than the context substring relation.

Another way is to consider the Galois connection between the sets of strings
and contexts, which give rise to exactly the same sets of concepts. For a given
language L we can define two polar maps from sets of strings to sets of contexts
and vice versa. Given a set of strings S we can define a set of contexts S′ to be
the set of contexts that appear with every element of S.

S′ = {(l, r) : ∀w ∈ S lwr ∈ L} (1)

Dually we can define for a set of contexts C the set of strings C′ that occur with
all of the elements of C

C′ = {w : ∀(l, r) ∈ C lwr ∈ L} (2)

A concept is then an ordered pair 〈S, C〉 where S′ = C and C′ = S. The
most important point here is that these are closure operations in the sense that
S′′′ = S′ and C′′′ = C′. This means that we can construct a concept by taking
any set of strings S and computing 〈S′′, S′〉, and similarly by taking any set of

Three Learnable Models for the Description of Language 25

contexts C and computing 〈C′, C′′〉. We will write C(S) for 〈S′′, S′〉. This set of
concepts have an interesting and rich algebraic structure, which gives rise to a
powerful representation.

We will start by stating some basic properties of the set of concepts. The
first point is that there is an inverse relation between the size of the set of
strings S and the set of contexts C: the larger that S is the smaller that C is:
in the limit there is always a concept where S = Σ∗; normally this will have
C = ∅. Conversely we will always have an element C(Σ∗×Σ∗). One particularly
important concept is C(L) = C((λ, λ)): the language itself is one of the concepts.

The most basic structure that this set of concepts has is therefore as a partially
ordered set. We can define a partial order on these concepts where:

〈S1, C1〉 ≤ 〈S2, C2〉 iff S1 ⊆ S2.

S1 ⊆ S2 iff C1 ⊇ C2. We can see that C(L) = C({(λ, λ)}), and clearly w ∈ L iff
C({w}) ≤ C({(λ, λ)}).

Given this partial order we can see easily that in fact this forms a complete lat-
tice; which we write B(L), called the syntactic concept lattice. Here the topmost
element is � = C(Σ∗) bottom is written ⊥ = C(Σ∗×Σ∗), and the two meet and
join operations are defined as 〈Sx, Cx〉∧〈Sy , Cy〉 is defined as 〈Sx∩Sy, (Sx∩Sy)′〉
and ∨ dually as 〈(Cx ∩ Cy)′, Cx ∩ Cy〉.

Figure 1 shows the syntactic concept lattice for the regular language L =
{(ab)∗}. L is infinite, but the lattice B(L) is finite and has only 7 concepts.

⊥ = 〈∅, Σ∗ × Σ∗〉

〈[a], [λ, b], 〉 〈[b], [a, λ]〉 L = 〈[ab] ∪ [λ], [λ, λ]〉 〈[ba] ∪ [λ], [a, b]〉

1 = 〈[λ], [a, b] ∪ [λ, λ]〉

� = 〈Σ∗, ∅〉

Fig. 1. The Hasse diagram for the syntactic concept lattice for the regular language
L = {(ab)∗}. Each concept (node in the diagram) is an ordered pair of a set of strings,
and a set of contexts. We write [u] for the equivalence class of the string u, [l, r] for
the equivalence class of the context (l, r).

26 A. Clark

Monoid Structure

Crucially, this lattice structure also has a monoid structure. We can define a
binary operation over concepts using the two sets of strings of the concepts: define
〈S1, C1〉 ◦ 〈S2, C2〉 = C(S1S2). Note that this operation then forms a monoid, as
it is both associative and has a unit C(λ). There is also an interaction between
this monoid structure and the lattice structure. It is clearly monotonic in the
sense that if X ≤ Y then X ◦ Z ≤ Y ◦ Z and so on, but there is a stronger
relation. We can define two residual operations as follows:

Definition 1. Suppose X = 〈Sx, Cx〉 and Y = 〈Sy, Cy〉 are concepts. Then
define the residual X/Y = C(Cx � (λ, Sy)) and Y \X = C(Cx � (Sy, λ))

These satisfy the following conditions: Y ≤ X\Z iff X ◦ Y ≤ Z iff X ≤ Z/Y .
That is to say, given an element Z and an element X , X\Z is the largest element
which when concatenated to the right of X will give you something that is less
than Z.

With these operations the syntactic concept lattice becomes a residuated lat-
tice. This gives some intriguing links to the theory of categorial grammars [23].

5.1 Maximal Elements

One important point of the residual operation is that we can use them to extract
maximally general concatenation rules. So, suppose we have some concept Z. We
can consider the set of all pairs of concepts (X, Y) such that their concatenation
is less than Z.

H(Z) = {(X, Y)|X ◦ Y ≤ Z} (3)

This is clearly a down set, in that if (X, Y) ∈ H(Z) and X ′ ≤ X and Y ′ ≤ Y then
(X ′, Y ′) ∈ H(Z), and so it is natural to consider the maximal elements of this set.
We can find these elements using the residuation operations. If (X, Y) ∈ H(Z)
then also we must have (X, X\Z) and (Z/Y, Y) in H(Z). But we can repeat
this: we will also have (Z/(X\Z), X\Z) and (Z/Y, (Z/Y)\Z) in H(Z). We can
prove that repeating the process further is not necessary – indeed all maximal
elements of H(Z) will be of this form.

An example: suppose L = {anbn|n ≥ 0}. Consider H(C(L)). Clearly C(a) ◦
C(b) = C(L), so (C(a), C(b)) ∈ H(C(L)). Let us identify the two maximal elements
that we get by generalising this pair. C(L)/C(b) = C(aab), and C(a)\C(L) =
C(abb). Repeating the process does not increase these so the two maximal ele-
ments above this pair are (C(a), C(abb)) and (C(aab), C(b)).

6 Representation

Having defined and examined the syntactic concept lattice, we can now define
a representation based on this. Again, since the lattice will be infinite if the
language is not regular, we need to consider just a part of it. We will start
by considering how we might define a representation given the whole lattice.

Three Learnable Models for the Description of Language 27

Given a string w we want to compute whether it is in the language or not.
Considering this slightly more generally we want to be able to compute for
every string w, the concept of w, C(w). If C(w) ≤ C(L), then we know that
the string is in the language. If we have the whole lattice then it is quite easy:
since C(u) ◦ C(v) = C(uv), we can simply take the list of letters that form w and
concatenate their concepts. So if w = a1 . . . an, then C(w) = C(a1)◦· · ·◦C(an). It
is enough to know the concepts of the letters, and of course of λ and the algebraic
operation ◦ which is associative and well-behaved. In this case it effectively
reduces to computing the syntactic monoid as before. The idea is very simple
– we compute a representation of the distribution of a string, by taking the
distributions of its parts and combining them.

However, if we have a non-regular language, then we will need to restrict the
lattice in some way. We can do this by taking a finite set of contexts F ⊂ Σ∗×Σ∗,
which will include the special context (λ, λ) and constructing a lattice using only
these contexts and all strings Σ∗. This give us a finite lattice B(L, F), which
will have at most 2|F | elements. We can think of F as being a set of features,
where a string w has the feature (context) (l, r) iff lwr ∈ L.

Definition 2. For a language L and a set of context F ⊆ Σ∗ ×Σ∗, the partial
lattice B(L, F) is the lattice of concepts 〈S, C〉 where C ⊆ F , and where C =
S′ ∩ F , and S = C′.

We can define a concatenation operation as before

〈S1, C1〉 ◦ 〈S2, C2〉 = 〈((S1S2)′ ∩ F)′, (S1S2)′ ∩ F 〉
This is now however no longer a residuated lattice as the ◦ operation is no
longer associative, there may not be an identity element, nor are the residuation
operations well defined. We will now clearly not be able to compute things exactly
for every language, but we should still be able to approximate the computation,
and for some languages, and for some sets of features the approximation will be
accurate.

We note some basic facts about this partial lattice: first it is no longer the
case that C(u) ◦ C(v) = C(uv). If we take a very long string in the language, we
may be able to split it into two parts neither of which have any contexts ing F .
For example, if we have the language of our running example anbn, and a small
set of short contexts, we could take the string a100b100 and split it into the two
strings a100 and b100. Neither of these two strings will have any contexts in F ,
and so C(a100) = C(b100) = �; this means that C(a100) ◦ C(b100) = � ◦ � = � >
C(a100b100) = C(L): they are not equal.

However we can prove that C(u) ◦ C(v) ≥ C(uv). This means that given some
string, w, we can compute an upper bound on the C(w) quite easily: we will call
this upper bound φ(w). This may not give us exactly the right answer but it
will still be useful. If the upper bound is below C(L) then we definitely know
that the string will be in the language: if C(w) ≤ φ(w) and φ(w) ≤ C(L), then
C(w) ≤ C(L).

In fact we can compute many different upper bounds: since the operation is no
longer associative, the order in which we do the computations matters. Suppose

28 A. Clark

we have some string ab; our upper bound can just be C(a)◦C(b). But suppose we
have a string of length 3: abb. Our upper bound could be C(a) ◦ (C(b) ◦ C(b)) or
(C(a)◦C(b))◦C(b). We can now use the lattice structure to help: if C(abb) ≤ X and
C(abb) ≤ Y then C(abb) ≤ X∧Y , since X∧Y is a greatest lower bound. So in this
case we can have our upper bound as (C(a)◦ (C(b)◦C(b)))∧ ((C(a)◦C(b))◦C(b)).
For longer strings, we have a problem: we cannot compute every possible binary
tree and then take the meet over them all, since the number of such trees is
exponential in the length.

However we can compute an even tighter bound using a recursive defini-
tion that can be computed by an efficient dynamic programming algorithm in
O(|w|3). For each substring of the word, we compute the lowest possible upper
bound and then recursively combine them.

Given a language L and set of contexts F :

Definition 3. we define φ : Σ∗ → B(L, F) recursively by

– φ(λ) = C(λ)
– φ(a) = C(a) for all a ∈ Σ, (i.e. for all w, |w| = 1)
– for all w with |w| > 1,

φ(w) =
∧

u,v∈Σ+:uv=w

φ(u) ◦ φ(v) (4)

We can define the language generated by this representation to be:

L̂ = L(B(L, F)) = {w|φ(w) ≤ C((λ, λ))} (5)

We can show using a simple proof by induction that the computation φ will
always produce an upper bound.

Lemma 1. For any language L and set of contexts F , for any string w, φ(w) ≥
C(w)

This has the immediate consequence that:

Lemma 2. For any language L and for any set of contexts F , L(B(L, F)) ⊆ L.

As we increase the set of contexts, we will find that the language defined in-
crease monotonically, until in the infinite limit when F = Σ∗ × Σ∗ we have
that L(B(L, Σ∗ ×Σ∗)) = L. This means that the problem of finding a suitable
set of contexts is tractable and we can also define a natural class of languages
as those which have representations as finite lattices. We will call this class of
representations the Distributional Lattice Grammars.

The class of languages definable by finite DLGS is denoted Ldlg.

Ldlg = {L : ∃ a finite set F ⊂ Σ∗ ×Σ∗ such that L(B(L, F)) = L} (6)

First we note that Ldlgproperly includes Lccfg. Indeed Ldlgincludes some non-
context free languages, including ones that are related to the MIX language

Three Learnable Models for the Description of Language 29

[3]. Ldlgis a proper subclass of the languages defined by Conjunctive Gram-
mars [27]. Ldlgalso includes a much larger set of context free languages than
Lccfgincludingsome non-deterministic and inherently ambiguous languages.

A problem is that the lattices can be exponentially large. We can however
represent them lazily using a limited set of examples, and only compute the
concepts in the lattice as they are needed. This allows for efficient learning
algorithms. An important future direction for research is to exploit the algebraic
structure of the lattice to find more compact representations for these lattices,
using maximal elements.

7 Discussion

The importance of reducing the under-determination of the grammar given the
language has been noted before: de la Higuera and Fernau [15] argue that learn-
able representations must have a canonical form, and that equivalence should be
computable.

On a historical note, it is important not to neglect the contribution of the
Kulagina school, which was initiated by the seminal paper of [21]. The first
work on the distributional lattice was by Sestier [31], and subsequent work was
developed by Kunze [22]. However the concatenation and residuation properties
seem not to have been noted. Important papers that follow this line of research
include [20,13] as well as [26] and [25]. The ideas of basing representations on
the congruence classes can be found in these works, but for some reason the
rule schema [uv]→ [u][v] seems not to have been discovered, instead exploration
focussed on the linear grammar schema [lur] → l[u]r, and on the development
of contextual grammars [28]. We suspect that there are other related works in
the Eastern European literature that we have not yet discovered.

Many other approaches can be recast in this form. For example the context-
deterministic languages of [33], are exactly context free languages where the
non-terminals have the property that they correspond to concepts, and where
additionally the distributions of the non-terminals are disjoint: C(M)∨C(N) = �
for distinct non-terminals N and M .

There are a number of directions for future research that this approach sug-
gests: probabilistic extensions of these algorithms, the development of algorithms
for equivalence and decidability, and the use of these approaches for modelling
transductions are all natural developments. Another extension would be to con-
sider representations based on the relation (x, y) ∼ (u, v, w) iff uxvyw ∈ L. Some
steps in this direction have recently been taken by Yoshinaka [34], which lead
naturally to Multiple Context-Free Grammars. There are numerous language
theoretic problems that need to be explored in the use of these models.

Finally, representations such as these, which are both efficiently learnable
and capable of representing mildly context-sensitive languages seem to be good
candidates for models of human linguistic competence.

30 A. Clark

Acknowledgements

I am very grateful to Rémi Eyraud and Amaury Habrard.

References

1. Angluin, D.: Inference of reversible languages. Communications of the ACM 29,
741–765 (1982)

2. Angluin, D., Kharitonov, M.: When won’t membership queries help? J. Comput.
Syst. Sci. 50, 336–355 (1995)

3. Boullier, P.: Chinese Numbers, MIX, Scrambling, and Range Concatenation Gram-
mars. In: Proceedings of the 9th Conference of the European Chapter of the As-
sociation for Computational Linguistics (EACL), pp. 8–12 (1999)

4. Carrasco, R.C., Oncina, J.: Learning deterministic regular grammars from stochas-
tic samples in polynomial time. Theoretical Informatics and Applications 33(1),
1–20 (1999)

5. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)
6. Chomsky, N.: Language and mind, 3rd edn. Cambridge Univ. Pr., Cambridge

(2006)
7. Clark, A.: PAC-learning unambiguous NTS languages. In: Sakakibara, Y.,

Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI),
vol. 4201, pp. 59–71. Springer, Heidelberg (2006)

8. Clark, A.: A learnable representation for syntax using residuated lattices. In: Pro-
ceedings of the 14th Conference on Formal Grammar, Bordeaux, France (2009)

9. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research 8, 1725–1745 (2007)

10. Clark, A., Eyraud, R., Habrard, A.: A polynomial algorithm for the inference of
context free languages. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS
(LNAI), vol. 5278, pp. 29–42. Springer, Heidelberg (2008)

11. Clark, A., Thollard, F.: PAC-learnability of probabilistic deterministic finite state
automata. Journal of Machine Learning Research 5, 473–497 (2004)

12. Conway, J.: Regular algebra and finite machines. Chapman and Hall, London
(1971)

13. Drášil, M.: A grammatical inference for C-finite languages. Archivum Mathe-
maticum 25(2), 163–173 (1989)

14. Evans, R., Gazdar, G.: DATR: A language for lexical knowledge representation.
Computational Linguistics 22(2), 167–216 (1996)

15. Fernau, H., de la Higuera, C.: Grammar induction: An invitation for formal lan-
guage theorists. Grammars 7, 45–55 (2004)

16. Gold, E.M.: Complexity of automaton identification from given data. Information
and Control 37(3), 302–320 (1978)

17. Harris, Z.: Distributional structure. In: Fodor, J.A., Katz, J.J. (eds.) The Structure
of Language, pp. 33–49. Prentice-Hall, Englewood Cliffs (1954)

18. Harrison, M.A.: Introduction to Formal Language Theory. Addison Wesley, Read-
ing (1978)

19. Holzer, M., Konig, B.: On deterministic finite automata and syntactic monoid size.
In: Proc. Developments in Language Theory 2002 (2002)

20. Kř́ıž, B.: Generalized grammatical categories in the sense of Kunze. Archivum
Mathematicum 17(3), 151–158 (1981)

Three Learnable Models for the Description of Language 31

21. Kulagina, O.S.: One method of defining grammatical concepts on the basis of set
theory. Problemy Kiberneticy 1, 203–214 (1958) (in Russian)

22. Kunze, J.: Versuch eines objektivierten Grammatikmodells I, II. Z. Zeitschriff
Phonetik Sprachwiss. Kommunikat, 20-21 (1967–1968)

23. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65(3), 154–170 (1958)

24. Lombardy, S., Sakarovitch, J.: The universal automaton. In: Grädel, E., Flum,
J., Wilke, T. (eds.) Logic and Automata: History and Perspectives, pp. 457–494.
Amsterdam Univ. Pr. (2008)

25. Martinek, P.: On a Construction of Context-free Grammars. Fundamenta Infor-
maticae 44(3), 245–264 (2000)

26. Novotny, M.: On some constructions of grammars for linear languages. Interna-
tional Journal of Computer Mathematics 17(1), 65–77 (1985)

27. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and
Combinatorics 6(4), 519–535 (2001)

28. Păun, G.: Marcus contextual grammars. Kluwer Academic Pub., Dordrecht (1997)
29. Pollard, C., Sag, I.: Head Driven Phrase Structure Grammar. University of Chicago

Press, Chicago (1994)
30. Sénizergues, G.: The equivalence and inclusion problems for NTS languages. J.

Comput. Syst. Sci. 31(3), 303–331 (1985)
31. Sestier, A.: Contribution à une théorie ensembliste des classifications linguistiques.

In: Premier Congrès de l’Association Française de Calcul, Grenoble, pp. 293–305
(1960)

32. Shieber, S.: Evidence against the context-freeness of natural language. Linguistics
and Philosophy 8, 333–343 (1985)

33. Shirakawa, H., Yokomori, T.: Polynomial-time MAT Learning of C-Deterministic
Context-free Grammars. Transactions of the information processing society of
Japan 34, 380–390 (1993)

34. Yoshinaka, R.: Learning mildly context-sensitive languages with multidimensional
substitutability from positive data. In: Gavaldà, R., Lugosi, G., Zeugmann, T.,
Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 278–292. Springer, Heidelberg
(2009)

Arbology: Trees and Pushdown Automata�

Bořivoj Melichar

Department of Theoretical Computer Science,
Faculty of Information Technology,

Czech Technical University in Prague,
Kolejni 550/2, 160 00 Prague 6, Czech Republic

melichar@fit.cvut.cz

1 Introduction

Trees are (data) structures used in many areas of human activity. Tree as the
formal notion has been introduced in the theory of graphs. Nevertheless, trees
have been used a long time before the foundation of the graph theory. An example
is the notion of a genealogical tree. The area of family relationships was an origin
of some terminology in the area of the tree theory (parent, child, sibling, . . .) in
addition to the terms originating from the area of the dendrology (root, branch,
leaf, . . .).

There are many applications of trees not only in the area of Computer Science.
It seems that the reason for this is the ability of trees to express a hierarchical
structure. The reader can find many applications of trees in his own area of
interest.

Many algorithms were developed for operations on trees used in many appli-
cations. A number of them uses some way of traversing the tree. Such operations
need a data structure to keep track on the possible continuation of the travers-
ing. In many cases we can identify that the suitable data structure for this role
is a pushdown store. The typical structure of these algorithms is based on the
set of recursive procedures, where the pushdown store is used for saving return
addresses.

Theory of tree automata has been developed as a tool for description of sets
of trees (tree languages) and, moreover, for formal description of some opera-
tions with trees. Models of computation of this theory are various kinds of tree
automata. The most researched kind of tree automata are finite tree automata,
which recognize regular tree languages and their implementation is based on
recursive procedures.

Some algorithms for operations on trees assume a linear notation (for example
prefix, suffix, or Euler notations) of the input tree. We note that the linear
notation can be obtained by the corresponding recursive traversing of the tree.
It can be shown that the linear notation of a tree can be generated by a context–
free grammar. Therefore, the pushdown automaton can be an appropriate model
for algorithms processing linear notations of trees.
� This research has been partially supported by the Ministry of Education, Youth

and Sports under research program MSMT 6840770014, and by the Czech Science
Foundation as project No. 201/09/0807.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 32–49, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Arbology: Trees and Pushdown Automata 33

In [9] it is proved that the class of regular tree languages in postfix notation is a
proper subclass of deterministic context-free string languages. Given a finite tree
automaton it is proved that an equivalent LR(0) grammar can be constructed,
which means that also an equivalent deterministic pushdown automaton can
be constructed. Moreover, it is proved that deterministic pushdown automata
are more powerful than finite tree automata: the class of tree languages whose
linear notation can be accepted by deterministic pushdown automata is a proper
superclass of regular tree languages.

These ways of reasoning led us to the decision to use pushdown automata and
the corresponding underlying theory as a model of computation of tree processing
algorithms. We call this branch of algorithmic study arbology [3] from the Spanish
word arbol, meaning tree. The model and inspiration for building arbology can
be found in stringology, which is an algorithmic discipline in the area of string
processing. Stringology uses finite automata theory as a very useful tool. In
arbology we try to apply the stringology principles to trees so that effective tree
algorithms using pushdown automata would be created.

There are some differences between finite and pushdown automata theories.
For every nondeterministic finite automaton there exists an equivalent deter-
ministic finite automaton which can be constructed using well known algorithm.
This does not hold generally for the case of pushdown automata – for some non-
deterministic pushdown automata their equivalent deterministic versions do not
exist. Examples of such pushdown automata are pushdown automata accepting
palindromes of the form like wwR. The reason is that an automaton reading the
palindrome from left to right is not able to find the centre of it. Generally, it is not
known how to decide for a given nondeterministic pushdown automaton whether
there exists a deterministic equivalent or not. Nevertheless, we have identified
three classes of pushdown automata for which such a determinisation is possi-
ble. These classes are called input–driven, visible [2] and heigth–deterministic
pushdown automata [14].

Without regard to the above-mentioned problems some results have been
achieved and are presented in the subsequent sections in brief. Section 2 con-
tains basic definitions. Section 3 deals with linear notations of trees and some
important properties of these notations are discussed in Section 4. Section 5 deals
with determinisation of pushdown automata. Section 6 presents exact subtree
matching. A complete index of subtrees and tree templates in the form of subtree
and tree pattern pushdown automata is presented in Section 7. An application
of these pushdown automata is shown in Section 8 where the way how to find
repeats of subtrees is shown.

2 Basic Notions

We define notions on trees similarly as they are defined in [1,4,6,7].

2.1 Alphabet

An alphabet is a finite nonempty set of symbols. A ranked alphabet is a finite
nonempty set of symbols each of which has a unique nonnegative arity (or rank).

34 B. Melichar

Given a ranked alphabet A, the arity of a symbol a ∈ A is denoted Arity(a).
The set of symbols of arity p is denoted by Ap. Elements of arity 0, 1, 2, . . . , p
are respectively called nullary (constants), unary, binary, . . ., p-ary symbols. We
assume that A contains at least one constant. In the examples we use numbers
at the end of the identifiers for a short declaration of symbols with arity. For
instance, a2 is a short declaration of a binary symbol a.

2.2 Tree, Tree Pattern, Tree Template

Based on concepts from graph theory (see [1]), a tree over an alphabet A can be
defined as follows:

A directed graph G is a pair (N, R), where N is a set of nodes and R is a set of
lists of edges, where each element of R has the form ((f, g1), (f, g2), . . . , (f, gn)),
f, g1, g2, . . . , gn ∈ N , n ≥ 0. This element will indicate that, for node f , there
are n edges leaving f , entering node g1, node g2, and so forth.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node
f0 to node fn if there is an edge which leaves node fi−1 and enters node fi for
1 ≤ i ≤ n. A cycle is a path (f0, f1, . . . , fn), where f0 = fn. An ordered dag
(dag stands for Directed Acyclic Graph) is an ordered directed graph that has
no cycle. A labelling of an ordered graph G = (N, R) is a mapping of N into a
set of labels. In the examples we use af for a short declaration of node f labelled
by symbol a.

Given a node f , its out-degree is the number of distinct pairs (f, g) ∈ R,
where g ∈ N . By analogy, the in-degree of node f is the number of distinct pairs
(g, f) ∈ R, where g ∈ N .

A tree is an acyclic connected graph. Any node of a tree can be selected as a
root of the tree. A tree with a root is called rooted tree.

A tree can be directed. A rooted and directed tree t is a dag t = (N, R) with
a special node r ∈ N , called the root, such that

(1) r has in-degree 0,
(2) all other nodes of t have in-degree 1,
(3) there is just one path from the root r to every f ∈ N , where f �= r.

A labelled, (rooted, directed) tree is a tree having the following property:

(4) every node f ∈ N is labelled by a symbol a ∈ A, where A is an alphabet.

A ranked, (labelled, rooted, directed) tree is a tree labelled by symbols from a
ranked alphabet and out-degree of a node f labelled by symbol a ∈ A is Arity(a).
Nodes labelled by nullary symbols (constants) are called leaves.

An ordered, (ranked, labelled, rooted, directed) tree is a tree where direct de-
scendants af1, af2, . . . , afn of a node af having an Arity(af) = n are ordered.

The height of a tree t, denoted by Height(t), is defined as the maximal length
of a path from the root of t to a leaf of t.

To define a tree pattern, we use a special nullary symbol S, not in A, which
serves as a placeholder for any subtree. A tree pattern is defined as a labelled
ordered ranked tree over ranked alphabet A∪{S}. By analogy, a tree pattern in

Arbology: Trees and Pushdown Automata 35

prefix notation is defined as a labelled ordered ranked tree over ranked alphabet
A ∪ {S} in prefix notation. We will assume that the tree pattern contains at
least one node labelled by a symbol from A. A tree pattern containing at least
one symbol S will be called a tree template.

A tree pattern p with k ≥ 0 occurrences of the symbol S matches an object
tree t at node n if there exist subtrees t1, t2, . . . , tk (not necessarily the same)
of the tree t such that the tree p′, obtained from p by substituting the subtree
ti for the i-th occurrence of S in p, i = 1, 2, . . . , k, is equal to the subtree of t
rooted at n.

2.3 Language, Grammar, Finite and Pushdown Automata

We define notions from the theory of string languages similarly as they are
defined in [1].

A language over an alphabet A is a set of strings over A. Symbol A∗ denotes
the set of all strings over A including the empty string, denoted by ε. Set A+

is defined as A+ = A∗ \ {ε}. Similarly, for string x ∈ A∗, symbol xm, m ≥ 0,
denotes the m-fold concatenation of x with x0 = ε. Set x∗ is defined as x∗ =
{xm : m ≥ 0} and x+ = x∗ \ {ε} = {xm : m ≥ 1}.

A context-free grammar (CFG) is a 4-tuple G = (N,A, P, S), where N and A
are finite disjoint sets of nonterminal and terminal (input) symbols, respectively.
P is a finite set of rules A → α, where A ∈ N , α ∈ (N ∪ A)∗. S ∈ N is the
start symbol. Relation ⇒ is called derivation: if αA γ ⇒ αβγ, A ∈ N , and α,
β, γ ∈ (N ∪ A)∗, then rule A → β is in P . Symbols ⇒+, and ⇒∗ are used for
the transitive, and the transitive and reflexive closure of ⇒, respectively. The
language generated by a G, denoted by L(G), is the set of strings L(G) = {w :
S ⇒∗ w, w ∈ A∗}.

A nondeterministic finite automaton (NFA) is a five-tuple FM = (Q,A, δ, q0,
F), where Q is a finite set of states, A is an input alphabet, δ is a mapping from
Q×A into a set of finite subsets of Q, q0 ∈ Q is an initial state, and F ⊆ Q is the
set of final (accepting) states. A finite automaton FM is deterministic (DFA) if
δ(q, a) has no more than one member for any q ∈ Q and a ∈ A. We note that
the mapping δ is often illustrated by its transition diagram.

Every NFA can be transformed to an equivalent DFA [1]. The transformation
constructs the states of the DFA as subsets of states of the NFA and selects only
such accessible states (ie subsets). These subsets are called d-subsets. In spite
of the fact that d-subsets are standard sets, they are often written in square
brackets ([]) instead of in braces ({ }).

A nondeterministic pushdown automaton (nondeterministic PDA) is a seven-
tuple M = (Q,A, G, δ, q0, Z0, F), where Q is a finite set of states, A is an input
alphabet, G is a pushdown store alphabet, δ is a mapping from Q× (A∪{ε})×G
into a set of finite subsets of Q × G∗, q0 ∈ Q is an initial state, Z0 ∈ G is the
initial pushdown store symbol, and F ⊆ Q is the set of final (accepting) states.

An extended nondeterministic pushdown automaton is a seven-tuple M =
(Q,A, G, δ, q0, Z0, F), where δ is a mapping from Q× (A∪{ε})×G∗ into a set of
finite subsets of Q×G∗ and all other symbols have the same meaning as above.

36 B. Melichar

Triple (q, w, x) ∈ Q × A∗ × G∗ denotes the configuration of a pushdown
automaton. We will write the top of the pushdown store x on its left hand side.
The initial configuration of a pushdown automaton is a triple (q0, w, Z0) for the
input string w ∈ A∗. The relation
M⊂ (Q × A∗ × G∗) × (Q × A∗ × G∗) is a
transition of a pushdown automaton M . It holds that (q, aw, αβ)
M (p, w, γβ) if
(p, γ) ∈ δ(q, a, α). The k-th power, transitive closure, and transitive and reflexive
closure of the relation
M is denoted
k

M ,
+
M ,
∗M , respectively.

A pushdown automaton M is a deterministic pushdown automaton (deter-
ministic PDA), if it holds:

1. |δ(q, a, Z)| ≤ 1 for all q ∈ Q, a ∈ A, Z ∈ G and δ(q, ε, Z) = ∅ or
2. δ(q, a, Z) = ∅ for all a ∈ A and |δ(q, ε, Z)| ≤ 1.

An extended pushdown automaton M is an deterministic extended pushdown
automaton (deterministic PDA), if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.
2. If δ(q, a, α) �= ∅, δ(q, a, β) �= ∅ and α �= β then α is not a suffix of β and β is

not a suffix of α.
3. If δ(q, a, α) �= ∅, δ(q, ε, β) �= ∅, then α is not a suffix of β and β is not a suffix

of α.

A pushdown automaton is input–driven if each of its pushdown operations is
determined only by the input symbol.

A language L accepted by a pushdown automaton M is defined in two distinct
ways:

1. Accepting by final state:

L(M) = {x : δ(q0, x, Z0)
∗M (q, ε, γ) ∧ x ∈ A∗ ∧ γ ∈ G∗ ∧ q ∈ F}.
2. Accepting by empty pushdown store:

Lε(M) = {x : (q0, x, Z0)
∗M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}.
If pushdown automaton accepts the language by empty pushdown store, then
the set F of final states is the empty set.

3 Linear Notation of Trees

Every sequential computational process (sequential algorithm) visits nodes of a
processed tree in some sequence. It means that it does some linearisation of a
tree. This linearisation can be implicit or explicit. The implicit linearisation takes
place if a tree is represented as a linked data structure. The explicit linearisation
means that a tree is represented as a linear structure in the form of a sequence of
nodes and some special symbols. This linear notation of a tree is then an input
of a computational process.

The principles of linear notations are based on the notion of visits of nodes. A
computational process visits every node one or more times. The linear notations
of a tree can be divided according to the number of visits recorded in it:

Arbology: Trees and Pushdown Automata 37

1. every node is recorded during all visits,
2. nodes are recorded during more than one visit,
3. every node is recorded just once during some visit.

There are depth first or breath first oriented principles of tree traversing. In
the following we take into account one–visit versions of the depth first oriented
traversing of a tree during its linearisation.

3.1 One Visit Linear Notation

There are two standard one visit depth first oriented linear notations:

- prefix (also called preorder) notation and
- postfix (also called postorder) notation.

Definition 1. The prefix notation pref(t) of a tree t is defined in this way:

1. pref(t) = a if af is a leaf,
2. pref(t) = a pref(b1) pref(b2) . . . pref(bn), where a is the root of the tree t

and b1, b2, . . . bn are direct descendants of a.

We note that in many papers on the theory of tree languages, such as [4,6,7],
labelled ordered ranked trees are defined with the use of ordered ranked ground
terms. Ground terms can be regarded as labelled ordered ranked trees in prefix
notation.

Definition 2. The postfix notation post(t) of a tree t is defined in this way:

1. post(t) = a if af is a leaf,
2. post(t) = post(b1) post(b2) . . . post(bn) a, where a is the root of the tree t

and b1, b2, . . . bn are direct descendants of a.

Definitions of the basic prefix and postfix notations are very useful for ranked
trees. If the tree is not ranked it is necessary to include information concerning
the rank of every node. This can be done in two ways:

1. to represent a node in both notations as a pair (a, Arity(a)),
2. to use another principles of linearisation based on incorporation of some

special symbols.

The second approach can be illustrated by a bracketted notation in which each
subtree is enclosed in the left and the close bracket. The bar notations are based
on the following observations:

1. there is always the root of a subtree just behind the left bracket in prefix
notation,

2. there is always the right bracket just behind the root of a subtree in postfix
notation.

38 B. Melichar

It follows from this observation that there is the left (right) bracket redundant
in prefix (postfix) bracketted notation. The bar notations in both cases reduces
the number of symbols in both linear bracketted notations. Instead of different
symbols, left or right brackets, the symbol bar (|) can be used in both cases.

Definition 3. The prefix bar notation pref bar(t) and postfix bar notation
post bar(t) of a tree t are defined in this way:

1. pref bar(a) = a | and post bar(a) = | a, respectively.
2. pref bar(t) = a pref bar(b1) pref bar(b2) . . . pref bar(bn) | and

post bar(t) = | post bar(b1) post bar(b2) . . . post bar(bn) a for prefix and
postfix bar notation, respectively, where a is the root of the tree t and
b1, b2, . . . bn are direct descendants of a.

4 Properties of Linear Notations of Trees

In this section we prove some general properties of the one visit linear notations
of trees. These properties are substantial for creating our arbology algorithms,
which process trees using pushdown automata.

It holds for any tree that each of its subtrees in a one-visit linear notation is
a substring of the tree in the linear notation.

Theorem 1. Given a tree t and its notations pref(t), post(t), pref bar(t) and
post bar(t), all subtrees of t in prefix, postfix, prefix bar and postfix bar notation
are substrings of pref(t), post(t), pref bar(t) and post bar(t), respectively.

Proof. In [10].

However, not every substring of a tree in a linear notation is the linear notation
of its subtree. This can be easily seen from the fact that for a given tree with
n nodes there can be O(n2) distinct substrings, but there are just n subtrees
– each node of the tree is the root of just one subtree. Just those substrings
which themselves are trees in a linear notation are those which are the subtrees
in the linear notation. This property is formalised by the following definitions
and theorems.

Definition 4. Let w = a1a2 . . .am, m ≥ 1, be a string over a ranked alphabetA.
Then, the arity checksum ac(w) = arity(a1)+arity(a2)+. . .+arity(am)−m+1=∑m

i=1 arity(ai)−m + 1.

Theorem 2. Let pref(t) and w be a tree t in prefix notation and a substring of
pref(t), respectively. Then, w is the prefix notation of a subtree of t, if and only
if ac(w) = 0, and ac(w1) ≥ 1 for each w1, where w = w1x, x �= ε.

Proof. In [10].

We show the dual principle for the postfix notation.

Theorem 3. Let post(t) and w be a tree t in postfix notation and a substring
of post(t), respectively. Then, w is the postfix notation of a subtree of t, if and
only if ac(w) = 0, and ac(w1) ≤ −1 for each w1, where w = xw1, x �= ε.

Similarly for prefix and postfix bar notations.

Arbology: Trees and Pushdown Automata 39

Definition 5. Let w = a1a2 . . . am, m ≥ 1, be a string over A ∪ {|}. Then, the
bar checksum is defined as follows:

1. bc(a) = 1, and bc(|) = −1.
2. bc(wa) = bc(w) + 1, and bc(w|) = bc(w)− 1.

Theorem 4. Let pref bar(t) and w be a tree t in prefix bar notation and a
substring of pref bar(t), respectively. Then, w is the prefix bar notation of a
subtree of t, if and only if bc(w) = 0, and bc(w1) ≥ 1 for each w1, where w = xw1,
x �= ε.

The dual principle holds for the postfix bar notation.

Theorem 5. Let post bar(t) and w be a tree t in postfix bar notation and a
substring of post bar(t), respectively. Then, w is the postfix bar notation of a
subtree of t, if and only if bc(w) = 0, and bc(w1) ≤ −1 for each w1, where
w = xw1, x �= ε.

We note that pushdown automata presented in the next sections compute arity
or bar checksums by pushdown operations during the processing of trees. This
computing of checksums is formally described by the following four theorems.

Theorem 6. Let M = ({Q,A, {S}, δ, 0, S, ∅) be an input-driven PDA of which
each transition from δ is of the form δ(q1, a, S) = (q2, S

i), where i = arity(a).
Then, if (q3, w, S)
+

M (q4, ε, S
j), where w is a tree in prefix notation, then

j = ac(w).

Proof. In [10].

Theorem 7. Let M = ({Q,A, {S}, δ, 0, S, F) be an input–driven PDA whose
each transition from δ is of the form δ(q1, a, Si) = (q2, S), where i = Arity(a).
Then, if (q3, w, ε)
+

M (q4, ε, S
j), where w is a tree in postfix notation, then

j = −ac(w) + 1.

Theorem 8. Let M = ({Q,A, {S}, δ, 0, S, F) be an input–driven PDA whose
each transition from δ is of the form δ(q1, a, ε) = (q2, S) or δ(q1, |, S) = (q2, ε).
Then, if (q3, w, ε)
+

M (q4, ε, S
j), where w is a tree in prefix bar notation, then

j = bc(w).

Theorem 9. Let M = ({Q,A, {S}, δ, 0, S, F) be an input–driven PDA whose
each transition from δ is of the form δ(q1, a, S) = (q2, ε) or δ(q1, |, ε) = (q2, S).
Then, if (q3, w, ε)
+

M (q4, ε, S
j), where w is a tree in postfix bar notation, then

j = −bc(w).

5 On Determinisation of Pushdown Automata

It is well known that in the theory of finite automata there exists the algorithm
of transformation of any nondeterministic finite automaton to an equivalent
deterministic one. The determinisation of a finite automaton contains a creation

40 B. Melichar

of sets of states of a nondeterministic automaton. These subsets play the role
of states of an equivalent deterministic finite automaton. The number of states
of resulting deterministic finite automaton is less or equal to 2n, where n is the
number of states of the original nondeterministic finite automaton.

Such a universal algorithm for the determinisation of pushdown automata does
not exist. We identified three classes of nondeterministic pushdown automata
for which exist algorithms for determinisation. They are called input–driven,
visible [2] and heigth–deterministic pushdown automata [14]. Algorithms for
determinisation are different for these classes.

The principle of determinisation of finite automata can be used for input–
driven pushdown automata. A notion of pushdown operation will be frequently
used in the following meaning.

Definition 6. Let M = (Q, A, G, δ, q0, Z0, F) be a pushdown automaton. Let
δ(q, a, α) contains pair (p, β) for p, q ∈ Q, a ∈ A∪ε, α, β ∈ G∗. Then the notation
α �→ β is used for operation popping α from the top of the pushdown store and
pushing β to the top of the pushdown store. This operation is called pushdown
operation.

Definition 7. A pushdown automaton M = (Q, A, G, δ, q0, Z0, F) is an input–
driven pushdown automaton if each pushdown operation α �→ β during every
transition is explicitly determined by the input symbol. In more formal notation:
For each Q ∈ Q and a ∈ A ∪ {ε} there exists the only mapping δ(q, a, α) =
{(p1, β), (p2, β), ..., (pm, β)} for one pair α, β ∈ G∗ and p1, p2, . . . , pm ∈ Q.

Given a nondeterministic input–driven PDA, it can be determinised as follows:

Algorithm 1. Transformation of an input–driven nondeterministic PDA to an
equivalent deterministic PDA.
Input: Input–driven nondeterministic PDA Mnx(t) = ({0, 1, 2, . . . , n},A, {S},
δ, 0, S, ∅), where the ordering of its states is such that if δ(p, a, α) = (q, β), then
p ≤ q.
Output: Equivalent deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, qI , S, ∅).
Method:

1. Let cpds(q′), where q′ ∈ Q′, denote a set of strings over {S}. (The abbrevi-
ation cpds stands for Contents of the PushDown Store.)

2. Initially, Q′ = {[0]}, qI = [0], cpds([0]) = {S} and [0] is an unmarked state.
3. (a) Select an unmarked state q′ from Q′ such that q′ contains the smallest

possible state q ∈ Q, where 0 ≤ q ≤ n.
(b) If there is Sr ∈ cpds(q′), r ≥ 1, then for each input symbol a ∈ A:

i. Add transition δ′(q′, a, α) = (q′′, β), where q′′ = {q : δ(p, a, α) =
(q, β) for all p ∈ q′}. If q′′ is not in Q′ then add q′′ to Q′ and
create cpds(q′′) = ∅. Add ω, where δ(q′, a, γ)
Mdx(t) (q′′, ε, ω) and
γ ∈ cpds(q′), to cpds(q′′).

(c) Set the state q′ as marked.
4. Repeat step 3 until all states in Q′ are marked. ��

Arbology: Trees and Pushdown Automata 41

Theorem 10. Given a input–driven nondeterministic PDA Mnx(t) = (Q,A,
{S}, δ, q0, S, ∅), the deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, {q0}, S, ∅) con-
structed by Alg. 1 is equivalent to PDA Mnx(t).

Proof. In [10].

6 Exact Tree Pattern Matching

A systematic approach to the construction of subtree pattern matchers by de-
terministic pushdown automata, which read subject trees in prefix and postfix
notation, is presented in this section. The method is analogous to the construc-
tion of string pattern matchers: for a given pattern, a nondeterministic pushdown
automaton is created and then it is determinised. The size of the resulting de-
terministic pushdown automata directly corresponds to the size of the existing
string pattern matchers based on finite automata.

Definition 8. Let s and pref(s) be a tree and its prefix notation, respectively.
Given an input tree t, a subtree pushdown automaton constructed over pref(s)
accepts all matches of tree s in the input tree t by final state.

6.1 Subtree Matching

First, we start with a PDA which accepts the whole subject tree in prefix nota-
tion. The construction of the PDA accepting a tree in prefix notation is described
by Alg. 1. The constructed PDA is deterministic.

Algorithm 2. Construction of a PDA accepting pref(t) by final state.
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: PDA Mp(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, {n}).
Method:

1. For each state i, where 1 ≤ i ≤ n, create a new transition δ(i− 1, ai, S) =
(i, SArity(ai)), where S0 = ε. ��

Lemma 1. Given a tree t and its prefix notation pref(t), the PDA
Mp(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, F), where n = |t|, constructed by Alg. 6,
accepts pref(t).

Proof. In [5].

We present the construction of the deterministic subtree matching PDA for trees
in prefix notation. The construction consists of two steps. First, a nondetermin-
istic subtree matching PDA is constructed by Alg. 3. This nondeterministic
subtree matching PDA is an extension of the PDA accepting trees in prefix no-
tation, which is constructed by Alg. 2. Second, the constructed nondeterministic
subtree matching PDA is transformed to the equivalent deterministic subtree
matching PDA by Alg. 1.

42 B. Melichar

Algorithm 3. Construction of a nondeterministic subtree matching PDA for a
tree t in prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: Nondeterministic subtree matching PDA Mnps(t) = ({0, 1, 2, . . . , n},
A, {S}, δ, 0, S, {n}).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) by Alg. 2.
2. For each symbol a ∈ A create a new transition δ(0, a, S) = (0, SArity(a)),

where S0 = ε. ��
Theorem 11. Given a tree t and its prefix notation pref(t), the PDA Mnps(t)
constructed by Alg. 3 is a subtree matching PDA for pref(t).

Proof. In [5].

For the construction of deterministic subtree matching PDA, we use the trans-
formation described by Alg. 1.

Theorem 12. Given a tree t with n nodes in its prefix or postfix notation, the
deterministic subtree matching PDA Mpds(t) constructed by Alg. 3 and 1 is made
of exactly n + 1 states, one pushdown symbol and |A|(n + 1) transitions.

Proof. In [5].

Theorem 13. Given an input tree t with n nodes, the searching phase of the
deterministic subtree matching automaton constructed by Algs. 3 and 1 is O(n).

Proof. In [5]. ��

6.2 Multiple Subtree Matching

Definition 9. Let P = {t1, t2, . . . , tm} be a set of m trees and pref(ti), 1 ≤ i ≤
m be the prefix notation of the i-th tree in P . Given an input tree t, a sub-
tree pushdown automaton constructed over set P accepts all matches of subtrees
t1, t2, . . . , tm in the input tree t by final state.

Similarly as in Subsection 6.1, our method begins with a PDA which accepts trees
t1, t2, . . . , tm in their prefix notation. The construction of this PDA is described
by Alg. 4.

Algorithm 4. Construction of a PDA accepting a set of trees
P = {t1, t2, . . . , tm} in their prefix notation.
Input: A set of trees P = {t1, t2, . . . , tm} over a ranked alphabet A; prefix
notation pref(ti) = a1a2 . . .ani , 1 ≤ i ≤ m, ni ≥ 1.
Output: PDA Mp(P) = ({0, 1, 2, . . . , q},A, {S}, δ, 0, S, F).

Arbology: Trees and Pushdown Automata 43

Method:

1. Create PDAs Mp(ti) = (Qi,A, {S}, δi, 0i, S, Fi) by Alg. 2
for i = 1, 2, . . . , m.

2. Create PDA Mp(P) = (Q,A, {S}, δ, 0, S, F), where
Q =

⋃m
i=1(Qi \ {0i}) ∪ {0},

δ(q, a, S) = δi(q, a, S),
δ(0, a, S) = δi(0i, a, S), where q ∈ (Q \ {0}), i = 1, 2, . . . , m,
F =

⋃m
i=1 Fi. ��

The correctness of the deterministic PDA constructed by Alg. 4, which accepts
trees in prefix notation, is described by the following lemma.

Lemma 2. Given a set of k trees P = {t1, t2, . . . , tm} and their prefix notation
pref(ti), 1 ≤ i ≤ m, the PDA Mp(P) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, F), where
1 + min(|t1|, |t2|, . . . , |tm|) ≤ n ≤ 1 +

∑k
j=1 |tj |, constructed by Alg. 4 accepts

pref(ti), where 1 ≤ ti ≤ m.

Proof. In [5].

The deterministic subtree matching PDA for multiple tree patterns in prefix
notation can be constructed in a similar fashion to the subtree matching PDA for
a single pattern. First, the PDA accepting a set of trees in their prefix notations,
constructed by Alg. 4, is used to construct a nondeterministic subtree matching
PDA by Alg. 5. The constructed nondeterministic subtree matching PDA is then
transformed to the equivalent deterministic subtree matching PDA by Alg. 1.

Algorithm 5. Construction of a nondeterministic subtree matching PDA for a
set of trees P = {t1, t2, . . . , tm} in their prefix notation.
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: Nondeterministic subtree matching PDA Mnps(t) = (Q,A, {S}, δ, 0, S,
F).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) = (Q,A, {S}, δ, 0, S, F) by Alg. 4.
2. For each symbol a ∈ A create a new transition δ(0, a, S) = (0, SArity(a)),

where S0 = ε. ��
Theorem 14. Given a set of m trees P = {t1, t2, . . . , tm} and their prefix no-
tation pref(ti), 1 ≤ i ≤ m, the PDA Mnps(P) constructed by Algs. 4 and 5 is a
subtree matching PDA for tree patterns t1, t2, . . . , tm.

Proof. In [5].

Theorem 15. Given a set of m trees P = {t1, t2, . . . , tm} over a ranked alphabet
A, the deterministic subtree matching PDA Mpds(P) is constructed by Alg. 5
and 1 in time Θ(|A|s), requires Θ(|A|s) storage, where s =

∑m
i=1 |ti|, and its

pushdown store alphabet consists of one symbol.

Proof. In [5].

44 B. Melichar

Theorem 16. Given an input tree t with n nodes, the searching phase of the
deterministic subtree matching automaton constructed by Algs. 2 and 3 over a
set of m trees P is O(n).

Proof. In [5].

7 Indexing Trees

This section briefly describe subtree PDAs [8] and tree pattern PDAs [10] for
trees in prefix notation. These PDAs are analogous to string suffix and factor
automata, respectively. Subtree pushdown automata accept all subtrees of the
tree. Tree pattern pushdown automata accept all tree patterns which match
the tree. The presented pushdown automata are input–driven and therefore can
be determinised. Given a tree with n nodes, the deterministic subtree and the
deterministic tree pattern pushdown automaton represent a complete index of
the tree, and the search phase of all occurrences of a subtree or a tree pattern,
respectively, of size m is performed in time linear in m and not depending on
n. This is faster than the time of the existing tree pattern matching algorithms,
which depends on n. The total size of the deterministic subtree pushdown au-
tomaton is linear in n. Although the number of distinct tree patterns which
match the tree can be exponential in n, for specific cases of trees the total size
of the deterministic tree pattern pushdown automaton is linear in n.

Definition 10. Let t and pref(t) be a tree and its prefix notation, respectively.
A subtree pushdown automaton for pref(t) accepts all subtrees of t in prefix
notation.

First, we start with a PDA which accepts the whole subject tree in prefix nota-
tion by empty pushdown store, whose construction is described by Alg. 6. The
constructed PDA is deterministic.

Algorithm 6. Construction of a PDA accepting pref(t) by empty pushdown
store.
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: PDA Mp(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:

1. For each state i, where 1 ≤ i ≤ n, create a new transition
δ(i− 1, ai, S) = (i, SArity(ai)), where S0 = ε. ��

Lemma 3. Given a tree t and its prefix notation pref(t), the PDA Mp(t) =
({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅), where n ≥ 0, constructed by Alg. 6 accepts
pref(t).

Proof. In [10].

Arbology: Trees and Pushdown Automata 45

The construction of the deterministic subtree PDA for trees in prefix notation
consists of two steps. First, a nondeterministic subtree PDA is constructed by
Alg. 7. This nondeterministic subtree PDA is an extension of the PDA accepting
tree in prefix notation, which is constructed by Alg. 6. Second, the constructed
nondeterministic subtree PDA is transformed to the equivalent deterministic
subtree PDA by Alg. 1.

Algorithm 7. Construction of a nondeterministic subtree PDA for a tree t in
prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: Nondeterministic PDA Mnps(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) by Alg. 6.
2. For each state i, where 2 ≤ i ≤ n, create a new transition

δ(0, ai, S) = (i, SArity(ai)), where S0 = ε. ��

Theorem 17. Given a tree t and its prefix notation pref(t), the PDA Mnps(t)
constructed by Alg. 7 is a subtree PDA for pref(t).

Proof. In [10].

To construct deterministic subtree or tree pattern PDAs from their nondeter-
ministic versions we use the transformation described by Alg. 1.

Lemma 4. Given a tree t with n nodes, the number of distinct subtrees of tree
t is equal or smaller than n.

Proof. In [10].

The deterministic subtree PDA has the only pushdown symbol S, and all its
states and transitions correspond to the states and the transitions, respectively,
of the deterministic suffix automaton constructed for pref(t). Therefore, the
total size of the deterministic subtree PDA cannot be greater than the total size
of the deterministic suffix automaton constructed for pref(t).

Theorem 18. Given a tree t with n nodes and its prefix notation pref(t), the
deterministic subtree PDA Mdps(t) constructed by Algs. 7 and 1 has just one
pushdown symbol, fewer than N ≤ 2n + 1 states and at most N + n − 1 ≤ 3n
transitions.

Proof. In [10].

We proceed with presenting tree pattern PDA.

Definition 11. Let t and pref(t) be a tree and its prefix notation, respectively.
A tree pattern pushdown automaton for pref(t) accepts all tree patterns in prefix
notation which match the tree t.

46 B. Melichar

Given a subject tree, first we construct a so-called deterministic treetop PDA
for this tree in prefix notation, which accepts all tree patterns that match the
subject tree and contain the root of the subject tree. The deterministic treetop
PDA is defined as follows.

Definition 12. Let t, r and pref(t) be a tree, its root and its prefix notation,
respectively. A treetop pushdown automaton for pref(t) accepts all tree patterns
in prefix notation which have the root r and match the tree t.

The construction of the treetop PDA is described by the following algorithm.
The treetop PDA is deterministic.

Algorithm 8. Construction of a treetop PDA for a tree t in prefix notation
pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: Treetop PDA Mpt(t) = ({0, 1, 2, . . . , n},A∪ {S}, {S}, δ, 0, S, ∅).
Method:

1. Create Mpt(t) as Mp(t) by Alg. 6.
2. Create a set srms = { i : 1 ≤ i ≤ n, δ(i − 1, a, S) = (i, ε), a ∈ A0}. The

abbreviation srms stands for Subtree RightMost States.
3. For each state i, where i = n−1, n−2, . . . , 1, δ(i, a, S) = (i+1, Sp), a ∈ Ap,

create a new transition δ(i, S, S) = (l, ε) such that (i, xy, S)
+
Mp(t) (l, y, ε)

as follows:
If p = 0, create a new transition δ(i, S, S) = (i + 1, ε).
Otherwise, if p ≥ 1, create a new transition δ(i, S, S) = (l, ε), where l is the
p-th smallest integer such that l ∈ srms and l > i. Remove all j, where
j ∈ srms, and i < j < l, from srms. ��

Theorem 19. Given a tree t and its prefix notation pref(t), the PDA Mpt(t)
constructed by Alg. 8 is a treetop PDA for pref(t).

Proof. In [10].

The nondeterministic tree pattern PDA for trees in prefix notation is constructed
as an extension of the deterministic treetop PDA.

Algorithm 9. Construction of a nondeterministic tree pattern PDA for a tree
t in prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: Nondeterministic tree pattern PDA Mnpt(t) = ({0, 1, 2, . . . , n},A ∪
{S}, {S}, δ, 0, S, ∅).
Method:

1. Create Mnpt(t) as Mpt(t) by Alg. 8.
2. For each state i, where 2 ≤ i ≤ n, create a new transition

δ(0, ai, S) = (i, SArity(ai)), where S0 = ε. ��

Arbology: Trees and Pushdown Automata 47

Theorem 20. Given a tree t and its prefix notation pref(t), the PDA Mnpt(t)
constructed by Alg. 9 is a tree pattern PDA for pref(t).

Proof. In [10].

The nondeterministic tree pattern PDA Mnpt(t) is again an acyclic input-driven
PDA, and therefore can be determinised by Alg. 1 to an equivalent deterministic
tree pattern PDA Mdpt(t).

8 Finding Repeats in Trees

Efficient methods of finding various kinds of repeats in a string can be based
on constructing and analysing string suffix trees or string suffix automata. This
section briefly presents a simple method of finding various kinds of all repeats
of subtrees in a given tree by constructing and analysing the subtree pushdown
automaton for the tree.

Given a tree, the problem is to find all repeating subtrees of the tree and to
compute kinds and positions of all occurrences of these subtrees. All repeats of
subtrees and their properties are summarised in a subtree repeat table, which
is defined by Defs. 13, 14 and 15. We define two versions of the subtree repeat
table: the first, basic, version of the table contains basic information on repeats
and its size is linear to the number of nodes of the tree. The second one, an
extended subtree repeat table, contains also further information such as all the
repeating subtrees in prefix notation, which can result in a larger table.

Definition 13. Let t be a tree over a ranked alphabet A. A subtree position
set sps(st, t), where st is a subtree of t, is the set sps(st, t) = {i : pref(t) =
x pref(st) y, x, y ∈ A∗, i = |x|+ 1}.
Definition 14. Let t be a tree over a ranked alphabet A. Given a subtree st of
t, list of subtree repeats lsr(st, t) is a relation in sps(st, t)× {F, S, Q} defined as
follows:

- (i, F) ∈ lsr(st, t) iff pref(t) = x pref(st) y, i = |x|+ 1, x �= x1 pref(st) x2,
- (i, S) ∈ lsr(st, t) iff pref(t) = x pref(st) y, i = |x|+ 1, x = x1 pref(st),
- (i, G) ∈ lsr(st, t) iff pref(t) = x pref(st) y, i = |x|+ 1, x = x1 pref(st) x2,

x2 ∈ A+.

Abbreviations F , S, and G stand for First occurrence of the subtree, repeat
as a Square, and repeat with a Gap, respectively. In comparison with kinds of
repeats in string [12,13], repeats of subtrees have no kind which would represent
the overlapping of subtrees because any two different occurrences of the same
subtree cannot overlap.

Definition 15. Given a tree t, the basic subtree repeat table BSRT (t) is the set
of all lists of subtree repeats lsr(st, t), where st is a subtree with more than one
occurrence in the tree t. The extended subtree repeat table ESRT (t) is the set of
all triplets (sps(st, t), pref(st), lsr(st, t)), where st is a subtree with more than
one occurrence in the tree t.

48 B. Melichar

Algorithm 10. Construction of the basic subtree repeat table for a tree t in
prefix notation pref(t).
Input: A tree t; prefix notation pref(t) = a1a2 . . . an, n ≥ 1.
Output: Basic subtree repeat table BSRT (t).
Method:

1. Initially, BSRT (t) = ∅.
2. Create Mnpt(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅) by Alg. 9.
3. Let Q′ denote a set of states. Let pdsl(q′), where q′ ∈ Q′, denote a set of

pairs of integers (the abbreviation pdsl stands for the number of symbols S
in the PushDown Store, and the Length of the subtree.)

4. Q′ = {[0]}, pdsl([0]) = {(1, 0)} and [0] is an unmarked state.
5. (a) Select an unmarked state q′ from Q′ such that q′ contains the smallest

possible state q ∈ Q, where 0 ≤ q ≤ n.
(b) For each (0, l) ∈ pdsl(q′) to BSRT (t) add pairs (x, Z), where

x = r − l, r ∈ q′ and:
i. Z = F if x is the smallest such number x,
ii. Z = S if x− 1 ∈ q′′,
iii. Z = G otherwise.

(c) If there is v > 0, (v, w) ∈ pdsl(q′), then for each input symbol a ∈ A:
Compute state q′′ = {q : δ(p, a, α) = (q, β) for all p ∈ q′}.
If q′′ is not in Q′ and |q′′| > 1, then add q′′ to Q′ and create pdsl(q′′) = ∅.
Add pairs (j, k + 1), where (i, k) ∈ pdsl(q′), i > 0, j = i + Arity(a)− 1,
to pdsl(q′′).

(d) Set the state q′ as marked.
6. Repeat step 5 until all states in Q′ are marked. ��

Theorem 21. Given a tree t with n nodes, Alg. 10 correctly constructs the basic
subtree repeat table BSRT (t) in time O(n) and space O(n).

Proof. In [11]. ��

9 Conclusion

Basic arbology principles and algorithms have been presented. In this paper, par-
ticular algorithms were presented for prefix notation of trees; these algorithms
can be easily modified also for postfix, bar prefix and bar postfix notations in
the following way: instead of the pair of Theorems (2, 6), the pairs of Theorems
(3, 7), (4, 8), and (5, 9), respectively, can be considered and the pushdown oper-
ations can be changed accordingly. For more detailed information on arbology,
see [3].

Acknowledgement. I would like to thank Jan Janoušek for his help with cre-
ating this paper.

Arbology: Trees and Pushdown Automata 49

References

1. Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling.
Prentice-Hall, Englewood Cliffs (1972)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) STOC,
pp. 202–211. ACM, New York (2004)

3. Arbology: www pages (2010), http://www.arbology.org/
4. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,

Tison, S., Tommasi, M.: Tree automata techniques and applications (Release Oc-
tober 12, 2007), http://www.grappa.univ-lille3.fr/tata

5. Flouri, T., Janoušek, J., Melichar, B.: Subtree matching by pushdown automata.
Computer Science and Information Systems, ComSIS Consortium (To appear 2010)

6. Gecseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, vol. 3, pp. 1–68. Springer, Berlin (1997) (Beyond
Words)

7. Hoffmann, C.M., O’Donnell, M.J.: Pattern matching in trees. J. ACM 29(1), 68–95
(1982)

8. Janoušek, J.: String suffix automata and subtree pushdown automata. In: Holub,
J., Žďáreks, J. (eds.) Proceedings of the Prague Stringology Conference 2009, pp.
160–172. Czech Technical University, Prague (2009),
http://www.stringology.org/event/2009

9. Janoušek, J., Melichar, B.: On regular tree languages and deterministic pushdown
automata. Acta Inf. 46(7), 533–547 (2009)

10. Janoušek, J., Melichar, B.: Subtree and tree pattern pushdown automata for trees
in prefix notation. Submitted for publication (2009)

11. Janoušek, J., Melichar, B.: Finding repeats of subtrees in a tree using pushdown
automata (in preparation, 2010)

12. Melichar, B.: Repetitions in text and finite automata. In: Cleophas, I.L.,
Watson, B.W. (eds.) Proceedings of the Eindhoven FASTAR Days 2004. TU Eind-
hoven, The Netherlands, pp. 1–46 (2004)

13. Melichar, B., Holub, J., Polcar, J.: Text searching algorithms,
http://stringology.org/athens/ (release November 2005)

14. Nowotka, D., Srba, J.: Height-deterministic pushdown automata. In: Kučera, L.,
Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 125–134. Springer, Heidelberg
(2007)

http://www.arbology.org/
http://www.grappa.univ-lille3.fr/tata
http://www.stringology.org/event/2009
http://stringology.org/athens/

Analysis of Communicating Automata

Anca Muscholl

LaBRI, University Bordeaux, France

Abstract. This extended abstract is a survey of some of the recent de-
velopments in the area of automated verification dedicated to the analysis
of communicating automata.

Communicating automata are a fundamental computational model for concur-
rent systems, where processes cooperate via asynchronous message passing using
unbounded channels. They are a popular model for representing and reasoning
about communication protocols, and they have been used to define the semantics
of standardized specification languages such as SDL. However, from the algorith-
mic point of view communicating automata are more challenging than other true
concurrent models such as Petri nets: indeed, this model is Turing equivalent, in
particular it subsumes Post tag systems [21]. Therefore, basic questions arising
in formal verification, such as the reachability problem, are intractable.

Solving the reachability problem is actually the first step in tackling the more
general model-checking problem, that consists in verifying that the model, i.e. the
communicating automaton, satisfies a given property, usually described in some
logical formalisms such as e.g. temporal logics [18]. In this setting, reachability
is used for validating safety properties, stating that no bad state can be reached
from the initial state. A more challenging and difficult problem is synthesis :
here, the aim is to compute a model from a given specification. In this survey
we will only report on the closed synthesis problem, where the model that is to
be computed does not interact with any environment. In contrast, synthesis of
open systems, i.e. systems that are embedded in an unpredictable environment,
is even more intricate. The reason why synthesis is challenging here is that
communicating automata are a concurrent model, thus the simplest instance of
synthesis (i.e., the closed case) already amounts to compute the distribution of
a sequential object, i.e. the specification. In the open case, the situation is even
more challenging, since we need to solve some sort of concurrent games. In both
cases, the existing techniques are rather sparse.

Starting with the model-checking problem, an important line of research was
devoted to identify structural or behavioral restrictions on communicating au-
tomata that make them amenable to algorithmic methods. A first example are
lossy channel systems, or equivalently, communicating automata where any num-
ber of messages can be lost, at any time. Lossy channel systems are a particular
instance of well-structured transition systems [1,9] , so reachability was shown to
be decidable [2], albeit of non-primitive recursive complexity [22]. On the other
hand, liveness properties were shown to be undecidable [1].

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 50–57, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Analysis of Communicating Automata 51

A second line of research aimed at describing the set of reachable configura-
tions of communicating automata, resp. approximations thereof, by some form
of extended finite-state automata (called symbolic representations). The idea
here is to manipulate a possibly infinite set of configurations by means of finite
objects, such as finite automata or some suitable extensions.

Whereas both previous approaches emphasize the symbolic representation of
the set of reachable configurations, an orthogonal approach based on partial or-
ders, has been developed more recently. The partial order approach emphasizes
concurrency and, in particular, the partially ordered events executed by a com-
municating automaton. Here, we are mainly interested e.g. in the reachability of
control states, so that the memory (i.e., the channel contents), is handled only
implicitly. Notice that this kind of event-based reasoning arises very naturally
when communicating automata are viewed as sequential automata synchronizing
over communication events.

The partial order approach was successfully applied for obtaining both model-
checking algorithms, as well as synthesis algorithms, for so-called existentially-
bounded finite state communicating automata [13]. The main idea here is to
assume unbounded channels, but to consider only executions that can be resched-
uled on (uniformly) bounded ones. A simple example illustrating the idea is a
pair of processes, a producer and a consumer, where the producer keeps sending
messages to the consumer. Since there is no control on the relative speed of these
two processes, the channel should be of unlimited size. However, often it suffices
to reason on executions where messages can be consumed without delay, i.e. on
executions that can be scheduled with a channel of size one.

The partial order approach has been actually inspired by the study of au-
tomata and logics over Mazurkiewicz traces ([20], see also [8] for a textbook of
the topic). The deepest result in the area of Mazurkiewicz traces is Zielonka’s
construction of distributed (trace) automata from sequential automata [24,23].
This sophisticated construction is the building brick for the synthesis of existen-
tially bounded finite-state communicating automata in [10].

1 Basics

Communicating automata follow the simple paradigm of a network of automata
cooperating asynchronously over point-to-point, fifo communication channels.
They arise naturally as models for peer-to-peer interaction, as occurring e.g. in
distributed protocols using asynchronous message passing.

We consider systems described by means of a fixed communication network,
consisting of a (usually finite) set of concurrent processes P , together with a
set of channels Ch ⊆ {(p, q) ∈ P2 | p �= q}, that stand for point-to-point links.
Following the classical definition [6], we exclude multiple channels between a pair
of processes, as well as self-linking channels. However, this has no severe impact
on the kind of results we will present. At best, it has an impact when one aims
at classifying networks w.r.t. decidability of various verification questions. In
this model, processes act either by point-to-point communication or by local

52 A. Muscholl

actions. A send action denoted as p!q(m) means that process p sends a message
with content m to process q. A receive action denoted as p?q(m) means that p
receives from q a message with content m. Whenever we write p!q and q?p, we will
assume that (p, q) ∈ Ch. A local action m on process p is denoted as �p(m). For a
given (finite) set M of message contents, resp. local actions, and a process p ∈ P ,
we define the set of p-local actions as Σp = {p!q(m), p?q(m), �p(m) | m ∈ M}
and set Σ =

⋃
p∈P Σp.

A communicating automaton (CA for short) is a tuple A = 〈(Ap)p∈P , F 〉
where

– each Ap = (Sp,→p, s
0
p) is a labeled transition system (LTS for short) with

state space Sp, transition relation →p⊆ Sp ×Σp × Sp, and s0
p ∈ Sp as initial

state;
– F ⊆∏

p∈P Sp is a set of global final states.

We denote the product S :=
∏

p∈P Sp as set of global states.
The behavior of a CA is defined as the behavior of an infinite-state LTS, by

considering the possible (local) transitions on the set of configurations of the
CA. A configuration of the CA A consists a global state s ∈ S, together with a
word wp,q ∈ M∗ for each channel (p, q) ∈ Ch. We write C = 〈s = (sp)p∈P , w =
(wp,q)(p,q)∈Ch〉 for a configuration with global state s ∈ S and channel contents
w ∈ (M∗)Ch. The set of all configurations of A is denoted CA (or simply C when
there is no risk of confusion). For any two configurations C = 〈s, w〉, C′ = 〈s′, w′〉
and any action a ∈ Σp of A, we say that C′ is a successor of C (and write
C

a−→ C′, or simply C −→ C′ or C′ ∈ post(C), when the action does not
matter), if

– sp
a−→p s′p is a p-local transition, and s′q = sq for all q �= p,

– Send action: if a = p!q(m), then w′
p,q = wp,qm (message m is inserted into

the channel from p to q) and w′
r,s = wr,s for all (r, s) �= (p, q) (all other

channels are unchanged).
– Receive action: if a = p?q(m), then wq,p = mw′

q,p (message m is deleted
from the channel from q to p) and w′

r,s = wr,s for all (r, s) �= (q, p) (all other
channels are unchanged).

– Local action: if a = �m, then w = w′.

A run of a CA A is (finite or infinite) sequence of transitions: ρ = C0
a0−→

C1
a1−→ C2 · · · , with Ci ∈ CA configurations and ai ∈ Σ actions. For a run ρ as

above, we also write C0
∗−→ Cn.

We define accepting runs in the usual way, by referring to the global states. A
finite run ρ = C0

a0−→ C1
a1−→ · · ·Cn is accepting if C0 = 〈s0, ε〉 and Cn = 〈f, w〉,

where εp,q = ε for all (p, q) ∈ Ch, f ∈ F and w ∈ (M∗)Ch.
The reachability set of a CA A, denoted Reach(A), is the set

Reach(A) := {w ∈ (M∗)Ch | C0
∗−→ 〈f, w〉 for some f ∈ F} .

The language of a CA A, denoted L(A) ⊆ Σ∗, is the set

L(A) = {a0a1 · · · an−1 | C0
a0−→ C1

a1−→ C2 · · · an−1−→ Cn is an accepting run} .

Analysis of Communicating Automata 53

Remark 1. Notice that we did not impose in the definition of a communicating
automaton A = 〈(Ap)p∈P , F 〉 any restriction on the local LTS Ap. In general,
we might be interested in various kinds of (possibly infinite-state) LTS, such as
pushdown automata. However, a basic kind of CA is obtained by requiring that
every Ap is a finite-state automaton, and then we denote A as communicating
finite-state machine (CFM for short). Most of the research done in the past 15
years on CAs focused on CFMs, and we will concentrate on them in the next
sections.

2 Symbolic Representations

The basic idea when using symbolic representations is to approximate in a fini-
tary way behavior of a CFM. Often, such a computation is intended to capture
the effect of iterating single loops. This leads to define meta-transitions and to
use them to accelerate the usual fixpoint computation defining ReachA:

X := {C0}, X := X ∪ post(X)

Queue-content Decision Diagrams (QDD for short) were proposed in [3] for de-
scribing (possibly infinite) sets of configurations of CFM by finite automata.
With such representations, one can answer to various questions such as bound-
edness of channels or reachability. But of course, the method only offers a semi-
algorithm for the reachability problem.

Let us assume that our network has k channels, with a fixed order on Ch.
The channel contents w = (wi)k

i=1 of a configuration 〈s, w〉 of the CFM can be
represented by a word w1#w2# · · ·wk# (assuming that # /∈ M). A QDD is then
a finite automaton reading words from (M∗#)k. Computing the effect of a loop
means iterating a sequence σ ∈ S∗, that leads from a global state s ∈ S back to
s. The general idea is to start with s, σ,B, where B is a QDD, and to compute the
effect of σ∗ on the set of configurations {〈s, (wi)k

i=1〉 | w1#w2# · · ·wk# ∈ L(B)}.
The paper [4] characterizes those sequences σ that preserve regularity, i.e., QDD
representations, as non-counting sequences. This roughly means that such loops
cannot send on two different channels. This paper also suggests a semi-algorithm
for model-checking LTL properties.

The paper [5] goes beyond regular representations, introducing Constrained
Queue-content Decision Diagrams (CQDD for short). CQDDs are restricted fi-
nite automata, extended by linear constraints on the frequency of transitions in
a run. The main result of [5] is that the CQDD representation is preserved by
the iteration of arbitrary loops.

3 Faulty Channels

Assuming that channels are imperfect, at least two types of faults may seem
natural for real systems. Lossy machines are such that channels can loose an
arbitrary number of messages, at any time. For machines with insertion errors,

54 A. Muscholl

new messages can be inserted in channels, at any time. Although these two
models have different flavor, the techniques used to manipulate them are quite
similar, so that we will only consider lossy CFMs in the following.

Lossy CFMs (or lossy channel systems) represent a special instance of a more
general class of infinite-state systems, known as well-structured transition sys-
tems (WSTS for short), [2,9]. The basic idea behind a WSTS 〈S,−→〉 with state
space S is to use a well quasi-order (wqo for short) on S in order to manipu-
late certain infinite subsets of S symbolically. A wqo � on S is a well-founded
preorder with no infinite anti-chain. What makes a transition system 〈S,−→〉 a
WSTS is monotonicity: for every s′ ∈ post(s) and every s1 ∈ S with s � s1, it
is required that some s′1 ∈ post(s1) exists such that s′ � s′1.

Two basic properties are crucial for WSTS. The first one is that every upward-
closed1 subset X ⊆ S can be described by a finite set of minimal elements. The
second property is that the predecessor relation preserves upward-closed sets.
That is, pre(X) := {x | x −→ y for some y ∈ X} is upward-closed whenever X
is upward-closed. As a consequence, reachability of upward-closed sets X can be
decided by a backward algorithm, that computes in a fixpoint manner pre∗(X).
Intersecting the result with the set of initial configurations solves the reachability
problem.

For lossy CFMs, the choice for a wqo is very natural. One starts with the
subword ordering: for two words x, y ∈ M∗, let x � y if x = x1 · · ·xn and
y = y0x1y1 · · · yn−1xnyn for some yi ∈ M∗. This wqo easily extends to Mk

and then to configurations of the CFM. For two configurations C = 〈s, w〉,
C′ = 〈s′, w′〉 we set C � C′ if s = s′ and w � w′.

This technique allows to decide e.g. control-state reachability for lossy CFMs.
More complex properties, such as repeated reachability of a control state, are
undecidable [2]. For deciding termination from an initial configuration, a differ-
ent technique is employed, based on the computation of a finite reachability tree
(forward algorithm). However, the more general problem of termination from any
initial configuration, is undecidable [19]. From a different perspective, a recent
paper [7] considered mixed architectures, where some channels are lossy and oth-
ers are error-free, and characterized architectures with a decidable reachability
question.

4 Partial Order Approach

An early line of work considered universally bounded CFMs. This property
amounts to say that there exists a uniform bound B such that every run can be
executed with channels of size B, no matter how events are scheduled. Equiva-
lently, the number of transitory messages is at most B, at any time. Since the
size of the communication channels is fixed uniformly, this constraint turns a
CFM into a finite state device. Checking that a CFM is universally bounded is
undecidable, in general. However if the bound B is given, and if the CFM A is

1 X is upward-closed if X = {y | x � y for some x ∈ X}.

Analysis of Communicating Automata 55

deadlock-free, then we can check in polynomial space whether A is universally
B-bounded [11].

Being universally bounded leads immediately to a decision procedure for the
model-checking problem, since we can transform the CFM into an (exponentially
larger) finite automaton.

An even more important result concerns closed synthesis. Suppose that we
are given a regular language L ⊆ Σ∗, that satisfies the following properties for
some B > 0 (notice that these properties are decidable for a given B):

1. For every prefix w of a word from L, and every (p, q) ∈ Ch, we have |w|p!q −
|w|q?p ≤ B.

2. Every word in L can induce a fifo run, which leads to a configuration where
all channels are empty.

3. Whenever w ∈ L, we can swap adjacent actions in w that (1) do not belong
to the same process and (2) do not form a matching send/receive pair, and
the resulting word is still in L.

The main result of [14], later extended to infinite runs in [16], is a construction
for transforming a regular language satisfying the three properties above into a
universally B-bounded CFM. As mentioned previously, the challenge for such
constructions is to distribute a sequential object, e.g. the finite automaton de-
scribing L. The techniques make heavy use of Mazurkiewicz trace theory and,
in particular, of Zielonka’s construction for distributed automata.

The drawback of models with universally bounded channels is the limited
expressive power. Intuitively, universal channel bounds require message acknowl-
edgments, which can be difficult to impose in general. For instance, basic
protocols of producer-consumer type (such as e.g. the USB protocol) are not
universally bounded, since the communication is one-way and does not allow
acknowledgments. Therefore, a relaxation of this restriction on channels was
proposed in [13,10]. The idea is to require an existential bound on channels. This
means roughly that every CFM run must have some scheduling of events that
respects the given channel bound (other schedules might exceed the bound).
In other words, runs can be executed with bounded channels, provided that
we schedule the events fairly. For instance, in a producer-consumer setting, the
scheduling alternates between producer and consumer actions. This requirement
is perfectly legitimate in practice, since real life protocols must be executable
with limited communication channels. When a channel overflow happens, then
the sender stops temporarily until some message is consumed from the queue.

For channel systems with existential bounds, the fundamental Kleene-Büchi
equivalence of automata, logics and regular expressions was shown to hold in
[10]. Automata means here CFMs, whereas logics refers to monadic second-
order logics over partial orders. Regular expressions refer to a visual formalism
that is very popular for early design of communication protocols, namely mes-
sage sequence charts. Regarding model-checking, the complexity for existentially-
bounded CFMs remains the same as in the case of universal bounds [13].

56 A. Muscholl

5 Conclusion and Outlook

This survey focused on two basic questions related to the automated verification
of communicating automata, namely model-checking and (closed) synthesis. We
presented three different approaches that allow to tackle these questions, usually
offering some approximation of the behavior of this type of automata. We did
not mention results specific to the ITU standard of message sequence charts, see
[12] for some further references on this topic.

Concerning further work on communicating automata, let us mention some
recent development. The extension of communicating automata by local push-
downs received recently attention justified by questions on the analysis of mul-
tithreaded programs or distributed software. Of course, the model is highly
undecidable but still, methods like context-bounded model-checking or suitable
restrictions on the network provide reasonable practical settings where reacha-
bility is decidable, [17,15].

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite state systems. In: LICS’96, pp. 313–323 (1996)

2. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Informa-
tion and Computation 127(2), 91–101 (1996)

3. Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with
infinite state spaces using QDDs. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996.
LNCS, vol. 1102, pp. 1–12. Springer, Heidelberg (1996)

4. Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of QDDs. In: Van
Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 172–186. Springer, Heidelberg
(1997)

5. Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel sys-
tems with nonregular sets of configurations. Theor. Comp. Science 221(1-2), 211–
250 (1999)

6. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

7. Chambart, P., Schnoebelen, P.: Mixing lossy and perfect fifo channels. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355.
Springer, Heidelberg (2008)

8. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore
(1995)

9. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
retical Computer Science 256(1-2), 63–92 (2001)

10. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking al-
gorithms for existentially bounded communicating automata. Information and
Computation 204(6), 920–956 (2006)

11. Genest, B., Kuske, D., Muscholl, A.: On communicating automata with bounded
channels. Fundam. Inform. 80(1-3), 147–167 (2007)

12. Genest, B., Muscholl, A., Peled, D.: Message sequence charts. In: Desel, J., Reisig,
W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098,
pp. 537–558. Springer, Heidelberg (2004)

Analysis of Communicating Automata 57

13. Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state high-level MSCs:
Model-checking and realizability. J. Comput. Syst. Sci. 72(4), 617–647 (2006)

14. Henriksen, J.G., Mukund, M., Kumar, K.N., Sohoni, M., Thiagarajan, P.: A theory
of regular MSC languages. Information and Computation 202(1), 1–38 (2005)

15. Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of commu-
nicating pushdown systems. In: Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp.
267–281. Springer, Heidelberg (2010)

16. Kuske, D.: Regular sets of infinite message sequence charts. Information and Com-
putation 187, 80–109 (2003)

17. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 299–314. Springer, Heidelberg (2008)

18. Manna, Z., Pnueli, A.: Verification of the concurrent programs: the temporal frame-
work. In: Boyer, R., Moore, J. (eds.) The Correctness Problem in Computer Sci-
ence, pp. 215–273. Academic Press, London (1981)

19. Mayr, R.: Undecidable problems in unreliable computations. Theor. Comp. Science
297(1-3), 337–354 (2003)

20. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI
Rep. PB 78, Aarhus University, Aarhus (1977)

21. Post, E.: Formal reductions of the combinatorial decision problem. American Jour-
nal of Mathematics 65(2), 197–215 (1943)

22. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive com-
plexity. Information Processing Letters 83(5), 251–261 (2002)

23. Zielonka, W.: Asynchronous automata. In: Rozenberg, G., Diekert, V. (eds.) Book
of Traces, pp. 175–217. World Scientific, Singapore (1995)

24. Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. — Informatique
Théorique et Applications 21, 99–135 (1987)

Complexity of the Satisfiability Problem for a
Class of Propositional Schemata

Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

Grenoble University (LIG/CNRS)

Abstract. Iterated schemata allow to define infinite languages of propo-
sitional formulae through formulae patterns. Formally, schemata extend
propositional logic with new (generalized) connectives like e.g.

∧n
i=1 and∨n

i=1 where n is a parameter. With these connectives the new logic in-
cludes formulae such as

∧n
i=1 (Pi ⇒ Pi+1) (atoms are of the form P1,

Pi+5, Pn, . . .). The satisfiability problem for such a schema S is: “Are
all the formulae denoted by S valid (or satisfiable)?” which is undecid-
able [2]. In this paper we focus on a specific class of schemata for which
this problem is decidable: regular schemata. We define an automata-
based procedure, called schaut, solving the satisfiability problem for
such schemata. schaut has many advantages over procedures in [2,1]: it
is more intuitive, more concise, it allows to make use of classical results
on finite automata and it is tuned for an efficient treatment of regular
schemata. We show that the satisfiability problem for regular schemata is
in 2-EXPTIME and that this bound is tight for our decision procedure.

1 Introduction

In applied logics (theorem proving, formal methods in programming, proof as-
sistants, . . .) one often encounters sets of structurally similar propositional for-
mulae. For instance, in the field of circuit verification, consider the formalization
of a sequential adder circuit i.e. a circuit that takes as input two n-bit vectors
and computes their sum. Such a circuit is the composition of n 1-bit adders. For
instance an 8-bit adder, a 16-bit adder and a 32-bit adder all share the same
structure, and can be specified by structurally similar propositional formulae:

Adder
def=

n∧
i=1

Sumi ∧
n∧

i=1

Carryi ∧ ¬C1

where n is the number of bits, Sumi
def= Si ⇔ (Ai ⊕Bi)⊕Ci, Carryi

def= Ci+1 ⇔
(Ai ∧Bi) ∨ (Bi ∧ Ci) ∨ (Ai ∧ Ci), ⊕ denotes the exclusive or, A1, . . . , An (resp.
B1, . . . , Bn) the bits of the first (resp. second) operand of the circuit, S1, . . . , Sn

the output (the Sum), and C1, . . . , Cn the intermediate Carries.
The Adder specification is not a propositional formula, it is a more abstract

object that actually represents an infinite set of propositional formulae (one
formula for every positive number assigned to n). The idea of defining formal
languages to represent such sets then naturally arises. Propositional iterated

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 58–69, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Complexity of the Satisfiability Problem for a Class of Schemata 59

schemata permit to express those sets through a syntax similar to the one of the
above example i.e. connectives

∧n
i=1 or

∨n
i=1 are allowed. Such constructions

are very common and indeed they arise naturally in several problems: e.g. the
pigeonhole, the colouring of a graph or the n queens.

The challenge is not only to represent those sets of formulae but also to reason
with them, e.g. many properties of the above circuit can be easily expressed as an
iterated schema Tn (e.g. (

∧n
i=1 ¬Bi) ⇒

∧n
i=1(Ai ⇔ Si) states that 0 is a neutral

element of Adder). Then one wants to prove that every propositional formula in
{T1, T2, . . . } is valid or unsatisfiable (T1, T2, . . . are called instances of Tn). As
usual in automated theorem proving, we focus on unsatisfiability. This problem
is thus called the satisfiability problem for schemata. It is equivalent to proving
∀n ∈ IN.¬Tn, and is thus a hard problem which generally requires mathematical
induction. Actually it has been shown to be undecidable in [2].

In [2] we defined a tableaux-based procedure called stab designed to solve the
satisfiability problem for schemata. As the problem is undecidable this procedure
does not terminate in general, but we proved that it always terminates for a
particular class of schemata, called regular.

The purpose of the present paper is to turn this termination proof into an
effective decision procedure for the class of regular schemata. We describe an
automata-based decision procedure which is both more efficient and more con-
venient than the procedure of [2]. A fine analysis of this procedure allows us to
prove that the satisfiability problem for regular schemata is in 2-EXPTIME.

The paper is organized as follows: Section 2 defines regular schemata, their
syntax and semantics. Section 3 defines schaut, a procedure which, for a schema
S, constructs an automaton which is empty iff all instances of S are unsatisfiable.
In Section 4 we study the complexity of schaut. Section 5 concludes the paper
and presents a short overview of related and future work.

Due to space restrictions, some of the proofs are omitted.

2 Regular Schemata

We adopt the following conventions: integer variables are denoted by n (for
parameters) or i, j (for bound variables), integers by N, M1, M2, K, arithmetic
expressions by e, f , propositional symbols by P, Q, schemata by S, T and sets of
schemata by S.

2.1 Syntax and Semantics

The set of linear arithmetic expressions is built as usual on the signature 0,
s, +, − and a set of integer variables V , modulo the standard properties of
the arithmetic symbols (e.g. s(0) + i + s(s(0)) is assumed to be the same as
i + s(s(s(0)))). For N > 0, sN (0) is simply written N .

Propositional formulae are built as usual on a set of atoms and ⊥,� using the
propositional connectives ∨,∧,¬. A⇒ B, A⇔ B and A⊕B are shorthands for
¬A ∨B, (A⇒ B) ∧ (B ⇒ A) and ¬(A ⇔ B) respectively.

60 V. Aravantinos, R. Caferra, and N. Peltier

Definition 1 (Regular Schemata). Let P be a set of propositional symbols,
n an integer variable, called the parameter, and M1, M2 ∈ Z. Let Rn−M2

M1
be the

set of propositional formulae whose atoms are of one of the following forms:

– Pn+K or PK (called indexed propositions) where P ∈ P and K ∈ Z.
–

∧n−M2
i=M1

φ or
∨n−M2

i=M1
φ (called iterations) where i ∈ V, i �= n and φ is a

propositional formula whose atoms are of the form Pi+K or PK (also called
indexed propositions) where P ∈ P and K ∈ Z. i is called a bound variable.

An element of Rn−M2
M1

for any n ∈ V, M1, M2 ∈ Z is called a regular schema. A
schema which is just an indexed proposition or its negation is called a literal.

Example 1. Consider Adder as defined in the Introduction: Adder ∈ Rn−0
1 ,

hence Adder is a regular schema. Ai, Bi, Ci, Si, Ci+1, C1 are indexed proposi-
tions,

∧n
i=1 Sumi and

∧n
i=1 Carryi are iterations, n is the parameter.

A substitution maps integer variables to linear arithmetic expressions, [e/i]
denotes the substitution mapping i to e. The application of a substitution σ to
an arithmetic expression e, written eσ, is defined as usual and naturally extended
to schemata and sets of schemata. For S ∈ Rn−M2

M1
(M1, M2 ∈ Z, n ∈ V) and

N ∈ Z, S [N/n] contains no occurrence of n. In particular the upper bound n−M2
of iterations is now an integer (equal to N −M2) as we considered arithmetic
expressions modulo the standard arithmetic properties. Then S [N/n] is turned
into a propositional formula through the following rewrite system R:

M ′
2∧

i=M1

S →
⎛
⎝M ′

2−1∧
i=M1

S

⎞
⎠ ∧ S [M ′

2/i] if M1 ≤ M ′
2

M ′
2∧

i=M1

S → � if M1 > M ′
2

M ′
2∨

i=M1

S →
⎛
⎝M ′

2−1∨
i=M1

S

⎞
⎠ ∨ S [M ′

2/i] if M1 ≤ M ′
2

M ′
2∨

i=M1

S → ⊥ if M1 > M ′
2

The length of every iteration strictly decreases at each rewriting step thus R
terminates. Furthermore the rules are orthogonal so S [N/n] has a unique normal
form by R, written S [N/n]

⏐�. S [N/n]
⏐� is always a propositional formula, called

an instance of S, e.g.
(∧3

i=1 Pi

)⏐⏐� = P1 ∧P2 ∧P3 (we always simplify �∧φ into

φ). For a set of schemata S: S [N/n]
⏐� def= {S [N/n] | S ∈ S}.

The semantics for propositional logic are the same as usual. A model of a
propositional formula φ is a mapping of its propositional variables into {true,
false}making φ true. A propositional formula is unsatisfiable iff it has no model.
A finite set of propositional formulae Φ is interpreted as

∧
φ∈Φ φ.

Definition 2 (Schemata Semantics). Consider n ∈ V, M1, M2 ∈ Z and S ∈
Rn−M2

M1
. The language of S, written L(S), is defined as: L(S) def= {S [N/n]

⏐� | N ∈
Z, N ≥ M1 + M2 − 1}. L(S) contains only propositional formulae. A schema is
unsatisfiable iff every formula of its language is (propositionally) unsatisfiable.1

1 Notice that if S does not contain iterations, then S ∈ Rn−M2
M1

for any M1, M2, hence
possibly various semantics. This is not a problem but, for the sake of clarity, we
assume that all schemata contain iterations.

Complexity of the Satisfiability Problem for a Class of Schemata 61

Example 2. Let S = P1 ∧
∧n

i=1(Pi ⇒ Pi+1) ∧ ¬Pn+1. L(S) = {P1 ∧ ¬P1, P1 ∧
(P1 ⇒ P2)∧¬P2, P1∧(P1 ⇒ P2)∧(P2 ⇒ P3)∧¬P3, . . . }. S is clearly unsatisfiable.

ForRn−M2
M1

, the linear expression n−M2−M1+1 is called the length of iterations.
The semantics given here are a bit different from the ones of our previous works:
rather than N ∈ Z, we impose N ≥ M1 + M2 − 1 i.e. the length of iterations
must be positive. Indeed allowing negative lengths does not seem useful in the
context of regular schemata where all iterations have the same bounds. More
important, it allows to use mathematical induction on the length of iterations.

2.2 Additional Definitions

We will use the two following transformations of schemata: grounding amounts to
consider that the length of iterations in a schema is null, and unfolding extracts
the last rank of each iteration.

Definition 3. Consider S ∈ Rn−M2
M1

for some n ∈ V and M1, M2 ∈ Z.
The grounding of S, written G(S), is defined as G(S) def= S [M2 + M1 − 1/n]

⏐�
The unfolding of S, written U(S), is obtained by substituting each iteration⊕n−M2
i=M1

T by T [n−M2/i]⊕⊕n−M2−1
i=M1

T (where (⊕,
⊕

) ∈ {(∧,
∧

), (∨,
∨

)}) and
then substituting all occurrences of n by n + 1.

Example 3. Consider S as in Example 2, then G(S) = P1 ∧ ¬P1 and U(S) =
P1 ∧

∧n
i=1(Pi ⇒ Pi+1) ∧ (Pn+1 ⇒ Pn+2) ∧ ¬Pn+2.

Let S ∈ Rn−M2
M1

then: EZ(S) def= {K | K ∈ Z, PK occurs in S, P ∈ P}, En+K(S)def=
{K | K ∈ Z, Pn+K occurs in S, P ∈ P}, Ei+K(S) def= {K | K ∈ Z, Pi+K occurs in
S, P ∈ P , i bound in S}. For K1, K2 ∈ Z we write n + K1 � n + K2 iff K1
≤ K2.

Proposition 1. Consider a literal of index n+K occurring in U(S) where K ∈
Z, S ∈ Rn−M2

M1
, then n+K � n+1+max[max(Ei+K(S))−M2, max(En+K(S))].

Proof. By Definition 1, no literal of the form Pn+K can occur in an iteration⊕n−M2−1
i=M1

T and thus neither in (
⊕n−M2−1

i=M1
T) [n + 1/n]. So by Definition 3,

Pn+K is either a literal of T [n−M2/i] [n + 1/n] for some T , or a literal of
S [n + 1/n] (i.e. Pn+K−1 occurs in S before the unfolding). In the first case we
have n + K � n + 1 −M2 + max(Ei+K(S)), and in the second case n + K �
n + 1 + max(En+K(S)). ��
Finally we extend the notion of “pure literal”, widely used in propositional the-
orem proving, to schemata. From now on, w.l.o.g. we assume that all schemata
are in negation normal form (i.e. all negations appear in front of an indexed
proposition, this form is easily obtained using De Morgan’s laws).

Definition 4. A literal Pe (resp. ¬Pe) is pure in S iff for all N ∈ IN, ¬Pe [N/n]
(resp. Pe [N/n]) does not occur positively in S [N/n]

⏐�.

62 V. Aravantinos, R. Caferra, and N. Peltier

Example 4. Consider S as in Example 2. Remember that Pi ⇒ Pi+1 denotes
¬Pi ∨ Pi+1. Then Pn+1 is pure in S, however ¬Pn+1 is not (take any instance
of S). For every K > 0, Pn+1+K and ¬Pn+1+K are pure in S (neither occurs in
any instance of S). Similarly, for every K ∈ IN, P−K and ¬P−K are pure in S.

The following proposition gives a way to decide whether a literal is pure or not:

Proposition 2. Consider S ∈ Rn−M2
M1

. A literal Pe (resp. ¬Pe) is pure in S iff:

– e ∈ Z and for every ¬Pf (resp. Pf) in S:
• if f ∈ Z then f �= e.
• if f = n + K where K ∈ Z then M1 + M2 − 1 + K > e.
• if f = i + K where i ∈ V, K ∈ Z then M1 + K > e.

– or e = n + K for some K ∈ Z and for every Pf (resp. ¬Pf) in S:
• if f ∈ Z then f < M1 + M2 − 1 + K.
• if f = n + K ′ where K ′ ∈ Z then K ′ �= K.
• if f = i + K ′ where i ∈ V, K ′ ∈ Z then −M2 + K ′ < K.

Proof. Suppose that Pe is pure in S and consider N ∈ Z s.t. N ≥ M1 + M2− 1.
We know that ¬Pe[N/n] does not occur in S [N/n]

⏐� i.e. for every ¬PF occurring
in S [N/n]

⏐�, F �= e [N/n]. Now F comes from f in a literal ¬Pf of S, by a
rewriting of S [N/n] by R. The proof is done by inspection of the different cases
for e and f listed above. The case ¬Pe is similar. The converse is trivial. ��
Determining whether a literal is pure or not in a regular schema is then decidable:
one just has to go through all the indexed propositions of S and check the cor-
responding inequality. One can also solve this problem by stating its equivalence
with the unsatisfiability of a Presburger arithmetic formula [2]. But Proposition 2
shows that, in the case of regular schemata, this problem is linear w.r.t. the size
of the schema (this is not the case of Presburger arithmetic which is doubly expo-
nential [9]). This is essential for the complexity analysis in Section 4.

3 Deciding the Unsatisfiability of Regular Schemata

In contrast to the tableaux-based approach of [2] we use in this paper an au-
tomata based method. Although the new procedure is actually very similar, it
is more elegant and more convenient from a theoretical point of view, because
we can rely on well-known properties of finite automata. More precisely we show
that for every schema S one can construct an automaton accepting exactly the
set of integers N s.t. S [N/n]

⏐� is satisfiable (in full rigor the set of integers
the automaton accepts is the one corresponding to the lengths of iterations, i.e.
N −M2 −M1 + 1). Then the desired result follows from the decidability of the
emptiness problem in finite automata. The automata approach has the advan-
tage that it gives an explicit presentation of the possible set of values of n (rather
than just a ’yes’ or ’no’ answer). Furthermore, the states corresponding to the
same formula are implicitly shared which makes the handling of looping (see [2])
very natural. In addition this improves the efficiency of the procedure without
having to introduce any additional optimisation machinery.

Complexity of the Satisfiability Problem for a Class of Schemata 63

We recall the well-known notion of non-deterministic finite automaton [12]:

Definition 5. Let Σ be a finite alphabet. A non-deterministic finite automaton
is a tuple 〈Q, I,F , T 〉 where Q is a finite set of states, I ⊆ Q is a set of initial
states, F ⊆ Q is a set of final states, T ⊆ Q×Σ∪{ε}×Q is a set of transitions.

Given a word w on Σ, a run of A on w from q0 is a finite sequence of states
r = (q0, . . . , qK) s.t. for every i ∈ 0..K, there is αi ∈ Σ ∪ {ε} s.t. (qi, αi, qi+1) is
a transition of A and w = α0 . . . αK . r is accepting iff qK ∈ F . w is accepted
by A iff it has an accepting run on A from an initial state.

We set Σ = {s, 0}: N ∈ IN is represented by s . . . s0, where s occurs N times.
Consider S ∈ Rn−M2

M1
, we describe the construction of an automaton AS s.t. it

accepts K iff S [M2 + M1 + K − 1/n]
⏐� is satisfiable. This instantiation might

look surprising as it would be more natural to take directly a value for n. It is
better understood if we think of it as S [K/ length(S)]

⏐� (which is of course a
notation abuse), indeed n = length(S) + M2 + M1 − 1. This allows to get rid of
arithmetic constraints on n, which were needed in [2]. Finally the states of AS

are sets of regular schemata: those are the states themselves and not just labels,
else we would have to explicitly identify two states sharing the same labels.

Definition 6 (SchAUT). Consider S ∈ Rn−M2
M1

. The construction of AS is
described by a rewrite system: S x=⇒ S1 & S y

=⇒ S2 denotes the rewrite rule
〈Q ∪ {S}, I,F , T 〉 → 〈Q ∪ {S,S1,S2}, I,F , T ∪ {(S, x,S1), (S, y,S2)}〉 i.e. if S
is a state of the rewritten automaton A then we add the states S1,S2 and the
transitions (S, x,S1) and (S, y,S2) to A. Similarly S x=⇒ S′ is a shorthand for
〈Q ∪ {S}, I,F , T 〉 → 〈Q ∪ {S,S′}, I,F , T ∪ {(S, x,S′)}〉. Let AS be an (arbi-
trary) normal form of 〈{{S}} , {{S}} , {∅} , {(∅, 0, ∅), (∅, s, ∅), ({�}, ε, ∅)}〉 by the
following rewrite system, called schaut (for Schema AUTomaton):

S ∪ {S1 ∧ S2} ε=⇒ S ∪ {S1, S2} (∧)
S ∪ {S1 ∨ S2} ε=⇒ S ∪ {S1} & S ∪ {S1 ∨ S2} ε=⇒ S ∪ {S2} (∨)
S ∪ {Pe,¬Pe} ε=⇒ {⊥} (Closure)
S ∪ {Pe} ε=⇒ S if Pe is pure in S (Pure)
S 0=⇒ {G(S) | S ∈ S} & S s=⇒ {U(S) | S ∈ S} if S �∈ {∅, {�}, {⊥}} (Decrease)

G(S) and U(S) are defined in Definition 3. All schemata of AS trivially belong
to Rn−M2

M1
. We assume that at most one rule is applied on a given state and that

the (Decrease) rule is applied only if no other rule can be applied.

Example 5. Consider S as in Example 2, then a possible AS is given in Figure 1.
∅ is not reachable hence AS is empty (and, as we shall see, S is unsatisfiable).

Notice that schaut terminates iff the set of states and transitions added by
the rules is finite. When schaut terminates there may be various normal forms,
however it is easily seen that those mainly differ by the order of the ε-transitions
and the order in which the formulae are decomposed. A unique normal form can
be obtained by imposing a priority among ε-rules and among formulae. This is
not done for the sake of simplicity and generality. Properties of AS will now be
proved: they do not need termination which will be proved in Section 4.

64 V. Aravantinos, R. Caferra, and N. Peltier

��

{�}

ε

��

{P1∧
∧n

i=1(Pi⇒Pi+1)∧¬Pn+1}
ε ��

⎧⎪⎨
⎪⎩

P1∧
∧n

i=1(Pi⇒Pi+1)

¬Pn+1

⎫⎪⎬
⎪⎭

ε
��

∅

0,s

��

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P1

∧n
i=1(Pi⇒Pi+1)∧(Pn+1⇒Pn+2)

¬Pn+2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

ε
��

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P1

∧n
i=1(Pi⇒Pi+1)

¬Pn+1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

s�� 0 ��

⎧⎪⎨
⎪⎩

P1

¬P1

⎫⎪⎬
⎪⎭

ε

��

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1

∧n
i=1(Pi⇒Pi+1)

Pn+2

¬Pn+2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

�� ��

ε

��

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1

∧n
i=1(Pi⇒Pi+1)

Pn+1⇒Pn+2

¬Pn+2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

ε�� ε ��

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1

∧n
i=1(Pi⇒Pi+1)

¬Pn+1

¬Pn+2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

ε (¬Pn+2 is removed by (Pure))
��

{⊥}

Fig. 1. Example 5 – AP1∧
∧

n
i=1(Pi⇒Pi+1)∧¬Pn+1 (the final state is framed)

Proposition 3. Let S be a schema. A state of AS either has been applied one
of the rules, or it belongs to {∅, {�}, {⊥}}.
A state of AS is a ∧-state (resp. ∨-state, closure state, pure state, decrease state)
iff the rule (∧) (resp. (∨), (Closure), (Pure), (Decrease)) applied to it. An ∨, ∧
or pure state is called a propositional state. From now on for a decrease state S,
S0 and Ss denote the states s.t. (S, 0,S0) and (S, s,Ss) are transitions of AS .

Theorem 1 (Main Property). Let S ∈ Rn−M2
M1

. S[M1 + M2 + K − 1/n] is
satisfiable iff AS accepts K.

Notice that Theorem 1 is more general than the soundness and completeness
result in [2] because the constructed automaton provides a description of the set
of natural numbers N s.t. S [N/n]

⏐� is satisfiable, whereas a non closed tableau
only guarantees the existence of such an N . Furthermore, we do not rely on an
external procedure for deciding the satisfiability of arithmetic formulae.

This result gives some clues for constructing a more general automaton that
not only takes integers as input but also interpretations. This gives a way to
provide explicitly a model for a particular instance of a schema. The method is
not presented here due to space restrictions.

4 Termination and Complexity

The (Decrease) rule, through unfolding, replaces n by n + 1, thus an infinite
number of distinct literals can be obtained. For instance from

∧n
i=1 Pi we can

get Pn+1 ∧
∧n

i=1 Pi, Pn+2 ∧ Pn+1 ∧
∧n

i=1 Pi, etc. In this section we show that
all these literals can eventually be removed by the rule (Pure) which ensures
termination. Furthermore we provide a bound on the number of distinct states
in AS , which allows us to obtain a complexity bound for schaut.

Complexity of the Satisfiability Problem for a Class of Schemata 65

4.1 Maximal Number of States

Consider n ∈ V , M1, M2 ∈ Z. In the following, we assume that S ∈ Rn−M2
M1

.
The size of S, written #S, is the number of symbols in S (numbers occurring
in schemata are encoded as bit strings) and the size of a state S (i.e. a set of
schemata) is #S def=

∑
T∈S #T .

Proposition 4. Consider a literal of index K ∈ Z occurring in some decrease
state. Then min(EZ(S)) ≤ K ≤ max(EZ(S)).

Proof. The only literals whose index belong to Z are those of S and those intro-
duced by schaut through a grounding (in the (Decrease) rule). As we consider
a decrease state, no grounding has already occurred (otherwise it is easily seen
that all other rules would have applied until we get ∅, {�} or {⊥}). So it only
remains the literals of S and the result follows from the definition of EZ(S). ��
For N ∈ IN, an N -unfolded state is a decrease state S of AS s.t. there is a
run r = ({S}, . . . ,S) where there are exactly N decrease states before S in
r. Intuitively there is a run with N unfoldings before S is reached. N is not
unique in general: if S occurs in a cycle then there exist several N s.t. S is an
N -unfolded state. Notice that every decrease state is an N -unfolded state for
some N as there must be a run from {S} to this state by construction of AS .

Proposition 5. Consider a literal of index n+K occurring in some N -unfolded
state for some K ∈ Z and N ≥ 1. Then n + K � max[n − M2 + N +
max(Ei+K(S)), n + N + max(En+K(S)))].

Proof. The (Decrease) rule is the only rule that introduces new literals (by
grounding and unfolding). Besides, only an unfolding may have introduced a
literal of the form Pn+K (there is no occurrence of n after a grounding). So we
get the result by induction on N and by Proposition 1 which shows that an
unfolding increases the index of every Pn+K by 1 (as n is replaced by n+1). ��
We set N0

def= max[0, max(EZ(S)) − max(Ei+K(S)) − M1 + 1, max(EZ(S)) −
max(En+K(S))−M1 −M2 + 1, max(Ei+K(S))−M2 −max(En+K(S))].

Lemma 1. Consider a literal of index n + K occurring in some N -unfolded
state S for some K ∈ Z and N ≥ 1. Then n + K � max[n − M2 + N0 +
max(Ei+K(S)), n + N0 + max(En+K(S))].

Proof. Let M
def= max[n−M2 + N0 + max(Ei+K(S)), n + N0 + max(En+K(S)))].

We show that all literals of index above M are pure. As the (Decrease) rule is
applied only if no other rule applies, a decrease node cannot contain any pure
literal. As an N -unfolded state is a decrease node by definition, there cannot be
in S a node of index above M and we get the result with Proposition 5.

Consider K > N0 and a literal of the form Pe (resp. ¬Pe) with e = n−M2 +
K +max(Ei+K(S)) or e = n+K+max(En+K(S)). We use Proposition 2 to show
that Pe (resp. ¬Pe) must be pure. Consider a literal ¬Pf (resp. Pf) occurring
in S. Depending on the form of f we show that the corresponding condition

66 V. Aravantinos, R. Caferra, and N. Peltier

in Proposition 2 holds. First, e contains n so we only consider the three cases
of the second item. If f matches the first or third case then the conditions are
easy consequences of the definition of N0. If f matches the second case, as the
(Decrease) rule is applied only if no other rule applies, a decrease state (and a
fortiori an N -unfolded state) cannot contain a literal and its negation: else the
(Closure) rule would apply. So S cannot be a decrease state, contradiction. ��
Lemma 2. Consider a literal of index n + K occurring in some N -unfolded
state for some K ∈ Z and N ≥ 1. Then min[n −M2 + min(Ei+K(S)), n + 1 +
min(En+K(S))] � n + K.

Proof. (Sketch) As in Propositions 1 and 5, we easily obtain: min[n − M2 +
min(Ei+K(S)), n + N + min(En+K(S))] � n + K. N ≥ 1 entails the result. ��
Lemma 3. There is a finite set containing all literals occurring in any N -
unfolded state for any N ∈ Z. L has O(2#S) elements.

Proof. A literal is either negated or not, it contains a propositional symbol and
an index so there are 2.nsymb.nidx possible literals where nsymb (resp. nidx) is
the number of propositional symbols (resp. indices). There are finitely many
possible propositional symbols in S and nsymb < #S. There are two kinds of
indices: those of the form n + K for K ∈ Z and integers. Lemmata 1 and 2 in
the first case and Proposition 4 in the second case enable to conclude.

min(Ei+K(S)), max(Ei+K(S)), min(EZ(S)), max(EZ(S)), min(En+K(S)) and
max(En+K(S)) are lower than 2#S (numbers are encoded as bit strings and all
those numbers occur in S). So the intervals of Lemmata 1 and 2 and Proposition
4 clearly have a size proportional to 2#S, hence the exponential bound. ��
Theorem 2. (i) The set of states in AS is finite, it has O(22#S

) elements. (ii)
Each state contains at most O(2#S) formulae.

Proof. We first focus on decrease states which are also N -unfolded states for
some N ∈ IN. As the (Decrease) rule is applied only if no other rule can apply
such a state contains only iterations and literals. It is easily seen that every
iteration occurring in an N -unfolded state must also occur in S. Thus there are
finitely many possible iterations: at worst #S. Furthermore by Lemma 3 there
are O(2#S) possible literals. So the set of all possible iterations and literals has
size O(2#S). As a decrease state is a subset of this set, there are O(22#S

) of
them. This gives (i) and (ii) for decrease states.

Consider a sequence of propositional states between two decrease states. Such
a sequence is finite and have a length which is linear w.r.t. the size of the first
decrease state: indeed all transitions just decompose the formulae of the first
decrease state. As we just saw, the size of a decrease state is at worst O(2#S),
so the intermediate states do not change the overall number of states. The same
result holds between the initial state and a 1-unfolded state, and between a
decrease or initial state and a final state or a state without transition. This
covers all the possible cases for a given state so the whole set of states is finite
and has the announced size. ��
Corollary 1. schaut terminates.

Complexity of the Satisfiability Problem for a Class of Schemata 67

4.2 Consequences

As emptiness of finite automata is decidable we get:
Proposition 6. Unsatisfiability of regular schemata is decidable.

Proposition 7. Let S ∈ Rn−M2
M1

. There is N ∈ Z s.t. S is unsatisfiable iff for
all K ∈ [M1 +M2−1..N], S [K/n]

⏐� is unsatisfiable. Furthermore N = O(22#S

).

Proof. The first implication is a trivial consequence of Definition 2. Then there
are finitely many runs to go through to check that AS is empty i.e. that S is
unsatisfiable. To each of those runs corresponds a word, i.e. a number. Take N to
be the maximum of those numbers. It is easily seen that this number is at most
the number of decrease nodes, that we have already seen to be O(22#S

). ��
Finding a way to compute N would give another decision procedure: we compute
the set of instances “lower than” N and feed a SAT-Solver with each of these
formulae. However this would probably be highly inefficient.

The bound on the number of states gives the basis for a complexity study.
Notice that first of all we have the easy result that the satisfiability problem for
regular schemata is NP-hard. Indeed propositional logic is trivially embedded
into schemata, hence the satisfiability problem contains SAT. But with schaut

we can have a more precise result:

Theorem 3. Consider S ∈ Rn−M2
M1

. schaut terminates on S in O(22#S

) steps.

Proof. (Sketch) Theorem 2 (ii) provides the most important fact: the number
of states of AS is double exponential. Then we analyse the complexity of the
rewriting itself. Proposition 2 plays an essential role. ��
Corollary 2. Unsatisfiability of regular schemata is in 2-EXPTIME.

Theorem 4. The bound on schaut is tight, i.e. there is a class of regular
schemata (SK)K∈IN s.t. schaut terminates in time O(22#SK).

Proof. Consider K ∈ IN, we construct a schema SK s.t. ASK contains necessarily
22#SK states, hence the result. More precisely we consider all numbers encoded
on K bits (a0, a1, . . . , a2K−1) and we manage to have one state per number. This
encoding requires K to occur in SK , so K ≤ 2#S, hence the double exponential.

We represent each of a0, a1, . . . by K indexed propositions representing their
bits: a0 by A1, . . . , AK , a1 by AK+1, . . . , AK+K , etc., aI by AI.K+1, . . . , AI.K+K ,
etc. Fi indicates if i is the F inal bit of one of those numbers: Final

def= F0 ∧∧n
i=0 Fi ⇒ Fi+K . For all I ≤ 2K , we impose aI+1 = aI + 1. A carry Ci is

used for this: Incr
def=

∧n
i=0(Fi ⇒ Ci+1) ∧ (Ai+K ⇔ Ci ⊕ Ai) ∧ (¬Fi+1 ⇒

(Ci+1 ⇔ (Ci ∧ Ai)). Finally we impose a0 = 0. This is done by Bi (which
Begins the sequence): Begin

def= B1 ∧
∧n

i=1(Bi ∧ ¬Fi) ⇒ (Bi+1 ∧ ¬Ai). We set
SK

def= Begin ∧ Incr ∧ Final. Clearly, ASK must have 22#SK states. ��
Finally notice that if we keep K1, K2 ∈ Z constant and consider only schemata
S s.t. [min(Ei+K(S)); max(Ei+K(S))] ⊆ [K1; K2], then the complexity of schaut

is simply exponential. This is interesting because one can increase the size of a
schema without necessarily increasing the size of [min(Ei+K(S)); max(Ei+K(S))].

68 V. Aravantinos, R. Caferra, and N. Peltier

5 Conclusion

We presented a new decision procedure for regular propositional iterated sche-
mata called schaut. schaut has several pros w.r.t. procedures given in [2,1]:
it is more readable, more convenient technically and more efficient. We proved
that time and space complexity of schaut is double exponential and conse-
quently that the satisfiability problem for regular schemata is in 2-EXPTIME.
We presented an example showing that the bound for schaut is tight.

We are not aware of similar approaches in automated deduction, but related
works have been carried on in pure logic. Indeed from a logical point of view iter-
ations are just a particular case of fixed points e.g. the schema

∧n
i=1 Pi might be

represented as μX(i)[i ≥ 1 ⇒ (P (i)∧X(i−1))](n). But the propositional (modal)
μ-calculus (see e.g. [4]) is not powerful enough to embed regular schemata (the
satisfiability problem for propositional μ-calculus is in PSPACE, which seems
highly improbable to be the case of regular schemata). There are other fixpoint
logics such as LFP [13], however they generally do not admit any complete proof
procedure and their purposes are essentially theoretical (LFP is mainly studied
in finite model theory). The only study we know of a complete subclass is in [3]
and regular schemata cannot be reduced to it.

A key point of schaut is the ability to deal with cycles in proofs. This is
natural in an automata approach but proof procedures rarely incorporate such
features. Slightly similar ideas exist in automated deduction e.g. in some tableaux
methods for modal logics [10], or in μ-calculi [7]. However our work is much closer
to that on cyclic proofs, which are studied in proof theory in the context of proofs
by induction [5,15], one of their advantages being to avoid the explicit use of an
induction principle.

Schemata can also be specified in first-order logic, axiomatizing (first-order)
arithmetic. Iterations can be translated into bounded quantifications, e.g.

∨n
i=1 S

becomes ∀n∃i(1 ≤ i ≤ n∧S). Then we would use inductive theorem provers (e.g.
[6,8]). However there are very few decidability results with such provers and most
systems are designed to prove formulae of the form ∀xφ where φ is quantifier-
free. (Translated) schemata do not fall in this class as iterated disjunctions are
translated into existential quantifications.

We implemented a solver for regular schemata, called regstab, and available at
http://regstab.forge.ocamlcore.org. Examples are provided with regstab

that show how regular schemata can express non-trivial problems: we can specify
the commutativity or the associativity of Adder, or the inclusion between two au-
tomata (the parameter being the length of the run). Many electronic circuits shall
be expressible by regular schemata whose parameter is the number of bits. Actu-
ally the main limitation of regular schemata is the impossibility to handle nested
iterations. Allowing such schemata is the aim of the calculus presented in [1].

Notice that all iterations occurring in a regular schema have the same bounds.
This is for technical convenience only: iterations that do not have the same bounds
can be unfolded to ensure that this property holds, e.g. (

∨n−1
i=1 Pi)∧ (

∨n
i=2 Qi) can

be written (P1∨
∨n−1

i=2 Pi)∧(
∨n−1

i=2 Qi∨Qn). We also forbid arithmetic expressions
of the form n− i or 2n+ i. Again, in many cases we can get rid of such expressions

Complexity of the Satisfiability Problem for a Class of Schemata 69

e.g. a schema
∨n

i=1 Pi ⇔ P2n−i can be written
∨n

i=1 Pi ⇔ Qi, where Qi denotes
the variable P2n−i. So non regular schemata can sometimes be transformed into
equivalent regular ones. We are currently investigating this idea in order to get a
syntactic characterisation of the class of schemata that can be reduced to regular
ones. This work would significantly increase the scope of our decision procedure.

Finally, extending schemata to first order logic and working more precisely on
the notion of proof schema might have practical applications in the formalisation
of mathematical proofs, see e.g. [11] where proof schemata are used in the cut
elimination system CERES.

References

1. Aravantinos, V., Caferra, R., Peltier, N.: A DPLL Proof Procedure For Proposi-
tional Iterated Schemata. In: Proceedings of the 21st European Summer School in
Logic, Language and Information (Worskhop Structures and Deduction) (2009)

2. Aravantinos, V., Caferra, R., Peltier, N.: A Schemata Calculus For Propositional
Logic. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp.
32–46. Springer, Heidelberg (2009)

3. Baelde, D.: On the Proof Theory of Regular Fixed Points. In: Giese, M., Waaler, A.
(eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 93–107. Springer, Heidelberg (2009)

4. Bradfield, J., Stirling, C.: Modal Mu-Calculi. In: Blackburn, P., van Benthem, J.,
Wolter, F. (eds.) Handbook of Modal Logic, vol. 3, pp. 721–756. Elsevier Science
Inc., New York (2007)

5. Brotherston, J.: Cyclic Proofs for First-Order Logic with Inductive Definitions. In:
Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer,
Heidelberg (2005)

6. Bundy,A.:TheAutomationofProofbyMathematical Induction. In: [14], pp. 845–911
7. Cleaveland, R.: Tableau-based Model Checking in the Propositional Mu-calculus.

Acta Inf. 27(9), 725–747 (1990)
8. Comon, H.: Inductionless induction. In: [14], ch. 14
9. Fisher, M., Rabin, M.: Super Exponential Complexity of presburger’s Arithmetic.

SIAM-AMS Proceedings 7, 27–41 (1974)
10. Goré, R.: Tableau Methods for Modal and Temporal Logics. In: D’Agostino, M.,

Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, ch. 6,
pp. 297–396. Kluwer Academic Publishers, Dordrecht (1999)

11. Hetzl, S., Leitsch, A., Weller, D., Paleo, B.W.: Proof Analysis with HLK, CERES
and ProofTool: Current Status and Future Directions. In: Sutcliffe, G., Colton, S.,
Schulz, S. (eds.) Workshop on Empirically Successful Automated Reasoning for
Mathematics (ESARM), July 2008, pp. 21–41 (2008)

12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Pu. Co., Reading (1979)

13. Immerman, N.: Relational Queries Computable in Polynomial Time (Extended
Abstract). In: STOC ’82: Proceedings of the fourteenth annual ACM symposium
on Theory of computing, pp. 147–152. ACM, New York (1982)

14. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning, vol. 2.
Elsevier/MIT Press (2001)

15. Sprenger, C., Dam, M.: On the Structure of Inductive Reasoning: Circular and
Tree-shaped Proofs in the mu-Calculus. In: Gordon, A.D. (ed.) FOSSACS 2003.
LNCS, vol. 2620, pp. 425–440. Springer, Heidelberg (2003)

A Simple n-Dimensional Intrinsically Universal
Quantum Cellular Automaton

Pablo Arrighi and Jonathan Grattage

1 University of Grenoble, LIG, 220 rue de la Chimie, 38400 SMH, France
2 ENS-Lyon, LIP, 46 allée d’Italie, 69364 Lyon cedex 07, France

Abstract. We describe a simple n-dimensional quantum cellular au-
tomaton (QCA) capable of simulating all others, in that the initial con-
figuration and the forward evolution of any n-dimensional QCA can be
encoded within the initial configuration of the intrinsically universal
QCA. Several steps of the intrinsically universal QCA then correspond
to one step of the simulated QCA. The simulation preserves the topology
in the sense that each cell of the simulated QCA is encoded as a group
of adjacent cells in the universal QCA.

1 Introduction

Cellular automata (CA), first introduced by Von Neumann [38], consist of an
array of identical cells, each of which may take one of a finite number of possible
states. The whole array evolves in discrete time steps by iterating a function
G. This global evolution G is shift-invariant (it acts everywhere the same) and
local (information cannot be transmitted faster than some fixed number of cells
per time step). Because this is a physics-like model of computation [19], Feyn-
man [17], and later Margolus [20], suggested that quantising this model was
important, for two reasons: firstly, because in CA computation occurs without
extraneous (unnecessary) control, hence eliminating a source of decoherence;
and secondly because they are a good framework in which to study the quan-
tum simulation of a quantum system. From a computation perspective there
are other reasons to study QCA, such as studying space-sensitive problems in
computer science, e.g. ‘machine self-reproduction’ [38] or ‘Firing Squad Synchro-
nisation’, which QCA allow in the quantum setting. There is also a theoretical
physics perspective, where CA are used as toy models of quantum space-time
[18]. The first approach to defining QCA [2,16,39] was later superseded by a
more axiomatic approach [8,9,32] together with the more operational approaches
[39,11,30,25,31,36].

The most well known CA is Conway’s ‘Game of Life’, a two-dimensional CA
which has been shown to be universal for computation, in the sense that any
Turing Machine (TM) can be encoded within its initial state and then executed
by evolution of the CA. Because TM have long been regarded as the best def-
inition of ‘what an algorithm is’ in classical computer science, this result could
have been perceived as providing a conclusion to the topic of CA universality.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 70–81, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Simple n-Dimensional Intrinsically Universal QCA 71

This was not the case, because CA do more than just running any algorithm.
They run distributed algorithms in a distributed manner, model phenomena to-
gether with their spatial structure, and allow the use of the spatial parallelism
inherent to the model. These features, modelled by CA and not by TM, are all
interesting, and so the concept of universality must be revisited in this context
to account for space. This is achieved by returning to the original meaning of
the word universality [1,10,13], namely the ability for one instance of a compu-
tational model to be able to simulate other instances of the same computational
model. Intrinsic universality formalises the ability of a CA to simulate another in
a space-preserving manner [21,27,34], and was extended to the quantum setting
in [3,5,6].

Thereare several relatedresults in theCAliterature.For example, refs. [19,23,24]
provide computation universal Reversible Partitioned CA constructions, whereas
ref. [22] deals with their ability to simulate any CA in the one-dimensional case.
The problem of minimal intrinsically universal CA was addressed, cf. [28], and for
Reversible CA (RCA) the issue was tackled by Durand-Löse [14,15]. The difficulty
is in having an n-dimensional RCA simulate all other n-dimensional RCA and not,
say, the (n− 1)-dimensional RCA, otherwise a history-keeping dimension could be
used, as by Toffoli [35]. There are also several other QCA related results. Watrous
[40] has proved that QCA are universal in the sense of QTM. Shepherd, Franz and
Werner [33] defined a class of QCA where the scattering unitary Ui changes at each
step i (CCQCA). Universality in the circuit-sense has already been achieved by
Van Dam [36], Cirac and Vollbrecht [37], Nagaj and Wocjan [25] and Raussendorf
[31]. In the bounded-size configurations case, circuit universality coincides with in-
trinsic universality, as noted by Van Dam [36]. QCA intrinsic universality in the
one-dimensional case is resolved in ref. [4]. Given the crucial role of this in classical
CA theory, the issue of intrinsic universality in the n-dimensional case began to be
addressed in refs. [5,6], where it was shown that a simple subclass of QCA, namely
Partitioned QCA (PQCA), are intrinsically universal. Having shown that PQCA
are intrinsically universal, it remains to be shown that there exists a n-dimensional
PQCA capable of simulating all other n-dimensional PQCA for n > 1, which is
presented here.

PQCA are QCA of a particular form, where incoming information is scattered
by a fixed unitary U before being redistributed. Hence the problem of finding
an intrinsically universal PQCA reduces to finding some universal scattering
unitary U (this is made formal in section 2, see Fig.2). Clearly the universality
requirement on U is much more difficult than just quantum circuit universality.
This is because the simulation of a QCA H has to be done in a parallel, space-
preserving manner. Moreover we must simulate not only an iteration of H but
several (H2, . . .), so after every simulation the universal PQCA must be ready
for a further iteration.

From a computer architecture point of view, this problem can be recast in
terms of finding some fundamental quantum processing unit which is capable of
simulating any other network of quantum processing units, in a space-preserving
manner. From a theoretical physics perspective, this amounts to specifying a

72 P. Arrighi and J. Grattage

scattering phenomenon that is capable of simulating any other, again in a space-
preserving manner.

2 An Intrinsically Universal QCA

The aim is to find a particular U -defined PQCA which is capable of intrinsically
simulating any V -defined PQCA, for any V . In order to describe such a U -
defined PQCA in detail, two things must be given: the dimensionality of the
cells (including the meaning attached to each of the states they may take), and
the way the scattering unitary U acts upon these cells. The necessary definitions
for n-dimensional QCA are given in refs. [5,6].

Circuit Universality versus Intrinsic Universality in Higher Dimensions
As already discussed, intrinsic universality refers to the ability for one CA to
simulate any other CA, whereas computation universality is about simulating a
TM. Additionally, circuit universality is the ability of one CA to simulate any
circuit. Informally, in a quantum setting, circuit universality is the ability of a
PQCA to simulate any finitary combination of a universal set of quantum gates,
such as the standard gate set: Cnot, R(

π
4) (also known as the π

8 gate), and the
Hadamard gate.

In n-dimensions, it is often assumed in the classical CA literature that cir-
cuit universality implies intrinsic universality, and that both are equivalent to
computation universality [27], without provision of an explicit construction.
Strictly speaking this is not true. Consider a two-dimensional CA which runs one-
dimensional CA in parallel. If the one-dimensional CA is circuit/computation
universal, but not computation/intrinsically universal, then this is also true for
the two-dimensional CA. Similarly, in the PQCA setting, the two-dimensional
constructions in [30] and [31] are circuit universal but not intrinsically universal.

However, this remains a useful intuition: Indeed, CA admit a block represen-
tation, where these blocks are permutations for reversible CA, while for PQCA
the blocks are unitary matrices. Thus the evolution of any (reversible/quantum)
CA can be expressed as an infinite (reversible/quantum) circuit of (reversible/
quantum) gates repeating across space. If a CA is circuit universal, and if it
is possible to wire together different circuit components in different regions of
space, then the CA can simulate the block representation of any CA, and hence
can simulate any CA in a way which preserves its spatial structure. It is intrin-
sically universal.

Flattening a PQCA into Space
Any CA can be encoded into a ‘wire and gates’ arrangement following the above
argument, but this has never been made explicit in the literature. This section
makes more precise how to flatten any PQCA in space, so that it is simulated
by a PQCA which implements quantum wires and universal quantum gates.
Flattening a PQCA means that the infinitely repeating, two-layered circuit is
arranged in space so that at the beginning all the signals carrying qubits find
themselves in circuit-pieces which implement a scattering unitary of the first

A Simple n-Dimensional Intrinsically Universal QCA 73

Fig. 1. Flattening a PQCA into a simulating PQCA. Left : Consider four cells (white,
light grey, dark grey, black) of a PQCA having scattering unitary V . The first layer
PQCA applies V to these four cells, then the second layer applies V at the four corners.
Right : We need to flatten this so that the two-layers become non-overlapping. The
first layer corresponds to the centre square, and the second layer to the four corner
squares. At the beginning the signals (white, light grey, dark grey, black) coding for
the simulated cells are in the centre square.

layer, and then all synchronously exit and travel to circuit-pieces implementing
the scattering unitary of the second layer, etc. An algorithm for performing this
flattening can be provided, however the process will not be described in detail, for
clarity and following the classical literature, which largely ignores this process.

The flattening process can be expressed in three steps: Firstly, the V -defined
PQCA is expanded in space by coding each cell into a hypercube of 2n cells.
This allows enough space for the scattering unitary V to be applied on non-
overlapping hypercubes of cells, illustrated in the two-dimensional case in Fig. 1.
Secondly, the hypercubes where V is applied must be connected with wires,
as shown in Fig. 1 (right). Within these hypercubes wiring is required so that

Fig. 2. Flattening a PQCA into a simulating PQCA (cont’d). Left : Within the central
square the incoming signals are bunched together so as to undergo a circuit which
implements V , and are then dispatched towards the four corners. This diagram does
not make explicit a number of signal delays, which may be needed to ensure that they
arrive synchronously at the beginning of the circuit implementing V . Right : Within
the central rectangle, the circuit which implements V is itself a combination of smaller
circuits for implementing a universal set of quantum gates such as Cnot, Hadamard

and the R(
π
4
), together with delays.

74 P. Arrighi and J. Grattage

incoming signals are bunched together to undergo a circuit implementation of V ,
and are then dispatched appropriately, as shown in Fig. 2 (left). This requires
both time and space expansions, with factors that depend non-trivially (but
uninterestingly) upon the size of the circuit implementation of V and the way
the wiring and gates work in the simulating PQCA. Next, an encoding of the
circuit description of the scattering unitary V is implemented in the simulating
PQCA upon these incoming bunched wires, as shown in Fig. 2 (right). This
completes the description of the overall scheme according to which a PQCA
that is capable of implementing wires and gates is also capable of intrinsically
simulating any PQCA, and hence any QCA. A particular PQCA that supports
these wires and gates can now be constructed.

Barriers and Signals Carrying Qubits
Classical CA studies often refer to ‘signals’ without an explicit definition. In this
context, a signal refers to the state of a cell which may move to a neighbouring
cell consistently, from one step to another, by the evolution of the CA. Therefore
a signal would appear as a line in the space-time diagram of the CA. These
lines need to be implemented as signal redirections. A 2D solution is presented
here, but this scheme can easily be extended to higher dimensions. Each cell
has four possible basis states: empty (ε), holding a qubit signal (0 or 1), or a
barrier (�). The scattering unitary U of the universal PQCA acts on 2× 2 cell
neighbourhoods.

Signals encode qubits which can travel diagonally across the 2D space (NE,
SE, SW, or NW). Barriers do not move, while signals move in the obvious way
if unobstructed, as there is only one choice for any signal in any square of four
cells. Hence the basic movements of signals are given by the following four rules:∣∣∣∣ s

〉
�→

∣∣∣∣ s
〉

,

∣∣∣∣ s
〉
�→

∣∣∣∣ s

〉
,

∣∣∣∣ s
〉
�→

∣∣∣∣ s

〉
,

∣∣∣∣ s

〉
�→

∣∣∣∣ s
〉

.

where s ∈ {0, 1} denotes a signal, and blank cells are empty.
The way to interpret the four above rules in terms of the scattering unitary

U is just case-by-case definition, i.e. they show that U

∣∣∣∣ s

〉
=

∣∣∣∣ s
〉

.

Moreover, each rule can be obtained as a rotation of another, hence by stating
that the U -defined PQCA is isotropic the first rule above suffices. This convention
will be used throughout.

The ability to redirect signals is achieved by ‘bouncing’ them off walls con-
structed from two barriers arranged either horizontally or vertically:∣∣∣∣ s

〉
�→

∣∣∣∣ s

〉
.

where s again denotes the signal and the shaded cells denote the barriers which
causes the signal to change direction. If there is only one barrier present in the

A Simple n-Dimensional Intrinsically Universal QCA 75

four cell square being operated on then the signal simply propagates as normal
and is not deflected: ∣∣∣∣ s

〉
�→

∣∣∣∣ s
〉

.

Using only these basic rules of signal propagation and signal reflection from
barrier walls, signal delay (Fig. 3) and signal swapping (Fig. 4) tiles can be
constructed. All of the rules presented so far are permutations of some of the
base elements of the vector space generated by

{ ∣∣∣∣ w x
y z

〉}
w,x,y,z∈{ε,0,1,�}

therefore U is indeed unitary on the subspace upon which its action has so far
been described.

Fig. 3. The ‘identity circuit’ tile, an 8×14 tile taking 24 time-steps, made by repeatedly
bouncing the signal from walls to slow its movement through the tile. The dotted line
gives the signal trajectory, with the arrow showing the exit point and direction of signal
propagation. The bold lines show the tile boundary.

Fig. 4. The ‘swap circuit’ tile, a 16 × 14 tile, where both input signals are permuted
and exit synchronously after 24 time-steps. As the first signal (bottom left) is initially
delayed, there is no interaction.

76 P. Arrighi and J. Grattage

Gates
To allow a universal set of gates to be implemented by the PQCA, certain
combinations of signals and barriers can be assigned special importance. The
Hadamard operation on a single qubit-carrying signal can be implemented by
interpreting a signal passing through a diagonally oriented wall, analogous to a
semitransparent barrier in physics. This has the action defined by the following
rule: ∣∣∣∣ 0

〉
�→ 1√

2

∣∣∣∣ 0
〉

+
1√
2

∣∣∣∣ 1
〉

∣∣∣∣ 1

〉
�→ 1√

2

∣∣∣∣ 0
〉
− 1√

2

∣∣∣∣ 1
〉

This implements the Hadamard operation, creating a superposition of configu-
rations with appropriate phases. Using this construction a Hadamard tile can
be constructed (Fig. 5) by simply adding a semitransparent barrier to the end
of the previously defined delay (identity) tile (Fig. 3). A way of encoding two

Fig. 5. The ‘Hadamard gate’ tile applies the Hadamard operation to the input signal.
It is a modification of the identity circuit tile, with a diagonal (semitransparent) barrier
added at the end which performs the Hadamard operation.

qubit gates in this system is to consider that two signals which cross paths in-
teract with one another. The controlled-R(π

4) operation can be implemented by
considering signals that cross each other as interacting only if they are both 1,
in which case a global phase of e

iπ
4 is applied. Otherwise the signals continue as

normal. This behaviour is defined by the following rule:∣∣∣∣ 1
1

〉
�→ e

iπ
4

∣∣∣∣ 1
1

〉
,

∣∣∣∣ x
y

〉
�→

∣∣∣∣ y
x

〉
otherwise

where x, y ∈ {0, 1}. This signal interaction which induces a global phase change
allows the definition of both a two signal controlled-R(π

4) tile (Fig. 6) and a
single signal R(π

4) operation tile (Fig. 7). These rules are simply a permutation
and phase change of base elements of the form:{ ∣∣∣∣ x

y

〉}
x,y∈{0,1}

A Simple n-Dimensional Intrinsically Universal QCA 77

Fig. 6. The ‘controlled-R(π
4
) gate’ tile, with a signal interaction at the highlighted cell

Fig. 7. The ‘R(π
4
) gate’ tile. This tile makes use of a signal, set to |1〉, which loops

inside the grid every six time-steps, ensuring that it will interact with the signal that
enters the tile, and causing it to act as the control qubit to a controlled-R(π

4
) operation.

It therefore acts as a phase rotation on the input qubit, which passes directly through.

(and their rotations), therefore U is a unitary operation on the subspace upon
which its action has so far been described. Wherever U has not yet been defined,
it is the identity. Hence U is unitary.

Circuits: Combining Gates
A signal is given an 8 × 14 tile (16× 14 for two signal operations) in which the
action is encoded. The signals enter each tile at the fifth cell from the left, and
propagate diagonally NE. Each time step finds the tile shifted one cell to the
right to match this diagonal movement, giving a diagonal tile. The signal exits
the tile 14 cells North and East of where it entered. This allows these tiles to
be composed in parallel and sequentially with the only other requirement being
that the signal exits at the appropriate point, i.e. the fifth cell along the tile,
after 24 time-steps. This ensures that all signals are synchronised as in Fig. 2
(right), allowing larger circuits to be built from these elementary tiles by simply
plugging them together. Non-contiguous gates can also be wired together using
appropriate wall constructions to redirect and delay signals so that they are
correctly synchronised.

78 P. Arrighi and J. Grattage

The implemented set of quantum gates, the identity, Hadamard, swap, R(π
4)

and controlled-R(π
4), gives a universal set. Indeed the standard set of cNot, H,

R(
π
4) can be recovered as follows:

cNot |ψ〉 = (I⊗H)(cR(π/4))4(I⊗H) |ψ〉

where cR(
π
4)4 denotes four applications of the controlled-R(π

4) gate, giving the
controlled-Phase operation.

3 Conclusion

This paper presents a simple PQCA which is capable of simulating all other
PQCA, preserving the topology of the simulated PQCA. This means that the
initial configuration and the forward evolution of any PQCA can be encoded
within the initial configuration of this PQCA, with each simulated cell encoded
as a group of adjacent cells in the PQCA, i.e. intrinsic simulation. The con-
struction in section 2 is given in two-dimensions, which can be seen to generalise
to n > 1-dimensions. The main, formal result of this work can therefore be
stated as:

Claim 1. There exists an n-dimensional U -defined PQCA, G, which is an in-
trinsically universal PQCA. Let H be a n-dimensional V -defined PQCA such
that V can be expressed as a quantum circuit C made of gates from the set
Hadamard, Cnot, and R(

π
4). Then G is able to intrinsically simulate H.

Any finite-dimensional unitary V can always be approximated by a circuit C(V)
with an arbitrary small error ε = max|ψ〉 ||V |ψ〉 − C |ψ〉 ||. Assuming instead
that G simulates the C(V)-defined PQCA, for a region of s cells over a period
t, the error with respect to the V -defined PQCA will be bounded by stε. This is
due to the general statement that errors in quantum circuits increase, at most,
proportionally with time and space [26]. Combined with the fact that PQCA are
universal [5,6], this means that G is intrinsically universal, up to this unavoidable
approximation.

Discussion and Future Work
QC research has so far focused on applications for more secure and efficient
computing, with theoretical physics supporting this work in theoretical com-
puter science. The results of this interdisciplinary exchange led to the assump-
tions underlying computer science being revisited, with information theory and
complexity theory, for example, being reconsidered and redeveloped. However,
information theory also plays a crucial role in the foundations of theoretical
physics (e.g. deepening our understanding of entanglement [12] and decoherence
[29]). These developments are also of interest in theoretical physics studies where
physical aspects such as particles and matter are considered; computer science
studies tend to consider only abstract mathematical quantities. Universality,
among the many computer science concepts, is a simplifying methodology in
this respect. For example, if the problem being studied crucially involves some

A Simple n-Dimensional Intrinsically Universal QCA 79

idea of interaction, universality makes it possible cast it in terms of informa-
tion exchanges together with some universal information processing. This paper
presents an attempt to export universality as a tool for application in theoretical
physics, a small step towards the goal of finding and understanding a universal
physical phenomenon, within some simplified mechanics. Similar to the impor-
tance of the idea of the spatial arrangement of interactions in physics, intrinsic
universality has broader applicability than computation universality and must
be preferred. In short, if only one physical phenomenon is considered, it should
be an intrinsically universal physical phenomenon, as it could be used to simulate
all others.

The PQCA cell dimension of the simple intrinsically universal construction
given here is four (empty, a qubit (|0〉 or |1〉), or a barrier). In comparison, the
simplest classical Partitioned CA has cell dimension two [20]. Hence, although
the intrinsically universal PQCA presented here is the simplest found, it is not
minimal. In fact, one can also manage [7] an intrinsically universal PQCA with
a cell dimension of three, in two different ways. One way is to encode the spin
degree of freedom (0 and 1) into a spatial degree of freedom, so that now the
semitransparent barrier either splits or combines signals. The second way is to
code barriers as pairs of signals as in the Billiard Ball CA model [20]. These
constructions may be minimal, but are not as elegant as the one presented here.
In future work we will show that there is a simple, greater than two-dimensional
PQCA which is minimal, as it has a cell dimension of two.

Acknowledgements

The authors would like to thank Jérôme Durand-Löse, Jarkko Kari, Jacques
Mazoyer, Kenichi Morita, Nicolas Ollinger, Guillaume Theyssier and Philippe
Jorrand.

References

1. Albert, J., Culik, K.: A simple universal cellular automaton and its one-way and
totalistic version. Complex Systems 1, 1–16 (1987)

2. Arrighi, P.: Algebraic characterizations of unitary linear quantum cellular au-
tomata. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
122–133. Springer, Heidelberg (2006)

3. Arrighi, P., Fargetton, R.: Intrinsically universal one-dimensional quantum cellular
automata. In: Proceedings of the Development of Computational Models workshop,
DCM ’07 (2007)

4. Arrighi, P., Fargetton, R., Wang, Z.: Intrinsically universal one-dimensional quan-
tum cellular automata in two flavours. Fundamenta Informaticae 21, 1001–1035
(2009)

5. Arrighi, P., Grattage, J.: Intrinsically universal n-dimensional quantum cellular
automata. Extended version of this paper. ArXiv preprint: arXiv:0907.3827 (2009)

6. Arrighi, P., Grattage, J.: Partitioned quantum cellular automata are intrinsically
universal (2009) (submitted)

80 P. Arrighi and J. Grattage

7. Arrighi, P., Grattage, J.: Two minimal n-dimensional intrinsically universal quan-
tum cellular automata (2009) (manuscript)

8. Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability.
Quantum Information Processing (QIP) 2010, ArXiv preprint: arXiv:0711.3975
(2007)

9. Arrighi, P., Nesme, V., Werner, R.F.: Quantum cellular automata over finite, un-
bounded configurations. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.) LATA
2008. LNCS, vol. 5196, pp. 64–75. Springer, Heidelberg (2008)

10. Banks, E.R.: Universality in cellular automata. In: Proceedings of the 11th Annual
Symposium on Switching and Automata Theory (SWAT ’70), Washington, DC,
USA, pp. 194–215. IEEE Computer Society, Los Alamitos (1970)

11. Brennen, G.K., Williams, J.E.: Entanglement dynamics in one-dimensional quan-
tum cellular automata. Phys. Rev. A 68(4), 042311 (2003)

12. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent
ways. Phys. Rev. A 62, 062314 (2000)

13. Durand, B., Roka, Z.: The Game of Life: universality revisited, Research Report
98-01. Technical report, Ecole Normale Suprieure de Lyon (1998)

14. Durand-Lose, J.O.: Reversible cellular automaton able to simulate any other re-
versible one using partitioning automata. In: Baeza-Yates, R., Poblete, P.V., Goles,
E. (eds.) LATIN 1995. LNCS, vol. 911, pp. 230–244. Springer, Heidelberg (1995)

15. Durand-Lose, J.O.: Intrinsic universality of a 1-dimensional reversible cellular au-
tomaton. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, p.
439. Springer, Heidelberg (1997)

16. Durr, C., Le Thanh, H., Santha, M.: A decision procedure for well-formed linear
quantum cellular automata. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS,
vol. 1046, pp. 281–292. Springer, Heidelberg (1996)

17. Feynman, R.P.: Quantum mechanical computers. Foundations of Physics (Histor-
ical Archive) 16(6), 507–531 (1986)

18. Lloyd, S.: A theory of quantum gravity based on quantum computation. ArXiv
preprint: quant-ph/0501135 (2005)

19. Margolus, N.: Physics-like models of computation. Physica D: Nonlinear Phenom-
ena 10(1-2) (1984)

20. Margolus, N.: Parallel quantum computation. In: Complexity, Entropy, and the
Physics of Information: The Proceedings of the 1988 Workshop on Complexity,
Entropy, and the Physics of Information, Santa Fe, New Mexico, Perseus Books,
May-June 1989, p. 273 (1990)

21. Mazoyer, J., Rapaport, I.: Inducing an order on cellular automata by a grouping
operation. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp.
116–127. Springer, Heidelberg (1998)

22. Morita, K.: Reversible simulation of one-dimensional irreversible cellular automata.
Theoretical Computer Science 148(1), 157–163 (1995)

23. Morita, K., Harao, M.: Computation universality of one-dimensional reversible
(injective) cellular automata. IEICE Trans. Inf. & Syst., E 72, 758–762 (1989)

24. Morita, K., Ueno, S.: Computation-universal models of two-dimensional 16-state
reversible cellular automata. IEICE Trans. Inf. & Syst., E 75, 141–147 (1992)

25. Nagaj, D., Wocjan, P.: Hamiltonian Quantum Cellular Automata in 1D. ArXiv
preprint: arXiv:0802.0886 (2008)

26. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (October 2000)

A Simple n-Dimensional Intrinsically Universal QCA 81

27. Ollinger, N.: Universalities in cellular automata a (short) survey. In: Durand, B.
(ed.) Proceedings of First Symposium on Cellular Automata Journées Automates
Cellulaires (JAC 2008), Uzès, France, April 21-25, pp. 102–118. MCCME Publish-
ing House, Moscow (2008)

28. Ollinger, N., Richard, G.: A Particular Universal Cellular Automaton. In: Neary,
T., Woods, D., Seda, A.K., Murphy, N. (eds.) CSP, pp. 267–278. Cork University
Press (2008)

29. Paz, J.P., Zurek, W.H.: Environment-induced decoherence and the transition from
quantum to classical. Lecture Notes in Physics, pp. 77–140 (2002)

30. Pérez-Delgado, C., Cheung, D.: Local unitary quantum cellular automata. Physical
Review A 76(3), 32320 (2007)

31. Raussendorf, R.: Quantum cellular automaton for universal quantum computation.
Phys. Rev. A 72(022301) (2005)

32. Schumacher, B., Werner, R.: Reversible quantum cellular automata. ArXiv pre-
print quant-ph/0405174 (2004)

33. Shepherd, D.J., Franz, T., Werner, R.F.: A universally programmable quantum
cellular automata. Phys. Rev. Lett. 97(020502) (2006)

34. Theyssier, G.: Captive cellular automata. In: Fiala, J., Koubek, V., Kratochv́ıl, J.
(eds.) MFCS 2004. LNCS, vol. 3153, pp. 427–438. Springer, Heidelberg (2004)

35. Toffoli, T.: Computation and construction universality of reversible cellular au-
tomata. J. of Computer and System Sciences 15(2) (1977)

36. Van Dam, W.: Quantum cellular automata. Masters thesis, University of Nijmegen,
The Netherlands (1996)

37. Vollbrecht, K.G.H., Cirac, J.I.: Reversible universal quantum computation within
translation-invariant systems. New J. Phys. Rev. A 73, 012324 (2004)

38. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois
Press, Champaign (1966)

39. Watrous, J.: On one-dimensional quantum cellular automata. Complex Sys-
tems 5(1), 19–30 (1991)

40. Watrous, J.: On one-dimensional quantum cellular automata. In: Proceedings of
the 36th IEEE Symposium on Foundations of Computer Science, Washington, DC,
USA, pp. 528–537. IEEE Computer Society, Los Alamitos (1995)

A Fast Longest Common Subsequence
Algorithm for Similar Strings

Abdullah N. Arslan

Department of Computer Science and Information Systems,
Texas A & M University - Commerce,

TX 75428, USA
Abdullah Arslan@tamu-commerce.edu

Abstract. The longest common subsequence problem is a very impor-
tant computational problem for which there are many algorithms. We
present a new algorithm for this problem. Let X and Y be any two
given strings each of length O(n). We observe that a longest common
subsequence can be obtained by using longest common prefixes of suf-
fixes (longest common extensions) of X and Y . The longest common
extension problem asks for the longest common prefix of suffixes start-
ing in a given pair of positions in X and Y , respectively. Let e be the
number of edit operations, insert, delete, and substitute to change X
to Y (i.e. let e be the edit distance between X and Y). Our algorithm
visits O(min{en, (1+

√
2)2e+1) nodes in the edit graph, and for every vis-

ited node, performs one longest common extension query. Each of these
queries can be answered in constant time if we represent the strings by
a suffix tree or a suffix array. These data structures can be created in
linear time. We do not assume that the edit distance e is known before-
hand, therefore we try values for e starting with e = 1 (without loss
of generality X
= Y) and double e until our algorithm finds a longest
common subsequence. The total time complexity of our algorithm is
O(min{en log n, n + e(1 +

√
2)2e+1}). This is a better time complexity

result compared to those of existing solutions for the problem when e is
small. For example, when e ≤ 1

3
((log(1+

√
2) n) − 1) our algorithm finds

an optimal solution in time O(n).

Keywords:algorithm, string, edit distance, longest common subsequence,
suffix tree, lowest common ancestor, suffix array, longest common exten-
sion, dynamic programming.

1 Introduction

Given two strings X and Y , a longest common subsequence (lcs) is a longest
string which is a subsequence of both X and Y . Let both X and Y be of length
O(n). The problem of finding a longest common subsequence for given strings
(the lcs problem) has been studied extensively. There are many algorithms for
this problem in the literature. Bergroth et al. [3] give a survey of lcs algorithms.
The lcs problem can be viewed as a special case of the edit distance problem,

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 82–93, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Fast LCS Algorithm for Similar Strings 83

and therefore, it can be solved using the classical edit-distance dynamic pro-
gramming algorithm presented by Wagner and Fisher [13], which runs in time
O(n2). The theoretically fastest lcs algorithm to date is the algorithm of Masek
and Paterson [9]. This algorithm runs in time O(n2/ log n). There are many al-
gorithms that are fast for certain special cases of the problem. For example, the
time complexity of the algorithm of Kuo and Cross [8] is O(|M | + n(r + log n),
where |M | denotes the number of all matches between symbols of X and Y , and
r denotes the number of matches in an lcs of X and Y . This algorithm is fast
when strings are very dissimilar. There are also algorithms that are specialized
for small alphabets. For example, the time complexity of the algorithm of Apos-
tolico and Guerra [1] is O(rn+σn+n log σ), where σ is the alphabet size. There
are other algorithms that are fast for certain other parameters. In this paper,
we consider the case when the strings are similar. Motivating example applica-
tions for this case include comparison of large texts with minor changes (e.g.
similar program source codes). There are several algorithms that are relevant
for this case. Each of the algorithms of Nakatsu et al. [11], Miller and Myers [10]
and Wu et al. [14] runs in time Θ(n(n − r)) when X and Y are both strings
of length O(n). In this paper, we present an algorithm with which we achieve
a provably faster time complexity when the simple edit distance (the minimum
total number of insertions, deletions and substitutions necessary to change one
string into the other) e between X and Y is small. The time complexity of our
algorithm is O(min{en logn, n + e(1 +

√
2)2e+1}). Other existing algorithms in

this case of the problem require Ω(ne) time because n− r ≥ e. The time com-
plexity of our algorithm is superior when (1 +

√
2)2e+1 is o(n). For example,

when e ≤ 1
3 ((log(1+

√
2) n) − 1) our algorithm runs in time O(n) while other

algorithms require Ω(n log n) time.
Our algorithm uses the fact that lcs length can be computed by modifying the

dynamic programming computation of the edit distance. It only examines the
nodes in a narrow diagonal band in the edit graph. For every node it examines, it
performs one longest common extension query. We show that whenever a match
is included in an lcs, there exists an optimal lcs that includes the entire longest
common extension that starts with this node, therefore, our search for an optimal
lcs can directly jump to the end of block of matches ignoring the intermediate
matches. This gives rise to a smaller search space for the nodes on optimal edit
paths. Answering each longest common query takes constant time if we use a
suffix tree or a suffix array to represent the strings. The processing time for
creating either of these data structures is O(n). In our algorithm, we maintain
ordered queues (heaps) for the nodes we examine. We show that the total time
(after we create the suffix tree or suffix array) for computing an optimal lcs is
O(min{en logn, e(1 +

√
2)e+1}).

The outline of this paper is as follows: In Section 2, we give basic definitions
for edit distance, and the longest common extension problem. In Section 3, we
present an lcs algorithm that takes a parameter which is assumed to be the edit
distance between the input strings. In Section 4, we give our main lcs algorithm
that uses the parametric algorithm as a subroutine. We conclude in Section 5.

84 A.N. Arslan

2 Preliminaries

Let Σ be an alphabet with cardinality at least two. For any given string S over
alphabet Σ, we denote by Si the ith symbol of string S = S1S2 . . .S|S|, where
|S| is the length of string S. Similarly, let Si..j denote the substring SiSi+1 . . . Sj

of S. Given two strings X and Y each of length O(n) over alphabet Σ, we use
the edit graph GX,Y to analyze all possible edit-transformations of X into Y .
The edit graph is a directed acyclic graph having (|X |+1)(|Y |+1) lattice points
(u, v) as vertices for 0 ≤ u ≤ |X |, and 0 ≤ v ≤ |Y | (see [5]). An edit path for
strings X and Y is a directed path from vertex (0, 0) to (|X |, |Y |) in GX,Y . To
each vertex there is an incoming arc from each neighbor if it exists. Horizontal
and vertical arcs correspond to insert and delete operations on X , respectively.
The diagonal arcs correspond to substitutions which are either matching (if the
corresponding symbols are the same), or mismatching (otherwise).

Let Di,j denote the edit distance between X1..i and Y1..j . Di,j can be cal-
culated by the following dynamic programming formulation [13,5]: For all i, j,
1 ≤ i ≤ |X |, 1 ≤ j ≤ |Y |,

Di,j = min{Di−1,j + μ, Di,j−1 + μ, Di−1,j−1 + α(Xi, Yj)} (1)

where μ is the cost of an insert or a delete, and α(Xi, Yj) = β if Xi �= Yj (β
is the substitution cost); 0 (no cost for a match), otherwise. At the boundary
Di,0 = iμ for all i, 0 ≤ i ≤ |X |, and D0,j = jμ for all j, 0 ≤ j ≤ |Y |. The edit
distance between X and Y is D|X|,|Y |, and we denote it by eμ,β. The simple edit
distance e1,1 is the total number of edit operations (insert, delete and substitute;
number of matches is not included) necessary to transform X into Y .

In this paper, we consider edit distance computations with μ = 1 and β = 2,
i.e. in this case, the cost of an insertion or a deletion is 1, the cost of a substitution
is 2, and the cost is zero for a match. Consider Di,j computed using Equation
(1) using these costs. Let Li,j be the length of lcs of X1..i and Y1..j. Li,j can be
computed using a dynamic programming formulation similar to Equation (1).
We can also obtain it from Di,j using the following equation:

Li,j = (i + j −Di,j)/2 (2)

This is because on any optimal edit path for X1..i and Y1..j , any substitution
can be replaced by a pair of an insertion and a deletion without changing the
optimality when μ = 1 and β = 2. On the resulting substitution-free optimal
edit path, the total number of insertions and matches is i, and the total number
of deletions and matches is j. An optimal edit path ending at (i, j) has the
maximum number of matches on any path from (0, 0) to (i, j), therefore, we call
this optimal edit path also an lcs path between X1..i and Y1..j.

For given X and Y , we will compute e1,2 to obtain the lcs length using
Equation 2. We use the terms optimal edit path and lcs path interchangeably
because every optimal lcs path is also optimal for the computation of the edit
distance e1,2 and vice versa.

A Fast LCS Algorithm for Similar Strings 85

Let suf i denote the suffix Si..n of string S. The longest common extension of
X and Y for (i, j) is the longest prefix of suffixes suf i and suf j . We can compute
its length LCEX,Y (i, j) as follows: let S be the string S = X#Y where # is
a special character that is not included in alphabet Σ. Then, LCEX,Y (i, j) =
LCES(i, |X |+ 1 + j) =

{
0, if Si �= S|X|+1+j ;
max{k | Si..(i+k−1) = S(|X|+1+j)..(|X|+k)}, otherwise. (3)

The longest common extension problem for string S can be answered by finding
the lowest common ancestor in the suffix tree that represents S. There exist
algorithms (see for example [2] and [4]) that construct a suffix tree in O(n) time,
so that subsequent lowest common ancestor queries can be answered in constant
time per query. Similarly the lce problem can also be solved in constant time
per query using a suffix array and additional auxiliary arrays, all of which can
be created in O(n) time [7]. Theoretical and practical improvements over the
lce problem can be found in [4], and a study and comparison of practical lce
algorithms can be found in [6].

Proposition 1. Given two strings X and Y each of length O(n) over alphabet
Σ, we create the string S = X#Y , where # /∈ Σ. Let D be a suffix tree, or a
suffix array (depending on our choice) of the string S. We create D in time O(n).
Subsequently all longest common extension queries LCES(i, |X |+ 1 + j) for all
possible i, j can be answered in constant time using available constant-time lce
algorithms on D.

3 An Algorithm for the Parametric LCS Problem

We first present an algorithm for the following parametric lcs problem: given
that the edit distance e1,2 between X and Y is at most ê, find an lcs of X and
Y . We start with a definition. For our algorithm for this parametric problem,
we describe it first in details, and address its correctness second.

Definition 1. An edit path p̃ is a maximally match extended edit path if the
following is true: on p̃ for every match arc ((i−1, j−1), (i, j)) (i.e. Xi = Yj), the
diagonal path from (i−1, j−1) to (i+k−1, j+k−1) is part of p̃, where k is the
largest number such that Xi..(i+k−1) = Yj..(j+k−1) (i.e. k = LCES(i, |X |+1+j)).

We can see that on a maximally match extended edit path each match block is
a longest common extension, i.e. every match is followed by longest consecutive
matches.

Lemma 1. For given X and Y , there exists a maximally match extended edit
path that is also an lcs path.

Proof. Let ã be an lcs path for X and Y . If ã is not a maximally match extended
edit path then let ã include a match arc ((i − 1, j − 1), (i, j)) (i.e. Xi = Yj) on
the edit graph, and let ã not include completely the longest common extension

86 A.N. Arslan

Y

X .

.i-1

i

. .

(|X|,|Y|)

(0,0)

i+k-1

.

.

.

. . .

.

j-1 j j+k-1 j’

Fig. 1. If there exists an lcs path using arc ((i−1, j−1), (i, j)) then there exists an lcs
path that uses the longest common extension starting at position (i, j) (i.e. the maximal
match block from (i−1, j −1) to (i+k−1, j +k−1), where k = LCES(i, |X|+1+ j))

starting with this match. Let the length of the longest common extension be k.
Let ã pass through some node (i + k− 1, j′), where j′ > j + k− 1 (j′ < j + k− 1
is another possible but symmetric case, therefore, we do not consider this case
separately). We schematically summarize these in Figure 1. Since the diagonal
path from (i− 1, j− 1) to (i + k− 1, j + k− 1) is completely composed of match
arcs, the number of match arcs on it is larger than or equal to the number of
matches on any edit path from (i, j) to (i+k−1, j′) for j′ > j+k−1. This means
that we can obtain another lcs path from ã by replacing the part of the path
from (i−1, j−1) to (i+k−1, j′) by the longest common extension corresponding
to the diagonal path from (i− 1, j − 1) to (i + k − 1, j + k − 1) followed by the
horizontal path that ends at (i + k − 1, j′). We can continue this replacement
process in other parts of the new path until the resulting lcs path becomes a
maximally match extended edit path.

Proposition 2. An lcs of given strings X and Y can be computed by modifying
the dynamic programming computation of the edit distance e1,2 such that when-
ever a new match is encountered only the longest common extension that starts
with this match is considered in its entirety as part of a possible lcs path. That
is, intermediate nodes on this longest common extensions are all ignored, the
optimum lengths are computed for the end points of the corresponding longest
common extensions only (We note, however, that an intermediate match in
one longest common extension may be considered as the first match for another
longest common extension when multiple paths being explored intersect in this
match).

This proposition suggests an algorithm for the parametric problem we defined
at the beginning of this section: compute an lcs of X and Y given that the
edit distance e1,2 between them is ≤ ê. For this problem, we can narrow the
computations to a diagonal band in the edit graph. This is a strategy that ac-
celerates computing the edit distance which was used first by Ukkonen [12].

A Fast LCS Algorithm for Similar Strings 87

e

e

e

e

Y

(|X|,|Y|)

(0,0) ...

1
2

1 2

...

i+j

(i,j)

(i+1,j)

(i,j+1)

(i+1,j+1)

i+j+2k

(i+k,j+k)

0
-1

+1

+

-

indexing within diagonal

X

i+j+1

i+j
i+j+1
i+j+2

i+j+2k
i+j+2

Fig. 2. Diagonals and schematic description of indexing and processing order of nodes

Consider on the edit graph of X and Y the longest diagonal path starting with
arc ((0, 0), (1, 1)). We only need to examine nodes whose distance diagonally are
within ê from this diagonal path. This defines a diagonal band that contains
O(nê) nodes as can be seen in Figure 2. Every optimal path is completely in-
cluded in this band. We will show later that it is enough to explore only a small
subset of the nodes in this band when ê is sufficiently small. We can compute
the lcs length as follows: Starting from node (0, 0), calculate optimum total edit
path weights to nodes using the dynamic programming formulation for edit dis-
tance e1,2. Explore and maintain only those nodes whose weights calculated in
this way are at most ê. Additionally whenever a visited node (i, j) is a match
enter its end-point into the set of nodes to be explored, and set its weight to the
same as that of (i, j). Since we are not examining all nodes within the band, we
decide to maintain them in an ordered queue (or queues). On the edit graph, we
index back diagonals such that all nodes (i, j) appear in back diagonal i + j as
we show in Figure 2. We define a key for each (i, j) as follows:

key(i, j) = (i + j)(2ê + 1) + j − i (4)

The key for (i, j) is the sum of two parts: the base (i + j)(2ê + 1), and the offset
j − i. Since each back diagonal contains at most 2ê + 1 nodes that are within
diagonal distance ê from the main diagonal, the difference in bases for i + j + 1
and for i + j is large enough to accommodate all nodes on back diagonal i + j
without causing any collision in keys. The offset is j−i and it runs from −ê to +ê
on a given back diagonal within the band as we show in Figure 2. For the nodes
on the main forward diagonal, where j = i, the offset is 0. For each node (i, j) we
assign a weight w(i, j) whose final value after the computations will be equal to
the edit distance e1,2 between prefixes X1..i and Y1..j. During the computations

88 A.N. Arslan

we enter new weights for nodes in Q to examine. Q is a queue ordered on weights
(min heap). We use another data structure R, which is a queue ordered on key
values of nodes as described in Equation (4). As nodes are processed in Q, the
weights of reachable nodes are entered or updated in R. New reachable nodes
are entered into Q if they are not already in R, or if they have not already
been processed with a smaller weight and placed in R. New minimal values
are updated in R. We show in Figure 3 function Update-QR that implements
these. We propose Algorithm LCSP shown in Figure 4 for the parametric lcs

Function Update-QR(node (u, v), weight w)
set k = key(u, v) as defined in Equation (4)

if a node with key k does not exist in R then

{ enter this node (u, v) with weight w as its key in Q
enter this node (u, v) with weight w, and k as its key in R }

else { let w′ be the weight of this node (u, v) in R
if w < w′ then

{ enter this node (u, v) with weight w as its key in Q
update the weight of this node (u, v) to w in R }

}

Fig. 3. Function Update-QR enters/updates queues Q and R for a given node (u, v)
with weight w

problem. The algorithm processes nodes (i, j) in Q in their non-decreasing order
of weights. It starts with node (0, 0) with weight 0. When it processes node (i, j)
it enters in Q, or enters and updates the weights of the nodes in R reachable by a
longest common extension whose starting match is at (i+1, j+1), or by a single
arc if the resulting weights are ≤ ê. If a node reachable from node (i, j) via a
horizontal arc (node (i, j+1)) or a vertical arc (node (i+1, j)) is not present in
R or present but with a larger weight then it is inserted into Q by invoking the
function Update-QR which calculates the key and enters weight w(i, j) + 1; and
in R its weight is updated to w(i, j) + 1 if this value is smaller than its current
weight in R. We note that w(i, j)+1 is the edit distance that can be obtained at
nodes (i, j+1) and (i+1, j) using the corresponding arc from node (i, j). If Xi+1
and Yj+1 exist (i+1 and j+1 are within the bounds) then we consider them, too.
If Xi+1 �= Yj+1 then node (i+1, j+1) is entered or its weight is updated in Q by
invoking the function Update-QR which calculates the key and uses the weight
w(i, j) + 2 to enter or update Q and R (if this gives a smaller value in this case)
the weight of this node. We note that in computing e1,2 the cost of a mismatch
is 2. If Xi+1 = Yj+1 then the longest common extension length k is computed
by invoking LCES(i + 1, |X | + 1 + j + 1) as described in Proposition 1. The
information about node (i + k, j + k) is entered/updated by invoking Update-
QR which calculates the key and uses the weight w(i, j) to enter or update Q
and R (if this gives a smaller value in this case) the weight of this node. We note
that the total edit cost of a longest common extension itself is 0. After finishing
processing all reachable nodes from (i, j) this way, the algorithm removes it from

A Fast LCS Algorithm for Similar Strings 89

Algorithm LCSP (X, Y, D, ê)

Enter (0, 0) with key 0 and weight w(0, 0) = 0 into Q
repeat

let (i, j) be the head node with the minimum weight w in Q
if (i, j) = (|X|, |Y |) then

break (go to the next statement after repeat-until)

if i + 1 ≤ |X| and w + 1 ≤ ê then UpdateQ((i + 1, j), w + 1) }
if j + 1 ≤ |Y | and w + 1 ≤ ê then UpdateQ((i, j + 1), w + 1) }
if (i + 1 ≤ |X| and j + 1 ≤ |Y |}
{
if X[i + 1]
= Y [j + 1]) then

{ if w + 2 ≤ ê then UpdateQ((i + 1, j + 1), w + 2) }
else { ** find the largest k

such that X[(i + 1)..(i + k)] = Y [(j + 1)..(j + k)] **

set k = LCES(i + 1, |X| + 1 + j + 1), where S = X#Y
(use the given data structure D as described in Prop. 1)

UpdateQ((i + k, j + k), w) }
}
remove the head node (i, j) from Q

until (Q is empty)

if R contains (|X|, |Y |) then return (|X| + |Y | − w(|X|, |Y |))/2
(where w(|X|, |Y |) is the weight of node (|X|, |Y |) in R)

else return 0

Fig. 4. Algorithm LCSP for finding the lcs length if e1,2 is at most ê

Q. It is easy to see that w(i, j) is the minimum weight for node (i, j) since all
future nodes in Q will have weights at least w(i, j). The algorithm continues with
a node whose key is the minimum in the remaining (updated) Q. This process
continues for every node in Q until Q is empty. When node (|X |, |Y |) becomes
the head of Q (i.e. when node (|X |, |Y |) has minimal weight in Q) then the
repeat-until loop breaks, and this node’s weight in R is used as the weight e1,2
in Equation (2) in calculating and returning the lcs length. Occurrence of this
is an indication that the weight of (|X |, |Y |) is e1,2 ≤ ê. If this never happens, Q
will eventually become empty, and node (|X |, |Y |) is not a reachable node. In this
case, the function returns 0 indicating that the edit distance e1,2 between X and
Y is larger than ê, and the lcs length cannot be computed with this parameter (a
larger parameter ê is needed). In Figure 5, we show results of Function LCSP for
parameter ê = 4 (this is a large enough edit distance to find the lcs length in this
case). The numbers in italics are the weights the function computes at nodes (i.e.
weights in R). We also show an optimal edit path for this case. The algorithm
starts with node (0, 0) in Q. When this node is processed, nodes (0, 1) and (1, 0)
are entered into Q, and into R with weight 1. Similarly new nodes are entered
into Q when a head node in Q (a node with minimal weight) is processed. In this
example, all nodes with weight 1 are processed, then those with weight 2. New
minimal weights are recorded in R as described in the function description. We
note that the weights computed at the nodes are in general the edit distances

90 A.N. Arslan

4

ya a a

y

a

y

y

a

Y

X

(|X|,|Y|)

(0,0)
0 1
1

2

1

1

2

2

2

2

2

3

3

3

3

3

3

3

4

4

4

4
3

Fig. 5. An example edit distance e1,2 (or, equivalently, the lcs) computation: explored
nodes and their calculated weights, and an optimal path

e1,2 for the corresponding nodes. Only exceptions are the nodes that appear
only as intermediate nodes in longest common extensions (see the weights for
example at nodes (1, 2) and (2, 1)). However, in these cases, the weights are
correct at the end nodes of the corresponding longest common extensions (those
that include these nodes as intermediate matches). By Lemma 1, this is sufficient
to conclude that the function will compute the optimum edit distance. In this
particular example, node (0, 1) is one of the nodes that is entered into Q and R
with weight 1. Later when the algorithm picks (0, 1) from the head of Q, it enters
(among other nodes), node (2, 3) with weight 1 into Q and R. Similarly, in later
steps node (3, 3) with weight 2, and node (4, 3) with weight 3 are entered into Q
and R. When node (4, 3) is picked from the head of Q, node (5, 4) is entered in
Q and R. The algorithm explores and deletes all the nodes with weights 1 and
2. We assume without loss of generality that node (5, 4) is the first node with
weight 3 chosen to be processed. This means that the minimum edit distance
e1,2 is achieved at node (5, 4). The algorithm returns lcs length 3 for e1,2 = 3 by
Equation 2.

Lemma 2. Let e1,2 be the edit distance between X and Y (assume e1,2 > 0
without loss of generality). Let δi,j denote the edit distance for X1..i and Y1..j.
After LCSP (X, Y, D, ê) runs for ê ≥ e1,2, for all edit distances d, 0 ≤ d < e1,2,
for all nodes (i, j) on the edit graph, if (i, j) is the last match of some longest
common extension on some maximally match extended edit path for X and Y ,
or if Xi �= Yj, then δi,j is the weight of node (i, j) in queue R.

We note that the lemma excludes the nodes that appear as intermediate match
on all possible maximally extended edit paths for X and Y . Those nodes are
unnecessary and all are ignored. Also, the edit distance d = e1,2 is excluded
because when node (|X |, |Y |) has the minimum weight in Q (termination condi-
tion), some nodes with weight e1,2 may not have been all explored yet. We can
prove this lemma by induction on edit distances d. For the base case, for d = 0,
node (0, 0) has weight 0 in R. If there is a longest common extension starting at
(1, 1), its end-point is entered in R when node (0, 0) is processed. These are the
only possible nodes with weight 0, and the lemma is correct in this case. Suppose

A Fast LCS Algorithm for Similar Strings 91

that for all d′, 0 ≤ d′ < d, for all nodes (i, j), if (i, j) is the last match of some
longest common extension on some maximally match extended edit path for X
and Y , or if Xi �= Yj , then δi,j is the weight of node (i, j) in queue R. Since these
nodes are in R, they must have been processed when they were in Q, and all
reachable nodes from them via a single arc, or a longest common extension have
been entered into Q. Consider nodes (i, j), where δi,j = d, and which are the last
match of some longest common extension on some maximally match extended
edit path for X and Y , or Xi �= Yj . By the induction hypothesis there exist at
least one of the following: node (i− 1, j) with weight d− 1, node (i, j − 1) with
weight d − 1, or a node (i− 1, j − 1) with weight d− 2 and Xi �= Yj . In any of
these cases, weight d is obtained at (i, j) and updated in R. This concludes the
proof of the claim in the lemma.

Consider an optimal edit path ending at node (|X |, |Y |). If this node is not
the end point of a longest common extension, it is reached on this path from
one of its neighbors at (i− 1, j), (i, j − 1), or (i− 1, j − 1). Lemma 2 implies in
this case that the weight of node (|X |, |Y |) in R is e1,2. If node (|X |, |Y |) is the
end point of some longest common extension then let (i′, j′) be the node where
the first match of this longest common extension is located. This implies that at
least one of the nodes at (i′ − 1, j′), (i′, j′ − 1), or (i′ − 1, j′ − 1) has weight less
than e1,2. Lemma 2 implies that one or more of these nodes yield weight e1,2
first at node (i′, j′) then at (|X |, |Y |) (via the longest common extension) in R.

Let f(d) be the total number of times our algorithm assigns the weight d
during the course of its execution to nodes which are not ends of longest common
extensions on maximally extended edit paths that our algorithm explores (what
we mean by assignment here is an attempt to assign a new minimum weight to a
node, i.e. a read/insert/update of a node’s weight in Q and subsequently in R).
The total number of times our algorithm assigns the weight d to nodes which
are ends of maximal match blocks on edit paths explored cannot be larger than
d because we enter or update these nodes in R after, for each such node, we find
a node with weight d that is the start of a longest common extension. Therefore,
the true count for the total assignment of the weight d is at most 2f(d) (in the
worst each assignment causes another assignment: one at the end point of the
corresponding longest common extension). If a given node (i, j) is not the end
of a longest common extension, there are three reasons our algorithm inserts
or updates the node’s weight to d: 1) node (i − 1, j) has weight d − 1, or 2)
node (i, j − 1) has weight d− 1, or 3) node (i− 1, j − 1) has weight d− 2 (note
that the weight of a mismatch is 2 in computing e1,2). We also note that we
do not consider in counting f(d), a match extended from (i − 1, j − 1) (i.e. a
possible block of matches ending at node (i− 1, j − 1)) because our algorithm
considers the end point of the longest common extension starting at node (i′, j′)
for every explored node (i′, j′). We note that if multiple nodes are visited on
some longest common extension, all yield the same end point (the end point
of this longest common extension). Hence, we write the following recurrence
relation for f(d): f(d) ≤ 2f(d − 1) + f(d − 2) with f(0) = 1 (the weight 0 is
assigned only once: the weight of node (0, 0) is initialized to 0) and f(1) = 2

92 A.N. Arslan

(there are two weight assignments of weight 1 in total: at nodes (0, 1) and (1, 0)
once in each). From this recurrence, we see and verify that f(d) ≤ (1 +

√
2)d.

Therefore, the total number of entries and updates our algorithm performs in Q
and R is

∑ê
d=0 f(d) = O((1 +

√
2)ê+1). Also, since the total number of nodes in

the diagonal band is ≤ (2ê + 1)n, or O(ên), and since every time a new node
is entered in Q there are at most 3 entries/updates for its neighboring nodes
in Q and R, we can see that the number of entries/updates ever attempted
in Q and R is O(ên). Combining these two bounds, we obtain that the total
number of entries/updates in Q and R is min{ên, (1 +

√
2)ê+1}. Clearly, this

is also the upper bound on the size of Q, |Q|, and size of R, |R|. Since each
read/insert/update or delete can be done in time O(log |Q|) in Q, and O(log |R|)
in R, we can see that the total time our algorithm spends on operations on Q
and R is O(min{ên log n, ê(1 +

√
2)ê+1}). We can easily verify that this is the

time complexity of LCSP (X, Y, D, ê) since its time complexity is dominated by
the total time spent on Q and R.

4 Main LCS Algorithm

We give our main algorithm in Figure 6. We create from X and Y first the
data structure D in Proposition 1. The total time we spend on this step is
O(n). We do not assume prior knowledge of the exact edit distance e1,2. We
initialize ê to 1 and call LCS(X, Y, D, ê). If 0 is returned we double ê and re-
peat calling LCS(X, Y, D, ê) until a nonzero value is obtained. When ê ≥ e1,2,
a nonzero value returned is the lcs length. We note that when this happens,
ê ≤ 2e, where e is the simple edit distance e = e1,1. This is because on any
edit path every substitution can be replaced by a pair of an insertion and a
deletion, and therefore e1,2 ≤ 2e. Therefore, the time complexity of Algorithm

LCS is
∑	log ê

i=1 min{2in log n, 2i(1 +
√

2)2
i+1} ≤

(∑	log ê

i=1 2i

)
min{n logn, (1 +√

2)ê+1}=O(min{ên log n, ê(1+
√

2)ê+1}). Including the linear time construction
of data structures, the total time complexity of our algorithm is O(min{en logn,
n+ e(1+

√
2)2e+1}). If an optimal lcs (along with the length) is desired then we

can compute it in the following way: with each node we store in R, we keep the
node id (position pair) from which maximum scores are obtained. We can trace
an lcs path by following these nodes backwards starting with node (|X |, |Y |) to
locate the node from which there is an arc to (|X |, |Y |) on this lcs path. We
should continue this tracing until reaching node (0, 0).

Algorithm LCS(X, Y)

if X=Y then return |X|
Create from X and Y the data structure D in Prop. 1

set ê = 1
while (TRUE) { k = LCSP (X, Y, D, ê); if k > 0 then return k; ê = 2 ∗ ê }

Fig. 6. Algorithm LCS(X, Y) for finding the lcs length of X and Y

A Fast LCS Algorithm for Similar Strings 93

5 Conclusion

We present a new algorithm for the longest common subsequence problem. Our
algorithm achieves provably superior time complexity compared to existing solu-
tions when the edit distance between input strings is a sufficiently small function
of the length of the strings.

References

1. Apostolico, A., Guerra, C.: The longest common subsequence problem revisited.
Algorithmica (2), 315–336 (1987)

2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

3. Bergroth, L., Hakonen, H., Ratia, T.: A survey of longest common subsequence
algorithms. In: SPIRE, pp. 39–48 (2000)

4. Fischer, J., Heun, V.: Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In: Lewenstein, M., Valiente, G.
(eds.) CPM 2006. LNCS, vol. 4009, pp. 36–48. Springer, Heidelberg (2006)

5. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, Cambridge (1997)

6. Ilie, L., Tinta, L.: Practical algorithms for the longest common extension problem.
In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp.
302–309. Springer, Heidelberg (2009)

7. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest common
prefix computation in suffix arrays and its applications. In: Amir, A., Landau, G.M.
(eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001)

8. Kuo, S., Cross, G.R.: An algorithm to find the length of the longest common
subsequence of two strings. ACM SIGIR Forum 23(3-4), 89–99 (1989)

9. Masek, W.J., Paterson, M.S.: A faster algorithm for computing string-edit dis-
tances. Journal of Computer and System Sciences 20(1), 18–31 (1980)

10. Miller, W., Myers, E.W.: A file comparison program. Softw. Pract. Exp. 15(11),
1025–1040 (1985)

11. Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest common subsequence algo-
rithm suitable for similar texts. Acta Informatica 18, 171–179 (1982)

12. Ukkonen, E.: Algorithms for approximate string matching. Information and Con-
trol 64, 100–118 (1985)

13. Wagner, R.A., Fisher, M.J.: The string-to-string correction problem. Journal of the
ACM 21(1), 168–173 (1975)

14. Wu, S., Manber, U., Myers, G., Miller, W.: An O(NP) sequence comparison algo-
rithm. Inf. Proc. Lett. 35, 317–323 (1990)

Abelian Square-Free Partial Words�

Francine Blanchet-Sadri1, Jane I. Kim2, Robert Mercaş3,
William Severa4, and Sean Simmons5

1 Department of Computer Science, University of North Carolina,
P.O. Box 26170, Greensboro, NC 27402–6170, USA

blanchet@uncg.edu
2 Department of Mathematics, Columbia University,

2960 Broadway, New York, NY 10027-6902, USA
3 Harriet L. Wilkes Honors College, Florida Atlantic University,

5353 Parkside Dr., Jupiter, FL 33458, USA
4 GRLMC, Universitat Rovira i Virgili, Departament de Filologies Romàniques,

Av. Catalunya 35, Tarragona, 43002, Spain
robertmercas@gmail.com

5 Department of Mathematics, University of Texas at Austin,
1 University Station C1200, Austin, TX 78712-0233, USA

Abstract. Erdös raised the question whether there exist infinite abelian
square-free words over a given alphabet (words in which no two adjacent
subwords are permutations of each other). Infinite abelian square-free
words have been constructed over alphabets of sizes as small as four.
In this paper, we investigate the problem of avoiding abelian squares in
partial words (sequences that may contain some holes). In particular, we
give lower and upper bounds for the number of letters needed to construct
infinite abelian square-free partial words with finitely or infinitely many
holes. In the case of one hole, we prove that the minimal alphabet size
is four, while in the case of more than one hole, we prove that it is five.

1 Introduction

Words or strings belong to the very basic objects in theoretical computer science.
The systematic study of word structures (combinatorics on words) was started
by a Norwegian mathematician Axel Thue [21,22,1] at the beginning of the last
century. One of the remarkable discoveries made by Thue is that the consecutive
repetitions of non-empty factors (squares) can be avoided in infinite words over
a three-letter alphabet. Recall that an infinite word w over an alphabet is said
to be k-free if there exists no word x such that xk is a factor of w. For simplicity,
a word that is 2-free is said to be square-free.

Erdös [9] raised the question whether abelian squares can be avoided in in-
finitely long words, i.e., whether there exist infinite abelian square-free words
� This material is based upon work supported by the National Science Founda-

tion under Grant No. DMS–0754154. The Department of Defense is also grate-
fully acknowledged. A World Wide Web server interface has been established at
www.uncg.edu/cmp/research/abelianrepetitions for automated use of programs.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 94–105, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Abelian Square-Free Partial Words 95

over a given alphabet. An abelian square is a non-empty word uv, where u and
v are permutations of each other. For example, abcacb is an abelian square. A
word is called abelian square-free, if it does not contain any abelian square as a
factor. For example, the word abacaba is abelian square-free, while abcdadcada is
not (it contains the subword cdadca). It is easily seen that abelian squares can-
not be avoided over a three-letter alphabet. Indeed, each word of length eight
over three letters contains an abelian square. A first step in solving special cases
of Erdös’ problem was taken in [10], where it was shown that the 25th abelian
powers were avoidable in the binary case. Later on, Pleasants [20] showed that
there exists an infinite abelian square-free word over five letters, using a uniform
iterated morphism of size fifteen. This result was improved in [14] using uniform
morphisms of size five.

Dekking [8] proved that over a binary alphabet there exists a word that is
abelian 4-free. Moreover, using ZZ7 instead of ZZ5, in the proof of this result, we
get that over a ternary alphabet an abelian 3-free infinite word is constructible.
The problem of whether abelian squares can be avoided over a four-letter al-
phabet was open for a long time. In [15], using an interesting combination of
computer checking and mathematical reasoning, Keränen proves that abelian
squares are avoidable on four letters. To do this, he presents an abelian square-
free morphism g : {a, b, c, d}∗ → {a, b, c, d}∗ whose size is |g(abcd)| = 4× 85:

g(a) =abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacb

abdabacadcbcdcacdbcbacbcdcacdcbdcdadbdcbca

and the image of the letters b, c, d are obtained by cyclic permutation of letters
in the preceding words.

Most of the currently known methods, [6], for constructing arbitrarily long
abelian square-free words over a four-letter alphabet are based on the structure
of this endomorphism g. Moreover, it is shown that no smaller uniform morphism
works here! In [16] a completely new morphism of length 4×98, possessing similar
properties for iterations, is given.

Now let us move to partial words. Being motivated by a practical problem on
gene comparison, Berstel and Boasson introduced the notion of partial words,
sequences over a finite alphabet that may have some undefined positions or holes
(the � symbol represents a hole and matches every letter of the alphabet) [2]. For
instance, a�bca�b is a partial word with two holes over the three-letter alpha-
bet {a, b, c}. Several interesting combinatorial properties of partial words have
been investigated, and connections have been made with problems concerning
primitive sets of integers, lattices, vertex connectivity, etc [3].

In [19], the question was raised as to whether there exist cube-free infinite
partial words, and an optimal construction over a binary alphabet was given
(a partial word w is called k-free, if for every factor x0x1· · ·xk−1 of w there
does not exist a word u, such that for each i, the defined positions of xi match
the corresponding positions of u). In [5], the authors settled the question of
overlap-freeness by showing that over a two-letter alphabet there exist overlap-
free infinite partial words with at most one hole, and that a three-letter alphabet

96 F. Blanchet-Sadri et al.

is enough for an infinity of holes. An overlap represents a word consisting of two
overlapping occurrences of the same factor. The problem of square-freeness in
partial words is settled in [5] and [12] where it is shown that a three-letter alpha-
bet is enough for constructing such words. Quite naturally, all the constructions
of these words are done by iterating morphisms, most of them uniform, similarly
or directly implied by the original result of Thue. Moreover, in [19, 5, 4], the
concept of repetitions is also solved in more general terms. The authors show
that, for given alphabets, replacing arbitrary positions of some infinite words by
holes, does not change the repetition degree of the word. Furthermore in [13],
the authors show that there exist binary words that are 2-overlap-free.

This paper focuses on the problem of avoiding abelian squares in partial words.
In Section 2, we give some preliminaries on partial words. In Section 3, we
explore the minimal size of alphabet needed for the construction of (two-sided)
infinite abelian square-free partial words with a given finite number of holes.
In particular, we construct an abelian square-free infinite partial word with one
hole without expanding beyond the minimal four-letter alphabet. For more than
one hole, the minimal number of letters is at least five, when such words exist.
In Section 4, we prove by explicit construction the existence of abelian square-
free partial words with infinitely many holes. The minimal alphabet size turns
out to be five for such words. In Section 5, we discuss some constructions for
the finite case. Finally in Section 6, we conclude with some directions for future
work.

2 Preliminaries

Let A be a non-empty finite set of symbols called an alphabet. Each element
a ∈ A is called a letter. A full word over A is a sequence of letters from A. A
partial word over A is a sequence of symbols from A� = A ∪ {�}, the alphabet
A being augmented with the “hole” symbol � (a full word is a partial word that
does not contain the � symbol).

The length of a partial word w is denoted by |w| and represents the number
of symbols in w, while w(i) represents the ith symbol of w, where 0 ≤ i < |w|.
The empty word is the sequence of length zero and is denoted by ε. The set of
all words over A is denoted by A∗, while the set of all partial words over A is
denoted by A∗

�. A (right) (resp., two-sided) infinite partial word is a function
w : N → A� (resp., w : Z → A�).

Let u and v be partial words of equal length. Then u is said to be contained in
v, denoted u ⊂ v, if u(i) = v(i), for all i such that u(i) ∈ A. Partial words u and
v are compatible, denoted u ↑ v, if there exists a partial word w such that u ⊂ w
and v ⊂ w. If u and v are non-empty, then uv is called a square. Whenever we
refer to a square uv, it implies that u ↑ v.

A partial word u is a factor or subword of a partial word v if there exist
x, y such that v = xuy. We say that u is a prefix of v if x = ε and a suffix
of v if y = ε. If w = a0a1 · · ·an−1, then w[i..j) = ai · · · aj−1 and w[i..j] =
ai · · · aj . The reversal of a partial word w = a0a1 · · · an−1, where each ai ∈ A�,

Abelian Square-Free Partial Words 97

is simply the word written backwards an−1 · · · a1a0, and is denoted rev(w). For
partial words u and v, |u|v denotes the number of occurrences of v found in u.
The Parikh vector of a word w ∈ A∗, denoted by P (w), is defined as P (w) =
〈|w|a0 , |w|a1 , . . . , |w|a‖A‖−1〉, where A = {a0, a1, . . . , a‖A‖−1} (here ‖A‖ denotes
the cardinality of A).

A word uv ∈ A+ is called an abelian square if P (u) = P (v). A word w is
abelian square-free if no factor of w is an abelian square.

Definition 1. A partial word w ∈ A+
� is an abelian square if it is possible to

substitute letters from A for each hole in such a way that w becomes an abelian
square full word. The partial word w is abelian square-free if it does not have any
full or partial abelian square, except those of the form �a or a�, where a ∈ A.

A morphism φ : A∗ → B∗ is called abelian square-free if φ(w) is abelian square-
free whenever w is abelian square-free.

3 The Infinite Case with a Finite Number of Holes

It is not hard to check that every abelian square-free full word over a three-letter
alphabet has length less than eight. Using a computer it can be checked that the
maximum length of an abelian square-free partial word, over such an alphabet,
is six. So to construct infinite partial words with a finite number of holes, we
need at least four letters. Let us first state some remarks.

Remark 1. Let w ∈ A∗ be an abelian square-free word. Inserting a new letter
a, a �∈ A, between arbitrary positions of w (so that aa does not occur) yields a
word w′ ∈ (A ∪ {a})∗ that is abelian square-free.

Consider abacba which is abelian square-free. Inserting letter d between positions
0 and 1, 3 and 4, and 5 and 6, yields adbacdbda which is abelian square-free.

Remark 2. Let uv ∈ A∗ with |u| = |v|, a ∈ A and b �∈ A. Replace a number of
a’s in u and the same number of a’s in v with b’s, yielding a new word u′v′. If
uv is an abelian square, then u′v′ is an abelian square. Similarly, if uv is abelian
square-free, then u′v′ is abelian square-free.

The question whether there exist infinite abelian square-free full words over a
given alphabet was originally raised by Erdös in [9]. As mentioned above, no such
word exists over a three-letter alphabet. However, infinite abelian square-free
full words are readily available over a four-letter [15, 16, 17], five-letter [20], and
larger alphabets [11]. These infinite words are created using repeated application
of morphisms, where most of these morphisms are abelian square-free.

We now investigate the minimum alphabet size needed to construct infinite
abelian square-free partial words with a given finite number of holes.

Remark 3. Let u, v be partial words of equal length. If uv is an abelian square,
then so is any permutation of u concatenated with any permutation of v.

Theorem 1. There exists an infinite abelian square-free partial word with one
hole over a four-letter alphabet.

98 F. Blanchet-Sadri et al.

Proof. We use an abelian square-free morphism φ : A∗ → A∗, where A =
{a, b, c, d}, provided by Keränen [17] that is defined by

φ(a) =abcacdcbcdcadbdcadabacadcdbcbabcbdbadbdcbabcbdcdacd

cbcacbcdbcbabdbabcabadcbcdcbadbabcbabdbcdbdadbdcbca

φ(b) =bcdbdadcdadbacadbabcbdbadacdcbcdcacbacadcbcdcadabda

dcdbdcdacdcbcacbcdbcbadcdadcbacbcdcbcacdacabacadcdb

φ(c) =cdacabadabacbdbacbcdcacbabdadcdadbdcbdbadcdadbabcab

adacadabdadcdbdcdacdcbadabadcbdcdadcdbdabdbcbdbadac

φ(d) =dabdbcbabcbdcacbdcdadbdcbcabadabacadcacbadabacbcdbc

babdbabcabadacadabdadcbabcbadcadabadacabcacdcacbabd

The length of each image is 102 and the Parikh vector of each is a permutation of
P (φ(a)) = 〈21, 31, 27, 23〉. We show that the word �φn(a) is abelian square-free
for all integers n ≥ 0. Since φ is abelian square-free, it is sufficient to check if we
have abelian squares uv that start with the hole, for |u| = |v|.

We refer to the factors created by the images of φ as blocks. Now, assume
that some prefix uv of w = �φn(a) is an abelian square. We can write uv =
�φ(w0)φ(e)φ(w1)x, where e ∈ A, w0, w1, x ∈ A∗ are such that �φ(w0) is a prefix
of u, u is a proper prefix of �φ(w0e), and |x| < 102. If we delete the same
number of occurrences of any given block present in both φ(w0) and φ(w1), we
claim that we only need to consider the case where 0 ≤ |w1| ≤ |w0| < 2 (the
case |w1| > |w0| obviously leads to |u| < |v|, which is a contradiction). If this
were not the case, then the reduced w0 and w1 would have no letter in common.
Denoting by u′ the word obtained from u after replacing the hole by a letter in
A so that P (u′) = P (v), we can build a system of equations for each letter in A.

For example, the system for letter a is determined by

|u′|φ(a) + |u′|φ(b) + |u′|φ(c) + |u′|φ(d) = |v|φ(b) + |v|φ(c) + |v|φ(d) + Λ

The number of occurrences of a (resp., b, c, d) in u′ and v must be equal, so we
get the system of equations:
21|u′|φ(a) + 23|u′|φ(b) + 27|u′|φ(c) + 31|u′|φ(d) = 23|v|φ(b) + 27|v|φ(c) + 31|v|φ(d) + λa

31|u′|φ(a) + 21|u′|φ(b) + 23|u′|φ(c) + 27|u′|φ(d) = 21|v|φ(b) + 23|v|φ(c) + 27|v|φ(d) + λb

27|u′|φ(a) + 31|u′|φ(b) + 21|u′|φ(c) + 23|u′|φ(d) = 31|v|φ(b) + 21|v|φ(c) + 23|v|φ(d) + λc

23|u′|φ(a) + 27|u′|φ(b) + 31|u′|φ(c) + 21|u′|φ(d) = 27|v|φ(b) + 31|v|φ(c) + 21|v|φ(d) + λd

The parameter Λ is an error term taking values in {−1, 0, 1}, but can only be
non-zero for one system of equations (this is because it obviously replaces only
one of the images). Each λi represents the error caused by �, φ(e) or x. Using
Gaussian elimination, it is easy to see that this system is inconsistent provided
that some λi is distinct from 0. However, the hole at the beginning ensures at
least one non-zero λi. Thus, w0 = w1 = ε yielding uv = �φ(e)x, or w0 = f ∈ A
and w1 = ε yielding uv = �φ(f)φ(e)x. It is easy to verify that all such partial
words are abelian square-free. ��
Corollary 1. There exists a two-sided infinite abelian square-free partial word
with one hole over a five-letter alphabet.

Abelian Square-Free Partial Words 99

Proof. For a word w, let φ′(w) = rev(φ(w)) with φ : A∗ → A∗ being the mor-
phism from the proof of Theorem 1. Hence, φ′(w) is abelian square-free for all
abelian square-free words w and φ′n(a)� is abelian square-free for all integers
n ≥ 0. Also, let χ : B∗ → B∗, where B = {b, c, d, e}, be the morphism that
is constructed by replacing each a in the definition of φ with a new letter e.
By construction, χ is an abelian square-free morphism and �χn(e) is abelian
square-free for all integers n ≥ 0.

We show that φ′n(a)�χn(e) ∈ {a, b, c, d, e}∗, is abelian square-free for all in-
tegers n ≥ 0. Suppose to the contrary that there exists an abelian square w,
which is a subword of φ′n(a)�χn(e), for some integer n ≥ 0. Then, the word w
must contain parts of both φ′(a) and χ(e). Therefore, at least one half, called
u, is a subword of either φ′n(a) or χn(e) meaning it contains either a or e but
not both and it does not contain the hole. Whereas the other half of w, called v,
necessarily contains the other letter and the hole. Since v contains a letter that
u does not, and u has no holes, w is not an abelian square. ��
Corollary 2. The word φ′n(a)�efg�φn(a) ∈ {a, b, c, d.e, f, g}∗� is a two-sided in-
finite abelian square-free partial word with two holes over a seven-letter alphabet.

Using a computer program, we have checked that over a four-letter alphabet all
words of the form u�v, where |u| = |v| = 12, contain an abelian square. It follows
that, over a four-letter alphabet, an infinite abelian square-free partial word
containing more than one hole, must have all holes within the first 12 positions.
We have also checked that all partial words �u�v with |u| ≤ 10, |v| ≤ 10 or with
|u| = 11, |v| = 5 contain abelian squares (and consequently so do the words with
|u| = 11 and |v| ≥ 5).

Proposition 1. Over a four-letter alphabet, there exists no two-sided infinite
abelian square-free partial word with one hole, and all right infinite partial words
contain at most one hole.

In addition, over a four-letter alphabet, for all words u and v, |u|, |v| ≤ 12, the
partial word �u�v� contains an abelian square.

Proposition 2. If a finite partial word over a four-letter alphabet contains at
least three holes, then it has an abelian square.

4 The Case with Infinitely Many Holes

The next question is how large should the alphabet be so that an abelian square-
free partial word with infinitely many holes can be constructed. In this section,
we construct such words over a minimal alphabet size of five.

Theorem 2. There exists an abelian square-free partial word with infinitely
many holes over a seven-letter alphabet.

Proof. According to [15], there exists an infinite abelian square-free word w over
a four-letter alphabet A = {a, b, c, d}. Furthermore, there exist some distinct

100 F. Blanchet-Sadri et al.

letters x, y, z ∈ A so that for infinitely many j’s we have w(j−1) = z, w(j) = x,
and w(j + 1) = y. Let k0 be the smallest integer such that w(k0 − 1) = z,
w(k0) = x and w(k0+1) = y. Then, define kj recursively, where kj is the smallest
integer such that kj > 5kj−1, w(kj − 1) = z, w(kj) = x and w(kj + 1) = y.
Moreover, define A′ = A ∪ {e, f, g}, where e, f, g /∈ A.

Note that in order to avoid abelian squares, the holes must be somehow sparse.
We now define an infinite partial word w′. For any integer i ≥ 0, there exists some
integer j ≥ 0 so that kj−1 ≤ i < kj+1−1. If j ≡ 0 mod 5, then for i = kj−1, let
w′(i) = e; for i = kj , let w′(i) = �; for i = kj + 1, let w′(i) = f . If j �≡ 0 mod 5
and i = kj , then let w′(i) = g. For all other i’s, let w′(i) = w(i). Clearly, w′ has
infinitely many holes. The modulo 5 here helps prevent the creation of squares,
by assuring that the occurrences of a letter grow faster than the ones of the hole.

In order to prove that w′ has no abelian squares, we assume that it has one
and get a contradiction. Let uv be an occurrence of an abelian square, where
u = w′[i..i + l] and v = w′[i + l + 1..i + 2l + 1] for some i, l. Let J1 = {j | i ≤
kj ≤ i + l} and J2 = {j | i + l + 1 ≤ kj ≤ i + 2l + 1}. Then |J1| < 3 and
|J2| < 2, which implies |J1 ∪ J2| < 4. To see this, first assume that |J2| > 1.
Note that there exists j ∈ J2 so that j + 1 ∈ J2. However, this implies that
l = i+2l+1− (i+ l+1)≥ kj+1−kj > kj > i+ l ≥ i+ l− i = l, a contradiction.
Now assume that |J1| > 2. Then there are at least two occurrences of the letter g
in u, and for each occurrence of g there must also be a g or a hole in v. However,
g’s and holes only occur when i = kj for some j, so this implies |J2| ≥ 2, which
violates the claim that |J2| < 2.

Next, we want to show that no holes occur in the abelian square uv. We prove
none occurs in u, the case when the hole is in v being similar. The occurrence
of a hole in u implies that there exists j so that i ≤ kj ≤ i + l. Note that this
implies l > 0, since otherwise uv = �w(i+1) would be a trivial square. Therefore
either e or f occurs in u, since u must contain either w′(kj − 1) or w′(kj + 1).
Assume that e occurs, the f case being similar. Then v must contain either e
or a hole, but that implies i + l ≤ kj+5 − 1 ≤ i + 2l + 1, since w′(kj+5 − 1) is
the next occurrence in w′ of either e or a hole. Thus j, j + 1, . . . , j + 4 ∈ J1 ∪ J2
which implies that |J1 ∪ J2| ≥ 5 > 3, a contradiction, so no such hole can exist.
Therefore, all symbols in uv are letters in A′. By Remark 2, since w′ contains
an abelian square, w must also contain an abelian square. ��

Using a similar construction we can reduce the alphabet size to six.

Theorem 3. There exists an abelian square-free partial word with infinitely
many holes over a six-letter alphabet.

The next question is whether or not it is possible to construct such partial
words over a five-letter alphabet. Although somehow superfluous, the previous
two theorems give both the method and history that were used to prove our
main result. First let us state two lemmas that help us achieve our goal.

Lemma 1. Let z be a word which is not an abelian square, x (resp., y) be a prefix
(resp., suffix) of φ(e), where φ is defined as in Theorem 1 and e ∈ {b, c, d}. No

Abelian Square-Free Partial Words 101

word of the form φ(z)y, aφ(z)y or xφ(z), preceded or followed by a hole, is an
abelian square, unless either ez or ze is an abelian square.

Lemma 2. Let z be a word which is not an abelian square, x (resp., y) be a
prefix (resp., suffix) of φ(a), where φ is defined as in Theorem 1. Then, no word
of the form �xφ(z)y is an abelian square, unless az or za is an abelian square.

Theorem 4. There exists an abelian square-free partial word with infinitely
many holes over a five-letter alphabet.

Proof. Let us denote by w the infinite abelian square-free full word over A =
{a, b, c, d} from the proof of Theorem 1. There exist infinitely many j’s such that
w[j−101..j] = φ(a). Let k0 be the smallest integer so that w[k0−101..k0] = φ(a).
Then define kj recursively, where kj is the smallest integer such that kj > 5kj−1
and w[kj − 101..kj] = φ(a).

Construct an infinite partial word w′ over A ∪ {e} by introducing factors in
w as follows. Let j ≥ 0. If i = kj and j ≡ 0 mod 5, then introduce �e between
positions i and i + 1 of w. If i = kj and j �≡ 0 mod 5, then introduce four
e’s in the image of φ(a) that ends at position i, in the following way: setting
w[kj − 101..kj] = φ(a) = abXca, where X ∈ A∗, the word abXca is replaced
with X ′ = eaebXceae. Clearly, w′ has infinitely many holes. Moreover, if the
holes are not taken into consideration, since no two e’s are next to each other,
by Remark 1, the word is still abelian square-free.

In order to prove that w′ has no abelian squares, we assume that it has one
and get a contradiction. Let uv be an occurrence of an abelian square, where
u = w′([i..i + l] and v = w′[i + l + 1..i + 2l + 1] for some i, l. Let J1 = {j |
i ≤ kj ≤ i + l} and J2 = {j | i + l + 1 ≤ kj ≤ i + 2l + 1}. Then |J1| < 4 and
|J2| < 2, which implies |J1 ∪ J2| < 5. As in Theorem 2, it is trivial to show that
|J2| < 2. Now assume that |J1| > 3. Then there are at least seven occurrences of
the letter e in u, and for each occurrence of e there must also be an e or a hole
in v. However, this implies |J2| ≥ 2, which violates the fact that |J2| < 2.

Next, we want to show that no holes occur in the abelian square uv. First
observe that v cannot contain more than four e’s, since otherwise, |J1| > 6, a
contradiction. If the last position of u is a hole, then v contains an e. If no e
occurs in u, then the hole in u and the e in v are cancelling each other, giving us
a factor of the original word, which is abelian square-free. So there must exist
an e in u. But, this implies that there exists an abelian square of one of the
forms eφ(z0)�eφ(z1)y or aeφ(z0)�eφ(z1)y, for some words z0, z1, y ∈ A∗, with
|z0| = |z1| and |y| ∈ {1, 2}. After cancelling the e’s and any common letters from
z0 and z1, we get that P (aφ(z0)) and P (φ(z1)y) differ in only one component
(by only one), and z0, z1 have different letters (otherwise the letters would cancel
each other). It is easy to see that this is impossible.

Let us now assume that the last position of v is a hole. If v would contain any
e’s, then we would get a contradiction with the fact that |J2| < 2. Moreover, u
does not contain any e’s, since otherwise the hole and the e would cancel each
other and we would get that the original word is not abelian square-free. Hence,
there exist words x, z ∈ A∗ with |x| < 102, such that xφ(z)� is an abelian square.

102 F. Blanchet-Sadri et al.

By Lemma 1, this is impossible. If v has a hole in any other position, then v also
contains an e. Again we get that u contains an e, and so, if an abelian square
exists, it would be of one of the forms eφ(z)y�e or eaφ(z)y�e, for some words
y, z with |y| < 102. After cancelling the e’s, this is also impossible by Lemma 1.

Now let us consider the case when a position in u, other than the last one,
is a hole. If |J1| = 1, since u contains the � and an e, then v also contains an
e. Hence, we have that either �exφ(z)e or �exφ(z)ea, for some words x, z with
|x| < 102, are abelian squares, which is a contradiction by Lemma 1. If |J1| = 3,
then the only possibilities are that either aeφ(z0)�eφ(z1)eaebXeceaeφ(z2)y or
eφ(z0)�eφ(z1)eaebXeceaeφ(z2)y are abelian squares. Since, the hole can be taken
to one end and the e’s and the common images of φ cancel, we get that either
�aφ(z)y or �φ(z)y are abelian squares, for some y with |y| < 102. According to
Lemma 1 no such factors preceded by the hole would create an abelian square.
If |J1| = 2, then the case when X ′ comes after the hole in u is impossible, since
then the length of v would be greater than that of u. If X ′ comes before the hole
in u, then u contains one more e than the suffix of X ′ from u.

We reach a contradiction with Lemma 2, hence, all symbols in uv correspond
to letters in A ∪ {e}. The conclusion follows as in the proof of Theorem 2. ��

5 The Distinct Finite Case

Finite abelian square-free words are difficult to characterize and to build without
the aid of a computer. This is due to the fact that they have very little structure.
However, there are a few special constructions, such as Zimin words, that have
been investigated. In this section, we show that the replacement of letters with
holes in these words result in partial words that are not abelian square-free.

Zimin words were introduced in [23] in the context of blocking sets. Due
to their construction, Zimin words are not only abelian square-free, but also
maximal abelian square-free in the sense that any addition of letters, from the
alphabet they are defined on, to their left or right introduces an abelian square.

Definition 2. [23] Let {a0, . . . , ak−1} be a k-letter alphabet. The Zimin words
zi are defined by z0 = a0 for i = 0, and zi = zi−1aizi−1 for 1 ≤ i < k.

Note that |zi| = 2i+1 − 1 and P (zi) = 〈2i, 2i−1, . . . , 2, 1〉 for all i = 0, . . . , k− 1.

Proposition 3. Let {a0, . . . , ak−1} be a k-letter alphabet. For 1 < i < k, the
replacement of any letter in zi with a hole yields a word with an abelian square.

Proof. The replacement of any letter in an odd position yields an abelian square
factor compatible with abab for some letters a, b. For an even position, the factor
is of one of the forms �bacab, ab�cab, bac�ba, bacab�. ��

In [7], Cummings and Mays introduced a modified construction, which they
named a one-sided Zimin construction. The resulting words are much shorter
than Zimin words.

Abelian Square-Free Partial Words 103

Definition 3. [7] Let {a0, . . . , ak−1} be a k-letter alphabet. Left Zimin words
yi are defined recursively as follows: For i = 0, y0 = a0. For i = 1, . . . , k − 1,
yi = yi−1aiz i−1

2 �, where z i−1
2 � is a Zimin word over {a0, a2, . . . , ai−1} whenever

i is odd and {a1, a3, . . . , ai−1} whenever i is even. Right Zimin words can be
defined similarly.

For example, y4 = abacbdacaebdb and y5 = abacbdacaebdbfacaeaca.
Note that left and right Zimin words are symmetric, and both one-sided con-

structions have Parikh vector P (yi) = 〈2 i+1
2 �, 2

i
2 �, . . . , 4, 2, 2, 1〉. Furthermore,

yi is a left maximal abelian square-free word over the alphabet {a0, a1, . . . , ai},
for each i = 0, . . . , k − 1.

Proposition 4. Let {a0, . . . , ak−1} be a k-letter alphabet. For each 5 ≤ i < k,
the replacement of any letter in yi with a hole results in a word containing an
abelian square.

Proof. We prove the result by induction on k. For k = 6, we find by ex-
haustive search that no hole can replace any letter of y5 without creating an
abelian square. Assuming that the result is true for y5, . . . , yk−1, consider yk =
yk−1akz k−1

2 �, where z k−1
2 � is a Zimin word. By Proposition 3, it is not possible

to place holes in z k−1
2 � while remaining abelian square-free. Replacing ak with a

hole yields �z k−1
2 �, which is an abelian square since z k−1

2 � is a maximal abelian
square-free word. And by the inductive hypothesis, no hole can replace a letter
in yk−1 without the resulting word having abelian square factors. ��
In [18], Korn gives a construction that provides shorter maximal abelian square-
free words. The words’ construction is very different from the variations on Zimin
words.

Definition 4. [18] Let {a0, . . . , ak−1} be a k-letter alphabet, where k ≥ 4. The
words vi are defined recursively by v0 = a2a1 for i = 0, and vi = vi−1ai+2ai+1 for
1 ≤ i ≤ k − 3. Then wk−1 = a0ua1ua0vk−3a0uak−1ua0, where u = a2 · · · ak−2.

For example, w4 = acdbcdacbdcedacdecda.

Proposition 5. Let A = {a0, . . . , ak−1} be a k-letter alphabet, where k ≥ 4,
and wk−1 ∈ A∗ be constructed according to Definition 4. The replacement of any
letter in wk−1 with a hole results in a word containing an abelian square.

Proof. After replacing the first or last letter with a hole, vk−3 remains abelian
square-free. Note that every letter in vk−3, with the exception of a1 and ak−1,
occurs exactly twice. Moreover, if a hole replaces any letter in vk−3, at a position
other than the first or the last one, then we would get a factor of either the form
alal−1�al or al�al+1al for some l. Note that both these partial words represent
abelian squares.

It is not possible to replace letters with holes in the subword vk−3[1..|vk−3|−1)
of wk−1 while keeping abelian square-freeness. Replacing the first (last) letter
of vk−3 with a hole yields the abelian square a0ua1ua0� (�a0uak−1ua0). Con-
sider now the subword a0ua1ua0 of wk−1 (the proof is similar for the subword

104 F. Blanchet-Sadri et al.

a0uak−1ua0). Clearly, replacing a0 or a1 with a hole yields an abelian square.
Note that the equality 2|u| + 2 = |vk−3| holds. When a hole replaces the letter
at position j in any of the u’s, consider the factor a0ua1ua0vk−3[0..2j +4). Since
u[0..j) = a2 · · · aj+1 and vk−3[0..2j] = a2a1a3a2 · · · aj−2ajaj−1aj+1ajaj+2, we
have that a0u[0..j)u[j..|u|)a1u[0..j) has an extra occurrence of aj+1 compared
to u[j..|u|)a0vk−3[0..2j], while the second factor has an extra occurrence of aj+2
compared to the first factor. Since an aj+1 from the first factor is replaced by a
�, this yields an abelian square, with the � corresponding to aj+2 in the prefix
of vk−3. ��

6 Conclusion

As a possible topic for future work, we propose the study of avoidance of abelian
powers greater than two. From [8], we know that over a binary alphabet, we
can construct an infinite word that avoids 4-powers. In the context of partial
words, which abelian powers can be avoided over a binary alphabet? In this
case, certain repetitions are created, since, if w is an abelian square-free partial
word of length n and a is the most common letter of w, then it is easy to see
that |w|a + |w|� ≤

⌈
n
2

⌉
.

Another interesting topic is to replace letters with holes in arbitrary positions
of a word, without changing the word’s properties of abelian repetition-freeness.
Note that introducing holes two positions apart would create an abelian square,
�ab�. Moreover, note that even if the word is defined in such a way that each two
occurrences of a letter are four symbols apart, the resulting word could contain
an abelian square. For example, if we consider

a1a2a3a4a0a5a6a7a8a0a9a10a11a12

in order to avoid abelian squares, no two ai’s are aj ’s, no two aj ’s are ak’s, and
all ai’s, aj ’s, and ak’s are different, for 0 < i ≤ 4 < j ≤ 8 < k ≤ 12. Also, if we
allow for holes to be three positions apart, only one of the ak’s equals an aj .

Also, investigating the number of abelian square-free partial words over an
alphabet of size five would be interesting. This number has been studied in [6]
and [17] for full words over an alphabet of size four.

References

1. Berstel, J.: Axel Thue’s work on repetitions in words. In: Leroux, P., Reutenauer, C.
(eds.) Invited Lecture at the 4th Conference on Formal Power Series and Algebraic
Combinatorics, pp. 65–80 (1992)

2. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theoretical
Computer Science 218, 135–141 (1999)

3. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press (2008)

Abelian Square-Free Partial Words 105

4. Blanchet-Sadri, F., Mercaş, R., Rashin, A., Willett, E.: An answer to a conjecture
on overlaps in partial words using periodicity algorithms. In: Dediu, A.H., Ionescu,
A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 188–199. Springer,
Heidelberg (2009)

5. Blanchet-Sadri, F., Mercaş, R., Scott, G.: A generalization of Thue freeness for
partial words. Theoretical Computer Science 410(8-10), 793–800 (2009)

6. Carpi, A.: On the number of abelian square-free words on four letters. Discrete
Applied Mathematics 81(1-3), 155–167 (1998)

7. Cummings, L.J., Mays, M.: A one-sided Zimin construction. The Electronic Journal
of Combinatorics 8 (2001)

8. Dekking, F.: Strongly non-repetitive sequences and progression-free sets. Journal
of Combinatorial Theory 27(2), 181–185 (1979)

9. Erdös, P.: Some unsolved problems. Magyar Tudományos Akadémia Matematikai
Kutató Intézete 6, 221–254 (1961)

10. Evdokimov, A.: Strongly asymmetric sequences generated by a finite number of
symbols. Doklady Akademii Nauk SSSR 179, 1268–1271 (1968) (in Russian); En-
glish translation in Soviet mathematics - Doklady 9, 536–539 (1968)

11. Evdokimov, A.: The existence of a basis that generates 7-valued iteration-free se-
quences. Diskretny̌i Analiz 18, 25–30 (1971)

12. Halava, V., Harju, T., Kärki, T.: Square-free partial words. Information Processing
Letters 108(5), 290–292 (2008)

13. Halava, V., Harju, T., Kärki, T., Séébold, P.: Overlap-freeness in infinite partial
words. Theoretical Computer Science 410(8-10), 943–948 (2009)

14. Justin, J.: Characterization of the repetitive commutative semigroups. Journal of
Algebra 21, 87–90 (1972)

15. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992)

16. Keränen, V.: New abelian square-free DT0L-languages over 4 letters. In: Proceed-
ings of the Fifth International Arctic Seminar, Murmansk, Russia. Murmansk State
Pedagogical Institute (2002)

17. Keränen, V.: A powerful abelian square-free substitution over 4 letters. Theoretical
Computer Science 410(38-40), 3893–3900 (2009)

18. Korn, M.: Maximal abelian square-free words of short length. Journal of Combi-
natorial Theory, Series A 102, 207–211 (2003)

19. Manea, F., Mercaş, R.: Freeness of partial words. Theoretical Computer Science
389(1-2), 265–277 (2007)

20. Pleasants, P.: Non repetitive sequences. Proceedings of the Cambridge Philosoph-
ical Society 68, 267–274 (1970)

21. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat. Kl.
Christiana 7, 1–22 (1906); Nagell, T. (ed.), Reprinted in Selected Mathematical
Papers of Axel Thue, Universitetsforlaget, Oslo, Norway, pp. 139–158 (1977)

22. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
Vid. Selsk. Skr. I, Mat. Nat. Kl. Christiana 1, 1–67 (1912); Nagell, T. (ed.)
Reprinted in Selected Mathematical Papers of Axel Thue, Universitetsforlaget,
Oslo, Norway, pp. 413–478 (1977)

23. Zimin, A.I.: Blocking sets of terms. Mathematics of the USSR Sbornik 47, 353–364
(1984)

Avoidable Binary Patterns in Partial Words�

Francine Blanchet-Sadri1, Robert Mercaş2,

,
Sean Simmons3, and Eric Weissenstein4

1 Department of Computer Science, University of North Carolina,
P.O. Box 26170, Greensboro, NC 27402–6170, USA

blanchet@uncg.edu
2 GRLMC, Departament de Filologies Romàniques, Universitat Rovira i Virgili,

Av. Catalunya 35, Tarragona, 43002, Spain
robertmercas@gmail.com

3 Department of Mathematics, The University of Texas at Austin,
2515 Speedway Rm 8, Austin, TX 78712–0233, USA

4 Department of Mathematical Sciences, Rensselaer Polytechnic Institute,
Amos Eaton 301, 110 8th Street, Troy, NY 12180, USA

Abstract. The problem of classifying all the avoidable binary patterns
in words has been completely solved (see Chapter 3 of M. Lothaire, Al-
gebraic Combinatorics on Words, Cambridge University Press, 2002).
Partial words represent sequences that may have some undefined posi-
tions called holes. In this paper, we show that, if we do not substitute
any variable of the pattern by a trivial partial word consisting of only
one hole, the avoidability index of the pattern remains the same as in
the full word case.

1 Introduction

A pattern p is a word over an alphabet E of variables, denoted by α, β, γ, . . .,
and the associated set is built by replacing p’s variables with non-empty words
over a finite alphabet A so that the occurrences of the same variable be replaced
with the same word.

The concept of unavoidable pattern, see Section 2, was introduced, in the
context of full words, by Bean, Ehrenfeucht and McNulty [1] (and by Zimin who
used the terminology “blocking sets of terms” [14]). Although they characterized
such patterns (in fact, avoidability can be decided using the Zimin algorithm
by reduction of patterns), there is no known characterization of the patterns
unavoidable over a k-letter alphabet (also called k-unavoidable). An alternative
is to find all unavoidable patterns for a fixed alphabet size. The unary patterns, or

� This material is based upon work supported by the National Science Founda-
tion under Grant No. DMS–0754154. The Department of Defense is also grate-
fully acknowledged. A World Wide Web server interface has been established at
www.uncg.edu/cmp/research/unavoidablesets4 for automated use of the program.

�� Author’s work was partially supported by the Research Grant No. 1323 U07 E30
N-2008/InvAct/Bel, G./BJ01 of the University Rovira i Virgili.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 106–117, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Avoidable Binary Patterns in Partial Words 107

powers of a single variable α, were investigated by Thue [12,13]: α is unavoidable,
αα is 2-unavoidable but 3-avoidable, and αm with m ≥ 3 is 2-avoidable. Schmidt
proved that there are only finitely many binary patterns, or patterns over E =
{α, β}, that are 2-unavoidable [10,11]. Later on, Roth showed that there are no
binary patterns of length six or more that are 2-unavoidable [9]. The classification
of unavoidable binary patterns was completed by Cassaigne [4], who showed that
ααββα is 2-avoidable.

In this paper, our goal is to classify binary patterns with respect to partial
word non-trivial avoidability. A partial word is a sequence of symbols from a finite
alphabet that may have some undefined positions, called holes, and denoted by
�’s, and a pattern is called non-trivial if none of its variables is substituted by
only one hole. Here � is compatible with, or matches, every letter of the alphabet.
In this context, in order for a pattern p to occur in a partial word, it must be the
case that for each variable α of p, all its substituted partial words be pairwise
compatible.

The contents of our paper is as follows: In Section 2, we start our investigation
of avoidability of binary patterns in partial words. There, we explain that in
order to classify all binary patterns with respect to our concept of non-trivial
avoidability, we are left with studying five patterns. In Section 4 using iterated
morphisms, we construct infinite binary partial words with infinitely many holes
that avoid the patterns αβαβα, αβαββα and ααβαββ. In Section 5 using non-
iterated morphisms, we construct such words that avoid the patterns ααββα
and αβααβ. This concludes the fact that all binary patterns 2-avoidable in full
words are also non-trivially 2-avoidable in partial words.

We end this section with some preliminaries. For more information regarding
concepts on partial words, the reader is referred to [2].

Let A be a non-empty finite set of symbols called an alphabet. Each element
a ∈ A is called a letter. A (full) word over A is a sequence of letters from A. A
partial word over A is a sequence of symbols from A� = A∪{�}, the alphabet A
being augmented with the “hole” symbol � (a full word is a partial word without
holes). We denote by u(i) the symbol at position i of a partial word u. The length
of u is denoted by |u| and represents the number of symbols in u. The empty word
is the sequence of length zero and is denoted by ε. The set containing all full
words (respectively, non-empty full words) over A is denoted by A∗ (respectively,
A+), while the set of all partial words (respectively, non-empty partial words)
over A is denoted by A∗

� (respectively, A+
�).

If u and v are two partial words of equal length, then u is said to be contained
in v, denoted u ⊂ v, if u(i) = v(i) for all i such that u(i) ∈ A. Partial words u
and v are compatible, denoted u ↑ v, if there exists a partial word w such that
u ⊂ w and v ⊂ w. If u and v are non-empty compatible partial words, then uv
is called a square.

A partial word u is a factor of a partial word v if there exist x, y such that
v = xuy (the factor u is proper if u �= ε and u �= v). We say that u is a prefix of
v if x = ε and a suffix of v if y = ε.

108 F. Blanchet-Sadri et al.

2 Avoidability on Partial Words

Let E be a non-empty finite set of symbols, distinct from A, whose elements
are denoted by α, β, γ, etc. Symbols in E are called variables, and words in E∗

are called patterns. For the remaining of this paper, we only consider binary
alphabets and patterns, hence we can fix A = {a, b} and E = {α, β}. Moreover,
we define a = b and b = a, and similarly α = β and β = α.

The pattern language, over A, associated with a pattern p ∈ E∗, denoted by
p(A+

�), is the subset of A∗
� containing all partial words compatible with ϕ(p),

where ϕ is any non-erasing morphism from E∗ to A∗. A partial word w ∈ A∗
�

meets the pattern p (or p occurs in w) if for some factorization w = xuy, we
have u ∈ p(A+

�). Otherwise, w avoids p.
To be more precise, let p = α0 · · ·αm, where αi ∈ E for i = 0, . . . , m. Define

an occurrence of p in a partial word w as a factor u0 · · ·um of w, where for all
i, j ∈ {0, . . . , m}, if αi = αj , then ui ↑ uj . We call such an occurrence non-
trivial if ui �= �, for all i ∈ {0, . . . , m}. We call a word non-trivially p-free if it
contains no non-trivial occurrences of p. Note that these definitions also apply
to (one-sided) infinite partial words w over A which are functions from N to A�.

Considering the pattern p = αββα, the language associated with p over the
alphabet {a, b} is p({a, b, �}+) = {u1v1v2u2 | u1, u2, v1, v2 ∈ {a, b, �}+ such that
u1 ↑ u2 and v1 ↑ v2}. The partial word ab�ba�bba meets p (take ϕ(α) = bb and
ϕ(β) = a), while the word �babbbaaab� avoids p.

Let p and p′ be two patterns. If p′ meets p, then p divides p′, which we denote
by p | p′. For example, αα � αβα but αα | αβαβ.

A pattern p ∈ E∗ is k-avoidable if there are infinitely many partial words in
A∗

� that avoid p, where A is any alphabet of size k. On the other hand, if every
long enough partial word in A∗� meets p, then p is k-unavoidable (it is also called
unavoidable over A). The avoidability index of p is the smallest integer k such
that p is k-avoidable, or is ∞ if p is unavoidable.

Remark 1. Let p, p′ ∈ E be such that p divides p′. If an infinite partial word
avoids p, then it also avoids p′.

In the context of full words all binary patterns’ avoidability index have been
characterized [7]. Since a full word is a partial word without holes, the avoid-
ability index of a binary pattern in full words is not greater than the avoidability
index of that pattern in partial words. Thus, all unavoidable binary patterns in
full words have avoidability index ∞ in partial words as well.

In [3], it was shown that there exist infinitely many partial words with in-
finitely many holes over a 3-letter alphabet that non-trivially avoid αα, and so
the avoidability index of αα in partial words is 3. Since in full words all binary
patterns with avoidability index 3 are divisible by αα, using Remark 1 we con-
clude that all 3-avoidable binary patterns in full words also have avoidability
index 3 in the context of partial words.

Thus, according to [7, Theorem 3.3.3], if we can find the avoidability in-
dex of ααα, αβαβα, αβαββα, ααβαββ, αβααβ and ααββα, then we will have

Avoidable Binary Patterns in Partial Words 109

completed the classification of the binary patterns in terms of avoidability in
partial words.

First let us recall that in [8], the case of patterns of the form αm, m ≥ 3,
was considered, the avoidability index in partial words being 2. Furthermore,
in [3, 5] it was shown that the pattern αβαβα is trivially 2-unavoidable, but it
is 3-avoidable in partial words.

In this paper, our main result is the following.

Theorem 1. With respect to non-trivial avoidability in partial words, the avoid-
ability index of a binary pattern is the same as in the full word case.

3 Binary Patterns 2-Avoidable by Iterated Morphisms

Let us recall the iterative Thue-Morse morphism φ such that φ(a) = ab and
φ(b) = ba. It is well known that φω(a) avoids αβαβα [6].

Proposition 1. Over a binary alphabet there exist infinitely many infinite par-
tial words, containing exactly one hole, that non-trivially avoid αβαβα.

Proof. Let p = αβαβα, and t be the fixed point of the Thue-Morse morphism.
We show that there exist infinitely many positions in t in which one can replace
the letter at that position with a hole and obtain a new word t′ that is still non-
trivially p-free. Also, since all factors of the infinite Thue-Morse word t (powers
of φ) avoid p, it follows that any occurrence of p in t′ must contain the hole.

Let x1, x2, x3 ⊂ x and y1, y2 ⊂ y, for some partial words x1, x2, x3, x, y1, y2, y
such that |x|, |y| ≥ 1. We start by proving that there does not exist a non-trivial
occurrence of p, x1y1x2y2x3, in t′ such that |x| ≥ 8 or |y| ≥ 8. We proceed by
contradiction. We analyze several cases based on the possible positions of the hole.

Assume that the hole is in x1. Note that this case is symmetrical to when
the hole is in x3 (we are implicitly using the fact that if w is a factor of the
Thue-Morse word t, then so is rev(w)). Since t is overlap-free, it follows that
the only possibility is to have in t a factor of the form x′cx′′yx′cx′′yx′cx′′, with
c ∈ {a, b}, and x1 = x′�x′′, x2 = x3 = x′cx′′ = x and y1, y2 = y, for some words
x′, x′′ ∈ {a, b}∗ with |x′x′′| ≥ 7 or |y| > 7 (moreover, x′ is non-empty since,
otherwise, t would contain the factor x′′ycx′′ycx′′ which is impossible since t is
p-free). Looking at the symbols that precede and follow c in x1 and c in x2, we
get that if |x′x′′| ≥ 7 either ccccc is a factor of x2 = xcy when c is preceded by
c in xcy, or ccccc is a factor of x1 = xcy when c is preceded by c in xcy, and
if |y| > 7 either ccccc is a factor of x1 = xcy when c is preceded by c in x1, or
ccccc is a factor of x2 = xcy when c is preceded by c in x1. All cases lead to
contradiction with the fact that t is overlap-free.

Let us illustrate by an example how this works. Let us consider the case when
c is preceded by a c, |x′| = 1 and |y| > 7. We look at the factors x1y1 and x2y2
that differ at only one position. We have that y1 starts with c, such that ccc is
not a prefix of our factor. It follows that x′′y2 starts with cc such that we do
not get the cube ccc in t. But, in x1y1 we have the factor cccc, which must be

110 F. Blanchet-Sadri et al.

followed by c. Again looking at the prefix of x′′y2, we get cccc. It follows that
ccx′′y has as prefix cccccc which contains an overlap, a contradiction with the
fact that t is overlap-free.

Assume that the hole is in y1. This case is symmetrical to when the hole is in
y2. In this case, since t is overlap-free, the only possibility is to have in t a factor
of the form xy′cy′′xy′cy′′x, with c ∈ {a, b}, and x1 = x2 = x2 = x, y1 = y′�y′′,
y2 = y′cy′′, for some words y′, y′′ ∈ {a, b}∗ with |y′| + |y′′| ≥ 1. Since at least
one of y′ and y′′ is non-empty, and either |x| > 7 or |y′y′′| ≥ 7, the proof follows
from the previous case.

Finally, assume that the hole is in x2. Since t is overlap-free, the only possi-
bility is to have in t a factor of the form x′cx′′yx′cx′′yx′cx′′, with c ∈ {a, b}, and
x1 = x3 = x′cx′′, x2 = x′cx′′ and y1 = y2 = y, for some words x′, x′′ ∈ {a, b}∗
with |x′| + |x′′| ≥ 1. Again, since at least one of x′ and x′′ is non-empty, and
either |y| > 7 or |x′x′′| ≥ 7, the proof follows from the first case.

We have thus shown that if |x| ≥ 8 or |y| ≥ 8, there are no non-trivial
occurrences x1y1x2y2x3, where x1, x2, x3 ⊂ x and y1, y2 ⊂ y, of p in t′, therefore
any such occurrence in t′ must satisfy |x1y1x2y2x3| < 40. We now put a hole at
Position 47 of t7 = φ7(a):

t′7 =abbabaabbaababbabaababbaabbabaabbaababbaabbabaababbabaabbaababbab

aababbaabbabaababbabaabbaababbaabbabaabbaababbabaababbaabbabaab

It is not hard to verify (using a computer program) that there are no occurrences
of p in t′7. Moreover we have placed the hole more than 40 positions from either
end of t7. Note that t7 occurs as a factor of t infinitely often. We can choose
any arbitrary occurrence of the factor t7 in t, and replace it with t′7 in order to
obtain an infinite word with one hole that non-trivially avoids p. ��
Theorem 2. Over a binary alphabet there exist infinitely many partial words,
containing infinitely many holes, that non-trivially avoid the pattern αβαβα.

Proof. Let us give a sketch of the proof. We can obtain such words t′, by replacing
arbitrarily many occurrences of t7 in t with the factor t′7 obtained in the manner
discussed above.

In order to prove the theorem we assume there exists some occurrence of p in
t′ having the form x1y1x2y2x3, such that x1, x2, x3 ⊂ x and y1, y2 ⊂ y for some
words x, y ∈ {a, b}∗, and having the minimum number of holes possible. Because
of the way we insert holes, there are at least 127 letters in between any two holes,
hence, |xy| ≥ 43. Moreover, since the number of holes is minimum, one of the
inequalities x1 = x2 = x3 or y1 = y2 must fail. This implies that the position
corresponding to the hole in one of the other factors must be an a. By looking
at the factors preceding and following the hole, respectively the ones preceding
and following the a in the corresponding factor, we get into contradictions either
regarding valid factors of w or the minimality of the number of holes. ��
Let us move on and take ν to be the morphism that maps a to aab and b to bba.
Define the sequence produced by ν as t0 = a, and tn = ν(tn−1). Recall that ν
avoids αβαββα and ααβαββ [7].

Avoidable Binary Patterns in Partial Words 111

Proposition 2. For any n ≥ 0, tn+1 = tntntn, where ti is the ith iteration of
the sequence produced by ν.

Proof. We proceed by induction. Note that t1 = aab = t0t0t0. Assume tn =
tn−1tn−1tn−1, for some integer n > 0. Thus, tn+1 = ν(tn) = ν(tn−1tn−1tn−1),
and so tn+1 = ν(tn−1)ν(tn−1)ν(tn−1) = tntntn. ��
Proposition 3. Over a binary alphabet there exist infinitely many infinite par-
tial words, containing exactly one hole, that avoid the pattern αβαββα.

Proof. Let p = αβαββα, and let t be the fixed point of the morphism ν. We
show that there exist infinitely many positions in t in which one can replace
the letter at that position with a hole and obtain a new word t′ that is still
non-trivially p-free. Note that since t avoids p, it follows that for p to occur in
t′ it must contain the hole.

First let us replace Position 58 of t5 by a hole:

t5 =aabaabbbaaabaabbbabbabbaaabaabaabbbaaabaabbbabbabbaaabbbabbaaabbbab

baaabaabaabbbaaabaabbbaaabaabbbabbabbaaabaabaabbbaaabaabbbabbabbaa

abbbabbaaabbbabbaaabaabaabbbabbabbaaabbbabbaaabaabaabbbabbabbaaabbb

abbaaabaabaabbbaaabaabbbaaabaabbbabbabbaaab

It is easy to verify with a computer program that the resulting word has no
occurrences of p with |α|, |β| < 9, since the hole is more than 58 positions from
either end of t5.

Let x1, x2, x3 ⊂ u and y1, y2, y3 ⊂ z for some partial words x, y such that
|x|, |y| ≥ 1. We prove that there does not exist an occurrence of the factor
x1y1x2y2y3x3 in t′ such that |x| ≥ 9 or |y| ≥ 9.

Assume that the hole is in x1 (the cases when the hole is in y1, x2 or y2
are similar). Since |x1y1| > 9, it follows that the hole is either preceded by bab
or followed by aaa. Because of this, it must be the case that the a from x2y2
corresponding to the hole (if there were an occurrence of b corresponding to the
hole then t would contain p which is a contradiction), it is either preceded by bab
or followed by aaa. We get that t either contains the factor baba or the factor
aaaa, a contradiction with the construction of t.

If the hole is in x3 (the case when the hole is in y3 is similar), since |y3x3| > 9,
it follows that the hole is either preceded by bab or followed by aaa. Comparing
it to the a from y1x2 corresponding to the hole, we have that the a is either
preceded by bab or followed by aaa. We get once more that t either contains the
factor baba or the factor aaaa, a contradiction with the construction of t.

Note that t5 occurs as a factor of t infinitely often. We can choose any arbitrary
occurrence of the factor t5 in t, and place a hole at Position 58 to obtain an
infinite word with one hole that avoids p. ��
Remark 2. If uu is a factor of t, the fixed point of the morphism ν, for some
word u of length |u| > 3, it must be the case that |u| = 0 mod 3. Moreover,
for all different occurrences of the same factor v of length |v| > 3, there exist

112 F. Blanchet-Sadri et al.

unique words x, y, z such that v = xν(y)z, with |x|, |z| < 3. In other words, all
occurrences of the same factor start at the same position of an iteration of ν.

Theorem 3. Over a binary alphabet there exist infinitely many partial words,
containing infinitely many holes, that avoid the pattern αβαββα.

Proof. Let us denote by t′5 the word obtained by replacing the letter a at Position
58 by a � in t5, and by t′ the word where infinitely many occurrences of the factor
t5, that start at an even position in t, have been replaced by t′5.

Assume, to get a contradiction, that the pattern occurs somewhere in t′. It
must be the case that there exists a factor x1y1x2y2y3x3 that contains h holes,
(the case h = 1 is proved in Proposition 3), with all xi’s and all yi’s pairwise
compatible for all i ∈ {1, 2, 3}, and no occurrence of the pattern with less than
h holes exists.

It is obvious that h > 1 according to the previous proposition. If there exists
a hole in xi and |xi| > 4, for 0 < i ≤ 3, then there exists xj , with j �= i, that has
a factor that is compatible with a word from {aaaab, baaaa, abaaa, babaa, bbaba}
(note that the underlined letter is the one that corresponds to the hole in xi),
and if xj has a hole, then the hole does not correspond to the hole in xi. Note
that it is impossible to have a hole at another position than the underlined one,
in any of the previously mentioned factors. We conclude that xj has no holes.
But, in this case we would have that t contains one of the factors aaaa, abaaa
or baba, which is a contradiction. The same proof works for yi, where 0 < i ≤ 3.

Thus, either |α| ≤ 4 and yi contains no holes for 0 < i ≤ 3, or |β| ≤ 4 and xi

contains no holes for 0 < i ≤ 3 (otherwise we would have that |x1y1x2y2y3x3| ≤
24 contains more than two holes, which is a contradiction since between each
two holes there are at least 72 symbols according to our construction).

Let us first assume that the hole is in α. If x1 contains the hole then, since
|x1| ≤ 4 and y1 contains no hole, looking at the factor following � we con-
clude that the corresponding position in x2 must also contain a hole. Now, if
x2 contains the hole then, it follows from the previous observation that x1 has
to contain a hole, and moreover, since y1 and y3 contain no holes, looking at
the factor preceding the hole, we get that x3 has a hole at the corresponding
position. In the case x3 has a hole, according to the previous observation, it must
be the case that x2 has a hole. We conclude that if xi has a hole, then xi = xj ,
for all i, j ∈ {1, 2, 3}. Hence, there exists an occurrence of the pattern having no
holes, a contradiction.

Since the case when the hole is in β is similar, we conclude that t′ does not
contain any occurrence of the pattern αβαββα. ��
Proposition 4. Over a binary alphabet there exist infinitely many infinite par-
tial words, containing exactly one hole, that avoid the pattern ααβαββ.

The word is obtained by placing a hole at Position 57 of t5:

t5 =aabaabbbaaabaabbbabbabbaaabaabaabbbaaabaabbbabbabbaaabbbabbaaabbbab

baaabaabaabbbaaabaabbbaaabaabbbabbabbaaabaabaabbbaaabaabbbabbabbaa

Avoidable Binary Patterns in Partial Words 113

abbbabbaaabbbabbaaabaabaabbbabbabbaaabbbabbaaabaabaabbbabbabbaaabbb

abbaaabaabaabbbaaabaabbbaaabaabbbabbabbaaab

The proof is similar to the one for the pattern αβαββα.

Theorem 4. Over a binary alphabet there exist infinitely many partial words,
containing infinitely many holes, that avoid the pattern ααβαββ.

The proof of this result is similar to the one for the pattern αβαββα.

4 Binary Patterns 2-Avoidable by Non-iterated
Morphisms

Let us now look at the pattern ααββα. Let A = {a, b} and A′ = A∪{c}, and let
ψ : A′∗ → A′∗ be the morphism defined by ψ(a) = abc, ψ(b) = ac and ψ(c) = b.
We know that ψω(a) avoids αα, in other words it is square-free [7].

Furthermore, define the morphism χ : A′∗ → A∗ such that χ(a) = aa, χ(b) =
aba, and χ(c) = abbb. If w = χ(ψω(a)), then we know from [4] that w does not
contain any occurrence of ααββα. Moreover, denote by χ4 the application of
χ to the fourth iteration of ψ. Since ψ4(a) occurs infinitely often as a factor of
ψω(a), it follows that χ4(a) = χ(ψ4(a)) occurs infinitely often as a factor of w.
Hence, we can write w = w0χ4w1χ4w2χ4 · · · , for some words wi with |wi| > 1,
for all i. Now, let us replace Position 23 of χ4 by a � and denote the new partial
word by χ′

4:

aaabaabbbaaabbbabaaaabaabbbabaaaabbbaaabaabbbaaabbbabaaaabbbaaabaabbbaba

Lemma 1. Let u1u2 denote a factor of w′ = w0χ
′
4w1χ

′
4w2χ

′
4 · · · that was ob-

tained by inserting holes in v1v2, a factor of w with u1 ⊂ v1 and u2 ⊂ v2. If
u1 ↑ u2, but v1 �= v2, then |u1| ≤ 4, more specifically, either u1 or u2 is in
{�, �b, �bb, a�, a�b, ba�, a�bb}.

Proof. Obviously, if u1 ↑ u2 but v1 �= v2, then a hole appears in u1 and
there is no hole at the corresponding position in u2, or vice versa. Without
loss of generality we can assume that the hole appears in u1. Assume that
u1 /∈ {�, �b, �bb, a�, a�b, a�bb, ba�}. It follows that u1 has as a factor �bbb, aba� or
ba�b. Moreover, note that the only time bbb appears in w′ is in the factors abbba
and �bbba. Similarly, the only time aba appears as a factor of w′ is as a factor of
abaa and aba�, and the only time a word x compatible with ba�b appears in w′

is when x = ba�b or x = baab. We see that in all of these cases the corresponding
factor in u2 must be abbba, abaa or baab, a contradiction since we always have
v1 = v2. ��

Lemma 2. There exists no factor uu of w = χ(ψω(a)), such that either aaab
or aba is a prefix of u.

114 F. Blanchet-Sadri et al.

Proof. Assume there exists an u with prefix aaab so that uu = w(i) · · ·w(i +
2l − 1), for some integers i, l with l > 3. Note that aaab only appears as a
prefix of χ(x), for some word x ∈ {a, b, c}+. Moreover, since the second u also
starts with aaab, we have that u = χ(x). Hence, uu is actually χ(xx), for some
word x ∈ {a, b, c}+. It follows that φω(a) contains the square xx, which is a
contradiction with the nature of the ψ morphism. Similarly, aba only appears as
an image of χ(b). ��

Theorem 5. Over a binary alphabet there exist infinitely many partial words,
containing infinitely many holes, that avoid the pattern ααββα.

Proof. Let p = ααββα. To prove this claim, we assume that w′ is not p-free
and get a contradiction. Let x′

1x
′
2y

′
1y

′
2x

′
3 be an occurrence of p in w′, and denote

by x1x2y1y2x3 the factor of w in which holes were inserted to get p. Note that
if x1 = x2 = x3 and y1 = y2, then we have an occurrence of p in w, which
would be a contradiction. Therefore one of the inequalities fails. Also, note that
if xi �= xj then either x′

i or x′
j contains a hole, where i, j ∈ {1, 2, 3}, while if

y1 �= y2 then either y′
1 or y′

2 contains a hole. Moreover, if x1 �= x2 or y1 �= y2,
according to Lemma 1, it must be the case that x1 or x2 or, y1 or y2 are in
{�, �b, �bb, a�, a�b, a�bb, ba�}. By looking at the factor χ′

4, it is easy to check
that the only possibilities are for x′

1 and y′
1 to be in {�, �b} and for x′

2 and y′
2 to

be in {�, a�, a�b}.
If y′

1 = �b, it is easy to check that x′
3 must start with aab. According to

Lemma 2, we cannot have that x1 = x2. It follows, according to Lemma 1, that
|x′

1| ≤ 4, a contradiction with the factor preceding the hole. The proof is identical
for the case when x′

1 = �b. If y′
1 = �, then x′

3 starts with bba. Thus, x′
2 starts

with bba and x′
1 ends in ab or �b. It follows that x′

2 ends in ab or �b, thus, y′
1 is

preceded by ab, which is a contradiction. If x′
1 = �, then y′

1 and y′
2 start with

bba and x′
3 is a b. From Lemma 1 we get that y1 = y2. Thus, y1y2bb is a factor of

w. It follows that for some word x ∈ {a, b}+, y1y2bb = bbχ(xc)χ(xc) is a factor
of w. We get a contradiction with the fact that φω(a) is square-free.

If x′
2 or y′

2 are in {�, a�, a�b} then we get that either y′
1 or x′

3 are in {bbba, bba}.
A contradiction is reached again with the help of Lemma 1 and the fact that
φω(a) is square-free.

The final case that needs to be analyzed is when x1 = x2 and y1 = y2, and
x′

3 ↑ x1 and x3 �= x1. Let us denote x = x1 = x2 and y = y1 = y2. We get that w′

has xxyyx′
3 as a factor and there exists at least one hole in x′

3 that corresponds
to b’s in x′

1 and x′
2.

If |x| > 4 it follows that x has abab, babb, bbbb as a factor (the under-
lined b represents the letter corresponding to the hole in x′

3). Since none of
these are possible factors of w, we conclude that it is impossible. Hence, it
must be the case that x′

3 ∈ {�, �b, �bb, a�, a�b, a�bb, ba�}. It follows that xx ∈
{b2, (bb)2, (bbb)2, (ab)2, (abb)2, (abbb)2, (bab)2}. But, only bb is a possible factor of
w. It is easy to check that in this case |y| > 6 and we conclude that y has either
aaa, aba, baaa or baba as a prefix. In all of these cases, using Lemma 2 we reach
a contradiction.

Avoidable Binary Patterns in Partial Words 115

Since all cases lead to contradictions we conclude that ααββα is trivially-
avoidable over a binary alphabet. ��
Finally, let us look at the pattern αβααβ. According to [7, Lemma 3.3.2],
γ(ψω(a)) avoids αβααβ, where γ : {a, b, c}∗ → {a, b}∗ with χ(a) = aaa, χ(b) =
bbb, and χ(c) = ababab. Moreover, the only squares that occur in w = γ(ψω(a))
are a2, b2, (aa)2, (ab)2, (ba)2, (bb)2 and (baba)2. As a last thing, note that ψω(a)
does not contain any of the factors aba or cbc.

Now let us replace Position 84 of γ5 = γ(ψ5(a)) by a � and denote the new
partial word by γ′

5:

γ′
5 =aaabbbabababaaaabababbbbaaabbbabababbbbaaaabababaaabbbabababaaaabab

abbbbaaaabababaaabbbabababbbbaaabbbabababaaaabababbbbaaabbbabababbbb

aaaabababaaabbbabababbbbaaabbbabababaaaabababbbbaaaababab

Moreover, let us denote by w′ the word obtained from w after the insertion of a
hole at Position 84 of an occurrence of γ5.

Proposition 5. Over a binary alphabet there exist infinitely many infinite par-
tial words, containing exactly one hole, that non-trivially avoid αβααβ.

Proof. Let us assume, to get a contradiction, that there exists an occurrence of
p = αβααβ in w′, and denote this occurrence by x1y1x2x3y2, for xi, yj ∈ {a, b}+,
0 < i ≤ 3 and 0 < j < 3. It must be the case that either x1 = x2 = x3 = x or
y1 = y2 = y, for some words x and y, but not both. Note that if the variable
containing the hole has length greater than 5 then the corresponding variable has
as a factor baab, aabbbb or abbbba (the underlined b stands for the hole position in
the first variable). Only the last of these words is a valid factor of w. Moreover,
note that actually this represents the prefix of the variable since, having an extra
symbol in front would give us the factor aabbbb which is not a valid one for w.

If the hole is in one of the α’s, note that, since x2 ↑ x3 and w contains no
squares of length greater than four, it must be the case that the hole is either in
x2 or x3. That implies that w′ has either the factor abbbbax′ya�bbbax′abbbbax′y,
or abbbbax′yabbbbax′a�bbbax′y, where x = abbbbax′, for some non-empty word
x′. In the first case, this implies that y starts with ab, giving us in w the square
bbbbax′ab bbbax′ab, a contradiction. In the second case, since x′ is non-empty
and it is preceded by �bbba, we conclude that x′ starts with abab. Looking at
the prefix of x2, we get the factor abbbbabab, which is a contradiction with the
fact that ψω(a) does not contain cbc as a factor. If the hole is in β, then x ∈
{a, b, aa, ab, ba, bb, baba}. Thus, we get one of the factors xa�bbbay′xxabbbbay′ or
xabbbbay′xxa�bbbay′, where y = abbbbay′ for some word y′. Replacing x with any
of the possible values gives us a contradiction with either the factor preceding the
hole or the construction of w. We conclude that none of the cases are possible.

Hence, it must be that the variable containing the hole has length at most
five. If we denote by z the variable containing the hole and by z′ one of the
variables corresponding to z, z ↑ z′, we get that z ∈ {a�, �b, aa�, a�b, �bb,
aa�b, a�bb, �bbb, aa�bb, a�bbb, �bbba} and z′ ∈ {ab, bb, aab, abb, bbb, aabb, abbb,

116 F. Blanchet-Sadri et al.

bbbb, aabbb, abbbb, bbbba} (z′ cannot contain the factor baab). By looking at the
possible factors preceding and following the holes, and the squares that can be
found in w, we conclude that if the hole is in x1, then x1 ∈ {a�, �b}, if the hole
is in x2, then x2 = �b, and it is impossible to have the hole in x3.

If x1 = �b, then it follows that y has bb as a prefix, and a contradiction is
reached with the fact that bbbbb is a factor of w. If x1 = a�, it follows that y1
starts with bbbab, and so, we get that ababy2 determines in ψω(a) the factor cbc,
which is a contradiction.

If x2 = �b, then w contains the factor bbabababy′abbbabababy′ (the underlined
letter is the one that we changed into a hole), where y = abababy′ for some word
y′. It can be checked that y′ ends in aabababaa, and in order to avoid having the
square acac in ψω(a), it must be the case that y′ is always followed by ab. Hence,
w has the factor xyxxy, where x = b and y = abababy′ab, a contradiction.

If the hole is in β, since p has αα as a factor, and the only possible squares in w
are a2, b2, (aa)2, (ab)2, (ba)2, (bb)2 and (baba)2, by looking at the possible factor
preceding and following the hole, we conclude that y1 cannot contain the hole
and the only possibility for y2 to contain the hole is when y2 = �. But, in this
case the occurrence of the pattern is a trivial one, hence, we get a contradiction.

Since all cases lead to contradiction, the conclusion follows. ��
Theorem 6. Over a binary alphabet there exist infinitely many partial words,
containing infinitely many holes, that non-trivially avoid the pattern αβααβ.

Proof. Let us denote by w′ the word obtained from w after an infinite number
of non-overlapping occurrences of γ5 starting at an even position have been
replaced by γ′

5. Furthermore, let us assume, to get a contradiction, that the
pattern p = αβααβ is unavoidable and denote by x1y1x2x3y2 an occurrence of
p containing h > 1 holes, such that no occurrence of the pattern p having less
than h holes appears in w′.

Since, according to Proposition 5, h > 1 and the distance between every
two holes is at least 170, it follows that |αβ| > 85. Thus, there exist z ∈
{x1, x2, x3, y1, y2} and a variable z′ ∈ {x1, x2, x3, y1, y2} distinct from z, with
z ↑ z′ and, z = z1�z2 and z′ = z′1bz′2, for some words zi, z

′
i with zi ↑ z′i, for

0 < i < 3. If |z1| > 2, it follows that z′1 has a suffix compatible with baa. Since
the only factor in w′ compatible with baa is baa we conclude that z′1b has baab
as a suffix, which is a contradiction with the fact that baab is a valid factor of
w. It follows that |z1| < 3. Moreover, if z ∈ {y1, y2}, since y1 is preceded by x1
and y2 is preceded by x3, we get x1y1 ↑ x3y3. If |α| > 2 a conclusion similar to
the previous one is reached. It follows that 0 < |x1z1| < 3. In this case |z2| > 82
and we get that the hole is followed by bbbab. So the prefix of length five of bz′2,
bbbbab, represents a factor of the image of γ(cbc). This is a contradiction since,
cbc is not a factor of ψω(a). Thus, z ∈ {x1, x2, x3}.

Note that, if for all �’s in x2 the corresponding position in x3 is an a or a �,
or vice versa, then x2, x3 are compatible with an element of {aa, ab, ba, bb, baba},
since these are the only possible squares of length greater than one in w. Since
none of these creates a valid factor, we conclude that there exists a � in x2 such
that the corresponding position in x3 is a b, or vice versa.

Avoidable Binary Patterns in Partial Words 117

Let us assume that x2 = z and x3 = z′. The other case is similar. It follows
that w′ has z1�z2z

′
1bz

′
2 as a factor, where |z1| < 3. It can be checked that unless

x2 = �b and x3 = bb, then |z2| > 5. If z2 has bbbab as a factor, since the only
factor of w′ compatible with it is bbbab, we conclude that z′2 has bbbab as a factor.
This implies that the prefix of length six of bz′2, a factor of w′, was determined
by γ(cbc), with cbc factor of ψω(a), which is a contradiction. It must be the
case that x2 = �b, x3 = bb and x1 ∈ {�b, bb}. If x1 = �b, it follows that y1 has
bb as a prefix. but, since x2x3 = �bbb, it follows that y2 has ab as a prefix, a
contradiction. Hence, it must be that x1y1x2x3y2 = bby1�bbby2. But since all the
holes in y1 correspond to a’s or �’s in y2, and vice versa, it follows that, replacing
all holes but the one in x2 we get an occurrence of the pattern having only one
hole. This is a contradiction with Proposition 5. The conclusion follows. ��
Since all these patterns prove to have a non-trivial avoidability index 2, the
result of Theorem 1 follows.

References

1. Bean, D.R., Ehrenfeucht, A., McNulty, G.: Avoidable patterns in strings of sym-
bols. Pacific Journal of Mathematics 85, 261–294 (1979)

2. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press (2008)

3. Blanchet-Sadri, F., Mercaş, R., Scott, G.: A generalization of Thue freeness for
partial words. Theoretical Computer Science 410(8-10), 793–800 (2009)

4. Cassaigne, J.: Unavoidable binary patterns. Acta Informatica 30, 385–395 (1993)
5. Halava, V., Harju, T., Kärki, T., Séébold, P.: Overlap-freeness in infinite partial

words. Theoretical Computer Science 410(8-10), 943–948 (2009)
6. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge

(1997)
7. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,

Cambridge (2002)
8. Manea, F., Mercaş, R.: Freeness of partial words. Theoretical Computer Sci-

ence 389(1-2), 265–277 (2007)
9. Roth, P.: Every binary pattern of length six is avoidable on the two-letter alphabet.

Acta Informatica 29(1), 95–107 (1992)
10. Schmidt, U.: Motifs inévitables dans les mots. Rapport LITP, pp. 86–63, Paris VI

(1986)
11. Schmidt, U.: Avoidable patterns on two letters. Theoretical Computer Sci-

ence 63(1), 1–17 (1989)
12. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat. Kl.

Christiana 7, 1–22 (1906); Nagell, T. (ed.) Reprinted in Selected Mathematical
Papers of Axel Thue, Universitetsforlaget, Oslo, Norway, pp. 139–158 (1977)

13. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
Vid. Selsk. Skr. I, Mat. Nat. Kl. Christiana 1, 1–67 (1912); Nagell, T. (ed.)
Reprinted in Selected Mathematical Papers of Axel Thue, Universitetsforlaget,
Oslo, Norway, pp. 413–478 (1977)

14. Zimin, A.I.: Blocking sets of terms. Mathematics of the USSR Sbornik 47, 353–364
(1984)

Equivalence and Inclusion Problem for Strongly
Unambiguous Büchi Automata

Nicolas Bousquet1 and Christof Löding2

1 ENS Chachan, France
nbousque@dptinfo.ens-cachan.fr

2 RWTH Aachen, Informatik 7, 52056 Aachen, Germany
loeding@cs.rwth-aachen.de

Abstract. We consider the inclusion and equivalence problem for un-
ambiguous Büchi automata. We show that for a strong version of unam-
biguity introduced by Carton and Michel these two problems are solvable
in polynomial time. We generalize this to Büchi automata with a fixed
finite degree of ambiguity in the strong sense. We also discuss the prob-
lems that arise when considering the decision problems for the standard
notion of ambiguity for Büchi automata.

1 Introduction

The model of unambiguous automata is located between deterministic and non-
deterministic automata. An unambiguous automaton is a nondeterministic au-
tomaton such that each input that is accepted has a unique accepting run. The
concept of unambiguity also occurs in other areas of theoretical computer sci-
ence, for example in complexity theory. The problems solvable in polynomial
time by unambiguous (nondeterministic) Turing machines are collected in the
subclass UP (Unambiguous Polynomial time) of NP [17].

There are two aspects in the study of unambiguous automata: expressiveness
and computational complexity. Concerning expressiveness, because of the well-
known equivalence between deterministic and nondeterministic finite automata
over finite words and trees, unambiguous automata can recognize all the regular
languages over these two domains. For automata over ω-words it is known that
deterministic Büchi automata are strictly less expressive than nondeterministic
ones [10]. However, Arnold showed that all the ω-regular languages can be recog-
nized by an unambiguous Büchi automaton [2]. For automata over ω-trees, the
class of unambiguous automata is not as expressive as the class of full nondeter-
ministic tree automata (with standard acceptance conditions like parity, Rabin
or Muller) [12,6].

An interesting subclass of the class of unambiguous Büchi automata is con-
sidered by Carton and Michel [7]: Their definition requires that for each input
(accepted or not) there is a unique run passing infinitely often through a final
state (whether from an initial state or not). Thus, an infinite word is accepted
if the initial state is the first state of the path passing infinitely often through

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 118–129, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Equivalence Problem for Strongly Unambiguous Büchi Automata 119

a final state. Non-acceptance means that the unique path of this form does not
start in an initial state. Carton and Michel show [7] that this restricted class of
Büchi automata suffices to capture the class of ω-regular languages. We consider
in this paper a slight modification of their definition, and refer to these automata
as strongly unambiguous.

The second interesting aspect for unambiguous models is the computational
complexity of algorithmic problems. We consider here the equivalence problem
(as well as the inclusion problem which turns out to have the same complexity).
It is well known that there is a gap in complexity for the equivalence problem be-
tween deterministic and nondeterministic automata. The problem can be decided
in polynomial time over finite words [15] and finite trees for deterministic au-
tomata, whereas the problem is PSPACE-complete over finite words (see Section
10.6 of [1]1) and EXPTIME-complete over finite trees [8] for nondeterministic
automata.

As shown by Stearns and Hunt, the equivalence problem for unambiguous fi-
nite automata over finite words is still polynomial [14] and Seidl showed the same
over finite trees [13]. In the present paper, we show that this result also holds
for strongly unambiguous Büchi automata. To our knowledge, this identifies the
first subclass of Büchi automata that is expressively complete for the ω-regular
languages and at the same time allows a polynomial time equivalence test.

The polynomial time equivalence test over finite words from [14] uses a count-
ing argument: The main idea is that, for unambiguous automata, the number
of accepting runs is equal to the number of accepted inputs. Stearns and Hunt
proved that it is sufficient to count the number of accepting paths of the given
unambiguous automata only up to a certain length and that this can be done in
polynomial time. The problem when trying to adapt such an approach to Büchi
automata is that runs of Büchi automata are infinite and one cannot simply
count the number of accepted words up to a certain length. However, it is possi-
ble to restrict the problem of equivalence of regular languages of infinite words
to ultimately periodic words [4] (see also [5]). A word is ultimately periodic if it
is of the form u · vω where u and v are finite. It turns out that this restriction to
ultimately periodic words allows to adapt the counting argument to the case of
strongly unambiguous Büchi automata. Instead of presenting a direct adaption
of the proof for finite words we show that the equivalence problem for strongly
unambiguous automata can be reduced in polynomial time to the equivalence
problem for unambiguous automata on finite words.

This kind of reduction does not seem to work for unambiguous Büchi au-
tomata. We show that deciding whether an unambiguous Büchi automaton (even
a deterministic one) accepts some periodic word vω, where v is of a given length
n, is NP-complete. Although this proof does not show that the equivalence prob-
lem for unambiguous Büchi automata is difficult, it shows that different methods
are required.

1 In [1] the PSPACE-hardness of the non-universality problem for regular expressions
is shown. This can easily be turned into a PSPACE-hardness proof for the equivalence
problem for nondeterministic finite automata.

120 N. Bousquet and C. Löding

The remainder of the paper is structured as follows. In the second section we
give some definitions and simple properties of Büchi automata. In Section 3 we
show how to reduce the equivalence problem for strongly unambiguous Büchi
automata to the case of unambiguous automata on finite words. In Section 4
we extend these results to strongly k-ambiguous automata, a relaxed notion of
strong unambiguity, where each word can have at most k final paths. In Section 5
we show that deciding if a deterministic Büchi automaton accepts periodic words
of a given length is NP-complete. We conclude in the last section.

2 Definitions and Background

For an alphabet Σ we denote as usual the set of finite words over Σ by Σ∗, the
set of nonempty finite words by Σ+, and the set of infinite words by Σω. The
length of a finite word u ∈ Σ∗ is denoted by |u|. For an infinite word α ∈ Σω we
denote the jth letter by α(j), i.e., α = α(0)α(1) · · · .

An infinite word of the form uvω = uvvv · · · for finite words u, v is called
ultimately periodic.

We consider nondeterministic finite automata (NFA) on finite words of the
form A = (Q, Σ, Qin, Δ, F), where Q is a finite set of states, Σ is the input
alphabet, Qin ⊆ Q is the set of initial states, Δ ⊆ Q × Σ × Q is the transition
relation, and F ⊆ Q is the set of final states. We use the standard terminology
for NFAs (see e.g. [9]) and denote the language of words accepted by A by L(A).

A Büchi automaton A = (Q, Σ, Qin, Δ, F) is of the same form as an NFA. In
contrast to NFAs, a Büchi automaton defines a language of infinite words. A path
for the infinite word α ∈ Σω is an infinite sequence of states q0q1... such that
for all j ∈ N, (qj−1, α(j), qj) ∈ Δ. A final path is a path that passes infinitely
often through a final state. A path begins in q if q0 = q. If a final path for α
begins in some q0 ∈ Qin, then the word α is accepted by A. So a final path
is accepting if it starts with an initial state. If an accepting path for α exists,
then A accepts α. The language L(A) is the set of infinite words α accepted by
A. For an automaton A = (Q, Σ, Qin, Δ, F) we denote by LA(q) the language
accepted by (Q, Σ, {q}, Δ, F). The class of languages that can be accepted by
Büchi automata is called the class of ω-regular languages.

For a finite word u and two states q, q′ of A we write A : q
u−→ q′ if one can

reach q′ from q on reading u, and we write A : q
u−→F q′ if one can reach q′ from

q on reading u and by passing through a final state on the way.
It is well known that the equivalence problem for NFAs, i.e., the question

whether two given NFAs accept the same language, is PSPACE-complete (see
[1]). The same holds for the inclusion problem because equivalence can easily
be tested by checking for both inclusions. Furthermore, the lower bound on the
complexity easily extends to Büchi automata.

In [14] unambiguous NFAs are considered and it is shown that the equiva-
lence and inclusion problem for these automata are solvable in polynomial time.
Unambiguous automata are nondeterministic automata in which for each word
there is at most one accepting path.

Equivalence Problem for Strongly Unambiguous Büchi Automata 121

Our aim is to see to what extent these results can be lifted to Büchi automata.
We introduce two notions of unambiguity, the standard one and a stronger notion
introduced in [7].

Definition 1. A Büchi automaton A is called unambiguous if every infinite
word has at most one accepting path in A, and it is called strongly unambiguous
if every infinite word has at most one final path.

Clearly, if A is strongly unambiguous, then for each infinite word α there is at
most one state q such that α ∈ LA(q). We state this observation as a remark for
later reference.

Remark 1. Let A be a strongly unambiguous Büchi automaton and α be an
infinite word. If α ∈ LA(q1) and α ∈ LA(q2) then q1 = q2.

Consider, for example, the automata shown in Figure 1. Both automata accept
the language over {a, b} consisting of all words that contain infinitely many b.
The automaton on the left-hand side is deterministic (where deterministic au-
tomata as usual only have a single initial state and for each state and letter at
most one outgoing transition) and therefore unambiguous, but it is not strongly
unambiguous: the word bω is accepted from both states q0 and q1. The automa-
ton on the right-hand side is strongly unambiguous. It accepts the same language
as the deterministic automaton, but from state p0 all accepted words start with
a, and from p1 all accepted words start with b.

q0 q1

a

b

b

a

p0 p1

a

a

b

b

Fig. 1. Example for a deterministic Büchi automaton (left-hand side) and a strongly
unambiguous Büchi automaton (right-hand side) for the same language

Note that each strongly unambiguous automaton is unambiguous because
each accepting path is also a final path. It has been shown in [2] that each ω-
regular language can be accepted by an unambiguous Büchi automaton. The
class of strongly unambiguous automata has been introduced in [7]2 and it has
been shown that this class is expressively complete for the ω-regular languages.

Theorem 1 ([7]). Every ω-regular language can be recognized by a strongly
unambiguous Büchi automaton.

2 The definition in [7] is even more restrictive: It is required that each word has exactly
one final path. This allows an easy complementation by complementing the set of
initial states. We have chosen the more relaxed notion because the polynomial time
equivalence test also works in this setting. Further note that in [7] theses automata
are simply called unambiguous and not strongly unambiguous.

122 N. Bousquet and C. Löding

This expressive completeness makes strongly unambiguous Büchi automata an
interesting class. It is also worth noting that strongly unambiguous Büchi au-
tomata naturally occur in the translation from linear temporal logic formulas
into Büchi automata. In the standard approach for this translation the Büchi
automaton guesses valuations of all subformulas of the given formula and ver-
ifies that the guesses are correct (see [3]). An input word is accepted from the
unique state that evaluates all subformulas correctly. Hence the automaton that
is constructed in this standard way is strongly unambiguous.

Before we turn to the decision problems for strongly unambiguous Büchi au-
tomata, we compare them to deterministic automata. Note that deterministic
Büchi automata do not capture the full class of ω-regular languages, but using
extended acceptance conditions like the Muller acceptance condition, determin-
istic automata become expressively complete [11] (see also [16]).

The example from Figure 1 already shows that deterministic Büchi automata
need not to be strongly unambiguous. In fact, there is no deterministic Büchi au-
tomaton that is strongly unambiguous and equivalent to the one from
Figure 1: Assume A is a deterministic and strongly unambiguous Büchi au-
tomaton accepting all words containing infinitely many b. Then the word bω is
accepted from the unique initial state. Then bω is not accepted from any other
state by Remark 1. Thus, the initial state is final and has a b-loop. The only way
to accept abω would be to also have an a-loop on the initial state. This would
mean that A accepts all ω-words over {a, b}. Note that we only used the fact
that a deterministic automaton has only a single initial state. So this example
shows that a set of initial states is necessary for strongly unambiguous Büchi
automata, in general.

The next example shows that strongly unambiguous automata can be ex-
ponentially more succinct than deterministic ones. We formulate the following
remark for deterministic Muller automata, because the Muller condition is the
most general one of the standard acceptance conditions that are usually con-
sidered: A Muller condition is specified by a family F of state sets. A run is
accepting if the set of states that appear infinitely often in this run is a member
of F .

Remark 2. There is a family (Ln)n≥1 of ω-languages over the alphabet {a, b}
such that each Ln can be accepted by a strongly unambiguous Büchi automaton
with n+2 states, and each deterministic Muller automaton for Ln needs at least
2n states.

Proof. We use the standard syntactic right-congruence for ω-languages L, de-
fined by u ∼L v iff uα ∈ L ⇔ vα ∈ L for all α ∈ Σω. As for automata on finite
words (see [9]), one can show that each Muller automaton for L needs at least
as many states as there are classes of ∼L.

The language Ln = Σ∗aΣn−1abω can be recognized by a strongly unambigu-
ous Büchi automaton of size n + 2 as shown in Figure 2. The number of ∼Ln

classes is at least 2n, so a deterministic Muller automaton which recognizes Ln

has at least 2n states. ��

Equivalence Problem for Strongly Unambiguous Büchi Automata 123

q0 p1 p2 · · · pn q1

a, b

a a, b a, b a, b a

b

Fig. 2. A strongly unambiguous Büchi automaton for L = Σ∗aΣn−1abω

Finally, we would like to mention that there are also deterministic Büchi automata
exponentially smaller than strongly unambiguous ones. This is in contrast to un-
ambiguous automata, since each deterministic automaton is unambiguous.

Remark 3. There is a family (Ln)n≥1 of ω-languages over the alphabet {a, b}
such that each Ln can be accepted by a deterministic Büchi automaton with
n + 1 states, and each strongly unambiguous Büchi automaton for Ln needs at
least 2n−1 states.

Proof. Let Ln be the language of all words in {a, b}n in which the nth letter
is a. Using n + 1 states a deterministic automaton can check this property.

Let An be a strongly unambiguous automaton for Ln. Assume that An has
less than 2n−1 states. Then there are two different words w1, w2 ∈ {a, b}n−1 of
length n − 1 such that w1abω and w2abω are accepted by An from the same
state q. Since w1 and w2 are different, we can assume w.l.o.g. that w1 = waw′

1
and w2 = wbw′

2 for some words w, w′
1, w

′
2. Let m = |w| and v be a word of length

n−m−1. Then vwaw′
1b

ω is in Ln. The corresponding accepting run must reach q
after having read v because otherwise there would be two different final paths
for waw′

1b
ω. Hence, there is also an accepting run for vwbw′

2b
ω: the one that

moves to q on reading v, and then accepting wbw′
2b

ω from q. Since wbw′
2b

ω /∈ Ln

we get a contradiction and thus An has at least 2n−1 states. ��

3 Equivalence for Strongly Unambiguous Büchi
Automata

In this section we prove that the equivalence problem for strongly unambigu-
ous Büchi automata can be solved in polynomial time. For the case of finite
words, the proof of Stearns and Hunt [14] uses a counting argument: For an
unambiguous automaton over finite words the number of accepted words of a
certain length is the same as the number of accepting paths of this length. The
idea is to decide if L(A1) ∩ L(A2) = L(Ai) for i = 1, 2 by simply counting the
number of accepting paths. Since L(A1) ∩ L(A2) ⊆ L(Ai), the equality holds if
for each n there is the same number of accepting paths in the automaton for
L(A1) ∩ L(A2) and in Ai. The key argument is then that a comparison of the
number of accepting paths is sufficient up to a certain bound of the length.

For general infinite words it is impossible to count final paths in a reasonable
way. However, there are infinite words that can be represented in a finite way: the
ultimately periodic words introduced in the previous section. This class of words

124 N. Bousquet and C. Löding

is particularly interesting because it can be used to characterize equivalence and
inclusion of ω-regular languages. This easily follows from the closure properties
of the class of ω-regular languages and the fact that each non-empty ω-regular
language contains an ultimately periodic word.

Theorem 2 ([4]). Let A1 and A2 be two Büchi automata.

1. A1 and A2 accept the same language if and only if they accept the same
ultimately periodic words.

2. L(A1) ⊆ L(A2) if and only if the ultimately periodic words recognized by A1
are in L(A2).

Using this fact one can indeed adapt the counting argument from [14] to count ul-
timately periodic words accepted by Büchi automata. However, instead of adapt-
ing the proof of [14] we can also give a reduction of the equivalence problem for
strongly unambiguous Büchi automata to the equivalence problem for unam-
biguous automata over finite words. The idea of reducing decision problems for
Büchi automata to automata over finite words has already been used in [5].
The main difference here is that the reduction is computable in polynomial time
when starting from a strongly unambiguous automaton. Before we present the
reduction we state a simple but important property of strongly unambiguous
Büchi automata that makes our reduction work.

Lemma 1. Let A = (Q, Σ, Qin, Δ, F) be a strongly unambiguous Büchi automa-
ton. An ultimately periodic word uvω is accepted by A iff there are states q0 ∈ Qin
and q ∈ Q such that A : q0

u−→ q
v−→F q.

Proof. Obviously, if A : q0
u−→ q

v−→F q for states q0 ∈ Qin and q ∈ Q, then uvω

is accepted. Now suppose that uvω is accepted by A. Then there is an accepting
path ρ = q0q1.... on uvω that starts in some q0 ∈ Qin. Let q = q|u| be the
state reached in ρ after reading u, and let q′ = q|u|+|v| be the state reached
after reading uv. Then vω is in LA(q) and in LA(q′) and thus, by Remark 1 we
have q = q′. Furthermore, that path A : q

v−→ q must pass through a final state
because otherwise there would be another accepting path for vω that starts from
q. By prefixing this accepting path with the v-loop from q to q we would obtain
more than one accepting path for vω starting in q, contradicting the strong
unambiguity of A. ��
For the reduction to unambiguous automata on finite words we now build from
a strongly unambiguous Büchi automaton an unambiguous automaton on finite
words that accepts precisely the words of the form u#v such that uvω is accepted
by A. By Theorem 2 two strongly unambiguous Büchi automata are equivalent
iff the resulting finite automata are.

Let A = (Q, Σ, Qin, Δ, F) be a strongly unambiguous Büchi automaton. The
finite automaton we are constructing simulates A on the first part u of the
input u#v. When reading # it stores the current state q and continues reading
the input. It accepts if it reaches q again after having read v, and if it has
passed through a final state on the way. Since the automaton accepts codings

Equivalence Problem for Strongly Unambiguous Büchi Automata 125

of ultimately periodic words, we call it Aup, where the subscript abbreviates
ultimately periodic.

Formally, Aup = (Q′, Σ ∪ {#}, Qin, Δ
′, F ′) is defined as follows:

– Q′ = Q ∪ (Q×Q× {0, 1}).
– Δ′ contains

• all transitions from Δ,
• all transitions of the form (q, #, (q, q, 0)) with q ∈ Q, and
• all transitions of the form ((q, p, i), a, (q, p′, i′)), where (p, a, p′) ∈ Δ, and

i′ =
{

1 if p′ ∈ F,
i if p′ /∈ F.

– F ′ = {(q, q, 1) | q ∈ Q}.
Lemma 2. The automaton Aup over finite words is unambiguous and accepts
the language L(Aup) = {u#v ∈ Σ∗#Σ+ | uvω ∈ L(A)}.
Proof. It is clear from the construction that Aup only accepts words of the form
u#v ∈ Σ∗#Σ+.

Furthermore, one easily sees that Aup accepts precisely those u#v such that
there are states q0 ∈ Qin and q ∈ Q with A : q0

u−→ q and A : q
v−→F q. Lemma 1

allows us to conclude that L(Aup) = {u#v ∈ Σ∗#Σ+ | uvω ∈ L(A)}.
The automaton Aup simulates the automaton A when reading its input. In

particular, if there are two different paths for accepting u#v, then there are also
two different paths in A accepting uvω. Thus, since A is strongly unambiguous,
Aup is unambiguous. ��
Since inclusion and equivalence for unambiguous automata on finite words are
decidable in polynomial time [14], we obtain the following result for strongly
unambiguous Büchi automata.

Theorem 3. The inclusion and equivalence problem for strongly unambiguous
Büchi automata are decidable in polynomial time.

Proof. Given two strongly unambiguous Büchi automata A and B we trans-
form them into the unambiguous automata Aup and Bup. For these we can test
inclusion or equivalence in polynomial time. By Lemma 2 and Theorem 2 the
corresponding result is correct for A and B. ��

4 Extension to Strongly k-Ambiguous Automata

An automaton over finite words is called k-ambiguous if each accepted word has
at most k accepting runs. In [14] it is shown that equivalence and inclusion of k-
ambiguous automata can be solved in polynomial time (for a fixed k). Following
this idea, we extend the result from the previous section to strongly k-ambiguous
Büchi automata, as defined below.

Definition 2. A Büchi automaton A is called k-ambiguous if each infinite word
has at most k accepting paths in A, and is called strongly k-ambiguous if each
infinite word has at most k final paths in A.

126 N. Bousquet and C. Löding

The accepting paths for ultimately periodic words are not as constrained in
strongly k-ambiguous automata as they are in strongly unambiguous automata,
but there is a similar characterization. The difference is that the loop on the
periodic part can be longer, but it can consist of at most k repetitions of the
periodic pattern.

Lemma 3. Let A = (Q, Σ, Qin, Δ, F) be a strongly k-ambiguous Büchi automa-
ton. An ultimately periodic word uvω is accepted by A iff there are states q0 ∈ Qin
and q1, . . . , qk+1 ∈ Q such that

A : q0
u−→ q1

v−→ q2
v−→ · · · v−→ qk

v−→ qk+1 ,

qk+1 = qs for some 1 ≤ s ≤ k, and qi
v−→F qi+1 for some s ≤ i ≤ k.

Proof. The proof is similar to the proof of Lemma 1. Assume that uvω is accepted
by A, let ρ be an accepting path, and let q0, . . . , qk+1 be such that ρ starts as
follows:

q0
u−→ q1

v−→ q2
v−→ · · · v−→ qk+1.

Then vω is in LA(qi) for all i ∈ {1, . . . , k + 1}. Since A is strongly k-ambiguous,
there must be some i �= j such that qi = qj . Now assume that qk+1 �= qs for all
s ∈ {1, . . . , k}. Then we get arbitrarily many different accepting paths of A on
uvω by repeating the loop between qi and qj an arbitrary number of times before
continuing the path towards qk+1. Hence, there must exist some 1 ≤ s ≤ k with
qk+1 = qs.

It remains to show that there is some i ∈ {s, . . . , k} such that qi
v−→F qi+1.

Assume the contrary. Then we can again produce an arbitrary number of ac-
cepting paths for uvω by repeating the loop qs

v−→ · · · qk
v−→ qs (that does not

contain a final state) before continuing the path with the accepting part after
qk+1 in ρ. All these paths are different because we always increase the part that
does not contain a final state before continuing with the part of ρ after qk+1
that contains infinitely many accepting states. This proves one direction of the
claim. The other direction is obvious. ��
We now construct an automaton Ak

up that has the same property as Aup from
the previous section. This automaton, after having read u and when reading #,
guesses the states q2, . . . , qk and then verifies that the properties from Lemma 3
are satisfied.

Formally Ak
up = (Q′, Σ ∪ {#}, Qin, Δ

′, F ′) is constructed as follows:

– Q′ = Q ∪ ((Q×Q)k × {0, . . . , k}).
– Δ′ contains all transitions from Δ, all transitions of the form

(q1, #, [(q1, q1), . . . , (qk, qk), 0])

and all transitions of the form (written with an arrow for better readability)

[(q1, p1), . . . , (qk, pk), i] a−→ [(q1, p
′
1), . . . , (qk, p′k), i′]

Equivalence Problem for Strongly Unambiguous Büchi Automata 127

where (pj , a, p′j) ∈ Δ for all j, and

i′ = max({i} ∪ {j | p′j ∈ F}).
– F ′ = {[(q1, q2), (q2, q3) . . . , (qk, qs), i] | 1 ≤ s ≤ k and s ≤ i ≤ k}.

Lemma 4. The automaton Ak
up over finite words is k-ambiguous and accepts

the language L(Ak
up) = {u#v ∈ Σ∗#Σ+ | uvω ∈ L(A)}.

Proof. The proof is based on Lemma 3 and is similar to the proof of Lemma 2.
��

As in the previous section we conclude:

Theorem 4. For a fixed k, the inclusion and equivalence problem for strongly
k-ambiguous Büchi automata can be decided in polynomial time.

5 Periodic Words in Deterministic Automata

In this section we show that deciding for a given deterministic Büchi automa-
ton whether it accepts a periodic word with a period of a given length is NP-
complete. Since deterministic automata are special cases of unambiguous au-
tomata, this shows that it is unlikely that the counting techniques that work
for unambiguous automata on finite words and for strongly unambiguous Büchi
automata can be transferred to unambiguous Büchi automata.

More formally, consider for a class C of Büchi automata the following decision
problem Periodic(C):
Given: A Büchi automaton A from the class C and a natural number n.
Question: Does there exist a word v with |v| ≤ n such that A accepts vω?

Proposition 1. The problem Periodic(C) is NP-complete for the class C of
deterministic Büchi automata.

Proof. Membership in NP can easily be verified: If n is bigger than the number
of states of A, then A accepts a periodic word of length n iff the initial state of
A is contained in a loop with a final state. This can be checked in polynomial
time by standard graph algorithms. If n is smaller than the number of states of
A, then we can guess a word v of length at most n and verify in polynomial time
whether vω is accepted by A.

For the NP-hardness we give a reduction from the satisfiability problem of
Boolean formulas in conjunctive normal form (CNF). Let ϕ = C1 ∧ · · · ∧ Ck be
such a formula over n variables x1, . . . , xn consisting of clauses C1, . . . , Ck. A
truth assignment of the variables can naturally be encoded by a word of length
n over the alphabet {0, 1}: Position i of the word is 0 if xi is false, and 1 if xi is
true.

The deterministic Büchi automaton that we construct works over the alphabet
{0, 1, #} and only accepts words from ({0, 1}n#)ω : It basically consists of a loop

128 N. Bousquet and C. Löding

of length (n + 1) · k that reads words v1#v2# · · · vk# where each vi is from
{0, 1}n. Each vi encodes an assignment of the n variables as described above.
The automaton A checks whether the assignment coded by vi satisfies the clause
Ci: Assume that A reads letter j of vi. If this letter is 0 and ¬xj is contained in
Ci or the letter is 1 and xj is contained in Ci, then A sets a bit indicating that
the current clause is satisfied. If it reaches the end of vi without the bit being
set it rejects by moving to a sink state. Otherwise it reads # and proceeds to
vi+1. After having processed k such words, A loops back to the initial state. All
states except the sink state are accepting.

If this automaton accepts a periodic word with period of length at most n+1,
then it must be of the form (v#)ω , where v ∈ {0, 1}n satisfies all the clauses
of ϕ. This shows that ϕ is satisfiable iff the constructed automaton accepts a
periodic word with period of length at most n + 1. ��
This is of course not a proof for the hardness of equivalence for unambiguous
Büchi automata. It only shows that the techniques that have been used so far
for obtaining polynomial time equivalence tests are unlikely to work for the case
of unambiguous Büchi automata.

6 Conclusion

The class of strongly unambiguous Büchi automata is the first known class of
Büchi automata as expressive as nondeterministic Büchi automata for which
the inclusion and equivalence problem can be decided in polynomial time. How-
ever, this class is quite difficult to understand because strongly unambiguous
Büchi automata are co-deterministic [7] and we usually think in a deterministic
way. In addition, there are deterministic Büchi automata exponentially smaller
than strongly unambiguous ones, which is impossible for unambiguous Büchi
automata, because every deterministic Büchi automaton is unambiguous. There-
fore, it would be interesting to settle the complexity of the equivalence problem
for unambiguous Büchi automata.

References

1. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, New York (1974)

2. Arnold, A.: Rational ω-languages are non-ambiguous. Theoretical Computer Sci-
ence 26, 221–223 (1983)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: In-
ternational Congress on Logic, Methodology and Philosophy of Science, pp. 1–11.
Stanford University Press, Stanford (1962)

5. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational ω-
languages. In: Main, M.G., Melton, A.C., Mislove, M.W., Schmidt, D., Brookes,
S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994)

Equivalence Problem for Strongly Unambiguous Büchi Automata 129

6. Carayol, A., Löding, C.: MSO on the infinite binary tree: Choice and order. In: Du-
parc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 161–176. Springer,
Heidelberg (2007)

7. Carton, O., Michel, M.: Unambiguous Büchi automata. Theor. Comput. Sci. 297(1-
3), 37–81 (2003)

8. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Löding, C., Lugiez, D.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications,
http://tata.gforge.inria.fr/ (last release: October 12, 2007)

9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

10. Landweber, L.H.: Decision problems for ω-automata. Mathematical Systems The-
ory 3, 376–384 (1969)

11. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Information and Control 9(5), 521–530 (1966)

12. Niwiński, D., Walukiewicz, I.: Ambiguity problem for automata on infinite trees
(unpublished note)

13. Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19(3),
424–437 (1990)

14. Stearns, R.E., Hunt III, H.B.: On the equivalence and containment problems for
unambiguous regular expressions, regular grammars and finite automata. SIAM
Journal on Computing 14(3), 598–611 (1985)

15. Stockmeyer, L.J.: The Complexity of Decision Problems in Automata Theory and
Logic. PhD thesis, Dept. of Electrical Engineering, MIT, Boston, Mass. (1974)

16. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Language Theory, vol. III, pp. 389–455. Springer, Hei-
delberg (1997)

17. Valiant, L.G.: Relative complexity of checking and evaluating. Inf. Process.
Lett. 5(1), 20–23 (1976)

http://tata.gforge.inria.fr/

Pregroup Grammars with Letter Promotions

Wojciech Buszkowski1,2 and Zhe Lin1,3

1 Adam Mickiewicz University in Poznań, Poland
2 University of Warmia and Mazury in Olsztyn, Poland

3 Sun Yat-sen University in Guangzhou, China
buszko@amu.edu.pl, pennyshaq@gmail.com

Abstract. We study pregroup grammars with letter promotions p(m) ⇒
q(n). We show that the Letter Promotion Problem for pregroups is solv-
able in polynomial time, if the size of p(n) is counted as |n|+1. In Mater
and Fix [11], the problem is shown to be NP-hard, but their proof as-
sumes the binary (or decimal, etc.) representation of n in p(n), which
seems less natural for applications. We reduce the problem to a graph-
theoretic problem, which is subsequently reduced to the emptiness prob-
lem for context-free languages. As a consequence, the following problems
are in P: the word problem for pregroups with letter promotions and the
membership problem for pregroup grammars with letter promotions.

1 Introduction and Preliminaries

Pregroups, introduced in Lambek [8], are ordered algebras (M,≤, ·, l, r, 1) such
that (M,≤, ·, 1) is a partially ordered monoid (hence · is monotone in both ar-
guments), and l, r are unary operations on M , fulfilling the following conditions:

ala ≤ 1 ≤ aal , aar ≤ 1 ≤ ara , (1)

for all a ∈ M . The operation · is referred to as product. The element al (resp.
ar) is called the left (resp. right) adjoint of a.

The following laws are valid in pregroups:

1l = 1 = 1r , (2)

(al)r = a = (ar)l , (3)

(ab)l = blal , (ab)r = brar , (4)

a ≤ b iff bl ≤ al iff br ≤ al . (5)

In any pregroup, one defines a\b = arb, a/b = abl, and proves that ·, \, / satisfy
the residuation law:

ab ≤ c iff b ≤ a\c iff a ≤ c/b, (6)

for all elements a, b, c. Consequently, pregroups are a special class of residuated
monoids, i.e. models of the Lambek calculus L* [3,2].

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 130–141, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Pregroup Grammars with Letter Promotions 131

Lambek [8] (also see [9,10]) offers (free) pregroups as a computational ma-
chinery for lexical grammars, alternative to the Lambek calculus. The latter is
widely recognized as a basic logic of categorial grammars [17,2]; linguists usually
employ the system L of the Lambek calculus, which is complete with respect to
residuated semigroups (it is weaker than L*).

The logic of pregroups is called Compact Bilinear Logic (CBL). It arises from
Bilinear Logic (Noncommutative MLL) by collapsing ‘times’ and ‘par’, whence
also 0 and 1. CBL is stronger than L*; for instance, (p/((q/q)/p))/p ≤ p is valid
in pregroups but not in residuated monoids [3], whence it is provable in CBL,
but not in L*. By the same example, CBL is stronger than Bilinear Logic, since
the latter is a conservative extension of L*.

Let M be a pregroup. For a ∈ M , one defines a(n) as follows: a(0) = a; if
n is negative, then a(n) = al...l (l is iterated |n| times); if n is positive, then
a(n) = ar...r (r is iterated n times). The following laws can easily be proved:

(a(n))l = a(n−1) , (a(n))r = a(n+1) , for all n ∈ Z , (7)

a(n)a(n+1) ≤ 1 ≤ a(n+1)a(n) , for all n ∈ Z , (8)

(a(m))(n) = a(m+n) , for all m, n ∈ Z , (9)

a ≤ b iff a(n) ≤ b(n) , for all even n ∈ Z , (10)

a ≤ b iff b(n) ≤ a(n) , for all odd n ∈ Z , (11)

where Z denotes the set of integers.
CBL can be formalized as follows. Let (P,≤) be a nonempty finite poset.

Elements of P are called atoms. Terms are expressions of the form p(n) such
that p ∈ P and n is an integer. One writes p for p(0). Types are finite strings of
terms. Terms are denoted by t, u and types by X, Y, Z. The relation ⇒ on the
set of types is defined by the following rules:

(CON) X, p(n), p(n+1), Y ⇒ X, Y ,
(EXP) X, Y ⇒ X, p(n+1), p(n), Y ,
(POS) X, p(n), Y ⇒ X, q(n), Y , if p ≤ q, for even n, and q ≤ p, for odd n,

called Contraction, Expansion, and Poset rules, respectively (the latter are called
Induced Steps in Lambek [8]). To be precise, ⇒ is the reflexive and transitive
closure of the relation defined by these rules. The pure CBL is based on a trivial
poset (P, =).

An assignment in a pregroup M is a mapping μ : P �→ M such that μ(p) ≤
μ(q) in M whenever p ≤ q in (P,≤). Clearly any assignment μ is uniquely
extendible to a homomorphism of the set of types into M ; one sets μ(ε) = 1,
μ(p(n)) = (μ(p))(n), μ(XY) = μ(X)μ(Y). The following completeness theorem
is true: X ⇒ Y holds in CBL if and only if, for any pregroup M and any
assignment μ of P in M , μ(X) ≤ μ(Y) [3].

A pregroup grammar assigns a finite set of types to each word from a finite
lexicon Σ. Then, a nonempty string v1 . . . vn (vi ∈ Σ) is assigned type X , if there
exist types X1, . . . , Xn initially assigned to words v1, . . . , vn, respectively, such

132 W. Buszkowski and Z. Lin

that X1, . . . , Xn ⇒ X in CBL. For instance, if ‘goes’ is assigned type π
(1)
3 s1

and ‘he’ type π3, then ‘he goes’ is assigned type s1 (statement in the present
tense). πk represents the k−th person pronoun. For the past tense, the person is
irrelevant; so, π represents pronoun (any person), and one assumes πk ≤ π, for
k = 1, 2, 3. Now, if ‘went’ is assigned type π(1)s2, then ‘he went’ is assigned type
s2 (statement in the past tense), and similarly for ‘I went’, ‘you went’. Assuming
si ≤ s, for i = 1, 2, one can assign type s (statement) to all sentences listed
above. These examples come from [8].

A pregroup grammar is formally defined as a quintuple G = (Σ, P, I, s, R)
such that Σ is a finite alphabet (lexicon), P is a finite set (of atoms), s is a
designated atom (the principal type), I is a finite relation between elements of
Σ and types on P , and R is a partial ordering on P . One writes p ≤ q for pRq, if
R is fixed. The language of G, denoted L(G), consists of all strings x ∈ Σ+ such
that G assigns type s to x (see the above paragraph). Pregroup grammars are
weakly equivalent to ε−free context-free grammars [3]; hence, the former provide
a lexicalization of the latter.

As shown in [1], every pregroup grammar can be fully lexicalized; there exists
a polynomial time transformation which sends any pregroup grammar to an
equivalent pregroup grammar on a trivial poset (P, =). Actually, an exponential
time procedure is quite obvious: it suffices to apply all possible (POS)-transitions
to the lexical types in I [5].

Lambek [8] proves a normalization theorem for CBL (also called: Lambek
Switching Lemma). One introduces new rules:

(GCON) X, p(n), q(n+1), Y ⇒ X, Y ,
(GEXP) X, Y ⇒ X, p(n+1), q(n), Y ,

if either n is even and p ≤ q, or n is odd and q ≤ p. These rules are called
Generalized Contraction and Generalized Expansion, respectively. Clearly they
are derivable in CBL: (GCON) amounts to (POS) followed by (CON), and
(GEXP) amounts to (EXP) followed by (POS). Lambek’s normalization theorem
states: if X ⇒ Y in CBL, then there exist types Z, U such that X ⇒ Z, by a
finite number of instances of (GCON), Z ⇒ U , by a finite number of instances of
(POS), and U ⇒ Y , by a finite number of instances of (GEXP). Consequently,
if Y is a term or Y = ε, then X ⇒ Y in CBL if and only if X can be reduced
to Y without (GEXP) (hence, by (CON) and (POS) only). The normalization
theorem is equivalent to the cut-elimination theorem for a sequent system of
CBL [4].

This yields the polynomial time complexity of the provability problem for
CBL [3,4]. For any type X , define X l and Xr as follows:

εl = εr = ε , (t1t2 · · · tk)α = (tk)α · · · (t2)α(t1)α , (12)

for α ∈ {l, r}, where tα is defined according to (7): (p(n))l = p(n−1), (p(n))r =
p(n+1). In CBL the following equivalences hold:

X ⇒ Y iff X, Y r ⇒ ε iff Y l, X ⇒ ε , (13)

Pregroup Grammars with Letter Promotions 133

for all types X, Y . We prove the first equivalence. Assume X ⇒ Y . Then,
X, Y r ⇒ Y, Y r ⇒ ε, by an obvious congruence property of ⇒ and a finite
number of (CON). Assume X, Y r ⇒ ε. Then, X ⇒ X, Y r, Y ⇒ Y , by a finite
number of (EXP) and a congruence property of ⇒. In a similar way, one proves:
X ⇒ Y iff Y l, X ⇒ ε.

In order to verify whether X ⇒ Y in CBL one verifies whether X, Y r ⇒ ε;
the latter holds if and only if XY r can be reduced to ε by a finite number of
instances of (GCON). An easy modification of the CYK-algorithm for context-
free grammars yields a polynomial time algorithm, solving this problem (also
see [12]). Furthermore, every pregroup grammar can be transformed into an
equivalent context-free grammar in polynomial time [3,5]. Francez and Kamin-
sky [6] show that pregroup grammars augmented with partial commutation can
generate some non-context-free languages.

We have formalized CBL with special assumptions. Assumptions p ≤ q in
nontrivial posets express different forms of subtyping, as shown in the above
examples.

It is interesting to consider CBL enriched with more general assumptions.
Mater and Fix [11] show that CBL enriched with finitely many assumptions of
the general form X ⇒ Y can be undecidable (the word problem for groups is
reducible to systems of that kind). For assumptions of the form t ⇒ u (called
letter promotions) they prove a weaker form of Lambek’s normalization theorem
for the resulting calculus (for sequents X ⇒ ε only).

A complete system of CBL with letter promotions is obtained by modifying
(POS) to the following Promotion Rules:

(PRO) X, p(m+k), Y ⇒ X, q(n+k), Y , if either k is even and p(m) ⇒ q(n) is an
assumption, or k is odd and q(n) ⇒ p(m) is an assumption.

The Letter Promotion Problem for pregroups (LPPP) is the following: given a
finite set R, of letter promotions, and terms t, u, verify whether t ⇒ u in CBL
enriched with all promotions from R as assumptions.

To formulate the problem quite precisely, we need some formal notions. Let R
denote a finite set of letter promotions. We write R
CBL X ⇒ Y , if X can be
transformed into Y , using finitely many instances of (CON), (EXP) and (PRO),
restricted to the assumptions from R. Now, the problem under consideration
amounts to verifying whether R
CBL t⇒ u, for given R, t, u.

Since the formalism is based on no fixed poset, we have to explain what are
atoms (atomic types). We fix a denumerable set P of atoms. Terms and types
are defined as above. P (R) denotes the set of atoms appearing in assumptions
from R. By an assignment in M we mean now a mapping μ : P �→M . We prove
a standard completeness theorem.

Theorem 1. R
CBL X ⇒ Y if, and only if, for any pregroup M and any
assignment μ in M , if all assumptions from R are true in (M, μ), then X ⇒ Y
is true in (M, μ).

Proof. The ‘only if’ part is easy. For the ‘if’ part one constructs a special pre-
group M whose elements are equivalence classes of the relation: X ∼ Y iff

134 W. Buszkowski and Z. Lin

R
CBL X ⇒ Y and R
CBL Y ⇒ X . One defines: [X] · [Y] = [XY],
[X]α = [Xα], for α ∈ {l, r}, [X] ≤ [Y] iff R
CBL X ⇒ Y . For μ(p) = [p],
p ∈ P , one proves: X ⇒ Y is true in (M, μ) iff R
CBL X ⇒ Y . ��
Mater and Fix [11] claim that LPPP is NP-complete. Actually, their paper only
provides a proof of NP-hardness; even the decidability of LPPP does not follow
from their results.

The NP-hardness is proved by a reduction of the following Subset Sum Prob-
lem to LPPP: given a nonempty finite set of integers S = {k1, . . . , km} and
an integer k, verify whether there exists a subset X ⊆ S such that the sum
of all integers from X equals k. The latter problem is NP-complete, if integers
are represented in a binary (or decimal, etc.) code; see [7]. For the reduction,
one considers m + 1 atoms p0, . . . , pm and the promotions R: pi−1 ⇒ pi, for all
i = 1, . . . , m, and pi−1 ⇒ (pi)(2ki), for all i = 1, . . . , m. Then, the Subset Sum
Problem has a solution if and only if p0 ⇒ (pm)(2k) is derivable from R. Clearly
the reduction assumes the binary representation of n in p(n).

In linguistic applications, it is more likely that R contains many promotions
p(m) ⇒ q(n), but all integers in them are relatively small. In Lambek’s original
setting, these integers are equal to 0. It is known that in pregroups: a ≤ all iff a is
surjective (i.e. ax = b has a solution, for any b), and all ≤ a iff a is injective (i.e.
ax = ay implies x = y) [3]. One can postulate these properties by promotions:
p ⇒ p(−2), p(−2) ⇒ p. Let n be the atomic type of negation ‘not’, then nn ⇒ ε
expresses the double negation law on the syntactic level, and this promotion
is equivalent to n ⇒ n(−1). All linguistic examples in [8,10] use at most three
(usually, one or two) iterated left or right adjoints. Accordingly, binary encoding
is not very useful for such applications.

It seems more natural to look at p(n) as an abbreviated notation for pl...l

or pr...r, where adjoints are iterated |n| times, and take |n| + 1 as the proper
complexity measure of this term. Under this proviso, we prove below that LPPP
is polynomial time decidable. As a consequence, the provability problem for
CBL with letter promotions has the same complexity. Accordingly, we prove
the decidability of both problems, and the polynomial time complexity of them
(under the proviso). (The final comments of [11] suggest that a practically useful
version of LPPP may have a lower complexity.)

Oehrle [15] and Moroz [14] provide some cubic parsing algorithms for pre-
group grammars (the former uses some graph-theoretic ideas; the latter modifies
Savateev’s algorithm for the unidirectional Lambek grammars [16]). These algo-
rithms can be adjusted for pregroup grammars with letter promotions. Pregroup
grammars with (finitely many) letter promotions are weakly equivalent to ε−free
context-free grammars. We do not elaborate these matters here, since they are
rather routine variants of results obtained elsewhere; also see [3,5,14].

2 The Normalization Theorem

We provide a full proof of the Lambek-style normalization theorem for CBL
with letter promotions, which yields a simpler formulation of LPPP.

Pregroup Grammars with Letter Promotions 135

We write t⇒R u, if t⇒ u is an instance of (PRO), restricted to the assump-
tions from R (X, Y are empty). We write t⇒∗

R u, if there exist terms t0, . . . , tk
such that k ≥ 0, t0 = t, tk = u, and ti−1 ⇒R ti, for all i = 1, . . . , k. Hence ⇒∗

R

is the reflexive and transitive closure of ⇒R.
It is expedient to introduce derivable rules of Generalized Contraction and

Generalized Expansion for CBL with letter promotions.

(GCON−R) X, p(m), q(n+1), Y ⇒ X, Y , if p(m) ⇒∗
R q(n),

(GEXP−R) X, Y ⇒ X, p(n+1), q(m), Y , if p(n) ⇒∗
R q(m).

These rules are derivable in CBL with assumptions from R, and (CON), (EXP)
are special instances of them. We also treat any iteration of (PRO)-steps as a
single step:

(PRO−R) X, t, Y ⇒ X, u, Y , if t⇒∗
R u.

The following normalization theorem has been proved in [11], for the particular
case Y = ε: if X ⇒ ε is provable, then X reduces to ε by (GCON−R) only. This
easily follows from Theorem 2 and does not directly imply Lemma 1. Here we
prove the full version (this result is essential for further considerations).

Theorem 2. If R
CBL X ⇒ Y , then there exist Z, U such that X ⇒ Z by a
finite number of instances of (GCON−R), Z ⇒ U by a finite number of instances
of (PRO−R), and U ⇒ Y by a finite number of instances of (GEXP−R).

Proof. By a derivation of X ⇒ Y in CBL from the set of assumptions R, we
mean a sequence X0, . . . , Xk such that X = X0, Y = Xk and, for any i =
1, . . . , k, Xi−1 ⇒ Xi is an instance of (GCON−R), (GEXP−R) or (PRO−R);
k is the length of this derivation. We show that every derivation X0, . . . , Xk of
X ⇒ Y in CBL from R can be transformed into a derivation of the required
form (a normal derivation) whose length is at most k. We proceed by induction
on k.

For k = 0 and k = 1 the initial derivation is normal; for k = 0, one takes
X = Z = U = Y , and for k = 1, if X ⇒ Y is an instance of (GCON−R), one
takes Z = U = Y , if X ⇒ Y is an instance of (GEXP−R), one takes X = Z = U ,
and if X ⇒ Y is an instance of (PRO−R), one takes X = Z and U = Y .

Assume k > 1. The derivation X1, . . . , Xk is shorter, whence it can be trans-
formed into a normal derivation Y1, . . . , Yl such that X1 = Y1, Xk = Yl and
l ≤ k. If l < k, then X0, Y1, . . . , Yl is a derivation of X ⇒ Y of length less
than k, whence it can be transformed into a normal derivation, by the induction
hypothesis. So assume l = k.

Case 1. X0 ⇒ X1 is an instance of (GCON−R). Then X0, Y1, . . . , Yl is a normal
derivation of X ⇒ Y from R.

Case 2. X0 ⇒ X1 is an instance of (GEXP−R), say X0 = UV , X1 = Up(n+1)

q(m)V , and p(n) ⇒∗
R q(m). We consider two subcases.

Case 2.1 No (GCON−R)-step of Y1, . . . , Yl acts on the designated occurrences
of p(n+1), q(m). If also no (PRO−R)-step of Y1, . . . , Yl acts on these designated

136 W. Buszkowski and Z. Lin

terms, then we drop p(n+1)q(m) from all types appearing in (GCON−R)- steps
and (PRO−R)-steps of Y1, . . . , Yl, then introduce them by a single instance of
(GEXP−R), and continue the (GEXP−R)-steps of Y1, . . . , Yl; this yields a normal
derivation of X ⇒ Y of length k. Otherwise, let Yi−1 ⇒ Yi be the first (PRO−R)-
step of Y1, . . . , Yl which acts on p(n+1) or q(m). If it acts on p(n+1), then there ex-
ist a term r(m′) and types T, W such that Yi−1 = Tp(n+1)W , Yi = Tr(m′)W and
p(n+1) ⇒∗

R r(m′). Then, r(m′−1) ⇒∗
R p(n), whence r(m′−1) ⇒∗

R q(m), and we can re-
place the derivation X0, Y1, . . . , Yl by a shorter derivation: first apply (GEXP−R)
of the form U, V ⇒ U, r(m′), q(m), V , then derive Y1, . . . , Yi−1 in which p(n+1) is
replaced by r(m′), drop Yi, and continue Yi+1, . . . , Yl. By the induction hypothe-
sis, this derivation can be transformed into a normal derivation of length less than
k. If Yi−1 ⇒ Yi acts on q(m), then there exist a term r(m′) and types T, W such
that Yi−1 = Tq(m)W , Yi = Tr(m′)W and q(m) ⇒∗

R r(m′). Then, p(n) ⇒∗
R r(m′),

and we can replace the derivation X0, Y1, . . . , Yl by a shorter derivation: first ap-
ply (GEXP−R) of the form U, V ⇒ U, p(n+1), r(m′), V , then derive Y1, . . . , Yi−1
in which q(m) is replaced by r(m′), drop Yi, and continue Yi+1, . . . , Yl. Again we
apply the induction hypothesis.

Case 2.2. Some (GCON−R)-step of Y1, . . . , Yl acts on (some of) the designated
occurrences of p(n+1), q(m). Let Yi−1 ⇒ Yi be the first step of that kind. There are
three possibilities. (I) This step acts on both p(n+1) and q(m). Then, the deriva-
tion X0, Y1, . . . , Yl can be replaced by a shorter derivation: drop the first appli-
cation of (GEXP−R), then derive Y1, . . . , Yi−1 in which p(n+1)q(m) is omitted,
drop Yi, and continue Yi+1, . . . , Yl. We apply the induction hypothesis. (II) This
step acts on p(n+1) only. Then, Yi−1 = Tr(m′)p(n+1)q(m)W , Yi = T, q(m), W and
r(m′) ⇒∗

R p(n). The derivation X0, Y1, . . . , Yl can be replaced by a shorter deriva-
tion: drop the first application of (GEXP−R), then derive Y1, . . . , Yi−1 in which
p(n+1)q(m) is omitted, derive Yi by a (PRO−R)-step (notice r(m′) ⇒∗

R q(m)),
and continue Yi+1, . . . , Yl. We apply the induction hypothesis. (III) This step
acts on q(m) only. Then, Yi−1 = Tp(n+1)q(m)r(m′+1)W , Yi = Tp(n+1)W and
q(m) ⇒∗

R r(m′). The derivation X0, Y1, . . . , Yl can be replaced by a shorter deriva-
tion: drop the first application of (GEXP−R), then derive Y1, . . . , Yi−1 in which
p(n+1)q(m) is dropped, derive Yi by a (PRO−R)-step (notice r(m′+1) ⇒∗

R p(n+1)),
and continue Yi+1, . . . , Yl. We apply the induction hypothesis.

Case 3. X0 ⇒ X1 is an instance of (PRO−R), say X0 = UtV , X1 = UuV and
t⇒∗

R u. We consider two subcases.

Case 3.1. No (GCON−R)-step of Y1, . . . , Yl acts on the designated occurrence
of u. Then X0, Y1, . . . , Yl can be transformed into a normal derivation of length k:
drop the first application of (PRO−R), apply all (GCON−R)-steps of Y1, . . . , Yl

in which the designated occurrences of u are replaced by t, apply a (PRO−R)-
step which changes t into u, and continue the remaining steps of Y1, . . . , Yl.

Case 3.2. Some (GCON−R)-step of Y1, . . . , Yl acts on the designated occur-
rence of u. Let Yi−1 ⇒ Yi be the first step of that kind. There are two pos-
sibilities. (I) Yi−1 = Tuq(n+1)W , Yi = TW and u ⇒∗

R q(n). Since t ⇒∗
R q(n),

then X, Y1, . . . , Yl can be transformed into a shorter derivation: drop the first

Pregroup Grammars with Letter Promotions 137

application of (PRO−R), derive Y1, . . . , Yi−1 in which the designated occur-
rences of u are replaced by t, derive Yi by a (GCON−R)-step of the form
T, t, q(n+1), W ⇒ T, W , and continue Yi+1, . . . , Yl. We apply the induction hy-
pothesis. (II) u = q(n+1), Yi−1 = Tp(m)uW , Yi = TW and p(m) ⇒∗

R q(n). Let
t = r(n′). We have q(n) ⇒∗

R r(n′−1), whence p(m) ⇒∗
R r(n′−1). The derivation

X0, Y1, . . . , Yl can be transformed into a shorter derivation: drop the first aplica-
tion of (PRO−R), derive Y1, . . . , Yi−1 in which the designated occurrences of u
are replaced by t, derive Yi by a (GCON−R)-step of the form T, p(m), r(n′), W ⇒
T, W , and continue Yi+1, . . . , Yl. We apply the induction hypothesis. ��

As a consequence, we obtain:

Lemma 1. R
CBL t⇒ u if, and only if, t⇒∗
R u.

Proof. The ‘if’ part is obvious. The ‘only if’ part employs Theorem 2. Assume
R
CBL t⇒ u. There exists a normal derivation of t⇒ u from R. The first step
of this derivation cannot be (GCON−R), whence (GCON−R) is not applied at
all; the last step cannot be (GEXP−R), whence (GEXP−R) cannot be applied
at all. Consequently, each step of the derivation is a (PRO−R)-step (with X, Y
empty). whence the derivation reduces to a single (PRO−R)-step. This yields
t⇒∗

R u. ��

Accordingly, LPPP amounts to verifying whether t⇒∗
R u, for any given R, t, u.

3 LPPP and Weighted Graphs

We reduce LPPP to a graph-theoretic problem. In the next section, the second
problem is reduced to the emptiness problem for context-free languages. Both
reductions are polynomial, and the third problem is solvable in polynomial time.
This yields the polynomial time complexity of LPPP.

We define a finite weighted directed graph G(R). P (R) denotes the set of
atoms occurring in promotions from R. The vertices of G(R) are elements p0, p1,
for all p ∈ P (R). For any integer n, we set π(n) = 0, if n is even, and π(n) = 1,
if n is odd. We also set π∗(n) = 1 − π(n). For any promotion p(m) ⇒ q(n) from
R, G(R) contains an arc from pπ(m) to qπ(n) with weight n−m and an arc from
qπ∗(n) to pπ∗(m) with weight m− n. Thus, each promotion from R gives rise to
two weighted arcs in G(R).

An arc from v to w of weight k is represented as the triple (v, k, w). As usual,
a route from a vertex v to a vertex w in G(R) is defined as a sequence of arcs
(v0, k1, v1), . . . , (vr−1, kr, vr) such that v0 = v, vr = w, and the target of each
but the last arc equals the source of the next arc. The length of this route is r,
and its weight is k1 + · · ·+ kr. We admit a trivial route from v to v of length 0
and weight 0.

Lemma 2. If p(m) ⇒R q(n), then (pπ(m), n−m, qπ(n)) is an arc in G(R).

138 W. Buszkowski and Z. Lin

Proof. Assume p(m) ⇒R q(n). We consider two cases.
(I) m = m′ + k, n = n′ + k, k is even, and p(m′) ⇒ q(n′) belongs to R. Then

(pπ(m′), n
′ −m′, qπ(n′)) is an arc in G(R). We have π(m) = π(m′), π(n) = π(n′)

and n−m = n′ −m′, which yields the thesis.
(II) m = m′ + k, n = n′ + k, k is odd, and q(n′) ⇒ p(m′) belongs to R.

Then (pπ∗(m′), n
′ − m′, qπ∗(n′)) is an arc in G(R). We have π∗(m′) = π(m),

π∗(n′) = π(n) and n−m = n′ −m′, which yields the thesis. ��
Lemma 3. Let (v, r, qπ(n)) be an arc in G(R). Then, there is some p ∈ P (R)
such that v = pπ(n−r) and p(n−r) ⇒R q(n).

Proof. We consider two cases.
(I) (v, r, qπ(n)) equals the arc (pπ(m′), n

′−m′, qπ(n′)), and p(m′) ⇒ q(n′) belongs
to R. Then r = n′−m′ and π(n) = π(n′). We have n = n′+k, for an even integer
k, whence n− r = m′ + k. This yields π(n− r) = π(m′) and p(n−r) ⇒R q(n).

(II) (v, r, qπ(n)) equals (pπ∗(m′), n
′ −m′, qπ∗(n′)), and q(n′) ⇒ p(m′) belongs to

R. Then r = n′ −m′ and π(n) = π∗(n′). We have n = n′ + k, for an odd integer
k, whence n−r = m′+k. This yields π(n−r) = π∗(m′) and p(n−r) ⇒R q(n). ��
Theorem 3. Let p, q ∈ P (R). Then, p(m) ⇒∗

R q(n) if and only if there exists a
route from pπ(m) to qπ(n) of weight n−m in G(R).

Proof. The ‘only if’ part easily follows from Lemma 2. The ‘if’ part is proved by
induction on the length of a route from pπ(m) to qπ(n) in G(R), using Lemma
3. For the trivial route, we have p = q and n −m = 0, whence n = m; so, the
trivial derivation yields p

(m)
π(m) ⇒∗

R p
(m)
π(m). Assume that (pπ(m), r1, v1), (v1, r2, v2),

. . . , (vk, rk+1, qπ(n)) is a route of length k + 1 and weight n − m in G(R). By
Lemma 3, there exists s ∈ P such that vk = sπ(n−rk+1) and s(n−rk+1) ⇒R q(n).
The weight of the initial subroute of length k is n − m − rk+1, which equals
n − rk+1 − m. By the induction hypothesis p(m) ⇒∗

R s(n−rk+1), which yields
p(m) ⇒∗

R q(n). ��
We return to LPPP. To verify whether R
 p(m) ⇒ q(n) we consider two cases.
If p, q ∈ P (R), then, by Lemma 1 and Theorem 3, the answer is YES iff there
exists a route in G(R), as in Theorem 3. Otherwise, R
 p(m) ⇒ q(n) iff p = q
and m = n.

4 Main Results

We have reduced LPPP to the following problem: given a finite weighted di-
rected graph G with integer weights, two vertices v, w and an integer k, verify
whether there exists a route from v to w of weight k in G. Caution: integers are
represented in unary notation, e.g. 5 is the string of five digits.

We present a polynomial time reduction of this problem to the emptiness
problem for context-free languages. Since a trivial route exists if and only if
v = w and k = 0, then we may restrict the problem to nontrivial routes.

Pregroup Grammars with Letter Promotions 139

First, the graph G is transformed into a non-deterministic FSA M(G) in the
following way. The alphabet of M(G) is {+,−}. We describe the graph of M(G).
The states of M(G) are vertices of G and some auxiliary states. If (v′, n, w′) is
an arc in G, n > 0, then we link v′ with w′ by n transitions v′ → s1 → s2 →
· · · → sn = w′, all labeled by +, where s1, . . . , sn−1 are new states; similarly
for n < 0 except that now the transitions are labeled by −. For n = 0, we link
v′ with w′ by two transitions v′ → s → w′, the first one labeled by +, and the
second one by −, where s is a new state. The final state is w. If k = 0, then v
is the start state. If k �= 0, then we add new states i1, . . . , ik with transitions
i1 → i2 → · · · → ik and ik → v, all labeled by −, if k > 0, and by +, if k < 0; the
start state is i1. The following equivalence is obvious: there exists a nontrivial
route from v to w of weight k in G iff there exists a nontrivial route from the
start state to the final state in M(G) which visits as many pluses as minuses.

Let L be the context-free language, consisting of all nonempty strings on
{+,−} which contain as many pluses as minuses. The right-hand side of the
above equivalence is equivalent to L(M(G)) ∩ L �= ∅.

A CFG for L consists of the following production rules: S �→ SS, S �→ +S−,
S �→ −S+, S �→ +−, S �→ −+. We transform it to a CFG in the Chomsky
Normal Form (i.e. all rules are of the form A �→ BC or A �→ a) in a constant
time. The latter is modified to a CFG for L(M(G)) ∩ L in a routine way. The
new variables are of the form (q, A, q′), where q, q′ are arbitrary states of M(G),
A is a variable of the former grammar. The initial symbol is (q0, S, qf), where q0
is the start state and qf the final state of M(G). The new production rules are:

(1) (q1, A, q3) �→ (q1, B, q2)(q2, C, q3) for any rule A �→ BC of the former
grammar,

(2) (q1, A, q2) �→ a, whenever A �→ a is a rule of the former grammar, and M(G)
admits the transition from q1 to q2, labeled by a ∈ {+,−}.

The size of a graph G is defined as the sum of the following numbers: the number
of vertices, the number of arcs, and the sum of absolute values of weights of arcs.
The time of the construction of M(G) is O(n2), where n is the size of G. A CFG
for L(M(G))∩L can be constructed in time O(n3), where n is the size of M(G),
defined as the number of transitions. The emptiness problem for a context-free
language can be solved in time O(n2), where n is the size of the given CFG for
the language, defined as the sum of the number of variables and the number of
rules. Since the construction of G(R) can be performed in linear time, we have
proved the following theorem.

Theorem 4. LPPP is solvable in polynomial time.

As a consequence, the provability problem for CBL enriched with letter pro-
motions (the word problem for pregroups with letter promotions) is solvable in
polynomial time. First, X ⇒ Y is derivable iff X, Y (1) ⇒ ε is so. By Theorem
2, X ⇒ ε is derivable iff X can be reduced to ε by generalized contractions
Y, t, u, Z ⇒ Y, Z such that t, u appear in X and t, u ⇒ ε is derivable. The latter
is equivalent to t⇒∗

R u(−1). By Theorem 4, the required instances of generalized
contractions can be determined in polynomial time on the basis of R and X .

140 W. Buszkowski and Z. Lin

Corollary 1. The word problem for pregroups with letter promotions is solvable
in polynomial time.

A pregroup grammar with letter promotions can be defined as a pregroup gram-
mar in section 1 except that R is a finite set of letter promotions such that
P (R) ⊆ P . T +(G) denotes the set of types appearing in I (of G) and T (G) the
set of terms occurring in the types from T +(G). One can compute all generalized
contractions t, u⇒ ε, derivable from R in CBL, for arbitrary terms t, u ∈ T (G).
As shown in the above paragraph, this procedure is polynomial.

As in [3] for pregroup grammars, one can prove that pregroup grammars
with letter promotions are equivalent to ε−free context-free grammars. For G =
(Σ, P, I, s, R), one constructs a CFG G′ (in an extended sense) in which the
terminals are the terms from T (G) and the nonterminals are the terminals and
1, the start symbol equals the principal type of G and the production rules are:

(P1) u �→ t, if R
CBL t⇒ u,
(P2) 1 �→ t, u, if R
CBL t, u ⇒ ε,
(P3) t �→ 1, t and t �→ t, 1, for any t ∈ T (G).

By Theorem 2, G′ generates precisely all strings X ∈ (T (G))+ such that R
CBL

X ⇒ s. L(G) = f [g−1[L(G′)]], where g : Σ × T +(G) �→ T +(G) is a partial
mapping, defined by g((v, X)) = X whenever (v, X) ∈ I, and f : Σ×T +(G) �→ Σ
is a mapping, defined by f((v, X)) = v (we extend f, g to homomorphisms of free
monoids). Consequently, L(G) is context-free, since the context-free languages
are closed under homomorphisms and inverse homomorphisms.

Pregroup grammars with letter promotions can be transformed into equivalent
context-free grammars in polynomial time (as in [5] for pregroup grammars), and
the membership problem for the former is solvable in polynomial time. A parsing
algorithm of complexity O(n3) can be designed, following the ideas of Oehrle [15]
or Moroz [14]; see [13].

Acknowledgements. The polynomial time complexity of LPPP has been an-
nounced by the authors at the conference ”Topology, Algebra and Categories in
Logic”, Amsterdam, 2009. The conference did not publish any proceedings.

References

1. Béchet, D., Foret, A.: Fully lexicalized pregroup grammars. In: Leivant, D., de
Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 12–25. Springer, Heidelberg
(2007)

2. Buszkowski, W.: Mathematical linguistics and proof theory. In: van Benthem, J.,
ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 683–736. Elsevier
Science B. V, Amsterdam (1997)

3. Buszkowski, W.: Lambek grammars based on pregroups. In: de Groote, P., Morrill,
G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 95–109. Springer,
Heidelberg (2001)

4. Buszkowski, W.: Sequent systems for compact bilinear logic. Mathematical Logic
Quarterly 49(5), 467–474 (2003)

Pregroup Grammars with Letter Promotions 141

5. Buszkowski, W., Moroz, K.: Pregroup grammars and context-free grammars. In:
Casadio, C., Lambek, J. (eds.) Computational Algebraic Approaches to Natural
Language, Polimetrica, pp. 1–21 (2008)

6. Francez, N., Kaminski, M.: Commutation-augmented pregroup grammars and
mildly context-sensitive languages. Studia Logica 87(2-3), 297–321 (2007)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

8. Lambek, J.: Type grammars revisited. In: Lecomte, A., Perrier, G., Lamarche, F.
(eds.) LACL 1997. LNCS (LNAI), vol. 1582, pp. 1–27. Springer, Heidelberg (1999)

9. Lambek, J.: Type grammars as pregroups. Grammars 4, 21–39 (2001)
10. Lambek, J.: From Word to Sentence: a computational algebraic approach to gram-

mar. Polimetrica (2008)
11. Mater, A.H., Fix, J.D.: Finite presentations of pregroups and the identity prob-

lem. In: Proc. of Formal Grammar - Mathematics of Language, pp. 63–72. CSLI
Publications, Stanford (2005)

12. Moortgat, M., Oehrle, R.T.: Pregroups and type-logical grammar: Searching for
convergence. In: Casadio, C., Scott, P.J., Seely, R.A. (eds.) Language and Gram-
mar. Studies in Mathematical Linguistics and Natural Language. CSLI Lecture
Notes, vol. 168, pp. 141–160. CSLI Publications, Stanford (2005)

13. Moroz, K.: Algorithmic problems for pregroup grammars. PhD thesis, Adam Mick-
iewicz University, Poznań (2010)

14. Moroz, K.: A Savateev-style parsing algorithm for pregroup grammars. LNCS,
vol. 5591. Springer, Heidelberg (to appear, 2010)

15. Oehrle, R.T.: A parsing algorithm for pregroup grammars. In: Categorial Gram-
mars: an Efficient Tool for Natural Language Processing, pp. 59–75. University of
Montpellier (2004)

16. Savateev, Y.: Unidirectional Lambek grammars in polynomial time. Theory of
Computing Systems (to appear, 2010)

17. van Benthem, J.: Language in Action. Categories, Lambdas and Dynamic Logic.
Studies in Logic and The Foundations of Mathematics. North-Holland, Amsterdam
(1991)

A Hierarchical Classification of First-Order
Recurrent Neural Networks

Jérémie Cabessa1 and Alessandro E.P. Villa1,2

1 GIN Inserm UMRS 836, University Joseph Fourier, FR-38041 Grenoble
2 Faculty of Business and Economics, University of Lausanne, CH-1015 Lausanne

{jcabessa,avilla}@nhrg.org

Abstract. We provide a refined hierarchical classification of first-order
recurrent neural networks made up of McCulloch and Pitts cells. The
classification is achieved by first proving the equivalence between the ex-
pressive powers of such neural networks and Muller automata, and then
translating the Wadge classification theory from the automata-theoretic
to the neural network context. The obtained hierarchical classification
of neural networks consists of a decidable pre-well ordering of width 2
and height ωω, and a decidability procedure of this hierarchy is provided.
Notably, this classification is shown to be intimately related to the at-
tractive properties of the networks, and hence provides a new refined
measurement of the computational power of these networks in terms of
their attractive behaviours.

1 Introduction

In neural computability, the issue of the computational power of neural networks
has often been approached from the automata-theoretic perspective. In this con-
text, McCulloch and Pitts, Kleene, and Minsky already early proved that the
class of first-order recurrent neural networks discloses equivalent computational
capabilities as classical finite state automata [5,7,8]. Later, Kremer extended this
result to the class of Elman-style recurrent neural nets, and Sperduti discussed
the computational power of different other architecturally constrained classes of
networks [6,15].

Besides, the computational power of first-order recurrent neural networks was
also proved to intimately depend on both the choice of the activation function of
the neurons as well as the nature of the synaptic weights under consideration. In-
deed, Siegelmann and Sontag showed that, assuming rational synaptic weights,
but considering a saturated-linear sigmoidal instead of a hard-threshold acti-
vation function drastically increases the computational power of the networks
from finite state automata up to Turing capabilities [12,14]. In addition, Siegel-
mann and Sontag also nicely proved that real-weighted networks provided with a
saturated-linear sigmoidal activation function reveal computational capabilities
beyond the Turing limits [10,11,13].

This paper concerns a more refined characterization of the computational
power of neural nets. More precisely, we restrict our attention to the simple

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 142–153, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Hierarchical Classification of First-Order Recurrent Neural Networks 143

class of rational-weighted first-order recurrent neural networks made up of Mc-
Culloch and Pitts cells, and provide a refined classification of the networks of this
class. The classification is achieved by first proving the equivalence between the
expressive powers of such neural networks and Muller automata, and then trans-
lating the Wadge classification theory from the automata-theoretic to the neural
network context [1,2,9,19]. The obtained hierarchical classification of neural net-
works consists of a decidable pre-well ordering of width 2 and height ωω, and a
decidability procedure of this hierarchy is provided. Notably, this classification
is shown to be intimately related to the attractive properties of the considered
networks, and hence provides a new refined measurement of the computational
capabilities of these networks in terms of their attractive behaviours.

2 The Model

In this work, we focus on synchronous discrete-time first-order recurrent neural
networks made up of classical McCulloch and Pitts cells.

Definition 1. A first-order recurrent neural network consists of a tuple N =
(X, U, a, b, c), where X = {xi : 1 ≤ i ≤ N} is a finite set of N activation cells,
U = {ui : 1 ≤ i ≤ M} is a finite set of M external input cells, and a ∈ QN×N ,
b ∈ QN×M , and c ∈ QN×1 are rational matrices describing the weights of the
synaptic connections between cells as well as the incoming background activity.

The activation value of cells xj and uj at time t, respectively denoted by xj(t)
and uj(t), is a boolean value equal to 1 if the corresponding cell is firing at
time t and to 0 otherwise. Given the activation values xj(t) and uj(t), the value
xi(t + 1) is then updated by the following equation

xi(t + 1) = σ

⎛
⎝ N∑

j=1

ai,j · xj(t) +
M∑

j=1

bi,j · uj(t) + ci

⎞
⎠ , i = 1, . . . , N (1)

where σ is the classical hard-threshold activation function defined by σ(α) = 1
if α ≥ 1 and σ(α) = 0 otherwise.

Note that Equation (1) ensures that the whole dynamics of network N is
described by the following governing equation

x(t + 1) = σ (a · x(t) + b · u(t) + c) , (2)

where x(t) = (x1(t), . . . , xN (t)) and u(t) = (u1(t), . . . , uM (t)) are boolean vec-
tors describing the spiking configuration of the activation and input cells, and
σ denotes the classical hard threshold activation function applied component by
component. An example of such a network is given below.

Example 1. Consider the network N depicted in Figure 1. The dynamics of this
network is then governed by the following equation:(

x1(t+1)
x2(t+1)
x3(t+1)

)
= σ

[(0 0 0
1
2 0 0
1
2 0 0

)
·
(

x1(t)
x2(t)
x3(t)

)
+

(
1 0
0 0
0 1

2

)
·
(

u1(t)
u2(t)

)
+

(
0
1
2
0

)]

144 J. Cabessa and A.E.P. Villa

1/2

1/2

x3

x2

x1

u1

u2

1

1/2

1/2

Fig. 1. A simple neural network

3 Attractors

The dynamics of recurrent neural networks made of neurons with two states of
activity can implement an associative memory that is rather biological in its de-
tails [3]. In the Hopfield framework, stable equilibrium reached by the network
that do not represent any valid configuration of the optimization problem are
referred to as spurious attractors. According to Hopfield et al., spurious modes
can disappear by “unlearning” [3], but Tsuda et al. have shown that rational
successive memory recall can actually be implemented by triggering spurious
modes [17]. Here, the notions of attractors, meaningful attractors, and spurious
attractors are reformulated in our precise context. Networks will then be clas-
sified according to their ability to switch between different types of attractive
behaviours. For this purpose, the following definitions need to be introduced.

As preliminary notations, for any k > 0, we let the space of k-dimensional
boolean vectors be denoted by Bk, and we let the space of all infinite sequences
of k-dimensional boolean vectors be denoted by [Bk]ω. Moreover, for any finite
sequence of boolean vectors v, we let the expression vω = vvvv · · · denote the
infinite sequence obtained by infinitely many concatenations of v.

Now, let N be some network with N activation cells and M input cells.
For each time step t ≥ 0, the boolean vectors x(t) = (x1(t), . . . , xN (t)) ∈
BN and u(t) = (u1(t), . . . , uM (t)) ∈ BM describing the spiking configurations
of both the activation and input cells of N at time t are respectively called
the state of N at time t and the input submitted to N at time t. An in-
put stream of N is then defined as an infinite sequence of consecutive inputs
s = (u(i))i∈N

= u(0)u(1)u(2) · · · ∈ [BM]ω. Moreover, assuming the initial
state of the network to be x(0) = 0, any input stream s = (u(i))i∈N

=
u(0)u(1)u(2) · · · ∈ [BM]ω induces via Equation (2) an infinite sequence of
consecutive states es = (x(i))i∈N

= x(0)x(1)x(2) · · · ∈ [BN]ω that is called the
evolution of N induced by the input stream s.

Along some evolution es = x(0)x(1)x(2) · · · , irrespective of the fact that this
sequence is periodic or not, some state will repeat finitely often whereas other
will repeat infinitely often. The (finite) set of states occurring infinitely often in
the sequence es is denoted by inf(es). It can be observed that, for any evolution
es, there exists a time step k after which the evolution es will necessarily remain
confined in the set of states inf(es), or in other words, there exists an index k

A Hierarchical Classification of First-Order Recurrent Neural Networks 145

such that x(i) ∈ inf(es) for all i ≥ k. However, along evolution es, the recurrent
visiting of states in inf(es) after time step k does not necessarily occur in a
periodic manner.

Now, given some networkN with N activation cells, a set A = {y0, . . . , yk} ⊆
BN is called an attractor for N if there exists an input stream s such that
the corresponding evolution es satisfies inf(es) = A. Intuitively, an attractor
can be seen a trap of states into which some network’s evolution could become
forever confined. We further assume that attractors can be of two distinct types,
namely meaningful or optimal vs. spurious or non-optimal. In this study we do
not extend the discussion about the attribution of the attractors to either type.
From this point onwards, we assume any given network to be provided with the
corresponding classification of its attractors into meaningful and spurious types.

Now, let N be some network provided with an additional type specification of
each of its attractors. The complementary network N � is then defined to be the
same network as N but with an opposite type specification of its attractors.1 In
addition, an input stream s of N is called meaningful if inf(es) is a meaningful
attractor, and it is called spurious if inf(es) is a spurious attractor. The set of all
meaningful input streams of N is called the neural language of N and is denoted
by L(N). Note that the definition of the complementary network implies that
L(N �) = L(N)�. Finally, an arbitrary set of input streams L ⊆ [BM]ω is defined
as recognizable by some neural network if there exists a network N such that
L(N) = L. All preceding definitions are now illustrated in the next example.

Example 2. Consider again the network N described in Example 1, and suppose
that an attractor is meaningful for N if and only if it contains the state (1, 1, 1)T

(i.e. where the three activation cells simultaneously fire). The periodic input
stream s = [(1

1) (1
1) (1

1) (0
0)]ω induces the corresponding periodic evolution

es =
(

0
0
0

)(
1
0
0

) [(
1
1
1

)(
1
1
1

)(
0
1
0

)(
1
0
0

)]ω

.

Hence, inf(es) = {(1, 1, 1)T , (0, 1, 0)T , (1, 0, 0)T}, and the evolution es of N re-
mains confined in a cyclic visiting of the states of inf(es) already from time
step t = 2. Thence, the set {(1, 1, 1)T , (0, 1, 0)T , (1, 0, 0)T} is an attractor of N .
Moreover, this attractor is meaningful since it contains the state (1, 1, 1)T .

4 Recurrent Neural Networks and Muller Automata

In this section, we provide an extension of the classical result stating the equiv-
alence of the computational capabilities of first-order recurrent neural networks
and finite state machines [5,7,8]. More precisely, here, the issue of the expressive
power of neural networks is approached from the point of view of the theory
of automata on infinite words, and it is proved that first-order recurrent neural

1 More precisely, A is a meaningful attractor for N � if and only if A is a spurious
attractor for N .

146 J. Cabessa and A.E.P. Villa

networks actually disclose the very same expressive power as finite Muller au-
tomata. Towards this purpose, the following definitions first need to be recalled.

A finite Muller automaton is a 5-tuple A = (Q, A, i, δ, T), where Q is a finite
set called the set of states, A is a finite alphabet, i is an element of Q called
the initial state, δ is a partial function from Q× A into Q called the transition
function, and T ⊆ P(Q) is a set of set of states called the table of the automaton.
A finite Muller automaton is generally represented by a directed labelled graph
whose nodes and labelled edges respectively represent the states and transitions
of the automaton.

Given a finite Muller automaton A = (Q, A, i, δ, T), every triple (q, a, q′) such
that δ(q, a) = q′ is called a transition of A. A path in A is then a sequence of
consecutive transitions ρ = ((q0, a1, q1), (q1, a2, q2), (q2, a3, q3), . . .), also denoted
by ρ : q0

a1−→ q1
a2−→ q2

a3−→ q3 · · · . The path ρ is said to successively visit the
states q0, q1, The state q0 is called the origin of ρ, the word a1a2a3 · · · is the
label of ρ, and the path ρ is said to be initial if q0 = i. If ρ is an infinite path,
the set of states visited infinitely often by ρ is denoted by inf(ρ). Besides, a cycle
in A consists of a finite set of states c such that there exists a finite path in A
with same origin and ending state that visits precisely all the sates of c. A cycle
is called successful if it belongs to T , and non-succesful otherwise. Moreover, an
infinite initial path ρ of A is called successful if inf(ρ) ∈ T . An infinite word is
then said to be recognized by A if it is the label of a successful infinite path in
A, and the ω-language recognized by A, denoted by L(A), is defined as the set
of all infinite words recognized by A. The class of all ω-languages recognizable
by some Muller automata is precisely the class of ω-rational languages.

Now, for each ordinal α < ωω, we introduce the concept of an α-alternating
tree in a Muller automaton A, which consists of a tree-like disposition of the
successful and non-successful cycles of A induced by the ordinal α (see Figure
2). We first recall that any ordinal 0 < α < ωω can uniquely be written of the
form α = ωnp ·mp+ωnp−1 ·mp−1+. . .+ωn0 ·m0, for some p ≥ 0, np > np−1 > . . . >
n0 ≥ 0, and mi > 0. Then, given some Muller automata A and some ordinal
α = ωnp ·mp + ωnp−1 ·mp−1 + . . . + ωn0 ·m0 < ωω, an α-alternating tree (resp.
α-co-alternating tree) is a sequence of cycles of A (Ci,j

k,l)i≤p,j<2i,k<mi,l≤ni
such

that: firstly, C0,0
0,0 is successful (resp. not successful); secondly, Ci,j

k,l � Ci,j
k,l+1, and

Ci,j
k,l+1 is successful iff Ci,j

k,l is not successful; thirdly, Ci,j
k+1,0 is strictly accessible

from Ci,j
k,0, and Ci,j

k+1,0 is successful iff Ci,j
k,0 is not successful; fourthly, Ci+1,2j

0,0

and Ci+1,2j+1
0,0 are both strictly accessible from Ci,j

mi−1,0, and each Ci+1,2j
0,0 is

successful whereas each Ci+1,2j+1
0,0 is not successful. An α-alternating tree is said

to be maximal in A if there is no β-alternating tree in A such that β > α.
We now come up to the equivalence of the expressive power of recurrent

neural networks and Muller automaton. First of all, we prove that any first-
order recurrent neural network can be simulated by some Muller automaton.

Proposition 1. Let N be a network provided with a type specification of its
attractors. Then there exists a Muller automaton AN such that L(N) = L(AN).

A Hierarchical Classification of First-Order Recurrent Neural Networks 147

C0,0
0,n0

C0,0
1,n0

C0,0
m0−1,n0

.

.

.
.
.
.

.

.

.

� � �

C0,0
0,1 C0,0

1,1 C0,0
m0−1,1

� � �

C0,0
0,0 −→ C0,0

1,0 −→ · · · −→ C0,0
m0−1,0

−→

−→

C1,0
0,n1

C1,0
1,n1

C1,0
m1−1,n1

.

.

.
.
.
.

.

.

.

� � �

C1,0
0,1 C1,0

1,1 C1,0
m1−1,1

� � �

C1,0
0,0 −→ C1,0

1,0 −→ · · · −→ C1,0
m1−1,0

· · ·

−→

−→

· · ·

C1,1
0,n1

C1,1
1,n1

C1,1
m1−1,n1

.

.

.
.
.
.

.

.

.

� � �

C1,1
0,1 C1,1

1,1 C1,1
m1−1,1

� � �

C1,1
0,0 −→ C1,1

1,0 −→ · · · −→ C1,1
m1−1,0

· · ·

−→

−→

· · ·

Fig. 2. The inclusion and accessibility relations between cycles in an α-alternating tree

Proof. Let N be given by the tuple (X, U, a, b, c), with card(X) = N , card(U) =
M , and let the meaningful attractors ofN be given by A1, . . . , AK . Now, consider
the Muller automaton AN = (Q, A, i, δ, T), where Q = BN , A = BM , i is the
N -dimensional zero vector, δ : Q × A → Q is defined by δ(x, u) = x′ if and
only if x′ = σ (a · x + b · u + c), and T = {A1, . . . , AK}. According to this
construction, any input stream s of N is meaningful for N if and only if s
is recognized by AN . In other words, s ∈ L(N) if and only if s ∈ L(AN), and
therefore L(N) = L(AN). ��
According to the construction given in the proof of Proposition 1, any evolution
of the network N naturally induces a corresponding infinite initial path in the
Muller automaton AN , and conversely, any infinite initial path in AN corre-
sponds to some possible evolution of N . This observation ensures the existence
of a biunivocal correspondence between the attractors of the network N and the
cycles in the graph of the corresponding Muller automaton AN . Consequently,
a procedure to compute all possible attractors of a given network N is simply
obtained by first constructing the corresponding Muller automatonAN and then
listing all cycles in the graph of AN .

Conversely, we now prove that any Muller automaton can be simulated by
some first-order recurrent neural network. For the sake of convenience, we choose
to restrict our attention to Muller automata over the binary alphabet B1.

Proposition 2. Let A be some Muller automaton over the alphabet B1. Then
there exists a network NA such that L(A) = L(NA).

Proof. Let A be given by the tuple (Q, A, q1, δ, T), with Q = {q1, . . . , qN} and
T ⊆ P(Q). Now, consider the network NA = (X, U, a, b, c) defined as follows:
First of all, X = {xi : 1 ≤ i ≤ 2N} ∪ {x′

1, x
′
2, x

′
3, x

′
4}, U = {u1}, and each

state qi in the automaton A gives rise to a two cell layer {xi, xN+i} in the
network NA as illustrated in Figure 3. Moreover, the synaptic weights between

148 J. Cabessa and A.E.P. Villa

u1 and all activation cells, between all cells in {x′
1, x

′
2, x

′
3, x

′
4}, as well as the

background activity are precisely as depicted in Figure 3. Furthermore, for each
1 ≤ i ≤ N , both cells xi and xN+i receive a weighted connection of intensity
1
2 from cell x′

4 (resp. x′
2) if and only if δ(q1, (0)) = qi (resp. δ(q1, (1)) = qi), as

also shown in Figure 3. Farther, for each 1 ≤ i, j ≤ N , there exist two weighted
connection of intensity 1

2 from cell xi (resp. from cell xN+i) to both cell xj and
xN+j if and only if δ(qi, (1)) = qj (resp. δ(qi, (0)) = qj), as partially illustrated
in Figure 3 only for the k-th layer. This description of the network NA ensures
that, for any possible evolution of NA, the two cells x′

1 and x′
3 are firing at

each time step t ≥ 1, and furthermore, one and only one cell of {xi : 1 ≤ i ≤
2N} are firing at each time step t ≥ 2. According to this observation, for any
1 ≤ j ≤ N , let 1j ∈ B2N+4 (resp. 1N+j ∈ B2N+4) denote the boolean vector
describing the spiking configuration where only the cells x′

1, x′
3, and xj (resp.

x′
1, x′

3, and xN+j) are firing. Hence, any evolution x(0)x(1)x(2) · · · of NA
satisfies x(t) ∈ {1k : 1 ≤ k ≤ N} ∪ {1N+l : 1 ≤ l ≤ N} for all t ≥ 2, and
thus any attractor A of N can necessarily be written of the form A = {1k :
k ∈ K} ∪ {1N+l : l ∈ L}, for some K, L ⊆ {1, 2, . . . , N}. Now, any infinite
sequence s = u(0)u(1)u(2) · · · ∈ [B1]ω induces both a corresponding infinite

path ρs : q1
u(0)−−−→ qj1

u(1)−−−→ qj2

u(2)−−−→ qj3 · · · in A as well as a corresponding
evolution es = x(0)x(1)x(2) · · · in NA. The network NA is then related to the
automaton A via the following important property: for each time step t ≥ 1, if
u(t) = (1), then x(t + 1) = 1jt , and if u(t) = (0), then x(t + 1) = 1N+jt .
In other words, the infinite path ρs and the evolution es evolve in parallel and
satisfy the property that the cell xj is spiking in NA if and only if the automaton
A is in state qj and reads letter (1), and the cell xN+j is spiking in NA if and
only if the automaton A is in state qj and reads letter (0). Finally, an attractor
A = {1k : k ∈ K} ∪ {1N+l : l ∈ L} with K, L ⊆ {1, 2, . . . , N} is set to be
meaningful if and only if {qk : k ∈ K} ∪ {ql : l ∈ L} ∈ T . Consequently, for any
infinite infinite sequence s ∈ [B1]ω, the infinite path ρs in A satisfies inf(ρs) ∈ T

u1

x′
1 x′

2

x′
3 x′

4

−1/2

−1

−1

−1

1/2

1/2

+1

+1

+1

1/2

1/2 1/2 1/2

x1 xi xN

1/2 1/2

x2N

xj xk

xN+1

+1 1/2

1/2xN+i xN+j xN+k...

...... ...

Fig. 3. The network NA

A Hierarchical Classification of First-Order Recurrent Neural Networks 149

if and only if the evolution es in NA is such that inf(es) is a meaningful attractor.
Therefore, L(A) = L(NA). ��

Finally, the following example provides an illustration of the two translating
procedures described in the proofs of propositions 1 and 2.

Example 3. The translation from the network N described in Example 2 to
its corresponding Muller automaton AN is illustrated in Figure 4. Proposition
1 ensures that L(N) = L(AN). Conversely, the translation from some given
Muller automaton A over the alphabet B1 to its corresponding network NA is
illustrated in Figure 5. Proposition 2 ensures that L(A) = L(NA).

1/2

1/2

x3

x2

x1

u1

u2

1

1/2

1/2
(

0
0
0

)

(
0
1
0

)

(
1
1
0

)(
1
1
1

)

(
0
1
1

)

(
1
0
0

)(1
0)

(0
0)

(1
1)

(0
0) (0

1)

(1
0)(1

1)

(0
0) (0

1)

(1
0) (1

1)

(0
0)

(1
0)

(1
1)

(0
0)

(0
1)

(1
0)

(1
1)

(0
0)

(0
1) (1

1)
(0

1)
(0

1)

(1
0)

A ⊆ B3 is meaningful for N Table T = {A ∈ B3 : A is meaningful for N}
if and only if (1, 1, 1)T ∈ A

Fig. 4. Translation from a given network N provided with a type specification of its
attractors to a corresponding Muller automaton AN

q1

q2

q3

(1)

(0)

(1)

(1)

(0)

(0)
u1

x3

x4 x5

x′
1 x′

2

x′
3 x′

4

−1/2

−1

−1

−1

1

1/2

1/2

1/2

1/2

1/2
1/2

+1

+1

+1

1/2

1/2 1/2 1/2

x6

x1 x2

Table T = {{q2}, {q3}} Meaningful attractors: A1 = {15} and A2 = {13}.

Fig. 5. Translation from a given Muller automaton A to a corresponding network NA
provided with a type specification of its attractors

150 J. Cabessa and A.E.P. Villa

5 The RNN Hierarchy

In the theory of automata on infinite words, abstract machines are commonly
classified according the topological complexity of their underlying ω-language,
as for instance in [1,2,9,19]. Here, this approach is translated from the automata
to the neural networks context, in order to obtain a refined classification of first-
order recurrent neural networks. Notably, the obtained classification actually
refers to the ability of the networks to switch between meaningful and spurious
attractive behaviours.

For this purpose, the following facts and definitions need to be introduced.
To begin with, for any k > 0, the space [Bk]ω can naturally be equipped with
the product topology of the discrete topology over Bk. Thence, a function f :
[Bk]ω → [Bl]ω is said to be continuous if and only if the inverse image by f of
every open set of [Bl]ω is an open set of [Bk]ω. Now, given two first-order recurrent
neural networks N1 and N2 with M1 and M2 input cells respectively, we say that
N1 Wadge reduces [18] (or continuously reduces or simply reduces) to N2, denoted
by N1 ≤W N2, if any only if there exists a continuous function f : [BM1]ω →
[BM2]ω such that any input stream s of N1 satisfies s ∈ L(N1) ⇔ f(s) ∈ L(N2).
The corresponding strict reduction, equivalence relation, and incomparability
relation are then naturally defined by N1 <W N2 iff N1 ≤W N2 �≤W N1, as well
as N1 ≡W N2 iff N1 ≤W N2 ≤W N1, and N1 ⊥W N2 iff N1 �≤W N2 �≤W N1.
Moreover, a network N is called self-dual if N ≡W N �; it is non-self-dual if
N �≡W N �, which can be proved to be equivalent to saying that N ⊥W N �.
By extension, an ≡W -equivalence class of networks is called self-dual if all its
elements are self-dual, and non-self-dual if all its elements are non-self-dual.

Now, the Wadge reduction over the class of neural networks naturally induces
a hierarchical classification of networks. Formally, the collection of all first-order
recurrent neural networks ordered by the Wadge reduction “≤W ” is called the
RNN hierarchy.

Propositions 1 and 2 ensure that the RNN hierarchy and the Wagner hierarchy
– the collection of all ω-rational languages ordered by the Wadge reduction [19]
– coincide up to Wadge equivalence. Accordingly, a precise description of the
RNN hierarchy can therefore be given as follows. First of all, the RNN hierarchy
is well founded, i.e. there is no infinite strictly descending sequence of networks
N0 >W N1 >W N2 >W Moreover, the maximal strict chains in the RNN
hierarchy have length ωω, meaning that the RNN hierarchy has a height of
ωω. Furthermore, the maximal antichains of the RNN hierarchy have length 2,
meaning that the RNN hierarchy has a width of 2.2 More precisely, any two
networks N1 and N2 satisfy the incomparability relation N1 ⊥W N2 if and
only if N1 and N2 are non-self-dual networks such that N1 ≡W N �

2 . These
properties imply that, up to Wadge equivalence and complementation, the RNN

2 A strict chain (resp. an antichain) in the RNN hierarchy is a sequence of neural
networks (Nk)k∈α such that Ni <W Nj iff i < j (resp. such that Ni ⊥W Nj for all
i, j ∈ α with i
= j). A strict chain (resp. an antichain) is said to be maximal if its
length is at least as large as the length of every other strict chain (resp. antichain).

A Hierarchical Classification of First-Order Recurrent Neural Networks 151

hierarchy is actually a well-ordering. In fact, the RNN hierarchy consists of an
alternating succession of non-self-dual and self-dual classes with pairs of non-self-
dual classes at each limit level, as illustrated in Figure 6, where circle represent
the Wadge equivalence classes of networks and arrows between circles represent
the strict Wadge reduction between all elements of the corresponding classes.
For convenience reasons, the degree of a network N in the RNN hierarchy is
now defined in order to make the non-self-dual (n.s.d.) networks and the self-
dual ones located just one level above share the same degree, as illustrated in
Figure 6:

d(N) =

⎧⎪⎨
⎪⎩

1 if L(N) = ∅ or ∅�,
sup {d(M) + 1 :M n.s.d. and M <W N} if N is non-self-dual,
sup {d(M) :M n.s.d. and M <W N} if N is self-dual.

Also, the equivalence between the Wagner and RNN hierarchies ensure that the
RNN hierarchy is actually decidable, in the sense that there exists a algorithmic
procedure computing the degree of any network in the RNN hierarchy. All the
above properties of the RNN hierarchy are summarized in the following result.

Theorem 1. The RNN hierarchy is a decidable pre-well-ordering of width 2 and
height ωω.

Proof. The Wagner hierarchy consists of a decidable pre-well-ordering of width
2 and height ωω [19]. Propositions 1 and 2 ensure that the RNN hierarchy and
Wagner hierarchy coincide up to Wadge equivalence. ��

height
ωω

degree
1

degree
2

degree
3

degree
ω

degree
ω + 1

degree
ω · 2 + 1

degree
ω · 2

Fig. 6. The RNN hierarchy

The following result provides a detailed description of the decidability procedure
of the RNN hierarchy. More precisely, it is shown that the degree of a network
N in the RNN hierarchy corresponds precisely to the largest ordinal α such
that there exists an α-alternating tree or an α-co-alternating tree in the Muller
automaton AN .

Theorem 2. Let N be a network provided with a type specification of its at-
tractors, AN be the corresponding Muller automaton of N , and α be an ordinal
such that 0 < α < ωω.

• If there exists in AN a maximal α-alternating tree and no maximal α-co-
alternating tree, then d(N) = α and N is non-self-dual.

152 J. Cabessa and A.E.P. Villa

• If there exists in AN a maximal α-co-alternating tree and no maximal α-
alternating tree, then d(N) = α and N is non-self-dual.

• If there exist in AN both a maximal α-alternating tree as well as a maximal
α-co-alternating tree, then d(N) = α and N is self-dual.

Proof. For any ω-rational language L, let dW (L) denote the degree of L in the
Wagner hierarchy. On the one hand, propositions 1 and 2 ensure that d(N) =
dW (L(AN)). On the other hand, the decidability procedure of the Wagner hi-
erarchy states that dW (L(AN)) corresponds precisely to the largest ordinal α
such that there exists a maximal α-(co)-alternating tree in AN [19]. ��
The decidability procedure of the degree of a network N in the the RNN hi-
erarchy thus consists in first translating the network N into its corresponding
Muller automaton AN (as described in Proposition 1), and then returning the
ordinal α associated to the maximal α-(co)-alternating tree(s) in contained in
AN (which can be achieved by some graph analysis of the automaton AN). In
other words, the complexity of a network N is directly related to the relative
disposition of the successful and non-successful cycles in the Muller automaton
AN , or in other words, to how some infinite path in AN could maximally alter-
nate between successful and non-successful cycles along its evolution. Therefore,
according to the biunivocal correspondence between cycles in AN and attractors
of N , as well as between infinite paths in AN and evolutions of the network N ,
it follows that the complexity of a network N in the RNN hierarchy actually
refers to the capacity of this network to maximally alternate between punctual
visitings of meaningful and spurious attractors along some possible evolution –
a concept close to chaotic itinerancy [16,4].

Example 4. Let N be the network of Example 2. Then d(N) = ω and N is
non-self-dual. Indeed, {(0, 0, 0)T} � {(0, 0, 0)T , (1, 0, 0)T , (1, 1, 1)T , (0, 1, 1)T} is
a maximal ω1-co-alternating tree in the Muller automaton AN of Figure 4.

6 Conclusion

The present work proposes a new approach of neural computability from the
point of view infinite word reading automata theory. More precisely, the Wadge
classification of infinite word languages is translated from the automata-theoretic
to the neural network context, and a transfinite decidable hierarchical classi-
fication of first-order recurrent neural network is obtained. This classification
provides a better understanding of this simple class of neural networks that
could be relevant for implementation issues. Moreover, the Wadge hierarchies of
deterministic pushdown automata or deterministic Turing Machines both with
Muller conditions [1,9] ensure that such Wadge-like classifications of strictly more
powerful models of neural networks could also be described; however, in these
cases, the decidability procedures of the obtained hierarchies remain hard open
problems.

Besides, this work is envisioned to be extended in several directions. First of
all, it could be of interest to study the same kind of hierarchical classification

A Hierarchical Classification of First-Order Recurrent Neural Networks 153

applied to more biologically oriented models, like neural networks provided with
some additional simple STDP rule. In addition, neural networks’ computational
capabilities should also rather be approached from the point of view of finite word
instead of infinite word reading automata, as for instance in [6,10,11,12,13,14,15].
Unfortunately, as opposed to the case of infinite words, the classification theory of
finite words reading machines is still a widely undeveloped, yet promising issue.
Finally, the study of hierarchical classifications of neural networks induced by
more biologically oriented reduction relations than the Wadge reduction would
be of specific interest.

References

1. Duparc, J.: A hierarchy of deterministic context-free ω-languages. Theor. Comput.
Sci. 290(3), 1253–1300 (2003)

2. Finkel, O.: An effective extension of the Wagner hierarchy to blind counter au-
tomata. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp.
369–383. Springer, Heidelberg (2001)

3. Hopfield, J.J., Feinstein, D.I., Palmer, R.G.: ‘unlearning’ has a stabilizing effect in
collective memories. Nature 304, 158–159 (1983)

4. Kaneko, K., Tsuda, I.: Chaotic itinerancy. Chaos 13(3), 926–936 (2003)
5. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Au-

tomata Studies. Annals of Mathematics Studies, vol. 34, pp. 3–42. Princeton Uni-
versity Press, Princeton (1956)

6. Kremer, S.C.: On the computational power of elman-style recurrent networks.
IEEE Transactions on Neural Networks 6(4), 1000–1004 (1995)

7. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysic 5, 115–133 (1943)

8. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc., Upper
Saddle River (1967)

9. Selivanov, V.: Wadge degrees of ω-languages of deterministic Turing machines.
Theor. Inform. Appl. 37(1), 67–83 (2003)

10. Siegelmann, H.T.: Computation beyond the Turing limit. Science 268(5210), 545–
548 (1995)

11. Siegelmann, H.T.: Neural and super-Turing computing. Minds Mach. 13(1), 103–
114 (2003)

12. Siegelmann, H.T., Sontag, E.D.: Turing computability with neural nets. Applied
Mathematics Letters 4(6), 77–80 (1991)

13. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theor.
Comput. Sci. 131(2), 331–360 (1994)

14. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J.
Comput. Syst. Sci. 50(1), 132–150 (1995)

15. Sperduti, A.: On the computational power of recurrent neural networks for struc-
tures. Neural Netw. 10(3), 395–400 (1997)

16. Tsuda, I.: Chaotic itinerancy as a dynamical basis of hermeneutics of brain and
mind. World Futures 32, 167–184 (1991)

17. Tsuda, I., Koerner, E., Shimizu, H.: Memory dynamics in asynchronous neural
networks. Prog. Th. Phys. 78(1), 51–71 (1987)

18. Wadge, W.W.: Reducibility and determinateness on the Baire space. PhD thesis,
University of California, Berkeley (1983)

19. Wagner, K.: On ω-regular sets. Inform. and Control 43(2), 123–177 (1979)

Choosing Word Occurrences
for the Smallest Grammar Problem�

Rafael Carrascosa1, François Coste2,
Matthias Gallé2, and Gabriel Infante-Lopez1,3

1 Grupo de Procesamiento de Lenguaje Natural,
Universidad Nacional de Córdoba, Argentina

2 Symbiose Project,
IRISA/INRIA Rennes-Bretagne Atlantique, France

3 Consejo Nacional de Investigaciones Científicas, Argentina

Abstract. The smallest grammar problem - namely, finding a smallest
context-free grammar that generates exactly one sequence - is of practical
and theoretical importance in fields such as Kolmogorov complexity, data
compression and pattern discovery. We propose to focus on the choice
of the occurrences to be rewritten by non-terminals. We extend classical
offline algorithms by introducing a global optimization of this choice at
each step of the algorithm. This approach allows us to define the search
space of a smallest grammar by separating the choice of the non-terminals
and the choice of their occurrences. We propose a second algorithm that
performs a broader exploration by allowing the removal of useless words
that were chosen previously. Experiments on a classical benchmark show
that our algorithms consistently find smaller grammars then state-of-
the-art algorithms.

1 Introduction

The smallest grammar problem - namely, finding a smallest context-free gram-
mar that generates exactly one sequence - is of practical and theoretical impor-
tance in fields such as Kolmogorov complexity, data compression and pattern
discovery.

The size of a smallest grammar can be considered a computable variant of
Kolmogorov complexity, in which the Turing machine description of the sequence
is restricted to context-free grammars. The problem is then decidable, but still
hard: the problem of finding a smallest grammar with an approximation ratio
smaller then 8569

8568 is NP-HARD [4]. Nevertheless, an O(log3 n) approximation
ratio - with n the length of the sequence - can be achieved by a simple algorithmic
scheme based on approximation to the shortest superstring problem [4] and a
smaller O(log n/g) (where g is the size of a smallest grammar) approximation
ratio is possible by more complex mappings from the LZ77-factorization of the
sequence to a context-free grammar with a balanced parsing tree [4,15].
� The work described in this paper is partially supported by the Program of Interna-

tional Scientific Cooperation MINCyT - INRIA/CNRS.

A.-H. Dediu, H. Fernau, and C. Martín-Vide (Eds.): LATA 2010, LNCS 6031, pp. 154–165, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Choosing Word Occurrences for the Smallest Grammar Problem 155

If the grammar is small, storing the grammar instead of the sequence can
be interesting from a data compression perspective. Kieffer and Yang developed
the formal framework of compression by Grammar Based Codes from the view-
point of information theory, defining irreducible grammars and demonstrating
their universality [6]. Before this formalization, several algorithms allowing to
compress a sequence by context-free grammars had already been proposed. The
LZ78-factorization introduced by Ziv and Lempel in [21] can be interpreted as
a context-free grammar. Let us remark that this is not true for LZ77, published
one year before [20]. Moreover, it is a commonly used result that the size of a
LZ77-factorization is a lower bound on the size of a smallest grammar [15,4]. The
first approach that generated explicitly a context-free grammar with compres-
sion ability is Sequitur [13]. Like LZ77 and LZ78, Sequitur is an on-line algorithm
that processes the sequence from left to right. It maintains incrementally a gram-
mar generating the part of the sequence read, introducing and deleting rewriting
rules to ensure that no digram (pair of adjacent symbols) occurs more than once
and that each rule is used at least twice. Other algorithms consider the entire
sequence before choosing which repeat will be rewritten by the introduction of
a new rule. Most of these offline algorithms proceed in a greedy manner. First
the grammar is initialized by a unique initial rule S → s where s is the input
sequence. Then they proceed iteratively, selecting in each iteration one repeated
word w according to a score function and replacing all the (non-overlapping) oc-
currences of the repeat w in the whole grammar by a new terminal N and adding
the new rewriting rule N → w to the grammar. Different heuristics have been
used to choose the repeat: Frequent [19] chooses the most frequently-occurring
digram, Long [3] chooses the longest word while Compressive [12] chooses the
word that reduce at most the size of the resulting grammar. Greedy [1] belongs
also to this family but the score used for choosing the words is oriented toward
directly optimizing the number of bits needed to encode the grammar rather than
minimizing its size. The running time of Sequitur is linear and linear-time ver-
sions of Frequent and Long have been introduced in [9] and [11] respectively,
while the existence of a linear-time algorithm for Compressive and Greedy
remains an open question.

In pattern discovery, a smallest grammar is a good candidate for being the one
that generates the data according to Occam’s razor principle. In that case, the
grammar may not only be used for compressing the sequence but also to unveil
its structure. Inference of the hierarchical structure of sequences was the initial
motivation of Sequitur and has been the subject of several papers applying this
scheme to DNA sequences [13,8,5], musical scores [14] or natural language [19,10].
It can also be a first step to learn more general grammars along the lines of [16]. In
all the latter cases, a slight difference in the size of the grammar, which would not
matter for data compression, can dramatically change the results with respect to
the structure and more sophisticated algorithms than those for data compression
are needed. In this article, we focus on how to choose occurrences that are going
to be rewritten. This mechanism is generally handled straightforwardly in these
papers and consists of selecting all the non-overlapping occurrences in a left to

156 R. Carrascosa et al.

right order. Moreover, once an occurrence has been chosen for being rewritten,
the result is definitive and is not altered by the words that will be chosen in the
following iterations. In order to remedy these flaws, we show how to globally
optimize the choice of the occurrences to be replaced by non-terminals. We are
then able to improve classical greedy algorithms by introducing this optimization
step at each iteration of the algorithm. This optimization allows us to separate
the choice of the non-terminals and the choice of their occurrences. We redefine
the search space and we propose a new procedure performing a wider search
by adding the possibility to discard non-terminals previously included in the
grammar.

The outline of this paper is the following: in Sect. 2 we introduce formally
the definitions and the classical offline algorithms. Section 3 contains our con-
tributions: in Sect. 3.1 we show how to optimize the choice of occurrences to
be replaced by non-terminals for a set of words and extend offline algorithms
by optimizing the choice of the occurrences at each step. We show that this
optimization can also be used directly to guide the search in a new algorithm in
Sect. 3.3. We present experiments on a classical benchmark in Sect. 4 showing
that the occurrence optimization consistently allows to find smaller grammars
and Sect. 5 concludes the paper.

2 Iterative Repeat Replacement Algorithms

2.1 Definitions and Notation

We start by giving a few definitions and setting up the nomenclature that we
use along the paper. A string s is a sequence of characters s1 . . . sn, its length,
|s| = n. ε denotes the empty word, and s[i : j] = si . . . sj , s[i : j] = ε if j < i.
A context-free grammar is a tuple 〈Σ,N ,P , S〉, where Σ is the set of terminals,
N is the set of non-terminals and N and Σ are disjoint. S ∈ N is called the
start symbol and P is a set of productions. Each production is of the form A→ α
where its left-hand side A is a non-terminal and its right-hand side α belongs to
(Σ ∪ N)∗. β can be derived from α, denoted by α ⇒ β, if there exists a set of
production rules allowing to produce β starting from α. The language defined
by a grammar is the set of words {w ∈ Σ∗ : S ⇒ w}.

Several definitions of the grammar size exist. Following [12], we define the
size of the grammar G, denoted by |G|, to be the length of its encoding by
concatenation of its right-hand sides separated by end-of-rule markers: |G| =∑

A→α∈P(|α|+ 1).

2.2 General Scheme

Most offline algorithms follow the same general scheme. First, the grammar is
initialized with a unique initial rule S → s where s is the input sequence and
then they proceed iteratively. At each iteration, a word ω occurring more than
once in s is chosen according to a score function f , all the (non-overlapping)
occurrences of ω in the grammar are replaced by a new non-terminal Nω and

Choosing Word Occurrences for the Smallest Grammar Problem 157

a new rewriting rule Nω → ω is added to the grammar. We give pseudo-code
for this general scheme that we name Iterative Repeat Replacement (IRR) in
Algorithm 1. There, P is the set of production rules being built: this defines a
unique grammar G(P) and therefore we define |P| = |G(P)|. The set of repeated
words in the right-hand side of P is denoted by repeats(P) and Pω �→N is the
result of the substitution of ω by the new symbol N in the right-hand sides of
P as detailed in the next paragraph.

When occurrences overlap, one has to specify which occurrences have to be
replaced. One solution is to choose all the elements in the canonical list of
non-overlapping occurrences of ω in s, which we define to be the list of non-
overlapping occurrences of ω in a greedy left to right way (all occurrences over-
lapping with the first selected occurrence are not considered, then the same thing
with the second non-eliminated occurrence, etc). This ensures that a maximal
number of occurrences will be replaced. When searching for the smallest gram-
mar, one has to consider not only the occurrences of a word in s but also their
occurrence in right-hand sides of rules that are currently part of the grammar. A
canonical list of non-overlapping occurrences of ω can be defined for each right-
hand side appearing in the set of production rules P . This provides a straight-
forward list of occurrences used in the scoring function or the replacement step
by our pseudo-code defining IRR: Pω �→N denotes the result of substituting by
N these right-hand side occurrences of ω in P .

Algorithm 1. Iterative Repeat Replacement
IRR(s, f)
Require: s is a sequence, and f is a score function on words
1: N ← {Ns}
2: P ← {Ns → s}
3: while ∃ω : ω ← arg maxα∈repeats(P) f(α,P) ∧ |Pω �→Nω | < |P| do
4: N ← N ∪ {Nω}
5: P ← Pω �→Nω ∪ {Nω → ω}
6: end while
7: return G(P)

The IRR scheme enables us to compare in a uniform framework the behav-
ior of different score functions f that are used in the classical algorithms for
choosing the words to replace. We implemented the scores of the most popular
offline algorithms (or their extension to include right-hand sides, if that was not
considered originally). IRR-MO maximizes the number of non-overlapping occur-
rences, it uses f(α,P) = o, where o is the size of the canonical non-overlapping
list of α in the right-hand sides of rules in P (Frequent [19] or Re-Pair [9]);
IRR-ML selects the largest repeated word: f(α,P) = |α| (Long [3] LFS, or
LFS2 [11]); and IRR-MC minimizes the size of the grammar by maximizing
f(α,P) = o∗ |α|−o−|α|−1 (Compressive [12]). The complexity of IRR when
it uses one of these scores is O(n3) since for a sequence of size n, the computation
of the scores involving only o and |α| of the O(n2) possible repeats can be done

158 R. Carrascosa et al.

in O(n2) using a suffix tree structure and the number of iterations is bounded
by n since the size of the grammar decreases at each step.

The grammars found by these algorithms, Sequitur and LZ78 on a small exam-
ple are shown in Fig. 1 while a comparison of the size of the grammars returned
by these algorithms over a standard data compression corpus are presented in
Sect. 4. These experiments confirm that IRR-MC is the best of these practical
heuristics for finding smaller grammars as was suggested in [12]. Even when the-
oretical algorithms were designed to achieve a low approximation ratio [4,15,17],
until now it could not be proven (theoretically or empirically) that they perform
better than IRR-MC.

S → N1dabgeN1eN1d$
N1 → a b c

S → N2dN1geN2eN2d$
N1 → a b
N2 → N1 c

S → N1abgeN2eN1$
N1 → N2 d
N2 → a b c

IRR-MC IRR-MO IRR-ML

S → N1dN2gN3N3d$
N1 → N2 c
N2 → a b
N3 → e N1

S → N1N2N3N4N5N6N7N8N9N10N11

N1 → a N7 → e
N2 → b N8 → N5 c
N3 → c N9 → N7 a
N4 → d N10 → N2 c
N5 → N1 b N11 → d $
N6 → g

Sequitur LZ78

Fig. 1. Grammars returned by classical algorithms on sequence abcdabgeabceabcd$

2.3 Limitations of IRR

Even though IRR algorithms are the best known practical algorithms for ob-
taining small grammars, they present some weaknesses. In the first place, their
greedy strategy does not guarantee that the compression gain introduced by a
selected word ω will still be interesting in the final grammar. Each time a future
iteration selects a substring of ω, the length of the production rule is reduced;
and each time a superstring is selected, its number of occurrences is reduced.
Moreover, the first choices mark some breaking points and future words may
appear inside them or in another parts of the grammar, but never cross them.

One could argue that it could be possible to find a score function that con-
siders probable choices in the future. Nevertheless, a third weakness is intrin-
sic to IRR and does not depend on the score function: consider the sequence
xaxbxcx#1xbxcxax#2xcxaxbx#3xaxcxbx#4xbxaxcx#5xcxbxax#6xax#7xbx#8xcx,
where each #i acts as a separator over which no repeat spans. This sequence
exploits the fact that IRR algorithms replace all possible occurrences of the
selected word. Let us define G∗ as the following grammar:

S → AbC#1BcA#2CaB#3AcB#4BaC#5CbA#6A#7B#8C
A→ xax B → xbx C → xcx

Choosing Word Occurrences for the Smallest Grammar Problem 159

|G∗| = 42. Note that no IRR algorithm could generate G∗ and, moreover, the
smallest possible grammar that can be obtained with an IRR algorithm has size
46, resulting in an approximation ratio of 1.095. This is a general lower bound
for any IRR algorithm.

In order to find G∗, the choice of occurrences that will be rewritten should be
flexible when considering repeats introduced in future iterations.

3 Optimization of the Occurrences Choice

3.1 Global Optimization of Occurrences Replacement

Once an IRR algorithm has chosen a repeated word ω, it replaces all non-
overlapping occurrences of that word in the current grammar by a new non-
terminal N and then adds N → ω to the set of production rules. In this section,
we propose to perform a global optimization of the replacement of occurrences,
considering not only the last non-terminal but also all the previously introduced
non-terminals. The idea is to allow occurrences of words to be kept (instead of
being replaced by non-terminals) if replacing other occurrences of words over-
lapping them results in a better compression.

Let N denote the set of non-terminals that can be used for replacing occur-
rences. Let us remark that each non-terminal N introduced to replace a word ω
is not limited to replace ω but can replace any word with the same yield where
we define the yield of a word α ∈ (Σ∪N)∗ by: yield(α) = {w ∈ Σ∗/α⇒ w}. For
instance, given the set of non-terminals N and their respective yields (defined
at the moment of the introduction of the rule N → α by yieldN ← yield(α)),
we can search for the best replacement in the sequence s by non-terminals of
N \ {S} such that the replacement results in a minimal sequence s′ and the
yield of s′ is s. This result would provide us with a minimal rule Ns → s′ pro-
ducing s and assuming the production of their yield by other non-terminals,
which can also in turn be minimized by the same kind of optimization. This
problem is related to the problem of static dictionary parsing [18] with the dif-
ference that the dictionary also has to be parsed. It can be formalized here as
searching for the smallest grammar with a set of production rules of the form
{N → α/N ∈ N , α ∈ (N ∪Σ)∗, yield(α) = yieldN}, the set of non-terminals N
and their respective yields being given.

This problem can be solved in a classical way by searching for the shortest
path in |N | graphs as follows. For each non-terminal N ∈ N , we introduce a
directed labeled acyclic graph ΓN . To lighten the notation, we assume that the
yield of N can be written as yieldN = y1 . . . yk. Then, we define the graph ΓN to
have k+1 nodes, namely {1 . . . k+1}, and edge from node i to node i+1 labeled
with yi for each i, and an edge from node i to j + 1 labeled by M if there exists
a non-terminal M different from N such that y[i : j] = yieldM . Intuitively, an
edge from node i to node j + 1 with label M represents a possible replacement
of the occurrence y[i : j] by M . Searching for the smallest path from state 1 to
state k+1 with a classical dynamic programming algorithm allows us to find the
smallest α such that α⇒ yieldN . This procedure is done for each non-terminal.
We denote hereafter Pmin(N) the set of rules obtained by this optimization.

160 R. Carrascosa et al.

3.2 IRR with Occurrence Optimization

We can now define the variant of IRR, called Iterative Repeat Choice with Occur-
rence Optimization (IRCOO) with the pseudo-code given in Algorithm 2. The
smallest path algorithm has complexity O(k×m) for a graph ΓN , where k is the
number of nodes of ΓN (= |yield(N)|) and m = |N |. k is bounded by |s| = n,
so the complexity of computing Pmin is O(n × m2). The computation of the
argmax depends only on the number of repeats, assuming that f is constant, so
that its complexity lies in O(n2). Like for IRR, the total number of times the
while loop is executed is bounded by n. The complexity of this generic scheme
is thus O(n× (n2 + n×m2)).

Algorithm 2. Iterative Repeat Choice with Occurrences Optimization
IRCOO(s, f)
Require: s is a sequence, and f is a score function on words
1: N ← {Ns}
2: P ← {Ns → s}
3: while (∃ω : ω ← argmaxα∈repeats(P)f(α,P))∧

∣∣Pmin(N ∪ {Nyield(ω)})
∣∣ < |P| do

4: N ← N ∪ {Nyield(ω)}
5: P ← Pmin(N)
6: end while
7: return G(P)

As an example, consider again the sequence from Sect. 2.3. After three iter-
ations of IRCOO-MC the words xax, xbx and xcx are chosen, and the Pmin of
these non-terminals and the original sequence results in G∗.

IRRCOO extends IRR by performing a global optimization at each step of
the replaced occurrences but still relies on the classical score functions of IRR
to choose the words to introduce. But the result of the optimization can be used
directly to guide the search in a hill-climbing like approach that we introduce in
the next subsection.

3.3 Widening the Explored Space: The ZZ Algorithm

In this section we divert from IRR algorithms by taking the idea presented
in IRCOO a step forward. In the optimization of the occurrences replacement
performed in Sect. 3.1, the choice of the non-terminals implicitly implied their
yields: there was a direct relation between non-terminals and terminals, but
the focus was on non-terminals. Instead, we can focus on yields and then, the
optimization algorithm can be seen as a procedure that takes a string s and a
set of its substrings as input and that returns the smallest grammar that can be
built from it, provided that the grammar produces s and that, for each substring
in the input set, there exists a non-terminal in the grammar whose yield is the
substring itself. The optimization procedure works as a scoring function for sets

Choosing Word Occurrences for the Smallest Grammar Problem 161

of substrings: the size of the grammar produced by the optimization procedure
is the score of the given set of substrings.

In this section, we take advantage of this idea and present an algorithm,
called Zig Zag (ZZ), that traverses in a hill-climbing way the lattice of the
subsets of repeated substrings of the string s. The search space is a lattice that
has one node for each possible set of repeated substrings of s, and has an edge
from node a to node b if exactly one substring has to be added to the set that
corresponds to a in order to obtain the set that corresponds to b. The bottom
node corresponds to the empty set while the top corresponds to the set of all
repeated substrings of s. The score of a node is defined as the size of a smallest
grammar obtained using the optimization of the occurrences replacement with
s and the substrings in the node. As an example, the score of the bottom node
is the size of grammar S → s and the score of the top node corresponds to the
size of a smallest grammar that has one non-terminal for s and for each repeated
substring of s.

There exists a node in the lattice whose score is the size of a smallest gram-
mar. But, this optimal set of substrings cannot be efficiently computed because
the lattice that has to be explored is exponentially big. ZZ explores it by an
alternation of two different phases: bottom-up and top-down. The bottom-up can
be started at any node, it moves upwards in the lattice and at each step it looks
among its immediate descendants for the one with the lowest score. In order to
determine which is the one with the lowest score, it inspects them all. It stops
when no descendant has a better score than the current one. As in bottom-up,
top-down starts at any given node but it moves downwards looking for the node
with the smallest score among its immediate ancestors. Going up or going down
from the current node is equivalent to adding or removing a substring to or from
the set of substrings in the current node respectively.

ZZ starts at the bottom node, that is, the node that corresponds to the gram-
mar S → s and it finishes when no improvements are made in the score between
two bottom-up–top-down iterations.

For example, suppose that there are 5 substrings that occur more than once in
α and that they all have length greater than two. Let these strings be numbered
from 0 to 4. We start the ZZ algorithm at the bottom node. It inspects nodes
{0}, {1}, {2}, {3}, and {4}. Suppose that {1} produces the best grammar, then
ZZ moves to that node and starts over exploring the nodes above it. Figure 2
shows a part of the lattice being explored. Dotted arrows point to nodes that are
explored while full arrows points to nodes having the lowest score. Suppose that
the algorithm then continues up until it reaches node {1, 2, 3} where it can not
go up any further. Then ZZ starts the top-down phase, going down to node {2, 3}
where it can no go any lower. At this point a bottom-up–top-down iteration is
done and the algorithm starts over again. It goes up, suppose that it reaches
node {2, 3, 4} where it stops. Bold circled nodes correspond to nodes were the
algorithm switches phases, grey nodes corresponds to nodes with the best score
among its siblings.

162 R. Carrascosa et al.

Fig. 2. The fraction of the lattice that is ex-
plored by the ZZ algorithm

Computational Complexity. In the
previous section we showed that
the computational complexity of
computing the score function for
each node is O(n×m2), where n is
the length of the target string and
m is the number of substrings in
the node. Every time ZZ looks for a
substring to add or remove it has to
inspect all possible candidates with
the aim of finding the one that min-
imizes the score. Depending on the
number of substrings that are al-
ready in the node, there might be
at most O(n2) candidate strings.
As a consequence, each step up-
wards or downwards is made in
O(n2 × n ×m2). Next, we need to
give an upper bound for the length
of the path that is potentially tra-
versed by the algorithm. In order to
define it, we first note two impor-
tant properties: the score of the bottom node is equal to n and the score of any
node containing more than n/2 substrings is at least n. The first one is trivially
true, while the second is true because, since every rule body contains at least
two symbols, if there were n/2 rules, then the grammar size would be at least n.
The bottom-up phase visits at most n/2 nodes, and consequently, the top-down
can only go down at most n/2 steps. Adding them together, it turns out that
a bottom-up, top-down iteration traverses at most n nodes. Now, each of these
iteration decreases the score bt at least 1, otherwise the algorithm stops. Since
the initial score is n plus the fact that the score is always positive, it is true
that there can be at most n bottom-up–top-down iterations. This results in a
complexity for the ZZ algorithm of O(n5 ×m2).

4 Experiments

In this section we experimentally compare our algorithms with the classical ones
from the literature. For this purpose we use the Canterbury Corpus [2] which is
a standard corpus for comparing lossless data compression algorithms. Table 1
lists the sequences of the corpus together with their length and number of repeats
of length greater then one.

Not all existing algorithms are publicly available, they resolve in different way
the case when there are more then two words with the best score, they do not
report results on a standard corpus or they use different definitions of size of a
grammar. In order to standardize the experiments and score, we implemented

Choosing Word Occurrences for the Smallest Grammar Problem 163

Table 1. Corpus statistics

sequence length # of repeats
alice29.txt 152,089 220,204
asyoulik.txt 125,179 152,695
cp.html 24,603 106,235
fields.c 11,150 56,132
grammar.lsp 3,721 12,780
kennedy.xls 1,029,744 87,427
lcet10.txt 426,754 853,083
plrabn12.txt 481,861 491,533
ptt5 513,216 99,944,933
sum 38,240 666,934
xargs.1 4,227 7,502

all the offline algorithms presented in this pa-
per in the IRR framework. For the sake of com-
pleteness, we also add to the comparison LZ78
and Sequitur. Note that we have post-processed
the output of the LZ78 factorizations to trans-
form them into context-free grammars. The first
series of experiments aims at comparing these
classical algorithms and are shown in the mid-
dle part of Table 2. On this benchmark, we can
see that IRR-MC outputs always the smallest
grammar, which are in average 4.22% smaller
then those of the second best (IRR-MO), confirming the partial results of [12]
and showing that IRR-MC is the current state-of-the-art practical algorithm for
this problem.

Then we evaluate how the optimization of occurrences improves IRR algo-
rithms. As shown in the IRRCOO column of Table 2, each strategy for choosing
the word is improved by introducing the occurrence optimization. The sole ex-
ceptions are for the MO strategy on grammar.lsp and xargs.1, but the difference
in these cases is very small and the sequences are rather short. More important,
we can see that IRCOO-MC is becoming the new state-of-the-art algorithm,
proposing for each test a smaller grammar than IRR-MC, and being outper-
formed only on plrabn12.txt by IRCOO-MO.

If we are given more time, these results can still be improved by using ZZ. As
shown in column ZZ of Table 2, it obtains in average 3.12% smaller grammars
than IRR-MC, a percentage that increases for the sequences containing natural
language (for instance, for alice29.txt the gain is 8.04%), while it is lower for
other sequences (only 0.1% for kennedy.xls for example). For the latter case,
one can remark that the compression ratio is already very high with IRR-MC and
that it may be difficult or impossible to improve it, the last few points of the per-
centage gain being always the hardest to achieve. As expected, ZZ improves over
previous approaches mainly because it explores a much wider fraction of search
space. Interestingly enough, the family of IRRCO algorithms also improves state
of the art algorithm but still keeps the greedy flavour, and more importantly,
it does so with a complexity cost similar to pure greedy approaches. The price
to be paid for computing grammars with ZZ is its computational complexity.
This problem already showed up with plrabn12.txt, lcet10.txt (where each
repeat individually does not compress much the sequence, so lots of iterations
are necessary) and ptt5 (which contains about 99 millions of repeats).

It is interesting to know whether the structure of the grammars found by oc-
currence optimization are simply some refinements of the ones found by classical
algorithms or whether they differ completely. For the inference of the structure of
the sequence, this is even crucial. This subject deserves a more complete study.
We present here the result of comparing the structures returned by IRR-MC and
ZZ on the typical test case asyoulik.txt. In that case the ZZ grammar is 6.6%
smaller than that of IRR-MC, but using the standard unlabeled precision and

164 R. Carrascosa et al.

recall metric [7], gives an F-measure – which is roughly speaking the measure
of how similar both structures are – is only 34.6%. Moreover, the F-measure of
non-crossing brackets – a measure of how compatible the structures are – is also
very low: 35.8%. We can see that the size improvement achieved by the algorithm
optimizing the choice of the occurrences has a dramatic effect on the structure
found. The same kind of behavior can be already seen between IRR-MC and
IRCOO-MC, the F-measure and the F-measure of non-crossing brackets being
in that case 55.1% and 56.9% respectively, for a size improvement of 2.9%.

Table 2. Grammar sizes on the Canterbury corpus. The files over which ZZ did not
finished are marked with a dash.

Algorithms from the literature Optimizing occurrences
IRR IRCOO

Sequences Sequitur LZ78 MO ML MC MO ML MC ZZ
alice29.txt 49,147 116,296 42,453 56,056 41,000 39,794 5,235 39,251 37,701
asyoulik.txt 44,123 102,296 38,507 51,470 37,474 36,822 48,133 36,384 35,000
cp.html 9,835 22,658 8,479 9,612 8,048 8,369 9,313 7,941 7,767
fields.c 4,108 11,056 3,765 3,980 3,416 3,713 3,892 3,373 3,311
grammar.lsp 1,770 4,225 1,615 1,730 1,473 1,621 1,704 1,471 1,465
kennedy.xls 174,585 365,466 167,076 179,753 166,924 166,817 179,281 166,760 166,704
lcet10.txt 112,205 288,250 92,913 130,409 90,099 90,493 164,728 88,561 –
plrabn12.txt 142,656 338,762 125,366 180,203 124,198 114,959 164,728 117,326 –
ptt5 55,692 106,456 45,639 56,452 45,135 44,192 53,738 43,958 –
sum 15,329 35,056 12,965 13,866 12,207 12,878 13,695 12,114 12,027
xargs.1 2,329 5,309 2,137 2,254 2,006 2,142 2,237 1,989 1,972

5 Conclusions

We propose to separate the choice of the words from the choice of the occurrences
where they are going to be rewritten in algorithms searching for a smallest
grammar. First we improve classical offline algorithms by optimizing at each
step the choice of the occurrences. The separation allowing to define the search
space as a lattice over sets of repeats, we propose then a new algorithm that
explores this search space by adding, but also removing, repeats to the current
set of words.Our experiments show that both approaches outperform state-of-
the-art algorithms.

The optimization of the choice of occurrences opens new perspectives when
searching for the smallest grammars, especially for the inference of the structure
of sequences. In future work, we want to study how this scheme helps actually
to find better structure on real applications.

References

1. Apostolico, A., Lonardi, S.: Off-line compression by greedy textual substitution.
Proceedings of the IEEE (January 2000)

2. Arnold, R., Bell, T.: A corpus for the evaluation of lossless compression algorithms.
In: Data Compression Conference, Washington, DC, USA, p. 201. IEEE Computer
Society, Los Alamitos (1997)

Choosing Word Occurrences for the Smallest Grammar Problem 165

3. Bentley, J., McIlroy, D.: Data compression using long common strings. In: Data
Compression Conference, pp. 287–295 (March 1999)

4. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Transactions on Information
Theory 51(7), 2554–2576 (2005)

5. Evans, S.C., Kourtidis, A., Markham, T., Miller, J.: MicroRNA target detection
and analysis for genes related to breast cancer using MDLcompress. EURASIP
Journal on Bioinformatics and Systems Biology (3) (2007)

6. Kieffer, J., Yang, E.H.: Grammar-based codes: a new class of universal lossless
source codes. IEEE Transactions on Information Theory 46 (2000)

7. Klein, D.: The Unsupervised Learning of Natural Language Structure. PhD thesis,
University of Stanford (2005)

8. Lanctot, J.K., Li, M., Yang, E.H.: Estimating DNA sequence entropy. In: ACM-
SIAM Symposium on Discrete Algorithms, pp. 409–418 (January 2000)

9. Larsson, N., Moffat, A.: Off-line dictionary-based compression. Proceedings of the
IEEE 88(11), 1722–1732 (2000)

10. Marcken, C.D.: Unsupervised language acquisition. PhD thesis, Massachusetts In-
stitute of Technology (January 1996)

11. Nakamura, R., Inenaga, S., Bannai, H., Funamoto, T., Takeda, M., Shinohara, A.:
Linear-time text compression by longest-first substitution. Algorithms 2(4), 1429–
1448 (2009)

12. Nevill-Manning, C., Witten, I.: On-line and off-line heuristics for inferring hierar-
chies of repetitions in sequences. In: Data Compression Conference, pp. 1745–1755.
IEEE, Los Alamitos (2000)

13. Nevill-Manning, C.G.: Inferring Sequential Structure. PhD thesis, University of
Waikato (1996)

14. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences:
A linear-time algorithm. Journal of Artificial Intelligence Research 7 (January
1997)

15. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoretical Computer Science 302(1-3), 211–222
(2003)

16. Sakakibara, Y.: Efficient learning of context-free grammars from positive structural
examples. Inf. Comput. 97(1), 23–60 (1992)

17. Sakamoto, H., Maruyama, S., Kida, T., Shimozono, S.: A space-saving approxi-
mation algorithm for grammar-based compression. IEICE Transactions 92-D(2),
158–165 (2009)

18. Schuegraf, E.J., Heaps, H.S.: A comparison of algorithms for data base compression
by use of fragments as language elements. Information Storage and Retrieval 10,
309–319 (1974)

19. Wolff, J.: An algorithm for the segmentation of an artificial language analogue.
British Journal of Psychology 66 (1975)

20. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23(3), 337–343 (1977)

21. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)

Agreement and Cliticization in Italian:
A Pregroup Analysis

Claudia Casadio

University G. D’Annunzio - Chieti
casadio@unich.it

Abstract. This paper presents an analysis of features specification and
agreement based on the parallel computations of a type calculus involv-
ing two pregroups grammars: the free pregroup of syntactic types that
takes care of the syntactic calculations, and a second free pregroup com-
puting feature operations. As recently argued in [19] , working with two
free pregroups in parallel has the advantage of treating featural informa-
tion more carefully and independently from the type assignments; the
calculus is therefore particularly appropriate for the analysis of agree-
ment properties in Romance languages. In the paper we focus on the
Italian language, introducing a type syntax of the verbal constructions
in which clitic pronouns occur and offering an explanation of the inter-
action between agreement features and clitic pronouns.

1 The Pregroup Calculus in Linguistic Analysis

The calculus of pregroups is introduced by Lambek in [15] as an alternative
to his Syntactic Calculus [14], a well known model of categorial grammar (see
[21]). The calculus of pregroups is a particular kind of substructural logic that
is compact and non-commutative ([3], [4]; [2]; [15], [17]). Pregroups in fact are
non-conservative extensions of classical non-commutative linear logic in which
left and right iterated negations, equivalently left and right iterated adjoints,
do not cancel ([1]; [6]; [9]; [5]). The calculus of pregroups has been applied to a
variety of natural languages and many relevant linguistic dimensions have been
successfully addressed (see e.g. [16] [17] [18]; for a survey, see [9]).

1.1 Basic Properties of Pregroups

A pregroup {G, . , 1, �, r,→} is a partially ordered monoid in which each element
a has a left adjoint a�, and a right adjoint ar such that

a�a → 1 → a a�

a ar → 1 → ara

where the dot “.”, that is usually omitted, stands for multiplication with unit
1, the arrow denotes the partial order, the rules a�a → 1 , a ar → 1 are called
contractions, and the opposite rules 1 → a a�, 1 → ara are called expansions.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 166–177, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Agreement and Cliticization in Italian: A Pregroup Analysis 167

When considering linguistic applications, the constant 1 stands for the empty
string of types, and multiplication is interpreted as concatenation. The following
principles are proven showing that the constant 1 is self-dual, adjoints are unique
and contravariant, and iterated adjoints can be obtained (in fact double adjoints
play a relevant role in linguistic applications [6], [9]).

1� = 1 = 1r ,
(a · b)� = b � · a � , (a · b)r = b r · a r ,
a→ b

b� → a� ,
a→ b
br → ar ,

b� → a�

a�� → b�� ,
br → ar

arr → brr .

In the pregroup calculus one can prove the following equation

ar� = a = a�r ,

allowing the cancellation of double opposite adjoints, and the rules,

a�� a� → 1 → a� a�� , ar arr → 1 → arr ar ,

contracting and expanding identical left and right double adjoints respectively.
Just the contractions a� a → 1 and a ar → 1 are needed to determine the
constituent analysis of a linguistic expression, and to show that a string of words
is a sentence; on the other hand, the expansions 1 → a a� , 1 → ara are useful
for representing general structural properties (see e.g. [22]).

At the syntactic level, a pregroup is freely generated by a partially ordered set
of basic types. From each basic type a we form simple types by taking single or
repeated adjoints: . . . a��, a�, a, ar, arr. . . . A compound type or just a type is
a string of simple types: a1 a2 . . . an. A basic type is a type (for n = 1).

Developing a pregroup grammar for a language such as Italian, consists in two
main steps: (i) assign one or more (basic or compound) types to each word in the
dictionary; (ii) check the grammaticality and sentencehood of a string of words
by a calculation on the corresponding types, where the only rules involved are
contractions and ordering postulates such as α→ β (α, β basic types). Language
specific conditions on strings of types called metarules can also be added to
the lexicon of the grammar, in order to simplify lexical assignments and make
syntactic calculations quicker, but they will not be used in the present context.

1.2 Extension to Multiple Pregroups

In many languages, particularly in Romance languages, features specification and
agreement play a relevant role; for example in Italian you say: tu sei arrivato or
tu sei arrivata “you have arrived”, depending on the subject being masculine
or feminine; you also have more complex cases involving cliticization: lui vuole
averla abbracciata/*abbracciato “he wants to have embraced her”, where the
clitic pronoun la agrees in gender (feminine) and number (singular) with the
past participle of the verb abbracciare “to embrace”; i libri, li volevo avere letti
tutti “the books, I would have read them all”, where the clitic pronoun li agrees

168 C. Casadio

in gender (masculine) and number (plural) with the noun i libri (its antecedent),
the past participle of the verb leggere “to read” and the adjective tutti “all”.

To carry out correct computations on features such as gender, number and
person while processing the syntactic types assigned to the words of the language
under investigation, we introduce a second free pregroup: the feature pregroup,
working in parallel with the pregroup of syntactic types. Feature types will be
defined separately from the syntactic types and they will be written below the
latter, while the string of types is processed, in the same style of [19]. Similar
strategies of processing types and features in parallel have been proposed by Ed
Stabler e.g. [24], and by some students of Brendan Gillon, e.g. [13]; in turn Anne
Preller and Violaine Prince in [23] prefer to assign featural informations to types
(see [10] for details).

2 A Pregroup Grammar for Italian

In this section we introduce the pregroup grammar for the Italian language ([10],
[8], [7]). The syntactic free pregroup for Italian is generated by the following
partially ordered set of basic types:

s, s declarative sentences
i, ı̃, ı, i∗, j, j, ı infinitive clauses
π subject
o direct object
ω indirect object
λ locative phrase

The type π is assigned to the subject, in nominative case, the types o, ω, λ, to
the arguments of the verb, in accusative, dative and locative case respectively;
the type s is assigned to the expansions of declarative sentences of type s; the
type ı is the maximal projection of a variety of infinitival complements i, ı̃, ı,
i∗, j, j, where the bar notation is inspired to Chomsky’s X-bar theory [11]. The
following types are assigned to a few representative verbs: intransitive verbs like
correre and verbs taking different kinds of complements

(1) (to see) vedere : i , i o�

(2) (to obey) obbedire : i , i ω�

(3) (to give) dare : i ω�o� , i o�ω�

(4) (to put) mettere : i λ�o� , i o�λ�

(5) (to arrive) arrivare : i∗ , i∗λ� .
(6) (to run) correre : i , i λ�

The star on i∗ is a reminder that the perfect tense is to be formed with the
auxiliary essere rather than avere, producing infinitival phrases of type i∗, rather
than of type i.

2.1 Verbs and Verb Phrases

The following examples show how the verb types combine via contraction with
the proper arguments to give the expected infinitives of type i (simple types are

Agreement and Cliticization in Italian: A Pregroup Analysis 169

assigned to the verb complements such as the direct object phrases un quadro,
un libro, the indirect object phrase a Carla, etc.):

(1) vedere un quadro︸ ︷︷ ︸ “to see a picture”

(i o�) o → i
(2) obbedire a Mario︸ ︷︷ ︸ “to obey to Mario”

(i ω�) ω → i
(3a) dare un libro︸ ︷︷ ︸ a Carla︸ ︷︷ ︸ “to give a book to Carla”

(i ω� o�) o ω → i
(3b) dare a Carla︸ ︷︷ ︸ un libro︸ ︷︷ ︸ “to give Carla a book”

(i o� ω�) ω o → i
(4) mettere un libro︸ ︷︷ ︸ sul tavolo︸ ︷︷ ︸ “to put a book on the table”

(i λ� o�) o λ → i
(5) arrivare a Roma︸ ︷︷ ︸ “to arrive to Rome”

(i∗ λ�) λ → i∗

(6) correre sul prato︸ ︷︷ ︸ “to run in the meadow”

(i λ�) λ → i

Some of the above verbs take more than one type, e.g. vedere is used intran-
sitively as a word of type i and transitively as a word of type i o�. The verb
dare takes two types to combine with the direct object o (what is given) and the
indirect object ω (the receiver) in both orders: o ω vs. ω o; postverbal comple-
ments exchange is in fact a regular phenomenon in Italian. When attaching to a
clitic, the final letter of the infinitive is dropped and the resulting short infinitive
changes the type as follows (the purpose of the bar will become clear later):

veder : ı o � ;
obbedir : ı ω � ;
dar : ı ω� o � , ı o� ω � ;
metter : ı λ� o � , ı o� λ� ;
arrivar : ı∗ λ� .

2.2 The Auxiliary Verbs

Italian has two auxiliary verbs: avere “to have” and essere “to be”; differently
from English, both are selected by active verbs, but essere is also required in
passive forms. The perfect infinitive is formed from the past participle with the
help of the two auxiliary verbs. In these contexts avere requires the type ip�

2 ,
where p2 is the type of the past participle of a verb with infinitive of type i, e.g.
the type of visto “seen” when vedere “to see” is used intransitively. We analyze
the past participles as generated in the grammar by means of the following perf

inflection of type p2i�, applying both to transitive and intrasitive verbs

perf (vedere) = visto perf (vedere) = visto
(p2 i�) i → p2 (p2 i�) (i o�) → p2 o�

170 C. Casadio

Here are some examples of past participles infinitives with the auxiliary avere

avere visto un libro ,
= avere perf (vedere) (un libro)

(i p�
2) (p2 i�) (i o�) o → i

avere dato un libro a Mario ,
= avere perf (dare) (un libro) (a Mario)

(i p�
2) (p2 i�) (i ω� o�) o ω → i

A number of intransitive verbs require the auxiliary essere for forming the perfect
infinitive, e.g. the motion verb arrivare “arrive” with the two types i∗ or i∗λ�,
and past participle arrivato. In these contexts essere is assigned the type: i∗p∗

2
�

while the perf inflection takes the type: p∗
2 i∗� . This example illustrates how

the perfect infinitive of the starred verbs is formed:

essere arrivato ,
= essere perf (arrivare)

(i∗p∗
2

�) (p∗
2 i∗�) i∗ → i∗

In the following, we will assume that the perf inflection has already been applied
and will assign the past partiples the resulting types p2, p∗

2, p2o�, and so on.

2.3 Finite Verb-Forms and Declarative Sentences

To produce sentences we need finite verb forms that we obtain by associating
to each Italian verb V a matrix Vjk of 7 × 6 = 42 finite verb-forms, where
the subscript j = 1, ... ,7 denotes tenses (respectively, present, imperfect, past,
future in indicative mood; present and past subjunctive; present conditional),
and the subscript k = 1, 2, 3 denotes the three persons singular, while k = 4, 5,
6 denotes the three persons plural. We shall use the types

sj for declarative sentences in j-th tense ,
πk for k-th person subject .

and confine our attention to the cases: j = 1 (present tense), j = 2 (past tense),
and k = 1 (first person) or k = 3 (third person). For example, in the sentence

“I see a girl”
(io) vedo (una ragazza) ,
π1 (πr

1 s1 o�) o → s1

the optional pronoun io has type π1, and the first person verb form vedo “I
see” has type (πr

1 s1 o�). The properties of the inflectional system represented
by the conjugation matrix Vjk play a crucial role in word order and constituent
formation in Italian and, following [8], we assume that Vjk is obtained from the
infinitive V by an inflector Cjk such that

Cjk(V) = Vjk .

Agreement and Cliticization in Italian: A Pregroup Analysis 171

3 Clitic Pronouns and Agreement in Italian

Italian, like Spanish and Portuguese, has both preverbal and postverbal clitic
pronouns. We will concentrate on the preverbal clitics in the accusative, dative
and locative cases and shall ignore other kinds of clitics such as the partitive
ne or the possessive si. We also shall not take into consideration the postverbal
occurences of clitic pronous (treated in details in [8]).

3.1 Preverbal Clitics

The following is the list of clitics and their types when used preverbally:

mi, ti, ci, vi : j o�� i�

Accusative

lo, la, li, le : j o�� i�

mi, ti, ci, vi, gli, le : j ω�� i� , j ∗ ω�� i∗�

Dative

me, te, ce, ve, se, glie : j ω�� j �

se : j∗ ω�� j �

ci, vi : j λ�� i� , j ∗ λ�� i∗�

Locative

ce, ve : j λ�� j �

We introduce four new basic types for infinitives j , j ∗, j , j∗ and determine
their relations by postulating j → j , j ∗ → j∗ , but i
→ j
→ i. It follows that
infinitives of type j cannot be preceded by any clitics and infinitives of type j
only by clitics such as me and ce. We have double clitics such as

me . lo ,
(j ω�� j �) (j o�� i�) → j ω�� o�� i� .

Here are some illustrations of preverbal clitics where the under-links show how
contractions apply to produce the computation leading to the required type

me . lo dare ,
(j ω�� o�� i�) (i o�ω�) → j

ce . lo mettere ,
(j λ�� o�� i�) (i o�λ�) → j

lo vedere , ci arrivare .
(j o�� i�) (i o�) → j (j ∗ λ�� i∗�) (i∗λ�) → j∗

172 C. Casadio

Partial cliticization can be obtained with double complements verbs

mi dare un libro , lo dare a Mario ,
(j ω�� i�) (i ω�o�) o → j (j o�� i�) (i o�ω�) ω → j

but the following computations are not allowed as shown by the invalid links

*mi dar . lo , *mi dare lo .
(j ω�� i�) (ı ω� o �) ô (j ω�� i�) (i ω�o�) ô

/ /

excluding the ungrammatical strings in which preverbal and postverbal clitics
occur together by means of the order conditions on the types hierarchy ı
→ i ,
ô → o , ô
→ o . (see [8], 115).

3.2 The Modal Verbs

The group of modal verbs potere, volere, dovere requires the following types for
their extended infinitive and short infinitive

potere, volere, dovere : i ı � , i∗ ı ∗� ; poter, voler, dover : ı j� , ı ∗j∗�

and here are a few illustrative examples

“must obey to Dario” “must to him obey”
dovere obbedire (a Dario) , dover . gli obbedire ,

(i ı �) (i ω�) ω → i (ı j�) (jω��i�) (i ω�) → ı

poter . me . lo dare , me . lo potere dare ,
(ı j�) (j ω��o�� i�) (i o�ω�) → ı (j ω��o�� i�) (i ı �) (i o�ω�) → j

ci potere arrivare , poter . ci arrivare ,
(j ∗λ��i∗�) (i∗ ı ∗�) (i∗λ�) → j ∗ (ı ∗j∗�) (j ∗λ��i∗�) (i∗λ�) → ı ∗

Modal verbs allow repetition, not only

potere volere , but even potere potere , and potere poter,
(i ı �)(i ı �) → i ı � (i ı �)(i ı �) → i ı � (i ı �)(ı j�) → i j� .

In these examples we can replace i by i∗ and j by j ∗. Modal verbs interact with
the auxiliary verbs avere and essere as shown by the following examples

potere avere visto un libro ,
= potere avere Perf (vedere) (un libro)

(i ı �) (ip�
2) (p2i�) (i o�) o → i

Agreement and Cliticization in Italian: A Pregroup Analysis 173

avere potuto vedere un libro ,
= avere Perf (potere) vedere (un libro)

(ip�
2) (p2i�) (i ı �) (i o�) o → i

3.3 Agreement with Past Participles and Auxiliary Verbs

In Italian, like in other Romance languages, past participles are similar to ad-
jectives and when they occurr with the auxiliary verb essere they change the
final vowel o to a, i or e, depending on the gender and number of the preceding
subject, e.g. essere arrivata (*arrivato), when the subject is singular and femi-
nine, but essere arrivati (*arrivate), when the subject is plural and masculine.
When cliticization occurs, a similar agreement of features is required also with
the auxiliary verb avere, as shown in these examples

(1) avere visto una ragazza (to have seen a girl)
(2) poter.la avere vista (*visto) (may have seen[fem] her)
(3) avere dato una lettera a Dario (to have given a letter to Dario)
(4) poter.la avere data (*dato) a Dario (may have given[fem] it[fem] to Dario)
(5) avere messo il libro sul tavolo (to have put the book on the table)
(6) poter.lo avere messo (*messa) sul tavolo (have put[masc] it[masc] on the table)

Following the strategy of adding featural information to syntactic types, we
would obtain derivations like the following where the type of the past participle
arrivata is specified for the feature f requiring a subject in the feminine gender

potere essere (arrivata) ,
(i∗ ı ∗�) (i∗p∗

2
�) p∗

2f → i

but we would be in trouble when trying to assign features to compound types
like in the following examples

“to have seen a girl” “may her have seen”
avere visto (una ragazza) , poter . la avere vista ,

(i p�
2) (p2 o

�) o → i (ı j�) (jo��i�)f (i p�
2) (p2 o

�)f → ı

An elegant and efficient solution to this problem is offered by the strategy of
carrying out the computation on features in parallel with the computation on
syntactic types, as suggested by [19]. We shall then introduce a second pregroup,
freely generated from a set of basic feature types πij , that will be written below
the original syntactic types. We introduce the basic types πkg, πng with the
feature specifications: k = 1 to 6 for the six verbal persons ; n = s (singular) or
p (plural) for number ; g = f (feminine) or m (masculine) for gender. The set of
basic feature types will include e.g.

feminine feminine masculine masculine
singular plural singular plural
πf s πf p πms πmp

174 C. Casadio

Here are some example of the multiple type assignments allowed by the parallel
computations obtained by working with the syntactic pregroup and the feature
pregroup; on the left side, the constant 1 occurs in the positions in which no
feature specification is needed, while on the right side it occurs to indicate that
features do agree, i.e. they contract to 1.

She may have-been arrived
Lei può essere arrivata
π3 (πr

3 s1 ı �) (i∗p∗
2

�) p∗
2 → s1

π3f 1 1 πr
3f → 1

may her have seen
poter . la avere vista ,
(ı j�) (jo��i�) (i p�

2) (p2 o
�) → ı

1 π3f 1 πr
3f → 1

Following [19], we assume that the feature system for Italian will observe the
relations given below, where the irreversible horizontal arrows forget gender,
while the vertical arrows forget person.

=
πkg −→ πk

=
⏐⏐
 ⏐⏐

=
πng −→ π

=

On this basis one can approach the analysis of full sentences in which both
agreement to the subject and to the object are required, where the former is
embedded into the inflected verb type and the latter is conveyed by the clitic
pronoun

He her may have seen
Lui la può avere vista
Lui C13 (la potere) avere vista
π3 (πr

3 s1 ı �) (j o��i�) (i ı�) (ip�
2) (p2 o

�) → s1
π3m πr

3m π3f 1 (πr π3f) πr
3f → 1

In the example the following relations hold
π3m πr

3m → πsg π
r
sg → πng π

r
ng → π πr → 1 ;

π3f π
r → πsg π

r → πng π
r → π πr → 1 ;

π3f π
r
3f → πsg π

r
sg → πng π

r
ng → π πr → 1 .

3.4 Cliticization with Modal and Auxiliary Verbs

Clitics can occurr both after the modal verb, e.g. poter.lo avere visto “may-it
have seen” and after the auxiliary verb potere aver.lo visto “may have-it seen”.
This phenomen, known as clitic movement or clitic climbing ([26]; [25]; [12]; [20]),

Agreement and Cliticization in Italian: A Pregroup Analysis 175

will be addressed in the last part of the final version of the paper. Up to now we
have introduced eight different basic types

i → ı , j → j , i∗ → ı∗ , j ∗ → j ∗

all representing complete infinitival phrases; we subsume all of them under a
single basic type ı , by postulating

ı , j , ı∗ , j ∗ → ı

3.5 Finite Verb-Forms and Declarative Sentences

To form declarative sentences, we apply the Inflector Cjk not only to plain
infinitives such as vedere, but also to extended infinitives including auxiliaries
and modal verbs ([8], [19]). We assign the following types to this inflector:

Cjk : πr
k sj ı � , sj ı � ,

the former if the optional subject is present, as we shall assume from now on.
We conclude this section by looking at some examples of declarative sentences

in the present tense involving pre-verbal cliticization.

(io) te . lo do (I give it to you)

= io C11 (te . lo dare)
π1 (πr

1 s1 ı �) (j ω��o�� i�) (i o�ω�) → s1 (j → ı)

Dario lo vuole vedere (Dario wants to see it)

= Dario C13 (lo volere) vedere
π3 (πr

3 s1 ı �) (j o�� i�) (i ı �)(i o�) → s1 (j → j → ı)

(io) te . lo devo dare (I must give it to you)

= io C11 (te . lo dovere) dare

π1 (πr
1 s1 ı �) (j ω��o�� i�)(i ı �) (i o�ω�) → s1 (j → ı)

* (io) devo te . lo dare ,
= io C11 (dovere) te . lo dare

π1 (πr
1 s1 ı �) (i ı �)(j ω��o�� i�) (i o�ω�) (j
→ ı)

/

176 C. Casadio

(io) lo ho visto (I have seen it)

= io C11 (lo avere) Perf (vedere)
π1 (πr

1 s1 ı �) (j o�� i�)(ip�
2)(p2 i�)(i o�) → s1 (j → j → ı)

* (io) ho lo visto
= io C11 (avere) Perf (lo vedere)

π1 (πr
1 s1 ı �) (ip�

2)(p2 i�)(j o�� i�)(i o�) (j
→ i)
/

4 Conclusions

We have applied the calculus of pregroups to a selected set of Italian sentences
involving clitic pronouns and agreement requirements; in doing so we have pre-
sented some evidence of the theoretical and computational advantages offered
by the parallel computations of a calculus involving two pregroups: the free
pregroup of syntactic types and the free pregroup independently taking care
of features calculations. The paper also presents an essential, but relatively ar-
ticulate, analysis of the syntax of Italian verbal constructions and cliticization
domains, involving axiliaries, modal verbs and past participles.

References

1. Abrusci, M.: Classical conservative extensions of Lambek calculus. Studia Log-
ica 71, 277–314 (2002)

2. Barr, M.: On subgroups of the Lambek pregroup. Theory and Application of Cat-
egories 12(8), 262–269 (2004)

3. Buszkowski, W.: Lambek grammars based on pregroups. In: de Groote, P., Morrill,
G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 95–109. Springer,
Heidelberg (2001)

4. Buszkowski, W.: Pregroups: Models and grammars. In: de Swart, H. (ed.) RelMiCS
2001. LNCS, vol. 2561, pp. 35–49. Springer, Heidelberg (2002)

5. Buszkowski, W.: Type logics and pregroups. Studia Logica 87(2-3), 145–169 (2007)
6. Casadio, C.: Non-commutative linear logic in linguistics. Grammars 4(3), 167–185

(2001)
7. Casadio, C.: Applying pregroups to Italian statements and questions. Studia Log-

ica 87, 253–268 (2007)
8. Casadio, C., Lambek, J.: An algebraic analysis of clitic pronouns in Italian. In: de

Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp.
110–124. Springer, Heidelberg (2001)

9. Casadio, C., Lambek, J.: A tale of four grammars. Studia Logica 71(2), 315–329
(2002)

10. Casadio, C., Lambek, J. (eds.): Recent Computational Algebraic Approaches to
Morphology and Syntax. Polimetrica, Milan (2008)

Agreement and Cliticization in Italian: A Pregroup Analysis 177

11. Chomsky, N.: Lectures on Government and Binding. Foris, Dordrecht (1981)
12. Klavans, J.L.: Some Problems in a Theory of Clitics. Indiana Ling. Club, Bloom-

ington (1982)
13. Kusalik, T.: Product pregroups as an alternative to inflectors. In: Casadio, C.,

Lambek, J. (eds.) Recent Computational Algebraic Approaches to Morphology
and Syntax, pp. 173–190. Polimetrica, Milan (2008)

14. Lambek, J.: The mathematics of sentence structure. American Math. Monthly 65,
154–169 (1958)

15. Lambek, J.: Type grammar revisited. In: Lecomte, A., Perrier, G., Lamarche, F.
(eds.) LACL 1997. LNCS (LNAI), vol. 1582, pp. 1–27. Springer, Heidelberg (1999)

16. Lambek, J.: Type grammar meets German word order. Theoretical Linguistics 26,
19–30 (2000)

17. Lambek, J.: A computational algebraic approach to English grammar. Syntax 7(2),
128–147 (2004)

18. Lambek, J.: From word to sentence: a pregroup analysis of the object pronoun
who(m). Journal of Logic, Language and Information 16, 303–323 (2007)

19. Lambek, J.: Exploring feature agreement in French with parallel pregroup compu-
tations. Journal of Logic, Language and Information 19(1), 75–88 (2010)

20. Monachesi, P.: A Grammar of Italian Clitics. ITK Dissertation Series, Tilburg
(1995)

21. Moortgat, M.: Categorical type logics. In: van Benthem, J., ter Meulen, A. (eds.)
Handbook of Logic and Language, pp. 93–177. Elsevier, Amsterdam (1997)

22. Preller, A., Lambek, J.: Free compact 2-categories. Math. Structures for Comp.
Sciences 17, 309–340 (2007)

23. Preller, A., Prince, V.: Pregroup grammars with linear parsing of the French verb
phrase. In: Casadio, C., Lambek, J. (eds.) Recent Computational Algebraic Ap-
proaches to Morphology and Syntax, pp. 53–84. Polimetrica, Milan (2008)

24. Stabler, E.P.: Tupled pregroup grammars. In: Casadio, C., Lambek, J. (eds.) Re-
cent Computational Algebraic Approaches to Morphology and Syntax, pp. 23–52.
Polimetrica, Milan (2008)

25. Wanner, D.: The Development of Romance Clitic Pronouns. In: From Latin to Old
Romance. Mouton de Gruyter, Amsterdam (1987)

26. Zwicky, A.M., Pullum, G.K.: Cliticization vs. inflection: English n’t. Language
59(3), 502–513 (1983)

Geometricity of Binary Regular Languages

Jean-Marc Champarnaud, Jean-Philippe Dubernard, and Hadrien Jeanne

LITIS, University of Rouen, France
{jean-marc.champarnaud,jean-philippe.dubernard}@univ-rouen.fr,

hadrien.jeanne@univ-rouen.fr

Abstract. Our aim is to present an efficient algorithm for checking whether a
regular language is geometrical or not, based on specific properties of its mi-
nimal automaton. Geometrical languages have interesting theoretical properties
and they provide an original model for off-line temporal validation of real-time
softwares. As far as implementation is concerned, the regular case is of practical
interest, which motivates the design of an efficient geometricity test addressing
the family of regular languages. This study generalizes the algorithm designed by
the authors for the case of prolongable binary regular languages.

Keywords: regular language, minimal automaton, geometrical language.

1 Introduction

Geometrical languages were introduced in [2], with two motivations: the modeling of
real-time task systems and the generalization of the class of regular languages com-
monly used to solve temporal validation problems. Computing the feasibility of a real-
time software [1] consists of checking whether there exists a scheduling sequence that
leads every task to be completed by its deadline. It can be achieved through a model
based on regular languages [5] or a model based on discrete geometry [7,5]. Geometri-
cal languages are intended to connect these two models. The challenge is to make use of
geometrical properties in order to design new and efficient automata-based algorithms.

Given a d-dimensional space associated with an alphabet Σ = {a1, . . . , ad}, a geo-
metrical figure is a subset of points of Nd including the origin of the reference and such
that, for any point in the figure, there exists a trajectory (from the origin) to this point.
A geometrical figure can be seen as a (not-necessarily-finite) automaton: each point of
the figure is a state, the origin of the reference is the initial state, every state is final, and
given two points P = (x1, . . . , xd) and P ′ = (x′1, . . . , x′d) of the figure there exists an
implicit transition with label ai from P to P ′ if and only if x′i = xi + 1 and ∀j
= i,
x′j = xj . Hence we can define the language of a geometrical figure as well as the geo-
metrical figure of a language. Finally, a language is said to be geometrical if and only if
the language of its prefixes is equal to the language of its geometrical figure. Studying
the properties of the (not-necessarily-regular) geometrical languages turns out to be of
both theoretical and practical interest as reported in [2].

Geometrical regular languages have been characterized in [3] both in terms of lan-
guages and in terms of automata. These characterizations concern the whole family
of regular languages. However, the algorithm presented in [3] only addresses the case

A.-H. Dediu, H. Fernau, and C. Martı́n-Vide (Eds.): LATA 2010, LNCS 6031, pp. 178–189, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Geometricity of Binary Regular Languages 179

where the construction of infinite and periodic trajectories is possible from any point of
the figure, that is the case of prolongable languages (L is a prolongable language if and
only if for all u in L, there exists x in Σ such that u · x ∈ L). In this paper we show
how to handle the general case and we present a new efficient algorithm for implemen-
ting the automaton-based characterization. As in [3], we investigate binary languages,
geometrical arguments being more easily developed in the 2-dimensional case.

The following two sections recall fundamental notions concerning languages, finite
automata and d-dimensional geometrical languages. The next sections are devoted to
the 2-dimensional case and they address not-necessarily-prolongable languages. Sec-
tion 4 introduces new properties of the trajectories of a geometrical figure that allow us
to prove the correctness of the geometricity test presented in Section 5. A polynomial
algorithm is described and analyzed in Section 6.

2 Preliminaries

Let us first review basic notions concerning regular languages and finite automata. For
a comprehensive treatment of this domain, reference [4] can be consulted.

Let Σ be a nonempty finite set of symbols, called the alphabet. A word over Σ is a
finite sequence of symbols, usually written x1x2 · · ·xn. The length of a word u, denoted
by |u|, is the number of symbols in u. The empty word, denoted by ε, has a length equal
to zero. If u = x1 · · ·xn and v = y1 · · · ym are two words over the alphabet Σ, their
concatenation u · v, usually written uv, is the word x1 · · ·xny1 · · · ym. Let Σ∗ be the
set of words over Σ. Given two words u and w in Σ∗, u is said to be a prefix (resp. a
suffix) of w if there exists a word v inΣ∗ such that uv = w (resp. vu = w). Let u ∈ Σ∗

and let 0 ≤ k ≤ |u|; the prefix (resp. suffix) of length k of u is denoted by [u]k (resp.
[u]k). The set of words of Σ∗ of length less than k is denoted by Σ<k. A language L
overΣ is a subset of Σ∗. The set of prefixes of the words of the language L is denoted
by Pref(L). A language L is said to be prefix-closed if and only if L = Pref(L). The
set of regular languages over an alphabet Σ contains the empty set and the set {a} for
all a ∈ Σ. and it is closed under finite concatenation, finite union and star.

A deterministic finite automaton (DFA) is a 5-tuple A = (Q,Σ, δ, s0, T) where Q
is a finite set of states, δ is a mapping from Q×Σ to Q, s0 is the initial state and T is
the set of final states. For all (p, x) ∈ Q×Σ, we will write p · x instead of δ(p, x); the
3-tuple (p, x, q) in Q×Σ ×Q is said to be a transition if and only if q = p · x. A DFA
A is said to be complete if for any q ∈ Q and any a ∈ Σ, |q · a| = 1. In a complete
DFA there may exist a sink state σ such that σ
∈ T and, for all x ∈ Σ, σ · x = σ.

Let p ∈ Q and u = u1 · · ·ul ∈ Σ∗. The path (p, u) of length l starting from p
and labeled by u is the sequence of transitions (p0, u1, p1), . . ., (pl−1, ul, pl)), with
p0 = p. A path (p, u) is said to be successful if p = s0 and p · u ∈ T . The language
L(A) recognized by the DFA A is the set of words that are labels of successful paths.
Kleene’s theorem [6] states that a language is recognized by a finite automaton if and
only if it is regular. The left language

←−
LA

q (resp. right language
−→
LA

q) of a state q is the
set of words w such that there exists a path in A from s0 to the state q (resp. from q to
a final state) with w as label. A DFA A is said to be accessible if for any q ∈ Q there
exists a path from s0 to q. A complete and accessible DFA A is minimal if and only

180 J.-M. Champarnaud, J.-P. Dubernard, and H. Jeanne

if any two distinct states of A have distinct right languages. According to the theorem
of Myhill-Nerode [8,9], the minimal DFA of a regular language is unique up to an
isomorphism.

Let Σ be an ordered alphabet of size d and≺ be the graded lexicographic order over
Σ∗. Let A = (Q,Σ, δ, s0, T) be a DFA. The d-ary prefix tree of A is defined from
the mapping ϕ : Q → Σ∗ such that ϕ(q) = min≺{u ∈ Σ∗ | s0 · u = q}. The set
ϕ(Q) is a prefix-closed set of Σ∗. The labeled tree TA = (V, U,Σ) with V = ϕ(Q)
and U = {(ϕ(p), a, ϕ(q)) | ϕ(p) ≺ ϕ(q) ∧ (p, a, q) ∈ δ} is the prefix tree of A. The
one-to-one ϕ mapping fromQ to V is the canonical labeling of the automatonA.

Let us denote by < the lexicographic order over Σ∗. Given two words u and v in
Σ∗, u is said to be smaller (resp. greater) than v if and only if u < v (resp. v < u) and
u is said to be longer (resp. shorter) than v if and only if |u| > |v| (resp. |v| > |u|).

3 Geometrical Languages

Let us now review basic definitions and properties of geometrical languages, as intro-
duced in [2]. Let d be a positive integer and Σ = {a1, . . . , ad} be an alphabet. The
Parikh mapping [10] c : Σ∗ −→ Nd maps a word w to its d-dimensional coordinate
vector (|w|a1 , . . . , |w|ad

). In particular, for all 1 � k � d, c(ak) is the coordinate
vector (0, 0, . . . , 1, . . . , 0) where 1 is in the k-th position. The point with coordinate

(0, 0, . . . , 0) is denoted by O. For any point P in Nd, we write P instead of
−−→OP . The

level of the point P = (x1, . . . , xd) is level(P) = x1 + . . .+ xd.

a

b

Fig. 1. F1 = {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1)}

Let F be a subset of Nd and P be a point in F . A trajectory of length l of F starting
from P is a sequence T = (Pi)1≤i≤l of points of F , such that P0 = P and for all
i, 1 � i � l, there exists an integer ki, 1 � ki � d such that Pi = Pi−1 + c(aki).
Notice that if such an integer ki exists then it is unique, since the coordinate vector of
a point is unique. Hence the sequence T is defined by a unique word u = ak1 · · · akl

.
Thus a trajectory starting from a point P is equivalently defined by a sequence T of
points or by a pair (P, u) in F ×Σ∗. The word associated with a trajectory T is denoted
by word(T) and the trajectory associated with a pair (P, u) is denoted by traj(P, u).
The set of points of a trajectory T = (P, u) is denoted by points(P, u). The set of

Geometricity of Binary Regular Languages 181

trajectories of F starting from P is denoted by Traj(P, F). We will also say segment
for a trajectory of finite length. Let P and P ′ be two points of F ; the point P ′ is said to
be accessible from P if and only if it belongs to a trajectory starting from P .

Definition 1. A d-dimensional geometrical figure F is a (possibly empty) subset of Nd

every point of which is accessible from O.

Figure 1 represents a 2-dimensional geometrical figure. The geometrical figure of a
language L ⊆ Σ∗ is defined by F(L) =

⋃
w∈Pref(L) points(O, w). The language of a

geometrical figure F is defined by L(F) = {word(T) | T ∈ Traj(O, F)}.
Definition 2. The language L is geometrical if and only if Pref(L) = L(F(L)).

For any language L, Pref(L) ⊆ L(F(L)). Some languages however are such that
L(F(L)) � Pref(L). For instance, the two languages {a, ba} and {ab, ba} have the
same geometrical figure; the former one is not geometrical, whereas the latter one is.
The next proposition provides a characterization of geometricity in terms of languages.

Proposition 1. [2] Let Σ = {a1, . . . , ad} and L ⊆ Σ∗. The following two conditions
are equivalent: (1) L is geometrical.
(2) ∀u, v ∈ Pref(L), ∃k, 1 ≤ k ≤ d, c(u · ak) = c(v)︸ ︷︷ ︸

(∗)

⇒ u · ak ∈ Pref(L)

For example, let Σ = {a, b} and L = {a, ba, bb}. Then the Condition (∗) is satisfied
by the words u = a and v = ba, since c(u)+ (0, 1) = c(v). According to Proposition 1
and since ab
∈ Pref(L), L is not geometrical.

We now translate Proposition 1 in terms of automata. In the following, L is a regular
language, A = (Q,Σ, δ, s0, T) is the minimal DFA of Pref(L) and F = F(L) is the
geometrical figure of L. The sink state of A is denoted by σ (if it exists). Proposition 2
is restated from Corollary 11 and Proposition 13 of [3]. The idea is that a transition
should exist in the automatonA every time an implicit transition exists in the figure F .

Definition 3. The relation State in Nd ×Q is defined as follows: given P in Nd and p
in Q, (P, p) is in State, if and only if either P
∈ F and p = σ, or P ∈ F and there
exists u ∈ L(A) such that P = c(u) ∈ F and p = s0 · u ∈ Q.

Proposition 2. Let A = (Q,Σ, δ, s0, T) be the minimal DFA of Pref(L). The follow-
ing two conditions are equivalent:
(1) The language L is geometrical.
(2) The State relation is a mapping from Nd to Q, such that:
∀P ∈ Nd, ∀i | 1 ≤ i ≤ d, P − c(ai) ∈ F ⇒ State(P − c(ai)) · ai = State(P).

Definition 4. The subset FQ =
⋃

u∈ϕ(Q) points(O, u) of F , where ϕ is the canonical
labeling of A, is called the basic geometrical figure of L(A).

Notice that the mapping Point = c ◦ ϕ from Q to FQ is a one-to-one mapping; the
inverse mapping of Point is the restriction of State to FQ.

182 J.-M. Champarnaud, J.-P. Dubernard, and H. Jeanne

4 Words, Paths and Trajectories

We now revisit the notion of trajectory in order to address the case of non prolongable
languages. In the following, L is a binary regular language and A = (Q,Σ, δ, s0, T)
is the minimal DFA of Pref(L), with n = |Q|. Notice that if L is not prolongable,
then there exist a sink state σ and a state σ′ ∈ T such that σ′ · a = σ′ · b = σ. We
set Q = {s0 = 0, 1, . . . , σ′ = n − 2, σ = n − 1}. The geometrical figure F of L is
supposed to be drawn so that points with the same level lie on a horizontal line (see
Figure 2 for example).

4.1 Basic Definitions and Properties

According to Proposition 2, the image of a trajectory (P, u) ∈ F × Σ∗ by the State
mapping is the path (State(P), u). Conversely, a path (p, u) defines a trajectory (P, u)
for any point P such that State(P) = p. In the following we will consider specific
paths (p, u), called state paths, such that for all 0 ≤ i < |u|, the label ui+1 of the
transition (pi, ui+1, pi+1) only depends on the state pi. For example, a trajectory that
gives priority to moves to the right is associated to a state path, since it is generated by
a word containing as many symbols b as possible. For a state path, it is equivalent to
consider the transition sequence (p, u) or the associated state sequence (p0, . . . , p|u|).
A trajectory is periodic if the associated path is a periodic sequence (of transitions or of
states according to the case). A sequence with μ as pre-period and π as period is said to
be a (μ, π)-periodic sequence. The point Pj+π is said to be the shifted point of Pj .

Definition 5. Let p be a state in Q \ {σ} such that
−→
LA

p is a finite language. Then the

order of p is defined by ρ(p) = max{|w| | w ∈ −→LA
p }. We set ρ(σ) = −1.

By definition, ρ(σ′) = 0, and for all p ∈ Q \ {σ, σ′}, ρ(p) ≥ 1. If
−→
LA

p is a finite
language then 0 ≤ ρ(p) ≤ n − 2; otherwise the order of p is unbounded. A state p
(resp. a point P) is said to be bounded if ρ(p) ≤ n − 2 (resp. ρ(State(P)) ≤ n − 2)
and unbounded otherwise. Let Q′ (resp. Q′′) be the set of unbounded (resp. bounded)
states. We set n′ = |Q′| and n′′ = |Q′′|.
Definition 6. Given a positive integer k, a word u of a language L is said to be k-
extensible if and only if there exists a word v ∈ Σ+ such that |v| = k and uv ∈ L.
A word u is said to be extensible if and only if it is k-extensible for any integer k and
inextensible otherwise.

A language L is prolongable if and only if for all u in L, there exists x in Σ such that
u · x ∈ L. We have: L is prolongable⇔ ∀u ∈ L, u is extensible⇔ ∀p ∈ Q \ {σ}, p is
unbounded. The label u = u1 · · ·ul of a path (p, u) is inextensible if and only if there
exists k, 0 ≤ k ≤ l, such that pk = p · u1 · · ·uk is a bounded state.

4.2 Right Trajectories of a Point

We first define the right sequence of a point P of F and then motivate the notions
introduced in this section.

Geometricity of Binary Regular Languages 183

Definition 7. The right sequence RS(P) = (Pk)0≤k of a point P of F is defined by
P0 = P and for all 0 ≤ k, Pk is the rightmost point at level level(P) + k in F that is
accessible from P .

The left sequence LS(R) of a pointR ofF can be defined similarly. Let S,P = S+c(a)
and R = S + c(b) be three points of F . The right sequence of P and the left sequence
ofR are of principal interest since an efficient geometricity test can be developed based
on the shape of the region that they delimit.

Let p = State(P). According to Definition 7, for all 0 ≤ k, Pk is a point of RS(P) if
and only if it belongs to the trajectory starting from P associated with the greatest word
wk of

−→
LA

p ∩Σk. If L is prolongable, for all 0 ≤ k, wk is a prefix of the greatest word of−→
LA

p ; the sequence RS(P) is then the trajectory1 associated with this word. If L is not
prolongable, RS(P) is generally a sequence of segments computed from a sequence of

inextensible words of
−→
LA

p , possibly added with the greatest extensible word of
−→
LA

p .
Although the sequence RS(P) is generally not a trajectory, it is possible to define the
right trajectory RT(P) of an unbounded point P as follows.

Definition 8. Let P be an unbounded point and p = State(P). The right trajectory

RT(P) of P is defined by the greatest extensible word u>
p of the set

−→
LA

p .

The word u>
p = u1u2 · · · can be computed as follows: p0 = p and for 0 ≤ k, uk+1 = b

if pk · b ∈ Q′ and uk+1 = a otherwise. Since for any unbounded state q the condition
q · b ∈ Q′′ ⇒ q · a ∈ Q′ holds, we have for all 0 ≤ k, pk ∈ Q′.

Lemma 1. Let P be an unbounded point. The right trajectory RT(P) of P is a (μ, π)-
periodic sequence, with μ+ π ≤ n′ ≤ n− 2.

Let L be non prolongable and p be unbounded. Then the extensible word u>
p is not

necessarily the greatest word of
−→
LA

p . Indeed, for any v ∈ Σ∗ such that va is a prefix of

u>
p and p · vb
= σ, the state p · vb is bounded. As a consequence, for all w ∈ −→LA

p·vb, we
have vbw > va and thus vbw > u>

p .

Let u be the greatest inextensible word of
−→
LA

p . If u < u>
p , then u>

p is the greatest

word of
−→
LA

p . Any inextensible word of
−→
LA

p is smaller than u>
p , and thus, for all P

such that State(P) = p, the right sequence RS(P) and the right trajectory RT(P) of
P coincide. Otherwise, the segment (P, u) is the first segment of the right sequence
RS(P) and the word u = u1 · · ·ul is computed as follows: for all 0 ≤ k < l, uk+1 = b
if pk ·b
= σ and uk+1 = a otherwise. Since u is both inextensible and the greatest word
of
−→
LA

p we have pl = σ′ and, for all 0 ≤ k < l, pk · b = σ ⇒ pk · a
= σ.

Definition 9. The sequence U(p) = (ui
p)1≤i is defined as follows:

(1) The word u1
p is the greatest word of the set

−→
LA

p .
(2) For all k ≥ 1, if uk

p = u>
p then U(p) = (ui

p)1≤i≤k else uk+1
p is the greatest word of−→

LA
p smaller and longer than uk

p .

1 It is called the rightmost trajectory of P in [3].

184 J.-M. Champarnaud, J.-P. Dubernard, and H. Jeanne

Table 1. The transition function δ of A (with 4 ≤ i ≤ 10)

δ s0 p0 p1 p2 p3 p4 p5 p6 p7 p8 p′
3 p′

4 p′
5 p′

6 p′
7 r0 r1 r2 r3 ri r11 r′3 r′4 σ′

a p0 p1 p2 p3 p4 p5 p6 σ p8 p4 σ p′
7 σ σ p′

6 σ σ r′3 σ ri+1 σ′ r′4 σ′ σ

b r0 σ σ p′
3 σ p′

5 σ p7 p′
8 σ p′

4 σ′ p′
6 σ′ σ r1 r2 r3 r4 σ r3 σ σ σ

a

b

O

P

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P ′
3

P ′
4

P ′
5X2X1

P ′
6

P ′
7

P ′
8

P ′
9

P ′
10

P ′
11

P ′
12

P ′
13

P ′
14

P ′
15

P ′
16

P ′
17

R

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

R17

R′
3

R′
4

R′
5

R′
12

Fig. 2. The right (resp. left) trajectory and sequence starting from P (resp. R)

Example 1. Let A = (Q,Σ, δ, s0, T) be the minimal DFA the transition function δ
of which is shown in the Table 1. The geometrical figure F of L(A) is represented by
the Figure 2. We assume that P = P0 and that for all 0 ≤ k ≤ 3, P ′

k = Pk . For
all 0 ≤ k ≤ 8, State(Pk) = pk and pk is an unbounded state. For all k = 3, 4, 6,
State(P ′

k) = p′k; State(P ′
5) = σ′. State(X1) = p′5; State(X2) = p′7. For all 3 ≤

k ≤ 7, p′k is a bounded state. The right trajectory RT(P) = (Pk)0≤k (in red lines)
is the (μ = 4, π = 5)-periodic sequence defined by the word aaaa(aabaa)ω. The
right sequence RS(P) = (P ′

k)0≤k (in blue lines) is defined from the sequence U(p)
(with p = p0) that contains the words u1

p = aabbb, u2
p = aabbaab, u3

p = aaaaaabbb,
u4

p = aaaaaabaabbb, u5
p = aaaaaabaaaabbb, . . . Hence RS(P) is the sequence of

segments ((P, aabbb), (P ′
6, b), (P ′

8, b), (P ′
10, bb), (P ′

13, b), . . .).

The sequence U(p) is decreasing w.r.t. the lexicographic order and increasing w.r.t. the
length order. If p is a bounded state, it is finite. Otherwise, it may be finite or infinite.

Geometricity of Binary Regular Languages 185

The sequence U(p) can be computed according to Proposition 3 and it allows us to
compute the right sequence RS(P) of P following Proposition 4.

Proposition 3. Let p be an unbounded state and ui
p be a word of U(p), with ui

p
= u>
p .

Then the set A = {v ∈ Σ∗ | (v is a prefix of ui
p) ∧ (ρ(p · va) > ρ(p · vb))} is not

empty and ui+1
p = v′aw′, where v′ is the longest word in A and w′ the greatest word of−→

LA
p·v′a.

Proposition 4. Let P be a point of F and p = State(P). Let l0 = 0 and for all
1 ≤ j, lj = |uj

p| + 1. The right sequence RS(P) = (Pk)0≤k is generated by the
sequence (Plj , z

j+1
p)0≤j of segments such that: Plj = P + c([uj+1

p]lj) and zj+1
p =

[uj+1
p]lj+1−lj−1.

We now present an alternative way to compute the sequence U(p) in order to study the
periodicity of RS(P). Let X(p) = (xi)1≤i be the prefix sequence of u>

p and B(p) be
the subsequence of X(p) such that x ∈ B(p) if and only if x ∈ X(p) and p · xb is a
bounded state. The depth d(x) of a word x in B(p) is the maximal length of a word in
U(p·xb); we have d(x) = |x|+1+ρ(p·xb). We consider the subsequence V(p) of B(p)
such that x ∈ V(p) if and only if x ∈ B(p) and xb is a prefix of some word in U(p).
Let xmin be the first word in B(p). Let x and x′ be two consecutive words in V(p),
with x < x′. According to Definition 9, we have then d(x′) > d(x); this condition is
called the length condition. A word x′ ∈ B(p) is in V(p) if and only if either x′ = xmin

or there exists a word x ∈ V(p) such that d(x′) > d(x). We set top(xmin) = 0 and
top(x′) = d(x) + 1. For all x ∈ V(p), the sequence U(p.xb) is finite. The sequence
W(x) = (u ∈ U(p.xb) | top(x) ≤ |xbu|) is useful to factorize the sequence U(p).

Lemma 2. Let p ∈ Q. We have U(p) = (xbW(x))x∈V(p).

According to Lemma 2, the periodicity of the right sequence RS(P) depends on the
periodicity of the subsequence V(p). Let us first give a precise definition of this notion.

Definition 10. Let p be an unbounded state andX ′ be a subsequence of X(p). We say
that X ′ is periodic if and only if there exists u1 ∈ X(p) and u2 ∈ Σ∗ such that for all
x ∈ X(p), u1 ≤ x⇒ (x ∈ X ′ ⇔ xu2 ∈ X ′). Let u1 be the smallest such word. Then
X ′ is (|u1|, |u2|)-periodic and u2 is the period word of X ′.

According to Lemma 1, the sequence X(p) is (μ, π)-periodic, Let us denote by ζ its
period word. Since p · x = p · xζ and ρ(p · xb) = ρ(p · xζb), we get that for all
x ∈ X(p), μ ≤ |x| ⇒ (x ∈ B(p) ⇔ xζ ∈ B(p)). Hence the sequence B(p) is (μ, π)-
periodic. This condition is not necessarily satisfied by V(p), due to the length condition.
The following lemma proves that the sequence V(p) is however periodic.

Lemma 3. Let p be an unbounded state such that the sequence V(p) is infinite. Then
V(p) is (κ, π)-periodic, with κ ≤ μ+ π + n− 3 ≤ 2(n− 2)− 1.

Proposition 5. Let P be an unbounded point such that State(P) = p. We suppose that
the sequence V(p) is infinite. Then the right sequence RS(P) of P is a (μ′, π)-periodic
sequence, with μ′ ≤ μ+ 2π + n− 3 ≤ 3(n− 2)− 1.

186 J.-M. Champarnaud, J.-P. Dubernard, and H. Jeanne

Example 2. (Example 1 continued) We have V(p) = (x2 = aa, x7 = x2aaaab, x9 =
x7aa, x12 = x9aab, x14 = x12aa, . . .) and ζ = aaaab. Since x5 ≤ x⇒ (x ∈ V(p)⇔
xζ ∈ V(p)), we have u1 = aaaaa and u2 = ζ. Moreover top(x7) = top(x12); hence
the sequences V(p) and RS(P) are both (μ′ = 5, π = 5)-periodic.

5 A Geometricity Test for Binary Regular Languages

We now introduce the notions of boundary, hole and heart associated with a point.
These notions make it possible to state a necessary and sufficient condition for a regular
language to be geometrical.

Definition 11. The right boundary RB(P) of a point P is the region delimited by (and
including) its right trajectory RT(P) and its right sequence RS(P).

Proposition 6. There are two cases:
Case 1 (P is bounded): the trajectory RT(P) is not defined and the right boundary
RB(P) coincides with the finite sequence RS(P).
Case 2 (P is unbounded): if RS(P) is (μ′, π)-periodic, then the right boundary RB(P)
is a (μ′, π)-periodic region, with μ′ ≤ μ + 2π + n − 3 ≤ 3(n − 2) − 1. Otherwise
RB(P) and RT(P) coincide on and after some level k, with k ≤ 3(n− 2)− 1.

Now we have to go from right to left. The left sequence of a point P such that State
(P) = p is defined by a sequence U′(p) of words of

−→
LA

p that is increasing w.r.t. the
lexicographic order and w.r.t. the length order. The left trajectory is associated with the
smallest extensible word of the set

−→
LA

p . Finally, the following proposition is the left
equivalent of Proposition 1, Proposition 5 and Proposition 6.

Proposition 7. The left trajectory LT(P) of an unbounded point P is a (λ, τ)-periodic
sequence, with λ + τ ≤ n′ ≤ n − 2. The left sequence LS(P) is a (λ′, τ)-periodic
sequence, with λ′ ≤ λ + 2τ + n − 3 ≤ 3(n − 2) − 1. Concerning the left boundary
LB(P), there are two cases:
Case 1 (P is bounded): the trajectory LT(P) not being defined, the left boundary
LB(P) coincides with the finite sequence LS(P).
Case 2 (P is unbounded): if LS(P) is periodic, then the left boundary LB(P) is a
(λ′, τ)-periodic region, with λ′ ≤ λ+ 2τ + n− 3 ≤ 3(n− 2)− 1. Otherwise LB(P)
and LT(P) coincide on and after some level k, with k ≤ 3(n− 2)− 1.

We now revisit the notion of hole [3] of a point and we introduce the notion of heart.
Then we restate the hole condition in the general case of binary regular languages.

If two points P = (x, y) and P ′ = (x′, y′) of a geometrical figure F have the same
level (that is x+ y = x′ + y′), we say that (P, P ′) is a pair of adjacent points (we write
P < P ′) if and only if x′ = x−1 and y′ = y+1. We also say that such a pair (P, P ′) is
a conflict if State(P)·b
= State(P ′)·a. According to Proposition 2, a regular language
is geometrical if and only if there exists no conflict in its geometrical figure. The main
property is that it is sufficient to test the existence of a conflict only into some regions
of the figure and only up to a bounded depth.

Geometricity of Binary Regular Languages 187

Definition 12. We assume that the points S, P = S + c(a) and R = S + c(b) are in
F . The hole of the point S is the region of N2 delimited by the trajectories RT(P) and
LT(R). The heart of the point S is the region of N2 delimited by the sequences RS(P)
and LS(R).

Let RT(P) =(Pk)0≤k, RS(P) =(P ′
k)0≤k, LT(R) =(Rk)0≤k and LS(R) =(R′

k)0≤k.
By construction, for any point S in F , the heart of S contains no point of F , except
for points that belong to both RT(P) and LT(R). The depth of the hole of S is infinite
if the trajectories RT(P) and LT(R) do not intersect; otherwise it is defined by hS =
min{k > 0 | Pk = Rk}.
Definition 13. We assume that the points S, P = S+ c(a) andR = S+ c(b) are in F .
The heart condition is said to be satisfied by the point S if and only for all 0 ≤ k < hS ,
the pair (P ′

k, R
′
k) is not a conflict. The hole condition is said to be satisfied by the point

S if and only if the following two conditions hold:
(1) There is no conflict inside the right boundary of P nor inside the left boundary ofR.
(2) The heart condition is satisfied by the point S.

Since any point P of a geometrical figure (except for the origin) has at least one parent,
the definition of a reverse right (or left) segment2 starting from P is still possible.

Definition 14. Let P be a point of a geometrical figure F .
(1) The reverse right segment from P is a finite sequence (Pi)0≤i≤f such that P0 = P ,
Pf = O, and for all 0 ≤ i < f , Pi+1 = Pi−c(a) if Pi−c(a) ∈ F andPi+1 = Pi−c(b)
otherwise.
(2) The reverse left segment from P is a finite sequence (Pi)0≤i≤f such thatP0 = P and
Pf = O and for all 0 ≤ i < f , Pi+1 = Pi−c(b) if Pi−c(b) ∈ F and Pi+1 = Pi−c(a)
otherwise.

If the points S, S − c(a) and S − c(b) are in F , then the reverse right segment from
S−c(b) and the reverse left segment from S−c(a) necessarily intersect. The following
lemma enlightens the relation between reverse segments and direct trajectories.

Lemma 4. Let (Pi)0≤i≤f be a reverse right segment. If P0 is unbounded, for all 0 ≤
i ≤ f , P0 belongs to the right trajectory of Pi. Otherwise, for all 0 ≤ i ≤ f , either P0
belongs to the right sequence of Pi or P0 is inside the right boundary of Pi. Finally, for
all 0 ≤ i ≤ f , P0 belongs to the right boundary of Pi. A similar property exists for a
reverse left segment.

Right and left sequences delimit the border of the heart, whereas right and left trajecto-
ries delimit the border of the hole and enable moving from the end of one segment of a
right or left sequence to the beginning of the next one. Reverse right or left trajectories
are useful to analyze the origin of a conflict and to prove the next proposition.

Proposition 8. Let L be a binary language and A = (Q,Σ, δ, s0, T) be the minimal
DFA of Pref(L). The following two conditions are equivalent:
(1) The language L is geometrical.
(2) For every point P in the basic figure FQ, the hole condition is satisfied by P .

2 This segment is called reverse rightmost (or leftmost) trajectory in [3].

188 J.-M. Champarnaud, J.-P. Dubernard, and H. Jeanne

6 A Polynomial Algorithm for Checking Geometricity

From Proposition 8, a straightforward algorithm for checking the geometricity of a
binary language can be designed, based on the fact that the hole condition must be
satisfied for every point in FQ. We consider three points S, P = S + c(a) and R =
S + c(b) of F , such that s = State(S), p = State(P), r = State(R). The algorithm
checks that there is no conflict inside the following three regions: the right boundary of
P , the left boundary of R and the heart of S. By making use of the periodicity of the
different trajectories or sequences, it is shown that for each region only a small number
of levels needs to be inspected.

6.1 No Conflict Inside the Right Boundary of P and the Left Boundary of R

The RB(P) boundary is the region delimited by the trajectory RT(P) and the sequence
RS(P), that are either finite or periodic. Thus the region itself is finite or periodic
and checking that there is no conflict inside the RB(P) boundary needs only to be
performed on its γP first levels. According to Proposition 6, the worst case is when
RB(P) is (μ′, π)-periodic, with μ′ ≤ μ+ 2π + n− 3 We have γP = μ′ + π and thus
γP ≤ μ + 3π + n − 3 ≤ 4(n − 2) − 1. The width of a boundary being less than n,
the worst case time complexity of the RB(P) test is in O(n2) time. Similarly, the worst
case time complexity of the LB(R) test is in O(n2) time.

6.2 No Conflict on the Border of the Heart

The heart of the point S is delimited by the sequences RS(P) and LS(R). Since these
sequences are either finite or periodic, the heart is itself finite or periodic. Hence check-
ing the heart condition from the point S needs only to be performed on the γS first levels
of the heart. According to Proposition 5 the RS(P) sequence is (μ′, π)-periodic, with
μ′ ≤ 3(n−2)−1 and the LS(R) sequence is (λ′, τ)-periodic), with λ′ ≤ 3(n−2)−1.
Then the sequence ((Pk, Rk))0≤k is (ν = max{μ′, λ′}, π′ = lcm{π, τ})-periodic. We
have γS = ν + π′. Since ν ≤ 3(n− 2)− 1 and π′ ≤ (n− 3)(n− 2), we get γS ≤ n2.

An elementary conflict test on the pair (P ′
k, R

′
k) needs to check whether the two

points P ′
k and R′

k are adjacent or not, which can be implemented in O(1) time, and
to compute the pair (P ′

k+1, R
′
k+1) from (P ′

k, R
′
k), which can be performed in O(n)

time. Indeed, for all 1 ≤ k, P ′
k+1 is determined from P ′

k either by considering the
rightmost transition from pk, which is in O(1) time, or, when P ′

k is the end of one
segment generated by some word ui

p ∈ U(p), by computing the next word ui+1
p . This

computation can be optimized by considering properties of shifted points, and is in
O(n) time. Hence looking for a conflict at a given level is in O(n) time. Since for a
given heart there are O(n2) levels to be checked, testing the border of a heart is in
O(n3) time. Finally, there are at most n−2 unbounded states to be tested inQ and thus
the following result can be stated.

Proposition 9. The hole algorithm for testing whether a regular binary language is
geometrical has a O(n4) worst case time complexity.

This complexity is based on properties of state sequences. Geometrical considerations
can improve the performance of the algorithm. For instance, the right trajectory RT(P)

Geometricity of Binary Regular Languages 189

and the left trajectory LT(R) can converge, and thus the bottom of the hole of S can be
reached before γS levels are investigated. However the worst case time complexity still
holds, corresponding to parallel boundaries.

7 Conclusion

New tools have been developed for studying the properties of a geometrical binary
regular language L, in relation with the minimal automaton of Pref(L). Thanks to pe-
riodicity features, a O(n4) worst case time algorithm has been designed for checking
whether a binary regular language L is geometrical or not, generalizing the O(n3) al-
gorithm that addresses the case where L is prolongable.

References

1. Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and complexity concerning the pre-
emptive scheduling of periodic, real-time tasks on one processor. Real-Time Systems 2(4),
301–324 (1990)

2. Blanpain, B., Champarnaud, J.M., Dubernard, J.P.: Geometrical languages. In: Vide, C.M.
(ed.) International Conference on Language Theory and Automata (LATA 2007). GRLMC
Universitat Rovira I Virgili, vol. 35 (2007)

3. Champarnaud, J.M., Dubernard, J.P., Jeanne, H.: An efficient algorithm to test whether a
binary and prolongeable regular language is geometrical. Int. J. Found. Comput. Sci. 20(4),
763–774 (2009)

4. Eilenberg, S.: Automata, languages and machines, vol. B. Academic Press, New York (1976)
5. Geniet, D., Largeteau, G.: Wcet free time analysis of hard real-time systems on multiproces-

sors: A regular language-based model. Theor. Comput. Sci. 388(1-3), 26–52 (2007)
6. Kleene, S.: Representation of events in nerve nets and finite automata. Automata Studies

Ann. Math. Studies 34, 3–41 (1956)
7. Largeteau-Skapin, G., Geniet, D., Andres, E.: Discrete geometry applied in hard real-time

systems validation. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS,
vol. 3429, pp. 23–33. Springer, Heidelberg (2005)

8. Myhill, J.: Finite automata and the representation of events. WADD TR-57-624, 112–137
(1957)

9. Nerode, A.: Linear automata transformation. Proceedings of AMS 9, 541–544 (1958)
10. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)

On the Expressive Power of FO[+]�

Christian Choffrut1, Andreas Malcher2, Carlo Mereghetti3,
and Beatrice Palano3

1 LIAFA, UMR 7089, 175 Rue du Chevaleret, Paris 13, France
cc@liafa.jussieu.fr

2 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
malcher@informatik.uni-giessen.de

3 DSI, Università degli Studi di Milano, via Comelico 39/41, 20135 Milano, Italy
{mereghetti,palano}@dsi.unimi.it

Abstract. The characterization of the class of FO[+]-definable lan-
guages by some generating or recognizing device is still an open problem.
We prove that, restricted to bounded languages, this class coincides with
the class of semilinear languages. We also study some closure properties
of FO[+]-definable languages which, as a by-product, allow us to give an
alternative proof that the Dyck languages cannot be defined in FO[+].

Keywords: Bounded languages, semilinear sets, first order logic.

1 Introduction

The aim of descriptive complexity is to provide logical characterizations of rel-
evant classes of languages. The first result in this area dates back to Büchi [3]
who gave a characterization of regular languages via monadic second order logic.
Since then, a well consolidated trend in the literature is providing characteriza-
tions of several language classes via different logics. This turns out to be also
of practical interest, since a logical description of a language often leads to a
precise estimate of the parallel complexity of membership and related problems
for that language (see, e.g., [1,14]).

Important first order logics for language description are FO[+1], FO[<], and
FO[+]. All these logics are used to express properties of words, and their variables
range over word positions. Along with the usual predicates Qa(x) holding true
whenever the letter at position x is a and equality, they are provided with the
predicates x+ 1 = y, x < y, and x+ y = z, respectively.

It is well known from the literature (see, e.g., [14]) that FO[+1] characterizes
the class of locally threshold testable languages, while FO[<] characterizes the
� This work was partially supported by CRUI/DAAD under the project “Programma

Vigoni: Reducing complexity by introducing structure”, by the European Science
Foundation (ESF) for the activity entitled “Automata: from Mathematics to Appli-
cations”, and by the Italian MURST under the project “PRIN: Aspetti matematici
e applicazioni emergenti degli automi e dei linguaggi formali: metodi probabilistici
e combinatori in ambito di linguaggi formali”.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 190–201, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Expressive Power of FO[+] 191

wider class of star-free languages, this latter class being strictly contained in
that of regular languages. The class of languages described in FO[+] contains all
the star-free languages, but not all the regular languages. Yet, it also contains
nonregular languages. Nevertheless, a precise definition of the class of languages
characterized by FO[+] is still unknown. Thus, it is natural to investigate the
possibility of representing relevant classes of languages by FO[+] formulas.

Our main result is the following characterization of the bounded languages
which are definable in FO[+], based on the well known notion of semilinear
languages introduced by Ginsburg and Spanier in 1964 [7]:

Theorem. A bounded language is definable in FO[+] if and only if it is
semilinear.

This is particularly interesting since such a logic characterization of bounded
semilinear languages complements the known characterizations by formal gram-
mars (e.g., simple matrix grammars [9]) and automata (e.g., certain variants of
multi-head finite automata and multi-head pushdown automata [10]).

As a consequence of our characterization, we are able to state some negative
results on closure properties of FO[+]-definable languages under certain opera-
tions. Yet, we also show some positive closure results. These investigations on
closure properties provide further insights into the descriptive power of FO[+],
e.g., with respect to the meaningful family of the Dyck languages [4,8]. It is
known from [1] that the Dyck languages can be described by the logic FOC[+],
i.e., FO[+] augmented with counting quantifiers. Moreover, from [12], one may
easily get that the Dyck languages cannot be described in FO[+]. Here, we give
a new proof of this latter result relying on the logic over words.

2 Preliminaries

The set of natural numbers is here denoted by N. We assume basic notions on
formal language theory [8]. Given an alphabet Σ, we denote by Σ∗ the set of
words on Σ, including the empty word ε. We denote by |w| the length of a
word w ∈ Σ∗ and by Σi the set of words of length i, with Σ0 = {ε}. We let
Σ+ = Σ∗ \ {ε}. For any word w ∈ Σ∗ and letter a ∈ Σ, we let |w|a be the
number of occurrences of the letter a in w. A language on Σ is any subset of Σ∗.

We assume familiarity with traditional circuits as a computational model to
study the parallel complexity of problems (see, e.g., [15]). We recall that NCk

(ACk) is the class of problems solved by families of bounded (unbounded) fan-
in and/or/not-circuits of polynomial size and O(logk n) depth. It is known
from [13] that regular languages lie in NC1. In [11], further interesting subclasses
of context-free languages are shown to be in NC1, such as the family of the Dyck
languages over an arbitrary number of parentheses, and the family of bounded
semilinear languages (see Sections 3 and 4.3 for a definition of these languages).

The connection between circuit complexity issues and first order logic
formalisms for language description is extensively presented in [14]. In these
formalisms, the words over Σ are represented as first order structures in the

192 C. Choffrut et al.

signature 〈{Qa}a∈Σ, {Pi}1≤i≤m, last〉, so that the structure for a word w of
length n has universe {1, . . . , n}, Qa is the unary predicate holding true for
1 ≤ j ≤ n if and only if the jth letter of w is a, Pi’s are numerical predicates
of different arities (e.g., x < y or x = y + z), and last is the constant n. In
fact, all logics considered in the sequel assume the predicates Qa, the numerical
predicate x = y, and the constant last. Yet, they differ on the set Z of the as-
sumed additional numerical predicates, e.g.: +1 for the immediate successor, <
for the usual ordering on the nonnegative integers, and + for the ternary predi-
cate x = y+z. In this way, a logic has a general designation as FO[Z], where FO
stands for first order quantification. The formulas from FO[Z] are defined in the
usual way, i.e.: every atomic predicate is a formula; if ϕ1 and ϕ2 are formulas,
then ϕ1 ∧ϕ2, ϕ1 ∨ϕ2 and ¬ϕ1 are formulas; if ϕ(x1, . . . , xn) is a formula whose
free variables are x1, . . . , xn, then ∃xi ϕ(x1, . . . , xn) and ∀xi ϕ(x1, . . . , xn), with
1 ≤ i ≤ n, are formulas.

Formulas are meant for specifying languages. Indeed, if ϕ is a sentence (a for-
mula without free variables), we let Lϕ be the set of all words satisfying ϕ,
formally Lϕ = {w ∈ Σ∗ | w |= ϕ}. In this case, we say that Lϕ is the language
defined (or described, or expressed) by ϕ. We denote by L(FO[Z]) the class of
languages definable in FO[Z], i.e., L(FO[Z]) = {L ⊆ Σ∗ | L = Lϕ, for some
sentence ϕ ∈ FO[Z]}. Several classes of languages have been logically charac-
terized. For instance, FO[+1] (resp., FO[<]) is the first order logic with numer-
ical predicate +1 (resp., <). It is well known that L(FO[+1]) is the class of
locally threshold testable languages, while L(FO[<]) is the class of star-free lan-
guages. No formal language characterization for L(FO[+]) is currently known.
The following proper hierarchy (see, e.g., [14]) points out the descriptive power
of different logics and the relation with circuit complexity:

L(FO[+1]) ⊂ L(FO[<]) ⊂ L(FO[+]) ⊂ L(FO[+, ∗]) = AC0 ⊂ NC1.

3 Bounded Languages

In this section, we exhibit a relevant class of languages contained in L(FO[+]).
More precisely, we show that, restricted to bounded languages, FO[+] character-
izes the semilinear languages.

We recall that a set X ⊆ Nm is linear whenever, for some integer r ∈ N, there
exist vectors v0, . . . , vr ∈ Nm such that X = v0 +

∑r
t=1 Nvt. A semilinear set is

a finite union of linear sets.
Let a1, . . . , am be a sequence of letters from the alphabet Σ with possible rep-

etitions. We consider the natural embedding of Nm into Σ∗ (we shall simply say
“the natural embedding”) relative to this sequence a1, . . . , am as the mapping
χ : Nm → Σ∗ defined by χ(n1, . . . , nm) = an1

1 · · ·anm
m . A language L ⊆ Σ∗ is

letter bounded whenever L = χ(X) holds for some X ⊆ Nm. Moreover, L is letter
bounded (linear) semilinear whenever X is a (linear) semilinear set. Rigorously
speaking, we should specify the sequence a1, . . . , am with the mapping χ. How-
ever, the context should clearly determine which sequence is meant. For the sake
of conciseness, throughout the rest of the paper we will always say “bounded”

On the Expressive Power of FO[+] 193

instead of “letter bounded”. Observe that, without loss of generality, we may
assume ai
= ai+1 for every 1 ≤ i < m. Indeed, it clearly suffices to consider
the case where X is linear, i.e., of the form v0 +

∑r
t=1 Nvt. Suppose there exists

1 ≤ i < m such that ai = ai+1, and denote with vt,j the jth component of the
vector vt ∈ Nm. With each vt, for 1 ≤ t ≤ r, we associate the vector v′t ∈ Nm−1

defined by

v′t,j =

⎧⎨
⎩
vt,j if j < i
vt,j + vt,j+1 if j = i
vt,j+1 otherwise.

By letting χ′ be the natural embedding of Nm−1 into a∗1 · · ·a∗i a∗i+2 · · · a∗m, we get
L = χ′(X ′) with the linear set X ′ = v′0 +

∑r
t=1 Nv′t.

The closure properties of the bounded semilinear languages are obtained as
technical adaptations of the closure properties of the semilinear sets in Nm, as
we shall discuss in Proposition 1. A morphism of a free monoid into another is
nonincreasing if the image of a letter is a letter or the empty word. A length
preserving substitution is defined by a mapping h : Σ → 2Σ \ {∅}, and assigns
to the word a1 · · · an the set of words h(a1) · . . . · h(an). It extends to subsets of
words in the usual way.

Proposition 1. If L,L′ ⊆ a∗1 · · · a∗m are bounded semilinear languages and if f
is a nonincreasing morphism, then L ∪ L′, L \ L′, LL′, and f(L) are bounded
semilinear. Furthermore, if h is a length preserving substitution, then L ∩ h(L′)
is bounded semilinear.

Proof. The first three properties are consequences of the results in [6]. Concern-
ing nonincreasing morphisms, observe that they are a composition of morphisms
of two types: those renaming a letter and leaving all other letters invariant and
those sending a letter to the empty word and leaving all other letters invari-
ant. In the former case, the result directly follows from the above observation
concerning the non-repetition of a letter. In the latter case, assume the mor-
phism f satisfies f(a) = ε and f(c) = c for all c ∈ Σ \ {a}. Let I the subset of
indices i ∈ {1, . . . ,m} such that ai = a, and denote by π the morphism of Nm

into Nm−|I| assigning to any m-tuple the (m − |I|)-tuple obtained by ignoring
the components whose positions are in I. If L = χ(X) then f(L) = χ(π(X)),
and we apply the closure property of the semilinear sets under morphism. The
last statement follows from the fact that the intersection of a bounded semilinear
language with the image of a bounded semilinear language under a substitution
by regular sets is bounded semilinear [9, Thm 5.5]. ��
We are now going to show that every bounded language is in L(FO[+]) if and
only if it is semilinear. We start with the “if” part.

Theorem 1. The class of bounded semilinear languages is in L(FO[+]).

Proof. It clearly suffices to prove the result for bounded linear languages, i.e.,
languages of the form L = χ(X) where X ⊆ Nm is linear and χ is the natural
embedding of Nm into a∗1 · · · a∗m, for some sequence a1, . . . , am of letters from Σ.

194 C. Choffrut et al.

As a further simplification, we may assume that no element in X has components
equal to 0. Indeed, the sets of the form M1 × · · · ×Mm, where Mi = {0} or
Mi = N \ {0}, are linear and thus so are all intersections X ∩M1 × · · · ×Mm.
Let ∅ ⊂ I ⊆ {1, . . . ,m} be the set of indices i such that Mi = N \ {0}, let πI be
the projection of Nm onto

∏
i∈I Mi, and let χ′ be the unique mapping satisfying

χ(v) = χ′(πI(v)), for all v ∈ Nm. Then, we get

χ(X ∩M1 × · · · ×Mm) = χ′
(
πI(X) ∩

∏
i∈I

Mi

)
.

Whenever I = ∅, we have χ(X ∩M1 × · · · ×Mm) = {ε}.
We are ready to give an FO[+] formula defining the bounded linear language
L = χ(X) ⊆ a+

1 · · ·a+
m, with X = v0 +

∑r
t=1 Nvt. By definition, a word w ∈ Σ∗

belongs to L if and only if:

(i) w is in a+
1 · · ·a+

m, and
(ii) for some α1, . . . , αr ∈ N, it holds |w|aj = v0,j +

∑r
t=1 αtvt,j for 1 ≤ j ≤ m,

where vt,j denotes the jth component of the vector vt.

Let y1, . . . , ym be the variables interpreted as the number of occurrences of the
letters a1, . . . , am in w. Then, our FO[+] formula defining L is of the form

∃y1 · · · ∃ym ψ1(y1, . . . , ym) ∧ ψ2(y1, . . . , ym),

where ψ1 expresses condition (i) and ψ2 expresses condition (ii). Using natural
abbreviations in order to keep the formula readable, we have

ψ1(y1, . . . , ym) ≡ (y1 + · · ·+ ym = last) ∧ (y1 > 0) ∧ · · · ∧ (ym > 0)∧
∀z

(
(z ≤ y1 ⇒ Qa1(z)) ∧

(∧m
i=2

(∑i−1
h=1 yh < z ≤

∑i
h=1 yh ⇒ Qai(z)

)))
.

For condition (ii), by denoting with zj the variables interpreted as the coeffi-
cients αj , we have

ψ2(y1, . . . , ym) ≡ ∃z1 · · · ∃zr
⎛
⎝ ∧

1≤j≤m

(
yj = v0,j +

r∑
t=1

vt,j∑
s=1

zt

)⎞
⎠ .

��
The converse of Theorem 1 goes by structural induction on FO[+] formulas. As a
consequence, we must consider not only sentences (i.e., formulas with only bound
variables) but more generally formulas with free variables, and therefore we must
define what it means for such formulas to be satisfied by some model. We utilize
the usual trick which consists of augmenting the letters of the alphabet Σ with
a new component specifying subsets of free variables: by so doing, we encode
the value of the free variables in the model. More precisely, a formula φ over
a set V of free variables is interpreted on V-structures, i.e., words of the form
u = (σ1,V1) · · · (σn,Vn) over the alphabetΣ×2V , with: (i) Vi ⊆ V , (ii) Vi∩Vj = ∅

On the Expressive Power of FO[+] 195

for i
= j, (iii)
⋃n

i=1 Vi = V . We let S|V| ⊆ (Σ × 2V)∗ denote the set of all V-
structures. Let us now explain what it means for a V-structure to satisfy a
formula with free variables (the figure below should facilitate the intuition). To
fix ideas, let φ(x1, . . . , xk) be a formula and V = {x1, . . . , xk} the set of its free
variables. We say that u = (σ1,V1) · · · (σn,Vn) ∈ S|V| satisfies φ(x1, . . . , xk), and
we write u |= φ(x1, . . . , xk), if φ(p1, . . . , pk) holds true in the model σ1 · · ·σn

where, for 1 ≤ i ≤ k, the integer 1 ≤ pi ≤ m is the unique position of the
V-structure u such that xi ∈ Vpi . For instance, the following V-structure

a b a a b b
∅ {x2} {x3, x4} ∅ {x1} ∅

satisfies the formula

Qb(x1) ∧Qb(x2) ∧ ¬Qb(x3) ∧ (x2 < x3) ∧ (x3 < x1) ∧ (x2 < x4) ∧ (x4 < x1).

The language defined by φ is the set Lφ,V = {u ∈ S|V| | u |= φ}. If φ is a sentence,
i.e., a formula without free variables, then Lφ = Lφ,∅ = {w ∈ Σ∗ | w |= φ}.

The following lemma, which is useful in the proof of the main result, shows the
boundedness and semilinearity of a language of V-structures. Given a V-structure
u = (σ1,V1) · · · (σn,Vn), we let π(u) = σ1 · · ·σn. Then:

Lemma 1. Let a1, . . . , am be a sequence of letters from an alphabet Σ and let V
be a set of free variables with |V| = k. The language

Bk = {u ∈ Sk | π(u) ∈ a∗1 · · · a∗m}

is bounded semilinear.

Proof. The set a∗1 · · · a∗m is the (finite) union of subsets of the form a+
i1
a+

i2
· · ·a+

is

where 0 ≤ s ≤ m and i1, i2, · · · , is is a subsequence of 1, 2, · · · ,m. So, we
are reduced to prove that the set B′

k = {u ∈ Sk | π(u) ∈ a+
1 · · · a+

m} is bounded
semilinear.

We claim that B′
k is a finite union of bounded linear languages. A subset in

this union is specified by the choice of a sequence of nonempty subsets V1, . . . ,V�

defining a decomposition of V and a choice of letters from a1, a2, · · · , am which
are associated with the Vi’s. For instance, let k = 3 and m = 3, i.e., we are
considering the words in a+

1 a
+
2 a

+
3 and the formula has 3 free variables x1, x3, x3.

Consider the decomposition V = V1 ∪ V2 with V1 = {x1, x3} and V2 = {x2}.
Associate V1 = {x1, x3} with a1 and V2 with a3. Then, the associated subset is

(a1, ∅)∗(a1,V1)(a1, ∅)∗(a2, ∅)∗(a3, ∅)∗(a3,V2)(a3, ∅)∗,

which indicates that the positions of the interpretations of the variables x1 and x3
are inside the factor of the word labeled by a1, while the interpretation of the
variable x2 is inside the factor of the word labeled by a3.

Formally, consider a sequence of the form (i1,V1), . . . , (i�,V�) satisfying the
following conditions:

196 C. Choffrut et al.

– Vα
= ∅, for 1 ≤ α ≤ �,
– 1 ≤ i1 < i2 < . . . < i� ≤ m,
–
⋃

1≤α≤� Vα = V and Vα ∩ Vβ = ∅, for 1 ≤ α < β ≤ �.
Set i0 = 1 and i�+1 = m, and define

Lα = (aiα−1 , ∅)∗ · · · (aiα , ∅)∗(aiα ,Vα)(aiα , ∅)∗ · · · (aiα+1 , ∅)∗.
Then, each of these Lα is bounded linear and thus the product L1 · · ·L� is
bounded linear as well. Since B′

k is a finite union of such languages, it is bounded
semilinear. ��
In what follows, for the sake of conciseness, given an alphabet Σ we let QΣ(x)≡∨

σ∈Σ Qσ(x). We are ready to obtain the converse of Theorem 1 as a corollary
of

Theorem 2. For every sequence a1, . . . , am of letters in Σ and every language
L ⊆ Σ∗ in L(FO[+]), the language L ∩ a∗1 · · ·a∗m is semilinear.

Proof. Let φ be an FO[+] formula with V = {x1, . . . , xk} free variables. To
prove the result, it is enough to show that Lφ,V ∩ Bk is semilinear, where
Bk = {u ∈ Sk | π(u) ∈ a∗1 · · · a∗m} is the bounded semilinear language addressed
in Proposition 1. We shall use the structural induction on φ, starting from atomic
predicates and then considering more complex formulas

– φ ≡ Qa(x): If a does not occur in the sequence a1, . . . , am, then Lφ,V ∩
B1 = ∅, so we assume a = ai for some 1 ≤ i ≤ m. We have Lφ,{x} ∩
B1 = (a1, ∅)∗· · · (ai, ∅)∗(ai, {x1})(ai, ∅)∗· · · (am, ∅)∗, which is clearly bounded
linear.

– φ ≡ (x1+x2 = x3): We have to show that Lφ,{x1,x2,x3}∩B3 is semilinear. The
formula φ is equivalent to (φ∧ (x1 < x2))∨(φ ∧ (x1 = x2))∨(φ∧ (x1 > x2)).
We prove that the language Lφ<,{x1,x2,x3} ∩ B3 with φ< ≡ φ ∧ (x1 < x2)
is bounded linear, the two other cases being treated similarly. For W ⊆
{x1, x2, x3}, let AW = {(σ,W) | σ ∈ {a1, a2, . . . , am}}. Then

Lφ<,{x1,x2,x3} = {A∅
αA{x1}A∅

βA{x2}A∅
αA{x3}A∅

γ | α, β, γ ∈ N}.
This language is the image under the length preserving substitution defined
by h(a) = A∅, h(b) = A{x1}, h(c) = A{x2} and h(d) = A{x3} of the bounded
linear language L′ = {aαbaβcaαdγ | α, β, γ ∈ N}. So:

Lφ<,{x1,x2,x3} ∩B3 = h(L′) ∩B3,

and the result follows from Lemma 1 and Proposition 1.
– φ ≡ ¬ψ: We have

Lφ,V ∩Bk = L¬ψ,V ∩Bk = (Sk \ Lψ,V) ∩Bk = (Sk ∩ Lc
ψ,V) ∩Bk

= Lc
ψ,V ∩Bk = Bk ∩ (Lc

ψ,V ∪Bc
k) = Bk \ (Lψ,V ∩Bk).

By inductive hypothesis, we have that Lψ,V ∩Bk is bounded semilinear. The
result follows from Lemma 1 and Proposition 1.

On the Expressive Power of FO[+] 197

– φ ≡ ψ1∧ψ2: We first transform ψ1 and ψ2 into equivalent formulas, each over
the same set of free variables, say V . To this purpose, let W1 and W2 be the
set of free variables of ψ1 and ψ2, respectively, so that V =W1 ∪W2. Define
ψ̂1 ≡ ψ1 ∧ (

∧
x∈V\W1

QΣ(x)) and ψ̂2 ≡ ψ2 ∧ (
∧

x∈V\W2
QΣ(x)). Clearly, φ is

equivalent to ψ̂1 ∧ ψ̂2. We have

Lφ,V ∩Bk = Lψ̂1∧ψ̂2,V ∩Bk = Lψ̂1,V ∩ Lψ̂2,V ∩Bk

= (Lψ̂1,V ∩Bk) ∩ (Lψ̂2,V ∩Bk).

By inductive hypothesis, we know that Lψ1,W1 ∩ B|W1| and Lψ2,W2 ∩B|W2|
are bounded semilinear. Let h be the length preserving substitution which
assigns to every letter (a,W) ∈ S|W1| the set of letters (a, V) ∈ Sk where
V = W ∪A, for A ⊆ W2 \W1. Then, we have

Lψ̂1,V ∩Bk = h(Lψ1,W1 ∩B|W1|) ∩Bk.

The result follows from Lemma 1 and Proposition 1.
– φ ≡ ∃xk+1 ψ(x1, . . . , xk, xk+1): Let us define the nonincreasing morphism
Π : Sk+1 → Sk as Π(a, V) = (a, V \ {xk+1}) For instance, if we let u =
(a, ∅)(a, {x3})(b, {x1})(b, {x2}) ∈ S3, we have Π(u) = (a, ∅)(a, ∅)(b, {x1})
(b, {x2}) ∈ S2. We extend Π to subsets of Sk+1 in the usual way. Notice
that Bk = Π(Bk+1). We have

Lφ,V ∩Bk = L∃xk+1 ψ(x1,...,xk+1),V ∩Bk =
= Π(Lψ(x1,...,xk+1),V∪{xk+1}) ∩Π(Bk+1)
= Π(Lψ(x1,...,xk+1),V∪{xk+1} ∩Bk+1).

The last equality follows from the saturation of Bk+1 relative to Π , i.e.,
Π(u) = Π(v) and u ∈ Bk+1 implies v ∈ Bk+1. By inductive hypothesis,
Lψ(x1,...,xk+1),V∪{xk+1} ∩ Bk+1 is bounded semilinear, and the result follows
from Proposition 1. ��

In conclusion, from Theorems 1 and 2, we get

Theorem 3. Let L be a bounded language. Then, L is semilinear if and only if
L belongs to L(FO[+]).

4 Closure Properties of L(FO[+])

In this section, we investigate the closure properties of the class L(FO[+]) under
various operations. The results of the previous section make it possible to show
some negative closure results. On the other hand, also some positive closure
results are obtained. As an application, we show that the Dyck languages are
not definable in FO[+].

4.1 Negative Closure Properties

A morphism h : Σ∗ → Δ∗ of a free monoid into another is length preserving
whenever |h(w)| = |w|, for every w ∈ Σ∗.

198 C. Choffrut et al.

Proposition 2. L(FO[+]) is not closed under length preserving morphism.

Proof. Let the length preserving homomorphism h : {a, b}+ → {a}+ be defined
as h(a) = h(b) = a. We prove that the language L = {abab2ab3a · · ·abia · · · abka |
k > 0} belongs to L(FO[+]), but that h(L) does not. Indeed, a word w ∈ {a, b}∗
belongs to L if and only if the following two conditions hold:

– w = aba or w ∈ abaΣ∗a,
– if w
= aba and w = uabiav, with u, v ∈ {a, b}∗ and i > 0, then there exists

a suffix v′ of v such that v = bi+1av′.

These two conditions can be stated by the following FO[+] formula:

Qa(1) ∧Qb(2) ∧Qa(3) ∧Qa(last)∧
∀i [(∃j ∃k Qa(i) ∧Qa(i+ j) ∧Qa(i+ j + k))⇒ (∃j φ(i, j))],

with
φ(i, j) ≡ Qa(i) ∧Qa(i+ j + 1) ∧Qa(i+ 2j + 3)

∧∀k (i < k < i+ j + 1⇒ Qb(k))
∧∀k (i+ j + 1 < k < i+ 2j + 3⇒ Qb(k)).

We have h(L) = {a (p+1)(p+2)
2 | p ∈ N\{0}}, but h(L) is not semilinear. Hence,

h(L) /∈ L(FO[+]) due to Theorem 2 in Section 3. ��
The commutative image of a language L is the language

COMM(L)={x1 · · ·xn ∈ Σ∗ | xi1 · · ·xin ∈ L and {i1, . . . , in} = {1, . . . , n}}.

Proposition 3. L(FO[+]) is not closed under commutative image.

Proof. Consider the language L = {abab2ab3a · · · abia · · ·abka | k > 0}. By the
proof of Proposition 2, we have that L ∈ FO[+]. Notice that the language
L′ = COMM(L) ∩ a∗b∗ = {anb

(n−1)n
2 | n > 1}. If L(FO[+]) were closed un-

der commutative image, by Theorem 2 in Section 3, L′ should be semilinear, a
contradiction. ��
To have a broader outlook, let us point out other operations under whichL(FO[+])
is not closed. To this aim, we need the following elementary result:

Proposition 4. The language L = {w ∈ {a, b}+ | |w|a mod 2 = 0} does not be-
long to L(FO[+]).

Proof. By contradiction, suppose that L is in L(FO[+]), thus in L(FO[<]) by
[2, Cor. 4.2], which is the Crane-Beach conjecture for FO[+]. Let φ be an FO[<]
formula defining L. Then, φ′ = φ ∧∀x Qa(x) is in FO[<] and defines the language
of all the words having no occurrences of the letter b and an even number of a’s,
namely (a2)+. Since (a2)+ /∈ L(FO[<]) (see, e.g., [14]), we get the result. ��
The shuffle operation on words can be defined recursively on the length of the
words as follows:

wX ε = εX w = w,
auX bv = b(auX v) ∪ a(uX bv), with a, b ∈ Σ, u, v ∈ Σ∗.

On the Expressive Power of FO[+] 199

E.g., if u = aba and v = aa then u X v = {a3ba, a2ba2, aba3}. This notation
extends to languages A,B ⊆ Σ∗ by defining AXB =

⋃
x∈A, y∈B xX y.

Proposition 5. L(FO[+]) is not closed under: (i) shuffle, (ii) inverse mor-
phism, (iii) Kleene star.

Proof. (i) It is easy to see that the languages (a2)+ and b+ belong to L(FO[+]).
Thus, if L(FO[+]) were closed under shuffle, the language

(a2)+ X b+ = {w ∈ {a, b}+ | |w|a mod 2 = 0}
would be in L(FO[+]). This contradicts Proposition 4.

(ii) Consider the language (a2)∗ ∈ L(FO[+]) and the morphism h : {a, b}∗ →
{a}∗ defined as h(a) = a and h(b) = ε. It is easy to see that h−1((a2)∗) =
{w ∈ {a, b}∗ | |w|a mod 2 = 0} is not in L(FO[+]) by Proposition 4.

(iii) Obviously, L(FO[+]) is closed under union and contains all finite lan-
guages. If L(FO[+]) were closed under Kleene star, by Proposition 6(i) (see
below), the whole class of regular languages would be contained in L(FO[+])
due to Kleene’s Theorem. However, there exists a regular language that does
not belong to L(FO[+]) by Proposition 4, a contradiction. ��

4.2 Positive Closure Properties

Given a word x = x1 · · ·xn, with xi ∈ Σ, its reversal is the word xR = xn · · ·x1
(with εR = ε). The reversal of a language L is LR = {xR | x ∈ L}.
Proposition 6. L(FO[+]) is closed under: (i) concatenation, (ii) reversal.

Proof. Let L,L1, L2 be three languages in L(FO[+]). Then, the statement to be
proved writes as: (i) L1 · L2 ∈ L(FO[+]) and (ii) LR ∈ L(FO[+]).

(i) Let φ1 and φ2 be FO[+] formulas defining, respectively, the languages L1
and L2. We assume that in the formulas φ1 and φ2 all quantified variables are
expressed in the form ∃x ≤ last and ∀x ≤ last. We define ψ = ∃m (φ′1 ∧ φ′2),
where:

– φ′1 comes from φ1 by replacing every occurrence of last by m,
– φ′2 comes from φ2 by replacing every occurrence of Qσ(i) by Qσ(m+ i) and

every occurrence of last by last−m.

Clearly, ψ is an FO[+] formula for the language L1 · L2.
(ii) Let φ be an FO[+] formula for the language L. An FO[+] formula for LR

is obtained by replacing any occurrences of Qσ(i) by Qσ(last− i+ 1) in φ. ��
The conjugate of a language L is CONJ(L) = {uv ∈ Σ∗ | vu ∈ L}.
Proposition 7. L(FO[+]) is closed under conjugation.

Proof. Let L ⊆ Σ∗ be a language defined by the FO[+] formula in prenex normal
form φ ≡ Q1x1 · · ·Qmxm ψ(x1, . . . , xm), where Q1, . . . ,Qm are quantifiers. We
define the new predicate

Qa(k, x) ≡ (x ≤ k ∧Qa(last− k + x)) ∨ (x > k ∧Qa(x− k)),

200 C. Choffrut et al.

for free variables k, x. Then, the following is an FO[+] formula for CONJ(L):

∃k Q1x1 · · · Qmxm ψ′(k, x1, . . . , xm),

where ψ′ is obtained from ψ by replacing every occurrence ofQa(x) withQa(k,x).
So, all the variables in the predicates Qσ are modified with respect to k. ��

4.3 An Application: Dyck Languages

Let A be a finite set of opening parentheses and let A be the set of (one-to-one)
corresponding closing parentheses. Set T = A ∪A; a word in T ∗ is correctly (or
well) parenthesized if: (i) any opening parenthesis a is followed by a correspond-
ing closing parenthesis a, and (ii) if parenthesis a′ follows a, then a′ is closed
before a. The Dyck language DT is the set of correctly parenthesized words in T ∗.
From [1], we know that the Dyck languages are in L(FOC[+]), while from [12]
we get that they do not belong to L(FO[+]). We are now going to provide an
alternative proof of this latter fact. The following preliminary notions are useful.

The majority function Mσ,σ : {σ, σ}∗ → {0, 1} and the equality function
Eσ,σ : {σ, σ}∗ → {0, 1} are defined, respectively, as:

Mσ,σ(x) =
{

1 if |x|σ > |x|σ
0 otherwise, Eσ,σ(x) =

{
1 if |x|σ = |x|σ
0 otherwise.

We also need the notion of AC0-reduction between problems. Informally, a prob-
lem P is AC0-reducible to a problem P ′ whenever P can be solved by a family of
polynomial size, constant depth, unbounded fan-in and/or/not-circuits with
oracle gates for P ′. In this case, it is easy to see that P ′ ∈ AC0 implies P ∈ AC0

as well.

Theorem 4. The Dyck language D{a,a} does not belong to L(FO[+]).

Proof. We first prove that Ea,a is not in AC0. Indeed, since Ma,a is not in AC0

(see, e.g., [5]), it suffices to prove that Ma,a is AC0-reducible to Ea,a. Consider
x = x1 · · ·xn ∈ {a, a}n. To compute Ma,a(x), we build an AC0-circuit Cn

containing a first layer of oracle gates O0, . . . , O�n
2 � for Ea,a. As input to Oi, we

give the word w(i) = ai+(n mod 2)xi+1 · · ·xn. If there is an oracle Oi yielding 1,
we have that |x|a ≤ |w(i)|a = |w(i)|a ≤ |x|a. On the contrary, if all Oi’s yield 0,
we get that |x|a > |x|a. Thus, we can complete Cn by plugging all the outputs
of Oi’s into an or gate whose output, in turn, is sent to a final not gate.

Let us now turn to the proof of the theorem. By contradiction, suppose that
D{a,a} ∈ L(FO[+]). It is not difficult to verify that the following holds

CONJ(D{a,a}) = {w ∈ {a, a}∗ | |w|a = |w|a}.
By Proposition 7, L(FO[+]) is closed under conjugation, and consequently we
have CONJ(D{a,a}) ∈ L(FO[+]). However, we have w ∈ CONJ(D{a,a}) if and
only if Ea,a(w) = 1. Since Ea,a is not in AC0 and L(FO[+]) ⊂ AC0, this completes
the proof. ��

On the Expressive Power of FO[+] 201

Theorem 5. The Dyck language DT does not belong to L(FO[+]).

Proof. Let T = A ∪ A and a ∈ A a type of parentheses of DT . By contradic-
tion, suppose there exists a FO[+] formula φ for DT , and construct the formula
φ′ = φ ∧ ∀x (Qa(x) ∨ Qa(x)). Clearly, φ′ is an FO[+] formula for the subset
ofDT consisting of the well parenthesized words over the alphabet {a, a}, namely
D{a,a}. This contradicts Theorem 4. ��

References

1. Barrington, D.M., Corbett, J.: On the relative complexity of some languages in
NC. Information Processing Letters 32, 251–256 (1989)

2. Barrington, D.M., Immerman, N., Lautemann, C., Schweikardt, N., Thérien, D.:
First-order expressibility of languages with neutral letters or: The Crane Beach
conjecture. Journal of Computer and System Sciences 70, 101–127 (2005)

3. Büchi, J.: Weak second order arithmetic and finite automata. Zeitschrift für Math-
ematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)

4. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages.
In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems,
pp. 118–161. North Holland, Amsterdam (1963)

5. Furst, M., Saxe, J., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy.
Mathematical Systems Theory 17, 13–27 (1984)

6. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill,
New York (1966)

7. Ginsburg, S., Spanier, E.: Bounded ALGOL-like languages. Trans. Amer. Math.
Soc. 113, 333–368 (1964)

8. Harrison, M.: Introduction to Formal Languages. Addison-Wesley, Reading (1978)
9. Ibarra, O.: Simple matrix grammars. Information and Control 17, 359–394 (1970)

10. Ibarra, O.: A note on semilinear sets and bounded-reversal multihead pushdown
automata. Information Processing Letters 3, 25–28 (1974)

11. Ibarra, O., Jiang, T., Ravikumar, B.: Some subclasses of context-free languages in
NC1. Information Processing Letters 29, 111–117 (1988)

12. Robinson, D.: Parallel algorithms for group word problems. Doctoral Dissertation,
Mathematics Dept., University of California, San Diego (1993)

13. Ruzzo, W.: On uniform circuit complexity. Journal of Computer and System Sci-
ences 22, 365–383 (1981)

14. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Basel (1994)

15. Wegener, I.: The Complexity of Boolean Functions. Teubner, Stuttgart (1987)

Finding Consistent Categorial Grammars of
Bounded Value: A Parameterized Approach

Christophe Costa Florêncio1 and Henning Fernau2

1 Department of Computer Science, K.U. Leuven, Leuven, Belgium
Chris.CostaFlorencio@cs.kuleuven.be

2 Universität Trier, FB IV—Abteilung Informatik, D-54286 Trier, Germany
fernau@uni-trier.de

Abstract. Kanazawa ([8]) has studied the learnability of several param-
eterized families of classes of categorial grammars. These classes were
shown to be learnable from text, in the technical sense of identifiability
in the limit from positive data. They are defined in terms of bounds
on certain parameters of the grammars. Intuitively, these bounds corre-
spond to restrictions on linguistic aspects such as the amount of lexical
ambiguity of the grammar.

The time complexity of learning these classes has been studied by
Costa Florêncio ([4]). It was shown that for most of these classes, select-
ing a grammar from the class that is consistent with the data is NP-hard.
In this paper existing complexity results are sharpened by demonstrat-
ing W[2]-hardness. Additional parameters allowing FPT-results are also
studied, and it is shown that if these parameters are fixed, these prob-
lems become computable in polynomial time. As far as the authors are
aware, this is the first such result for learning problems.

1 Introduction

We consider the complexity of consistency problems for some family (Lk) of
language classes of the following form: Given a finite language sample D and
some integer k, is there some language L ⊇ D contained in Lk? For many
families of language classes, this type of consistency problem is trivial. Consider
for example the class Ak of languages that can be accepted by a finite automaton
with at most k states. In this case we can always answer YES to the consistency
problem, since an automaton with just one state exists that accepts Σ∗.

However, this trivial type of reply is no longer possible if the universal lan-
guage (i.e., Σ∗ in the case of string languages) is not (automatically) in each
of the language classes of interest. Examples are provided by classes of classical
categorial grammars, see [8].

The language families Lk are usually defined via grammar families Gk. As
a variant of the mentioned consistency problem, we may be given a finite set
of derivation structures and some parameter k and ask if there is a grammar
G ∈ Gk that produces those structures (and possibly more). Note that this can
be also seen as a special case of the first problem formulation, if we consider
languages of structures (formally, labeled ordered trees).

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 202–213, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Finding Consistent Categorial Grammars of Bounded Value 203

We study the computational complexity of consistency problems both from a
classical (P vs. NP) perspective, as well as from the perspective of parameterized
complexity.

Since categorial grammars are mainly studied within computational and
mathematical linguistics, our results may be especially relevant for researchers
from these fields.

In order to keep the paper as self-contained as possible, we will try to pro-
vide the necessary background of all the relevant fields. Readers familiar with
this material can of course skip these sections. Throughout the paper, we use
standard notation from Formal Language Theory. If D is a finite language, then
‖D‖ denotes the sum of all lengths of all words from D.

2 Categorial Grammars

The classes studied in [1,2] which are the focus of the present paper are based on a
formalism for (ε-free) context-free languages called classical categorial grammar
(CCG). In this section the relevant concepts of CCG will be defined. We will
adopt the notation used in [8].

In CCG, each symbol (or atom) in some given alphabet Σ is assigned a finite
number of types. In the remainder, we assume Σ to be fixed. This is technically
convenient, and makes no difference in the context of learning, since only the
subset of Σ that actually appears in the data is relevant for the learner. Types
are constructed from primitive types by the operators \ and /. We let Pr denote
the (countably infinite) set of primitive types. The set of types Tp is defined as
the smallest set satisfying:
1. Pr ⊆ Tp,
2. if A ∈ Tp and B ∈ Tp, then A\B ∈ Tp.
3. if A ∈ Tp and B ∈ Tp, then B/A ∈ Tp.

One member t of Pr is called the distinguished type, and is considered a constant.
In CCG there are only two modes of type combination, backward application,
A,A\B ⇒ B, and forward application, B/A,A ⇒ B. In both cases, type A is
the argument, the complex type is the functor. Given an expression of the form
A/B (B\A), its main operator is ‘/’ (‘\’). Grammars consist of type assignments
to symbols, i.e., symbol �→ T , where symbol ∈ Σ and T ∈ Tp.

A derivation of B from A1, . . . , An is a binary branching, labeled tree that
encodes a proof of A1, . . . , An ⇒ B. Through the notion of derivation the as-
sociation between grammar and language is defined. All structures contained in
some given structure language correspond to a derivation of type t based solely
on the type assignments contained in a given grammar. This is the structure
language generated by G, denoted FL(G). The string language generated by G,
L(G), consists of the strings corresponding to all the structures in its structure
language, where the string corresponding to some derivation consists just of the
leaves of that derivation (also known as the yields).

The symbol FL is an abbreviation of functor-argument language, the deriva-
tion language for a CCG that is obtained by suppressing types associated to

204 C. Costa Florêncio and H. Fernau

inner nodes in the derivation (tree). Hence, structures correspond to terms. More
precisely, structures are of the form symbol, fa(s1,s2) or ba(s1,s2), where
symbol ∈ Σ, fa stands for forward application, ba for backward application and
s1 and s2 are also structures.

Example 1. The leftmost structure is a derivation for a proof of
np,np\(t/np),np/n, n/n, n⇒ t.

Note that all tree nodes carry types as labels, and that to inner nodes, in
addition, labels BA and FA are associated, which indicate the operations applied
at those points in the derivation.
The middle structure shows a CCG parse, which is a derivation where the leaves
are labeled not just with types, but also with the lexical items (such as John)
that these types are assigned to in the grammar used for the parse. The rightmost
structure shows the corresponding functor-argument structure.

t

FA
t/np np

BA FA
np np\(t/np) np/n n

FA
n/n n

t

FA
t/np np

BA FA
np np\(t/np) np/n n

John kicks the

FA
n/n n
red ball

FA

BA FA
John kicks the

FA
red ball

All learning functions in [8] are based on the function GF. This function re-
ceives a sample of structures D as input and yields a set of assignments (i.e., a
grammar) called the general form as output, which generates exactly D. It is a
homomorphism and runs in linear time. GFassigns t to each root node, assigns
distinct variables to the argument nodes, and computes types for the functor
nodes: if it is the case that s1 �→ A, given ba(s1,s2) ⇒ B, then s2 �→ A\B. If
s1 �→ A, given fa(s2,s1)⇒ B, then s2 �→ B/A. When learning from strings,
the structure language is not available to the learner, but given a set of strings
there exist only finitely many possible sets of structures for the classes under
discussion. These are then used to produce hypotheses.

Categorial types can be treated as terms, so natural definitions of substitution
and unification apply. A substitution over a grammar is just a substitution over
all of the types contained in its assignments. This notion can be used to unify
distinct types assigned to the same word. Consider, for example, the following
grammar:

G = a �→ t/A,B\t, C/(E/E), (C/D)/D
b �→ A,B, t/C,D, (E/E)/D

(The reader can verify that L(G) consists of just the words ab, ba and babb.)
The types t/A and C/(E/E) can be unified to yield the single type t/(E/E),
obtained by applying the most general unifier σ{C = t, A = (E/E)}. The type
B\t cannot be unified with any of the other types, since they all have ‘/’ as
main operator, while B\t has ‘\’ as main operator. The types t/A and (C/D)/D
cannot be unified because their functors are a constant and a complex type,
respectively. Finally, C/(E/E) and (C/D)/D cannot be unified because this
would fail the occurs check: it would require that C is unified with C/D.

Finding Consistent Categorial Grammars of Bounded Value 205

We state without proof that FL(G) ⊆ FL(σ[G]) for each substitution σ, see
[8] for details.

A CCG G can be hence viewed as a mapping from Σ into finite subsets of
types Tp. Accordingly, we can associate a value function v that maps a ∈ Σ
onto |G(a)|, i.e., the number of types that G maps to a. G is k-valued [4,8] if
maxa∈Σ v(a) ≤ k. The according grammar and language classes are denoted by
Gk−valued and Lk−valued, resp. 1-valued grammars are also known as rigid gram-
mars, and denoted as Grigid. This class is known to be learnable from structures
with polynomial update-time, by simply unifying all types assigned to the same
symbol in the general form [8]. The other classes originally defined in [1,2] are
generalizations thereof.

The class of structure languages that can be generated by grammars from
Gk−valued is written FLk−valued.

3 Complexity Notions

We assume some familiarity with the basic notions of classical complexity on the
side of the reader.

There has been recent interest in the development of parameterized complex-
ity results to allow for a more fine-grained analysis of NP-hard problems. So, a
problem (parameterized by k) is in FPT if we can develop an algorithm with
running time O(f(k)p(n)), where n is the overall input size and k is the (size
of the) parameter. f is an arbitrary function (only depending on k but not on
n) and p is a polynomial. An algorithm that proves FPT-ness is also called an
FPT-algorithm, or a parameterized algorithm. More details can be found in the
monograph [5].

The classical example for a problem in FPT is the vertex cover problem
on undirected graphs. So, given a graph G and a parameter k, it is asked if
there exists a vertex cover C with |C| ≤ k, where a vertex cover set can be
characterized by the fact that, upon removing it together with all incident edges,
no edges will remain in the graph.

This approach makes sense in particular if the parameter of interest can be as-
sumed to be small. The hierarchy level k in our formulation of the consistency
problem might be such a small parameter: in linguistics, the amount of lexical am-
biguity for natural language is assumed to be very small in relation to the num-
ber of symbols found in that lexicon. So, we arrive at problems that we call, for
instance, Lk−valued-consistency in order to make the parameter explicit. How-
ever, we cannot always hope to find nice parameterized algorithms. More specifi-
cally, we can derive as a corollary from [4, Theorem 5.32] (alternatively, [3]):

Corollary 1. Unless P = NP, there is no FPT algorithm that decides
Lk−valued-consistency.

Proof. If this were not the case, there would be an algorithm that decides the
consistency problem in time O(f(k)p(n)). Setting k = 1, we would arrive at a
polynomial-time algorithm that decides if, given a finite set D of strings, there

206 C. Costa Florêncio and H. Fernau

exists a 1-max-valued (rigid) categorial grammar G such that D ⊆ L(G). This
problem is known to be NP-hard. ��
This corollary is surely disappointing from a parameterized point of view, since
it seems to rule out to use k as a good choice of a parameter for the consistency
problem for k-valued categorial grammars.

The proof of [4, Theorem 5.32]makes use of the fact that there is no bound on the
size of the alphabet, so we still might hope for better parameterized results when
we restrict our attention to languages over alphabets of size three, for example.

As we will see, this hope will not be fulfilled. However, in order to formulate
and to establish the indicated result, we need some more notions from parame-
terized complexity.

Aswith classical complexity,we need an appropriate notionof reduction toprove
hardness results, andsomeknowledgeaboutclassesofparameterizedproblems that
are believed not to possess FPT-algorithms. Actually, there is a whole hierarchy
of parameterized problems that is believed to be strict, the so-called W-hierarchy.
Usually, its lowest level, W[0], is called FPT (which we have already defined).

A typical W[1]-complete problem is the following one: Given a graph G and
a parameter k, is there an independent vertex set I of size k in G? Recall that
C is a minimum vertex cover in a graph G = (V,E) iff the subgraph induced by
V \ C is an independent set, see [6].

A typical W[2]-complete problem is the vertex cover problem for hyper-
graphs, also known as hitting set: given a hypergraph G and a parameter k,
we ask for a vertex set C of size at most k such that each edge e of G is hit, i.e.,
e ∩ C
= ∅ (note that a hyperedge e is simply the set of vertices it connects).

We still need a satisfying notion of reduction in order to define hardness (and
completeness) for parameterized complexity classes. Given two parameterized
problems P and P ′ with parameterizations k and k′, resp., a parameterized
(many-one) reduction translates an instance (I, k) of P in polynomial time into
an instance (I ′, k′) such that k′ = f(k) for some function f . Obviously, if P ′

is in W [i], i = 0, 1, 2, then so is P . So, if P is W[2]-hard and we can provide
such a reduction that translates P into P ′, then P ′ is W[2]-hard, as well. As an
example, consider the reductions presented in Sections 5.3-5.5 from [4] that show
NP-hardness of several variants of consistency problems (as we would call those
here). These reductions use vertex cover, and the reductions are actually
parameterized reductions in the following sense: they show how an instance
(G, k) of vertex cover can be transformed in polynomial time into an instance
(F, k) of Lk−valued-consistency. This is why we originally hoped for FPT-ness
results for this type of problems.

4 Results

In [4], only hardness results were shown. We first complement these results
by demonstrating membership in NP. This was originally neglected, since the
consistency problem was studied as an aspect of learning problems, specifically
of identification in the limit. In this paradigm, the length of the input sequence

Finding Consistent Categorial Grammars of Bounded Value 207

before convergence is inherently unbounded. Thus, it makes little sense to con-
sider questions such as membership in NP, which would require a polynomial
number of steps before convergence.

Lemmas 6.1 and 6.2 from [8] (attributed to Buszkowski and Penn) underline
the importance of the concept of the general form GF(D) (as discussed above),
a CCG associated to a finite structure language D. Without giving details here,
notice that it is further known that any reduced CCGG′ consistent withD can be
obtained from GF(D) by unification. Moreover, the size of GF(D) (and hence the
size of G′) is bounded by a polynomial over ‖D‖. If D is a finite string language,
then any finite structure language D′ that yields D is of size polynomial in ‖D‖.
Hence, any GF(D′) of interest is also of size polynomial in ‖D‖.
Theorem 1. FLk−valued-consistency is NP-complete.

Proof. NP-hardness of FLk−valued-consistency is shown in [4] (Theorem 5.16,
which holds for the case where |Σ| = 3). To see membership in NP, let (D, k)
be an instance of FLk−valued-consistency. The nondeterministic procedure we
propose first generates some G ∈ Gk−valued, by unifying types in GF(D) that are
assigned to the same symbol. Then, for each structure s ∈ D, the procedure
tests whether s ∈ FL(G) (which can be done in polynomial time). If (and only
if) all these tests are passed, the algorithm returns YES. ��
Theorem 2. Lk−valued-consistency is NP-complete.

Proof. NP-hardness of Lk−valued-consistency is shown in [4] (Theorem 5.32,
which holds for the case where k = 1 and |Σ| is unbounded). To see membership
in NP, let (D, k) be an instance of Lk−valued-consistency. The nondetermin-
istic procedure we propose consists of two parts; first, for each string in D, a
derivation is chosen. Then, the union of the resulting structures, D′ (note that
‖D′‖ is obviously polynomial in ‖D‖), is used as a sample for learning from
structures, so that some G ∈ Gk−valued is generated by unifying types in GF(D′)
that are assigned to the same symbol. Then, for each string w ∈ D, the proce-
dure tests whether w ∈ L(G) (which can be done in polynomial time). If (and
only if) all these tests are passed, the algorithm returns YES. ��
We can actually sharpen the hardness assertion in the sense of parameterized
complexity, by defining a polynomial-time transformation from hitting set to
a dataset for a language in FLk−valued. Deciding that the data is consistent with
a language in that class, i.e., FLk−valued-consistency, then corresponds to
deciding the existence of a cover of a specified size c. We will call any grammar
that generates a language in the class consistent with the given input a consistent
grammar.

We now define a construction that is based on these ideas.
Definition 1. Let hg(HG, c) be the algorithm that maps instances of the vertex
cover problem for hypergraphs to samples of structure languages defined in the fol-
lowing way:

The hypergraph HG = (V,E) consists of a set V of vertices numbered 1, . . . , v
and a set E of (hyper)edges numbered 1, . . . , e. It is characterized by the functions

208 C. Costa Florêncio and H. Fernau

d(i), 1 ≤ i ≤ e, which gives the degree of edge Ei, and n(i, j), which gives the
index of the jth vertex that edge i is incident on. The constant c specifies the
maximal size of the cover.

The sample D output by hg is the smallest set that fulfills the following
requirements:

For each i, 1 ≤ i ≤ e, the structures
fa(. . . fa(ei, fa(ci, x)) . . . fa(ci, x))︸ ︷︷ ︸

d(i) times

, ui), . . .ui)︸ ︷︷ ︸
d(i) + 1 times

and

fa(. . . fa(ei, f(i,1)), . . .f(i,d(i))), fa(tt, t)), s(i,1)), . . . s(i,d(i)−1)),
fa(ttt, t)) are in D. Additionally, for each j, 1 ≤ j ≤ d(i),
fa(. . . fa(ei, G(j,1)), . . . G(j,d(i))), T(j,1)), . . . T(j,d(i)+1)) where G(j,x) is
fa(vn(i,x), x) if x = j and g(i,x) otherwise, and where T(j,x) is fa(tj,j , x) if x = j
or x = j + 1 and t(j,x) otherwise.

For each i, 1 ≤ i ≤ e, fa(c, fa(ci, x)) is in D. If c = 1, the padding structure
ba(x, c) is in D.

For each i, 1 ≤ i ≤ c, the padding structure ba(x, ci) is in D.
For each i, 1 ≤ i ≤ v, the padding structure ba(x, vi) is in D.
For each ti,j, the padding structure ba(x, ti,j) is in D.
We add k − 2 padding structures for each ei, and k − 1 such structures for

each vi, ci, and for tt and ttt.

In order to make clear why the sample is built up in this way, we now discuss
the types as they occur in any grammar in Gk−valued that is consistent with this
sample.

Let Υi = Ci,1/ . . . Ci,v/(Us(1,i,0)/Us(1,i,1))/ . . . (Us(d(i),i,0)/Us(d(i),i,1)),
Γn(i,j) = Gi,1/ . . . Gi,v/ (Tt(1,i,0)/Tt(1,i,1))/ . . . (Tt(d(i),i,0)/Tt(d(i),i,1)),
Tt(k,i,0) = Tt(�,i,1) if � = n(i, j), and the Tt(�,i,j)s are distinct (primitive) types,
otherwise.

Every type Gi,j , i = j, is equal to some type Δn(i, j). These are based strictly
on alternating forward- and backward slashes, with the main operator always
the backward slash. The type Δ1 is X\t. For any two u, v such that u
= v,
Δu and Δv are not unifiable. Note that this allows any two Γn(i,x) and Γn(i,y),
x
= y, to be unifiable, since the Δ-subtypes appear in different positions of these
Γ terms.

Define Σi = Fi,1/ . . . Fi,v/(Sg(1,i,0)/Sg(1,i,1))/ . . . (Sg(v,i,0)/Sg(v,i,1)) for 1 ≤
i ≤ e. From GF(D), the following grammar is derived by unifying all types
assigned to x. This simplifies the presentation without affecting the proof of
W[2]-hardness in any way. Note that in the interest of clarity we omit type
assignments to symbols fn(x,y), gn(x,y), sx,y, tx,y and ux.

e1 �→ t/Υ1,
t/Γn(1,1), . . . t/Γn(1,d(1)),
t/Σ1,
Padding

. . .

Finding Consistent Categorial Grammars of Bounded Value 209

G′ :

ee �→ t/Υe,
t/Γn(e,1), . . . t/Γn(e,d(e)),
t/Σe,
Padding

v1 �→ Δ1,Padding
. . .
vv �→ Δv,Padding

c1 �→ C1,1/X, . . . , C1,v/X,C1/X,Padding
. . .
ce �→ Ce,1/X, . . . , Ce,v/X,Ce/X,Padding

c �→ t/C1, . . . , t/Ce,Padding

x �→ X

t �→ t
tt �→ t/t,Padding
ttt �→ (t/t)/t,Padding

Where, for 1 ≤ i ≤ e, j = n(i, d(i)).
Note that hg runs in time polynomial in the size of the hypergraph. There

are bounds on parameters of the grammar: given hypergraph HG = (V,E)
and stipulated size of the cover c, k = max(2, c), and |Σ| = 5 + |V | + 2|E| +
2
∑|E|

i=1 d(i) + 2
∑|E|

i=1 d(i)
2.

The construction works just for k ≥ 2, but this does not affect the result in
any way. Note that for k = 1, the consistency problem is known to be solvable
in polynomial time.

Theorem 3. FLk−valued-consistency is W[2]-hard.

Proof. By modifying the mentioned NP-hardness proofs, we show how to trans-
form an instance (G, k) of hitting set to FLk−valued-consistency, preserving
the parameter. To be more precise, the hitting set problem can be reduced in
polynomial time to finding a grammar consistent with structures D and in the
class Gk−valued. We achieve this using the algorithm hg as given in Definition 1.

Let hypergraph HG = (V,E), G = GF(hg(HG)), and c such that a cover of
size c exists for HG.

For any symbol ei, unification of all types t/Γn(i,1), . . . t/Γn(i,d(i)) to t/Σi

will lead to a substitution such that Sg(1,i,0) = Sg(1,i,1) = . . . = Sg(v,i,0) =
Sg(v,i,1). Since this is not possible, for each symbol ei, at most one of the types
t/Γn(i,1), . . . t/Γn(i,d(i)) can be unified with t/Υi instead. For each i, only one of
these t/Γ types can be chosen for this, since it will block unification of t/Υi with
any of the other t/Γ types: for any given i, the U types in Υi all have to be of
the same type, and such a unification step will result in a substitution such that
some Δ type will be substituted for all these U types.

210 C. Costa Florêncio and H. Fernau

For every i, the T types in Γi overlap: Tj,j occurs twice in every Γi.
Thus, they cannot all be unified with Σi, since the pair of the first and last

S type in every Σ-type is not unifiable.
Hence, for each i, exactly one of the t/Γ types has to be unified with the t/Υ

type, and the rest with the Σ type. This implies a substitution such that for each
Ci, a Δ� is substituted such that � = n(i, j), 1 ≤ j ≤ d(i). This corresponds to
choosing vertex � in the original hypergraph to cover edge i. Since, for all i, t/Ci

is assigned to symbol c, and given the number of padding types assigned to this
symbol (0 if c ≥ 2, 1 if c = 1), the number of distinct Δ types that substitute
for the C types can be no more than c. This proves that, if k ≥ c, the answer to
FLk−valued-consistency is YES.

Let c and HG be such that a minimum cover for HG is of size c′ > c, and
let G = GF(hg(HG)) as before. Following the same line of reasoning as earlier
in this proof, it is clear that for each Ci, a Δk must be substituted in order
to obtain a consistent grammar that is in the class. Given the definition of hg ,
these Δ types correspond to one of the vertices that edge i is incident on. Given
that c′ > c, there are at least c′ distinct such Δ types, and since for all i,
t/Ci is assigned to c, at least c′ distinct types are assigned to c in a consistent
grammar, which thus cannot be in Gk−valued for k = max(c, 2). Thus the answer
to FLk−valued-consistency is NO.

This proves that the answer to FLk−valued-consistency for the sample
hg(HG, c) is the same as for hitting set for HG with c as size of the cover.
Since the reduction hg runs in polynomial time, this proves W[2]-hardness. ��
As for the problem Lk−valued-consistency, note that Lk−valued contains Σ∗

for k ≥ 2, which immediately trivializes the problem. We refer to [3] for a
proof of NP-hardness for the case k = 1. Notice that these results render the
parameterization discussed in this section meaningless from the viewpoint of
parameterized complexity.

As an aside, let us mention that in the literature (see Corollary 5.13 from [4],
for example) also consistency questions related to the least-k-valued grammars
and languages were considered. This means we are looking for the smallest k such
that there is a grammar G ∈ Gk−valued and D ⊆ FL(G). These problems are also
known to be NP-hard, but it is an open question whether they belong to NP.

5 Reparameterizations

As already seen with the example of vertex cover versus independent set,
basically the same problem can be parameterized in different ways, possibly
leading to positive (FPT) results or to negative (W[2]-hardness) results. So it
might be that other choices of parameterization may lead to FPT-algorithms.

One other natural choice of a parameter is the number of unification steps u
needed to transform the general form of D into some k-valued grammar G such
that D ⊆ L(G). This leads to problems like u-step Lk−valued-consistency.
The input to such a problem would be a triple (D,u, k), where D is the finite
input sample. A variant could be uniform u-step Lk−valued-consistency,

Finding Consistent Categorial Grammars of Bounded Value 211

where the input would be (D, k), and the question would be whether there
exists a u such that (D,u, k) is a YES-instance of u-step Lk−valued-consist-

ency. Hence, the inputs to uniform u-step Lk−valued-consistency and to
Lk−valued-consistency are the same.

Although the following is not stated explicitly in [8], it follows from Proposi-
tion 6.32 and the preceding description of algorithm VGk, and the description
of algorithm LVG (Section 6.3) in that book:

Theorem 4. (D, k) is a YES-instance to FLk−valued-consistency iff (D, k)
is a YES-instance to uniform u-step FLk−valued-consistency.

In conclusion, the uniform problem variants do not offer new insights. However,
they immediately provide:

Corollary 2. uniform u-step Lk−valued-consistency is NP-complete.
uniform u-step FLk−valued-consistency is W[2]-hard.

Instead of a single parameter, one could also consider two or more parameters.
(Formally, this is captured by our definition by combining those multiple pa-
rameters into one single parameter.) So, the FPT-question of fixed |Σ| u-step

Lk−valued-consistency would be whether an algorithm exists that runs in time
f(u, k, |Σ|)p(‖D‖) for some function f and some polynomial p.

Theorem 5. fixed |Σ| u-step FLk−valued-consistency is in FPT.

Proof. It is easy to see that, given that u bounds the number of unification
steps, for a sample larger than u + |Σ| · k, the answer to fixed |Σ| u-step

FLk−valued-consistency is always NO.
When the sample is smaller than this, we can obtain 1

2 ·‖GF(D)‖·(‖GF(D)‖−
1) as a bound for pairs of types and thus a bound on the size of the search-space
of u!

(u+|Σ|·k)!(|Σ|·k)! . This is a constant, since u, k and |Σ| are fixed. ��

Theorem 6. fixed |Σ| u-step Lk−valued-consistency is in FPT.

Proof. As in the case for structure languages, for a sample larger than u+ |Σ| ·k
the answer to fixed |Σ| u-step Lk−valued-consistency is NO. For smaller
samples a consistent grammar may exist, so consider the number of derivations
compatible with the strings inD. The length of the strings inD is upper bounded
by ‖D‖, and thus by u+ |Σ| ·k, and the number of strings is |D|, which is upper
bounded by u+ |Σ| · k, as well. Thus, given D, the number of possible structure
samples D′ is bounded by

(
2u+|Σ|·k−1 1

u+ |Σ| · k
(

2(u+ |Σ| · k − 1)
(u + |Σ| · k − 1)

))u+|Σ|·k

which is a constant, since u, k and |Σ| are fixed. For each of the possible D′,
fixed |Σ| u-step FLk−valued-consistency can be considered, which is in FPT.

��

212 C. Costa Florêncio and H. Fernau

One could also study the step number u (or other subsets of parameters) as
another parameterization. One problem formulation could be the following one:
Given a finite sample D and a categorial grammar G (and the parameter u),
does there exist a sequence of at most u unification steps, starting from the
general form GF(D) and leading to G? This might be an interesting subject for
future study. However, note that the slightly more general problem of deciding
the existence of such a sequence from some arbitrary given grammar (not nec-
essarily in general form) is already at least as hard as the well-known graph

isomorphism problem for u = 0.1 We can encode a graph into a grammar by
assigning to one single symbol the types Ti/Tj for every edge from vertex i to
vertex j in the graph (and assigning T� and t/T� for every vertex � to avoid
useless types). Let G1 and G2 be two such grammars encoding graphs Graph1
and Graph2, then u = 0 (i.e., an empty sequence of unification steps) just if
there exists a renaming such that, when it is applied to G1, G2 is obtained. It is
easy to see that this is only the case if Graph1 and Graph2 are isomorphic.

6 Consequences for the Complexity of Learning

We have studied the parameterized complexity, for several classes of categorial
grammars, of selecting a grammar consistent with a given (string- or structure)
sample. Our results have a direct consequence for the complexity of learning: if
this problem is computable in polynomial time, then a learning algorithm with
polynomial update time may exist.

Our complexity results are summarized in Table 6. As far as the authors are
aware, these are the first such results for learning problems.

Problem Complexity
FLk−valued-consistency W[2]-hard
uniform u-step FLk−valued-consistency W[2]-hard
uniform u-step Lk−valued-consistency NP-complete
fixed |Σ| u-step FLk−valued-consistency FPT
fixed |Σ| u-step Lk−valued-consistency FPT

From a technical point of view, it would be nice to complement our W[2]-
hardness result (Theorem 3) by demonstrating membership in W[2]. A natural
idea would be to design a multi-tape Turing machine with one tape storing
or counting the rule (applications) for each symbol. However, it is not clear if
such a Turing machine would need only f(k) many steps to decide consistency.
Such a question might also be interpreted in the direction of parallelizability of
derivations in categorial grammars. We are not aware of any such study for this
type of mechanisms, but we would like to point to the fact that studies in this
direction were undertaken for the weakly equivalent mechanism of context-free
grammars, see [11] and the references therein.
1 Though it is not known if graph isomorphism is NP-complete, this problem is also

believed not to be solvable in polynomial time, see [7,9].

Finding Consistent Categorial Grammars of Bounded Value 213

The obvious interpretation of our positive (FPT) results would be that, as
long as the parameters k, u, and |Σ| are kept low, the classes are efficiently
learnable. The last parameter is the most problematic, since for typical (NLP)
applications the lexicon is very large. Thus, our analysis suggests the approach
of choosing the total number of distinct types in the grammar as a parameter.

It would be interesting to study the consistency problem for other language
class hierarchies, where each class has finite elasticity. One such example might
be those based on elementary formal systems as examined by Moriyama and
Sato [10]. This would be an interesting topic for future research.

References

1. Buszkowski, W.: Discovery procedures for categorial grammars. In: Klein, E., van
Benthem, J. (eds.) Categories, Polymorphism and Unification. University of Ams-
terdam (1987)

2. Buszkowski, W., Penn, G.: Categorial grammars determined from linguistic data
by unification. Studia Logica 49, 431–454 (1990)

3. Costa Florêncio, C.: Consistent identification in the limit of rigid grammars from
strings is NP-hard. In: Adriaans, P.W., Fernau, H., van Zaanen, M. (eds.) ICGI
2002. LNCS (LNAI), vol. 2484, pp. 49–62. Springer, Heidelberg (2002)

4. Costa Florêncio, C.: Learning Categorial Grammars. PhD thesis, Universiteit
Utrecht, The Netherlands (2003)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

6. Gallai, T.: Über extreme Punkt- und Kantenmengen. Ann. Univ. Sci. Budapest,
Eötvös Sect. Math. 2, 133–138 (1959)

7. Johnson, D.S.: The NP-completeness column. ACM Transactions on Algo-
rithms 1(1), 160–176 (2005)

8. Kanazawa, M.: Learnable Classes of Categorial Grammars. PhD, CSLI (1998)
9. Köbler, J., Schöning, U., Torán, J.: Graph Isomorphism Problem: The Structural

Complexity. Birkhäuser, Basel (1993)
10. Moriyama, T., Sato, M.: Properties of language classes with finite elasticity. In:

Tomita, E., Kobayashi, S., Yokomori, T., Jantke, K.P. (eds.) ALT 1993. LNCS
(LNAI), vol. 744, pp. 187–196. Springer, Heidelberg (1993)

11. Reinhardt, K.: A parallel context-free derivation hierarchy. In: Ciobanu, G., Păun,
G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 441–450. Springer, Heidelberg (1999)

Operator Precedence and the Visibly Pushdown
Property�

Stefano Crespi Reghizzi and Dino Mandrioli

Dipartimento di Elettronica e Informazione, Politecnico di Milano,
P.za Leonardo da Vinci 32, I–20133 Milano

{stefano.crespireghizzi,dino.mandrioli}@polimi.it

Abstract. Operator precedence languages, designated as Floyd’s Languages
(FL) to honor their inventor, are a classical deterministic context-free family. FLs
are known to be a boolean family, and have been recently shown to strictly in-
clude the Visibly Pushdown Languages (VPDL); the latter are FLs characterized
by operator precedence relations determined by the alphabet partition. In this pa-
per we give the non-obvious proves that FLs have the same closure properties that
motivated the introduction of VPDLs, namely under reversal, concatenation and
Kleene’s star. Thus, rather surprisingly, the historical FL family turns out to be
the largest known deterministic context-free family that includes the VPDL and
has the same closure properties needed for applications to model checking and
for defining mark-up languages such as HTML. As a corollary, an extended reg-
ular expression of precedence-compatible FLs is a FL and a deterministic parser
for it can be algorithmically obtained.

1 Introduction

From the very beginning of formal language science, research has struggled with the
wish and need to extend as far as possible the elegant and practical properties of reg-
ular languages to other language families that overcome the limitations of finite-state
models in terms of expressivity and allow more accurate modelling of relevant phenom-
ena. In particular, it is well known that closure properties under basic operations allow
to automatically construct complex models from simple ones, and to decide important
problems: e.g. model checking relies on closure w.r.t. boolean operations and on decid-
ability of the emptiness problem. Since, among the classic formal language families,
only regular languages enjoy closure w.r.t. the needed operations, the search for new
subclasses – mostly of context-free (CF) languages – exhibiting the wished properties,
is a long-standing research concern.

A major step has been made by McNaughton with parenthesis grammars [12], whose
productions are characterized by enclosing any righthand side (r.h.s) within a pair of
parentheses; the alphabet is the disjoint union of internal characters and the pair. By
considering instead of strings the stencil (or skeletal) trees encoded by parenthesized
strings, some typical properties of regular languages that do not hold for CF languages
are still valid: uniqueness of the minimal grammar, and boolean closure within the

� Partially supported by PRIN 2007TJNZRE-002, CNR-IEIIT and ESF AutoMathA.

A.-H. Dediu, H. Fernau, and C. Martı́n-Vide (Eds.): LATA 2010, LNCS 6031, pp. 214–226, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Operator Precedence and the Visibly Pushdown Property 215

class of languages having the same production stencils. Further mathematical devel-
opments of those ideas have been pursued in the setting of tree automata [16]. Short
after McNaughton’s results, we investigated similar closure properties of Floyd’s oper-
ator precedence Grammars and Languages [10] 1 (FG and FL), elegant precursors of
LR(k) grammars and Deterministic CF (DCF) languages, also exploited in early work
on grammar inference [5]. The production set of an operator grammar determines three
binary precedence relations (greater/less/equal) over the alphabet, that for a FG gram-
mar are disjoint, and are presented in a matrix. The precedence matrix, even in the
absence of the productions, fully determines the topology (or stencil) of the syntax tree,
for any word that is generated by any FG having the same precedence matrix. The fam-
ilies of FGs that share the same precedence matrix and the corresponding languages are
boolean algebras [8,5].

We also extended the notion of non-counting regular languages of McNaughton and
Papert [13] to parenthesis languages and to FLs [6].

Decades later, novel interest for parentheses-like languages arose from research on
mark-up languages such as XML, and produced the family of balanced grammars
and languages [3]. They generalize parenthesis grammars in two ways: several pairs
of parentheses are allowed, and the r.h.s of grammar rules allow for regular expres-
sions over nonterminal and internal symbols to occur between matching parentheses.
The property of uniqueness of the minimal grammar is preserved, and the family has
the closure property w.r.t. concatenation and Kleene star, which was missing in paren-
thesis languages. Clearly, balanced as well as parenthesis languages, are closed under
reversal.

Model checking and static program analysis provide another motivation for such
families of languages – those that extend the typical finite-state properties to infinite-
state pushdown systems. The influential paper by Alur and Madhusudan [1] (also in [2])
defines the visibly pushdown automata and languages (VPDA, VPDL), a subclass of re-
altime pushdown automata and DCF. The input alphabet is partitioned into three sets
named calls (or opening), returns (or closing), and internals. The decision of the type
of move to perform (push, pop, or a stack neutral move) is purely driven by the mem-
bership of an input character in one of the three sets, a property that justifies the name
“visibly pushdown”. VPDLs extend balanced grammars in ways that are important for
modelling symbolic program execution. For each partitioned alphabet, the correspond-
ing language family is closed under reversal and boolean operations, concatenation and
Kleene star.

Guided by the intuition that precedence relations between terminals in a FG deter-
mine the action on the pushdown stack in a more flexible way than in a VPDA, we
recently [7] proved that VPDLs are a proper subclass of FLs, characterized by a fixed
partition of the precedence matrix, induced by the alphabetic partition into opening,
closing and internal letters.

From the standpoint of their generative capacity and expressivity, FGs are more pow-
erful than VPDAs in various practical ways. An example of structural adequacy possible
with FG but not with VPDA is the semantic precedence of multiplication operators over

1 We propose to name them Floyd grammars to honor the memory of Robert Floyd and also to
avoid confusion with other similarly named but quite different types of precedence grammars.

216 S. Crespi Reghizzi and D. Mandrioli

additive ones (which inspired Floyd in the definition of operator precedence). An ex-
ample of the higher generative capacity are the nested constructs opened and closed
by means of a sequence of characters, e.g. /* */, rather than by two distinct
single characters, one for the opening and one for the closing of the scope. Overall FGs,
though less general than LR(1) grammars, offer a comfortable notation for specifying
syntaxes of the complexity of programming languages, and are still occasionally used
in compilation [11]. Surprisingly enough, nothing was known on the closure of FL un-
der concatenation and Kleene star. This paper provides a positive but not immediate
answer, in contrast to the fact that for the main language families closure under the two
operations is either trivially present or trivially absent: examples of the former case are
CF and VPDLs with a fixed alphabetic partitioning, while DCF is an example of the
latter. In this perspective FGs represent an interesting singularity: they are closed but
in a far from obvious way. Precisely, although the parse tree of a string x · y is solely
determined by the given precedence relations of the grammars generating the two fac-
tors, the tree of x · y may be sharply different from the pasting together of the trees of x
and y. The difficulty increases for Kleene star, because the syntax tree of, say, x · x · x
cannot be obtained by composing the trees of either x · x and x or x and x · x, but may
have an entirely different structure.

Thus, rather surprisingly, a classical, half-forgotten language family turns out to en-
joy all the desirable properties that motivated the recent invention of VPDLs! To the
best of our knowledge FG currently qualifies as the largest DCF family closed under
boolean operations, reversal, concatenation and Kleene star.

The paper proceeds as follows: Section 2 lists the essential definitions of FG, and
a summary of known results; Section 3 proves closure under concatenation; Section
4 proves closure under Kleene star and shows an application of the closure properties
to regular expressions. Brevity precludes inclusion of the complete proofs, which are
available from the first author’s web page. Section 5 concludes.

2 Basic Definitions and Properties

We list the essential definitions of Floyd grammars. For the basic definitions of CF
grammars and languages, we refer to any textbook, such as [15]. The empty string is
denoted ε, the terminal alphabet is Σ. For a string x and a letter a, |x|a denotes the
number of occurrences of letter a, and the same notation |x|Δ applies also to a set
Δ ⊆ Σ; first(x) and last(x) denote the first and last letter of x
= ε. The projection
of a string x ∈ Σ∗ onΔ is denoted πΔ(x).

A Context-Free CF grammar is a 4-tuple G = (VN , Σ, P, S), where VN is the non-
terminal alphabet, P is the production set, S is the axiom, and V = VN ∪Σ. An empty
rule has ε as right hand side (r.h.s.). A renaming rule has one nonterminal as r.h.s. A
grammar is reduced if every production can be used to generate some terminal string.
A grammar is invertible if no two productions have identical r.h.s.

The following naming convention will be adopted, unless otherwise specified: lower-
case Latin letters a, b, c denote terminal characters; letters u, v, x, y, w, z denote termi-
nal strings; Latin capital letters A,B,C denote nonterminal symbols, and Greek letters
α, . . . , ω denote strings over V . The strings may be empty, unless stated otherwise.

Operator Precedence and the Visibly Pushdown Property 217

For a production A → u0A1u1A2 . . . uk−1Ak , k ≥ 0, the stencil is the production
N → u0Nu1N . . . uk−1N , where N is not in VN .

A production is in operator form if its r.h.s. has no adjacent nonterminals, and an
operator grammar (OG) contains just such productions. Any CF grammar admits an
equivalent OG, which can be also assumed to be invertible [15].

For a CF grammar G over Σ, the associated parenthesis grammar [12] G̃ has the
rules obtained by enclosing each r.h.s. of a rule of G within the parentheses ‘[’ and ‘]’
that are assumed not to be in Σ.

Two grammarsG,G′ are equivalent if they generate the same language, i.e., L(G) =
L(G′). They are structurally equivalent if in addition the corresponding parenthesis
grammars are equivalent, i.e., L(G̃) = L(G̃′).

For a grammar G consider a sentential form α with S
∗⇒ α and α = βA, A ∈ VN .

Then A is a Suffix of the Sentential Form (SSF); similarly we define the Prefix of a
Sentential Form (PSF).

The coming definitions for operator precedence grammars [10], here named Floyd
Grammars, are from [8]. (See also [11] for a recent practical account.)

For a nonterminalA of an OG G, the left and right terminal sets are

LG(A) = {a ∈ Σ | A ∗⇒ Baα} RG(A) = {a ∈ Σ | A ∗⇒ αaB} (1)

where B ∈ VN ∪ {ε}. The two definitions are extended to a setW of nonterminals and
to a string β ∈ V + via

LG(W) =
⋃

A∈W

LG(A) and LG(β) = LG′(D) (2)

where D is a new nonterminal and G′ is the same as G except for the addition of the
production D → β. Notice that LG(ε) = ∅. The definitions for R are similar. The
grammar name G will be omitted unless necessary to prevent confusion.

R. Floyd took inspiration from the traditional notion of precedence between arith-
metic operators, in order to define a broad class of languages, such that the shape of the
parse tree is solely determined by a binary relation between terminals that are consecu-
tive, or become consecutive after a bottom-up reduction step.

For an OG G, let α, β range over (VN ∪ Σ)∗ and a, b ∈ Σ. Three binary operator
precedence (OP) relations are defined:

equal-precedence: a
.= b ⇐⇒ ∃A→ αaBbβ,B ∈ VN ∪ {ε}

takes precedence: a� b ⇐⇒ ∃A→ αDbβ and a ∈ RG(D) (3)

yields precedence: a� b ⇐⇒ ∃A→ αaDβ and b ∈ LG(D)

For an OG G, the operator precedence matrix (OPM) M = OPM(G) is a |Σ| × |Σ|
array that to each ordered pair (a, b) associates the setMab of OP relations holding be-
tween a and b. Between two OPMsM1 andM2, we define set inclusion and operations.

M1 ⊆M2 if ∀a, b : M1,ab ⊆M2,ab, M =M1∪M2 if ∀a, b : Mab =M1,ab∪M2,ab

(4)

218 S. Crespi Reghizzi and D. Mandrioli

Definition 1. G is an operator precedence or Floyd grammar (FG) if, and only if,
M = OPM(G) is a conflict-free matrix, i.e., ∀a, b, |Mab| ≤ 1. Two matrices are
compatible if their union is conflict-free. A matrix is total if it contains no empty case.

In the following all precedence matrices are conflict-free.

2.1 Known Properties of Floyd Grammars

We recall some relevant definitions and properties of FGs. To ease cross-reference, we
follow the terminology of [8].

Definition 2. Normal forms of FG
A FG is in Fischer normal form [9] if it is invertible, the axiom S does not occur in the
r.h.s. of any production, the only permitted renaming productions have S as left hand
side, and no ε-productions exist, except possibly S → ε.

An FG is in homogeneous normal form [8,5] if it is in Fischer normal form and, for
any productionA→ α with A
= S, L(α) = L(A) andR(α) = R(A).

Thus in a homogeneous grammar, for every nonterminal symbol, all of its alternative
productions have the same pairs of left and right terminal sets.

Statement 1. For any FG G a structurally equivalent homogeneous FG H can be ef-
fectively constructed [8].

Next we consider FGs having identical or compatible precedence relations and we state
their boolean properties.

Definition 3. Precedence-compatible grammars
For a precedence matrix M , the class [8] CM of precedence-compatible FGs is

CM = {G | OPM(G) ⊆M} .
The equal-precedence relations of a FG have to do with an important parameter of the
grammar, namely the maximal length of the r.h.s. of the productions. Clearly, a pro-
duction A → A1a1 . . . AtatAt+1, where each Ai is a possibly missing nonterminal, is
associated with a1=̇a2=̇ . . . =̇at. If the =̇ relation is circular, the grammar can have pro-
ductions of unbounded length. Otherwise the length of any r.h.s. is bounded by (2.c)+1,
where c is the length of the longest =̇-chain. For both practical and mathematical rea-
sons, when considering the class of FG associated to a given OPM, it is convenient to
restrict attention to grammars with bounded r.h.s. This can be done in two ways.

Definition 4. Right-bounded grammars
The class CM,k of FGs with right bound k ≥ 1 is defined as

CM,k = {G | G ∈ CM ∧ (∀ production A→ α of G, |α| ≤ k)}
The class of =̇-acyclic FGs is defined as

CM,=̇ = {G | G ∈ CM | matrixM is =̇-acyclic}
A class of FGs is right bounded if it is k-right-bounded for some k.

Operator Precedence and the Visibly Pushdown Property 219

The class of =̇-acyclic FGs is obviously right-bounded. Notice also that, for any matrix
M , the set of the production stencils of the grammars in CM,k (or in CM,=̇) is finite.

The following closure properties are from [8] (Corol. 5.7 and Theor. 5.8).

Statement 2. For every precedence matrixM , the class of FLs

{L(G) | G ∈ CM,k}

is a boolean algebra.

In other words, the proposition applies to languages generated by right-bounded FGs
having precedence matrices that are included in, or equal to some matrix M . Notice
that the top element of the boolean lattice is the language of the FG that generates all
possible syntax trees compatible with the precedence matrix; in particular, ifM is total,
the top element is Σ∗.

We observe that the boolean closure properties of VPDL immediately follow from
Statement 2 and from the fact that a VPDL is a FL characterized by a particular form
of precedence matrix [7].

Other simple properties

Statement 3. The class of FG languages is closed with respect to reversal.

This follows from the fact that, if a� b for a FG grammarG, then it holds b� a for the
grammarGR obtained by reversing the r.h.s. of the productions of G; and similarly for
a� b. The a

.= b relation is turned into b
.= a by production reversal. It follows thatGR

is a FG.
It is interesting to briefly discuss the cases of very simple precedence matrices. First

consider a matrix M containing only �, hence necessarily conflict free. Then the non-
empty r.h.s.’s of the productions of any grammar in CM may only be of the types aN or
a. Therefore the grammar is right-linear. (Conversely for � and left-linearity.) Second,
suppose M does not contain =̇. Then any production of any grammar in CM only
admits one terminal character. Notice that linear CF grammars can be cast in that form,
but not all linear CF languages are FG since they may be non-DCF.

To finish, we compare regular languages and FGs.

Statement 4. Let R ⊆ Σ∗ be a regular language. There exists a FG grammar for R in
the familyCM,2, whereM is the precedence matrix such thatMab = � for all a, b ∈ Σ.

The statement follows from the fact that every regular language is generated by a right-
linear grammar. If the empty string is in R, the FG has the axiomatic rule S → ε.

A stronger statement holding for any precedence matrix will be proved in Subsec-
tion 4.1 as a corollary of the main theorems.

3 Closure under Concatenation

Although FGs are the oldest deterministic specialization of CF grammars, the fun-
damental but non-trivial questions concerning their closure under concatenation and

220 S. Crespi Reghizzi and D. Mandrioli

Kleene star have never been addressed, to the best of our knowledge. This theoretical
gap is perhaps due to the facts that DCF languages are not closed under these operations,
and that the constructions used for other grammar or PDA families do not work for FG,
because they destroy the operator grammar form or introduce precedence conflicts. The
closure proofs to be outlined, though necessarily rather involved, are constructive and
practical. The grammars produced for the concatenation (or the Kleene star) structurally
differ from the grammars of the two languages to be combined in rather surprising ways:
the syntax tree of the prefix string may invade the other syntax tree, or conversely, and
such trespasses may occur several times.

A simple case is illustrated by L · L where L = a+ ∪ b+ ∪ ab with precedences

a�a, b�b, a=̇b. Then for y1 = aaa the structure is
(
a
(
a(a)

))
, for y2 = bb the structure

is
(
(b)b

)
, but the structure of y1 · y2 is

(
a
(
a(ab)b

))
, which is not a composition of the

two.
The following notational conventions apply also to Section 4. Let the grammars be

G1 = (VN1 , Σ, P1, S1) and G2 = (VN2 , Σ, P2, S2), and the nonterminals be conve-
niently named VN1 = {S1, A1, A2, . . .} and VN2 = {S2, B1, B2, . . .}, in order to have
distinct names for the axioms and nonterminals of the two grammars.

To simplify the proofs we operate on FGs in homogeneous normal form.
For two setsΔ1, Δ2 ⊆ Σ and a precedence sign, say �, the notationΔ1 �Δ2 abbre-

viates ∀a ∈ Δ1, ∀b ∈ Δ2, a�b. Moreover, we extend precedence relations fromΣ×Σ
to pairs of stringsα, β ∈ (Σ∪VN)+ such that αβ /∈ ((Σ ∪ VN)∗ · VNVN · (Σ ∪ VN)

)∗
by positing α � β ⇐⇒ R(α) � L(β), and similarly for �; for =̇ the condition is
last (πΣ(α)) =̇first (πΣ(β)).

When writing derivations and left/right terminal sets, we usually drop the grammar
name when no confusion is possible.

Theorem 1. Let G1, G2 be FGs such that OPM(G1) is compatible with OPM(G2).
Then a FG grammar G can be effectively constructed such that

L(G) = L(G1) · L(G2) and OPM(G) ⊇ OPM(G1) ∪OPM(G2) .

Proof. We give a few hints on the construction ofG and support the intuition by means
of figures and examples. For simplicity, we assume thatM = OPM(G1)∪OPM(G2)
is a total matrix. This does not affect generality, because at every step, the algorithm
checks the precedence relation between two letters a and b, and if Mab = ∅, it can
arbitrarily assign a value to Mab, thus obtaining a matrix compatible withM .

The core of the algorithm builds a “thread” of productions that joins the parse trees
of x1 and x2, x1 ∈ L1, x2 ∈ L2. The thread is recursively built in accordance with the
precedence relations that connect the letters occurring at the right of the parse tree of x1
and at the left of the parse tree of x2, respectively. Since the parsing driven by operator
precedence relations is bottom-up, the initialization of the construction is based on the
possible “facing” of the rightmost letter of x1 and the leftmost one of x2. If x1 =
y1 · a, x2 = b · y2 and a=̇b, then we build a production of the type [AB] → . . . ab . . .,
[AB] being a new nonterminal (see Figure 1). If instead the rightmost part of x1 can
be parsed without affecting x2 up to a derivation N

∗⇒ y1 because R(N) � b, then,

Operator Precedence and the Visibly Pushdown Property 221

S1

. . . A

α′ a

S2

B

b β′
. . .

	
[AB]

α′ a b β′

Fig. 1. Cross-border production constructed when the facing letters are equal in precedence

S1

. . . A

α′ a N

.

S2

B

b β′
. . .

	
[AB]

α′ a N

.

b β′

Fig. 2. Another case of cross-border production when R(N) � b

[AB] → . . . is created
at initialization

[AB1] → . . . is created

S1

. . . A1

α a A

. . .

S2

B

b β

. . .

S1

. . . A1

α a A

. . .

S2

B1

B b1 β1

. . .

	 	
[AB]

A

. . .

b β

[AB1]

[AB]

A

. . .

b β

b1 β1

Fig. 3. Productions created by growing the cross-border thread

when the parsing of x1 leads to a production such as A → α · a · N with a=̇b, the
junction of the two syntax trees begins at that point by means of a production such as
[AB] → α · a ·N · b · β (see Figure 2) so that the original precedence relations of G1
and G2 are unaffected.

222 S. Crespi Reghizzi and D. Mandrioli

Similar rules apply if instead a� b.
After this initialization, the construction of the “joint parsing thread” follows the

natural bottom-up parsing. For instance, suppose that a nonterminal of type [AB] has
been built; this means thatA is a SSF,B is a PSF and [AB] “joins” two derivationsA

∗⇒
y1, at the end of a parse tree for some string x1 of L1 andB

∗⇒ y2 at the start of a string
x2 of L2; thus, ifG1 contains a ruleA1 → α ·a ·A (A1 being a SSF) and symmetrically
B1 → B · b · β, with a=̇b, then the new production [A1B1] → α · a · [AB] · b · β is
created.

The cases a� b and a� b are treated accordingly. The last situation is illustrated in
Figure 3 (right). ��

4 Closure under Kleene Star

In many language families the closure under Kleene star comes together with the clo-
sure under union and concatenation. Thus for a CF language L, the syntax tree of a
string x = y1y2 . . . yi ∈ Li with yj ∈ L, is simply obtained by linking, in a left- or
right-linear structure, the syntax trees of components y1, y2, . . . , yi. In the case of FG,
a similar composition is in general not possible, because the syntax tree of x may have
a sharply different structure, as already observed for the concatenation L · L.

A case is illustrated by the third power of language L ⊃ a+ ∪ b+ ∪ c+, assuming
the precedences (induced by further sentences not considered) to be: a � a, a=̇b, b �
b, b=̇c, c� c. Then the structure of a string such as y1 · y2 · y3 = a3 · b2 · c2 ∈ L3 is not
the composition of the structures of either y1 · y2 and y3, or of y1 and y2 · y3.

Before we enter the main topic, it is useful to return to the =̇-acyclicity condition of
Definition 4. Consider language L = {aa} with the circular precedence relation M =
{a=̇a}, and a string a2p, p ≥ 0, in the Kleene closure ofL. The FG grammar of L∗ with
OPM M would then need to contain an unbounded production set {S → a2p, p ≥ 0},
which is not permitted by the standard definition2 of CF grammar. For this reason we
make the hypothesis that the precedence matrix is =̇-acyclic.

Theorem 2. LetG = (VN , Σ, P, S) be a FG such thatOPM(G) is =̇-acyclic. Then a
FG Ĝ = (V̂N , Σ, P̂ , Ŝ) with OPM(Ĝ) ⊇ OPM(G) can be effectively built such that
L(Ĝ) = (L(G))∗.

As in Theorem 1 we assume without loss of generality the precedence matrix to be total,
and in this case also =̇-acyclic. Not surprisingly the construction of Ĝ is based on the
construction in Theorem 1 for L.L, but the required extensions involve some technical
difficulties.

We need to consider only the irreflexive closure L+, since for L∗ it suffices to add
the production S → ε. We assume the form of grammarG to be homogeneous.

For brevity we give here just an intuitive description of the construction. Ĝ is built as
the last element of a series of grammars that begins withG1 = G and continues with the
grammarG2 that generatesL·L∪L, computed according to the concatenation algorithm
outlined in Section 3 and the union algorithm implied by Statement 2. Then G3 is built

2 We do not discuss the possibility of allowing regular expressions in the productions.

Operator Precedence and the Visibly Pushdown Property 223

by iterating the application of the concatenation algorithm to L2 and L itself. Notice,
however, that this new application produces new nonterminals of the type [[AB]C].
Obviously this process cannot be iterated indefinitely since it would produce a grammar
with infinite nonterminals and productions. Thus, nonterminals of type [[AB]C] are
“collapsed” into [AC]. Intuitively, this operation is justified by the observation that the
production of an “intermediate” nonterminal of the type [[AB]C] means that, in G,
A

∗⇒ x1 a suffix of some string x ∈ L, B
∗⇒ y belonging to L, and C

∗⇒ z1, a prefix of
some z ∈ L. In this way, the number of possible new nonterminals is bounded and the
construction of Ĝ terminates when no new nonterminals and productions are generated.
Figure 4 gives an idea of how the sequenceG1, G2, G3 is built.

Notice also that the details of the construction involve the production of so called
compound nonterminals of type {[AB], [CD], E}, i.e., collection of “boundary non-
terminals”. This is due to the need to iteratively apply a normalization procedure that
eliminates repeated r.h.s. For instance, suppose that during the process the following
productions are built:

[AB]→ α | β, [CD]→ α | γ, E → α | δ
where A,B,C,D,E ∈ VN , and we recall that the nonterminals of the form of a pair
[AB] are created by the concatenation algorithm. Then, elimination of repeated r.h.s.’s
produces a normalized homogeneous grammar containing the rules:

{[AB], [CD], E} → α, {[AB]} → β, {[CD]} → γ, {E} → δ

��
It is possible to prove that the closure of FL under boolean operations, concatenation and
Kleene star, implies that certain subfamilies of FG languages are closed under the same
set of operations: the cases of regular languages and of visibly pushdown languages
over the same partitioned alphabet are straightforward.

grammar G: H
h

K

k A

C

B

b

c

grammar G2: [AB]
a b

[HK]
h k A

parsing � h =̇ k [AB] c � e

grammar of L(G2).L(G1): [[HK]C]

h k [AB]
a b

c

grammar G3 : [HC]

h k [AB]
a b

c

Fig. 4. Productions used for parsing a string in L.L.L

224 S. Crespi Reghizzi and D. Mandrioli

4.1 Regular Languages with Prescribed Precedences

For regular languages, we have already observed that their standard Chomsky grammar
of type 3, say right-linear, is a very special FG containing only � relations. LetR ⊆ Σ∗

be a regular language and letM be any precedence matrix. A more interesting question
is whether it is possible to find a FG that generates R, with M as OPM. The positive
answer follows from Theorems 1 and 2 under fairly general hypotheses.

Corollary 1. LetM be any total =̇-acyclic precedence matrix overΣ. Then the family
of regular languages over Σ is (strictly) included in the family of languages generated
by FGs ranging over CM .

Proof. Let R be defined by a regular expression. In order to construct a FG grammar
with the given matrix M , we analyze the regular expression starting from the atomic
subexpressions. Anytime two subexpressions are combined by union or concatenation
respectively, the constructions of [8] or of Theorem 1 respectively produce a grammar,
compatible withM , for the union or concatenation. Similarly, anytime a subexpression
is under star, the construction of Theorem 2 produces the corresponding grammar. ��
This result gives a procedure, based on the previous algorithms, for constructing from
a regular expression, a FG grammar with the specified precedences. In particular, when
the assigned precedences correspond to the left-linear (or right-linear) structure, the
procedure returns a left-linear (or right linear) grammar. When the precedences are
those of a VPL [1,7], the procedure returns a grammar with the specified partition of
the alphabet into call, return and internal symbols.

Notice that the procedure works as well for ambiguous regular expressions. We are
not aware of comparable methods for constructing a deterministic CF grammar, in order
to parse in accordance with a prescribed syntactic structure, a language specified by a
regular expression.

The same procedure, when applied to a regular expression, possibly augmented with
intersection and complement, over precedence-compatible FG languages, permits to
obtain an equivalent FG. From a practical standpoint, this approach would permit to
construct a precedence parser for a grammar featuring “extended” regular expressions
in the right-hand sides. This should of course be contrasted with the well-known non-
closure of DCF under intersection and union.

5 Conclusions

We mention some questions raised by the present study.
Every class of Floyd languages over a given =̇-acyclic precedence matrix includes

(possibly after filling the precedence matrix to totality) the regular language family
and is closed with respect to the basic operations: concatenation, Kleene star, reversal,
and all boolean operations. The FG family appears at present to be the largest family
exhibiting such properties; in particular it strictly includes [7] the visibly pushdown
language (VPDL) family. On the other hand, several other language families fall in
between the VPDL and the CF, such as the height-deterministic family of [14] or the
synchronized pushdown languages of [4], but some of the basic closure properties are

Operator Precedence and the Visibly Pushdown Property 225

missing or the language family is non-deterministic. We wonder whether a significant
family of deterministic CF languages, more general than FL, yet preserving the same
closure properties, can be found.

In another direction, one could ask a similar question about the invariance property
of FLs with respect to the non-counting (or aperiodicity) property [6].

It would be interesting to assess the suitability of Floyd languages for applications,
especially to XML documents and to model checking, that have motivated other lan-
guage models such as the balanced grammars and the visibly pushdown languages. We
observe that the greater generative capacity of FGs should improve the realism of the in-
tended models, by permitting the use of more flexible multi-level and recursively nested
structures.

Finally, to apply these theoretical results in practice, e.g. to derive model check-
ing algorithms therefrom, the computational complexity aspects should be investigated.
Admittedly, the closure algorithms presented in this paper have a typical combinatorial
nature: the worst case complexity in fact is dominated by the size of nonterminal al-
phabets which are constructed as power sets of the original ones. Notice also that the
algorithms assume as starting point grammars in homogeneous normal form, which in
turn require a nonterminal alphabet constructed on top of the power set of the terminal
alphabet.

On the other hand, the risk of combinatorial explosion is rather intrinsic in these
families of algorithms, starting from the seminal papers on model checking and VPDL.
We hope that further research will produce suitable heuristics and techniques to manage
such a complexity with the same success obtained by the long-standing research in
model checking.

Aknowledgment. We thank the referees for their valuable suggestions and Jean Berstel
for lively discussions.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC: ACM Symposium on
Theory of Computing, STOC (2004)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009)
3. Berstel, J., Boasson, L.: Balanced grammars and their languages. In: Brauer, W., Ehrig, H.,

Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp.
3–25. Springer, Heidelberg (2002)

4. Caucal, D.: Synchronization of pushdown automata. In: Ibarra, O.H., Dang, Z. (eds.) DLT
2006. LNCS, vol. 4036, pp. 120–132. Springer, Heidelberg (2006)

5. Crespi Reghizzi, S.: The mechanical acquisition of precedence grammars. PhD thesis, Uni-
versity of California UCLA, School of Engineering (1970)

6. Crespi-Reghizzi, S., Guida, G., Mandrioli, D.: Operator precedence grammars and the non-
counting property. SICOMP: SIAM Journ. on Computing 10, 174–191 (1981)

7. Crespi-Reghizzi, S., Mandrioli, D.: Algebraic properties of structured context-free lan-
guages: old approaches and novel developments. In: WORDS 2009 - 7th Int. Conf. on Words,
preprints (2009), http://arXiv.org/abs/0907.2130

8. Crespi-Reghizzi, S., Mandrioli, D., Martin, D.F.: Algebraic properties of operator precedence
languages. Information and Control 37(2), 115–133 (1978)

http://arXiv.org/abs/0907.2130

226 S. Crespi Reghizzi and D. Mandrioli

9. Fischer, M.J.: Some properties of precedence languages. In: STOC ’69: Proc. first annual
ACM Symp. on Theory of Computing, pp. 181–190. ACM, New York (1969)

10. Floyd, R.W.: Syntactic analysis and operator precedence. J. ACM 10(3), 316–333 (1963)
11. Grune, D., Jacobs, C.J.: Parsing techniques: a practical guide. Springer, New York (2008)
12. McNaughton, R.: Parenthesis grammars. J. ACM 14(3), 490–500 (1967)
13. McNaughton, R., Papert, S.: Counter-free Automata. MIT Press, Cambridge (1971)
14. Nowotka, D., Srba, J.: Height-deterministic pushdown automata. In: Kučera, L., Kučera, A.

(eds.) MFCS 2007. LNCS, vol. 4708, pp. 125–134. Springer, Heidelberg (2007)
15. Salomaa, A.K.: Formal Languages. Academic Press, London (1973)
16. Thatcher, J.: Characterizing derivation trees of context-free grammars through a generaliza-

tion of finite automata theory. Journ. of Comp. and Syst. Sc. 1, 317–322 (1967)

On the Maximal Number of Cubic Runs
in a String�

Maxime Crochemore1,3, Costas Iliopoulos1,4, Marcin Kubica2,
Jakub Radoszewski2, Wojciech Rytter2,5,��, and Tomasz Waleń2

1 King’s College London, London WC2R 2LS, UK
maxime.crochemore@kcl.ac.uk, csi@dcs.kcl.ac.uk

2 Dept. of Mathematics, Computer Science and Mechanics,
University of Warsaw, Warsaw, Poland

{kubica,jrad,rytter,walen}@mimuw.edu.pl
3 Université Paris-Est, France

4 Digital Ecosystems & Business Intelligence Institute,
Curtin University of Technology, Perth WA 6845, Australia

5 Dept. of Math. and Informatics,
Copernicus University, Toruń, Poland

Abstract. A run is an inclusion maximal occurrence in a string (as a
subinterval) of a repetition v with a period p such that 2p ≤ |v|. The
maximal number of runs in a string of length n has been thoroughly
studied, and is known to be between 0.944 n and 1.029 n. In this paper
we investigate cubic runs, in which the shortest period p satisfies 3p ≤ |v|.
We show the upper bound of 0.5 n on the maximal number of such runs
in a string of length n, and construct an infinite sequence of words over
binary alphabet for which the lower bound is 0.406 n.

1 Introduction

Repetitions and periodicities in strings are one of the fundamental topics in
combinatorics on words [2,13]. They are also important in other areas: lossless
compression, word representation, computational biology etc. Repetitions are
studied from different points of view: classification of words not containing repe-
titions of a given exponent, efficient identification of factors being repetitions of
different types and, finally, computing the bounds on the number of repetitions
of a given exponent that a string may contain, which we consider in this paper.
Both the known results in the topic and a deeper description of the motivation
can be found in a survey by Crochemore et al. [5].

The concept of runs (also called maximal repetitions) has been introduced to
represent all repetitions in a string in a succinct manner. The crucial property of

� Research supported in part by the Royal Society, UK.
�� Supported by grant N206 004 32/0806 of the Polish Ministry of Science and Higher

Education.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 227–238, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

228 M. Crochemore et al.

runs is that their maximal number in a string of length n (denoted as runs(n)) is
O(n) [10]. Due to the work of many people, much better bounds on runs(n) have
been obtained. The lower bound 0.927n was first proved in [8]. Afterwards, it
was improved by Kusano et al. [12] to 0.944n employing computer experiments,
and very recently by Simpson [18] to 0.944575712n. On the other hand, the first
explicit upper bound 5n was settled in [15], afterwards it was systematically
improved to 3.44n [17], 1.6n [3,4] and 1.52n [9]. The best known result runs(n) ≤
1.029n is due to Crochemore et al. [6], but it is conjectured [10] that runs(n) < n.
The maximal number of runs was also studied for special types of strings and
tight bounds were established for Fibonacci strings [10,16] and more generally
Sturmian strings [1].

The combinatorial analysis of runs is strongly related to the problem of es-
timation of the maximal number of squares in a string. In the latter problem
the gap between the upper and lower bound is much larger than for runs [5,7].
However, a recent paper [11] by some of the authors shows that introduction
of integer exponents larger than 2 may lead to obtaining tighter bounds for the
number of corresponding repetitions.

In this paper we introduce and study the concept of cubic runs in which the
period is at least three times shorter than the run itself. We show the following
bounds on their maximal number, cubic-runs(n), in a string of length n:

0.406n < cubic-runs(n) < 0.5n .

The upper bound is achieved by analysis of Lyndon words (i.e. words that are
primitive and minimal/maximal in the class of their cyclic equivalents) that
appear as periods of cubic runs. As for the lower bound, we describe an infinite
family of binary words that contain more than 0.406n cubic runs.

2 Preliminaries

We consider words (strings) over a finite alphabet A, u ∈ A∗; the empty word
is denoted by ε; the positions in u are numbered from 1 to |u|. By Alph(u) we
denote the set of all letters of u. For u = u1u2 . . . um, let us denote by u[i . . j]
a factor of u equal to ui . . . uj (in particular u[i] = u[i . . i]). For the sake of
simplicity, we assume that u[i] is also defined for i < 0 or i > |u|, but it is
different from any letter appearing in u.

Words u[1 . . i] are called prefixes of u, and words u[i . . |u|] — suffixes of u.
We say that a positive integer p is the (shortest) period of a word u = u1 . . . um

(notation: p = per(u)) if p is the smallest number such that ui = ui+p holds for
all 1 ≤ i ≤ m− p.

If wk = u (k is a non-negative integer), that is u = ww . . .w (k times), then
we say that u is the kth power of the word w. A square is the 2nd power of some
non-empty word. The primitive root of a word u, denoted root(u), is the shortest
word w such that wk = u for some positive integer k. We call a word u primitive
if root(u) = u, otherwise it is called non-primitive. We say that words u and v

On the Maximal Number of Cubic Runs in a String 229

are cyclically equivalent (or that one of them is a cyclic rotation of the other) if
u = xy and v = yx for some x, y ∈ A∗. It is a simple observation that if u and v
are cyclically equivalent then |root(u)| = |root(v)|.

A run (also called a maximal repetition) in a string u is an interval [i . . j]
such that:

– the associated factor u[i . . j] has period p,
– the length of the interval is at least 2p, that is 2p ≤ j − i+ 1,
– the interval cannot be extended to the right or to the left, without violating

the above properties, that is: u[i−1]
= u[i+p−1] and u[j−p+1]
= u[j+1].

A cubic run is a run [i . . j] for which the shortest period p satisfies 3p ≤ j− i+1.
By cubic-runs(u) we denote the number of cubic runs in a string u.

For simplicity, in the rest of the text we sometimes refer to runs or cubic runs
as to occurrences of corresponding factors of u.

3 Fibonacci Strings

Let us start by analyzing the behavior of function cubic-runs for a very common
benchmark in text algorithms, i.e., the Fibonacci strings, defined recursively
as:

F0 = a, F1 = ab, Fn = Fn−1Fn−2 for n ≥ 2 .

Denote by Φn = |Fn| the nth Fibonacci number (we assume that for n < 0,
Φn = 1) and by gn the word Fn with the last two letters removed.

Lemma 1. [14,16] Each run in Fn is of the form Fk · Fk · gk−1 (short runs) or
Fk · Fk · Fk · gk−1 (long runs), each of the runs of period Φk.

Obviously, in Lemma 1 only runs of the form F 3
k · gk−1 are cubic runs.

Denote by #occ(u, v) the number of occurrences (as a factor) of a word u in
a word v.

Lemma 2. For every k, n ≥ 0,

#occ(F 3
k · gk−1, Fn) = #occ(F 3

k , Fn) .

Proof. Each occurrence of F 3
k within Fn must be followed by gk−1, since other-

wise it would form a run different from the ones specified in Lemma 1. ��
Lemma 3. For every k ≥ 2 and m ≥ 0,

a) #occ(F 3
k , Fm+k) = #occ(aaba, Fm),

b) #occ(aaba, Fm) = Φm−3 − 1.

The (technical) proof of Lemma 3 will be included in the full version of the
paper.

230 M. Crochemore et al.

Fig. 1. The structure of cubic runs in the Fibonacci word F9. The cubic runs are
distributed as follows: 1 run F 3

5 · g4, 2 runs F 3
4 · g3, 4 runs F 3

3 · g2, and 7 runs F 3
2 .

Lemma 4. For n > 5, the word Fn contains (see Fig. 1):

– Φn−5 − 1 cubic runs F 3
2 · g1

– Φn−6 − 1 cubic runs F 3
3 · g2

On the Maximal Number of Cubic Runs in a String 231

– . . .
– Φ1 − 1 cubic runs F 3

n−4 · gn−5.

Words F0, F1, . . . , F5 do not contain cubic runs.

Proof. Let n > 5 and k ∈ {2, 3, . . . , n − 4}. Denote m = n − k. Combining the
formulas from Lemmas 2 and 3, we obtain that:

#occ(F 3
k · gk−1, Fn) = #occ(F 3

k · gk−1, Fm+k) = Φm−3 − 1 = Φn−k−3 − 1.��
We are now ready to describe the behaviour of the function cubic-runs(Fn). The
following theorem not only provides an exact formula for it, but also shows a re-
lationship between the number of cubic runs and the number of distinct cubes in
Fibonacci words. This relationship is even more elegant than the corresponding
relationship between the number of (ordinary) runs and the number of (distinct)
squares in Fibonacci words, which always differ exactly by 1, see [14,16].

Theorem 1

a) cubic-runs(Fn) = Φn−3 − n+ 2.
b) limn→∞

cubic-runs(Fn)
|Fn| = 1

φ3 ≈ 0.2361, where φ = 1+
√

5
2 is the golden ratio.

c) The total number of cubic runs in Fn equals the number of cubes in Fn.

Proof. a) From Lemma 4 we obtain:

cubic-runs(Fn) =
n−5∑
i=1

(Φi − 1) = Φn−3 − 3− (n− 5) = Φn−3 − n+ 2 .

b) It is a straightforward application of the formula from (a):

lim
n→∞

cubic-runs(Fn)
|Fn| = lim

n→∞
Φn−3 − n+ 2

Φn
=

1
φ3 .

c) It suffices to note that the number of cubes in F 3
k+1 · gk is |gk|+ 1 = Φk − 1,

and thus the total number of distinct cubes in Fn equals
∑n−5

k=1 (Φk − 1). ��

4 Upper Bound

In this section we assume that A is totally ordered by ≤, what induces a lexico-
graphical order on A∗, also denoted by ≤. We say that v ∈ A∗ is a Lyndon word
if it is primitive and minimal or maximal in the class of words that are cyclically
equivalent to it. It is known (see [13]) that a Lyndon word has no non-trivial
prefix that is also its suffix.

Let u ∈ A∗ be a given word of length n. We will show the upper bound of
0.5 n on the number of cubic runs in u.

Let us denote by P = {p1, p2, . . . , pn−1} the set of inter-positions in u that
are located between pairs of consecutive letters of u. We define a function H

232 M. Crochemore et al.

assigning to each cubic run v in u a set of some inter-positions within v (called
later on handles) — H is a mapping from the set of cubic runs occurring in u to
the set 2P of subsets of P . Let v be a cubic run with period p and let w be the
prefix of v of length p. Let wmin and wmax be the minimal and maximal words
(in lexicographical order) cyclically equivalent to w. H(v) is defined as follows:

a) if wmin
= wmax then H(v) contains inter-positions between consecutive oc-
currences of wmin in v and between consecutive occurrences of wmax in v,

b) if wmin = wmax then H(v) contains all inter-positions within v.

Example 1. If w = abaab then wmin = aabab, wmax = babaa.

b a b a a b a b a a b a b a a

1 1

2

aa b b b b

v

1 1

w

w

min1

max1

v1

2

Fig. 2. An example of a word with two cubic runs v1 and v2. For v1 we have wmin1
=
wmax1 and for v2 the corresponding words are equal to b (a one-letter word). The
inter-positions belonging to the sets H(v1) and H(v2) are pointed by arrows.

Lemma 5. wmin and wmax are Lyndon words.

Proof. By the definition of wmin and wmax, it suffices to show that both words
are primitive. This follows from the fact that, due to the minimality of p, w is
primitive and that wmin and wmax are cyclically equivalent to w. ��
Lemma 6. Case (b) in the definition of H(v) implies that |wmin| = 1.

Proof. wmin is primitive, therefore if |wmin| ≥ 2 then wmin contains at least two
distinct letters, a = wmin[1] and b = wmin[i]
= a. If b < a (b > a) then the cyclic
rotation of wmin by i−1 letters would be lexicographically smaller (greater) than
wmin, so wmin
= wmax. ��
Note that in case (b) in the definition ofH ,H(v) contains at least two distinct han-
dles. The following lemma concludes that the same property also holds in case (a).

Lemma 7. Each of the words w2
min and w2

max is a factor of v.

Proof. Recall that 3p ≤ |v|, where p = per(v). By Lemma 6, this concludes the
proof in case (b). In case (a), it suffices to note that the first occurrences of each
of the words wmin and wmax within v start no further than p positions from the
beginning of v. ��
Now we show a crucial property of H .

Lemma 8 (Key lemma). H(v1) ∩H(v2) = ∅ for any two distinct cubic runs
v1 and v2 in u.

On the Maximal Number of Cubic Runs in a String 233

wmin wmin

wmax wmax

wmin

v

.......

v

Case (a)

Case (b)

Fig. 3. Illustration of the definition of H and Lemma 7. The arrows in the figure show
the elements of H(v).

Proof. Assume, to the contrary, that pi ∈ H(v1) ∩ H(v2) is a handle of two
different cubic runs v1 and v2. By Lemmas 5 and 7, pi is located in the middle
of two squares of Lyndon words: w2

1 and w2
2 , where |w1| = per(v1) and |w2| =

per(v2). Note that w1
= w2, since otherwise runs v1 and v2 would be the same.
Without the loss of generality, we can assume that |w1| < |w2|. So, the word w1
is both a prefix and a suffix of w2 (see Fig. 4), what contradicts the fact that w2
is a Lyndon word. ��

ip

w2 w2

w1 w1

Fig. 4. A situation where pi is in the middle of two different squares w2
1 and w2

2

The following theorem concludes the analysis of the upper bound.

Theorem 2. A word u ∈ A∗ of length n may contain at most n−1
2 cubic runs.

Proof. Due to Lemma 7, for each cubic run v in u, |H(v)| ≥ 2. Since |P | = n−1,
Lemma 8 implies the bound from the theorem. ��

5 Lower Bound

We start this section by a simple argument that leads to 0.4n lower bound for
the number of cubic runs in a string, however over an arbitrarily large alphabet.

Theorem 3. For any word s there exists an infinite sequence of words (sn)∞n=0,
such that s0 = s and

lim
n→∞

rn
�n

=
r

�
+

1
5�

where rn = cubic-runs(sn), �n = |sn|, r = cubic-runs(s), � = |s|.

234 M. Crochemore et al.

Proof. The sequence (sn)∞n=0 is defined recursively. Let s0 = s. Let A = Alph(sn)
and let A be a disjoint copy of A. By u let us denote a word obtained from word
u ∈ A∗ by substituting letters from A with the corresponding letters from A.
The word sn+1 is defined as sn+1 = (snsn)3.

Recall that �0 = �, r0 = r, and note that for n ≥ 1 we have �n = 6�n−1 and
rn = 6rn−1 + 1. Thus:

rn

�n
= 6rn−1+1

6�n−1
= rn−1

�n−1
+ 1

6�n−1

and by simple induction we obtain:

rn

�n
= r

� + 1
�

∑n
j=1

1
6j = r

� + 1
5�

(
1− 1

6n+1

)
.

Taking n→∞ in the above formula we conclude the proof. ��
Starting with a 3-letter word s = a3, for which r/� = 1/3, we obtain the following
sequence of words:

s0 = a3

s1 =
(
a3b3

)3
s2 =

((
a3b3

)3(
c3d3

)3)3
. . .

which gives, by Theorem 3, the lower bound of 0.4n.
However, this bound is not optimal — we will show an example sequence

of binary words which gives the bound of 0.406n. We introduce the following
morphism:

ψ(a) =
(
a3b3

)3
a4b3a = aaabbbaaabbbaaabbbaaaabbba,

ψ(b) =
(
a3b3

)3
a = aaabbbaaabbbaaabbba .

Recall that Fn is the n-th Fibonacci word.

Theorem 4. There are infinitely many binary strings ψ(Fn) such that

rn
�n
> 0.406 ,

where rn = cubic-runs(ψ(Fn)), �n = |ψ(Fn)|.
Proof. Let us denote

X =
(
a3b3

)3
, Y = a4b3a .

Thus ψ(a) = XY , ψ(b) = Xa. Also denote wn = ψ(Fn).

Example 2.
w0 =

(
a3b3

)3
a4b3a

w1 =
(
a3b3

)3
a4b3a

(
a3b3

)3
a

w2 =
(
a3b3

)3
a4b3a

(
a3b3

)3
a
(
a3b3

)3
a4b3a

On the Maximal Number of Cubic Runs in a String 235

n rn �n rn/�n

0 9 26 0.3462
1 17 45 0.3778
2 26 71 0.3662
3 45 116 0.3879
4 71 187 0.3796
5 119 303 0.3927
6 192 490 0.3918

Fig. 5. Characteristics of a first few elements of the sequence (wn)

We will show that for sufficiently large n we have rn

�n
> 0.406. Note that

�n = �n−1 + �n−2 . (1)

Also note that:

wn = ψ(Fn) = ψ(Fn−1Fn−2) = ψ(Fn−1)ψ(Fn−2) = wn−1wn−2 .

Let us define recursively a sequence:

tn = rn for n ≤ 4
tn = tn−1 + tn−2 + n− 4 for 2 | n and n ≥ 6
tn = tn−1 + tn−2 + n− 2 for 2 � n and n ≥ 5 .

(2)

Claim 1. rn ≥ tn.

Proof. For each word wn we will identify tn cubic runs appearing in it, and we
will show that the runs identified in wn−1 and wn−2 do not merge in wn =
wn−1wn−2. Hence, we obtain the recursive part (tn−1 + tn−2) of the equations
defining tn. Moreover, we will identify a number of new cubic runs overlapping
the concatenation wn = wn−1 · wn−2.

First, let us have a look at the building blocks, from which the words wn are
constructed, that is the words ψ(a) = XY = aaabbbaaabbbaaabbbaaaabbba and
ψ(b) = Xa = aaabbbaaabbbaaabbba. The word XY contains r0 = t0 = 9 cubic
runs: 8 with period 1 and one with period 6, and the word Xa contains 7 cubic
runs: 6 with period 1 and one with period 6. But how these building blocks can
be combined together?

Recall the following simple property of Fibonacci words: none of the words Fn

contains a factor bb. Thus, in each of these words, each letter b can be surrounded
only by letters a. As a consequence, words ψ(b) = Xa used to construct words
wn can by surrounded only by ψ(a) = XY . If we have a look at the words
XYXa and XaXY , and analyze cubic runs appearing in Xa, it turns out that
none of them merges with the cubic runs appearing in XY . Also, cubic runs
appearing in XY do not merge with cubic runs appearing in Xa. Similarly, if
we look at the word XYXY , it also turns out that the cubic runs appearing in
one of the XY ’s do not merge with the cubic runs appearing in the other XY .

236 M. Crochemore et al.

Hence, all the cubic runs of periods 1 and 6 in wn, contributed by ψ(a) = XY
and ψ(b) = Xa, can be counted separately.

On the other hand, concatenations of XY and Xa appearing in wn can in-
troduce new runs with longer periods. Concatenation XYX introduces a new
cubic run (aaabbba)3aa with period 7 (that cannot be further extended). Hence,
both ψ(aa) = XYXY and ψ(ab) = XYXa introduce such a cubic run. Thus we
obtain r1 = t1 = 17 and r2 = t2 = 26.

For w3 = w2w1 = (XYXaXY)(XYXa) we have 43 cubic runs contributed
by w2 and w1, and two cubic runs overlapping their concatenation. One of them
comes from XYX and (as previously observed) cannot be further extended. The
other one is a suffix of w3 of the form a3b3aXYXYXa = (a3b3aXa)3. It cannot
be extended to the left, but we have to show that when w3 is used to build longer
words wn, it does not merge with any other cubic run. Let us note that in such
a case it is always followed by w2. Hence, this cubic run can extend to the right,
but only for 7 characters, and does not merge with any other cubic runs. For
w4 = w3w2 we have only 45 + 26 = 71 cubic runs contributed by w3 and w2.

Now, let us consider words wn for n ≥ 5. We have shown that cubic runs
contributed by w1, w2, w3 and w4 used to build wn do not merge and can be
counted separately.

A new type of cubic runs that appears in wn for n ≥ 5 are runs present in
the words Fn — each cubic run v in Fn corresponds to a cubic run ψ(v). Due to
Theorem 1, we obtain

cubic-runs(Fn)− cubic-runs(Fn−1)− cubic-runs(Fn−2) =
= Φn−3 − n+ 2− (Φn−4 − n+ 3)− (Φn−5 − n+ 4) = n− 5

such cubic runs overlapping the concatenation of Fn−1 and Fn−2, consequently
new cubic runs overlapping the concatenation of wn−1 and wn−2. Obviously,
these runs do not merge with the ones that were considered previously.

We only have to show just three more cubic runs for odd n and one more for
even n.

First, let us assume that n is odd. Let us note that w4 is a suffix of wn−1 and
w3 is a prefix of wn−2. Hence, every cubic run overlapping the concatenation
w5 = w4 ·w3 also overlaps the concatenation wn = wn−1 ·wn−2. There are three
such cubic runs that we have not considered yet — they are shown in Figure 6.
XY is a suffix of w4 and X is a prefix of w3, consequently XYX introduces

a cubic run (aaabbba)3aa with period 7 (that cannot be further extended).
Let us note that Y is a prefix of aX . Therefore, ψ(a) = XY is a prefix

of ψ(ba) = XaXY . Hence, since XYXaXY is a prefix of w3, XYXYXaXY
introduces a cubic run a3b3a(XY)3aa with period 78 (that cannot be further
extended).

Because a is a prefix of Y and (XYXa)2XY is a suffix ofw4, (XYXa)2XYXY
overlaps the concatenation of w4 and w3, and introduces a cubic run (XYXa)3

with period 135, which can be extended to a3b3a(XYXa)3a3b3a3 (but no further).
Now, let us assume that n is even. Note that w5 is a suffix of wn−1 and w4 is a

prefix of wn−2. Hence, every cubic run overlapping the concatenationw6 = w5·w4

On the Maximal Number of Cubic Runs in a String 237

. . . XY XaXY XY XaXY Xa XY |X︸ ︷︷ ︸
(aaabbba)3aa

Y XaXY XY XaXY XaXY . . .

︸ ︷︷ ︸
a3b3a(XY)3aa

︸ ︷︷ ︸
a3b3a(XY Xa)3a3b3a3

Fig. 6. Additional cubic runs overlapping concatenation wn = wn−1wn−2, for odd
n ≥ 5

also overlaps the concatenation wn = wn−1 · wn−2. There is one such cubic run
that we have not considered yet. XYXa is a suffix of w5 and XYXaXYXY is a
prefix of w4. Because a is a prefix of Y , XYXaXYXaXYXY introduces a cubic
run (XYXa)3 with period 135, which can be extended to a3b3a(XYXa)3a3b3a3

(but no further).

. . . XY X Y XYXa |XYXaXYXYX︸ ︷︷ ︸
a3b3a(XY Xa)3a3b3a3

aXY . . .

This ends the proof of Claim 1. ��

Completing the proof of Theorem 4. We prove by induction that for n ≥ 19,
rn ≥ 0.406 · �n. The following inequalities:

r19
�19
≥ 103 664

255 329
> 0.406 ,

r20
�20
≥ 167 740

413 131
> 0.406 ,

are consequences (obtained by heavily using a calculator) of the formulas (1),
(2) and Claim 1. The inductive step (for n ≥ 21) follows from:

rn − 0.406 · �n ≥ tn − 0.406 · �n ≥ tn−1 + tn−2 − 0.406(�n−1 + �n−2) > 0 .

This concludes the inductive proof and also the proof of the whole theorem. ��
Remark. A naive approach to obtain arbitrarily long binary words with large
number of cubic runs would be to concatenate many copies of the same word
ψ(F19). However, it would not work, since some boundary runs can be glued
together. Hence, a more complicated machinery was needed to prove Theorem 4.

References

1. Baturo, P., Piatkowski, M., Rytter, W.: The number of runs in Sturmian words.
In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 252–261.
Springer, Heidelberg (2008)

2. Berstel, J., Karhumäki, J.: Combinatorics on words: a tutorial. Bulletin of the
EATCS 79, 178–228 (2003)

238 M. Crochemore et al.

3. Crochemore, M., Ilie, L.: Analysis of maximal repetitions in strings. In: Kučera, L.,
Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 465–476. Springer, Heidelberg
(2007)

4. Crochemore, M., Ilie, L.: Maximal repetitions in strings. J. Comput. Syst.
Sci. 74(5), 796–807 (2008)

5. Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: Algorithms and com-
binatorics. Theor. Comput. Sci. 410(50), 5227–5235 (2009)

6. Crochemore, M., Ilie, L., Tinta, L.: Towards a solution to the “runs” conjecture.
In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 290–302.
Springer, Heidelberg (2008)

7. Crochemore, M., Rytter, W.: Squares, cubes, and time-space efficient string search-
ing. Algorithmica 13(5), 405–425 (1995)

8. Franek, F., Yang, Q.: An asymptotic lower bound for the maximal number of runs
in a string. Int. J. Found. Comput. Sci. 19(1), 195–203 (2008)

9. Giraud, M.: Not so many runs in strings. In: Mart́ın-Vide, C., Otto, F., Fernau, H.
(eds.) LATA 2008. LNCS, vol. 5196, pp. 232–239. Springer, Heidelberg (2008)

10. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear
time. In: Proceedings of the 40th Symposium on Foundations of Computer Science,
pp. 596–604 (1999)

11. Kubica, M., Radoszewski, J., Rytter, W., Walen, T.: On the maximal number of
cubic subwords in a string. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA
2009. LNCS, vol. 5874, pp. 345–355. Springer, Heidelberg (2009)

12. Kusano, K., Matsubara, W., Ishino, A., Bannai, H., Shinohara, A.: New lower
bounds for the maximum number of runs in a string. CoRR abs/0804.1214 (2008)

13. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)
14. Mignosi, F., Pirillo, G.: Repetitions in the Fibonacci infinite word. ITA 26, 199–204

(1992)
15. Rytter, W.: The number of runs in a string: Improved analysis of the linear upper

bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
184–195. Springer, Heidelberg (2006)

16. Rytter, W.: The structure of subword graphs and suffix trees in Fibonacci words.
Theor. Comput. Sci. 363(2), 211–223 (2006)

17. Rytter, W.: The number of runs in a string. Inf. Comput. 205(9), 1459–1469 (2007)
18. Simpson, J.: Modified Padovan words and the maximum number of runs in a word.

Australasian Journal of Combinatorics (to appear, 2010)

On the Hamiltonian Operators for Adiabatic
Quantum Reduction of SAT

William Cruz-Santos and Guillermo Morales-Luna�

Computer Science Department, Cinvestav-IPN,
Mexico City, Mexico

gmorales@cs.cinvestav.mx

Abstract. We study the Hamiltonians resulting from the Adiabatic
Quantum Computing treatment of the Satisfiability Problem SAT. We
provide respective procedures for explicit calculation of the involved
Hamiltonians. The statement of the ending Hamiltonians allows us to
pose a variant of SAT which is also NP-complete.

1 Introduction

Adiabatic quantum computing (AQC) appeared [4,3] as a procedure to efficiently
solve NP-hard problems and it has been extensively studied with respect to its
computational capabilities [2,1]. The prototypical NP-complete problem, SAT,
consisting of deciding the satisfiability of arbitrary Boolean conjunctive forms,
has been dealt with adiabatic methods [5,6] as well as with other approaches
based on Quantum Computing (QC) [7].

In Quantum Mechanics, a Hamiltonian is an operator acting on quantum
states such that its eigenvalues determine the energy of the corresponding eigen-
states. The spectrum of the Hamiltonian, i. e. the collection of its eigenvalues, is
a bounded set in the complex plane and of particular interest are the eigenstates
corresponding to extreme eigenvalues, in modulus.

In AQC, given a problem, say Π , two Hamiltonian operators Hinit and Hend
are defined such that the ground states, i.e. the eigenvectors corresponding to
smallest (in absolute value) eigenvalues, of Hinit are easily calculated, and the
ground states of Hend codify solutions of Π . When the linear interpolation of the
Hamiltonians,H(t) = (1−t)Hinit+tHend is considered then the quantum system
with Hamiltonian H(t) will evolve ground states into ground states, provided the
hypothesis of the Adiabatic Theorem are fulfilled (basically no eigenvalues paths
cross during the system evolution, or the minimal spectral gap, i.e., the difference
between the smallest and the greatest eigenvalues, is at least inverse polynomial).

The advantage of AQC is its physical foundation: the evolution of the quantum
system will approximate the solutions of a given instance of the problem Π .
Nevertheless the computer simulation of the process may require the explicit
calculation of the involved Hamiltonians and this is an expensive procedure.

� The authors acknowledge the partial support by Mexican Conacyt.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 239–248, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

240 W. Cruz-Santos and G. Morales-Luna

Namely, any instance x of size n determines a pair of Hamiltonians within the
Hilbert space of n-quregisters, thus actually each Hamiltonian is represented by a
(2n×2n)-complex matrix, hence the computation of Π(x) entails an exponential
space complexity.

In this paper we follow a SAT coding similar to the already standard cod-
ings [4,6] into AQC. We will consider 3-SAT: The satisfiability decision problem
for 3-clauses. In section 3.3 we provide a procedural construction of an initial
Hamiltonian for the given instances, in terms of the initial Hamiltonians corre-
sponding to 3-clauses, whose ground states are the qu-registers determining uni-
form probability distributions. In section 3.2 we give two algorithms to calculate
the same ending Hamiltonians, which are represented by diagonal matrices. This
allows us to pose a polynomial reduction of SAT (hence also NP-complete).

2 SAT and AQC

2.1 Satisfiability Problem

Let X = (Xj)
n−1
j=0 be a set of n Boolean variables. A literal has the form Xδ,

with X ∈ X , and δ ∈ {0, 1}: X1 = X and X0 = ¬X . A clause is a disjunction of
literals, and a conjunctive form (CF) is a conjunction of clauses. An assignment
is a point ε = (εj)

n
j=1 ∈ {0, 1}n in the n-dimensional hypercube. Such an assign-

ment satisfies the literal Xδ
j if and only if εj = δ; it satisfies a clause whenever

it satisfies a literal in the clause; and it satisfies a CF whenever it satisfies all
clauses in the CF. An m-clause is a clause consisting of exactly m literals, and
an m-CF is a CF consisting just of m-clauses.

The satisfiability problem SAT consists of deciding whether a given CF has a
satisfying assignment. SAT is NP-complete and 3-SAT (the restriction of SAT
to 3-CF’s) is also NP-complete.

For any clause C, let hC : {0, 1}n → R, be the map such that

ε satisfies C =⇒ hC(ε) = 0,
ε does not satisfy C =⇒ hC(ε) = 1.

And for any CF φ = (Ci)
m−1
i=0 let hφ : {0, 1}n → R be hφ =

∑m−1
i=0 hCi . Clearly:

∀ε ∈ {0, 1}n : [hφ(ε) = 0 ⇐⇒ ε satisfies φ] ,

thus deciding the satisfiability of φ is reduced to decide whether the global
minimum of hφ is 0.

2.2 AQC Formulation of SAT

Let e0 = (1, 0) and e1 = (0, 1) be the vectors in the canonical basis of the Hilbert
space H1 = C2. Let, for each n > 1, Hn = Hn−1⊗H1 be the n-fold tensor power
of H1. A basis of Hn is (eε)ε∈{0,1}n where

ε = (εj)
n
j=1 =⇒ eε =

n⊗
j=1

eεj . (1)

Hamiltonian Operators for SAT Adiabatic Quantum Reduction 241

Let σz : H1 → H1 be the Pauli quantum gate with matrix σz =
[

1 0
0 −1

]
. For any

bit δ ∈ {0, 1} let τδz = 1
2 (I2 − (−1)δσz). Independently of δ, the characteristic

polynomial of τδz is pz(λ) = (λ − 1)λ and its eigenvalues are 0 and 1 with unit
eigenvectors e0 and e1. The correspondence among eigenvalues and eigenvectors
is determined by δ, namely:

∀ε ∈ {0, 1} : τδzeε = (δ ⊕ ε)eε, (2)

in words: if δ = 0 the index of each eigenvector coincides with the eigenvalue,
otherwise, it is the complementary value. Thus, the zero eigenvalue of the map
τδz corresponds to the eigenvector eδ.

For any δ ∈ {0, 1} and j1 ∈ [[1, n]], let REδj1n =
⊗n

j2=1 ρzδj2 : Hn → Hn

where ρzδj2 = identityH1 if j2
= j1 and ρzδj1 = τδz, thus the effect of REδjn in
an n-quregister is to apply τδz to the j-th qubit. Consequently,

∀ε ∈ {0, 1}n : REδjn (eε) = (δ ⊕ εj) eε, (3)

thus the zero eigenvalue corresponds to the basic vectors giving a satisfying
assignment for the literal Xδ

j . Given a 3-clause C = X
δj1
j1
∨Xδj2

j2
∨Xδj3

j3
let

HEC = REδ3j3n ◦REδ2j2n ◦REδ1j1n : Hn → Hn.

Thus, for any ε ∈ {0, 1}n, HEC (eε) = 0 if and only if ε satisfies the clause C; and
it coincides with the linear map that on the basis vectors acts as eε �→ hC(ε)eε.
Thus, if x =

∑
ε∈{0,1}n xεeε then HEC(x) =

∑
ε∈{0,1}n xεhC(ε) eε and

〈x|HEC(x)〉 =
∑

ε∈{0,1}n

xεxεhC(ε) =
∑

ε∈{0,1}n

|xε|2hC(ε) ≥ 0. (4)

Hence HEC is a positive operator. Indeed, we have 〈x|HEC(x)〉 = 0 if and only
if HEC(x) = 0 ∈ Hn, and this happens if and only if x is a linear combination
of those basic vectors indexed by assignments satisfying the clause C.

For a given CF φ = (Ci)
m−1
i=0 let HEφ : Hn → Hn be HEφ =

∑m−1
i=0 HECi .

Again, HEφ is positive and HEφ(x) = 0 if and only if x is a linear combination
of those basic vectors indexed by assignments satisfying the CF φ.

An unit n-quregister x ∈ Hn such that HEφ(x) = 0 is called a ground state
for HEφ. Thus:

Remark 1. In order to find a satisfying assignment for φ it is sufficient to find a
ground state for HEφ.

Let σx : H1 → H1 be the Pauli quantum gate with matrix σx =
[

0 1
1 0

]
. The

map τδx = 1
2 (I2 − (−1)δσx) also has, independently of δ, characteristic polyno-

mial px(λ) = (λ − 1)λ and its eigenvalues are 0 and 1, now with corresponding
unit eigenvectors c0 = 1√

2
(e0 + e1) and c1 = 1√

2
(−e0 + e1), which form an or-

thonormal basis of H1. The correspondence among eigenvalues and eigenvectors
is determined as in relation (2) by δ, namely:

∀ε ∈ {0, 1} : τδxcε = (δ ⊕ ε)cε. (5)

242 W. Cruz-Santos and G. Morales-Luna

Let us also make

ε = (εj)
n
j=1 =⇒ cε =

n⊗
j=1

cεj .

For any j1 ∈ [[1, n]], let RZδj1n =
⊗n

j2=1 μδj2 : Hn → Hn where μδj2 = identityH1

if j2
= j1 and μδj1 = τδx, thus the effect of RZδjn in an n-quregister is to apply
τδx to the j-th qubit. Consequently, as in relation (3):

∀ε ∈ {0, 1}n : RZδjn (cε) = (δ ⊕ εj) cε. (6)

Hence whenever εj = δ, cε is a ground state of the operator RZδjn.
Let us consider δ = 0 and let us write RZjn = RZ0jn. Given a 3-clause

C = X
δj1
j1
∨ Xδj2

j2
∨ Xδj3

j3
let HZC = RZj1n +RZj2n +RZj3n : Hn → Hn. Then

HZC does not depend on the “signs” δj1 , δj2 , δj3 of the literals, but just on the
variables appearing in the clause. The following implication holds:

[εj1 = εj2 = εj3 = 0 =⇒ HZC (zε) = 0] . (7)

Given a CF φ = (Ci)
m−1
i=0 let HZφ : Hn → Hn be HZφ =

∑m−1
i=0 HZCi .

Remark 2. From relation of equation (6), c00···0 = 1
2

n
2

∑
ε∈{0,1}n eε is a ground

state of HZφ.

Remark 3. The following equation holds:

HZφ =
n∑

j=1

djRZjn (8)

where, for each j ∈ [[1, n]], dj = card{i ∈ [[1,m]]| Xj appears in Ci}.
From remark 2 we have that there is a “natural” ground state, c00···0, for the
operator HZφ, while, after remark 1, to solve the SAT instance given by φ it is
necessary to find a ground state for the operator HEφ. In summary, c00···0 is a
ground state for HZφ but our aim is to find a ground state for HEφ.

For any 3-clause C, let us consider the map I → GL(Hn), where GL(Hn) is
the group of invertible linear automorphisms of the space Hn, and I = [0, 1] is
the unit real interval, given as t �→ HC(t) = (1− t)HZC + tHEC .

For a CF φ = (Ci)
m−1
i=0 , let

Hφ : t �→ Hφ(t) =
m−1∑
i=0

HCi(t) =
m−1∑
i=0

[(1− t)HZC + tHEC] .

Let

∀t ∈ [0, 1] : i
d

dt
ψ(t) = Hφ(t)ψ(t). (9)

be the proper Schrödinger equation, with Hamiltonian Hφ.

Hamiltonian Operators for SAT Adiabatic Quantum Reduction 243

Let {ην}2
n−1

ν=0 ⊂ (RI)2
n

be the sequence of curves giving the eigenvalues of Hφ

(indexed according to their absolute values at the initial points for t = 0). Then it
is possible to see that η0 and η1 never cross on I, and, by the Adiabatic Theorem,
there exists a t0 > 0 such that the solutions ψt0 of the “scaled” equation

∀t ∈ [0, t0] : i
d

dt
ψt0(t) = Hφ

(
t

t0

)
ψt0(t) (10)

are such that ψt0(t) gets arbitrarily close, as t↗ t0, to a ground state for HEφ.
A measurement of such ground state provides an assignment that either satisfies
φ or maximizes the number of satisfied clauses in φ.

3 Procedural Construction of the Hamiltonian Operators

For any two integers i, j ∈ N, i ≤ j, let [[i, j]] denote the collection of integers
ranging from i to j, [[i, j]] = {i, i+ 1, . . . , j − 1, j}.

3.1 Hyperplanes in the Hypercube

Let us enumerate the n-dimensional hypercube with indexes in [[0, 2n − 1]] asso-
ciating each i ∈ [[0, 2n − 1]] with its length n big-endian base-2 representation:

i↔ rev ((i)2) = (ε0, . . . , εn−1) ∈ {0, 1}n where i =
n−1∑
ν=0

εν2ν. (11)

By putting each such representation as the i-th row of a rectangular array, a
(2n × n)-matrix E ∈ {0, 1}2n×n is obtained. Let us denote by e(1)

j ∈ {0, 1}2n

its j-th column, j = 0, . . . , n − 1. On one side, e(1)
j can be written as the list

(02j

12j

)2
n−1−j

= e(1)
j , and on the other hand it can be seen as the Boolean

map that has as support the hyperplane E1
j : εj = 1. Let e(0)

j be the 2n-

vector obtained from e(1)
j by taking the complement value at each entry. Then

e(0)
j = (12j

02j

)2
n−1−j

, and it represents the Boolean map with support the hy-
perplane E0

j : εj = 0. Clearly:

Remark 4. Each hyperplane Eδ
j is a (n − 1)-dimensional affine variety at the

hypercube and its characteristic map can be written as the list

e(δ)
j = (δ

2j

δ2
j

)2
n−1−j

.

The lists e(δ)
j are easily computable:

Procedure. (n− 1)-DimensionalVarieties.
Input: δ ∈ {0, 1}, j ∈ [[0, n− 1]] and k ∈ [[0, 2n − 1]].
Output: The k-th entry of the list e(δ)

j .

244 W. Cruz-Santos and G. Morales-Luna

1. Let k0 := kmod (2n−1−j).
2. If k0 ≥ 2j then output δ else output δ.

Two (n − 1)-dimensional affine varieties are parallel if they are of the form E0
j

and E1
j , for some index j ∈ [[0, n− 1]].

Remark 5. The intersection of two parallel (n−1)-dimensional varieties is empty,
while the intersection of any two non-parallel (n− 1)-dimensional varieties is a
(n − 2)-dimensional affine variety, thus the intersection of any two non-parallel
(n−1)-dimensional varieties has cardinality 2n−2. Also, the intersection of three
pairwise non-parallel (n− 1)-dimensional affine varieties has cardinality 2n−3.

3.2 The Hamiltonian Operators HE

For any δ ∈ {0, 1} and j ∈ [[0, n − 1]], the transform REδjn : Hn → Hn defined
in section 2.2, being the tensor product of transforms represented by diagonal
matrices with respect to the canonical basis, is represented, with respect to the
basis (eε)ε∈{0,1}n , by a diagonal matrix. Indeed:

Remark 6. The 2n-length diagonal determining the diagonal matrix of REδjn

coincides with the list e(δ)
j = (δ

2j

δ2
j

)2
n−1−j

.

For a 3-clause C = X
δj1
j1
∨Xδj2

j2
∨Xδj3

j3
, the operatorHEC = REδ3j3n ◦REδ2j2n ◦

REδ1j1n is also representedby a diagonalmatrix and its diagonal is the component-
wise product of the lists e(δ1)

j1
, e(δ2)

j2
and e(δ3)

j3
. Since the indexes j1, j2, j3 are pair-

wise different, the lists are the characteristic maps of three pairwise non-parallel
(n− 1)-dimensional affine varieties. From remark 5:

Remark 7. With respect to the canonical basis (eε)ε∈{0,1}n of Hn, for any 3-

clause C = X
δj1
j1
∨Xδj2

j2
∨Xδj3

j3
, the operator HEC is represented by a diagonal

matrix and its diagonal, DC(C) = DC ((j1, δ1), (j2, δ2), (j3, δ3)), consisting of
2n−3 1’s, is such that each entry can be calculated by a slight modification of
the procedure (n− 1)-DimensionalVarieties outlined above. Namely:

Procedure. 3-ClauseDiagonal.
Input: A 3-clause C = {(j1, δ1), (j2, δ2), (j3, δ3)}, and k ∈ [[0, 2n − 1]].
Output: The k-th entry of the list DC .

1. For r = 1 to 3 do
(a) kr0 := kmod (2n−1−jr).
(b) If kr0 ≥ 2jr then xr := δr else xr := δr.

2. Output x1 · x2 · x3.

Remark 8. With respect to the canonical basis (eε)ε∈{0,1}n of Hn, for any CF

φ = (Ci)
m−1
i=0 the operator HEφ =

∑m−1
i=0 HECi is represented by a diagonal

matrix, and its diagonal is DF (φ) =
∑m−1

i=0 DC(Ci).

Hamiltonian Operators for SAT Adiabatic Quantum Reduction 245

For any 3-clause C, let SptC(C) = {j ∈ [[0, 2n−1]]| DC(C)[j]
= 0} be the collec-
tion of indexes corresponding to non-zero entries at the vector in the diagonal
DC(C). Then card(SptC(C)) = 2n−3. Similarly, let SptF (φ) be the collection of
indexes corresponding to non-zero entries at the vector in the diagonal DF (φ).
Clearly:

φ = (Ci)
m−1
i=0 =⇒ SptF (φ) =

m−1⋃
i=0

SptC(Ci).

The entries at DF (φ) are the eigenvalues of the operator HEφ, and the satisfy-
ing assignments are determined by the eigenvectors corresponding to the zero
eigenvalue (if zero indeed is an eigenvalue). From remark 1 the following results:

Remark 9. Any zero entry in the 2n-vector DF (φ) determines a satisfying as-
signment for φ. Namely, if DF (φ)[i] = 0 then φ(rev ((i)2)) = True.

This can also be stated as follows:

Remark 10. For a given CF φ = (Ci)
m−1
i=0 , φ is satisfiable if and only if the

following happends SptF (φ)
= [[0, 2n − 1]].

Thus, the satisfiability problem can be rephrased as follows:

Problem QASAT.
Instance: A CF φ = (Ci)

m−1
i=0 .

Solution: “Yes” if SptF (φ)
= [[0, 2n − 1]]; “No”, if SptF (φ) = [[0, 2n − 1]].
SAT is thus reducible to QUSAT in polynomial time, consequently QUSAT

is NP-complete as well.
As a second construction of the vector at the diagonalDC(C) for any 3-clause,

let us enumerate these clauses in another rather conventional manner.
In a general setting, let k ≥ 3. Then the number of k-clauses, C =

∨
j∈J X

δj

j ,
with card(J) = k, in n variables, is νkn =

(
n
k

)
2k. For any i ∈ [[0, νkn − 1]] let

i0 = i mod 2k and i1 = (i − i0)/2k. Then the map η : i �→ (i1, i0) allows us
to identify [[0, νkn − 1]] with the Cartesian product [[0,

(
n
k

) − 1]] × [[0, 2k − 1]].
The map η can also be seen as the function that to each index i ∈ [[0, νkn − 1]]
associates the clause C =

∨
j∈Ji1

X
δj

j where Ji1 is the i1-th k-set of [[0, n − 1]]

and i0 =
∑k−1

κ=0 δjκ2κ.

Remark 11. Let C = X
δj1
j1
∨Xδj2

j2
∨Xδj3

j3
be a 3-clause, 0 ≤ j1 < j2 < j3 < n.

Then the collection SptC(C) of indexes corresponding to non-zero entries at
DC(C) is characterized as follows: For any k ∈ [[0, 2n − 1]], k ∈ SptC(C)⇐⇒

∃(k0, k1, k2, k3) ∈ K :
(k1 = δ1 mod 2)& (k2 = δ2 mod 2)& (k3 = δ3 mod 2)&
k = k0 + 2j1k1 + 2j2k2 + 2j3k3

where K = [[0, 2j1 − 1]]× [[0, 2j2−j1 − 1]]× [[0, 2j3−j2 − 1]]× [[0, 2n−j3 − 1]].

246 W. Cruz-Santos and G. Morales-Luna

The remark 11 is consistent with the calculated cardinality of SptC(C) because:
2n−3 = 2j12j2−j1−12j3−j2−12n−j3−1. And also, it justifies an algorithm to com-
pute DC(C). Namely:

Procedure 3-ClauseDiagonalBis.
Input: A 3-clause C = {(j1, δ1), (j2, δ2), (j3, δ3)}, and k ∈ [[0, 2n − 1]].
Output: The k-th entry of the list DC .

1. flg := True ; crk := k ;
2. k0 := crk mod 2j1 ; crk := (crk− k0)/2j1 ;
3. k1 := crk mod 2j2−j1 ; crk := (crk− k1)/2j2−j1 ;
4. flg := (k1 == δ1 mod 2) ;
5. If flg then

(a) k2 := crk mod 2j3−j2 ; crk := (crk− k2)/2j3−j2 ;
(b) flg := (k2 == δ2 mod 2) ;
(c) If flg then

i. k3 := crk mod 2j3−j2 ; crk := (crk− k3)/2n−j3 ;
ii. flg := (k3 == δ3 mod 2) ;

6. If flg then b := 1 else b := 0;
7. Output b.

3.3 Hamiltonian Operator HZφ

Now let us consider the operators with subindex Z defined in section 2.2.
Let us define the following matrices:

A0 = [1] ; B0 = [1]

A1 = I2 ⊗A0 − 1
2σx ⊗B0 ; B1 = I2 ⊗ B0

A2 = I2 ⊗A1 − 1
2σx ⊗B1 ; B2 = I2 ⊗ B1

A3 = I2 ⊗ (1
2B2 +A2)− 1

2σx ⊗B2 ; B3 = I2 ⊗ B2

(12)

where I2 is the (2 × 2)-identity matrix. For each k ≤ 3, Ak, Bk are matrices of
order (2k × 2k), indeed we have Bk = I2k .

For n = 3 and any 3-clause C012 = Xδ0
0 ∨ Xδ1

1 ∨ Xδ2
2 involving the three

variables, the transform HZC012 : H3 → H3 is represented, with respect to the
canonical basis of H3, by the matrix

H[012],3 = A3 =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 −1 0 −1 0 0 0
−1 3 0 −1 0 −1 0 0
−1 0 3 −1 0 0 −1 0

0 −1 −1 3 0 0 0 −1
−1 0 0 0 3 −1 −1 0

0 −1 0 0 −1 3 0 −1
0 0 −1 0 −1 0 3 −1
0 0 0 −1 0 −1 −1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

which is a band matrix with the following properties: its upper-right boundary
is its diagonal at distance 4 = 23−1 above the main diagonal, the lower-left

Hamiltonian Operators for SAT Adiabatic Quantum Reduction 247

boundary is also at distance 4 below the main diagonal, the main diagonal has
constant value 3

2 and the only values appearing in the matrix are 3
2 , 0,− 1

2 .
Naturally, for any n > 3 the transform HZC012 : Hn → Hn is represented by

the matrix
H[012],n = H[012],n−1 ⊗ I2. (14)

The tensor product at eq. (14) substitutes each current entry at H[012],n−1 by the
product of that entry by the (2×2)-identity matrix. Thus also H[012],n is a band
matrix, its boundaries are diagonals at distance 2n−1 from the main diagonal,
the main diagonal has constant value 3

2 and the only values appearing in the
matrix are 3

2 , 0,− 1
2 . The following algorithm results:

Procedure HZ012.
Input: An integer n ≥ 3 and a pair (i, j) ∈ [[0, 2n − 1]]2.
Output: The (i, j)-th entry of the matrix H[012],n.

1. k := j − i ;
2. Case k of

0 : v := 3
2 .

±2� : (a power of 2, with � ≥ 1)
i. ι := min{i, j} ;
ii. ι0 := ι mod 2�+1 ;
iii. If ι0 < 2� Then v := − 1

2 Else v := 0 ;
Else: v := 0 ;

3. Output v.

For an arbitrary 3-clause Cj1j2j3 = Xδ1
j1
∨Xδ2

j2
∨Xδ3

j3
, with 0 ≤ j1 < j2 < j3 < n let

πj1j2j3 be a permutation [[0, n−1]]→ [[0, n−1]] such that j1 �→ 0, j2 �→ 1, j3 �→ 2
and the restriction πj1j2j3 |[[0,n−1]]−{j1,j2,j3} is a bijection [[0, n−1]]−{j1, j2, j3} →
[[3, n−1]]. Then, there is a permutation ρj1j2j3 : [[0, 2n−1]]→ [[0, 2n−1]], which can
be determined in terms of πj1j2j3 , such that the matrix H[j1j2j3],n representing
the transform HZCj1j2j3

is the action of ρj1j2j3 over rows and columns on the
matrix H[012],n. Namely, let

ρj1j2j3 : [[0, 2n − 1]]→ [[0, 2n − 1]] ,
n−1∑
κ=0

εκ2κ �→
n−1∑
κ=0

επj1j2j3 (κ)2κ, (15)

then when writing H[012],n =
[
h

(0)
ij

]
0≤i,j≤2n−1

one has

H[j1j2j3],n =
[
h

(0)
ρj1j2j3(i) ρj1j2j3 (j)

]
0≤i,j≤2n−1

.

The following algorithm results:

Procedure HZFor3Clauses.
Input: An integer n ≥ 3, a 3-clause C = {(j1, δ1), (j2, δ2), (j3, δ3)} and a pair
(i, j) ∈ [[0, 2n − 1]]2.
Output: The (i, j)-th entry of the matrix H[j1j2j3],n.

248 W. Cruz-Santos and G. Morales-Luna

1. Compute the permutation ρj1j2j3 : [[0, n− 1]]→ [[0, n− 1]] as in (15) ;
2. Output HZ012[n; (ρj1j2j3(i), ρj1j2j3(j))].

(Evidently, the permutation ρj1j2j3 can be computed as a preprocess to be used
later for several entries (i, j).)

For a CF φ = (Ci = {(ji1, δi1), (ji2, δi2), (ji3, δi3))m−1
i=0 , the Hamiltonian oper-

ator HZφ : Hn → Hn is represented by the matrix Hφ,n =
∑m−1

i=0 H[ji1ji2ji3],n.
Thus it can be computed directly by an iteration of algorithm HZFor3Clauses.

Remark 12. The ground eigenvector of the matrix Hφ,n will tend to a ground
state of the matrix HEφ when solving the Schrödinger equation (10), providing
thus a solution of SAT for the instance φ.

4 Conclusions

The Adiabatic Theorem has been a powerful tool in Quantum Computing (QC)
and it can be used to build efficient algorithms within the frame of QC for classi-
cal hard problems. The reduction techniques of these last problems to adiabatic
terms allows us to pose equivalent polynomial reductions, which obviously are
still hard in the classical sense. We have given explicit calculations of the involved
Hamiltonians for a treatment of SAT through AQC. Besides its mathematical in-
terest, this calculation allows us to check the correctness of the method through
formal symbolic calculations of the eigensystems and to make computational
simulations of the method.

References

1. Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic
quantum computation is equivalent to standard quantum computation. SIAM J.
Comput. 37(1), 166–194 (2007)

2. Dam, W.V., Mosca, M., Vazirani, U.: How powerful is adiabatic quantum compu-
tation? In: FOCS 2001: Proceedings of the 42nd IEEE symposium on Foundations
of Computer Science, Washington, DC, USA, p. 279. IEEE Computer Society, Los
Alamitos (2001)

3. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quan-
tum adiabatic evolution algorithm applied to random instances of an NP-complete
problem. Science 292(5516), 472–475 (2001); Also arXiv:quant-ph/0104129v1

4. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adia-
batic evolution (2000), arXiv:quant-ph/0001106v1

5. Hogg, T.: Solving random satisfiability problems with quantum computers (2001),
arXiv:quant-ph/0104048

6. Hogg, T.: Adiabatic quantum computing for random satisfiability problems (2002),
arXiv:quant-ph/0206059

7. Leporati, A., Felloni, S.: Three “quantum” algorithms to solve 3-SAT. Theor. Com-
put. Sci. 372(2-3), 218–241 (2007)

Parametric Metric Interval Temporal Logic�

Barbara Di Giampaolo, Salvatore La Torre, and Margherita Napoli

Università degli Studi di Salerno, Via Ponte Don Melillo - 84084 Fisciano, Italy

Abstract. We study an extension of the logic MITL with parametric constants.
In particular, we define a logic, denoted PMITL (parametric MITL), where the
subscripts of the temporal operators are intervals with possibly a parametric end-
point. We consider typical decision problems, such as emptiness and universality
of the set of parameter valuations under which a given parametric formula is sat-
isfiable, or whether a given parametric timed automaton is a model of a given
parametric formula. We show that when each parameter is used with a fixed po-
larity and only parameter valuations which evaluate parametric intervals to non-
singular time intervals are taken into consideration, then the considered problems
are decidable and EXPSPACE-complete. We also investigate the computational
complexity of these problems for natural fragments of PMITL, and show that in
meaningful fragments of the logic they are PSPACE-complete. Finally, we discuss
other natural parameterizations of MITL, which indeed lead to undecidability.

1 Introduction

Temporal logic is a simple and standard formalism to specify the wished behaviour of
a reactive system. Its use as a specification language was first suggested by Pnueli [15]
who proposed the propositional linear temporal logic (LTL). This logic presents natural
operators to express temporal requests on the time ordering of occurrences of events,
such as “always”, “eventually”, “until”, and “next”.

The logic MITL [3] extends LTL with a real-time semantics where the changes of
truth values happen according to a splitting of the line of non-negative reals into inter-
vals. Syntactically, MITL augments the temporal operators of LTL (except for the next
operator which has no clear meaning in a real-time semantics) with a subscript which
expresses an interval of interest for the expressed property. Thus, properties such as
“every time an a occurs then a b must occur within time t ∈ [3, 5]” become express-
ible. Also in this setting equality (which corresponds to use singular intervals in the
subscripts of temporal operators) is a major problem for decidability, therefore the def-
inition of MITL formulas syntactically excludes singular intervals as time constraints.

In this paper, we extend MITL with parametric constants, i.e., we allow the inter-
vals in the subscripts of the temporal operators to have as an endpoint a parametric
expression of the form c+x, for a parameter x and a constant c. Therefore, typical time
properties which are expressible in MITL can now be analysed by varying the scope
of the temporal operators depending on the values of the parameters. As an example,

� This work was partially funded by the MIUR grants FARB 2008-2009 Università degli Studi
di Salerno (Italy).

A.-H. Dediu, H. Fernau, and C. Martı́n-Vide (Eds.): LATA 2010, LNCS 6031, pp. 249–260, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

250 B. Di Giampaolo, S. La Torre, and M. Napoli

consider a parameterized version of the above property: “every time an a occurs then a b
must occur within a time t ∈ [3, 5+x]” where x is a parameter. One could be interested
in determining if there exists a value of x such that this property holds on a given timed
sequence, or if this is true for any possible value of x, or more, the set of x values such
that the property holds.

The use of parametric constants has been advocated by many authors as a support
to designers in the early stages of a design when not much is known on the system un-
der construction (see for example [4,2,7,10,8,12,13,16]). Unfortunately, the unrestricted
use of parameters leads to undecidability, and in particular, one should avoid testing a
parameter for equality [4,2]. We define a logic, which we denote PMITL (parametric
MITL), where in each interval at most one endpoint can be a parametric expression. Fur-
thermore, we impose that each parameter is used with a fixed “polarity” and a parameter
valuation is admissible if the evaluated intervals are non-singular and non-empty. The
concept of polarity is semantic and is related to whether the space of the values for a
parameter such that the formula is satisfied is upward or downward closed. For exam-
ple, the set of values of x for the assertion “an a will eventually occur within time x” is
upward closed: a model which satisfies this for x = 3 also satisfies it for every x > 3.

We study the analogous of satisfiability and model-checking for non-parametric tem-
poral logic. As model of the formula we consider a model of timed automata with pa-
rameters, called L/U automaton [13], thus in the model-checking we allow parameters
both in the formula and the model. L/U automata share the same kind of restriction on
the parameters as PMITL and if a parameter is used in the formula and the model we
just require that it is used with the same polarity. In particular, we define the set S(ϕ) of
all the admissible valuations such that the formula ϕ is satisfiable and the set S(A, ϕ)
of all the admissible valuations such that the L/U automaton A is a model of the for-
mula ϕ. We show that the universality and the emptiness problems for such sets are
decidable and EXPSPACE-complete. The proof goes through a reduction to decidable
problems for Büchi L/U automata [5].

We refine our complexity results on PMITL by showing several results. First, we
prove that the considered decision problems are still EXPSPACE-hard in its fragment
PMITL0,∞ where each non-parametric interval has one end-point which is either 0 or
∞, and that hardness still holds in the fragments of PMITL0,∞ with only parametric
operators of one polarity. By restricting further the syntax of the operators coupled with
parametric intervals whose end-points are neither 0 or ∞, we show that: (1) deciding
the emptiness of S(ϕ) and S(A, ϕ) for formulas ϕ where such operators are all of the
form ♦(c,d+x) is in PSPACE, and (2) deciding the universality of S(ϕ) and S(A, ϕ)
for formulas φ where such operators are of all the form �(c,d+x) is in PSPACE. To
the best of our knowledge, these fragments capture the most general formulation of
parametric constraints in PMITL with the considered decision problems in PSPACE

(indeed the logic studied in [5] allows parametric expressions of the form c1x1 + . . .+
cnxn, however parametric intervals have as end-points either 0 or ∞ and our results
still hold when allowing such form of parametric expressions).

In the definition of PMITL we impose some restrictions on the parameters. In par-
ticular, we do not allow a parameter valuation to evaluate a parametric interval to a
singular interval, each parameter is used with a fixed polarity consistently through all

Parametric Metric Interval Temporal Logic 251

the formula, and in each interval we can use parameters in only one of the end-points.
We show that if we relax any of these restrictions the resulting logic becomes undecid-
able. In fact, we have already mentioned that testing parameters for equality (and thus
allowing singular intervals) leads to undecidability. Also, if a parameter is used with
both polarities in a formula, then it is possible to express equality, and again the logic
becomes undecidable. We thus consider some natural ways of defining parameterized
intervals with parameters in both the end-points: both the end-points are added with
the same parameter or with different parameters. In all such cases, the studied decision
problems become undecidable in the resulting logic.

Related work. The need for restricting the use of parameters (in order to obtain de-
cidability) such that each parameter is always used with a fixed polarity was addressed
already in [2] for obtaining the decidability of a parametric extension of LTL (denoted
PLTL). As already mentioned a parameterized fragment of PMITL is studied also in [5].
Both in [2] and [5], time constraints on temporal operators do not allow intervals with
arbitrary end-points: one of the end-points is always 0 or∞. Here, we give a thorough
study of the parameterization with intervals and get a deeper insight on some concepts
expressed there. The techniques used to show decidability results in [2,5], cannot be
used directly in our settings, and we would like to stress that it was not clear to us
in the beginning that PMITL was even decidable. Recently, the results on PLTL have
been shown using different techniques in [14]. Parametric branching time specifications
were first investigated in [16,12] where decidability is shown for logics obtained as ex-
tensions of TCTL [1] with parameters. In [6], decidability is extended to full TCTL with
Presburger constraints over parameters. In [7], decidability is established for the model
checking problem of discrete-time timed automata with one parametric clock against
parametric TCTL without equality.

2 Parametric Dense-Time Metric Interval Temporal Logic

Notation. We consider non-empty intervals (convex sets) of non-negative real num-
bers. We use the standard notation [a, b],]a, b[, [a, b[, and]a, b] to denote respectively
the closed, open, left-closed/right-open and left-open/right-closed intervals with end-
points a and b. When we do not need to specify if an end-point is included or not in
an interval, we simply use parentheses: for example, we denote with (a, b) any of the
possible intervals with end-points a and b. A time interval I is an interval (a, b) such
that 0 ≤ a ≤ b, and a < b if I is not closed. A closed time interval I = [a, a] is called
singular.

In the rest of the paper, we fix a set of atomic propositions AP and two disjoint
sets of parameters U and L. A parametric expression is an expression of the form
c + x, where c ∈ N and x is a parameter. With E(U) (resp. E(L)) we denote the set
of all the parametric expressions over parameters from U (resp. L). A parameterized
time interval is an interval (a, b) such that either a or b belong to E(L) ∪ E(U). In
the following, we sometimes use the term interval to indicate either a parameterized
interval or a time interval. A parameter valuation v : L ∪ U −→ N assigns a natural
number to each parameter. Given a parameter valuation v and an interval I , with Iv we

252 B. Di Giampaolo, S. La Torre, and M. Napoli

denote the time interval obtained by evaluating the end-points of I by v (in particular,
if I is a time interval then Iv = I).

Syntax. The Parametric dense-time Metric Interval Temporal Logic (PMITL) extends
MITL [3] by allowing parameterized time intervals as subscripts of temporal operators.
The PMITL formulas over AP are defined by the following grammar:

ϕ := p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ UH ϕ | ϕ RJ ϕ,

where p ∈ AP , and H and J are either non-singular time intervals with end-points in
N ∪ {∞} or parameterized time intervals such that:

− forH = (a, b) either (1) a ∈ N and b ∈ E(U) or (2) a ∈ E(L) and b ∈ (N∪{∞});
− for J = (a, b) either (1) a ∈ N and b ∈ E(L) or (2) a ∈ E(U) and b ∈ (N∪{∞}).

As usual, we use the abbreviations ♦H ϕ and �J ϕ for true UH ϕ and false RJ ϕ,
respectively.

For a given formula ϕ, a parameter valuation v is admissible for ϕ if for each time
interval I in the subscripts of ϕ, Iv is a non-singular time interval. WithD(ϕ) we denote
the set of all the admissible valuations for ϕ.

The logic MITL0,∞ is defined in [3] as a syntactic restriction of MITL where all
the time intervals (a, b), that are used as subscripts of the temporal operators, are
such that either a = 0 or b = ∞. With PMITL0,∞ we denote the parametric exten-
sion of MITL0,∞ which corresponds to the fragment of PMITL where all the non-
parameterized intervals are as in MITL0,∞. Note that in [5], the acronym PMITL0,∞ is
used to denote the parametric extension of MITL0,∞ where also the parameterized in-
tervals are restricted such that one of the end-points is either 0 or∞. Here, we prefer to
denote such extension of MITL0,∞ as P0,∞MITL0,∞ to stress the fact that the imposed
syntactic restriction concerns both time and parametric intervals.

Semantics. PMITL formulas are interpreted over timed sequences. A timed sequence
over AP is an infinite sequence α = (α0, I0)(α1, I1) . . . such that:

– for all i, αi ∈ 2AP and Ii is a time interval with real end-points;
– for all i, Ii ∩ Ii+1 = ∅ and Ii+1 follows Ii along the time line;
– each real number t ≥ 0 belongs to some interval Ii.

For each t ≥ 0, α(t) denotes the unique αi such that t ∈ Ii. Given an interval I = (a, b)
and t ≥ −a, with I + t we denote the interval (a + t, b + t) such that I is left-closed
(resp. right-closed) iff I + t is left-closed (resp. right-closed).

For a formula ϕ, a timed sequence α, a parameter valuation v, and t ∈ R+, the
satisfaction relation under valuation v, (α, v, t) |= ϕ, is defined as follows (we omit
the standard clauses for boolean connectives):

– (α, v, t) |= p ⇔ p ∈ α(t);
– (α, v, t) |= ϕ UH ψ ⇔ for some t′ ∈ Hv + t, (α, v, t′) |= ψ, and (α, v, t′′) |= ϕ

for all t < t′′ < t′;
– (α, v, t) |= ϕ RJ ψ ⇔ for all t′ ∈ Jv + t, either (α, v, t′) |= ψ, or (α, v, t′′) |= ϕ

for some t < t′′ < t′.

A timed sequenceα satisfies ϕ under valuation v, denoted (α, v) |= ϕ, if (α, v, 0) |= ϕ.

Parametric Metric Interval Temporal Logic 253

Polarity of parameterized temporal operators. A temporal operator of PMITL is
upward-closed if the interval in its subscript has a parameter from U in one of its end-
points. Analogously, a temporal operator of PMITL is downward-closed if the interval
in its subscript has a parameter from L in one of its end-points. The meaning of these
definition is clarified by the following lemma.

We first introduce two relations over parameter valuations. Let ≈∈ {≤,≥}. Given
any parameter valuations v and v′, and a parameter z, the relation ≈z is defined such
that: v ≈z v

′ iff v(z) ≈ v′(z) and v(z′) = v′(z′) for any other parameter z′
= z.

Lemma 1. Let z be a parameter occurring in ϕ, α be a timed word and v and v′ be
parameter valuations.

For z ∈ U and v ≤z v
′, if (α, v) |= ϕ then (α, v′) |= ϕ.

For z ∈ L and v ≥z v
′, if (α, v) |= ϕ then (α, v′) |= ϕ.

Parametric Timed Automata. Parametric Timed Automata extend Timed Automata,
allowing the use of parameters in the clock constraints, see [4]. We briefly recall the
definition. Given a finite set of clocks X and a finite set of parameters P , a clock con-
straint is a positive boolean combination of terms of the form ξ ≈ e where ξ ∈ X ,
≈∈ {<,≤,≥, >}, and either e ∈ N or e is a parametric expression. In the following,
with Ξ we denote the set of all clock constraints over X and P . A parametric timed
automaton (PTA) is a tupleA = 〈Q,Q0, X, P, β,Δ, λ〉, whereQ is a finite set of loca-
tions, Q0 ⊆ Q is the set of initial locations, X is a finite set of clocks, P is a finite set
of parameters, β is a function assigning to each location q a parametric clock constraint
β(q), Δ ⊆ Q × Ξ × Q × 2X is a transition relation, and λ : Q → 2AP is a function
labeling each location with a set of atomic propositions.

A clock interpretation σ : X → R+ assigns real values to each clock. A clock
interpretation σ+ t, for t ∈ R+, assigns σ(ξ) + t to each ξ ∈ X . For γ ⊆ X , σ[γ := 0]
denotes the clock interpretation that assigns 0 to all clocks in γ, and σ(ξ) to all the other
clocks ξ. Given q ∈ Q, we say that a clock interpretation σ and a parameter valuation v
satisfy a parametric clock constraint δ, denoted (σ, v) |= δ, iff evaluating each clock of δ
according to σ and each parameter of δ according to v, the resulting boolean expression
holds true.

For locations qi ∈ Q, clock interpretations σi, clock constraints δi ∈ Ξ , clock sets
γi ⊆ X , and intervals Ii, a run ρ of a PTA A, under a parameter valuation v, is an
infinite sequence

σ0−→ (q0, I0)
σ1−−−→

δ1,γ1
(q1, I1)

σ2−−−→
δ2,γ2

(q2, I2)
σ3−−−→

δ3,γ3
. . ., such that:

– q0 ∈ Q0, and σ0(ξ) = 0, for each clock ξ;
– for all i ≥ 0, denoting Ii = (ai, bi) and σ′i = σi + bi − ai:

(1) (qi, δi+1, qi+1, γi+1) ∈ Δ, (σ′i, v) |= δi+1 and σi+1 = σ′i[γi+1 := 0];
(2) ∀t ∈ Ii, σi + (t− ai) and v satisfy β(qi).

The timed sequence associated with ρ is (λ(q0), I0)(λ(q1), I1)(λ(q2), I2)
Recall that two timed sequences α′ and α′′ are equivalent if α′(t) = α′′(t) for all

t ≥ 0. With L(A, v) we denote the set of of all timed sequences over AP which are
equivalent to those associated with a run of A under a parameter valuation v.

An interesting class of PTA is that of lower bound/upper bound (L/U) automata
which are defined as PTA such that the set L of the parameters which can occur as a

254 B. Di Giampaolo, S. La Torre, and M. Napoli

lower bound in a parametric clock constraint is disjoint from set U of the parameters
which can occur as an upper bound. For L/U automata both acceptance criteria on
finite runs and on infinite runs have been considered [13,5]. Here, we recall the Büchi
acceptance condition. A Büchi L/U automaton A is an L/U automaton coupled with
a subset F of locations. A run ρ is accepting for A if at least one location in F repeats
infinitely often along ρ. We denote with Γ (A) the set of parameter valuations v such
that there exists an accepting run under v. We recall the following result.

Theorem 1 ([5]). The problems of checking the emptiness and the universality of Γ (A),
for a Büchi L/U automaton A, are PSPACE-complete.

Decision problems. For the logic PMITL, we study the satisfiability and the model-
checking problems, with respect to an L/U automaton. More precisely, given an PMITL
formula ϕ and an L/U automatonA, we consider the emptiness and universality of:

– the set S(ϕ) of all the parameter valuations v ∈ D(ϕ) such that there is a timed
sequence that satisfies ϕ under valuation v;

– the set S(A, ϕ) of all the parameter valuations v ∈ D(ϕ) such that there is a timed
sequence in L(A, v) that satisfies ϕ under the valuation v.

Observe that we have defined PMITL by imposing some restrictions on the parame-
ters. First, we require the sets of parameters L and U to be disjoint. Second, we force
each interval to have at most one parameter, either in the left or in the right end-point.
Third, we define admissibility for parameter valuations such that a parameterized inter-
val cannot be evaluated neither as an empty nor a singular set. In section 5, we briefly
discuss the impact of the first two restrictions on the decidability of the considered
problems. In particular, we show that relaxing any of the first two restrictions leads to
undecidability. Concerning to the notion of admissibility of parameter valuations, the
restriction to non-empty intervals seems reasonable since evaluating an interval to an
empty set would cancel a portion of our specification (which will remain unchecked).
The restriction to non-singular intervals is instead needed for achieving decidability
(see [3]).

z0≤x↑

r↑
z0≤x↓

r↓

o↑ o↓

z0:=0 z0:=0
z0:=0

z0:=0

z0:=0

z0:=0

z0≥y↑ z0≥y↓

Fig. 1. A PTA model for the wire
component

Example of application of PMITL. As an
example of the use of the logic PMITL we con-
sider a model of the SPSMALL memory, a com-
mercial product of STMicroeletronics, from [9].

The memory is modeled as the synchronous
product of the timed automata corresponding to
the input signals and the internal components
of the memory, such as latches, wires and log-
ical blocks. In Figure 1, we recall the model
for a wire. Observe that differently from [9]
our model is a PTA where the system constants
x↑, x↓, y↑, and y↓ are parameters. In particular,
x↑ and x↓ are upward parameters (i.e., belong to
U) and y↑ and y↓ are downward parameters (i.e.,
belong to L). The behavior of the wire is related

Parametric Metric Interval Temporal Logic 255

to the intervals [y↑, x↑] and [y↓, x↓]. The first interval represents the delay interval for
the component traversal when the input signal is rising (similarly for the second inter-
val w.r.t. the falling signal). The model has one clock variable z0 and five locations.
The symbol r↑ (resp. r↓) labels the location which is entered when the input signal r is
rising (resp. falling), and similarly o↑ (resp. o↓) for the output signal o. Each edge cor-
responds to a discrete event in the system. The locations are associated with parametric
clock constraints modeling the desired behaviour.

When the data-sheet of a circuit does not provide enough information we can use
parameters to formulate the wished system requirements and then perform a parameter-
ized analysis of the circuit. As sample formulas, consider ϕ1 = �(r↑ ⇒ ♦[c,d+x] o

↑)
and ϕ2 = �(r↓ ⇒ ♦[c+y,d] o

↓), where c, d ∈ N, x ∈ U and y ∈ L. These are vari-
ations with parameters of the standard time response property. In particular, ϕ1 asserts
that “every rising edge of the input signal r is followed by a rising edge of the output
signal o within the interval [c, d + x]”. In the first formula, we fix a constant lower
bound on the response property and restrict the upper bound to be at least d. In the
second formula instead, we fix an upper bound d and require the lower bound to be at
least c.

3 Decidability of PMITL

In this section, we prove that the satisfiability and model-checking problems stated in
the previous section are decidable and EXPSPACE-complete thus matching the computa-
tional complexity for MITL formulas [3]. A central step in our argument is a translation
to the emptiness and the universality problems for Büchi L/U automata.

We start showing a normal form for PMITL formulas. Let Sub(ϕ) denote the number
of subformulas of ϕ. The following lemma is central in our approach.

Lemma 2. For every PMITL formula ϕ, there is an equivalent PMITL formula ψ using
only ♦ and � as parameterized temporal operators, and parameterized intervals of the
form (0, z) or (c+z, d), for c, d ∈ N and z ∈ U ∪L. Moreover, Sub(ψ) = O(Sub(ϕ)).

Proof. First, we show that the parameterized ♦H and �J, along with MITL operators,
are sufficient to define all parameterized operators.

Consider first a parametric interval (c, d+ z). We have the equivalences:
ϕ U(c,d+z) ψ ≡ (ϕ UI ψ) ∧ ♦(c,d+z) ψ, and ϕ R(c,d+z) ψ ≡ (ϕ RI ψ) ∨�(c,d+z) ψ,
where I = (c,∞[and I is left-closed iff (c, d+ z) is left-closed.

Now consider a parametric interval (c+ z, d). We have the equivalences:
ϕ U(c+z,d) ψ ≡ �[0,z](ϕ∧ϕ UI ψ)∧♦(c+z,d) ψ, and ϕ R(c+z,d) ψ ≡ ♦[0,z](ϕ∨ϕ RI

ψ) ∨�(c+z,d) ψ, where I = (c,∞[and I is left-closed iff (c, d+ z) is left-closed.
We can further transform formulas such that the parametric intervals of the form

(c, d+ z) are replaced with parameter intervals of the form [0, z). For closed intervals,
we use the following formulas: ♦[c,d+x]ϕ ≡ ♦[c,d](ϕ ∨ ♦[0,x] ϕ) and �[c,d+y]ϕ ≡
�[c,d](ϕ∧�[0,y] ϕ). The equivalences for the remaining cases can be obtained similarly
and thus we omit them.

Therefore, by applying the above described equivalences we can rewrite a PMITL
formula ϕ into an equivalent formula ψ such that Sub(ψ) ≤ 3(Sub(ϕ)) and the lemma
holds. ��

256 B. Di Giampaolo, S. La Torre, and M. Napoli

Observe that the transformations used in [3] to reduce MITL formulas in normal form
when applied to PMITL formulas do not alter the polarity of parameters. Therefore,
from Lemma 2 and by adapting such transformations from [3], we have the following
lemma:

Lemma 3. Given a PMITL formula ϕ, there is an equivalent PMITL formula ψ whose
temporal subformulas are of one of the following types:

1. ♦(0,b) ϕ
′, or �(0,b) ϕ

′ where b ∈ N;
2. ϕ1 U(a,b) ϕ2, or ϕ1 R(a,b) ϕ2, where a > 0 and b ∈ N;
3. ϕ1 U[0,∞[ϕ2;
4. �[0,∞[ϕ

′;
5. ♦[0,x) ϕ

′, or �(a+x,b), where x ∈ U ;
6. �[0,y) ϕ

′, or ♦(a+y,b), where y ∈ L.

Moreover, Sub(ψ) = O(Sub(ϕ)).

If we restrict to PMITL formulas which do not contain parametric intervals of the form
(c + z, d), by Lemma 3 we are able to repeat the constructions given in [3] for MITL
and in [5] for P0,∞MITL0,∞ to obtain equivalent PTAs. This result is precisely stated
in the following theorem, where given a formula ϕ we denote with Kϕ the maximal
constant used in ϕ augmented by 1 and with Nϕ the number of subformulas of ϕ.

Theorem 2. Given a PMITL formula ϕ which does not contain parametric intervals
of the form (c + z, d), one can construct a Büchi L/U automaton Aϕ such that, Aϕ

accepts a timed sequence α under a parameter valuation v if and only if (α, v) |= ϕ.
Moreover,Aϕ hasO(2Nϕ×Kϕ) locations,O(Nϕ×Kϕ) clocks, and constants bounded
byKϕ.

Note that, the L/U automatonAϕ from the above theorem uses exactly the parameters
of the formula ϕ such that each parameter of ϕ from L is a lower bound parameter for
Aϕ and each parameter of ϕ from U is an upper bound parameter for Aϕ. We can now
show the main theorem of this section.

Theorem 3. Given a PMITL formula ϕ and an L/U automatonA, checking the empti-
ness and the universality of the sets S(ϕ) and S(A, ϕ) is EXPSPACE-complete.

Proof. Hardness follows from EXPSPACE-hardness of both satisfiability and model-
checking problems for MITL [3].

To show membership to EXPSPACE of the emptiness problem for S(ϕ) we use the
following algorithm. First, assign each parameter x appearing in a subformula of ϕ
of the form ♦(c+x,d)ψ with the minimum value assigned by an admissible parameter
valuation, and each parameter y in a subformula of ϕ′ of the form �(c′+y,d′) ψ

′ with the
maximum value assigned by an admissible parameter valuation. Note that these values
are well defined since from the considered intervals we get the admissibility constraints
0 ≤ x ≤ d − c − 1 and 0 ≤ y ≤ d′ − c′ − 1, and thus the admissible values for both
kinds of parameters are bounded. Now, denote with ϕ′ the resulting formula after these
assignments, construct the Büchi L/U automatonAϕ′ as in Theorem 2 and then check
Γ (Aϕ′) for emptiness.

Parametric Metric Interval Temporal Logic 257

Since x ∈ L and y ∈ U , by Lemma 1 we get that S(ϕ) is empty iff S(ϕ′) is empty.
Thus, by Theorems 1 and 2, and since the number of subformulas of ϕ′ is at most that
of ϕ, we get that the above algorithm correctly checks S(ϕ) for emptiness and takes
exponential space.

To show membership to EXPSPACE of the universality problem for S(ϕ) we can
reason analogously, we only need to switch the role of the parameters in L and U in
the first step of the algorithm. Membership to EXPSPACE of deciding emptiness and
universality of S(ϕ,A) can be shown with similar arguments, we just need to change
the last step of the above algorithm to check the desired property of the set Γ for the
intersection of A and Aϕ′ , and not just forAϕ′ . ��

4 Computational Complexity in Fragments of PMITL

In this section, we address the complexity of the parameterized operators in PMITL,
and thus of the corresponding logic fragments. Since MITL is already EXPSPACE-hard,
we focus only on fragments of PMITL0,∞. We start with some more hardness results
and then show PSPACE membership for some decision problems in the considered
fragments.

Lemma 4. Let ϕ be a PMITL0,∞ formula and A be an L/U automaton.
If we restrict to formulas ϕ where all the parameterized operators are of the form
♦(c,d+x), then deciding the universality of S(ϕ) and S(A, ϕ) is EXPSPACE-hard.

If we restrict to formulas ϕ where all the parameterized operators are of the form
�(c,d+x), then deciding the emptiness of S(ϕ) and S(A, ϕ) is EXPSPACE-hard.

If all the parameterized operators of ϕ are either of the form �(c+x,d) or of the
form ♦(c+x,d), then deciding the emptiness and the universality of S(ϕ) and S(A, ϕ) is
EXPSPACE-hard.

Proof. We briefly sketch the proofs for S(ϕ). The proofs for S(A, ϕ) can be obtained
reducing the corresponding results for S(ϕ), similarly to what is done for reducing
satisfiability to model checking in temporal logics (see [11]).

We start showing EXPSPACE-hardness of the universality of S(ϕ) when only param-
eterized operators of the form ♦(c,d+x) are allowed. We reduce the satisfiability problem
of the fragment of MITL where, except for the operator ♦, one of the end-points of the
intervals used as subscripts in the formulas is either 0 or∞. Take any such formula ϕ,
fix a parameter x ∈ U and rewrite ϕ to a formula ϕ′ where each operator of the form
♦(c,d) is rewritten to ♦(c,d+x) and any other part of the formula stays unchanged. We
claim that ϕ is satisfiable if and only if S(ϕ′) is universal. To see this first observe that
all the parameter valuations are admissible, and therefore, “S(ϕ′) is universal” means
that S(ϕ′) = N. Thus, if S(ϕ′) is universal then 0 ∈ S(ϕ′), and hence ϕ is satisfiable.
Vice-versa, if ϕ is satisfiable then by Lemma 1, we get that S(ϕ′) is universal. There-
fore, since the satisfiability for the considered fragment of MITL is EXPSPACE-hard,
we get EXPSPACE-hardness for checking the universality of S(ϕ).

To show EXPSPACE-hardness of the emptiness problem of S(ϕ) when only parame-
terized operators of the form �(c,d+x) are allowed, we reason similarly. We reduce now
the satisfiability problem of the fragment of MITL where, except for the operator �,

258 B. Di Giampaolo, S. La Torre, and M. Napoli

one of the end-points of the intervals used as subscripts in the formulas is either 0 or
∞. For any such formula ϕ, we fix a parameter y ∈ L and rewrite ϕ to a formula ϕ′

where each operator of the form �(c,d) is rewritten to �(c,d+y) and any other part of the
formula stays unchanged. Thus, if ϕ is satisfiable then trivially S(ϕ′) is not empty (it
contains at least 0). Vice-versa, if S(ϕ′) is not empty, then by Lemma 1, 0 must belong
to S(ϕ′) and therefore ϕ is satisfiable. Therefore, the claimed result follows from the
fact that satisfiability for the considered fragment of MITL is EXPSPACE-hard.

For the fragments of PMITL0,∞ where the only parameterized temporal operator are
either of the form �(c+x,d) or of the form ♦(c+x,d), the proofs can be obtained similarly,
and thus we omit further details. ��
From the above lemma and Theorem 3, the following theorem holds.

Theorem 4. Given a PMITL0,∞ formula ϕ and an L/U automaton A, checking the
emptiness and the universality of each of the sets S(ϕ), and S(A, ϕ) is EXPSPACE-
complete.

The results from Lemma 4 leave open the computational complexity for some of the
considered decision problems.

Denote with PMITL♦ the fragment of PMITL0,∞ where the only parameterized ope-
rators are either of the form ♦(c,d+x) or one of the interval end-points is 0 or ∞, and
with PMITL♦ the fragment of PMITL0,∞ where the only parameterized operators are
either of the form �(c,d+x) or one of the interval end-points is 0 or∞. (Observe that
both fragments syntactically include P0,∞MITL0,∞.) In the rest of this section, we
show that for such fragments some of the considered decision problems are PSPACE-
complete. This is an interesting result, since they capture meaningful properties (see the
example from Section 2).

For a sequence α, we denote with Sα(ϕ) the set of parameter valuations v such
that the sequence α satisfies ϕ under valuation v. In the next lemma, without loss of
generality we assume that for each parametric interval (c, d + x), c ≤ d holds. In fact,
if c > d, we can substitute the interval with (c, c + x′) for a fresh parameter x′ such
that x′ = x+d− c. The results which are obtained on the resulting formula can thus be
translated back to the original formula by reversing the linear transformation. The next
lemma is the crucial result in our reduction.

Lemma 5. Let I = (c, d+ x) where c > 0 and x is a parameter. The following holds:

(a) For a PMITL♦ formula ϕ = ♦I ψ, define ϕ′ = �]0,c] ♦I−c ψ. Then, Sα(ϕ′) ⊆
Sα(ϕ), and Sα(ϕ) = ∅ ⇐⇒ Sα(ϕ′) = ∅.

(b) For a PMITL� formula ϕ = �I ψ, define ϕ′ = ♦]0,c] �I−c ψ. Then, Sα(ϕ) ⊆
Sα(ϕ′). Moreover, if (α, v) |= ϕ′ and v(x) > c, then (α, v′) |= ϕ where v′(x) =
v(x) − c and v′(y) = v(y) for each y
= x.

Given a formula ϕ of PMITL♦, by iteratively applying the transformation given in part
(a) of the above lemma, from the innermost subformulas of the form ♦I ψ out, we obtain
a formula ϕ′ of P0,∞MITL0,∞ such that S(ϕ) = ∅ iff S(ϕ′) = ∅. Since emptiness
of S(ϕ′) can be decided in polynomial space ([5]) and size of ϕ′ is O(|ϕ|), we get
that checking emptiness of S(ϕ) is in PSPACE. We can repeat the same arguments

Parametric Metric Interval Temporal Logic 259

for showing PSPACE-membership for checking the emptiness of S(A, ϕ) for a given
PTA A. Similarly, we use part (b) of the above lemma to show PSPACE-membership
of checking the universality of S(ϕ) and S(A, ϕ) in PMITL�. Therefore, we have the
following theorem.

Theorem 5. Given a formula ϕ in PMITL♦, and an L/U automatonA, then checking
the emptiness of the sets S(ϕ) and S(A, ϕ) is PSPACE-complete.

Given a formula ϕ in PMITL�, and an L/U automatonA, then checking the univer-
sality of the sets S(ϕ) and S(A, ϕ) is PSPACE-complete.

5 Parameterization of Time Intervals

The need for restricting the use of each parameter with temporal operators of the same
polarity has been already addressed in [2,13,5] for parametric temporal logics and para-
metric timed automata. The argument used there also apply to PMITL and therefore
we omit further discussion on this aspect. In this section, we relax the restriction that
at most one of the end-points of an interval is a parametric expression. We define three
natural ways of adding parameters to both the end-points of the intervals. Unfortunately,
none of the proposed parameterizations leads to a decidable logic.

For simplicity, in this section we consider only the satisfiability problem, that is the
problem of checking the emptiness of the set S(ϕ).

In the first parameterization we consider, parameterized time-shifts of intervals.
More precisely, with L1 we denote the logic obtained by augmenting MITL with pa-
rameterized intervals of the form (c+x, d+x), such that (c, d) is not singular. Observe,
that operators with this kind of intervals do not have polarity.

Theorem 6. The problem of checking the emptiness of S(ϕ) for any ϕ in L1 is unde-
cidable. In particular, this holds already for the fragment of L1 with a single parameter
x and where all parametric intervals are of the form (x, x+ 1).

Proof’s sketch. The idea of the proof is to reduce the membership problem for Turing
machines by encoding computations such that all configurations are encoded with the
same number of cells and each cell is encoded in an open interval of width 1. Parameter
x is used to guess the length of the configurations and thus relate the content of a cell
in the current configuration with its content in the next configuration. The other aspects
of this reduction are quite standard, and therefore, we omit further details. ��
Consider now an extension of PMITL with parameterized intervals where both left end-
points and right end-points are in E(L)∪E(U). More precisely, given x ∈ U and y ∈ L,
we consider fully parameterized intervals which can be of the form (c+y, d+x), when
used as subscripts of until operators, and of the form (c + x, d + y), when used as
subscripts of release operators. We denote this logic L2.

Theorem 7. The problem of checking the emptiness of S(ϕ) for any ϕ in L2 is
undecidable.

Proof. Consider the formula ϕ = ♦[y,x+1] ψ ∧ �[x+1,y+2]true. For an admissible pa-
rameter valuation v, it holds that v(y) < v(x) + 1 and v(x) + 1 < v(y) + 2 from
which we obtain that v(x) = v(y). Thus, ϕ is equivalent to the formula ♦[z,z+1] ψ of
L1. Therefore, the theorem follows from Theorem 6. ��

260 B. Di Giampaolo, S. La Torre, and M. Napoli

Another way of obtaining fully parametrization of the intervals is to use a parameter
for translating the interval in time and the other to adjust the width of the interval. Let
L3 denote the corresponding logic. We can show that this logic is also undecidable by
using the following reduction. Given an interval (c + y, d′ + y + x), we obtain the
interval (c+ y′, d+ x′) by the linear transformation: y′ = y, x′ = c+ 1 + x+ y′ − d,
and d′ = c+ 1. Thus, from Theorem 7 we get:

Theorem 8. The problem of checking the emptiness of S(ϕ) for any ϕ in L3 is
undecidable.

References

1. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (1993)

2. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for “model mea-
suring”. ACM Trans. Comput. Log. 2(3), 388–407 (2001)

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1),
116–146 (1996)

4. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC, pp. 592–
601 (1993)

5. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric timed au-
tomata. Formal Methods in System Design 35(2), 121–151 (2009)

6. Bruyère, V., Dall’Olio, E., Raskin, J.F.: Durations and parametric model-checking in timed
automata. ACM Trans. Comput. Log. 9(2) (2008)

7. Bruyère, V., Raskin, J.F.: Real-time model-checking: Parameters everywhere. Logical Meth-
ods in Computer Science 3(1) (2007)

8. Campos, S.V.A., Clarke, E.M., Grumberg, O.: Selective quantitative analysis and interval
model checking: Verifying different facets of a system. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 257–268. Springer, Heidelberg (1996)

9. Chevallier, R., Encrenaz-Tiphène, E., Fribourg, L., Xu, W.: Timed verification of the generic
architecture of a memory circuit using parametric timed automata. Formal Methods in Sys-
tem Design 34(1), 59–81 (2009)

10. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time
systems. Formal Methods in System Design 1(4), 385–415 (1992)

11. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science.
Formal Models and Sematics (B), vol. B, pp. 995–1072 (1990)

12. Emerson, E.A., Trefler, R.J.: Parametric quantitative temporal reasoning. LICS, 336–343
(1999)

13. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of
timed automata. J. Log. Algebr. Program. 52-53, 183–220 (2002)

14. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal Methods in
System Design 34(2), 83–103 (2009)

15. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE, Los Alamitos (1977)
16. Wang, F.: Parametric timing analysis for real-time systems. Inf. Comput. 130(2), 131–150

(1996)

Short Witnesses and Accepting Lassos in
ω-Automata�

Rüdiger Ehlers

Reactive Systems Group,
Saarland University

ehlers@react.cs.uni-sb.de

Abstract. Emptiness checking of ω-automata is a fundamental part of
the automata-theoretic toolbox and is frequently applied in many appli-
cations, most notably verification of reactive systems. In this particular
application, the capability to extract accepted words or alternatively ac-
cepting runs in case of non-emptiness is particularly useful, as these have
a diagnostic value. However, non-optimised such words or runs can be-
come huge, limiting their usability in practice, thus solutions with a small
representation should be preferred. In this paper, we review the known
results on obtaining these and complete the complexity landscape for all
commonly used automaton types. We also prove upper and lower bounds
on the approximation hardness of these problems.

1 Introduction

In the last decades, model checking has emerged as an increasingly success-
ful approach to the verification of complex systems [20,1]. This development
is witnessed by the existence of a significant number of industrial-scale model
checkers and successful experiments on integrating the usage of model check-
ers into the development cycle of industrial products [12,17,22]. Compared to
deductive verification approaches, model checking has the advantage of being a
push-button technology: the designer of a system only has to state the desired
properties and (a model of) the system implementation, but the proof of cor-
rectness/incorrectness of the system is done automatically. In case of an error in
the implementation, the model checker usually constructs an example run of the
system in which this error occurs, which in turn is useful for the system designer
to correct the system. It has been observed that this makes model checking par-
ticularly useful in the early development stages of a complex system [17,13], as
the automatic generation of such counter-examples saves valuable time.

Finding good counter-examples in model checking is however a non-trivial
task as the question which of the often infinitely many counter-examples is most

� This work was supported by the German Research Foundation (DFG) within the
program “Performance Guarantees for Computer Systems” and the Transregional
Collaborative Research Center “Automatic Verification and Analysis of Complex
Systems” (SFB/TR 14 AVACS).

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 261–272, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

262 R. Ehlers

useful for the designer heavily depends on the particular problem instance [13,11].
Consequently, the length of a counter-example is the predominant quality metric
that researchers in this area have agreed on [9].

As an example, in the context of model checking finite state machines against
properties written in linear time temporal logic (LTL), the specification is usually
negated and transformed into an equivalent non-deterministic Büchi automaton.
Finding a witness for the non-satisfaction of the specification then amounts to
finding an accepting lasso in the product of the finite state machine and the
Büchi automaton. In this context, shorter lassos are preferred as they simplify
analysing the cause of the problem. Nowadays, efficient polynomial algorithms
for finding a shortest accepting lasso in such a setting exist [19,11], allowing
for the extraction of such shortest lassos. On the other hand, for systems that
obey some fairness constraints, the problem of finding short counter-examples
reduces to finding short accepting lassos in generalized Büchi automata. For this
case, it is known that finding a shortest accepting lasso is NP-complete [4].

Independently of these complexity considerations, it has been argued that for
debugging models, a shortest accepting lasso is not what the designer of a system
is usually interested in [16]. In fact, some input to the system of the form uvω

(for u and v being finite sequences) such that |u| + |v| is minimal is likely to
be more helpful for debugging as such a representation is independent of the
actual automaton-encoding of the violated property. For this modified setting,
Kupferman and Sheinfeld-Faragy proved that also for ordinary model checking
without fairness, finding shortest such counter-examples (called witnesses in this
case) is NP-complete, rendering the problem difficult.

From a more high-level view of these results, the existence of efficient al-
gorithms for some of the cases just discussed on the one hand and the NP-
completeness of the other cases leads to a natural question: where exactly is the
borderline that separates the hard problems from the simple ones for finding
short counter-examples in model checking? Furthermore, from a practical point
of view, another question naturally arises: what is the approximation hardness
of these problems? For example, while finding a shortest witness for the non-
satisfaction of a specification might be NP-hard, finding a 2-approximate shortest
witness might be doable in polynomial time. Obviously, such a result would have
practical consequences. Nevertheless, to the best of our knowledge, this question
has not been discussed in the literature yet.

In this paper, we give a thorough discussion of the complexity of finding short
non-emptiness certificates for various types of ω-automata, which answers the
question how hard obtaining short counter-examples in regular model checking
(which reduces to Büchi automaton emptiness) and model checking under fair-
ness (which reduces to generalized Büchi automaton emptiness) actually is. We
discuss both types of certificates mentioned above: short accepting lassos and
short witnesses. As finding short lassos and witnesses is also useful in other con-
texts in which automata-theoretic methods are applied, like synthesis of closed
systems [3] or deciding the validity of formulas in logics such as S1S [2], we give a
unified overview for all commonly used types of ω-automata, namely those with

Short Witnesses and Accepting Lassos in ω-Automata 263

safety, Büchi, co-Büchi, parity, Rabin, Streett, generalized Büchi and Muller
acceptance conditions. For all of these cases, we review the known complexity
results for the exact minimization of the size of accepting lassos or witnesses and
complete the complexity landscape for the cases not considered in the literature
so far. This results in the first complete exposition of the borderline between the
hard and simple problems in this context. We also examine the approximation
hardness of the NP-complete problems of this landscape, which, from a prac-
tical point of view, is an important question to raise as approximate solutions
often suffice for the good usability of a method in which finding short accepting
lassos or witnesses is a sub-step. The results we obtain for the approximabil-
ity of the problems considered are mostly negative: For example, we prove that
approximating the minimal witness size within any polynomial is NP-complete
even for the simple safety acceptance condition. We also give some positive re-
sults, e.g., a simple algorithm for approximating the minimal witness size within
any (fixed) exponential function that runs in time polynomial in the number
of states of some given ω-automaton. Table 1 contains a summary of the other
results contained in this paper.

The structure of our presentation is as follows: In the next section, we state
the preliminaries. Sections 3 and 4 contain the precise definitions of the problems
of finding shortest accepting lassos and witnesses and present hardness results
and algorithms for them. Section 5 concludes the findings and sketches the open
problems.

2 Preliminaries

An ω-automaton A = (Q,Σ, q0, δ,F) is a five-tuple consisting of some finite
state set Q, some finite alphabet Σ, some initial state q0 ∈ Q, some transition
function δ : Q × Σ → 2Q and some acceptance component F (to be defined
later). We say that an automaton is deterministic if for every q ∈ Q and x ∈ Σ,
|δ(q, x)| ≤ 1.

Given an infinite wordw = w1w2 . . . ∈ Σω and an ω-automatonA = (Q,Σ, q0,
δ,F), we say that some sequence π = π0π1 . . . is a run for w if π0 = q0 and for
all i ∈ {1, 2, . . .}, πi ∈ δ(πi−1, wi). We say that π is accepting if for inf(π) =
{q ∈ Q | ∃∞j ∈ IN : πj = q}, inf(π) is accepted by F . The acceptance of π by A
is defined with respect to the type of F , for which many have been proposed in
the literature [10].

– For a safety winning condition, all infinite runs are accepting. In this case,
the F -symbol can also be omitted from the automaton definition.

– For a Büchi acceptance condition F ⊆ Q, π is accepting if inf(π) ∩ F
= ∅.
– For a co-Büchi acceptance condition F ⊆ Q, π is accepting if inf(π)∩F = ∅.
– For a generalized Büchi acceptance condition F ⊆ 2Q, π is accepting if for

all F ∈ F , inf(π) ∩ F
= ∅.
– For a Rabin acceptance condition F ⊆ 2Q × 2Q, π is accepting if for F =
{(F1, G1), . . . , (Fn, Gn)}, there exists some 1 ≤ i ≤ n such that inf(π) ⊆ Fi

and inf(π) ∩Gi
= ∅.

264 R. Ehlers

– For a parity acceptance condition, F : Q→ IN and π is accepting in the case
that max{F(v) | v ∈ inf(π)} is even.

– For a Streett acceptance condition F ⊆ 2Q × 2Q, π is accepting if for F =
{(F1, G1), . . . , (Fn, Gn)} and for all 1 ≤ i ≤ n, we have inf(π) � Fi or
inf(π) ∩Gi = ∅.

– For a Muller acceptance condition F ⊆ 2Q, π is accepting if inf(π) ∈ F .

The language of A is defined as the set of words for which there exists a run that
is accepting with respect to the type of the acceptance condition. We also call
automata with a t-type acceptance condition t-automata (for t ∈ {safety, Büchi,
co-Büchi, generalized Büchi, parity, Rabin, Streett, Muller}). For all acceptance
condition types stated above, |F| is defined as the cardinality of F (for safety
automata we set |F| = 0).1 We define the size of A, written as |A| to be |Q|+
|Σ|+ |δ|+ |F| for |δ| = |{(q, q′, e) ∈ Q×Q×Σ | q′ ∈ δ(q, x)}|.

We say that an algorithm approximates the minimal lasso/witness within
some function f(n) if for every problem instance with a shortest accepting
lasso/witness having some size n ∈ IN, it always finds a solution of size not
more than f(n). An algorithm is said to approximate within a constant fac-
tor/within a polynomial if there exists some c ∈ IN/some polynomial function
p(n) such that it approximates within f(n) = c ·n/f(n) = p(n), respectively. For
the hardness and non-approximability results, we assume that P
=NP (otherwise
all problems discussed here are solvable in polynomial time).

An automaton A = (Q,Σ, q0, δ,F) can also be thought of as a graph 〈V,E〉
with vertices V = Q and edges E ⊆ V ×V such that for all v1, v2 ∈ V , (v1, v2) ∈
E if there exists some a ∈ Σ such that v2 ∈ δ(v1, a). A path in 〈V,E〉 going
from v to v′ is a sequence π = v1 . . . vn with v1 = v and vn = v′ such that for
all i ∈ {1, . . . , n}, vi ∈ V and for all i ∈ {1, . . . , n− 1}, (vi, vi+1) ∈ E. A strongly
connected subset of A is a set of states Q′ ⊆ Q such that there exist paths in
〈Q′, E|Q′〉 between all pairs of states in Q′.

For all acceptance condition types given above, the emptiness of the language
of an automaton (i.e., whether there exists no accepted word) can be decided in
time polynomial in the size of the automaton. For Rabin and Muller automata,
this follows from standard automata constructions (see, e.g., the folk theorems in
[18]). For Streett automata, this follows from the existence of efficient emptiness
checking constructions [14]. Likewise, checking if a word uvω is accepted by some
automaton A can also be performed in time polynomial in |uv| and |A| for all
of these acceptance condition types.

3 Finding Shortest Accepting Lassos

In this section, we deal with finding shortest accepting lassos in ω-regular au-
tomata. Given an ω-automaton A = (Q,Σ, q0, δ,F), we formally define lassos as
pairs (l, l′) such that:
1 As in this paper, we are only interested in the borderline between NP-complete

problems and those that are in P (assuming P
=NP), we can safely ignore the fact
that an explicit encoding of F might actually be slightly bigger.

Short Witnesses and Accepting Lassos in ω-Automata 265

– l = l0 . . . ln ∈ Qn for some n ∈ IN0
– l′ = l′0 . . . l

′
n′ ∈ Qn′

for some n′ ∈ IN>0
– l0 = q0, ln = l′0 = l′n′

– For all i ∈ {0, . . . , n− 1}, ∃x ∈ Σ such that δ(li, x) = li+1
– For all i ∈ {0, . . . , n′ − 1}, ∃x ∈ Σ such that δ(l′i, x) = l′i+1

The length of such a lasso is defined to be n+ n′. Given a lasso (l, l′), we call l′

the lasso cycle of (l, l′).

3.1 The Rabin Acceptance Condition and Its Special Cases

First of all, we consider safety, Büchi, co-Büchi, parity and Rabin acceptance
conditions and show that finding shortest accepting lassos for all of these ac-
ceptance condition types is doable in time (and thus, space) polynomial in the
input size. Note that conversions from safety, Büchi, co-Büchi or parity accep-
tance components to equivalent Rabin acceptance components can easily be done
with only polynomial blow-up (see, e.g., [7]).

For Büchi automata (and thus also safety automata as a special case), efficient
algorithms for finding shortest accepting lassos are known, requiring roughly
O(|Q||δ|) time (see [9,19,13] for entry points to the literature).

For the remaining cases, we show that finding shortest accepting lassos is
solvable in polynomial time for Rabin automata, leading to the same result also
for co-Büchi and parity automata. Without loss of generality, we can assume
that a Rabin automaton has only one acceptance pair, i.e., F = {(F,G)} for
some F,G ⊆ Q as a word is accepted by a Rabin automaton (Q,Σ, q0, δ,F)
if and only if there exists an acceptance pair (F,G) ∈ F such that A′ =
(Q,Σ, q0, δ, {(F,G)}) accepts the word. Therefore, by iterating over all elements
in F and taking the shortest lasso found, we can extend a polynomial algo-
rithm for a single acceptance pair to a polynomial algorithm for general Rabin
automata.

Note that for a lasso (l, l′) with l′ = l′0 . . . l
′
n′ to be accepting for (Q,Σ, q0, δ,

{(F,G)}), we must have {q ∈ Q | ∃i : l′i = q}\F = ∅. So, states in Q\F may not
occur on the cycle-part of the lasso. For each state q ∈ F , we can apply one of
the basic shortest-lasso algorithms for Büchi automata on (F,Σ, q, δ|F , G) and
compute a shortest accepting lasso in it. Let the lasso length for each starting
state q ∈ F be called c(q).

For actually obtaining a shortest accepting lasso over (Q,Σ, q0, δ, {(F,G)}),
we can apply a standard shortest-path algorithm by interpreting A as a graph,
adding a goal vertex to it, adding edges from each state q ∈ Q where c(q) is
defined to this goal vertex with cost c(q), and taking q0 as the starting vertex.
The remaining transitions have cost 1. By taking the shortest path up to the
point where an added edge is taken and then replacing it by the corresponding
lasso computed in the previous step, we easily obtain a shortest accepting lasso
for (Q,Σ, q0, δ, {(F,G)}).

The overall complexity of this procedure is clearly polynomial in |A|.

266 R. Ehlers

3.2 Generalized Büchi and Streett Automata

Rabin automata and their special cases have a certain property: On every shor-
test accepting lasso, no state can occur twice. This property does not hold for
generalized Büchi and Streett acceptance conditions. Intuitively, this can make
finding short accepting lassos significantly harder as the corresponding search
space is larger. Indeed, the length of a shortest accepting lasso cannot be ap-
proximated within any constant in polynomial time if P
=NP. We prove this
fact by reducing the Ek-Vertex-Cover problem [15] onto finding short accepting
lassos.

Problem 1. A k-uniform hypergraph is a 2-tuple G = 〈V,E〉 such that V is a
finite set and E ⊆ 2Q such that all elements in E are of cardinality k. Given
a k-uniform hypergraph H = 〈V,E〉, the Ek-Vertex-Cover problem is to find a
subset V ′ ⊆ V of minimal cardinality such that for all e ∈ E: e ∩ V ′
= ∅. It
has been proven that approximating the minimal size of such a subset within a
factor of (k − 1− ε) for some ε > 0 is NP-hard [5].

Consider a k-uniform hypergraph G = 〈V,E〉 for some arbitrary k ∈ IN. We
can easily reduce the problem of finding a small Ek-Vertex-Cover to finding
short accepting lassos in a generalized Büchi automaton over a one-element
alphabet Σ = {·}. We define A = (Q,Σ, q0, δ,F) with Q = V , δ(q, ·) = Q
for all q ∈ Q (so we have a complete graph) and F = E. Furthermore q0 is
set to some arbitrary element of Q. Given some vertex cover V ′ ⊆ V , it is
clear from the definition of A that for V ′ = {v1, . . . , vm}, the lasso (l, l′) with
l = q0v1 and l′ = v1v2 . . . vmv1 is accepting. On the other hand, an accepting
lasso (l, l′) with l = q0v1 and l′ = v1v2 . . . vmv1 induces a vertex cover V ′ ⊆ V
with V ′ = {v1, . . . , vm}. Therefore, this reduction preserves the quality of the
solutions up to a possible deviation of 1 (for the initial state of the lasso).

As the Ek-Vertex-Cover problem is reducible to finding short lassos (up to a
deviation of 1) and is NP-hard to approximate within a factor of (k − 1− ε) for
all k ∈ IN and ε > 0, we obtain the following result:

Theorem 2. Approximating the length of a shortest accepting lasso in general-
ized Büchi automata is NP-hard within any constant factor.

As generalized Büchi automata have a simple translation to Streett automata,
the same result holds for Streett automata as well. Note that these problems are
also in NP as verifying the validity of an accepting lasso is simple and the length
of a shortest accepting lasso in A = (Q,Σ, q0, δ,F) is bounded by |Q|2.

Thus, NP-completeness of these problems follows. Note that this line of rea-
soning also holds for the Muller acceptance condition to be discussed next.

3.3 Muller Automata

For finding short accepting lassos in Muller automata, we can use the same
scheme as for Rabin automata: Given a Muller automaton A = (Q,Σ, q0, δ,F)
with F = {F1, . . . , Fm}, we can search for short accepting lassos in each of the

Short Witnesses and Accepting Lassos in ω-Automata 267

automata (Q,Σ, q0, δ, F1), . . ., (Q,Σ, q0, δ, Fm) and take the shortest accepting
lasso we find in these automata as a shortest lasso for A. Thus, assuming that
we have a f(n)-approximation algorithm for a Muller automaton with a single
acceptance set running in polynomial time, this immediately gives rise to a
polynomial f(n)-approximation algorithm for general Muller automata.

For a lasso (l, l′) to be accepting for some Muller acceptance set F , all states
in F must occur in l′. As we can furthermore assume that the states in F ⊆ Q
form a strongly connected subset in Q (as otherwise F cannot be precisely the
set of states occurring infinitely often on a run), the problem of finding a short
accepting lasso is related to the asymmetric metric travelling salesman problem
(AMTSP), as we explain in the remainder of this section.

Problem 3. Given a set of cities C with |C| = n and a distance function d : C ×
C → IN0 such that d(c, c) = 0 for all c ∈ C and for every c1, c2, c3 ∈ C, d(c1, c2)+
d(c2, c3) ≤ d(c1, c3), the AMTSP-problem is to find a cycle c0, . . . , cn−1 such that
the cost of the cycle (i.e.,

∑n−1
i=0 d(ci, c(i+1)mod n)) is as small as possible.

It has been proven that in a special case of the AMTSP problem in which the
distance between two cities is either 1 or 2, the cost of the cheapest cycle cannot
be approximated within a factor of 321

320 − ε for some ε > 0 in polynomial time,
unless P=NP [6]. A simple reduction shows that this is also the case for finding
shortest accepting lassos in Muller automata:

Theorem 4. Approximating the length of a shortest accepting lasso within a
factor of 321

320 − ε for some ε > 0 in a Muller automaton is NP-hard.

Proof. Given a AMTSP-Problem 〈C, d〉 in which the distance between two dif-
ferent cities is always 1 or 2, we reduce finding the length of a shortest cycle to
finding the shortest accepting lasso in a Muller automaton A = (Q,Σ, q0, δ,F)
over Σ = {·} with F = {F1, F2} by defining Q = C ({Γ}, δ(c, ·) = {c′ ∈ C |
d(c, c′) = 1} ∪ {Γ} (for all c ∈ C), δ(Γ, ·) = C, F1 = C, F2 = Q and set q0 = c
for some arbitrary c ∈ C.

For every cycle of length j for some j ∈ IN, there exists an accepting lasso of
the same length starting with q0. Whenever an edge with cost 2 is taken, the
lasso is routed through Γ , the other edges can be taken directly.

On the other hand, each lasso cycle in A induces a cycle in 〈C, d〉 with a cost
equal to the length of the lasso by skipping over all visits to Γ . Without loss of
generality, we can assume that such an accepting lasso (l, l′) has l = q0.

As this way, the cost of the cycle and the lasso length coincide and approx-
imating the cost of a shortest cycle in 〈C, d〉 within 321

320 − ε is NP-complete for
all ε > 0, the claim follows.

Thus, also in the Muller automaton case, we cannot approximate the size of a
shortest accepting lasso arbitrarily well. However, the close connection between
the AMTSP problem and Muller automaton emptiness allows us to make use of
a positive approximation result for the AMTSP problem:

Theorem 5. Given a Muller automaton A = (Q,Σ, q0, δ,F) with F = {F1},
we can compute a lasso of length not more than �log2 |F1| times the length of
a shortest one in polynomial time.

268 R. Ehlers

Proof. The problem can be solved using a �log2 |n|-approximation algorithm
for the AMTSP problem [8]. We construct an AMTSP instance 〈C, d〉 by taking
C = F1 and for each pair of cities c1, c2 ∈ C with c1
= c2, we use a standard
shortest-path finding algorithm for computing d(c1, c2), i.e., the length of the
shortest path through the graph of A restricted to F1 from state c1 to c2. For
every computed value, we store the corresponding path for later retrieval. Then,
we apply the approximation algorithm on 〈C, d〉 and obtain a tour of length
at most �log2 |F1| · m, where m is the length of the optimal tour. As we can
assume that F1 is a strongly connected subset in A, taking the tour and stitching
together the individual respective parts we stored in the previous step results in
a lasso cycle with a length equal to the cost of the tour. By finding a shortest
path in A from q0 to one of the states in F1 and adding this path as first part
of the lasso, we obtain a complete accepting lasso. The approximation quality of
the solution follows directly from the definition of 〈C, d〉 and the fact that the
first part of the lasso is indeed as short as possible as all elements in F1 have to
occur on the cycle.

4 Finding Shortest Witnesses

In this section, we consider finding shortest witnesses, i.e., given some ω-auto-
maton A = (Q,Σ, q0, δ,F), the task is to find a word uvω for u, v ∈ Σ∗ that is
accepted by A with |u|+ |v| being as small as possible. We show that approxi-
mating the length of a shortest such word within any polynomial is NP-complete
for all acceptance condition types considered in this paper, but we can approxi-
mate this length within any exponential function in polynomial time (for every
fixed alphabet Σ). We start with the hardness result.

Theorem 6. Given some polynomial function p, approximating the length of
a minimal witness in some safety-type ω-automaton A = (Q,Σ, q0, δ) within p
over a ternary alphabet Σ = {0, 1,#} is NP-hard.

Proof. The proof is based on a reduction from the satisfiability (SAT) problem,
which is known to be NP-hard (see, e.g., [21] for details).

We define a conjunctive normal form SAT-instance to consist of a set of
variables V = {v1, . . . , vm} and a set of clauses C = {c1, . . . , cn} (with ci :
V × {0, 1} → B for all 1 ≤ i ≤ n) which are formally functions such that
ci(vk, 1) = true if and only if vk is a literal in clause i and ci(vk, 0) = true if
¬vk is a literal in clause i (for all 1 ≤ k ≤ m, 1 ≤ i ≤ n).

We reduce the problem of determining whether there exists some valuation of
the variables that satisfies all clauses in C to finding some short witness in some
safety automaton A = (Q,Σ, q0, δ) over Σ = {0, 1,#} as follows:

– Q = {(i, j, k, b) ∈ IN3 × B | 1 ≤ i ≤ n, 1 ≤ j ≤ p(m), 1 ≤ k ≤ m+ 1, b⇒ k >
1} ∪ {⊥}

– q0 = (1, 1, 1, false)

Short Witnesses and Accepting Lassos in ω-Automata 269

0
1

0
1

0, 1

1
0

0, 1

#
. . .

. . .

. . .

. . .

0
1

1
0

0, 1

#
0
1

0
1

0, 1

1
0

0, 1

1
0

0
1

0, 1

0, 1

0, 1

#
. . .

. . .

. . .

. . .

1
0

0, 1

0, 1

#
1
0

0
1

0, 1

0, 1

0, 1

0, 1 1
0

0, 1

0
1

0, 1

#
. . .

. . .

. . .

. . .

0, 1 0
1

0, 1

#
0, 1 1

0

0, 1

0
1

0, 1

0, 1, #

#

#

#

p(m) repetitions

States
(1, ∗, ∗, false)

States
(1, ∗, ∗, true)

States
(2, ∗, ∗, ∗)

States
(∗, p(m), ∗, ∗)

States
(∗, 1, 1, ∗)

States
(∗, 1, m + 1, ∗)

State ⊥

Fig. 1. Example automaton constructed from the SAT-instance (v1∨v2∨¬v3)∧(¬v1∨
v2) ∧ (¬v2 ∨ v3) as described in the proof of Theorem 6. In this example, we have
m = 3 and n = 3 with V = {v1, v2, v3}. The labels next to the braces explain the
structure of the automaton generated (with ∗ denoting that the states corresponding
to any suitable value at this point in the tuple are contained in the state set).

– For all (i, j, k, b) ∈ Q, a ∈ {0, 1,#}, δ((i, j, k, b), a) is the union of:
• {(i, j, k + 1, b′) | k ≤ m, b′ = (b ∨ ci(vk, a))}
• {(i, j + 1, 1, false) | b = true, a = #, j ≤ p(m), k = m+ 1}
• {(i+ 1, 1, 1, false) | b = true, j = p(m), k = m+ 1, a = #, i ≤ n}
• {⊥} if b = true, j = p(m), k = m+ 1, a = #, b and i = n

– δ(⊥, a) = {⊥} for all a ∈ {0, 1,#}
Figure 1 gives an example of such an automaton for an example SAT-instance.

The key idea of this reduction is the following: The automaton built only ac-
cepts input words on which during the first p(m)(m+1)n input letters, precisely
every (m+ 1)th letter is a #. Furthermore, the letters in between represent val-
uations to the variables in the SAT instance. During the first p(m)(m+1) input
letters, it is checked that the solution given satisfies the first clause. Subsequent
parts of the input words are then checked against the next clause (and so on).
Now assume that a word uvω for which |u|+ |v| ≤ p(m)(m+1) holds is accepted
by the automaton. All parts in between two occurrences of # in the word repre-
sent variable valuations satisfying all clauses. On the other hand, if there exists
some valuation for the variables satisfying all clauses, then there exists a simple
word with |u| = 0 and |v| = m + 1 such that uvω is accepted. Therefore, by
using a p-approximation algorithm for finding the length of a shortest accepting
witness, we can check if there exists a valuation of V satisfying C.

This non-approximability result for finding (or even determining the minimal size
of) short witnesses is surprising. While finding short accepting lassos is doable

270 R. Ehlers

in polynomial time even for the more complex Rabin condition, approximating
the size of a shortest witness is NP-hard even for safety automata and thus
considerably harder. For the other acceptance condition types, the same result
holds as only the state ⊥ can be visited infinitely often on any accepting run.
It is trivial to build corresponding acceptance components for any of the other
acceptance condition types defined in this paper. The hardness proof given above
also holds for a binary alphabet with only a slight modification.

As in the case of finding short accepting lassos, the fact that the problem of
finding a shortest witness is actually contained in NP is easy to show: for all
automaton types considered, the problem of checking whether a word uvω is in
the language of the automaton is solvable in polynomial time. Furthermore, if
the language of the automaton is non-empty, then there exists some witness of
length not more than the square of the automaton’s number of states. By taking
together these facts, membership in NP trivially follows.

A natural question to ask at this point is which positive statements about
the approximability of this problem can be given. In this paper, we show the
following:

Theorem 7. Let c > 1 and Σ be some fixed finite alphabet. Given some ω-
automaton A = (Q,Σ, q0, δ,F) with any of the acceptance types considered in
this paper, computing a word uvω such that |u|+ |v| is not longer than cn for n
being the minimal witness length can be done in time polynomial in |A|.
Proof. Note that for all acceptance types considered in this paper, checking
whether a word uvω is accepted by A is possible in time polynomial in |u|+ |v|
and |A|.

Furthermore, for all acceptance condition types, emptiness checking and the
extraction of an accepting lasso of size no longer than |Q|2 can be performed
in polynomial time. Therefore, we can iterate over all words uvω such that
|uv| ≤ �logc |Q|2 (which are only polynomially many) and check for each of
them whether they are in the language of the automaton. A cn-approximation
algorithm can thus return the shortest such witness, if found. In all other cases,

Table 1. Summary of the approximability results on finding short accepting lassos and
witnesses for the acceptance condition types considered in this paper. In all cases, it
is assumed that P
=NP and only algorithms running in time polynomial in the size of
the input are considered.

Acceptance cond. type Shortest accepting lassos Shortest witnesses

Safety, Büchi, co-Büchi, pa-
rity, Rabin

solvable precisely in polynomial
time

not approximable
within any
polynomial,
approximable within
every exponential
function for a fixed
alphabet

Generalized Büchi, Streett not approximable within any
constant, approximable within
every exponential function for a
fixed alphabet

Muller not approximable within 321
320

−ε,
approximable within �log2 |Q|

Short Witnesses and Accepting Lassos in ω-Automata 271

the simple accepting lasso of size not more than |Q|2 can be converted to an
accepting word by copying the edge labels. The fact that exponentially shorter
words would have been found by the first step suffices for proving the approxi-
mation quality of this algorithm.

Taking the results obtained in this section together, we obtain a quite precise
characterisation of the approximation hardness of finding short witnesses in ω-
automata: Approximating the size within any polynomial is NP-complete, but
the problem is approximable within any exponential function in polynomial time
for every fixed alphabet.

As a final note, the exponential-quality approximation algorithm presented in
this section is also useful for finding short accepting lassos. Therefore, we obtain
the same upper bound on the approximation hardness of that problem.

5 Conclusion

In this paper, we have examined the problem of finding short accepting lassos and
witnesses for ω-automata of various acceptance condition types. We bounded the
borderline between NP-complete approximation problems and those in P from
both above and below (assuming that P
=NP) by giving NP-hardness proofs
for numerous variations of the problem along with polynomial approximation
algorithms of lower approximation quality. Table 1 summarises the details of the
findings.

Additionally, for the case of short accepting lassos for Muller automata, we
have established its connection to the travelling salesman problem by identifying
it as special case of the asymmetric metric TSP.

We considered the automata types currently employed in model checking ap-
plications as well as those that currently mainly serve as models in theoretical
works in order to fill the automata-theoretic toolbox for use cases which have
not been discovered yet.

At a first glance, the non-approximability results for Büchi and generalized
Büchi automata are discouraging: Assuming that P
=NP, the implementation of
methods for extracting approximate shortest witnesses (or approximate shortest
lassos in the case of fair systems) for the non-satisfaction of a specification in fu-
ture model checkers appears not to be a fruitful idea. However, it should be noted
that the identification of these problems as being hard helps preparing the field
for the development of suitable heuristics. Also, the hardness results obtained
may serve as justification for developing counter-example quality metrics which
also base on other objectives than only their size.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Proc.
1960 Int. Congr. for Logic, Methodology, and Philosophy of Science, pp. 1–11 (1962)

272 R. Ehlers

3. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1981)

4. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In: DAC, pp. 427–432
(1995)

5. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the
hardness of hypergraph vertex cover. SIAM J. Comput. 34(5), 1129–1146 (2005)

6. Engebretsen, L., Karpinski, M.: Approximation hardness of TSP with bounded
metrics. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 201–212. Springer, Heidelberg (2001)

7. Farwer, B.: ω-automata. In: [10], pp. 3–20
8. Frieze, A.M., Galbiati, G., Maffioli, F.: On the worst-case performance of some

algorithms for the asymmetric traveling salesman problem. Networks 12(1), 23–39
(1982)

9. Gastin, P., Moro, P.: Minimal counterexample generation for SPIN. In: Bošnački,
D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 24–38. Springer, Heidel-
berg (2007)

10. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)

11. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–135. Springer,
Heidelberg (2003)

12. Grumberg, O., Veith, H. (eds.): 25 Years of Model Checking - History, Achieve-
ments, Perspectives. LNCS, vol. 5000. Springer, Heidelberg (2008)

13. Hansen, H., Geldenhuys, J.: Cheap and small counterexamples. In: Cerone, A.,
Gruner, S. (eds.) SEFM, pp. 53–62. IEEE Computer Society, Los Alamitos (2008)

14. Henzinger, M.R., Telle, J.A.: Faster algorithms for the nonemptiness of Streett
automata and for communication protocol pruning. In: Karlsson, R.G., Lingas, A.
(eds.) SWAT, pp. 16–27. Springer, Heidelberg (1996)

15. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-ε. J.
Comput. Syst. Sci. 74(3), 335–349 (2008)

16. Kupferman, O., Sheinvald-Faragy, S.: Finding shortest witnesses to the nonempti-
ness of automata on infinite words. In: Baier, C., Hermanns, H. (eds.) CONCUR
2006. LNCS, vol. 4137, pp. 492–508. Springer, Heidelberg (2006)

17. Mitra, R.S.: Strategies for mainstream usage of formal verification. In: Fix, L. (ed.)
DAC, pp. 800–805. ACM, New York (2008)

18. Safra, S.: Complexity of Automata on Infinite Objects. PhD thesis, Weizmann
Institute of Science, Rehovot, Israel (March 1989)

19. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer,
Heidelberg (2005)

20. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Proceed-
ings of the VIII Banff Higher order workshop conference on Logics for concurrency:
structure versus automata, pp. 238–266. Springer, New York (1996)

21. Wegener, I.: Complexity Theory. In: Exploring the Limits of Efficient Algorithms.
Springer, Heidelberg (2004)

22. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal methods: Prac-
tice and experience. ACM Comput. Surv. 41(4) (2009)

Grammar-Based Compression
in a Streaming Model

Travis Gagie1,� and Pawe�l Gawrychowski2

1 Department of Computer Science,
University of Chile

travis.gagie@gmail.com
2 Institute of Computer Science,
University of Wroc�law, Poland

gawry1@gmail.com

Abstract. We show that, given a string s of length n, with constant
memory and logarithmic passes over a constant number of streams we
can build a context-free grammar that generates s and only s and whose
size is within an O

(
min

(
g log g,

√
n/ log n

))
-factor of the minimum g.

This stands in contrast to our previous result that, with polylogarithmic
memory and polylogarithmic passes over a single stream, we cannot build
such a grammar whose size is within any polynomial of g.

1 Introduction

In the past decade, the ever-increasing amount of data to be stored and ma-
nipulated has inspired intense interest in both grammar-based compression and
streaming algorithms, resulting in many practical algorithms and upper and
lower bounds for both problems. Nevertheless, there has been relatively little
study of grammar-based compression in a streaming model. In a previous pa-
per [13] we proved limits on the quality of the compression we can achieve with
polylogarithmic memory and polylogarithmic passes over a single stream. In this
paper we show how to achieve better compression with constant memory and
logarithmic passes over a constant number of streams.

For grammar-based compression of a string s of length n, we try to build a
small context-free grammar (CFG) that generates s and only s. This is useful not
only for compression but also for, e.g., indexing [10,23] and speeding up dynamic
programs [24]. (It is sometimes desirable for the CFG to be in Chomsky normal
form (CNF), in which case it is also known as a straight-line program.) We can
measure our success in terms of universality [18], empirical entropy [30] or the
ratio between the size of our CFG and the size g = Ω(logn) of the smallest
such grammar. In this paper we consider the third and last measure. Storer and
Szymanski [37] showed that determining the size of the smallest grammar is NP-
complete; Charikar et al. [8] showed it cannot be approximated to within a small
� Funded by the Millennium Institute for Cell Dynamics and Biotechnology (ICDB),

Grant ICM P05-001-F, Mideplan, Chile.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 273–284, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

274 T. Gagie and P. Gawrychowski

constant factor in polynomial time unless P =NP, and that even approximat-
ing it to within a factor of o(logn/ log log n) in polynomial time would require
progress on a well-studied algebraic problem. Charikar et al. and Rytter [31] in-
dependently gave O(log(n/g))-approximation algorithms, both based on turning
the LZ77 [38] parse of s into a CFG and both initially presented at conference
in 2002; Sakamoto [32] then proposed another O(log(n/g))-approximation algo-
rithm, based on Re-Pair [22]. Sakamoto, Kida and Shimozono [33] gave a linear-
time O((log g)(logn))-approximation algorithm that uses O(g log g) workspace,
again based on LZ77; together with Maruyama, they [34] recently modified their
algorithm to run in O(n log∗ n) time but achieve an O((log n)(log∗ n)) approxi-
mation ratio.

A few years before Charikar et al.’s and Rytter’s papers sparked a surge of
interest in grammar-based compression, a paper by Alon, Matias and Szegedy [2]
did the same for streaming algorithms. We refer the reader to Babcock et al. [4]
and Muthukrishnan [28] for a thorough introduction to streaming algorithms.
In this paper, however, we are most concerned with more powerful streaming
models than these authors consider, ones that allow the use of multiple streams.
A number of recent papers have considered such models, beginning with Grohe
and Schweikardt’s [16] definition of (r, s, t)-bounded Turing Machines, which
use at most r reversals over t “external-memory” tapes and a total of at most s
space on “internal-memory” tapes to which they have unrestricted access. While
Munro and Paterson [27] proved tight bounds for sorting with one tape three
decades ago, Grohe and Schweikardt proved the first tight bounds for sorting
with multiple tapes. Grohe, Hernich and Schweikardt [15] proved lower bounds in
this model for randomized algorithms with one-sided error, and Beame, Jayram
and Rudra [6] proved lower bounds for algorithms with two-sided error (re-
naming the model “read/write streams”). Beame and Huynh [5] revisited the
problem considered by Alon, Matias and Szegedy, i.e., approximating frequency
moments, and proved lower bounds for read/write stream algorithms. Hernich
and Schweikardt [17] related results for read/write stream algorithms to results
in classical complexity theory, including results by Chen and Yap [9] on reversal
complexity. Hernich and Schweikardt’s paper drew our attention to a theorem
by Chen and Yap implying that, if a problem can be solved deterministically
with read-only access to the input and logarithmic workspace then, in theory,
it can be solved with constant memory and logarithmic passes (in either direc-
tion) over a constant number of read/write streams. This theorem is the key
to our main result in this paper. Unfortunately, the constants involved in Chen
and Yap’s construction are enormous; we leave as future work finding a more
practical proof of our results.

The study of compression in something like a streaming model goes back at
least a decade, to work by Sheinwald, Lempel and Ziv [36] and De Agostino and
Storer [11]. As far as we know, however, our joint paper with Manzini [14] was the
first to give nearly tight bounds in a standard streaming model. In that paper we
proved nearly matching bounds on the compression achievable with a constant
amount of internal memory and one pass over the input, as well as upper and

Grammar-Based Compression in a Streaming Model 275

lower bounds for LZ77 with a sliding window whose size grows as a function of the
number of characters encoded. (Our upper bound for LZ77 used a theorem due
to Kosaraju and Manzini [20] about quasi-distinct parsings, a subject recently
revisited by Amir, Aumann, Levy and Roshko [3].) Shortly thereafter, Albert,
Mayordomo, Moser and Perifel [1] showed the compression achieved by LZ78 [39]
is incomparable to that achievable by pushdown transducers; Mayordomo and
Moser [26] then extended their result to show both kinds of compression are
incomparable with that achievable by online algorithms with polylogarithmic
memory. (A somewhat similar subject, recognition of the context-sensitive Dyck
languages in a streaming model, was recently broached by Magniez, Mathieu
and Nayak [25], who gave a one-pass algorithm with one-sided error that uses
polylogarithmic time per character and O(n1/2 logn

)
space.) In a recent paper

with Ferragina and Manzini [12] we demonstrated the practicality of streaming
algorithms for compression in external memory.

In a recent paper [13] we proved several lower bounds for compression al-
gorithms that use a single stream, all based on an automata-theoretic lemma:
suppose a machine implements a lossless compression algorithm using sequen-
tial accesses to a single tape that initially holds the input; then we can recon-
struct any substring given, for every pass, the machine’s configurations when
it reaches and leaves the part of the tape that initially holds that substring,
together with all the output it generates while over that part. (We note similar
arguments appear in computational complexity, where they are referred to as
“crossing sequences”, and in communication complexity.) It follows that, if a
streaming compression algorithm is restricted to using polylogarithmic memory
and polylogarithmic passes over one stream, then there are periodic strings with
polylogarithmic periods such that, even though the strings are very compressible
as, e.g., CFGs, the algorithm must encode them using a linear number of bits;
therefore, no such algorithm can approximate the smallest-grammar problem to
within any polynomial of the minimum size. Such arguments cannot prove lower
bounds for algorithms with multiple streams, however, and we left open the ques-
tion of whether extra streams allow us to achieve a polynomial approximation.
In this paper we use Chen and Yap’s result to confirm they do: we show how,
with logarithmic workspace, we can compute the LZ77 parse and turn that into a
CFG in CNF while increasing the size by a factor ofO

(
min

(
g log g,

√
n/ logn

))
— i.e., at most polynomially in g. It follows that we can achieve that approxima-
tion ratio while using constant memory and logarithmic passes over a constant
number of streams.

2 LZ77 in a Streaming Model

Our starting point is the same as that of Charikar et al., Rytter and Sakamoto,
Kida and Shimozono, but we pay even more attention to workspace than the last
set of authors. Specifically, we begin by considering the variant of LZ77 consid-
ered by Charikar et al. and Rytter, which does not allow self-referencing phrases
but still produces a parse whose size is at most as large as that of the smallest

276 T. Gagie and P. Gawrychowski

grammar. Each phrase in this parse is either a single character or a substring of
the prefix of s already parsed. For example, the parse of “how-much-wood-would-
a-woodchuck-chuck-if-a-woodchuck-could-chuck-wood?” is “h|o|w|-|m|u|c|h|-|w|o|
o|d|-wo|u|l|d-|a|-wood|ch|uc|k|-|chuck-|i|f|-a-woodchuck-c|ould-|chuck-|wood|?”.

Lemma 1 (Charikar et al., 2002; Rytter, 2002). The number of phrases
in the LZ77 parse is a lower bound on the size of the smallest grammar.

As an aside, we note that Lemma 1 and results from our previous paper [13]
together imply we cannot compute the LZ77 parse with one stream when the
product of the memory and passes is sublinear in n.

It is not difficult to show that this LZ77 parse — like the original — can be
computed with read-only access to the input and logarithmic workspace. Pseu-
docode for doing this appears as Algorithm 1. On the example above, this pseu-
docode produces “how-much-wood(9,3)ul(13,2)a(9,5)(7,2)(6,2)k-(27,6)if(20,14)
(16,5)(27,6)(10,4)?”.

Lemma 2. We can compute the LZ77 parse with logarithmic workspace.

Proof. The first phrase in the parse is the first letter in s; after outputting this,
we always keep a pointer t to the division between the prefix already parsed and
the suffix yet to be parsed. To compute each later phrase in turn, we check the
length of the longest common prefix of s[i..t − 1] and s[t..n], for 1 ≤ i < t; if
the longest match has length 0 or 1, we output s[t]; otherwise, we output the
value of the minimal i that maximizes the length of the longest common prefix,
together with that length. This takes a constant number of pointers into s and
a constant number of O(log n)-bit counters. ��
Combined with Chen and Yap’s theorem below, Lemma 2 implies that we can
compute the LZ77 parse with constant workspace and logarithmic passes over a
constant number of streams.

Theorem 1 (Chen and Yap, 1991). If a function can be computed with log-
arithmic workspace, then it can be computed with constant workspace and loga-
rithmic passes over a constant number of streams.

As an aside, we note that Chen and Yap’s theorem is actually much stronger than
what we state here: they proved that, if f(n) = Ω(logn) is reversal-computable
(see [9] or [17] for an explanation) and a problem can be solved deterministically
in f(n) time, then it can be solved with constant workspace and O(f(n)) passes
over a constant number of tapes. Chen and Yap showed how a reversal-bounded
Turing machine can simulate a space-bounded Turing machine by building a ta-
ble of the possible configurations of the space-bounded machine. Schweikardt [35]
pointed out that “this is of no practical use, since the resulting algorithm pro-
duces huge intermediate results, but it is of major theoretical interest” because
it implies that a number of lower bounds are tight. We leave as future work
finding a more practical proof our our results.

Grammar-Based Compression in a Streaming Model 277

t ← 1;
while t ≤ n do

max match ← 0;
max length ← 0;
for i ← 1 . . . t − 1 do

j ← 0;
while s[i + j] = s[t + j] do

j ← j + 1;

if j > max length then
max match ← i;
max length ← j;

if max length ≤ 1 then
print s[t];
t ← t + 1;

else
print (max match ,max length);
t ← t + max length;

Algorithm 1. Pseudocode for computing the LZ77 parse in logarithmic
workspace

In the next section we prove the following lemma, which is the most technical
part of this paper. By the size of a CFG, we mean the number of symbols on the
righthand sides of the productions; notice this is at most a logarithmic factor
less than the number of bits needed to express the CFG.

Lemma 3. With logarithmic workspace we can turn the LZ77 parse into a CFG
whose size is within a O

(
min

(
g log g,

√
n/ logn

))
-factor of minimum.

Together with Lemma 2 and Theorem 1, Lemma 3 immediately implies our main
result.

Theorem 2. With constant workspace and logarithmic passes over a constant
number of streams, we can build a CFG generating s and only s whose size is
within a O

(
min

(
g log g,

√
n/ logn

))
-factor of minimum.

3 Logspace CFG Construction

Unlike the LZ78 parse, the LZ77 parse cannot normally be viewed as a CFG,
because the substring to which a phrase matches may begin or end in the mid-
dle of a preceding phrase. We note this obstacle has been considered by other
authors in other circumstances, e.g., by Navarro and Raffinot [29] for pattern
matching. Fortunately, we can remove this obstacle in logarithmic workspace,
without increasing the number of phrases more than quadratically. To do this,
for each phrase for which we output (i, �), we ensure s[i] is the first character in

278 T. Gagie and P. Gawrychowski

a phrase and s[i + �] is the last character in a phrase (by breaking phrases in
two, if necessary). For example, the parse

“h|o|w|-|m|u|c|h|-|w|o|o|d|-wo|u|l|d-|a|-wood|ch|uc|k|-|chuck
-|i|f|-a-woodchuck-c|ould-|chuck-|wood|?”

becomes

“h|o|w|-|m|u|c|h|-|w|o|o|d|-w 1o|u|l|d 2-|a|-wood|c 3h|uc|k|-|c 3
4huck

-|i|f|2-a-woodchuck-c|1,4ould-|chuck-|wood|?”,

where the thick lines indicate new breaks and superscripts indicate which breaks
cause the new ones (which are subscripted). Notice the break “a-woodchuck-
c|1,4ould” causes both “w 1ould” (matching “ould”) and “a-woodchuck-c 3

4huck”
(matching “a-woodchuck-c”); in turn, the latter new break causes “woodc 3huck”
(matching “huck”), which is why it has a superscript 3.

Lemma 4. Breaking the phrases takes at most logarithmic workspace and at
most squares the number of phrases. Afterwards, every phrase is either a single
character or the concatenation of complete, consecutive, preceding phrases.

Proof. Since the phrases’ start points are the partial sums of their lengths, we
can compute them with logarithmic workspace; therefore, we can assume without
loss of generality that the start points are stored with the phrases. We start with
the rightmost phrase and work left. For each phrase’s endpoints, we compute
the corresponding position in the matching, preceding substring (notice that the
position corresponding to one phrase’s finish may not be the one corresponding to
the start of the next phrase to the right) and insert a new break there, if there is
not one already. If we have inserted a new break, then we iterate, computing the
position corresponding to the new break; eventually, we will reach a point where
there is already a break, so the iteration will stop. This process requires only a
constant number of pointers, so we can perform it with logarithmic workspace.
Also, since each phrase is broken at most twice for each of the phrases that
initially follow it in the parse, the final number of phrases is at most the square
of the initial number. By inspection, after the process is complete every phrase
is the concatenation of complete, consecutive, preceding phrases. ��
Notice that, after we break the phrases as described above, we can view the
parse as a CFG. For example, the parse for our running example corresponds to

X0 → X1 . . .X35
X1 → h

...
X13 → d

X14 → X9 X10
X15 → o

...
X31 → X19 . . .X27

...
X34 → X10 . . .X13
X35 → ?

where X0 is the starting nonterminal. Unfortunately, while the number of pro-
ductions is polynomial in the number of phrases in the LZ77 parse, it is not
clear the size is and, moreover, the grammar is not in CNF. Since all the right-
hand sides of the productions are either terminals or sequences of consecutive

Grammar-Based Compression in a Streaming Model 279

nonterminals, we could put the grammar into CNF by squaring the number of
nonterminals — giving us an approximation ratio cubic in g. This would still be
enough for us to prove our main result but, fortunately, such a large increase is
not necessary.

Lemma 5. Putting the CFG into CNF takes logarithmic workspace and in-
creases the number of productions by at most a logarithmic factor. Afterwards,
the size of the grammar is proportional to the number of productions.

Proof. We build a forest of complete binary trees whose leaves are the nontermi-
nals: if we consider the trees in order by size, the nonterminals appear in order
from the leftmost leaf of the first tree to the rightmost leaf of the last tree; each
tree is as large as possible, given the number of nonterminals remaining after
we build the trees to its left. Notice there are O(log g) such trees, of total size
at most O(g2). We then assign a new nonterminal to each internal node and
output a production which takes that nonterminal to its children. This takes
logarithmic workspace and increases the number of productions by a constant
factor.

Notice any sequence of consecutive nonterminals that spans at least two trees,
can be written as the concatenation of two consecutive sequences, one of which
ends with the rightmost leaf in one tree and the other of which starts with the
leftmost leaf in the next tree. Consider a sequence ending with the rightmost leaf
in a tree; dealing with one that starts with a leftmost leaf is symmetric. If the
sequence completely contains that tree, we can write a binary production that
splits the sequence into the prefix in the preceding trees, which is the expansion
of a new nonterminal, and the leaves in that tree, which are the expansion of
its root. We need do this O(log g) times before the remaining subsequence is
contained within a single tree. After that, we repeatedly produce new binary
productions that split the subsequence into prefixes, again the expansions of
new nonterminals, and suffixes, the expansions of roots of the largest possible
complete subtree. Since the size of the largest possible complete subtree shrinks
by a factor of two at each step (or, equivalently, the height of its root decreases
by 1), we need repeat O(log g) times. Again, this takes logarithmic workspace
(we will give more details in the full version of this paper).

In summary, we may replace each production with O(log g) new, binary pro-
ductions. Since the productions are binary, the number of symbols on the right-
hand sides is linear in the number of productions themselves. ��
Lemma 5 is our most detailed result, and the diagram below showing the con-
struction with our running example is also somewhat detailed. On the left
are modifications of the original productions, now made binary; in the mid-
dle are productions for the internal nodes of the binary trees; and on the right
are productions breaking down the consecutive subsequences that appear on the
righthand sides of the productions in the left column, until the subsequences are
single, original nonterminals or nonterminals for nodes in the binary trees (i.e.,
those on the lefthand sides of the productions in the middle column).

280 T. Gagie and P. Gawrychowski

X0 → X1,32 X33,35
X1 → h

...
X13 → d
X14 → X9 X10
X15 → o

...
X31 → X19,24 X25,27

...
X34 → X10,12 X13
X35 → ?

X1,32 → X1,16 X17,32
X1,16 → X1,8 X9,16
X1,8 → X1,4 X5,8

...
X17,32 → X17,24 X18,32
X17,24 → X17,20 X21,24

...
X29,32 → X29,30 X31,32
X33,35 → X33,34 X35

X1,2 → X1 X2
...

X33,34 → X33 X34

X19,24 → X19,20 X21,24
X25,27 → X25,26 X27

...
X10,12 → X10 X11,12

Combined with Lemma 1, Lemmas 4 and 5 imply that with logarithmic workspace
we can build a CFG in CNF whose size is O(g2 log g

)
. We can use a similar ap-

proach with binary trees to build a CFG in CNF of size O(n) that generates s
and only s, still using logarithmic workspace. If we combine all non-terminals
that have the same expansion, which also takes logarithmic workspace, then this
becomes Kieffer, Yang, Nelson and Cosman’s [19] Bisection algorithm, which
gives an O

(√
n/ logn

)
-approximation [8]. By taking the smaller of these two

CFGs we achieve an O
(
min

(
g log g,

√
n/ logn

))
-approximation. Therefore, as

we claimed in Lemma 3, with logarithmic workspace we can turn the LZ77
parse into a CFG whose size is within a O

(
min

(
g log g,

√
n/ logn

))
-factor of

minimum.

4 Recent Work

We recently improved the bound on the approximation ratio in Lemma 3 from
O
(
min

(
g log g,

√
n/ logn

))
to O

(
min

(
g,
√
n/ logn

))
. The key observation is

that, by the definition of the LZ77 parse, the first occurrence of any substring
must touch or cross a break between phrases. Consider any phrase in the parse
obtained by applying Lemma 4 to the LZ77 parse. By the observation above, that
phrase can be written as the concatenation of some consecutive new phrases (all
contained within one old phrase and ending at that old phrase’s right end), some
consecutive old phrases, and some more consecutive new phrases (all contained
within one old phrase and starting at the old phrase’s left end). Since there
are O(g) old phrases, there are O(g2) sequences of consecutive old phrases;
since there are O(g2) new phrases, there are O(g2) sequences of consecutive
new phrases that are contained in one old phrase and either start at that old
phrase’s right end or end at that old phrase’s left end.

While working on the improvement above, we realized how to improve the
bound further, to O

(
min

(
g, 4

√
log n

))
. To do this, we choose a value b between

Grammar-Based Compression in a Streaming Model 281

2 and n and, for 0 ≤ i ≤ logb n, we associate a nonterminal to each of the b
blocks of *n/bi+ characters to the left and right of each break; we thus start
building the grammar with O(bg logb n) nonterminals. We then add O(bg logb n)
binary productions such that any sequence of nonterminals associated with a
consecutive sequence of blocks, can be derived from O(1) nonterminals. Notice
any substring is the concatenation of 0 or 1 partial blocks, some number of full
blocks to the left of a break, some number of blocks to the right of a break, and
0 or 1 more partial blocks. We now add more binary productions as follows: we
start with s (the only block of length

⌈
n/b0

⌉
= n); find the first break it touches

or crosses (in this case it is the start of s); consider s as the concatenation
of blocks of size

⌈
n/b1

⌉
(in this case only the rightmost block can be partial);

associate nonterminals to the partial blocks (if they exist); add O(1) productions
to take the symbol associated to s (in this case, the start symbol) to the sequence
of nonterminals associated with the smaller blocks in order from left to right; and
recurse on each of the smaller blocks. To guarantee each smaller block touches or
crosses a break, we work on the first occurrence in s of the substring contained in
that block. We stop recursing when the block size is 1, and addO(bg) productions
taking those blocks’ nonterminals to the appropriate characters.

Analysis shows that the number of productions we add during the recursion
is proportional to the number of blocks involved, either full or partial. Since
the number of distinct full blocks in any level of recursion is O(bg) and the
number of partial blocks is at most twice the number of blocks (full or partial)
in the previous level of recursion, the number of productions we add during the
recursion is O(2logb nbg

)
. Therefore, the grammar has size O(2logb nbg

)
; when

b = 2
√

log n, this is O
(
4
√

log ng
)
. The first of the two key observations that let us

build the grammar in logarithmic workspace, is that we can store the index of
a block (full or partial) with respect to the associated break, in O(√logn

)
bits;

therefore, we can store O(1) indices for each of the O(√logn
)

levels of recursion,
in a total of O(logn) bits. The second key observation is that, given the indices
of the block we are working on in each level of recursion, with respect to the
appropriate break, we can compute the start point and end point of the block
we are currently working on in the deepest level of recursion. We will give details
of these two improvements in the full version of this paper.

While working on this second improvement, we realized that we can use the
same ideas to build a compressed representation that allows efficient random
access. We refer the reader to the recent papers by Kreft and Navarro [21] and
Bille, Landau and Weimann [7] for background on this problem. Suppose that,
for each of the O

(
2
√

log ng
√

logn
)

full blocks described above, we store a pointer
to the first occurrence in s of the substring in that block, as well as a pointer to
the first break that first occurrence touches or crosses. Notice this takes a total
of O

(
2
√

log ng(logn)3/2
)

bits. Then, given a block’s index and an offset in that
block, in O(1) time we can compute a smaller block’s index and offset in that
smaller block, such that the characters in those two positions are equal; if the
larger block has size 1, in O(1) time we can return the character. Since s itself

282 T. Gagie and P. Gawrychowski

is a block, an offset in it is just a character’s position, and there are O(√logn
)

levels of recursion, it follows that we can access any character in O(√logn
)

time.
Further analysis shows that it takes O(√logn+ �

)
time to access a substring of

length �. Of course, for any positive constant ε, if we are willing to use O(nεg)
bits of space, then we can access any character in constant time. If we make the
data structure slightly larger and more complicated — e.g., storing searchable
partial sums at the block boundaries — then, at least for strings over fairly small
alphabets, we can also support fast rank and select queries.

This implementation makes it easy to see the data structure’s relation to
LZ77 and grammar-based compression. We can use a simpler implementation,
however, and use LZ77 only in the analysis. Suppose that, for 0 ≤ i ≤ logb n, we
break s into consecutive blocks of length *n/bi+ (the last block may be shorter),
always starting from the first character of s. For each block, we store a pointer to
the first occurrence in s of that block’s substring. Given a block’s index and an
offset in that block, in O(1) time we can again compute a smaller block’s index
and offset in that smaller block, such that the characters in those two positions
are equal: the new block’s index is the sum of pointer and the old offset, divided
by the new block length and rounded down; the new offset is the sum of the
pointer and the old offset, modulo the new block length. We can discard any
block that cannot be visited during a query, so this data structure takes at most
a constant factor more space than the one described above. Indeed, this data
structure seems likely to be smaller in practice, because blocks of the same size
can overlap in the previous data structure but cannot in this one. We plan to
implement this data structure and report the results in a future paper.

References

1. Albert, P., Mayordomo, E., Moser, P., Perifel, S.: Pushdown compression. In: Pro-
ceedings of the Symposium on Theoretical Aspects of Computer Science, pp. 39–48
(2008)

2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences 58(1), 137–147
(1999)

3. Amir, A., Aumann, Y., Levy, A., Roshko, Y.: Quasi-distinct parsing and optimal
compression methods. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS,
vol. 5577, pp. 12–25. Springer, Heidelberg (2009)

4. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: Proceedings of the Symposium on Database Systems, pp.
1–16 (2002)

5. Beame, P., Huynh, T.: On the value of multiple read/write streams for approxi-
mating frequency moments. In: Proceedings of the Symposium on Foundations of
Computer Science, pp. 499–508 (2008)

6. Beame, P., Jayram, T.S., Rudra, A.: Lower bounds for randomized read/write
stream algorithms. In: Proceedings of the Symposium on Theory of Computing,
pp. 689–698 (2007)

7. Bille, P., Landau, G., Weimann, O.: Random access to grammar compressed strings
(2010), http://arxiv.org/abs/1001.1565

http://arxiv.org/abs/1001.1565

Grammar-Based Compression in a Streaming Model 283

8. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
shelat, a.1: The smallest grammar problem. IEEE Transactions on Information
Theory 51(7), 2554–2576 (2005)

9. Chen, J., Yap, C.-K.: Reversal complexity. SIAM Journal on Computing 20(4),
622–638 (1991)

10. Claude, F., Navarro, G.: Self-indexed text compression using straight-line pro-
grams. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp.
235–246. Springer, Heidelberg (2009)

11. De Agostino, S., Storer, J.A.: On-line versus off-line computation in dynamic text
compression. Information Processing Letters 59(3), 169–174 (1996)

12. Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression
in external memory. In: Proceedings of the Latin American Theoretical Informatics
Symposium (to appear, 2010)

13. Gagie, T.: On the value of multiple read/write streams for data compression. In:
Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 68–77. Springer,
Heidelberg (2009)

14. Gagie, T., Manzini, G.: Space-conscious compression. In: Kučera, L., Kučera, A.
(eds.) MFCS 2007. LNCS, vol. 4708, pp. 206–217. Springer, Heidelberg (2007)

15. Grohe, M., Hernich, A., Schweikardt, N.: Lower bounds for processing data with
few random accesses to external memory. Journal of the ACM 56(3), 1–58 (2009)

16. Grohe, M., Schweikardt, N.: Lower bounds for sorting with few random accesses
to external memory. In: Proceedings of the Symposium on Database Systems, pp.
238–249 (2005)

17. Hernich, A., Schweikardt, N.: Reversal complexity revisited. Theoretical Computer
Science 401(1-3), 191–205 (2008)

18. Kieffer, J.C., Yang, E.-H.: Grammar-based codes: A new class of universal lossless
source codes. IEEE Transactions on Information Theory 46(3), 737–754 (2000)

19. Kieffer, J.C., Yang, E.-H., Nelson, G.J., Cosman, P.C.: Universal lossless com-
pression via multilevel pattern matching. IEEE Transactions on Information The-
ory 46(4), 1227–1245 (2000)

20. Kosaraju, S.R., Manzini, G.: Compression of low entropy strings with Lempel-Ziv
algorithms. SIAM Journal on Computing 29(3), 893–911 (1999)

21. Kreft, S., Navarro, G.: LZ77-like compression with fast random access. In: Pro-
ceedings of the Data Compression Conference (to appear, 2010)

22. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. Proceedings of the
IEEE 88(11), 1722–1732 (2000)

23. Lifshits, Y.: Processing compressed texts: A tractability border. In: Proceedings of
the Symposium on Combinatorial Pattern Matching, pp. 228–240 (2007)

24. Lifshits, Y., Mozes, S., Weimann, O., Ziv-Ukelson, M.: Speeding up HMM decoding
and training by exploiting sequence repetitions. Algorithmica 54(3), 379–399 (2009)

25. Magniez, F., Mathieu, C., Nayak, A.: Recognizing well-parenthesized expressions
in the streaming model. Technical Report TR09-119, Electronic Colloquium on
Computational Complexity (2009)

26. Mayordomo, E., Moser, P.: Polylog space compression is incomparable with
Lempel-Ziv and pushdown compression. In: Proceedings of the Conference on Cur-
rent Trends in Theory and Practice of Informatics, pp. 633–644 (2009)

27. Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theoretical
Computer Science 12, 315–323 (1980)

1 abhi shelat is calling himself using lowercases, for more references see
http://www.cs.virginia.edu/~shelat/research/

http://www.cs.virginia.edu/~shelat/research/

284 T. Gagie and P. Gawrychowski

28. Muthukrishnan, S.: Data Streams: Algorithms and Applications. In: Foundations
and Trends in Theoretical Computer Science, vol. 1(2). Now Publishers (2005)

29. Navarro, G., Raffinot, M.: Practical and flexible pattern matching over Ziv-Lempel
compressed text. Journal of Discrete Algorithms 2(3), 347–371 (2004)

30. Navarro, G., Russo, L.M.S.: Re-pair achieves high-order entropy. In: Proceedings
of the Data Compression Conference, p. 537 (2008)

31. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoretical Computer Science 302(1-3), 211–222
(2003)

32. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based
compression. Journal of Discrete Algorithms 3(2-4), 416–430 (2005)

33. Sakamoto, H., Kida, T., Shimozono, S.: A space-saving linear-time algorithm for
grammar-based compression. In: Apostolico, A., Melucci, M. (eds.) SPIRE 2004.
LNCS, vol. 3246, pp. 218–229. Springer, Heidelberg (2004)

34. Sakamoto, H., Maruyama, S., Kida, T., Shimozono, S.: A space-saving approxi-
mation algorithm for grammar-based compression. IEICE Transactions 92-D(2),
158–165 (2009)

35. Schweikardt, N.: Machine models and lower bounds for query processing. In: Pro-
ceedings of the Symposium on Principles of Database Systems, pp. 41–52 (2007)

36. Sheinwald, D., Lempel, A., Ziv, J.: On encoding and decoding with two-way head
machines. Information and Computation 116(1), 128–133 (1995)

37. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. Journal
of the ACM 29(4), 928–951 (1982)

38. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23(3), 337–343 (1977)

39. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)

Simplifying Regular Expressions
A Quantitative Perspective

Hermann Gruber1 and Stefan Gulan2

1 Institut für Informatik, Universität Gießen,
Arndtstraße 2, D-35392 Gießen, Germany

hermann.gruber@informatik.uni-giessen.de
2 Fachbereich IV—Informatik, Universität Trier,

Campus II, D-54296 Trier, Germany
gulan@uni-trier.de

Abstract. We consider the efficient simplification of regular expressions and
suggest a quantitative comparison of heuristics for simplifying regular expres-
sions. To this end, we propose a new normal form for regular expressions, which
outperforms previous heuristics while still being computable in linear time. This
allows us to determine an exact bound for the relation between the two preva-
lent measures for regular expression - size: alphabetic width and reverse pol-
ish notation length. In addition, we show that every regular expression of al-
phabetic width n can be converted into a nondeterministic finite automaton with
ε-transitions of size at most 4 2

5
n+1, and prove this bound to be optimal. This an-

swers a question posed by Ilie and Yu, who had obtained lower and upper bounds
of 4n − 1 and 9n − 1

2
, respectively [15]. For reverse polish notation length as

input size measure, an optimal bound was recently determined by Gulan and Fer-
nau [14]. We prove that, under mild restrictions, their construction is also optimal
when taking alphabetic width as input size measure.

1 Introduction

It is well known that simplifying regular expressions is hard, since alone deciding
whether a given regular expression describes the set of all strings, is PSPACE - com-
plete [17]. As witnessed by a number of recent studies, e.g. [5,10,11,12,13], the descrip-
tional complexity of regular expressions is of great interest, and several heuristics for
simplifying regular expressions appear in the literature. These mostly deal with remov-
ing only the most obvious redundancies, such as iterated Kleene stars or superfluous
occurrences the empty word [15,4,8,9].

We take a quantitative viewpoint to compare such simplifications; namely, we com-
pare the total size of a regular expression (disregarding parentheses) to its alphabetic
width. The intuition behind this is as follows: Certain simplifications for regular ex-
pressions are of an ad-hoc nature, e.g. the rule r+ r = r cannot simplify a∗ +(a+ b)∗.
Also, there are rules that are difficult to apply, e.g. if L(r) ⊆ L(s), then r + s = s. But
there are also simplifications that do not fall in either category, such as the reduction
rules suggested in [15,4,8,9,16]. In this paper, we suggest a strong star normal form of
regular expressions, which is a variation of the star normal form defined in [4]. This

A.-H. Dediu, H. Fernau, and C. Martín-Vide (Eds.): LATA 2010, LNCS 6031, pp. 285–296, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

286 H. Gruber and S. Gulan

normal form achieves an optimal ratio when comparing expression size to alphabetic
width, and can be computed as efficiently as the original star normal form.

For converting regular expressions into small ε-NFAs, an optimal construction was
found recently in [14]. Here, optimal means that the algorithm attains the best possible
ratio of expression size to automaton size. Ilie and Yu [15] asked for the optimal quotient
if expression size is replaced with alphabetic width; they obtained an upper bound of
roughly 9. We resolve this open problem by showing that the quotient equals 4 2

5 . In
fact, we prove that the construction from [14] attains this bound if the input expression
is in strong star normal form. We move on to show that this still holds, under very mild
restrictions, also for expressions not in star normal form. Our results suggest that this
construction of ε-NFAs from regular expressions is optimal in a robust sense.

2 Basic Notions

LetΣ be a set of symbols, called letters. Regular expression overΣ, or just expressions,
are defined as follows: Every letter is an expression and if r1 and r2 are expressions, so
are (r1+r2), (r1 ·r2), (r1)? and (r1)∗. The language denoted by an expression r, written
L(r), is defined inductively: L(a) = {a}, L(r1 + r2) = L(r1) ∪ L(r2), L(r1 · r2) =
L(r1) · L(r2), L(r?1) = {ε} ∪ L(r1) and L(r∗1) = L(r1)∗. A language is called regular
if it is definable by an expression.

We deviate from the convention by omitting symbols denoting the empty set and the
empty word, while allowing for a special operator that adds the empty word to a lan-
guage. The disadvantages of our definition are minor—we cannot describe the degener-
ate languages ∅ and {ε}; on the plus side, our syntax prevents a priori the construction
of many kinds of unnatural and redundant expressions, such as ε · r or ∅∗.

There are two prevalent measures for the length of expressions: The alphabetic width
of r, denoted alph(r) is defined as the total number of occurrences of letters in r. The
second measure is the reverse polish notation length. To allow for comparison with
related works, e.g., [8,15], we define the (abbreviated) reverse polish notation length
of r as arpn(r) = |r|Σ + |r|+ + |r|· + |r|∗ + |r|?, and its unabbreviated rpn-length
as rpn(r) = arpn(r) + |r|?. This reflects the fact that replacing each subexpression
of the form s? with s + ε increases the overall length by 1 each time. The alphabetic
width of a regular language L is defined as the minimum alphabetic width among all
expressions denoting L, and is denoted alph(L). The notions rpn(L) and arpn(L) are
defined correspondingly.

Some notions from term rewriting are needed:Let S be a set, and let→ be a relation
on S. Let →∗ denote the transitive closure of →. Two elements b, c ∈ S are called
joinable, if some d ∈ S satisfies b→∗ d and c→ d. The relation→ is confluent, if for
all a, b, c ∈ S with a →∗ b and a →∗ c, the elements b and c are joinable. It is locally
confluent, if for all a, b, c ∈ S with a→ b and a→ c, the elements b and c are joinable.
The relation is terminating, if there is no infinite descending chain a1 → a2 → · · · .

It is easily proven that if → is confluent and terminating, then each element has
a unique normal form, see e.g. [2, Thm. 2.1.9]. Indeed for unique normal forms, we
only need to establish local confluence instead of confluence: Newman’s Lemma states
that if a terminating relation is locally confluent, then it is confluent ([18], see also
[2, Lem. 2.7.2]).

Simplifying Regular Expressions 287

3 Alphabetic Width versus Reverse Polish Notation Length

We adapt the star normal form of expressions, proposed by Brueggemann-Klein [4], to
our needs.

Definition 1. The operators ◦ and • are defined on expressions as follows: For the first
operator, let a◦ = a, for a ∈ Σ, (r + s)◦ = r◦ + s◦, r?◦ = r◦, r∗◦ = r◦, and

(rs)◦ =

{
rs, if ε /∈ L(rs)
r◦ + s◦ else

.

The second operator is given by: a• = a, for a ∈ Σ, (r+ s)• = r• + s•, (rs)• = r•s•,
r∗• = r•◦∗, and

r?• =

{
r• , if ε ∈ L(r)
r•? otherwise

.

The strong star normal form of an expression r is then defined as r•.

Observe that, e.g., the expression (∅+a)∗+ε·b+∅·c·(d+ε+ε) in unabbreviated syntax
is in star normal form, so the relative advantage of strong star normal form should be
obvious. The difference to star normal form merely consists in using abbreviated syntax
and in the addition of a rule for computing r?•. All the statements in the original work
[4, Thm. 3.1, Lem. 3.5, 3.6, 3.7] regarding ◦ and • carry over to our variation.

We compare rpn-length and alphabetic width of expressions in strong star normal
form. To this end, for an expression r in abbreviated syntax, define ω(r) = |r|? + |r|∗,
that is, ω counts the total number of occurrences of unary operators in r. The following
property is evident from the definition of • and ◦; a similar statement concerning rpn-
length is found in [4].

Lemma 1. Let r be an expression. Thenω(r•), ω(r◦) ≤ ω(r), andω(r∗◦) ≤ ω(r∗)−1.

Lemma 2. Let r be an expression, then ω(r•) ≤ alph(r•), if ε ∈ L(s), and ω(r•) ≤
alph(r•)− 1 otherwise.

Proof. By lexicographic induction on the pair (n, h), where n = alph r•, and h is the
height of the parse of r. The base case is (1, 1), i.e., r• ∈ Σ, for which the statement
clearly holds. Assume the claim is true for expressions of alphabetic width at most n−1
and for expressions of alphabetic width n and height at most k−1. The nontrivial cases
for the induction step are r = s? and r = s∗. In the first case, we have r• = s•, if
ε ∈ L(s). Applying the induction hypothesis to s• yields

alph(r•) = alph(s•) ≥ ω(s•) = ω(r•).

If ε /∈ L(s), then r• = s•?, where again the induction hypothesis applies for s. This
time, we obtain

alph(r•) = alph(s•) ≥ ω(s•) + 1 = ω(r•).

In case r = s∗, we need to distinguish by the structure of r. The easy cases are r = s?∗

and r = s∗∗: here, r• = s∗• and the claim holds by induction. If r = (s+t)∗, expansion
of the definition gives

r• = (s∗•◦ + t∗•◦)∗.

288 H. Gruber and S. Gulan

Since both s∗• and t∗• must have alphabetic width strictly less than n, and since both
describe the empty word, we apply the inductive hypothesis to obtain

alph(r•) = alph(s∗•) + alph(t∗•) ≥ ω(s∗•) + ω(t∗•).

Now ω(s∗•◦) ≤ ω(s∗•)−1, and similar for t∗•◦, we deduce that ω(r•) ≤ alph(r•)−2,
which completes the induction step for this case.

For the case where r = (st)∗, we have r• = (s•t•)◦∗ and the induction goes through
if at least one of s and t does not describe the empty word. If however ε ∈ L(s)∩L(t),
then it is easy to prove under this condition that r• = (s+ t)∗•, a case we already dealt
with a few lines above in this proof. ��
Theorem 1. Any regular languageL satisfies arpn(L) ≤ 3 alph(L)−1 and rpn(L) ≤
4 alph(L)− 1.

Proof. Let r be an expression, in abbreviated syntax, of minimum alphabetic width
denoting L. Then the parse tree of r• has alph(r) many leaves. Disregarding unary
operators, this is a binary tree with alph(r) − 1 internal vertices that correspond to
occurrences of binary operators in r. Since there are at most alph(r) many occurrences
of unary operators, we have arpn(r•) ≤ 3 alph(L) − 1 and rpn(r•) ≤ arpn(r•) +
ω(r•) ≤ 4 alph(L)− 1. ��
Thus size and alphabetic width can differ at most by a factor of 4 in unabbreviated
syntax. Previous bounds, which were based on other simplification paradigms, by Ilie
and Yu [15] and by Ellul et al. [8] only achieved factors of 6 and 7, respectively, in
place of 4. For abbreviated syntax, we will later show that the bound of the form 3n−1
is best possible. Also note that strong star normal form subsumes all of the previous
simplification heuristics from [4,8,15].

4 Constructing ε-NFAs from Regular Expressions, Revisited

We show that under mild restrictions, the construction given by Gulan and Fernau [14]
subsumes the conversion of the input expression into strong star normal form. This con-
struction is essentially a replacement system on digraphs, that are arc-labeled by regular
expressions or the symbol ε. Such objects are called extended finite automata (EFAs),
as they generalize (conventional) finite automata; consult Wood [20] for a proper intro-
duction. The replacements are called conversions; they come in two flavors:

– A transition labeled by a regular expression may be replaced wrt. the labels root.
These conversions, called expansions, are depicted in Fig. 1.

– A substructure defined by ε-transitions may be replaced by a smaller equivalent.
These conversions are also called eliminations, they are shown in Fig. 2.

Since ε-transitions are allowed in EFAs, we treat r? implicitly as r+ ε. We call the lhs
of i-expansion or i-elimination an i-anchor, and write E ⇒i E

′ if E′ is derived from
replacing an i-anchor inE with its according rhs. If the type of conversion is irrelevant,
we simply write E ⇒ E′, and denote a (possibly empty) series of conversions from

Simplifying Regular Expressions 289

sst t⇒•

(a) product

ss+t

t
⇒+

(b) sum

ε

s

s∗ ⇒∗2

(c) ∗2 : p+ >1, q− =1

ε

s

s∗ ⇒∗3

(d) ∗3 : p+ =1, q− >1

s

s∗ ⇒∗1

(e) ∗1 : p+ =1, q− =1; merge
p and q

εε

s

s∗ ⇒∗4

(f) ∗4 : p+ >1, q− >1; introduce a new state

Fig. 1. Expanding transitions (p, r, q) for nontrivial r. If r = s∗, the out-degree p+ of p and the
in-degree q− of q need to be considered.

ε
q

r1r1

rnrn

⇒Y [q]

(a) Y-elimination, re-
quires q− = 1

ε

ε

ε

ε
ε
ε

ε ε

q ⇒X[q]

(b) X-elimination, re-
quires q− = q+ = 2

ε

ε

ε

r1
r1 s1

s1

s2
s2

⇒

(c) O-elimination

Fig. 2. Eliminating substructures with ε-labeled transitions. Reverting all transitions in (a), and
demanding that q+ = 1 yields a further Y -rule.

E to E′ with E ⇒∗ E′. An expression r over Σ is identified with the trivial EFA
A0

r := ({q0, qf}, Σ, {(q0, r, qf)}, q0, qf). On input r, the construction is initialized
with A0

r, which is successively and exhaustively converted to an ε-NFA, denoted Ar.
We slightly restrict the applicability of conversions by two rules:

(R1) As long as any conversion other than⇒X is possible,X-elimination must not be
applied.

(R2) If two X-anchors share ε-transitions the one from which they are leaving is to be
eliminated.

Other than that, conversions may be applied in any order. Note that (R2) is sound: cyclic
elimination preference among X-anchors would imply the existence of an O-anchor,
which, due to (R1), would be eliminated first. The conversion process is split into a
sequence of conversions withoutX-eliminations, followed by one withX- eliminations
only. This is due to

Proposition 1. Let E ⇒X E′ respect (R1). Then E′ contains onlyX-anchors, if any.

Proof. Since E ⇒X E′ respects (R1), E contains only X-anchors. Neither com-
plex labels nor cycles, particularly no O-anchors, are introduced upon X-elimination.

290 H. Gruber and S. Gulan

AssumeE⇒X[q]E
′⇒Y [p]E

′′ is a valid conversion sequence, then p and q are adjacent
in E, since the Y -anchor in E′ results from the preceding X-elimination. Let (p, ε, q)
be the transition connecting p and q in E, then in E′, p+ = 2, hence p− = 1. But the
in-degree of p is not changed by this X-elimination, so p− = 1 in E, too. But then, E
contains an Y -anchor centered in p, contradicting the assumption that the conversion
respects (R1).

To designate the transition between the two phases, let Ak
r be the first EFA in the se-

quence A0
r ⇒ A1

r ⇒ · · · ⇒ Ar that allows for no conversion besides possibly X-
elimination; we denote this automatonXr. If X-elimination does not occur at all upon
full conversion, then Xr = Ar.

We show that the conversions other than X-elimination are locally confluent. To
this end, we write E1 ∼= E2, if E1 and E2 are joinable. Since no infinite conversion
sequences are possible, Newman’s Lemma implies that Xr is unique.

Theorem 2. The replacement-system consisting of⇒+, ⇒•, ⇒∗i, ⇒Y and⇒O is lo-
cally confluent on the class of EFAs.

Proof. We claim that E ⇒i E1 and E ⇒j E2 for i, j ∈ {+, •, ∗1, ∗2, ∗3, ∗4, Y, O},
implies E1 ∼= E2. This is trivial if the conversions occur in disjoint subautomata, so
assume the relevant anchors share at least a state. We assume that at least one of i, j
is Y or O, the remaining cases are discussed in [14, Lem. 6]. We distinguish by i:

– i = Y [p]: Let (o, ε, p) be the ε-transition to be removed, and assume ⇒j is an
expansion, then one of the labels rk as in Fig. 2(a) is a product, a sum or a starred
expression. If rk is a sum or a product, it is easy to see that the order of⇒i and⇒j

is interchangeable. We sketch the cases involving ∗-expansion in Fig. 3. The three
cases arising when both conversions are Y -eliminations, are illustrated in Fig. 4.

– i = O: O-elimination comes down to removing the ε-transitions forming a cycle,
followed by merging the cycle-states into a selected one among them, call this the
merge-state. If ⇒j is the expansion of t = (p, s, q), assume p lies on the cycle,
while q does not. Choose p as the merge-state, then t remains unaffected from
O-elimination, hence expansion introduces the same elements before and after O-
elimination. If q is part of the cycle but not p, or p = q, choose q as the merge-state.
If both p and q lie on the cycle and p
= q, the case of j = ∗4 is detailed in Fig. 5,
the remaining cases where j is an expansion are easily dealt with in the same way.
Next consider the case that⇒j is Y [q]-elimination, for some state q, and where q
is part of the ε-cycle relevant for O-elimination—the case where q is not on the
ε-cycle in question would be again easy. By definition of Y -elimination, we must
have q− = 1 (resp. q+ = 1 in the case of reverse Y -elimination), and there must
be exactly one ε-transition entering (resp. leaving) the state q. Since q− = 1 (resp.
q+ = 1), this transition is necessarily part of the ε-cycle in question. Hence, if O-
elimination is applied first, it subsumes Y -elimination; otherwise, Y -elimination
may be considered as the first merging step of O-elimination, followed by merging
a smaller cycle.

Finally, if⇒j also denotes O-elimination, there is at least one common state c
to both cycles, which we chose as the merge-state. Regardless of the order, both
cycles may be merged into c, thus yielding the same EFA. ��

Simplifying Regular Expressions 291

εε

εε

ε
o

o

o

o

p

p

q

q

n

n m

s∗

s∗
s

s

⇒Y [p]

⇒∗

⇒∗

=

(a) Degenerate case where p− = p+ = 1; the particular type of
∗-expansion is determined by o+ and q−

ε
ε

ε
ε

o

o

oo

p

p

q

q

n

n
s∗

s∗

s

s

s1

s1

s1

s1

sn

sn

sn

sn

⇒Y [p]

⇒Y [p]

⇒∗

⇒∗

(b) General case

Fig. 3. Local confluence of cases involving Y -elimination and ∗-expansion. The state denoted n
is either q or a newly introduced state, according to q−. Note that reverting all transitions in the
figures yields further valid cases.

ε
ε

o p

q

r1

rms1

sn

(a)

ε

ε

ε
o p

q

r1
rm

s1

sn

(b)

ε
p q

r1

rm

s1

sn

(c)

Fig. 4. Elimination-conflicts between overlapping Y -anchors centered in p and q. In (a) and (b),
the resulting EFA is invariant under the order of removal. In (c) only one anchor may be elimi-
nated, however, the resulting EFAs are isomorphic.

εε

ε
ε

ε
ε

ε

ε

ε

ε
ε

ε
ε

ε

r∗

r∗

r

r

r1

r1

r1

r1

r2

r2

r2

r2

s1

s1

s1

s1

s2

s2

s2

s2

⇒
O

⇒
O ⇒∗4

⇒∗4

Fig. 5. Conflict between cycle-elimination and expanding a transition connecting two distinct
states of the cycle

292 H. Gruber and S. Gulan

We omit proving that the conversion from Xr to Ar is also locally confluent, which is
due to restriction (R2). This implies that Ar is unique, too.

We add an almost trivial linear-time preprocessing step on the input expression,
called mild simplification: Every occurrence of s? in r, s.t. ε∈L(s) is replaced with s.
The expression such built from r is denoted simp(r), it can be computed in linear time
on the parse of r in a bottom-up manner. Without proof, we mention that computing the
strong star normal form subsumes mild simplification:

Lemma 3. Let r be a regular expression, then simp(r)• = simp(r•) = r•

On input r, we mildly simplify it first and then compute A0
simp(r). The size |A| of an

EFA A is defined as the number of its states and transitions combined. Mild simplifica-
tion is a reasonable first step in order to get smaller ε-NFAs:

Lemma 4. For any expression r, |Asimp(r)| ≤ |Ar|
Proof. Let E1 be an EFA with transition t=(p, s?, q), and let E2 be the EFA obtained
from E1 by replacing t with (p, s, q). Expanding t in E1 yields E′

1; the difference
between E′

1 and E2 is an additional transition (p, ε, q) in E′
1. Now p+ and q− are

bigger in E′
1 than in E2 — if s = t∗, expanding (p, s, q) in E′

1 introduces at least as
many elements in E2. On the other hand, removal of p or q in E′

1 may result from X-
or cycle-elimination, then however, Y - or cycle-elimination would be applicable in E2.
In short, convertingE′

1 does not yield an ε-NFA which is smaller than the one reached
by convertingE2. Since mildly simplifying an expression boils down to replacing some
occurrences of s? with s (in labels), the statement follows. ��
The remaining part of this section deals with invariant cases of the construction under ◦

and •. To this end, for a transition t = (p, r, q) let t◦ := (p, r◦, q) and t• := (p, r•, q).
Note that since the conversions are locally confluent when respecting (R1) and (R2),∼=
is an equivalence relation on the class of EFAs.

Lemma 5. Let E1 be an EFA with looping transition l = (q, r, q), and let E2 be the
EFA obtained from E1 by replacing l with l◦. Then E1∼=E2.

Proof. If r ∈ Σ then r = r◦, satisfying the claim. Let E1 and E2 be as above and
assume the claim is true for loops labeled s or t. Let r be

– s+ t: l is replaced by (q, s, q), (q, t, q), while l◦ is replaced by (q, s◦, q), (q, t◦, q).
By assumption, the pairs are interchangeable, hence so are l and l◦

– s?: l is replaced by loops (q, ε, q), (q, s, q), the first of which is an ε-cycle, hence
eliminated, while the second may by assumption be replaced with (q, s◦, q) =
(q, s?◦, q) = l◦.

– s∗: ∗4-expansion is applied, introducing an ε-cycle {(q, ε, q′), (q′, ε, q)} and a loop
(q′, s, q′). Eliminating the cycle identifies q and q′, yielding (q, s, q) which may by
assumption be replaced with (q, s◦, q) = l◦

– st: If ε /∈ L(st), then (st)◦ = st and nothing needs to be proven. So assume ε ∈
L(st), implying ε ∈ L(s) and ε ∈ L(t). Let E′

1 be the EFA after fully expanding
r, without intermediate elimination steps. The first expansion-step replaces tl with
{(q, s, q′), (q′, t, q)}— both q and q′ are still present in E′

1, where they lie on an

Simplifying Regular Expressions 293

ε-cycle. Consider cycle-elimination in ’slow-motion’: in a first step, only q and q′

are merged, resulting in a volatile intermediate which happens to be isomorphic to
the EFA constructed from fully expanding l◦ = (q, s◦ + t◦, q) in E2. A second step
merges the remaining states, which is equivalent to two cycle-eliminations. ��

A more general result can be established for mildly simplified expressions:

Lemma 6. Let A0
r ⇒∗ E1 for mildly simplified r. Let t = (p, r, q) be any transition in

E1, and let E2 be as E1 except that t is replaced with t•. Then E1∼=E2.

Proof. The statement is true for letters. Assume it is true for labels s and t, and let E1
and E2 be as above. Let r be

– s?: expansion replaces t with {(p, s, q), (p, ε, q)}, the first of which may by as-
sumption be replaced with (p, s•, q). Since r is mildly simplified, ε /∈L(s) therefore
r• = s?• = s•?; this implies that (p, r•, q) is expanded into (p, s•, q) and (p, ε, q)
as well.

– s∗: expanding t yields a looping transition l=(p′, s, p′), which may by assumption
be replaced with l• and by Lemma 5 with l•◦. Clearly, expanding t• =(q, s•◦∗, q′)
results in l•◦, too.

The remaining cases are straightforward. ��
Theorem 3. Let r be mildly simplified, then the ε-NFA constructed from r is isomor-
phic to the one constructed from its strong star normal form, that is, Ar

∼= Ar• .

Proof. Lemma 6 implies A0
r
∼= A0

r• . ��
Together with Lemma 3, this shows that the construction is invariant under taking strong
star normal form. Differently put, strong star normal form is implicitly computed upon
conversion of mildly simplified regular expressions.

5 Alphabetic Width and the Size of ε-NFAs

Let the size of an ε-NFA be its number of states plus its number of transitions. The
following question regarding the size of ε-NFAs was posed by Ilie and Yu.

Problem 1. Given a regular expression of alphabetic width n, what is the optimal bound
on the size of an equivalent ε-NFA in terms of n?

Ilie and Yu provide a bound of 9n− 1
2 ; they remark that this does not appear to be close

to optimal. The construction we discussed in the previous section was shown to give
following bound in terms of rpn-length on the size of the constructed ε-NFA:

Theorem 4 ([14]). Let r be a regular expression of unabbreviated rpn-length n. Then
the constructed ε-NFA Ar has size at most 22/15(n+1)+1. There are infinitely many
regular languages for which this bound is tight.

The original work does not consider abbreviated syntax for regular expressions. For-
tunately, subexpressions of the form r + ε do not contribute to the hardness of the
conversion problem. The following bound in terms of abbreviated rpn-length is slightly
stronger.

294 H. Gruber and S. Gulan

Theorem 5. Let r be an expression of abbreviated rpn-length n. Then the constructed
ε-NFAAr has size at most 22/15(n+1)+1. There are infinitely many regular languages
for which this bound is tight.

Proof. The analysis is the same as given in [14], except for obvious modifications to
the proof of [14, Thm. 10], which is the only place where we take the use of abbre-
viated syntax into account. The fact that this bound is tight for infinitely many regular
languages trivially carries over. ��

Together with Thms. 1 and 3, we obtain the following upper bound:

Theorem 6. Let r be a regular expression of alphabetic width n. If r is mildly simpli-
fied, then the constructed ε-NFAAr has size at most 4 2

5n+1. There are infinitely many
regular languages for which this bound is tight.

Proof. Let r be mildly simplified with alph(r) = n. Then Thm. 3 implies that Ar is
identical to Ar• and we know from Thm. 1 that arpn(r•) ≤ 3n− 1. Plugging this into
the statement of Thm. 5, it follows that the ε-NFAAr• , constructed from r•, has size at
most 22/15(3n− 1 + 1) + 1 = 4 2

5n+ 1.
Gulan and Fernau [14] also give an infinite family of regular expressions rn showing

that the bound 22/15(m − 1) + 1 on the size of an ε-NFA equivalent to a regular
expression of rpn-lengthm is optimal: For k ≥ 1, they define the regular expression

rk =
k∏

i=1

(a∗i + b∗i) · (c∗i + d∗i + e∗i)

of rpn-lengthm = 15k−1 and prove that every equivalent ε-NFA has size at least 22k+
1 = 22/15(m+ 1) + 1. Since the alphabetic width of rk is � = 5k, this shows that the
bound of 22k + 1 = 4 2

5� + 1 stated in the theorem is tight for infinitely many regular
languages. ��

The examples from the last proof can be used to prove that the bound from Thm. 1 is
tight in the abbreviated case:

Theorem 7. There is an infinite family Ln of regular languages such that alph(Ln) ≤
n, whereas arpn(Ln) ≥ 3n− 1.

Proof. Consider the language Ln described by the expression

rk =
k∏

i=1

(a∗i + b∗i)(c
∗
i + d∗i + e∗i).

For n = 5k and Ln = L(r5k), we have alph(Ln) = 5k = n. But the existence of an
expression of abbreviated rpn-length less than 3n − 1 = 15k − 1 would imply with
Theorem 5 that there exists an ε-NFA of size less than 22k + 1 accepting Ln, which
contradicts Thm. 4. ��

Simplifying Regular Expressions 295

6 Conclusion and Further Research

As equivalence of expressions is PSPACE-complete [17] and not finitely axiomati-
zable [1,7], a normal form that assigns a unique expression to each regular language,
might be difficult to obtain. Ideally, we would like a normal form that realizes mini-
mum alphabetic width and minimum rpn-length, and that is efficiently computable —
two criteria, that would apparently contradict the above negative theoretical results.

We have suggested a robust notion of reduced expressions, the strong star normal
form. This notion satisfies at least the latter two criteria, in the sense that each regular
language, admits at least one regular expression in star normal form of minimum rpn-
length and of minimum alphabetic width, while being computable in linear time. Our
notion subsumes previous attempts at defining such a notion [4,8,15].

Furthermore, we showed that the strong star normal form proves useful in various
contexts: Apart from a prior application in the context of the construction of ε-free
NFAs [6], we gave two further applications.

The first concerns the relation between different complexity measures for regular ex-
pressions, namely alphabetic width and (abbreviated) rpn-length. With the aid of strong
star normal form, we were able to determine the optimal bound, witnessing superiority
of this concept over previous attempts at defining such a notion of irreducibility, which
yield only loose bounds [8,15].

The second application concerns the comparison of descriptional complexity mea-
sures across different representations, namely alphabetic width on the one hand, and the
minimum size of equivalent ε-NFAs on the other hand. Here, we applied a construc-
tion proposed recently by Gulan and Fernau [14]: Under a mild additional assumption,
this construction already incorporates all simplifications offered by strong star normal
form. While this alone adds to the impression of robustness of the construction, we also
proved an optimal bound on the relation between alphabetic width and the size of finite
automata, and we showed that this bound is attained by the mentioned construction.

We believe that there are various further applications outside the theoretical domain.
For instance, the fastest known algorithm [3] for regular expression matching is still
based on the classical construction due to Thompson [19]. While better constructions
for ε-NFAs may not improve the asymptotic worst-case running time, we hope that
these can still lead to noticeably better practical performance of NFA-based regular
expression engines.

References

1. Aceto, L., Fokkink, W., Ingólfsdóttir, A.: On a question of A. Salomaa: the equational theory
of regular expressions over a singleton alphabet is not finitely axiomatizable. Theoretical
Computer Science 209(1), 163–178 (1998)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cam-
bridge (1998)

3. Bille, P., Thorup, M.: Faster regular expression matching. In: ICALP 2009. LNCS, vol. 5555,
pp. 171–182. Springer, Heidelberg (2009)

4. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoretical Computer Sci-
ence 120(2), 197–213 (1993)

296 H. Gruber and S. Gulan

5. Caron, P., Champarnaud, J.M., Mignot, L.: Multi-tilde operators and their Glushkov au-
tomata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457,
pp. 290–301. Springer, Heidelberg (2009)

6. Champarnaud, J.M., Ouardi, F., Ziadi, D.: Normalized expressions and finite automata. In-
ternational Journal of Algebra and Computation 17(1), 141–154 (2007)

7. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, Boca Raton (1971)
8. Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: New results and open

problems. Journal of Automata, Languages and Combinatorics 10(4), 407–437 (2005)
9. Frishert, M., Cleophas, L.G., Watson, B.W.: The effect of rewriting regular expression on

their accepting automata. In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp.
304–305. Springer, Heidelberg (2003)

10. Gelade, W., Martens, W., Neven, F.: Optimizing schema languages for XML: Numerical
constraints and interleaving. SIAM Journal on Computing 38(5), 2021–2043 (2009)

11. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular ex-
pressions. In: Symposium on Theoretical Aspects of Computer Science. Number 08001 in
Dagstuhl Seminar Proceedings, pp. 325–336 (2008)

12. Gruber, H., Holzer, M.: Finite automata, digraph connectivity, and regular expression size. In:
Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 39–50. Springer, Heidelberg (2008)

13. Gruber, H., Johannsen, J.: Optimal lower bounds on regular expression size using communi-
cation complexity. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 273–286.
Springer, Heidelberg (2008)

14. Gulan, S., Fernau, H.: An optimal construction of finite automata from regular expressions.
In: FSTTCS 2008. Number 08004 in Dagstuhl Seminar Proceedings, pp. 211–222 (2008)

15. Ilie, L., Yu, S.: Follow automata. Information and Computation 186(1), 140–162 (2003)
16. Lee, J., Shallit, J.: Enumerating regular expressions and their languages. In: Domaratzki, M.,

Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 2–22. Springer,
Heidelberg (2005)

17. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squar-
ing requires exponential space. In: FOCS 1972, pp. 125–129. IEEE Computer Society, Los
Alamitos (1972)

18. Newman, M.: On theories with a combinatorial definition of “equivalence”. Annals of Math-
ematics 43(2), 223–243 (1942)

19. Thompson, K.: Regular expression search algorithm. Communications of the ACM 11(6),
419–422 (1968)

20. Wood, D.: Theory of Computation. John Wiley & Sons, Inc., Chichester (1987)

A Programming Language Tailored to the
Specification and Solution of Differential

Equations Describing Processes on Networks

Reinhard Hemmerling, Kataŕına Smoleňová, and Winfried Kurth

University of Göttingen,
Göttingen, Germany

{rhemmer,ksmolen,wk}@informatik.uni-goettingen.de

Abstract. We present an extension to the graph-transformation based
programming language XL that allows easy specification and solution of
differential equations on graphs.

1 Introduction

When making decisions on economical or ecological processes, models are used to
predict the results of those decisions. To simplify the description of such models,
modelling systems and modelling languages exist. One such modelling language
is XL, which stands for eXtended L-system language.

XL allows a user-friendly specification of graph transformation rules. Its main
purpose is to facilitate the implementation of functional-structural plant models
(FSPMs, [5]), but it is general enough to also be used in other domains where
the problem can be mapped to a graph, like modelling cellular networks. In each
XL program run, there exists a global graph with arbitrary objects as nodes and
relations of various types as edges. This graph can undergo transformations in
discrete timesteps, controlled by a relational growth grammar (RGG) – a special
sort of parallel graph grammar which can directly be written down in XL code.

An RGG formally consists of a finite family of RGG rules, together with a
control flow (regulating the order of rule application) and a start graph. RGG
rules are transformation rules with application conditions on typed, attributed,
directed graphs with inheritance, which are applied in parallel and follow basi-
cally the single-pushout principle from categorical graph-grammar theory (see
[6] for the exact definitions). RGGs allow an L-system style embedding of the
right-hand side of a rule into the host graph by a special choice of connection
transformation – so the application of L-systems on strings, often employed in
plant models, emerges as a special case of RGG application on graphs.

When modelling biological or physical systems, the functional aspects of those
systems are often described in terms of differential equations. XL extends the
Java programming language, so that calculations for functional aspects of a
model can be expressed using imperative programming.

Solving those differential equations often requires advanced numerical meth-
ods to calculate the correct solution and to keep the error within well-defined

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 297–308, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

298 R. Hemmerling, K. Smoleňová, and W. Kurth

bounds. Using such numerical methods requires special knowledge of numerics
and the model must be expressed in a suitable way. Applying the differential
equations to arbitrary graphs becomes even unmanageable.

We therefore propose an extension of the XL programming language that
allows easy specification of differential equations on graphs. We will demonstrate
the usefulness of the approach on one example.

An XL compiler is provided by the software GroIMP1 (Growth-grammar re-
lated Interactive Modelling Platform), which is an open-source project primarily
intended for the use in research and teaching in the life sciences, but with ap-
plications in other fields as well, like, e.g., architecture [7]. GroIMP also offers
interactive 3D modelling and navigation to visualize the structures modelled
with the XL language. Several renderers, a 2D viewer for the complete gener-
ated graph, an attribute editor enabling interactive choice of shaders for realistic
surface representation, a raytracer for radiation modelling, and various analysis
tools are also included.

2 Related Work

A 3D model of the branching system of spruce crowns, generated from an L-
system, has been used as input for a simulator of xylem sap flow, based on a
finite-differences solver with a predictor-corrector scheme for the Darcy equation
[2]. Spatial and temporal discretization was locally adapted to the expected water
potential gradients. However, this simulator was restricted to a static structure;
it was not possible to apply it to a growing branch system. No feedback from the
simulation results to the growth process (i.e., from functioning to structure) was
included. Furthermore, the implementation was an ad-hoc solution, written in
the general-purpose language C and resulting in a lengthy and quite intranspar-
ent code. The motivation for and design of the language XL resulted from such
experiences. It is supposed to give support for easy and transparent encoding
of function-structure interactions, as they occur in dynamical systems with a
dynamical structure [3].

An application of ODEs to growing structures was presented in [12] and
named dL-systems (differential L-systems). The geometrical structures were de-
scribed by parametric L-systems, whereas the functional aspects were described
by ODEs. Basically the integration takes place until some specified boundary is
hit. Then a production is executed to modify the structure and the integration
continues. In the paper many examples are given, but only in the form of a
formal description and not as a program. The paper states that the simulations
were carried out using a programming language based on parametric L-systems,
but the user had to implement the numerical integrator on its own (the forward
Euler method was actually used). Yet, it was not investigated if and how more
advanced integration methods could be used for dL-systems.

However, this was done in [1]. The diffusion-based developmental model of the
blue-green alga Anabaena catenula was defined using a dL-system and solved
1 http://sourceforge.net/projects/groimp

Specification and Solution of Differential Equations in XL 299

using an implicit Crank-Nicholson integrator. The ODEs were transformed into
a banded matrix (by hand) and then mapped to an L-system string. Using
some advanced features of L+C allowed to solve the linear system by two scans
(forward, then backward) through the matrix. Unfortunately, the generalization
of this method to arbitrary graphs is not straightforward [11,9]. Furthermore,
its implementation in L+C requires a considerable technical overhead.

3 Solving Differential Equations on Graphs

In this section we will start with a short introduction to XL. We will do this on a
simple example. Later on this example will be extended by differential equations
and we will show how to solve these using the Runge-Kutta method. In the end
we will point out the problems of the solution and suggest a better approach.

3.1 XL

The programming language XL is based on the Java programming language[4].
In fact, every valid Java program is also a valid XL program, but not the other
way around. The language specification of XL[8] introduces many features not
available in Java.

One of the most important extensions are transformation rules. A rule consists
of a query on the left hand side, a rule arrow in the middle, and a production
statement on the right hand side. A query is an expression that searches the
graph for some structure. For each match the production statement is invoked to
modify the structure of that match. A complete description of queries, production
statements and rules can be found in [6].

Rules are organized in rule blocks. Whereas a block of Java statements uses
braces { and } to mark beginning and end of the block, a block of rules uses
brackets [and] instead.

An example for a simple XL program describing a binary tree is:
� �

1 module A(f loat l en) extends Sphere (0 . 1) {
2 { setShader (GREEN) ; }
3 }
4

5 protected void i n i t ()
6 [
7 Axiom ==> A(1) ;
8]
9

10 public void run ()
11 [
12 A(x) ==> F(x) [RU(30) RH(90) A(x ∗ 0 . 8)]
13 [RU(−30) RH(90) A(x ∗ 0 . 8)] ;
14]

� �

300 R. Hemmerling, K. Smoleňová, and W. Kurth

The program starts with a declaration of a module A. This is similar to declaring
a Java class, but the compiler automatically generates additional code. In this
case the module expects a single parameter of type float and is derived from
the type Sphere, therefore it will be displayed as a sphere. The radius of the
sphere is set to 0.1 units. Inside the body of the module declaration there is a
class initializer that sets the shader for the sphere to green.

After the module declaration follows the method init. This is called auto-
matically by GroIMP when the model is started. The body of the init method
consists of a single rule block. Inside of the block there is a single rule that re-
places each node of type Axiom by a node of type A with the parameter len set
to one. Initially there is exactly one node of type Axiom in the graph serving as
starting symbol for the derivation.

The method run finally describes the derivation process to form the binary
tree. Each occurrence of the type A in the graph is replaced by a node of type
F (basically a cylinder) and two branches with a new node of type A at each
end. The rotation commands RU and RH (rotate around up and head axis) are
responsible for a different orientation of the two branches. When a match of the
left hand side of the rule is found, the parameter len of the module A is stored
in a local variable x. This can then be used to steer the production on the right
hand side. In this case, the length of the cylinder F will be set to x and the two
branches will only grow 80% as much.

The result of five derivation steps can be seen in Fig. 1.

Fig. 1. A simple, growing graph-based structure

3.2 Functional Dependence of Growth

Right now the model describes only structure. For functional-structural plant
models, however, also the functional aspects need to be considered. An example
of such a functional process is the basipetal transport of carbon assimilates
within the plant. We will extend the model from above to simulate transport
of carbon via diffusion. We do not claim that this models the way transport
actually works in real plants, instead it should merely demonstrate how to apply
diffusion processes on a graph.

Specification and Solution of Differential Equations in XL 301

Diffusion is a process that leads to a homogeneous distribution of particles or
molecules and obeys the following law (where c is the concentration, t is time, x
is spatial dimension, D is the coefficient of diffusion):

∂c

∂t
= D

∂2c

∂x2

To apply this equation to a graph, it must be discretized in space. Concretely this
means there must be some exchange between neighboured nodes in the graph.
In XL this can be descrzibed with the following rule:

� �

1 ca :C (−−>)+ : (cb :C) :: > {
2 double ra t e = D ∗ (cb [carbon] − ca [carbon]) ;
3 ca [carbon] :+= h ∗ ra t e ;
4 cb [carbon] :−= h ∗ ra t e ;
5 }

� �

Basically two nodes of type C are searched in the graph and are named ca and
cb. The two nodes must be connected, but nodes of other types (i.e. the RU and
RH nodes) may be on the path from ca to cb. This is specified in the code by
the transitive closure (+), applied to the ”edge” relation (->) and followed by the
”colon” operator which restricts the search along the path to the next occurring
node of type C. The production statement of the rule (which does in this case not
change the structure of the graph, but only updates some attributes of nodes)
calculates the difference of carbon concentration and then the exchange rate.
This rate is then applied to the carbon concentrations of ca and cb using a time
step h. Note that the deferred assignment operators :+= and :-= are used to
perform a parallel application of the rule.

Extending the model by this rule and also by some other rules describing
carbon production in leaves (imitating photosynthesis), carbon allocation for
growth and branching leads to the following sequence of a growth process (radius
of cylinder or sphere indicates carbon concentration):

A closer look at the solution of the ODE from a numerical point of view reveals
that an explicit Eulermethod [10] with fixed integration step size was implemented.
This seems to give reasonable results for this simple example, but it is well-known
that an explicit Euler method is not a good method to numerically integrate more
complex systems of ODEs (because of stability issues for instance).

However, we discovered that users of GroIMP/XL implemented the ODEs in
their models in the same or a rather similar way to the one described above. The
reason therefore could be that the explicit Euler scheme naturally fits to how

302 R. Hemmerling, K. Smoleňová, and W. Kurth

rules are applied to the graph: The current state is used to calculate the rate
of change which is then used to modify the current state to yield the next state
and therefore to advance the simulation one step in time.

3.3 Improving the Numerical Solution

In mathematical terminology, the integration problem as described above poses
an initial value problem. An initial value problem of first order is described by
an ordinary differential equation of the form y′(t) = f(t, y(t)) and an initial
condition y(t0) = y0. The state y can be a single value, but more generally also
a vector of values for systems of ODEs. An initial value problem of higher order
can be transformed into a first order initial value problem.

Besides the explicit Euler method, more advanced methods exist to solve such
a problem. A very well-known method is the classical Runge-Kutta method [10],
which is a Runge-Kutta method of 4th order (often abbreviated as RK4). For a
current state yn at a time tn and a step size h it calculates the new state yn+1
at time tn+1 as:

yn+1 = yn + 1
6h(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h

where

k1 = f(tn, yn)
k2 = f(tn + 1

2h, yn + 1
2hk1)

k3 = f(tn + 1
2h, yn + 1

2hk2)
k4 = f(tn + h, yn + hk3) .

The intermediate values ki are used by the RK4 method to test the slope of
the ODE for different states at different times to find a good average slope that
better follows the solution compared to the Euler method.

Applying RK4 to the example from above requires to find a mapping between
the properties of the nodes in the graph (like carbon) and the entries in the state
vector. For the dynamic structure in the example, another challenging problem
to solve is how to modify this mapping when the structure changes and how to
adjust the state vector then.

Obviously the numerical integration and the structural modification has to be
separated, so that one or more integration steps are executed alternately to one
structural derivation step. For the integration, the user has to provide the rate
function f , which may look like this:

� �

1 void getRate (double [] rate , double t , double [] y) [
2 ca :C (−−>)+ : (cb :C) :: > {
3 double ra t e = D ∗ (y [cb . index] − y [ca . index]) ;
4 ra t e [ca . index] += rate ;
5 rat e [cb . index] −= rate ;
6 }
7]

� �

Specification and Solution of Differential Equations in XL 303

Here, index is a mapping from the node properties to the elements of the rate/s-
tate vector (rate and y). The calculation of the rates is as before, but instead of
modifying the state in the rule this is up to the integrator. So instead the rates
are written to the rate vector (first parameter). The time and state, for which
the rates should be calculated, are passed in the second and third parameter.

As can be seen, if implemented this way the user needs to manually assign
indices that refer to the value stored in the state vector. Also the node properties
have to be copied into the state vector before integration and copied back into
the graph afterwards, or they are kept in the state vector all the time. If the
structure of the graph changes (i.e. a new node is inserted or deleted), the state
and rate vector must be reallocated and the indices must be reassigned, resulting
in a form of manual memory management. Instead of referring to the state via
indices, it may also be provided in form of node properties (by copying the state
from the state vector to the node properties before calling the rate function).
But then still the calculated rates must be returned in the rate vector, requiring
the rate function to know the mapping between node properties and elements of
the rate vector.

3.4 Extending XL to Support ODEs

Although specification and solution of ODEs as described above is possible, it is
not very user-friendly and therefore prone to errors. For instance the user could
easily mix up the mapping and therefore calculate a wrong solution in the end.
The task to gather information about the mapping between node properties and
elements of the state vector can be automatized. But this requires the user to
specify which values need to be integrated and how this should be done (i.e. how
the ODE looks like).

Ideally the user should be able to specify the ODEs in a manner similar to
the way described in Sect. 3.2. Our idea is to extend the programming language
XL by a single new operator, the rate assignment operator. The specification of
the diffusion process using the rate assignment operator would look like this:

� �

1 ca :C (−−>)+ : (cb :C) :: > {
2 double ra t e = D ∗ (cb [carbon] − ca [carbon]) ;
3 ca [carbon] : ’= +rate ;
4 cb [carbon] : ’= −ra t e ;
5 }

� �

Note that the deferred assignment operators :+= and :-= have been replaced
by the rate assignment operator :’= and that there is no step size h anymore
(because this is provided by the numerical integrator and not the rate function).

Again each pair of neighboured nodes of type C are searched for in the graph.
For each match, the rate is calculated. Then the rate assignment operator is used
to specify the rate of carbon exchange for the two involved node properties.

The system works as follows. During compilation each occurrence of a rate
assignment operator is analyzed. The expression on the left hand side yields the
type of node (in this case C) and the property of this node (in this case carbon).

304 R. Hemmerling, K. Smoleňová, and W. Kurth

At runtime, before integration starts, the size of the state vector and also of the
rate vector is calculated by searching the graph for nodes that may participate in
the integration according to the information obtained at compiletime. This gives
an upper bound for the size of the state and rate vector. A state and a rate vector
of proper size is allocated and the current node properties (only those that may
participate in integration) are copied into the state vector as initial values.

Then, when evaluating the rate function, each rate assignment causes a lookup
in a table to find the correct index for a property of a specific node. The value
on the right hand side of the rate assignment operator is then accumulated to
the correct entry in the rate vector. If no mapping exists yet, a new index in the
state/rate vector is allocated and the mapping is kept.

A runtime-library handles the task of allocating the state and rate vector and
copying the state from the state vector into the properties of the nodes as well
as managing the mapping between elements of the rate/state vector and node
properties.

The user can therefore describe his ODEs in the form as presented above and
can directly use the values of the node properties to calculate the rates.

3.5 Monitor Functions

Right now, numerical integration and modification of the graph alternates in
fixed intervals. A better and more natural way to simulate the growth process
would be to perform integration until some condition is fulfilled and triggers
a structural modification of the graph. This also happens in real plants, for
instance, when the concentration of a substance crosses a threshold and therefore
causes flowering.

The concept used here is called a monitor function (sometimes also called
trigger function or switching function). The user provides a function g : IRn → IR
that calculates a single value for a given state. When g changes its sign during
the course of integration, root finding methods (like Bisection or Newton) can
be applied to find the exact time when the event occurred.

Then the integration is halted and structural modifications may be applied.
Afterwards, the integration continues on the new graph structure.

The language XL provides an easy way to specify functors [6]. This feature is
used to install a monitor function. The syntax for the specification of a functor
in XL is

X x => Y e

where X and Y are types, x is an identifier which can be accessed within the
expression e as a local variable of type X, and the type of e has to be assignable
to Y. The created functor then maps x to the value computed by e. If the type
X is void, no x may be specified.

As an example consider the case that the carbon concentration of the nodes
should be monitored if it rises above some threshold. Installing the monitor for
every node of type C with a threshold of 10 would be performed with this rule:

c :C :: > monitor (void=>double c [carbon] − 10) ;

Specification and Solution of Differential Equations in XL 305

The functor is created to compute values of type double, but the current state of
the graph is given implicitly when the monitor function is executed. If an action
should be performed when the monitor function triggers an event, this may be
passed as second parameter after the monitor function.

4 Results

We tested the ODE framework on some examples. The binary tree has already
been presented above. The differential equations were used to compute carbon
production at leaves (green spheres), carbon consumption at internodes (con-
verted into growth) and exchange between internodes and/or leaves via diffusion.
A monitor function is installed for every leaf to observe when the concentration
reaches a threshold and triggers replacement of the leaf by two branches, each
with a new leaf. The carbon of the leaf that was replaced is distributed evenly
among the two new leaves.

Fig. 2. From left to right, top to bottom: Transport with inhibition

Another test case is the simulation of active transport with inhibition of a
substrate through a sequence of cells (see Fig. 2). The five cells are organized
in a ring and transport may be performed as indicated by the arrows. Trans-
port of the substrate from a cell B to the successor cell C may be performed,
if the predecessing cell A has a substrate concentration below some threshold
value.

Without the framework one would have to write the ODE by manually man-
aging which entries in the state vector correspond to which value of a cell. This
would result in an implementation of the rule with code like this:

306 R. Hemmerling, K. Smoleňová, and W. Kurth

� �

1 for (int i = 0 ; i < rat e . l ength ; i++) {
2 int a = i ;
3 int b = (a + 1) % out . l ength ;
4 int c = (b + 1) % out . l ength ;
5 double r = y [a] > 0.001 ? 0 : 0 .4 ∗ y [b] ;
6 ra t e [b] −= r ;
7 ra t e [c] += r ;
8 }

� �

With the ODE framework, the same process can be implemented like this:
� �

1 a : S −EDGE 0−> b : S −EDGE 0−> c : S :: > {
2 double ra t e = a [s] > 0.001 ? 0 : 0 .4 ∗ b [s] ;
3 b [s] : ’= −ra t e ;
4 c [s] : ’= +rate ;
5 }

� �

The nodes are connected by edges of a user-defined type EDGE 0 forming a
ring structure, as was indicated by the arrows. If the concentration of substrate
s at a is below 0.001, then substrate from b may be transported to c with a rate
of 40% of the concentration of s at b.

Although in this example the ODE framework just makes the code shorter to
write and more understandable, it becomes much more useful when simulating
reaction networks, especially if those networks can be dynamic (like the binary
tree above).

Another example is a model of partitioning during vegetative growth in plants
by Thornley [13]. This model describes assimilation of carbon and nitrogen.
While the model using RK4 (classical Runge-Kutta) was hard to implement

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25

C
(k
g
C

(k
g
st
ru
ct
u
re
)−

1
)

t (days)

σC doubled

σN doubled

0

0.025

0.05

0.075

0 5 10 15 20 25

N
(k
g
N

(k
g
st
ru
ct
u
re
)−

1
)

t (days)

σC doubled

σN doubled

Fig. 3. Diagrams showing the effect of doubling the parameter σC respective σN at
time t = 2 on carbon and nitrogen concentration

Specification and Solution of Differential Equations in XL 307

without the ODE framework, this became much simpler and shorter when the
ODE framework was used. The resulting graphs produced by running the sim-
ulation with RK4 and plotting the state at intervals of one day can be seen in
Fig. 3.

Here σC and σN are used to calculate the assimilation rate of carbon and
nitrogen depending on the shoot drymass Wsh and root drymass Wr as σCWsh

and σNWr. The diagrams show the effect of doubling σC and σN after day one
of the simulation.

5 Conclusions and Future Work

In this paper we presented an ODE framework that allows specification and
integration of ODEs on graphs. We demonstrated the motivation why such a
framework is needed and how it is used. The framework was tested on several
examples which show that it was successfully used in practice.

The basis of the framework is the extension of the XL-compiler to capture
all rate specifications with a new operator :’= at compile-time and a runtime-
library that manages the mapping between node properties and the elements of
the rate/state vector.

In the future we would like to apply the ODE framework to more complex
examples like a model of a growing plant with internal reaction mechanisms
steering the growth of that plant. This will then also lead to further extensions
of the framework that would make it more robust and usable.

References

1. Federl, P., Prusinkiewicz, P.: Solving differential equations in developmental models
of multicellular structures expressed using L-systems. In: Bubak, M., van Albada,
G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3037, pp. 65–72.
Springer, Heidelberg (2004)

2. Früh, T., Kurth, W.: The hydraulic system of trees: Theoretical framework and
numerical simulation. J. Theor. Biol. 201, 251–270 (1999)

3. Giavitto, J.L., Godin, C., Michel, O., Prusinkiewicz, P.: Computational Models for
Integrative and Developmental Biology. In: Modelling and Simulation of Biological
Processes in the Context of Genomics, Hermes (July 2002)

4. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd
edn. Addison-Wesley, Amsterdam (June 2005)

5. Hemmerling, R., Kniemeyer, O., Lanwert, D., Kurth, W., Buck-Sorlin, G.: The
rule-based language XL and the modelling environment GroIMP illustrated with
simulated tree competition. Functional Plant Biology 35(9/10), 739–750 (2008)

6. Kniemeyer, O.: Design and Implementation of a Graph Grammar Based Language
for Functional-Structural Plant Modelling. PhD thesis, University of Technology
at Cottbus, Fakultät für Mathematik, Naturwissenschaften und Informatik (2008),
http://opus.kobv.de/btu/volltexte/2009/593/

7. Kniemeyer, O., Barczik, G., Hemmerling, R., Kurth, W.: Relational Growth Gram-
mars - a parallel graph transformation approach with applications in biology and
architecture. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088, pp. 152–167. Springer, Heidelberg (2008)

http://opus.kobv.de/btu/volltexte/2009/593/

308 R. Hemmerling, K. Smoleňová, and W. Kurth

8. Kniemeyer, O., Hemmerling, R., Kurth, W.: The XL Language Specification (2009),
http://www.grogra.de/xlspec

9. Parter, S.: The use of linear graphs in Gauss elimination. SIAM Review 3(2), 119–
130 (1961)

10. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes:
The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York
(2007)

11. Prusinkiewicz, P., Allen, M., Escobar-Gutiérrez, A., DeJong, T.M.: Numeri-
cal methods for transport-resistance source-sink allocation models. In: Vos, J.,
Marcelis, L.F.M., de Visser, P.H.B., Struik, P.C., Evers, J.B. (eds.) Functional-
Structural Plant Modelling in Crop Production, 1st edn. Wageningen UR Frontis
Series, vol. 22. Springer, Heidelberg (2007)

12. Prusinkiewicz, P., Hammel, M.S., Mjolsness, E.: Animation of plant development.
In: SIGGRAPH ’93: Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 351–360. ACM, New York (1993)

13. Thornley, J.H.M., Johnson, I.R.: Plant and crop modelling: a mathematical ap-
proach to plant and crop physiology. Clarendon Press/Oxford University Press,
Oxford/New York (1990)

http://www.grogra.de/xlspec

The Inclusion Problem for Regular Expressions

Dag Hovland

Institutt for Informatikk, Universitetet i Bergen, Norway
dag.hovland@uib.no

Abstract. This paper presents a new polynomial-time algorithm for the
inclusion problem for certain pairs of regular expressions. The algorithm
is not based on construction of finite automata, and can therefore be
faster than the lower bound implied by the Myhill-Nerode theorem. The
algorithm automatically discards unnecessary parts of the right-hand
expression. In these cases the right-hand expression might even be 1-
ambiguous. For example, if r is a regular expression such that any DFA
recognizing r is very large, the algorithm can still, in time independent of
r, decide that the language of ab is included in that of (a+r)b. The algo-
rithm is based on a syntax-directed inference system. It takes arbitrary
regular expressions as input, and if the 1-ambiguity of the right-hand
expression becomes a problem, the algorithm will report this.

1 Introduction

The inclusion problem for regular expressions was shown PSPACE-complete by
Meyer & Stockmeyer [10]. The input to the problem is two expressions, which
we will call the left-hand expression and the right-hand expression, where the
question is whether the language of the left-hand expression is included in the
language of the right-hand expression. The classical algorithm starts with con-
structing non-deterministic finite automata (NFAs) for each of the expressions,
then constructs a DFA from the NFA recognizing the language of the right-
hand expression, and a DFA recognizing the complement of this language, then
constructs an NFA recognizing the intersection of the language of the left-hand
expression with the complement of the language of the right-hand expression,
and finally checks that no final state is reachable in the latter NFA. The super-
polynomial blowup occurs when constructing a DFA from the NFA recognizing
the right-hand expression. A lower bound to this blowup is given by the Myhill-
Nerode theorem [11,7]. All the other steps, seen separately, are polynomial-time.

1-unambiguous regular expressions were introduced by Brüggemann-Klein
& Wood [3,2]. They show a polynomial-time construction of DFAs from 1-
unambiguous regular expressions. The algorithm above can therefore be modified
to solve the inclusion problem in polynomial time when the right-hand expres-
sion is 1-unambiguous. This paper presents an alternative algorithm for inclusion
of 1-unambiguous regular expressions. As in the algorithm above, the left-hand
expression can be an arbitrary regular expression. An implementation of the al-
gorithm is available from the website of the author. The algorithm can of course

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 309–320, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

310 D. Hovland

also be run twice to test whether the languages of two 1-unambiguous regular
expressions are equal.

A consequence of the Myhill-Nerode theorem is that for many regular expres-
sions, the minimal DFA recognizing this language, is of super-polynomial size. For
example, there are no polynomial-size DFAs recognizing expressions of the form
(b+ c)∗c(b+ c) · · · (b+ c). An advantage of the algorithm presented in this paper
is that it only treats the parts of the right-hand expression which are necessary;
it is therefore sufficient that these parts of the expression are 1-unambiguous. For
some expressions, it can therefore be faster than the algorithm above. For exam-
ple, the algorithm described in this paper will (in polynomial time) decide that
the language of ab is included in that of (a+ (b+ c)∗c(b+ c) · · · (b+ c))b, and the
sub-expression (b+c)∗c(b+c) · · · (b+c) will be discarded. The polynomial-time al-
gorithm described above cannot easily be modified to handle expressions like this,
without adding complex and ad hoc pre-processing.

To summarize: Our algorithm always terminates in polynomial time. If the
right-hand expression is 1-unambiguous, the algorithm will return a positive
answer if and only if the expressions are in an inclusion relation, and a negative
answer otherwise. If the right-hand expression is 1-ambiguous, three outcomes
are possible: The algorithm might return a positive or negative answer, which
is then guaranteed to be correct, or the algorithm might also decide that the 1-
ambiguity of the right-hand expression is a problem, report this, and terminate.

Section 2 defines operations on regular expressions and properties of these.
Section 3 describes the algorithm for inclusion, and Sect. 4 shows some important
properties of the algorithm. The last section covers related work and a conclusion.

2 Regular Expressions

Fix an alphabet Σ of letters. Assume a, b, and c are members of Σ. l, l1, l2, . . .
are used as variables for members of Σ.

Definition 1 (Regular Expressions). The regular expressions over the lan-
guage Σ are denoted RΣ and defined in the following inductive manner:

RΣ ::= RΣ +RΣ |RΣ ·RΣ |R∗
Σ |Σ | ε

r, r1, r2, . . . are used as variables for regular expressions. The sign for concate-
nation, ·, will often be omitted. The regular expressions denoting the empty
language are not included, as they are irrelevant to the results in this paper.

The semantics of regular expressions is defined in terms of sets of words over
the alphabet Σ. We lift concatenation of words to sets of words, such that if
L1, L2 ⊆ Σ∗, then L1 · L2 = {w1 · w2 |w1 ∈ L1 ∧ w2 ∈ L2}. ε denotes the empty
word of zero length, such that for all w ∈ Σ∗, ε ·w = w ·ε = w. Therefore we also
assume rε = εr = r for regular expressions r. Integer exponents are short-hand
for repeated concatenation of the same set, such that for a set L of words, e.g.,
L2 = L · L, and we define L0 = {ε}. sym(r) denotes the set of letters from Σ
occurring in r.

The Inclusion Problem for Regular Expressions 311

Definition 2 (Language of a Regular Expression). The language of a reg-
ular expression r is denoted ‖r‖ and is defined by the following inductive rules:
‖r1 + r2‖ = ‖r1‖ ∪ ‖r2‖, ‖r1 · r2‖ = ‖r1‖ · ‖r2‖, ‖r∗‖ =

⋃
0≤i‖r‖i and for

a ∈ Σ ∪ {ε}, ‖a‖ = {a}.

All subexpressions of the forms ε · ε, ε + ε or ε∗ can be removed in linear time,
working bottom up. We therefore can safely assume there are no subexpressions
of these forms. We use ri as a short-hand for r concatenated with itself i times.

The First-set of a regular expression is the set of letters that can occur first
in a word in the language, while the followLast-set is the set of letters which can
follow a word in the language. An easy, linear time, algorithm for calculating
the First-set has been given by many others, e.g., Glushkov [6] and Yamada &
McNaughton [9].

Definition 3 (First and followLast). [2,6,9]

first(r) = {l ∈ Σ | ∃w : lw ∈ ‖r‖}

followLast(r) = {l ∈ sym(r) | ∃u, v ∈ sym(r)∗ : (u ∈ L(r) ∧ ulv ∈ L(r))}

Definition 4 (Nullable Expressions). [6,9] The nullable regular expressions
are denoted N and are defined inductively as follows:

N ::= N +RΣ |RΣ + N |N ·N |R∗
Σ | ε

It can be proved by induction on the regular expressions, that N are exactly the
regular expressions that have ε in the language.

Definition 5 (Marked Expressions). [6,9] If r ∈ RΣ is a regular expression,
μ(r) is the marked expression, that is, the expression where every instance of
any symbol from Σ is subscripted with an integer, starting with 1 at the left and
increasing.

For example, μ((a+ b)∗a) = (a1 + b2)∗a3. The mapping " removes subscripts on
letters, such that "(μ(r)) = r.

Definition 6 (Star Normal Form). [3,2]: A regular expression is in star nor-
mal form iff for all subexpressions r∗: r
∈ N and first(μ(r))∩followLast(μ(r)) = ∅.

Brüggemann-Klein & Wood described also in [3,2] a linear time algorithm map-
ping a regular expression to an equivalent expression in star normal form. We
can therefore safely assume that all regular expressions are in star normal form.

Definition 7 (Header-form). A regular expression is in header-form if it is
of the form ε, l · r1, (r1 + r2) · r3 or r∗1 · r2, where l ∈ Σ and r1, r2, r3 ∈ RΣ.

A regular expression can in linear time be put in header-form by applying the
mapping hdf. We need the auxiliary mapping header, which maps a pair of

312 D. Hovland

regular expressions to a single regular expression. It is defined by the following
inductive rules:

header(ε, r) = r

header(r1, r2) =
{

if r1 is of the form r3 · r4 : header(r3, r4 · r2)
else: r1 · r2

For any regular expression r, hdf(r) = header(r, ε) is in header-form and recog-
nizes the same language as r. hdf also preserves star normal form, as starred
subexpressions are not altered.

2.1 1-Unambiguous Regular Expressions

Intuitively, a regular expression is 1-unambiguous if there is only one way a word
in its language can be matched when working from left to right with only one
letter of look-ahead.

Definition 8. [3,2] A regular expression r is 1-unambiguous if for any two
upv, uqw ∈ ‖μ(r)‖, where p, q ∈ sym(μ(r)) and u, v, w ∈ sym(μ(r))∗ such that
"(p) = "(q), we have p = q.

Examples of 1-unambiguous regular expressions are (a∗ + b)∗, a(a + b)∗ and
b∗a(b∗a)∗, while (ε + a)a and (a + b)∗a are not 1-unambiguous. An expres-
sion which is not 1-unambiguous is called 1-ambiguous. A language is called
1-unambiguous if there is a 1-unambiguous regular expression denoting it. Oth-
erwise, the language is called 1-ambiguous.

1-unambiguity is different from, though related with, unambiguity, as used
to classify grammars in language theory, and studied for regular expressions by
Book et al [1]. From [1]: “A regular expression is called unambiguous if every
tape in the event can be generated from the expression in one way only”. It fol-
lows almost directly from the definitions that the class of 1-unambiguous regular
expressions is included in the class of unambiguous regular expressions. The in-
clusion is strict, as for example the expression (a+b)∗a is both unambiguous and
1-ambiguous. See also [3,2] for comparisons of unambiguity and 1-unambiguity.

Brüggemann-Klein and Wood [3] showed that there exist 1-ambiguous regular
languages, e.g., ‖(a+b)∗(ac+bd)‖. They also showed that a regular expression is
1-unambiguous if and only if all of its subexpressions also are 1-unambiguous. We
will use this property below. Note at this point that hdf preserves 1-unambiguity.

Taking u = ε in Definition 8 it follows that if ln, lm ∈ first(μ(r)) and r 1-
unambiguous, then n = m. This fact is employed by the algorithm below.

3 Rules for Inclusion

The algorithm is based on an inference system described inductively in
Table 1 for a binary relation. over regular expressions. The core of the algorithm
is a goal-directed, depth first search using this inference system. We will show

The Inclusion Problem for Regular Expressions 313

Table 1. The rules for the relation �

(Axm)

ε � r
[r ∈ N]

(Letter)
r1 � r2

l · r1 � l · r2

(LetterStar)
l · r1 � r2r

∗
2r3

l · r1 � r∗2r3
[l ∈ first(r2)]

(LetterChoice)
l · r1 � rir4

l · r1 � (r2 + r3)r4

[
i ∈ {2, 3}

l ∈ first(ri)

] (LeftChoice)
r1r3 � r4

r2r3 � r4

(r1 + r2)r3 � r4

(LeftStar)
r1r

∗
1r2 � r3r4

r2 � r3r4

r∗1r2 � r3r4

⎡
⎣ first(r1) ∩ first(r3)
= ∅

r4
= ε ∨ r2
= ε
∃l, r5 : r3 = l ∨ r3 = r∗5

⎤
⎦

(StarStarE)
r1 � r∗2
r∗1 � r∗2

(StarChoice1)

r∗1r2 � rir5

r∗1r2 � (r3 + r4)r5

⎡
⎢⎢⎣

i ∈ {3, 4}
first(r∗1r2) ∩ first(ri)
= ∅
first(r∗1r2) ⊆ first(rir5)

r2
∈ N ∨ ri ∈ N

⎤
⎥⎥⎦

(StarChoice2)
r1r

∗
1r2 � (r3 + r4)r5

r2 � (r3 + r4)r5

r∗1r2 � (r3 + r4)r5

⎡
⎣ first(r∗1r2) ∩ first(r3 + r4)
= ∅

(r2 ∈ N ∧ r3
∈ N) ∨ first(r∗1r2)
⊆ first(r3r5)
(r2 ∈ N ∧ r4
∈ N) ∨ first(r∗1r2)
⊆ first(r4r5)

⎤
⎦

(ElimCat)

r1 � r3

r1 � r2r3

⎡
⎣ ∃l, r4, r5 : r1 = l · r4 ∨ r1 = r∗4r5

r2 ∈ N

first(r1) ⊆ first(r3)

⎤
⎦

later that a pair of regular expressions are in the relation . if and only if their
languages are in the inclusion relation.

We will say that r1 . r2 holds, if it is also true that ‖r1‖ ⊆ ‖r2‖. Each rule
consists of a horizontal line with a conclusion below it, and none, one, or two
premises above the line. Some rules also have side-conditions in square brackets.
We only allow rule instances where the side-conditions are satisfied. Note that
(StarChoice1) and (LetterChoice) each have only one premise.

Figure 1 describes the algorithm for deciding inclusion of regular expressions.
The algorithm takes a pair of regular expressions as input, and if it returns “Yes”
they are in an inclusion relation, if it returns “No” they are not, and if it returns
“1-ambiguous”, the right-hand expression is 1-ambiguous. The stack T is used
for a depth-first search, while the set S keeps track of already treated pairs of
regular expressions.

314 D. Hovland

Input: Two regular expressions r1 and r2

Output: “Yes”, “No” or “1-ambiguous”
Initialize stack T and set S both consisting of pairs of regular expressions ;
push (r1, r2) on T;
while T not empty do

pop (r1, r2) from T;
if (r1, r2)
∈ S then

if first(r1)
⊆ first(r2) or r1 ∈ N ∧ r2
∈ N or r2 = ε ∧ r1
= ε then
return “No”;

end
if r1 � r2 matches conclusion of more than one rule instance then

return “1-ambiguous”;
end
add (r1, r2) to S;
for all premises r3 � r4 of the rule instance where r1 � r2 matches
conclusion do

push (hdf(r3), hdf(r4)) on T;
end

end

end
return “Yes”;

Fig. 1. Algorithm for inclusion of regular expressions

Store

(Letter) a∗b∗ � (a + b)∗

(LetterChoice) aa∗b∗ � a(a + b)∗

(LetterStar) aa∗b∗ � (a + b)(a + b)∗

(LeftStar) aa∗b∗ � (a + b)∗

(Axm)
(Letter) ε � (a + b)∗

(LetterChoice) b � b(a + b)∗

(LetterStar) b � (a + b)(a + b)∗

(StarStarE) b � (a + b)∗

b∗ � (a + b)∗

a∗b∗ � (a + b)∗

Fig. 2. Example usage of the inference rules to decide a∗b∗ � (a + b)∗

Figures 2 and 3 show examples of how to use the inference rules. The ex-
ample noted in the introduction, deciding whether ‖ab‖ ⊆ ‖(a + (b + c)∗c(b +
c) · · · (b+ c))b‖ is shown in Fig. 3. Note that branches end either in an instance
of the rule (Axm), usage of the store of already treated relations, or a failure. In
addition to correctness of the algorithm, termination is of course of paramount
importance. It is natural to ask how the algorithm possibly can terminate, when
the rules (LetterStar), (LeftStar), and (StarChoice2) have more complex premises
than conclusions. This will be answered in the next section.

4 Properties of the Algorithm

To aid the understanding of the algorithm and the rules, Table 2 shows what
rules might apply for each combination of header-forms of the left-hand and

The Inclusion Problem for Regular Expressions 315

right-hand expressions. The only combinations that are never matched are when
the right-hand expression is ε while the left-hand expression is not, and the
combinations where the left-hand expression is ε while the right-hand is of the
form l · r. That the former are not in the inclusion relation follows from the fact
that subexpressions of the forms ε · ε, ε + ε and ε∗ are not allowed, while the
latter combinations follow from that ε
∈ ‖l · r‖.

Table 2. The rules that might apply for any combination of header-forms of the left-
hand and right-hand expressions

Right
Left

ε l · r (r1 + r2) · r3 r∗1 · r2

ε (Axm) (Axm) (Axm)

l · r (Letter)
(ElimCat)

(LetterChoice)
(ElimCat)

(LetterStar)
(r1 + r2) · r3 (LeftChoice) (LeftChoice) (LeftChoice)

r∗1 · r2 (LeftStar)
(ElimCat)

(StarChoice1)
(StarChoice2)

(ElimCat)
(LeftStar)
(StarStarE)

4.1 Preservation of 1-Unambiguity

We must make sure that the rules given in Table 1 preserve 1-unambiguity for
the right-hand expressions. That is, if the right-hand expression in the conclu-
sion is 1-unambiguous, then the right-hand expression in all the premises are
1-unambiguous. For most rules we either have that the right-hand expression
is the same in the premise and the conclusion, or we can use the fact that
all subexpressions of a 1-unambiguous regular expression are 1-unambiguous.
The latter fact was shown by Brüggemann-Klein & Wood [3]. The only re-
maining rule is (LetterStar), where the right-hand expression of the premise
is of the form r1r

∗
1r2 and we know that r∗1r2 is 1-unambiguous. We must use

the fact that all expressions are in star normal form (see Definition 6), thus
r1
∈ N, and first(μ(r1)) ∩ followLast(μ(r1)) = ∅. Take u, p, q, v and w as
in Definition 8, and assume (for contradiction) that "(p) = "(q) and p
= q.
Since r∗1r2 and r1 are 1-unambiguous and r1
∈ N, we can by symmetry assume
that p is from r1 while q is from r∗1r2. This is only possible if u ∈ ‖μ(r1)‖,
p ∈ followLast(μ(r1)), and q corresponds to a member of first(μ(r1)) or of
first(μ(r2)). But since first(μ(r1)) ∩ followLast(μ(r1)) = ∅, this means that also
r∗1r2 is 1-ambiguous, which is a contradiction.

Secondly, we must substantiate the claim that if the side-conditions of more
than one applicable rule hold, the right-hand expression is 1-ambiguous.

Lemma 1. For any two regular expressions r1 and r2, where r2 is 1-unam-
biguous, there is at most one rule instance with r1 . r2 in the conclusion.

Proof. This is proved by comparing each pair of rule instances of rules occurring
in Table 2 and using Definition 8. For each case, we show that the existence

316 D. Hovland

(Axm)
(Letter) ε � ε

(Letter) b � b

(LetterChoice) ab � ab

ab � (a + (b + c)∗c(b + c) · · · (b + c))b

Store

(Letter) (ab)∗a � a(ba)∗

(LetterStar) b(ab)∗a � ba(ba)∗

(Letter) b(ab)∗a � (ba)∗

(LeftStar) ab(ab)∗a � a(ba)∗

(Axm)
(Letter) ε � (ba)∗

a � a(ba)∗

(ab)∗a � a(ba)∗

Fig. 3. Example usages of the inference rules

of several rule instances with the same conclusion implies either that the right
hand expression is 1-ambiguous, or that the side-conditions do not hold.

– The only rules of which there can be several instances with the same conclu-
sion are (StarChoice1) and (LetterChoice). For (LetterChoice), the conclusion
is of the form l · r1 . (r2 + r3) · r4, and the existence of two instances im-
plies that l ∈ first(r2) ∩ first(r3). This can only be the case if the right-hand
expression is 1-ambiguous. For (StarChoice1), the conclusion is of the form
r∗1r2 . (r3 + r4)r5, and the existence of two instances of this rule would
imply that first(r∗1r2) and first(r4) have a non-empty intersection, which fur-
thermore is included in the first-set of r3r5. The expression (r3 + r4)r5 is
therefore 1-ambiguous.

– If instances of both (ElimCat) and either (LetterStar) or (LetterChoice) match
the pair of expressions, then the right-hand expression is of the form r2r3,
where r2 ∈ N and there is an l such that both l ∈ first(r2) and l ∈ first(r3).
Therefore r2r3 is 1-ambiguous.

– If instances of both (ElimCat) and (LeftStar) match the pair of expressions,
then the relation is of the form r∗1r2 . r3r4, where r3 ∈ N and both
first(r1) ⊆ first(r4) and first(r3) ∩ first(r1)
= ∅. This can only hold if
r3r4 is 1-ambiguous.

– If instances of both (ElimCat) and either (StarChoice1) or (StarChoice2) had
the same conclusion, then this conclusion is of the form r∗1r2 . (r3 + r4)r5,
where r3 + r4 ∈ N and both first(r∗1r2) ⊆ first(r5) and first(r∗1r2) ∩ first(r3 +
r4)
= ∅. Therefore the right-hand expression (r3 + r4)r5 is 1-ambiguous.

– It is not possible that instances of (ElimCat) and (StarStarE) have the same
conclusion, because that would mean that r3 in (ElimCat) would be ε, and
that cannot satisfy the side-conditions of (ElimCat).

– It is neither possible to instantiate (LeftStar) and (StarStarE) with the same
expressions below the line, as this would not satisfy the side-conditions of
(LeftStar).

– Finally, it is not possible to instantiate (StarChoice1) and (StarChoice2) with
the same expressions below the line. The two last lines in the side-conditions
of both rules prevent this.

The Inclusion Problem for Regular Expressions 317

4.2 Invertibility of the Rules

It is now not hard to prove that each of the rules given in Table 1 are invertible,
in the sense that, for each rule instance, assuming that (1) the side-conditions
hold and (2) no other rule instance matches the conclusion, then the conclusion
holds if and only if the conjunction of the premises hold.

Proof

– For (Axm), we only note that the side-condition is that the right-hand ex-
pression is nullable, and then {ε} is of course a subset of the language. The
absence of any premises is to be treated as an empty conjunction, which is
always true.

– For (Letter) we are just adding (removing) a single letter prefix to (from)
both languages, and this preserves the inclusion relation.

– For (LetterStar), the conclusion is of the form lr1 . r∗2r3. We note first that
‖r2r∗2r3‖ ⊆ ‖r∗2r3‖, and therefore the premise implies the conclusion. For the
other direction, note that since l ∈ first(r2) and (ElimCat) does not match
the conclusion, the l in r2 must be the position used to match the first l in
a word, and the premise must therefore also hold.

– For (LetterChoice), that the premise implies the conclusion follows from Defi-
nition 2, while showing the other direction depends on the fact that no other
instance of (LetterChoice) nor (ElimCat) match the conclusion. The latter
implies then that l
∈ (first(r5−i) ∪ first(r4)), so we must have the premise.

– For (LeftChoice), the implications follow from Definition 2.
– (LeftStar) and (StarChoice2) hold by Definition 2, as ‖r∗1r2‖ = ‖r1r∗1r2‖∪‖r2‖.
– For (StarStarE), note ‖r1‖ ⊆ ‖r∗1‖. So, obviously, if r∗1 . r∗2 , then also r1 . r∗2 .

The other direction holds by first seeing that ‖r1‖ ⊆ ‖r∗2‖ implies ‖r∗1‖ ⊆
‖r∗2∗‖, and secondly that ‖r∗2∗‖ = ‖r∗2‖. Both are standard results from
language theory.

– For (StarChoice1), that ‖r∗1r2‖ ⊆ ‖rir5‖ implies ‖r∗1r2‖ ⊆ ‖(r3 + r4)r5‖, when
i ∈ {3, 4}, follows from Definition 2. The other direction follows from the as-
sumption that no other rule instance matches the conclusion, combined with
the third side-condition, which together imply that ‖r∗1r2‖ ∩ ‖r7−ir5‖ = ∅.

– For (ElimCat), the fact that the premise implies the conclusion, can be seen
using Definition 2 and r2 ∈ N. For the other direction, note that since no
other rule instance matches the conclusion r1 . r2r3, and since first(r1) ⊆
first(r3), we must have first(r1) ∩ first(r2) = ∅. Therefore ‖r1‖ ∩ ‖r2r3‖ =
‖r1‖ ∩ ‖r3‖, and we get that ‖r1‖ ⊆ ‖r2r3‖ implies ‖r1‖ ⊆ ‖r3‖. ��

Invertibility implies that, at any point during an execution of the algorithm, the
pair originally given as input is in the inclusion relation if and only if all the
pairs in both the store S and the stack T are in the inclusion relation. These
properties are used in the proofs of soundness and completeness below.

4.3 Termination and Polynomial Run-Time

The algorithm always terminates in polynomial time. Termination is guaranteed
by two properties. First, the use of the store S means that any pair of regular

318 D. Hovland

expressions is treated at most once. Secondly, all regular expressions occurring
in conclusions are either ε or of the form r1 · r2, where r1 is a subexpression of
the corresponding expression input to the algorithm, while r2 is unique for each
r1. Both properties can be shown by induction on the steps in an execution of
the algorithm.

Since a regular expression has only a quadratic number of subexpressions,
then the number of possible different rule instances in a run of the algorithm is
O(n4), where n is the sum of the length of the regular expressions input to the
algorithm. Since the work at each rule instance is polynomial in the size of the
input to the algorithm, we get a polynomial run-time for the whole algorithm.

4.4 Soundness and Completeness

The only obstacle to showing soundness of the algorithm, is to show that our
usage of the store is safe. Most critical is the use of the store to eliminate loops.
To get an intuition as to why this is safe, we refer the reader to the right hand
example in Fig. 3. Note that the conclusion holds if and only if ∀i, i ≥ 0 :
‖ab‖i{a} ⊆ ‖a(ba)∗‖ This can be proved by an induction on i. The right-hand
branch in Fig. 3 corresponds to the base case i = 0. And we get the induction case
by taking the left-hand branch and replacing the ∗ in the left-hand expressions
by ab repeated i − 1 times. We will use a similar observation to show that the
use of the store is safe.

We model an execution of the algorithm as a directed tree. The internal nodes
in this tree are rule instances, and the leaves are pairs where the first element
is a pair of regular expressions and the second element is either (Axm), Store or
Fail. Each node has, for each premise, an edge going either to a node with that
conclusion, or to a leaf containing the corresponding pair of regular expressions.

With a loop in an execution of the algorithm, we mean a directed path in its
tree, the start being an internal node and the end a leaf containing Store, such
that the conclusion in the rule instance in the first node, corresponds to the pair
of regular expressions in the leaf. The intuition is that this path would have been
repeated indefinitely, looped, if the store S had not prevented it.

Let the size of a regular expression be the sum of the number of letters
and operators ∗ and + occurring in the expression. We will say that a rule
instance in a directed path is left-increasing or right-increasing, respectively, if
the left-hand or right-hand expression in the conclusion has smaller size than
the corresponding expression in the next node in the loop. Left-decreasing and
right-decreasing instances are defined similarly.

Instances of (StarChoice2) and (LeftStar) are either left-increasing or left-
decreasing, while an instance is right-increasing if and only if it is an instance
of (LetterStar). Instances of all other rules, except (Axm) and (ElimCat) are al-
ways left-decreasing, right-decreasing, or both. An instance which is neither left-
increasing nor left-decreasing has the same expression on the left-hand side in
the conclusion and the premise corresponding to the next node in the path. Ex-
cept for certain instances of (ElimCat), the same holds for the right-hand side.

The Inclusion Problem for Regular Expressions 319

Lemma 2. In any loop, there is at least one right-increasing and one left-
increasing instance.

The proof is omitted for space considerations.
Remark at this point, that only the rules (LeftStar) and (StarChoice2) can

have premises not containing starred sub-expressions which are in the left-hand
expression of the conclusion. Thus, given a tree modeling an execution of the
algorithm, in any directed path starting at a node where the left-hand expression
has a subexpression r∗1 and going to a node where the left-hand expression does
not contain such a subexpression, there is a left-decreasing instance where the
conclusion has left-hand side r∗1r2 for some r2.

Theorem 1 (Soundness). (r1 . r2)⇒ ‖r1‖ ⊆ ‖r2‖
Proof. Assume a successful execution of the algorithm. Since the rules are in-
vertible, and the base case (Axm) holds by definition of N, we only need to show
that the usage of the store S was sound. The store is used in two different sit-
uations. The cases where the pair was added to the store in a different branch
hold because the rules are used depth-first. The other cases correspond to the
loops. From Lemma 2, every such leaf has a left-increasing parent node. If we
can show that the conclusion r∗1r2 . r3 of these left-increasing nodes are true,
we are done. We only need to show that for any i > 0, the branch rooted in
the child (in the loop) of this node can be used to show that ‖r1‖i‖r2‖ ⊆ ‖r3‖.
This can be done by replacing r1r∗1r2 by ri1r2 in the conclusion. The steps in the
branch can be used in a similar way, except that the loop(s) will be unrolled at
most i−1 times, and that at least i−1 left-increasing instances will be removed
together with the subbranches corresponding to the premises with smaller left-
hand expressions. At the ith minimal left-increasing instance we get that the
conclusion is the same as the premise with the smaller left-hand expression, and
can be treated by the corresponding branch. ��
Theorem 2 (Completeness). If ‖r1‖ ⊆ ‖r2‖, the algorithm will either accept
r1 . r2, or it will report that the 1-ambiguity of r2 is a problem.

Proof. Since the rules are invertible and the algorithm always terminates, all
that remains is to show that for all regular expressions r1 and r2, where their
languages are in an inclusion relation, there is at least one rule instance with
conclusion r1 . r2. This is done by a case distinction on the header-forms of r1
and r2, using Tables 1 and 2 and Definitions 2 and 3, and noting that ‖r1‖ ⊆ ‖r2‖
implies first(r1) ⊆ first(r2). ��

5 Related Work and Conclusion

Hosoya et al [8] study the inclusion problem for XML Schemas. They also use
a syntax-directed inference system, but the algorithm is not polynomial-time.
Salomaa [12] presents an axiom systems for equality of regular expressions, but
does not treat the run-time of doing inference in the system. The inference system

320 D. Hovland

used by our algorithm has some inspiration from the concept of derivatives of
regular expressions, first defined by Brzozowski [4]. Chen & Chen [5] describe
an algorithm for inclusion of 1-unambiguous regular expressions, which is based
on derivatives, and which has some similarities with the algorithm presented in
the present paper. They do not treat the left-hand and right-hand together in
the way that the rules of the algorithm in this paper does. The analysis of their
algorithm depends on both the left-hand and the right-hand regular expressions
being 1-unambiguous.

We have described a polynomial-time algorithm for inclusion of regular expres-
sions. The algorithm is based on a syntax-directed inference system, and is guar-
anteed to give an answer if the right-hand expression is 1-unambiguous. If the
right-hand expression is 1-ambiguous the algorithm either reports an error or gives
the answer. In addition, unnecessary parts of the right-hand expression are auto-
matically discarded. This is an advantage over the classical algorithms for inclu-
sion. An implementation of the algorithm is available on the author’s website.

References

1. Book, R., Even, S., Greibach, S., Ott, G.: Ambiguity in graphs and expressions.
IEEE Transactions on Computers c-20(2), 149–153 (1971)

2. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoretical Com-
puter Science 120(2), 197–213 (1993)

3. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Informa-
tion and Computation 140(2), 229–253 (1998)

4. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
5. Chen, H., Chen, L.: Inclusion test algorithms for one-unambiguous regular ex-

pressions. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigün, H. (eds.) ICTAC 2008.
LNCS, vol. 5160, pp. 96–110. Springer, Heidelberg (2008)

6. Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Sur-
veys 16(5), 1–53 (1961)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

8. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. ACM
Trans. Program. Lang. Syst. 27(1), 46–90 (2005)

9. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRE Transactions on Electronic Computers 9, 39–47 (1960)

10. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential space. In: Proceedings of FOCS, pp. 125–129.
IEEE, Los Alamitos (1972)

11. Nerode, A.: Linear automaton transformations. Proceedings of the American Math-
ematical Society 9(4), 541–544 (1958)

12. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J.
ACM 13(1), 158–169 (1966)

Learnability of Automatic Classes

Sanjay Jain1,�, Qinglong Luo1, and Frank Stephan2,��

1 Department of Computer Science,
National University of Singapore, Singapore 117417, Republic of Singapore

sanjay@comp.nus.edu.sg, luoqingl@comp.nus.edu.sg
2 Department of Mathematics and Department of Computer Science,

National University of Singapore, Singapore 117543, Republic of Singapore
fstephan@comp.nus.edu.sg

Abstract. The present work initiates the study of the learnability of
automatic indexable classes which are classes of regular languages of a
certain form. Angluin’s tell-tale condition characterizes when these clas-
ses are explanatorily learnable. Therefore, the more interesting question
is when learnability holds for learners with complexity bounds, formu-
lated in the automata-theoretic setting. The learners in question work
iteratively, in some cases with an additional long-term memory, where
the update function of the learner mapping old hypothesis, old memory
and current datum to new hypothesis and new memory is automatic.
Furthermore, the dependence of the learnability on the indexing is also
investigated. This work brings together the fields of inductive inference
and automatic structures.

1 Introduction

Consider the following scenario for learning. A learner is receiving, one piece at
a time, data about a target concept. As the learner is receiving the data, it con-
jectures its hypothesis about what the target concept might be. The hypothesis
may be modified/changed as more data is received. One can consider the learner
to be successful if the sequence of hypotheses converges to a correct hypothesis
which explains the target concept. This is essentially the model of explanatory
learning proposed by Gold [11].

The concept classes of interest to us in this paper are the classes of languages
(a language is a subset of Σ∗, for some finite alphabet Σ). The data provided
to the learner then becomes a sequential presentation of all the elements of the
target language, in arbitrary order, with repetition allowed. Such a presentation
of data is called a text for the language. Note that in a text, only positive data
is presented to the learner, and negative data is not given. If both positive and
negative data are presented to the learner, then the mode of presentation is
called informant. Here we will only be concentrating on learning from texts.

� Supported in part by NUS grant number R252-000-308-112.
�� Supported in part by NUS grant numbers R252-000-308-112 and R146-000-114-112.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 321–332, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

322 S. Jain, Q. Luo, and F. Stephan

In most cases, one considers only recursive learners. The hypotheses produced
by the learner describe the language to be learnt in some form, for example,
they are grammars generating the language. The learner is said to Ex-learn the
target language if the sequence of hypotheses converges to one correct hypothesis
describing the language to be learnt (here “Ex-learn” stands for explanatory
learning). Learning of one language L is not interesting, as the learner might
ignore all inputs and always output the same hypothesis which is correct for L.
Thus, what is considered is whether all languages from a class of languages are
Ex-learnt by some particular learner. Finally, a class of languages is Ex-learnable
if some learner Ex-learns it.

Since Gold, several other models of learning have been considered by the
researchers. For example, in behaviourally correct learning (BC-learning) [6] the
learner is not required to converge syntactically to one correct hypothesis, but it
is just required that all hypotheses are correct from some time onwards. Besides
the mode of convergence, researchers have also considered several properties
of learner such as consistency, where the hypothesis of the learner is required
to contain the elements seen in the input so far (see [5,7]), conservativeness,
where the learner is not allowed to change a hypothesis which is consistent with
the data seen so far (see [2]) and iterativeness, where the new hypothesis of
the learner depends only on the previous hypothesis and the latest datum (see
[21,22]) (iterative learning is often also called incremental learning). The formal
definitions of the above criteria are given in Section 2 below.

Besides considering models of learning, there has also been interest in consid-
ering learning of practical and concrete classes such as pattern languages [1,15],
elementary formal systems [20] and the class of regular languages [4]. As the
class of all regular languages is not learnable from positive data [11], Angluin
[3] initiated the study of the learnability of certain subclasses of regular lan-
guages from positive data. In particular, she showed the learnability of the class
of k-reversible languages. These studies were later extended [9,12]. The classes
considered in these studies were all superclasses of the class of all 0-reversible lan-
guages, which is not automatic; for example, every language {0, 1}∗{2}n{0, 1}∗
is 0-reversible but the class of these languages is not automatic.

In this work, we consider those subclasses of regular languages where the
membership problem is regular in the sense that one automaton accepts a com-
bination (called “convolution”) of an index and a word if and only if the word
is in the language given by the index. This is formalized in the framework of
automatic structures [8,13,14,19]. Here are some examples of automatic classes:

– The class of sets with up to k elements for a constant k;
– The class of all finite and cofinite subsets of {0}∗;
– The class of all intervals of an automatic linear order on a regular set;
– Given an automatic presentation of the ordered group of integers (Z,+, <)

and a first-order formula Φ(x, a1, . . . , an) with parameters a1, . . . , an ∈ Z,
the class consisting of all sets {x ∈ Z : Φ(x, a1, . . . , an)} with a1, . . . , an ∈ Z.

It is known that the automatic relations are closed under first-order theory, as
proven by Khoussainov and Nerode [14]. This makes several properties of such

Learnability of Automatic Classes 323

classes regular and thus decidable; it also makes it possible to define learners
using first-order definitions. Studies in automatic structures have connections to
model checking and Boolean algebra [8,14].

A tell-tale set for a language L in a class L is a finite subset D of L such
that, for every L′ ∈ L, D ⊆ L′ ⊆ L implies L′ = L. A class L satisfies Angluin’s
tell-tale condition iff every language L in L has a tell-tale set (with respect to
L). Angluin [2] showed that any class of languages which is learnable (even by
a non-recursive learner, for which Ex-learning and BC-learning are the same)
must satisfy Angluin’s tell-tale condition. We show in Theorem 6 that every
automatic class that satisfies Angluin’s tell-tale condition is Ex-learnable by a
recursive learner which is additionally consistent and conservative. Additionally,
it is decidable whether an automatic class satisfies Angluin’s tell-tale condition
and thus whether it is Ex-learnable (see Corollary 7).

As we are considering learning of automatic structures, it is natural to also
consider learners which are simpler than just being recursive. A natural idea
would be to consider learners which are themselves described via automatic
structures. This would put both, the learners and the classes to be learnt into
a unified framework. Furthermore, the learners will be linear time computable
and additional constraints on the memory of the whole process can be satisfied.
This approach is justified by the observation that a learner might observe much
more data than it can remember and therefore it is not realistic to assume
that the whole learning history can be remembered. To model the above, we
consider variants of iterative learners [21,22] and learners with bounded long-
term memory [10]. The basic idea is that the learner reads in each round a datum
and updates the long term memory and the hypothesis based on this datum; for
automatic learners, this update function is then required to be automatic.

As automatic structures are relatively simple to implement and analyze, it is
interesting to explore the capabilities of such learners. In Section 3 we formally
define automatic learners (iterative learners as well as iterative learners with
long-term memory). Specifically we consider the following bounds on memory:
memory bounded by the size of the hypothesis, memory bounded by the size of
the largest word seen in the input so far, besides the default cases of no mem-
ory (iterative learning) and the case where we do not put any specific bounds
on memory except as implicit from the definition of automatic learners. The-
orem 11 shows that there are automatic classes which are Ex-learnable (even
iteratively) but not learnable by any automatic learners (with unconstrained
long-term memory except implicitly due to the definition of automatic learner).

In Section 3 we show the relationship between various iterative automatic
learners and iterative automatic learners with long-term memory. For example,
if long-term memory is not explicitly bounded, then automatic Ex-learning is
the same as automatic BC-learning (in contrast to the situation in learning of
recursively enumerable languages by recursive learners, where there is a differ-
ence [6]). Additionally, for BC-learning, different bounds on long-term memory
do not make a difference, as all automatically BC-learnable classes (with no
explicit long-term memory bound) are iteratively automatically BC-learnable

324 S. Jain, Q. Luo, and F. Stephan

(see Theorem 12). However, for explanatory learning there is a difference if one
considers long-term memory bounded by hypothesis size, or whether long-term
memory is bounded by the size of maximum word seen in the input so far (see
Theorem 13). It is open at this point whether long-term memory size bounded
by the longest word seen so far is equivalent to there being no explicit bound on
long-term memory. Furthermore, it is open whether maximum word-size memory
can simulate hypothesis-size memory.

In Section 4 we consider consistent learning by automatic learners. Unlike
Theorem 6, where we saw that general learners for automatic classes can be made
consistent, automatic learners cannot in general be made consistent. Theorem 16
shows that there is an automatic class L which is Ex-learnable by an automatic
iterative learner but not Ex-learnable by a consistent automatic learner (with no
constraints on long-term memory, except that implicit due to the learner being
automatic). Theorem 17 shows that there is an automatic class L, which is Ex-
learnable by a consistent automatic learner or an iterative automatic learner,
but not by a consistent iterative learner. Theorem 18 shows the existence of an
automatic class L which is Ex-learnable by a consistent and iterative automatic
learner using a class comprising hypothesis space (i.e., using hypotheses from
an automatic class which is a superset of the class L), but not Ex-learnable
by a consistent automatic learner (with no constraints on long-term memory,
except that implicit due to the learner being automatic) using a class preserving
hypothesis space (i.e., using a hypothesis space which contains languages only
from L).

One of the reasons for the difficulty of learning by iterative learners is that
they forget past data. An attempt to overcome this is to require that every datum
appears infinitely often in the text — such a text is called a fat text [18]. Fat
texts are quite frequently studied in learning theory. In Section 5 we investigate
the natural question of whether requiring fat texts permits to overcome the
limitations of iterative learning and related criteria. In Theorem 21 we show that
every automatic class that satisfies Angluin’s tell-tale condition is Ex-learnable
(using the automatic class itself as the hypothesis space) from fat texts by an
automatic learner with long-term memory bounded by the size of the largest
word seen so far. If one allows an arbitrary class preserving hypothesis space, then
one can even do Ex-learning in the above case by iterative automatic learners
and no additional long-term memory besides the hypothesis is needed.

In Theorem 22, we show the existence of automatic classes which are auto-
matically iteratively learnable (even from normal texts) using a class preserving
hypothesis space, but not conservatively iteratively learnable using a class pre-
serving hypothesis space (even by arbitrary recursive learners) on a fat text.

Partial identification is a very general learning criterion, where one requires
that some fixed correct hypothesis is output infinitely often by the learner while
all other hypotheses are output only finitely often [18]. In Theorem 24 we show
that every automatic class is partially learnable by an automatic iterative learner.
This corresponds to the result by Osherson, Stob and Weinstein [18] that the

Learnability of Automatic Classes 325

whole class of all recursively enumerable languages is partially learnable by some
recursive learner.

2 Preliminaries

Let N denote the set of natural numbers. Z denotes the set of integers. An
alphabet Σ is any non-empty finite set. Σ∗ is the set of all strings (words) over
the alphabet Σ. ε denotes the empty string. A string of length n over Σ will
be treated as a function from the set {0, 1, 2, . . . , n− 1} to Σ. A language is a
subset of Σ∗ and a class is a set of languages. The relation x <ll y denotes that
x is length lexicographically before y. In the present work we will only consider
classes of regular sets. Furthermore, Σ will always refer to the alphabet on which
languages and language classes are defined.

An indexing of a class L is a sequence of sets Lα with α ∈ I, for some domain
I, such that L = {Lα : α ∈ I}. Often we will refer to both, the class and the
indexing, as {Lα : α ∈ I}, where the indexing is implicit. The I above is called
the set of legal indices. We will always assume that the indices in I are taken as
words over an alphabet and we usually denote this alphabet with the letter Γ .

Now we consider notions related to automatic structures. Let n > 0 and Σ1,
Σ2, . . . , Σn be alphabets not containing #. Let x1 ∈ Σ∗

1 , x2 ∈ Σ∗
2 , . . . , xn ∈ Σ∗

n

be given. Let � = max{|x1| , |x2| , . . . , |xn|} and let yi = xi#�−|xi|. Define z to be
a string of length � such that z(j) is the symbol made up of the j-th symbols of
the strings y1, y2, . . . , yn: z(j) = (y1(j) , y2(j) , . . . , yn(j)), where z(j) is a symbol
in the alphabet (Σ1 ∪ {#}) × (Σ2 ∪ {#}) × . . . × (Σn ∪ {#}) . We call z the
convolution of x1, x2, . . . , xn and denote it as conv(x1, x2, . . . , xn). Let R ⊆ Σ∗

1×
Σ∗

2× . . .×Σ∗
n. We call the set S = {conv(x1, x2, . . . , xn) : (x1, x2, . . . , xn) ∈ R},

the convolution of R. Furthermore, we say that R is automatic if and only if the
convolution of R is regular. An indexing {Lα : α ∈ I} is automatic if and only if
I is regular and E = {(α, x) : x ∈ Lα, α ∈ I} is automatic. A class is automatic
if and only if it has an automatic indexing.

The following Fundamental Theorem of Automatic Structures is useful to
define automatic learners and to decide the learnability of automatic classes.

Fact 1 (Khoussainov, Nerode [14]). Any relation that is first-order definable
from existing automatic relations is automatic.

Next, we recall a few definitions of learning, followed by a result from Angluin
[2] that characterizes learnable classes. For any alphabet Σ, Γ , we let � be a
special character not in Σ∗ which is called the pause symbol and ? be a spe-
cial character not in Γ ∗ which is called the no-conjecture symbol. Let Σ be
the alphabet over which languages are being considered. We use σ, τ to de-
note finite sequences over Σ∗ ∪ {�} and T to denote infinite sequences over
Σ∗ ∪ {�}. Furthermore, λ denotes the empty sequence. The length of a se-
quence σ is denoted by |σ|. T [m] denotes the initial segment of T of length m.
σ / τ (respectively, σ / T) denotes the concatenation of σ and τ (respectively,
σ and T). Furthermore, σ / x denotes the concatenation of a sequence σ with

326 S. Jain, Q. Luo, and F. Stephan

a sequence containing just x. We let cnt(σ) = {x ∈ Σ∗ : ∃ n < |σ| (σ(n) = x)}
and cnt(T) = {x ∈ Σ∗ : ∃ n ∈ N (T (n) = x)}. For every set L and every infi-
nite sequence T over Σ∗ ∪ {�} with L = cnt(T), we call T a text for L. For
every L ⊆ Σ∗, let txt(L) = {T ∈ (Σ∗ ∪ {�})ω : cnt(T) = L} and seq(L) ={
σ ∈ (Σ∗ ∪ {�})∗ : cnt(σ) ⊆ L}.
Given a class L, a hypothesis space for L is a class {Hα : α ∈ J} ⊇ L with

corresponding indexing, where J is the set of indices for the hypothesis space.
We will only consider automatic hypothesis spaces. A hypothesis space is class
preserving iff L = {Hα : α ∈ J}. A hypothesis space is class comprising iff
L ⊆ {Hα : α ∈ J}. A hypothesis space is one-one iff it is class preserving and,
for every L ∈ L, there is exactly one α ∈ J with L = Hα.

A learner is a function F : (Σ∗ ∪ {�})∗ → J ∪ {?}. We use F for learners
which may not be recursive. We use P for iterative learners and Q for iterative
learners with additional long-term memory. The learners P and Q are usually
automatic. Iterative and automatic learners are defined in Section 3 below.

Definition 2. Fix a class L and a hypothesis space {Hα : α ∈ J} with J being
the set of indices. Let F be a learner.
(a) [11] We say that F Ex-learns L if and only if for every L ∈ L and every
T ∈ txt(L), there exists an n ∈ N and an α ∈ J with Hα = L such that, for
every m ≥ n, F(T [m]) = α.
(b) [6] We say that F BC-learns L if and only if for every L ∈ L and every
T ∈ txt(L), there exists an n ∈ N such that for every m ≥ n, HF(T[m]) = L.
(c) [18] We say that F Part-learns L if and only if for every L ∈ L and every
T ∈ txt(L), there exists an α ∈ J such that (i) Lα = L, (ii) for every n ∈ N,
there exists a k ≥ n such that F(T [k]) = α and (iii) for every β ∈ J with β
= α,
there exists an n ∈ N such that for every k ≥ n, F(T [k])
= β.

For Ex, BC and Part learning, one can assume without loss of generality that
the learner never outputs ?. However, for some other criteria of learning, this
may not be the case.

Definition 3. Let Σ and Γ be alphabets. Let {Hα : α ∈ J} be a hypothesis
space with some J being the set of indices. Let F be a learner.
(a) [5] We say that F is consistent on L if and only if for every σ ∈ seq(L),
if F(σ) ∈ J , then cnt(σ) ⊆ HF(σ). We say that F is consistent on L if it is
consistent on each L ∈ L.
(b) [2] We say that F is conservative on L if and only if for every σ, σ′ ∈ seq(L),
if F(σ) ∈ J and cnt(σ / σ′) ⊆ HF(σ), then F(σ / σ′) = F(σ). We say that F is
conservative on L if it is conservative on each L ∈ L.
(c) [17] We say that F is set-driven if and only if for every σ1, σ2 ∈ (Σ∗ ∪ {�})∗,
if cnt(σ1) = cnt(σ2), then F(σ1) = F(σ2).

When we are considering learning consistently (conservatively, set-drivenly) a
class L, we mean learning of the class by a learner which is consistent (conser-
vative, set-driven) on L. For each learning criterion LC such as Ex, BC and
Part, we let LC also denote the collection of all classes which are LC-learned
by a recursive learner using some class comprising hypothesis space.

Learnability of Automatic Classes 327

The following recalls the definition of tell-tale set and introduces the notion
of tell-tale cut-off word.

Definition 4 (Angluin’s Tell-Tale Condition [2]). Suppose L is a class of
languages.
(a) For every L ∈ L, we say that D is a tell-tale set of L (in L) if and only if D
is a finite subset of L and for every L′ ∈ L with D ⊆ L′ ⊆ L we have L′ = L.
(b) For every L ∈ L and x ∈ Σ∗, we say that x is a tell-tale cut-off word of L
(in L) if and only if {y ∈ L : y ≤ll x} is a tell-tale set of L (in L).
(c) We say that L satisfies Angluin’s tell-tale condition if and only if every L ∈ L
has a tell-tale set (in L), or equivalently, a tell-tale cut-off word (in L).

Fact 5 (Angluin [2]). Let Σ be an alphabet. A class L of recursively enumer-
able languages is Ex-learnable (by a not necessarily recursive learner) if and only
if L satisfies Angluin’s tell-tale condition.

Note that for non recursive learners, Ex and BC learning are equivalent. Given a
uniformly recursive class {Lα : α ∈ J}, Angluin [2] proved that the learner can be
chosen to be recursive iff there is a uniformly recursively enumerable class of sets
Eα such that each Eα is a tell-tale set for Lα. Using the Fundamental Theorem
for automatic structures, the following theorem shows that any automatic class
satisfying Angluin’s tell-tale condition is Ex-learnable and the learner can be
made to be recursive, consistent, conservative and set-driven.

Theorem 6. Suppose L is automatic. Then, there is a learner which recursi-
vely, consistently, conservatively and set-drivenly Ex-learns L if and only if L
satisfies Angluin’s tell-tale condition.

Corollary 7. It is decidable whether an automatic family L = {Lα : α ∈ I}
is Ex-learnable, where the input given to the decision-procedure is any DFA
accepting the regular language {conv (α, x) : x ∈ Lα, α ∈ I}.

3 Automatic Learning of Automatic Classes

It was shown above that all automatic classes that satisfy Angluin’s tell-tale
condition, can be learnt using a recursive learner. Learners that are able to
memorize all past data are not practical. Rather, most learners in the setting
of artificial intelligence are iterative, in the sense that these learners conjecture
incrementally as they are fed the input inductively, one word at a time [21,22].
Iterative learners base their new conjectures only on their previous conjecture
and the new datum (in other words they do not remember their past data, except
as coded in the hypothesis).

In the realm of automatic structures, it is natural to consider automatic learn-
ers, where the learning function is in some way automatic. In the case of general
recursive learners, there does not seem to be any natural correspondence which
will lead to an interesting model. However, for iterative learners, there is a natu-
ral corresponding definition for automatic learners where the update function is

328 S. Jain, Q. Luo, and F. Stephan

automatic. Below we formally define automatic iterative learning and its variant,
iterative learning with long-term memory.

Definition 8 (Wexler, Culicover [21], Wiehagen [22]). Let Σ, Γ and Δ
be alphabets. Let L be a class (defined over alphabet Σ) and {Hα : α ∈ J}
be a hypothesis space with J ⊆ Γ ∗. An iterative learner is any function P :
(J ∪ {?})× (Σ∗ ∪ {�})→ J ∪ {?}. An iterative learner with long-term memory
is any function Q : ((J ∪ {?})×Δ∗) × (Σ∗ ∪ {�}) → (J ∪ {?}) ×Δ∗, where Δ
is a suitable alphabet for memory.

For an iterative learner P, we write P(w0w1 . . . wn) as a short hand for the
expression P(. . .P(P(?, w0), w1), . . . , wn). Similar notation applies when con-
sidering iterative learners Q with long term memory. With these modifications,
P and Q are seen as learners and the definitions of all the learning criteria carry
over. Note that convergence of a learner Q is defined only with respect to the
hypothesis and not the memory.

Definition 9. Suppose L is defined over alphabet Σ, and {Hα : α ∈ J} is a
hypothesis space. Suppose P is an iterative learner and Q is an iterative learner
with long-term memory over some alphabet Δ.
(a) We say that P is automatic if and only if P, as a relation over (J ∪ {?}) ×
(Σ∗ ∪ {�}) × (J ∪ {?}), is automatic. We say that Q is automatic if and only
if Q, as a relation over ((J ∪ {?})×Δ∗) × (Σ∗ ∪ {�}) × ((J ∪ {?})×Δ∗), is
automatic.
(b) We say that the long-term memory of Q is bounded by the longest datum
seen so far if and only if there exists a constant c ∈ N such that for every
σ ∈ (Σ∗ ∪ {�})∗, if Q(σ) = (α, μ), then |μ| ≤ max {|x| : x ∈ cnt(σ)}+ c.
We say that the long-term memory of Q is bounded by the hypothesis size if and
only if there exists a constant c ∈ N such that for every σ ∈ (Σ∗ ∪ {�})∗, if
Q(σ) = (α, μ), then |μ| ≤ |α|+ c.
Automatic iterative learners with long-term memory are called automatic learn-
ers from now on.

Definition 10. For the following, the hypothesis space is allowed to be any
class comprising automatic family. Let LC be one of Ex, BC and Part. We let
(a) AutoLC be the set of all classes of languages that are LC-learned by some
automatic learner with arbitrary long-term memory,
(b) AutoWordLC be the set of all classes of languages that are LC-learned by
some automatic learner with long-term memory that is bounded by the longest
datum seen so far,
(c) AutoIndexLC be the set of all classes of languages that are LC-learned by
some automatic learner with long-term memory that is bounded by the hypoth-
esis size,
(d) AutoItLC be the set of all classes of languages that are LC-learned by some
automatic iterative learner.

We first show that automatic learners are not as powerful as general learners.

Learnability of Automatic Classes 329

Theorem 11. There exists an automatic L that is Ex learnable by some recur-
sive iterative learner, but which is not AutoEx-learnable.

We now consider the relationship between various long-term memory limitations
for the main criteria of learning: Ex and BC. Interestingly, if the memory is not
explicitly constrained, then every automatic class which is BC-learnable can
be Ex-learnt. For BC-learning, long-term memory is not useful (for automatic
learners), as such memory can be coded into the hypothesis itself, as long as one
is allowed padding of the hypothesis.

Theorem 12
(a) AutoEx = AutoBC.
(b) AutoBC = AutoWordBC = AutoIndexBC = AutoItBC.

The next theorem shows that, for Ex learning, there are classes which can be
learnt by automatic learners having long-term memory bounded by longest word
size seen so far while they cannot be learnt by automatic learners having long-
term memory bounded by hypothesis size. The following theorem holds even
when one considers class preserving hypothesis spaces.

Theorem 13
(a) AutoItEx ⊆ AutoWordEx ⊆ AutoEx.
(b) AutoItEx ⊆ AutoIndexEx ⊆ AutoEx.
(c) AutoWordEx
⊆ AutoIndexEx.

Open Problem 14
The following problems are currently open:
(a) Is AutoEx = AutoWordEx?
(b) Is AutoIndexEx ⊆ AutoWordEx?
(c) Is AutoIndexEx ⊆ AutoItEx?

If the alphabet is unary, then every AutoEx-learner can be replaced by an
AutoWordEx-learner which answers (a) and (b) above in the affirmative for
this special case. Also, the separation in Theorem 13 (c) is witnessed by a family
of languages defined over unary alphabet.

Theorem 15. Suppose that Σ = {0} and L ⊆ powerset(Σ∗) is an automatic
class. Then L is in AutoWordEx as witnessed by a conservative, consistent
and set-driven learner if and only if L satisfies Angluin’s tell-tale condition.

Hence, for language classes over a unary alphabet, AutoWordEx and AutoEx
coincide and properly contain AutoIndexEx.

4 Consistent Learning

Note that for general recursive learners, all learnable automatic classes have a
consistent, conservative and set-driven recursive learner, see Theorem 6 above.

330 S. Jain, Q. Luo, and F. Stephan

Thus, on one hand, consistency, conservativeness and set-drivenness are not re-
strictive for learning automatic classes by recursive learners. On the other hand,
in this section, we will show that consistency is a restriction when learning au-
tomatic classes by automatic learners. It will be interesting to explore similar
questions for conservativeness and set-drivenness.

The following theorem gives an automatic class which can be Ex-learnt by
an iterative automatic learner but which cannot be Ex-learnt by any consistent
automatic learner.

Theorem 16. There exists an automatic L such that
(a) L is AutoItEx learnable using a class preserving hypothesis space;
(b) L is not consistently AutoEx learnable even using a class comprising hy-
pothesis space.

The following theorem gives an automatic class L which can be Ex-learnt by a
consistent automatic learner or Ex-learnt by an iterative automatic learner but
which cannot be Ex-learnt by a consistent iterative automatic learner. Thus,
requiring both consistency and iterativeness is more of a restriction compared
to requiring only one of them.

Theorem 17. There exists an automatic L such that
(a) L is consistently AutoEx learnable using L as the hypothesis space;
(b) L is AutoItEx learnable using L as the hypothesis space;
(c) L is not consistently AutoItEx learnable.

The following theorem shows the existence of an automatic class which can be
Ex-learnt by a consistent automatic iterative learner using a class comprising hy-
pothesis space, but cannot be Ex-learnt by a consistent automatic learner using
a class preserving hypothesis space. Thus, in some cases having a larger hypoth-
esis space makes consistency problem easier to handle. Similar phenomenon for
monotonic learning (for recursive learners) has been observed by [16].

Theorem 18. There exists an automatic class L such that
(a) L is AutoItEx-learnable using a class preserving hypothesis space;
(b) L is consistently AutoItEx-learnable using some class comprising hypothesis
space for L;
(c) L is not consistently AutoEx-learnable using any class preserving hypothesis
space for L.

5 Automatic Learning from Fat Text

One of the reasons why iterative learning and its variations are restrictive is
because the learners forget past data. So it is interesting to study the case when
each datum appears infinitely often (such a text is called fat text). In the case of
learning recursively enumerable sets, it has been shown that every explanatorily
learnable class is also iteratively learnable from fat text [18]. In the following, it
is investigated to which extent this result transfers to automatic learners.

Learnability of Automatic Classes 331

Definition 19. [18] Let Σ be an alphabet. Let T ∈ (Σ∗ ∪ {�})ω. We say that
T is fat if and only if for every x ∈ cnt(T) and n ∈ N, there exists a k ≥ n such
that T (k) = x. For L ⊆ Σ∗, we let ftxt(L) = {T ∈ txt(L) : T is fat}.
Definition 20. Let Σ be an alphabet. Let {Hα : α ∈ J} be a hypothesis space
with some J being the set of indices. Let P be an iterative learner. We say that
P Ex-learns L from fat text if and only if for every L ∈ L and every T ∈ ftxt(L),
there exists an n ∈ N and an α ∈ J with Hα = L such that, for every m ≥ n,
P(T [m]) = α. Similarly one can define other criteria of learning from fat text.

Theorem 21. The following conditions are equivalent for an automatic class L:
(a) L satisfies Angluin’s tell-tale condition;
(b) L is AutoWordEx-learnable from fat text using the given class itself as the
hypothesis space;
(c) L is AutoItEx-learnable from fat text using a class preserving hypothesis
space.

The next result shows that one cannot learn every given class iteratively from
fat text using a one-one hypothesis space. So “padding”, that is, the usage of the
hypothesis as an auxiliary memory, is necessary for iterative learning from fat
text. Furthermore, the following also shows constraints of iterative conservative
automatic learners.

Theorem 22. Some automatic class is class preservingly AutoItEx-learnable
from normal text, class comprisingly conservatively AutoItEx learnable from
normal text, but neither conservatively iteratively learnable from fat text using a
class preserving hypothesis space nor iteratively learnable from fat text using a
one-one class preserving hypothesis space.

One might ask whether there are classes which can be learnt using some one-
one hypothesis space but not be learnt using some other hypothesis space. The
answer is “no”. In the next result, the option “(from fat text)” has either to be
taken at both places or at no place in the theorem.

Proposition 23. If {Lα : α ∈ I}, {Hβ : β ∈ J} are automatic indexings, the
mapping α �→ Lα is one-one, every Lα is equal to some Hβ and {Lα : α ∈ I} is
AutoItEx-learnable (from fat text) using the hypothesis space {Lα : α ∈ I}, then
{Lα : α ∈ I} is also AutoItEx-learnable (from fat text) using the hypothesis
space {Hβ : β ∈ J}.
The next theorem shows that every automatic class (even those that may not
satisfy Angluin’s tell-tale condition) is partially learnable by an automatic iter-
ative learner. This corresponds to the result by [18] that the whole class of all
recursively enumerable languages is partially learnable by some recursive learner.

Theorem 24. Every automatic L is AutoWordPart-learnable from fat text.

Acknowledgments. We would like to thank John Case, Henning Fernau, Pavel
Semukhin and Thomas Zeugmann for discussions about the subject of learning
classes with automatic indexings. We also thank the anonymous referees for
several helpful comments.

332 S. Jain, Q. Luo, and F. Stephan

References

1. Angluin, D.: Finding patterns common to a set of strings. Journal of Computer
and System Sciences 21, 46–62 (1980)

2. Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45, 117–135 (1980)

3. Angluin, D.: Inference of reversible languages. Journal of the ACM 29, 741–765
(1982)

4. Angluin, D.: Learning regular sets from queries and counter-examples. Information
and Computation 75, 87–106 (1987)

5. Bārzdiņš, J.: Inductive inference of automata, functions and programs. In: Pro-
ceedings of the 20th International Congress of Mathematicians, Vancouver, pp.
455–560 (1974)

6. Bārzdiņš, J.: Two theorems on the limiting synthesis of functions. In: Theory of
Algorithms and Programs, vol. 1, pp. 82–88. Latvian State University (1974)

7. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Infor-
mation and Control 28, 125–155 (1975)

8. Blumensath, A., Grädel, E.: Automatic structures. In: 15th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS), pp. 51–62. IEEE Computer Society,
Los Alamitos (2000)

9. Fernau, H.: Identification of function distinguishable languages. Theoretical Com-
puter Science 290, 1679–1711 (2003)

10. Freivalds, R., Kinber, E., Smith, C.: On the impact of forgetting on learning ma-
chines. Journal of the ACM 42, 1146–1168 (1995)

11. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–
474 (1967)

12. Head, T., Kobayashi, S., Yokomori, T.: Locality, reversibility, and beyond: Learn-
ing languages from positive data. In: Richter, M.M., Smith, C.H., Wiehagen, R.,
Zeugmann, T. (eds.) ALT 1998. LNCS (LNAI), vol. 1501, pp. 191–204. Springer,
Heidelberg (1998)

13. Hodgson, B.R.: On direct products of automaton decidable theories. Theoretical
Computer Science 19, 331–335 (1982)

14. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant,
D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

15. Lange, S., Wiehagen, R.: Polynomial time inference of arbitrary pattern languages.
New Generation Computing 8, 361–370 (1991)

16. Lange, S., Zeugmann, T.: Language learning in dependence on the space of hy-
potheses. In: Proceedings of the Sixth Annual Conference on Computational Learn-
ing Theory, pp. 127–136. ACM Press, New York (1993)

17. Osherson, D., Stob, M., Weinstein, S.: Learning strategies. Information and Con-
trol 53, 32–51 (1982)

18. Osherson, D., Stob,M., Weinstein, S.: Systems thatLearn: An Introduction toLearn-
ing Theory for Cognitive and Computer Scientists. MIT Press, Cambridge (1986)

19. Rubin, S.: Automata presenting structures: A survey of the finite string case. The
Bulletin of Symbolic Logic 14, 169–209 (2008)

20. Shinohara, T.: Rich classes inferable from positive data: Length–bounded elemen-
tary formal systems. Information and Computation 108, 175–186 (1994)

21. Wexler, K., Culicover, P.: Formal Principles of Language Acquisition. MIT Press,
Cambridge (1980)

22. Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Electronische Informationverarbeitung und Kybernetik 12, 93–99 (1976)

Untestable Properties Expressible with Four
First-Order Quantifiers�

Charles Jordan�� and Thomas Zeugmann� � �

Division of Computer Science
Hokkaido University, N-14, W-9, Sapporo 060-0814, Japan

{skip,thomas}@ist.hokudai.ac.jp

Abstract. In property testing, the goal is to distinguish between struc-
tures that have some desired property and those that are far from having
the property, after examining only a small, random sample of the struc-
ture. We focus on the classification of first-order sentences based on their
quantifier prefixes and vocabulary into testable and untestable classes.
This classification was initiated by Alon et al. [1], who showed that graph
properties expressible with quantifier patterns ∃∗∀∗ are testable but that
there is an untestable graph property expressible with quantifier pattern
∀∗∃∗. In the present paper, their untestable example is simplified. In par-
ticular, it is shown that there is an untestable graph property expressible
with each of the following quantifier patterns: ∀∃∀∃, ∀∃∀2, ∀2∃∀ and ∀3∃.

Keywords: property testing, logic.

1 Introduction

In property testing, we take a small, random sample of a large structure and wish
to determine if the structure has some desired property or if it is far from having
the property. The hope is that we can gain efficiency in return for not deciding
the problem exactly. We focus on the classification problem for testability, where
the goal is to determine exactly which prefix vocabulary classes of first-order logic
are testable and which are not.

Property testing was first introduced in the context of program verification
(cf. Rubinfeld and Sudan [11] and Blum et al. [4]). The study of combinatorial
property testing was initiated by Goldreich et al. [8], who focused on graphs.
Alon et al. [1] first considered the classification problem for testability, although
they restricted their attention to undirected, loop-free graphs. They showed that
all such first-order sentences1 with quantifier prefixes of the form ∃∗∀∗ express
testable properties. They also showed that there exists an untestable property

� An earlier version with additional proofs is available as [9]. We would like to thank
an anonymous referee for significant improvements to Theorem 2.

�� Supported by a Grant-in-Aid for JSPS Fellows under Grant No. 2100195209.
� � � Supported by MEXT Grant-in-Aid for Scientific Research on Priority Areas under

Grant No. 21013001.
1 We assume throughout that all sentences are in prenex normal form.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 333–343, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

334 C. Jordan and T. Zeugmann

expressible with the prefix ∀∗∃∗. The example they give is (essentially) an en-
coding of graph isomorphism that can be expressed with a quantifier prefix of
the form ∀12∃5.

In studying the classification problem, it is necessary to determine the min-
imum number of quantifiers needed to express untestable properties. Addition-
ally, the first-order theory of graphs is not restricted to undirected, loop-free
graphs. Here, we show that there exists an untestable property of directed graphs
that is expressible in first-order sentences with prefixes ∀∃∀∃, ∀∃∀2, ∀2∃∀, and
∀3∃, when equality (=) is allowed (see Theorem 2 for a more formal statement).
That is, with prefixes of these patterns and when equality is allowed, four first-
order quantifiers suffice to express an untestable graph property. The proof is
a modification of the proof by Alon et al. [1], which is made possible by the
presence of directed edges and loops.

The results in Jordan and Zeugmann [10] show that one universal quantifier
is not sufficient to express an untestable property (regardless of the vocabulary),
and so it would be interesting to determine the status of the remaining prefixes
with two universal quantifiers.

A class of first-order logic has the finite model property if every satisfiable for-
mula in the class has a finite model. Classes without the finite model property
contain infinity axioms, i.e. satisfiable formulas without finite models. The cur-
rent classification for testability closely resembles the classification for the finite
model property. It would be particularly interesting to determine the testability
of the “minimal” classes with infinity axioms [∀3∃, (0, 1)] and [∀∃∀, (0, 1)]2.

2 Preliminaries

In property testing, the goal is always to distinguish structures that have some
property from those that are far from having the property. We are particularly
interested in properties that are first-order definable, and so we begin by defining
our logic. Enderton [7] provides a more detailed introduction.

The atomic terms are the (countable) variable symbols xi. There are no func-
tion or constant symbols, and so the terms are exactly the atomic terms. The
atomic formulas are E(xi, xj) and xi = xj , for any two variable symbols xi and
xj . The formulas are built from the atomic formulas using the usual Boolean
connectives (i.e., ∧, ∨, →, ↔), negation (¬) and first-order quantifiers (∀, ∃)
in the canonical way. The well-formed formulas or sentences are the formulas
which contain no free variables. We have no further use for formulas that are not
well-formed, and so we will refer to the well-formed formulas simply as formulas.

Our logic contains a special equality predicate symbol (=) which is always
interpreted as true equality (i.e., xi = xj is true iff the two symbols xi and xj

refer to the same object). It also contains a single binary predicate symbol, which
we have given the name E. Of course, the name of this symbol is not important;
any fixed, unique name could have been chosen.
2 These classes do not permit equality and so Theorem 2 does not immediately imply

that the first is untestable.

Untestable Properties Expressible with Four First-Order Quantifiers 335

A structure is an object that allows us to interpret a sentence in our logic.
It consists of a finite universe U over which the variable symbols are allowed to
range, and a binary relation E corresponding to the symbol E in our logic. Any
such object can be considered as a (directed) graph, so from now on we refer to
these structures as graphs. See Diestel [6] for an introduction to graph theory.

Definition 1. A graph A = (UA, EA) is a pair consisting of a finite set of
vertices UA and a binary edge relation EA ⊆ UA × UA.

The natural numbers are denoted by N := {0, 1, . . .}. For any set U we write |U |
to denote the cardinality of U and generally identify U with the set {0, . . . , |U |−
1}. We denote the set of graphs on exactly n vertices by Gn and the set of all
graphs by G := ∪n∈NGn. The size of the universe of a graph A = (UA, EA) is
denoted by #(A) and defined as #(A) := |UA|.

A property P is any subset of G. Sentences are interpreted in the usual way,
and so we can decide A |= ϕ for any fixed graph A and first-order sentence ϕ.
Each sentence ϕ therefore defines a property, namely the set of its models,

Pϕ := {A | A ∈ G and A |= ϕ} .
The properties that we use in the proof of Theorem 2 involve encodings of

isomorphisms. Graphs A = (UA, EA) and B = (UB, EB) are isomorphic if there
is a bijection f : UA → UB such that for all (x, y) ∈ UA × UA, (x, y) ∈ EA

iff (f(x), f(y)) ∈ EB. We say that a property P is closed under isomorphisms
if for all isomorphic A,B ∈ G, it is true that A ∈ P iff B ∈ P . All properties
expressible in our logic are closed under isomorphisms.

The goal in property testing is to distinguish between structures that have
properties and structures that are far from having them. This requires a distance
measure, which we define next. In the following, ⊕ denotes exclusive-or and EA

and EB are the edge relations of A and B, respectively.

Definition 2. Let n ∈ N and let U be any universe such that |U | = n. Further-
more, let A = (U,EA) and B = (U,EB) be any two graphs with universe U . The
distance between A and B is

dist(A,B) :=
|{(x1, x2) | x1, x2 ∈ U and EA(x1, x2)⊕ EB(x1, x2)}|

n2 .

Note that by definition, #(A) = #(B) = n. The dist distance is the fraction of
edges on which the two graphs disagree. This is the dense graph model intro-
duced by Goldreich et al. [8] and is essentially based on the adjacency matrix
representation. The dist distance generalizes to properties in the following way.

Definition 3. Let P ⊆ G be a property of graphs and let A ∈ Gn be a graph
with n vertices. Then,

dist(A,P) := min
A′∈Gn∩P

dist(A,A′) .

We are now able to define property testing itself. The following definitions are
typical, but we will also mention several variations.

336 C. Jordan and T. Zeugmann

Definition 4. An ε-tester for property P is a randomized algorithm given an
oracle which answers queries for the universe size and queries for the existence
of edges connecting given nodes in a graph A. The tester must accept with prob-
ability at least 2/3 if A has P and must reject with probability at least 2/3 if
dist(A,P) ≥ ε.

Definition 5. A property P is testable if for every ε > 0 there is an ε-tester
for P making a number of queries which is bounded from above by a function
depending only on ε.

We allow different ε-testers for each ε > 0 and our definitions are therefore
non-uniform. The uniform case is strictly more difficult (see, e.g., Alon and
Shapira [3]). We are interested in proving untestability, and our results hold
even in the non-uniform case. In oblivious testing (see Alon and Shapira [2]),
the testers are not given access to the size of the universe. Again, our results hold
in the more general case where the testers may make decisions based on the size
of the universe. In a similar way, the number of loops in a graph is asymptoti-
cally insignificant compared to the number of possible non-loops. Modifying the
definition of distance to account for this makes testing strictly more difficult (see
Jordan and Zeugmann [10]) and so we use the more general definition above.

However, the (possible) loops seem to affect the notion of indistinguishability
defined by Alon et al. [1]. We use the following modification of Definition 2.

Definition 6. Let n ∈ N and let U be any universe such that |U | = n. Further-
more, let A = (U,EA) and B = (U,EB) be any two graphs with universe U . For
notational convenience, let

d1(A,B) :=
|{x | x ∈ U and EA(x, x) ⊕ EB(x, x)}|

n
, and

d2(A,B) :=
|{(x1, x2) | x1, x2 ∈ U, x1
= x2, and EA(x1, x2)⊕ EB(x1, x2)}|

n2 .

The mr-distance between A and B is

mrdist(A,B) := max {d1(A,B), d2(A,B)} .

Again, note that #(A) = #(B) = n. Although the number of loops is asymp-
totically insignificant, a tester can easily restrict its queries to the form (x, x)
and distinguish between graphs that differ only in loops. Definition 6 is a spe-
cial case of a definition from Jordan and Zeugmann [10], and mrdist abbreviates
“maximum relational distance.” We use the following simple variation of indis-
tinguishability for graphs that may contain loops.

Definition 7. Two properties P and Q of graphs are indistinguishable if they
are closed under isomorphisms and for every ε > 0 there exists an Nε such that
for any graph A with universe of size n ≥ Nε, if A has P then mrdist(A,Q) ≤ ε
and if A has Q then mrdist(A,P) ≤ ε.

Untestable Properties Expressible with Four First-Order Quantifiers 337

The important fact to note is that indistinguishability preserves testability. The
proof of the following theorem is analogous to that given in Alon et al. [1].

Theorem 1. If P and Q are indistinguishable, then P is testable if and only if
Q is testable.

Our classification definitions are from Börger et al. [5] except that we omit
function symbols. We omit a detailed discussion, but the following is for com-
pleteness. Let Π be a string over the four-character alphabet {∃, ∃∗, ∀, ∀∗}. Then
[Π, (0, 1)]= is the set of sentences in prenex normal form which satisfy the fol-
lowing conditions:

1. The quantifier prefix is contained in the language specified by the regular
expression Π .

2. There are zero (0) monadic predicate symbols.
3. In addition to the equality predicate (=), there is at most one (1) binary

predicate symbol.
4. There are no other predicate symbols.

That is, [Π, (0, 1)]= is the set of sentences in the logic that we have defined above
whose quantifier prefixes in prenex normal form match Π .

3 An Untestable Property

We will begin by defining property P , which is essentially the graph isomorphism
problem for undirected loop-free graphs encoded in directed graphs that may
contain loops. We will begin by showing in Lemma 1 that P is indistinguishable
from property Pf (cf. Definition 9) which is expressible in any of the prefix
vocabulary classes mentioned in Theorem 2. We will then show that P is not
testable. Indistinguishability preserves testability and so this implies that Pf is
also untestable, which will suffice to show the following theorem.

Theorem 2. The following prefix classes are not testable:

1. [∀∃∀∃, (0, 1)]=
2. [∀∃∀2, (0, 1)]=
3. [∀2∃∀, (0, 1)]=
4. [∀3∃, (0, 1)]=

We define property P as follows. First, a graph that has property P must consist
of an even number of vertices, of which exactly half have loops. The subgraph
induced by the vertices with loops must be isomorphic to that induced by the
vertices without loops, ignoring all loops, and there must be no edges connecting
the vertices with loops to those without loops. Finally, all edges must be undi-
rected (i.e., an edge from x to y implies an edge from y to x). We refer to such
undirected edges as paired edges.

338 C. Jordan and T. Zeugmann

Definition 8. A graph G ∈ Gn has P iff the following conditions are satisfied:

1. For some s, n = 2s.
2. There are exactly s vertices x satisfying E(x, x). We will refer to the set of

such vertices as H1 and to the remaining s vertices as H2.
3. The substructure induced by H1 is isomorphic to that induced by H2 when

all loops are removed. That is, there is a bijection f from H1 to H2 such that
for distinct x, y ∈ H1, it is true that G |= E(x, y) iff G |= E(f(x), f(y)).

4. There are no edges between H1 and H2.
5. All edges are paired.

Graph isomorphism is not directly expressible in first-order logic, and so we use
the following encoding where the bijection f is made explicit by adding n edges
between H1 and H2.

Definition 9. A graph G ∈ Gn has Pf iff the following conditions are satisfied:

1. For every vertex x, if E(x, x) then there is an edge from x to exactly one y
such that ¬E(y, y).

2. For every vertex x, if ¬E(x, x) then there is an edge from x to exactly one y
such that E(y, y).

3. For all vertices x and y, E(x, y) iff E(y, x).
4. For all pairwise distinct vertices x1, x2, x3, x4, if E(x1, x1), ¬E(x2, x2),
E(x3, x3), ¬E(x4, x4), E(x1, x2) and E(x3, x4), then E(x1, x3) iff E(x2, x4).

Expressing Conditions 1 and 2 as “there is at most one such y” and “there is
at least one such y,” Pf can be expressed in each of the classes [∀∃∀∃, (0, 1)]=,
[∀∃∀2, (0, 1)]=, [∀2∃∀, (0, 1)]= and [∀3∃, (0, 1)]=.

For example, in the class [∀3∃, (0, 1)]=, we can express Pf by

∀x1∀x3∀x4∃x2 :
[

(
(E(x1, x1)↔ ¬E(x2, x2)) ∧ E(x1, x2)

) ∧[(
(E(x1, x1)↔ ¬E(x3, x3)) ∧ (E(x3, x3)↔ ¬E(x4, x4))∧
E(x1, x3) ∧E(x1, x4)

)→ x3 = x4
] ∧(

E(x1, x3)→ E(x3, x1)
) ∧(

[E(x1, x1) ∧ E(x3, x3) ∧ x1
= x3 ∧ ¬E(x4, x4) ∧ E(x3, x4)]→
(¬E(x2, x2) ∧ E(x1, x2) ∧ (E(x1, x3)↔ E(x2, x4)))

)]
.

To express Pf with prefixes ∀2∃∀ and ∀∃∀2, it suffices to reorder the quantifiers
(keeping x2 existential and x1 first). The prefix ∀∃∀∃ requires a few additional
modifications.

The two properties P and Pf differ only in the edges which make the isomor-
phism explicit in Pf but are forbidden in P . There are at most n such edges,
none of which are loops. This suffices to prove the following.

Lemma 1. Properties P and Pf are indistinguishable.

Untestable Properties Expressible with Four First-Order Quantifiers 339

Proof. Let ε > 0 be arbitrary and let Nε = ε−1. Assume that G is a structure
that has property P and that #(G) > Nε. We will show that mrdist(G,Pf) < ε.

Structure G has P and so there is a bijection f satisfying Condition 3 of
Definition 8. For all x ∈ H1, we add the edges E(x, f(x)) and E(f(x), x) and
call the result G′. Property Pf differs from P only in that the isomorphism is
made explicit by the edges connecting loops and non-loops, and so G′ has Pf .
Indeed, it satisfies Conditions 1 and 2 of Definition 9 because G had no edges
between loops and non-loops and we have connected each to exactly one of the
other, following the bijection f . Next, G′ satisfies Condition 3 of Definition 9
because G satisfied Condition 5 of Definition 8 and we added only paired edges.
Finally, G′ satisfies Condition 4 of Definition 9 because the edges between loops
and non-loops follow the isomorphism f from Condition 3 of Definition 8.

We have added exactly n (directed) edges, none of which are loops and so
mrdist(G,P) ≤ mrdist(G,G′) = 0 + n/n2 < ε, where the inequality holds for
n > Nε. The converse is analogous; given a G that has property Pf , we simply
remove the n edges between loops and non-loops after using them to construct
the isomorphism f . ��

Properties P and Pf are indistinguishable. Testability is preserved by indistin-
guishability (cf. Theorem 1) and thus showing that P is not testable suffices
to prove that Pf is not testable (and therefore Theorem 2). The proof closely
follows that of Alon et al. [1]. The crucial lemma is the following, a combination
of Lemmata 7.3 and 7.4 from Alon et al. [1]. We use countH(T) to refer to the
number of times that a graph T occurs as an induced subgraph in H . A bipartite
graph is a graph where we can partition the vertices into two setsH1 and H2 such
that there are no edges “internal” to the partitions. That is, for all x1, y1 ∈ H1
and x2, y2 ∈ H2, ¬E(x1, y1) and ¬E(x2, y2). See Jordan and Zeugmann [9] for
an explicit proof of Lemma 2, which is technical and long.

Lemma 2 (Alon et al. [1]). There exists a constant ε′ > 0 such that for every
D ∈ N, there exist two undirected bipartite graphs H = H(D) and H ′ = H ′(D)
satisfying the following conditions.

1. Both H and H ′ have a bipartition into classes U1 and U2, each of size t.
2. In both H and H ′, for all subgraphs X with size t/3 ≤ #(X) ≤ t, there are

more than t2/18 undirected edges between X and the remaining part of the
graph.

3. The minimum degree of both H and H ′ is at least t/3.
4. dist(H,H ′) ≥ ε′.
5. For all D-element graphs T , countH(T) = countH′(T).

It is worth noting that the above is for undirected, loop-free graphs. However,
bipartite graphs never have loops and “undirected” in our setting results in
paired edges. It is easy to show that if two structures agree on the counts for all
size D induced subgraphs, they agree on the counts for all induced subgraphs of
size at most D. This is done by applying Lemma 3 inductively.

340 C. Jordan and T. Zeugmann

Lemma 3. Let H and H ′ be two graphs, both of size s, and let 2 < D ≤ s. If
for every graph T of size D, countH(T) = countH′(T), then for every graph T ′

of size D − 1, countH(T ′) = countH′(T ′).

Proof. Assume H and H ′ satisfy the initial conditions of Lemma 3, but that
there exists a T ′ of size D − 1 such that countH(T ′)
= countH′(T ′). Let C =
{T | #(T) = D and T contains T ′ as an induced subgraph}.

Note that
∑

T∈C countH(T) countT (T ′) = countH(T ′)(s − D + 1) and like-
wise for

∑
T∈C countH′(T) countT (T ′). We have assumed that H and H ′ satisfy

countH(T) = countH′(T) for T ∈ C, but countH(T ′)
= countH′(T ′), giving a
contradiction and the Lemma follows. ��
Lemma 4. Property P is not testable.

Proof. Assume that P is testable. Then, there exists an ε-tester for

ε := min {ε′/8, 1/144} ,

where ε′ is the constant from Lemma 2. We can assume without loss of generality
that the tester queries all edges in a random sample of D := D(ε) vertices.

Consider the graph G which contains two copies of the H = H(D) from
Lemma 2, where one of the copies is marked by loops on each vertex and there
are no edges between the copies. This graph has property P , and so the tester
must accept it with probability at least 2/3. Next, consider the graph G′ which
contains one copy of H marked by loops and one copy of H ′, again where
there are no edges between the two (induced) subgraphs. Graph G′ is such that
dist(G′, P) ≥ ε (cf. Lemma 5) and so it must be rejected with probability at
least 2/3. Both G and G′ consist of two bipartite graphs, each of which has a
bipartition into two classes of size t, and so #(G) = #(G′) = 4t.

However, G and G′ both contain exactly the same number of each induced
subgraph with D vertices. This is because both have loops on exactly half of
the vertices and the two halves are not connected by any edges. Some of the D
vertices must be in the first copy of H and the others in the second H (resp. H ′).
By Lemma 3, H and H ′ contain the same number of each induced subgraph with
size at most D. The tester therefore obtains any fixed sample with the same
probability in G and G′ and is unable to distinguish between them. Hence, it is
unable to accept G with probability 2/3 and also reject G′ with probability 2/3.
This completes the proof, taking into account Lemma 5 below. ��
Recall that testing is easiest under the dist definition, and so Lemma 4 also
implies P is not testable under other definitions.

Lemma 5. The graph G′ is such that dist(G′, P) ≥ ε.
Proof. Suppose that dist(G′, P) < ε. Then, there is an M ∈ P such that
dist(G′,M) < ε. Let M1 be the set of vertices with loops in M and let M2 be
the set of vertices without loops. We will refer to the subgraph induced by the
vertices with loops in G′ as H and to that induced by those without loops as H ′.

Untestable Properties Expressible with Four First-Order Quantifiers 341

Without loss of generality, assume that |M1∩H | ≥ |M1∩H ′|. Then, |M1∩H | ≥ t.
We let α1 be the setM1\H and α2 be M2\H ′. Note that |α1| = |α2| and |α1| ≤ t
because |M1 ∩H | ≥ t.

Informally, M is formed by moving the vertices α1 from H ′ to H and the
vertices α2 from H to H ′, and then possibly making other changes. There are
three cases, which we will consider in order.

1. |α1| = 0.
2. |α1| ≥ t/3.
3. 0 < |α1| < t/3.

If |α1| = 0, then we can construct M from G′ without exchanging vertices
between H and H ′, and in particular, construct H ′ from H (ignoring loops), by
making less than ε(4t)2 modifications. However, dist(H,H ′) ≥ ε′ by Lemma 2
and so this must require at least ε′(2t)2 modifications. By definition, ε < ε′/4
so ε(4t)2 < ε′(2t)2. The first case is therefore not possible.

Recall that |α1| ≤ t. If |α1| ≥ t/3, then by Condition 2 of Lemma 2 there
exists at least t2/18 undirected edges between α1 and H ′\α1 and between α2
and H\α2. All of these edges must be removed to satisfy P because each would
connect a vertex with a loop to a vertex without a loop. Therefore,

dist(G′,M) ≥ 4t2/18
(4t)2

= 1/72 .

But, ε < 1/72 and so the second case is not possible.
Therefore, it must be that 0 < |α1| < t/3. Here, we will show that it must be

the case that α1 and α2 are relatively far apart. If they are not far apart, then it
is possible to modify them instead of swapping them. This essentially results in
the first case considered above. Condition 3 of Lemma 2 requires that each vertex
has relatively high degree. These edges can be either internal to α1 (resp. α2)
or connecting α1 (α2) with H ′\α1 (H\α2). If α1 and α2 are relatively far apart,
then we will see that this forces too many edges “outside” of α1 (resp. α2),
resulting in a similar situation to the second case considered above.

We have assumed that dist(G′,M) < ε and that we can construct M from G′

by making less than ε(4t)2 modifications if we move α1 to H and α2 to H ′. This
entails the following modifications.

1. Removing all edges connecting α1 to H ′\α1.
2. Removing all edges connecting α2 to H\α2.
3. Adding any required edges between α1 and H\α2.
4. Adding any required edges between α2 and H ′\α1.
5. Changing α1, α2, H\α2 and H ′\α1 to their final forms.

We can assume that the total number of modifications is less than ε(4t)2. It
must be that dist(α1, α2)|α1|2/(4t)2 + ε ≥ ε′/4. If this does not hold, then we
could first modify α1 to make it identical to α2 and then makeH ′ identical toM2.

342 C. Jordan and T. Zeugmann

Next, M2 is identical to M1, which we could make identical to H . This would
require less than ε′(2t)2 modifications, which would violate Lemma 2. Therefore,

dist(α1, α2) ≥ 16(ε′/4− ε)t2
|α1|2 . (1)

If both α1 and α2 are complete graphs then they cannot be far apart. Given that
all vertices in α1 (α2 is analogous) have degree at least t/3, then there must be
at least

|α1|(t/3− |α1|+ 1) + 2r

edges connecting α1 to H ′\α1, where r is the number of edges internal to α1
that must be omitted to satisfy (1). The simple lower bound on r, the number
of edges needed for two graphs with at most r edges to be dist(α1, α2)-far, that
follows from dist(α1, α2) ≤ 2r/|α1|2 is sufficient. Finally, combining this with
Inequality (1) yields

r ≥ 8(ε′/4− ε)t2 . (2)

The number of edges connecting α1 to H ′\α1 is therefore, by (2), at least

|α1|(t/3− |α1|+ 1) + 16(ε′/4− ε)t2 ≥ 16(ε′/4− ε)t2 .
All of these edges must be removed to move α1 (resp. α2), and so

dist(G′,M) ≥ 16(ε′/4− ε)t2
(4t)2

=
ε′

4
− ε .

We have defined ε ≤ ε′/8 and so dist(G′,M) ≥ ε, a contradiction.
The cases are exhausted and so dist(G′, P) ≥ ε as desired. ��

4 Conclusion

Property testing is an application of induction (in the philosophy of science
sense), in which we obtain a small, random sample of a structure and seek to
determine whether the structure has a desired property or is far from having the
property. We have considered the classification problem for testability, wherein
we classify the prefix vocabulary classes of first-order logic according to their
testability. In particular, we simplified the untestable property, expressible with
quantifier prefix ∀12∃5, from Alon et al. [1] for the case of directed graphs which
may contain loops. This implies that there exists an untestable property express-
ible with quantifier prefixes ∀∃∀∃, ∀∃∀2, ∀2∃∀ and ∀3∃.

In the classification problem for testability, it is necessary to determine the
minimal untestable classes. Informally, we seek the untestable properties that
are easiest to express. Jordan and Zeugmann [10] showed that classes with (at
most) one universal quantifier are testable, and so there are at least two minimal
untestable classes which have either two or three universal quantifiers.

The current classification for testability closely resembles the classification
for the finite model property (see, e.g., Section 6.5 of Börger et al. [5]). The
“minimal” classes without this property (i.e., those with infinity axioms) are
[∀3∃, (0, 1)] and [∀∃∀, (0, 1)], while the case of [∀2∃, (0, 1)]= is apparently open.
It would be particularly interesting to determine the testability of these classes.

Untestable Properties Expressible with Four First-Order Quantifiers 343

Acknowledgments. We would like to thank an anonymous referee for signifi-
cantly improving Theorem 2 by eliminating one variable from each prefix, adding
∀∃∀∃, and also for simplifying the example following Definition 9.

References

[1] Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large
graphs. Combinatorica 20(4), 451–476 (2000)

[2] Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable
with one-sided error. SIAM J. Comput. 37(6), 1703–1727 (2008)

[3] Alon, N., Shapira, A.: A separation theorem in property testing. Combinator-
ica 28(3), 261–281 (2008)

[4] Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. J. of Comput. Syst. Sci. 47(3), 549–595 (1993)

[5] Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer,
Heidelberg (1997)

[6] Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2006)
[7] Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press,

London (2000)
[8] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. J. ACM 45(4), 653–750 (1998)
[9] Jordan, C., Zeugmann, T.: Contributions to the classification for testability:

Four universal and one existential quantifier. Technical Report TCS-TR-A-09-39,
Hokkaido University, Division of Computer Science (November 2009)

[10] Jordan, C., Zeugmann, T.: Relational properties expressible with one universal
quantifier are testable. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS,
vol. 5792, pp. 141–155. Springer, Heidelberg (2009)

[11] Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-
tions to program testing. SIAM J. Comput. 25(2), 252–271 (1996)

The Copying Power of Well-Nested Multiple
Context-Free Grammars

Makoto Kanazawa1 and Sylvain Salvati2,�

1 National Institute of Informatics, Tokyo, Japan
2 INRIA Bordeaux – Sud-Ouest, Talence, France

Abstract. We prove a copying theorem for well-nested multiple context-
free languages: if L = {w#w | w ∈ L0 } has a well-nested m-MCFG, then
L has a ‘non-branching’ well-nested m-MCFG. This can be used to give
simple examples of multiple context-free languages that are not generated
by any well-nested MCFGs.

1 Introduction

For a long time, the formalism of multiple context-free grammars [18], together
with many others equivalent to it, has been regarded as a reasonable formaliza-
tion of Joshi’s [9] notion of mildly context-sensitive grammars. Elsewhere [10], we
have made a case that a smaller class of grammars, consisting of MCFGs whose
rules are well-nested, might actually provide a better formal approximation to
Joshi’s informal concept. Well-nested MCFGs are equivalent to non-duplicating
macro grammars [5] and to coupled-context-free grammars [7]. Kanazawa [11]
proves the pumping lemma for well-nested multiple context-free languages. The
well-nestedness constraint has also been a focus of attention recently in the area
of dependency grammars (e.g., [12]).

Seki and Kato [17] present a series of languages that are generated by MCFGs
of dimension m, but not by any well-nested MCFGs of the same dimension.
These examples illustrate the limiting effect that the well-nestedness constraint
has on the class of generated languages at each level m of the infinite hierarchy
of m-multiple context-free languages (m ≥ 1).

An interesting fact is that the examples of Seki and Kato [17] all belong to the
class of well-nested MCFLs at some higher level of the hierarchy, so they do not
serve to separate the whole class of MCFLs from the whole class of well-nested
MCFLs. In fact, to our knowledge, the only example that has appeared in the
literature of an MCFL which is not a well-nested MCFL is the language discussed
by Michaelis [13], originally due to Staudacher [20]. Staudacher uses Hayashi’s [6]
theorem to show that this language is not an indexed language, while Michaelis
gives a (non-well-nested) 3-MCFG generating it. Since well-nested MCFLs are
all indexed languages, it follows that this language is an MCFL which is not

� We are grateful to Uwe Mönnich for pointing us to Engelfriet and Skyum’s [4] paper
in connection with the question of what languages are in MCFL − MCFLwn.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 344–355, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Copying Power of Well-Nested Multiple Context-Free Grammars 345

a well-nested MCFL. As it happens, the definition of this language is rather
complex, and Staudacher’s proof is not easy to understand.

As a matter of fact, what we would like to call the “triple copying theorem”
for OI (the class of OI macro languages), due to Engelfriet and Skyum [4], can
be used to give a simple example of a language that separates MCFL (the class
of MCFLs) from MCFLwn (the class of well-nested MCFLs). This theorem says
that L = {w#w#w | w ∈ L0 } ∈ OI implies L0 ∈ EDT0L.1 (Here and henceforth,
L0 is a language over some alphabet Σ and # is a symbol not in Σ.) Since OI is
the same as the class of indexed languages [5] and includes the class of well-nested
MCFLs, and L = {w#w#w | w ∈ L0 } ∈ 3-MCFL for all L0 ∈ CFL, this theorem
implies that L ∈ 3-MCFL−MCFLwn whenever L0 ∈ CFL− EDT0L. Examples
of such L0 are D∗

2 , the one-sided Dyck language over two pairs of parentheses
[2,3] and D∗

1 , the one-sided Dyck language over a single pair of parentheses [15].
A question that immediately arises is the status of the “double copying theorem”
for OI: when is L = {w#w | w ∈ L0 } in OI? We do not yet have an answer
to this open question. In this paper, we prove a double copying theorem for
well-nested multiple context-free languages, which implies, among other things,
that L = {w#w | w ∈ L0 } ∈ 2-MCFL −MCFLwn for all L0 ∈ CFL − EDT0L.
Unlike Staudacher’s [20] proof, our proof of this result does not depend on a
pumping argument but instead makes use of simple combinatorial properties of
strings.

In addition to shedding light on the difference between the class of MCFLs
and the class of well-nested MCFLs, the double copying theorem for well-
nested MCFLs also highlights a general question underlying Joshi’s notion of
mild context-sensitivity: what are the limitations found in the kind of cross-
serial dependency exhibited in natural language? For, if L is a family of lan-
guages closed under rational transductions, {w#w | w ∈ L0 } ∈ L implies
{wh(w) | w ∈ L0 } ∈ L for any homomorphism h, and languages of the lat-
ter form, together with some restriction on L0, may serve as a model of natu-
ral language constructions exhibiting cross-serial dependency. This may offer a
more fruitful approach than concentrating on languages like {wh(w) | w ∈ Σ∗ },
which has been a common practice in the mathematical study of natural lan-
guage syntax.

2 The Double Copying Theorem for Context-Free
Languages

Let us first look at the double copying theorem for context-free languages. This
has a rather simple proof, which is omitted here in the interests of space. The
implication (i) ⇒ (iii) may be proved using the pumping lemma for context-
free languages; it also follows from a closely related result proved by Ito and
Katsura [8].

1 See [3] for the definition of EDT0L.

346 M. Kanazawa and S. Salvati

Theorem 1. Let L = {w#w | w ∈ L0 }. The following are equivalent:

(i) L is a context-free language.
(ii) L is a linear context-free language.
(iii) L0 is a finite union of languages of the form rRs, where r, s ∈ Σ∗ and R

is a regular subset of t∗ for some t ∈ Σ+.

3 Combinatorics on Words

The statement of the double copying theorem for well-nested multiple context-
free languages is similar to that for context-free languages, but we do not need to
invoke the pumping lemma for well-nested MCFLs in order to prove it. Instead,
we rely on some basic results in the combinatorics on words.

A string x is a conjugate of a string y if x = uv and y = vu for some u, v.
Elements of u∗ are called powers of u. A nonempty string is primitive if it is
not a power of another string. For every nonempty string x, there is a unique
primitive string u such that x is a power of u; this string u is called the primitive
root of x. When two nonempty strings are conjugates, their primitive roots are
also conjugates.

We use the following basic results from the combinatorics on words (see, e.g.,
[19]):

Lemma 2. Let x, y, z ∈ Σ+. Then xy = yz if and only if there exist u ∈ Σ+,
v ∈ Σ∗, and an integer k ≥ 0 such that x = uv, z = vu, and y = (uv)ku =
u(vu)k.

Lemma 3. Let x, y ∈ Σ+. The following are equivalent:

(i) xy = yx.
(ii) There exist z ∈ Σ+ and i, j ≥ 1 such that x = zi and y = zj.
(iii) There exist i, j ≥ 1 such that xi = yj.

4 Multiple Context-Free Grammars

A ranked alphabet is a finite set Δ =
⋃

n≥0Δ
(n) such that Δ(i) ∩ Δ(j) = ∅ if

i
= j. An element d of Δ has rank n if d ∈ Δ(n). A tree over a ranked alphabet
Δ is an expression of the form (dT1 . . . Tn), where d ∈ Δ(n) and T1, . . . , Tn are
trees over Δ; the parentheses are omitted when n = 0. In writing trees, we adopt
the abbreviatory convention of dropping the outermost parentheses.

Let Δ be a ranked alphabet and Σ an unranked alphabet. Let X be a count-
ably infinite set of variables ranging over Σ∗. We use boldface italic letters
x1,y1, z1, etc., as variables in X . A rule over Δ,Σ is an expression of the form

A(α1, . . . , αq) :− B1(x1,1, . . . ,x1,q1), . . . , Bn(xn,1, . . . ,xn,qn),

where n ≥ 0, A ∈ Δ(q), Bi ∈ Δ(qi), xi,j are pairwise distinct variables, and αi is
a string over Σ ∪ {xi,j | i ∈ [1, n], j ∈ [1, qi] } satisfying the following condition:

– for each i, j, the variable xi,j occurs in α1 . . . αq at most once.

The Copying Power of Well-Nested Multiple Context-Free Grammars 347

Rules with n = 0 are called terminating and written without the :− symbol.
When we deal with rules over Δ,Σ, we view elements of Δ as predicates, and
call q the arity of A if A ∈ Δ(q). Thus, rules are definite clauses (in the sense of
logic programming) built from strings and predicates on strings.

A multiple context-free grammar (MCFG) is a quadruple G = (N,Σ, P, S),
where N is a ranked alphabet of nonterminals, Σ is an unranked alphabet of
terminals, P is a finite set of rules over N,Σ, and S ∈ N (1). When A ∈ N (q)

and w1, . . . , wq ∈ Σ∗, we write 0G A(w1, . . . , wq) to mean that A(w1, . . . , wq) is
derivable using the following inference schema:

0G B1(w1,1, . . . , w1,q1) . . . 0G Bn(wn,1, . . . , wn,qn)
0G A(α1, . . . , αq)σ

where A(α1, . . . , αq) :− B1(x1,1, . . . ,x1,q1), . . . , Bn(xn,1, . . . ,xn,qn) is in P and
σ is the substitution mapping each xi,j to wi,j . The language of G is defined as
L(G) = {w ∈ Σ∗ | 0G S(w) }.

In order to speak of derivation trees of derivable facts, we put the elements
of P in one-to-one correspondence with the elements of a ranked alphabet ΔP ,
so that a rule π ∈ P with n occurrences of nonterminals on the right-hand side
corresponds to a symbol in Δ(n)

P , which we confuse with π itself. In order to
refer to contexts in which derivation trees appear, we augment ΔP with a set Y
of variables (y, z, etc.), whose rank is always 0. The following inference system
associates derivation trees (trees over ΔP) with derivable facts and derivation
tree contexts (trees over ΔP ∪Y) with facts derivable from some premises:

y : A(x1, . . . ,xq) 0G y : A(x1, . . . ,xq)

Γ1 0G T1 :B1(β1,1, . . . , β1,q1) . . . Γn 0G Tn : Bn(βn,1, . . . , βn,qn)
Γ1, . . . , Γn 0G πT1 . . . Tn : A(α1, . . . , αq)σ

In the second schema, π is the rule

A(α1, . . . , αq) :− B1(x1,1, . . . ,x1,q1), . . . , Bn(xn,1, . . . ,xn,qn)

and σ is the substitution mapping each xi,j to βi,j ; each Γi is a finite se-
quence of premises of the form z : C(y1, . . . ,yp), and it is understood that Γi

and Γj do not share any variables if i
= j. It is clear that 0G A(w1, . . . , wq)
if and only if 0G T : A(w1, . . . , wq) for some tree T over ΔP . The set {T |
0G T : S(w) for some w ∈ Σ∗ } is a recognizable set of trees; as a consequence,
the Parikh image of L(G) is semilinear [21].

A nonterminal A ∈ N (q) is useful if 0G A(w1, . . . , wq) for some w1, . . . , wq

and y : A(x1, . . . ,xq) 0G T : S(α) for some T and α; otherwise it is useless.

Example 4. Let G be the MCFG consisting of the following rules:

π1 : S(x1y1b#ay2x2) :− A(x1,x2), B(y1,y2).

π2 : A(a, ε). π3 : A(abx1ba, abx2ab) :− A(x1,x2).
π4 : B(ε, b). π5 : B(bay1ba, bay2ab) :− B(y1,y2).

348 M. Kanazawa and S. Salvati

For example,

0G π1(π3(π3π2))(π5π4) : S(ababababababab#ababababababab),
y :A(x1,x2) 0G π1(π3y)(π5π4) : S(abx1bababab#ababababx2ab),

and we have L(G) = { (ab)n#(ab)n | n ≥ 1 }.
The dimension of an MCFG G is the maximal arity of nonterminals of G. The
branching factor (or rank) of G is the maximal number of occurrences of non-
terminals on the right-hand side of rules of G. We write m-MCFG(f) for the
class of MCFGs whose dimension is at most m and whose branching factor is
at most f . (Note that this notation is the opposite of the one used by Seki and
Kato [17], but is more consistent with [18].) We write m-MCFG and MCFG
for

⋃
f m-MCFG(f) and

⋃
m

⋃
f m-MCFG(f), respectively. The corresponding

classes of languages are denoted by m-MCFL(f), m-MCFL, etc.2

An MCFG rule

A(α1, . . . , αq) :− B1(x1,1, . . . ,x1,q1), . . . , Bn(xn,1, . . . ,xn,qn)

is non-deleting if each xi,j occurs in α1 . . . αq; it is non-permuting if j < k im-
plies that the occurrence (if any) of xi,j in α1 . . . αq precedes the occurrence (if
any) of xi,k in α1 . . . αq. It is known that every G ∈ m-MCFG(f) has an equiv-
alent G′ ∈ m-MCFG(f) whose rules are all non-deleting and non-permuting. A
non-deleting and non-permuting rule is well-nested if it moreover satisfies the
following condition:

– if i
= i′, j < qi, and j′ < qi′ , then α1 . . . αq
∈ (Σ∪X)∗xi,j(Σ∪X)∗xi′,j′(Σ∪
X)∗xi,j+1(Σ ∪ X)∗xi′,j′+1(Σ ∪ X)∗.

In other words, if xi′,j′ occurs between xi,j and xi,j+1 in α1 . . . αq, then
xi′,1, . . . ,xi′,qi′ must all occur between xi,j and xi,j+1.

We attach the subscript “wn” to “MCFG” and “MCFL” to denote
classes of well-nested MCFGs and corresponding classes of languages, as in
m-MCFGwn(f),m-MCFGwn,m-MCFLwn(f),m-MCFLwn, etc. The grammar in
Example 4 belongs to 2-MCFGwn(2). Note that m-MCFL(1) = m-MCFLwn(1).

Lemma 5. For each m ≥ 1, m-MCFLwn = m-MCFLwn(2).

Proof (sketch). A well-nested rule

π = A(α1, . . . , αq) :− B1(x1,1, . . . ,x1,q1), . . . , Bn(xn,1, . . . ,xn,qn)

with n ≥ 3 can always be replaced by two rules whose right-hand side has at most
n−1 nonterminals, as follows. The replacement introduces one new nonterminal
C, whose arity does not exceed max{q, q1, . . . , qn}. We assume without loss of

2 See [14] and [16] for relations among the classes m-MCFL(f) with different values
of m and f .

The Copying Power of Well-Nested Multiple Context-Free Grammars 349

generality that 1 ≤ i < j ≤ n implies that xi,1 occurs to the left of xj,1 in
α1 . . . αq. Since π is well-nested, there must be an l ∈ [1, n] such that α1 . . . αq ∈
(Σ ∪ X)∗xl,1Σ

∗xl,2Σ
∗ . . . Σ∗xl,ql

(Σ ∪ X)∗. Let i, j be such that αi ∈ (Σ ∪
X)∗xl,1(Σ ∪ X)∗ and αj ∈ (Σ ∪ X)∗xl,ql

(Σ ∪ X)∗.
Case 1. i < j. We can write αi = β1xl,1β2 and αj = γ1xl,ql

γ2. Let C be a new
nonterminal of arity q′ = i+ q − j + 1 ≤ q. We can replace π with the following
two rules:

B(y1, . . . ,yi−1,yixl,1β2, αi+1, . . . , αj−1, γ1xl,ql
yj ,yj+1, . . . ,yq) :−

C(y1, . . . ,yi,yj , . . . ,yq), Bl(xl,1, . . . ,xl,ql
).

C(α1, . . . , αi−1, β1, γ2, αj+1, . . . , αq) :−
B1(x1,1, . . . ,x1,q1), . . . , Bl−1(xl−1,1, . . . ,xl−1,ql−1),
Bl+1(xl+1,1, . . . ,xl+1,ql+1), . . . , Bn(xn,1, . . . ,xn,qn).

Case 2. i = j. We can write αi = β1xl,1β2xl,ql
β3.

Case 2a. β1β3 ∈ Σ∗. Let C be a new nonterminal of arity q − 1. We can replace
π with the following two rules:

A(y1, . . . ,yi−1, αi,yi+1, . . . ,yq) :−
C(y1, . . . ,yi−1,yi+1, . . . ,yq), Bl(xl,1, . . . ,xl,ql

).
C(α1, . . . , αi−1, αi+1, . . . , αq) :−

B1(x1,1, . . . ,x1,q1), . . . , Bl−1(xl−1,1, . . . ,xl−1,ql−1),
Bl+1(xl+1,1, . . . ,xl+1,ql+1), . . . , Bn(xn,1, . . . ,xn,qn).

Case 2b. β1 = γxk,pw with w ∈ Σ∗. Let C be a new nonterminal of arity qk. We
can replace π with the following two rules:

A(α1, . . . , αi−1, γxk,pβ3, αp+1, . . . , αq) :−
B1(x1,1, . . . ,x1,q1), . . . , Bk−1(xk−1,1, . . . ,xk−1,qk−1), C(xk,1, . . . ,xk,qk

),
Bk+1(xk+1,1, . . . ,xk+1,qk+1), . . . , Bl−1(xl−1,1, . . . ,xl−1,ql−1),
Bl+1(xl+1,1, . . . ,xl+1,ql+1), . . . , Bn(xn,1, . . . ,xn,qn).

C(xk,1, . . . ,xk,p−1,xk,pwxl,1β2xl,ql
,xk,p+1, . . . ,xk,qk

) :−
Bk(xk,1, . . . ,xk,qk

), Bl(xl,1, . . . ,xql
).

Case 2c. β3 = wxk,pγ with w ∈ Σ∗. Similar to Case 2b. ��

Seki and Kato [17] show that for allm ≥ 2, RESPm ∈ m-MCFL(2)−m-MCFLwn,
where RESPm is defined by

RESPm = { ai
1a

i
2b

j
1b

j
2 . . . a

i
2m−1a

i
2mbj

2m−1b
j
2m | i, j ≥ 0 }.

It is easy to see that RESPm ∈ 2m-MCFL(1) = 2m-MCFLwn(1).

350 M. Kanazawa and S. Salvati

5 The Double Copying Theorem for Well-Nested
Multiple Context-Free Languages

The following theorem about possibly non-well-nested MCFGs is easy to prove.
For part (ii), note that there is a rational transduction that maps L to L0.3

Theorem 6. Let L = {w#w | w ∈ L0 }.
(i) If L0 ∈ m-MCFL(f), then L ∈ 2m-MCFL(f).
(ii) If L ∈ m-MCFL(f), then L0 ∈ m-MCFL(f).

A consequence of Theorem 6 is that the class of all MCFGs has an unlimited
copying power in the sense that L = {w#w | w ∈ L0 } is an MCFL whenever
L0 is. We will see that the copying power of well-nested MCFGs is much more
restricted (Corollary 9).

The following lemma is used in the proof of our main theorem (Theorem 8).
Its proof is straightforward and is omitted.

Lemma 7. Let M be a semilinear subset of N2m and ri, si, ti, ui, vi ∈ Σ∗ for
i ∈ [1,m]. Then there are some G = (N,Σ, P, S) ∈ m-MCFG(1) and nontermi-
nal A ∈ N (m) such that

{ (x1, . . . , xm) | 0G A(x1, . . . , xm) } =
{ (r1sn1

1 t1u
n2
1 v1, . . . , rms

n2m−1
m tmu

n2m
m vm) | (n1, . . . , n2m) ∈M }.

Theorem 8. Let L = {w#w | w ∈ L0 }. The following are equivalent:

(i) L ∈ m-MCFLwn.
(ii) L ∈ m-MCFL(1).

Proof. The implication from (ii) to (i) immediately follows from m-MCFL(1) =
m-MCFLwn(1). To show that (i) implies (ii), suppose that L = L(G) for some
G = (N,Σ ∪ {#}, P, S) ∈ m-MCFGwn(2). If L is finite, L clearly belongs to
1-MCFL(1), so we assume that L is infinite. Without loss of generality, we may
suppose that G has no useless nonterminal and satisfies the following property:

– For each nonterminal A ∈ N (q), the set { (x1, . . . , xq) | 0G A(x1, . . . , xq) }
is infinite.

To show that L belongs to m-MCFL(1), we prove that for each binary rule

π = A(α1, . . . , αq) :− B(y1, . . . ,yk), C(z1, . . . , zl)

in P , there are Gπ = (Nπ, Σ ∪ {#}, Pπ, Sπ) ∈ m-MCFG(1) and a nonterminal
Aπ ∈ N (q)

π such that

{ (x1, . . . , xq) | 0G πT1T2 : A(x1, . . . , xq) for some derivation trees T1, T2 }
= { (x1, . . . , xq) | 0Gπ Aπ(x1, . . . , xq) }. (1)

This is a consequence of the following claim. We assume without loss of generality
that y1 occurs to the left of z1 in (α1, . . . , αq).
3 See the discussion following the proof of Theorem 8 for a possible strengthening of

part (ii) of Theorem 6.

The Copying Power of Well-Nested Multiple Context-Free Grammars 351

Claim. There exist t ∈ Σ+ and r, s ∈ Σ∗ such that if

0G πT1T2 :A(x1, . . . , xq)

for some T1, T2, then x1, . . . , xq are non-overlapping substrings of rtis#rtis for
some i ≥ 0.

Proof. We write Σ# for Σ ∪ {#}. Let U [x] be a (smallest, for concreteness)
derivation tree context such that for some γ ∈ Σ∗

#x1Σ
∗
. . .Σ

∗
#xqΣ

∗
,

x : A(x1, . . . ,xq) 0G U [x] : S(γ).

We write γ[#β] for γ[x1 := β1, . . . ,xq := βq]. Our goal is to find t ∈ Σ+ and
r, s ∈ Σ∗ such that

0G πT1T2 :A(x1, . . . , xq) implies γ[#x] = rtis#rtis for some i ≥ 0. (2)

We have

y :B(y1, . . . ,yk), z : C(z1, . . . , zl) 0G U [πyz] : S(γ[#α]).

Let us write γ[#α][#y, #z] for the result of substituting y1, . . . , yk, z1, . . . , zl for
y1, . . . ,yk, z1, . . . , zl in γ[#α]. Since π is well-nested, either

γ[#α] ∈ Σ∗
#y1Σ

∗
. . .Σ

∗
#ykΣ

∗
#z1Σ

∗
. . . Σ

∗
#zlΣ

∗
#

or else

γ[#α] ∈ Σ∗
#y1Σ

∗
. . .Σ

∗
#yhΣ

∗
#z1Σ

∗
. . .Σ

∗
#zlΣ

∗
#yh+1Σ

∗
. . . Σ

∗
#ykΣ

∗
#

for some h ∈ [1, k − 1]. Since γ[#α][#y, #z] ∈ L for all y1, . . . , yk, z1, . . . , zl such that
0G B(y1, . . . , yk) and 0G C(z1, . . . , zl), and y1, . . . , yk and z1, . . . , zl can vary
independently, it is easy to see that the former possibility is ruled out; thus we
must have

γ[#α] = δ1δ2δ3

where

δ1 ∈ Σ∗y1Σ
∗ . . . Σ∗yhΣ

∗, δ2 ∈ z1Σ
∗
. . .Σ

∗
#zl, δ3 ∈ Σ∗yh+1Σ

∗ . . .Σ∗ykΣ
∗.

Let

LB = { δ1#δ3[#y] | 0G B(y1, . . . , yk) } and LC = { δ2[#z] | 0G C(z1, . . . , zl) }.

Note that both LB and LC are infinite subsets of Σ∗#Σ∗, and for every u#v ∈ LB

and w#x ∈ LC , the string uw#xv is an element of L. Let u#v, u′#v′ ∈ LB with
|u| ≤ |u′|. By taking w#x ∈ LC with |w| ≥ |v′| (or equivalently, |x| ≥ |u′|), we
see that u must be a prefix of u′, since both are prefixes of x. We also see that
|u′| − |u| = |v′| − |v|. By the same token, v must be a suffix of v′.

352 M. Kanazawa and S. Salvati

Let u1#v1 and u2#v2 be the two shortest strings in LB. Then u2 = u1û and
v2 = v̂v1 for some û, v̂ ∈ Σ+ such that |û| = |v̂|. Let w#x ∈ LC , and suppose
|x| > |u2|.

u1 w

u2︷ ︸︸ ︷
u1 û w

u1 û x̂︸ ︷︷ ︸
x

v1 u1 û x̂︸ ︷︷ ︸
x

v̂ v1︸ ︷︷ ︸
v2

From u1w = xv1 and u2w = xv2, we see that there is an x̂ ∈ Σ+ such that

x = u2x̂, w = x̂v2, and ûx̂ = x̂v̂.

By Lemma 2, there are û1 ∈ Σ+, û2 ∈ Σ∗ such that

û = û1û2, v̂ = û2û1, and x̂ = ûkû1 = û1(û2û1)k for some k ≥ 0.

Now let t be the primitive root of û. There are some i1, i2 ≥ 0 and t1, t2 such
that t1
= ε and

t = t1t2, û1 = ti1t1, û2 = t2ti2 .

Then
ûx̂ = x̂v̂ = ûk+1û1 ∈ t∗t1.

It follows that for all w#x ∈ LC such that |x| > |u2|,
w ∈ t∗t1v1, (3)
x ∈ u1t

∗t1. (4)

Now let u#v be an arbitrary element of LB. Take w#x ∈ LC such that |x| > |u2|
and |w| ≥ |t|+ |v|. Since uw = xv, there is an x′ such that |x′| ≥ |t| and

w = x′v, (5)
x = ux′. (6)

Since |v| ≥ |v1| and |x′| ≥ |t|, (3) and (5) implies

x′ = t1(t2t1)jt3

for some j ≥ 0 and some prefix t3 of t2t1 such that t3
= t2t1. Let t4 be such that
t3t4 = t2t1. Since (4) and (6) imply that x′ ends in t2t1, we see

t4t3 = t3t4.

Since t3t4 = t2t1 is a conjugate of t and hence is primitive, Lemma 3 implies
that t3 = ε. Hence x′ ∈ t∗t1. By (4) and (6), we see

u ∈ u1t
∗. (7)

The Copying Power of Well-Nested Multiple Context-Free Grammars 353

By a reasoning symmetric to that leading up to (7), we can infer that there
exist some primitive non-empty string t̃ and some string w1 such that for all
w#x ∈ LC ,

w ∈ t̃∗w1. (8)

By taking sufficiently long w, (3) and (8) together imply

t|t̃| = t̃|t|.

Since t and t̃ are both primitive, Lemma 3 implies t = t̃. Thus, for all w#x ∈ LC ,

w ∈ t∗w1. (9)

From (7) and (9), we obtain
uw ∈ u1t

∗w1

for all u#v ∈ LB and all w#x ∈ LC . Now (2) follows with r = u1 and s = w1. ��
We continue with the proof of Theorem 8. Let c = max{|r|, |s|, |t|}. By the above
claim, one of the following two cases must obtain.

Case 1. Every (x1, . . . , xq) such that 0G πT1T2 :A(x1, . . . , xq) for some T1, T2
is of the form

(r1tn1s1, . . . , rqt
nqsq).

for some r1, . . . , rq, s1, . . . , sq ∈ Σ≤c.
Case 2. Every (x1, . . . , xq) such that 0G πT1T2 :A(x1, . . . , xq) for some T1, T2

is of the form

(r1tn1s1, . . . , rj−1t
nj−1sj−1, rjt

njsj#rj+1t
nj+1sj+1,

rj+2t
nj+2sj+2, . . . , rq+1t

nq+1sq+1)

for some r1, . . . , rq+1, s1, . . . , sq+1 ∈ Σ≤c.
In Case 1, for any fixed r1, . . . , rq, s1, . . . , sq, the set

{ (n1, . . . , nq) | 0G πT1T2 :A(r1tn1s1, . . . , rqt
nqsq) for some T1, T2 }

is semilinear. To see this, it suffices to note that Lπ = { x1$. . . $xq |
0G πT1T2 :A(x1, . . . , xq) for some T1, T2 } is an m-MCFL and there is a ra-
tional transduction that relates r1tn1s1$. . . $rqtnqsq to an1

1 . . . a
nq
q . Thus, by

Lemma 7, there are a Gπ = (Nπ, Σ ∪ {#}, Pπ, Sπ) ∈ q-MCFG(1) and a non-
terminal Aπ ∈ N (q)

π such that (1) holds.
In Case 2, we can derive the same conclusion in a similar way.
Let P2 be the set of all binary rules of G. We can now form a G′ = (N ′, Σ ∪

{#}, P ′, S) ∈ m-MCFG(1) generating L by setting

N ′ = N ∪
⋃

π∈P2

Nπ,

P ′ = (P − P2) ∪
⋃

π∈P2

Pπ ∪ {A(x1, . . . ,xq) :− Aπ(x1, . . . ,xq) | π ∈ P2

and A ∈ N (q) is the head nonterminal of π }.
This completes the proof of Theorem 8. ��

354 M. Kanazawa and S. Salvati

It would be desirable to have a precise characterization of the class of languages
L0 for which L = {w#w | w ∈ L0 } belongs tom-MCFLwn, as in the double copy-
ing theorem for context-free languages (Theorem 1). In a previous version of the
paper, we hastily stated that L ∈ m-MCFL(f) implies L0 ∈ *m/2+ -MCFL(f)
(compare part (ii) of Theorem 6), which would give us such a characterization for
even m. While this still seems to us to be a reasonable conjecture, we currently
see no easy way to prove it.

Since it is easy to see4

m-MCFL(1) = EDT0LFIN(m),

Theorems 6 and 8 give

Corollary 9. Let L = {w#w | w ∈ L0 }. The following are equivalent:

(i) L ∈ MCFLwn.
(ii) L ∈ EDT0LFIN.
(iii) L0 ∈ EDT0LFIN.

Since CFL − EDT0L
= ∅ and {w#w | w ∈ L0 } ∈ 2-MCFL for all L0 ∈
CFL− EDT0L, Corollary 9 implies

Corollary 10. 2-MCFL−MCFLwn
= ∅.

6 Conclusion

We have shown that imposing the well-nestedness constraint on the rules of
multiple context-free grammars causes severe loss of the copying power of the
formalism. The restriction on the languages L0 that can be copied is similar to
the restriction in Engelfriet and Skyum’s [4] triple copying theorem for OI. It is
worth noting that the crucial claim in the proof of Theorem 8 does not depend
on the non-duplicating nature of the MCFG rules, and one can indeed prove that
an analogous claim also holds of OI. This leads us to conjecture that a double
copying theorem holds of OI with the same restriction on L0 as in Engelfriet and
Skyum’s triple copying theorem (namely, membership in EDT0L).5 We hope to
resolve this open question in future work.

References

1. Arnold, A., Dauchet, M.: Un théorem de duplication pour les forêts algébriques.
Journal of Computer and System Science 13, 223–244 (1976)

2. Ehrenfeucht, A., Rozenberg, G.: On some context-free languages that are not de-
terministic ET0L languages. R.A.I.R.O. Informatique théorique/Theoretical Com-
puter Science 11, 273–291 (1977)

4 See [3] for the definition of EDT0LFIN(m) and EDT0LFIN.
5 Arnold and Dauchet [1] prove a copying theorem for OI context-free tree languages,

which is an exact tree counterpart to this conjecture.

The Copying Power of Well-Nested Multiple Context-Free Grammars 355

3. Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree transducers, L systems, and two-way
machines. Journal of Computer and System Sciences 20, 150–202 (1980)

4. Engelfriet, J., Skyum, S.: Copying theorems. Information Processing Letters 4,
157–161 (1976)

5. Fisher, M.J.: Grammars with Macro-Like Productions. Ph.D. thesis, Harvard Uni-
versity (1968)

6. Hayashi, T.: On derivation trees of indexed gramamrs —an extension of the uvwxy-
theorem—. Publications of the Research Institute for Mathematical Sciences 9,
61–92 (1973)

7. Hotz, G., Pitsch, G.: On parsing coupled-context-free languages. Thoretical Com-
puter Science 161, 205–253 (1996)

8. Ito, M., Katsura, M.: Context-free languages consisting of non-primitive words.
International Journal of Computer Mathematics 40, 157–167 (1991)

9. Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required to
provide reasonable structural descriptions? In: Dowty, D.R., Karttunen, L., Zwicky,
A.M. (eds.) Natural Language Parsing: Psychological, Computational and Theo-
retical Perspectives, pp. 206–250. Cambridge University Press, Cambridge (1985)

10. Kanazawa, M.: The convergence of well-nested mildly context-sensitive grammar
formalisms. In: An invited talk given at the 14th Conference on Formal Grammar,
Bordeaux, France (July 2009), http://research.nii.ac.jp/~kanazawa/

11. Kanazawa, M.: The pumping lemma for well-nested multiple context-free lan-
guages. In: Diekert, V., Nowotka, D. (eds.) Developments in Language Theory:
13th International Conference, DLT 2009, pp. 312–325. Springer, Berlin (2009)

12. Kuhlmann, M.: Dependency Structures and Lexicalized Grammars. Ph.D. thesis,
Saarland University (2007)

13. Michaelis, J.: An additional observation on strict derivational minimalism. In:
Rogers, J. (ed.) Proceedings of FG-MoL 2005: The 10th conference on Formal
Grammar and the 9th Meeting on Mathematics of Language, pp. 101–111. CSLI
Publications, Stanford (2009)

14. Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting
systems. Theoretical Computer Science 223, 87–120 (1999)

15. Rozoy, B.: The Dyck language D′
1
∗ is not generated by any matrix grammar of

finite index. Information and Computation 74, 64–89 (1987)
16. Satta, G.: Trading independent for synchronized parallelism in finite copying par-

allel rewriting systems. Journal of Computer and System Sciences 56, 27–45 (1998)
17. Seki, H., Kato, Y.: On the generative power of multiple context-free grammars

and macro grammars. IEICE Transactions on Information and Systems E91–D,
209–221 (2008)

18. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88, 191–229 (1991)

19. Shallit, J.: A Second Course in Formal Langauges and Automata Theory. Cam-
bridge University Press, Cambridge (2009)

20. Staudacher, P.: New frontiers beyond context-freeness: DI-grammars and DI-
automata. In: 6th Conference of the European Chapter of the Association for
Computational Linguistics (EACL ’93), pp. 358–367 (1993)

21. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: 25th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 104–111 (1987)

http://research.nii.ac.jp/~kanazawa/

Post Correspondence Problem with Partially
Commutative Alphabets

Barbara Klunder2,� and Wojciech Rytter1,2,��

1 Institute of Informatics, University of Warsaw, ul. Banacha 2,
02-097 Warszawa, Poland

2 Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University, Toruń, Poland

Abstract. We introduce a version of Post Correspondence Problem
(PCP, in short) generalized to words over partially commutative alpha-
bets. Several observations are presented about the algorithmic status of
the introduced problem. In particular solvability is shown for the par-
tially commutative PCP for two special cases: the binary case of PCP
(denoted by PCP(2)), and the case with one periodic morphism. This
extends solvability results for the classical PCP for these cases. Also a
weaker version of PCP, named here Weak-PCP, is discussed. This version
distinguishes (in the sense of solvability) the case of noncommutative
from the case of partially commutative alphabets. We consider also a
solvable (though NP-hard) simple version of Weak-PCP. Our solvability
results demonstrate the power of Ibarra’s algorithms for reversal bounded
multi-counter machines.

Keywords: Post Correspondence Problem, morphism, partially com-
mutative alphabet, solvability, equality set, weak equality set, reversal
bounded multicounter machine.

1 Introduction

The origins of partial commutativity is the theory of traces (i.e. monoids with
partial commutations). In the fundamental Mazurkiewicz’s paper [20], trace
languages are regarded as a powerful means for description of behaviors of con-
current systems. The formal language theory over traces, limited to recognizable
and rational trace languages, is the subject of [21].

Usually traces are more complicated than standard noncommutative words,
for example rational expressions with classical meaning are less powerful then
expressions for alphabets which are partially commutative. In the theory of traces
the symbols represent some atomic processes and two symbols commute iff they
are concurrent (the corresponding processes can be executed in any order).
� Supported by grant N N206 258035 of the Polish Ministry of Science and Higher

Education.
�� Supported by grant N206 004 32/0806 of the Polish Ministry of Science and Higher

Education.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 356–367, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Post Correspondence Problem with Partially Commutative Alphabets 357

A partially commutative alphabet (p.c. alphabet, in short) is a finite set A of
symbols with a relation I ⊆ A×A which is symmetric and irreflexive.

Such a relation is named the independency relation or the relation of partial
commutativity. The complement D of I is named the dependency relation.

For a given p.c. alphabet A and two words x, y we write x ≈I y iff the word
x can be transformed to y commuting neighboring symbols which are in the
relation I. In other words x, y are equivalent modulo pairs of adjacent symbols
which commute.

Example. Let A = {a, b, c} and I = {(a, b), (b, a)}, then

aaabbcab ≈I bbaaacba.

There are many algorithmic problems easy in case of noncommutative alphabets
which become unsolvable in the partially commutative case. Typical examples
are equivalence of regular sets and the unique decipherability problem.

In this paper we consider yet another classical problem in the setting of par-
tially commutative alphabets.

1.1 The Classical Post Correspondence Problem

The Post Correspondence Problem (PCP, in short) is probably the first published
algorithmically undecidable combinatorial problem. It is a useful tool to establish
undecidability results in different fields of theoretical computer science. As an
example let us recall the problem of emptiness of intersection of two context-free
languages.

The PCP problem with lists of size n (denoted by PCP(n)), is defined as
follow.:

Given two lists of words over an alphabet A:

(u1, u2, . . . , un), (v1, v2, . . . , vn)

decide if there exists a nonempty sequence i1, . . . im of indices such that

ui1 . . . uim = vi1 . . . vim .

Equivalently, for an n-element alphabet X we are given two morphisms

h, g : X� �→ A� ,

and the problem is to decide whether the following set, called the equality set, is
nonempty:

EQ-SET(h, g) = {w ∈ X+ : h(w) = g(w)}.

1.2 Post Correspondence Problem with p.c. Alphabets

In the case of p.c. alphabet we define the equality set with respect to the relation
I of partial commutation:

EQ-SETI(h, g) = {w ∈ X+ : h(w) ≈I g(w)}

358 B. Klunder and W. Rytter

Now the partially commutative PCP problem is defined as follows:
given h, g and an independency relation I,
check if EQ-SETI(h, g) = ∅.

The only known (positive) result related to PCP with commutative alphabet
is of [12] and deals with the Parikh equivalence, i.e. the case when the p.c.
alphabet is fully commutative.

It is known that the classical PCP is solvable for the lists of size n = 2 and
unsolvable for n ≥ 7, the case of 2 < n < 7 is not well understood.

We show that for partially commutative PCP the situation is similar.

1.3 Reversal Bounded Multicounter Machines

As an algorithmic tool (to show solvability) we use the algorithm testing empti-
ness of reversal bounded multicounter machines. In this subsection we define
these machines and state the basic result needed later. A two-way k-counter
machine M is defined by an 8-tuple M =< k,K,Σ, $, c̄, δ, q0, F > where:

1. K,Σ, c̄, $, q0, F are the states, inputs, left and right endmarkers, initial and
final states respectively;

2. δ is a mapping fromK×(Σ∪{c̄, $})×{0, 1}k intoK×{−1, 0, 1}×{−1, 0, 1}k.
Assume the counters cannot be decreased below zero.

A configuration c̄x$, x ∈ Σ, is defined by a tuple (q, c̄x$, i, c1, . . . , ck), denoting
that M is in the state q with the head reading the i-th symbol of c̄x$ and
c1, . . . , ck are integers stored in the k counters.

We define a relation → among configurations as follows:
(q, c̄x$, i, c1, . . . , ck)→ (p, c̄x$, i+ d, c1 + d1, . . . , ck + dk)

if a is the ith symbol of c̄x$ and δ(q, a, λ(c1), . . . , λ(ck)) contains (p, d, d1 . . . , dk),
where

λ(ci) =
{

0 if ci = 0
1 if ci
= 0

The reflexive and transitive closure of → is denoted as →∗. A string x in Σ∗ is
accepted by M if

(q0, c̄x$, 1, 0, . . . , 0)→∗ (q, c̄x$, i, c1, . . . , ck),

for some q ∈ F , 1 ≤ i ≤ |c̄x$| and nonnegative integers c1, . . . , ck. The set of
strings accepted by M is denoted by L(M).

A reversal-bounded k-counter machine operates in such a way that in every
accepting computation the input head reverses direction at most p times and
the count in each counter alternately increases and decreases at most q times,
where p, q are some constants.

The emptiness problem for M is to check if L(M) = ∅. We will use one of the
results of Ibarra’s paper.

Lemma 1. [13]
The emptiness problem for reversal-bounded multicounter machines is solvable.

Post Correspondence Problem with Partially Commutative Alphabets 359

2 Two Special Cases of Partially Commutative PCP

For a pair of symbols (a, b) we denote by πa,b the projection which for a word w
removes all letters but a, b.

Example. πa,b(accbacb) = abab, πa,c(accbacb) = accac.

The following result reduces the relation ≈ to multiple application of equality of
classical strings over noncommutative alphabet.

Lemma 2. [8] u ≈I w ⇔ (∀ (a, b) /∈ I) πa,b(u) = πa,b(w).

According to Lemma 2 we can express the equality set for PCP with p.c. al-
phabets as a finite intersection of equality sets for standard (noncommutative)
alphabets.

Lemma 3. EQ-SETI(h, g) =
⋂

(a,b)/∈I EQ-SET(πa,b · h, πa,b · g).

2.1 Partially Commutative PCP(2)

In this section we assume that n = 2 and X = {0, 1}. The problem PCP(2)
is solvable as was proved by Ehrenfeucht, Karhumäki and Rozenberg in 1982,
see [3]. On the other hand Matiyasevich and Sénizergues showed that PCP(7)
is unsolvable, [19]. Before we state the first new result we shall recall the main
results of [4] and [9], which can be found in [8], too, concerning the structure
of equality sets in the case of free monoids.

We say that a morphism h : X� �→ A� is periodic if h(X) ⊆ u� for some word
u. For a symbol s by |w|s denotes the number of occurrences of s in w.

Lemma 4. ([4])
(a) If h and g are periodic then either

EQ-SET(h, g) = ∅ or EQ-SET(h, g) = {w ∈ X� : r(w) = |w|0
|w|1 = k}

for some k ≥ 0 or k =∞.
(b) If h is periodic and g is not then EQ-SET(h, g) is empty or equal to u+ for
some nonempty word u.

Hence equality sets are regular or accepted by a reversal bounded one-counter
machines. The number r(w) = |w|0

|w|1 is called the ratio of a word and it is decid-
able if the intersection of regular sets and (or) sets of words of a given ratio is
nonempty.

In the case of two non-periodic morphisms the equality set is always regu-
lar. For two periodic morphisms, EQ-SET(h, g) can be nonempty only when
h(X), g(X) ⊆ u� and then r can be easily found. The main result of [10] says
that in the nonperiodic case the equality set is of a very simple form.

Lemma 5. [10]
Let (h, g) be a pair of non-periodic morphisms over a binary alphabet. If the
equality set EQ-SET(h, g) is nonempty then it is of the form (u+ v)+ for some
words u, v.

360 B. Klunder and W. Rytter

The following constructive result has been shown in [9] (as Corollary 5.7).

Lemma 6. [9]
Assume the size of the lists is n = 2 and h, g are two nonperiodic morphisms.
Then EQ-SET(h, g) can be effectively found (as a regular expression or finite
automaton).

A combination of these results implies easily the following fact.

Theorem 1
Partially commutative PCP(2) is solvable

Proof
Lemmas 2,3,4,5 imply that the p.c. PCP(2) can be reduced to the emptiness
of intersection of a finite set of languages, each of them is regular or a reversal
bounded one-counter language. These languages can be effectively presented by
corresponding finite automata or reversal bounded one-counter automata. Hence
the intersection language can be accepted by a reversal-bounded multicounter
machine M which is a composition of all these automata. Due to Lemma 1
the emptiness problem for M is solvable. Consequently the emptiness of the
intersection of related languages is also solvable. ��

2.2 Partially Commutative PCP with One Periodic Morphism

We shall consider here another easily solvable case: periodic morphisms. We say
that a morphism h into a p.c. alphabet is periodic if there is a word w such that
for each x, h(x) ≈I w

i for some natural i. The proof of the next theorem adopts
similar arguments as the classical one, see [8].

Theorem 2
Partially commutative PCP is decidable for instances (h, g), where h is periodic.

Proof
Let h, g : X� �→ A� and assume that h is periodic Let (a, b) ∈ D, then the
equality set of (πa,b · h, πa,b · g) is a multicounter reversal bounded language.

Now the equality set of (h, g) is the intersection of multicounter reversal bounded
languages too. Define the morphism ρ by ρ(a) = |h(a)| − |g(a)| for all a ∈ X .
Define also the set R = g−1(u� \ {ε}}. We have:

1. ρ−1(0) = {v : |h(v)| = |g(v)|}
2. w ∈ ρ−1(0) ∩R ⇔ w
= ε, g(w) ∈ u� and |g(w)| = |h(w)|.

Hence g(w) = h(w) for some w
= ε if and only if ρ−1(0) ∩R
= ∅. The language
ρ−1(0) ∩ R is recognizable by a reversal-bounded multicounter machine. Hence
emptiness is solvable due to [13]. ��

Post Correspondence Problem with Partially Commutative Alphabets 361

3 Partially Commutative Weak PCP

There is a version of PCP which is easily solvable for noncommutative alpha-
bets but surprisingly the same version is unsolvable for partially commutative
alphabets.

Define the partially commutative problem, named here Weak PCP, with
parameters r, s as follows:

given p.c. words x1, x2, . . . , xr, y1, y2, . . . , ys,
test if there are nonempty sequences

(i1, i2, . . . , ip), (j1, j2, . . . jq)

such that
xi1xi2 . . . xip ≈I yj1yj2 . . . yjq .

We can redefine it using the concept of equality sets as follows:

given two morphisms h, g into p.c. words, test emptiness of the set

Weak-EQ-SET(h, g) = {(z1, z2) : h(z1) ≈I g(z2)}.
The set Weak-EQ-SET(h, g) is called here the weak equality set. If we do not
write partially commutative this means that we consider the case of classical
noncommutative alphabet (special case of partially commutative).

Observation. The language {x#yR : (x, y) /∈Weak-EQ-SET(h, g) } is a linear
context free language.

Proof
The one-turn pushdown automaton can nondeterministically guess two symbols
a
= b, (a, b) /∈ I. Then it reads x and writes on the stack the word πa,b(x), then
it checks, while reading yR that πa,b(x)
= πa,b(y). ��

Denote by Weak-PCP(s, r) the weak PCP in which the domain of h is of size s
and the domain of g is of size r.

The natural relation of PCP for noncommutative alphabets to Weak-PCP for
p.c. alphabets is as follows.

Assume we have an instance of PCP given by (ui, vi) for i = 1 . . . k, where
ui, vi ∈ A+ and A ∩ {1, . . . , k} = ∅.

Let the p.c. alphabet be A ∪ {1, . . . , k}, where all letters in A commute with
all letters in {1, . . . , k}, and no other pairs of different letters commute.

Define
h(i) = i · ui, g(i) = i · vi for each 1 ≤ i ≤ k

Then we can express in a natural way the PCP(k) problem as a Weak-PCP(k, k)
with morphisms h, g defined above.

It is known, [19] that PCP(7) is unsolvable, hence we have proved that
partially commutative . Weak-PCP(7, 7) is unsolvable. We improve this slightly
below.

362 B. Klunder and W. Rytter

We know that PCP(2) is decidable (also for p.c. alphabets), this would suggest
that Weak-PCP(2, k) is solvable. However this suggestion is wrong.

Theorem 3
(a) Weak-PCP(s,r) is solvable for any s, r and noncommutative alphabets.
(b) Partially commutative Weak-PCP(2, 7) is unsolvable.

Proof
(a) It easy to see that the problem Weak-PCP(s,r) for totally noncommutative
alphabets is reducible to the emptiness of a language of a form:

(x1 ∪ . . . ∪ xs)+ ∩ (y1 ∪ . . . ∪ yr)+.

This is a simple instance of emptiness problem for a classical regular language,
hence it is obviously solvable.

(b) Let us consider an instance of PCP(7) for lists (u1, u2, . . . u7) and
(v1, v2, . . . v7). Assume the alphabet of words ui, vi is Σ = {a, b}. Let Σ be
the disjoint copy of Σ, by v we mean the word v with each letter v[i] changed to
its copy v[i]. The instance of PCP(7) is reduced to the problem Weak-PCP(2, 7)
as follows:

h(1) = a a, h(2) = b b

g(i) = ui vi for each 1 ≤ i ≤ 7

Assume that the commutation relation is Σ × Σ ∪ Σ × Σ. Then PCP (k) has
a solution iff Weak-PCP(2, 7) has a solution for the morphisms h, g constructed
above. Hence unsolvable problem PCP(7) is reduced to p.c Weak PCP(2,7).
Consequently the partially commutative Weak PCP(2,7) is unsolvable. ��

4 Weak-PCP(1, k)

In this section we consider a solvable case of Weak PCP, the situation when one
of the lists is of size 1. Especially simple is the case k = 1, i.e. the partially
commutative Weak-PCP(1, 1). The case of totally noncommutative alphabet is
simple: for two words u, v we have

(∃ i, j) ui = vj ⇔ (uv = vu).

Using projections πa,b we can reduce the p.c. case to the noncommutative case:

Observation 1
Partially commutative Weak-PCP(1, 1) for the words u, v is reducible to the test
of uv ≈ I vu, in other words:

((∃ (natural) i, j > 0) ui ≈ I v
j) ⇔ (uv ≈ I vu).

Corollary 1. Partially commutative Weak-PCP(1, 1) is solvable in determinis-
tic polynomial time.

Theorem 4. Weak-PCP(1, k) is solvable.

Post Correspondence Problem with Partially Commutative Alphabets 363

Proof
Assume we have an instance of Weak-PCP(1, k), given by the words x1, x2, . . . xk

and the word w.
In this problem we ask if there is a word x ∈ {1, . . . , k}+ and a natural m

such that h(x) ≈ I w
m.

We can construct a reversal-bounded multicounter machine M which accepts
all such strings x. Assume we have r pairs of the letters a, b which do not com-
mute. The machine M has r counters, intially it is guessing the number m and
is storing it in each counter.

Assume the i-th pair is (ai, bi), the machine M reads the input x on-line from
left to right and using the i-th counter checks if πai,bi(h(x)) = πai,bi(wm).

Then the problem Weak-PCP(1, k) is reducible to emptiness of reversal-
bounded multicounter machine, which is solvable due to [13]. ��
Theorem 5. Assume k is a part of the input, then Weak-PCP(1, k) is NP-hard.

Proof. The following problem called Exact Cover by 3-sets is NP-complete: given
family of sets Xi ⊂ U = {1, 2, ..., n}, where 1 ≤ i ≤ r, each of cardinality 3, check
if U is a disjoint union of a subfamily of these sets.

For a subset Xi let xi be the string which is a list of elements of Xi. We can
take the alphabet U , totally commutative, then the problem above is reduced to
the problem if the string z = 1 2 3 ...n is equivalent (modulo permutation) to
a concatenation of some of strings xi.

W construct the instance of PCP(1,r+1) with lists:

w = z ·#, (x1, x2, . . . xr, xr+1 = #),

where # is an additional symbol noncommuting with any other symbol.
Then Exact Cover by 3-sets is reduced to the problem if some concatena-

tion of strings from the family x1, x2, . . . xr+1 is equivalent (modulo our partial
commutation) to wm, for some natural m. In this way we have a deterministic
polynomial time reduction of Exact Cover by 3-sets to partially commutative
PCP(1,r+1). Therefore the last problem is NP-hard. ��
We do not know if partially commutative Weak PCP (1, k) is in NP, however
we prove that it is in P for the lists of words over an alphabet of a constant size.

Define:
Δ(Σ) = {w ∈ Σ+ : (∀ s1, s2 ∈ Σ) |w|s1 = |w|s2}.

In other wordsΔ(Σ) is the set of words over the alphabet Σ in which the number
of occurrences of letters are the same. Let L(M) be the language accepted by a
nodeterministic finite automaton M .

We consider the following problem for M .

(diagonal emptiness problem) L(M) ∩Δ(Σ) = ∅ ?

The following lemma can be shown using techniques from [5, 17]. One of these
techniques is an interesting application of Euler theorem about Euler tours in

364 B. Klunder and W. Rytter

multi-graphs. This allows to describe the membership problem as an integer lin-
ear program, where multiplicities are treated as variables, and the Euler condi-
tion related to indegree-outdegree of nodes can be expressed as a set of equations.
This gives singly exponential upper bounds for the size of the solution.

Lemma 7
The diagonal emptiness problem for finite automata is in NP;
If z is a shortest word in L(M)∩Δ(Σ) then it is of singly exponential length (if
there is any such z).

We use the following fact, shown recently by Eryk Kopczynski.

Lemma 8. [15]
Assume the alphabet is of a constant size. Then the membership problem for a
commutative word, given as a Parikh vector with coefficients written in binary,
in a given regular language is in P.

Lemma 9
For a nondeterministic automaton M with input alphabet Σ of a constant size
the diagonal emptiness problem is in P (solved by a deterministic polynomial
time algorithm).

Proof. We can transform M to an equivalent nondeterministic automaton of
polynomial size such that its accepting states are sinks (there are no outgoing
edges). Assume now that M is of this form.

For an integer j let

Σ = {a1, a2, . . . ar}, Σ(j) = aj
1a

j
2 . . . a

j
r

Change M to the automaton M ′, by adding for each accepting state q the loop
(transition) from q to q labeled by Σ(1).

Due to Lemma 7 there is a constant c such that the length of the shortest
word in L(M) ∩Δ(Σ) is upper bounded by K = 2cn.

Now the diagonal emptiness problem is reduced to the problem whether Σ(K)

is commutatively equivalent to some word accepted by M ′. This problem is in
P due to [15].

Hence our problem is also in P . ��

Remark
The above problem is NP-complete for nonconstant alphabet, as pointed in [18].
However we do not use this result here.

We can use Lemma 9 to show the following fact.

Theorem 6
Let A be the alphabet of words in the lists defining a partially commutative
Weak PCP(1,k). If |A| = O(1) and k = O(1) then partially commutative Weak
PCP(1,k) is in P .

Post Correspondence Problem with Partially Commutative Alphabets 365

Sketch of the proof
Let r be the number of pairs of symbols a, b which do not commute. Let (aj , bj)
be the j-th such pair and denote:

w(j) = πaj ,bj (w)

We are to check if there is a sequence of indexes i1, i2, . . . im such that:

∃ (N ≥ 1) ∀ (1 ≤ j ≤ r) πaj ,bj (xi1xi2 . . . xim) = wN
(j).

We construct an automaton similar to the construction of a graph for testing
unique decipherability of a set of words.

In our graph (the automaton M) each node is a tuple of r words. The j-th
component is a prefix α (possibly empty) of w(j).

Let A′ = {a1, a2, . . . ar} be some additional symbols (acting as counters).
Then there is an edge labeled ak

j from α to β iff for some xi we have:

α · πaj ,bj (xi) = wk
(j)) · β,

where β is a prefix of w(j). For each component α in a given tuple we add such
string ak

j to the transition, and this is done for each component. Hence each edge
of the graph of the automaton M is labeled by a string over the alphabet A′ of
counters.

In this way the automaton A is following some nondeterministically guessed
xi’s and keeps on the edges the count of the number of copies of w(j). Hence it
is enough to check additionally if for any two aj , as we have the same number
of occurrences of these symbols on some (the same for all components) nonde-
terministically guessed path from a source (empty prefix) to a sink (also empty
prefix).

The path corresponds to the choice of a sequence xi1xi2 . . . xim and some
natural nonzero N such that

xi1xi2 . . . xim = wN

Hence our problem is reduced to the diagonal emptiness problem for M . The
machine M is of a polynomial size since we have only a constant number of
noncommuting pairs (aj , bj). We omit details. ��

Open Problems

1. Is partially commutative Weak-PCP(2, 2) solvable ?

2. What about the complexity status of partially commutative Weak-PCP(1, k),
we showed it isNP -hard when k is a part of the input, and is in P for constant
sized alphabet when k is fixed . What about general alphabets, is it in NP ?
Is it NP -hard in case of a fixed k ?

366 B. Klunder and W. Rytter

3. For which partially commutative alphabets I the problem Weak-PCP is solv-
able ? We suspect that it is solvable in case of transitively closed dependency
relations D (the complement of I).

4. What is the minimal k such that partially commutative PCP(k) is unsolvable
(in case of noncommutative alphabet the smallest known k is k = 7).

Acknowledgment

The authors thank J. Leroux, S. Lasota and Eryk Kopczyński for helpful com-
ments related to Lemma 9.

References

1. Clerbout, M., Latteux, M.: Semi-commutations. Information & Computation 73(1),
59–74 (1987)

2. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific Publishing Co.,
Inc., Singapore (1995)

3. Ehrenfeucht, A., Karhumäki, J., Rozenberg, G.: The (generalized) Post correspon-
dence problem with lists consisting of two words is decidable. Theor. Comput.
Sci. 21, 119–144 (1982)

4. Ehrenfeucht, A., Karhumäki, J., Rozenberg, G.: On binary equality sets and a
solution to the set conjecture in the binary case. Journal of Algebra 85, 76–85
(1983)

5. Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel
processes. Fundamenta Informaticae 31, 13–26 (1997)

6. Gibbons, A., Rytter, W.: On the decidability of some problems about rational
subsets of free partially commutative monoids. Theor. Comput. Sci. 48(2-3), 329–
337 (1986)

7. Halava, V., Harju, T., Hirvensalo, M.: Binary (generalized) Post correspondence
problem. Theor. Comput. Sci. 276(1-2), 183–204 (2002)

8. Harju, T., Karhumäki, J.: Morphisms. In: Handbook of formal languages, vol. 1
(1997)

9. Harju, T., Karhumäki, J., Krob, D.: Remarks on generelized Post correspondence
problem. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp.
39–48. Springer, Heidelberg (1996)

10. Holub, S.: Binary equality sets are generated by two words. Int. J. Algebra (259),
1–42 (2003)

11. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading (2001)

12. Ibarra, O.H., Kim, C.E.: A useful device for showing the solvability of some decision
problems. In: STOC ’76: Proceedings of the eighth annual ACM symposium on
Theory of computing, pp. 135–140 (1976)

13. Ibarra, O.: Reversal-bounded multicounter machines and their decision problems.
J. ACM 25(1), 116–133 (1978)

14. Kopczyǹski, E.: Personal Communication (2009)
15. Kopczyński, E.: Complexity of problems of commutative grammars, draft (2009)
16. Lasota, S.: Personal Communication (2009)

Post Correspondence Problem with Partially Commutative Alphabets 367

17. Leroux, J.: A polynomial time Presburger criterion and synthesis for number de-
cision diagrams. In: LICS, pp. 147–156 (2005)

18. Leroux, J.: Personal Communication (2009)
19. Matiyasevich, Y., Sénizergues, G.: Decision problems for semi-Thue systems with

a few rules, pp. 523–531 (1996)
20. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. Techni-

cal report, Aarhus University (1977)
21. Ochmański, E.: Recognizable Trace Languages, pp. 167–204. World Scientific

Publishing Co., Inc., Singapore (1995)

Reversible Pushdown Automata

Martin Kutrib and Andreas Malcher

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher}@informatik.uni-giessen.de

Abstract. Reversible pushdown automata are deterministic pushdown
automata having the property that any configuration occurring in any
computation has exactly one predecessor. In this paper, the compu-
tational capacity of reversible computations in pushdown automata is
investigated and turns out to lie properly in between the regular and de-
terministic context-free languages. Furthermore, it can be shown that a
deterministic context-free language cannot be accepted reversibly if more
than realtime is necessary for acceptance. Closure properties as well as
decidability questions for reversible pushdown automata are studied. Fi-
nally, the question of whether a given (nondeterministic) pushdown au-
tomaton can be algorithmically tested for reversibility is answered in the
affirmative, whereas it is shown to be undecidable whether the language
accepted by a given nondeterministic pushdown automaton is reversible.

1 Introduction

Computers are information processing devices which are physical realizations of
abstract computational models. It may be difficult to define exactly what infor-
mation is or how information should be measured suitably. It may be even more
difficult to analyze in detail how a computational device processes or transmits
information while working on some input. Thus, one first step towards a better
understanding of information is to study computations in which no information
is lost. Another motivation to study information preserving computations is the
physical observation that a loss of information results in heat dissipation. A first
study of this kind has been done in [2] for Turing machines where the notion of re-
versible Turing machines is introduced. Deterministic Turing machines are called
reversible when they are also backward deterministic, i.e., each configuration has
exactly one predecessor. One fundamental result shown in [2] is that every, pos-
sibly irreversible, Turing machine can always be simulated by a reversible Turing
machine in a constructive way. This construction is significantly improved in [7]
with respect to the number of tapes and tape symbols. Thus, for the powerful
model of Turing machines, which describe the recursively enumerable languages,
every computation can be made information preserving. At the other end of the
Chomsky hierarchy there are the regular languages. Reversible variants of de-
terministic finite automata have been defined and investigated in [1,8]. It turns
out that there are regular languages for which no reversible deterministic finite

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 368–379, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Reversible Pushdown Automata 369

automaton exists. Thus, there are computations in which a loss of information is
inevitable. Another result of [8] is that the existence of a reversible automaton
can be decided for a regular language in polynomial time.

Reversible variants of the massively parallel model of cellular automata and
iterative arrays, which are interacting deterministic finite automata, have been
studied in [5,6]. One main result there is the identification of data structures and
constructions in terms of closure properties which can be implemented reversibly.
Another interesting result is that, in contrast to regular languages, there is no
algorithm which decides whether or not a given cellular device is reversible.

In this paper, the investigation of reversibility in computational devices is
complemented by the study of reversible pushdown automata. These are deter-
ministic pushdown automata with the property that any configuration occurring
in any computation has exactly one predecessor. First, it is shown that all reg-
ular languages as well as some non-regular languages are accepted by reversible
deterministic pushdown automata. On the other hand, we prove that there is a
deterministic context-free language which cannot be accepted in a reversible way.
Thus, the computational capacity of reversible pushdown automata lies properly
in between the regular and deterministic context-free languages. Moreover, ev-
ery deterministic context-free language which needs more than realtime is shown
not to be acceptable by reversible pushdown automata. In the second part of
the paper, closure properties and decidability questions of the language class
are investigated. It turns out that the closure properties of reversible pushdown
automata are similar to those of deterministic pushdown automata. The main
difference is the somehow interesting result that the language class accepted
by reversible pushdown automata is not closed under union and intersection
with regular languages. Finally, the questions of whether a given automaton is
a reversible pushdown automaton, and whether its language is reversible are
investigated. We show that it is decidable whether a given nondeterministic
or deterministic pushdown automaton is reversible, whereas it is undecidable
whether a nondeterministic pushdown automaton accepts a reversible language.

2 Preliminaries and Definitions

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. The set of words of length at most n ≥ 0
is denoted by Σ≤n. For convenience, we use Σλ for Σ ∪ {λ}. The reversal of a
word w is denoted by wR and for the length of w we write |w|. The number of
occurrences of a symbol a ∈ Σ in w ∈ Σ∗ is written as |w|a. Set inclusion is
denoted by ⊆, and strict set inclusion by ⊂.

A deterministic pushdown automaton is a system M = 〈Q,Σ, Γ, δ, q0,⊥, F 〉,
where Q is a finite set of states, Σ is the finite input alphabet, Γ is a finite push-
down alphabet, q0 ∈ Q is the initial state, ⊥ ∈ Γ is a distinguished pushdown
symbol, called the bottom-of-pushdown symbol, which initially appears on the
pushdown store, F ⊆ Q is the set of accepting states, and δ is a mapping from
Q×Σλ × Γ to Q× Γ ∗ called the transition function. In particular, there must

370 M. Kutrib and A. Malcher

never be a choice of using an input symbol or of using λ input. So, it is required
that for all q in Q and Z in Γ : if δ(q, λ, Z) is defined, then δ(q, a, Z) is undefined
for all a in Σ.

A configuration of a pushdown automaton is a quadruple (v, q, w, γ), where q is
the current state, v is the already read and w the unread part of the input, and γ
the current content of the pushdown store, the leftmost symbol of γ being the top
symbol. On input w the initial configuration is defined to be (λ, q0, w,⊥). For q ∈
Q, a ∈ Σλ, v, w ∈ Σ∗, γ ∈ Γ ∗, and Z ∈ Γ , let (v, q, aw, Zγ) be a configuration.
Then its successor configuration is (va, p, w, βγ), where δ(q, a, Z) = (p, β). We
write (v, q, aw, Zγ)
 (va, p, w, βγ) in this case. As usual, the reflexive transitive
closure of
 is denoted by
∗. In order to simplify matters, we require that in
any configuration the bottom-of-pushdown symbol appears exactly once at the
bottom of the pushdown store, that is, it can neither appear at some other
position in the pushdown store nor be deleted. Formally, we require that if
δ(q, a, Z) = (p, β) then either Z �= ⊥ and β does not contain⊥, or Z = ⊥ and β =
β′⊥, where β′ does not contain ⊥. The language accepted by M with accepting
states is L(M) = {w ∈ Σ∗ | (λ, q0, w,⊥)
∗ (w, q, λ, γ), for some q ∈ F and γ ∈
Γ ∗ }. In general, the family of all languages that are accepted by some device X
is denoted by L (X).

Now we turn to reversible pushdown automata. Basically, reversibility is
meant with respect to the possibility of stepping the computation back and
forth. In particular, for reverse computation steps the head of the input tape is
always moved to the left. Therefore, the automaton rereads the input symbol
which has been read in a preceding forward computation step. So, for reversible
pushdown automata there must exist a reverse transition function.

A reverse transition function δR : Q×Σλ×Γ → Q×Γ ∗ maps a configuration
to its predecessor configuration. For q ∈ Q, a ∈ Σλ, v, w ∈ Σ∗, γ ∈ Γ ∗, and
Z ∈ Γ , let (va, q, w, Zγ) be a configuration. Then its predecessor configuration is
(v, p, aw, βγ), where δR(q, a, Z) = (p, β). We write (va, q, w, Zγ) (v, p, aw, βγ)
in this case. Let c0
 c1
 · · ·
 cn be any sequence of configurations passed
through by M beginning with an initial configuration c0. Then M is said to be
reversible (REV-PDA), if there exists a reverse transition function δR such that
ci+1 ci, for 0 ≤ i ≤ n− 1 (cf. Figure 1).

· · · a b c · · ·

q Z

Y

...

· · · a b c · · ·

p Z ′

Z

Y

...

Fig. 1. Successive configuration of a reversible deterministic pushdown automaton,
where δ(q, b, Z) = (p,Z′Z) (left to right) and δR(p, b, Z′) = (q, λ) (right to left)

Reversible Pushdown Automata 371

In order to clarify our notion we continue with an example.

Example 1. The linear language {wcwR | w ∈ {a, b}∗ } is accepted by the
reversible DPDA M = 〈{q0, q1, q2}, {a, b, c}, {a, b,⊥}, δ, q0,⊥, {q2}〉, where the
transition functions δ and δR are as follows.

Transition function δ
(1) δ(q0, a,⊥) = (q0, a⊥)
(2) δ(q0, b,⊥) = (q0, b⊥)
(3) δ(q0, a, a) = (q0, aa)
(4) δ(q0, a, b) = (q0, ab)
(5) δ(q0, b, a) = (q0, ba)
(6) δ(q0, b, b) = (q0, bb)

(7) δ(q0, c,⊥) = (q1,⊥)
(8) δ(q0, c, a) = (q1, a)
(9) δ(q0, c, b) = (q1, b)

(10) δ(q1, a, a) = (q1, λ)
(11) δ(q1, b, b) = (q1, λ)

(12) δ(q1, λ,⊥) = (q2,⊥)

Reverse transition function δR

(1) δR(q0, a, a) = (q0, λ)
(2) δR(q0, b, b) = (q0, λ)

(3) δR(q1, c,⊥) = (q0,⊥)
(4) δR(q1, c, a) = (q0, a)
(5) δR(q1, c, b) = (q0, b)

(6) δR(q1, a, a) = (q1, aa)
(7) δR(q1, a, b) = (q1, ab)
(8) δR(q1, b, a) = (q1, ba)
(9) δR(q1, b, b) = (q1, bb)

(10) δR(q1, a,⊥) = (q1, a⊥)
(11) δR(q1, b,⊥) = (q1, b⊥)

(12) δR(q2, λ,⊥) = (q1,⊥)

As expected, the transitions (1) through (6) of δ are used by M to store the
input prefix w. When a c appears in the input, transitions (7) through (9) are
used to change to state q1 while the pushdown store remains unchanged. By the
transitions (10) and (11) the input suffix wR is matched with the stored prefix w.
Finally, if the bottom-of-pushdown symbol is seen in state q1, automaton M
changes into the sole accepting state q2 and the computation necessarily stops.

For the backward computation the transitions of δR are used. Since there is
only one transition of δ that changes to state q2, transition (12) reverses this
step. For input symbols a and b, the only transitions of δ that change to state q1
are (8) and (9) which pop the symbol from the top of the pushdown store if
it matches the current input symbol. So, transitions (6) through (11) of δR are
easily constructed in order to reverse the popping by pushing the current input
symbol. In forward computations M changes from state q0 to q1 if and only if
the current input symbol is a c, whereby the pushdown store remains unchanged.
These steps can uniquely be reversed by the transitions (3) through (5) of δR.
While in state q0, in any forward step a current input symbol a or b is pushed.
Therefore, δR reverses the pushing by popping whenever the pushdown store is
not empty and an a or b appears in the input by transitions (1) and (2). This
concludes the construction of δR. ��
Example 2. Only slight modifications of the construction given in Example 1
show that the languages { ancbn | n ≥ 0 }, and { ancbn | n ≥ 0 }∗, as well as
{ amcbneam | m,n ≥ 0 } ∪ { andbneam | m,n ≥ 0 } are accepted by REV-PDAs
as well. ��

372 M. Kutrib and A. Malcher

3 Structural Properties and Computational Capacity

In this section the computational capacity of REV-PDAs is considered. First,
we examine the structure of transitions that enable reversibility, and investigate
the role played by λ-steps.

Fact 1. Let M = 〈Q,Σ, Γ, δ, q0,⊥, F 〉 be a REV-PDA.

1. As for the transition function also for the reverse transition function δR we
have necessarily that for all q in Q and Z in Γ : if δR(q, λ, Z) is defined, then
δR(q, a, Z) is undefined for all a in Σ. Otherwise the predecessor configura-
tion would not be unique and, thus, M not be reversible.

2. All transitions of M are either of the form δ(q, a, Z) = (p, λ), or δ(q, a, Z) =
(p, Y), or δ(q, a, Z) = (p, Y Z), where q, p ∈ Q, a ∈ Σλ, Y, Z ∈ Γ . In
particular, there is no transition that modifies the pushdown store except
for the topmost symbol, since the reverse transition has only access to the
topmost symbol.

Now we turn to λ-steps. It is well known that general deterministic pushdown
automata that are not allowed to perform λ-steps are weaker than DPDAs that
may move on λ input [4]. In order to go a little more into details we consider
the maximal number of consecutive λ-steps. A REV-PDA is said to be quasi
realtime if there is a constant that bounds this number for all computations.
The REV-PDA is said to be realtime if this constant is 0, that is, if there are no
λ-steps at all.

Lemma 1. Every REV-PDA M with L(M) �= ∅ and L(M) �= {λ} is quasi
realtime.

Proof. Let M = 〈Q,Σ, Γ, δ, q0,⊥, F 〉 be a REV-PDA accepting at least one
non-empty input, and assume in contrast to the assertion that M is not quasi
realtime. Then there is a computation on some input w such that at least
|Q| · |Γ | consecutive λ-steps are performed. If these steps appear before any
non-λ-step, M starts each computation with an infinite loop on λ input. So,
depending on whether or not this loop includes an accepting state L(M) is
either {λ} or ∅, a contradiction.

Next assume that at least |Q| · |Γ | consecutive λ-steps appear after some
non-λ-step, and let r : Σ∗ × Q × Σ∗ × Γ+ → Q × Γ be a mapping that maps
a configuration to its state and the topmost pushdown symbol. Then there is
a (partial) computation ck−1
 ck
∗ ck+i
∗ ck+i+j−1
 ck+i+j , where the
transition from ck−1 to ck reads some non-λ input a ∈ Σ and all the other
transitions are on λ input. Moreover, we have r(ck+i) = r(ck+i+j), for some
minimal 0 ≤ i, 1 ≤ j such that i + j ≤ |Q| · |Γ |. Let r(ck+i) = (p, Z). Then, for
i = 0, δR(p, λ, Z) has to be defined in order to get back from configuration ck+j to
configuration ck+j−1. At the same time δR(p, a, Z) has to be defined in order to
get back from configuration ck to configuration ck−1, a contradiction. For i ≥ 1
we know that r(ck+i−1) and r(ck+i+j−1) are different since i has been chosen to

Reversible Pushdown Automata 373

be minimal. Since for this case δR(p, λ, Z) has to be defined in such a way that
the computation steps back from configuration ck+i to configuration ck+i−1, and
at the same time such that the computation steps back from ck+i+j to ck+i+j−1,
we obtain a contradiction, too. ��

In order to conclude the consideration of λ-steps we present the result that,
in fact, the family L (REV-PDA) is a subfamily of the realtime deterministic
context-free languages.

Theorem 2. For every REV-PDA there is an equivalent realtime REV-PDA.

Theorem 2 provides us with a large class of deterministic context-free lan-
guages that are not reversible. Every deterministic context-free language that
is not realtime is not accepted by any REV-PDA. For example, the language
{ amebncam | m,n ≥ 0 }∪ { amebndan | m,n ≥ 0 } does not belong to the family
L (REV-PDA) (see, for example, [4,3]). This result immediately raises the ques-
tion of whether or not all realtime deterministic context-free languages are also
reversible. The next lemma answers this question negatively.

Lemma 2. The deterministic linear realtime language L = { anbn | n ≥ 0 } is
not accepted by any REV-PDA.

Proof. Assume in contrast to the assertion that L is accepted by some REV-PDA
M = 〈Q,Σ, Γ, δ, q0,⊥, F 〉. Without loss of generality, we may assume that M
is realtime. During the computation of M on input prefixes a+ no combination
of state and content of the pushdown store may appear twice. If otherwise

(λ, q0, anbn,⊥)
∗ (am1 , q1, a
n−m1bn, σ1)
+ (am1+m2 , q1, a

n−m1−m2bn, σ1)

would be the beginning of an accepting computation, then (λ, q0, an−m2bn,⊥)
∗

(am1 , q1, a
n−m1−m2bn, σ1) would also be the beginning of an accepting compu-

tation, but an−m2bn does not belong to L. In particular, this implies that each
height of the pushdown store may appear only finitely often and, thus, that
the height increases arbitrarily. So, M runs into a loop while processing a’s,
that is, the combination of a state and, for any fixed number k, some k top-
most pushdown store symbols α appear again and again. To render the loop
more precisely, let (an−x, q, axbn, αγ) be a configuration of the loop. Then there
is a successor configuration with the same combination of state and topmost
pushdown store symbols (an−x+y, q, ax−ybn, αβ). Moreover, we may choose α
such that during the computation starting in (an−x, q, axbn, αγ) no symbol
of γ is touched, that is, αβ = αγ′γ. Therefore, the computation continues as
(an−x+y, q, ax−ybn, αγ′γ)
+ (an−x+2y, q, ax−2ybn, αγ′γ′γ).

Next, we turn to the input suffixes. While M processes the input suffixes b+,
again, no combination of state and content of the pushdown store may appear
twice. If otherwise

(an, q2, b
n, σ2)
∗ (anbm1 , q3, b

n−m1 , σ3)
+ (anbm1+m2 , q3, b
n−m1−m2 , σ3)

374 M. Kutrib and A. Malcher

would result in an accepting computation, then also

(an, q2, b
n−m2 , σ2)
∗ (anbm1 , q3, b

n−m1−m2 , σ3)

would result in an accepting computation but anbn−m2 does not belong to L. In
particular, this implies that each height of the pushdown store may appear only
finitely often. Moreover, in any accepting computation the pushdown store has
to be decreased until some symbol of γ appears. Otherwise, we could increase
the number of a’s by y in order to drive M through an additional loop while
processing the input prefix. The resulting computation would also be accepting
but the input does not belong to L. Together we conclude that M runs into a
loop that decreases the height of the pushdown store while processing the b’s,
and that there are only finitely many combinations of state and content of the
pushdown store which are accepting.

Now, consider two different numbers n1 < n2 such that M accepts an1bn1

and an2bn2 in the same combinations of state and content of the pushdown
store, say in state qa with γa in the pushdown store. We have the for-
ward computations (λ, q0, an1bn1 ,⊥)
n1 (an1 , q1, b

n1 , γ1)
n1 (an1bn1 , qa, λ, γa)
and (λ, q0, an2bn2 ,⊥)
n1 (an1 , q1, a

n2−n1bn2 , γ1)
n2−n1 (an2 , q2, b
n2 , γ2)
n2

(an2bn2 , qa, λ, γa). Since M is reversible and runs through loops while processing
the b’s, the backward computation also runs through loops that now increase the
height of the pushdown store. This backward loop cannot be left while reading
b’s. So, we have (an1bn1 , qa, λ, γa) n1 (an1 , q1, b

n1 , γ1) and (an2bn2 , qa, λ, γa) n1

(an2bn2−n1 , q1, b
n1 , γ1) n2−n1 (an2 , q2, b

n2 , γ2). Due to the deterministic be-
havior and the reversibility the last step implies (an2 , q2, b

n2 , γ2)
n2−n1

(an2bn2−n1 , q1, b
n1 , γ1).

Finally, we consider the input an2bn2−n1an2−n1bn2 which does not belong to L.
However, we obtain the accepting computation

(λ, q0, an2bn2−n1an2−n1bn2 ,⊥)
n2 (an2 , q2, b
n2−n1an2−n1bn2 , γ2)
n2−n1

(an2bn2−n1 , q1, a
n2−n1bn2 , γ1)
n2−n1 (an2bn2−n1an2−n1 , q2, b

n2 , γ2)
n2

(an2bn2−n1an2−n1bn2 , qa, λ, γa),

a contradiction. ��
Lemma 2 together with Theorem 2 show that the family L (REV-PDA) is
strictly included in the family of languages accepted by realtime deterministic
pushdown automata. So, let us impose another natural restriction on languages
accepted by realtime deterministic pushdown automata. Not only in connection
with reversibility it is interesting to consider realtime deterministic context-free
languages whose reversals are also realtime deterministic context-free languages.

By Example 2 the language { amcbneam | m,n ≥ 0 }∪{ andbneam | m,n ≥ 0 }
belongs to L (REV-PDA), but its reversal is known not to be accepted by any re-
altime deterministic pushdown automaton. Conversely, language { anbn | n ≥ 0 }
as well as its reversal are realtime deterministic context free, but not accepted
by any reversible pushdown automaton. So, we derive the following corollary.

Reversible Pushdown Automata 375

Corollary 1. The family L (REV-PDA) is incomparable with the family of
realtime deterministic context-free languages whose reversals are also realtime
deterministic context-free languages.

Furthermore, Lemma 2 together with the language { ancbn | n ≥ 0 }∗ of Exam-
ple 2 reveals the following corollary.

Corollary 2. The families of linear context-free languages and L (REV-PDA)
are incomparable.

In [8] it has been shown that there are regular languages which are not accepted
by any reversible finite automaton. Next, we show that the regular languages
are included in L (REV-PDA).

Theorem 3. The regular languages are strictly included in L (REV-PDA).

Proof. By Example 1 the non-regular language {wcwR | w ∈ {a, b}∗ } belongs
to L (REV-PDA).

On the other hand, given a deterministic finite automaton M with state
set Q, input alphabet Σ, initial state q0, set of accepting states F , and transition
function δ : Q ×Σ → Q, we construct an equivalent REV-PDA M′. Basically,
the idea is to simulate M in the finite control of M′ directly, and to store the
state history on the pushdown store. Formally, let M′ = 〈Q,Σ, Γ, δ′, q0,⊥, F 〉,
where Γ = Q ∪ {⊥} and δ′(q, a, q′) = (δ(q, a), qq′), for all q ∈ Q, q′ ∈ Γ , and
a ∈ Σ. The reverse transition δ′R is derived as δ′R(p, a, q) = (q, λ).

By construction, M′ and M are equivalent and M′ is reversible. ��

Summarizing the results so far, we have obtained the following hierarchy, where
REG denotes the regular and Lrt(DPDA) the realtime deterministic context-free
languages: REG ⊂ L (REV-PDA) ⊂ Lrt(DPDA) ⊂ L (DPDA)

4 Closure Properties

In this section, we study the closure properties of REV-PDAs. It turned out
that REV-PDAs and DPDAs have similar closure properties, but the former are
interestingly not closed under union and intersection with regular languages.

Lemma 3. L (REV-PDA) is closed under complementation.

Next, we consider the operations intersection and union with regular languages
and first give another example which enables us to show the non-closure under
both operations.

Example 3. The language {w ∈ {a, b}∗ | |w|a = |w|b } is accepted by the
REV-PDA M = 〈{q0, q1}, {a, b}, {A,A′, B,B′,⊥}, δ, q0,⊥, {q0}〉 where the
transition functions δ and δR are as follows.

376 M. Kutrib and A. Malcher

Transition function δ
(1) δ(q0, a,⊥) = (q1, A′⊥)
(2) δ(q0, b,⊥) = (q1, B′⊥)

(3) δ(q1, a, A′) = (q1, AA′)
(4) δ(q1, a, A) = (q1, AA)
(5) δ(q1, b, A) = (q1, λ)
(6) δ(q1, b, A′) = (q0, λ)

(7) δ(q1, b, B′) = (q1, BB′)
(8) δ(q1, b, B) = (q1, BB)
(9) δ(q1, a, B) = (q1, λ)

(10) δ(q1, a, B′) = (q0, λ)

Reverse transition function δR

(1) δR(q0, a,⊥) = (q1, B′⊥)
(2) δR(q0, b,⊥) = (q1, A′⊥)

(3) δR(q1, b, A′) = (q1, AA′)
(4) δR(q1, b, A) = (q1, AA)
(5) δR(q1, a, A) = (q1, λ)
(6) δR(q1, a, A′) = (q0, λ)

(7) δR(q1, a, B′) = (q1, BB′)
(8) δR(q1, a, B) = (q1, BB)
(9) δR(q1, b, B) = (q1, λ)

(10) δR(q1, b, B′) = (q0, λ)
��

Lemma 4. L (REV-PDA) is not closed under union and intersection with
regular languages.

Proof. Consider L = {w ∈ {a, b}∗ | |w|a = |w|b } ∩ a∗b∗. ��
On the other hand, we obtain the closure under intersection and union with reg-
ular languages under the condition that the regular language can be accepted by
a reversible deterministic finite automaton. In [8] reversibility in finite automata
is defined as the property of having only deterministic forward and backward
computations. Additionally, the automata may possess several initial and accept-
ing states. Here, we define a regular language as reversible if it is accepted by
some reversible deterministic finite automaton which possesses one initial state
only and obtain a proper subclass of the languages defined in [8].

Lemma 5. L (REV-PDA) is closed under union and intersection with reversible
regular languages.

Remark 1. In this context the question may arise whether the union or intersec-
tion of a non-regular language from L (REV-PDA) with a non-reversible regular
language is always a non-reversible language. The following example shows that
there are cases which lead to REV-PDAs although the regular language is not
reversible. The union of the languages { ancbn | n ≥ 0 } and a∗b∗, where the
latter is not reversible [8], is accepted by some REV-PDA. ��
Lemma 6. L (REV-PDA) is not closed under concatenation, Kleene star, λ-free
homomorphism, and reversal.

Remark 2. It is worth mentioning that there are two situations in which closure
results of the above-mentioned operations are obtained. The first result is that
L (REV-PDA) is closed under marked concatenation and marked Kleene star.

A second result one can easily observe is that the reversal LR of a language
L ∈ L (REV-PDA) belongs to L (REV-PDA) if L is accepted by a REV-PDA
which has one accepting state only and in which every accepting computation
ends in a configuration with empty (up to ⊥) pushdown store. ��

Reversible Pushdown Automata 377

5 Decidability Questions

Problems which are decidable for DPDAs are decidable for REV-PDAs as well.
Therefore, emptiness, universality, equivalence, and regularity are decidable for
REV-PDAs. On the other hand, inclusion is known to be undecidable for DPDAs.
We now show that inclusion is undecidable for REV-PDAs, too. To this end, we
use a reduction from Post’s correspondence problem (PCP) which is known to
be undecidable (see, e.g., [9]). Let Σ be an alphabet and an instance of the PCP
be given by two lists α = u1, u2, . . . , uk and β = v1, v2, . . . , vk of words from Σ+.
Furthermore, let A = {a1, a2, . . . , ak} be an alphabet with k symbols, Σ∩A = ∅,
and d = max{|ui|, |vi| | 1 ≤ i ≤ k} be the maximal length of words occurring
in α and β. Now, consider two languages Lα and Lβ .

Lα = {ui1ui2 . . . uim$ad+2
im

ad+2
im−1

. . . ad+2
i1

| m ≥ 1, 1 ≤ ij ≤ k, 1 ≤ j ≤ m}
Lβ = {vi1vi2 . . . vim$ad+2

im
ad+2

im−1
. . . ad+2

i1
| m ≥ 1, 1 ≤ ij ≤ k, 1 ≤ j ≤ m}

Lemma 7. The languages Lα and Lβ as well as their reversals LR
α and LR

β are
accepted by REV-PDAs.

Lemma 8. Let M1 and M2 be two REV-PDAs. Then it is undecidable whether
L(M1) ⊆ L(M2).

Theorem 4. Let M be a nondeterministic pushdown automaton. Then it is
undecidable whether L(M) ∈ L (REV-PDA).

Proof. We consider an instance of the PCP and define the languages L1 =
Lα#L

R
β and L2 = {w#wR | w ∈ (Σ ∪A ∪ {$})∗ } ∩Σ∗$A∗#A∗$Σ∗.

Language L1 belongs to L (REV-PDA) due to Lemma 7 and the closure
under marked concatenation discussed in Remark 2. Language L2 belongs to
L (REV-PDA) due to Example 1 and the closure under intersection with re-
versible regular languages shown in Lemma 5. Due to the closure under comple-
mentation we obtain that L1∪L2 is context free. We will now show that L1∪L2
belongs to L (REV-PDA) if and only if the given instance of the PCP has no so-
lution. If the instance has no solution, then L1∩L2 = ∅ and, thus, its complement
L1∪L2 is the regular language (Σ∪A∪{#, $})∗, which belongs to L (REV-PDA)
due to Theorem 3. On the other hand, if L1∪L2 belongs to L (REV-PDA), then
its complement L1∩L2 belongs to L (REV-PDA) as well. We have to show that
the given instance of the PCP has no solution. By way of contradiction we assume
that the instance has a solution. Then, L1 ∩ L2 is an infinite, context-free lan-
guage. Let w = u1u2 . . . um$ad+2

m ad+2
m−1 . . . a

d+2
1 #ad+2

1 ad+2
2 . . . ad+2

m $vmvm−1 . . . v1
be a word in L1∩L2 long enough such that the pumping lemma for context-free
languages applies. Pumping leads to words which are not in L1 ∩ L2 and we
obtain a contradiction.

Now, if we could decide whether the context-free language L1 ∪L2 belongs to
L (REV-PDA), then we could decide whether or not the given instance of the
PCP has a solution which is a contradiction. ��

378 M. Kutrib and A. Malcher

The same problem of Theorem 4 for deterministic pushdown automata is open.
However, we have the following decidable property which contrasts the result
that there is no algorithm which decides whether or not, for example, a given
cellular automaton or iterative array is reversible [6,5].

Theorem 5. Let M be a deterministic pushdown automaton. Then it is decid-
able whether M is a REV-PDA.

Proof. In order to decide whether a given deterministic pushdown automaton
M = 〈Q,Σ, Γ, δ, q0,⊥, F 〉 is reversible or not, in general, it is not sufficient to
inspect the transition function. Whether or not a transition can be reversed de-
pends on the information that is available after performing it. If this information
is unique for all in-transitions to a state, then the transition can be reversed. For
example, δ(q, a, Z) = (q′, Z ′Z) or δ(q, a, Z) = (q′, Z ′) provides the state q′, the
input symbol a, and the topmost pushdown symbol Z ′. On the other hand, con-
sider δ(q, a, Z) = (q′, λ) which provides only the state q and the input symbol a.
The necessary information is complemented by the second symbol on the push-
down store, which cannot be determined by inspecting the transition function
only.

In order to cope with the problem, we first construct an equivalent DPDA
M′ = 〈Q,Σ, Γ ′, δ′, q0,⊥, F 〉, where Γ ′ = Γ 2 ∪ {⊥} and

δ′(q, a,⊥) =

{
(q′,⊥) if δ(q, a,⊥) = (q′,⊥)
(q′, (Z⊥)⊥) if δ(q, a,⊥) = (q′, Z⊥)

δ′(q, a, (Y1Y2)) =

⎧⎪⎨
⎪⎩

(q′, (ZY2)) if δ(q, a, Y1) = (q′, Z)
(q′, (ZY1)(Y1Y2)) if δ(q, a, Y1) = (q′, ZY1)
(q′, λ) if δ(q, a, Y1) = (q′, λ)

.

By construction there is a bijection ϕ between the configurations passed through
by M and M′, where

ϕ(v, q, w, Z1Z2Z3 · · ·Zk⊥) = (v, q, w, (Z1Z2)(Z2Z3) · · · (Zk−1Zk)(Zk⊥)⊥).

Moreover, M and M′ have the same initial configurations (up to the second
component of the initial state of M′) and a configuration ca of M is accepting
if and only if ϕ(ca) is an accepting configuration of M′. Therefore, M and M′

accept the same language.
Basically, the idea of the construction is to store information of the topmost

pushdown symbol in the state and information of the second pushdown symbol in
the topmost pushdown symbol. The construction may introduce also transitions
for situations that cannot appear. For example, if in any computation there is
never a Z on top of a Y in the pushdown store, then the transition δ′(q, a, (ZY))
is useless. However, if a transition of the form δ′(q, a, (Y1Y2)) = (q′, λ) is applied,
then we do now have the necessary information to test for uniqueness after having
performed the transition as mentioned above. That is, we know the state q′, the

Reversible Pushdown Automata 379

input symbol a, and the topmost pushdown symbol Y2. So, basically, it remains
to be tested whether a transition is applied in some computation or whether it
is useless.

To this end, we label the transitions of δ′ uniquely, say by the set of labels
B = {l1, l2, . . . , lk}. Then we apply an old trick and consider words over the
alphabet B. On input u ∈ B∗ a DPDA M̃ with all states final tries to imitate
a computation of M′ by applying in every time step the transition whose label
is currently read. If M̃ accepts some input u1u2 · · ·un, then there is a compu-
tation (not necessarily accepting) of M′ that uses the transitions u1u2 · · ·un in
this order. If conversely there is a computation of M′ that uses the transitions
u1u2 · · ·un in this order, then u1u2 · · ·un is accepted by M̃. So, in order to de-
termine whether a transition with label li of M′ is useful, it suffices to decide
whether M̃ accepts an input containing the letter li. This decision can be done by
testing the emptiness of the deterministic context-free language L(M̃)∩B∗liB∗.

Assume that M′′ is constructed from M′ by deleting all useless transitions
that never appear in any computation. Clearly, M′′ and M are equivalent. Now,
for any state we consider all in-transitions and check whether the corresponding
information after performing it (state, input symbol and pushdown symbol)
is unique. If this is true for all states, then M is reversible and irreversible
otherwise. ��
Corollary 3. Let M be a nondeterministic pushdown automaton. Then it is
decidable whether M is a REV-PDA.

Proof. By inspecting the transition function it is easy to decide whether or
not M is a DPDA. If the answer is yes, then it can be decided whether or
not M is a REV-PDA by Theorem 5. If M is not a DPDA, then it cannot be a
REV-PDA. ��

References

1. Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)
2. Bennet, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532

(1973)
3. Ginsburg, S., Greibach, S.A.: Deterministic context-free languages. Inform. Con-

trol 9, 620–648 (1966)
4. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading

(1978)
5. Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular au-

tomata. Inform. Comput. 206, 1142–1151 (2008)
6. Kutrib, M., Malcher, A.: Real-time reversible iterative arrays. Theor. Comput.

Sci. 411, 812–822 (2010)
7. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine.

Trans. IEICE E72, 223–228 (1989)
8. Pin, J.E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583,

pp. 401–416. Springer, Heidelberg (1992)
9. Salomaa, A.: Formal Languages. Academic Press, London (1973)

String Extension Learning Using Lattices

Anna Kasprzik1 and Timo Kötzing2

1 FB IV – Abteilung Informatik, Universität Trier, 54286 Trier, Germany
kasprzik@informatik.uni-trier.de

2 Department 1: Algorithms and Complexity, Max-Planck-Institut für Informatik,
66123 Saarbrücken, Germany
koetzing@mpi-inf.mpg.de

Abstract. The class of regular languages is not identifiable from posi-
tive data in Gold’s language learning model. Many attempts have been
made to define interesting classes that are learnable in this model, prefer-
ably with the associated learner having certain advantageous proper-
ties. Heinz ’09 presents a set of language classes called String Extension
(Learning) Classes, and shows it to have several desirable properties.

In the present paper, we extend the notion of String Extension Classes
by basing it on lattices and formally establish further useful proper-
ties resulting from this extension. Using lattices enables us to cover a
larger range of language classes including the pattern languages, as well
as to give various ways of characterizing String Extension Classes and
its learners. We believe this paper to show that String Extension Classes
are learnable in a very natural way , and thus worthy of further study.

1 Introduction

In this paper, we are mostly concerned with learning as defined by Gold [11]
which is sometimes called learning in the limit from positive data.

Formally, for a class of (computably enumerable) languages L and an algorith-
mic learning function h, we say that h TxtEx-learns L [11,13] iff, for each L ∈ L,
for every function T enumerating (or presenting) all and only the elements of
L, as h is fed the succession of values T (0), T (1), . . ., it outputs a corresponding
succession of programs p(0), p(1), . . . from some hypothesis space, and, for some
i0, for all i ≥ i0, p(i) is a correct program for L, and p(i+1) = p(i). The function
T is called a text or presentation for L.

There are two main viewpoints in research on language learning: Inductive
Inference (II) and Grammatical Inference (GI). The area of Inductive Inference
is mainly concerned with the question if a certain target concept, which in our
case usually represents a formal language class, can be identified in the limit, i.e.,
after any finite number of steps. The area of Grammatical Inference is mainly
concerned with the concrete algorithms solving that task and with their effi-
ciency, i.e., with the question if the number of steps needed can be bounded by
some polynomial with respect to a relevant measure such as the input size or the
number of queries asked, if admissible. As a result, research on GI is more in-
volved with the task of inferring a specific description of a formal language (e.g.,

A.-H. Dediu, H. Fernau, and C. Martín-Vide (Eds.): LATA 2010, LNCS 6031, pp. 380–391, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

String Extension Learning Using Lattices 381

a grammar or an automaton) than just the language as an abstract item, as the
inference strategy of any concrete learning algorithm is intrinsically linked to the
description it yields as output (for an overview of GI, see [8]). In this paper, we
have tried to include results of importance from both perspectives.

Gold [11] already showed that the class of regular languages is not TxtEx-
learnable. Several papers, for example [9,12], are concerned with finding inter-
esting classes of languages that are TxtEx-learnable. Furthermore, frequently it
is desirable for a learner to have additional properties, and one wants to find
interesting classes learnable by a learner having these properties.

In this paper, we extend and analyze the notion of String Extension Learning
as given in [12]. We do this by applying Birkhoff-style lattice theory and require
all conjectures a learner makes to be drawn from a lattice. Section 2 makes String
Extension Learning precise. Importantly, in Theorem 6 we show the resulting
learners to have a long list of advantageous properties.

Many simple, but also several more complex languages classes are learnable
this way. Some examples are given in [12]; we show in Section 3 how Pattern
Languages can be learned as a subclass of a String Extension Language Class.
Furthermore, Section 3 discusses in what respect Distinction Languages [9] are
String Extension Languages as well.

Section 4 analyzes String Extension Learners (SELs) and String Extension
Classes (SECs) further. We give two insightful characterization of SELs in The-
orem 14, and three characterizations of SECs in Theorem 15. This establishes
the SECs as very naturally arising learnable language classes.

Section 5 studies how String Extension Classes and special cases thereof are
learnable via queries [2]. Complexity issues are discussed and it is shown that
String Extension Languages can be learned in a particularly straightforward way
from equivalence queries.

As an anonymous referee pointed out, the learning setting presented in [7] is
similar to String Extension Learning – in fact, it corresponds to String Extension
Learning with complete lattices.

Familiarity with lattice theory is useful to understand this paper, but not
completely necessary. For introductions into lattice theory, the reader is referred
to the textbooks [4] (a classic) and [16] (available online).

We omit many proofs due to space constraints. The proof of Theorem 6 is
given below and exemplary for several of the omitted proofs. A complete version
can be found at http://www.mpi-inf.mpg.de/∼koetzing/
StringExtensionLearnersTR.pdf.

2 Definitions and Basic Properties

Any unexplained complexity-theoretic notions are from [19]. All unexplained
general computability-theoretic notions are from [18].

N denotes the set of natural numbers, {0, 1, 2, . . .}. We let Σ be a countable
alphabet (a non-empty countable set; we allow for – countably – infinite alpha-
bets), and by Σ∗ we denote the set of all finite words over Σ. A language is any

http://www.mpi-inf.mpg.de/~koetzing/StringExtensionLearnersTR.pdf
http://www.mpi-inf.mpg.de/~koetzing/StringExtensionLearnersTR.pdf

382 A. Kasprzik and T. Kötzing

set L ⊆ Σ∗. For each k, Σk denotes the set of all words of length exactly k. We
denote the empty word by ε and the length of a word x by |x|.

By Seq we denote the set of finite sequences over Σ∗ ∪ {#}, where # is
a special symbol called “pause”. We denote the empty sequence by ∅. For a
sequence σ ∈ Seq, we let len(σ) denote the length σ, and, for all i < len(σ) we
let σ(i) be the i+ 1-th element of σ. Concatenation on sequences is denoted by
�. For all σ ∈ Σ∗, we let content(σ) = {x ∈ Σ∗ | ∃i < len(σ) : σ(i) = x}.

The symbols⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, superset
and proper superset relation between sets. For sets A,B, we let A \ B = {a ∈
A | a �∈ B}, A be the complement of A and Pow(A) (Powfin(A)) be the set of all
(finite) subsets of A.

The quantifier ∀∞x means “for all but finitely many x”, the quantifier ∃∞x
means “for infinitely many x”. For any set A, |A| denotes the cardinality of A.

We let dom and range denote, respectively, domain and range of a given
function. We sometimes denote a function f of n > 0 arguments x1, . . . , xn in
lambda notation (as in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with
c ∈ N, λx c is the constantly c function of one argument.

A function ψ is partial computable iff there is a deterministic, multi-tape
Turing machine computing ψ. P and R denote, respectively, the set of all partial
computable and the set of all total (partial) computable functions N → N. We
say that ψ is polytime iff ψ is computable in polynomial time. If a function f is
defined for x ∈ dom(f) we write f(x)↓, and we say that f on x converges.

For all p, Wp denotes the computably enumerable (ce) set dom(ϕp).
We say that a function f converges to p iff ∀∞x : f(x)↓ = p.
Whenever we consider (partial) computable functions on objects like finite

sequences or finite sets, we assume those objects to be efficiently coded as natural
numbers. We also assume words to be so coded. The size of any such finite object
is the size of its code number.

Note that, for infinite alphabets, the size of words of length 1 is unbounded.

String Extension Learning
After these general definitions, we will now turn to definitions more specific to
this paper. First we introduce lattices and String Extension Spaces and then
show how we use them for learning.

Definition 1. A pair (V,�) is a partially ordered set iff

– ∀a, b ∈ V : a � b ∧ b � a⇒ a = b;
– ∀a, b ∈ V : a � a;
– ∀a, b, c ∈ V : a � b ∧ b � c⇒ a � c.

Let (V,�) be a partially ordered set. For any set S ⊆ V , v ∈ V is called

– an upper bound of S iff ∀a ∈ S : a � v;
– an lower bound of S iff ∀a ∈ S : v � a;
– a maximum of S iff v is upper bound of S and v ∈ S;
– a minimum of S iff v is lower bound of S and v ∈ S;

String Extension Learning Using Lattices 383

– a least upper bound or supremum of S iff v is the minimum of the set of
upper bounds of S;

– a greatest lower bound or infimum of S iff v is the maximum of the set of
lower bounds of S;

Note that, for a given set, there is at most one supremum and at most one
infimum. If V has a minimum element, we denote it by ⊥V , a maximum element
by �V . (V,�) is called

– an upper semi-lattice iff each two elements of V have a supremum;
– a lower semi-lattice iff each two elements of V have an infimum;
– a lattice iff each two elements of V have a supremum and an infimum.

In an upper semi-lattice, the supremum of two elements a, b ∈ V is denoted by
a � b and we use

⊔
to denote suprema of sets D (note that, in an upper semi-

lattice, each non-empty finite set has a supremum, which equals the iterated
supremum of its elements, as the binary supremum is an associative operation);
if V has a minimum element, then, by convention,

⊔ ∅ = ⊥V . In a lower semi-
lattice, the infimum of two elements a, b ∈ V is denoted by a � b.

For two partially ordered sets V,W a function h : V → W is called an order
embedding iff, for all a, b ∈ V , a �V b ⇔ h(a) � h(b). An order isomorphism is
a bijective order embedding.

For example, for each k ∈ N, the set of all finite sets that contain only words of
length k, with inclusion as the order, is a lattice. We call this lattice Vfac−k.

Definition 2. For an upper semi-lattice V and a function f : Σ∗ → V such
that f and � are (total) computable, (V, f) is called a String Extension Space
(SES) iff, for each v ∈ V , there is a finite D ⊆ range(f) with

⊔
x∈D x = v.1

(V, f) is called polytime iff f and suprema in V are polytime.

We get the special case of [12] if we take the lattices of all finite subsets of a
finite set A with inclusion.

As an example, for each k, we let fack : Σ∗ → Vfac−k, x �→ {v ∈ Σk | ∃u,w ∈
Σ∗ : x = uvw}. Then (Vfac−k, fack) is an SES.2

Definition 3. Let (V, f) be an SES.

– A grammar is any v ∈ V .3
– The language of grammar v is Lf (v) = {w ∈ Σ∗ | f(w) � v}.

1 This definition might seem a little strange at first, and in general one could define
SESes without those restrictions. However, elements that are not the finite suprema
of elements from range(f) are not directly useful for our purposes, and many of
our theorems would have to be stated in terms of the “stripped” sub semi-lattice one
gets from restricting to all elements which are finite union of elements from range(f).
Thus, for notational purposes, we only allow for “stripped” SESes in the first place.

2 Any substring of length k of a word x is called a k-factor of x.
3 Note that we assume our grammars to be finite with respect to a relevant measure,

i.e., containing for example a finite number of admissible substrings, or other rules.

384 A. Kasprzik and T. Kötzing

– The class of languages obtained by all possible grammars is Lf =
{Lf(v) | v ∈ V }.

We define φf such that ∀σ : φf (σ) =
⊔

x∈content(σ) f(x).
Any class of languages L such that there is an SES (V, f) with L = Lf is

called a String Extension Class (SEC), φf a String Extension Learner (SEL).4
We use SEC to denote the set of all String Extension Classes. Further, we will
omit the subscript of f if it is clear from context.

For example, with respect to (Vfac−2, fac2), {aa, ab} is a grammar for the set
of all words for which any contiguous subword of length 2 is either aa or ab.
Example such words include aaa, ab, aaaab, ccc, . . .

Next we define what we mean by “learning”.

Definition 4. Let L ⊆ Σ∗ and T : N → Σ∗. T is called a text for L iff
content(T) = L. For any text T and any k, let T [k] denote the sequence of
the first k elements of T . Let h : Seq → N be a (total computable) learner.
We assume the outputs of h to be mapped by a function L(·) to a language.
Whenever no concrete function L(·) is given, we assume the mapping λp Wp.

The learner h ∈ P is said to TxtEx-identify a languages L with respect to
L(·) iff, for each text T for L, there is k ∈ N such that

(i) L(h(T [k])) = L; and
(ii) for all k′ ≥ k, h(T [k′]) = h(T [k]).

For the minimum such k, we then say that h on T has converged after k steps,
and denote this by Conv(h, T) = k.

We denote the set of all languages TxtEx-identified by a learner h with
TxtEx(h). We say that a class of languages L is TxtEx-identified (possibly
with certain properties) iff there is a learner h ∈ P (observing those properties)
TxtEx-learning every set in L. Further, we say that h learns a language using
a uniformly decidable hypothesis space iff λx, p x ∈ L(p) is (total) computable.

The following learner properties have been studied in the literature.

Definition 5. Let a learner h : Seq → N be given. We call h

– iterative [10,22], iff there is a function hit : N × Σ∗ → N such that ∀σ ∈
Seq, w ∈ Σ∗ : hit(h(σ), w) = h(σ � w);

– polytime iterative, iff there is a polytime such function hit;
– set-driven [21,13], iff there is a function hset : Powfin(Σ∗) → N such that
∀σ ∈ Seq : hset(content(σ)) = h(σ);

– globally consistent [3,5,22], iff ∀σ ∈ Seq : content(σ) ⊆ L(h(σ));
– locally conservative [1], iff ∀σ ∈ Seq, x ∈ Σ∗ : h(σ) �= h(σ�x) ⇒ x �∈ L(h(σ));
– strongly monotone [14], iff ∀σ ∈ Seq, x ∈ Σ∗ : L(h(σ)) ⊆ L(h(σ � x));

4 In general, in formal language theory, several descriptions may define the same lan-
guage. Observe that for the language classes defined here this is not the case – we
have Lf (u)
= Lf (v) for any two elements u, v ∈ V with u
= v. See Theorem 10.

String Extension Learning Using Lattices 385

– prudent [20,17], iff ∀σ ∈ Seq : L(h(σ)) ∈ TxtEx(h);
– optimal [11], iff, for all learners h′ with TxtEx(h) ⊆ TxtEx(h′),

∃L ∈ TxtEx(h), T ∈ Txt(L) : Conv(h′, T) < Conv(h, T)
⇒

∃L ∈ TxtEx(h), T ∈ Txt(L) : Conv(h, T) < Conv(h′, T).
(1)

We briefly show that SELs have a number of desirable properties.

Theorem 6. Let (V, f) be an SES. Then φf TxtEx-learns Lf

(i) iteratively;
(ii) if (V, f) is a polytime SES, polytime iteratively;
(iii) set-drivenly;
(iv) globally consistently;
(v) locally conservatively;
(vi) strongly monotonically;
(vii) prudently; and
(viii) optimally.

Proof. Regarding TxtEx-learnability: Let L ∈ Lf and let v ∈ V be such that
L(v) = L. Let T be a text for L. As (V, f) is an SES, let D ⊆ Σ∗ such that
v =

⊔
x∈D f(x). Let k be such that D ⊆ content(T [k]). Then, obviously, ∀k′ ≥

k : φf (T [k′]) = v. Regarding the different items of the list, we have:

(i) We let φit
f ∈ P be such that

∀v, x : φit
f (v, x) =

{
v, if x = #;
v � f(x), otherwise.

(2)

(ii) Clearly, φit
f from (i) is polytime, if (V, f) is a polytime SES.

(iii) Let φset ∈ P be such that ∀D : φset(D) =
⊔

x∈D f(x).
(iv) Let σ be a sequence in Σ∗, let v = φf (σ) and x ∈ content(σ). Then

f(x) � ⋃
y∈content(σ) f(y) = φf (σ) = v. Thus, x ∈ L(v).

(v) Let σ ∈ Seq and x ∈ Σ∗ with φf (σ) �= φf (σ � x). Thus, φf (σ) �= φf (σ) ∪
f(x), in particular, f(x) �� φf (σ). Therefore, x �∈ L(φf (σ)).

(vi) Let σ ∈ Seq and x ∈ Σ∗. Clearly, φf (σ) � φf (σ � x). Thus,

Lf(φf (σ)) = {w ∈ Σ∗ | f(w) � φf (σ)}
⊆ {w ∈ Σ∗ | f(w) � φf (σ � x)}
= Lf (φf (σ � x)).

(vii) Prudence is clear, as, for all σ ∈ Seq and x ∈ Lf (φf (σ)), we have f(x) �
φf (σ). Hence, for all texts T for Lf (φf (σ)), φf on T will converge to φf (σ).

(viii) Optimality follows from consistency, conservativeness and prudence, as
stated in [17, Proposition 8.2.2A]. �

For each SES (V, f) we will use φit
f and φset

f as shown existent just above.

386 A. Kasprzik and T. Kötzing

3 Example SECs

We already came across the example of k-factor languages and its SES
(Vfac−k, fack). Many more examples like this can be found in [12]. In this section
we define a more complex example.

Definition 7. Let Σ be an alphabet and let X be a countably infinite set (of
variables) disjoint from Σ.

Let Pat = (Σ ∪ X)∗ be the set of all patterns. For any π ∈ Pat, with
w0, . . . wn+1 ∈ Σ∗ and x0, . . . xn ∈ X such that π = w0x0w1x1 . . . xnwn+1, let

L(π) = {w0vx0w1vx1 . . . vxnwn+1 | ∀x ∈ X : vx ∈ Σ∗ \ {ε}}
denote the set of all strings matching the pattern π. We call any L such that
there is a pattern π with L = L(π), a (non-erasing) pattern language. For each
w ∈ Σ∗, let pat(w) = {π ∈ Pat | w ∈ L(π)} denote the set of patterns matched
by w. Note that, for each w ∈ Σ∗, pat(w) is finite.

The pattern languages are not learnable globally consistently and iteratively
in a non-redundant hypothesis space, see [6, Corollary 12]. The usual iterative
algorithm is first published in [15].

Theorem 8. For any finite set D ⊆ Σ∗, we let pat(D) =
⋂

w∈D pat(w).5 Let
Vpat be the lattice {pat(D) | D ⊆ Σ∗ finite} with order relation ⊇.6 Then
(Vpat , pat) is an SES.

Now φpat learns the pattern languages globally consistently and iteratively
(as well as with all other properties as given in Theorem 6). Note that some
of the grammars of (Vpat , pat) are not for pattern languages, for example
pat({a3, b4}) = {x1, x1x2, x1x2x3, x1x1x2, x1x2x1, x1x2x2}.

Also note: One can code the elements of Vpat , as all but ⊥Vpat are finite sets.

Fernau [9] introduced the notion of function distinguishable languages (DLs).
The following shows that the concept of DLs is subsumed by the concept of
SECs, while the concept of SECs is not subsumed by the concept of DLs.

Theorem 9
DL ⊂ SEC.

The inequality is witnessed by a class of regular languages as stated below.

Proof. “ �=”: Obviously, the class of all finite languages is an SEC but not a DL.
“⊆”: Let L be a DL. Let h be the learner for L given in [9, § 6]. By [9,

Theorem 35], h fulfills the condition of Theorem 14(iii). Hence, h is a String
Extension Learner by Theorem 14 and L is an SEC. �

For the reader familiar with [9] we specify a concrete SES (V, f) such that φf

learns the class of f ′-DLs for any distinguishing function f ′ : Σ∗ → X .
5 By convention, we let pat(∅) = Pat.
6 Note that the order is inverted with respect to the usual powerset lattice.

String Extension Learning Using Lattices 387

Define V as the set of all stripped7 f ′-distinguishable DFA ∪
{({q0}, Σ, q0, ∅, ∅)}, and � such that B1 � B2 iff L(B1) ⊆ L(B2) for B1, B2 ∈ V .

Obviously, V is a partially ordered set. (V,�) is also an upper semi-lattice –
the supremum B of B1, B2 is obtained as follows: Compute the stripped mini-
mal DFA B0 for L(B1) ∪ L(B2) (algorithms can be found in the literature). If
B0 ∈ V then B := B0. Else build a finite positive sample set I+ by adding all
shortest strings leading to an accepting state in B0, and then for every hitherto
unrepresented transition δ(q1, a) = q2 (a ∈ Σ) of B0 adding the string resulting
from concatenating a string leading to q1, a, and a string leading from q2 to an
accepting state. Use the learner h from [9] on I+. By Lemma 34 and Theorem
35 in [9] the result is a stripped DFA recognizing the smallest f ′-distinguishable
language containing L(B1)∪L(B2), and since the elements of V are all stripped
there is only one such DFA in V , which is the supremum of B1 and B2. Also
note that (V,�) has a minimum element ⊥V = ({q0}, Σ, q0, ∅, ∅).

For any distinguishing function f ′ : Σ∗ → X define f : Σ∗ → V by setting
f(w) := Aw where Aw is the minimal stripped DFA with L(Aw) = {w} (Aw is
f ′-distinguishable by [9], Lemma 15). We show that (V, f) is an SES.

Obviously, f is computable. For each v ∈ V there is a finite set D ∈ range(f)
such that

⊔
x∈D x = v: Take any two elements B1, B2 ∈ V such that B1�B2 = v

and construct the set I+ as specified above. We can set D := I+.
Thus, the class of f ′-DLs is learnable by φf .8

4 Properties of SECs

In this section we give a number of interesting theorems pertaining to SECs and
their learnability. Most importantly, we characterize SELs (Theorem 14) and
SECs (Theorem 15).

Theorem 10. Let (V, f) be an SES. Then (V,�) and (Lf ,⊆) are order-
isomorphic, with order-isomorphism Lf(·).
Corollary 11. Let (V, f) and (W, g) be two SESes with Lf ⊆ Lg. Then there
is an order embedding h : V →W .

Lemma 12. Let (V, f) be an SES. We have the following.

(i) For all a, b ∈ V , L(a) ∪ L(b) ⊆ L(a � b).
(ii) For all a ∈ V , L(a) = Σ∗ iff a = �V .
(iii) If Lf is closed under (finite) union, then we have, for all a, b ∈ V , L(a) ∪

L(b) = L(a � b).
(iv) If V is a lattice, then we have, for all a, b ∈ V , L(a) ∩ L(b) = L(a � b).
7 An automaton is stripped when taking away any state or transition would change

the language recognized by the automaton.
8 Note that in a concrete implementation we would not have to construct I+ when

computing suprema in V as we can just use the text seen so far. Also, it seems
relatively easy to define an incremental version of the learner from [9].

388 A. Kasprzik and T. Kötzing

Theorem 13. Let (V, f) be an SES. We have the following.

(i) λv, x x ∈ L(v) is computable (i.e., (L(v))v∈V is uniformly decidable).
(ii) If (V, f) is polytime, then λv, x x ∈ L(v) is computable in polynomial time

(i.e., (L(v))v∈V is uniformly decidable in polynomial time).
(iii) L is closed under intersection iff V is a lattice.

Now we get to our main theorem of this section, which shows that all learners
having a certain subset of the properties listed above in Theorem 6 can neces-
sarily be expressed as SELs.

Theorem 14. Let h ∈ R. The following are equivalent.

(i) There is an SES (V, f) such that h = φf .
(ii) h TxtEx-learns L set-drivenly, globally consistently, locally conservatively

and strongly monotonically.
(iii) There is a 1-1 L(·) such that there is a computable function t such that,

for all x, v, t(x, v) halts iff x ∈ L(v) and, for all σ ∈ Seq, L(h(σ)) is the
⊆-minimum element of TxtEx(h) containing all of content(σ).

Theorem 15. Let L be a set of languages. The following are equivalent.

(i) L is an SEC.
(ii) L can be TxtEx-learned by a globally consistent, locally conservative, set-

driven and strongly monotonic learner.
(iii) There is a 1-1 L(·) such that there is a computable function t such that, for

all x, v, t(x, v) halts iff x ∈ L(v) and a (total) computable function g such
that, for all D ⊆ Σ∗ L(g(D)) is the ⊆-minimum element of L containing
D.

(iv) L can be TxtEx-learned by a strongly monotonic set-driven learner using
a uniformly decidable hypothesis space.

Proposition 16 just below gives a sufficient condition for a language to be an
SEC.

Proposition 16. Let L be a class of languages closed under intersection and
TxtEx-learnable set-drivenly, globally consistently and locally conservatively as
witnessed by h ∈ P . Then h is strongly monotone, and, in particular, L is an
SEC.

5 Query Learning of SECs

This section is concerned with learning SECs from queries. We address the issue
from a more GI-oriented view, inasmuch as for example some concrete algorithms
are given and complexity questions are considered.

String Extension Learning Using Lattices 389

Definition 17. Let (V, f) be an SES and v ∈ V the target to identify.9 A
membership query (MQ) for w ∈ Σ∗ and L ⊆ Σ∗ is a query ‘w ∈ L?’ receiving
an answer from {0, 1} with MQ = 1 if w ∈ L and MQ = 0 otherwise.10 An
equivalence query (EQ) for v0 ∈ V is a query ‘v0 = v?’ receiving an answer from
Σ∗ ∪ {yes} (Σ∗ ∩ {yes} = ∅) such that EQ(v0) = yes for L(v0) = L(v) and
EQ(v0) = c with [f(c) � v ∧ ¬f(c) � v0] ∨ [f(c) � v0 ∧ ¬f(c) � v] otherwise.

Let (V, f) be an SES. As Lf is identifiable in the limit from text (see [12]) Lf

is also identifiable in the limit from MQs: Consider a learner just querying all
strings of Σ∗ in length-lexical order – at some point the set of all strings w with
MQ(w) = 1 queried so far necessarily includes a text for the target.

If we are interested in complexity, unfortunately in general we cannot bound
the number of MQs needed in any interesting way. For each v ∈ V , define
Tv := {T ⊆ range(f)|⊔t∈T t = v} and let T0 be an element of Tv with minimal
cardinality. Obviously, |T0| is a lower bound on the number of MQs needed to
converge on the target. However, note that there exist SECs with properties that
allow more specific statements:

Theorem 18. Let (V, f) be an SES. If Lf is the class of k-factor languages
or the class of k-piecewise testable languages (see [12]) identification is possible
with a query complexity of O(|Σ|k) MQs.

Proof. We give a simple learning algorithm in pseudo-code that can be used to
identify any SEC Lf such that there is a finite set Q with ∀v ∈ V : ∃S ⊆ Q :
f(S) ∈ Tv. Observe that we can set Q := Σk for the k-factor languages and
Q := Σ≤k for the k-piecewise testable languages.

[Initialize Q0 with the respective Q as given just above];
v0 := ⊥V ;
for all s ∈ Q0 do:

if MQ(s) = 1 then v0 := v0 � f(s)
return v0.

It is easy to see that this algorithm yields the target after |Q0| loop executions
which corresponds to having asked |Q0| MQs, where |Q0| = |Σk| = |Σ|k for
the k-factor languages and |Q0| = |Σ≤k| = (|Σ|k+1 − 1)/(|Σ| − 1) such that
O(|Q0|) = O(|Σ|k) for the k-piecewise testable languages. �

Remark: If the SES is polytime it follows from Theorem 18 that in these special
cases identification is possible in polytime as well.

However, as stated above, polytime identification cannot be ensured in the
general case. The situation changes if we allow EQs instead of MQs:

9 To be precise, the concept to infer is a language. However, as no two elements of V
define the same language (see Footnote 4) our potential targets are elements of V .

10 Algorithmically, using MQs only makes sense if the membership problem is decidable.
As for SECs we have f : Σ∗ → V an MQ for w ∈ Σ∗ amounts to checking if f(w) � v.

390 A. Kasprzik and T. Kötzing

Theorem 19. Let (V, f) be an SES. Then Lf is identifiable in the limit from
EQs. In particular, for all v ∈ V , if the length of each ascending path from ⊥V

to v is at most n then v can be identified using O(n) EQs.

Proof. Let v ∈ V be the target. We give a concrete learning algorithm:

v0 := ⊥V ;
c := EQ(v0);
while (c �= yes):

v0 := v0 � f(c)
c := EQ(v0);

return v0.

Lemma 20. The algorithm identifies any target v ∈ V using O(n) EQs.

As v0 � v before each loop execution counterexample c = EQ(v0) must be
chosen such that f(c) � v, which entails v0 � f(c) � v. The fact that c is a
counterexample implies ¬(f(c) � v0) and v0 � f(c) �= v0. Consequently, the
successive values of v0 in the execution of the algorithm form a path from ⊥V to
v, where the length of this path equals the number of loop executions. Hence, the
target v is identified in finitely many steps using O(n + 1) = O(n) EQs (which
corresponds to receiving at most n counterexamples). �

If n can be bounded by some polynomial relating the length of the longest
ascending path from ⊥V to v to the size of the grammar, and if (V, f) is polytime,
then Lf is identifiable in polytime from EQs as well. Remark: EQs as such cost
as much as it costs the teacher to compare two elements of the lattice.

EQs have two advantages: First, the learner actually knows when he has iden-
tified the target, namely when the teacher has no more counterexamples to give
and answers the next EQ in the positive. And second, unlike in the general
cases of learning from text or MQs where the learner has to handle strings
s ∈ Σ∗ \ Lf (v) that do not change the current hypothesis at all, EQs can be
used in such a way that every EQ results in the retrieval of at least one more
hitherto unrevealed element of the target (which can be seen from the fact that
we “make progress” in every loop execution of the algorithm given above).

6 Conclusion and Outlook

We have given a general definition of String Extension Classes and have shown
that several natural examples are SECs. We have argued further for the natural-
ity of these language classes by giving various characterizations and properties.

It seems to us that the lattice theoretic framework can be highly beneficial to
the analysis of classes of learning algorithms. For example, one can analyze the
probabilistic learnability of String Extension Classes – we have some promising
preliminary results pertaining to certain lattices.

String Extension Learning Using Lattices 391

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45, 117–135 (1980)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75, 87–106 (1987)

3. Bārzdiņš, J.: Inductive inference of automata, functions and programs. In: Proceed-
ings of the 20th International Congress of Mathematicians, Vancouver, Canada,
pp. 455–560 (1974); English translation in American Mathematical Society Trans-
lations 2, 109, 107–112 (1977)

4. Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence (1984)
5. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Infor-

mation and Control 28, 125–155 (1975)
6. Case, J., Jain, S., Lange, S., Zeugmann, T.: Incremental concept learning for

bounded data mining. Information and Computation 152, 74–110 (1999)
7. de Brecht, M., Kobayashi, M., Tokunaga, H., Yamamoto, A.: Inferability of closed

set systems from positive data. In: Washio, T., Satoh, K., Takeda, H., Inokuchi,
A. (eds.) JSAI 2006. LNCS (LNAI), vol. 4384, pp. 265–275. Springer, Heidelberg
(2007)

8. de la Higuera, C.: Grammatical Inference. Cambridge University Press, Cambridge
(2010) (in Press)

9. Fernau, H.: Identification of function distinguishable languages. Theoretical Com-
puter Science 290(3) (2003)

10. Fulk, M.: A Study of Inductive Inference Machines. PhD thesis, SUNY at Buffalo
(1985)

11. Gold, E.: Language identification in the limit. Information and Control 10, 447–474
(1967)

12. Heinz, J.: String extension learning (2009),
http://phonology.cogsci.udel.edu/~heinz/papers/heinz-sel.pdf

13. Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems that Learn: An Introduction
to Learning Theory, 2nd edn. MIT Press, Cambridge (1999)

14. Jantke, K.P.: Monotonic and non-monotonic inductive inference. New Generation
Computing 8(4) (1991)

15. Lange, S., Wiehagen, R.: Polynomial time inference of arbitrary pattern languages.
New Generation Computing 8, 361–370 (1991)

16. Nation, J.: Notes on lattice theory (2009),
http://www.math.hawaii.edu/~jb/books.html

17. Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduction to
Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge
(1986)

18. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw
Hill, New York (1967); Reprinted by MIT Press, Cambridge, Massachusetts (1987)

19. Royer, J., Case, J.: Subrecursive Programming Systems: Complexity and Suc-
cinctness. In: Research monograph in Progress in Theoretical Computer Science.
Birkhäuser, Boston (1994)

20. Weinstein, S.: Private communication at the Workshop on Learnability Theory and
Linguistics. University of Western Ontario (1982)

21. Wexler, K., Culicover, P.: Formal Principles of Language Acquisition. MIT Press,
Cambridge (1980)

22. Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Elektronische Informationsverarbeitung und Kybernetik 12, 93–99 (1976)

http://phonology.cogsci.udel.edu/~heinz/papers/heinz-sel.pdf
http://www.math.hawaii.edu/~jb/books.html

The Equivalence Problem of Deterministic
Multitape Finite Automata:

A New Proof of Solvability Using a
Multidimensional Tape

Alexander A. Letichevsky1, Arsen S. Shoukourian2,
and Samvel K. Shoukourian3

1 National Academy of Sciences of Ukraine, Glushkov Institute of Cybernetics
let@cyfra.net

2 National Academy of Sciences of Armenia, Institute for Informatics and
Automation Problems

arsen.shoukourian@gmail.com
3 Yerevan State University, IT Educational and Research Center

samshouk@sci.am

Abstract. This publication presents a new proof of solvability for the
equivalence problem of deterministic multitape finite automata, based
on modeling their behavior via a multidimensional tape. It is shown
that for a decision on equivalence of two automata it is necessary and
sufficient to consider finite sets of their execution trace words built over
the mentioned multidimensional tape.

1 Introduction

Deterministic multitape finite automata and their equivalence problem were in-
troduced by M. O. Rabin and D. Scott in 1959 [6]. The solvability of the equiva-
lence problem for two tape automata was proven by M. Bird in 1973 [1]. The way
of solution is based on equivalent transformation of source automata graphs to
a special finite commutative diagram, which takes into account commutativity
assumptions for symbols of the alphabet used in different tapes. Meantime, the
suggested way is not acceptable for the case when the number of tapes is more
than two, because, for that case, the suggested transformation may not lead to
a finite commutative diagram. In 1993 T. Harju and J. Karhumäki proved the
solvability of the equivalence problem for multitape automata without any re-
striction on the number of tapes [5]. It is based on a purely algebraic technique.
Per T. Harju “the main argument of the proof uses an embedding result for
ordered groups into division rings”.

A new combinatorial proof of solvability is presented in this article. It is similar
to the solution suggested by M. Bird, but instead of a transformation of source
automata to a commutative diagram, the commutativity assumptions are taken
into account via a special multidimensional tape [3][4] used for coding execution

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 392–402, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Equivalence Problem of Deterministic Multitape Finite Automata 393

traces of source automata. The advantages and disadvantages of the proposed
solution imply from its combinatorial nature.

A special representation of an element in a partially commutative semigroup
is described in section 2. The new proof of solvability of the equivalence problem
of multitape automata is adduced in section 3.

This is the third new application of multidimensional tapes for solving prob-
lems in theory of automata. The first applications were in [4][7] for problems
open for many years.

2 Partially Commutative Semigroups

If X is an alphabet, then the semigroup of all words in the alphabet X , including
the empty word, will be denoted by FX , and the semigroup of all n-element
vectors of words will be denoted by Fn

X .
Let G be a semigroup with a unit, generated by the set of generators Y =

{y1, . . . , yn}. G is called free partially commutative semigroup, if it is defined by
a finite set of definitive assumptions of type yiyj = yjyi [2].

Let K : FY −→ Fn
{0,1} be a homomorphism over the semigroup FY which

maps words from FY to n-element vectors in binary alphabet {0, 1} [3]. The
homomorphism K over the set of generators of the semigroup FY is defined by
the equation

K(yi) = (α1i, . . . , αni), where αij =

⎧⎨
⎩

1, i = j
e, yiyj = yjyi

0, yiyj �= yjyi

(1)

At the same time K(e) = (e, . . . , e).

Lemma 1. Let yi, yj be generators of G, yi �= yj, g1 = yiyj, g2 = yjyi be
elements of G, obtained after applying the operation of the semigroup G to gen-
erators yi and yj. g1 = g2 ⇐⇒ K(yiyj) = K(yjyi) [3].

This statement allows to consider the homomorphism K as a mapping not only
over the semigroup of words FY , but also over the free partially commutative
semigroup G.

A linear order < is specified over the set of generators Y [3]. This order
coincides with the order of enumeration of generators (lexicographical order).
The order < is used for sorting the representations of elements of the semigroup
G and for defining their canonical representation.

Let h ∈ FY . A word in the alphabet {0, 1} is called a mask of occurrences of a
generator y in the word h, if it is ensued from the substitution of all occurrences
of the generator y by 1, and from the substitution of occurrences of all other
generators by 0. If the masks are considered not only as words in the alphabet
{0, 1}, but also as binary integers, then it will be possible to compare them. It
is assumed that the lexicographical order defines the order for comparing binary
representations of generators.

394 A.A. Letichevsky, A.S. Shoukourian, and S.K. Shoukourian

Let g be an element of the semigroup G, and h, q ∈ FY be its representations.
The representation h is less than the representation q, h < q, if there exists such
a generator y that:

1. if y′ < y then masks of occurrences of the generator y′ in words h and q are
equal,

2. the mask of occurrences of the generator y in the word h is less than the
mask of occurrences of that generator in the word q.

Lemma 2. Any twodifferent representations of the same element of the semigroup
G are comparable in terms of the order < [3].

It is implied, from Lemma 2, that there exists a minimal representation for every
element of G. That representation is called the canonical form of the element,
induced by the order < over the set of generators [3]. The following property of
the canonical representation of an element is true: any two symbols that stand
next to each other in the canonical representation are either not commutative
or the left one is less (in terms of the order <) than the right one.

An equivalence relation ρ over the semigroup FY is specified as follows. If w1
and w2 are words from FY , w1, w2 ∈ FY , then w1ρw2 if and only if w1 coincides
with w2 up to the commutativity assumptions.

The relation ρ partitions the semigroup FY to disjoint classes. These classes
will further be called classes of commutation. It is obvious, that a commutation
class Cg corresponds to an element g from the semigroup G. An element from
Cg, which is the canonical form of g, in turn, will be called the representative of
the commutation class Cg.

Lemma 3. Any free partially commutative semigroup of n generators is iso-
morphic to some sub-semigroup of Cartesian product of n free semigroups with
two generators [3].

Let Y = {y1, y2}, y1y2 �= y2y1. Using the binary coding considered above, i.e.
(1, 0) for y1 and (0, 1) for y2, the following correspondence between words in FY

Fig. 1. Correspondence between the words in FY and vectors in binary alphabet {0, 1}

The Equivalence Problem of Deterministic Multitape Finite Automata 395

and two-element vectors in binary alphabet {0, 1} (see Fig. 1) will be obtained:
K(e) = (e, e), K(y1) = (1, 0), K(y2) = (0, 1), K(y1y1) = (11, 00) = (3, 0),
K(y1y2) = (01, 10) = (1, 2), K(y2y1) = (10, 01) = (2, 1), K(y2y2) = (00, 11) =
(0, 3),

As it was mentioned above each element of a vector can be considered as an
integer. Thus, a new correspondence between words in FY and elements of N2,
where N = {0, 1, . . .} and (e, e) corresponds to (0, 0), is obtained (see Fig. 2).
The elements of N2 which correspond to words in FY are located on diagonals
marked bold in the Fig. 2.

Fig. 2. Correspondence between the words in FY and elements of N2

The correspondence between words in FY and elements of N3, in more com-
plicated case when Y = {y1, y2, y3}, y1y3 = y3y1, y2y3 = y3y2, y1y2 �= y2y1 is
depicted in the Fig. 3.

Thus, introduction of the described binary coding for elements of a partially
commutative semigroup and its justification in Lemmas 1, 2 and 3 allows to
consider cells of a multidimensional tape introduced below instead of semigroup
elements and, therefore, to avail of the opportunity to compare them as integer
vectors when analyzing behaviors of two automata on a given element of the
semigroup. Specifically, it becomes possible to measure the distance between

396 A.A. Letichevsky, A.S. Shoukourian, and S.K. Shoukourian

Fig. 3. Correspondence between the words in FY and elements of N3

two automata during their movement on different representations of the same
element of the semigroup.

3 A New Proof of Solvability

Some definitions from [3][4], which are necessary for further consideration, will
be repeated below.

Let r be a positive integer, N = {0, 1, . . .}. The set N r is called an r-
dimensional tape. Any element of N r - (a1, . . . , ar) is called a cell of the tape
and the numbers a1, . . . , ar are called the coordinates of the corresponding cell.
The cell (0, . . . , 0) is the initial cell. Let Y be a finite alphabet. Any mapping
N r −→ Y is called a fill of the tape with the symbols of Y .

It is considered that the alphabet Y is ordered Y = {y1, . . . , yn}. It is divided

into disjoint ordered subsets Y =
p⋃

i=1
Yi, Yi

⋂
i�=j

Yj = Ø, preserving the given order

for Y : Yi = {yf(i), . . . , yf(i)+|Yi|−1} where |Yi| is the number of elements in Yi,
f(1) = 1, f(i+ 1) = f(i) + |Yi| when i > 1.

The n-dimensional tape Nn is considered, n = |Y1| + . . . + |Yp|. Each |Yi|
dimensions are used for expressing the movement on symbols from Yi. The sub-
set of dimensions corresponding to Yi will be denoted by D(Yi). The position
of the first coordinate corresponding to the subset D(Yi) is denoted by f(i).

The Equivalence Problem of Deterministic Multitape Finite Automata 397

Correspondingly, the position of the last coordinate for the subset of dimensions
D(Yi) can be expressed as f(i)+ |Yi| − 1. Several definitions are adduced below.

Suppose that A =< Y, S, δ, F, s0 > is a deterministic p-tape automaton with
the input alphabet Y , has a set S = S1

⋃
. . .

⋃
Sp as the set of states, Si

⋂
i�=j

Sj =

Ø, δ as the completely defined transition function, F as the set of final states,
and s0 as the initial state. Yi is the alphabet of the tape i, Si is the set of states
for the head i.

The notion of a predecessor is naturally demonstrated via binary representa-
tions with variable length for coordinates of cells adduced in the section 2. The
binary representation of the initial cell consists of one digit codes: (0, . . . , 0). The
binary representation of any other cell is built basing on the binary represen-
tation of a predecessor for the considered cell, because each successor has only
one predecessor here. The length of any coordinate code for the successor is one
more than the length of that coordinate code for the predecessor. At the same
time, for a given coordinate, only one successor among successors of a given
predecessor has the most left bit of the binary representation equal to 1.

A cell a1 = (α11, . . . , α1n) is called a predecessor of a cell a2 = (α21, . . . , α2n)
if and only if there exists a number j ∈ {1, . . . , p}, such that for any k from
{1, . . . , f(j)− 1, f(j) + |Yj |, f(j) + |Yj |+ 1, . . . , n}, α2k = α1k and
∃l ∈ {f(j), . . . , f(j) + |Yj | − 1} that ∀m ∈ {f(j), . . . , f(j) + |Yj | − 1}
1. α2m = α1m,m �= l,
2. α2m = α1m + (L+ 1), m = l, where L = α11 + . . .+ α1n.

Two predicates are introduced to represent if one cell is a predecessor of another.
π(a1, a2) is true if and only if the cell a1 is the predecessor of the cell a2. Another
predicate πq(a1, a2) is introduced also. It is true if and only if the predicate
π(a1, a2) is true and a1, a2 differ only by the value of the coordinate q as follows
α2q = α1q + (L+ 1), where L = α11 + . . .+ α1n.

For a given automaton A a partial mapping φA : Nn −→ S is introduced:

1. φA(0, . . . , 0) = s0
2. ∀a ∈ Nn \ (0, . . . , 0) ∃j ∈ {1, . . . , n} ∃a(j)

pred that πj(a
(j)
pred, a)

is true and φA(a(j)
pred) is defined =⇒φA(a) = δ(φA(a(j)

pred), yj).
3. φA(a) is considered defined if and only if it is defined according to points 1

and 2 above.

Lemma 4. For a given automaton A and a given cell a ∈ Nn \ (0, . . . , 0) if
φA(a) is defined then there exists a unique cell a′ such that φA(a′) is defined and
π(a′, a) is true.

The graph of the mapping φA will be named a set of all execution traces for the
automaton A.

It is evident that there exists such a mapping for any automaton with com-
pletely defined transition function.

A part of a set of execution traces, where the sum of coordinates of each cell
is less or equal to k−1 is called a trace word of the length k. The set of all trace

398 A.A. Letichevsky, A.S. Shoukourian, and S.K. Shoukourian

words will be denoted further by ΩA. The set of all cells used in a given trace
word ω will be denoted by Uω.

The part of a trace word ω, where the sum of coordinates of each cell is equal
to k, is called the kth diagonal of the word ω and is denoted by dk(ω). The set
of all cells used in a given diagonal d will be denoted by Ud. The length of dk(ω)
is equal to k+1.

The length of a trace word ω is equal to the number of diagonals it contains
and is denoted by length(ω).

The diagonals which lengths are less by one than the powers of 2 : 20 − 1,
21 − 1, . . . will be named essential.

The set of all essential diagonals is denoted by D(E) = {d(E)
h |h = 0, 1, . . .},

and the length of a given essential diagonal l
d
(E)
h+1

= l
d
(E)
h

+ 2h, l
d
(E)
0

= 0.
A trace word for a 3-tape automaton is adduced in Figure 4.
For a given trace word ω a path p = ap1 . . . apm , m ≥ 1, apj ∈ Uω, j ∈

{1, . . . ,m}, is defined as a sequence of cells for which π(apv , apv+1) is true, v =
1, . . . ,m− 1.

For a given path p = ap1 . . . apm a word χp = yq1 . . . yqm−1 in the alphabet Y is
called a characteristics of the path p if and only if ∀j ∈ {1, . . . ,m}, πqj (apj , apj+1)
is true.

A path p = ap1 . . . apm is called complete if ap1 = (0, . . . , 0). A complete path
p = ap1 . . . apm will be called accepted by a given automaton A if φA(apm) is a
final state of A. Basing on considerations in section 2 we can consider the binary

Fig. 4. A trace word for a 3-tape automaton over a two-symbol alphabet for each tape

The Equivalence Problem of Deterministic Multitape Finite Automata 399

coding of the characteristics χp ∈ FY for the path p. Its canonical representation
coincides with the binary representation of apm coordinates. Thus, the binary
representation of apm coordinates can be considered as a canonical form of the
complete path p = ap1 . . . apm .

The set of all accepted paths in a trace word ω for a given automaton A is
denoted by APA(ω) and the set of their canonical forms is denoted by CFAPA(ω).

Suppose A1 and A2 are multitape automata. Suppose also that k = s2× (2s−
1), s = |S1| + |S2|, where Sj is the set of states of the automaton Aj , j = 1, 2,
and ωj is a trace word, length(ωj) = k.

Let A be an automaton. It is evident that ∀d(E)
h ∈ D(E) ∃a ∈ U

d
(E)
h

that φA(a)
is defined.

A new mapping ψA : D(E) −→ 2Nn×S is introduced in the following way:
ψA(d(E)

h) =
⋃

a∈U
d
(E)
h

(a, φA(a)), ∀d(E)
h ∈ D(E).

A subset of ψA(d(E)
h) containing all pairs with final states and only them is

denoted by ξA(d(E)
h).

Set of all first components of ψA(d(E)
h) and ξA(d(E)

h) will be denoted by
ψ

(1)
A (d(E)

h) and ξ
(1)
A (d(E)

h) correspondingly. Similarly, the set of all second com-
ponents will be denoted by ψ

(2)
A (d(E)

h) and ξ
(2)
A (d(E)

h).

Lemma 5. For any diagonal d(E)
h ∈ D(E) ψA(d(E)

h) �= ∅.
Lemma 5 shows that if the transition function of a given automaton is completely
defined then any essential diagonal can be reached during the execution of the
algorithm.

Lemma 6. If A1 ∼ A2 then for any diagonal d(E)
h ∈ D(E)

ξ
(1)
A1

(d(E)
h) = ξ

(1)
A2

(d(E)
h).

Lemma 7 below shows that if two automata are not equivalent then there exists
a diagonal (not necessary essential) and a cell on that diagonal such that either
both automata reach the cell - one in a final state and the other not in a final
state or one automata reaches the cell and the second does not reach it.

Lemma 7. If A1 �∼ A2 then there exists a diagonal d and a cell aj, aj ∈ U
(Aj)
d ,

j ∈ {1, 2} and a number j′, j′ �= j, j′ ∈ {1, 2} that φAj (aj) is defined, φAj (aj) ∈
FAj and φAj′ (aj) is not defined or φAj′ (aj) is defined, but φAj′ (aj) /∈ FAj′ .

Lemma 8. For any number m > k there exists a number m′ < m, m′′ ≤
m, m′ < m′′, d(E)

m′ , d(E)
m′′ are essential diagonals ψ

(2)
A1

(d(E)
m′) = ψ

(2)
A1

(d(E)
m′′) and

ψ
(2)
A2

(d(E)
m′) = ψ

(2)
A2

(d(E)
m′′).

Lemma 9 shows that if there exist two essential diagonals with repeating set of
states then it is possible to determine next essential diagonal with the same set
of states. The distance between diagonals is not constant, but it is computable.

400 A.A. Letichevsky, A.S. Shoukourian, and S.K. Shoukourian

Lemma 9. ∀m′ < k, m′′ ≤ k, m′ < m′′ d(E)
m′ , d(E)

m′′ are essential diagonals and
ψ

(2)
A (d(E)

m′) = ψ
(2)
A (d(E)

m′′) then ψ
(2)
A (d(E)

m′′) = ψ
(2)
A (d(E)

m′′′) m′′′ = m′′ + 2m′′
+ . . . +

2m′′+(m′′−m′)−1.

Lemma 10. Let p = ap1 . . . apm , m > k be a complete path for the automaton
A. Let also d

(E)
m1 , . . . , d

(E)
mu , m1 < . . . < mu < m, u ≥ |S| be a set of essential

diagonals such that ψ(2)
A (d(E)

mt) = ψ
(2)
A (d(E)

m1) t = 1, . . . , u. Then there exist num-
bers m′, m′′ ∈ {m1, . . . ,mu} such that φA(apm′) = φA(apm′′), apm′ ∈ U

d
(E)
m′

,
apm′′ ∈ U

d
(E)
m′′

.

Lemma 11 below shows that if the set of states is repeating then it is possible
to find essential diagonals with repeating states for each state of the set.

Lemma 11. Let d
(E)
m′ , d(E)

m′′ , m′′ > m′ be essential diagonals, apm′ ∈ U
d
(E)
m′

,

apm′′ ∈ U
d
(E)
m′′

ψ
(2)
A (d(E)

m′) = ψ
(2)
A (d(E)

m′′). Then for any s ∈ ψ
(2)
A (dm′) there ex-

ists a number m′′′ ≥ m′′ and there exists a cell apm′′′ ∈ U
d
(E)
m′′′

φA(apm′) =

φA(apm′′′) = s.

If a1, a2 ∈ Nn then the distance between a1 and a2 will be denoted by dist(a1, a2).
Lemma 12 extends Lemma 11 for the case when there are two automata.

Lemma 12. Let pj = apj1 . . . apjm , m > k be a complete path for the automaton
Aj, j = 1, 2. Let also d

(E)
m1 , . . . , d

(E)
mu , m1 < . . . < mu < m be a set of diagonals

such that ψ(2)
Aj

(d(E)
mt) = ψ

(2)
Aj

(d(E)
m1), t = 1, . . . , u, u < |S|, j = 1, 2. Then there

exist numbers m′, m′′ ∈ {m1, . . . ,mu} such that φAj (apm′) = φAj (apm′′), apjm′ ∈
U

d
(E)
m′

, apjm′′ ∈ U
d
(E)
m′′

.

Lemma 13 shows that if

1) for equivalent automata there are two paths accepted by each automaton with
states repeating on same essential diagonals;
2) these paths end in the same cell;
then the distance between cells reached on diagonals with repeating states does
not change.

Lemma 13. Let pj = apj1 . . . apjm , m > k be an accepted path for the automaton
Aj, j = 1, 2, d(E)

m′ , d(E)
m′′ , m′ < m′′ < m be essential diagonals, apjm′ ∈ U

d
(E)
m′

,

apjm′′ ∈ U
d
(E)
m′′

, ψ(2)
Aj

(d(E)
m′) = ψ

(2)
Aj

(d(E)
m′′), φAj (apjm′) = φAj (apjm′′). Then A1 ∼

A2 and ap1m = ap2m = apm implies that dist(ap1m′ , ap2m′) = dist(ap1m′′ , ap2m′′).

Proof. Assume that dist(ap1m′′ , ap2m′′) > dist(ap1m′ , ap2m′). Without additional
restrictions it can be assumed that the number of essential diagonals d(E)

m′′ , . . . ,

d
(E)
m containing cells apjm′′ , . . . , apjm is less than max{|S1|, |S2|}.

The Equivalence Problem of Deterministic Multitape Finite Automata 401

Due to the made assumption on difference in cells, paths that start from ap1m′
and ap2m′ which have the same characteristics as the characteristics of the path,
are ending in different cells denoted further by a′p1m

and a′p2m
correspondingly.

φAj (a′pjm
) belongs to the set of final states of the automaton Aj , j = 1, 2.

Meantime, φA1(a′p2m
) and φA2(a′p1m

) do not belong to the set of final states of
A1 and A2, correspondingly, due to A1 ∼ A2. Otherwise, returning back to the
cell apm it is evident that then the automaton Aj , j = 1, 2, will have two different
accepted paths ending in the same cell which contradicts to the assumption that
Aj is deterministic.

Lemma 14. CFAPA1 (ω1) = CFAPA2 (ω2) ⇐⇒ A1 ∼ A2.

Proof. First, it will be shown that CFAPA1 (ω1) = CFAPA2 (ω2) =⇒ A1 ∼ A2.
Assume, that A1 is not equivalent to A2 and there are no paths p1 and p2

with the same canonic form in the trace words ω1 and ω2 that p1 is accepted by
A1 and p2 is not accepted by A2 or, vice versa, p2 is accepted by A2 and p1 is
not accepted by A1.

Without reducing the assumption and due to Lemma 7 there exists a complete
path of length m,m > k p(j) = a

(j)
p1 . . . a

(j)
pm , a(1)

pm = a
(2)
pm = apm , for the automaton

Aj , j = 1, 2 such that φA1(apm) belongs to the set of final states of the automaton
A1 and φA2(apm) does not belong to the set of final states of the automaton A2
or φA2(apm) is not defined.

The case when φA2(apm) is defined will be considered at first.
As m > k there exist, according to Lemma 8, essential diagonals with numbers

m′, m′′, m′ < m, m′′ < m, m′ < m′′ such that ψ
(2)
A1

(d(E)
m′) = ψ

(2)
A1

(d(E)
m′′) and

ψ
(2)
A2

(d(E)
m′) = ψ

(2)
A2

(d(E)
m′′).

Thus, per Lemma 11, a path p(j), j = 1, 2 can be represented in the follow-
ing way: p(j) = a

(j)
p1 . . . a

(j)
pm′ . . . a

(j)
pm′′ . . . apm , where φA1(a

(1)
pm′) = φA1(a

(1)
pm′′) and

φA2(a
(2)
pm′) = φA2(a

(2)
pm′′). Without reducing the assumption it can be assumed

that p(j) are shortest paths for which A1 and A2 are not equivalent.
Let χj be a characteristics of the subpath a

(j)
pm′′ . . . apm and p

(j)
1 = a

(j)
pm′ . . . a

(j)
p

is a subpath which has the same characteristics χj , j = 1, 2.
It is evident that such a subpath exists. Due to Lemma 13 a

(1)
p = a

(2)
p = ap.

Denote by p
(j)
2 the subpath of the path p(j), starting from ap1 and ending with

a predecessor of a(j)
m′ . Consider as a new path the following concatenation of

those subpaths p(j)
new = p

(j)
2 p

(j)
1 . Its length is less than the length of the initial

path p(j). Meantime, it implies evidently that φA1(ap) is a final state of A1, but
φA2(ap) is not a final state of A2. Meantime, according to Lemmas 12, 13 there
is no other complete path for the automaton A2 to the cell ap, for which φA2(ap)
belongs to the set of final states. Thus, we obtain that for the diagonal with the
number equal to the length of p(j)

new there exists a cell for which one of automata
has a state different from final states. If the length of p(j)

new is still more than
k, similar considerations should be done until the obtained paths have a length
not exceeding k. Then having these paths we come to a contradiction with the
initial assumption of the Lemma 14.

402 A.A. Letichevsky, A.S. Shoukourian, and S.K. Shoukourian

Now the case when φA2(apm) is not defined is considered.
Similarly to the considerations above one may obtain that φA2(ap) is also not

defined. Thus, it is obtained that there exists a cell at diagonal with the number
equal to the length of p(1)

new for which φA1 is defined and its value belongs to the
set of final states for A1 and, at the same time, φA2 is not defined.

If the number of the diagonal is still more than k, similar considerations shall
be done until the obtained path has a length not exceeding k. Then, having the
path and φ2 not defined at the end cell of the path we come to a contradiction
with the assumption of Lemma 14.

As A1 ∼ A2 =⇒ CFAPA1 (ω1) = CFAPA2 (ω2) is obviously also true, the Lemma
is proved.

Theorem 1. The equivalence problem of deterministic multitape automata is
solvable.

References

1. Bird, M.: The equivalence problem for deterministic two-tape automata (1973)
2. Clifford, A.H., Preston, G.B.: The algebraic theory of semigroups (1961)
3. Godlevskii, A.B., Letichevskii, A.A., Shukuryan, S.K.: Reducibility of program-

scheme functional equivalence on a nondegenerate basis of rank unity to the equiv-
alence of automata with multidimensional tapes (1980)

4. Grigorian, H.A., Shoukourian, S.K.: The equivalence problem of multidimensional
multitape automata (2008)

5. Harju, T., Karhumäki, J.: The equivalence problem of multitape finite automata
(1991)

6. Rabin, M.O., Scott, D.: Finite automata and their decision problems (1959)
7. Shoukourian, A.S.: Equivalence of regular expressions over a partially commutative

alphabet (2009)

Primitive Words Are Unavoidable
for Context-Free Languages

Peter Leupold�

Fachbereich Elektrotechnik/Informatik
Fachgebiet Theoretische Informatik
Universität Kassel, Kassel, Germany

Peter.Leupold@web.de

Abstract. We introduce the concept of unavoidability of languages with respect
to a language class; this means that every language of the given class shares at
least some word with the unavoidable language. Several examples of such un-
avoidabilities are presented. The most interesting one is that the set of primitive
words is unavoidable for context-free languages that are not linear.

1 The Language of Primitive Words

Primitivity of words is a very fundamental concept, and has played an important role
especially in the Theory of Codes [1] and related aspects of Combinatorics on Words
[15,16]. Besides this, primitive words have also received much attention in the field of
Formal Languages. In 1991 Dömösi et al. for the first time explicitly raised the problem
whether the language of all primitive words, Q, is context-free or not [7]. This problem,
which is still unsolved, has been the center of attention around which investigations
have revolved. So far, it is only known for smaller language classes like the regular and
linear ones, as well as the deterministic and the unambiguous context-free ones that
they cannot contain the language of all primitive words [11,2,17]. On the other hand, it
is straight-forward to see that the language of primitive words is context-sensitive. Only
the relation to the class of context-free languages remains unclear and seems very hard
to establish.

Thus partial cases of the question to which language class Q belongs have been
investigated. For many types of languages those ones which consist only of primitive
words have been characterized [5,4,3,19]. On the other hand, also some complementary
work on languages that consist exclusively of non-primitive words has been done. Ito
and Katsura gave a characterization of those context-free languages that do not contain
any primitive word [14], Dömösi et al. presented a hierarchy of languages that consist
only of primitive words [6]. This type of work is the starting point for our investigations.

Rather than using the strict classification by considering only languages that con-
sist either exclusively of primitive or non-primitive words, we introduce the notion of
unavoidability. This allows a finite “contamination” with undesired words, thus it is a

� This work was done in part while Peter Leupold was funded as a post-doctoral fellow by the
Japanese Society for the Promotion of Science under grant number P07810; the other part was
done while he was funded by the Humboldt Foundation with a Return Fellowship.

A.-H. Dediu, H. Fernau, and C. Martı́n-Vide (Eds.): LATA 2010, LNCS 6031, pp. 403–413, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

404 P. Leupold

somewhat fuzzier notion than that of strict membership in a class. In contrast to the most
common language classes, it is based on the languages’ contents, i.e. on the words they
contain, rather than some abstract property. Formalizing this, we say that a language U
avoids another language L if they do not share any words. A language U is then said
to be unavoidable in a language class C if it cannot be avoided by any language in C.
A stronger property is strong unavoidability, which is given if U shares infinitely many
words with every language in C.

We show that this strong property of unavoidability holds for the language of primi-
tive words with respect to several natural language classes such as the regular languages
with infinite root and the non-linear context-free languages. The proof of the latter re-
sult in parts repeats earlier work of Ito and Katsura [14]; however, the presentation of
their proofs remains slightly obscure in several passages, and therefore we prove our
results here in full length.

While this work does not directly advance work on the question whether the language
of primitive words is context-free, it does show a new way to possibly approach this
problem. It is known thatQ is not linear and not unambiguous. If one could show that its
complement is unavoidable for example for context-free languages that are ambiguous,
this would show that Q cannot belong to that class.

2 Preliminaries

We assume the reader to be familiar with fundamental concepts from Formal Language
Theory such as alphabet, word, and language, which can be found in many standard
textbooks like the one by Harrison [10]. The length of a finite word w is the number
of not necessarily distinct symbols it consists of and is written |w|. The i-th symbol we
denote by w[i]. The notation w[i . . . j] is used to refer to the part of a word starting at
the i-th position and ending at the j-th position.

Words together with the operation of concatenation form a free monoid, which is
usually denoted by Σ∗ for an alphabet Σ. Repeated catenation of a word w with itself
is denoted by wi for natural numbers i. This notation is extended to sets such that for
a language L we have Li := {w0w1 · · ·wi : w0, w1, . . . , wi ∈ L}. In contrast to this
L(i) := {wi : w ∈ L}. In both cases we use intuitively understandable notations like
L(≥i) for languages like

⋃
j≥i L

(j).
A word u is a prefix of w if there exists an i ≤ |w| such that u = w[1 . . . i]; if

i < |w|, then the prefix is called proper. The set of all prefixes is pref(w). Suffixes are
the corresponding concept reading from the back of the word to the front and they are
denoted by suff. A word w has a positive integer k as a period, if for all i, j such that
i ≡ j(modk) we have w[i] = w[j], if both w[i] and w[j] are defined.

One of the main focuses in what follows will be on a special class of words called
primitive, which we now define. A word is primitive, iff it is not a non-trivial (i.e. with
exponent one) power of any word. Thus u is primitive, if u = vk implies u = v and
k = 1; this means that λ is not primitive, because, for example, λ4 = λ. We denote the
language of all primitive words by Q. It is a well-known fact that for every non-empty
word w there exists a unique primitive word p such that w ∈ p+; this primitive word is
called the (primitive) root of w and we will denote it by

√
w. The unique integer i such

Primitive Words Are Unavoidable for Context-Free Languages 405

that
√
w

i = w is called the degree of w. The notion of root is extended to languages in
the canonical way such that

√
L :=

⋃
w∈L

√
w.

Two fundamental results from Formal Language Theory will play a central role in
several of our argumentations further down. These are the Pumping Lemmata for regular
and for context-free languages, which we recall here:

Lemma 1. For every regular language L there exists an integer kL such that every
word w ∈ L longer than kL, has a factorization w = w1w2w3 such that w2 �= λ,
|w1w2| ≤ kL and w1w

∗
2w3 ⊆ L.

Lemma 2. For every context-free languageL there exists an integer kL such that every
word w ∈ L longer than kL, has a factorization w = w1w2w3w4w5 such that w2w4 �=
λ, |w2w3w4| ≤ kL and w1w

i
2w3w

i
4w5 ∈ L for all i ≥ 0.

Both lemmata provide necessary conditions for languages to belong to the respective
classes; however, neither condition is sufficient. This means there are non-regular lan-
guages that satisfy Lemma 1 and non-context-free languages that satisfy Lemma 2.
Finally, we state a weak form of the Theorem of Fine and Wilf, which we will use
further down.

Theorem 3. If two non-empty words pi and qj share a prefix of length |p| + |q|, then
there exists a word r such that p, q ∈ r+.

Finally we recall the two concepts of boundedness and slenderness. A language L is
called bounded if there is a finite number of words w1, w2, . . . , wi such that L ⊆ w∗

1 ·
w∗

2 · · ·w∗
i . A languageL is called slender, if there is an integer k such that |L∩Σn| ≤ k

for all n ≥ 1; this means L contains at most k words of any given length.

3 Unavoidable Languages

We want to formalize the following intuitive concept: if a languageL shares some words
with every language from a given class C, then it is unavoidable in C, because parts of it
appear in some sense everywhere. Depending on the size of these parts we define also
a strong version of unavoidability.

Definition 4. A languageU ⊆ Σ∗ is unavoidable in the language class C, iffU∩L �= ∅
for all infinite languages L ∈ C. U is strongly unavoidable, iff U ∩ L is infinite for all
infinite languages L ∈ C.

Notice that this concept is different from unavoidable sets or languages as they are
used in Combinatorics of Words [15]; there, a set of words U is unavoidable, if there
exists an integer k such that every word longer than k must have a word from U (or a
morphic image of such a word) as a factor. Thus unavoidability is an absolute property
of languages, not one relative to a language class as in our case. A further difference is
that we demand that words of U be elements of all languages in C, and not just that they
occur as factors.

As a trivial example, Σ∗ is strongly unavoidable for all possible language classes
over the alphabet Σ. In fact, any language with finite complement is unavoidable for

406 P. Leupold

any class of languages, because these languages will have infinite intersections with all
infinite languages. Less trivial examples are harder to come by. Two examples can be
derived from the Pumping Lemmata 2 and 1.

Example 5. Let Lsq be the language of all words that contain a square. From the two
Pumping Lemmata we can see that every infinite regular language has a subset of the
form w1w2w

+
2 w3 and that every infinite context-free language has a subset of the form

{w1w
i
2w3w

i
4w5 : i ≥ 2}. Both sets contain only words with squares and are thus

infinite subsets of Lsq . Thus the latter is strongly unavoidable for regular and context-
free languages.

Now we proceed to construct a more elaborate example. For this we first state a simple
corollary of the Theorem of Lyndon and Schuetzenberger, see for example the book by
Shyr [18].

Lemma 6. Let p and q be two distinct primitive words. Then there are at most two
non-primitive words in each of the languages p∗q and pq∗.

Obviously, the set of primitive words contained in a language cannot be bigger than the
language’s root. On the other hand, a language with infinite root can consist of only
non-primitive words. For example, we have

√
Q(2) = Q but Q(2) ∩Q = ∅. For regular

languages, however, this cannot be the case, which will provide us with a first example
for a class of languages for which primitive words are unavoidable.

Theorem 7. The language of primitive words is strongly unavoidable for regular lan-
guages with infinite root.

Proof. Let L be a regular language with infinite root, and let kL be its corresponding
constant from the Pumping Lemma for regular languages, Lemma 1. We will give an
infinite sequence of primitive words in L. Since L has infinite root, there is a word
w ∈ L, whose root r is longer than kL. If w is primitive, then it is the first word of our
sequence. Otherwise there is a factorizationw = r1r2r3r

m with r1r2r3 = r andm ≥ 1
such that r1rn

2 r3r
m ∈ L for all n ≥ 0 by the Pumping Lemma. Notice that r3rmr1 must

be a primitive word and it is longer that the root of r2. Thus by Lemma 6 the language
rn
2 r3r

mr1 contains infinitely many primitive words. Their cyclic permutations of the
form r1r

n
2 r3r

m are primitive, too, and they are in L. Thus L contains infinitely many
primitive words.

If w was primitive, then we can take another one of the infinitely many words in
L with roots longer than kL. In this way we either find infinitely many w ∈ L
that are primitive, or we find one that provides us with an infinite subset of L that is
primitive. ��

For more details on the class of regular languages with infinite root, for example a
characterization by a special type of regular expressions, the reader is referred to an
article of Horváth et al. [12].

An almost direct consequence of the definitions, which is worth stating explicitly, is
the following.

Primitive Words Are Unavoidable for Context-Free Languages 407

Lemma 8. For a class of languages C that is closed under complement, no co-infinite
language L ∈ C can be unavoidable.

Proof. If L ∈ C and C is closed under complement, then also the complementL is in C.
The fact that L is co-infinite means that L is infinite. By the definition L ∩ L = ∅. ��
Earlier we have already seen that co-finite languages are unavoidable for all classes of
languages, which means that all examples involving this type of language are somewhat
trivial. Now Lemma 8 shows us that for language classes closed under complement at
least inside these classes only trivial examples can be found. For the case of Example
5 this tells us that the language of square-free words must be either non-regular or
co-finite. Which of these applies actually depends on the alphabet size: for two letters
the complement only contains seven words, for more letters the complement is non-
context-free.

4 Non-primitive Words in Context-Free Languages

Non-primitive words are those that can be represented in the form pn with n ≥ 2.
We start out by looking at a subclass of non-primitive words, namely those that can be
represented in the form pn with n = 2 for a primitive word p. In the realm of context-
free languages they behave quite differently from those with exponents greater than
two; the latter we will then investigate further down.

Lemma 9. Let w = w1w2w3w4w5 ∈ Σ+ with w2w4 �= λ. If w1w
i
2w3w

i
4w5 ∈ Q(2)

for all i ≥ 0, then w2 and w4 are conjugate. Moreover, there is another factorization
w = (fgkh)2 and an integer k such that w1w

i
2w3w

i
4w5 = (fgi+kh)2; here |f |, |h| ≤

|g| unless |w| = |w1w5|.
Proof. First we show that |w2| = |w4|. Let us suppose that contrary to this we have
|w2| > |w4| and w1w

i
2w3w

i
4w5 ∈ Q(2) for all i ≥ 0. Because a word’s degree is

invariant under cyclic permutation, we also have wi
2w3w

i
4w5w1 ∈ Q(2). So there is a

primitive word pi such that wi
2w3w

i
4w5w1 = p2

i for every i. Since |w2| > |w4| the
factor wn

2 is longer than w3w
i
4w5w1 for large enough i. Thus pi is a prefix of wi

2 =√
w2

i·degw2 . Since p is primitive, it cannot be a power of
√
w2, and thus the second

factor p in wi
2w3w

i
4w5w1 = p2

i starts with a conjugate of
√
w2. But since

√
w2 is

primitive all of its conjugates are distinct, and since p cannot start with two distinct
words of equal length, |w2| > |w4| leads to a contradiction. Supposing |w2| < |w4|
leads to a similar contradiction via wi

4w5w1w
i
2w3 ∈ Q(2). Thus we must have |w2| =

|w4|.
Now we show that w2 and w4 are conjugate. Let |w3| ≤ |w5w1| and as above

wi
2w3w

i
4w5w1 = p2

i . Then for large enough i the first |w4| letters of the second fac-
tor pi are within the factor wi

4, which means that they form a conjugate of w4. On the
other hand, w2 is obviously a prefix of pi of the same length, and thus is a conjugate of
w4. For |w3| > |w5w1| analogous reasoning works for the words wi

4w5w1w
i
2w3.

Now let us consider the case i = 0, i.e.w1w3w5 ∈ Q(2) and thusw3w5w1 ∈ Q(2). If
|w3| < |w5w1|, thenw3 is a factor ofw5w1, because it is a prefix of the root ofw3w5w1.

408 P. Leupold

Therefore there exists a word w′ such that w3w5w1 = w3w
′w3w

′ =
√
w3w5w1

2,
and consequently wi

2w3w
i
4w5w1 = wi

2w3w
i
4w

′w3w
′. Also the circular permutations

w′wi
2w3w

i
4w

′w3 must all have degree two such that w′wi
2 = wi

4w
′. Thus w′ must be a

suffix of wi
2 and a prefix of wi

4 for long enough i.
Thus if w′ is longer than w2, then w2 is a suffix of w′ and w4 is a prefix of w′; thus

w′wi
2w3w

i
4w

′w3 = (w′ · w−1
2)wi+1

2 w3w
i+1
4 (w−1

4 · w′)w3. Here the notation (u−1 · v)
for two words u and v means deleting a prefix u in v, the same for suffixes. Thus
(u−1 · uv) = v. This process of moving w2 and w4 from w′ into the factors wi+1

2 and
wi+1

4 can be iterated until the factor resulting from w′ is shorter than w2; let us call this
factor w′′.

If there were k iteration steps, then w′ = w′′wk
2 = wk

4w
′′. Therefore the en-

tire word is factorized w′wi
2w3w

i
4w

′w3 = w′′wk+i
2 w3w

k+i
4 w′′w3. From w′′wk

2 =
wk

4w
′′ we see that w′′ is a prefix of w4 and a suffix of w2. If w′′ is shorter than |w2|

2 ,
then w′′wk

2 = w′′(w′′′w′′)k and wk
4w

′′ = (w′′w′′′)kw′′ for some word w′′′. Since
(w′′w′′′)kw′′ = w′′(w′′′w′′)k we get that w′wi

2w3w
i
4w

′w3 = (w′′(w′′′w′′)k+iw3)2.
For w′′ longer than |w2|

2 an analogous factorization can be found. If w3 is longer than
w2, then it is longer than w′′ and can be reduced by analogous reasoning. In this way
we arrive at a factorization w1w

i
2w3w

i
4w5 = (fgn+kh)2 as stated in the lemma. If

|w3| > |w5w1| holds, analogous reasoning works. Finally, if |w3| = |w5w1|, obviously
w3 = w5w1, and consequently w2 = w4. ��
From this result we can almost immediately deduce several results concerning context-
free subsets of Q(2). As context-free languages these fulfill the Pumping Lemma and
thus also the conditions from Lemma 9.

Theorem 10. All context-free subsets of Q(2) are finite unions of languages of the form
{(fgih)2 : i ≥ 0}; thus they are slender and linear.

Proof. LetL be a context-free subset ofQ(2). By the Pumping Lemma 2, for every word
w ∈ L longer than the constant kL there exists a factorization z = w1w2w3w4w5 such
that w1w

i
2w3w

i
4w5 ∈ L for all i ≥ 0. In this case, this implies w1w

i
2w3w

i
4w5 ∈ Q(2).

Thus Lemma 9 applies, and for such a factorization there is an equivalent one of the
form (fgkh)2. The Pumping Lemma also states that |w2w3w4| ≤ kL. Thus we have
|gg| ≤ kL. and by this fact we obtain bounds on the length of both f and h, because by
Lemma 9 |f |, |h| ≤ |g| unless |w3| = |w5w1|. For the case |w3| = |w5w1|, on the other
hand, the length of f and h is bounded by the constant from the Pumping Lemma, too,
because 2|fh| = |w3| ≤ kL and thus |w3w5w1| ≤ 2kL. Summarizing, L is a union of
only finitely many languages of the form (fgkh)2.

It is worth noting that there can be finitely many words to which Lemma 9 does not
apply. In the beginning we have supposed that a factorization according to the Pumping
Lemma can be found. This is not necessarily true for words shorter than the constant
kL. However, there exist only finitely many such words. These are squares and can thus
be put in the form (fgkh)2 for example by setting f =

√
w. Thus nothing is pumped,

the resulting language contains only the word w itself.
Finally, observe that all languages of the form (fgkh)2 are special cases of what

Ilie calls paired loops [13]. As a finite union of such paired loops L is slender by Ilie’s
results. Further, since all of the factors f , g, and h are bounded in length, it is relatively

Primitive Words Are Unavoidable for Context-Free Languages 409

easy to construct linear grammars for all of the paired loops, and a finite union of linear
languages is again linear. ��
Theorem 11. For a context-free language it is decidable, whether it is a subset ofQ(2).

Proof. We sketch a decision procedure only very roughly. For a given context-free lan-
guage, the constant kL from the Pumping Lemma can effectively be computed. Then
the finitely many possible words f , g and h such that |ghfg| < kL can be listed,
and in a straight-forward manner the grammars for the corresponding linear languages
(fgn+kh)2 can be computed. These are also bounded since they are subsets of the lan-
guage f∗g∗(hf)∗g∗h∗.

Ginsburg and Spanier [9], see also [8], showed that the inclusion problem is decid-
able for two context-free languages, one of which is bounded. Therefore we can check
for every language (fgn+kh)2 whether it is a subset of L. The union of the subsets
is still a context-free language and it is also bounded (by their catenation). Therefore
by the result of Ginsburg and Spanier it is also decidable whether L is equal to this
union. ��
After the languages consisting only of squares of primitive words, we now turn our
attention to those languages consisting only of higher powers of primitive words. Well-
known results like Lemma 6 that pumping in the style of Pumping Lemmata will pro-
duce primitive words in most cases. Lemma 9 has provided us with a special case, where
the two pumped factors for context-free pumping are identical up to conjugacy. Thus
they do the same change in both halves of a word that is a square.

For words of higher degree, two pumping points cannot do this in general. Therefore
there cannot be any infinite context-free subsets of Q(k) for k ≥ 3. If we take the union
of all these sets, Q(≥3), then simple context-free subsets exist. For example (ab)2(ab)+

is such a language. Here
√

(ab)2(ab)+ = {ab}, and pumping that adds multiples of ab
will increase a word’s degree without leading out of the language. This is the only kind
of pumping possible for words of degree three or higher without producing also some
primitive words.

Theorem 12. All context-free subsets of Q(≥3) are finite unions of languages of the
form pj(pi)+ and a finite set LF for primitive words p and integers i and j; thus they
are regular and have finite root.

Proof. Let L be a context-free subset of Q(≥3). If L is finite, then it is regular. Other-
wise the Pumping Lemma 2 applies to L. This means every word w ∈ L longer than
kL, has a factorization w = w1w2w3w4w5 with the conditions of Lemma 2 such that
w1w

i
2w3w

i
4w5 ∈ L for all i ≥ 0. As a word’s degree is invariant under cyclic permu-

tation, this implies wi
2w3w

i
4w5w1 ∈ Q(≥3) and wi

4w5w1w
i
2w3 ∈ Q(≥3). Analogous to

the proof of Lemma 9 we can show that |w2| = |w4| and w2 and w4 are conjugate.
For long enough i the root pi of wi

2w3w
i
4w5w1 will be a prefix of wi

2, because

pi ≤ |wi
2w3wi

4w5w1|
3 . Actually, we have |w2pi| ≤ |wi

2| and thus Theorem 3 applies.
This means that w2 and pi have a common primitive root, which must be pi, which
is primitive. Therefore w4 has as root a conjugate of pi. It is rather easy to see that
in a word pj it does not matter where a factor of length |p| (or a multiple thereof) is

410 P. Leupold

pumped, the result is always the same. Thus the pumped factor can be moved left and
right arbitrarily. By moving the pumped factors in our case to the right we obtain that
w1w

i
2w3w

i
4w5 = w[1 . . . |w1w3w5|](w[1 . . . 2|w2|])2i, which is a factorization in the

form stated in this theorem.
To see that we need only finitely many languages of the form pj(pi)+ to obtain L,

notice that all pi above are shorter than |w2|, whose length is bounded by the constant
kL from the Pumping Lemma. Thus there are only finitely many different p, and also i
is bounded by |w2w4|. Thus finitely many languages pj(pi)+ will already generate all
of p+ minus a finite set of short words. Every such language has a singleton root, and
thus their union has a finite root, too.

Again, as in the proof of Theorem 10 there are only finitely many short words in L
to which no pumping can be applied, and they constitute the finite set LF . ��

So the non-primitive words in a context-free language fall basically into two classes
according to their degree: two or more than two. We now show that these two classes can
be separated by operations that preserve context-freeness, if a given language contains
only finitely many primitive words. This will allow us to conclude thatQ is unavoidable
for non-linear context-free languages.

Theorem 13. The language of primitive words is strongly unavoidable for CF \LIN .

Proof. LetL ∈ CF be an infinite context-free language that contains only finitely many
primitive words, which form the set P . We first look at the languageL≥3 := L∩Q(≥3).
For every word in L≥3 that is longer than the Pumping Lemma constant kL for L we
have a pumping factorization according to Lemma 2. As in the proof of Theorem 12,
the language generated by such a factorization is of the form pj(pi)+ and has root
p, otherwise infinitely many primitive words would be generated and would be in L.
Since the length of p is bounded by kL, there are only finitely many p, and L≥3 is a
finite union of languages of the form pj(pi)+ and of a finite set, again as in the proof of
Theorem 12.

This also means that L≥3 is regular. Since subtracting a regular and a finite set from
a context-free language results in a context-free language, L2 := L \ (L≥3 ∪ P) is
context-free. By Theorem 10 it is even slender and linear. This, in turn, means that
L = L2 ∪ L≥3 ∪ P is linear. Therefore every non-linear context-free language must
contain infinitely many primitive words. ��

From the proof we see that for a language containing only finitely many primitive words
the three parts L∩Q, L∩Q(2), and L∩Q(≥3) can be separated from each other without
exiting the class of context-free languages. These parts are finite, linear and regular,
respectively. We can even say more about them, namely that they are bounded.

Corollary 14. Every context-free language that contains only finitely many primitive
words is bounded.

Proof. L ∩ Q if finite and thus bounded. To L ∩ Q(2) Theorem 10 applies, and the
union of finitely many languages of the form {(fgih)2 : i ≥ 0} is bounded. Similarly
the languages pj(pi)+ from Theorem 12 that characterize L ∩Q(≥3) are bounded. ��

Primitive Words Are Unavoidable for Context-Free Languages 411

In some sense the above results mean that context-free subsets of Q(≥2) cannot be as
complex as the most complex, i.e. the non-linear, context-free languages. Theorem 11
also indicates this by stating that it is decidable whether a given context-free language
is a subset of Q(≥2). Since L ∩ Q(≥3) is even regular, one might expect that it is also
possible to decide whether a given context-free language is a subset of Q(≥2).

Theorem 15. For a context-free language it is decidable, whether it contains infinitely
many primitive words.

Proof. From the factorizations given in Theorems 10 and 12 and the proof of Theorem
13, which states that a context-free language L that contains only finitely many prim-
itive words is slender. As such, this language can be decomposed into finitely many
paired loops according to Ilie [13]. Obviously it can be checked for each paired loop,
whether it can be represented in one of the simpler forms given in Theorems 10 and
12 or whether it generates a single primitive word. Every loop of a different form will
generate infinitely many primitive words, which can also be seen from results similar
to Lemma 6.

Thus we can decide the question of whether L contains infinitely many primitive
words by first deciding whether it is slender (otherwise the answer is positive), and then
checking the form of the paired loops. ��

This decidability result parallels a very related one. Horváth showed that for context-
free languages it is decidable, whether their primitive roots are finite [11]. So it is de-
cidable, whether there are infinitely many primitive words in a context-free language,
and it is also decidable, whether infinitely many primitive words can be reached by the
operation of primitive root from a given context-free language.

5 Conclusion

Our investigations so far have not directly contributed towards a solution of the funda-
mental question whether the set of all primitive words Q is context-free. However, we
have established a new relation between primitive words and the class of context-free
languages, more exactly a subset of context-free languages. This subset of non-linear
languages is actually one area where theoretically the language of primitive words could
be situated, after it has been shown that it is not linear. What we have shown is only
that the intersection of Q with every non-linear language is infinite. This does not mean
that the entire set itself must belong to that class. However, it does imply that the set
of all non-primitive words cannot be context-free. This has been shown before via the
Pumping Lemma and results like Lemma 6. Looking at unavoidability of the set of non-
primitive words might actually lead to a solution to our central question. Let us take a
look at the following set of questions.

Open Problem 1. Is the set of non-primitive words unavoidable for the set of non-
regular, non-linear, non-deterministic context-free languages, or for context-free
languages with infinite root?

412 P. Leupold

A positive answer to any of these question would show that the language Q cannot be
context-free, because Q obviously avoids the set of non-primitive words. Unfortunately
no results in the line of Lemma 6 are known for non-primitive words, and possibly none
can be found. Primitivity seems in some sense easier to construct than non-primitivity,
especially the bigger the alphabet gets. For example, if we augment an alphabet Σ with
an additional letter c, then all words in Σ∗cΣ∗ are primitive. Thus the best hope for
results along these lines are for two-letter alphabet.

While the concept of unavoidability of languages introduced here has so far not
helped in resolving the question of context-freeness for primitive words, it seems of
some theoretical interest in itself. The work presented here includes several non-trivial
examples of unavoidability for rather common language classes. In the case of non-
linear context-free languages, their definition has no explicit relation at all to primitivity,
in contrast to languages with infinite root. Therefore the result is not really expected and
might indicate some deeper connection.

References

1. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, Orlando (1985)
2. Dömösi, P., Horváth, G.: The language of primitive words is not regular: Two simple proofs.

Bulletin of the EATCS 87, 191–194 (2005)
3. Dömösi, P., Ito, M., Marcus, S.: Marcus contextual languages consisting of primitive words.

Discrete Mathematics 308(21), 4877–4881 (2008)
4. Dömösi, P., Martı́n-Vide, C., Mitrana, V.: Remarks on sublanguages consisting of primitive

words of slender regular and context-free languages. In: Karhumäki, J., Maurer, H., Păun, G.,
Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 60–67. Springer, Heidelberg
(2004)

5. Dömösi, P., Hauschildt, D., Horváth, G., Kudlek, M.: Some results on small context-free
grammars generating primitive words. Publicationes Mathematicae Debrecen 54, 667–686
(1999)

6. Dömösi, P., Horváth, G., Ito, M.: A small hierarchy of languages consisting of non-primitive
words. Publicationes Mathematicae Debrecen 64(3-4), 261–267 (2004)

7. Dömösi, P., Horváth, S., Ito, M.: On the connection between formal languages and primitive
words. Analele Univ. din Oradea, Fasc. Mat., 59–67 (1991)

8. Ginsburg, S.: The Mathematical Theory of Context-free Languages. McGraw-Hill, New York
(1966)

9. Ginsburg, S., Spanier, E.H.: Bounded ALGOL-like languages. Trans. Am. Math. Soc. 113,
333–368 (1964)

10. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading (1978)
11. Horváth, S., Ito, M.: Decidable and undecidable problems of primitive words, regular and

context-free languages. Journal of Universal Computer Science 5(9), 532–541 (1999)
12. Horváth, S., Leupold, P., Lischke, G.: Roots and powers of regular languages. In: Ito, M.,

Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 220–230. Springer, Heidelberg (2003)
13. Ilie, L.: On a conjecture about slender context-free languages. Theoretical Computer Sci-

ence 132(1-2), 427–434 (1994)
14. Ito, M., Katsura, M.: Context-free languages consisting of non-primitive words. Int. Journal

of Computer Mathematics 40, 157–167 (1991)

Primitive Words Are Unavoidable for Context-Free Languages 413

15. Lothaire, M.: Combinatorics on Words. Encyclopedia of Mathematics and Its Applications,
vol. 17. Addison-Wesley, Reading (1983)

16. Lothaire, M.: Algebraic Combinatorics on Words. In: Encyclopedia of Mathematics and Its
Applications, vol. 90. Cambridge University Press, Cambridge (2002)

17. Petersen, H.: On the language of primitive words. Theoretical Computer Science 161, 141–
156 (1996)

18. Shyr, H.: Free Monoids and Languages. Hon Min Book Company, Taichung (1991)
19. Shyr, H., Yu, S.: Non-primitive words in the language p+q+. Soochow J. Math. 4 (1994)

Modal Nonassociative Lambek Calculus with
Assumptions: Complexity and Context-Freeness

Zhe Lin

Institute of Logic and Cognition, Sun Yat-sen University, Guangzhou, China
Faculty of Mathematics and Computer Science Adam Mickiewicza University,

Poznàn, Poland
pennyshaq@gmail.com

Abstract. We prove that the consequence relation of the Nonassocia-
tive Lambek Calculus with S4-modalities (NLS4) is polynomial time
decidable and categorial grammars based on NLS4 with finitely many
assumptions generate context-free languages. This extends earlier results
of Buszkowski [3] for NL and Plummer [16][17] for a weaker version of
NLS4 without assumptions.

1 Introduction and Preliminaries

Nonassociative Lambek Calculus NL is a type logical system for categorial gram-
mars, introduced in Lambek [10] as a nonassociative version of Syntactic Calculus
of Lambek [9]. Both systems are regarded now as basic logics for Type-Logical
Grammar (categorial grammar). In a sense, NL is a purely substructural logic,
since its sequent system admits no structural rules. Syntactic Calculus, now
called the Lambek calculus (L), admits one structural rule (Associativity).

Moortgat [12] studies NL with unary modalities ♦, � (also several pairs ♦i, �i)
as a system which enables one to use certain structure postulates in a controlled
way. For instance, one can admit a restricted permutation (♦A) •B = B • (♦A)
or restricted contraction (♦A) • (♦A) ≥ ♦A instead of their unrestricted forms
A • B, A • A ≥ A. This follows the usage of exponentials !, ? in Linear Logic
(Girard [5]).

Pentus [14] proves that categorial grammars based on L, (L-grammars), gen-
erate precisely all (ε-free) context-free languages. Analogous results for NL-
grammars are due to Buszkowski [1] (the product-free NL) and Kandulski [8].
Jäger [7] provides a new proof for NL, which employs a special form of interpo-
lation (of subtrees of the antecedent tree by single formulae).

Buszkowski [3] refines Jäger’s interpolation to prove that the consequence
relation of NL is polynomial time decidable and categorial grammar, based on
NL with finitely many assumptions, generate context-free languages. Buszkowski
and Farulewki [4] extend the method to Full NL, i.e. NL with additives ∧, ∨ with
distribution (of ∧ respect to ∨, and conversely) and finitely many assumptions,
proving the context-freeness.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 414–425, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Modal Nonassociative Lambek Calculus with Assumptions 415

These results are seemingly in conflict with the known facts that the conse-
quence relation for L is undecidable and categorial grammars based on L with as-
sumptions can generate all recursively enumerable languages (Buszkowski [2][3]).
Pentus [15] shows that the provability problem for the pure L is NP-complete.

Plummer [16][17] employs Jäger’s method with refinements of Buszkowski [3]
to prove the context-freeness of categorial grammars, based on NL with modal-
ities ♦, �, satisfying the axioms:

T : A⇒ ♦A, 4 : ♦♦A⇒ ♦A.

He also claims (without proof) the polynomial time decidability of the resulting
system. A key idea of Plummer’s work is to replace the above axioms with some
corresponding structural rules.

Here we extend Plummer’s result for systems with assumptions. Precisely, we
consider the system NLS4 in the sense of Moortgat [12], which admits T, 4, and

K : ♦(A •B) ⇒ ♦A • ♦B,

but our results remain valid for the system with 4, T only (NLS4 in the sense
of Plummer [16]). We prove that the consequence relation for NLS4 with finitely
many assumptions is polynomial time decidable and categorial grammars based
on it generate precisely the (ε-free) context-free languages.

Let us recall the sequent system of NL. Formulae (types) are formed out of
atomic types p, q, r . . . by means of three binary operation symbols • (product),
\ (right residuation), / (left residuation). Formulae are denoted by A, B, C,
Formula trees (formula-structures) are recursively defined as follows: (i) every
formula is a formula-tree, (ii) if Γ , Δ are formula-trees, then (Γ ◦Δ) is a formula-
tree. Sequents are of the form Γ ⇒ A such that Γ is a formula tree and A is a
formula. One admits the axioms:

(Id) A⇒ A

and the inference rules

(\L)
Δ⇒ A; Γ [B] ⇒ C

Γ [Δ ◦ (A\B)] ⇒ C
(\R)

A ◦ Γ ⇒ B

Γ ⇒ A\B

(/L)
Γ [A] ⇒ C; Δ⇒ B

Γ [(A/B) ◦Δ] ⇒ C
(/R)

Γ ◦B ⇒ A

Γ ⇒ A/B

(•L)
Γ [A ◦B] ⇒ C

Γ [A •B] ⇒ C
(•R)

Γ ⇒ A; Δ⇒ B

Γ ◦Δ⇒ A •B

(CUT)
Δ⇒ A; Γ [A] ⇒ B

Γ [Δ] ⇒ B

The cut-elimination theorem for NL is proved by Lambek [10]. It yields the
decidability and the subformula property of NL. However, the cut-elimination
theorem does not hold if we affix new non-logical assumptions of the form

416 Z. Lin

A ⇒ B. In section 2, we introduce a purely syntactic method based on the
cut-elimination theorem in some restricted form to prove a subformula property
in some extended form, for systems with finitely many non-logical assumptions.
This method is new and ensensially different from the model-theoretic method
proposed by Buszkowski [3][4].

We describe the formalism of NLS4. Formulae (types) are formed out of atomic
types p, q, r . . . by means of three binary operation symbols •, \, / and two
unary operation symbols ♦, �. Formula trees (formula-structures) are recursively
defined as follow: (i) every formula is a formula-tree, (ii) if Γ , Δ are formula-
trees, then (Γ ◦ Δ) is a formula-tree, (iii) if Γ is a formula-tree, then 〈Γ 〉 is a
formula-tree. Sequents are of the form Γ ⇒ A such that Γ is a formula tree and
A is a formula.

The sequent system of NLS4 is obtained by extending NL with inference rules
for the unary modalities and structural rules corresponding to axioms 4, T, K.

The following are sequent rules for the unary modalities:

(♦L)
Γ [〈A〉] ⇒ B

Γ [♦A] ⇒ B
(♦R)

Γ ⇒ A

〈Γ 〉 ⇒ ♦A

(�L)
Γ [A] ⇒ B

Γ [〈�A〉] ⇒ B
(�R)

〈Γ 〉 ⇒ A

Γ ⇒ �A

The following are structural rules corresponding to axioms 4, T, K:

(4)
Γ [〈Δ〉] ⇒ A

Γ [〈〈Δ〉〉] ⇒ A
(T)

Γ [〈Δ〉] ⇒ A

Γ [Δ] ⇒ A
(K)

Γ [〈Δ1〉 ◦ 〈Δ2〉] ⇒ A

Γ [〈Δ1 ◦Δ2〉] ⇒ A
.

Our interest in modal postulates and non-logical assumptions can be motivated
in various way. First, in linguistic practice, different phenomena may require
different sets of structure postulates. For instance, let us consider an NP (noun
phrase) such as “the man who Mary met today ”, (an example from Versmissen
[18]). In Lambek notation, there is no suitable type assigned to the relative
pronoun “who” in this noun phrase. The solution proposed by Morrill [13] is
to assign to “who” the single type (N\N)/(S/�NP). One also assigns NP/N
to“the”, N to “man”, NP to “Mary”, N\(S/NP) to “met”, and S\S to “today”.
The sequent NP/N ◦ N ◦ (N\N)/(S/�NP) ◦ NP ◦ NP\(S/NP) ◦ S\S ⇒ NP ,
corresponding to the noun phrase “the man who Mary met today” is derivable
in systems enriched with postulate T and �B • A ⇒ A • �B. More examples
can be found in Morrill [13]. Second, there are many evidences for the usefulness
of non-logical assumptions in linguistics. For example, Lambek [11] uses axioms
of the form πi → π to express the inclusion of the class of pronouns in i − th
Person in the class of pronouns. Further, in the Lambek calculus we can not
transform S\(S/S) (the type of sentence conjunction) to V P\(V P/V P) (the
type of verb phrase conjunction), however, we can add the sequent S\(S/S) →
V P\(V P/V P) as an assumption.

Modal Nonassociative Lambek Calculus with Assumptions 417

2 NLS4 Enriched with Non-logical Assumptions

We assume that non-logical assumptions are of the form A⇒ B. For a set Φ of
formulae A ⇒ B, NLS4(Φ) denotes the system of NLS4 with all formulae from
Φ as assumptions.

Usually, if we can prove the cut-elimination theorem for a system then we
immediately get the subformula property: all formulae in a cut-free derivation
are subformulae of the endsequent formulae. (CUT) is a legal rule in NLS4(Φ),
and the cut-elimination theorem does not hold for NLS4(Φ). Hence we can not
obtain the standard subformula property for NLS4(Φ). Here we consider the
extended subformula property (see [3]). We introduce a restricted cut rule, Φ-
restricted cut, where Φ is the set of assumptions.

By Φ-restricted cut, we mean the following rules:

(Φ− CUT)
Γ2 ⇒ A Γ1[B] ⇒ C

Γ1[Γ2] ⇒ C

where A⇒ B is an assumption in Φ.
We describe another Genzten style presentation of NLS4(Φ), denoted by

NLr
S4(Φ): Axioms of NLr

S4(Φ) are (Id) A ⇒ A. The inference rules of NLr
S4(Φ)

are simply the rules of NLS4(Φ) together with the Φ-restricted cut given above.
By
S Γ ⇒ A, we denote: the sequent Γ ⇒ A is provable in system S.

Lemma 1. If A⇒ B ∈ Φ then
NLr
S4(Φ) A⇒ B.

Proof: Assume A⇒ B ∈ Φ. We apply Φ-restricted cut to axioms A ⇒ A and
B ⇒ B and get A⇒ B. Hence
NLr

S4(Φ) A⇒ B.

We provide a proof of the cut-elimination theorem for NLr
S4(Φ).

Theorem 2. Every sequent which is provable in NLr
S4(Φ) can be proved also in

NLr
S4(Φ) without (CUT).

Proof: We must prove: if both premises of (CUT) are provable in NLr
S4(Φ)

without (CUT), then the conclusion of (CUT) is provable in NLr
S4(Φ) without

(CUT). The proof can be arranged as follows.
We apply induction (i): on D(A), the complexity of (CUT) formula A, i.e. the

total number of occurrences of symbols in A. For each case, we apply induction
(ii): on R(CUT), the rank of (CUT), i.e. the total number of sequents appearing
in the proofs of both premises of (CUT).

Let us consider one case A = ♦A′. Others can be treated similarly. We write
the premises of (CUT) as Γ2 ⇒ A and Γ1[A] ⇒ B obtained by rules Ri (i= 1, 2),
respectively. We switch on induction (ii). Three subcases arise.

1. Γ2 ⇒ A or Γ1[A] ⇒ B is an axiom (Id). If Γ2 ⇒ A is a axiom then Γ2 = A,
and Γ2[A] ⇒ B equals Γ1[Γ2] ⇒ B. If Γ1[A] ⇒ B is a axiom then Γ2 ⇒ A
equals Γ1[Γ2] ⇒ B.

2. R1 �= ♦R or R2 �= ♦L. The thesis follows from the induction hypothesis (ii).
We show two typical cases. Others can be treated similarly.

418 Z. Lin

2a Let Γ2 ⇒ A arise by Φ-restricted cut with premises Γ2 ⇒ C and D ⇒ A.
We replace

Γ2 ⇒ C D ⇒ A

Γ2 ⇒ A
(Φ− CUT)

. . .

Γ1[A] ⇒ B

Γ1[Γ2] ⇒ B
(CUT).

where C ⇒ D is an assumption, by

. . .

Γ2 ⇒ C

D ⇒ A Γ[A] ⇒ B

Γ1[D] ⇒ B
(CUT′)

Γ1[Γ2] ⇒ B
(Φ− CUT)

where C ⇒ D is an assumption. Clearly R(CUT′) < R(CUT). Hence
Γ1[D] ⇒ B is provable without (CUT), by the hypothesis of induction
(ii). Then, Φ-restricted cut yields Γ1[Γ2] ⇒ B. Γ1[Γ2] ⇒ B

2b Let Γ1[A] ⇒ B arise by Φ-restricted cut. Similarly, we can first apply
(CUT) to Γ ⇒ A and the premise of Γ1[A] ⇒ C which contains cut
formula A. After that, we apply Φ-restricted cut to the conclusion of the
new (CUT) and the other premise of Γ1[A] ⇒ B. The thesis follows from
the induction hypothesis (ii).

3. R1 = ♦R and R2 = ♦L. We replace

Γ ′
2 ⇒ A′

〈Γ2〉 ⇒ ♦A′ (♦R)
Γ1[〈A′〉] ⇒ B

Γ1[♦A′] ⇒ B
(♦L)

Γ1[Γ2] ⇒ B
(CUT)

where 〈Γ ′
2〉 = Γ2, by

Γ ′
2 ⇒ A′ Γ1[〈A′〉] ⇒ B

Γ1[〈Γ ′
2〉] ⇒ B

(CUT′)

where 〈Γ ′
2〉 = Γ2. Since D(A′) < D(A) then Γ1[Γ2] ⇒ B is provable in

NLr
S4(Φ) without (CUT) by the hypothesis of induction (i).

Let π be a cut free proof in NLr
S4(Φ). By π+, we mean a proof obtained from π

by replacing all occurrences of Φ-restricted cut by two applications of (CUT) as
follows:

Γ2 ⇒ A A⇒ B

Γ2 ⇒ B
(CUT)

. . .

Γ1[B] ⇒ C

Γ1[Γ2] ⇒ C
(CUT)

where A ⇒ B is a nonlogical assumption in Φ. Obviously, π+ is a proof in
NLS4(Φ). Hence we get the following corollary.

Corollary 3. For any sequent Γ ⇒ A provable in NLS4(Φ), there exists a proof
of Γ ⇒ A such that all formulae appearing in the proof are subformulae of
formulae in Φ or Γ ⇒ A.

Modal Nonassociative Lambek Calculus with Assumptions 419

Proof: Follows from Lemma 1, Theorem 2, and the construction of π+ given
above.

Let T be a finite set of formulae, closed under subformulae which contains all
formulae appearing in Φ. By a T-sequent, we mean a sequent Γ ⇒ A such that
all formulae appearing in Γ and A belong to T .
Corollary 4. For any T -sequent Γ ⇒ A provable in NLS4(Φ), there is a proof of
Γ ⇒ A in NLS4(Φ) such that all sequents appearing in this proof are T -sequents.
Proof: Immediate from Corollary 3.

3 Main Results

Here after, we assume that Φ is finite. T denotes a finite set of formulae con-
taining all formulae in Φ and closed under subformulae. Let T� = {�A|A ∈ T },
T� = T ∪ T�, T♦ = {♦A|A ∈ T�} and T♦ = T� ∪ T♦. A sequent is said to be
basic if it is a T♦-sequent of the form A ◦ B ⇒ C, A ⇒ B, or 〈A〉 ⇒ B. We
describe an effective procedure producing all basic sequents provable in NLS4(Φ).

Let S0 consist of all T♦-sequents from Φ, all T♦-sequents of the form (Id),
and all T♦-sequents of the form:

〈A〉 ⇒ ♦A, 〈♦A〉 ⇒ ♦A, 〈�A〉 ⇒ A.

A ◦ (A\B) ⇒ B, (A/B) ◦B ⇒ A, A ◦B ⇒ A •B.
Assume Sn has already been defined. Sn+1 is Sn enriched with all sequents
arising by the following rules:

(R1) if (〈A〉 ⇒ B) ∈ Sn and ♦A ∈ T♦ then (♦A⇒ B) ∈ Sn+1,

(R2) if (〈A〉 ⇒ B) ∈ Sn and �B ∈ T♦ then (A⇒ �B) ∈ Sn+1,

(R3) if (♦A ◦ ♦B ⇒ C) ∈ Sn andC ∈ T then (A ◦B ⇒ �C) ∈ Sn+1,

(R4) if (〈A〉 ⇒ B) ∈ Sn then (A⇒ B) ∈ Sn+1,

(R5) if (A ◦B ⇒ C) ∈ Sn andA •B ∈ T♦ then (A •B ⇒ C) ∈ Sn+1,

(R6) if (A ◦B ⇒ C) ∈ Sn and (A\C) ∈ T♦ then (B ⇒ A\C) ∈ Sn+1,

(R7) if (A ◦B ⇒ C) ∈ Sn and (C/B) ∈ T♦ then (A⇒ C/B) ∈ Sn+1,

(R8) if (A⇒ B) ∈ Sn and (〈B〉 ⇒ C) ∈ Sn then (〈A〉 ⇒ C) ∈ Sn+1,

(R9) if (A⇒ B) ∈ Sn and (D ◦B ⇒ C) ∈ Sn then (D ◦A⇒ C) ∈ Sn+1,

(R10) if (A⇒ B) ∈ Sn and (B ◦D ⇒ C) ∈ Sn then (A ◦D ⇒ C) ∈ Sn+1,

(R11) if (Γ ⇒ B) ∈ Sn and (B ⇒ C) ∈ Sn then (Γ ⇒ C) ∈ Sn+1,

420 Z. Lin

Obviously, Sn ⊆ Sn+1, for all n ≥ 0. For any n ≥ 0, Sn is a finite set of
basic sequents. ST ♦

is defined as the union of all Sn. Due to the definition of
basic sequents, there are only finitely many basic sequents. Since ST ♦

is a set
of basic sequents, hence it must be finite. This yields: there exists k ≥ 0 such
that Sk = Sk+1 and ST ♦

= Sk. ST ♦
is closed under rules (R1)-(R11). The

rules (R1), (R2), (R3), (R4), (R5), (R6), (R7) are (♦L), (�R), (K), (T), (•L),
(\R), (/R) restricted to basic sequents, and (R8)-(R11) in fact describe the clo-
sure of basic sequents under (CUT). (R5)-(R7) and (R9)-(R11) are the same as
in [3].

Lemma 5. ST ♦
can be constructed in polynomial time.

Proof: Let n denote the cardinality of T♦. The total number of basic sequents
of the form A ⇒ B, 〈A〉 ⇒ B, and A ◦ B ⇒ C are no more than n2, n2, and
n3 respectively. Therefore there are at most m = n3 + 2 × n2 basic sequents.
Hence we can construct S0 in time O(n3). The construction of Sn+1 from Sn

requires at most 6 × (m2 · n) + m2 + 6 × m3 steps. It follows that the time
of this construction of Sn+1 is O(m3). Since the least k satisfying ST ♦

= Sk

does not exceed m. Thus we can construct ST ♦
in polynomial time, in time

O(m4).

By S(T♦), we denote the system whose axioms are all sequents from ST ♦
and

whose only inference rule is (CUT). Clearly, every proof in S(T♦) consists of
T♦-sequents. By
S(T ♦) Γ ⇒ A we denote: Γ ⇒ A is provable in S(T♦).

Lemma 6. Every basic sequent provable in S(T♦) belongs to ST ♦
.

Proof: We proceed by induction on the length of its proof in S(T♦). For the
base case, the claim is trivial. For the inductive case, we assume that s is a basic
sequent provable in S(T♦) such that s is obtained from premises s1 and s2 by
(CUT). Since s is a basic sequent, clearly, s1 and s2 must be basic sequents. By
the induction hypothesis, s1 and s2 belong to S(T♦). Hence s belongs to ST ♦

,
by (R8)-(R11).

We prove two interpolation lemmas for S(T♦).

Lemma 7. If
S(T ♦) Γ [Δ] ⇒ A then there exists D ∈ T♦ such that
S(T ♦)
Δ⇒ D and
S(T ♦) Γ [D] ⇒ A.

Proof: We proceed by induction on the proofs in S(T♦).

Base case: Γ [Δ] ⇒ A belongs to ST♦. We consider three subcases. First, if Γ =
Δ = B then D = A and the claim stands. Second, if Γ = 〈B〉, Δ = B orΔ = 〈B〉
then D = B or D = A, respectively. Third, if Γ = B ◦ C, and either Δ = B, or
Δ = C, then D = B or D = C, respectively.

Inductive case: Assume Γ [Δ] ⇒ A is the conclusion of (CUT) whose both
premises are Δ′ ⇒ B and Γ ′[B] ⇒ A such that Γ [Δ] = Γ ′[Δ′]. Then three cases
arise.

Modal Nonassociative Lambek Calculus with Assumptions 421

1. Δ′ is a substructure of Δ. Assume Δ = Δ′′[Δ′], Γ ′[B] = Γ [Δ′′[B]]. Hence
there exists D ∈ T♦ satisfying
S(T ♦) Δ

′′[B] ⇒ D and
S(T ♦) Γ [D] ⇒ A by
the induction hypothesis. We have
S(T ♦) Δ⇒ D from
S(T ♦) Δ

′ ⇒ B and

S(T ♦) Δ

′′[B] ⇒ D, by (CUT).
2. Δ is a substructure of Δ′. Assume Δ′ = Δ′′[Δ] and Γ [B] = Γ ′[Δ′′[B]]. By

the induction hypothesis, it is easy to obtain
S(T ♦) Δ ⇒ D and
S(T ♦)
Δ′′[D] ⇒ B for some D ∈ T �, which yields
S(T ♦) Γ [D] ⇒ A by (CUT).

3. Δ and Δ′ do not overlap. Hence Γ ′[B] must contains Δ. Assume Γ ′[B] =
Γ [B,Δ]. By the induction hypothesis, there exists a D ∈ T � such that

S(T ♦) Γ

′[B,D] ⇒ A and
S(T ♦) Δ⇒ D. By (CUT),
S(T ♦) Γ
′[Δ′, D] ⇒ A,

which means
S(T ♦) Γ [D] ⇒ A.

Lemma 8. If
S(T ♦) Γ [〈Δ〉] ⇒ A, then there exists ♦D ∈ T♦ such that
S(T ♦)
Δ⇒ ♦D and
S(T ♦) Γ [♦D] ⇒ A.

Proof: Assume
S(T ♦) Γ [〈Δ〉] ⇒ A. By Lemma 7, there exists D ∈ T � such
that
S(T ♦) Γ [D] ⇒ A and
S(T ♦) 〈Δ〉 ⇒ D. Again by Lemma 7, we get

S(T ♦) 〈D′〉 ⇒ D and
S(T ♦) Δ ⇒ D′, for some D′ ∈ T♦. We consider two
possibilities.

If D′ ∈ T�, then ♦D′ ∈ T♦. We get
S(T ♦) ♦D′ ⇒ D, by Lemma 3.9 and
(R1). Since 〈D′〉 ⇒ ♦D′ and 〈♦D′〉 ⇒ ♦D′ belong to ST ♦

, we get 〈〈D′〉〉 ⇒
♦D′ ∈ ST ♦

. Hence by two applications of (R4), D′ ⇒ ♦D′ ∈ ST ♦
, which yields

S(T ♦) D
′ ⇒ ♦D′. By applying (CUT) to
S(T ♦) Γ [D] ⇒ A and
S(T ♦) ♦D′ ⇒

D, we get
S(T ♦) Γ [♦D′] ⇒ A. Again
S(T ♦) Δ⇒ D′ and
S(T ♦) D
′ ⇒ ♦D′, so

we get
S(T ♦) Δ⇒ ♦D′. Therefore the claim holds.
If D’ does not belong to T�, then D′ = ♦D∗ for some D∗ ∈ T�. Hence

S(T ♦) 〈♦D∗〉 ⇒ D and
S(T ♦) Δ⇒ ♦D∗. Due to Lemma 6, 〈♦D∗〉 ⇒ D belongs
to ST ♦

. It yields: ♦D∗ ⇒ D belongs to S(T�), by (R4). Hence
S(T ♦) ♦D∗ ⇒ D.
Then, by (CUT),
S(T ♦) Γ [♦D∗] ⇒ A. Therefore the claim stands.

For any T♦-sequent Γ ⇒ A, by Γ ⇒T ♦ A we mean: Γ ⇒ A has a proof in
NLS4(Φ) consisting of T♦-sequents only.

Lemma 9. For any T♦-sequent Γ ⇒ A, Γ ⇒T ♦ A iff
S(T ♦) Γ ⇒ A.

Proof: The ‘if’ part is easy. Notice that all T♦-seuqents which are axioms
of NLS4(Φ) belong to ST ♦

. The ‘only if’ part is proved by showing that all
inference rules of NLS4(Φ), restricted to T♦-sequents, are admissible in S(T♦).
The rules (CUT), (\L), (/L) (\R) (/R) (•L) (•R) are settled by Buszkowski[3].
Here we provide full arguments for (♦L), (♦R), (�L), (�R), (4), (T), (K).

1. For (♦L), assume
S(T ♦) Γ [〈A〉] ⇒ B and ♦A ∈ T♦. By Lemma 7, there
exists D ∈ T♦ such that
S(T ♦) Γ [D] ⇒ B and
S(T ♦) 〈A〉 ⇒ D. Since

S(T ♦) 〈A〉 ⇒ D is a basic sequent, then by Lemma 6, 〈A〉 ⇒ D ∈ ST ♦

.
By (R1), we get ♦A ⇒ D ∈ ST ♦

, which yields
S(T ♦) ♦A ⇒ D. Hence

S(T ♦) Γ [♦A] ⇒ B, by(CUT).

422 Z. Lin

2. For (♦R), assume
S(T ♦) Γ ⇒ A and ♦A ∈ T♦. Since
S(T ♦) 〈A〉 ⇒ ♦A, we
get
S(T ♦) 〈Γ 〉 ⇒ ♦A, by (CUT).

3. For (�L), assume Γ [A] ⇒S(T ♦) B and �A ∈ T♦. Since
S(T ♦) 〈�A〉 ⇒ A,
we get
S(T ♦) Γ [〈�A〉] ⇒ B, by (CUT).

4. For (�R), assume
S(T ♦) 〈Γ 〉 ⇒ B and �B ∈ T♦. By Lemma 7, there exists
D ∈ T♦ such that
S(T ♦) 〈D〉 ⇒ B and Γ ⇒S(T ♦) D. Then 〈D〉 ⇒ B ∈ ST ♦

,
by Lemma 6. By (R2), D ⇒ �B ∈ ST ♦

, which yields D ⇒S(T ♦) �B. Hence
we get
S(T ♦) Γ ⇒ �B, by (CUT).

5. For (4), assume
S(T ♦) Γ [〈Δ〉] ⇒ A. By Lemma 8 there exists ♦D ∈ T � such
that
S(T ♦) Γ [♦D] ⇒ A and
S(T ♦) Δ ⇒ ♦D. Since
S(T ♦) 〈♦D〉 ⇒ ♦D,
we get
S(T ♦) 〈〈♦D〉〉 ⇒ ♦D, by (CUT). Hence
S(T ♦) Γ [〈〈Δ〉〉] ⇒ A, by
two applications of (CUT).

6. For (T), assume
S(T♦) Γ [〈Δ〉] ⇒ A. By Lemma 8, there exists ♦D ∈ T♦

such that
S(T♦) Γ [♦D] ⇒ A and
S(T♦) Δ⇒ ♦D. Clearly,
S(T♦) Γ [Δ] ⇒
A, by (CUT).

7. For (K), assume
S(T ♦) Γ [〈Δ1〉 ◦ 〈Δ2〉] ⇒ A. By Lemma 7, there exists
D ∈ T♦ such that
S(T ♦) Γ [D] ⇒ A and
S(T ♦) 〈Δ1〉 ◦ 〈Δ2〉 ⇒ D. Then,
by applying Lemma 7 twice, we get
S(T ♦) Δ1 ⇒ D1,
S(T ♦) Δ2 ⇒ D2 and

S(T ♦) 〈D1〉 ◦ 〈D2〉 ⇒ D, for some D1, D2 ∈ T♦. By the proof of case 1, we
get
S(T ♦) ♦D1 ◦ ♦D2 ⇒ D. We consider three possibilities.

First, D ∈ T . By Lemma 6, we obtain ♦D1 ◦ ♦D2 ⇒ D ∈ ST ♦
. Hence,

by (R3),
S(T ♦) D1 ◦ D2 ⇒ �D. Since
S(T ♦) 〈�D〉 ⇒ D, we get
S(T ♦)
〈D1 ◦ D2〉 ⇒ D, by (CUT). Then, by three applications of (CUT), we get

S(T ♦) Γ [〈Δ1 ◦Δ2〉] ⇒ A.

Second, D ∈ T� but D �∈ T . Assume D = �D′, for some D′ ∈ T . Since

S(T ♦) 〈�D′〉 ⇒ D′, by the proof for case 5, we obtain
S(T ♦) 〈〈�D′〉〉 ⇒ D′.
Then, due to the proof for case 4, we get
S(T ♦) 〈�D′〉 ⇒ �D′. Hence

S(T ♦) 〈D〉 ⇒ D, which yields
S(T ♦) 〈♦D1 ◦ ♦D2〉 ⇒ D. Since 〈D1〉 ⇒
♦D1 ∈ ST ♦

and 〈D2〉 ⇒ ♦D2 ∈ ST ♦
, then, by rule (R4), D1 ⇒ ♦D1 ∈ ST ♦

and D2 ⇒ ♦D2 ∈ ST ♦
. Hence
S(T ♦) 〈D1 ◦ D2〉 ⇒ D, by (CUT). We get

S(T ♦) Γ [〈Δ1 ◦Δ2〉] ⇒ A, by (CUT).
Third, D ∈ T♦, but D �∈ T�. Then, D = ♦D∗, for some D∗ ∈ T�.

Since
S(T ♦) 〈♦D∗〉 ⇒ ♦D∗, clearly, we get
S(T ♦) 〈D〉 ⇒ D. Again,
S(T ♦)
〈D1 ◦D2〉 ⇒ D. Hence
S(T ♦) Γ [〈Δ1 ◦Δ2〉] ⇒ A, by several applications of
(CUT).

We define an operator � on formula structure recursively as follows: (i) A� = A,
for any formula A. (ii) (Γ1 ◦ Γ2)� = Γ �

1 • Γ �
2 , for any formula structures Γ1 and

Γ2. (iii) (〈Γ 〉)� = ♦(Γ)�, for any formula structure Γ .
Now we are ready to prove the main results of this paper.

Theorem 10. If Φ is finite, then NLS4(Φ) is decidable in polynomial time.

Proof: Let Φ be a finite set of non-logical assumptions and Γ ⇒ A be a
sequent. Clearly,
NLS4(Φ) Γ ⇒ A can be checked in polynomial time if and only

Modal Nonassociative Lambek Calculus with Assumptions 423

if
NLS4(Φ) Γ
� ⇒ A can be checked in polynomial time. Let n be the number

of logical constants and atoms occurring in Γ � ⇒ A and in sequents for Φ.
The number of subformulae of any formula is equal to the number of logical
constants and atoms in it. Hence T can be constructed in time O(n2), and T
contains at most n elements. It yields that we can construct T♦ in time O(n2).
Since T ⊆ T♦, by Corollary 4,
NLS4(Φ) Γ � ⇒ A is provable in NLS4(Φ) iff
Γ � ⇒T ♦ A. By Lemma 10, Γ � ⇒T ♦ A iff
S(T ♦) Γ

� ⇒ A. Since Γ � ⇒ A is a
basic sequent, we get
S(T ♦) Γ

� ⇒ A iff Γ � ⇒ A ∈ ST ♦
, by Lemma 6. Hence

Γ � ⇒ A is provable in NLS4(Φ) iff Γ � ⇒ A ∈ ST ♦
. Besides, by Lemma 5, ST ♦

can be constructed in polynomial time. Consequently,
NLS4(Φ) Γ
� ⇒ A can be

checked in time polynomial with respect to n.

An NLS4(Φ)-grammar over an alphabet Σ is a pair 〈L,D〉, where L, the lexicon,
is a finite relation between strings from Σ+ and formulae of NLS4(Φ), and D ⊆ F
is a finite set of designated formulae (types).

By s(Γ), we denote a string obtained from a formula structure Γ by drop-
ping all binary and unary operators, ◦ and 〈〉, respectively, and corresponding
parentheses (). A language L(G) generated by a NLS4(Φ)-grammar G = 〈L,D〉
is defined as a set of strings a1 · · · an, where ai ∈ Σ+, 1 ≤ i ≤ n, and n ≥ 1, sat-
isfying the following condition: there exist formulae A1, . . . , An, S, and formulae
structure Γ such that for all 1 ≤ i ≤ n 〈ai, Ai〉 ∈ L, S ∈ D, and
NLS4(Φ) Γ ⇒ S
where s(Γ) = A1 · · ·An.

Notice that for NLS4(Φ)-grammars the definition of L(G) can be modified by
assuming that Γ does not contain 〈〉. For if Γ ⇒ A is provable in NLS4(Φ), then
Γ ′ ⇒ B is provable in NLS4(Φ), where Γ ′ arises from Γ by dropping all 〈〉.
Theorem 11. Every language generated by an NLS4(Φ)-grammar is context-
free.

Proof: Let Φ be a finite set of sequents of the form A ⇒ B, G1 = 〈L,D〉 be
an NLS4(Φ)-grammar, and T be the set of all subformulae of formulae in D and
all subformulae of formulae appearing in L. We construct T♦ as above. Now we
construct an equivalent CFG (context-free grammar) G2, in the following way.
The terminal elements of G2 are lexical items of G1. The non-terminals are all
types from T♦ and a fresh non-terminal S. Productions are {A→ B | B ⇒ A ∈
ST ♦}∪{A→ B, C | B ◦ C ⇒∈ ST ♦}∪{A→ v | 〈v, A〉 ∈ L}∪{S → A |A ∈ D}.

If v1 . . . vm is generated by G1, then there is a NLS4(Φ)-derivable sequent
Γ ⇒ B where B is a designated type, s(Γ) = A1 · · ·Am, and 〈vi, Ai〉 ∈ L for
1 ≤ i ≤ m. We get S →∗

G2
B by the construction of G2. Due to Lemma 9 and the

construction of G2, we obtain S →∗
G2

A1 · · ·Am which leads to S →∗
G2

v1 . . . vm.
Hence v1 · · · vm is generated by G2.

Now suppose v1 · · · vm is generated by G2, which means S →∗
G2

v1 · · · vn.
Then, there exists a B ∈ D such that B →∗

G2
A1 · · ·An where 〈vi, Ai〉 ∈ L,

1 ≤ i ≤ m. Hence, by the construction of G2, there exists a formula structure Γ
such that s(Γ) = A1 · · ·An and
S(T�) Γ ⇒ B. By Lemma 9,
NLS4(Φ) Γ ⇒ B.
Therefore v1 · · · vm is generated by G1.

424 Z. Lin

Obviously, we can easily obtain the same results for systems without K (NLS4 in
the sense of Plummer [16][17]). The inclusion of the class of ε-free context free
languages in the class of NLS4(Φ)-recognizable languages can be easily estab-
lished. Every context-free language is generated by some NL-grammars (see [8]).
Since neither the lexicon nor designated formulae contain modal operators, by
Corollary 4, these NL-grammars can be conceived of as an NLS4(Φ)-grammars,
where Φ is empty. Hence NLS4(Φ)-grammars generate exactly the ε-free context-
free languages.

4 Variants

In [6], grammars based on L♦ enriched with structural rules (K1), (K2) are
shown to surpass the context-free languages. Plummer [16][17] conjectures that
structural rules (K1), (K2) extend the generative capacity of NL♦. However the
situation is different for system with 4 and T. We consider a system NLS4′ , which
admits 4, T, and

K1 : ♦(A •B) ⇒ ♦A •B K2 : ♦(A •B) ⇒ A • ♦B

The sequent system of NLS4′ is obtained by extending NLS4′ without (K) with
the following rules corresponding to axioms K1 K2

(K1)
Γ [〈Δ1〉 ◦Δ2] ⇒ A

Γ [〈Δ1 ◦Δ2〉] ⇒ A
, (K2)

Γ [Δ1 ◦ 〈Δ2〉] ⇒ A

Γ [〈Δ1 ◦Δ2〉] ⇒ A

The main results in section 3 can be easily extended to NLS4′(Φ), NLS4′(Φ)
with finitely many non-logical assumptions Φ, utilizing the technique presented
in section 3. We outline the proof as follows.

It is easy to prove the analogues of theorem 2 for NLS4′(Φ). Then we modify
the construction of S(T♦). We replace rule (R3) by the following two rules:

(R3.1) if ♦A ◦B ⇒ C ∈ Sn andC ∈ T thenA ◦B ⇒ �C ∈ Sn + 1,
(R3.2) if A ◦ ♦B ⇒ C ∈ Sn andC ∈ T thenA ◦B ⇒ �C ∈ Sn + 1.

The proof of the analogue of Lemma 9 is similar to the proof of Lemma 9 in
section 3, except for replacing 〈Δ1〉◦〈Δ2〉 by 〈Δ1〉◦Δ2 orΔ1◦〈Δ2〉 and ♦D1◦♦D2
by ♦D1 ◦D2 or D1 ◦ ♦D2. The remainder of the proof goes without changes.

5 Conclusion

This article shows that the consequence relation of NLS4 or NLS4′ are polynomial
time decidable, and the categorial grammars based on NLS4(Φ) or NLS4′(Φ) gen-
erate context-free languages. The basic idea of proof is adapted from Buszkowski
[3]. However the proof of the extended subformula property is different. We in-
troduce the Φ-restricted cut and prove the cut-elimination theorem for systems
enriched with finitely many assumptions.

Modal Nonassociative Lambek Calculus with Assumptions 425

References

1. Buszkowski, W.: Some decision problems in the theory of syntactic categories.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik 28, 539–548
(1982)

2. Buszkowski, W.: Generative Capacity of Nonassociative Lambek Calculus. Bulletin
of Polish Academy of Sciences 34, 507–516 (1986)

3. Buszkowski, W.: Lambek Calculus with Nonlogical Axioms. In: Casadio, C., Scott,
P.J., Seely, R.A. (eds.) Languages and Grammars Studies in Mathematical Lin-
guistics and Natural Language. Lecture Notes, pp. 77–93. CSLI, Stanfor (2005)

4. Buszkowski, W., Farulewki, M.: Nonassociative Lambek Calculus with Additives
and Context-Free Languages. In: Grumberg, O., Kaminski, M., Katz, S., Wintner,
S. (eds.) Languages: From Formal to Natural. LNCS, vol. 5533, pp. 45–58. Springer,
Heidelberg (2009)

5. Girard, J.Y.: Linear Logic. Theoretical Computer Science 50, 1–102 (1987)
6. Jäger, G.: On the generative capacity of multi-modal categorial grammars. Re-

search on Language and Computation 1, 105–125 (2003)
7. Jäger, G.: Residuation, Structural Rules and Context Freeness. Journal of Logic,

Language and Informationn 13, 47–59 (2004)
8. Kandulski, M.: The equivalence of Nonassociative Lambek Categorial Grammars

and Context-free Grammars. Zeitschrift für mathematische Logik und Grundlagen
der Mathematik 52, 34–41 (1988)

9. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

10. Lambek, J.: On the calculus of syntactic types. In: Structure of Language and Its
Mathematical Aspects, pp. 168–178. American Mathematical Society, Providence
(1961)

11. Lambek, J.: Type Grammars as Pregroups. Grammars 4, 21–39 (2001)
12. Moortgat, M.: Multimodal linguistic inference. Journal of Logic, Language and

Information 5, 349–385 (1996)
13. Morrill, G.: Intensionality and boundedness. Linguistics and Philosopliy 13, 699–

726 (1990)
14. Pentus, M.: Lambek grammars are context-free. In: Proceedings of the 8th Annual

IEEE Symposium on Logic in Computer Science, pp. 429–433 (1993)
15. Pentus, M.: Lambek calculus is NP-complete. Theoretical Computer Science 357,

186–201 (2006)
16. Plummer, A.: S4 enriched multimodal categorial grammars are context-free.

Theoretical Computer Science 388, 173–180 (2007)
17. Plummer, A.: S4 enriched multimodal categorial grammars are context-free:

Corrigendum. Theoretical Computer Science 403, 406–408 (2008)
18. Versmissen, J.: Grammatical Composition: Modes, Models, Modalities. PhD thesis,

Universiteit Utrecht (1996)

Hard Counting Problems for Partial Words

Florin Manea1,2,� and Cătălin Tiseanu1

1 Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, 010014, Bucharest, Romania

2 Faculty of Computer Science, Otto-von-Guericke-University Magdeburg,
PSF 4120, D-39016 Magdeburg, Germany

{flmanea,ctiseanu}@gmail.com

Abstract. In this paper we approach several decision and counting
problems related to partial words, from a computational point of view.
First we show that finding a full word that is not compatible with any
word from a given list of partial words, all having the same length, is
NP-complete; from this we derive that counting the number of words
that are compatible with at least one word from a given list of partial
words, all having the same length, is #P-complete. We continue by show-
ing that some other related problems are also #P-complete; from these
we mention here only two: counting all the distinct full words of a given
length compatible with at least one factor of the given partial word, and
counting all the distinct squares compatible with at least a factor of a
given partial word.

Keywords: Partial Words, NP-completeness, #P Complexity Class,
#P-complete Problems, Combinatorics on Words.

1 Introduction

Partial words, a canonical extension of the classical words, are sequences that,
besides regular symbols, may have a number of unknown symbols, called holes
or wild cards. The study of the combinatorial properties of partial words was
initiated by Berstel and Boasson in their paper [2], having as motivation an
intriguing practical problem, namely gene comparison, related to the central
topics of combinatorics on words. Until now, several such combinatorial proper-
ties of the partial words have been investigated: periodicity, conjugacy, freeness
and primitivity (see [3] for an extensive survey and further references on such
works). Part of these studies consisted in finding efficient algorithms testing if a
word and its factors verify a given combinatorial property ([4,5,8,10]).

A research direction that appeared in the study of partial words, related
to those mentioned already, consists in the study of a series of problems on
identifying and counting factors, which verify some restrictions, of partial words
(such as repetitions, primitive factors, etc.). However, in the case of counting
problems ([6,7]) one is usually interested in finding the number of all the different

� Florin Manea acknowledges support from the Alexander von Humboldt Foundation.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 426–438, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Hard Counting Problems for Partial Words 427

full words, satisfying some specific conditions, that are compatible with factors
of a given partial word (for instance, square full words that are compatible with
factors of a given partial word, or full words of a fixed length that are compatible
with factors of a given partial word, etc.). Until now, most of the results obtained
on this topic state mathematical properties of the functions that may express the
result of such counting problems. Here we are interested in the computational
aspects of these problems: we prove that, in some cases, counting problems for
partial words are complete for the class #P, thus hard problems.

The structure of our paper is the following: we start by giving some basic def-
initions, we continue by proving that a series of problems on partial words are
NP-complete, and for each of these problems we show that they have an associ-
ated hard counting problem, and, finally, we propose three counting problems,
that cannot be associated canonically with NP-complete problems, but are still
complete for the class #P.

2 Basic Definitions

A partial word of length n over the alphabet A is a partial function u :{1,. . ., n} ◦→
A. For i ∈ {1, . . . , n}, if u(i) is defined we say that i belongs to the domain of u
(denoted by i ∈ D(u)), otherwise we say that i belongs to the set of holes of u
(denoted by i ∈ H(u)). For convenience, finite partial words are seen as words
over the extended alphabet A ∪ {�}: a partial word u of length n is depicted
as u = a1 . . . an, where ai = u(i), for i ∈ D(u), and ai = �, otherwise. In this
way, one can easily define the catenation, respectively the equality, of partial
words, as the catenation, respectively the equality, of the corresponding words
over A∪{�} (see [3] for details); we denote by λ the empty partial word (i.e., the
partial word of length 0). If u and v are two partial words of equal length, then
u is said to be contained in v, u ⊂ v, if all the elements of D(u) are contained in
D(v) and u(i) = v(i) for all i ∈ D(u). Two partial words u and v are compatible,
denoted u ↑ v, if there exists a partial word w such that u ⊆ w and v ⊆ w. We
say that the partial word u is a factor of the partial word w if there exist partial
words x and y such that w = xuy. If w = a1 . . . an, we let w[i..j] denote the
factor ai . . . aj of w, and by w[i] the symbol ai.

Let w ∈ (A ∪ {�})∗ be a partial word; w is said to be a k-repetition if w =
x1 . . . xk and there exists a non-empty partial word u such that xi ⊆ u for all
i ∈ {1, . . . , k}. Usually, 2-repetitions are called squares; in the case of full words,
a square over V is a word having the form xx, with x ∈ V +. The reader interested
in more definitions and results on partial words is referred to [3].

For the definitions regarding the computational complexity notions appear-
ing in this paper, such as different complexity classes, NP-complete problems,
polynomial-time reductions and Turing reductions, we refer to [9]. For the def-
inition of the complexity class #P and for some seminal results regarding #P-
complete problems we refer to [11]. However, we briefly recall the definition of
the basic NP-complete problem CNF-SAT (Satisfiability of Boolean Formulas in
conjunctive normal form).

428 F. Manea and C. Tiseanu

Problem 1. Given f a boolean formula in conjunctive normal form, with the
variables S = {x1, . . . , xk}, i.e., f = C1∧C2∧ . . .∧Cn where each Ci is the dis-
junction of several literals (variables from S or the negation of these variables),
decide if there exists an assignment of the variables from S that makes f true.

The natural counting problem associated with CNF-SAT, usually denoted by
#CNF-SAT, asks how many assignments of the variables from S, that make f
true, exist. This problem is #P-complete.

3 Several NP-Complete Problems and the Associated
Counting Problems

First we will show that the following problem is NP-complete.

Problem 2. Given a natural number L, and a list of partial words S = {w1,
w2, . . . , wk}, wi ∈ (V ∪{�})L for all i, decide if there exists a word v ∈ V L such
that v is not compatible with any of the words in S.

To do this we will present a polynomial-time reduction from the CNF-SAT
problem to this problem.

Proposition 1. Problem 2 is NP-complete.

Proof. First, assume we are given a list of partial words S = {w1, w2, . . . , wk},
over the alphabet V , each partial word having the same length L. We can easily
construct a nondeterministic Turing machine, working in polynomial time, that
decides if there exists a word v ∈ V L, such that v is not compatible with any
of the words in S. We simply choose a word from V L nondeterministically and
then check (deterministically) if it is compatible with any of the words in S or
not; if it is compatible with such a word we reject the input, otherwise we accept
it. Thus, Problem 2 is in NP. In the following we show that the problem is also
complete for the class NP.

Let us consider an instance of the CNF-SAT Problem. More precisely, let f
be a boolean formula in conjunctive normal form, let L be the number of logical
variables which appear in f , and denote these variables by x1, x2, . . . , xL, let
n be the number of the clauses of f , and let C1, C2, . . . , Cn be these clauses
(each of them being actually the disjunction of several literals). Then, if f =
C1 ∧ C2 ∧ C3 ∧ . . . ∧ Cn, we observe that there exists an assignment of the
variables x1, . . . , xL such that f evaluates to 1 if and only if there exists an
assignment of the variables x1, . . . , xL such that f̄ (the negation of f) evaluates
to 0. Note that f̄ = C1 ∨ C2 ∨ . . . ∨ Cn. We can now associate the following
instance of Problem 2 with this instance of the CNF-SAT problem: consider the
alphabet V = {0, 1}, the length of the words L, and construct the list of words
S = {w1, w2, ..., wn}, where wi, with i ∈ {1, . . . , n}, is defined as follows:

for j ∈ {1, . . . , L}, let wi[j] =

⎧⎨
⎩

0, if xj ∈ Ci;
1, if xj ∈ Ci;
�, otherwise.

Hard Counting Problems for Partial Words 429

It is clear that a word of length L over V , denoted by v, corresponds to an
assignment of the variables {x1, . . . , xL}, and conversely, in a canonical way:
we simply take xi = v[i], for all i ∈ {1, . . . , L}. Moreover, if such a word v
is compatible with a partial word from the list S, say wj , then the variables
assignment defined by v will clearly make Cj equal to 1, thus f equal to 1.
Conversely, an assignment of the variables that makes f equal to 1 makes at
least one of the clauses Cj equal to 1; from this it follows easily that the word
corresponding to that assignment is compatible with at least one of the partial
words wj , j ∈ {1, . . . , n}. This shows that deciding if there exists an assignment
that makes f equal to 1 (and f equal to 0) corresponds to deciding the existence
of a full word compatible with at least one of the words of the set S. Clearly,
deciding if there exists an assignment that makes f equal to 1 corresponds to
deciding if there exists a full word which is not compatible with any of the words
of the set S, thus solving Problem 2 for the list S.

Finally, notice that the reduction described above (from an instance of
CNF-SAT to an instance of Problem 2) can be easily implemented by a de-
terministic Turing machine working in polynomial time. Consequently, it follows
that Problem 2 is NP-complete. Nevertheless, this reduction clearly establishes
a bijection between the solutions of the initial instance of CNF-SAT and the
solutions of the instance of Problem 2 we construct; therefore, this reduction is
parsimonious. ��
Now consider the counting problem associated with Problem 2:

Problem 3. Given a list of partial words S = {w1, w2, . . . , wk}, over the al-
phabet V , with |V | ≥ 2, each partial word having the same length L, count the
distinct words v ∈ V L such that v is compatible with at least one of the words
in L.

From Proposition 1 we can easily derive that this problem is #P-complete.

Proposition 2. Problem 3 is #P-complete.

Proof. One can easily modify the nondeterministic Turing machine described in
the beginning of the proof of Proposition 1 such that it will have, for a given in-
put, as many accepting paths as the number of words in V L that are compatible
with at least one of the words of the input list. Such a machine would choose
a word from V L nondeterministically and then check (deterministically) if it is
compatible with any of the words in S or not; if it is compatible with such a word
we accept the input, otherwise we reject it. Since it works in nondeterministic
polynomial time, it follows that Problem 3 is in #P. The proof of Proposition 1
shows that #CNF-SAT can be easily reduced, by a Turing reduction (as ex-
plained in [11]) to Problem 3; consequently, this problem is #P-complete. ��
In the following we address a problem regarding the factors of a fixed length of
a given partial word.

430 F. Manea and C. Tiseanu

Problem 4. Given a partial word w, over the alphabet V , with |V | ≥ 2, and a
natural number L, with 0 < L ≤ |w|, decide if there exists a word v ∈ V L such
that v is not compatible with any factor of length L of w.

We show that this problem is NP-complete, by reducing Problem 2 to it.

Proposition 3. Problem 4 is NP-complete.

Proof. Let w, a partial word over the alphabet V and L a natural number with
0 < L ≤ |w|, be an input instance for our problem. It is not hard to construct
a nondeterministic Turing machine, working in polynomial time, that decides if
there exists a word v ∈ V L, such that v is not compatible with any of the factors
of length L of w. Consequently, Problem 4 is in NP. It remains to show that it
is also complete for this class.

In this respect we consider an instance of the Problem 2. Let S = {w1, w2, . . . ,
wk} be a list of partial words, over the alphabet V , each of them having the
same length L. We consider the word w = w1$w2$. . . wk �L−1 $ �L−1 $, where
$ /∈ V . Clearly, this word can be constructed from the aforementioned instance
of Problem 2 by a deterministic Turing machine working in polynomial time.
We will show that there exists a word v ∈ V L which is not compatible with any
of the words in S if and only if there exists a word v ∈ (V ∪ $)L such that v is
not compatible with any factor of length L of w. Once we prove this statement
it follows that we have a deterministic polynomial-time reduction from Problem
2 to Problem 4, and, since Problem 2 is NP-complete, it follows that Problem 4
is also NP-complete.

In order to finish the proof, let us analyze which words from (V ∪{$})L can be
compatible with factors of w. First of all, it is clear that all the words of length
L that contain a $ symbol are compatible with a factor of w, namely at least a
factor from the suffix $ �L−1 $ �L−1 $. Then, we notice that every word of length
L from V L that is compatible with a factor of w must be compatible with at
least one of the words w1, w2, . . ., wk; thus, if there exists a word from V L that
is not compatible with any of the words from S, then it is not compatible with
any factor of w also, and conversely. This concludes our proof; however, note
that the reduction we presented is, again, parsimonious. ��
Again, we can consider the counting problem associated with Problem 4:

Problem 5. Given a partial word w, over the alphabet V , with |V | ≥ 2, and a
natural number L, with L ≤ |w|, count the distinct words v ∈ V L such that v is
compatible with a factor of length L of w.

As in the former case, we can easily derive that this problem is #P-complete.

Proposition 4. Problem 5 is #P-complete.

Proof. One can easily construct a nondeterministic Turing machine that accepts
the words which are compatible with factors of w, and has as many accepting
paths as the number of words in V L compatible with a factor of the input partial
word. Consequently, Problem 5 is in #P. The reduction from the previous proof

Hard Counting Problems for Partial Words 431

can be used Turing-reduce Problem 3 to Problem 5; therefore, Problem 5 is also
#P-complete. ��
Propositions 3 and 4 have many implications. First, one can show the following
result, using similar reductions:

Corollary 1. Consider the following problems:

(i). Given a partial word w, over the alphabet V , with |V | ≥ 2, and a natural
number L, with L ≤ |w|, decide if there exists a natural number k, with 0 < k ≤
L, and a word v ∈ V k, such that v is not compatible with any factor of w.
(ii). Given a partial word w, over the alphabet V , with |V | ≥ 2, and a natural
number L, with L ≤ |w|, count the words v ∈ V k, with 0 < k ≤ L, such that v
is compatible with any factor of w.

Problem (i) is NP-complete and Problem (ii) is #P-complete.

Both Problem 5 and the Problem (ii) stated in Corollary 1 are related to the
subword complexity of a word, as defined in [1]. The subword complexity of a
full word is defined for finite and right infinite words as follows: let V be a finite
alphabet and w be a finite or right infinite word over V ; the subword complexity
of w is the function which assigns to each positive integer, n, the number, pw(n),
of distinct factors of length n of w. One can give a similar definition for partial
words ([7]): let V be a finite alphabet and w be a finite or right infinite partial
word over V ; the subword complexity of w is the function which assigns to each
positive integer, n, the number, pw(n), of distinct full words over V that are
compatible with factors of length n of w.

A direct consequence of Proposition 4 is that computing the subword com-
plexity of a finite partial word is #P-complete.

Also, we can consider a class of very simple right infinite partial words: let
V be an alphabet, with |V | ≥ 2, and let C = {w$ �L−1 $ �L−1 $. . . | w ∈
(V ∪ �)∗, $ /∈ V, 0 < L ≤ |w|}. Clearly, one can compute the value px(n) for
every word x ∈ C and every natural number n ∈ N. Moreover, each word
x ∈ C, x = w$�L−1$�L−1$. . . for some w ∈ (V ∪�)∗, can be described succinctly
in the following manner: we consider the morphism φ : V ∪{$, �} → (V ∪{$, �})∗,
defined by φ(a) = a, for all a ∈ V , φ(�) = � and φ($) = $ �L−1 $; clearly
x = limn→∞ φn(w$) and the space needed to represent x in this way is O(|w|).
Now we can consider the problem of computing the subword complexity of the
infinite partial words from the class C: “given x ∈ C and n ∈ N, compute px(k),
for all k ≤ n”. However, it is not hard to see that if n ≥ L solving this restricted
problem implies solving Problem 5 for the word w and the number L. As we
have already shown, Problem 5 is #P-complete, thus the problem “given x ∈ C
and n ∈ N, n ≥ L, compute px(k), for all k ≤ n” is also #P -hard. Consequently,
computing the subword complexity of the infinite partial words from the class
C is #P -hard. Further, this shows that computing the subword complexity of a
infinite partial words (when it is possible) is a hard counting problem.

Finally, one may be interested in counting all the full words that are compat-
ible with factors of a partial word w, over an alphabet with at least 2 symbols.

432 F. Manea and C. Tiseanu

We were not able to show neither that this problem can be solved efficiently
nor that it is a hard counting problem. However, we conjecture that it is a #P-
complete problem, as well. In this respect, the result of Proposition 5 shows
that a natural approach would not yield an efficient solution of the problem:
one cannot hope to solve it efficiently by counting separately the factors of
length k of the partial word w, for all k ≤ |w|, and summing up the results
afterwards.

4 Further Hard Counting Problems for Partial Words

The hard counting problems that we presented in the last Section have a common
feature: they can all be associated canonically with (and were actually derived
from) hard decision problems. However, as stated in [11], the most interesting
hard counting problems are those that do not have a corresponding hard decision
problem. Such a problem is, for instance, the open problem mentioned in the
end of the previous Section: count all the full words that are compatible with
factors of a partial word w, over an alphabet with at least 2 symbols. It is clear
that one can efficiently decide if there exists or not a full word, of length less or
equal to n, that is not compatible with any factor of the partial word w, where
w ∈ (V ∪{�})n. If w does contain a symbol a, other than �, on the position i, we
construct a word of the same length with w having the symbol b on the position
i, where b ∈ V \ {a} and this word would not be compatible with any factor of
w; otherwise, i.e., w contains only � symbols, we would say that any full word,
of length less or equal to n, is compatible with a factor of w. Also, if n > 0
then there exists always a word compatible with a factor of w: if w contains a
symbol a different from �, then a is such a word; otherwise, any word of length
1 is compatible with a factor of w. Thus, the counting problem we mentioned
cannot be associated canonically with a hard decision problem.

In the following we present a series of other counting problems that cannot
be associated with hard decision problems, but which can be shown to be #P-
complete. While the first two are related somehow to the problem of counting all
the distinct full words compatible with the factors of a partial word, the last one
comes from the area of combinatorics on words, being related to the problem of
counting distinct squares in a partial word (see [6]).

The first problem consists in counting all the full words, over a restricted
alphabet, that are compatible with the factors of a partial word.

Problem 6. Given a partial word w, over the alphabet V , with |V | ≥ 3, and
a symbol $ ∈ V , count the words v ∈ (V \ {$})∗, with 0 < |v| ≤ |w|, that are
compatible with a factor of w.

Note that this problem cannot be associated canonically with a NP-complete
problem. The existence of a word over V \ {$} compatible with a factor of w is
easy to settle: if w contains a � symbol or a symbol a ∈ V \ {$} then a is such a
word; otherwise, if w contains only $ symbols, then such a word does not exist.
The existence of a word over V \ {$} which is not compatible with any factor

Hard Counting Problems for Partial Words 433

of w is again easy: if w does contain a symbol a ∈ V on the position i then we
construct a word of the same length with w having the symbol b on the position
i, where b ∈ V \ {a, $}, and this word would not be compatible with any factor
of w; otherwise, i.e., w contains only � symbols, we would say that any full word
over V \ {$}, of length less or equal to |w|, is compatible with a factor of w.

However, we show that Problem 6 is a hard counting problem, by giving a
Turing reduction from Problem 5.

Proposition 5. Problem 6 is #P-complete.

Proof. It is not hard to see that this problem is in #P. Let w, a partial word
over the alphabet V , and $, a symbol from V , be an instance of our problem.
We design a nondeterministic polynomial Turing machine that accepts the words
v ∈ (V \ {$})k, for k ≤ |w|, such that v is compatible with a factor of w. The
machine chooses a word from (V \ {$})∗, shorter than w, nondeterministically
and checks (deterministically) if it is compatible with a factor of w; if so we
accept the input, otherwise we reject it. This machine has as many accepting
paths as the number of words v ∈ (V \ {$})∗, with 0 < |v| ≤ |w|, compatible
with a factor of w. Consequently, Problem 6 is in #P. It remains to show that
it is complete for this class.

Assume that there exists a function Solve(w, $) that can compute efficiently,
on a deterministic Turing machine, the solution of Problem 6, having as input
data w and the symbol $. Also, consider an instance of the Problem 3: S =
{w1, w2, . . . , wk} is a list of partial words of length L, over the alphabet V \ {$}
which has at least two symbol. As in the proof of Proposition 4, we construct the
word w = w1$w2$. . . wk �L−1 $ �L−1 $. It is not hard to see that by running
the function Solve(w, $) we will obtain the result (|V |−1)L−1 +NL, where NL is
the number of words over V \ {$} compatible with at least a word from the list
S; moreover, NL can be efficiently obtained by subtracting (|V | − 1)L−1 from
the result of the function Solve(w, $). Thus, if there exists an efficient solution
of Problem 6 (encoded by a function Solve(w,#)) then we will also have an
efficient solution for Problem 3. Since Problem 3 is #P-complete, it follows that
Problem 6 is also #P-complete. ��
In the following we consider a restricted compatibility relation. Given two partial
words u and v over the alphabet V , |V | ≥ 3, and a symbol s ∈ V , we say that
u and v are compatible−s (the words are ”compatible minus s”), denoted by
u ↑s v, if there exists a partial word w such that u ⊆ w and v ⊆ w and for each
i ∈ H(u)∪H(v) we have w[i] �= s. Intuitively, the idea behind this compatibility
relation is that the � symbol is seen as a wild card replacing any symbol from
the alphabet, except for s; in the usual case � can replace all the symbols of the
alphabet.

In the following we will consider the problem of counting, for a partial word
w over V and a symbol $ ∈ V , all the full words that are compatible-$ with a
factor of w.

Problem 7. Given a partial word w, over the alphabet V , with |V | ≥ 3, and a
symbol $ ∈ V , count the words v ∈ V ∗, with 0 < |v| ≤ |w|, that are compatible-$
with a factor of w.

434 F. Manea and C. Tiseanu

One can show, similarly to the case of Problem 6, that Problem 7 cannot be
associated canonically with a NP-complete problem: it can efficiently decided if
there exists a word v ∈ V ∗, with 0 < |v| ≤ |w|, compatible-$ with a factor of
w, or if there exists a word shorter than w which is not compatible-$ with any
factor of w. Further we show how Problem 7 is #P-complete.

Proposition 6. Problem 7 is #P-complete.

Proof. Again, it is not hard to see that this problem is in #P. We will not go
into details on how we can design a nondeterministic polynomial Turing machine
having as many accepting paths as the number of words v ∈ V ∗, with 0 < |v| ≤
|w|, compatible-$ with a factor of w; basically, it is the same construction as in
the previous proof. It remains to show that Problem 7 is complete for #P.

Assume that there exists a function Comp(w, $) that efficiently computes (on
a deterministic Turing machine) the solution of Problem 7, having as input data
w and the symbol $. Further, consider an input instance of the Problem 5: w is
a partial word over the alphabet V \ {$} (note that |V \ {$}| ≥ 2), and L is a
natural number with 0 < L ≤ |w|; we should compute the number Xw,L, of the
full words over V \ {$} compatible with at least a factor of length L of w.

Consider now the words w1 = �L−1$w and w2 = �L$w. We briefly analyze
the words that are compatible-$ with factors of these two words:

– All the full words from (V \ {$})k, with k ≤ L − 1, are compatible-$ with
factors of both w1 and w2, namely with factors of the form �k.
– A full word of length k, with k ≤ L − 1, containing $, is compatible-$ with a
factor of w1 if and only if it is compatible-$ with a factor of w2. These words
have the form x$y, with x ∈ V p, for some p < k, and y ∈ V k−p−1 compatible
with a prefix of w.
– A full word from (V \ {$})L is compatible-$ with a factor of w1 if and only if
it is compatible with a factor of w. On the other hand, all the full words from
(V \ {$})L are compatible-$ with factors of w2.
– A full word of length L, containing $, is compatible-$ with a factor of w1
if and only if it is compatible-$ with a factor of w2. These words have the
form x$y, with x ∈ V p, p < L, and y ∈ V L−p−1 compatible with a prefix
of w.
– A full word from (V \ {$})k, with L + |w| + 1 ≥ k > L, is compatible-$ with
a factor of w1 if and only if it is compatible with a factor of w. The same holds
for the full words from (V \ {$})k, with L+ |w|+ 1 ≥ k > L, compatible-$ with
factors of w2.
– A full word of length k, with L + |w| ≥ k > L, containing $, is compatible-$
with a factor of w1 if and only if it has the form x$y, with 0 ≤ |x| ≤ L− 1 and
y is a prefix of w. A full word of length k, with L + |w| ≥ k > L, containing
$, is compatible-$ with a factor of w2 if and only if it has the form x$y, with
0 ≤ |x| ≤ L and y is a prefix of w. Therefore, one can compute exactly the
difference between the number of words of length k, with L + |w| ≥ k > L,
compatible-$ with factors of w2, and the number of such words compatible-$
with factors of w1: this difference, which will be denoted in the following by

Hard Counting Problems for Partial Words 435

Nk,w, equals L|V |−1|y||V |−1
� , if the number of � symbols from y (denoted |y|�) is

greater than 0, or L|V |−1, otherwise. Clearly, given w one can compute Nk,w in
polynomial time.
– There are no words of length L + |w| + 1 compatible-$ with factors of w1,
but there are several such words compatible-$ with the entire w2. The number
of these words is denoted by Nw and equals L|V |−1, if w contains no � symbol,
or L|V |−1|w||V |−1

� , otherwise. Nw can be computed in polynomial time, starting
from w.

From the above considerations it follows that Comp(w2, $)−Comp(w1, $) =
(|V | − 1)L −Xw,L +

∑
k∈{L+1,...,L+|w|}Nk,w +Nw. Since all the numbers Nk,w,

for k ∈ {L+1, . . . , L+ |w|}, can be computed in polynomial time, as well as Nw,
and if we assume that the function Comp computes the solutions to Problem 7
in polynomial time, we obtain that Xw,L can be computed in polynomial time.
Since Problem 5 is #P-complete, it follows that Problem 7 is #P-complete, as
well. ��
We conclude by proving that counting all the square full words which are com-
patible with factors of a partial word is also a hard counting problem.

Problem 8. Given a partial word w, over the alphabet V , with |V | ≥ 2, count
the words x ∈ V ∗, with 0 < |x| ≤ |w| and x = vv for some v ∈ V ∗, compatible
with a factor of w.

According to the results in [8] one can identify all the 2-repetitions in a partial
word w in O(|w|2). Thus one can decide efficiently the existence of a square vv
which is compatible with at least one factor of w. Nevertheless, unless w has only
� symbols, there exists also a square that is not compatible with any of its fac-
tors (the arguments are similar with those used in the case of Problems 6 and 7).
Therefore, Problem 8 cannot be associated canonically with a NP-complete prob-
lem. However, this problem is also hard for the class #P.

Proposition 7. Problem 8 is #P-complete.

Proof. It is straightforward to construct a nondeterministic polynomial Turing
machine having as many accepting paths as the number of words x ∈ V ∗, with
0 < |x| ≤ |w| and x = vv for some v ∈ V ∗, compatible with a factor of w. Thus
Problem 8 is in #P. It remains to show that it is also complete for this class.

We will finish this proof by giving a reduction from a slightly modified ver-
sion of Problem 3. Assume that there exists a function Squares(w) that com-
putes efficiently (on a deterministic Turing machine) the solution of Problem
8, having as input data the partial word w. Further, consider an input in-
stance of the Problem 3: S = {w1, w2, . . . , wk}, with k > 3, is a list of par-
tial words of length L, over the alphabet V = {0, 1}; we are interested in
computing all the full words over V ′ = V ∪ {♣,♥,⊥,♠}, which are com-
patible with at least one word of the list (this version of Problem 3 can be
shown to be #P -complete in the exact same way as in the case of the initial
problem).

436 F. Manea and C. Tiseanu

Starting from the list S we can construct, in deterministic polynomial time,
the partial word w=♥w1♣♥w1♣$kL+1⊥ ♥w2♣♥w2♣$kL+2⊥2 . . . ♥wk♣♥wk♣
$kL+k⊥k♠2k2L2�2L+2.

Next we analyze what square full words can be compatible with factors of w:

a. All the words x = vv from V ′2k, with k ≤ L+ 1, are compatible with factors
of the form �2k of w. The number of these words is N1 =

∑
k=1,L+1 6k.

b. If v is a word of length L, compatible with one of the words w1, w2, . . . , wk,
then ♣v♥♣v♥ is a square compatible with a factor of w. The number of such
squares equals the number of words over V ′ compatible with at least a word
from the list S, denoted here by XS,V ′ .
c. All the words of the form ♠2r, with k2L2 + L + 1 ≥ r > L + 1, are squares
compatible with factors of w. Their number is, clearly, N2 =)(k2L2)/2*.
d. All the words of the form vv, where v = ♠rx, L + 1 < r + |x| < 2L + 2,
|x| > 0, and x does not contain only ♠ symbols, are squares compatible with
factors of w (namely factors of the form ♠r�|x|). The number of such words is
N3 =

∑
0<r,0<t,L+1<t+r<2L+2(5

t +
∑

1≤m≤t−1((
m
t)5t−m)).

e. Any other word of length greater than 2L+ 2 contained in w is not a square
(we will show this a little later). Moreover, the sets of squares described in the
previous four claims are each two disjoint.

Clearly, the numbers N1, N2, and N3 can be computed in polynomial time. Also,
if the function Square() outputs its value in polynomial time, it follows that one
can find the number XS,V ′ in polynomial time; indeed, XS,V ′ =Square(w)−N1−
N2 − N3. But this shows that Problem 8 is harder than Problem 3. Therefore,
Problem 8 is #P-complete.

It remains only to show that the first part of the claim e above is true. For
this, let vv be a square, compatible with a factor of w, other than any of the
squares mentioned in the claims a, b, c, d. There exists a factor x1x2 of w such
that x1 ⊂ v and x2 ⊂ v. Let y be the starting symbol of x1 and z be the starting
symbol of x2. There are several cases to be analyzed:

1. y = ♥ and z = ♥. If x1 = ♥wi♣♥wi♣ . . . $⊥j−1 it follows that x2 =
♥wj♣♥wj♣ . . .; but this is impossible due to the fact that the word x2 con-
tains more $ symbols, after the second ♣, than x1 contains after the second ♣,
thus one of the $ symbols in x2 would be compatible with a ⊥ symbol from x1.
If x1 = ♥wi♣♥wi♣ . . . $⊥j−1♥wj♣ it follows that x2 = ♥wj♣$. . .; again, this
is impossible due to the fact that the second ♥ symbol of x1 would be com-
patible with a $ symbol from x2. If x1 = ♥wi♣$. . .$⊥j−1♥wj♣ it follows that
x2 = ♥wj♣$. . .; this is a contradiction, again, because a $ symbol of x2 would
be compatible with a ⊥ symbol of x1. Finally, if x1 = ♥wi♣$. . .$⊥j−1 it follows
that x2 = ♥wj♣♥wj♣$. . .; this is contradiction, because the first $-symbol from
x1 would be compatible with a ♥ symbol from x2. Clearly, no other case exists.
2. y = ♥ and z = �. If x1 = ♥wi♣♥wi♣ . . . $⊥j−1♥u it follows that x2 =
�u′♣♥wj♣ . . ., where u � u′ = wj ; this leads to a contradiction, since the first ⊥
symbol in x1 would be compatible with a $ symbol from x2. If x1 = ♥wi♣♥wi♣

Hard Counting Problems for Partial Words 437

. . . $⊥j−1♥wj♣♥u it follows that x2 = �u′♣$. . ., where u�u′ = wj ; in this case,
the first ⊥ from x2 would be compatible with a $ symbol from x1, a contradic-
tion. Finally, x1 cannot contain a ♠ since it would imply that x1 contains all the
♠ symbols, and, thus, it would be longer than x2. This completes the analysis
of this case.
3. The cases when y ∈ {0, 1,♣,⊥, $} (and all the possible corresponding assign-
ments for z) can be treated similarly to the above. Also, y cannot be ♠, since it
would imply that vv is one of the words analyzed in the claims a, b, c, d.
4. y = � and z = �.
– If x1 = �u1♣♥wi♣ . . . $⊥j−1♥u2 it follows that x2 = �u3♣♥wj♣ . . ., where
there exists u0 such that u0 � u1 = wi and u2 � u3 = wj . If |u1| = |u3| we will
reach a contradiction because the first ⊥ symbol of x1 would be compatible with
a $ symbol of x2. If |u1| < |u3| the second ♣ symbol of x2 would be compatible
with a $ symbol from x1, again a contradiction. Finally, if |u3| < |u1|, the second
♣ of x1 would be compatible with a $ symbol of x2, also a contradiction.
– If x1 = �u1♣♥wi♣ . . . $⊥j−1♥wj♣♥u2 it follows that x2 = �u3♣$. . ., where
there exists u0 such that u0�u1 = wi and u2�u3 = wj . We obtain a contradiction
because the second ♣ of x1 would be compatible with a $ symbol of x2.
– All the other cases can be treated analogously, and they all lead either to
contradiction, either to the case when vv is a word that was already considered
in the claims a, b, c, d.

By the analysis performed above it follows that claim e is correct. Thus our
proof is complete. ��
We conjecture that the proof we presented above can be generalized to show
that counting all the distinct k-repetitions-full-words (k ≥ 3), compatible with
at least a factor of a given partial word, is also a #P-complete problem. Again,
according to [8,10], this would be an example of a hard counting problem that
cannot be associated canonically with a NP-complete problem.

References

1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge (2003)

2. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theoretical
Computer Science 218, 135–141 (1999)

3. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press (2008)

4. Blanchet-Sadri, F., Anavekar, A.R.: Testing primitivity on partial words. Discrete
Applied Mathematics 155(3), 279–287 (2007)

5. Blanchet-Sadri, F., Mercaş, R., Rashin, A., Willett, E.: An answer to a conjecture
on overlaps in partial words using periodicity algorithms. In: Dediu, A.H., Ionescu,
A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 188–199. Springer,
Heidelberg (2009)

6. Blanchet-Sadri, F., Mercaş, R., Scott, G.: Counting distinct squares in partial
words. In: Csuhaj-Varju, E., Esik, Z. (eds.) Proceedings of AFL, pp. 122–133 (2008)

438 F. Manea and C. Tiseanu

7. Blanchet-Sadri, F., Schwartz, J., Stich, S.: Partial subword complexity (submitted
2010)

8. Diaconu, A., Manea, F., Tiseanu, C.: Combinatorial queries and updates on partial
words. In: Gȩbala, M. (ed.) FCT 2009. LNCS, vol. 5699, pp. 96–108. Springer,
Heidelberg (2009)

9. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-completeness. W.H. Freeman, New York (1979)

10. Manea, F., Mercaş, R.: Freeness of partial words. Theoretical Computer Sci-
ence 389(1-2), 265–277 (2007)

11. Valiant, L.: The complexity of computing the permanent. Theoretical Computer
Science 8, 189–201 (1979)

Exact Analysis of Horspool’s and Sunday’s
Pattern Matching Algorithms with Probabilistic

Arithmetic Automata

Tobias Marschall and Sven Rahmann

Bioinformatics for High-Throughput Technologies,
Algorithm Engineering, Computer Science XI, TU Dortmund, Germany

{tobias.marschall,sven.rahmann}@tu-dortmund.de

Abstract. We define deterministic arithmetic automata (DAAs) and
connect them to a framework called probabilistic arithmetic automata
(PAAs) [9]. We use DAAs and PAAs to compute the entire exact proba-
bility distribution (in contrast to, e.g., asymptotic expectation and vari-
ance) of the number Xp

� of text characters accessed by the Horspool or
Sunday pattern matching algorithms when matching a fixed pattern p
against a random text of length �. The random text model can be quite
general, from simple uniform models to higher-order Markov models or
hidden Markov models (HMMs). We develop several alternative con-
structions with different state spaces of the automata, leading to alterna-
tive time and space complexities for the computations. To our knowledge,
this is the first time that suffix-based pattern matching algorithms are
analyzed exactly. We present (perhaps surprising) exemplary results on
short patterns and moderate text lengths. Our results easily generalize
to any search-window based pattern matching algorithm.

1 Introduction

The basic pattern matching problem is to find all occurrences of a pattern string
in a (long) text string, with few character accesses. Let � be the text length and m
be the pattern length. The well-known Knuth-Morris-Pratt algorithm [6] reads
each text character exactly once from left to right after preprocessing the pattern
and needs a total ofΘ(�+m) character accesses. In contrast, the Boyer-Moore [3],
Horspool [5] and Sunday [14] algorithms move a length-m search window across
the text and first compare its last character to the last character of the pattern.
This often allows to move the search window by more than one position (at best,
by m positions if the last window character does not occur in the pattern at all),
for a best case of Θ(m+n/m) but a worst case of Θ(m+mn) character accesses.
The worst case can be improved to Θ(m + n), but this makes the code more
complicated and is seldom useful in practice. The Horspool algorithm and the
variant of Sunday can be seen as modifications of the Boyer-Moore algorithm
that are simpler to implement and additionally perform better in practice [11].

A question that has apparently so far not been investigated is about the ex-
act probability distribution of the number of required character accesses Xp

�

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 439–450, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

440 T. Marschall and S. Rahmann

when matching a given pattern p against a random text of finite length � (non-
asymptotic case), even though related questions have been answered in the lit-
erature. For example, [1,2] analyze the expected value of Xp

� . In [8] it is shown
that Xp

� is asymptotically normally distributed for i.i.d. texts, and [13] extends
this result to Markovian text models.

In contrast to these results, we use a general framework called probabilistic
arithmetic automata (PAAs), recently introduced at CPM’08 [9], to compute the
exact distribution of Xp

� . In our framework, the random text model can be quite
general, from very simple i.i.d. uniform models to high-order Markov models or
HMMs. The approach is applied exemplarily to the Horspool and Sunday algo-
rithms here, but easily generalizes to all search-window-based pattern matching
algorithms.

In the next section, we introduce notation and text models, give a brief review
of the Horspool and Sunday algorithms, define deterministic arithmetic automata
(DAAs), summarize the PAA framework with its generic algorithms, and connect
DAAs to PAAs. Sections 3 and 4 present two alternative PAA constructions that
allow to compute the entire distribution of Xp

� . In Section 5, we argue that the
state space of the PAA construction from Section 3 can be considerably reduced.
Exemplary results on the comparison of the Horspool and Sunday algorithms in
terms of their running time distributions can be found in Section 6, where we
also give a concluding discussion.

2 Preliminaries

Notation. Both pattern and text are over a finite alphabet Σ. The pattern p =
p[0] . . . p[m − 1] is of length m, a (concrete) text s is of length �. We also con-
sider a stochastic process S = S0S1S2 . . . according to a random text model
(see next paragraph), whose prefix of length � is of interest to us. Let �(s) :=
�(S0 . . . S|s|−1 = s) be the probability of observing s as the length-|s| prefix
of S, and let ξp(s) be the number of text character accesses of the Horspool
(resp. Sunday) algorithm when matching p against s. Let Xp

� := ξp(S0 . . . S�−1)
be the corresponding random variable for random texts of length �. We are in-
terested in the exact probability distribution of Xp

� , which we denote by L(Xp
�).

Text models. A text model � is the distribution of a stochastic process (Si)i∈�,
where each Si takes values in Σ. It can be specified by giving the probabilities
�(S0 . . . S|s|−1 = s) for all s ∈ Σ∗. We only consider finite-memory models,
specifically i.i.d. or Markovian texts. These can by defined by a tuple (Y, ϕ, y0),
where Y is a finite state space, y0 ∈ Y a start state, and ϕ : Y ×Σ × Y → [0, 1]
is such that ϕ(y, a, y′) is the probability of going from state y to state y′ and
thereby generating the letter a. Therefore

∑
(a,y′)∈Σ×Y ϕ(y, a, y′) = 1 for all

y ∈ Y . The model given by (Y, ϕ, y0) therefore generates a random text by going
from state to state and emitting a character at each transition. We refer to both
the tuple (Y, ϕ, y0) and the induced probability measure � as text models. Similar
text models are used in [7] and there called probability transducers.

Exact Analysis of Horspool’s and Sunday’s Pattern Matching Algorithms 441

For an i.i.d. model, we set Y = {◦} and ϕ(◦, a, ◦) = pa for each a ∈ Σ,
where pa is the occurrence probability of letter a (and ◦ may be interpreted
as an empty string or context). For a Markovian text model of order k, the
distribution of the next character depends only on the k preceding characters
(fewer at the beginning); thus we set Y :=

⋃k
i=0 Σ

i. For all contexts y ∈ Σk and
y′ = y[1 . . . |y| − 1]a, the conditional letter-a follow-up probabilities are given by
ϕ(y, a, y′). It is clear how to handle the shorter contexts at the beginning. This
notion of text models also covers variable order Markov chains as introduced
in [12] and HMMs.

Algorithms of Horspool and Sunday. The idea of Horspool is as follows. We main-
tain a search window w of length m = |p| that initially starts at position 0 in the
text s, such that its rightmost character is at position t = m− 1. The variable t
grows in the course of the algorithm; we always have w = s[(t−m+ 1) . . . t].
First, the rightmost characters of window and pattern are compared; that means,
a := w[m−1] = s[t] is compared with p[m−1]. If they match, the remaining m−1
characters are compared until either the first mismatch is found or an entire
match has been verified. This comparison can happen right-to-left, left-to-right,
or in an arbitrary order that may depend on p. In our analysis, we focus on
the right-to-left case for concreteness, but the modifications for the other cases
are trivial. In any case, the rightmost window character a is used to determine
how far the window can be shifted for the next iteration: t �→ t + shift p(a).
The shift-function ensures that no match can be missed by moving the window
such that a becomes aligned to the rightmost a in p (not considering the last
position). If a does not occur in p (or only at the last position), it is safe to shift
by m positions. Formally,

right p(a) := max
[{i ∈ {0, . . . ,m− 2} : p[i] = a} ∪ {−1}] ,

shift p(a) := (m− 1)− right p(a) .

Sunday’s algorithm is similar, except that the first character after the current
window w is used to determine the shift. This leads to the modified definitions

right p(a) := max
[{i ∈ {0, . . . ,m− 1} : p[i] = a} ∪ {−1}] ,

shift p(a) := m− right p(a) .

For both algorithms and fixed p, we write right and shift . This causes no con-
fusion, as it is clear from the context to which algorithm we are referring.

For concreteness, we state Horspool’s algorithm and how we count text char-
acter accesses as pseudocode in Algorithm 1. We assume that characters are
compared right-to-left. Note that after a shift, even when we know that a now
matches its corresponding pattern character, the corresponding position is com-
pared again and counts as a text access. Otherwise the additional bookkeeping
would make the algorithm more complicated; this is not worth the effort in prac-
tice. The lookup in the shift -table does not count as an additional access, since
we can remember shift [a] as soon as the last window character has been read.

442 T. Marschall and S. Rahmann

Algorithm 1. Horspool

Input: text s ∈ Σ∗, pattern p ∈ Σm

Output: pair (number occ of occurrences of p in s, number cost of accesses to s)
1: pre-compute table shift [a] for all a ∈ Σ
2: (occ, cost) ← (0, 0)
3: t ← m − 1
4: while t < |s| do
5: i ← 0
6: while i < m do
7: cost ← cost + 1
8: if s[t − i]
= p[(m − 1) − i] then break
9: i ← i + 1

10: if i = m then occ ← occ + 1
11: t ← t + shift [s[t]]
12: return (occ, cost)

Arithmetic Automata. Before we review the framework of probabilistic arith-
metic automata (PAAs) introduced in [9], which we use to compute the sought
distribution L(Xp

�), we first define another class of automata “half way” between
deterministic finite automata (DFAs) and PAAs.

Definition 1 (Deterministic Arithmetic Automaton, DAA). A deter-
ministic arithmetic automaton is a tuple D =

(
Q, q0, Σ, δ,N, n0, E, (εq)q∈Q,

(θq)q∈Q

)
, where Q is a finite set of states, q0 ∈ Q is the start state, Σ is a finite

alphabet, δ : Q×Σ → Q is called transition function, N is a finite or countable
set of values, n0 ∈ N is called the start value, E is a finite set of emissions,
εq ∈ E is the emission associated to state q, and θq : N × E → N is a binary
operation associated to state q.

Informally, a DAA starts with the state-value pair (q0, n0) and reads a se-
quence of symbols from Σ. Being in state q with value v, upon reading a ∈ Σ,
the DAA performs a state transition to q′ := δ(q, a) and updates the value
to v′ := θq′(v, εq′) using the operation and emission of the new state q′. For-
mally, we define the associated joint transition function

δ̂ : (Q×N)×Σ → (Q×N), δ̂
(
(q, v), a

)
:=

(
δ(q, a) , θδ(q,a)(v, εδ(q,a))

)
.

As usual, we extend this definition inductively to Σ∗ by δ̂
(
(q, v), ◦) := (q, v) for

the empty string ◦ and δ̂
(
(q, v), xa

)
:= δ̂

(
δ̂((q, v), x), a

)
for all x ∈ Σ∗ and a ∈ Σ.

When δ̂
(
(q0, n0), x

)
= (q, v) for some q ∈ Q, we say that D computes value v

for input x and define valueD(x) := v.

For each state q, the emission εq is fixed and could be dropped from the definition
of DAAs. In fact, one could also dispense with values and operations entirely and
define a DFA over state space Q×N , performing the same operations as a DAA.
However, we intentionally include values, operations, and emissions to emphasize
the connection to PAAs. The reason is that DAAs become more interesting when

Exact Analysis of Horspool’s and Sunday’s Pattern Matching Algorithms 443

we allow the emissions in each state and the transitions between states to be
probabilistic instead of deterministic, as follows.

Definition 2 (Probabilistic Arithmetic Automaton, PAA, [9]). A proba-
bilistic arithmetic automaton is a tuple P =

(
Q, q0, T,N, n0, E, e = (eq)q∈Q, θ =

(θq)q∈Q

)
, where Q, q0, N , n0, E and θ have the same meaning as for a DAA,

each eq is a state-specific probability distribution on the emissions E, and T is
a Q×Q stochastic matrix, such that Tq,q′ specifies the probability of a transition
from state q to state q′.

A PAA induces three stochastic processes: (1) the state process (Qt)t∈� with
values in Q, (2) the emission process (Zt)t∈� with values in E, and (3) the value
process (Vt)t∈� with values in N such that V0 :≡ n0 and Vt := θQt (Vt−1, Zt) .

In [9], PAAs are used to compute pattern occurrence count distributions. Appli-
cations in biological sequence analysis include the exact computation of p-values
of sequence motifs [10], and the determination of seed sensitivity for pairwise
sequence alignment algorithms based on filtering [4], among others. We now re-
state the PAA recurrences from [9] to compute the state-value distribution after t
steps. For the sake of a shorter notation, we define ft(q, v) := �(Qt = q, Vt = v).
Since we are generally only interested in the value distribution, note that it can
be obtained by marginalization: �(Vt = v) =

∑
y∈Q ft(q, v).

Lemma 1 (State-value recurrence, [9]). The state-value distribution is
given by f0(q, v) = 1 if q = q0 and v = n0, and = 0 otherwise. For t ≥ 0,

ft+1(q, v) =
∑
q′∈Q

∑
(v′,z)∈θ−1

q (v)

ft(q′, v′) · T (q′, q) · eq(z), (1)

where θ−1
q (v) denotes the inverse image set of v under θq.

The recurrence in Lemma 1 resembles the Forward recurrences known from
HMMs. While N may be infinite, only a finite set of values Nt can be at-
tained during a finite number t of steps. While always |Nt| ≤ |E|t, it can be
much smaller, often O(t). To compute the state-value distribution up to step t
in this way takes O(t · |Q|2 · |Nt| · |E|) arithmetic operations. The space require-
ment is O(|Q| · |Nt|). Using a doubling technique [9], it can alternatively be
computed with O(log t · |Q|3 · |Nt|3) arithmetic operations using O(|Q|2 · |Nt|2)
space.

We now formally state how to convert a DAA into a (restricted) PAA, where
each emission distribution is deterministic (assigning probability 1 to a particular
value), given a random text model (i.i.d., Markovian, or a HMM).

Lemma 2 (DAA + Text model → PAA). Let (Y, ϕ, y0) be a text model and
D =

(
QD, qD0 , Σ, δ,N, n0, E, (εq)q∈QD , (θDq)q∈QD

)
be a DAA. Define state space

Q := QD × Y , start state q0 := (qD0 , y0), (deterministic) emission probability
vectors e(q,y) by e(q,y)(εq) := 1 and e(q,y)(z) := 0 for z �= εq, operations θ(q,y) :=
θDq for all (q, y) ∈ Q = QD × Y , and transition probabilities T(q,y),(q′,y′) :=

444 T. Marschall and S. Rahmann

∑
a∈Σ: δ(q,a)=q′ ϕ(y, a, y′). States with zero probability of being reached from q0

may be omitted from Q and T . Then P =
(
Q, q0, T,N, n0, E, (eq)q∈Q, (θq)q∈Q

)
is

a PAA with L(V�) = L(valueD(S0 . . . S�−1)
)
, where S is a random text according

to the text model (Y, ϕ, y0). For such a PAA, the state-value distribution up to
step t can be computed with O(t · |Q| · |Σ| · |N |) operations.

Proof (Idea). It is obvious that P defines a PAA. For � = 0, the proof of L(V�) =
L(valueD(S0 . . . S�−1)

)
is obvious. For � > 0, we inductively show that

∑
y∈Y

f�

(
(q, y), v

)
=

∑
x∈Σ�: δ̂((qD

0 ,n0),x)=(q,v)

�(x) ∀ q ∈ QD, v ∈ N.

This follows from the definition of the PAA transition probabilities.
The complexity follows from Lemma 1, noting that |Q|2 can be replaced by

|Q||Σ|, since each state in the PAA has outdegree at most |Σ|, and by omitting
|E|, since emissions are deterministic in each state. ��

3 Basic PAA Construction

We first present a straightforward PAA construction to compute L(Xp
�), the dis-

tribution of text character accesses during the Horspool algorithm when match-
ing p ∈ Σm against a random text of length �. The strategy is to simulate the
Horspool algorithm with a DAA that counts both the reached position in the
text and the number of character accesses so far. The DAA is then converted
into a PAA using Lemma 2.

Consider a substring w ∈ Σm of the text, corresponding to the current search
window, ending at text position t. Its last character a := w[m − 1] = s[t] de-
termines the shift shift (a). For convenience, let us therefore define shift (w) :=
shift (w[m − 1]) for the Horspool algorithm. All of w determines the number
ξp(w) of text character accesses necessary to compute the shift and to verify or
disprove w = p with the Horspool inner loop (Algorithm 1, lines 6–9). Explicitly,
still assuming right-to-left comparison within the window, we have the following
per-window access costs.

ξp(w) =

{
m if p = w,

1 + min{i : 1 ≤ i ≤ m, p[m− i] �= w[m− i]} otherwise.

It is easy to modify this function to accommodate different comparison orders;
in each case w entirely determines how many characters must be accessed and
compared before reaching a decision.

To summarize, when the right end of the search window has reached text
position t with c character accesses so far and examines the current window
w = s[t−m+ 1 . . . t], we afterwards obtain a total of c+ξp(w) character accesses
and move to text position t + shift (w). Therefore we can define the following
DAA D =

(
Q, q0, Σ

D, δ,N, n0, E, ε = (εq)q∈Q, θ = (θq)q∈Q

)
for text length �:

Exact Analysis of Horspool’s and Sunday’s Pattern Matching Algorithms 445

– Q := Σm ∪{q0}, where q0 is the start state and any other state corresponds
to the current window content.

– N := {m − 1,m, . . . , � − 1, •} × {0, . . . , �m}, where n0 = (m − 1, 0). Value
v = (t, c) corresponds to the current window ending at text position t (with
• indicating that the text has ended), having accumulated c text character
accesses so far.

– E := {1, . . . ,m} × {1, . . . ,m}; the deterministic emission in state q ∈ Σm is
εq =

(
shift (q), ξp(q)

)
.

– The operation θq in each state is essentially addition on N with one excep-
tion: To freeze the character access count when crossing position �−1, we use
the special values (•, c) ∈ N . Therefore, for all q, we define θq

(
(t, c), (t′, c′)

)
as (t + t′, c + c′) if t �= • and t + t′ < �, as (•, c + c′) if t �= • and t + t′ ≥ �,
and as (•, c) if t = •.

– ΣD := ∪m
i=1 Σ

i (Horspool): When leaving state q, exactly shift (q) new text
characters enter the window; therefore the DAA must read a block b ∈
Σshift (q) characters as a single symbol. Accordingly δ(q, b) = q[shift (q)..]b,
where q[i..] denotes the suffix of q starting at position i. Note that a text
model on ΣD is induced by a text model on Σ. For b ∈ ΣD \ Σshift (q), the
transition δ(q, b) is not defined, which is not a problem, since the according
transition probabilities are set to zero in the constructed PAA.

Lemma 3. The DAA Dp for pattern p, as defined above, satisfies valueDp(s) =
ξp(s) for all s ∈ Σ∗.

Proof. Straightforward by induction on the number of windows used with pat-
tern p on text s. ��
Applying Lemma 2, we convert the DAA into a PAA, replacing transition labels
by transition probabilities, to obtain L(ξp(s)

)
over all s ∈ Σ�, that is, L(Xp

�).
In summary, this leads to the following theorem.

Theorem 1. The above DAA/PAA construction allows to compute L(Xp
�) for

Horspool with O(m�3 |Σ|2m) arithmetic operations in O(m�2 |Σ|m) space, as-
suming that the text model is i.i.d. or a Markov chain of order ≤ m.

Proof. We have |Q| = Σm and |N | = O(m�2). Emissions are deterministic. The
claim now follows from Lemma 1. ��
For the Sunday algorithm, we need to extend the current search window one
position to the right for a length of m+ 1 and to access an additional character
to determine the shift; it is straightforward to modify shift (w), ξp(w), state space
Q and emission set E. Theorem 1 holds with m replaced by m+ 1.

4 An Alternative PAA Construction

So far a step of the automaton corresponded to examining a search window.
Now, however, we construct a DAA where a step corresponds to processing a

446 T. Marschall and S. Rahmann

single text character, and we process the text from left to right (in contrast to the
actual working of Horspool’s algorithm). Therefore the state has to remember
where the window starts relative to the last read character. We define state
space Q and value space N as follows:

– Q := ({0, . . . ,m− 1} ×Σ) ∪ {q0}, where q0 is the start state,
– N := �× {0, . . . ,m− 1}m−1 with a start value of n0 =

(
0, (0, . . . , 0)

)
.

The defined spaces are endowed with the following semantics. After n steps,
a state of (k, a) and a value of

(
c, (x0, . . . , xm−1)

)
indicate that we have done

c comparisons so far, the last read character was a, and the current position n
corresponds to position k in the current window (i.e., the current window starts
at position n− k in the text). The next shift is unknown until the last character
of the current window has been read (k reaches m − 1). Therefore, we store
information on the comparisons needed for every possible next window using
(x0, . . . , xm−1), such that xj is defined as the number of characters that will not
be accessed when next scanning a window that starts at position n− k+ j. This
DAA does not need emissions; we set E = {0} and eq(0) = 1 for all q ∈ Q and
omit emissions by writing θq(·) := θq(·, 0).

The described semantics lead to the following operation for a state q = (k, a):
We define two auxiliary functions update and move. The update function up-
dates x = (x0, . . . , xm−1) such that the information gained by reading a ∈ Σ is
incorporated;

updatek :
(
x = (x0, . . . , xm−1), a

) �→ x′ = (x′0, . . . , x
′
m−1), (2)

where

x′j =

{
k − j if j < k and a �= p[k − j],
xj otherwise,

that means, if a mismatch at position k in the window is found, we know that (at
least) k characters need (and will) not be compared. The move function “shifts”
the contents of the vector:

move :
(
(x0, . . . , xm−1), �

) �→ (x�, . . . , xm−1, 0, . . . , 0︸ ︷︷ ︸
�

) .

Now we can define the DAA operations θ(k,a):

θ(k,a) : (c,x) �→
{(

c, z
)

if k < m− 1 ,(
c+m− z0,move(z, shift (a))

)
if k = m− 1 ,

(3)

where z = (z0, . . . , zm−1) := updatek(x, a). The DAA transition function δ is
defined as

δ : (q, a) �→

⎧⎪⎨
⎪⎩

(0, a) if q = q0 ,

(k + 1, a) if q = (k, a′) and k < m− 1 ,(
k − shift (a′) + 1, a

)
if q = (k, a′) and k = m− 1 .

(4)

Exact Analysis of Horspool’s and Sunday’s Pattern Matching Algorithms 447

By formally proving that the operations and transitions capture the above
semantics, we obtain the following theorem, whose proof we omit due to space
constraints.

Theorem 2. Given a pattern p, let D = (Q, q0, Σ, δ,N, n0, E, ε, θ) be the DAA
constructed for p as detailed above. Then, D correctly computes the number of
accesses to a given text s done by Horspool’s algorithm as given in Algorithm 1,
that means ξp(s) = c, where valueD(s) = (c,x).

Theorem 3. With a PAA constructed from the above DAA using Lemma 2,
assuming a Markov text model of at most first order, L(Xp

�) for Horspool’s al-
gorithm can be computed with O(�2 ·m2 ·m! ·Σ2) arithmetic operations.

Proof. The size of the relevant value set N for text length � can be bounded by
�m (first component) times m! (second component), since 0 ≤ xj ≤ m − j − 1
Further, we have |Q| = O(m · |Σ|) and |E| = O(1). The claim again follows from
Lemma 1. ��

Sunday’s Algorithm. The DAA for Sunday’s algorithm is similar to the one for
Horspool’s algorithm. In Sunday’s algorithm, the window can be positioned com-
pletely before or completely after the currently processed character. We therefore
define Q := ({−1, . . . ,m} × Σ) ∪ {q0}. Transition function and operations can
be adjusted straightforwardly. Theorem 3 holds in the same way.

5 Reducing the State Space

While the basic construction in Section 3 is straightforward, the fact that |Q| =
|Σ|m limits investigations to short patterns and/or small alphabets. Here we show
that the Horspool and Sunday algorithm can be simulated with a much smaller
state space, for whose size we conjecture a bound. We now adopt the convention
that after comparing the last window character, the remaining m − 1 characters
are compared left-to-right instead of right-to-left, and we only describe details for

|Σ|
m 2 3 4 5
2 4 / 4 6 / 9 8 / 16 10 / 25
3 7 / 8 11 / 27 14 / 64 17 / 125
4 14 / 16 24 / 81 28 / 256 32 / 625
5 28 / 32 58 / 243 66 / 1024 71 / 3125
6 56 / 64 156 / 729 166 / 4096 176 / 15625
7 112 / 128 413 / 2187 440 / 16384 452 / 78125
8 224 / 256 1086 / 6561 1158 / 65536 1190 / 390625

Fig. 1. Left: Maximal size M(|Σ|, m) of the reduced state space for different alphabet
sizes |Σ| and pattern lengths m. Entries are given in the form M(|Σ|, m) / |Σ|m (state
space size of basic construction). Right: Distribution of |Q(p)| for p ∈ {A, B, C}7.
Minimum reduced state space size is 78 (for 9 patterns), maximum is M(3, 7) = 413
(for 72 patterns).

448 T. Marschall and S. Rahmann

Horspool. For this variant the character accesses in windoww ∈ Σm are counted as
ξp(w) = 1 ifp[m−1] �= w[m−1], and ξp(w) = min{m, 2+min{i ≥ 0 : p[i] �= w[i]}}
otherwise. Thus the following information (instead of the entire window content)
is sufficient to compute (shift (w), ξp(w)) for the current and future windows:

1. character a := w[m − 1] to compute shift (w) = shift (a) and outgoing tran-
sition probabilities in a first-order Markov model (for higher-order models,
more characters are required).

2. length x of the longest w-prefix that matches a prefix of p to compute ξp(w).
3. all pairs (σi, λi) for which σi ≥ shift (a), σi−1 < σi, λi ≥ 1, and for which

w[σi . . . σi + λi − 1] = p[0 . . . λi − 1], that is, all pairs of positions and lengths
where a proper prefix of p starts inw beyond shift (a); this is required to ensure
that a and x can be obtained after shifting the window once or several times.

Thus we define a mapping r : Σm → Q with r(w) := (x, {(σi, λi)}i, a), where
we define Q(p) as the image of Σm under r according to the above description.
By aggregating transition probabilities, the PAA can be defined solely on Q(p)
without further difficulties for i.i.d. models and first-order Markov models (since
each state knows the last character a of its window).

Consider two patterns p1 = AAAAA and p2 = ACAGC. The sizes of the reduced
state space differ: We obtain Q(p1) = 31 and Q(p2) = 60 (in comparison to 45 =
1024). Therefore we ask for (an upper bound of) the maximal size M(|Σ|,m) :=
maxp∈Σm Q(p).

Figure 1 shows M(|Σ|,m) for different values of |Σ| and m. We observe that
M(|Σ|,m) is generally much smaller than |Σ|m, especially for large alphabets.
The figure also shows the distribution of the size of Q(p) for all 2187 patterns
with |Σ| = 3 and m = 7: |Q(p)| varies between 78 and 413 (in comparison to
2187), depending on p. We propose the following conjecture, which would be a
considerable improvement over the results of Sections 3 and 4.

Conjecture 1. There exists a constant C ≈ 3 independent of |Σ| and m such that
M(|Σ|,m) = O(|Σ|m · Cm). Thus L(Xp

�) can be computed with O(�|Q|2|N |) =
O(�3 m3 |Σ|2 C2m) operations.

For patterns p that never repeat their first character (“simple” patterns), we
may encode a search window w as a vector b = (b0, . . . , bm−1) ∈ {0, 1, 2}m,
where bi := 1 if a new prefix of p starts at position i in w, bi := 2 if a currently
running prefix does not continue, and bi := 0 otherwise. Storing the last character
of w explicitly, this leads to a loose bound of O(|Σ| · 3m) for simple patterns. A
difficulty arises with the encoding if p[0] is repeated in p.

6 Results and Discussion

Using PAAs, we have shown how the exact distribution of the number of char-
acter accesses for Horspool’s and Sunday’s algorithms can be computed. The
framework is general enough to admit i.i.d. text models and Markovian text
models of arbitrary order. We have presented two different PAA constructions

Exact Analysis of Horspool’s and Sunday’s Pattern Matching Algorithms 449

Fig. 2. Exact distribution of the number of text accesses for Horspool’s and Sunday’s
algorithms using a uniform i.i.d. text model over the alphabet {A, C, G, T}. Top vs.
bottom row: pattern AAAAA vs. ACAGC. Left vs. right column: text length 20 vs. 100.

which result in asymptotic runtimes of O(�3 m |Σ|2m) and O(�2 m2 m!Σ2), re-
spectively. The (super)exponential dependency on m allows practical computa-
tions only for short patterns. For a pattern length of 5 and text lengths 20 and
100, the calculation took 1.8 seconds and 40.4 seconds, respectively1. As shown
in Section 5, it may be possible to reduce the state space considerably for the
first construction. A tight bound for the size of the state space remains open
at present. Also, it is not obvious how to construct the reduced state space and
transition probabilities for a given pattern efficiently. For the second construc-
tion, it is also true that not all of the O(�m · n!) states can be reached for each
pattern, and that the space can be possibly reduced.

For long texts the distribution of the number of text accesses converges to a
Gaussian distribution [13]. For short texts, however, the distribution is governed
by combinatorial effects, as illustrated in Figure 2. Even for text length 100, we
observe a non-smooth distribution for AAAAA over the alphabet {A, C, G, T} with
a uniform i.i.d. text model. In general, the distribution for the Sunday algorithm
is smoother. On average, Sunday uses more character accesses than Horspool:
Even though some shifts for Sunday are longer by one character, at least one
shift value is not, and Sunday accesses at least two characters per window, while
Horspool may access only one.

1 See http://www.rahmannlab.de/software for an implementation in JAVA. The ex-
periments were run on an Intel Core 2 Quad CPU at 2.66GHz.

450 T. Marschall and S. Rahmann

Using the basic construction of Section 3, any window-based pattern matching
algorithm can be analyzed in a similar fashion. We only need to define the
corresponding shift -function and a cost function ξp(w) counting the text accesses
for each window content. Particular algorithms to analyze in this way include,
for example, Backward Dawg Matching (BDM), its nondeterministic counterpart
BNDM or Backward Oracle Matching (BOM), as described in [11]. Even other
metrics than text character accesses are possible, for example, just counting the
number of windows by defining ξp(w) = 1 for all w ∈ Σm. The presented material
may therefore be seen as a general guide to the exact analysis of window-based
pattern matching algorithms.

References

1. Baeza-Yates, R.A., Gonnet, G.H., Régnier, M.: Analysis of Boyer-Moore-type
string searching algorithms. In: SODA ’90: Proceedings of the first annual ACM-
SIAM symposium on Discrete algorithms, pp. 328–343. SIAM, Philadelphia (1990)

2. Baeza-Yates, R.A., Régnier, M.: Average running time of the Boyer-Moore-
Horspool algorithm. Theor. Comput. Sci. 92(1), 19–31 (1992)

3. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the
ACM 20(10), 762–772 (1977)

4. Herms, I., Rahmann, S.: Computing alignment seed sensitivity with probabilistic
arithmetic automata. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS
(LNBI), vol. 5251, pp. 318–329. Springer, Heidelberg (2008)

5. Horspool, R.N.: Practical fast searching in strings. Software-Practice and Experi-
ence 10, 501–506 (1980)

6. Knuth, D.E., Morris, J., Pratt, V.R.: Fast pattern matching in strings. SIAM Jour-
nal on Computing 6(2), 323–350 (1977)

7. Kucherov, G., Noé, L., Roytberg, M.: A unifying framework for seed sensitivity
and its application to subset seeds. Journal of Bioinformatics and Computational
Biology 4(2), 553–569 (2006)

8. Mahmoud, H.M., Smythe, R.T., Régnier, M.: Analysis of Boyer-Moore-Horspool
string-matching heuristic. Random Structures and Algorithms 10(1-2), 169–186
(1997)

9. Marschall, T., Rahmann, S.: Probabilistic arithmetic automata and their applica-
tion to pattern matching statistics. In: Ferragina, P., Landau, G.M. (eds.) CPM
2008. LNCS, vol. 5029, pp. 95–106. Springer, Heidelberg (2008)

10. Marschall, T., Rahmann, S.: Efficient exact motif discovery. Bioinformatics 25(12),
i356–i364 (2009)

11. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings. Cambridge Uni-
versity Press, Cambridge (2002)

12. Schulz, M., Weese, D., Rausch, T., Döring, A., Reinert, K., Vingron, M.: Fast and
adaptive variable order Markov chain construction. In: Crandall, K.A., Lagergren,
J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 306–317. Springer, Heidelberg
(2008)

13. Smythe, R.T.: The Boyer-Moore-Horspool heuristic with Markovian input. Ran-
dom Structures and Algorithms 18(2), 153–163 (2001)

14. Sunday, D.M.: A very fast substring search algorithm. Communications of the
ACM 33(8), 132–142 (1990)

SA-REPC – Sequence Alignment with Regular
Expression Path Constraint

Nimrod Milo, Tamar Pinhas, and Michal Ziv-Ukelson

Department of Computer Science, Ben-Gurion University of the Negev,
Be’er Sheva, Israel

Abstract. In this paper, we define a novel variation on the constrained
sequence alignment problem, the Sequence Alignment with Regular Ex-
pression Path Constraint problem, in which the constraint is given in the
form of a regular expression. Our definition extends and generalizes the
existing definitions of alignment-path constrained sequence alignments
to the expressive power of regular expressions. We give a solution for
the new variation of the problem and demonstrate its application to in-
tegrate microRNA-target interaction patterns into the target prediction
computation. Our approach can serve as an efficient filter for more com-
putationally demanding target prediction filtration algorithms. We com-
pare our implementation for the SA-REPC problem, cAlign, to other
microRNA target prediction algorithms.

1 Motivation

microRNAs are short (19 to 25 nucleotides) RNAs that play a central role in
gene regulation [3,20]. microRNAs interact with other RNAs that carry the
gene informations later expressed in cells. This interaction, called hybridization,
causes suppression of the gene and is based on sequence complementarity (see
Fig. 1). microRNA target prediction is a computational approach towards finding
microRNA-RNA hybridizations which are likely to occur in nature.

Several difficulties challenge microRNA target prediction in animals today.
The detection of microRNA-target hybridization pairs in vivo is complex and,
in fact, only a small fraction of computational predictions have actually been val-
idated in the lab. microRNA target prediction methods and effective biological
validation techniques contribute significantly towards a growing understanding
of microRNA functionality [3]. Initial data indicates that genes which represent
approximately half of our gene sets are targeted by microRNAs and approxi-
mately 148 conserved microRNAs target 30% of all genes [18], where genes are
often regulated by multiple microRNAs [16].

Different characteristics of the microRNA-target hybridization were observed
by [3], some of which serve as a basis for current microRNA target prediction
algorithms. The majority of the hybridization characteristics relate to seeds,
which are short segments of the microRNA. These characteristics fall into 5
classes, as follows:

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 451–462, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

452 N. Milo, T. Pinhas, and M. Ziv-Ukelson

Fig. 1. A typical hybridization between let-7 microRNA and a binding site within the
3’ Untranslated Region of the target hbl-1 mRNA sequence in C. elegans [20]. Note
that the base C typically pairs with G and the base U pairs with A. The seed, which
is the 8 consecutive base pairs, appears on the 5’ side of the microRNA.

1. 5’-end dominant seed: Studies suggest the existence of 6-8 consecutive base
pairs in the 5’-end of the microRNA, commonly referred to as the seed of the
microRNA [5,2]. The 5’ end of the seed is usually unpaired or starts with U.
Additional characteristics of the dominant seed are that there are no wobble
pairs (i.e. a (G:U) base pair) and it ends with A [18].

2. 3’-end compensatory seed: Several studies found that although the 5’-end
dominant seed is important, there is significant evidence that a 3’-end seed
of a microRNA can compensate for a non-perfect 5’-seed base pairing [5,29].
The presence of the 3’-end compensatory seed can replace or supplement the
5’-end seed.

3. Multiplicity: microRNAs have been shown to be capable of functioning in
a collaborative manner. Studies show that microRNA function may depend
on the ability to bind to multiple binding sites on the same 3’ Untranslated
Region [henceforth: UTR] of the target mRNA [29]. Therefore, it is probable
that one microRNA, with a lower level of complementarity, but a multiple-
site target, could have the same regulatory effect as another microRNA,
exhibiting high complementarity to its single-site target.

4. Accessibility of target-mRNA binding site: It has been shown that target site
accessibility plays an important role in the formation of microRNA-target
hybridization [15].The binding site area in the mRNA should be accessible,
allowing the microRNA to bind with it. Also, the secondary structure of the
area surrounding the binding site should contain neither stabilizing (e.g.,
stems) nor destabilizing structural features.

5. Thermodynamics of microRNA-target hybridization: Researchers observed
that microRNA-target hybridization tends to have low free energy, due to the
fact that biomolecular interaction will reach equilibrium when the interaction
is thermodynamically stable [27].

Several approaches toward target prediction exist, the dominant ones being se-
quence complementarity and thermodynamics [21]. While some methods focus on
first finding complementarity, followed by thermodynamic analysis, other meth-
ods use thermodynamics as the initial indicator of microRNA binding site po-
tential. A score is typically assigned to each predicted target; this score can be
useful for target ranking.

Another approach to target prediction uses statistical methods and machine
learning to attempt to generalize characteristics of known microRNA-target

SA-REPC – Sequence Alignment with Regular Expression Path Constraint 453

pairs. The results of these probabilistic models depend on their training data
sets. A training data set which is not diverse enough may cause an insignificant
feature to become a key search criterion in that probabilistic model (e.g. Hidden
Markov Model [henceforth: HMM], neural network or support vector machines
[30]). To our knowledge, there are no existing solutions that use probabilistic
automata for microRNA target prediction.

Among the classes listed above, we note that classes 4 and 5 are the compu-
tational bottlenecks, as they involve the prediction of RNA secondary structure
based on thermodynamics, when taking both the hybridization structure, as well
as self-folding, into account. The complexity of such computations ranges from
O(nm2) (when restricting the size of interior loops and ignoring self-folding of
microRNA and target) [4] and up to O(nm5) [23], where n denotes the length
of the target sequence and m denotes the size of the microRNA. This obser-
vation motivated a line of microRNA target prediction applications that use
complementarity constraints as a front-end filter and apply the expensive ther-
modynamic constraint computation only to the surviving candidates. In most
cases, complementarity was used to identify potential targets, followed by iter-
ative rounds of filtering based on thermodynamics, binding site structure and
conservation. In this work, we propose an expressive and flexible filtration cri-
terion (based on classes 1-3 above) that is more informative than the sequence
complementarity criterion.

Our approach is based on the observation that microRNA-target hybridization
classes 1-3 can be formulated in a simple and flexible constraint via a regular ex-
pression. Thus, below, we define the Sequence Alignment with Regular Expression
Path Constraint [henceforth: SA-REPC] problem, a new variant of alignment-
path constrained sequence alignment and solve it. In addition, we discuss the
possibilities of guided scoring schemes and local alignment. We implement our
approach in a software package, cAlign, and apply it as a fast filter for mi-
croRNA target prediction. Our experimental results show that our predictions
yield a relatively high sensitivity value compared to existing target prediction
tools.

Using our approach has some advantages over other automata-based proba-
bilistic approaches, such as pair HMMs [7]. Commonly used hybridization rules
are based on biological experiments, rather than automatic (supervised or un-
supervised) learning. If the dogma changes (which happens frequently in the
dynamic and relatively new field of microRNA research), we just need to modify
the constraint descriptions and not the algorithm. In contrast to learning-based
algorithms, such a change does not require a rerun of a heavy learning process.
Furthermore, our approach is simple, both in terms of algorithmic complexity
and in terms of ease of implementation. The algorithmic complexity is O(nmt)
for the Deterministic Finite Automaton [henceforth: DFA] used in this applica-
tion, where t denotes the number of states in the automaton used to represent
the hybridization rules (with t ˜m). As far as we know, we are the first to apply
such an automata-based approach to microRNA target prediction filtration.

454 N. Milo, T. Pinhas, and M. Ziv-Ukelson

The rest of the paper proceeds as follows: In Section 3, we define the SA-
REPC problem. In Section 4, we propose a solution to this problem, implemented
as a software package. Then, we describe suggested extensions to the basic al-
gorithm. Finally, in Section 5, we apply the SA-REPC problem to microRNA
target prediction.

2 Preliminaries

Sequence alignment is one of the most basic and well-studied problems in the
Stringology field [9], with numerous applications in computational biology (see
Fig. 2a). Let Σ represent an alphabet and let s denote a scoring matrix, where
s[σ1, σ2] is the score of the pair σ1, σ2 ∈ Σ

⋃{′−′}. The sequence alignment
problem is defined as follows:

Definition 1 (The global sequence alignment problem)
Let S1 and S2 be two strings over an alphabet Σ and let s be a scoring matrix.
A sequence alignment is obtained by inserting ′−′ symbols into S1 and S2, so
that the symbols of the resulting strings can be put in one-to-one correspondence
with each other. The optimal global sequence alignment is a sequence alignment
that has the optimal sum of scores, according to s, over the pairs of symbols that
correspond to each other in the alignment.

The use or meaning of the global sequence alignment is derived from the input
scoring matrix. For instance, if the purpose of the alignment is to compute the
similarity between two sequences then s(σ1, σ2) would carry a relatively good
score if σ1 and σ2 are the same symbol. If, on the other hand, the objective
is to compute the most likely hybridization between two RNA sequences, then
s(σ1, σ2) would carry a good score if σ1 and σ2 can bind to each other.

The pairwise global sequence alignment problem is classically solved as an
optimal path in an alignment grid or an alignment table. There is a one-to-one
correspondence between each alignment of two strings and a single path, referred
to as an alignment path, from the source to the sink nodes in the respective
alignment grid.

Numerous studies suggest the application of additional constraints to sequence
alignment for the purpose of improved speed or accuracy. The additional con-
straint reflects a priori knowledge of the alignment and, therefore, narrows the
problem search space or guides the search towards a preferred solution. We ob-
serve that the types of constraints imposed on sequence alignment appearing in
the literature can be grouped into three categories as follows: in the first category,
the constraint delineates aligned substrings of each of the aligned strings inde-
pendently. Several variants in this category exist, ranging from a string pattern
constraint [28] to a regular expression constraint [1].

In the second category, the constraint delineates the alignment path, rather
than the aligned substrings. This includes simple constraints, such as position
anchoring [24] and k-difference alignment [9], and more sophisticated constraints,
such as spaced seeds [17].

SA-REPC – Sequence Alignment with Regular Expression Path Constraint 455

A G

G U

C

C A

G

G A

C

C

G

G

U U

(a)

A G

G U C

C

A

G

G A

C

C

G

G

U U

(b)

Fig. 2. Examples for global sequence alignment (Def. 1) and SA-REPC (Def. 2) on the
two strings S1 = AGCGCGUU and S2 = GUCAGACG, with a scoring matrix (-1 for
mismatch/indel (space), 1 for match). (a) The maximal score of the global alignment
is -1. (b) Let R be 10310, the maximal score of the constrained global alignment is -3.

In the third category, a context-sensitive scoring scheme is used to influence
and guide the alignment. This includes position-based scoring functions [14] and
pair HMMs, which adapt their scoring scheme via a learning process on a training
data set. HMM is a probabilistic automaton, in which both the target state and
the output of a transition are determined by probabilities. Durbin, et al. [7]
defined the pair HMM which generates an aligned pair of sequences. A common
use of pair HMMs is to calculate the most probable alignment of two sequences,
according to the probabilities of a given pair HMM.

Among the above categories, the new problem we introduce here, denoted
the SA-REPC problem, falls within the alignment-path constrained sequence
alignment (second) category, extending it to include constraints in the form of
regular expressions.

3 Problem Definition of SA-REPC

We give an extended definition of sequence alignment with alignment-path con-
straints by requiring part of the alignment to match a given regular expression
R. An alignment alphabet with respect to a sequence alphabet Σ may be one of
the following sets:

1. Σr = {0, 1}, where 1 denotes a match and 0 a mismatch.
2. Σr = {i, d,m, s}, where i,d,m and s denote the operations insertion, deletion,

match and substitution, respectively.

3. Σr =
{
σ1
σ2

| σ1, σ2 ∈ Σ
⋃{′−′}

}
\
{ ′−′

′−′

}
, where σ1

σ2
represents two aligned

symbols σ1 and σ2. The symbol ′−′ cannot be aligned with itself.

We consider an alignment-path constraint to be a regular expression over an
alignment alphabet (see Fig. 2b). The SA-REPC problem is defined as follows:

Definition 2 (The global SA-REPC problem)
Let S1 and S2 be two strings over an alphabet Σ with lengths n and m, re-
spectively, and let s be a scoring matrix. Let R be a regular expression over an
alignment alphabet Σr. Find an alignment of S1 and S2 such that two conditions
hold:

456 N. Milo, T. Pinhas, and M. Ziv-Ukelson

1. There exists an accepted region in the alignment belonging to LR.
2. The overall score of the alignment, computed according to s, is optimal

among all such alignments.

A symbol of the alignment alphabet may fit multiple aligned pairs of symbols
from the sequence alphabet. For this reason, we define a function f : Σ

⋃{′−′}×
Σ
⋃{′−′} → Σr, which specifies which alignment alphabet symbol fits which

pairs of aligned symbols.
A standard alteration of the above definition yields the local SA-REPC prob-

lem. In the case of local alignment [26], calculation of the optimal score takes
into account part of the alignment of the given input strings.

4 An Algorithm for the SA-REPC Problem

We start by formulating an algorithm for global SA-REPC .
Let AR =

〈
QR, qR

0 , F
R, δR, Σ

〉
be a non-deterministic, finite automaton [hence-

forth: NFA] corresponding to R. We define an NFA A = 〈Q, q0, F, δ,Σ〉 as follows:

1. Q = QR
⋃{qinit, qfinal}.

2. q0 = qinit.
3. F = {qfinal}.
4. δ = δR with the following additions

(a) δ(qinit, a) = {qinit}, ∀a ∈ Σ
(b) δ(qinit, ε) = {qR

0 }
(c) δ(qfinal, a) = {qfinal}, ∀a ∈ Σ
(d) δ(q, ε) = {qfinal}, ∀q ∈ FR

An example of the NFA construction appears in Fig. 3. ε-transitions are then
eliminated from A according to [11].

q0 q1 q2 q3

1

0 / 1 1 1

0

(a)

q0 q1 q2 q3qinit qfinal

Σ
Σ

1

0 / 1 1 1

0

ε ε

(b)

Fig. 3. An example of the NFA construction. (a) An NFA AR for 1∗(1|0)120∗. (b) The
constructed NFA A.

We calculate a dynamic programming table M . Each cell M [i, j] holds |Q|
entries. M [i, j](q) holds the optimal alignment score of S1[1, i] with S2[1, j],
such that there exists a reading in A of the alignment that reached q. If no such
alignment exists, then the value of the entry M [i, j](q) is null. The entry of qinit
holds the optimal unconstrained alignment score of S1[1, i] with S2[1, j]. The
entry of qfinal is the optimal alignment score of S1[1, i] with S2[1, j], such that a

SA-REPC – Sequence Alignment with Regular Expression Path Constraint 457

prefix of the alignment belongs to LR. The recurrence formula for the problem
is as follows1:

M [0, 0](q) =
{

0 ∀q = qinit

null otherwise (4.1)

M [i, j](q) = opt

⎧⎨
⎩

opt {M [i − 1, j − 1](p) + s[S1[i], S2[j]] | q ∈ δ(p, f(S1[i], S2[j]))}
opt {M [i − 1, j](p) + s[S1[i],′ −′] | q ∈ δ(p, f(S1[i],′ −′))}
opt {M [i, j − 1](p) + s[′−′, S2[j]] | q ∈ δ(p, f(′−′, S2[j]))}

(4.2)

If i = 0 (or j = 0), the terms above corresponding to i − 1 (or to j − 1) are
ignored. The value of M [n,m](qfinal) is the score of the best alignment containing
a region belonging to LR.

The above algorithm can be easily modified for local SA-REPC within the
same time and space complexities. This is achieved by adding 0 as an additional
term to the optimum calculation in Eq. (4.2).

Time and Space Complexity Analysis

Using the recurrence formula yields a run time complexity of O(mnt2) when the
automaton representing R is non-deterministic and O(mnt) when the automaton
representing R is deterministic. The algorithm computes mn cells. According to
Eq. (4.2) above, in the case of an NFA, the calculation of M [i, j](q) is performed
for t states; each is calculated according to at most t values. In the case of a DFA,
each state has exactly one outgoing transition with a specific alignment alphabet
symbol; therefore, the overall amount of states included in the calculation of
M [i, j] is O(t).

The space required in the näıve approach, in which the entire dynamic pro-
gramming table is kept in memory, is O(mnt). If only the value of the optimal
alignment is required, then it suffices to keep min{n,m} + 1 cells, each having
t+2 entries. Thus, the space requirement is O(min{n,m}t). The Hirschberg ap-
proach [10] can be applied to our algorithm in order to obtain a space complexity
of O(min{m,n}t), without sacrificing its run time complexity and allowing the
alignment trace to be recovered.

4.1 Scoring Scheme Refinement for Constraint Matching Region

The region of an alignment that matches a regular expression may be scored more
precisely by applying, to that segment, a scoring scheme which differs from the
scoring matrix that is applied to the rest of the alignment. We suggest taking the
regular expression into account when scoring the above region (e.g. the accepted
region). Another scoring matrix is introduced, that bares additional knowledge,
relevant to the expected behavior of the accepted region.

1 The optimum value of an empty set is null. Arithmetic operations also yield a null
value if one of their arguments is null.

458 N. Milo, T. Pinhas, and M. Ziv-Ukelson

Example 1. Consider the case where the regular expression is

R =
(

A
A

) ((
A
T

)
|
(

A
C

)) (−
G

)∗ (
C
C

)

and the corresponding alignment substrings are AACC and ATGGGGGGCC.
If R is used without modifying the scoring scheme to reflect the expected indels
and substitutions, then the overall score would not reflect the quality of the
alignment. Moreover, a certain substitution may be preferred over others within
the accepted region, deserving a better score in the scoring matrix. In addition,
there may be biological motivation to leniently score

(−
G

)
within the accepted

region, because e.g. that gap may represent a region that was extracted during
replication and does not significantly effect the similarity of the sequences.

Definition 3 (The score-guided global SA-REPC problem)
Let S1 and S2 be two strings over a sequence alphabet Σ with lengths n and m,
respectively, and let s1 and s2 be scoring matrices. Let R be a regular expres-
sion over an alignment alphabet. Find an alignment of S1 and S2 such that two
conditions hold:

1. There exists an accepted region in the alignment belonging to LR.
2. The score of the alignment, computed over the entire alignment, is optimal

among all such alignments. The score is the sum of the score of the ac-
cepted region, according to s1, and the scores of the remaining regions of the
alignment of S1 and S2, according to s2.

We change the scoring contribution of the accepted region in the global optimal
alignment computation by applying s1 for all aligned symbol pairs that are read
by transitions which do not equal the transition from qinit or qfinal to itself.
Thus, the score function s applied in Eq. (4.2) is either s1 or s2, according to
the relevant transition.

5 The Application of SA-REPC to microRNA Target
Prediction

In this section, we describe the application of SA-REPC to microRNA target
prediction. In the context of microRNA target prediction, the aligned sequences
are a microRNA and a 3’UTR, which have lengths approximately m = 25 and
n = 2000 respectively. The RE constraint we are using for this application
(below) has approximately t = 45 states.

We suggest applying our tool as a filter before applying more expensive
algorithms to the surviving candidates. We customized our application to per-
form semi-local alignment, in order to get the best alignments of the entire
microRNA with parts of the 3’UTR. A discussion of the constraint design and
our experimental results follow.

SA-REPC – Sequence Alignment with Regular Expression Path Constraint 459

5.1 Utilizing Path-constrained Semi-local Alignment for microRNA
Target Prediction

In Section 1, we described the characteristics of microRNA-target hybridization
(see Fig. 1). We now use these characteristics in the design of a regular expres-
sion constraint for target prediction. Many of the features of hybridization of mi-
croRNA with mRNA targets can be represented via a regular expression. We show
that regular-expression-typealignment-path constraints provide a simple and flex-
ible way to formulate multiple hybridization features in the context of target pre-
diction. We can translate some features from the learning of hybridizations into
patterns. The 5’ dominant seed can be described by a simple regular expression

(
0 | A

U

)(
G
C
| C
G
| A
U
| U
A

)6−8

(5.1)

We also describe the constraints on the middle section of the hybridization.
We do not allow single, non-stacked pairs in the middle of the hybridization,
since we assume that they are rare, nor do we allow a gap size greater than 5 for
thermodynamic reasons. This section has a limited length, since the length of the
microRNA is bounded. Despite this property, we preferred a regular expression
that allows unlimited length, by including a Kleene star, in order to get a shorter
expression than the one yielded by an enumeration and, thus, to minimize the
number of states t, resulting in better performance. The part in the hybridization
which is not the seed can be expressed as:

(
00−31100−2)∗ (5.2)

In the case of a non-perfect 5’ seed, there is a 3’ compensatory seed. We assume
that the 3’ compensatory seed contains at least 4 matches and ends with, at most,
2 mismatches [2]. As opposed to the 5’ dominant seed description, we allow the
3’ compensatory seed to have wobble pairs. The form of the 3’ compensatory
seed expression is:

14−500−2 (5.3)

An expression for the non-perfect 5’ seed, which complements the 3’ compen-
satory seed, can be composed as a union of 10 possibilities. The non-perfect 5’
seed contains at least 6 positions, with either 1 or 2 mismatches. Position 1 is a
mismatch and positions 2 and 7 must match. Hence, the non-perfect 5’ seed has
the following form:

01 (0111 | 1011 | 1101 | 1110 | 0011 | 0101 | 0110 | 1001 | 1010 | 1100)1 (5.4)

5.2 Test Results

We implemented the algorithm in a tool called cAlign for microRNA target pre-
diction. cAlign is implemented in Java 1.6 and Python 2.6. Our data test set con-
sists of 873 verified binding sites of microRNAs on human 3’UTRs, collected from
the miRecords database [31]. These verified targets involve 99 microRNAs from

460 N. Milo, T. Pinhas, and M. Ziv-Ukelson

Fig. 4. A comparison between cAlign and other target prediction tools
[16,15,30,14,25,19,22]. The results for the additional target prediction tools are taken
from miRecords [31]. Due to space restrictions, additional information regarding the
other target prediction tools will be given in the extended version of this paper.

mirBase [8] and 640 human genes from Ensembl v56 [12]. Most genes have several
transcripts, which yield a total of 2183 transcripts. We performed constrained se-
quence alignment, using the regular expression described in Subsection 5.1.

Each microRNA was aligned to the 3’UTR of each gene in a semi-local align-
ment. For these alignments, we used a scoring matrix correlating to the number
of hydrogen bonds in a base pair. This scoring matrix assigns the values – 3 for
a (G:C) pair, 2 for a (A:U) pair, 1.5 for a (G:U) pair and -1 otherwise. For each
microRNA-3’UTR pair, we calculated the optimal semi-local alignment score
and calculated a multiplicity value (i.e. we counted the number of different hy-
bridizations within a small delta from the optimal score). We next randomly
generated 1000 3’UTR sequences over the di-nucleotide distribution of the com-
pared 3’UTR using UShuffle [13]. We counted the number of random scores
which were greater than the hybridization score and calculated their average. A
hybridization is statistically meaningful if the number of random sequences with
a better score is less than 10% (specificity of 90%) and its score is higher than
the average score produced according to its randomly generated sequences. We
consider a hybridization to be well-matched if it has a relatively high multiplicity
(above average) or if it is statistically meaningful.

Using the above procedure, we identified 660 of the verified targets (75.6%).
The comparison of our results to the results of other algorithms on the same
data set is shown in Fig. 4. These results show that our predictions on the test
data set rank in sensitivity between PITA [15] and RNAHybrid [25].

SA-REPC – Sequence Alignment with Regular Expression Path Constraint 461

6 Conclusions and Open Problems

We extended the alignment-path constrained sequence alignment to handle con-
straints in the form of regular expressions. We have demonstrated the ease of
use of our SA-REPC algorithm in one of many possible applications of this
problem, namely as an efficient filter for microRNA target prediction. In future,
our approach may be extended to more general language classifications, such
as grammars. An interesting open problem might be the application of some
of the techniques previously used to obtain sub-quadratic sequence alignment,
such as Four Russians [9] and acceleration by compression [6], to reduce the time
complexity of SA-REPC .

Acknowledgments

The authors would like to thank Isana Vexler-Lublinsky for her helpful com-
ments regarding microRNA target prediction and Dr. Chen Keasar for a helpful
discussion. The work of Nimrod Milo and Michal Ziv-Ukelson was partially sup-
ported by the Frankel Center for Computer Science at Ben-Gurion University of
the Negev. The authors are very grateful to Ethelea Katzenell (Tamar’s mom)
for carefully editing the manuscript.

References

1. Arslan, A.: Regular expression constrained sequence alignment. Journal of Discrete
Algorithms 5(4), 647–661 (2007)

2. Bartel, D.: MicroRNAs: target recognition and regulatory functions. Cell 136(2),
215–233 (2009)

3. Bentwich, I.: Prediction and validation of microRNAs and their targets. FEBS
letters 579(26), 5904–5910 (2005)

4. Bernhart, S., Tafer, H., Mückstein, U., Flamm, C., Stadler, P., Hofacker, I.: Parti-
tion function and base pairing probabilities of RNA heterodimers. Algorithms for
Molecular Biology 1(1), 3 (2006)

5. Brennecke, J., Stark, A., Russell, R., Cohen, S.: Principles of MicroRNA–Target
Recognition. PLoS Biol. 3(3), e85 (2005)

6. Crochemore, M., Landau, G., Ziv-Ukelson, M.: A Subquadratic Sequence Align-
ment Algorithm for Unrestricted Scoring Matrices. SIAM Journal on Comput-
ing 32, 1654 (2003)

7. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis.
Cambridge Univ. Press, Cambridge (1998)

8. Griffiths-Jones, S., Grocock, R., van Dongen, S., Bateman, A., Enright, A.: miR-
Base: microRNA sequences, targets and gene nomenclature. Nucleic acids re-
search 34(Database Issue), D140 (2006)

9. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (January 1997)

10. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J.
ACM 24(4), 664–675 (1977)

11. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to automata theory, languages,
and computation. Addison-Wesley, Reading (2006)

462 N. Milo, T. Pinhas, and M. Ziv-Ukelson

12. Hubbard, T., Andrews, D., Caccamo, M., Cameron, G., Chen, Y., Clamp, M.,
Clarke, L., Coates, G., Cox, T., Cunningham, F., et al.: Ensembl 2005. Nucleic
Acids Research 33(Database Issue), D447 (2005)

13. Jiang, M., Anderson, J., Gillespie, J., Mayne, M.: uShuffle: A useful tool for shuf-
fling biological sequences while preserving the k-let counts. BMC bioinformat-
ics 9(1), 192 (2008)

14. John, B., Sander, C., Marks, D., et al.: Prediction of human microRNA targets.
Methods In Molecular Biology 342, 101 (2006)

15. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., Segal, E.: The role of site acces-
sibility in microRNA target recognition. Nature genetics 39(10), 1278–1284 (2007)

16. Krek, A., Grün, D., Poy, M., Wolf, R., Rosenberg, L., Epstein, E., MacMenamin,
P., da Piedade, I., Gunsalus, K., Stoffel, M., et al.: Combinatorial microRNA target
predictions. Nature genetics 37(5), 495–500 (2005)

17. Kucherov, G., Noé, L., Roytberg, M.: Multiseed lossless filtration. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 51–61 (2005)

18. Lewis, B., Burge, C., Bartel, D.: Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA targets.
Cell 120(1), 15–20 (2005)

19. Lewis, B., Shih, I., Jones-Rhoades, M., Bartel, D., Burge, C.: Prediction of mam-
malian microRNA targets. Cell 115(7), 787–798 (2003)

20. Lin, S., Johnson, S., Abraham, M., Vella, M., Pasquinelli, A., Gamberi, C., Got-
tlieb, E., Slack, F.: The C. elegans hunchback homolog, hbl-1, controls temporal
patterning and is a probable microRNA target. Developmental Cell 4(5), 639–650
(2003)

21. Maziere, P., Enright, A.: Prediction of microRNA targets. Drug discovery to-
day 12(11-12), 452–458 (2007)

22. Miranda, K., Huynh, T., Tay, Y., Ang, Y., Tam, W., Thomson, A., Lim, B., Rigout-
sos, I.: A pattern-based method for the identification of MicroRNA binding sites
and their corresponding heteroduplexes. Cell 126(6), 1203–1217 (2006)

23. Mückstein, U., Tafer, H., Bernhard, S., Hernandez-Rosales, M., Vogel, J., Stadler,
P., Hofacker, I.: Translational control by RNA-RNA interaction: Improved compu-
tation of RNA-RNA binding thermodynamics. BioInformatics Research and De-
velopmentBIRD 13, 114–127 (2008)

24. Myers, G., Selznick, S., Zhang, Z., Miller, W.: Progressive multiple alignment with
constraints. Journal of Computational Biology 3(4), 563–572 (1996)

25. Rehmsmeier, M., Steffen, P., Hochsmann, M., Giegerich, R.: Fast and effective
prediction of microRNA/target duplexes. RNA 10(10), 1507–1517 (2004)

26. Smith, T., Waterman, M.: Identification of common molecular subsequences. Jour-
nal of molecular biology 147(1), 195–197 (1981)

27. Stark, A., Brennecke, J., Russell, R., Cohen, S.: Identification of Drosophila Mi-
croRNA Targets. PLoS Biol. 1(3), e60 (2003)

28. Tang, C., Lu, C., Chang, M., Tsai, Y., Sun, Y., Chao, K., Chang, J., Chiou, Y.,
Wu, C., Chang, H., et al.: Constrained multiple sequence alignment tool develop-
ment and its application to RNase family alignment. Journal of Bioinformatics and
Computational Biology 1(2), 267–288 (2003)

29. Vella, M., Reinert, K., Slack, F.: Architecture of a validated microRNA: target
interaction. Chemistry & Biology 11(12), 1619–1623 (2004)

30. Wang, X., El Naqa, I.: Prediction of both conserved and nonconserved microRNA
targets in animals. Bioinformatics 24(3), 325 (2008)

31. Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., Li, T.: miRecords: an integrated
resource for microRNA-target interactions. Nucleic Acids Research (2008)

CD-Systems of
Stateless Deterministic R(1)-Automata
Accept All Rational Trace Languages�

Benedek Nagy1 and Friedrich Otto2

1 Department of Computer Science, Faculty of Informatics
University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary

nbenedek@inf.unideb.hu
2 Fachbereich Elektrotechnik/Informatik, Universität Kassel

34109 Kassel, Germany
otto@theory.informatik.uni-kassel.de

Abstract. We study cooperating distributed systems (CD-systems) of
restarting automata that are very restricted: they are deterministic, they
cannot rewrite, but only delete symbols, they restart immediately af-
ter performing a delete operation, they are stateless, and they have a
read/write window of size 1 only, that is, these are stateless determin-
istic R(1)-automata. We relate the class of languages that are accepted
by mode = 1 computations of CD-systems of such automata to other
well-studied language classes, showing in particular that it only consists
of semi-linear languages, and that it includes all rational trace languages.

1 Introduction

Cooperating distributed systems (CD-systems) of restarting automata have been
defined in [6], and in [7] various types of deterministic CD-systems of restarting
automata have been studied. As expected CD-systems are much more expressive
than their component automata themselves. For example, already the marked
copy language Lcopy = {wcw | w ∈ {a, b}∗ } is accepted by a CD-system con-
sisting of only two deterministic R-automata, although this language is not even
growing context-sensitive, that is, it is not even accepted by any determinis-
tic RRWW-automaton (see, e.g., [8]). On the other hand, stateless restarting
automata, that is, restarting automata with only a single state, have been intro-
duced and studied in [4]. In the monotone case and in the deterministic case, they
are just as expressive as the corresponding restarting automata with states, pro-
vided that auxiliary symbols are available. Without the latter, however, stateless
restarting automata are in general much less expressive than their corresponding
counterparts with states.

Here we study CD-systems of deterministic restarting automata that are state-
less and that have a read/write window of size 1 only. In fact, we concentrate

� This work was supported by grants from the Balassi Intézet Magyar Ösztönd́ıj Bi-
zottsága (MÖB) and the Deutsche Akademischer Austauschdienst (DAAD).

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 463–474, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

464 B. Nagy and F. Otto

on CD-systems of stateless deterministic R-automata with window size 1. The
restarting automata of this type are really very restricted, and accordingly their
expressive power is very limited. However, combining several such automata into
a CD-system yields a device that is suprizingly expressive as we will see. We show
that in mode = 1 these systems only accept languages with semi-linear Parikh
image, including all regular languages, but that they also accept some languages
that are not even context-free. In fact, these systems accept all rational trace
languages. Accordingly they can also be interpreted as a refinement of the so-
called multiset finite automata of [2], which accept the commutative closures of
all regular languages. Actually we present a syntactic restriction for CD-systems
of stateless deterministic R-automata with window size 1 such that the corre-
sponding systems characterize the class of rational trace languages. These sys-
tems yield an effective calculus for rational trace languages in that from systems
of this form for rational trace languages S1 and S2 we can effectively construct
systems for the rational trace language S1 ∪ S2, S1 · S2, and S∗

1 .

2 Stateless R-Automata with Constant Window Size

Stateless types of restarting automata were introduced in [4]. Here we are only
interested in the most restricted form of them, the stateless R-automaton. A
stateless R-automaton is a one-tape machine that is described by a 5-tuple M =
(Σ, c, $, k, δ), where Σ is a finite alphabet, the symbols c, $ �∈ Σ serve as markers
for the left and right border of the work space, respectively, k ≥ 1 is the size of
the read/write window, and δ is the transition relation that associates a finite set
of transition steps to each possible content u of the read/write window. There are
three types of transition steps: move-right steps (MVR), which shift the window
one step to the right, combined rewrite/restart steps, which delete one or more
symbols from the content u of the window, thereby shortening the tape, and
place the window over the left end of the tape, and accept steps (Accept), which
cause the automaton to halt and accept.

A configuration of M is described by a pair (α, β), where either α = ε (the
empty word) and β ∈ {c} · Σ∗ · {$} or α ∈ {c} · Σ∗ and β ∈ Σ∗ · {$}; here
αβ is the current content of the tape, and it is understood that the head scans
the first k symbols of β or all of β when |β| ≤ k. A restarting configuration
is of the form (ε, cw$), where w ∈ Σ∗; to simplify the notation a restarting
configuration (ε, cw$) is usually simply written as cw$. By
M we denote the
single-step computation relation of M , and
∗

M denotes the reflexive transitive
closure of
M .

The automaton M proceeds as follows. Starting from an initial configura-
tion cw$, the window moves right until a configuration of the form (cx, uy$) is
reached such that δ(u) contains a rewrite step that rewrites u to v by deleting
some symbols, that is, v ∈ δ(u). If this particular transition is now chosen, then
the latter configuration is transformed into the restarting configuration cxvy$.
This computation, which is called a cycle, is expressed as w
c

M xvy. A com-
putation of M now consists of a finite sequence of cycles that is followed by a

CD-Systems of Stateless Deterministic R(1)-Automata 465

tail computation, which consists of a sequence of move-right operations possibly
followed by an accept step. An input word w ∈ Σ∗ is accepted by M , if there is
a computation of M which starts with the initial configuration cw$, and which
finishes by executing an accept step. By L(M) we denote the language consisting
of all words accepted by M .

A stateless R-automaton is called deterministic if δ(u) contains at most one
operation for all possible values of u. The prefix det- is used to denote determinis-
tic types of restarting automata. In [4] it is shown that the class L(stl-det-mon-R)
of languages that are accepted by stateless deterministic R-automata that are in
addition monotone properly contains the class REG of all regular languages, but
that it is a proper subclass of the class DCFL of all deterministic context-free
languages.

Here we are interested in stateless R-automata with a fixed window size. For
each positive integer k, we denote by stl-R(k) the class of stateless R-automata
that have a read/write window of size k. For stateless deterministic R-automata
with window size 1 we introduce the following notions that we will repeatedly
use throughout the paper.

Definition 1. Assume that M = (Σ, c, $, 1, δ) is a stateless deterministic R(1)-
automaton. Then we can partition the alphabet Σ into four disjoint subalphabets:

(1.) Σ1 = { a ∈ Σ | δ(a) = MVR }, (3.) Σ3 = { a ∈ Σ | δ(a) = Accept },
(2.) Σ2 = { a ∈ Σ | δ(a) = ε }, (4.) Σ4 = { a ∈ Σ | δ(a) = ∅ }.

Thus, Σ1 is the set of letters that M just moves across, Σ2 is the set of letters
that M deletes, Σ3 is the set of letters which cause M to accept, and Σ4 is the
set of letters on which M will get stuck.

Then the following characterization is easily established.

Proposition 1. Let M = (Σ, c, $, 1, δ) be a stateless deterministic R(1)-auto-
maton, and assume that the subalphabets Σ1, Σ2, Σ3, Σ4 are defined as above.
Then the simple language S(M) of words accepted by M in tail computations is
characterized as

S(M) =

⎧⎨
⎩
Σ∗, if δ(c) = Accept,
Σ∗

1 ·Σ3 ·Σ∗, if δ(c) = MVR and δ($) �= Accept,
Σ∗

1 · ((Σ3 ·Σ∗) ∪ {ε}), if δ(c) = MVR and δ($) = Accept,

and the language L(M) is characterized as

L(M) =

⎧⎨
⎩
Σ∗, if δ(c) = Accept,
(Σ1 ∪Σ2)∗ ·Σ3 ·Σ∗, if δ(c) = MVR and δ($) �= Accept,
(Σ1 ∪Σ2)∗ · ((Σ3 ·Σ∗) ∪ {ε}), if δ(c) = MVR and δ($) = Accept.

It is easily seen that a stateless finite-state acceptor with input alphabet Σ
accepts a language of the form Σ∗

0 , where Σ0 is a subalphabet of Σ. Thus, it
follows that a language L is accepted by a stateless deterministic R(1)-automaton

466 B. Nagy and F. Otto

that only accepts on reaching the right delimiter $, if and only if it is accepted
by a stateless finite-state acceptor.

For each n ≥ 1, the Dyck language D′∗
n over n pairs of brackets (see, e.g., [1]) is

accepted by a stateless deterministic R(2)-automaton. Further, it can be shown
that these automata are necessarily monotone (see, e.g., [4]), which implies that
L(stl-det-R(2)) ⊆ DCFL. Actually this inclusion is a proper one, as shown by the
following result.

Lemma 1. For each integer k ≥ 1, the regular language Lk = { (abk)i | i ≥ 0 }
satisfies Lk ∈ L(stl-det-R(k + 1)) � L(stl-det-R(k)).

Thus, the language classes (L(stl-det-R(k)))k≥1 form an infinite strictly increas-
ing sequence, where for all k ≥ 2, the class L(stl-det-R(k)) is incomparable under
inclusion to the class REG of regular languages. In [5] a non-context-free language
L

(ϕ)
expo is presented that is accepted by a stateless deterministic R-automaton of

window size 9. It follows that, for all k ≥ 9, the class L(stl-det-R(k)) is incom-
parable under inclusion to the class CFL of context-free languages. What is the
smallest integer k such that the class L(stl-det-R(k)) contains a non-context-free
language?

3 CD-Systems of Stateless Deterministic R-Automata
with Window Size 1

Cooperating distributed systems of restarting automata were introduced and
studied in [6]. Here we only consider a very restricted version: cooperating dis-
tributed systems of stateless deterministic R-automata (or stl-det-local-CD-R-
systems for short in accordance with the notation introduced in [7]). Such a
system consists of a finite collection M = ((Mi, σi)i∈I , I0) of stateless determin-
istic R-automata Mi = (Σ, c, $, k, δi) (i ∈ I), successor relations σi ⊆ I (i ∈ I),
and a subset I0 ⊆ I of initial indices. Here it is required that I0 �= ∅, that
σi �= ∅ for all i ∈ I, and that i �∈ σi for all i ∈ I. Various modes of operation
have been introduced and studied, but here we are only interested in mode = 1
computations.

A computation of M in mode = 1 on an input word w proceeds as follows.
First an index i0 ∈ I0 is chosen nondeterministically. Then the R-automaton
Mi0 starts the computation with the initial configuration cw$, and executes a
single cycle. Thereafter an index i1 ∈ σi0 is chosen nondeterministically, and Mi1

continues the computation by executing a single cycle. This continues until, for
some l ≥ 0, the machine Mil

accepts. Should at some stage the chosen machine
Mil

be unable to execute a cycle or to accept, then the computation fails. By
L=1(M) we denote the language that the stl-det-local-CD-R-system M accepts
in mode = 1. It consists of all words w ∈ Σ∗ that are accepted by M in mode
= 1 as described above. Finally, L=1(stl-det-local-CD-R(i)) denotes the class of
languages that are accepted by mode = 1 computations of stl-det-local-CD-R-
systems with window size i. The following example illustrates the expressive
power of these systems.

CD-Systems of Stateless Deterministic R(1)-Automata 467

Example 1. The language Lcopy = {wcw | w ∈ {a, b}∗ } is not even growing
context-sensitive (see, e.g., [8]). However, Lcopy ∈ L=1(stl-det-local-CD-R(2)), as
it is accepted by the mode = 1 computations of the following stl-det-local-CD-R-
system M = ((Mi, σi)i∈I , I0). Here I = {a, b,−,+}, I0 = {a, b,+}, σa = {−} =
σb, σ− = {a, b,+}, σ+ = {−}, and Ma, Mb, M−, and M+ are given by the
following transition functions:

Ma : (1.) δa(ca) = MVR,
(2.) δa(xy) = MVR for all x ∈ {a, b} and y ∈ {a, b, c},
(3.) δa(ca) = c,

Mb : (4.) δb(cb) = MVR,
(5.) δb(xy) = MVR for all x ∈ {a, b} and y ∈ {a, b, c},
(6.) δb(cb) = c,

M− : (7.) δ−(cx) = c for all x ∈ {a, b},
M+ : (8.) δ+(cc) = MVR,

(9.) δ+(c$) = Accept.

We now concentrate on the class of CD-systems of stateless deterministic R-
automata of window size 1. As shown by Proposition 1 stateless deterministic
R-automata of window size 1 can only accept very special regular languages. So
it is certainly of interest to investigate the expressive power of CD-systems of
restarting automata of this very restricted form.

Proposition 2. The Dyck language D′∗
1 is accepted by a CD-system of stateless

deterministic R-automata of window size 1 working in mode = 1.

Proof. Let M = ((Mi, σi)i∈I , I0), where I = {a, b,+}, I0 = {a,+}, σa = {b},
σb = {a,+}, σ+ = {a}, and Ma, Mb, and M+ are the stateless deterministic R-
automata of window size 1 that are given by the following transition functions:

Ma : (1.) δa(c) = MVR, Mb : (3.) δb(c) = MVR, M+ : (6.) δ+(c) = MVR,
(2.) δa(a) = ε, (4.) δb(a) = MVR, (7.) δ+($) = Accept.

(5.) δb(b) = ε,

Let w ∈ {a, b}∗ be given as input. The automaton M+ accepts the empty word
and rejects (that is, gets stuck on) all other inputs. If w �= ε, then the compu-
tation starts with Ma. If w = aw1, then Ma simply deletes the first occurrence
of a in w, otherwise, it gets stuck. Then Mb takes over, which deletes the first
occurrence of the letter b, provided |w1|b > 0. Now this sequence consisting of
two cycles is repeated until either the empty word is reached, and then the com-
putation finishes with M+ accepting, or until a non-empty word is reached that
does not start with the letter a, or that does not contain the letter b, and then
the computation gets stuck. It follows that L=1(M) = D′∗

1 . �

Also the following result is easily shown.

Proposition 3. The language Labc = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c ≥ 0 }
is accepted by a CD-system of stateless deterministic R-automata of window
size 1 working in mode = 1.

468 B. Nagy and F. Otto

On the other hand, all regular languages are accepted by stl-det-local-CD-R(1)-
systems working in mode = 1.

Proposition 4. REG � L=1(stl-det-local-CD-R(1)).

Proof. Let L ⊆ Σ∗ be a regular language, and let A = (Q,Σ, p0, F, δ) be a
complete deterministic finite-state acceptor for L. From A we construct a stl-
det-local-CD-R(1)-system M = ((Mi, σi)i∈I , I0) as follows:

– The set of indices is I = (Q×Σ)∪ (Q′×Σ)∪{+}, where Q′ = { q′ | q ∈ Q }
is a copy of Q such that Q ∩Q′ = ∅,

– the set of initial indices is I0 =
{{ (p0, a) | a ∈ Σ }, if ε �∈ L,
{ (p0, a) | a ∈ Σ } ∪ {+}, if ε ∈ L,

– the successor relations are defined by

• σ(q,a) =

⎧⎪⎪⎨
⎪⎪⎩

{ (δ(q, a), b) | b ∈ Σ } ∪ {+}, if δ(q, a) �= q and δ(q, a) ∈ F,
{ (δ(q, a), b) | b ∈ Σ }, if δ(q, a) �= q and δ(q, a) �∈ F,
{ (q′, b) | b ∈ Σ } ∪ {+}, if δ(q, a) = q and q ∈ F,
{ (q′, b) | b ∈ Σ }, if δ(q, a) = q and q �∈ F,

• σ(q′,a) =
{{ (δ(q, a), b) | b ∈ Σ } ∪ {+}, if δ(q, a) ∈ F,
{ (δ(q, a), b) | b ∈ Σ }, if δ(q, a) �∈ F,

• σ+ = { (p0, a) | a ∈ Σ },
– and the stl-det-R(1)-automata M(q,a), M(q′,a), and M+ are defined by the

following transition functions:

M(q,a) : δ(q,a)(c) = MVR, M(q′,a) : δ(q′,a)(c) = MVR, M+ : δ+(c) = MVR,

δ(q,a)(a) = ε, δ(q′,a)(a) = ε, δ+($) = Accept.

Then it can be checked easily that the accepting mode = 1 computations of M
correspond one-to-one to the accepting computations of the finite-state accep-
tor A. Thus, L = L(A) = L=1(M) holds. �

Next we introduce a normal form for stl-det-local-CD-R(1)-systems.

Definition 2. A stl-det-local-CD-R(1)-system M = ((Mi, σi)i∈i, I0) is in nor-
mal form, if it satisfies the following three conditions for all i ∈ I, where
Σ

(i)
1 , Σ

(i)
2 , Σ

(i)
3 , Σ

(i)
4 is the partitioning of alphabet Σ from Definition 1 for the

automaton Mi :

(1.) |Σ(i)
2 | ≤ 1, (2.) δi(c) = MVR and Σ

(i)
3 = ∅, (3.) Σ(i)

2 = ∅, if δi($) = Accept.

If M is in normal form, and Σ
(2)
i = ∅ and δi($) �= Accept for some index i,

then Mi cannot be used in any accepting computation of M, that is, we could
simply drop Mi from M. Hence, we can assume that δi($) = Accept if and only
if Σ(2)

i = ∅.
By splitting each component automaton Mi of a stl-det-local-CD-R(1)-system

M into |Σ(i)
2 |+1 many parts, M (a)

i for a ∈ Σ
(i)
2 , and M

(+)
i , where the former is

responsible for executing the cycles of Mi in which an occurrence of the letter a
is deleted, while the latter takes care of the accepting tail computations of Mi,
we can prove the following technical result.

CD-Systems of Stateless Deterministic R(1)-Automata 469

Lemma 2. From a stl-det-local-CD-R(1)-system M one can construct a stl-det-
local-CD-R(1)-system M′ in normal form such that L=1(M′) = L=1(M).

Our next result implies that L=1(stl-det-local-CD-R(1)) only contains semi-linear
languages, that is, if L ⊆ Σ∗ belongs to this language class, and if |Σ| = n, then
the Parikh image ψ(L) of L is a semi-linear subset of Nn.

Theorem 1. Each language L ∈ L=1(stl-det-local-CD-R(1)) contains a regular
sublanguage E such that ψ(L) = ψ(E) holds. In fact, a finite-state acceptor for
E can be constructed effectively from a stl-det-local-CD-R(1)-system for L.

Proof. Let M = ((Mi, σi)i∈I , I0) be a stl-det-local-CD-R(1)-system over Σ, and
let L = L=1(M). By Lemma 2 we can assume that M is in normal form. From
M we construct a nondeterministic finite-state acceptor (NFA) A over Σ such
that the language L(A) is letter-equivalent to L.

For each index i ∈ I, let Mi = (Σ, c, $, 1, δi), and let Σ = Σ
(i)
1 ∪Σ(i)

2 ∪Σ(i)
3 ∪

Σ
(i)
4 be the partitioning of Σ associated with Mi (see Definition 1). As M is in

normal form, we see that Σ(i)
3 = ∅ and |Σ(i)

2 | ≤ 1 for each i ∈ I. Further, we
know that δi(c) = MVR, and δi($) = Accept if and only if Σ(i)

2 = ∅.
We define an NFA A = (Q,Σ, q0, F, δA) with ε-transitions as follows:

– The set of states Q and the set of final states F are defined by

Q = I ∪ {q0} ∪ { qΔ | Δ ⊆ Σ } and F = { qΔ | Δ ⊆ Σ }.
– The transition relation δA is defined by:

(1) δA(q0, ε) = I0,

(2) δA(i, a) = σi for all i ∈ I such that a ∈ Σ
(i)
2 ,

(3) δA(i, ε) = {q
Σ

(i)
1
} for all i ∈ I such that δi($) = Accept,

(4) δA(qΔ, a) = {qΔ} for all Δ ⊆ Σ and a ∈ Δ.

Obviously L(A) is a regular language over Σ. It remains to prove that L(A) is
a sublanguage of L = L=1(M) that is letter-equivalent to L. We first establish
the following related technical result.

Claim 1. If w = w0
c
Mi1

w1
c
Mi2

· · ·
c
Mis

ws
∗
Mis+1

Accept is a mode = 1
computation of M, then there exists a word z ∈ Σ∗ such that i1z
∗

A q ∈ F
holds, and ψ(z) = ψ(w).

Proof. We proceed by induction on the number s of cycles in the above com-
putation. If s = 0, then w = ws is accepted by Mi1 through a tail computation.
Thus, w ∈ Σ

(i1)
1

∗
and δi1($) = Accept. Hence, A can perform the computation

i1w
(3)
A q

Σ
(i1)
1

w
(4)
A

∗
q
Σ

(i1)
1

∈ F. Thus, A accepts starting from i1w.

If w = xay
c
Mi1

xy, then x ∈ Σ
(i1)
1

∗
, a ∈ Σ

(i1)
2 , and i2 ∈ σi1 . Thus, A can

perform the step i1axy
(2)
A i2xy. From the induction hypothesis we see that

470 B. Nagy and F. Otto

there exists a word z1 ∈ Σ∗ that is accepted by A starting from the configuation
i2z1, and that is letter-equivalent to w1 = xy. Hence, the word z = az1 is
accepted by A starting from the configuration i1az1, and az1 is letter-equivalent
to axy and therewith to w = xay. This completes the proof of Claim 1. �

If w ∈ L=1(M), then there exists an accepting mode = 1 computation of M
of the form w = w0
c

Mi1
w1
c

Mi2
· · ·
c

Mis
ws
∗

Mis+1
Accept. Then i1 ∈ I0,

and by Claim 1 there exists a word z ∈ Σ∗ such that z is letter-equivalent
to w, and A accepts starting from the configuration i1z. But then i1 ∈ δA(q0, ε)
implies that A accepts starting from the initial configuration q0z. Thus, for each
word w ∈ L=1(M), there exists a word z ∈ L(A) such that z and w are letter-
equivalent.

To complete the proof we establish the following claim.

Claim 2. If z ∈ Σ∗ and i ∈ I such that A accepts starting from the configura-
tion iz, then M has an accepting mode = 1 computation in which component
automaton Mi starts from the initial tape contents cz$.

Proof. We proceed by induction on the number of steps of group (2) that are
applied in the accepting computation of A.

If no such step is applied at all, then the accepting computation of A has
the form iz
(3)

A q
Σ

(i)
1
z
(4)∗

A q
Σ

(i)
1

∈ F. From the definition of A we see that
δi($) = Accept, and hence, component automaton Mi will accept starting from
the tape contents cz$.

Now assume that the accepting computation of A is of the form iz = iav
(2)
A

jv
∗
A qΔ, where a ∈ Σ, and Δ ⊆ Σ. From the definition of A we see that

δi(a) = ε, and that j ∈ σi. Further, from the induction hypothesis we know that
M has an accepting mode = 1 computation in which Mj starts from the tape
contents cv$. It follows that there exists an accepting mode = 1 computation of
M in which Mi starts with tape contents cav$ = cz$. �

It follows that each word z ∈ L(A) belongs to the language L=1(M). Thus, L(A)
is indeed a regular sublanguage of L that is letter-equivalent to L. �

As all regular languages have semi-linear Parikh image, this yields the following
important result.

Corollary 1. The language class L=1(stl-det-local-CD-R(1)) only contains lan-
guages for which the Parikh image ψ(L) is semi-linear.

As the deterministic linear language L = { anbn | n ≥ 0 } does not contain a
regular sublanguage that is letter-equivalent to the language itself, we obtain the
following non-inclusion result.

Proposition 5. The language L = { anbn | n ≥ 0 } is not accepted by any
stl-det-local-CD-R(1)-system working in mode = 1.

Together with Proposition 3 this gives the following incomparability result.

Corollary 2. The language class L=1(stl-det-local-CD-R(1)) is incomparable to
the classes DLIN, LIN, DCFL, and CFL with respect to inclusion.

CD-Systems of Stateless Deterministic R(1)-Automata 471

4 Rational Trace Languages

A dependency relation D is a binary relation on an alphabet Σ that is reflexive
and symmetric. Then ID = (Σ × Σ) � D is the corresponding independence
relation. Obviously, the relation ID is irreflexive and symmetric. It induces a
binary relation ≡D on Σ∗ that is defined as the smallest congruence relation
containing the set of pairs { (ab, ba) | (a, b) ∈ ID }. For w ∈ Σ∗, the congruence
class of w mod ≡D is denoted by [w]D. These congruence classes are called traces,
and the factor monoid M(D) = Σ∗/≡D is a trace monoid. By ϕD we denote the
morphism ϕD : Σ∗ →M(D) that is defined by w �→ [w]D for all words w ∈ Σ∗.

To simplify the notation in what follows, we introduce the following notions.
For w ∈ Σ∗, we use Alph(w) to denote the set of all letters that occur in w. Then
the independence relation can be extended from letters to words by defining, for
all words u, v ∈ Σ∗, (u, v) ∈ ID if and only if Alph(u) × Alph(v) ⊆ ID. As
Alph(ε) = ∅, we see that (ε, w) ∈ ID for every word w ∈ Σ∗.

A subset S of a trace monoid M(D) is called recognizable if there exist a
finite monoid N , a morphism α : M(D) → N , and a subset P of N such that
S = α−1(P) [1]. Accordingly, S ⊆ M(D) is recognizable if and only if the
language ϕ−1

D (S) is a regular language over Σ. By REC(M(D)) we denote the
set of recognizable subsets of M(D). A subset S of a trace monoid M(D) is
called rational if it can be obtained from singleton sets by a finite number of
unions, products, and star operations [1]. It follows that S ⊆ M(D) is rational
if and only if there exists a regular language L over Σ such that S = ϕD(L).
By RAT(M(D)) we denote the set of rational subsets of M(D). It is known that
REC(M(D)) ⊆ RAT(M(D)) for each trace monoid M(D), and that these two
sets are equal if and only if ID = ∅ (see, e.g., [3]). Now we come to our main
result.

Theorem 2. Let M(D) be the trace monoid presented by (Σ,D), where Σ is a
finite alphabet. Then the language ϕ−1

D (S) is accepted by a stl-det-local-CD-R(1)-
system working in mode = 1 for each rational set of traces S ⊆M(D).

Proof. Let S be a rational subset of M(D). Then there exists a regular language
L over Σ such that S = ϕD(L). Hence, ϕ−1

D (S) =
⋃

u∈L[u]D.
As L ⊆ Σ∗ is a regular language, there exists a complete deterministic finite-

state acceptor A = (Q,Σ, p0, F, δ) for L. From A we obtain a stl-det-local-CD-
R(1)-system M = ((Mi, σi)i∈I , I0) as in the proof of Proposition 4. This system
is now modified by redefining the transition functions of the R-automata M(q,a)
and M(q′,a) (q ∈ Q, a ∈ Σ) as follows:

M(q,a) : δ(q,a)(c) = MVR,
δ(q,a)(b) = MVR for all b ∈ Σ satisfying (b, a) ∈ ID,
δ(q,a)(a) = ε,

M(q′,a) : δ(q′,a)(c) = MVR,
δ(q′,a)(b) = MVR for all b ∈ Σ satisfying (b, a) ∈ ID,
δ(q′,a)(a) = ε.

472 B. Nagy and F. Otto

It can now be verified that L=1(M) =
⋃

u∈L[u]D = ϕ−1
D (S), which completes

the proof of Theorem 2. �

Next we present a restricted class of stl-det-local-CD-R(1)-systems that accept
exactly the rational trace languages by mode = 1 computations.

Definition 3. Let M = ((Mi, σi)i∈I , I0) be a stl-det-local-CD-R(1)-system on Σ
that is in normal form and that satisfies the following condition:

(∗) ∀i, j ∈ I : Σ(i)
2 = Σ

(j)
2 implies that Σ(i)

1 = Σ
(j)
1 .

With M we associate a binary relation IM =
⋃

i∈I(Σ
(i)
1 ×Σ

(i)
2), that is, (a, b) ∈

IM iff there exists a component automaton Mi such that δi(a) = MVR and
δi(b) = ε. Further, by DM we denote the relation DM = (Σ ×Σ) � IM.

Observe that the relation IM defined above is necessarily irreflexive, but that
it will in general not be symmetric. For example, consider the system M from
the proof of Proposition 2. It is in normal form, but the corresponding relation
IM = {(a, b)} is not symmetric. And indeed, the language L=1(M) is the Dyck
language D′∗

1 , which is not a rational trace language.

Theorem 3. Let M be a stl-det-local-CD-R(1)-system over Σ satisfying condi-
tion (∗) above. If the associated relation IM is symmetric, then L=1(M) is a
rational trace language over Σ. In fact, from M one can construct a finite-state
acceptor B over Σ such that L=1(M) = ϕ−1

DM(ϕDM (L(B))).

Proof. Let M = ((Mi, σi)i∈I , I0) be a stl-det-local-CD-R(1)-system in normal
form on Σ that satisfies condition (∗). In addition, we assume that the associated
relation IM =

⋃
i∈I(Σ

(i)
1 × Σ

(i)
2) is symmetric. Then DM = (Σ × Σ) � IM is

a reflexive and symmetric relation, and so it is a dependency relation on Σ
with associated independence relation IM. Without loss of generality we may
assume that all letters from Σ do actually occur in some words of L=1(M), since
otherwise we could simply remove these letters from Σ. Further, we can assume
that M has only a single accepting component automaton M+, and that M+
only accepts the empty word. From the properties of M we obtain the following
consequences:

1. As all words w ∈ L=1(M) are first reduced to the empty word, which is then
accepted by the accepting component automaton of M, we see that, for each
letter a ∈ Σ, there exists a component automaton Mi such that Σ(i)

2 = {a}.
2. If (a, b) ∈ IM, then a ∈ Σ

(i)
1 for all component automata Mi for which

Σ
(i)
2 = {b} holds.

3. If (a, b) ∈ IM, then (b, a) ∈ IM, too, and hence, b ∈ Σ
(j)
1 for all component

automata Mj for which Σ
(j)
2 = {a} holds.

Let L = L=1(M). We claim that L is a rational trace language over the trace
monoid defined by (Σ,DM). To verify this claim we present a regular language
R ⊆ Σ∗ such that L =

⋃
u∈R[u]DM .

CD-Systems of Stateless Deterministic R(1)-Automata 473

The regular language R will be defined through a nondeterministic finite-
state acceptor (with ε-moves) B = (Q,Σ, p0, p+, δ). This finite-state acceptor is
obtained from M as follows. Here Ir = I � {+} is the subset of I containing all
component automata that perform a rewrite operation, i ∈ Ir , and a ∈ Σ:

Q = {p0, p+} ∪ { qi | i ∈ Ir },
δ(p0, ε) = { qi | i ∈ I0 }, if + �∈ I0,
δ(p0, ε) = { qi | i ∈ I0 ∩ Ir } ∪ {p+}, if + ∈ I0,

δ(qi, a) = { qj | j ∈ σi }, if {a} = Σ
(i)
2 and + �∈ σi,

δ(qi, a) = { qj | j ∈ σi ∩ Ir } ∪ {p+}, if {a} = Σ
(i)
2 and + ∈ σi,

δ(q, a) = ∅ for all other cases.

Then R = L(B) is a regular language over Σ. From the properties of IM it can
now be shown that L =

⋃
u∈R[u]DM holds, that is, L = ϕ−1

DM(ϕDM (L(B))). �

Observe that the system M constructed in the proof of Theorem 2 is in normal
form, that it satisfies property (∗), and that the associated relation IM coincides
with the relation ID, and hence, it is symmetric. Thus, Theorems 2 and 3 together
yield the following characterization.

Corollary 3. A language L ⊆ Σ∗ is a rational trace language if and only if there
exists a stl-det-local-CD-R(1)-system M in normal form satisfying condition (∗)
such that the relation IM is symmetric and L = L=1(M).

In the proof of Theorem 2 we effectively constructed a stl-det-local-CD-R(1)-
system for the rational trace language ϕ−1

D (ϕD(R)) from a finite-state acceptor
for the regular language R. Hence, if S1, S2 ⊆M(D) are rational subsets of the
trace monoidM(D), then we can construct finite-state acceptorsB1 and B2 from
stl-det-local-CD-R(1)-systems M1 for L1 = ϕ−1

D (S1) and M2 for L2 = ϕ−1
D (S2)

such that S1 = ϕD(R1) and S2 = ϕD(R2), where Ri = L(Bi), i = 1, 2. It is easily
seen that S1∪S2 = ϕD(R1∪R2), S1 ·S2 = ϕD(R1 ·R2), and S∗

1 = ϕD(R∗
1). From

B1 and B2 we can construct finite-state acceptors for the languages R1 ∪ R2,
R1 ·R2, and R∗

1. Thus, Theorem 3 shows that we can construct stl-det-local-CD-
R(1)-systems for the languages ϕ−1

D (S1 ∪S2), ϕ−1
D (S1 ·S2), and ϕ−1

D (S∗
1). Hence,

the stl-det-local-CD-R(1)-systems of Corollary 3 form an effective calculus for
rational trace languages.

5 Concluding Remarks

We have seen that the stl-det-local-CD-R(1)-systems accept a subclass of all
semi-linear languages that contains all rational trace languages, but that this
subclass is incomparable to the (deterministic) linear languages and context-
free languages. However, it remains open whether this language class can be
characterized through other, more traditional, means.

Theorem 1 yields an effective construction of a finite-state acceptor B from a
stl-det-local-CD-R(1)-system M such that the language E = L(B) is a subset of

474 B. Nagy and F. Otto

the language L = L=1(M) that is letter-equivalent to L. Hence, E is non-empty
if and only if L is non-empty, and E is infinite if and only if L is infinite. Thus,
the emptiness problem and the finiteness problem are effectively decidable for
stl-det-local-CD-R(1)-systems. On the other hand, it is undecidable in general
whether a rational trace language is recognizable (see, e.g., [3]). As a rational
subset S of a trace monoid M(D) is recognizable if and only if ϕ−1

D (S) is a
regular language, it follows from Corollary 3 that it is undecidable in general
whether a given stl-det-local-CD-R(1)-system accepts a regular language, that is,
the regularity problem is undecidable for these systems.

In the proof of Proposition 4 we have constructed a stl-det-local-CD-R(1)-
system from a deterministic finite-state acceptor. This construction is quite in-
efficient, as we have used O(|Q| · |Σ|) many component automata. Is there a
more efficient (that is, more succinct) simulation?

Further, the closure properties and algorithmic problems for the language
class L=1(stl-det-local-CD-R(1)) are still to be investigated. For example, it is
obvious that this class is closed under union, but that it is not closed under
intersection with regular languages. What can be said about other operations
like, e.g., product, iteration, or reversal? These questions are addressed in a
forthcoming paper.

References

1. Berstel, J.: Transductions and Context-free Languages. In: Teubner Studienbücher:
Informatik. Teubner, Stuttgart (1979)

2. Csuhaj-Varjú, E., Mart́ın-Vide, C., Mitrana, V.: Multiset automata. In: Calude, C.,
Păun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235,
pp. 69–83. Springer, Heidelberg (2001)

3. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific, Singapore (1995)
4. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two-pushdown automata and

restarting automata. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) Automata and Formal
Languages, AFL 2008, Proc. Computer and Automation Research Institute, pp.
257–268. Hungarian Academy of Sciences (2008)

5. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two-pushdown automata and
restarting automata. Intern. J. Found. Comput. Sci (to appear, 2010); Extended
version of [4]

6. Messerschmidt, H., Otto, F.: Cooperating distributed systems of restarting auto-
mata. Intern. J. Found. Comput. Sci. 18, 1333–1342 (2007)

7. Messerschmidt, H., Otto, F.: On deterministic CD-systems of restarting automata.
Intern. J. Found. Comput. Sci. 20, 185–209 (2009)

8. Otto, F.: Restarting automata. In: Ésik, Z., Martin-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications. Studies in Computational
Intelligence, vol. 25, pp. 269–303. Springer, Berlin (2006)

A Boundary between Universality and
Non-universality in Extended Spiking Neural P

Systems�

Turlough Neary

Boole Centre for Research in Informatics, University College Cork, Ireland
tneary@cs.nuim.ie

Abstract. We solve the problem of finding the smallest possible uni-
versal spiking neural P system with extended rules. We give a universal
spiking neural P system with extended rules and only 4 neurons. This is
the smallest possible universal system of its kind. We prove this by show-
ing that the set of problems solved by spiking neural P systems with 3
neurons is bounded above by NL, and so there exists no such universal
system with 3 neurons (for any reasonable definition of universality). Fi-
nally, we show that if we generalise the output technique we can give a
universal spiking neural P system with extended rules that has only 3
neurons. This is also the smallest possible universal system of its kind.

1 Introduction

Spiking neural P systems (SN P systems) [1] are quite a new computational
model that are a synergy inspired by P systems and spiking neural networks.
Here we solve the problem of finding the smallest possible universal spiking
neural P system with extended rules; one of the open problems given in [9]. We
give a universal extended SN P system that has only only 4 neurons. Following
this, we prove that the set of problems solved by spiking neural P systems with
3 neurons is bounded above by NL, and so there exists no such universal system
with 3 neurons (for any reasonable definition of universality). Thus, our 4-neuron
system is the smallest possible universal extended SN P system. Finally, we show
that if we generalise the output technique we can give a universal SN P system
with extended rules that has only 3 neurons. This is also the smallest possible
universal system of its kind. Table 1 gives the smallest universal extended SN P
systems and their respective simulation time and space overheads. For more on
the time/space complexity of small universal SNP systems see [4,6].

In their paper containing the 49-neuron system, Păun and Păun [8] state that
a significant decrease on the number of neurons of their two universal SN P
systems is improbable (also stated in [9]). The dramatic improvement on the

� Turlough Neary is funded by Science Foundation Ireland Research Frontiers Pro-
gramme grant number 07/RFP/CSMF641. I would also like to thank Damien Woods
for his helpful suggestions and comments.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 475–487, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

476 T. Neary

Table 1. Small universal extended SN P systems. The “simulation time/space” column
gives the overheads used by each system when simulating a standard single tape Turing
machine. † A more generalised output technique is used. ‡ The 18 neuron system is not
explicitly given in [5]; it was presented at [3] and is easily derived from the other system
in [5]. *The system in [7] does not include the input module. This is not the case for
all the other systems in this table. Note that if we remove the input module from the
18- and 12-neuron systems in [5] we get 12- and 9-neuron systems, respectively.

number of neurons simulation time/space author
49 exponential Păun & Păun [8]
41 exponential Zhang et al. [10]
18 exponential Neary [5,3]‡
12 double-exponential Neary [5]
12 exponential Pan & Zeng [7]*
4 exponential Section 4
3 exponential Section 5†

size of earlier small universal SN P systems given by Theorem 1 is in part due
to the method we use to encode the instructions of the counter machines being
simulated. All of the SN P systems given in Table 1 simulate counter machines.
The size of previous small universal systems [8,10] were dependant on the number
of instructions in the counter machine being simulated. In our systems each
unique counter machine instruction is encoded as a unique number of spikes,
and thus the size of our SN P systems is independent of the number of counter
machine instructions. The technique of encoding the instructions as spikes was
first used to construct small universal SN P systems in [5] (see Table 1).

2 SN P Systems

Definition 1 (Spiking neural P system). A spiking neural P system (SN P
system) is a tuple Π = (O, σ1, σ2, · · · , σm, syn, in, out), where:

1. O = {s} is the unary alphabet (s is known as a spike),
2. σ1, σ2, · · · , σm are neurons, of the form σi = (ni, Ri), 1 � i � m, where:

(a) ni � 0 is the initial number of spikes contained in σi,
(b) Ri is a finite set of rules of the following two forms:

i. E/sb → s; d, where E is a regular expression over s, b � 1 and d � 0,
ii. se → λ, where λ is the empty word, e � 1, and for all E/sb → s; d

from Ri s
e /∈ L(E) where L(E) is the language defined by E,

3. syn ⊆ {1, 2, · · · ,m} × {1, 2, · · · ,m} is the set of synapses between neurons,
where i �= j for all (i, j) ∈ syn,

4. in, out ∈ {σ1, σ2, · · · , σm} are the input and output neurons, respectively.

A firing rule r = E/sb → s; d is applicable in a neuron σi if there are j � b
spikes in σi and sj ∈ L(E) where L(E) is the set of words defined by the regular
expression E. If, at time t, rule r is executed then b spikes are removed from

Universality and Non-universality in Extended SN P Systems 477

the neuron, and at time t+ d the neuron fires. When a neuron σi fires a spike is
sent to each neuron σj for every synapse (i, j) in Π . Also, the neuron σi remains
closed and does not receive spikes until time t+d and no other rule may execute
in σi until time t+ d+ 1. A forgeting rule r′ = se → λ is applicable in a neuron
σi if there are exactly e spikes in σi. If r′ is executed then e spikes are removed
from the neuron. At each timestep t a rule must be applied in each neuron if
there is one or more applicable rules. Thus, while the application of rules in each
individual neuron is sequential the neurons operate in parallel with each other.

Note from 2b(i) of Definition 1 that there may be two rules of the form
E/sb → s; d, that are applicable in a single neuron at a given time. If this is the
case then the next rule to execute is chosen non-deterministically.

An extended SN P system [8] has more general rules of the form E/sb → sp; d,
where b � p � 1. Thus, a synapse in a SN P system with extended rules may
transmit more than one spike in a single timestep. The SN P systems we present
in this work use rules without delay, and thus in the sequel we write rules as
E/sb → sp. Also, if in a rule E = sb then we write the rule as sb → sp.

Spikes are introduced into the system from the environment by reading in a
binary sequence (or word) w ∈ {0, 1} via the input neuron σ1. The sequence w is
read from left to right one symbol at each timestep and a spike enters the input
neuron from the environment on a given timestep iff the read symbol is 1. The
output of a SN P system Π is the time between the first and second timesteps
a firing rule is applied in the output neuron.

3 Counter Machines

Definition 2. A counter machine is a tuple C = (z,R, cm, Q, q1, qh), where z
gives the number of counters, R is the set of input counters, cm is the output
counter, Q = {q1, q2, · · · , qh} is the set of instructions, and q1, qh ∈ Q are the
initial and halt instructions, respectively.

Each counter cj stores a natural number value y � 0. Each instruction qi is of
one of the following two forms:

– qi : INC(j) increment the value y stored in counter cj by 1 and move to
instruction ql.

– qi : DEC(j)qk if the value y stored in counter cj is greater than 0 then
decrement this value by 1 and move to instruction ql, otherwise if y = 0
move to instruction qk.

At the beginning of a computation the first instruction executed is q1. The
input to the counter machine is initially stored in the input counters. If the
counter machine’s control enters instruction qh, then the computation halts at
that timestep. The result of the computation is the value y stored in the output
counter cm when the computation halts.

In earlier work [8], Korec’s notion of strong universality was adopted for small
SN P systems as follows: if the input to φx is y then the input to the SN P system

478 T. Neary

Table 2. Rules for each of the neurons of ΠC . Here 1 � i < h, 1 � l � h and 1 � k � h.

neuron rules
σ1 (s12h)∗s6h+8/s6h → s6h, (s12h)∗s6h+9/s9h+5 → s3h+2,

(s12h)∗s6(h+i)/s12h+6i+2 → s12h+2, if qi : INC(1), qi : DEC(1) /∈ {Q}
(s12h)∗s6(h+i)+4/s12h+6i+4−6l → s6l, if qi : INC(1) ∈ {Q}
(s12h)∗s54h+6i+4/s36h+6i+4−6l → s6l, if qi : DEC(1) ∈ {Q}
s42h+6i+4/s24h+6i+4−6k → s6k, if qi : DEC(1) ∈ {Q}

σ2 s18h+7/s6h → s6h, (s12h)∗s6h+9/s9h+5 → s3h+2,

(s12h)∗s6(h+i)/s12h+6i+2 → s12h+2, if qi : INC(2), qi : DEC(2) /∈ {Q}
(s12h)∗s6(h+i)+4/s12h+6i+4−6l → s6l, if qi : INC(2) ∈ {Q}
(s12h)∗s54h+6i+4/s36h+6i+4−6l → s6l, if qi : DEC(2) ∈ {Q}
s42h+6i+4/s24h+6i+4−6k → s6k, if qi : DEC(2) ∈ {Q}

σ3 s18h+7/s6h → s6h, (s12h)∗/s12h+1 → s12h, s18h+2/s6h → s6h, s24h−1 → s12h,

s18h+3/s6h+1 → s6h+1, s18h+8/s6h+6 → s6h+1, (s12h)∗s36h−1/s12h → s6h,

(s12h)∗s6(h+i)/s12h+6i+2 → s12h+2, if qi : INC(3), qi : DEC(3) /∈ {Q}
(s12h)∗s6(h+i)+4/s12h+6i+4−6l → s6l, if qi : INC(3) ∈ {Q}
(s12h)∗s54h+6i+4/s36h+6i+4−6l → s6l, if qi : DEC(3) ∈ {Q}
s42h+6i+10/s24h+6i+4−6k → s6k, if qi : DEC(3) ∈ {Q}

σ4 s6h → λ, s6h+1 → λ, s12h+2 → λ, s6l → λ, s12h → s

is the sequence 10y−110x−11. As with the SN P systems given in [8,10], the
system we give in Theorem 1 satisfies the notion of strong universality adopted
from Korec in [8]. However, as we noted in other work [6], it could be considered
that Korec’s notion [2] of strong universality is somewhat arbitrary and we also
pointed out some inconsistency in his notion of weak universality. Hence, in this
work we rely on time/space complexity analysis to compare small SN P systems
and their encodings (see Table 1).

4 A Small Universal Extended SN P System

Theorem 1. Let C be a universal counter machine with 3 counters that com-
pletes its computation in time t to give the output value x3 when given the pair
of input values (x1, x2). Then there is a universal extended SN P system ΠC

that simulates the computation of C in time O(t+ x1 + x2 + x3) and has only 4
neurons.

Proof. Let C = (3, {c1, c2}, c3, Q, q1, qh) where Q = {q1, q2, · · · , qh}. Our SN P
system ΠC is given by Figure 1 and Table 2. ΠC is deterministic.

Encoding of a configuration of C and reading input into ΠC . A config-
uration of C is stored as spikes in the neurons of ΠC . The next instruction qi to
be executed is stored in each of the neurons σ1, σ2 and σ3 as 6(h+ i) spikes. Let

Universality and Non-universality in Extended SN P Systems 479

counter c3

σ3

counter c1σ1 counter c2 σ2

σ4input output

Fig. 1. Universal extended SN P system ΠC . Each oval labeled σi is a neuron. An
arrow going from neuron σi to neuron σj illustrates a synapse (i, j).

x1, x2 and x3 be the values stored in counters c1, c2 and c3, respectively. Then
the values x1, x2 and x3 are stored as 12h(x1 + 1), 12h(x2 + 1) and 12h(x3 + 1)
spikes in neurons σ1, σ2 and σ3, respectively. The input to ΠC is read into the
system via the input neuron σ3 (see Figure 1). If C begins its computation with
the values x1 and x2 in counters c1 and c2, respectively, then the binary sequence
w = 10x1−110x2−11 is read in via the input neuron σ3. Thus, σ3 receives a single
spike from the environment at times t1, tx1+1 and tx1+x2+1. We explain how the
system is initialised to encode an initial configuration of C by giving the num-
ber of spikes in each neuron and the rule that is to be applied in each neuron
at time t. Before the computation begins neuron σ1 contains 6h + 7 spikes, σ2
contains 18h + 7 spikes, σ3 contains 18h + 6 spikes and σ4 contains no spikes.
Thus, when σ3 receives it first spike at time t1 we have

t1 : σ1 = 6h+ 7,

σ2, σ3 = 18h+ 7, s18h+7/s6h → s6h.

where on the left σk = z gives the number z of spikes in neuron σk at time t and
on the right is the rule that is to be applied at time t, if there is an applicable
rule at that time. Thus, from Figure 1, when we apply the rule s18h+7/s6h → s6h

in neurons σ2 and σ3 at time t1 we get

t2 : σ1 = 18h+ 7,

σ2, σ3 = 18h+ 7, s18h+7/s6h → s6h,

σ4 = 6h, s6h → λ,

t3 : σ1 = 30h+ 7,

σ2, σ3 = 18h+ 7, s18h+7/s6h → s6h,

σ4 = 6h, s6h → λ.

Neurons σ2 and σ3 send 12h spikes to neuron σ1 on each timestep between
times t1 and tx1+1. This gives a total of 12hx1 spikes sent to σ1 during the time
interval t1 to tx1+1. Thus when σ3 receives the second spike from the environment
we get

480 T. Neary

tx1+1 : σ1 = 12hx1 + 6h+ 7,

σ2 = 18h+ 7, s18h+7/s6h → s6h,

σ3 = 18h+ 8, s18h+8/s6h+6 → s6h+1,

σ4 = 6h, s6h → λ,

tx1+2 : σ1 = 12h(x1 + 1) + 6h+ 8, (s12h)∗s6h+8/s6h → s6h,

σ2 = 18h+ 8,

σ3 = 18h+ 2, s18h+2/s6h → s6h,

σ4 = 6h+ 1, s6h+1 → λ,

tx1+3 : σ1 = 12h(x1 + 1) + 6h+ 8, (s12h)∗s6h+8/s6h → s6h,

σ2 = 30h+ 8,

σ3 = 18h+ 2, s18h+2/s6h → s6h,

σ4 = 6h, s6h → λ.

Neurons σ1 and σ3 fire on every timestep between times tx1+2 and tx1+x2+2 to
send a total of 12hx2 spikes to σ2. Thus, when σ3 receives the last spike from
the environment we have

tx1+x2+1 : σ1 = 12h(x1 + 1) + 6h+ 8, (s12h)∗s6h+8/s6h → s6h,

σ2 = 12hx2 + 6h+ 8,

σ3 = 18h+ 3, s18h+3/s6h+1 → s6h+1,

σ4 = 6h, s6h → λ,

tx1+x2+2 : σ1 = 12h(x1 + 1) + 6h+ 9, (s12h)∗s6h+9/s9h+5 → s3h+2,

σ2 = 12h(x2 + 1) + 6h+ 9, (s12h)∗s6h+9/s9h+5 → s3h+2

σ3 = 18h+ 2, s18h+2/s6h → s6h,

σ4 = 6h+ 1, s6h+1 → λ,

tx1+x2+3 : σ1 = 12h(x1 + 1) + 6(h+ 1),
σ2 = 12h(x2 + 1) + 6(h+ 1),
σ3 = 12h+ 6(h+ 1).

At time tx1+x2+3 neuron σ1 contains 12h(x1 + 1) + 6(h+ 1) spikes, σ2 contains
12h(x2 +1)+6(h+1) spikes and σ3 contains 12h+6(h+1) spikes. Thus at time
tx1+x2+3 the SN P system encodes an initial configuration of C.

ΠC simulating qi : INC(1). Let counters c1, c2, and c3 have values x1, x2,
and x3, respectively. Then the simulation of qi : INC(1) begins at time tj with

Universality and Non-universality in Extended SN P Systems 481

12h(x1 + 1) + 6(h + i) spikes in σ1, 12h(x2 + 1) + 6(h + i) spikes in σ2 and
12h(x3 + 1) + 6(h + i) spikes in σ3. Thus, at time tj we have

tj : σ1 = 12h(x1 + 1) + 6(h+ i),

σ2 = 12h(x2 + 1) + 6(h+ i), (s12h)∗s6(h+i)/s12h+6i+2 → s12h+2,

σ3 = 12h(x3 + 1) + 6(h+ i), (s12h)∗s6(h+i)/s12h+6i+2 → s12h+2.

From Figure 1, when we apply the rule (s12h)∗s6(h+i)/s12h+6i+2 → s12h+2 in
neurons σ2 and σ3 at time tj we get

tj+1 : σ1 = 12h(x1 + 3) + 6(h+ i) + 4, (s12h)∗s6(h+i)+4/s12h+6i+4−6l → s6l,

σ2 = 12h(x2 + 1) + 6h,
σ3 = 12h(x3 + 1) + 6h,

σ4 = 12h+ 2, s12h+2 → λ,

tj+2 : σ1 = 12h(x1 + 2) + 6(h+ l),
σ2 = 12h(x2 + 1) + 6(h+ l),
σ3 = 12h(x3 + 1) + 6(h+ l).

At time tj+2 the simulation of qi : INC(1) is complete. Note that an increment
on the value x1 in counter c1 was simulated by increasing the 12h(x1 +1) spikes
in σ1 to 12h(x1 + 2) spikes. Note also that the encoding 6(h + l) of the next
instruction ql has been established in neurons σ1, σ2 and σ3.

ΠC simulating qi : DEC(1)qk. There are two cases to consider here. Case 1:
if counter c1 has value x1 > 0, then decrement c1 and move to instruction ql.
Case 2: if counter c1 has value x1 = 0, then move to instruction qk. As with the
previous example, our simulation begins at time tj . Thus Case 1 (x1 > 0) gives

tj : σ1 = 12h(x1 + 1) + 6(h+ i),

σ2 = 12h(x2 + 1) + 6(h+ i), (s12h)∗s6(h+i)/s12h+6i+2 → s12h+2,

σ3 = 12h(x3 + 1) + 6(h+ i), (s12h)∗s6(h+i)/s12h+6i+2 → s12h+2,

tj+1 : σ1 = 12h(x1 + 3) + 6(h+ i) + 4, (s12h)∗s54h+6i+4/s36h+6i+4−6l → s6l,

σ2 = 12h(x2 + 1) + 6h,
σ3 = 12h(x3 + 1) + 6h,

σ4 = 12h+ 2, s12h+2 → λ,

tj+2 : σ1 = 12hx1 + 6(h+ l),
σ2 = 12h(x2 + 1) + 6(h+ l),
σ3 = 12h(x3 + 1) + 6(h+ l).

482 T. Neary

At time tj+2 the simulation of qi : DEC(1)qk for Case 1 (x1 > 0) is complete.
Note that a decrement on the value x1 in counter c1 was simulated by decreasing
the 12h(x1 + 1) spikes in σ1 to 12hx1 spikes. Note also that the encoding 6(h+
l) of the next instruction ql has been established in neurons σ1, σ2 and σ3.
Alternatively, if we have Case 2 (x1 = 0) then we get

tj : σ1 = 12h+ 6(h+ i),

σ2 = 12h(x2 + 1) + 6(h+ i), (s12h)∗s6(h+i)/s12h+6i+2 → s12h+2,

σ3 = 12h(x3 + 1) + 6(h+ i), (s12h)∗s6(h+i)/s12h+6i+2 → s12h+2,

tj+1 : σ1 = 42h+ 6i+ 4, s42h+6i+4/s24h+6i+4−6k → s6k,

σ2 = 12h(x2 + 1) + 6h,
σ3 = 12h(x3 + 1) + 6h,

σ4 = 12h+ 2, s12h+2 → λ,

tj+2 : σ1 = 12h+ 6(h+ k),
σ2 = 12h(x2 + 1) + 6(h+ k),
σ3 = 12h(x3 + 1) + 6(h+ k).

At time tj+2 the simulation of qi : DEC(1)qk for Case 2 is complete. The
encoding 6(h+k) of the next instruction qk has been established in σ1, σ2 and σ3.

Halting. The halt instruction qh is encoded as 12h spikes. Thus if C halts
we get

tj : σ1 = 12h(x1 + 2),
σ2 = 12h(x2 + 2),

σ3 = 12h(x3 + 2), (s12h)∗/s12h+1 → s12h,

tj+1 : σ1 = 12h(x1 + 3),
σ2 = 12h(x2 + 3),

σ3 = 12h(x3 + 1)− 1, (s12h)∗s36h−1/s12h → s6h,

σ4 = 12h, s12h → s,

tj+2 : σ1 = 12h(x1 + 3) + 6h,
σ2 = 12h(x2 + 3) + 6h,

σ3 = 12hx3 − 1, (s12h)∗s36h−1/s12h → s6h,

σ4 = 6h, s6h → λ.

Universality and Non-universality in Extended SN P Systems 483

The rule (s12h)∗s36h−1/s12h → s6h is applied a further x3−2 times in σ3 to give

tj+x3 : σ1 = 12h(x1 + 3) + 6h(x3 − 1),
σ2 = 12h(x2 + 3) + 6h(x3 − 1),

σ3 = 24h− 1, s24h−1 → s12h,

σ4 = 6h, s6h → λ,

tj+x3+1 : σ1 = 12h(x1 + 4) + 6h(x3 − 1),
σ2 = 12h(x2 + 4) + 6h(x3 − 1),

σ4 = 12h, s12h → s.

As usual the output is the time interval between the first and second timesteps
when a firing rule is applied in the output neuron. Note from above that the
output neuron σ4 fires for the first time at timestep tj+1 and for the second
time at timestep tj+x3+1. Thus, the output of ΠC is x3 the value of the output
counter c3 when C enters the halt instruction qh. Note that if x3 = 0 then the
rule s24h−1 → s12h can not be executed as there is only 12h− 1 spikes in σ3 at
timestep tj+1. Thus if x2 = 0 the output neuron will fire only once.

We have shown how to simulate arbitrary instructions of the form qi : INC(1)
and qi : DEC(1)qk that operate on counter c1. Instructions which operate on
counters c2 and c3 are simulated in a similar manner. Immediately following
the simulation of an instruction ΠC is configured to simulate the next instruc-
tion. Each instruction of C is simulated in 2 timesteps. The pair of input values
(x1, x2) is read into the system in x1 + x2 + 3 timesteps and sending the out-
put value x3 out of the system takes x3 + 1 timesteps. Thus, if C completes it
computation in time t, then ΠC simulates the computation of C in linear time
O(t + x1 + x2 + x3). ��

5 Lower Bounds for Small Universal SN P Systems

In this and other works [8,10] on small SN P systems the input neuron only
receives a constant number of spikes from the environment and the output neuron
fires no more than a constant number of times. Hence, we call the input standard
if the input neuron receives no more than x spikes from the environment, where
x is a constant independent of the input (i.e. the number of 1s in its input
sequence is < x). Similarly, we call the output standard if the output neuron
fires no more than y times, where y is a constant independent of the input. Here
we say a SN P system has generalised input if the input neuron is permitted to
receive � n spikes from the environment where n ∈ N is the length of its input
sequence.

Theorem 2. Let Π be any extended SN P system with only 3 neurons, gen-
eralised input and standard output. Then there is a non-deterministic Turing
machine TΠ that simulates the computation of Π in space O(log n) where n is
the length of the input to Π.

484 T. Neary

g1 g2 g3 . . . gu−1 gu gu+1 . . . gv

s

s s s s

G

g1 g2 g3 . . . gu−1 gu gu+1 . . . gv

+s

−s

+s

−s

+s

−s

+s

−s

+s

−s

G′

Fig. 2. Finite state machine G decides if there is any rule applicable in a neuron
given the number of spikes in the neuron at a given time in the computation. Each s
represents a spike in the neuron. Machine G′ keeps track of the movement of spikes
into and out of the neuron and decides whither or not any rule is applicable at each
timestep in the computation. +s represents a single spike entering the neuron and −s
represents a single spike exiting the neuron.

Proof. Let Π be any extended SN P system with generalised input, standard
output, and neurons σ1, σ2 and σ3. Also, let y be the maximum number of times
the output neuron σ3 is permitted to fire and let q and r be the maximum value
for b and p respectively, for all E/sb → sp; d in Π .

We begin by explaining how the activity of σ3 may be simulated using only
the states of TΠ (i.e. no workspace is required to simulate σ3). Recall that the
applicability of each rule is determined by a regular expression over a unary
alphabet. We can give a single regular expression R that is the union of all the
regular expressions for the firing rules of σ3. This regular expressionR determines
whither or not there is any applicable rule in σ3 at each timestep. Figure 2 gives
the deterministic finite automata G that accepts L(R) the language generated by
R. During a computation we may use G to decide which rules are applicable in
σ3 by passing an s to G each time a spike enters σ3. However, G may not give the
correct result if spikes leave the neuron as it does not record spikes leaving σ3.
Thus, using G we may construct a second machine G′ such that G′ records
the movement of spikes going into and out of the neuron. G′ is constructed as
follows: G′ has all the same states (including accept states) and transitions as
G along with an extra set of transitions that record spikes leaving the neuron.
This extra set of transitions are given as follows: for each transition on s from a
state gi to a state gj in G there is a new transition on −s going from state gj to
gi in G′ that records the removal of a spike from σ3. By recording the dynamic
movement of spikes, G′ is able to decide which rules are applicable in σ3 at each
timestep during the computation. G′ is also given in Figure 2. To simulate the
operation of σ3 we emulate the operation of G′ in the states of TΠ . Note that
there is a single non-deterministic choice to be made in G′. This choice is at

Universality and Non-universality in Extended SN P Systems 485

state gu if a spike is being removed (−s). It would seem that in order to make
the correct choice in this situation we need to know the exact number of spikes
in σ3. However, we need only store at most u+ yq spikes. The reason for this is
that if there are � u+yq spikes in σ3, then G′ will not enter state gu−1 again. To
see this, note that σ3 spikes a maximum of y times using at most q spikes each
time, and so once there are > u + yq spikes the number of spikes in σ3 will be
> u − 1 for the remainder of the computation. Thus, TΠ simulates the activity
of σ3 by simulating the operation of G′ and encoding at most u + yq spikes in
its states.

In this paragraph we explain the operation of TΠ . Following this, we give
an analysis of the space complexity of TΠ . TΠ has 4 tapes including an output
tape, which is initially blank, and a read only input tape. The tape head on
both the input and output tapes is permitted to only move right. Each of the
remaining tapes, tapes 1 and 2 simulate the activity of the neurons σ1 and σ2,
respectively. These tapes record the number of spikes in σ1 and σ2. A timestep
of Π is simulated as follows: TΠ scans tapes 1 and 2 to determine if there are any
applicable rules in σ1 and σ2 at that timestep. The applicability of each neural
rule in Π is determined by a regular expression and so a decider for each rule is
easily implemented in the states of TΠ . Recall from the previous paragraph that
the applicability of the rules in σ3 is already recorded in the states of TΠ . Also,
TΠ is non-deterministic and so if more than one rule is applicable in a neuron
TΠ simply chooses the rule to simulate in the same manner as Π . Once TΠ

has determined which rules are applicable in each of the three neurons at that
timestep it changes the encodings on tapes 1 and 2 to simulate the change in
the number of spikes in neurons σ1 and σ2 during that timestep. As mentioned
in the previous paragraph any change in the number of spikes in σ3 is recorded
in the states of TΠ . The input sequence of Π may be given as binary input to
TΠ by placing it on its input tape. Also, if at a given timestep a 1 is read on
the input tape then TΠ simulates a spike entering the simulated input neuron.
At each simulated timestep, if the output neuron σ3 spikes then a 1 is place on
the output tape, and if σ3 does not spike a 0 is placed on the output tape. Thus
the output of Π is encoded on the output tape when the simulation ends.

In a two neuron system each neuron has at most one out-going synapse and
so the number of spikes in the system does not increase over time. Thus, the
total number of spikes in neurons σ1 and σ2 can only increase when σ3 fires or
a spike is sent into the system from the environment. The input is of length n,
and so σ1 and σ2 receive a maximum of n spikes from the environment. Neuron
σ3 fires no more than y times sending at most r spikes each time to σ1 and σ2.
Thus the maximum number of spikes in σ1 and σ2 during the computation is
n + 2ry. Using a binary encoding tapes 1 and 2 of TΠ encode the number of
spikes in σ1 and σ2 using space of log2(n+ 2ry). As mentioned earlier no space
is used to simulate σ3, and thus TΠ simulates Π using space of O(log n). ��

If we remove the restriction that allows the output neuron to fire only a constant
number of times then we may construct a universal system with 3 neurons.

486 T. Neary

Theorem 3. Let C be a universal counter machine with 3 counters that com-
pletes its computation in time t to give the output value x3 when given the pair
of input values (x1, x2). Then there is a universal extended SN P system Π ′

C

with standard input and generalised output that simulates the computation of C
in time O(t + x1 + x2 + x3) and has only 3 neurons.

Proof. A graph of Π ′
C is constructed by removing the output neuron σ4 from the

graph in Figure 1 and making σ3 the new output neuron by adding a synapse to
the environment. The rules for Π ′

C are given by the first 3 rows of Table 2. The
operation of Π ′

C is identical to the operation of ΠC from Theorem 1 with the
exception of the new output technique. The output of Π ′

C is the time interval
between the first and second timesteps where exactly 12h spikes are sent out of
the output neuron σ3. ��
From the last paragraph of the proof of Theorem 2 we get Corollary 1.

Corollary 1. Let Π be any extended SN P system with only 2 neurons and
generalised input and output. Then there is a non-deterministic Turing machine
TΠ that simulates the computation of Π in space O(log n) where n is the length
of the input to Π.

6 Conclusion

Our results show that there is no significant trade-off between the time/space
complexity and the number of neurons in universal extended SN P systems; our
new systems suffer no exponential slow-down when compared with universal SN
P systems with a greater number of neurons (see Table 1). The size of a SN P
system could also be measured by the number of neural rules in the system. It
would be interesting to explore possible trade-offs between the number of neuron,
the number of rules and the time/space complexity of universal SN P systems.

References

1. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta In-
formaticae 71(2-3), 279–308 (2006)

2. Korec, I.: Small universal register machines. Theoretical Computer Science 168(2),
267–301 (1996)

3. Neary, T.: Presentation at Computing with Biomolecules (CBM (2008),
http://www.emcc.at/UC2008/Presentations/CBM5.pdf

4. Neary, T.: On the computational complexity of spiking neural P systems. In:
Calude, C.S., Costa, J.F., Freund, R., Oswald, M., Rozenberg, G. (eds.) UC 2008.
LNCS, vol. 5204, pp. 189–205. Springer, Heidelberg (2008)

5. Neary, T.: A small universal spiking neural P system. In: Csuhaj-Varjú, E., Freund,
R., Oswald, M., Salomma, K. (eds.) International Workshop on Computing with
Biomolecules, Vienna, August 2008, pp. 65–74. Austrian Computer Society (2008)

6. Neary, T.: A boundary between universality and non-universality in spiking neural
P systems (December 2009), arXiv:0912.0741v1 [cs.CC]

http://www.emcc.at/UC2008/Presentations/CBM5.pdf

Universality and Non-universality in Extended SN P Systems 487

7. Pan, L., Zeng, X.: A note on small universal spiking neural P systems. In: Păun, G.,
Pérez-Jiménez, M.J., Riscos-Núñez, A. (eds.) Tenth Workshop on Membrane Com-
puting (WMC10), Curtea de Argeş, Romania, August 2009, pp. 464–475 (2009)

8. Păun, A., Păun, G.: Small universal spiking neural P systems. BioSystems 90(1),
48–60 (2007)

9. Păun, G., Pérez-Jiménez, M.J.: Spiking Neural P Systems. Recent Results, Re-
search Topics. In: Algorithmic Bioprocesses. Natural Computing Series, pp. 273–
291. Springer, Heidelberg (2009)

10. Zhang, X., Zeng, X., Pan, L.: Smaller universal spiking neural P systems. Funda-
menta Informaticae 87(1), 117–136 (2008)

Using Sums-of-Products for Non-standard
Reasoning

Rafael Peñaloza

Theoretical Computer Science
TU Dresden, Germany

penaloza@tcs.inf.tu-dresden.de

Abstract. An important portion of the current research in Descrip-
tion Logics is devoted to the expansion of the reasoning services and
the developement of algorithms that can adequatedly perform so-called
non-standard reasoning. Applications of non-standard reasoning services
cover a wide selection of areas such as access control, agent negotiation,
or uncertainty reasoning, to name just a few. In this paper we show that
some of these non-standard inferences can be seen as the computation of
a sum of products, where “sum” and “product” are the two operators of a
bimonoid. We then show how the main ideas of automata-based axiom-
pinpointing, combined with weighted model counting, yield a generic
method for computing sums-of-products over arbitrary bimonoids.

1 Introduction

Description Logics (DL) [1] is a family of logic-based knowledge representation
formalisms, which are employed in various application domains, like natural
language processing, configuration, databases, and bio-medical ontologies. One
of its most notable successes so far is the adoption of the DL-based language
OWL [12] as the standard ontology language for the semantic web. For years, the
main interest in the area revolved around the tradeoff between expressivity and
the complexity of reasoning. Highly optimized DL reasoning systems have been
developed [10,21,22,3,15,13], which can perform standard reasoning (i. e. decid-
ing satisfiability, or subsumption between concepts) within short time bounds,
even for realistic applications, where representation requires a very large number
of axioms. Although these systems are still being optimized and improved, re-
searchers are slowly turning their attention to the definition and solution of new
reasoning problems. Some of these problems, like axiom-pinpointing [7,6], refer
to the extraction of more information from an unmodified knowledge base; in the
case of axiom pinpointing, the goal is to detect the reason why a consequence fol-
lows. Other problems are defined by extending the expressivity of the knowledge
base, not by adding new constructors, but rather by giving extended semantics
to the axioms. As an example, consider the blend of uncertainty reasoning and
DL [9,14], where axioms are apended with a degree of uncertainty.

In this paper we show that some of these new inference problems can be seen
as instances of the more general SumProd problem, which consists on comput-
ing sums of products of values attached to axioms, based on the sub-ontologies

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 488–499, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Using Sums-of-Products for Non-standard Reasoning 489

from which a consequence follows. In the following section we introduce some
basic notions of DL and general inference relations. We then define the SumProd
problem and four of its instances that have been recently studied independently.
Finally, we use the ideas of automata-based axiom pinpointing to show a re-
duction from the SumProd problem to weighted model counting, for which very
efficient implementations exist [8]. Due to lack of space, we leave some of the
proofs out of this paper.

2 Description Logics and Inference Relations

The common feature of all description logics is the use of concepts, that intuitively
describe properties of the individuals of the domain, and roles that express rela-
tions between pairs of individuals. Complex concept terms are inductively defined
with the help of a set of constructors, starting from a set NC of concept names
and a set NR of role names. What distinguishes one DL from another is the set
of constructors used to build concept terms. The most basic constructors are the
Boolean ones: conjunction �, disjunction �, and negation ¬, and the existential-
(∃) and value-restrictions (∀), whose syntax is shown in the first column of Table 1.
The DL that uses only this constructors is called ALC [19].

We consider two kinds of axioms: concept definitions of the form A
.= C,

with A ∈ NC and C a concept term, and general concept inclusions (GCIs)
C � D, where C,D are concept terms. An acyclic TBox is a finite set of concept
definitions such that every concept name occurs at most once as a left-hand side,
and there is no cyclic dependency between the definitions. A general TBox is an
acyclic TBox extended with a finite set of GCIs. We will refer in general to a
TBox whenever it is not relevant whether it is an acyclic or a general TBox.

The semantics of ALC is defined in terms of interpretations I = (ΔI , ·I),
where the domain ΔI is a non-empty set of individuals, and the interpretation
function ·I maps each concept name A ∈ NC to a subset AI of ΔI and each
role name r ∈ NR to a binary relation rI on ΔI . The mapping ·I can be ex-
tended to arbitrary concept terms as shown in the second column of Table 1. An

Table 1. Syntax and semantics of ALC

Syntax Semantics

C � D CI ∩ DI

C � D CI ∪ DI

¬C ΔI \ CI

∃r.C {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ rI ∧ y ∈ CI}
∀r.C {x ∈ ΔI | ∀y ∈ ΔI : (x, y) ∈ rI ⇒ y ∈ CI}

A
.= C AI = CI

C � D CI ⊆ DI

490 R. Peñaloza

interpretation I is a model of a TBox T (denoted I |= T) if, for every axiom in
T the conditions on the semantics column of Table 1 are satisfied.

One of the main decision problems in DL is concept subsumption:1

Definition 1. Let C,D be two concepts and T a TBox. We say that C is sub-
sumed by D w.r.t. T (denoted as C �T D) if, for every model I of T , it holds
that CI ⊆ DI. We say that C is satisfiable w.r.t. T (T |= C) if C ��T ⊥, where
⊥ represents any contradictory concept.

Following [4,5], we will introduce the SumProd problem not for a specific logic
and inference problem, but rather in a more general setting. The type of in-
ference problems that we will consider is deciding whether a so-called inference
relation holds. To obtain an intuitive understanding of the following definition,
just assume that consequences are ALC concept terms, admissible sets of axioms
are ALC TBoxes, and the inference relation is unsatisfiablility.

Definition 2. Let I and T be (possibly infinite) sets of consequences and ax-
ioms, respectively, and let Padmis(T) ⊆ Pfin(T) be a set of finite subsets of T
such that T ∈ Padmis(T) implies T ′ ∈ Padmis(T) for all T ′ ⊆ T .

A relation
 between Padmis(T) and I is an inference relation if for every
T ∈ Padmis(T), α ∈ T, T
 α implies T ′
 α for all T ′ ∈ Padmis(T) with
T ′ ⊇ T .

The reason why we have introduced the set Padmis(T) of admissible subsets of
T (rather than taking all finite subsets of T) is to allow us to impose additional
restrictions on the sets of axioms that must be considered. For instance, acyclic
TBoxes are not arbitrary finite sets of concept definitions: in addition, we require
that there is no cyclic dependency between axioms, and that every concept name
appears at most once as a left-hand side. Clearly, these restrictions satisfy our
requirement for admissible sets of axioms. For the rest of this work, we will often
call an admissible set of axioms an ontology.

The problem of unsatisfiability of ALC concepts w.r.t. TBoxes is an inference
relation. More formally, let I be all ALC concepts, T all GCIs and concept
definitions, and Padmis(T) all TBoxes. The following is an inference relation:

= {(T , C) | C is unsatisfiable w.r.t. T }.

3 The SumProd Problem

For the SumProd problem we consider that every axiom in an ontology is anno-
tated with a value. These values can be extended to sets of axioms by computing
the product of the values of axioms in the set. The SumProd problem consists
then on computing the sum of the values of all subontologies from which a con-
sequence follows. The specific instances of this problem are characterised by the
choice of operators for the sum and the product. To stay as general as possible,
we simply assume that there is a bimonoid (M,⊕,⊗,0,1), where ⊕ is the “sum”,
with neutral element 0, and ⊗ is the “product”, whose neutral element is 1.
1 For the rest of this paper, we will often refer to concept terms simply as concepts.

Using Sums-of-Products for Non-standard Reasoning 491

Definition 3. Let (M,⊕,⊗,0,1) be a bimonoid, T an ontology, α a conse-
quence with T
 α, and labM : T → M . The SumProd problem is the task of
computing

SP(T , α, labM) :=
⊕

S⊆T ,S�α

⊗
t∈S

labM (t).

We now present some instances of this problem that have received some attention
from research communities in recent years.

3.1 Pinpointing Formula

Suppose that we have a consequence α that follows from an ontology T . The
pinpointing formula is a monotone Boolean formula that describes all the subsets
of T from wich a consequence α still follows. More formally, let labB be a mapping
that assigns to each axiom t in T a unique propositional variable. A monotone
Boolean formula φ is called a pinpointing formula for T , α if for every S ⊆ T it
holds: S
 α iff

∧
t∈S labB(t) |= φ.2

It is easy to see that if we consider as bimonoid the lattice of monotone
Boolean formulae over the image of labB (modulo equivalence) (B+,∨,∧,⊥,�),
then computing a pinpointing formula is an instance of the SumProd problem;
i. e. SP(T , α, labB) is a pinpointing formula for T , α. We will later show that the
pinpointing formula is in fact a general solution to the SumProd problem.

3.2 Access Control

In access control we assume that there is a finite lattice (L,≤) that represents
the levels of security in an application. Given an ontology T , each axiom t ∈ T
is assigned an element labL(t) of L. Basically, labL(t1) < labL(t2) means that
axiom t2 is more public than t1 (which is more private). Additionally, there are
some users that are assigned an access level in L; that is, there is a mapping acc
from the set of all users to L. The access level of a user u defines a subset of
axioms that are visible to this user: Tu := {t ∈ T | acc(u) ≤ labL(t)}.

Let α be a consequence such that T
 α. We are interested in finding a so-
called boundary. An element μ ∈ L is called a boundary for T , α under labL if
for every user u it follows that Tu
 α iff acc(u) ≤ μ.

It was shown in [2] that lubS⊆T ,S�αglbt∈S labL(t) is a boundary.3 Hence, if we
consider the lattice L with its lub and glb operators as a bimonoid, we obtain
that the computation of a boundary is an instance of the SumProd problem.
That is, SP(T , α, labL) is a boundary for T , α under labL.

3.3 Utility from Preference Formulae

We now leave behind applications where a lattice is used and allow for more
general cases of bimonoids. One problem that has started to raise interest is how
2 A monotone Boolean formula is a propositional formula that contains no negation.
3 lub and glb denote the least upper bound and the greatest lower bound, respectively.

492 R. Peñaloza

to compute the utility of a preference set in a negotiation process. We first define
the problem of finding the minimal utility value in DL [18,17], and then show
that this problem is an instance of the SumProd problem.

Definition 4. Let T be a DL ontology. A preference is a pair (P, v) where P is
a DL concept such that T |= P and v ∈ R+.

Intuitively, a preference (P, v) tells us how much value we assign to the satisfac-
tion of the concept P . If we have a set of preferences P , and are presented with
a concept C (called a proposal) we would like to be able to know how good this
proposal is related to P , in the sense of knowing the total value of the preferences
in P that are compatible with C. Taking the conservative approach, we want to
know the minimal utility value.

Definition 5. Let T be an ontology, C a concept such that T |= C and P a set
of preferences. The minimal utility value for C w.r.t. P is given by:

MUV(T , C,P) := min
I|=C,I|=T

∑
(P,v)∈P,I|=P

v.

Basically, the minimal utility value expresses the least value that we are expected
to obtain whenever the proposal C is satisfied. In a negotiation process, we would
be confronted with several proposals. We can then compare how worth each of
them is w.r.t. our preference set and accept that with the highest MUV.

We now show that the problem of finding the minimal utility value is in fact
an instance of SumProd. We consider the bimonoid (R+ ∪{0,∞},min,+,∞, 0),
which is a semiring, and construct a new ontology T ′ := T ∪{� � ¬P | (P, v) ∈
P}.4 The labeling labR : T ′ → R+ ∪ {0,∞} is defined as follows:

labR(t) :=

{
0 if t ∈ T ,
v if (P, v) ∈ P , t = � � ¬P .

Finally, given a proposal C, we consider the consequence α := C � ⊥.

Theorem 1. Let T be an ontology, C a concept such that T |= C and P a set of
preferences. If T , α and labR are constructed as above, then, under the bimonoid
(R+ ∪ {0,∞},min,+,∞, 0),

SP(T ′, α, labR) = MUV(T , C,P).

3.4 Best Entailment Degree

Another problem that is gaining the interest of the community is the combination
of DLs with reasoning under uncertainty and, in particular, with the use of fuzzy
operators: t-norm �, t-conorm �, negation �, and implication ⇒. The exact
semantics of fuzzy DLs depends on the specific family of fuzzy operators chosen.
4 � represents any tautological concept.

Using Sums-of-Products for Non-standard Reasoning 493

The most important of these families are the Zadeh [24], the �Lukasiewicz, the
Product and the Gödel [11] families.

In fuzzy DLs, every axiom in an ontology has an associated degree of truth,
denoted as a pair 〈t, n〉, where t is a DL axiom and n ∈ [0, 1]. Intuitively, such
a pair denotes that axiom t is true with a degree of at least n. The semantics
of fuzzy DLs is defined by means of fuzzy interpretations. A fuzzy interpretation
I = (ΔI , ·I) consists of a non-empty set ΔI , called the domain, and a fuzzy
interpretation function that assigns to each concept name A ∈ NC a function
AI : ΔI → [0, 1] and to each role name r ∈ NR a function rI : ΔI ×ΔI → [0, 1].
This function is extended to concept terms as follows: (C1�C2)I(x) = C1(x)I �
C2(x)I ; (C1 � C2)I(x) = C1(x)I � C2(x)I ; (¬C)I(x) = �CI(x); (∀r.C)I(x) =
infy∈ΔI rI(x, y) ⇒ CI(y); and (∃r.C)I(x) = supy∈ΔI rI(x, y) � CI(y).

An interpretation I is a model of a fuzzy ontology T if for every 〈C � D,n〉 ∈
T it holds that infx∈ΔI (CI(x) ⇒ DI(x)) ≥ n. A fuzzy GCI 〈C � D,n〉 is a
consequence of a fuzzy ontology T , denoted T
 〈C � D,n〉, if every model of
T is also a model of 〈C � D,n〉.5

Definition 6. Let T be a fuzzy ontology and t a (crisp) GCI. The best entail-
ment degree of t w.r.t. T is

BED(T , t) := sup
T �〈t,n〉

n.

Briefly, the best entailment degree expresses the best bound that can be given on
the fuzzy value at which t follows from the ontology T . This problem is in fact an
instance of the SumProd problem over the bimonoid ([0, 1],max,�, 0, 1), where
� is the t-norm being used and the function lab[0,1] maps every GCI in T to
its associated degree of truth. The following theorem holds for the �Lukasiewicz,
Product, and Gödel families of fuzzy operators, but not for the Zadeh family.

Theorem 2. Let T be an ontology, lab[0,1] : T → [0, 1] the function assigning,
to every axiom in T , its associated degree of truth, and t a (crisp) GCI. Then,
under the bimonoid ([0, 1],max,�, 0, 1),

SP(T , t, lab[0,1]) = BED(T , t).

4 Solving the SumProd Problem

It was shown in [16] that the pinpointing formula is the most general solution of
the SumProd problem over distributive lattices: given an arbitrary distributive
lattice M , the (unique) homomorphism from B+ to M can be used to compute
SP(T , α, labM) from the pinpointing formula for T , α. In fact, the pinpointing
formula can be used to solve the SumProd problem over any bimonoid, through
weighted model counting.
5 For simplicity, we are restricting ourselves to the case where both, the axioms in the

ontology and the consequences, are concept inclusions. For settings dealing with a
wider variety of axioms and consequences, see, e.g. [9].

494 R. Peñaloza

Definition 7. Let (M,⊕,⊗,0,1) be a bimonoid, V a set of propositional vari-
ables, ψ a Boolean formula over V and wt a function that maps every literal
corresponding to a variable in V to an element of M . Weighted model counting
corresponds to the task of computing

WMC(ψ,wt) :=
⊕
V|=ψ

⊗
�∈V

wt(�).

Let T be an ontology and α a consequence such that T
 α. If φ is a pin-
pointing formula for T , α, then by definition there is a bijective function labB

between T and a superset of the propositional variables appearing in φ. Let now
(M,⊕,⊗,0,1) be a bimonoid and labM : T → M . We construct the function
wt as follows: for every positive literal p, we set wt(p) = labM (lab−1

B
(p)), and for

every negative literal ¬p, we set wt(¬p) = 1.

Theorem 3. Let φ be a pinpointing formula for T , α and wt built as above.
Then SP(T , α, labM) = WMC(φ,wt).

Proof. Let V be a valuation and p1, . . . , pn the positive literals appearing in
V , and set S = {lab−1

B
(pi) | 1 ≤ i ≤ n}. As φ is a pinpointing formula, we

have that S
 α iff
∧n

i=1 pi |= φ iff V |= φ. Additionally,
⊗

t∈S labM (t) =⊗n
i=1 labM (lab−1

B
(pi)) =

⊗n
i=1 wt(pi) =

⊗
�∈V wt(�). Hence, we have that

SP(T , α, labM) =
⊕
S�α

⊗
t∈S

labM (t) =
⊕
V|=φ

⊗
�∈V

wt(�) = WMC(φ,wt).

��
This theorem shows that if one has a pinpointing formula for some ontology T
and consequence α, then one can solve any instance of the SumProd problem
related to T , α through a call to a weighted model counter. It has been shown
that the pinpointing formula can be computed by a modified version of the
decision algorithm used to verify that T
 α. Recently, general approaches that
modify tableaux- [4,7] and automata-based [5,6] decision procedures have been
developed. However, the formulas obtained by these methods are in general form,
with conjunctions and disjunctions nested within each other, while the efficiency
of modern weighted model counters relies on having an input formula in CNF.

It is well-known that for every formula ψ it is possible to construct in poly-
nomial time (on the length of ψ) a formula ψ′ in CNF such that there is a
bijection between the models of ψ and the models of ψ′ [23]. The idea consists
in introducing new variables that capture complex subformulae of ψ. By setting
to 1 the weights of all newly added literals, we can ensure that both formulas
are also equivalent w.r.t. weighted model counting. Although this does not affect
the overall complexity of the method, it introduces an unnecessary step. In fact,
it is possible to improve the structure-sharing idea used in [6] to directly obtain
a formula that is equivalent (with respect to WMC) to the pinpointing formula.

We first recall the necessary notions for automata-based pinpointing, and
then show how these ideas yield a formula in CNF that can be used to solve any
instance of SumProd.

Using Sums-of-Products for Non-standard Reasoning 495

4.1 Axiomatic Automata

We consider Büchi automata over trees, whose input alphabet has only one el-
ement of arity k. A Büchi automaton for arity k is a tuple (Q,Δ, I, F), where
Q is a finite set of states, Δ ⊆ Qk+1 is the set of transitions, and I, F ⊆ Q
are the set of initial and final states, respectively. A weighted Büchi automaton
(WBA) over a lattice L is a tuple (Q, in, wt, F), where Q is a finite set of states,
in : Q→ L,wt : Qk+1 → L, are the initial and transition distribution, andF ⊆ Q.

The reasoning necessary for the computation of the pinpointing formula (and,
in general, the SumProd problem) for T , α, needs to know for which subontolo-
gies T ′ of T , T ′
 α holds. Thus, we assume that the automaton AT ,α for decid-
ing T
 α also contains automata for all axiomatized inputs T ′, α with T ′ ⊆ T ,6

which can be obtained by appropriately restricting the states and transitions of
AT ,α. To be more precise, let A = (Q,Δ, I, F) be a Büchi automaton for arity
k, T an ontology and α a consequence. The functions Δres : T → P(Qk+1) and
Ires : T → P(Q) are respectively called a transition restricting function and an
initial restricting function. The restricting functions Δres and Ires are extended
to sets of axioms T ′ ⊆ T as follows:

Δres(T ′) :=
⋂

t∈T ′
Δres(t) and Ires(T ′) :=

⋂
t∈T ′

Ires(t).

For T ′ ⊆ T , the T ′-restricted subautomaton of A w.r.t. Δres and Ires is

A|T ′ := (Q,Δ ∩Δres(T ′), I ∩ Ires(T ′), F).

Definition 8. Let A = (Q,Δ, I, F) be a Büchi automaton for arity k, T an
ontology, α a consequence, and Δres : T → P(Qk+1) and Ires : T → P(Q) a
transition and an initial restricting function, respectively. We call (A, Δres, Ires)
an axiomatic automaton for Γ .

Given an inference relation
, we say that (A, Δres, Ires) is correct for T , α
w.r.t.
 if the following holds for every T ′ ⊆ T : T ′
 α iff A|T ′ does not have a
successful run r with r(ε) ∈ I ∩ Ires(T ′).

Given a correct axiomatic automaton for T , α, we can decide T ′
 α for T ′ ⊆
T through an emptiness test on the automaton A|T ′ . Any correct axiomatic
automaton can be transformed into a pinpointing automaton: a weighted Büchi
automaton whose behaviour is a pinpointing formula for the input.

Recall first that in the definition of pinpointing formula we consider a mapping
labB assigning a unique propositional variable to each t ∈ T . The pinpointing
automaton takes its weights from the T -Boolean bimonoid (B(T),∧,∨,�,⊥),
where B(T) is the quotient set of all monotone Boolean formulae over labB(T)
by the propositional equivalence relation, i.e., two propositionally equivalent
formulae correspond to the same element of B(T). It is easy to see that this
bimonoid is in fact a finite distributive lattice, where the partial order is defined
as φ ≤ ψ iff ψ → φ is valid.7 Note that this bimonoid is different from the one
6 Recall that every subset of an admissible set of axioms is also admissible.
7 More precisely, B(T) is the free distributive lattice over the generators labB(T).

496 R. Peñaloza

used in Section 3.1, in that the two operations are exchanged. This is done to
follow the construction in [6] and be able to reuse their results.

Definition 9. Let (A, Δres, Ires) be an axiomatic automaton for T , α, with A =
(Q,Δ, I, F). The violating functions Δvio : Qk+1 → B(T) and Ivio : Q→ B(T)
are

Δvio(q0, q1, . . . , qk) :=
∨

{t∈T |(q0,q1,...,qk)/∈Δres(t)}
lab(t);

Ivio(q) :=
∨

{t∈T |q/∈Ires(t)}
lab(t).

The pinpointing automaton induced by (A, Δres, Ires) w.r.t. T is the WBA over
BT (A, Δres, Ires)pin = (Q, in, wt, F), where

in(q) :=

{
Ivio(q) if q ∈ I,

� otherwise;

wt(q0, q1, . . . , qk) :=

{
Δvio(q0, q1, . . . , qk) if (q0, q1, . . . , qk) ∈ Δ,

� otherwise.

As shown in [6], the behaviour of the pinpointing automaton yields the pin-
pointing formula. However, the iterative approach for computing the behaviour
of a weighted automaton requires an alternation of the operators ⊗ and ⊕, and
hence, when grounded to the bimonoid B(T), the formula obtained this way is
not in CNF. Furthermore, in order to ensure a polynomially bounded execution
time, it was necessary to resort to a compact encoding of the generated formula,
using structure sharing. Translating this encoding into a CNF formula may result
in an exponential blowup.

Fortunately, it is possible to modify the above mentioned iterative approach so
that it explicitely exploits the idea of structure sharing by adding new variables
during the construction of the formula. The result of this modification is an
algorithm that outputs a formula ψ in CNF such that every valuation satisfying
the pinpointing formula can be uniquely extended to a valuation satisfying ψ,
and conversely, every valuation that satisfies ψ, satisfies also the pinpointing
formula. We now show how these changes can be made.8

4.2 Computing a CNF Formula

We first briefly recall the iterative method for computing the behaviour of the
pinpointing automaton and some of its properties. We later show how it can be
used to compute the desired CNF formula.

In the following we assume that we have a pinpointing automaton A =
(Q, in, wt, F). The iterative method defines operators Of ,Q : B(T)Q → B(T)Q,
8 For the DL EL, our approach reduces to the one in [20].

Using Sums-of-Products for Non-standard Reasoning 497

where B(T)Q denotes the set of all mappings from Q to B(T), and f ∈ B(T)Q.
The operator Of is defined as follows for every σ ∈ B(T)Q:

Of (σ)(q) =
∧

(q,q1,...,qk)∈Qk+1

⎛
⎝wt(q, q1, . . . , qk) ∨

k∨
j=1

stepf (σ)(qj)

⎞
⎠ ,

where

stepf (σ)(q) =

{
f(q) if q ∈ F

σ(q) otherwise.

This operator is monotonic, and hence it makes sense to speak about its least
fixpoint (lfp). The operator Q is based in this lfp: given σ ∈ B(T)Q,

Q(σ) = lfp(Oσ).

The operator Q is also monotonic, and thus it has a greatest fixpoint (gfp). The
following result is a direct consequence of those in [6].

Lemma 1. Let ς = gfp(Q). Then
∧

q∈Q in(q) ∨ ς(q) is a pinpointing formula.

The results in [6] are in fact stronger, since they also set a bound, depending on
the number of states and the number of final states, on the times the operators
need to be applied before obtaining the fixpoints.

Lemma 2. Let n = |Q|,m = |F |, and denote as �̃, ⊥̃ the functions that map
every state in Q to � and ⊥, respectively. The following two results hold:

lfp(Of) = On−m+1
f (�̃), gfp(Q) = Qm(⊥̃).

In order to construct a formula in CNF, we are going to simulate applications
of the operators Of and Q, introducing new variables that will stand as abbre-
viations of the formulas constructed at each application. The total number of
variables and clauses introduced this way will be polynomially bounded by the
size of the automaton, due to Lemma 2.

We introduce the variables xζ,q, y
η
ζ,q, and zη

ζ,(q,q1,...,qk). Intuitively, the variable

xζ,q is an abbreviation for the formula Qζ(⊥̃)(q). Likewise, the variable yη
ζ,q

represents the value of Oη

Qζ(⊥̃)
(�̃)(q). The other variables are used as auxiliary

means for keeping the formula in CNF. The formula ϕCNF is composed by the
following clauses, where 0 ≤ ζ < m, 0 ≤ η < n−m+ 1, q, q1, . . . , qk ∈ Q:9

x0,q ⇔ ⊥,
xζ+1,q ⇔ yn−m+1

ζ,q ,

y0
ζ,q ⇔ �,

yη+1
ζ,q ⇔

∧
(q,q1,...,qk)∈Qk+1

zη+1
ζ,(q,q1,...,qk),

zη+1
ζ,(q,q1,...,qk) ⇔ wt(q, q1, . . . , qk) ∨

k∨
j=1

choiceη
ζ (qj),

9 For brevity, we use double implications rather than clauses. These implications can
easily be transformed in clausal form, thus yielding a CNF formula.

498 R. Peñaloza

where

choiceη
ζ (q) =

{
xζ,q if q ∈ F

yη
ζ,q otherwise.

Finally, we add for every q ∈ Q the clause
in(q) ∨ xm,q.

Notice that the new variables are effectively nothing more than abbreviations for
longer formulas. The truth value of each of them depends ultimately only on the
truth value of the original propositional variables used for defining the function
wt. The last clauses introduced simply use the definition of pinpointing formula
from Lemma 1. The following result is a direct consequence of Lemmas 1 and 2.

Theorem 4. Let φ be a pinpointing formula and ϕCNF the formula in CNF
constructed above. Then, every valuation V satisfying φ can be uniquely extended
to a valuation V ′ satisfying ϕCNF. Conversely, every valuation that satisfies ϕCNF

satisfies also φ.

Corollary 1. Let ϕCNF be constructed as above, and wt built as for Theorem 3,
and extended to the new literals by setting wt(�) = 1 for all new literal �. Then
SP(T , α, labM) = WMC(ϕCNF,wt).

5 Conclusions

We have shown that some of the recently studied non-standard inference prob-
lems can be seen as instances of the general SumProd problem. We have also
shown that the ideas of automata-based axiom pinpointing can be adapted to
reduce the SumProd problem to a weighted model counting problem (with the
input formula in CNF).

As future work we would like to find more non-standard inferences that fall
into the framework described in this paper, for distinct inference relations, also
beyond the realm of DL. Additionally, we would like to empirically test our ap-
proach by introducing the formula ϕCNF into a state-of-the-art weighted model
counter. We want then to compare the execution time to other ad-hoc imple-
mentations, such as the black-box method for computing the boundary in access
control [2] or the algorithm for MUV from [18].

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

2. Baader, F., Knechtel,M., Peñaloza, R.: A generic approach for large-scale ontological
reasoning in the presence of access restrictions to the ontology’s axioms. In:Bernstein,
A., Karger, D.R., Heath,T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan,
K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 49–64. Springer, Heidelberg (2009)

3. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL — A polynomial-time reasoner
for life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006)

Using Sums-of-Products for Non-standard Reasoning 499

4. Baader, F., Peñaloza, R.: Axiompinpointing in general tableaux. In:Olivetti, N. (ed.)
TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 11–27. Springer, Heidelberg (2007)

5. Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp.
226–241. Springer, Heidelberg (2008)

6. Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. Journal of Auto-
mated Reasoning (2010); Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 226–241. Springer, Heidelberg (2008)

7. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. Journal of Logic
and Computation 20(1), 5–34 (2010); Special Issue: Tableaux ’07 (2007)

8. Bacchus, F., Dalmao, S., Pitassi, T.: Solving #SAT and Bayesian inference with
backtracking search. J. of Art. Intel. Research 34, 391–442 (2009)

9. Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and
datatypes. Fuzzy Sets and Systems 160(23), 3382–3402 (2009)

10. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, p. 701. Springer, Heidel-
berg (2001)

11. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (2001)
12. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to

OWL: The making of a web ontology language. J. of Web Sem. 1(1), 7–26 (2003)
13. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In:

Boutilier, C. (ed.) Proc. of IJCAI 2009, Pasadena, California, pp. 2040–2045 (2009)
14. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intel. 172(6-7),

852–883 (2008)
15. Motik, B., Shearer, R., Horrocks, I.: Optimized reasoning in description logics using

hypertableaux. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp.
67–83. Springer, Heidelberg (2007)

16. Peñaloza, R.: Reasoning with weighted ontologies. In: Grau, B.C., Horrocks, I.,
Motik, B., Sattler, U. (eds.) Proc. of DL ’09. CEUR-WS, vol. 477 (2009)

17. Ragone, A., Noia, T.D., Donini, F.M., Sciascio, E.D., Wellman, M.P.: Comput-
ing utility from weighted description logic preference formulas. In: Baldoni, M.,
van Riemsdijk, M.B. (eds.) DALT 2009. LNCS, vol. 5948, pp. 158–173. Springer,
Heidelberg (2010)

18. Ragone, A., Noia, T.D., Donini, F.M., Sciascio, E.D., Wellman, M.P.: Weighted
description logics preference formulas for multiattribute negotiation. In: Godo, L.,
Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 193–205. Springer, Heidelberg
(2009)

19. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artif. Intel. 48(1), 1–26 (1991)

20. Sebastiani, R., Vescovi, M.: Axiom pinpointing in lightweight description logics
via Horn-SAT encoding and conflict analysis. In: Schmidt, R.A. (ed.) Automated
Deduction – CADE-22. LNCS, vol. 5663, pp. 84–99. Springer, Heidelberg (2009)

21. Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proc. of DL ’04, pp. 212–213
(2004)

22. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006)

23. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. In:
Studies in Mathematics and Mathematical Logic, Part II (1968)

24. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

Restarting Automata with Structured Output
and Functional Generative Description

Martin Plátek, Frantǐsek Mráz, and Markéta Lopatková

Charles University in Prague, Czech Republic
martin.platek@mff.cuni.cz, frantisek.mraz@mff.cuni.cz,

lopatkova@ufal.mff.cuni.cz

Abstract. Restarting automata were introduced for modeling linguisti-
cally motivated analysis by reduction. In this paper we enhance these
automata with a structured output in the form of a tree. Enhanced
restarting automata can serve as a formal framework for the Functional
Generative Description. In this framework, a natural language is de-
scribed at four layers. Working simultaneously with all these layers, tec-
togrammatical dependency structures that represent the meaning of the
sentence are derived.

1 Introduction

Functional Generative Description (FGD) is a stratificational dependency based
descriptive system for the Czech language, which has been in development since
1960s, see esp. [9].

Stratification approaches split language description into layers, each layer pro-
viding complete description of sentence and having its own vocabulary and syn-
tax. Here we focus on two layers of FGD, the layer of wordforms (w-layer) and
the most abstract layer of meaning (called tectogrammatical layer in FGD, t-
layer). At the w-layer, sentence is represented as a simple string of words and
punctuation. The t-layer comprises language meaning; the core concepts of this
layer are dependency, valency, and topic-focus articulation, see esp. [9].

FGD as a dependency based approach describes meaning of a sentence as (tec-
togrammatical) dependency tree – (meaningful) words are represented as nodes
of the tree (each node being a complex unit capturing the lexical meaning, im-
portant morphological and syntactic characteristics); relations among words are
represented by oriented edges between nodes of the tree [2].

We attempt to provide a formal model for natural language processing based
on an elementary method of analysis by reduction. The analysis by reduction
(AR henceforth, see [4,5], here Section 1.1), serves for describing syntactic struc-
tures of natural languages (and particularly languages with free word order). The
framework of restarting automata meets the basic requirements set for natural
language description stated in [5], i.e., (i) distinguishing the set of well-formed
sentences (henceforth Lw) and the set of meaning structures (TR for tectogram-
matical representation) and (ii) setting TSH relation comprising mutual relation
between these two sets, relation of synonymy and ambiguity (homonymy).

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 500–511, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Restarting Automata with Structured Output and FGD 501

In [5], FGD is modeled as a formal string to string translation using a suitable
model of restarting automata. Here we enrich this class of restarting automata
with structured output; that is, we define a new type of restarting transducers –
enhanced simple restarting automata that output dependency trees derived from
AR (Section 2). However, such a model is still too general. We formulate several
additional restrictions that should be put on an enhanced simple restarting au-
tomaton MFGD (the last subsection in Section 3). As a result, we get a formal
automaton, which helps linguists in further developing the theoretical model of
FGD for the Czech language while it allows us to study its formal properties
from the mathematical point of view. Section 3.1 summarizes the current model
and proposes directions for further research.

This work does not focus on mathematical statements about restarting au-
tomata and dependency grammars. Restarting automata have been intensively
studied, see e.g. [7,8]. Articles studying mathematical properties of enhanced
restarting automata are to be expected in a near future. They will combine the
methodologies of restarting automata and dependency grammars (see e.g. [1,2]).

1.1 Basic Principles of Analysis by Reduction

Analysis by reduction makes it possible to define formal dependency relations
between particular sentence members. Roughly speaking, (i) a certain word de-
pends on (modifies) another word from the sentence if it is possible to reduce
this modifying word (and obtain a simplified correct sentence), and (ii) two
words can be removed in an arbitrary order if and only if they are mutually
independent. So whereas the basic operation in constituent-based approaches is
the decomposition of a sentence into continuous parts representing simplified
structures (phrases), in the (dependency) analysis by reduction it is possible to
determine dependency relations between individual lexical words leaving aside
their word order.

AR is based on a stepwise simplification of an analyzed sentence (enriched
with metalanguage information from all layers of FGD); in each step, at least
one word / symbol of the input string is deleted, which may lead to rewriting
some other symbol. The sentence is simplified until so called core predicative
structure is reached (typically formed by a sentence predicate and its valency
complementations).

When simplifying input sentence, it is necessary to apply certain elementary
principles assuring adequate analysis, primarily the principle of correctness pre-
serving and the principle of completeness with respect to valency structure [4].
Moreover, each step of AR must be minimal from a certain point of view – any
potential reduction step concerning less symbols in the sentence would violate
the principle of completeness (it would lead to an incomplete sentence); it implies
that only items fulfilling valency slots of a single governing word are processed
in a single reduction step.

The basic principles of AR are exemplified on several reduction steps for par-
ticular Czech sentence (Example 1); they illustrate how the sentence is simplified
and how fragments of its dependency tree are built (see [5] for more details).

502 M. Plátek, F. Mráz, and M. Lopatková

Eng. w-layer m-layer a-layer t-layer
Our Našeho m̊uj.PSMS4 Atr
Karel Karla Karel.NNMS4 Obj

[my].t ACT
(we) plan plánujeme plánovat.VB-P- Pred plánovat.f PRED.VF1

Karel.c PAT
my.f APP
[my].t ACT

to send poslat poslat.Vf- - - Obj poslat.f PAT.VF2
for na na.RR- - 4 AuxP
next př́ı̌st́ı př́ı̌st́ı.AA4IS Atr
year rok rok.NNIS4 Adv rok.f THL

př́ı̌st́ı.f RSTR
to do do.RR- - 2 AuxP
England Anglie Anglie.NNFS2 Adv Anglie.f DIR3
. . ..Z: - - - AuxK

Fig. 1. Representation of the sample sentence from Example 1 at four layers of FGD
(simplified)

Example 1
Našeho Karla plánujeme poslat na př́ı̌st́ı rok do Anglie. ([9], p. 241, modified)
our - Karel - (we) plan - to sent - for - next - year - to - England
Eng. ‘It’s our Karel whom we plan to send for the next year to England.’

Figure 1 presents a simplified representation of the sample sentence at four
layers of FGD. Each column captures one layer of language description (w-, m-,
a- and t-layer, respectively, see Section 1). Rows capture information related to
particular words and punctuation marks (one or more rows for an individual
word / punctuation, depending on its surface and deep word order, see [5]).

In the first reduction steps of AR, either word našeho ‘our’ or př́ı̌st́ı ‘next’ may
be reduced (and the whole rows representing these words) in an arbitrary order
– both simplified sentences are grammatically correct and they are complete.
It implies that these two words are mutually independent and each of them
modifies some word in the respective simplified sentence (see [4] for details).

Based on surface syntactic and morphological categories, pronoun našeho ‘our’
and adjective př́ı̌st́ı ‘next’ are analyzed as depending on proper name Karla
‘Karel’ and noun rok ‘year’, respectively. These reductions are reflected at t-layer
as edges between respective nodes, namely edge ‘my.f APP −→ Karel.c PAT’
and edge ‘př́ı̌st́ı.f RSTR −→ rok.f THL’ (Fig. 2). When reducing simple depen-
dents as našeho ‘our’ and př́ı̌st́ı ‘next’, only delete operation is required. The
same is true if a word w can be reduced together with all its valency comple-
mentations in one step without a loss of completeness. On the other hand, if word
w fills valency requirements of some other word (and thus cannot be simply re-
duced without a loss of completeness), rewriting operation is used for indicating
the completeness of the original sentence (the reduced word w is rewritten by
its syntactic category; such a structure is interpreted as a complete structure).

Restarting Automata with Structured Output and FGD 503

plánovat.f PRED.VF1

[my].t ACT

poslat.f PAT.VF2

Karel.c PAT

my.f APP

[my].t ACT rok.f THL

př́ı̌st́ı.f RSTR

Anglie.f DIR3

PAT

Fig. 2. Tectogrammatical tree for example sentence (1)

We can continue in a similar way and build tectogrammatical tree on the basis
of individual reduction steps; the final tectogrammatical tree is in Figure 2.

2 Restarting Automata as a Formal Framework for FGD

Simple restarting automaton – t-sRL-automaton. An sRL-automaton M
is a (in general) nondeterministic machine with a finite-state control Q, a finite
working alphabet Γ , and a head (window of size 1) that works on a flexible tape
delimited by the left sentinel c and the right sentinel $ (c, $ �∈ Γ). For an input
w ∈ Γ ∗, the initial tape inscription is cw$. To process this input, M starts in its
initial state q0 with its window over the left end of the tape, scanning the left
sentinel c. According to its transition relation, M performs move-right and move-
left steps , which shift the window one position to the right or left, respectively,
thereby possibly changing the state of M , rewriting steps, which rewrite the
content of the window without a further move and change the state, and delete
steps, which delete the content of the window (thus shorten the tape), change
the state, and shift the window to the right neighbor of the deleted symbol. Of
course, neither the left sentinel c nor the right sentinel $ must be deleted. At
the right end of the tape M either halts and accepts, or it halts and rejects, or
it restarts, that is, it places its window over the left end of the tape and reenters
the initial state. It is required that before the first restart step and also between
any two restart steps, M executes at least one delete operation.

A configuration of M is a string αqβ where q ∈ Q, and either α = λ and
β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$}; here q represents the current
state, αβ is the current content of the tape, and it is understood that the window
contains the first symbol of β. A restarting configuration is of the form q0cw$,
where w ∈ Γ ∗.

A cycle starts in a restarting configuration, the window is moved along the
tape by performing some operations until a restart operation is performed. If
after a restart no further restart operation is performed, each finite computation
necessarily finishes in a halting configuration – such a subcomputation is called
a tail. We assume that no delete and rewrite operation is executed in a tail
computation.

504 M. Plátek, F. Mráz, and M. Lopatková

We use the notation u
c
M v to denote a cycle of M that begins with the

restarting configuration q0cu$ and ends with the restarting configuration q0cv$;
the relation
c∗

M is the reflexive and transitive closure of
c
M .

An input w ∈ Γ ∗ is accepted by M , if there is an accepting computation
which starts with the restarting configuration q0cw$. By LC(M) we denote the
language consisting of all words accepted by M ; we say that M accepts the
characteristic language LC(M). By S(M) we denote the simple language of M ,
which consists of all words that M accepts by tail computations. Observe that,
for each w ∈ Γ ∗, we have w ∈ LC(M) if and only if w
c∗

M v holds for some word
v ∈ S(M).

A t-sRL-automaton (t ≥ 1) is an sRL-automaton which uses at most t delete
operations in a cycle, and for each v ∈ S(M) it holds |v| ≤ t.

Remark 1. Let us note, that t-sRL-automata are two-way nondeterministic au-
tomata which can check the whole sentence prior to any changes in a cycle. It
resembles a linguist, who can read the whole sentence first and reduce the sen-
tence in a correct way afterward. We choose nondeterministic model in order to
obtain various sequences of possible reductions.

Similarly as in [7], we can describe a t-sRL-automaton by (meta-)instructions of
the following two forms. A restarting instruction over Γ is defined as:

IR = (c ·E0, a1 → b1, E1, a2 → b2, E2, . . . , Es−1, as → bs, Es · $),

where s ∈ {1, . . . t}, b1, . . . , bs ∈ {λ}∪Γ , λ denotes the empty string, E0, E1, . . . ,
Es are regular languages over Γ (often represented by regular expressions), and
a1, a2, . . . , as ∈ Γ correspond to symbols that are processed during the corre-
sponding cycle of M ; either all of them are deleted or one of them is rewritten
and the rest is deleted. When trying to execute IR starting from a configuration
q0cw$, M gets stuck (and so reject), if w does not admit a factorization of the
form w = v0a1v1a2 . . . vs−1asvs such that vi ∈ Ei for all i = 0, . . . , s. On the
other hand, if w admits factorizations of this form, then one of them is chosen
nondeterministically, and q0cw$ is transformed onto q0cv0b1v1b2 . . . vs−1bsvs$.

Tails of accepting computations are described by accepting instructions over
Γ of the form:

IA = (c · E · $,Accept),

where E is a finite language over Γ . In a configuration cz$, a tail computation
controlled by IA finishes by accepting if z ∈ E, otherwise the computation halts
with rejection.

Further we refer to a t-sRL-automaton as to a tuple M = (Γ, c, $, R(M),
A(M)), where Γ is a characteristic vocabulary (alphabet), c and $ are sentinels
not belonging to Γ , R(M) is a finite set of restarting instructions over Γ and
A(M) is a finite set of accepting instructions over Γ .

The following property of restarting automata has a crucial role for modeling
the analysis by reduction.

Restarting Automata with Structured Output and FGD 505

(Correctness Preserving Property). A t-sRL-automaton M is correctness
preserving if u ∈ LC(M) and u
c∗

M v imply that v ∈ LC(M).
It is known that all deterministic sRL-automata are correctness preserving.

On the other hand, it is easy to design a nondeterministic sRL-automaton which
is not correctness preserving (see [7]).

Enhanced t-sRL-automata. Enhanced t-sRL-automaton Mo is an extension
of a t-sRL-automaton; it is described by instructions enhanced with trees. These
trees are used to assign a tree structure to items (cells of the tape containing
symbols) and consequently to assign an output to each accepting computation.
Enhanced instruction can attach a tree to any item containing symbol which is
not deleted during the corresponding cycle.

We will use tree structures denoted as DR-trees (Delete-Rewrite trees); DR-
tree is a rooted ordered tree with edges oriented from its leaves to its root. Nodes
of the trees are (some of) items deleted or rewritten during individual cycles.
Each item has its horizontal position, which preserves left-to-right ordering of the
input word. Vertical position of a node corresponds to the number of rewritings
on the item(s) with the same horizontal position. The root of such a tree is one
of the nodes of the tree which remain on the tape after an accepting tail. The
edges of such trees are of the following two types:

– an oblique edge connects a marked item to some other marked item;
– a vertical edge connects a rewritten item to the original item. The horizontal

position of the rewritten item is the same as the horizontal position of the
original item. The vertical position of the rewritten item is by one higher
than that of the original item. We can consider rewriting as creating a new
item (cell) containing a new symbol and placing it in the same position of
the tape as the original item.

Formally, a DR-tree T = (V,H) is a rooted tree consisting of a finite set of nodes
V and a finite set of oriented edges H ⊆ V × V .

1. A node u ∈ V is a triple u = [i, j, a], where i, j are integers and a is a
symbol from an alphabet Γ . Index i represents horizontal position of u. Index
j represents vertical position of u and equals to the number of rewritings
performed till a appeared in the corresponding cell of the tape (it is 0 when
the cell was not rewritten).

2. Each edge h = ([iu, ju, a], [iv, jv, b]) ∈ H is either oblique or vertical. We say
that h is:
– an oblique edge: if iu �= iv;
– a vertical (rewriting) edge: if iu = iv and jv = ju + 1.

DR-trees are used in enhanced instructions for storing structural information
contained in the deleted or rewritten parts of an input sentence. This information
is combined with the DR-structures from accepting instructions into resulting
trees.

506 M. Plátek, F. Mráz, and M. Lopatková

Enhanced restarting instructions. Two kinds of restarting instructions are
distinguished: instructions that rewrite one symbol and delete some other sym-
bols, and instructions that delete symbols only.

A. An enhanced restarting instruction which rewrites one symbol is of the form:

IR = (c · E0, [a1 → λ]1, E1, [a2 → λ]2, E2, . . . , Er−1, [ar → b]r,
Er , [ar+1 → λ]r+1,. . . Es−1, [as → λ]s, Es · $, TR),

where I = (c · E0, a1 → λ,E1, a2 → λ, . . . , Er−1, ar → b, Er,ar+1 → λ,. . . , as →
λ,Es · $) is a restarting instruction of an t-sRL-automaton. This instruction
rewrites exactly one symbol ar onto b and deletes symbols aj , for j = 1, . . . , r−
1, r+1, . . . , s. TR = (V,H) is a DR-tree with V ⊆ {[i, 0, ai] | 1 ≤ i ≤ s}∪{[r, 1, b]},
root [r, 1, b], oblique edges between nodes [1, 0, a1], . . . , [s, 0, as] and one rewriting
edge ([r, 0, ar], [r, 1, b]).
B. An enhanced restarting instruction which deletes only is of the form:

ID = (c ·E0, [a1 → λ]1, E1, [a2 → λ]2, E2 . . . , ar−1, Er−1, [ar]r,
Er, [ar+1 → λ]r+1, . . . , [as+1 → λ]s+1, Es · $, TD),

where I = (c ·E0, a1 → λ,E1, a2 → λ,E2, . . . , Er−1 · ar ·Er, ar+1 → λ, . . . , as →
λ,Es · $) is a restarting instruction of an t-sRL-automaton. This instruction
deletes symbols aj , for j = 1, . . . , r−1, r+1, . . . , s. The symbol ar is not deleted
and actually denotes the item which will become the root of the DR-tree TD.
Thus TD = (V,H), where V ⊆ {[i, 0, ai] | 1 ≤ i ≤ s}, H contains oblique edges
only and the root of TD is [r, 0, ar].

Example 2. Let us consider the language Labc = {anbncn| n > 0}. During one
reduction of a word (sentence) anbncn, for some n ≥ 2, we can delete the last sym-
bol a, the symbol b preceding the last b will be considered for the root of DR-tree
TD, the last symbol b as well as the first symbol c will be deleted. The DR-tree TD
represents dependencies between deleted symbols of the word; it contributes to
an incrementally built resulting tree. Hence the automaton has a single restart-
ing instruction ID = (c · a∗, [a → λ]1, b∗, [b]2, λ, [b → λ]3, λ, [c → λ]4, c∗ · $,
TD), where TD = ({[2, 0, b], [3, 0, b], [4, 0, c]}, {([4, 0, c], [3, 0, b]), ([3, 0, b], [2, 0, b])})
is depicted in Fig. 3 on the left. The DR-tree TD indicates that the deleted
symbol b depends on the non-deleted symbol b, that the deleted c depends on
the deleted b, and further that the also deleted symbol a is not included into
the dependency structure at all. Several trees different from TD could be used,
too. E.g., T ′

1 = ({[2, 0, b], [3, 0, b], [4, 0, c]}, {([3, 0, b], [2, 0, b]), ([4, 0, c], [2, 0, b])})
(Fig. 3 middle); this type of a DR-tree we will be later ruled-out.

[2, 0, b]

[3, 0, b]

[4, 0, c]

[2, 0, b]

[3, 0, b][4, 0, c]

[1, 0, b]

[2, 0, c]

Fig. 3. DR-trees TD (left), T ′
1 (middle) and TA (right)

Restarting Automata with Structured Output and FGD 507

Enhanced accepting instructions. Enhanced accepting instructions cannot
delete symbols, they can mark some symbols (items) of the tape and combine
them into a resulting tree. They are of the form:

IA = (c · E0, [a1]1, E1, [a2]2, E2 . . . , [as]s, Es · $, TA,Accept),

where I = (c·E0·a1·E1·a2·E2 . . . as·Es·$,Accept) is an accepting instruction of an
t-sRL-automaton. An t-sRL-automaton cannot rewrite during a tail computation,
hence the tree TA = (V,H) is a rooted DR-tree without rewriting edges. V =
{[i, 0, ai] | 1 ≤ i ≤ s}, H contains oblique edges only and the root of TA is an
arbitrary node from V .

Example 3. For the language Labc = {anbncn| n > 0} from Example 2 we will
need an accepting instruction, too. We can use the following

IA = (c · a, [b]1, λ, [c]2, $, TA,Accept),

where TA = ({[1, 0, b], [2, 0, c]}, {([2, 0, c], [1, 0, b])}) (Fig. 3 right). Using this in-
struction, the item containing the last symbol b will become the root of the
created tree and the last symbol c will become his descendant.

Computations of enhanced t-sRL-automata – combining DR-trees. In-
formally, each enhanced restarting instruction attaches a DR-tree to some item
of the tape containing a non-deleted symbol. When an item with attached tree is
used as a node of another tree in a subsequent reduction, it preserves the former
descendant nodes. In this way bigger and bigger trees can be build.

An accepting computation of an enhanced t-sRL-automaton starts in an initial
configuration with the input sentence (word) written on its tape. Automaton M
performs several cycles according to its restarting instructions and the compu-
tation finishes by an accepting tail. Of course, in each cycle the items of the
tape can contain several non-connected trees. The final accepting instruction
produces the resulting DR-tree. The set of all DR-trees which can be obtained
as a result of some accepting computations of an enhanced t-sRL-automaton M
are called the TR-language of M and we denote it as TR(M).

Remark 2. Note that when we apply an enhanced instruction, the first elements
of the nodes (which are small integers in DR-trees in the instructions of M)
of resulting trees are always replaced by original positions of the corresponding
items in the input word.

In step k of a computation of an enhanced t-sRL-automaton, we can record the
number of rewritings applied on each non-deleted symbol from the beginning
of the computation. To each symbol ai forming the word w = a1a2...an on
the tape after performing step k, we can assign a triple (hi, vi, ai) containing
its position hi in the original (input) word and the number vi of rewritings
applied to the original symbol located at the position hi. We denote the sequence
tk = [h1, v1, a1][h2, v2, a2] . . . [hn, vn, an] as an extended tape content at step k.
Obviously, 1 ≤ h1 < h2 < . . . < hn and vi ≥ 0, for all i = 1, . . . , n. For
each extended tape content t′ = [h′1, v

′
1, a

′
1][h

′
2, v

′
2, a

′
2] . . . [h

′
m, v

′
m, a

′
m], we have

508 M. Plátek, F. Mráz, and M. Lopatková

[4, 0, b]

[5, 0, c]

[1, 0, a] [2, 0, a] [3, 0, b] [4, 0, b] [5, 0, c] [6, 0, c]

[1, 0, a] [3, 0, b] [6, 0, c]

[4, 0, b]

[5, 0, c]

[1, 0, a] [3, 0, b]

[6, 0, c]

Step 0

Step 1

Step 2

Fig. 4. A sample computation

a unique string of symbols a′1 . . . a
′
m. In particular, if w is an input word, i.e.

prior to any reduction, we define the initial extended tape content as Sp(w) =
[1, 0, a1][2, 0, a2] . . . [n, 0, an].

Example 4. Let M = ({a, b, c}, c, $, R(M), A(M)) be an enhanced sRL-auto-
maton with R(M) = {ID}, where ID is the restarting instruction from Example
2, A(M) = {IA}, where IA is the accepting instruction from Example 2. Then
a computation of M on input word (sentence) aabbcc will produce the DR-tree
depicted in the second step in Fig. 4. The root of the tree [3, 0, b] corresponds
to the third input symbol. The node [5, 0, c] denotes the last but one symbol c
which is dependent on the fourth symbol (b).

3 Representation of FGD by Enhanced t-sRL-Automaton

Our ultimate goal is to model FGD. In this section we introduce an enhanced t-
sRL-automaton MFGD which makes it possible to describe relations between char-
acteristic language, analysis by reduction, tectogrammatical dependency struc-
tures, characteristic relation and individual language layers that create the basis
of (the formal framework for) FGD.

Let Σ,Γ be alphabets and Σ ⊆ Γ . In the following PrΣ(z), where z ∈ Γ ,
denotes the projection from Γ ∗ onto Σ∗, that is, PrΣ is the morphism defined
by a �→ a (for a ∈ Σ) and A �→ λ (for A ∈ Γ � Σ).

MFGD = (Γ, c, $, R,A) is an enhanced nondeterministic t-sRL-automaton,
which is correctness preserving. Its characteristic alphabet (vocabulary) con-
sists of four parts Γ = Σw ∪ Σm ∪ Σa ∪ Σt, which correspond to the respective
layers of FGD (Sect. 1.1). MFGD can rewrite only symbols from Σt and such sym-
bols can be rewritten onto symbols from Σt only. Recall that the symbols from
individual layers can be quite complex. E.g., ‘plánujeme’ is a symbol from the
alphabet (vocabulary) Σw, ‘plánovat.VB-P-’ is a symbol from Σm, ‘Pred’ is a
symbol from Σa and ‘plánovat.f PRED.VF1’ is a symbol from Σt (see Fig. 1).

A language of layer � ∈ {w,m, s, t} accepted by MFGD (denoted as L�(MFGD) =
PrΣ�(LC(MFGD))) is the set of all sentences (strings) obtained from LC(MFGD)

Restarting Automata with Structured Output and FGD 509

by removing all the symbols not belonging to the alphabet Σ�. In particular,
Lw(MFGD) represents the set of all correct sentences defined by MFGD.

The characteristic language LC(MFGD) contains input sequences (over Σw)
interleaved with language information of the form of symbols from Σm∪Σa∪Σt.
The language of correct Czech sentences is Lw = PrΣw(LC(MFGD)).

During an accepting computation, the automaton MFGD collects exactly all
the items with tectogrammatical symbols (symbols from Σt) into nodes of a
resulting DR-tree. Remember that the TR-language of MFGD represents the set
of meanings described by FGD.

Let z ∈ LC(MFGD) and let TR(z,MFGD) denote the set of all DR-trees from
TR(MFGD) resulting from accepting computations of MFGD on z. It is possible to
formulate detailed requirements put on MFGD in order to obtain single tree for
each such input z (i.e. |TR(z,MFGD)| = 1, see Appendix).

Remark 3. Let us note that Lt(MFGD) is designed as a deterministic context-free
language. Readers familiar with restarting automata can see that LC(MFGD) is
a deterministic context-sensitive language and Lw(MFGD) is a context-sensitive
language.

Now we can define TR-characteristic relation TSH(MFGD) of the automaton
MFGD, which is the relation between sentence on the (w-layer) and its mean-
ing (t-layer).

TSH(MFGD) = {(u, t) | ∃y ∈ LC(MFGD), u = PrΣw(y) and t ∈ TR(y,MFGD)}.

Remark 4. TR-characteristic relation represents important relations in the de-
scription of natural language – the relations of synonymy and ambiguity (homo-
nymy). From the characteristic relation, the significant notions of analysis and
synthesis can be derived.

For each t ∈ TR(MFGD) we introduce TSH-synthesis using MFGD as the set of
wordforms u which are in TSH relation with the DR-tree t. Formally:

synt-TSH(MFGD, t) = {u | (u, t) ∈ TSH(MFGD)} .

Altogether, TSH-synthesis links the tectogrammatical representation, i.e. DR-
tree t from TR(MFGD) to all corresponding sentences u belonging to Lw(MFGD).
This notion makes it possible to study synonymy and its degree.

Finally we introduce a notion dual to the TSH-synthesis – the notion of TSH-
analysis of a string u using MFGD:

anal-TSH(MFGD, u) = {t | (u, t) ∈ TSH(MFGD)} .

For a given sentence u, TSH-analysis returns all its possible tectogrammatical
representations t from TR(MFGD). Hence it models ambiguity of particular sur-
face sentences. This notion represents a formal definition of complete syntactic-
semantic analysis using MFGD.

Reduction steps and DR-structures. MFGD is a restricted instance of an
enhanced t-sRL-automaton.

510 M. Plátek, F. Mráz, and M. Lopatková

Type I Type II Type III

nv nv

Fig. 5. Types of DR-trees used in MFGD

A. We distinguish three types of restarting instructions used by MFGD (Fig. 5):

Type I instructions are rewriting instructions that process valency. Their cor-
responding trees are of the height 2 with a single inner node nv representing
a rewritten word v and one or more leaves representing valency complemen-
tations of v. The inner node nv is connected to the root by a vertical edge,
the leaves are attached to the inner node by oblique edges only. The rewrit-
ing (vertical) edge solves an incompleteness that would arise if v is simply
deleted: v is rewritten by its syntactic category; the resulting structure is
interpreted as complete with respect to the t-layer.

Type II instructions are deleting instructions that also process a word together
with its valency complementations. Their corresponding trees are of the
height 2 with a single inner node nv representing a word v and leaves rep-
resenting valency complementations of v. The inner node nv is connected to
the root by an oblique edge, the leaves are attached to nv by oblique edges
only. This type of instructions is used if v together with its complementations
can be simply deleted without a loss of completeness at the t-layer.

Type III instructions are deleting instructions that process free modifications.
The corresponding DR-trees have a root and only one leaf connected to
the root by an oblique edge. These instructions are used to process simple
reductions which delete a single dependent word.

B. Accepting instructions contain only DR-trees with all edges pointing to the
root that corresponds to a governing node of a sentence. The root will become
the root of the resulting tree of the whole computation.

C. Each resulting tree T ∈ TR(MFGD) is projective (with respect to its de-
scendants); i.e., for each node n of the tree T all its descendants constitute a
contiguous segment in the horizontal ordering of nodes of the tree T .

3.1 Concluding Remarks

In this paper, we pursue our studies of a formal model for natural language
(Czech in particular) presented in [4,5]. We extend the presentation of the
methodology of FGD so that it outputs neither lists of words nor lists of sym-
bols but (tectogrammatical) DR-trees. Such DR-trees can express valencies and
simple dependencies in Czech sentences. The model presented in this article
captures synonymy and ambiguity as a relation between (surface) sentences and

Restarting Automata with Structured Output and FGD 511

their DR-trees. In this way, we can describe the relation between analysis by
reduction and dependency structures at the tectogrammatical layer in detail.

Moreover, we outline a formalization of the basic methodology of FGD in terms
of automata theory (see Appendix). This is the main point of our paper as this
methodology was presented till now in a way usual in traditional linguistics –
that is, quite informally using numerous linguistic examples only.

We envisage that the proposed methodology is not FGD-specific and that
similar approach can be used to obtain a formal frame for other language de-
scriptions, as e.g. those presented in [6] and [3]. We plan to focus on them in the
near future.

Appendix. Formal definition of enhanced computations of t-sRL-automata as
well as more details on the principles of FGD can be found in the Appendix posted
at the webpage http://ufal.mff.cuni.cz/~lopatkova/lata10/app.pdf.

Acknowledgment. The paper reports on the research supported by the grants
of GAČR P202/10/1333 and P103/10/0783 and by the grant of MŠMT ČR
MSM0021620838.

References

1. Gramatovici, R., Mart́ın-Vide, C.: Sorted Dependency Insertion Grammars. Theor.
Comput. Sci. 354(1), 142–152 (2006)

2. Holan, T., Kuboň, V., Oliva, K., Plátek, M.: Two Useful Measures of Word Or-
der Complexity. In: Polguére, A., Kahane, S. (eds.) Proceedings of the Workshop
Processing of Dependency-Based Grammars, Montréal, Quebeck, pp. 21–28 (1998)

3. Kunze, J.: Abhängigkeitsgrammatik. Studia Grammatica, vol. XII. Akademie Ver-
lag, Berlin (1975)

4. Lopatková, M., Plátek, M., Kuboň, V.: Modeling Syntax of Free Word-Order Lan-
guages: Dependency Analysis by Reduction. In: Matoušek, V., Mautner, P., Pavelka,
T. (eds.) TSD 2005. LNCS (LNAI), vol. 3658, pp. 140–147. Springer, Heidelberg
(2005)

5. Lopatková, M., Plátek, M., Sgall, P.: Towards a Formal Model for Functional Gen-
erative Description: Analysis by Reduction and Restarting Automata. The Prague
Bulletin of Mathematical Linguistics 87, 7–26 (2007)

6. Mel’čuk, I.A.: Dependency Syntax: Theory and Practice. State University of New
York Press, Albany (1988)

7. Messerschmidt, H., Mráz, F., Otto, F., Plátek, M.: Correctness Preservation and
Complexity of Simple RL-automata. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006.
LNCS, vol. 4094, pp. 162–172. Springer, Heidelberg (2006)

8. Otto, F.: Restarting Automata and Their Relation to the Chomsky Hierarchy. In:
Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 55–74. Springer, Heidelberg
(2003)

9. Sgall, P., Hajičová, E., Panevová, J.: The Meaning of the Sentence in Its Semantic
and Pragmatic Aspects. Reidel, Dordrecht (1986)

http://ufal.mff.cuni.cz/~lopatkova/lata10/app.pdf

A Randomized Numerical Aligner (rNA)

Alberto Policriti1,2, Alexandru I. Tomescu1,3, and Francesco Vezzi1,2

1 Dipartimento di Matematica e Informatica,
Università di Udine, Via delle Scienze, 206, 33100 Udine, Italy

{policriti,alexandru.tomescu,francesco.vezzi}@dimi.uniud.it
2 Istituto di Genomica Applicata (IGA),

Via J.Linussio, 51, 33100 Udine, Italy
3 Faculty of Mathematics and Computer Science,

University of Bucharest, Str. Academiei, 14, 010014 Bucharest, Romania

Abstract. With the advent of new sequencing technologies able to pro-
duce an enormous quantity of short genomic sequences, new tools able
to search for them inside a references sequence genome have emerged.
Because of chemical reading errors or of the variability between organ-
isms, one is interested in finding not only exact occurrences, but also
occurrences with up to k mismatches. The contribution of this paper is
twofold. On one hand, we present a generalization of the classical Rabin-
Karp string matching algorithm to solve the k-mismatch problem, with
average complexity O(n+m). On the other hand, we show how to employ
this idea in conjunction with an index over the text, allowing to search a
pattern, with up to k mismatches, in time proportional to its length. This
novel tool—rNA (randomized Numerical Aligner)—outperforms avail-
able tools like SOAP2, BWA, and BOWTIE, processing up to 10 times
more patterns per second on texts of (practically) significant lengths.

1 Introduction

One of the main applications of string matching is computational biology. A
DNA sequence can be seen as a string over the alphabet Σ = {A,C,G, T }.
Given a reference genome sequence, we are interested in searching (aligning)
different sequences (reads) of various lengths. Reads are produced by sequencing
machines able to read stretches of the DNA of a given organism. When aligning
such reads against another DNA sequence, we must take care of errors due to
the sequencer and of intrinsic errors do to the variability between organisms.
For these reasons, all the programs that align reads against a reference sequence
have to deal with mismatches [2,13]. String matching can be divided into two
main areas: exact string matching and approximate string matching.

The most famous exact string matching algorithms are [14,4,12], requiring
time Θ(n + m) (n text and m pattern lengths, respectively). When a great
number of patterns must be searched, it is convenient to build an index over the
text, such as a Suffix Tree, e.g. [25], or a Suffix Array [21]. The most popular tool
for searching inside DNA strings [2] is based on the construction of an index.
For a complete review on indexing algorithms refer to [6].

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 512–523, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Randomized Numerical Aligner (rNA) 513

Approximate string matching at distance k under the edit distance is called
the k-difference problem, while under the Hamming distance, it is called the k-
mismatch problem. A naive algorithm for the k-difference problem is based on
dynamic programming and it has a running time O(nm). Several efforts where
made to improve this result. In [1] the k-mismatch problem is solved in time
O(n

√
m logm), while [15,16] introduced a method running in time O(nk). The

algorithm of [7] attains the same complexity O(nk). A more recent paper [24]
proposed a variation of FAAST [20] that has average running time O(n(logm+
k)/m). The asymptotic running time was improved in [3] to O(n

√
k log k), by a

method based on counting and filtering, the suffix tree with kangaroo hooping,
and fast Fourier transforms, which may ultimately lead to a more sophisticated
implementation.

The first algorithm that solved the k-mismatch problem with the construction
of an index is [11]. The first solution with the query time depending only on
k and m was proposed in [25] using Suffix Trees. More recently [10], the k-
difference problem has been solved in time O(|Σ|kmk max(k, logn)) where Σ is
the alphabet, using compressed Suffix Arrays [8].

In many practical applications, we are interested in finding the best occurrence
of the pattern, with at most k mismatches (the best k-mismatch problem—to be
introduced in Section 3). Recently, a flurry of papers presenting new indexing
algorithms to solve this problem appeared [18,19,17]. All these algorithms aim to
search inside a reference sequence the myriad of reads that are produced by new
sequencing technologies1. For example, the Illumina Genome Analyzer is able to
produce 22 Giga bases of high quality output in a single experiment. Each read
has length 100 bases, and in the close future it will reach 150 bases. Tools like
SOAP2 [19] are able to align this large set of reads in a very short time, thanks
to advanced indices and heuristics, that can, however, reduce accuracy.

In this paper we will focus on the best k-mismatch problem. First we will show
how we can generalize the on-line algorithm of Rabin and Karp [12] to solve the
k-mismatch problem, with an average complexity of O(n+m). In order to solve
the best k-mismatch problem, we will then employ this idea in conjunction with
an index over the text, allowing to search a pattern in time proportional to its
length. We call our tool a randomized Numerical Aligner (rNA)2. Even though
we do not sacrifice accuracy, the experimental results show that our algorithm
has significantly better performances than the most used aligners for short reads,
like [18,19,17].

Problem definition and notations. Let Σ = {0, 1, . . . , b− 1} be an alphabet
of b � 2 characters, and let c, d ∈ Σ. Define neq(c, d) = 1 if c �= d, and 0
otherwise. Let X = X [0]X [1] . . .X [n− 1] and Y = Y [0]Y [1] . . . Y [n− 1] be two
strings over the alphabet Σ. The Hamming distance between X and Y is defined
as dH(X,Y) =def

∑n−1
i=0 neq(X [i], Y [i]). Given numbers 0 < m � n and 0 � s �

n − m, we denote by X(s) the string X(s) =def X [s]X [s + 1] . . .X [s + m − 1].
We denote the numerical radix-b representation of the string X of length n by
1 www.illumina.com, www.solid.com, www.appliedbiosystems.com
2 Source code available upon request.

514 A. Policriti, A.I. Tomescu, and F. Vezzi

x =def b
n−1X [0] + bn−2X [1] + . . . bX [n− 2] +X [n− 1]. Given a positive integer

q, the number x̂ stands for x mod q, and is called the fingerprint of the string
X . The k-mismatch problem is defined as follows:

IN: Text T = T [0]T [1] . . . T [n − 1], pattern P = P [0]P [1] . . . P [m − 1],
over the alphabet Σ, and a natural number k < m.

OUT: All pairs 〈s, dH(P, T(s))〉, where 0 � s � n−m and dH(P, T(s)) � k.

For such a pair 〈s, dH(P, T(s))〉, we say that P occurs (with mismatches) with
shift s in T . If dH(P, T(s)) = 0, we say that T(s) is an exact occurrence of P .

2 An On-Line Algorithm for String Matching with k
Mismatches

One of the simplest exact string matching algorithms, that also performs well in
practice, is the Rabin-Karp randomized algorithm [12]. For every s = 0 . . . n −
m, the algorithm encodes P and any T(s) by the radix-b numbers p and t(s),
respectively, such that expensive string comparisons are replaced by constant-
time numerical comparisons. As usually m is larger than the length of a processor
word, instead of storing p and t(s), one keeps the values p̂ = p mod q and t̂(s) =
t(s) mod q. As an indication that P may occur with shift s in T , it now tests
whether p̂ = t̂(s), and if so, it proceeds to a character-by-character comparison of
P and T(s). Randomly choosing q to be a prime number in the interval [2,mn2],
the test p̂ = t̂(s) produces few false positives [12] (i.e., it gives a positive answer
in the case when P �= T(s)). Moreover, as t̂(s+1) can be computed from t̂(s) in
constant time, the overall expected time complexity is O(n +m).

The Rabin-Karp method has already been employed in [22] to solve the k-
mismatch problem. That approach is based on generating all the

∑k
i=0

(
m
i

)
(b−

1)i strings obtained from P with at most k mismatches. In this paper we will
instead make use of some algebraic properties of the Hamming distance under
the modulo operation. In this way, we can replace ‘generation’ by ‘verification’,
and we can reduce the exponential blow-up on m, to an exponential blow-up on
the length w of a processor word.

We will retain the advantageous features of the Rabin-Karp algorithm, like
encoding strings by a radix-b number, and storing values modulo an appropriate
number q. The only point where a change is needed is in the heuristic check
whether the pattern occurs with shift s (i.e., in the test p̂ = t̂(s)). In what
follows, we will seek an answer to these questions:

1. If dH(P, T(s)) � k, then what fast test on the available data (e.g., p̂, t̂(s))
can we use to detect such a situation?

2. How can we guarantee that this test produces few false positives, and what
is the probability of such an event?

We note that when k = 0, then p̂ = t̂(s) is equivalent to (p̂ − t̂(s)) mod q = 0.
With this clue in mind, we still compute (p̂ − t̂(s)) mod q, but we will try to

A Randomized Numerical Aligner (rNA) 515

characterize the set Z(k, q) ⊆ {0, . . . , q−1}, such that whenever dH(P, T(s)) � k,
then (p̂ − t̂(s)) mod q ∈ Z(k, q) holds. More formally, the set Z(k, q) is defined
as follows.

Definition 1. Given m > 0, 0 < k < m and q > 0, define Z(k, q)3 to be the set

Z(k, q) =def {(x− y) mod q |X,Y ∈ Σm, dH(X,Y) � k}.

The algebraic difference between the numerical representations of two strings at
a given Hamming distance is characterized in Lemma 1.

Lemma 1. Given two strings X and Y of the same length m, for any 0 < k < m
we have dH(X,Y) = k if and only if

x− y ∈ {(−1)u1t1b
i1 + . . .+ (−1)uk tkb

ik : i1 > . . . > ik ∈ {0, . . . ,m− 1},
u1, . . . , uk ∈ {0, 1}, t1, . . . , tk ∈ {1, . . . , b− 1}}.

Plainly, from Lemma 1, Z(k, q) can be expressed as

Z(k, q) = {((−1)u1t1b
i1 + . . .+ (−1)uj tjb

ij
)

mod q : 0 < j � k,

i1 > . . . > ij ∈ {0, . . . ,m− 1},
u1, . . . , uj ∈ {0, 1}, t1, . . . , tj ∈ {1, . . . , b− 1}} ∪ {0}.

An upper bound for the cardinality of Z(k, q) is min{q,∑k
j=0

(
m
j

)
(2(b − 1))j},

as for each 0 � j � k, there are
(
m
j

)
ways to choose j pairwise distinct i1, . . . , ij ,

and (2(b− 1))j ways to choose u1, . . . , uj and t1, . . . , tj .
In order for the test (p̂ − t̂(s)) mod q ∈ Z(k, q) to give few false positives,

the size of Z(k, q) must be small, which, working modulo an arbitrary number
q, may not be true. The main idea of our approach is to choose q = bw − 1,
where w < m is a natural number large enough, according to a few complexity
considerations4. The following lemma shows that the choice q = bw − 1 makes
Z(k, q) have a small cardinality.

Lemma 2. Given w < m,

Z(k, bw − 1) = {((−1)u1t1b
i1 + . . .+ (−1)uj tjb

ij
)

mod (bw − 1) : 0 < j � k,

i1 > . . . > ij ∈ {0, . . . , w − 1},
u1, . . . , uj ∈ {0, 1}, t1, . . . , tj ∈ {1, . . . , b− 1}} ∪ {0}.

3 We will sometimes refer to the elements of Z(k, q) as witnesses, as they testify that
two strings can be at Hamming distance at most k.

4 Notice that, arithmetic modulo numbers of the form 2w − 1 (called Mersenne num-
bers) is used in various applications, like digital systems based on residue number
system, or cryptography, therefore, efficient VLSI circuit architectures for addition
and multiplication modulo 2w − 1 have been proposed over the years (see, e.g., the
discussion in [26], and the references therein). Notice also that, in general, the usage
of q of the form 2w − 1 is not suggested when exact search is performed.

516 A. Policriti, A.I. Tomescu, and F. Vezzi

Proof. See the extended version of this paper [23].

Hence, |Z(k, bw − 1)| is at most
∑k

j=0

(
w
j

)
(2(b − 1))j , as for each 0 � j � k,

there are
(
w
j

)
ways to choose j pairwise distinct i1, . . . , ij, and (2(b− 1))j ways

to choose u1, . . . , uj and t1, . . . , tj .
Onwards, we suppose to work modulo q = bw − 1, without explicitly men-

tioning it. The generalized algorithm (shown as Algorithm 1) works in a simi-
lar manner as the Rabin-Karp algorithm [12]. It starts by setting q = bw − 1,
s = 0, and by computing p̂ = p mod q and t̂(0) = t(0) mod q, using Horner’s
rule and bringing into play the linearity of the modulo operation. Then, for each
0 � s � n−m it checks whether (p̂ − t̂(s)) mod q ∈ Z(k, q). If yes, it performs
a character-by-character comparison of P and T(s). When incrementing s, the
value t̂(s) can be computed in constant time, as follows. For all 0 � s < n−m,
we have t̂(s+1) = b ·(t(s)−bm−1T [s])+T [s+m]. Working modulo q, this equation
becomes t̂(s+1) =

(
b·(t̂(s)−(bm−1 mod q)T [s])+T [s+m]

)
mod q. If we let h =def

bm−1 mod q = b(m−1) mod w, we get t̂(s+1) =
(
b ·(t̂(s)−h ·T [s])+T [s+m]

)
mod q.

Algorithm 1. String matching with k mismatches
Input: T = T [0]T [1] . . . T [n − 1], P = P [0]P [1] . . . P [m − 1], both over the

alphabet Σ = {0, 1, . . . , b − 1}, number of mismatches k (0 � k < m)
and word length w.

Output: All pairs 〈s, dH(P, T(s))〉, where 0 � s � n − m and dH(P, T(s)) � k.

q ← bw − 1; h ← bm−1 mod w;1

Z ← GenerateZ(k, q); Solution ← ∅;2

p̂ ← t̂ ← 0;3

for i ← 0 to m − 1 do4

p̂ ← (b · p̂ + P [i]) mod q;5

t̂ ← (b · t̂ + T [i]) mod q;6

if (p̂ − t̂) mod q ∈ Z then7

if dH(P, T(0)) � k then8

Solution ← Solution ∪ {〈0, dH(P, T(0))〉};9

for s ← 1 to n − m do10

t̂ ← (b · (t̂ − h · T [s − 1]) + T [s + m − 1]) mod q;11

if (p̂ − t̂) mod q ∈ Z then12

if dH(P, T(s)) � k then13

Solution ← Solution ∪ {〈s, dH(P, T(s))〉};14

return Solution;15

In Algorithm 1 we assume that procedure GenerateZ(k, q) generates the
set Z(k, q). In order to evaluate the expected complexity of the string matching
phase of Algorithm 1, we follow the formalism of [5, Ch. 32.2]. We have to
take into account the time c(q) the test (p̂ − t̂(s)) mod q ∈ Z on lines 7 and 12
takes, and the number of false positives produced by it. If we denote by p(q) the

A Randomized Numerical Aligner (rNA) 517

probability that at a specific shift 0 � s � n −m this test will produce a false
positive, we can estimate the number of false positives as n · p(q). Considering
ν to be the number of occurrences of P in T with at most k mismatches, the
expected complexity is

O(n · c(q) + (m · ν +m · n · p(q)).
In many applications ν is small (i.e., O(1)) and if we choose q such that n ·p(q) �
1, then the expected complexity becomes O(n · c(q)+m). The only values of t(s)
for which (p̂−t̂(s)) mod q ∈ Z(k, q), but dH(P, T(s)) > k are of the form p+z+j·q,
where z ∈ Z(k, q) and 0 � j � 1bm/q2. As we have at most 1bm/q2|Z(k, q)| such
values, and there are at most bm possible values for t(s), the probability that at
a specific shift s, the test (p̂ − t̂(s)) mod q ∈ Z(k, q) produces a false positive is
p(q) � |Z(k,q)|

q , under the assumption that the operation mod (bw−1) uniformly
distributes numbers in the interval [0 . . . q − 1] (for example when bw − 1 is a
prime number).

Therefore, to attain the desired time complexity, one has to choose q = bw−1
such that b · q fits into a processor word and such that q � n|Z(k, q)|. Working
on a 32-bit processor, with strings over the alphabet {0, 1, 2, 3}, limits w to 15,
therefore, if n or k are large enough, a flurry of false positives are due to appear.
If we use a 64-bit architecture, w is limited by 31, and hence the number of false
positives drastically decreases. These numbers are computed in Table 1.

Table 1. The average number of false positives returned by the heuristic test
(p̂ − t̂s) mod q ∈ Z(k, 4w − 1), when |Σ| = 4, n =4,000,000,000, and w = 15 (32-
bit architecture) and w = 31 (64-bit architecture)

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
false positives on 32 bits 3.73 339 13079 279959 3662224 30549760
false positives on 64 bits ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 2.4

We choose to implement the test (p̂ − t̂(s)) mod q ∈ Z(k, q) by generating
before-hand the set Z(k, q), in time O(|Z(k, q)|). The data structure storing it
can be an ordered array, with search complexity O(log |Z(k, q)|). A data struc-
ture more appropriate for unsuccessful queries, as we expect most of them to
be, is a trie, with worst case search time O(w). However, due to better memory
locality, a hash table with collisions resolved by chaining is preferred. Under
the assumption of simple uniform hashing and using O(α) memory, the average
search complexity becomes O(1 + |Z(k, q)|/α).

If one agrees to use an additional amount O(q) of memory, then Z(k, q) can
be simply stored as a direct-address table Z[0 . . . q − 1], where Z[z] = 1 iff
z ∈ Z(k, q). Therefore, we have the following:

Theorem 1. Algorithm 1 solves the k-mismatch problem; if q = bw − 1 �
|Z(k, q)|, and if the set Z(k, q) is stored as a direct-address table of size O(q), its
expected search complexity is O(n + m + |Z(k, q)|). If n3 m then the expected
search time is O(n).

518 A. Policriti, A.I. Tomescu, and F. Vezzi

3 A Randomized Numerical String Aligner with k
Mismatches

A string aligner is given a text T , of length n, and a collection P of patterns, and
is required to find all occurrences of P in T with at most k mismatches, for all
P ∈ P . In many applications, like in the search of a set of sequences (reads) inside
a reference sequence genome, we are interested in finding the best occurrence of
a string with at most k mismatches, instead of find all its occurrences with
less than k mismatches. This problem (referred to in what follows as the best
k-mismatch problem) can be reformulated in the following way:

IN: Text T = T [0]T [1] . . . T [n − 1], a collection P of patterns of length
m, all over the alphabet Σ, and a natural number k < m.

OUT: For every P ∈ P , all pairs 〈s, dH(P, T(s))〉, where 0 � s � n − m
and dH(P, T(s)) � k, such that for all 0 � s′ � n − m we have
dH(P, T(s)) � dH(P, T(s′)).

A naive approach is to iteratively apply Algorithm 1 for each P ∈ P , with an
overall average time complexity of O((n +m)|P|). However, we choose to build
in time Θ(n) and space Θ(n) the index5

T = {〈t̂(s), s〉 : 0 � s � n−m}.
The shifts s in T which may be exact occurrences of a P ∈ P correspond to
those pairs 〈p̂, s〉 ∈ T . The set T can be stored is a way similar to a hash by
chaining. We use an array indexed by numbers from 0 to q − 1, having, for all
0 � r � q − 1, T [r] = {s1, . . . , sl} iff for all 1 � i � l, t̂(si) = r.

Algorithm 1 can be adapted to use the index T , by reverting from ‘verification’
back to ‘generation’. For every P ∈ P , we are interested in finding all the shifts s
in T which may be occurrences of P with at most k mismatches. They correspond
to those pairs 〈t̂(s), s〉 ∈ T such that (p̂ − t̂(s)) mod q ∈ Z(k, q). Using the
linearity of the modulo operation, we thus iteratively search in T all numbers
(p̂−z) mod q, for every z ∈ Z(k, q). For all shifts s such that 〈(p̂−z) mod q, s〉 ∈
T , we check that indeed dH(P, T(s)) � k. The average complexity of a search of
a pattern is thus O(m + |Z(k, q)|), amounting to a total complexity of O(n +
(m+ |Z(k, q)|)|P|).

However, the bigger w is, the lower the probability of a false positive is, but
the bigger |Z(k, q)| gets, and vice-versa. We can remediate this problem by a
rather standard use (in this field) of the pigeonhole principle.

Given a pattern P = P [0]P [1] . . . P [m−1] and a positive integer 1 � t � m, for
every 0 � i < t, we denote by Pt(i) its substring P [i1m/t2] . . . P [(i+1)1m/t2−1]
and call it the ith block of P . Note that the t blocks of P do not overlap, a crucial
property for the following lemma to hold.

Lemma 3. Let T be a text, P = P [0]P [1] . . . P [m − 1] be a pattern, and t be a
positive integer, 1 � t � m. If P occurs in T with at most k mismatches, then there
is at least one block Pt(i) of P that occurs in T with at most 1k/t2mismatches.
5 For a discussion on different indexing strategies, refer to [9].

A Randomized Numerical Aligner (rNA) 519

Algorithm2.The randomizedNumericalAligner (rNA)withkmismatches
Input: Text T = T [0]T [1] . . . T [n− 1], a collection P of patterns of length m, all

over the alphabet Σ = {0, 1, . . . , b − 1}, number k of mismatches
(0 � k < m), the number t of blocks in which the patterns get divided
(1 � t � k + 1), and word length w.

Output: For all P ∈ P , all pairs 〈s, dH(P, T(s))〉, where 0 � s � n − m,
dH(P, T(s)) � k and for all 0 � s′ � n − m, it holds that
dH(P, T(s)) � dH(P, T(s′)).

procedure SearchPattern(P)1

for i ← 0 to t − 1 do //compute the fingerprints of all the blocks2

of P
p̂t(i) ← 0;3

for j ← i · l to (i + 1) · l − 1 do4

p̂t(i) ← (b · p̂t(i) + P [j]) mod q;5

Solution ← ∅;6

best k ← k; //the smallest distance at which to search onwards7

exact occurrence ← false;8

j ← 0;9

while j < |Z(�best k/t�, w)| do //for every witness Z[j]10

i ← 0;11

while i � t − 1 and (¬exact occurrence) do //for every block i12

forall s ∈ indexT [(p̂(i) −Z[j]) mod q] do13

if s − i · l � 0 and dH(P, T(s−i·l)) � best k then14

if dH(P, T(s−i·l)) < best k then15

best k ← dH(P, T(s−i·l));16

Solution ← ∅;17

Solution ← Solution ∪ {〈s − i · l, best k〉};18

if best k = 0 then exact occurrence ← true;19

j ← j + 1;20

print Solution;21

end22

q ← bw − 1;23

l ← �m/t�; // the length of each of the t blocks of P24

indexT ←PreProcessText(T, b, l, q);25

Z ←GenerateZ(k, q);26

forall P ∈ P do27

SearchPattern(P);28

Accordingly, instead of searching for an entire pattern P with at most k mis-
matches, we can perform t searches for all of the blocks of P , each with at most
1k/t2 mismatches. Each occurrence of a block Pt(i) (0 � i < t) of P in T , with
shift s, is an indication that P may occur in T with shift s− i1m/t2. As we are

520 A. Policriti, A.I. Tomescu, and F. Vezzi

interested in finding the best occurrences of P in T , we will keep the smallest
number of mismatches at which an occurrence of P has been found so far in a
variable best k. In this way, each block of the pattern is searched with at most
1best k/t2 mismatches. The pseudo-code is given as Algorithm 2.

Procedure PreProcessText(T, b, l, q) builds the index T that allows the
search of strings of length l = 1m/t2. Procedure GenerateZ(k, q) returns an
array containing the elements of the set Z(k, q), ordered as follows: for all 0 �
i < k, the elements of Z(i, q) are placed before the elements of Z(i+1, q)\Z(i, q).

The procedure SearchPattern(P) divides the pattern in t blocks, each of
length l = 1m/t2. For each block Pt(i) (0 � i < t), its fingerprint p̂t(i) is com-
puted employing Horner’s rule and the linearity of the modulo operation (lines
2 – 5). The variable best k stores the smallest distance at which an occurrence
of P has been found so far, while exact occurrence indicates whether an exact
occurrence has been found in the text.

For each index j (0 � j < |Z(1best k/t2, q)|), we iteratively search in the text
every block Pt(i) (0 � i < t), with at most 1best k/t2mismatches (line 12). Every
such shift swhere the block imay occur is an indication that the pattern may occur
at shift s− i · l with at most best k mismatches (if, of course, s− i · l � 0).

If this is indeed the case (line 14), we have to check whether the current
occurrence is at distance strictly smaller than best k (line 15). If so, the variable
best k is updated with the current distance, and all the shifts s stored so far
in the set Solution are discarded. Anyhow, the current shift s together with
best k are added to Solution. In other words, at every step of the computation,
the set Solution stores occurrences only at distance best k.

Lastly, in line 19 we implement the following trick: if the pattern occurs in
an exact manner in the text, then the first block does as well. Since this block
will indicate all exact occurrences, searching the remaining blocks of P brings
no additional information. Therefore, we set exact occurrence to true, stopping
the search (this is true because best k was changed to 0, hence the loop in line
10 is no longer executed).

4 Experimental Results

The main field where string alignment tools are used is bioinformatics. Such
tools are used in order to search inside a reference sequence genome a sets of se-
quences (reads) generated by a sequencer, an instrument able to read DNA.
Over the last years, a new generation of sequencers has emerged (see, e.g.,
www.illumina.com). Compared with previous sequencers (so called Sanger se-
quencers), the main features of these novel machines are the enormous quantity
of data generated and the short length of the sequences that they give in output.
For example, a single Illumina experiment can produce 22 Giga bases of output
grouped in reads of length 100 (their length is expected to grow to 150 bases in
the near future).

For these reasons, many of the currently available aligners sometimes sacrifice
correctness over speed, by skipping a small number of occurrences of a read.

A Randomized Numerical Aligner (rNA) 521

0 1 2 3 4 5 6 7 8
0

50

100

150

1
0
3

q
u
er

ie
s/

se
co

n
d

rNA

SOAP2

BWA

FA2ST

BOWTIE

(a) Text length 50M, read length 100
0 1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

1
0
3

q
u
er

ie
s/

se
co

n
d

read length 36

read length 75

read length 150

(b) Text length 50M, rNA vs. SOAP2

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

1
0
3

q
u
er

ie
s/

se
co

n
d

read length 36

read length 75

read length 150

(c) Text length 50M, rNA vs. BWA
0 1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

1
0
3

q
u
er

ie
s/

se
co

n
d

read length 36

read length 75

read length 150

(d) Text length 50M, rNA vs. FA2ST

Fig. 1. The number of errors is represented on the X-axis, while the Y-axis indicates
the number of reads processed per second. Figure 1(a) compares the read throughput
of the 5 algorithms when aligning reads of length 100 against a reference sequence of
length 50M. Figures 1(b) - 1(d) compares the performances of rNA (continuous lines)
with SOAP2, BWA, and FA2ST (dashed lines) when varying the read length (36, 75,
150) and the number of errors.

For example, SOAP2 [19] searches only the first l � m characters of the read
in the reference text with at most v � 2 mismatches, and for each such occur-
rence, it checks that the entire pattern occurs with at most k mismatches (both
parameters l and v are chosen by the user).

Our tool was compared against SOAP2 [19], BWA [18], BOWTIE [17], and
FA2ST (C. Del Fabbro, PhD thesis, in preparation, 2009). The last tool imple-
ments Suffix Arrays and relies on the idea behind Lemma 3, where t, the number
of blocks in which the pattern gets divided, is always chosen to be k + 1. Like
rNA, it is the only aligner, to our knowledge, that solves the best k-mismatch
problem in an accurate manner.

522 A. Policriti, A.I. Tomescu, and F. Vezzi

The tests where performed over a machine running Linux 2.6.24, on two quad-
core Intel Xeon 3Ghz processors with 32GB of RAM. Even if the algorithm we
proposed is easily parallelizable, all the experiments were run using only a single
CPU. The algorithm was written in C++ and compiled with the GNU gcc 4.2
compiler with the options -O3 -static-libgcc. The test data was constructed
by extracting from the grapevine genome 4 sequences of sizes 50K, 500K, 5M,
50M, to be used as references. From each such reference, we extracted 400.000
reads of length m (m ∈ {36, 50, 75, 100, 150}), with an average error rate of
1%. These assumptions are similar to the technical specifications of the Illumina
sequencer. For all the possible combinations of tool, text length and read length,
several experiments where done varying the input parameters and only the best
result was considered.

Because of length constraints, we summarize the most significant results in
Figure 1. Figure 1(a) compares the 5 tools on reference length 50M and query
length 100. When allowing less than 4 mismatches, rNA greatly outperforms all
other tools. Instead, if this numbers increases, the only tool that achieves com-
parable results is SOAP2 (whose performances tend to be constant). However,
in real applications we are interested in alignments that have similarities higher
than 95%, implying that it is not biologically relevant to search a read of length
100 with more than 5 mismatches. Figure 1(b) illustrates a complete comparison
between rNA and SOAP2 on a reference of length 50M bases. When the ratio
between the number of mismatches and the length of the read is low, rNA is
significantly faster than SOAP2. In particular, for read length 150 and at most
10 mismatches, rNA is always better than SOAP2.

References

1. Abrahamson, K.: Generalized string matching. SIAM Journal on Computing 16(6),
1039–1051 (1987)

2. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lip-
man, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Research 25(17), 3389–3402 (1997)

3. Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with k
mismatches. Journal of Algorithms 50, 257–275 (2004)

4. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),
762–772 (1977)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, McGraw-Hill Book Company (2001)

6. Ferragina, P.: String algorithms and data structures. CoRR abs/0801.2378 (2008)
7. Galil, Z., Giancarlo, R.: Improved string matching with k mismatches. SIGACT

News 17(4), 52–54 (1986)
8. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications

to text indexing and string matching. SIAM J. Comput. 35(2), 378–407 (2005)
9. Horner, D.S., Pavesi, G., Castrignano, T., De Meo, P.D., Liuni, S., Sammeth, M.,

Picardi, E., Pesole, G.: Bioinformatics approaches for genomics and post genomics
applications of next-generation sequencing. Brief. Bioinform., bbp046+ (2009)

A Randomized Numerical Aligner (rNA) 523

10. Huynh, T.N.D., Hon, W.K., Lam, T.W., Sung, W.K.: Approximate string matching
using compressed suffix arrays. Theor. Comput. Sci. 352(1), 240–249 (2006)

11. Jokinen, P., Ukkonen, E.: Two algorithms for approximate string matching in static
texts. In: Proc. 2nd Ann. Symp. on Mathematical Foundations of Computer Sci-
ence, vol. 520, pp. 240–248 (1991)

12. Karp, R., Rabin, M.: Efficient randomized pattern-matching algorithms. IBM J.
Res. Develop. 31(2), 249–260 (1987)

13. Kent, W.J.: BLAT—The BLAST-like Alignment Tool. Genome research 12(4),
656–664 (2002)

14. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal on Computing 6(2), 323–350 (1977)

15. Landau, G.M., Vishkin, U.: Efficient string matching in the presence of errors. In:
Proceedings of the 26th IEEE Symposium on Foundations of Computer Science,
pp. 126–136 (1985)

16. Landau, G.M., Vishkin, U.: Efficient string matching with k mismatches. Theoret-
ical Computer Science 43, 239–249 (1986)

17. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology 10(3),
R25 (2009)

18. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25(14), 1754–1760 (2009)

19. Li, R., Yu, C., Li, Y., Lam, T.W., Yiu, S.M., Kristiansen, K., Wang, J.: SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics 25(15), 1966–1967
(2009)

20. Liu, Z., Chen, X., Borneman, J., Jiang, T.: A fast algorithm for approximate string
matching on gene sequences. In: Apostolico, A., Crochemore, M., Park, K. (eds.)
CPM 2005. LNCS, vol. 3537, pp. 79–90. Springer, Heidelberg (2005)

21. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches. In:
SODA ’90: Proc. 1st Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 319–327.
Society for Industrial and Applied Mathematics, Philadelphia (1990)

22. Muth, R., Manber, U.: Approximate multiple string search. In: Proc. 7th Ann.
Symp. on Combinatorial Pattern Matching, Laguna Beach, CA, pp. 75–86 (1996)

23. Policriti, A., Tomescu, A.I., Vezzi, F.: A Randomized Numerical Aligner (rNA)
(2010), http://sole.dimi.uniud.it/~alexandru.tomescu/files/rNA-ext.pdf

24. Salmela, L., Tarhio, J., Kalsi, P.: Approximate Boyer-Moore string matching for
small alphabets. Algorithmica (to appear)

25. Ukkonen, E.: Approximate string matching over suffix trees. In: Proc. 4th Ann.
Symp. on Combinatorial Pattern Matching, pp. 228–242 (1993)

26. Zimmermann, R.: Efficient VLSI Implementation of Modulo (2n ±1) Addition and
Multiplication. In: IEEE Symposium on Computer Arithmetic, pp. 158–167. IEEE
Computer Society, Los Alamitos (1999)

http://sole.dimi.uniud.it/~alexandru.tomescu/files/rNA-ext.pdf

Language-Based Comparison of Petri Nets with
Black Tokens, Pure Names and Ordered Data

Fernando Rosa-Velardo1,� and Giorgio Delzanno2

1 Universidad Complutense de Madrid, Spain
fernandorosa@sip.ucm.es

2 Università di Genova, Italy
giorgio@disi.unige.it

Abstract. We apply language theory to compare the expressive power
of models that extend Petri nets with features like colored tokens and/or
whole place operations. Specifically, we consider extensions of Petri nets
with transfer and reset operations defined for black indistinguishable
tokens (Affine Well-Structured Nets), extensions in which tokens carry
pure names dynamically generated with special ν-transitions (ν-APN),
and extensions in which tokens carry data taken from a linearly ordered
domain (Data nets and CMRS). These models are well-structured transi-
tions systems. In order to compare these models we consider the families
of languages they recognize, using coverability as accepting condition.
With this criterion, we prove that ν-APNs are in between AWNs and
Data Nets/CMRS. Moreover, we prove that the family of languages rec-
ognized by ν-APNs satisfies a good number of closure properties, being
a semi-full AFL. These results extend the currently known classification
of the expressive power of well-structured transition systems with new
closure properties and new relations between extensions of Petri nets.

1 Introduction

Dynamic name generation has been thoroughly studied in the last decade, mainly
in the field of security and mobility [9]. Paradigmatic examples of nominal calculi
are the π-calculus and the Ambient Calculus [9]. In previous works we have
studied a very simple extension of Petri Nets, that we called ν-APNs [14,13].
Tokens in ν-APNs are pure names, that can be created fresh, moved along the
net and used to restrict the firing of transitions with name matching. Since any
fresh name can be created, we identify markings up to renaming of their names.

The paper [10] proves that reachability is undecidable for ν-APNs. However,
ν-APNs belong to the class of (strictly) Well Structured Transition Systems
(WSTS) [14]. This means that the problems of boundedness (whether the set of
reachable states is finite) and coverability (whether a marking which is greater
than a given one is reachable) are both decidable.

� Author partially supported by the Spanish projects DESAFIOS10 TIN2009-14599-
C03-01, WEST TIN2006-15578-C02-01 and PROMETIDOS S2009/TIC-1465.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 524–535, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Comparison of Petri Nets with Black Tokens, Pure Names and Ordered Data 525

In this paper we compare ν-APNs with other models that are also WSTS.
Among these models, we highlight Affine Well-structured Nets (AWN) [5], a well-
structured extension of Petri nets in which whole-place operations (as transfers
and resets) are allowed; Data nets [11], an extension of AWNs in which tokens
are no longer indistinguishable, but taken from a linearly ordered domain; and
CMRS [1], a fragment of Data nets without whole-place operations. All above
mentioned models are well-structured transition systems in which the reachabil-
ity problem is undecidable.

To compare the expressive power of different models, it comes natural to study
the class of languages generated by associating labels to transitions: a finite firing
sequence defines a word. The standard notion of acceptance is based on reach-
ability of a configuration. However, since reachability is undecidable for these
models, the class of languages they recognize is the class of recursively enumer-
able languages. Therefore, we need finer grain criteria to distinguish Petri net
extended with whole place operations and colored tokens. More specifically, we
consider well-structured languages, in which the acceptance condition is defined
using coverability of a given configuration.

In [3] such comparison is done for Petri nets (PN), AWNs, and Data Nets,
and the following is proved:

L(PN) ⊂ L(AWN) ⊂ L(Data nets)

Moreover, the authors proved that Data nets are equivalent (they generate the
same family of languages) to the so called Petri Data nets, Data nets for which
no whole-place operation is allowed, and equivalent to CMRS. We plan to put ν-
APNs in that picture, by studying the family of languages recognized by them.
More precisely, we study the families recognized by ν-APNs and also by ν�=-
APNs, a variation of ν-APNs allowing to check for inequality of names. In par-
ticular, we prove that both are in between AWNs and Data nets.

The rest of the paper is organized as follows: Section 2 defines some basic
concepts that we use throughout the paper. In Section 3 we study the languages
recognized by ν-APNs and ν�=-APNs with different accepting conditions, and
prove some closure properties for them. Section 4 compares the languages rec-
ognized by AWNs and ν-APNs. Section 5 compares ν�=-APNs and Data Nets.
Finally, Section 6 presents our conclusions and future work.

2 Preliminaries

Languages, AFLs. Given a (finite) alphabet Σ, any w = a1 · · · an with n ≥ 0
and ai ∈ Σ, for all i, is a (finite) word on Σ. We denote by Σ∗ the set of words
on Σ. If n = 0 then w is the empty word, which is denoted by ε. The length
of w is |w| = n. A language on Σ is a set of words on Σ. If we denote by ·
the word concatenation, then L1 · L2 = {w1 · w2 | w1 ∈ L1, w2 ∈ L2} is the

concatenation of L1 and L2. If we denote by Li the language L
i· · ·L, the iteration

L+ of the language L is
⋃

i>0 L
i. A function h : Σ∗ → Σ∗ is an homomorphism

526 F. Rosa-Velardo and G. Delzanno

if h(w1 · w2) = h(w1) · h(w2). Given an homomorphism h and a language L, we
can define h(L) = {h(w) | w ∈ L} and h−1(L) = {w | h(w) ∈ L}.

A semi-full abstract family of languages (semi-full AFL) [8] is a family of lan-
guages closed under union, intersection with regular languages, homomorphism
and inverse homomorphism. A semi-full AFL is a full AFL if it is closed under
concatenation and iteration.

wqos. A quasi order ≤ is a reflexive and transitive binary relation on a set
X . A quasi order ≤ is well founded if there are no infinite strictly decreasing
sequences, and it is decidable if for every a, b ∈ X we can effectively decide if
a ≤ b. A well founded quasi order is simply said well (wqo) [6], if for every infinite
sequence a0, a1, . . . there are i and j with i < j such that ai ≤ aj . Equivalently,
an order is a wqo if every sequence has an increasing subsequence.

WSTS, WSL. A transition system is a pair N = (X,→) with set of states
X and transition relation →⊆ X × X . We denote by →∗ the reflexive and
transitive closure of →. A Well Structured Transition System (WSTS) is a tuple
N = (X,→,≤), where (X,→) is a transition system, and (X,≤) is a decidable
wqo, satisfying the following monotonicity condition1: M1 ≤M2 and M1 →M ′

1
implies the existence of M ′

2 such that M2 →M ′
2 and M ′

1 ≤M ′
2.

In the classic theory of Petri net languages [12] three types of labelling func-
tions are considered: injective, ε-free and arbitrary. In this work we concentrate
on arbitrary labelling functions (generally having better closure properties). We
consider a fixed finite alphabet Σ and a special symbol ε /∈ Σ, and we as-
sume that ε is such that ε · w = w · ε = w. A labelled WSTS S is a WSTS
S = (X,→,≤), where the transition relation is partitioned into →=

⋃
a∈Σ∪{ε}

a→.

For a word w ∈ Σ∗, we write M
w→M ′ if M ′ can be reached from M and the

concatenation of the labels of the transitions used is the word w. Moreover, four
acceptance conditions can be considered: reachability, coverability, deadlock and
no condition.

Definition 1. Given a labelled WSTS S and two states s0 and sf , we define:2

– LL(S) = {w ∈ Σ∗ | s0 w→sf},
– LG(S) = {w ∈ Σ∗ | s0 w→s, s ≥ sf},
– LT (S) = {w ∈ Σ∗ | s0 w→s, s �→},
– LP (S) = {w ∈ Σ∗ | s0 w→s},

Notice that conditions T and P do not make use of the final state sf . For any
of the models M we consider in this paper, we denote by LR(M) the class
of languages {LR(S) | S ∈ M}, with R ∈ {L,G, T, P}. A Well Structured
Language (WSL) is any language accepted by a WSTS, with G as accepting
condition [7]. In [7] the following pumping lemma is proved.

Lemma 1 (Lemma 6 (pg. 262) [7]). Let L be a WSL and (wk)∞k=1 ⊆ L with
wk = Bk · Ek for every k ≥ 1. Then, there exist i < j such that Bj ·Ei ∈ L.
1 Less restrictive monotonicy notions are considered in [6].
2 We use the classical notation for Petri Net Languages in [12].

Comparison of Petri Nets with Black Tokens, Pure Names and Ordered Data 527

a a

a

b b

p1 q1

p2 q2

x x

y ν

→ a a

a

b c
(c fresh)

p1 q1

p2 q2

x x

y ν

Fig. 1. A simple ν-APN and the firing of its only transition

Multisets. Given an arbitrary set A, we denote by MS(A) the set of finite
multisets of A, that is, the mappings m : A→ N. When needed, we identify each
set with the multiset defined by its characteristic function, and use set notation
for multisets when convenient. We denote by S(m) the support of m, that is,
the set {a ∈ A | m(a) > 0} and by |m| =

∑
a∈S(m)

m(a) the cardinality of m. We

denote by m1 +m2, m1 ⊆ m2 and m1−m2 the multiset addition, inclusion, and
substraction, respectively. If f : A → B is an injection and m ∈ MS(A) then
we can define f(m) ∈ MS(B) by f(m)(b) = m(a) if f(a) = b for some a, and
f(m)(b) = 0, otherwise.

3 Nets in Which Tokens Carry Pure Names

In this section we study the class of languages generated by an extension of Petri
nets with pure names, called ν-APN [13].

ν-APNs. The class of ν-APNs is an extension of Petri Nets in which tokens
are not indistinguishable, but pure names, that can only be compared by the
equality predicate. We consider a set Id of names, a set Var of variables and a
disjoint set Υ of special variables.

A ν-APN is a tuple N = (P, T, F), where P and T are finite disjoint sets of
elements called places and transitions, respectively,

F : (P × T) ∪ (T × P) →MS(Var)

is such that for every t ∈ T , post(t) \ Υ ⊆ pre(t) and pre(t) ∩ Υ = ∅, where

– pre(t) =
⋃

p∈P

S(F (p, t)),

– post(t) =
⋃

p∈P

S(F (t, p)) and

– Var(t) = pre(t) ∪ post(t).

The mappingF labels every pair (p, t) and (t, p) with a multiset of variables. These
variables specify how tokens flow from preconditions to postconditions. Only vari-
ables in ν can appear in some postarc without appearing in some prearc. Variables
in Υ can only be instantiated to names that do not occur in the current marking,
so that they formalize fresh name creation. We are assuming that these variables
only appear in post-arcs, that is, labelling pairs of the form (t, p). A marking M
of a ν-APN assigns to each place a multiset of names. We denote by S(M) the
set of names that occur in some place according to marking M , that is, S(M) =⋃

p∈P S(M(p)). A transitions t can be fired with respect to a mode σ : Var(t) → Id

528 F. Rosa-Velardo and G. Delzanno

k k

x = y

l l

x x

y y

�
k kx = y

x
=yl l

x x

x x
x x

y y

Fig. 2. Simulation of ν-APN (left) by means of a ν �=-APN (right)

that instantiates each variable to an identifier so that σ(ν1) �= σ(ν2) for each dif-
ferent ν1, ν2 ∈ Υ . We use σ, σ′, σ1 . . . to range over modes. A transition t is enabled
with mode σ for a markingM if for all p ∈ P , σ(F (p, t)) ⊆M(p) and σ(ν) /∈ S(M)
for all ν ∈ Υ . The reached state after the firing of t with mode σ is the marking
M ′(p) = (M(p)− σ(F (p, t))) + σ(F (t, p)) for all p ∈ P .

We write M
t(σ)→M ′, M → M ′ and M

τ→M ′ with τ = t1(σ1) · · · tn(σn), saying
that τ is a transition sequence, with their obvious meanings.

Figure 1 depicts a simple ν-APN with a single transition. When fired, it moves
one token from p1 to q1 (because of variable x labelling both arcs), removes a
token from p2 (variable y does not appear in any outgoing arc) and a new name
is created in q2 (because of variable ν). In this example, had the token in p2
carried an a instead of a b, the transition could also have been fired (reaching
the same marking), since modes can instantiate different variables with the same
name. In other words, in ν-APNs we cannot check for inequality. We consider a
variation of ν-APNs, that we call ν�=-APNs, in which we can check for inequality,
which can be simply formalized by taking modes to be injections.

We define M1 � M2 if there is an injection ι : S(M1) → S(M2) such that
ι(M1(p)) ⊆M2(p), for all p ∈ P . We take ≡ as � ∩ 4 and identify markings up
to ≡. The relation � is a wqo and the transition system generated by ν-APNs
and ν�=-APNs are WSTS with that order [14].

ν-APN Languages. In this section we study LR(ν-APN) and LR(ν�=-APN)
for R ∈ {L,G, T, P}, that is, the families of languages recognized by ν-APNs
and ν�=-APNs, with reachability, coverability, termination and no-condition, as
accepting conditions. We can immediately obtain the following basic results.

Proposition 1. LL(ν-APN), LL(ν�=-APN) and LT (ν�=-APN) are the class of
recursively enumerable languages.

Proposition 2. The following relations among languages hold:

1. LP (ν-APN) ⊂ LG(ν-APN) ⊂ LL(ν-APN)
2. LP (ν�=-APN) ⊂ LG(ν�=-APN) ⊂ LL(ν�=-APN)

Proof. The proof is the same for ν-APNs and ν�=-APNs. For the first inclusions
it is enough to consider the empty marking as acceptance. To see that they
are strict, notice that languages in LP are always prefix-closed, and it is trivial
to devise non prefix-closed languages in LG(ν-APN) and LG(ν�=-APN). The
second inclusions follow from the previous proposition. Moreover, they are strict
because there are recursively enumerable languages that are not WSL, such as
{anbn | n > 0}, which can be easily seen using the pumping lemma for WSL.

Comparison of Petri Nets with Black Tokens, Pure Names and Ordered Data 529

In general, for all the languages considered, being able to check inequality gives
us at least the same expressive power:

Proposition 3. LR(ν-APN) ⊆ LR(ν�=-APN) for R ∈ {L,G, T, P}
Proof. We have to simulate a ν-APN by means of a ν�=-APN. For a transition t
and a partition X = X1 � · · · � Xk of Var(t), we choose k variables x1, . . . , xk

so that xi ∈ Xi. Then, for each t and each partition of Var(t), we consider a
transition tX (with the same label as t) and an arc from p to tX labelled with
xi iff F (p, t) ∈ Xi, and analogously for arcs (t, p) (see Fig. 2).

The families of languages LG(ν-APN) and LG(ν�=-APN) satisfy a good number
of closure properties, which are summarized in the following result.

Proposition 4. LG(ν-APN) and LG(ν�=-APN) are semi-full AFLs closed under
concatenation and intersection.

Therefore, the families of languages recognized by ν-APNs and ν�=-APNs, with
coverability as accepting condition, are semi-full AFLs, but we do not know if
they are also full AFLs, since we have not proved whether they are closed under
iteration. However, we can prove the following.

Proposition 5. If L ∈ LG(Petri nets) then L+ ∈ LG(ν-APN).

Proof. We represent each of the executions of the Petri net by a different identi-
fier. Then we add a place that contains the identifier that represents the current
execution, and a transition that can be fired when the final marking is covered
(matching the current identifier) and creating the initial marking with a fresh
identifier. The final marking is that with the same tokens as indicated by the
final marking of the Petri net, which in turn must be the same token in the new
place.

Thanks to this result it is straightforward to see that, for instance, the language
{an1bm1 . . . ankbmk | ni ≥ mi for i : 1, . . . , k} is in LG(ν-APN). It would be
interesting to see what happens with iteration for LG(ν-APN). We conjecture
that for an arbitrary L ∈ LG(ν-APN), L+ is not necessarily in LG(ν-APN).
The intuitive reasoning is the same as for LG(Petri nets), namely the fact that
by means of coverability we cannot distinguish between different “executions”
within the same net (we cannot throw away arbitrary garbage).

To conclude this section, let us see that if we forbid name matching in ν-APNs,
then its expressive power boils down to that of Petri nets, since we are not
considering whole-place operations. We simply call ν=-APNs the subclass of ν-
APNs where for each transition t, variables in pre-arcs appear at most once, that
is, such that

∑
p∈P F (p, t)(x) ≤ 1.

The intuitive idea is that, without matching, the specific nature of named
tokens, that is, the identifiers carried by tokens, does not play any role in the
firing of transitions. Therefore, we could flatten the given ν=-APN to the Petri
Net with the same places, transitions and flow relation (by removing variables
in arcs). This would be enough if we were considering T or P as terminating

530 F. Rosa-Velardo and G. Delzanno

aa a aa

p q
x x aa→ aa aaa

p q
x x

Fig. 3. ν=-APN with final marking M(p) = ∅ and M(q) = {a, b}

•• a aa

aa a aa

aa a aa

p(a)

p(b)

p(other)

q(a)

q(b)

q(other)

aa→
aa ••a

aa aaa

aa aaa

p(a)

p(b)

p(other)

q(a)

q(b)

q(other)

Fig. 4. Simulation of the ν=-APN in Fig. 3 by means of a Petri Net net with final
marking M∗(q(a)) = M∗(q(b)) = 1 and M∗(p(a)) = M∗(p(b)) = M∗(p(other)) =
M∗(q(other)) = 0

conditions, but this is not the case forG. To see it, it is enough to consider the net
depicted in Fig. 3, using M(p) = ∅ and M(q) = {a, b} as final marking. That net
can fire its only transition twice, reaching a marking with the identifier a twice
in place q, which does not cover M . Therefore, it generates the empty language,
though the sketched construction would generate the language {aa}. In other
words, the terminating condition does allow us to retrieve some information
about the involved tokens, even though that information was not relevant in
the enabling and firing of transitions. However, that information is finite (about
tokens in the initial and the final marking), so that we can control it with some
special places (see Fig. 4).

Proposition 6. LR(Petri Nets) = LR(ν=-APN) for R ∈ {L,G, T, P}.

4 Pure Names vs. Black Tokens

In this section we compare ν-APNs with AWNs, a well structured extension
of Petri Nets that allows whole-place operations An AWN N is given by a set
of n places and a set of transitions. Each transition comes equipped with two
n-vectors, Ft and Ht, and a n× n-matrix Gt over N. A marking M of an AWN
must specify how many (black) tokens are there in each place, so that it is also
an n-vector. Then, a transition t can fire whenever Ft ≤ M , and the reached
marking after the firing is M ′ = (M − Ft) · Gt + Ht. The matrices Gt are
responsible for the whole place operations. For instance, if the i-th column of Gt

is null, then Gt resets the i-th place, that is, it empties its content. If Gt is the
identity matrix for all t, then N is an ordinary Petri net.

Now let us see that we can simulate the whole place operations allowed by
AWNs thanks to the name creation mechanism in ν-APNs. We obtain lossy
simulations of the AWNs, in which some whole-place operations can loose some
tokens. However, we know [3] that a lossy version of any WSTS produces the
same language, that is, that if N ′ is a lossy version of N then LG(N) = LG(N ′).

Comparison of Petri Nets with Black Tokens, Pure Names and Ordered Data 531

p •• q••

t1

t2

� p aa q••c(p) a c(q)b

t1

t2

xp xq

xq

xp xq

xq
xp

ν

Fig. 5. Simulation of Reset Nets by means of ν-APNs

Proposition 7. LG(AWN) ⊆ LG(ν-APN).

Proof (sketch). The idea is to have for each place p another place c(p) which at
all times contains a single identifier token, which is the current valid token of p.
All transitions use only valid tokens (matching their values with the values in
the places c(p)). Transitions that reset a place p cause the replacement of the
current valid token, by means of the ν variable (see Fig. 5). This has the effect of
leaving some garbage tokens in the place that should have been reset, but these
tokens cannot interfere with the execution of the net because of the previous
comments. Notice that the simulation of resets is not lossy.

A transfer from p to q is simulated as follows:

1. For each token in p matching the one in c(p), remove it, and add a token in
q matching the one in c(q),

2. Replace the token in c(p) by a fresh token.

Notice that the second step can be performed even if the first one can still be
done, that is, when there are still tokens in p matching the one in c(p). In that
case, the simulation is missing tokens. Moreover, the previous simulation must
be done in a transactional way, so that after step 1 has been followed once, no
other transition can fire until step 2 has happened, which can be achieved thanks
to some new “control places”.

5 Pure Names vs. Ordered Data

Now we compare ν-APNs with two extensions of Petri nets in which tokens carry
data taken from an ordered domain, namely Data nets [11] and CMRS [1].

Data Nets. Data nets [11] are an extension of AWN in which tokens are colored
with data taken from an infinite domain D equipped with a linear and dense
ordering ≺. A data net consists of a finite set of places P and of a finite set
of transitions. A data net marking s is a multiset of tokens that carry data in
D. Formally, a marking s is a finite sequence of vectors in NP \ {0}, where 0 is
the vector that contains only 0’s. Each index i in the sequence s corresponds to
some di ∈ D such that i ≤ j if and only if di ≺ dj . For each p ∈ P , s(i)(p) is the
number of tokens with data di in place p.

532 F. Rosa-Velardo and G. Delzanno

First of all, a data net transition t has an associated arity αt (a natural
number greater than zero). The arity αt = k is used to non-deterministically
select k distinct data d1 ≺ . . . ≺ dk from the current configuration s. Some of
the selected data may not occur in s (they are fresh). This choice induces a
finite and ordered partitioning R(αt) of the data in s. A transition t operates
on the regions in the partitioning R(αt) in three steps defined resp. by three
matrices Ft, Ht ∈ NR(αt)×P , and Gt ∈ NR(αt)×P×R(αt)×P . As in AWN, Ft is
responsible for the removal of tokens, Gt performs whole-place operations and
Ht is responsible for the addition of tokens. The tokens involved in the firing
are not just those carrying the k selected data, but potentially every token
present in the marking, though those belonging to the same region are treated
uniformly.

As proved in [11], data nets are well-structured, so that their languages are in
the class WSL. Though they can perform very general whole-place operations,
from the point of view of the languages they accept, whole-place operations
do not make any difference [3]. For that reason, we present CMRS, a more
manageable formalism equivalent to Data nets from the language point of view.

CMRS. We assume a set V of variables which range over N, and a set P of unary
predicate symbols. In CMRS we write multisets as lists, so [1, 5, 5, 1, 1] represents
a multiset with three occurrences of 1 and two occurrences of 5; [] represents
the empty multiset. We use the relations and operations such as ⊂ (inclusion),
+ (union), and − (difference) on multisets. For a set V ⊆ V, a valuation Val of
V is a mapping from V to N. A condition is a finite conjunction of gap order
formulas of the forms: x <c y, x ≤ y, x = y, x < c, x > c, x = c, where x, y ∈ V
and c ∈ N. Here x <c y stands for x + c < y. We often use x < y instead of
x <0 y. Sometimes, we treat a condition ψ as a set, and write e.g. (x <c y) ∈ ψ
to indicate that x <c y is one of the conjuncts in ψ. We use true to indicate an
empty set of conditions. A term is of the form p(x) where p ∈ P and x ∈ V. A
ground term is of the form p(c) where p ∈ P and c ∈ N. We sometimes say that
a predicate symbol is nullary to mean that its parameter is not relevant.

A constrained multiset rewriting system (CMRS) S consists of a finite set of
rules each of the form L � R : ψ, where L and R are multisets of terms, and
ψ is a condition. We assume that ψ is consistent (otherwise, the rule is never
enabled). For a valuation Val , we use Val(ψ) to denote the result of substituting
each variable x in ψ by Val(x). We use Val |= ψ to denote that Val(ψ) evaluates
to true. For a multiset T of terms we define Val(T) as the multiset of ground
terms obtained from T by replacing each variable x by Val(x). A configuration
is a multiset of ground terms. Each rule ρ = L � R : ψ ∈ S defines a relation
between configurations. More precisely, γ

ρ−→ γ′ if and only if there is a valuation
Val s.t. the following conditions are satisfied: (i) Val |=ψ, (ii) γ≥Val(L), and
(iii) γ′ = γ−Val(L)+Val(R).

In [3] it is proved that LG(Data nets) = LG(CMRS) (i.e. they have the same
power w.r.t. well structured languages). The following property then follows

Proposition 8. LG(ν�=-APN) ⊆ LG(CMRS/Datanets)

Comparison of Petri Nets with Black Tokens, Pure Names and Ordered Data 533

a

a

a

a

a#

a

$

b

a

#

b

q

p

pa

pb

x

x

x

x

x

ν
x

x

y

y

x

x

x

x

x
y

x

Fig. 6. ν-APN that recognizes LΣ with Σ = {a, b}

Proof. We have to simulate a ν�=-APNs N by means of a CMRS N∗. Wlog, for
the sake of readability, we assume that each transition can only create at most
one name, by means of a variable ν ∈ Υ . We add a special predicate a to identify
the future new identifier. For each t we have the rule

∑
F (p,t)=x

[p(x)] + [a(ν)] →
∑

F (t,p)=x

[p(x)] + [a(ν′)] : ν′ > ν

Thus, at each time, the new place a contains an upper bound of all the names
that appear in the current marking. Whenever a fresh name is created in N , the
simulating CMRS uses the name in a instead (which is known to be different
from any other name), and replaces it by a greater one, so that it is still an upper
bound. Notice that in N∗ we are recording the order in which the different iden-
tifiers have been created, though we do not record such order in N . Therefore,
in the final marking we have to say the order in which the different identifiers
have been created (this is forced by the CMRS syntax) but any such order is
good, so that we must consider all of those orders. For each mi that represents
the final marking in some order we add a rule ri (labelled by ε) that converts
mi, into the final marking, that can consists only of a new predicate final .

Corollary 1. LG(AWN) ⊆ LG(ν-APN) ⊆ LG(ν�=-APN) ⊆ LG(Data Nets)

Since LG(AWN) ⊆ LG(Data Nets), we know that at least one of the inclusions
in the previous result is strict. This is the case for the first one.

Proposition 9. LG(AWN) ⊂ LG(ν-APN).

Proof. The language LΣ = {w1# . . .#wn$v1# . . .#vk | wi, vi ∈ Σ∗, where h :
{1, . . . , k} → {1, . . . , n} is an injection s.t. vi included in wh(i) (as multisets)}
belongs to LG(ν-APN), assuming #, $ /∈ Σ. For instance, in Fig. 6 we show the
net that recognize words on the alphabet {a, b}, when it has final marking Mf

with a token in q and empty elsewhere. Each name is used to represent one of
the words wi. If a name a represents w, then the number of tokens carrying a
in pa equals the number of a’s in w (analogously for b). Everytime a new w is
started (by firing the transition labelled by #), a fresh name is used. The place p

534 F. Rosa-Velardo and G. Delzanno

contains the set of names used along the computation. This information is used
in the second phase (after the firing of the transition labelled by &).

Now let Σ0 = {a, b, 0, 1} and L0 = LΣ0. We prove that there is no AWN that
recognizes L0. The proof is per absurdum. Suppose there exists a AWN N that
recognizes L0 with initial marking Minit and accepting marking Mf . Assume
that M has places p1, . . . , pn.

Let S = {w1# . . .#wk | wi ∈ {a, b, 0, 1}∗, i : 1, . . . , k, k ≥ 0}. Furthermore,
let v1# . . .#vn ≤∗ w1# . . .#wm if there exists h : n → m s.t. vi ⊆ wh(i) for i :
1, . . . , n. We first notice that, for any s ∈ S, s$s ∈ L0. Under our hypothesis, we
have then that, for each s ∈ S, there is a markingMs such that Minit

s$=⇒Ms
s=⇒

M and Mf ⊆M . Consider the sequences s0, s1, s2, . . . and Ms0 ,Ms1 ,Ms2 , . . . of
words and markings defined as follows:

– s0 := b#b . . .#b such that s0 has n occurrences of b;
– If Msi = (m1, . . . ,mn) then si+1 := am1p1# am2p2# · · ·# amnpn, for i =

0, 1, . . ., where p1, . . . , pn are unary encodings of the positions 1, . . . , n over
n bits, i.e., p1 = 10 . . . 0, p2 = 110 . . .0, . . . , pn = 111 . . .1.

Since b occurs only in s0 s0 �≤∗ si for all i > 0. Furthermore, for any i < j,
Msi ⊆ Msj iff si+1 ≤∗ sj+1. This holds because si+1 and sj+1 have both n− 1
occurrences of the separator # and because any injection needed in the definition
of ≤∗ is forced to preserve positions (their unary representation) in our encoding
of markings. Since marking inclusion is a well-quasi ordering, there exist i, j such
that i < j and Msi ⊆Msj . Now let j be the smallest natural number satisfying
this property. Then, we have that Msi−1 �⊆ Msj−1 and si �≤∗ sj for i > 0.
Furthermore, since by definition s0 �≤∗ sj , we have that si �≤∗ sj for any i ≥ 0.
Since Msi ⊆ Msj , by monotonicity of AWNs, we have that Msi

si=⇒ M with
Mf ⊆ M implies that Msj

si=⇒ M ′ with Mf ⊆ M ⊆ M ′. Hence, we obtain

Minit
sj$si=⇒ M ′ and sj$si ∈ LG(N) which is in contradiction with the hypothesis

that LG(N) = L0. ��
Furthermore, we conjecture that ν-APN are strictly less expressive than CMRS
and Data nets. Strict inclusion seems closely related to the +-closure of their
corresponding languages. Indeed, while we conjecture that ν-APN are not closed
under + (we only know that the subclass of Petri net languages is not closed
under + [7]) the following property holds.

Proposition 10. If L ∈ LG(CMRS), then L+ ∈ LG(CMRS).

6 Conclusions and Open Problems

The study of the expressive power of computation models in between Petri nets
and Turing machines, and in particular of the class of well-structured transition
systems, is a challenging research problem with several open questions. In this pa-
per we have extended the classification of well-structured transition systems stud-
ied in [11,2,3] by comparing infinite-state models like Affine Well-structured Nets

Comparison of Petri Nets with Black Tokens, Pure Names and Ordered Data 535

(AWN) [5], Data nets [11], and CMRS [1] with ν-APN, an extension of Petri nets
in which tokens are pure names [13]. We extend the results on [3] obtaining

L(PN) = L(ν=-APN) ⊂ L(AWN) ⊂ L(ν-APN) ⊆ L(ν�=-APN) ⊆ L(Data nets)

In [3] the authors prove that considering whole-place operations when data is
ordered does not have any effect, ie, L(Data nets) = L(Petri Data Nets). Though
we do not show it by lack of space, this is also true in the case of pure names.

Concerning open problems, we conjecture that ν-APNs are strictly less ex-
pressive than CMRS and Data nets and that ν-APN and lossy FIFO channel
systems [4] define incomparable classes of LG-languages. For the latter conjec-
ture, we know how to prove that ν-APN languages are not included in the lan-
guages of Lossy FIFO channel systems. However, the proof of the other direction
remains to be proved.

References

1. Abdulla, P., Delzanno, G.: On the coverability problem for constrained multiset
rewriting. In: AVIS, an ETAPS workshop (2006)

2. Abdulla, P.A., Delzanno, G., Begin, L.V.: Comparing the expressive power of well-
structured transition systems. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007.
LNCS, vol. 4646, pp. 99–114. Springer, Heidelberg (2007)

3. Abdulla, P.A., Delzanno, G., Begin, L.V.: A language-based comparison of ex-
tensions of petri nets with and without whole-place operations. In: Dediu, A.H.,
Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 71–82.
Springer, Heidelberg (2009)

4. Cécé, G., Finkel, A., Iyer, S.P.: Unreliable channels are easier to verify than perfect
channels. Inf. Comput. 124(1), 20–31 (1996)

5. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing
petri net extensions. Inf. Comput. 195(1-2), 1–29 (2004)

6. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1-2), 63–92 (2001)

7. Geeraerts, G., Raskin, J.F., Begin, L.V.: Well-structured languages. Acta Inf. 44(3-
4), 249–288 (2007)

8. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.
Elsevier Science Inc., New York (1975)

9. Gordon, A.D.: Notes on nominal calculi for security and mobility. In: Focardi, R.,
Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 262–330. Springer, Heidel-
berg (2001)

10. Kummer, O.: Undecidability in object-oriented petri nets. Petri Net Newsletter 59,
18–23 (2000)

11. Lazic, R., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with tokens
which carry data. Fundam. Inform. 88(3), 251–274 (2008)

12. Peterson, J.L.: Petri net theory and the modeling of systems. Prentice-Hall, En-
glewood Cliffs (1981)

13. Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in petri net
systems. Fundam. Inform. 88(3), 329–356 (2008)

14. Rosa-Velardo, F., de Frutos-Escrig, D., Alonso, O.M.: On the expressiveness of
mobile synchronizing petri nets. Electr. Notes Theor. Comput. Sci. 180(1), 77–94
(2007)

Verifying Complex Continuous Real-Time
Systems with Coinductive CLP(R)

Neda Saeedloei and Gopal Gupta

Department of Computer Science,
University of Texas at Dallas,

Richardson, TX 75080
{nxs048000,gupta}@utdallas.edu

Abstract. Timed automata have been used as a powerful formalism for
specifying, designing, and analyzing real-time systems. We consider the
generalization of timed automata to Pushdown Timed Automata (PTA).
We show how PTA can be elegantly modeled via logic programming ex-
tended with co-induction and constraints over reals. We propose a gen-
eral framework based on constraint logic programming and co-induction
for modeling/verifying real-time systems. We use this framework to de-
velop an elegant solution to the generalized railroad crossing problem of
Lynch and Heitmeyer. Interesting properties of the system can be verified
merely by posing appropriate queries.

1 Introduction

Design, specification, implementation and verification of real-time systems is an
important area of research as real-time systems are ubiquitous. Timed automata
is a popular approach to designing, specifying and verifying real-time systems
[1,2]. Timed automata can also provide foundational basis for Cyber-Physical
Systems (CPS) [11] that are currently receiving a lot of attention. Timed au-
tomata are ω-automata [14] extended with clocks. Transitions from one state to
another are not only made on the alphabet symbols of the language but also on
constraints imposed on clocks (e.g., at least 2 units of time must have elapsed).
Timed automata are suitable for specifying a large class of real-time systems;
however, they suffer from the same limitations that any automaton suffers, in
that they can recognize only timed regular languages. This restriction to regular
languages renders them unsuitable for many complex, useful applications where
the language involved may not be regular. To overcome this problem, timed
automata have been extended to pushdown timed automata [5]. A pushdown
timed automaton recognizes a sequence of timed words, where a timed word is
a symbol from the alphabet of the language the automaton accepts, paired with
the time-stamp indicating the time that symbol was seen. The sequence of timed
words in a string accepted by a pushdown timed automaton must obey the rules
of syntax laid down by the underlying untimed pushdown automaton, while the
time-stamps must obey the timing constraints imposed on the times at which
the symbols appear.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 536–548, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Verifying Complex Continuous Real-Time Systems with Coinductive CLP(R) 537

The work in [7] showed how timed automata can be modeled via constraint
logic programming over reals (or CLP(R)) and their properties verified. However,
[7] does not model the ω-automata naturally. Later, [6] showed how co-induction
can be introduced in logic programming (or LP) to naturally model ω-automata
and verify their properties. In this paper we extend the efforts of [7] and [6] to
show how co-induction and CLP(R) can also be used to elegantly model PTA.
We propose a general framework based on constraint logic programming and
co-induction for modeling/verifying real-time systems (including CPS). The for-
malism that are used in this framework are timed automata and PTA which can
be computationally modeled by combination of coinductive logic programming
(or Co-LP) and CLP(R). We show how a coinductive CLP(R) rendering of a PTA
can be used to verify safety and liveness properties of a system. We illustrate the
effectiveness of our approach by showing how the well-known generalized railroad
crossing (GRC) problem [8] can be naturally modeled, and how its various safety
and utility properties can be easily verified. Our approach based on coinductive
CLP(R) for handling the GRC is considerably more elegant and simpler than
other approaches proposed such as in [12].

The rest of the paper is organized as follows. We present an overview of timed
automata. Next, we consider PTA and timed grammars and show how they
can be modeled via coinductive CLP(R). Note that the formulation of PTA is
our own, though they were first introduced in [5]. We illustrate our method of
modeling and verifying PTA to model the generalized railroad crossing (GRC)
problem. The elegant modeling and verification of timed automata and PTA,
and their application to naturally modeling/verifying complex real-time systems
and CPS is the main contribution of this paper. We assume that the reader is
familiar with Constraint Logic Programming over reals (CLP(R)) [9], as well as
with Coinductive Logic Programming (Co-LP) [6,13].

2 Timed Automata

A timed automaton [2] is a tuple M = 〈Σ,Q,Q0, C,E, F 〉, where

– Σ is a finite alphabet;
– Q is the (finite) set of states;
– Q0 ⊆ Q is the set of initial states;
– C is a finite set of clocks;
– E ⊆ Q×Q0×Σ×2C×φ(C) gives the set of transitions. An edge 〈q, q′, a, λ, δ〉

represents a transition from state q to state q′ on input symbol a. The set
λ ⊆ C gives the clocks to be reset with this transition, and δ is a clock
constraint over C;

– F is a subset of 2Q.

A run r, denoted by (q̄, ν̄), of a timed automaton over a timed word (σ, t) is an
infinite sequence of the form

r : 〈q0, ν0〉 σ1−→
t1

〈q1, ν1〉 σ2−→
t2

〈q2, ν2〉 σ3−→
t3

. . .

with qi ∈ Q and νi ∈ [C �→ R+], for all i ≥ 0, satisfying two requirements:

538 N. Saeedloei and G. Gupta

Fig. 1. (i) A Timed Automaton, (ii) A Pushdown Timed Automaton

– q0 ∈ Q0, and ν0(x) = 0 for all clocks x ∈ C.
– for all i ≥ 1, there is an edge in E of the form 〈qi−1, qi, σi, λi, δi〉 such that

(νi−1 + ti − ti−1) satisfies δi and νi equals [λi �→ 0](νi−1 + ti − ti−1).

The set inf(r) consists of q ∈ Q such that q = qi for infinitely many i ≥ 0.
Different notions of acceptance have been proposed. A run r = (q̄, ν̄) of a

timed Büchi automaton over a timed word (σ, t) is called an accepting run iff F
is a singleton, and inf(r)∩F �= ∅. A run r = (q̄, ν̄) of a timed Müller automaton
over a timed word (σ, t) is called an accepting run iff inf(r) ∈ F .

Figure 1 (i) shows a simple Büchi timed automaton, with clock x and final
state F = {q0}. It describes a system in which signals are recognized. Each signal
a can (but need not) be followed by a b signal, with the constraint that the b
signal must arrive at least one time unit and at most two time units after a.

3 Pushdown Timed Automata (PTA)

PTA extend timed automata with a stack in exactly the same manner that
pushdown automata extend finite automata. Thus, a pushdown timed automaton
is obtained from a timed automaton by adding:

– ε (empty string) to the input alphabet Σ;
– a stack alphabet Γε = Γ ∪ ε, where Γ is a set of symbols disjoint from Σ;
– a stack represented by Γ ∗

ε ;
– PD : E �→ Γ ×Γε assigns a pair (a, γ) with a ∈ Γ and γ ∈ Γε, called a stack

operation, to each transition in E. A stack operation (a, γ) replaces the top
symbol a of the stack with a string (possibly empty) in Γε.

Acceptance conditions for an infinite string for PTA are similar to those for
timed automata but, additionally, the stack must be empty in every final state.

Pushdown timed automata have been introduced earlier [5]. Our aim in this
paper is to show how PTA can be modeled and their properties verified with
coinductive CLP(R) with the same ease as that for timed automata [7].

In many cases real-time systems that are naturally modeled as PTA can be
modeled as timed automata by imposing restrictions (such as limiting the size
of the string, i.e., limiting the number of allowable events), but, our experience
indicates that such a timed automaton will have an enormous number of states,
and thus would be unwieldy and time consuming to specify. Proving its safety

Verifying Complex Continuous Real-Time Systems with Coinductive CLP(R) 539

and liveness properties will also be quite cumbersome simply due to the large
size of the automaton.

As an example of a pushdown timed automaton, consider a language in which
sequences of a’s are followed by sequences of an equal number of b’s (each such
string has at least two a’s and at least two b’s). For each pair of equinumerous
sequences of a’s and b’s, the first b symbol must appear within 5 units of time
from the first a symbol and the final b symbol must appear within 20 units of
time from the first a symbol. The grammar annotated with clock constraints is
shown below. Note that c is a clock; clock expressions are written within braces.

S → R S
R→ a {c := 0} T b {c < 20}
T → a T b
T → a b {c < 5}

Note also that the first rule is coinductive [13] (i.e., a recursive rule with no base
case) and accepts infinite strings. Thus, the above grammar is an ω-grammar. The
pushdown timed automaton realizing this timed grammar is shown in Figure 1
(ii). In this figure, s0 is the final state, c is the clock, and s is the stack. Actions
s.push(1) and s.pop(), respectively push 1 onto the stack and pop the stack (this
automaton accepts empty string also; we allow this for simplicity of presentation).
The requirement that the stack be empty ensures that only strings with equal
numbers of a’s and b’s are accepted. Note that the wall clock time keeps advancing
at the normal uniform rate, as the automaton makes transitions.

4 Modeling PTA with Coinductive CLP(R)

To model and reason about PTA and timed grammars we should be able to
handle the fact that: (i) the underlying language is context free, not regular, (ii)
accepted strings are infinite, and (iii) clock constraints are posed over continu-
ously flowing time. All three aspects can be elegantly handled within LP. Thus,
grammars (and automata) can be naturally modeled via LP; Specifically, the
definite clause grammar (DCG) facility of Prolog allows one to obtain a parser
for context-free grammars or even context-sensitive grammars with a minimal
amount of work. By extending LP with co-induction, one can develop language
processors that recognize infinite strings. DCGs extended with co-induction can
act as recognizers for ω-pushdown automata and ω-grammars. Further, incorpo-
ration of co-induction and CLP(R) into the DCG allows modeling of time aspects
of the system. Once a timed system is modeled as a coinductive CLP(R), it can
be used to (i) verify if a particular timed-string will be accepted or not; and, (ii)
systematically generate all possible timed strings that can be accepted. The LP
realization of the system based on co-induction and CLP(R) can also be used to
verify system properties by posing appropriate queries.

The general method of converting PTA to coinductive CLP(R) programs is not
included here (but shown in http://www.utdallas.edu/~nxs048000/pta.pdf).
The method takes the description of a pushdown timed automaton and generates

http://www.utdallas.edu/~nxs048000/pta.pdf

540 N. Saeedloei and G. Gupta

a coinductive constraint logic program over reals. To illustrate, we describe the
logic programming rendering of the pushdown timed automaton shown in Figure
1 (ii) in section 3. The generated logic program models the pushdown timed au-
tomaton as a collection of transition rules (one rule per transition in the PTA),
where each rule is extended with stack actions as well as clock constraints. The
first three arguments of the trans/8 predicate are self-explanatory. The fourth
argument represents the wall clock time. The pair of arguments, Ti and To, rep-
resent the clock c of the timed automaton. In fact, a pair of arguments have to
be added for each clock that is used in the automaton (in the current example
there is only one clock). The first argument of this pair is used to remember the
last wall clock time this clock was reset, while the second one is used to pass on
this clock’s value to the next transition. The last two arguments represent the
stack actions.

The coinductive driver/6 rule realizes the automaton, calling the trans/8
rule repeatedly (notice the absence of a base case). The CLP(R) constraints are
enclosed within curly braces, as is the convention in most Prolog systems. The
constraint Ta > T advances the time on the wall clock after every transition.
The driver generates the timed trace of events as output.

trans(s0, a, s1, T, Ti, To, _, [1]) :- {To = T}.

trans(s1, a, s1, T, Ti, To, C, [1| C]) :- {To = Ti}.

trans(s1, b, s2, T, Ti, To, [1| C], C) :- {T - Ti < 5, To = Ti}.

trans(s2, b, s2, T, Ti, To, [1| C], C) :- {To = Ti}.

trans(s2, b, s0, T, Ti, To, [1| C], C) :- {T - Ti < 20, To = Ti}.

:- coinductive(driver/6).

driver([X | R], Si, T, Ti, C1, [(X, T) | S]) :-

trans(Si, X, So, T, Ti, To, C1, C2),

{Ta > T}, driver(R, So, Ta, To, C2, S).

[(a,0), (a,2), (b,4), (b,16), (a,20), (a,22), (a,23), (b,24), (b,36), (b,37), ...] is
an example of a timed string accepted by driver/6. Note that the predicate
driver/6’s coinductive termination will depend only on the first two arguments
(input symbol seen and the current state, respectively), i.e., the wall-clock time
and other arguments will be ignored to check if the driver/6 predicate is cyclical.
In the Co-LP system we have used for our work1, one can declare the arguments
w.r.t. which a predicate should behave coinductively. Only those arguments will
be employed by the system for determining coinductive termination for that
predicate. Note that for truly coinductive termination, the constraints induced
in a given cycle in the PTA should also be taken into account. Thus, one must
ensure that if a cycle P is part of an accepting string, then the constraints gener-
ated in one traversal of cycle P must be entailed by those generated in the next
traversal of P. This is indeed the case for practical timed systems, where all clocks
involved are reset in every accepting cycle. Due to this resetting, the same con-
straints are repeated in every such cycle and therefore coinductive termination
is justified w.r.t. constraints also.
1 The interpreter for Co-LP that we have used is based on YAP, and can be found in
http://www.utdallas.edu/~nxs048000/co-lp.yap

http://www.utdallas.edu/~nxs048000/co-lp.yap

Verifying Complex Continuous Real-Time Systems with Coinductive CLP(R) 541

Given this program one can pose queries to it to check if a timed string
satisfies the timing constraint. Alternatively, one can generate possible (cyclical)
legal timed strings. Finally, one can verify properties of this timed language (e.g.,
checking the simple property that all the a’s are generated within 5 units of time,
in any timed string that is accepted).

Next we show how our coinductive CLP(R) realization of PTA can be used
to model the generalized railroad crossing problem. We have verified the safety
and utility properties, as well as other interesting properties of the system, by
posing appropriate queries to the program. We believe that a LP based approach
to solving the GRC problem is the simplest and most elegant.

5 The Generalized Railroad Crossing (GRC)

The GRC problem has been proposed [8] as a benchmark problem in order to
compare the formal methods that have been invented for specifying, designing,
and analyzing real-time systems. The formal statement of the GRC problem,
taken directly from [8], is as follows.

The system to be developed operates a gate at a railroad crossing. The
railroad crossing I lies in a region of interest R, i.e., I ⊆ R (R is the
region from where a train passes a sensor until it exits the crossing). A
set of trains travel through R on multiple tracks in both directions. A
sensor system determines when each train enters and exits region R. To
describe the system formally, we define a gate function g(t) ∈ [0, 90],
where g(t) = 0 means the gate is down and g(t) = 90 means the gate
is up. We also define a set {λi} of occupancy intervals, where each oc-
cupancy interval is a time interval during which one or more trains are
in I. The ith occupancy interval is presented as λi = [τi, νi], where τi
is the time of the ith entry of a train into the crossing when no other
train is in the crossing and νi is the first time since τi that no train is
in the crossing (i.e., the train that entered at τi has exited as have any
trains that entered the crossing after τi). Given two constants ξ1 and
ξ2, ξ1 > 0, ξ2 > 0, the problem is to develop a system to operate the
crossing gate that satisfies the following two properties:

Safety Property: t ∈ ∪iλi ⇒ g(t) = 0
Utility Property: t /∈ ∪i[τi − ξ1, νi + ξ2] ⇒ g(t) = 90

Some positive real-valued constants are defined by the GRC as follows:

– ε1, and ε2, a lower bound and an upper bound on the time from when a train
enters R until it reaches I respectively.

– γdown, an upper bound on the time to lower the gate completely.
– γup, an upper bound on the time to raise the gate completely.
– ξ1, an upper bound on the time from the start of lowering the gate until

some train is in I .

542 N. Saeedloei and G. Gupta

– ξ2, an upper bound on the time since the last train leaves I until the gate is
up (unless the raising is interrupted by another train getting close to I).

– β, an arbitrarily small constant used for some technical race conditions.
– δ, the minimum useful time for the gate to be up.

Some restrictions are placed on the values of the various constants as follows:

1. ε1 ≤ ε2.
2. ε1 > γdown. (The time from when a train arrives until it reaches the crossing

is sufficiently large to allow the gate to be lowered.)
3. ξ1 ≥ γdown +β+ ε2− ε1. (The time allowed between the start of lowering the

gate and some train reaching I is sufficient to allow the gate to be lowered
in time for the fastest train, and then to accommodate the slowest train.)

4. ξ2 ≥ γup. (The time allowed for raising the gate is sufficient.)

6 Modeling the GRC with Coinductive CLP(R)

The GRC problem consists of several tracks and an unspecified number of trains
traveling in both directions (it is theoretically possible for the gate to never go
up once it goes down, if an infinite number of trains arrive one after the other
within close enough interval). There is a gate at the railroad crossing that should
be operated in a way that guarantees the safety and utility properties. The safety
property stipulates that the gate must be down while one or more trains are in
the crossing. The utility property states that the gate must be up when there is
no train in the crossing. Our task is to develop (specify and prove correct) the
system to control the gate at the crossing.

To model the GRC, the number of tracks has to be given as an input to the
system so that any number of tracks can be handled. The system is composed
of: the gate automaton that controls the gate, the controller automaton that
acts as an overall controller, and a track automaton per track that models the
behavior of trains traveling through each track (Figure 2). In Figure 2, for ease
of understanding, we assign wall clock time (T) to clock variables when they are
reset, since this is how clocks are realized in our implementation.

Each track is modeled as a timed automaton which works in parallel with
other track automata. When an event takes place in a specified track, only that
track responds to this event and all automata for other tracks remain in their
current states. Track automaton has five states (Figure 2, (i)) and takes actions
based on three events: (i) approach indicates a train approaching the crossing;
(ii) in indicates the train being in the crossing; and, (iii) exit indicates that
the train has left the crossing. The track automaton assumes that there cannot
be two trains at the same time in the crossing area in each track. In other words
trains travel in a safe distance from each other. The range of sensors is such that
the approach signal of only at most one approaching train is registered for each
track. Therefore, on receiving a new approach signal from a train on a given
track, the system will respond to it assuming that there is no other train in that
track or that any trains on that track will exit the crossing area before the new

Verifying Complex Continuous Real-Time Systems with Coinductive CLP(R) 543

Fig. 2. (i) Track Automaton, (ii) Controller Automaton, (iii) Gate Automaton

train would arrive there (while in state s2 the track automaton can receive a new
approach). There could be a situation in which multiple trains travel one after
the other (at a safe distance from each other) in one track. In this situation, the
system will work properly in the sense that the first train will enter the crossing
area, the second train will enter the crossing area after exiting the first train,
the third train will take the place of the second train and so on. Therefore the
gate remains down until the last train exits the crossing area. Note that the gate
crossing system is not responsible for ensuring safe distance between trains, its
task is to ensure the safety and utility of the crossing.

The gate automaton is modeled as a timed automaton with five states
(Figure 2, (iii)) which takes actions based on four different events: (i) lower
indicates starting of lowering the gate; (ii) down indicates the gate being down;
(iii) raise indicates starting of raising the gate; and, (iv) up indicates the gate
being up.

The controller automaton is modeled as a pushdown timed automaton with
four states and a stack, s (Figure 2, (ii)). This automaton must keep track of
trains currently in the system (i.e., those trains whose approach signal has been
received): it has to ensure that the number of approach events is identical to
those of exit events. Timed automata are not appropriate for specifying the
controller, for two reasons: (i) we do not know the number of approach events
in advance, so we cannot design one general timed automaton that works for an
arbitrary number of tracks and trains. In other words, we would have to have
different controller automata for different numbers of tracks. (ii) The automaton
would become too complicated as the number of tracks increases. More tracks
means more states and transitions, therefore a more complicated automaton.
Use of a stack in pushdown timed automaton eliminates the need for new extra
states and transitions as the number of approach signals and tracks increase.

The controller automaton must respond to four events: approach, lower,
exit, and raise described above. On receiving an approach signal at state s0
the controller clock will be reset. This will ensure lowering of the gate before
the train gets into the crossing area. The controller clock will not get reset if

544 N. Saeedloei and G. Gupta

the approach signal is received while in other states. The stack in pushdown
timed automaton is used to keep track of the number of trains in the system. On
receiving an approach signal the controller pushes the symbol “1” onto the stack
and on receiving the exit signal, it pops a “1” from the stack (implemented as
a counter2). When the stack is empty, the controller sends the raise signal to
the gate as the last train has left the system and it is safe to raise the gate.
A transition is activated by a pair (event, state of counter) and triggers an
action on the counter. Testable states of the counter are “= 0” and “�= 0”, and
counter actions are increment and decrement. The automaton may ignore the
state of the counter and act on the input signal. For example on receiving an
approach signal at any state, the automaton increments the counter regardless
of its current state. The automaton can act based on both the input signal, and
the counter state. On receiving the exit signal in state s2, the automaton checks
the state of the counter. If the counter is equal to zero, the controller will go
to state s3 and reset its clock; this will ensure that a raise signal will be sent
to the gate automaton within ξ2 − γup units of time after the controller clock is
reset. If the counter is not equal to zero, the controller remains in state s2.

For modeling the GRC problem we set ε1 = 2, ε2 = 3, γdown = 1, γup = 2,
ξ1 = 2, ξ2 = 3. Note that these values are taken directly from [2]. A real-
time system designer can choose other values for these parameters. The GRC
does not put any restrictions on how long a train can take to pass the gate
crossing (theoretically speaking, a train can even stop at the gate and stay
there indefinitely). To disallow such behaviors, we put an upper bound on the
maximum time a train should take to exit the crossing. We introduce a constant
σ, which is the maximum time in which the exit signal should appear since the
approach signal was seen. For GRC, σ = ∞. Following [2] we set σ = 5. The
behavior of the track automaton is specified by the following CLP(R) rules.

track(Trk, s0, approach, s1, T, Ti1, Ti2, To1, To2) :- {To1=T, To2=T}.

track(Trk, s1, in, s2, T, Ti1, Ti2, To1, To2) :-

{T - Ti1 > 2, T - Ti1 < 3, To1=Ti1, To2=Ti2}.

track(Trk, s2, approach, s3, T, Ti1, Ti2, To1, To2) :- {To1=Ti1, To2=T}.

track(Trk, s3, exit, s4, T, Ti1, Ti2, To1, To2) :-

{T - Ti1 < 5, To1=Ti1, To2=Ti2}.

track(Trk, s4, in, s2, T, Ti1, Ti2, To1, To2) :-

{T - Ti2 > 2, T - Ti2 < 3, To1=Ti1, To2=Ti2}.

track(Trk, s2, exit, s0, T, Ti1, Ti2, To1, To2) :-

{T - Ti2 < 5, To1=Ti1, To2=Ti2}.

track(_, X, lower, X, T, Ti1, Ti2, Ti1, Ti2).

track(_, X, down, X, T, Ti1, Ti2, Ti1, Ti2).

track(_, X, raise, X, T, Ti1, Ti2, Ti1, Ti2).

track(_, X, up, X, T, Ti1, Ti2, Ti1, Ti2).

The first argument of the track predicate is the track number. The second
argument is current state of the track. The third argument is one of the events
triggering an action explained above. The fourth argument is the new state that

2 The stack can be realized in many ways, in this case the stack is simply implemented
as a counter. In the example described in section 4 we implemented it as a list.

Verifying Complex Continuous Real-Time Systems with Coinductive CLP(R) 545

results. T represents the wall clock time. As we mentioned before there could be
two trains at the same time in one track, i.e., one train in the crossing area and
another one approaching the crossing. Therefore two clocks in track automaton
are needed to handle this situation. Ti1 and Ti2 are used to remember the last
wall clock time these clocks were reset, while To1 and To2 are used to pass on
these clock’s values to the next transition.

The behavior of the gate and controller can be specified similarly. The coin-
ductive driver/8 predicate for GRC composes three automata, gate, track,
and controller (in a similar manner as driver/6 in section 4) and generates
its output as a list of (X,Track, T) triples where X is an event, Track is the track
number in which the event happened, and T is the time that event occurred. The
set of CLP(R) rules for gate and controller along with the driver/8 predicate
is shown in http://www.utdallas.edu/~nxs048000/pta.pdf.

Given the logic programming definitions of controller, track, and gate au-
tomata and the driver routine, one can check if a given sequence of timed
events is legal or not, i.e., use the logic program as a simulator. One can also
generate a sample sequence of timed events accepted by the system.

7 Verifying Safety and Utility Properties

Properties of interests are verified as follows: given a property Q to be verified,
we specify its negation as a logic program. Let’s call this predicate notQ. If the
property Q holds, the query notQ will fail w.r.t. the logic program that models
the system. If the query notQ succeeds, the answer provides a counter example
to why the property Q does not hold.

To prove the safety property, we define the unsafe/1 predicate which looks
for an accepting string that contains an in signal a little after an up signal and
with no intervening down signal, i.e., we look for any possibility that a train is
in the crossing area before the gate goes down, with the gate being up initially.
The unsafe predicate is parameterized on the number of tracks in the system.

unsafe(N) :- unutilized(N) :-

driver(s0, s0, 0, 0, 0, X, N, R), driver(s0, s0, 0, 0, 0, X, N, R),

append(C, [(in, _, _)| D], R), append(A, [(down, _, _)| B], R),

append(A, [(up, _, _)| B], C), find_first_up(B, C),

not_member((down, _, _), B). not_member((in, _, _), C).

The call to this predicate for any values for N fails which proves the safety of
our system. Note that the not member/2 predicate takes an element, X, and a
list, L, and succeeds if X is not a member of L and fails otherwise.

Similarly we can check the utility property using the unutilized/1 predicate
defined above. As mentioned before, the utility property stipulates that the gate
must be up when there is no train in the crossing area. The unutilized/1
predicate looks for possibility of situations in which the gate is down without
any train being in the crossing area. The find first up/2 predicate returns all
the signals after down up to up signal. If a call to the unutilized/1 predicate
fails we know that the utility property is satisfied.

http://www.utdallas.edu/~nxs048000/pta.pdf

546 N. Saeedloei and G. Gupta

Table 1. Safety and utility verification times

Number of tracks safety utility
1 0.006 0.006
2 0.065 0.072
3 0.6 0.587
4 5.666 5.634
5 60.013 60.430
6 426.300 453.544

Note that as the number of tracks in the system increases, the number of
combinations in the system increases leading to an increase in the size of the
state space. The execution time for verifying safety and utility properties there-
fore also increases. To keep this execution time down, and not explore irrelevant
state space, we fold the negated properties into the driver predicate itself.
Use of logic programming is again helpful here, where the negated property
can be called before the call to the driver predicate in both unsafe/1 and
unutilized/1. Appropriate delay declarations must be included to ensure that
the calls corresponding to the negated property are invoked only when appropri-
ate bindings have been established by the driver. Table 1 shows the verification
time in seconds for safety and utility properties for a system with up to 6 tracks
(an average of five run time is taken). Our results show that our LP-based
method is a practical method to verify complex real-time systems.

Other interesting properties of the system can also be verified using appro-
priate queries. For example one can compute the minimum time distance be-
tween two consecutive trains (i.e., two consecutive approach signals) in one
track through a call to a simple predicate similar to unsafe and unutilized.

8 Conclusions and Related Work

Automata based real-time formalisms such as timed automata [2,8] and timed
transition systems have been proposed to model and analyze a wide range of
real-time systems. Jaffar [10] builds on the work of [7] and translates timed
automata to a CLP program and uses it for proving assertions. All these papers
do not consider PTA, they limit themselves to timed automata.

PTA with dense clocks were considered by Dang [5] and used to give a decid-
able characterization of the binary reachability of PTA. However, the treatment
in that work is largely theoretical, there is not much focus on how to efficiently
realize PTA. In contrast, we are more interested in elegantly modeling and an-
alyzing PTA applied to complex applications such as the GRC.

Few solutions have been proposed for GRC problem. The most notable is
that of Puchol [12], which is based on the ESTEREL programming language. In
Puchol’s work, time is discretized and thus is not faithful to the original problem.
In contrast, our solution treats time as continuous. Verifying safety properties of
the system in Puchol’s approach is extremely complex: this complexity is such

Verifying Complex Continuous Real-Time Systems with Coinductive CLP(R) 547

that one cannot be sure if the verification process itself is trustworthy. In our
approach, in contrast, safety properties as well as other properties can be verified
easily by posing simple queries.

UPPAAL has been also proposed as a toolbox for verification of real-time
systems [4]. In fact, a model for a Train-Gate example is distributed with UP-
PAAL. UPPAAL is based on a timed automata formalism and was not designed
to handle PTA directly. However, UPPAAL allows arbitrary C-code to be ex-
ecuted during transitions. The inclusion of this facility can be used to model
PTA, however, the user has to be careful since arbitrary, low level C-code may
not be amenable to verification. In contrast, in our approach, the modeling of
all operations of PTA is done directly at the higher level of logic programming.

Recently, cyber-physical systems have received considerable attention [11].
Pushdown hybrid automata (of which pushdown timed automaton is an instance)
constitute the foundation for CPS, and therefore, interest in this area has been
significantly renewed [3].

To conclude, a combination of constraint over reals, co-induction, and the lan-
guage processing capabilities of logic programming provides an expressive, and
easy-to-use formalism for modeling and analyzing complex real-time systems
and CPS. In fact, our framework is a general framework that can be applied to
different complex systems to handle not only the time but also other continu-
ous quantities. The LP based approach is simpler and more elegant than other
approaches that have been proposed for this purpose.

References

1. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

3. Baker, T.P. (ed.): Proceedings of the 30th IEEE Real-Time Systems Symposium,
RTSS 2009, Washington, DC, USA, December 1-4 (2009); Baker, T.P. (ed.): IEEE
Real-Time Systems Symposium. IEEE Computer Society, Los Alamitos (2009)

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: SFM, pp. 200–236
(2004)

5. Dang, Z.: Binary reachability analysis of pushdown timed automata with dense
clocks. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp.
506–518. Springer, Heidelberg (2001)

6. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive logic pro-
gramming and its applications. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS,
vol. 4670, pp. 27–44. Springer, Heidelberg (2007)

7. Gupta, G., Pontelli, E.: A constraint-based approach for specification and veri-
fication of real-time systems. In: IEEE Real-Time Systems Symp., pp. 230–239
(1997)

8. Heitmeyer, C.L., Lynch, N.A.: The generalized railroad crossing: A case study in
formal verification of real-time systems. In: IEEE RTSS, pp. 120–131 (1994)

548 N. Saeedloei and G. Gupta

9. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. J. Log. Pro-
gram. 19/20, 503–581 (1994)

10. Jaffar, J., Santosa, A.E., Voicu, R.: A CLP proof method for timed automata. In:
RTSS, pp. 175–186 (2004)

11. Lee, E.A.: Cyber physical systems: Design challenges. In: ISORC (May 2008)
12. Puchol, C.: A solution to the generalized railroad crossing problem in Esterel.

Technical report, Dep. of Comp. Science, The University of Texas at Austin (1995)
13. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: Extending

logic programming with coinduction. In: ICALP, pp. 472–483 (2007)
14. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Com-

puter Science. Formal Models and Sematics (B), vol. B, pp. 133–192. MIT Press,
Cambridge (1990)

Incremental Building in Peptide Computing to
Solve Hamiltonian Path Problem

Muthiah Sakthi Balan and Parameswaran Seshan

E-Comm Research Lab
Infosys Technologies Limited

Bangalore - 560100, India
{sakthi muthiah,parameswaran seshan}@infosys.com

Abstract. To solve intractable problems using biomolecules the model
requires exponential number of the same. As a proof of concept this
model is acceptable, but when it comes to realization of the model the
number of biomolecules needed should be drastically reduced by some
techniques. In this work we address this issue for peptide computing – we
propose a method called incremental building to reduce the number of
peptides needed to work with for solving large combinatorial problems.
We explain this model for solving the Hamiltonian path problem, analyze
the space and time complexity for the same, and also discuss this method
from the perspective of molecular computing as a whole and study its
implications.

1 Introduction

One of the primary objectives to look for new computational models is to solve
difficult combinatorial problems, called intractable problems, at an exponentially
faster rate by using the massive parallelism inherent in bio-computing models.
Many models such as DNA computing [1], P-systems [11] and peptide computing
[9] have been proposed to solve some of the difficult problems.

In most of the bio-computing models the system works by exploring all pos-
sible ways by performing exhaustive search in parallel and by finding out the
correct solution from the pool of possible solutions after performing a constant
number of bio-steps. Since these models can have several copies of bio-molecules
or cells, it has the flexibility to explore all possible combinations simultaneously.
This helps the model to arrive at the solution, if any, at a rate exponentially
faster than silicon computer models.

Peptide computing is a computing model that considers the interaction be-
tween peptides and antibodies as a computational operation and builds on the
massive parallelism present in it to solve various NP-complete problems in an ex-
ponentially faster way. For solving hard combinatorial problems this computing
model works as follows:

1. Formation of peptide sequences where each one represents a possible solu-
tion for the problem. For example, to solve the satisfiability problem in [9],

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 549–560, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

550 M. Sakthi Balan and P. Seshan

peptides are so formed, that each sequence represents one possible truth
value for any Boolean formula over n variables. Hence, we form 2n different
peptide sequences. Note that the formation of peptide sequences does not
depend on the specific input.

2. Antibodies are chosen to eliminate those sequences that do not represent the
solution for the given problem. After all the elimination methods are done,
if we are left with some peptide sequences then the answer will be yes to the
decision problem, otherwise the answer will be no.

It is to be noted that in DNA computing, peptide computing, or P-system,
we explore all possible solutions of the problem, which is already exponential in
terms of its input size, and, for that to be carried out the system needs expo-
nential number of biomolecules or cells. Even if we assume that the exponential
number of molecules can be synthesized artificially, the sum of the molecular
weights of the biomolecules involved in the process, would be too big to be
handled in a wetlab [7].

When we examine the literature, we see that it is not only that exponential
number of different bio-molecules or cells is required, but also each bio-molecule
or cell should have multiplicities. When we mention about sequences, we are
always talking about multiple number of the same bio-molecules or cells. Thus,
a multi-set is involved in these models. We need non-determinism and parallelism
in the model to compute hard problems quite efficiently.

Recently, it has been shown that a bacterial computer can be successfully
used to solve the Hamiltonian Path Problem for a graph [3], by encoding gene
segments to represent the graph and allowing a large number of E-coli bacteria
to take those segments inside of themselves to automatically form permutations
of genes. Since a large number of such bacteria is involved and given that they
can self-reproduce, this gene combination activity happens in each bacterium in
parallel with other bacteria, giving us benefits of parallelized processing. Some
such random permutations of the DNA segments result in gene sequences that
represent Hamiltonian paths in the graph - the bacteria that eventually gets such
sequences inside them appear as emitting a distinct detectable fluorescence. This
computing model also uses exhaustive search.

Another important point to mention in bio-computing in general is, the for-
mation of specific bio-molecules is a pre-processing step. So the model requires
that all bio-molecules, that are exponential in number, are available in order to
start the processing. Therefore, when we look from the top level this comput-
ing model consists of three primary steps (see Figure 1): (i) pre-processing (can
also be called as encoding) (ii) processing, and (iii) finding output, if any, and
decoding it.

In this paper we first address the above issues with respect to peptide comput-
ing. The main issue here is the need for exponential number of peptide sequences
even before the processing takes place. We address this problem by proposing
a method called incremental building. In this method, the peptide sequences
are not formed a priori unlike the older models in peptide computing, but only
when it is required. We start with some part of the peptide sequence and build

Incremental Building in Peptide Computing 551

Encoding

Processing

Decoding

Fig. 1. Bio-computing Model

it incrementally as and when it is required. For this to happen unlike making
pre-processing and processing as two separate steps, we do them in turns, i.e.,
alternatively. We first do a part of encoding in peptide sequences and then pro-
cess them to see if they will lead to a solution, if yes then we will continue
with them, or else we reject them. In the next step, with the selected peptide
sequences from the first step, we add/append more peptide sequences and do
the processing again to select only those peptide sequences that might lead to
a solution. This sequence of encoding and processing is continued for a finite
number of steps usually in linear number of steps with respect to the input size
of the problem. This we call as the incremental building model. We also feel
that this method can be extended to other bio-computing models and this will
greatly reduce the number of bio-molecules needed for processing – this amounts
to doing pre-processing and processing in turn for a finite number of steps and
then decoding (see Figure 2).

Encoding

Processing

Decoding

Fig. 2. Incremental Building Model

In this incremental approach the system builds the solution incrementally in
an automated fashion unlike the method presented in [2] wherein, we need to
form specific peptides to represent a possible solution. Even though the build-
ing of sequences that represent possible solution (Hamiltonian paths) in the

552 M. Sakthi Balan and P. Seshan

Adleman’s experiment [1] and bacterial computing [3] occurs in an automated
fashion, it is not done in an incremental way. Hence they suffer from explosion
in number of molecules needed for processing. Incremental way provides an op-
tion of continuing with some molecules or to reject some molecules from further
processing. This option is not present in the older models.

In the next section, we briefly look into the peptide computing model and
the way it solves the Hamiltonian path problem which is presented in [2]. Since
our paper is mainly based on the HPP we present briefly the model presented
in [2]. In Section 3, we propose our new method called incremental building to
reduce the number of molecules needed in the pre-processing and processing
steps in order to solve Hamiltonian path problem. In the penultimate section
we discuss the feasibility of our model with respect to present day techniques in
bio-chemistry. Our paper concludes with the Section 5.

2 Background and Preliminaries

In this paper, a sequence will always mean a peptide sequence unless otherwise
stated. Sequences are denoted in small-case letters, like for example p1, p2 and
so on and antibodies are denoted by upper-case letters like A,B and so on. If
A is an antibody we denote the affinity of antibody as aff(A). If p1 and p2 are
two sequences then p1p2 denotes the concatenation of two sequences p1 and p2.

2.1 A Brief Look into the Existing Models

In this section, we examine the pre-processing and processing steps in the existing
bio-computing models closely.

As mentioned earlier in bio-computing models that are used for solving com-
binatorial problems involves three steps: first step is a pre-processing step or
encoding step, then secondly, the processing step and lastly, the decoding step.

The pre-processing step consists of the preparation of bio-molecules of specific
sequences or structures which altogether constitute the solution space of the
given problem. The processing step explores all possible molecules constructed in
the pre-processing step in search of specific molecules that represent the solution
for the problem, if there is any solution for it. The main part of the processing
step is the elimination of bio-molecules that does not represent the solution for
the given problem. The output step is the detection part to see if there are any
molecules left in the pool after all the elimination steps. Since we are concerned
in this paper in reducing the number of biomolecules needed, we concentrate
only on the first two steps.

When we solve an instance of a hard combinatorial problem using bio-molecular
computing, all possible solutions of the problem have to be represented. And for
this to happen there is a need for a pre-processing step where specific biomolecules
are prepared and put in a pool to start the processing step. Since the number of
possible solutions is exponential, the number of biomolecules will also be expo-
nential. And all the more, we also need many copies of the biomolecules. This all

Incremental Building in Peptide Computing 553

adds to a huge number of biomolecules and makes the existing methods almost
impossible, even when the input size is slightly larger, to implement in a wetlab
[7].

Once we have this pool of exponential number of biomolecules then using
molecular biology techniques the processing starts by eliminating those
biomolecules which do not represent exact solutions for the problem. Hence, we
note here that once the processing starts it is assumed that all the biomolecules
representing all possible solutions are present. This means that we have all the
biomolecules a priori before starting the processing. Another issue to be noted
here is in most of the cases almost all, except very few, biomolecules are going
to be eliminated when processing.

In the next two subsections we briefly describe two things – first, the peptide
computing model and second, the method for solving Hamiltonian path problem
that is presented in [2].

2.2 Peptide Computing

Peptide computing was first proposed by H. Hug and R. Schuler in [9] where
they presented a method to solve Satisfiability problem [6] using the natural
interactions between peptides and antibodies.

Peptide is a short sequences of proteins consisting of sequence of amino acids
attached by peptide bonds. A peptide consists of recognition sites called epitopes
for the antibodies to bind on it. A peptide can contain more than one epitopes for
the same or different antibodies and for each antibody which attach to a specific
epitope there is a binding power associated with it called as affinity. If the sites
for two or more antibodies overlap in the given peptide, then the antibody with
more affinity always gets the higher priority to bind to its epitope.

The process of binding of antibodies to specific sites and removal of antibodies
by another antibody that binds to a site with a higher affinity1 resembles the
action a Turing machine where at some particular state the head reads/(re)writes
a symbol according to some specified rules. This exemplifies the fact that there is
some computation taking place when peptides and antibodies interacts. Another
fact is that since the process works with several copies of peptides and antibodies
it has massive parallelism and non-determinism in it. These facts provides the
flexibility to solve some intractable problems efficiently.

2.3 Solving Hamiltonian Path Problem – Previous Method

Let G = (V,E) be a directed graph. Let V (G) = {v1, v2, · · · , vn} be the vertex
set of the graph and E(G) = {eij | vj is adjacent to vi} be the edge set. Without
loss of generality we take v1 as the source vertex and vn as the end vertex. Our
problem is to test whether there exists a Hamiltonian path between v1 and vn.
We assume that m is the number of edges in the graph G.

1 This is basically an immune reaction.

554 M. Sakthi Balan and P. Seshan

First step is the pre-processing step that involves formation of peptides and
antibodies.

For each vertices v1, v2, . . . , vn we choose an epitope e1, e2, . . . , en and these
epitopes are arranged in the peptide sequence in such a way that they represent
a possible Hamiltonian path on a graph over n vertices. For example, one such
specific peptide sequence P will be

P = e1e2e2e3e3 . . . en−1en−1en

Also see Fig. 3, for one such peptide sequence over 8 vertices.

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���
���

��
��
��
��

e e e e e e e e e e e e e e2 6 841 2 3 3 4 5 5 6 77

Fig. 3. Peptide sequence over 8 vertices

Likewise if we permute the set of epitopes {e2, e3, . . . , en−1} with e1 and en

as two extremes then we get (n − 2)! peptide sequences. Note that this pre-
processing step does not depend on the graph G.

In the next step of the pre-processing step we form three set of antibodies.
The first set of antibodies that we call as A antibodies are formed for each edge
present in the graph G. These antibodies binds to the subsequence epiepj in the
peptide sequence if there exists an edge vivj . The second set of antibodies called
B antibodies binds to all subsequences epiepj where vivj is not an edge in the
graph G. The third set of antibodies C consists of only one labelled or colored
antibody that binds to the whole of peptide sequences. If they bind to some
peptide sequence then this can be seen by the emitted fluorescence as a result
of this binding. The affinity of the antibodies are defined as follows:

aff(A) < aff(C) < aff(B).

The algorithm is:

Algorithm 1
1. Take all the peptide sequences formed in an aqueous solution.
2. Add A set of antibodies to the collection.
3. Add B set of antibodies to the collection.
4. Add C set of antibodies to the collection.
5. If fluorescence is detected then there exists a Hamilton path in the graph G,

otherwise there exists no such path. If the peptides are bound to an addressed
chip the solution can be immediately read.

It should be easy to note that even a single presence of a B antibody binding
to a subsequence in a peptide sequence denotes that the path it corresponds is
not a valid path in the given graph G. Hence the valid paths are the ones where
the corresponding peptide sequences that contain only A antibodies binding to

Incremental Building in Peptide Computing 555

it. When we add the C set of antibodies since C has more affinity than A, C
will remove the antibodies A and binds to that whole peptide sequence. With
respect to antibodies B, C has lesser affinity, so C can not bind to those peptide
sequences where there are one or more antibodies B binding to the sequences.
Hence C selects all the Hamiltonian paths of the graph G, if at all it is present
there.

A quick analysis will show the following resource complexity – (i) number of
peptides is (n−2)!, (ii) length of peptides is O(n), and (iii) number of antibodies
is O(n2).

Hence we note that this model requires (n− 2)! peptide sequences before the
start of the processing, because we assume that any of the (n − 2)! sequences
might lead to a solution without even considering the input of the graph G.

It should also be clear to see that there are three separate steps – one encoding
step, next the processing step and the last one the decoding step. For more details
on this model please refer [2].

In the next section we describe how we build the peptide sequences only when
it is required and reduce much of the elimination methods which in turn reduces
the number of peptide sequences needed on the whole.

3 Incremental Building of Peptide Sequences

In this section we present our proposed model called incremental building of
peptide sequences for solving Hamiltonian path problem.

As mentioned earlier, our main motivation here is to reduce the number of
peptide sequences. Unlike the previous methods where we first assumed every
possible solution might be a solution for the given problem and start the elimi-
nation process, in this method we build the required solution in an incremental
way.

Let us suppose the problem statement for Hamiltonian path problem is given
as in the previous section (see Section 2.3).

First we explain the pre-processing step in the following.

Pre-Processing Step
For each vertices v1, v2, . . . , vn we take an unique peptide sequence. Let us denote
these peptide sequences as p1, p2, . . . , pn. Each peptide sequence pi for 2 ≤ i ≤
n− 1 is of the form (see Figure 4):

pi = preixisufi

where sufi and prei denote the suffix and prefix part of the sequence pi and xi is
a random sequence. p1 and pn are represented as x1suf1 and prenxn respectively.

����
����
����

����
����
����

pre sufx ii i

Fig. 4. Peptide sequence pi

556 M. Sakthi Balan and P. Seshan

Hence the sequence p1 is devoid of the prefix part and the sequence pn the suffix
part.

In the next step, we form antibodies. For each edge e = vivj , 1 ≤ i, j ≤ n and
i �= j, in the graph G we form antibodies Aij . The epitope of Aij is defined as
sufiprej . Let us denote this set of antibodies as A.

We also form another set of labelled antibodies denoted as L. The set L
consists of antibodies Li for each vi ∈ V (G). The antibody Li binds to the
subsequence xi of the peptide sequence pi.

Incremental Building
In this step we always have two sets of peptide sequences one called as source,
denoted as S, and the other one called as target, denoted as T . First, the set
S consists of p1 and the set T will always be the set of all peptide sequences
{p2, p3, . . . , pn}.

In the sequel we describe the steps. Please refer Algorithm 2 for step-wise
description. A note on the implementation of these steps is presented in the
Section 4.

First we take the source set {p1} in an aqueous solution. We add the target
set T to it followed by the set of antibodies A. The epitope is split across two
peptide sequences. This enables that, when antibodies attach to their epitopes it
actually creates a link between the two peptide sequences p1 and pi. To be more
clear, an antibody A1i binds to its epitopes suf1prei and creates a link between
two separate peptide sequences p1 and pi thus forming a bigger peptide sequence
consisting p1pi. It is noted that the link between two sequences happens only
when there is an edge e1i in the given graph G (see Figure 5).

p p
1 i

A1i

P P1 i

Fig. 5. Two peptide sequences p1 and pi linked together by the antibody A1i

After this linking happens, all the antibodies Aij and peptide sequences pk

that are simply floating around are filtered out. Therefore we are left with only
those sequences of the form p1pj (2 ≤ j ≤ n) where eij ∈ E(G) – this set of
sequences is denoted by S(1). After the end of this step, which we call as the
first iteration, the set S(1) becomes the source set.

Incremental Building in Peptide Computing 557

In the first step of the next iteration we add the target set T and the set
of antibodies A to the aqueous solution containing S(1). This facilitates further
elongation of the peptide sequences since antibodies Aij will again link one
peptide sequence from S(1), say p1 = p1pi, with a peptide sequence from T , say
pj , provided eij ∈ E(G). At the end of this step we filter out all the floating
antibodies Aij and peptides pk.

After repeating these steps n−1 times, if we end up with a sequence of length
n−1 then it shows that there exists a Hamiltonian path for the graph G. If not,
then there is no such path in the graph G.

When we do these iterations we might end with a sequence like p1pi1pi2pi3pi1

where 2 ≤ i1, i2, i3 ≤ n. We should not allow this sequence to be elongated
at the next step because this has repetition of a vertex, namely vi1 . To take
care of these situations, we use the set of antibodies L. The set L consists of
antibodies Li for each vi ∈ V (G). The antibody Li binds to the subsequence
xi of the peptide sequence pi. At the end of each iteration we add the set of
antibodies L to the source set. If any sequence has two labelled antibodies, that
can be inferred with a detection of two fluorescence emitting antibodies, then it
is filtered out. One way of doing this is, each labelled antibody can be given a
color (this is normally done in experiments in bio-chemistry) and through the
emitted fluorescence we can find out the duplication of the vertices.

Moreover, again, at the end of ith (1 ≤ i ≤ n − 1) iteration we check if the
length of the peptide sequences are of length i or not. If they are not of length
i then they are also filtered out. Since at the end of ith iteration if the length of
the peptide sequence is not of length i then it shows that it can not be further
elongated and it will not lead to a Hamiltonian path for the graph G.

The complete algorithm is given below:

Algorithm 2
1. Take the source set of peptide sequences S as the set {p1} in an aqueous

solution;
2. Set the counter i = 1;
3. Add the set of peptide sequences T to the solution;
4. Add the set of antibodies A to the solution;
5. Filter-out all the peptide sequences pj and antibodies Aij that are simply

floating around the solution;
6. Add the set of antibodies L to the solution;
7. Filter-out all the sequences having a labelled antibody Li binding to two or

more epitopes;
8. Filter-out all the sequences of length less than i;
9. If i < n − 1 then i = i + 1 and go to step 3 with S as the set of remaining

peptide sequences in the aqueous solution;
10. If there exists a peptide sequence in the solution then there exists a Hamil-

tonian path or else there is no such path in the graph.

Discussion on the Incremental Building Model
We analyze the amount of peptides and antibodies needed in the proposed in-
cremental model in the sequel.

558 M. Sakthi Balan and P. Seshan

If we assume the number of vertices in the given graph G as n and the number
of edges in G as m then the amount of peptides needed is O(n). The amount
of antibodies needed in the set A is O(m) which is O(n2). And the amount of
antibodies needed in the set L is O(n). Hence the total amount of antibodies
needed is of the order of n2.

In the following we discuss the main differences between the previous model
[2], that we call as the old model, and the incremental model.

1. In the old model we needed (n − 2)! peptide sequences but here we need
only n peptide sequences that can be linked using antibodies to form larger
sequences.

2. In the old model we had only constant number of bio-steps but here the
number of bio-steps needed is of the order of n, the number of vertices.

3. In the old model we need to form specific peptide sequences to denote all
possible paths of any graph over n number of vertices. In this incremental
model the algorithm itself builds the paths automatically using antibody as
a link.

4 Remarks

This paper is mostly based on the assumption that two peptide sequences can
be combined together using an antibody that acts a linker. In this section we ask
the following question and survey some work that has been done in this context.

Is it possible for two amino acid sequences to form a single linear sequence
upon binding to a target protein?

Any two peptides can bind to a target protein in a vectorial fashion. In order
to combine two separate amino acid sequences in to a single one upon binding
to a target protein, those two peptides should follow certain conditions:

1. Both peptides should come together in close proximity to each other upon
binding to a target protein.

2. Binding sites for these peptides should be distinct with no overlap.
3. Binding can be head-tail, tail-head or tail-tail fashion (N and C-terminal of

a peptide denotes, head and tail respectively).
4. The binding of one peptide may or may not affect the binding of the other

(often refereed as allosteric vs independent binding).
5. The conformation of the peptide may or may not change upon binding.
6. The binding constant between the peptides and the target protein should be

in nano-molar range, so that both the peptides would be in bound-form for
an extended period of time.

7. Finally, the interface of these bound peptides may create a unique key that
might fit perfectly into the lock of the target protein, implying the symbiotic
nature of stability of individual peptides.

The antigen binding region of the antibody is composed of hetero-dimer of
Heavy chain (V H) and Light chain (V L) regions. Specificity of the antibody

Incremental Building in Peptide Computing 559

is attributed to the complementarity determining region (CDRs) in Heavy and
light chains. It has been shown that the in vitro recombination of heavy chain
and light chain binds to the antigen, albeit with low-affinity [8]. Close proximity
of these two different polypeptide chains have been confirmed by the addition of
linker between the two [10]. The affinity was drastically improved upon stabiliz-
ing both V H and V L.

First breakthrough in antibody design also featured linking the two different
polypeptide chains with a short linker of 6 amino acids [4]. Also, the length
of the linker between the polypeptide affects the stability of the complex [5].
Finally, a universal Linker theory [12] has also been proposed in order to create
an antibody that can bind to two different epitopes of an antigen. The theory
suggests that linking the polypeptide fragment A and B via a flexible linker
drastically improves the binding to the target protein. The length of the linker
depends upon the distance between the non-overlapping epitopes. It suggests
that the any two polypeptides can arrange into a single polypeptide sequence
with certain reservation.

5 Conclusion

We proposed a new method called incremental building for peptide computing
wherein instead of building all the peptide sequences in the pre-processing step
we build it incrementally only after checking if it will lead to a possible solution
or not. We saw that this method reduces the number of peptide sequences re-
quired in the pre-processing step. This method, we feel, can be applied to other
computing models using bio-molecules. This will have a good impact on reduc-
ing the number of bio-molecules needed for the processing since the building of
further bio-molecules, like extending peptide sequences, is done only after check-
ing the feasibility of getting to a solution. Another interesting question will be
– what set of problems this method can solve.

Acknowledgments

The authors wish to thank Dr. Saravanakumar Narayanan from the Wagner Lab,
Harvard Medical School for his inputs on peptide-antibody interactions.

References

1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Sci-
ence 266, 1021–1024 (1994)

2. Balan, M.S., Krithivasan, K., Sivasubramanyam, Y.: Peptide computing: Univer-
sality and computing. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS,
vol. 2340, pp. 290–299. Springer, Heidelberg (2002)

3. Baumgardner, J., Acker, K., Adefuye, O., Crowley, S., DeLoache, W., Dickson, J.,
Heard, L., Martens, A., Morton, N., Ritter, M., Shoecraft, A., Treece, J., Unzicker,
M., Valencia, A., Waters, M., Malcolm, A., Heyer, L., Poet, J., Eckdahl, T.: Solv-
ing a hamiltonian path problem with a bacterial computer. Journal of Biological
Engineering 3(1), 11 (2009)

560 M. Sakthi Balan and P. Seshan

4. Bird, R.E., Hardman, K.D., Jacobson, J.W., Johnson, S., Kaufman, B.M., Lee,
S.M., Lee, T., Pope, S.H., Riordan, G.S., Whitlow, M.: Single-chain antigen-binding
proteins. Science 242(4877), 423–426 (1988)

5. Blenner, M., Banta, S.: Characterization of the 4D5Flu single-chain antibody with
a stimulus-responsive elastin-like peptide linker: A potential reporter of peptide
linker conformation. Protein Science 17, 527–536 (2008)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability A Guide to the Theory
of NP-Completeness. W.H.Freeman and Company, New York (1979)

7. Hartmanis, J.: On the Weight of Computation. Bulletin of the EATCS 55, 136–138
(1995)

8. Hudson, N., Mudgett-Hunter, M., Panka, D., Margolies, M.: Immunoglobulin chain
recombination among antidigoxin antibodies by hybridoma-hybridoma fusion. J.
Immunol. 139, 2715–2723 (1987)

9. Hug, H., Schuler, R.: Strategies for the developement of a peptide computer. Bioin-
formatics 17, 364–368 (2001)

10. Huston, J., Levinson, D., Mudgett-Hunter, M., Tai, M.S., Novotny, J., Margolies,
M., Ridge, R., Bruccoleri, R., Haber, E., Crea, R., Oppermann, H.: Protein engi-
neering of antibody binding sites: Recovery of specific activity in an anti-digoxin
single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. 85,
5879–5883 (1988)

11. Păun, G.: Computing with membranes–A variant: P systems with polarized mem-
branes. Intern. J. of Foundations of Computer Science 11(1), 167–182 (2000)

12. Zhou, H.X.: Quantitative account of the enhanced affinity of two linked scFvs
specific for different epitopes on the same antigen. J. Mol. Biol. 329, 1–8 (2003)

Variable Automata over Infinite Alphabets

Orna Grumberg1, Orna Kupferman2, and Sarai Sheinvald2

1 Department of Computer Science, The Technion, Haifa 32000, Israel
2 School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel

Abstract. Automated reasoning about systems with infinite domains requires an
extension of regular automata to infinite alphabets. Existing formalisms of such
automata cope with the infiniteness of the alphabet by adding to the automaton a
set of registers or pebbles, or by attributing the alphabet by labels from an auxil-
iary finite alphabet that is read by an intermediate transducer. These formalisms
involve a complicated mechanism on top of the transition function of automata
over finite alphabets and are therefore difficult to understand and to work with.

We introduce and study variable finite automata over infinite alphabets (VFA).
VFA form a natural and simple extension of regular (and ω-regular) automata, in
which the alphabet consists of letters as well as variables that range over the
infinite alphabet domain. Thus, VFAs have the same structure as regular au-
tomata, only that some of the transitions are labeled by variables. We compare
VFA with existing formalisms, and study their closure properties and classical
decision problems. We consider the settings of both finite and infinite words. In
addition, we identify and study the deterministic fragment of VFA. We show that
while this fragment is sufficiently strong to express many interesting properties,
it is closed under union, intersection, and complementation, and its nonemptiness
and containment problems are decidable. Finally, we describe a determinization
process for a determinizable subset of VFA.

1 Introduction

Automata-based formal methods are successfully applied in automated reasoning about
systems. When the systems are finite-state, their behaviors and specifications can be
modeled by finite automata. When the systems are infinite-state, reasoning is undecid-
able, and research is focused on identifying decidable special cases (e.g., pushdown
systems) and on developing heuristics (e.g., abstraction) for coping with the general
case.

One type of infinite-state systems, motivating this work, are systems in which the
control is finite and the source of infinity is data. This includes, for example, software
with integer parameters [3], datalog systems with infinite data domain [15,4], and XML
documents, whose leaves are typically associated with data values from some infinite
domain [7,5]. Lifting automata-based methods to the setting of such systems requires
the introduction of automata with infinite alphabets.1

The transition function of a nondeterministic automaton over finite alphabets (NFA)
maps a state q and a letter σ to a set of states the automaton may move to when it is in

1 Different approaches for automatically reasoning about such systems are based on extensions
of first-order logic [2] and linear temporal logics [8].

A.-H. Dediu, H. Fernau, and C. Martı́n-Vide (Eds.): LATA 2010, LNCS 6031, pp. 561–572, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

562 O. Grumberg, O. Kupferman, and S. Sheinvald

state q and the letter in the input is σ. When the alphabet of the automaton is infinite,
specifying all transitions is impossible, and a new formalism is needed in order to rep-
resent them in a finite manner. Existing formalisms of automata with infinite alphabets
fulfill this task by augmenting the automaton by registers or pebbles, or by attributing
the alphabet by labels from an auxilary finite alphabet that is read by an intermediate
transducer. We elaborate of the existing formalisms below.

A register automaton [13] has a finite set of registers, each of which may contain
a letter from the infinite alphabet. The transitions of a register automaton compare the
letter in the input with the content of the registers, and may also store the input letter
in a register. Several variants of this model have been studied. For example, [10] forces
the content of the registers to be different, [12] adds alternation and two-wayness, and
[9] allows the registers to change their content nondeterministically during the run.

A pebble automaton [12] places pebbles on the input word in a stack-like manner.
The transitions of a pebble automaton compare the letter in the input with the letters in
positions marked by the pebbles. Several variants of this model have been studied. For
example, [12] studies alternating and two-way pebble automata, and [14] introduces
top-view weak pebble automata.

The newest formalism is data automata [2,1]. For an infinite alphabet Σ, a data au-
tomaton runs on data words, which are words over the alphabet Σ × F , where F is
a finite auxilary alphabet. Intuitively, the finite alphabet is accessed directly, while the
infinite alphabet can only be tested for equality, and is used for inducing an equivalence
relation on the set of positions. Technically, a data automaton consists of two compo-
nents. The first is a letter-to-letter transducer that runs on the projection of the input
word on F and generates words over yet another alphabet Γ . The second is a regular
automaton that runs on subwords (determined by the equivalence classes) of the word
generated by the transducer.

The quality of a formalism is measured by its simplicity, expressive power, compo-
sitionality, and computability. In simplicity, we refer to the effort required in order to
understand a given automaton, work with it, and implement it. In compositionality, we
refer to closure under the basic operations of union, intersection, and complementation.
In computability, we refer to the decidability and complexity of classical problems like
nonemptiness, membership, universality, and containment.

The formalisms of register, pebble, and data automata all fail hard the simplicity
criterion. Augmenting NFAs with registers or pebbles requires a substantial modifica-
tion of the transition function. The need to maintain the registers and pebbles makes
the automata hard to understand and work with. Unfortunately, most researchers in the
formal-method community are not familiar with register and pebble automata. Indeed,
even the definition of the basic notion of a run of such automata cannot simply rely on
the familiar definition of a run of an NFA, and involves the notions of configurations,
successive configurations, and so on, with no possible shortcuts.

Data automata do not come to the rescue. The need to accept several subwords per
input word and to go through an intermediate alphabet and transducer makes them very
complex. Even trivial languages such as a∗ require extra letters and checks in order
to be recognized. Simplicity is less crucial in the process of automatic algorithms, and
indeed, data automata have been succesfully used for the decidability of two-variable

Variable Automata over Infinite Alphabets 563

first order logic on words with data - a formalism that is very useful in XML reasoning
[2,1]. For the purpose of specification and design, and for developing new algorithms
and applications, simplicity is crucial. A simpler, friendlier formalism is needed.

Data and register automata and most of their variants fail the compositionality and
computability criteria too. Data automata and register automata are not closed under
complementation, apart from specific fragments of register automata that limit the num-
ber of registers [8]. Their universality and containment problems are undecidable [12].
Pebble automata and most of their variants fail the computability criterion, as apart
from weaker models [14], their nonemptiness, universality, and containment problems
are undecidable. Nonemptiness of data and register automata is decidable, but is far
more complex than the easy reachability-based nonemptiness algorithm for NFAs.

We introduce and study a new formalism for recognizing languages over infinite al-
phabets. Our formalism, variable finite automata (VFA), forms a natural and simple
extension of NFAs. We also identify and study a fragment of VFA that fulfills the sim-
plicity, compositionality, and computability criteria, and is still sufficiently expressive
to specify many interesting properties. Intuitively, a VFA is an NFA some of whose
letters are variables ranging over the infinite alphabet. The tight connection with NFAs
enables us to apply much of the constructions and algorithms known for them.

More formally, a VFA is a pair A = 〈Σ,A〉, where Σ is an infinite alphabet and
A is an NFA, referred to as the pattern automaton of A. The alphabet of A consists
of constant letters – a finite subset of Σ, a set of bounded variables, and a single free
variable. The language of A consists of words in Σ∗ that are formed by assigning
letters in Σ to the occurrences of variables in words in the language ofA. Each bounded
variable is assigned a different letter (also different from the constant letters), thus all
occurrences of a particular bounded variable must be assigned the same letter. This
allows describing words in Σ∗ in which some letter is repeated. The free variable may
be assigned different letters in every occurrence, different from the constant letters and
from letters assigned to the bounded variables. This allows describing words in which
every letter may appear. For example, consider a VFA A = 〈N, A〉, where A has a
bounded variable x and its free variable is y. if the language of A is (x+ y)∗ · x · (x+
y)∗ · x · (x+ y)∗, then the language of A consists of all words over N in which at least
some letter occurs at least twice.

We prove that VFAs are closed under union and intersection. The constructions
we present use the union and product constructions for NFAs in their basis, but some
pirouettes are needed in order to solve conflicts between different assignments to the
variables of the underlying automata. Such pirouettes are helpless for the problem of
complementation, and we prove that VFAs are not closed under complementation. We
study the classical decision problems for VFAs. We show that a VFA is nonempty iff its
pattern automaton is nonempty. Thus, the nonemptiness problem is NL-complete, and
is not more complex than the one for NFAs. We also show that the membership problem
is NP-complete. Thus, while the problem is more complex than the one for NFAs, it is
still decidable. The universality and containment problems, however, are undecidable.

We then define and study deterministic VFA (DVFA), a fragment of VFA in which
there exists exactly one run on every word. Unlike the case of DFAs, determinism is
not a syntactic property. Indeed, since the variables are not pre-assigned, there may be

564 O. Grumberg, O. Kupferman, and S. Sheinvald

several runs on a word even when the pattern automaton is deterministic. However, a
syntactic definition does exist and deciding whether a given VFA is deterministic is NL-
complete. We introduce an unwinding operator for VFAs. In an unwinded VFA, each
state is labeled by the variables that have been read, and therefore assigned, in paths
leading to the state. Using the unwinding operator, we can define DVFAs for the union
and intersection of DVFAs. Moreover, the closure under complementation of DVFAs
is immediate, and it enables us to solve the universality and containment problems for
DVFAs. Thus, DVFAs suggest an expressive formalism that fulfills the three criteria.

We study further properties of DVFA. As bad news, we show that the problem of
determinizing a given VFA (or concluding that no equivalent DVFA exists) is undecid-
able. As good news, we show that all VFAs with no free variable have an equivalent
DVFA, and present a determinization process for VFAs of this kind. The advantages of
DVFA make us optimistic about the extensions of algorithms that involve DFAs, like
symbolic formal verification and synthesis, to the setting of infinite alphabets.

We demonstrate the robustness of our formalism by showing that its extension to
the setting of ω-regular words is straightforward. In Section 5, we introduce and study
variable Büchi automata (VBAs), whose pattern automata are nondeterministic Büchi
automata on infinite words [6]. VBAs are useful for specifying languages of infinite
words over infinite alphabets, and in particular, specifications of systems with variables
ranging over infinite domains. We show that the known relation between NFAs and
nondeterministic Büchi automata extends to a relation between VFAs and VBAs. This
enables us to easily lift the properties and decision procedures we presented for VFA to
the setting of VBAs.

2 Variable Automata over Infinite Alphabets

A nondeterministic finite automaton (NFA) is a tuple A = 〈Γ,Q,Q0, δ, F 〉, where
Γ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states,
δ : Q×Γ → 2Q is a transition function, and F ⊆ Q is a set of accepting states. If there
exists q′ such that q′ ∈ δ(q, a), we say that a exits q. A run of A on w = σ1σ2 . . . σn in
Γ ∗ is a sequence of states r = r0, r1, . . . , rn such that r0 ∈ Q0 and for every 1 ≤ i ≤ n
it holds that ri ∈ δ(ri−1, σi). If rn ∈ F then r is accepting. Note that a run may not
exist. If a run does exist, we say that w is read along A. The language of A, denoted
L(A), is the set of words on which there exists an accepting run of A.

Before defining variable automata with infinite alphabets, let us explain the idea
behind them. Consider the NFAA1 over the finite alphabet {x, y} appearing in Figure 1.
It is easy to see that L(A1) = x · y∗ · x. Consider the language L′ = {i1 · i2 · · · ik :
k ≥ 2, i1 = ik, and ij �= i1 for all 1 < j < k} over the alphabet N; that is, L′ contains
exactly all words in which the first letter is equal to the last letter, and is different from
all other letters. Since N is infinite, an NFW for it needs infinitely many states and
transitions. The idea behind variable automata is to label the transitions of the NFA by
both letters from the infinite alphabet and variables that can take values from it. For
example, if we refer to x as a bounded variable whose value is fixed once assigned,
and refer to y as a free variable, which can take changing values, different from the
value assigned to x, then the NFA A1, when viewed as a variable automaton over N,

Variable Automata over Infinite Alphabets 565

recognizes the language L′. Also, if we want to remove the restriction about the letters
in the middle being different from the first letter, thus consider L′′ = {i1 · i2 · · · ik :
k ≥ 2 and i1 = ik}, we can label the self loop in A1 by both x and y.

x x x x

x x x

x

y y, y, y, y1 1 1

1 1 1

A A A1 2 3

Fig. 1. The pattern automata A1, A2, and A3 for the VFAs A1, A2, and A3

We now define variable finite automata (VFAs) formally. A VFA is a pair A =
〈Σ,A〉, where Σ is an infinite alphabet and A is an NFA, to which we refer as the
pattern automaton of A. The (finite) alphabet of A is ΓA = ΣA ∪ X ∪ {y}, where
ΣA ⊂ Σ is a finite set of constant letters, X is a finite set of bounded variables and y
is a free variable. The variables in X ∪ {y} range over Σ \ΣA.

Consider a word v = v1v2 . . . vn ∈ Γ ∗
A read along A, and another word w =

w1w2 . . . wn ∈ Σ∗. We say that w is a legal instance of v in A if

– vi = wi for every vi ∈ ΣA,
– For vi, vj ∈ X , it holds that wi = wj iff vi = vj , and wi, wj /∈ ΣA and
– For vi = y and vj �= y, it holds that wi �= wj .

Intuitively, a legal instance of v leaves all occurrences of vi ∈ ΣA unchanged, asso-
ciates every occurrence of vj ∈ X with the same unique letter, not inΣA, and associates
every occurrence of y freely with letters from Σ \ ΣA, different from these associated
with X variables.

We say that a word v ∈ Γ ∗
A is a witnessing pattern for a word w ∈ Σ∗ if w is a

legal instance of v. Note that v may be the witnessing pattern for infinitely many words
in Σ∗, and that a word in Σ∗ may have several witnessing patterns (or have none).
Given a word w ∈ Σ∗, a run of A on w is a run of A on a witnessing pattern for w.
The language of A, denoted L(A), is the set of words in Σ∗ for which there exists a
witnessing pattern in L(A).

Example 1. LetA2 = 〈Σ,A2〉 whereA2 is the automaton appearing in Figure 1. Then,
L(A2) is the language of all words in Σ∗ in which some letter appears at least twice.
By deleting the x1 labels from the self loops in A2, we get the language of all words in
which some letter appears exactly twice.

Example 2. Let A3 = 〈Σ,A3〉 where A3 is the NFA appearing in Figure 1. Then
L(A3) is the language of all words in Σ∗ in which the last letter is different from all
the other letters.

Comparison with Other Formalisms. In terms of expressive power, VFAs are incom-
parable with FMAs – the register automata of [10], but can be simulated by NFMA [9],
which extend FMAs with nondeterministic updates of the registers. Intuitively, the vari-
ables of a VFA are analogous to registers, but while a register can change its content

566 O. Grumberg, O. Kupferman, and S. Sheinvald

during the run, a bounded variable cannot change the value assigned to it. VFAs are also
incomparable with data automata [2], yet a VFA with no constant letters can be simu-
lated by a data automaton. Intuitively, the transducers of data automata can be used in
order to check that the restrictions imposed by the pattern automaton apply.

In the full version, we elaborate more on the relation with the existing formalisms.
As detailed there, the examples showing the expressiveness superiority of the existing
formalisms are tightly related to their complexity, and we do not find them appealing
in practice. For example, it is not surprising that a formalism for which the emptiness
problem can be checked in NL (in Theorem 3 we show that emptiness of a VFA can
be reduced to emptiness of its pattern automaton) cannot recognize the language of
all words in which all letters are different. Data automata can recognize this language
since their notion of acceptance involves several runs, on different subwords of the
word. Of course, for some applications such an ability is important. VFAs, however, are
sufficiently strong to specify many natural properties, and for many applications, we
rather give up the expressiveness superiority of the other formalisms for a simple and
computationally easy formalism.

3 Properties of VFAs

This section studies closure properties of VFAs and the decidability and complexity
of basic problems. We show that VFAs are closed under union and intersection, but
are not closed under complementation. In the computability front, we show that while
the emptiness problem for VFAs is not harder than the one for NFAs, the membership
problem is harder, yet decidable, whereas the universality and containment problems
are undecidable.

Theorem 1. VFAs are closed under union and intersection.

Consider two VFAs A1 = 〈Σ,A1〉 and A2 = 〈Σ,A2〉 with A1 = 〈Σ1 ∪ X1 ∪
{y1}, Q1, Q

1
0, δ1, F1〉 and A2 = 〈Σ2 ∪X2 ∪ {y2}, Q2, Q

2
0, δ2, F2〉.

We start with the union construction. The standard construction for NFAs, which
guesses whether to follow A1 or A2, does not work for VFAs. To see why, note that
the range of the variables in a standard union construction would be Σ \ (Σ1 ∪ Σ2).
Accordingly, words in L(A1) in which variables are assigned values in Σ2 may be
missed, and dually for L(A2). We solve this problem by defining the union of A1 and
A2 as a union of several copies of the underlying VFAs. In each copy, a subset of the
variables is taken care of, and transitions labeled by variables from the set are labeled
by constants of the other VFA.

We proceed to an intersection construction. Recall that in the product construction
for NFAs A1 and A2, the state space is Q1 × Q2, and 〈q′1, q′2〉 ∈ δ(〈q1, q2〉, a) iff
q′1 ∈ δ1(q1, a) and q′2 ∈ δ2(q2, a). Since A1 and A2 are pattern automata of VFAs, the
letter a may be a variable. Accordingly, there are cases in which it should be possible to
intersect two differently labeled transitions: intersecting two transitions with different
bounded variables, meaning they get the same assignment inA1 and inA2; intersecting
a variable with a letter σ, meaning the variable is assigned σ; and intersecting the free
variable y with a bounded variable x or with a letter σ, meaning the assignment to y in

Variable Automata over Infinite Alphabets 567

this transition agrees with the assignment of x or with σ. Accordingly, we would like to
define δ such that for z ∈ Σ1 ∪Σ2 ∪X ∪ {y}, we have that 〈q′1, q′2〉 ∈ δ(〈q1, q2〉, z) iff
there exist z1 ∈ Σ1∪X1∪{y1} and z2 ∈ Σ2∪X2∪{y2} such that q′1 ∈ δ1(q1, z1) and
q′2 ∈ δ2(q2, z2) and such that z1 and z2 can be matched according to the cases described
above. Formally, we do this by taking several copies of the product construction of
the pattern automata, each associated with a relation H that matches the variables and
constant letters of A1 with the variables and constant letters of A2.

Theorem 2. VFAs are not closed under complementation.

Proof: Consider the VFA A2 of Example 1. Recall that L(A2) contains exactly all
words in Σ∗ in which some letter appears at least twice. The complement L̃ of L(A2)
then contains exactly all words all of whose letters are different. It can be shown that
a VFA that recognizes L̃ needs an unbounded number of variables, and therefore does
not exist. �

We now turn to study the decidability and complexity of the emptiness, membership and
universality problems for VFAs. Checking nonemptiness of existing formalisms is com-
plex and even undecidable. The fact that a bounded variable keeps its value along the run
makes the nonemptiness checking of VFAs very simple. In fact, a VFA is nonempty iff
its pattern automaton is nonempty. Beyond the straightforward algorithm this induces,
it shows that the VFA formalism is indeed very close to the simple formalism of NFAs.

Theorem 3. The nonemptiness problem for VFA is NL-complete.

Theorem 4. The membership problem for VFA is NP-complete.

The algorithms for the universality and containment problems for the finite-alphabet
case rely on the closure of NFAs under complementation, which does not hold for
VFAs. Similarly to [12], for register automata, the undecidability of the universality
problem for VFA is proved by a reduction from Post’s Correspondence Problem. Since
we can easily define a universal VFA, undecidability of the containment problem fol-
lows too.

Theorem 5. The universality and containment problems for VFAs are undecidable.

4 Deterministic VFA

In this section we define deterministic VFA and study their properties. We show that
deterministic VFA are simple, expressive, and are closed under all Boolean operations.
In addition, the nonemptiness, membership, universality, and containment problems are
all decidable for them.

Recall that an NFA is deterministic if |Q0| = 1 and for all q ∈ Q and σ ∈ Σ, we
have |δ(q, σ)| ≤ 1. Indeed, these syntactic conditions guarantee that the automaton has
at most one run on each input word. To see that such a syntactic characterization does
not exist for VFA, consider the VFA A appearing in Figure 2. Its pattern automaton is
deterministic, but the word a has two different runs in A: one in which x1 is assigned
a, and one in which x2 is assigned a. Thus, there is a need to define deterministic VFAs
in a non-syntactic manner.

568 O. Grumberg, O. Kupferman, and S. Sheinvald

x1

x2

x1

y

x1

y,x1

DA

Fig. 2. A nondeterministic VFA whose pattern automaton is deterministic, and a DVFA that ac-
cepts all words in which the first letter is repeated at least twice

Definition 1. A VFA A = 〈Σ,A〉 is deterministic (DVFA, for short), if for every word
w ∈ Σ∗, there exists exactly one run of A on w.

Example 3. Consider the VFAD = 〈Σ,D〉, whereD is the DFA appearing in Figure 2.
The language of D is the set of all words over Σ in which the first letter is repeated at
least twice. To see that it is deterministic, consider a word w = w1w2 . . . wn in Σ∗.
A witnessing pattern for w is over x1 and y. Since only x1 exits the initial state, then
x1 must be assigned w1, and all other occurrences of other letters must be assigned to
y. Therefore, every word that has a witnessing pattern has a single witnessing pattern.
Since D is deterministic, every witnessing pattern has a single run in D. It is easy to
see that every word in Σ∗ can be read along D. It follows that D is deterministic.

Although for VFA, unlike NFA, the definition of determinization is semantic, an equiv-
alent syntactic definition does exist, as we show below.

Theorem 6. Deciding whether VFA is deterministic is NL-complete.

Proof: We start with the upper bound. Consider a VFA A = 〈Σ,A〉 with variables
X ∪ {y} and an initial state qin. We claim that A is not deterministic iff one of the
following holds.

– A is nondeterministic, or
– there exists a reachable state s such that there exist two bounded variables x and x′

that exit s, and a path from qin that reaches s and does not contain x and x′, or
– there exists a bounded variable x such that both x and y exit s, and a path from qin

that reaches s but does not contain x, or
– there exists a reachable state s such that there exists a constant letter that does not

exit s, or a variable that appears along a path from qin to s that does not exit s.

Intuitively, the first three conditions check that each word w ∈ Σ∗ has at most
one run in A. Then, the last condition checks that w has at least one run. In order to
implement the above check in NL, we guess the condition that is violated, and check
that it is indeed violated. Since NL is closed under complementation, we are done. The
lower bound can be shown by a reduction from the reachability problem. �

Note that Theorem 6 refers to the problem of deciding whether a given VFA is deter-
ministic and not whether it has an equivalent DVFA. As we show in the sequel, the
latter problem is much harder.

Variable Automata over Infinite Alphabets 569

We now turn to study the closure properties of DVFAs. Note that closure under union
and intersection does not follow from Theorem 1, as here we want to end up with a
DVFA and not with a VFA. In order to study the closure properties, we introduce an
unwinding operator for VFAs. Given a VFA over Σ with a pattern automaton A =
〈ΣA ∪X ∪ {y}, Q,Q0, δ, F 〉, the unwinding of A is the VFA U = 〈Σ,U〉, with U =
〈ΣA ∪ X ∪ {y}, Q × 2X , 〈Q0, ∅〉, ρ, F × 2X〉, where ρ is defined, for every 〈q, θ〉 ∈
Q× 2X and z ∈ ΣA ∪X ∪ {y} as follows.

ρ(〈q, θ〉, z) =

{
δ(q, z)× {θ ∪ {z}} z ∈ X

δ(q, z)× {θ} z ∈ ΣA ∪ {y}
(1)

Intuitively, the states in U keep track of the set of bounded variables that have been
assigned along the paths from the initial state. A run of A corresponds to a run of U in
which every state is augmented with the set of bounded variables that have appeared ear-
lier in the run. Also, a run of U corresponds to a run of A along which the assignments
have been accumulated. Therefore, we have that a VFA is equivalent to its unwinding.

We start with union and intersection. The constructions have the construction for
DFAs in their basis, applied to the unwinding of the DVFA.

Theorem 7. DVFA are closed under union and intersection.

Proof: The constructions for union and intersection both rely on the unwinding of the
DVFAs. Since there is a one-to-one correspondence between runs of a VFA and its
unwinding, a VFA is deterministic iff its unwinding is deterministic. Let U1 and U2 be
the unwindings of two DVFAs with pattern automata U1 and U2, respectively.

Consider two states q1 and q2 in U1 and U2, respectively. The intersection construc-
tion is based on the product construction of U1 and U2. Each state in the unwinding
introduces at most one new bounded variable (Theorem 6). If new bounded variables
x1 and x2 exit q1 and q2 respectively, the construction matches x1 and x2 together to
form a new bounded variable. Similarly for a y1 transition and a new bounded variable
x2. Transitions labeled by y1 and y2 are matched together to form a y transition. The
states of the intersection construction keep track of the matchings of bounded variables.

The union of U1 and U2 is constructed on top of the intersection construction. Intu-
itively, a run on the union construction continues along both DVFAs as long as possible.
Once it cannot continue along U1 (w.l.o.g.), it continues along a copy of U2 . As in the
proof of Theorem 1, several such copies are taken, in which constants of U1 are assigned
to variables of U2. �

The fact that a DVFA has exactly one run on each input word makes its complemen-
tation easy: one only has to complement the pattern automaton. Formally, we have the
following.

Theorem 8. Given a DVFA A = 〈Σ,A〉 with a set of states Q and a set of accepting
states F , let Ã be the pattern automaton obtained from A by defining its set of accepting
states to be Q \ F , and let Ã = 〈Σ, Ã〉. Then, L(Ã) = Σ∗ \ L(A).

We now study the computability of the DVFA model. We first study the problems of
nonemptiness and membership. As argued in the proof of Theorem 3, a VFA is empty

570 O. Grumberg, O. Kupferman, and S. Sheinvald

iff its pattern automaton is empty. Since the nonemptiness problem in NL-complete also
for DFAs, the NL-complete complexity there applies also for DVFAs. For the member-
ship problem, determinism makes the problem easier.

Theorem 9. The membership problem for DVFA is in PTIME.

We note that the question of whether the membership problem is PTIME-hard, or in
NL is still open, and we suspect that it is very difficult, as it has the same flavor of the
long-standing open problem of the complexity of one-path LTL model checking [11].
We now turn to study the universality and containment problems and show that they are
decidable.

Theorem 10. The universality problem for DVFA is NL-complete.

This result follows from the NL-completeness of the emptiness problem, and from the
fact that complementation only involves a dualization of the acceptance condition. Since
DVFA are closed under complementation and instersection, the containment problem
is also decidable. In fact, we have the following.

Theorem 11. The containment problem for DVFA is in co-NP.

4.1 Determinization

In this section we show that not all VFAs have an equivalent DVFA, and the problem of
determinizing a given VFA (or concluding that no equivalent DVFA exists) is undecid-
able. As good news, we point to a fragment of VFAs that can always be determinized.

One evidence that not all VFAs have an equivalent DVFA is the fact that while DVFA
are closed under complementation, VFA are not. As a specific example, which also
demonstrates the weakness of DVFA, consider the VFA A2 of Example 1. In the proof
of Theorem 2, we showed that there is no VFA for the complement ofA2. Since DVFAs
are closed under complementation, it follows that there is also no DVFA equivalent to
A2.

Theorem 12. The problem of determinizing a given VFA (or concluding that no equiv-
alent DVFA exists) is undecidable.

Proof: Assume by way of contradiction that there is a Turing Machine M that, given
a VFA, returns an equivalent DVFA or returns that no such DVFA exists. We construct
from M a Turing machine M ′ that decides the universality problem for VFA, which,
according to Theorem 5, is undecidable.

The machineM ′ proceeds as follows. Given a VFA A, it runs M onA. If M returns
that A does not have an equivalent DVFA, then M ′ returns that A is not universal.
Otherwise,M ′ returns a DVFAA′ equivalent toA. By Theorem 10, M ′ can then check
A′ for universality. �

However, it turns out that VFA have an expressive determinizable fragment.

Definition 2. A VFA is syntactically determinizable if it has no y transitions.

Variable Automata over Infinite Alphabets 571

For example, consider the syntactically determinizable VFA A = 〈{a, . . . , z}∗, A〉,
appearing in Figure 3. The VFA A accepts all words of the form

url=www.x1.com;email=z@x1.com or
url=www.x2.t.com;email=z@x2.t.com,

where x1, x2, t, and z are words over the alphabet {a, . . . , z}. Thus, A makes sure that
the domain of the url agrees with that of the email, and it nondeterministically branches
to allow both domain of the form x.com and of the form x.t.com.

url=www. .com;email= @ .comx xz

x
. t .com;email= @ xz

1

2

t

1

2 . .com

Fig. 3. A syntactically determinizable VFA

Theorem 13. A syntactically determinizable VFA has an equivalent DVFA.

The full details of the construction are given in the full paper. Here, we show the result
of applying the algorithm on the VFA described in Figure 3. For clarity, we do not
include in the figure the transition to the rejecting sinks.

url=www. .com;email= @ .comx xz

.
t .com;email= @ xz t. .com

Fig. 4. The DVFA equivalent to the VFA from Figure 3

5 Variable Büchi Automata

In [6], Büchi extended NFAs to nondeterministic Büchi automata, which run on infinite
words. The similarity between VFAs and NFAs enables us to extend VFAs to nondeter-
ministic variable Büchi automata (VBA, for short). Formally, a VBA is A = 〈Σ,A〉,
where A is a nondeterministic Büchi automaton (NBA). Thus, a run of the pattern au-
tomaton A is accepting iff it visits the set of accepting states infinitely often. Similar
straightforward extensions can be described for additional acceptance conditions for in-
finite words. As we specify below, the properties and decision procedures for VFAs gen-
eralize to VBA in the expected way, demonstrating the robustness of the VFA formalism.

We start with closure properties. The union construction for VBA is identical to
the union construction for VFA. The intersection construction for NBAs involves two
copies of the product automaton. Recall that the intersection construction for VFAs
involves several copies of the product automaton. Combining the two constructions, we
construct the intersection of two VBAs by taking two copies of these several copies.
Therefore, we have the following.

Theorem 14. VBA and DVBA are closed under union and intersection.

572 O. Grumberg, O. Kupferman, and S. Sheinvald

As with VFAs, VBAs are not closed under complementation. Recall that a DVFA can be
complemented by complementing its pattern automaton. Since deterministic Büchi au-
tomata are not closed under complementation, so are DVBA. Like deterministic Büchi
automata, a DVFA can be complemented to a VBA, by translating its pattern automaton
to a complementing NBA.

Theorem 15. VBAs and DVBAs are not closed under complementation. A DVBA can
be complemented to a VBA.

As for the various decision problems, the complexities and reductions of VFAs all apply,
with minor modifications.

Theorem 16. – The nonemptiness problem for VBA and DVBA is NL-complete.
– The membership problem for VBA is NP-complete and for DVBA is in PTIME.
– The containment problem for VBA is undecidable and for DVBA is in co-NP.
– Deciding whether a given VBA is a DVBA is NL-complete.

References

1. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees
and xml reasoning. J. ACM 56(3), 1–48 (2009)

2. Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable logic on
words with data. In: LICS, pp. 7–16. IEEE Computer Society, Los Alamitos (2006)

3. Bouajjani, A., Habermehl, P., Mayr, R.: Automatic verification of recursive procedures with
one integer parameter. Theoretical Computer Science 295, 85–106 (2003)

4. Bouajjani, A., Habermehl, P., Jurski, Y., Sighireanu, M.: Rewriting systems with data. In:
Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 1–22. Springer, Heidelberg
(2007)

5. Brambilla, M., Ceri, S., Comai, S., Fraternali, P., Manolescu, I.: Specification and design of
workflow-driven hypertexts. J. Web Eng. 1(2), 163–182 (2003)

6. Büchi, J.: On a decision method in restricted second order arithmetic. In: Int. Congress on
Logic, Method, and Philosophy of Science, pp. 1–12. Stanford University Press, Stanford
(1962)

7. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. Morgan Kaufmann Publishers Inc., San Francisco (2002)

8. Demri, S., Lazic, R., Nowak, D.: On the freeze quantifier in constraint ltl: Decidability and
complexity. Information and Computation 7, 2–24 (2007)

9. Kaminski, M., Zeitlin, D.: Extending finite-memory automata with non-deterministic reas-
signment. In: Csuhaj-Varjú, E., Ézik, Z. (eds.) AFL, pp. 195–207 (2008)

10. Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Science 134(2),
329–363 (1994)

11. Markey, N., Schnoebelen, P.: Model checking a path. In: Amadio, R.M., Lugiez, D. (eds.)
CONCUR 2003. LNCS, vol. 2761, pp. 251–265. Springer, Heidelberg (2003)

12. Neven, F., Schwentick, T., Vianu, V.: Towards regular languages over infinite alphabets. In:
Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 560–572. Springer,
Heidelberg (2001)

13. Shemesh, Y., Francez, N.: Finite-state unification automata and relational languages. Infor-
mation and Computation 114, 192–213 (1994)

14. Tan, T.: Pebble Automata for Data Languages: Separation, Decidability, and Undecidability.
PhD thesis, Technion - Computer Science Department (2009)

15. Vianu, V.: Automatic verification of database-driven systems: a new frontier. In: ICDT 2009,
pp. 1–13. ACM, New York (2009)

Some Minimality Results on Biresidual and
Biseparable Automata

Hellis Tamm

Institute of Cybernetics, Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia

hellis@cs.ioc.ee

Abstract. Residual finite state automata (RFSA) are a subclass of non-
deterministic finite automata (NFA) with the property that every state
of an RFSA defines a residual language of the language accepted by
the RFSA. Recently, a notion of a biresidual automaton (biRFSA) – an
RFSA such that its reversal automaton is also an RFSA – was intro-
duced by Latteux, Roos, and Terlutte, who also showed that a subclass
of biRFSAs called biseparable automata consists of unique state-minimal
NFAs for their languages. In this paper, we present some new minimality
results concerning biRFSAs and biseparable automata. We consider two
lower bound methods for the number of states of NFAs – the fooling set
and the extended fooling set technique – and present two results related
to these methods. First, we show that the lower bound provided by the
fooling set technique is tight for and only for biseparable automata. And
second, we prove that the lower bound provided by the extended fool-
ing set technique is tight for any language accepted by a biRFSA. Also,
as a third result of this paper, we show that any reversible canonical
biRFSA is a transition-minimal ε-NFA. To prove this result, the theory
of transition-minimal ε-NFAs by S. John is extended.

1 Introduction

In automata theory, it is well known that while there is a unique minimal de-
terministic finite automaton (DFA) for every regular language, in many cases
there exists more than one minimal nondeterministic automaton (NFA) accept-
ing a given language. A subclass of NFAs, called residual finite state automata
(RFSA) which has a property that is similar to the uniqueness of the minimal
DFA, was introduced in [2]. An RFSA is an automaton in which every state
defines a residual language of the language accepted by the automaton. There
is a unique RFSA called the canonical RFSA for a given language that is a
state-minimal RFSA.

Recently, a notion of a biresidual automaton (biRFSA) – an RFSA such that
its reversal automaton is also an RFSA – was introduced by Latteux, Roos, and
Terlutte in [8,9]. They studied minimality issues of biRFSAs, and among other
things, they showed that a subclass of biRFSAs called biseparable automata
consists of unique state-minimal NFAs for their languages. Since bideterministic

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 573–584, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

574 H. Tamm

automata are a strict subclass of biseparable automata then this result was a
generalization of the uniqueness result of state minimality of bideterministic
automata presented in [11]. Also, learnability of biRFSA languages has been
studied in [7].

In this paper, we present some new minimality results concerning biRFSAs
and biseparable automata. In the first part of the paper we consider two lower
bound methods for the number of states of NFAs – the fooling set and the
extended fooling set technique – and present two results related to these methods.
It must be noted that the lower bounds obtained by using these methods are
not always tight. Therefore, it is of interest to find classes of automata for which
the lower bounds are tight.

Our first result is related to a much-cited work of Glaister and Shallit [3]
presenting the fooling set technique. This method has been used recently, for ex-
ample, in [5] to obtain nondeterministic state complexity results for prefix-free
regular languages. In the current paper, we show that the lower bound provided
by the fooling set technique is tight for and only for biseparable automata. Since
any biseparable automaton is a unique state-minimal NFA for its language, it is
implied that if the lower bound obtained this way is tight then the language has
a unique minimal NFA. Second, we consider the extended fooling set technique
introduced by Birget [1]. This technique is a little bit more general, and some-
times one may obtain better lower bounds by using this technique. We show
that the lower bound provided by the extended fooling set technique is tight for
any language accepted by a biRFSA. Both lower bound techniques have been
investigated recently in [4].

Our third result concerns transition minimality of reversible biRFSAs. Al-
though biRFSAs in general do not have the property of transition minimality, we
will show that any reversible canonical biRFSA is transition-minimal in the class
of ε-NFAs. From this result, transition minimality among NFAs easily follows.
To prove our result, the theory for finding transition-minimal ε-NFAs provided
by John [6] will be extended.

In [10], a proof of transition minimality of bideterministic automata among
ε-NFAs which used the theory of transition-minimal ε-NFAs by John [6] was
presented. However, there appears to be a flaw in the proof presented in [10].
Since bideterministic automata are a strict subclass of reversible canonical bi-
RFSAs, the transition minimality result presented in this paper will confirm and
improve that result of [10].

The paper is organized as follows. The basic definitions of automata will be
given in Section 2. In Section 3, we will present the notions and some properties
of RFSAs, biRFSAs and biseparable automata. In Section 4, we will recall the
lower bound techniques for the number of states of NFAs proposed in [3] and [1]
and present our results on biseparable automata and biRFSA languages related
to these methods. In Section 5, we will present and extend the ideas of the theory
of transition-minimal ε-NFAs of [6], and in Section 6 we apply that extended
theory to show that reversible canonical biRFSAs are transition-minimal among
ε-NFAs, and thus also among NFAs.

Some Minimality Results on Biresidual and Biseparable Automata 575

2 Definitions

A nondeterministic finite automaton with ε-transitions (ε-NFA) A is presented
by A = (Q,Σ,E, I, F) where Q is a finite set of states, Σ is an input alphabet,
E ⊆ Q×(Σ∪{ε})×Q is a set of transitions with ε being the empty string, I ⊆ Q
is a set of initial states and F ⊆ Q is a set of final states. Let p ∈ Q, a ∈ Σ, and
c ∈ Σ∪{ε}. Let p · ε denote the ε-closure of p, that is, a subset of Q consisting of
p and all such states which can be reached from p by a path consisting of only
ε-transitions. Let p · a denote the set {q ∈ Q | there are p′, q′ ∈ Q such that
p′ ∈ p · ε, (p′, a, q′) ∈ E and q ∈ q′ · ε}. We extend this definition in the following
way: for all P ⊆ Q and x ∈ Σ∗, P · c =

⋃
p∈P p · c, P · ax = (P · a) · x.

A nondeterministic finite automaton (NFA) is an ε-NFA which has no ε-
transitions. An NFA is called a deterministic finite automaton (DFA) if it has
a single initial state and if for any state q ∈ Q and any a ∈ Σ there is at most
one out-transition of q with the label a. An NFA such that for any state q ∈ Q
and any label a ∈ Σ there is at most one in-transition and one out-transition
involving the state q and label a is called reversible.

The reversal of an automaton A is the automaton AR = (Q,Σ,ER, F, I)
where for each p, q ∈ Q and c ∈ Σ∪{ε}, (p, c, q) ∈ ER if and only if (q, c, p) ∈ E.
An automaton A is called bideterministic if both A and its reversal automaton
AR are deterministic.

A word x ∈ Σ∗ is accepted by A if and only if I · x ∩ F �= ∅. The set of all
words accepted by A is the language of A denoted by L(A). Two automata are
equivalent if they accept the same language. Let q ∈ Q. The set LL(A, q) = {x ∈
Σ∗ | q ∈ I ·x} is the left language of q and the set LR(A, q) = {x ∈ Σ∗ | q ·x∩F �=
∅} is the right language of q.

Let L ⊆ Σ∗ be a language. A language L′ ⊆ Σ∗ is a residual of L if there
is a word u ∈ Σ∗ such that L′ = {v ∈ Σ∗ | uv ∈ L}, denoted by L′ = u−1L.
Sometimes, a residual is also called a right residual. 1 A language L′ ⊆ Σ∗ is a
left residual of L if there is a word v ∈ Σ∗ such that L′ = {u ∈ Σ∗ | uv ∈ L},
denoted by L′ = Lv−1.

A state q of A is useful if it is on some path from an initial state to a final
state of A. Any such path is called an accepting path of A. An automaton is trim
if all of its states are useful.

3 RFSA, BiRFSA and Biseparable Automata

It is known that given any trim DFA A, for any state q of A, the right language
of q, LR(A, q), is a residual of L(A). However, this property does not hold for
NFAs in general. Therefore, the notion of a residual finite state automaton was
introduced in [2]:

Definition 1. An automaton A = (Q,Σ,E, I, F) is a residual finite state au-
tomaton (RFSA) if for every state q ∈ Q, LR(A, q) is a residual of L(A).

1 Or, sometimes the terms quotient and left quotient are used instead.

576 H. Tamm

Definition 2. A residual of a language L is prime if it is non-empty and if it
cannot be obtained as a union of other residuals of L.

Definition 3. The canonical RFSA A of a regular language L is the automaton
A = (Q,Σ,E, I, F) where Q is the set of prime residuals of L, Σ is an input
alphabet, I is the set of prime residuals of L which are included in L, F is the set
of prime residuals of L containing the empty word, and for every prime residual
S of L and for all a ∈ Σ, S · a = {S′ | aS′ ⊆ S, S′ is a prime residual of L}.
Proposition 1. ([2]). For every state q of the canonical RFSA A of a regular
language L there exists a word uq ∈ LL(A, q) such that LR(A, q) = u−1

q L.

Proposition 2. ([2, Theorem 2]). The canonical RFSA of a regular language L
is the unique RFSA that has a maximum number of transitions among the set
of RFSA which have a minimum number of states.

In [8,9], Latteux, Roos, and Terlutte introduced the notion of a biRFSA and
discussed its properties. In the following we will present some of the results they
obtained.

Definition 4. An automaton A is a biRFSA if both A and its reversal automa-
ton AR are RFSA. A language is a biRFSA language if there exists a biRFSA
accepting that language.

Proposition 3. ([9, Proposition 3.1]). A recognizable language is a biRFSA lan-
guage if and only if its canonical RFSA is a biRFSA.

In general, the canonical RFSA is not necessarily a minimal NFA. However, the
following proposition holds:

Proposition 4. ([9, Proposition 4.1]). The canonical RFSA of a biRFSA lan-
guage L is a state-minimal NFA for L.

Definition 5. A trim NFA A = (Q,Σ,E, I, F) is called separable if for every
state q ∈ Q there is some u ∈ Σ∗ such that I · u = {q}. A is biseparable if both
A and AR are separable.

Clearly, any separable automaton is an RFSA, but the converse is not true.

Proposition 5. ([9, Proposition 5.1]). Any biseparable NFA is a canonical bi-
RFSA.

Proposition 6. ([9, Proposition 5.4]). Any biseparable NFA is uniquely state-
minimal.

A result similar to Proposition 6 was presented in [11] for bideterministic au-
tomata. It is easy to see that any bideterministic automaton is biseparable by
observing that any DFA satisfies the separability condition. Since biseparable
automata include bideterministic automata as a proper subclass, the statement
in Proposition 6 was a generalization of the result in [11]. However, it must be
noted that there exist unique minimal NFAs which are not biseparable either.

Some Minimality Results on Biresidual and Biseparable Automata 577

4 Lower Bound Techniques for the Size of NFAs

In this section we consider two simple lower bound methods for the number of
states of NFAs: the fooling set technique by Glaister and Shallit [3], and the
extended fooling set technique introduced by Birget [1]. These methods can be
presented, respectively, as the first and the second case of the following theorem:

Theorem 1. Let L ⊆ Σ∗ be a regular language, and suppose there exists a set
of pairs P = {(xi, wi) | 1 ≤ i ≤ n} such that either

1) (a) xiwi ∈ L for 1 ≤ i ≤ n, (b) xjwi /∈ L for 1 ≤ i, j ≤ n, and i �= j,
or

2) (a) xiwi ∈ L for 1 ≤ i ≤ n, (b) xjwi /∈ L or xiwj /∈ L for 1 ≤ i, j ≤ n,
and i �= j,

holds. Then any NFA accepting L has at least n states.

The set P satisfying the conditions (a) and (b) in case 1 of Theorem 1 is called
a fooling set of L, in case 2 it is called an extended fooling set of L. One can
easily see that, actually, the fooling set technique is a special case of the extended
fooling set technique. In fact, the latter one can provide better lower bounds for
some languages.

However, neither of these techniques provides necessarily a tight bound. As
an example of a language for which the lower bound obtained by applying the
fooling set technique is tight, [3] gives the languageAk = {w ∈ (0+1)k | w = wR}
consisting of binary palindromes of length k. It is easy to see that this language
is accepted by a bideterministic automaton.

In the following, we will show that the lower bound provided by the fooling set
technique can be tight if and only if L is accepted by a biseparable automaton.
Obviously, to get the tight lower bound, the fooling set P has to be of maximum
size. Then the size of P is equal to the size of a state-minimal NFA.

Theorem 2. Let L ⊆ Σ∗ be a regular language, and let n be the maximum
integer such that there exists a set of pairs P = {(xi, wi) | 1 ≤ i ≤ n} with

(a) xiwi ∈ L for 1 ≤ i ≤ n;
(b) xjwi /∈ L for 1 ≤ i, j ≤ n, and i �= j.

Then any NFA accepting L has n states if and only if it is biseparable.

Proof. Let the assumptions of the theorem about L and P hold, and let A be an
automaton that accepts L. It is clear that for every pair (xi, wi) ∈ P , i = 1, ..., n,
there exists at least one state p of A such that xi ∈ LL(A, p) and wi ∈ LR(A, p).
On the other hand, it is not difficult to see that for every state q of A there
is at most one pair (xi, wi) ∈ P , i ∈ {1, ..., n}, such that xi ∈ LL(A, q) and
wi ∈ LR(A, q). Indeed, if there were two pairs (xj , wj) ∈ P and (xk, wk) ∈ P ,
j, k ∈ {1, ..., n}, j �= k, such that xj , xk ∈ LL(A, q) and wj , wk ∈ LR(A, q) then
xjwk ∈ L which is in contradiction with the condition (b).

To prove the necessity part of the theorem, let us suppose that A has n
states. Since there are n pairs in P , we can see by the reasoning above that
there exists a one-to-one correspondence between the state set of A and the

578 H. Tamm

set P such that for every state qi of A there is exactly one pair (xi, wi) ∈ P ,
i ∈ {1, ..., n}, with xi ∈ LL(A, qi) and wi ∈ LR(A, qi). Given any two states qk

and ql of A, qk �= ql, we know that xk ∈ LL(A, qk) but xk /∈ LL(A, ql) since if
xk ∈ LL(A, ql) then xkwl ∈ L which is in contradiction with (b). Thus, for every
state qi there exists a word xi ∈ LL(A, qi) such that there is no state qj �= qi

with xi ∈ LL(A, qj). This is equivalent to saying that A is separable. Also, we
know that wk ∈ LR(A, qk) but wk /∈ LR(A, ql) since if wk ∈ LR(A, ql) then
xlwk ∈ L which is in contradiction with (b). Thus, for every state qi there exists
a word wi ∈ LR(A, qi) such that there is no state qj �= qi with wi ∈ LR(A, qj).
This is equivalent to saying that AR is separable. We can conclude that A is
biseparable.

To prove the sufficiency direction, let us assume that A is biseparable. Then
for each state q of A there exists xq such that xq ∈ LL(A, q) but there is no state
q′ �= q such that xq ∈ LL(A, q′). Also, for each state q of A there exists wq such
that wq ∈ LR(A, q) but there is no state q′ �= q such that wq ∈ LR(A, q′). We
claim that we can form the set P by taking its elements to be all pairs (xq, wq),
q ∈ Q, and that |P | = |Q|. Indeed, it is clear that for every q, q′ ∈ Q, xqwq ∈ L
and xq′wq /∈ L, so the conditions (a) and (b) hold. Since for every q, q′ ∈ Q,
xq �= xq′ and wq �= wq′ , then |P | = |Q|. ��
Since any biseparable automaton is a unique minimal NFA for its language, we
can state the following corollary:

Corollary 1. Any NFA with n states accepting a language that has a fooling
set of size n is a unique minimal NFA for that language.

Next, we will show that the extended fooling set technique provides a tight lower
bound for all biRFSA languages. However, it can be noted here that there are
languages other than those accepted by a biRFSA for which the lower bound
obtained by this technique is still tight.

Theorem 3. Let L ⊆ Σ∗ be a biRFSA language, and let n be the maximum
integer such that there exists a set of pairs P = {(xi, wi) | 1 ≤ i ≤ n} with

(a) xiwi ∈ L for 1 ≤ i ≤ n;
(b) xjwi /∈ L or xiwj /∈ L for 1 ≤ i, j ≤ n, and i �= j.

Then a state-minimal NFA accepting L has n states.

Proof. Let A = (Q,Σ,E, I, F) be a state-minimal biRFSA accepting L. Then,
for every state q of A, LR(A, q) is a right residual of L, and LL(A, q) is a left
residual of L. That is, for every q ∈ Q there exist two words xq and wq such that
LR(A, q) = {v ∈ Σ∗ | xqv ∈ L} and LL(A, q) = {u ∈ Σ∗ | uwq ∈ L}.

Next, we will show that if P is taken to be the set of all pairs (xq, wq),
q ∈ Q, then the conditions (a) and (b) hold, and also |P | = |Q|. Indeed, it is
clear that for every q ∈ Q, xqwq ∈ L. Now, suppose that for some q, q′ ∈ Q
such that q �= q′, both xqwq′ ∈ L and xq′wq ∈ L hold. From xqwq′ ∈ L we
get that xq ∈ LL(A, q′), and since LR(A, q) = {v ∈ Σ∗ | xqv ∈ L}, we get that
LR(A, q′) ⊆ LR(A, q). Similarly, from xq′wq ∈ L we obtain LR(A, q) ⊆ LR(A, q′).

Some Minimality Results on Biresidual and Biseparable Automata 579

But then, LR(A, q) = LR(A, q′) which is not possible since A is a minimal NFA.
Thus, it must be that either xqwq′ /∈ L or xq′wq /∈ L is true. Also, it is easy
to see that |P | = |Q| since otherwise there would be a pair of states q, q′ ∈ Q,
q �= q′, such that xq = xq′ and wq = wq′ , implying again that A is not a minimal
NFA. ��

5 Transition-Minimal ε-NFAs

John [6] has developed a theory to reduce the number of transitions of ε-NFAs.
In this chapter, we present the main ideas from this theory and we extend this
theory to prove our result in Section 6.

Let us consider an ε-NFA A = (Q,Σ,E, I, F) where the transition relation E
is partitioned into subrelations EΣ and Eε such that EΣ = {(p, a, q) | (p, a, q) ∈
E, a ∈ Σ} and Eε = {(p, ε, q) | (p, ε, q) ∈ E}. Let t0 /∈ E be a new special
transition and let E0 = EΣ∪{t0}. Let the source and target states of a transition
t be denoted as source(t) and target(t). The follow-relation −→ is defined on
E0 × E0 as follows:

Definition 6. For s, t ∈ EΣ:

s −→ t :⇔ target(s) E∗
ε source(t)

t0 −→ t :⇔ there is an initial state q ∈ I with q E∗
ε source(t)

s −→ t0 :⇔ there is a final state q ∈ F with target(s) E∗
ε q

A path η = η1 · · · ηm is a sequence of m ≥ 0 transitions with η1, ηm ∈ E0 and
ηi ∈ EΣ , for i = 2, ...,m − 1, connected by the follow-relation. The transitions
ηi ∈ EΣ where i ∈ {1, ..,m} are labeled by l(ηi) ∈ Σ. Let l(t0) = l(ε) = ε. Then,
the string yielded by the path η is defined to be l(η) = l(η1) · · · l(ηm).

Definition 7. Let A be an ε-NFA. Then L(A) = {w ∈ Σ∗ | there is a path η =
η1 · · · ηm with l(η) = w and η1 = ηm = t0}. The automaton A is unambiguous
if and only if for each w ∈ L(A) there is exactly one path η = η1 · · · ηm with
l(η) = w and η1 = ηm = t0.2

Definition 8. Let t ∈ EΣ with l(t) = a. The future of t is the set ϕ(t) =
{w ∈ Σ∗ | there is a path η = η1 · · · ηm with l(η) = w, η1 = t, and ηm = t0}.
The past of t is the set π(t) = {w ∈ Σ∗ | there is a path η = η1 · · · ηm with
l(η) = w, η1 = t0, and ηm = t}. Also, the strict future of t is the set ϕ̂(t) = {w ∈
Σ∗ | aw ∈ ϕ(t)} and the strict past of t is the set π̂(t) = {w ∈ Σ∗ | wa ∈ π(t)}.

Lemma 1. (John [6, Lemma 1]). Let v, w ∈ Σ∗ and a ∈ Σ. Then vaw ∈ L(A)
if and only if there exists a transition t such that va ∈ π(t) and aw ∈ ϕ(t).

2 John uses here a definition of unambiguity that allows multiple paths for passing
through ε-transitions.

580 H. Tamm

Definition 9. Let L ⊆ Σ∗ be a regular language and let U, V ⊆ Σ∗, a ∈ Σ.
We call (U, a, V) a slice of L if and only if U �= ∅ and V �= ∅ and UaV ⊆ L.
A slicing of L is a set of slices of L. Let S be the set of all slices of L. We
define a partial order on S by considering (U1, a, V1) ≤ (U2, a, V2) if and only if
U1 ⊆ U2 and V1 ⊆ V2. We define Smax ⊆ S, the set of maximal slices of L, by
Smax := {(U, a, V) ∈ S | there is no (U ′, a, V ′) ∈ S with (U, a, V) < (U ′, a, V ′)}.
Definition 10. Let t ∈ EΣ. We define the transition slice of t to be the slice
(Ut, l(t), Vt) of L(A) where Ut = π̂(t) and Vt = ϕ̂(t).

Definition 11. Assume t0 /∈ S and S0 := S ∪ {t0}. The follow-relation −→⊆
S0 × S0 is defined for all slices (U1, a, V1) and (U2, b, V2) ∈ S:

(U1, a, V1) −→ (U2, b, V2) :⇔ U1a ⊆ U2 and bV2 ⊆ V1
t0 −→ (U2, b, V2) :⇔ ε ∈ U2

(U1, a, V1) −→ t0 :⇔ ε ∈ V1
t0 −→ t0 :⇔ ε ∈ L

Let S′ ⊆ S be a finite slicing of L. In order to read an automaton AS′ out of S′,
each slice from S′ is transformed into a transition of AS′ , and these transitions
are connected via states and ε-transitions according to the follow-relation. John
[6] shows that if the ε-NFA ASmax induced by the slicing Smax is unambiguous
then this automaton has the minimum number of non-ε-transitions.

Lemma 2. (John [6]). L(ASmax) = L.

Theorem 4. (John [6, Theorem 2]). The three following statements are equiv-
alent for languages L ⊆ Σ∗ if the slicing Smax of L induces an unambiguous
ε-NFA ASmax :

– L is accepted by an ε-NFA (Q,Σ,E, I, F)
– L = L(AS′) for some finite slicing S′ ⊆ S
– Smax is finite

Furthermore, |Smax| ≤ |S′| ≤ |EΣ |.
Corollary 2. (John [6, Corollary 3]). An unambiguous ε-NFA ASmax has the
minimum number of non-ε-transitions.

Next, we will present an extension of the above theory of transition-minimal
ε-NFAs that we will use to prove our result in Section 6. We will consider the
case where a subset of maximal slicing consists of slices which have a property
that we call distinctiveness. We will prove that if an ε-NFA induced by this kind
of subset of maximal slices accepts L then this automaton has the minimum
number of non-ε-transitions. Also, we will show that if an ε-NFA induced by the
maximal slicing is unambiguous then all maximal slices are distinctive.

Definition 12. Let x = (Ux, a, Vx) be a slice of a language L where Ux, Vx ⊆ Σ∗

and a ∈ Σ. We say that x is distinctive if there exist strings ux ∈ Ux and
vx ∈ Vx such that for any maximal slice y = (Uy, a, Vy) where y ∈ Smax and
y �= x, ux /∈ Uy or vx /∈ Vy holds.

Some Minimality Results on Biresidual and Biseparable Automata 581

Proposition 7. Any distinctive slice is maximal.

Proof. Let x = (Ux, a, Vx) be a distinctive slice of a language L. If we sup-
pose that x is not maximal then there has to be some maximal slice y =
(Uy, a, Vy), y �= x such that Ux ⊆ Uy and Vx ⊆ Vy . Thus, for all ux ∈ Ux

and vx ∈ Vx, both ux ∈ Uy and vx ∈ Vy hold, implying that x is not distinctive.
Thus, x must be maximal. ��
Proposition 8. Let S′

max ⊆ Smax be a set of distinctive slices and let the ε-
NFA induced by the slicing S′

max be denoted by AS′
max

. If L(AS′
max

) = L then
AS′

max
has the minimum number of non-ε-transitions.

Proof. Let the assumptions of the proposition hold. Let A be an ε-NFA accepting
L. We claim that for every x = (Ux, a, Vx) where x ∈ S′

max, there exists a
transition t of A with its transition slice xt = (Ut, l(t), Vt) such that l(t) = a
and xt ≤ x but for any y = (Uy, a, Vy) where y ∈ Smax and y �= x, xt ≤ y
does not hold. Indeed, if x ∈ S′

max then, since x is distinctive there exist some
strings ux ∈ Ux and vx ∈ Vx such that for any y ∈ Smax where y �= x, ux /∈ Uy or
vx /∈ Vy holds. Since uxavx ∈ L then by Lemma 1 there is a transition t such that
ux ∈ Ut and vx ∈ Vt. Since every slice is an element of a linearly ordered set of
slices, then for xt there must exist at least one maximal slice z ∈ Smax such that
xt ≤ z. Now, if xt ≤ y for any y ∈ Smax, y �= x then it is implied that ux ∈ Uy

and vx ∈ Vy which cannot be true. So, x can and must be the only maximal slice
such that xt ≤ x. Thus, our claim as stated above holds. This implies that the
number of slices in S′

max cannot exceed the number of non-ε-transitions of A.
That is, the number of non-ε-transitions of AS′

max
is less or equal to the number

of non-ε-transitions of A. Thus, if L(AS′
max

) = L then AS′
max

has the minimum
number of non-ε-transitions among all ε-NFAs accepting L. ��
Proposition 9. If ASmax is unambiguous then all maximal slices are distinctive.

Proof. Let us suppose that there is a maximal slice x = (Ux, a, Vx) that is
not distinctive. Then for all ux ∈ Ux and vx ∈ Vx there is a maximal slice
y = (Uy, a, Vy), x �= y, with ux ∈ Uy and vx ∈ Vy. This implies that for each
word uxavx where ux ∈ Ux and vx ∈ Vx there are at least two accepting paths
in ASmax going through the transitions corresponding to x and y, respectively.
Thus, ASmax is ambiguous. We conclude that if ASmax is unambiguous then every
maximal slice must be distinctive. ��
Remark 1. The statement in Corollary 2 can also be obtained by applying Propo-
sitions 9 and 8, and Lemma 2.

The following example presents a case of a language where not all maximal
slices are distinctive, however, there exists a set of distinctive slices such that
Proposition 8 can be applied.

Example 1. Let us consider the language L = a∗bc∗ + d∗bf∗. A minimal NFA A
accepting this language is presented in Figure 1. The set of maximal slices of L is

582 H. Tamm

b
a c

b
d f

Fig. 1. Minimal NFA A of the language a∗bc∗ + d∗bf∗

given by Smax = {(a∗, a, a∗bc∗), (a∗, b, c∗), (a∗bc∗, c, c∗), (d∗, d, d∗bf∗), (d∗, b, f∗),
(d∗bf∗, f, f∗), (ε, b, c∗ ∪ f∗), (a∗ ∪ d∗, b, ε)}. In this set, the first six slices are
distinctive but the last two are not. By Proposition 9, we know that ASmax is
ambiguous. However, there is a set of distinctive slices S′

max = {(a∗, a, a∗bc∗),
(a∗, b, c∗), (a∗bc∗, c, c∗), (d∗, d, d∗bf∗), (d∗, b, f∗), (d∗bf∗, f, f∗)} consisting of all
transition slices of A. By Lemma 3 in Section 6, L(AS′

max
) = L. In fact, A is

a reversible canonical biRFSA (more precisely, it is biseparable) that will be
shown to be transition-minimal among all ε-NFAs accepting L in Section 6.

6 Transition Minimality of Reversible BiRFSAs

Although a canonical biRFSA is a minimal NFA with respect to the number of
states, it is not necessarily minimal with respect to the number of transitions.
In fact, by Proposition 2, it has a maximum number of transitions among the
set of RFSAs which have a minimum number of states.

In this section, we will consider the case where the canonical biRFSA is re-
versible. We will show that every reversible canonical biRFSA is a transition-
minimal ε-NFA and thus also a transition-minimal NFA. It is implied that a
reversible biseparable automaton is transition-minimal as well. But first we will
prove the following lemma:

Lemma 3. Let A be an ε-NFA and let SA be the set of all transition slices of
A. Let ASA be the ε-NFA induced by the slicing SA. Then L(ASA) = L(A).

Proof. Let the assumptions of the lemma hold. First, we will show that any
word accepted by A is also accepted by ASA . Let w = w1...wn, n ≥ 1, w ∈
L(A). Then there is a sequence of transitions t1, ..., tn of A with l(ti) = wi, i =
1, ..., n, that forms a path in A accepting w. Let x1, ..., xn be the corresponding
transition slices with xi = (Uxi , l(ti), Vxi) where Uxi = LL(A, source(ti)) and
Vxi = LR(A, target(ti)). Let us define the follow-relation −→ for these slices
according to Definition 11. Clearly, ε ∈ Ux1 , and therefore t0 −→ x1. Also, for
i ∈ {1, ..., n− 1}, Uxi l(ti) ⊆ Uxi+1 and l(ti+1)Vxi+1 ⊆ Vxi , therefore xi −→ xi+1.
Finally, since ε ∈ Vxn then xn −→ t0. Since ASA was formed by transforming
every transition slice of A into a transition of ASA , and these transitions were
connected via states and ε-transitions according to the follow-relation, then there
is an accepting path t0x1...xnt0 in ASA reading the word w1...wn. Thus w ∈

Some Minimality Results on Biresidual and Biseparable Automata 583

L(ASA). In case ε ∈ L(A) then the follow-relation also includes t0 −→ t0, and
thus ε ∈ L(ASA).

Similarly, it can be shown that any word accepted by ASA is also accepted
by A. ��
Proposition 10. Every transition slice of a reversible canonical biRFSA is
distinctive.

Proof. Let A be a reversible canonical biRFSA of a language L and let t be
a transition of A with its transition slice (Ut, a, Vt). Let p = source(t) and
q = target(t). Since A is a canonical biRFSA then it is a canonical RFSA, and
by Proposition 1, there is a string ut ∈ LL(A, p) such that LR(A, p) = u−1

t L.
Similarly, there is a string vt ∈ LR(A, q) such that LL(A, q) = Lv−1

t . Then
ut ∈ Ut and vt ∈ Vt. We claim that for any maximal slice (U, a, V) of L where
(U, a, V) �= (Ut, a, Vt), ut �∈ U or vt �∈ V holds. Let us suppose that the claim
is not true, that is, there is a maximal slice (U, a, V) with (U, a, V) �= (Ut, a, Vt)
such that ut ∈ U and vt ∈ V . Since UaV ⊆ L, ut ∈ U and u−1

t L = LR(A, p)
then aV ⊆ LR(A, p). Since A is reversible then t is the only out-transition with
the label a from the state p. Therefore, V ⊆ LR(A, q). Similarly, we will get
U ⊆ LL(A, p). Since LL(A, p) = Ut and LR(A, q) = Vt then we will have U ⊆ Ut

and V ⊆ Vt which imply (U, a, V) ≤ (Ut, a, Vt). Since (U, a, V) is a maximal
slice, it has to be that U = Ut and V = Vt, that is, (U, a, V) = (Ut, a, Vt). We
have obtained a contradiction. Thus, the above claim holds implying that the
slice (Ut, a, Vt) is distinctive. ��
Proposition 11. Let A be a reversible canonical biRFSA and let t1 and t2 be
two transitions of A, t1 �= t2 with the same label l(t1) = l(t2) = a. Let the
corresponding transition slices be (U1, a, V1) and (U2, a, V2). Then U1 �= U2 and
V1 �= V2.

Proof. Let the assumptions of the proposition hold. Let qi = target(ti), i = 1, 2.
Since A is reversible then q1 �= q2. Now, if we suppose that V1 = V2 then
LR(A, q1) = LR(A, q2), that is, for q1 and q2 the same residuals correspond.
However, by Definition 3 this cannot be true for a canonical RFSA, so V1 �= V2
must hold. Similarly, we will get that U1 �= U2. ��
Theorem 5. A reversible canonical biRFSA has the minimum number of tran-
sitions among all ε-NFAs accepting the same language.

Proof. Let A be a reversible canonical biRFSA. By Proposition 10, every tran-
sition slice of A is distinctive and so, by Proposition 7, every transition slice of
A is also maximal. Let us take S′

max to be the set of all transition slices of A:
S′

max := {(Ut, l(t), Vt) | t ∈ E}. By Proposition 11, there are no such pairs of
transitions of A that would have the same transition slice, therefore |S′

max| = |E|.
The set S′

max is used to form the ε-NFA AS′
max

by converting every slice from
S′

max into a transition of AS′
max

and connecting these transitions by ε-transitions
according to the follow-relation of Definition 11. By Lemma 3, L(AS′

max
) = L(A).

By Proposition 8, AS′
max

has the minimum number of non-ε-transitions. Since

584 H. Tamm

the number of non-ε-transitions of AS′
max

is equal to the number of transitions of
A, and there are no ε-transitions in A, we conclude that A is transition-minimal
among all ε-NFAs accepting the given language. ��
Since the class of ε-NFAs is more general than the class of NFAs, the following
corollary can be made:

Corollary 3. A reversible canonical biRFSA is a transition-minimal NFA.

Also, since a biseparable automaton is a canonical biRFSA (Proposition 5) then
the following statement holds:

Corollary 4. A reversible biseparable automaton is a transition-minimal NFA.

As an anonymous referee pointed out, often, reversibility is studied as a property
of languages. A regular language is considered to be reversible if there exists
a reversible NFA accepting that language. It must be noted that there exist
reversible languages whose canonical RFSA is not reversible. Admittedly, being
reversible is a great constraint for a canonical RFSA.

Acknowledgements. This research was supported by the Estonian Center
of Excellence in Computer Science, EXCS, financed by the European Regional
Development Fund, and by the Estonian Science Foundation grant 7520.

References

1. Birget, J.C.: Intersection and union of regular languages and state complexity.
Information Processing Letters 43, 185–190 (1992)

2. Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. In: Ferreira, A.,
Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 144–157. Springer, Heidelberg
(2001)

3. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Information Processing Letters 59, 75–77 (1996)

4. Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity
is hard. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 363–374.
Springer, Heidelberg (2006)

5. Han, Y.S., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic
operations for prefix-free regular languages. Fundam. Inform. 90, 93–106 (2009)

6. John, S.: Minimal unambiguous ε-NFA. In: Domaratzki, M., Okhotin, A., Salomaa,
K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 190–201. Springer, Heidelberg
(2005)

7. Latteux, M., Lemay, A., Roos, Y., Terlutte, A.: Identification of biRFSA languages.
Theoretical Computer Science 356, 212–223 (2006)

8. Latteux, M., Roos, Y., Terlutte, A.: BiRFSA languages and minimal NFAs. Tech-
nical Report GRAPPA-0205, GRAPPA (2005)

9. Latteux, M., Roos, Y., Terlutte, A.: Minimal NFA and biRFSA languages. RAIRO
- Theoretical Informatics and Applications 43(2), 221–237 (2009)

10. Tamm, H.: On transition minimality of bideterministic automata. International
Journal of Foundations of Computer Science 19(3), 677–690 (2008)

11. Tamm, H., Ukkonen, E.: Bideterministic automata and minimal representations of
regular languages. Theoretical Computer Science 328, 135–149 (2004)

Extending Stochastic Context-Free Grammars
for an Application in Bioinformatics

Frank Weinberg and Markus E. Nebel

University of Kaiserslautern, Department of Computer Sciences,
Gottlieb-Daimler-Straße,

D-67663 Kaiserslautern, Germany

Abstract. We extend stochastic context-free grammars such that the
probability of applying a production can depend on the length of the
subword that is generated from the application and show that existing
algorithms for training and determining the most probable parse tree can
easily be adapted to the extended model without losses in performance.
Furthermore we show that the extended model is suited to improve the
quality of predictions of RNA secondary structures.

The extended model may also be applied to other fields where SCFGs
are used like natural language processing. Additionally some interesting
questions in the field of formal languages arise from it.

1 Introduction

Single-stranded RNA molecules consist of a sequence of nucleotides connected
by phosphordiester bonds. Nucleotides only differ by the bases involved, them
being adenine, cytosine, guanine and uracil. The sequence of bases is called
the primary structure of the molecule and is typically denoted as a word over
the alphabet {A,C,G,U}. Additionally pairs of the bases can form hydrogen
bonds1 thus folding the molecule to a complex three-dimensional layout called
the tertiary structure.

As determining the tertiary structure is computationally complex it has
proven convenient to first search for the secondary structure, for which only
a subset of the hydrogen bonds is considered, so that the molecule can be
modeled as a planar graph. Additionally so-called pseudoknots are eliminated,
that is, there is no subsequence “first base of (hydrogen) bond 1 . . . first base
of (hydrogen) bond 2 . . . second base of bond 1 . . . second base of bond 2”
when traversing along the primary structure. See Figure 1 for an example of a
secondary structure.

When abstracting from the primary structure, secondary structures are often
denoted as words over the alphabet Σ = {(, |,)}, where a corresponding pair of
parentheses represents a pair of bases connected by a hydrogen bond, while a
1 Typically adenine pairs with uracil and guanine pairs with cytosine. Other pairs are

less stable and hence less common.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 585–595, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

586 F. Weinberg and M.E. Nebel

Fig. 1. Example of an RNA secondary structure. Letters represent bases, the light gray
band marks the phosphordiester bonds, short edges mark hydrogen bonds.

| stands for an unpaired base. For example when starting transscription at the
marked end the structure from Figure 1 would be denoted by the word

(((((((||(((||||||||||)))|(((((|||||||)))))|||||(((((|||||||)))))))))))).

One common method for computing the secondary structure is to determine
the structure with minimum free energy. This was first done by Nussinov et al.
who, based on the observation that a high number of paired bases corresponds
to a low free energy, used dynamic programming to find the structure with the
highest number of paired bases in cubic time ([10]).

While the energy models used today are much more sophisticated, taking into
account e.g. the types of bases involved in a pair, the types of bases located next
to them, etc., the dynamic programming scheme has remained the same (eg.
[16]).

A different approach is based on probabilistic modeling. An (ambiguous)
stochastic context-free grammar that generates the primary structures is chosen
such that the derivation trees for a given primary structure uniquely correspond
to the possible secondary structures. The probabilities of this grammar are then
trained either from molecules with known secondary structures or by expectation
maximization.

Extending SCFG for an Application in Bioinformatics 587

After this training the probabilities on the derivations as induced by the
trained probabilities will model the likelihood of the corresponding secondary
structures, assuming the training data was representative and the grammar is
actually capable of modeling this distribution. Thus the most probable secondary
structure (derivation tree) is computed as prediction ([7]).

One aspect these models as well as most other models for predicting secondary
structures do not consider is that in vivo the molecules are created sequentially
and the folding takes place during this creation. It has already been shown that
this co-transcriptional folding has an effect on the resulting secondary structures
(eg. [1], [8]).

This observation makes it plausible that the probability of two bases being
paired depends on how far these bases are apart in the primary structure. Fol-
lowing this train of thought we propose an extension to the concept of SCFGs
such that the probabilities of the productions depend on the length of the gener-
ated substructure (subword). We will present this extension formally in Section 2
along with the modifications necessary to allow existing algorithms for training
and prediction to cope with the extended model without significant losses in
performance.

We have compared the prediction quality of the modified model with the con-
ventional one for different grammars and sets of RNA. The results, presented in
detail in Section 3, show that taking the lengths into account is an improvement
in most cases and an especially big improvement for very simple grammars.

2 Formal Definitions

2.1 RNA Molecules

In order to be able to apply context-free grammars we have to model primary
and secondary structures as formal languages. For reasons of convenience we will
in the succession use the structures and their formal language representation
synonimously.

Definition 1. ([14])
A RNA primary structure is a word over the alphabet {a, c, g, u}.
A RNA secondary structure is a word w over the alphabet {(, |,)} satisfying

– |w|(= |w|),
– for each prefix p of w: |p|(≥ |p|) and
– w does not contain the substring ().2

2.2 Stochastic Context-Free Grammars

We assume the reader is familiar with basic terms of context-free grammars. An
introduction can be found in ([6]).
2 This substring would correspond to an extremely sharp bend in the molecule which

is physically impossible.

588 F. Weinberg and M.E. Nebel

Definition 2. ([9])
A stochastic context-free grammar (SCFG) is a 5-tuple G = (I, T,R, S, P), where
I (resp. T) is an alphabet (finite set) of intermediate (resp. terminal) symbols (I
and T are disjoint), S ∈ I is a distinguished intermediate symbol called axiom,
R ⊂ I × (I ∪ T)∗ is a finite set of production rules and P : R → [0, 1] is a
mapping such that each rule f ∈ R is equipped with a probability P (f). In the
sequel we will write A → α instead of (A,α) ∈ R. The probabilities are chosen
in such a way that for all A ∈ I :

∑
f∈R, Q(f)=A P (f) = 1 holds, where Q(f)

denotes the premise of the production f , that is, the first component A of a
production rule (A,α) ∈ R.

Words are generated as for usual context-free grammars, the product of the
probabilities of the used production rules provides the probabilities of a parse tree
Δ, the sum of the probabilities of all possible full-parse trees of a word w provides
the probability of w.

Note 1. The grammar does not necessarily induce a probalitity distribution on
the language as the probabilities of the words do not add up to 1 if the probability
of infinite derivations is nonzero. However, if the probabilities are acquired using
maximum likelihood training – as is done in this paper – they are guaranteed to
give a probability distribution on the language ([2]).

As stated in the introduction we want to include the length of the generated
subword in the rule probabilities in order to model that the probability of bases
being paired depends on how far they are apart in the primary structure. This
can be achieved with only a slight alteration to Definition 2:

Definition 3. A length-dependent stochastic context-free grammar (LSCFG)
is defined as a SCFG with the following exceptions:

– P : R × N → [0, 1] now takes a second argument (length of subword gener-
ated).

– The constraint on the probabilities changes to:
∀A ∈ I ∀n ∈ N :

∑
f∈R, Q(f)=A P (f, n) ∈ {0, 1}.

– When the use of a rule f = (A,α) ∈ R in the generation of a word leads to
the subword v ∈ T ∗, i.e. v = α or v is derived from α later on, the probability
of this application of f is P (f, |v|).

Note 2. Allowing
∑

f∈R, Q(f)=A P (f, n) to be 0 makes dealing with cases easier
where there is no (sub)word of a given length that can be derived from a given
intermediate symbol (e.g. n = 0 in an ε-free grammar).

This definition allows for the productions to be equipped with arbitrary proba-
bility functions as long as for any given pair (premise, length) they represent a
probability distribution or are all 0. In the present paper we will however confine
ourselves with grouping the lengths together in several intervals. This allows for
the probabilities to be stored as a vector and be retrieved in the algorithms with-
out further computation. It is however, as we will see, still powerful enough to
yield a significant improvement over non-length-dependent SCFGs with respect
to the quality of the prediction.

Extending SCFG for an Application in Bioinformatics 589

Note 3. Since for bottom up parsing/training algorithms like CYK or the inside
and outside algorithm (see e.g. [4]) the length of the generated subword is de-
termined by the position in the dynamic programming matrix, these algorithms
will need no change other than adding the length as an additional parameter for
probability lookup3 in order to use them for LSCFGs.

For probabilistic Earley parsing ([13])) we have to regard that the length of
the generated subword will only be known in the completion step. Thus for
LSCFGs we have to multiply in the rule probability in this step instead of the
predictor step, as is usally done.

In both cases the changes do not influence the run-time significantly.

In order to train the grammars we can make use of the fact that we know the
secondary structures for our training data. The derivation corresponding to the
correct secondary structure thus can be used to determine the relative frequency
of each production among all productions with the same source4. As shown
in [11] these relative frequencies are a maximum likelihood estimator for the
probabilities that lead to the generation of the training data.

2.3 Determining the Most Probable Derivation

In order to find the most probable derivation for a given primary structure
we decided to employ a probabilistic Earley parser, since it allows to use the
grammars unmodified while the commonly used CYK algorithm requires the
grammars to be transformed into Chomsky normal form.

A (non-probabilistic) Earley parser operates on lists of items (also called dot-
ted productions), representing partial derivations. We will write (i : jX → α.β)
if itemlist i, 0 ≤ i ≤ |w|, w the parsed word, contains the item jX → α.β with
semantics: There is a (leftmost) derivation S

∗⇒
lm

w1,jXγ, a production X → αβ

and a derivation α
∗⇒ wj+1,i. The item is considered to represent the partial

derivation X ⇒ αβ
∗⇒ wj+1,iβ.

The parser is initialized with (0 : 0S
′ → .S), S′ a new symbol, S the axiom

of the grammar, S′ → .S a new production. Then the transitive closure with
respect to the following operations is computed:

Scanner: If ∃ (i : kX → β1.aβ2) and wi+1 = a,
add (i + 1 : kX → β1a.β2).

Predictor: If ∃ (i : kX → β1.Aβ2) and A→ α ∈ R,
add (i : iA→ .α).

Completer: If ∃ (i : jY → ν.) and (j : kX → β1.Y β2),
add (i : kX → β1Y.β2).

3 Of course the re-estimation step of the inside-outside algorithm has to be done
seperately for each length interval, each time considering the respective parts of the
matrix.

4 In the length-dependent case these relative frequencies have to be determined seper-
ately for each length interval.

590 F. Weinberg and M.E. Nebel

Intuitively the scanner advances the point past terminal symbols if they match
the corresponding symbol of the parsed word, the predictor adds all the produc-
tions that might yield a valid extension of the following (nonterminal) symbol
and the completer advances the point, if one actually did.

We then have w ∈ L(G) ⇔ ∃ (|w| : 0S
′ → S.).

If we want to determine the most probable derivation of a word with respect
to a SCFG (either length-dependent or not) we need to keep track of the prob-
abilities of partial derivations. This can simply be done by adding them to the
items as an additional parameter.

The initialisation then adds (0 : 0S
′ → .S, 1) and the operations change as

follows:

Scanner: If ∃ (i : kX → β1.aβ2, γ) and wi+1 = a,
add (i + 1 : kX → β1a.β2, γ).

Predictor: If ∃ (i : kX → β1.Aβ2, γ) and A→ α ∈ R,
add (i : iA→ .α, 1).

Completer: If ∃ (i : jY → ν., γ1), ∃ (j : kX → β1.Y β2, γ2) and
� ∃ (i : kX → β1Y.β2, γ)
where γ > γ′ := γ1 · γ2 · P (Y → ν, i− j),

add (i : kX → β1Y.β2, γ
′).

The modifications of scanner and predictor are straightforward. Since choos-
ing the most probable sequence of steps for each partial derivation will lead to
the most probable derivation overall, the completer maximises the overall prob-
ability by choosing the most probable alternative, whenever there are multiple
possibilities for generating a subword.

If w ∈ L(G) we will find (|w| : 0S
′ → S., γ), where γ is the probability of the

most probable derivation of w.

Note 4. For a more detailed introduction of probabilistic Earley parsing as well
as a proof of correctness and hints on efficient implementation see ([13]).

Differing from ([13]) we multiply in the rule probabilities P (f, i − j) during
completion instead of prediction for the reasons mentioned in Note 3.

3 Application

In order to see if adding length-dependency actually improves the quality of the
predictions from stochastic context-free grammars we used length-dependent
and traditional versions of four different grammars to predict two sets of RNA
molecules for which the correct secondary structure is already known. Both sets
were split into a training set which was used to train the grammars and a bench-
mark set for which secondary structure were predicted using the trained gram-
mars. We then compared these predicted structures to the structures from the
database, computing two commonly used criteria to measure the quality:

– Sensitivity: The relative frequency of correctly predicted pairs among pairs
that appear in the correct structure.

Extending SCFG for an Application in Bioinformatics 591

– Specificity: The relative frequency of correctly predicted pairs among pairs
that have been predicted.

Both frequencies were computed over the complete set (instead of calculating
individual scores for each molecule and taking the average of these).

3.1 Data

In [3] Dowell and Eddy compared the prediction quality of several different
grammars as well as some commonly used programs that predict RNA secondary
structures by minimizing free energy. We decided to use the same data so our
results are directly comparable to theirs.

Their training set consists of 139 each large and small subunit rRNA’s, the
benchmark dataset contains 225 RNase P’s, 81 SRPs and 97 tmRNA’s. Both sets
are available from http://selab.janelia.org/software/conus/ . Since it contains
different types of RNA we will refer to this set as the mixed set for the remainder
of this article.

Additionally we wanted to see if length-dependent prediction can further im-
prove the prediction quality for tRNA which is already predicted well by con-
ventional SCFGs.

In order to do so we took the tRNA database from [12], filtered out all se-
quences with unidentified bases and split the remaining data into a training set
of 1285 sequences and a benchmark set of 1284 sequences.

3.2 Grammars

We used 4 different grammars for our experiments:

G1: S → bS | aSâS | ε

G2: S → LS | L
L→ aF â | b
F → aF â | LS

G3: S → SP | Sb | b | P
P → aP â | aRâ
R→ Tb | TP
T → Tb | TP | b | P

G4: S → SAC | C
C → Cb | ε
A→ aLâ
L→ aLâ | M | I | bH | aLâBb | bBaLâ
B → Bb | ε
H → Hb | ε
I → bJaLâKb
J → Jb | ε
K → Kb | ε
M → UaLâUaLâN
N → UaLâN | U
U → Ub | ε

Since the words generated by the grammars are the primary structures and
the derivation trees correspond to the possible secondary structures, terminal
symbols are generated in two ways. Either as a single unpaired base, denoted in
the grammars by b or as a pair of bases, denoted by a and â.

592 F. Weinberg and M.E. Nebel

In order to keep the grammar sizes at bay and to remain consistent with [3]
we seperated transition and emission probabilities by leaving b in the grammar
as a nonterminal and replacing all occurences of aLâ in G4 with P , adding rules
that generate all (combinations of) terminal symbols from these nonterminals.

G1 and G2 have been taken from [3], G1 being the simplest grammar in the
comparison and G2, which originates from [7], being the grammar which achieved
the best results. G4 has been taken from [9]. It models the decomposition that
is used for minimum free energy prediction.

As we stated in Section 2 we implemented length-dependency such that we
grouped the lengths into intervals, the rule probabilities changing only from one
interval to the other but not within them.

Since the influence a change in length has on the probabilities most likely
depends on the relative change rather than the absolute one, we decided to
make the intervals longer as the subwords considered get longer. This also helps
to keep the estimated probabilities accurate since naturally any training set will
contain fewer datapoints per length as the length gets longer.

After doing a few quick tests which indicated that the above assumptions
are reasonable we decided on the intervals [0; 5], [6; 10], [11; 20], [21; 30], [31; 40],
[41; 50], [51; 60], [61; 100], [101; 150], [151; 200], [201; 250], [251; 300], [301; 350],
[351; 400], [401; 500] and [501;∞]5, which we used for the length-dependent ver-
sion of all four grammars.

3.3 Observations and Dicussion

We did the training and prediction using the length-dependent Earley-parser
from [5]. The results of the benchmarks are listed in Table 1.

Table 1. Grammar performance, given as sensitivity % (specificity %) rounded to full
percent

Mixed Set tRNA Set
Grammar without with without with

lengths lengths

G1 3 (4) 17 (13) 7 (8) 46 (49)
G2 47 (45) 45 (40) 81 (81) 84 (88)
G3 41 (49) 46 (41) 79 (82) 93 (93)
G4 39 (47) 44 (54) 80 (84) 88 (91)

With the exception of G2 and partially G3 on the mixed dataset the length
dependent grammars yielded better predictions than their conventional
counterparts.

5 Since all structures in the benchmark sets are shorter than 500 bases the probabilities
of the last interval did not influence the predictions.

Extending SCFG for an Application in Bioinformatics 593

The improvement for the simple grammar G1 is especially noticeable, reaching
a factor of 6 for the tRNA set. However the values still rank significantly below
those of the other grammars.

For G2, G3 and G4 with the mixed set we observe that with one exception
none of the values exceeds 50%. As the same was also observed in [3] when the
authors tried to enhance prediction quality by modelling stacking correlations
with their grammars, it seems possible that this is a natural limit for the pre-
diction quality that can be achieved on this set of data with the approach of
determining the most likely parse in a SCFG.

This assumption is further supported by the fact that on the tRNA set the
prediction quality could significantly be improved by taking lengths into account.
Note that except for G2 sensitivity the number of missing resp. mispredicted
pairs was reduced by at least 1/3.

The quality of the predictions of G3 with lengths on tRNA is illustrated not
only by the 93% sensiivity and specificity but also by the fact that it predicted
712 (55%) of the molecules completely correct which is twice as many as the
200–400 correct structures the other grammars achieved (except for G1 which
got no structure completely correct).

3.4 Runtime

The considerations in Note 3 lead to the assumption that both versions should
take about the same time on a given grammar. This was mostly confirmed during
our experiments, however the length-dependent version consistently was a few
percent slower.

Concerning the different grammars predictions using G1 were faster than those
for G2 by a factor of ∼ 1.5. Between G2 and G3 the factor was ∼ 2 and between
G3 and G4 it was ∼ 6.5.

4 Conclusion

We introduced an extension to the concept of stochastic context-free grammars
that allows the probabilities of the productions to depend on the length of the
generated subword.

Furthermore we showed that existing algorithms that work on stochastic
context-free grammars like training algorithms or determining the most likely
parse can easily be adapted to the new concept without significantly affecting
their run-time or memory consumption.

Using the length-dependent SCFGs to predict the secondary structure of RNA
molecules we found them to outperform their classical counterparts in most of
the cases.

However our test of 2 versions each of 4 different grammars on 2 different sets
of data did not yield a clear recommendation, which grammar to use. While G1
can be ruled out for its low prediction quality and G4 is much slower than G2 or
G3 without significantly improving the quality of the predictions, the remaining
2 grammars rank close in both categories.

594 F. Weinberg and M.E. Nebel

On the mixed set G2 without lengths yielded the best results, while also being
the fastest to process, but on the tRNA set G3 with lengths clearly outperformed
all of the other grammars.

4.1 Possible Other Applications

While our extension to the concept of stochastic context-free grammars stemmed
from one specific application it is not application specific. The concepts and
methods presented in Section 2 can immediately be applied to any other appli-
cation where SCFGs are used as a model, e.g. natural language processing. From
our limited insight in that field it appears possible that length-dependent gram-
mars can successfully be applied there as well as for RNA secondary structure
prediction.

4.2 Further Research

In addition to the applications, extending the concept of context-free grammars
also gives rise to interesting questions in the field of formal languages. The most
obvious of these questions is, if adding in length-dependencies changes the class
of languages that can be generated. We have already been able to show this6,
leading us to the follow-up question what the properties of this new class of
languages are. First results from this direction of research have been presented
in [15].

Acknowledgements. We would like to thank the anonymous referees for their
helpful suggestions.

References

1. Boyle, J., Robillard, G.T., Kim, S.: Sequential folding of transfer RNA. a nuclear
magnetic resonance study of successively longer tRNA fragments with a common
5’ end. J. Mol. Biol. 139, 601–625 (1980)

2. Chi, T., Geman, S.: Estimation of probabilistic context-free grammars. Computa-
tional Linguistics 24(2), 299–305 (1998)

3. Dowell, R.D., Eddy, S.R.: Evaluation of several lightweight stochastic context-
free grammars for RNA secondary structure prediction. BMC Bioinformatics 5, 71
(2004)

4. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological sequence analysis.
Cambridge University Press, Cambridge (1998)

5. Furbach, F.: Earley parsing for length dependent grammars. Bachelor thesis, TU
Kaiserslautern (2009)

6 For a simple example take the grammar with the productions S → A, A → aA | ε,
with the first production restricted to lengths which are perfect squares. It generates
{an2 |n ∈ N} which is not context-free.

Extending SCFG for an Application in Bioinformatics 595

6. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Read-
ing (1978)

7. Knudsen, B., Hein, J.: RNA secondary structure prediction using stochastic
context-free grammars and evolutionary history. Bioinformatics 15, 446–454 (1999)

8. Meyer, I., Miklos, I.: Co-transcriptional folding is encoded within RNA genes. BMC
Molecular Biology 5(1), 10 (2004)

9. Nebel, M.E.: On a statistical filter for RNA secondary structures. Technical report,
Frankfurter Informatik-Berichte (May 2002)

10. Nussinov, R., Pieczenik, G., Griggs, R., Kleitmann, D.J.: Algorithms for loop
matchings. SIAM Journal of Applied Mathematics 35, 68–82 (1978)

11. Prescher, D.: A tutorial on the expectation-maximization algorithm including
maximum-likelihood estimation and em training of probabilistic context-free gram-
mars (2003),
http://staff.science.uva.nl/~prescher/papers/bib/2003em.prescher.pdf

12. Sprinzl, M., Vassilenko, K.S., Emmerich, J., Bauer, F.: Compilation of tRNA se-
quences and sequences of tRNA genes (December 20, 1999),
http://www.uni-bayreuth.de/departments/biochemie/trna/

13. Stolcke, A.: An efficient probabilistic context-free parsing algorithm that computes
prefix probabilities. Computational Linguistics 21(2), 165–201 (1995)

14. Viennot, G., de Chaumont, M.: Enumeration of RNA Secondary Structures by
Complexity. In: Mathematics in Biology and Medicine: Proceedings of an Interna-
tional Conference Held in Bari, Italy, July 18-22, 1983 (1985)

15. Weinberg, F.: Position-and-length-dependent context-free grammars. In: Theori-
etag Automaten und Formale Sprachen (2009)

16. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)

http://staff.science.uva.nl/~prescher/papers/bib/2003em.prescher.pdf
http://www.uni-bayreuth.de/departments/biochemie/trna/

Chomsky-Schützenberger-Type Characterization
of Multiple Context-Free Languages

Ryo Yoshinaka1,�, Yuichi Kaji2, and Hiroyuki Seki2

1 Graduate School of Information Science and Technology, Hokkaido University
ry@ist.hokudai.ac.jp

2 Graduate School of Information Science, Nara Institute of Science and Technology
{kaji,seki}@is.naist.jp

Abstract. It is a well-known theorem by Chomsky and Schützenberger
(1963) that every context-free language can be represented as a homo-
morphic image of the intersection of a Dyck language and a regular
language. This paper gives a Chomsky-Schützenberger-type characteri-
zation for multiple context-free languages, which are a natural extension
of context-free languages, with introducing the notion of multiple Dyck
languages, which are also a generalization of Dyck languages.

1 Introduction

A multiple context-free grammar (mcfg) is a natural extension of a context-free
grammar (cfg). A nonterminal symbol in an mcfg derives tuples of strings by
synchronized parallel derivation. The direct derivation relation of an mcfg is de-
fined by a function over tuples of strings (of terminal symbols) such that each
component of the function value is defined by a concatenation of some com-
ponents of arguments and constant strings of terminal symbols with a linearity
condition on components of arguments. Let us call such a function linear regular.
The language generated by an mcfg is called a multiple context-free language
(mcfl).

The generative power of mcfgs is properly larger than cfgs and properly
smaller than context-sensitive grammars (csgs). There are several computational
models that have the same generative power as mcfgs, e.g., string version of linear
context-free rewriting systems, finite copying tree-to-string transducers, string
generating context-free hypergraph grammars and local unordered scattered con-
text grammars (see [2, 6] for the discussion of these equivalences). Mcfgs share
many properties with cfgs such as closure properties. There are other gram-
matical formalisms of which generative power is between cfgs and csgs such as
indexed grammars. In contrast to indexed grammars, the membership problem
for an mcfl is solvable in polynomial time in the length of an input string and
� Supported in part by Grant-in-Aid for Young Scientists (B-20700124) and a grant

from the Global COE Program “Center for Next-Generation Information Technology
based on Knowledge Discovery and Knowledge Federation” from the Ministry of
Education, Culture, Sports, Science and Technology of Japan.

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 596–607, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Chomsky-Schützenberger-Type Characterization of MCFLs 597

each mcfl is semilinear. These properties are due to the synchronized parallel
derivation realized by linear regular functions. Generally, each component of a
tuple of strings appearing in the derivation is not adjacent with one another
in the resultant string of terminal symbols. However, these components always
share synchronized structure of derivation. To capture this property of mcfls, we
will introduce multiple Dyck languages and show a theorem that is an extension
of the representation theorem of cfls. It is well-known that any cfl can be rep-
resented as a homomorphic image of the intersection of a regular language and
a Dyck language (Chomsky-Schützenberger theorem). A Dyck language is the
set of well-nested parentheses (brackets). A multiple Dyck language is the set of
‘well-nested tuples of parentheses.’ The main theorem of this paper is that for
a given mcfl L, there exists a multiple Dyck language D, a regular language R
and a homomorphism h such that L = h(D ∩R). As is the same with cfls, this
representation theorem for mcfls can be easily lifted to the generator theorem.

The main results of this paper were partially published in and are partially
based on Chapter 4 of [3].

2 Preliminaries

For an alphabet Σ, Σ∗ denotes the set of all strings over Σ and (Σ∗)m denotes
the set of all m-tuples of strings over Σ. The empty string is denoted by ε.

Context-Free Grammars. A context-free grammar (cfg) is a tuple G = 〈Σ,N,
P, S〉, where Σ is a finite set of terminal symbols, N is a finite set of nonterminal
symbols, P ⊆ N × (Σ ∪N)∗ is a finite set of rules, which are denoted by A→ α
for A ∈ N and α ∈ (Σ ∪N)∗, and S ∈ N is called the start symbol. Elements of
P ∩(N×Σ∗) are called terminating rules. ⇒G and ⇒∗

G denote derivations of one
step and any steps (including zero-step), respectively. The language generated
by a cfg G, which is called a context-free language (cfl), is the set L(G) = {w ∈
Σ∗ | S⇒∗

G w }. If P ⊆ N × (Σ∗ ∪Σ∗N), G is called a right-linear grammar and
L(G) is called a regular language.

Let Σ denote an alphabet disjoint from Σ that admits a bijection (·) from
Σ to Σ. The Dyck grammar over Σ ∪ Σ is the cfg that has S as its unique
nonterminal symbol and whose rules are S → ε and S → SaSā for all a ∈ Σ.
The language generated by a Dyck grammar is called a Dyck language. A string
on Σ∪Σ is well-bracketed if it is an element of the Dyck language. An occurrence
of a ∈ Σ and an occurrence of ā ∈ Σ in a well-bracketed string are corresponding
if they are derived at the same derivation step. Note that the Dyck grammar is
unambiguous. According to the custom, we call elements of Σ ∪Σ parentheses.

Chomsky and Schützenberger [1] gave a characterization of cfls by Dyck
languages.

Theorem 1. A language L over Σ is context-free if and only if there are an
alphabet Δ, a homomorphism h : (Δ∪Δ)∗ → Σ∗ and a regular language R over
Δ ∪Δ such that L = h(D ∩R) where D is the Dyck language over Δ ∪Δ.

598 R. Yoshinaka, Y. Kaji, and H. Seki

Theorem 1 can be stated in an even stronger (for the ‘only if’ direction) form:

Theorem 2. For a given alphabet Σ, there are an alphabet Δ and a homomor-
phism h : (Δ∪Δ)∗ → Σ∗ such that for any language L over Σ, L is context-free
if and only if there is a regular language R such that L = h(D ∩R) where D is
the Dyck language over Δ ∪Δ.

Multiple Context-Free Grammars. We assume a countably infinite set X
of variables. A function from (Σ∗)m1×· · ·×(Σ∗)mn to (Σ∗)m is said to be linear
regular, if there are t1, . . . , tm ∈ (Σ ∪ { xi,j ∈ X | 1 ≤ i ≤ n, 1 ≤ j ≤ mi })∗
such that each variable xi,j occurs at most once in t1 . . . tm and for any wi =
〈wi,1, . . . , wi,mi〉 ∈ (Σ∗)mi with 1 ≤ i ≤ n, it holds that

f(w1, . . . ,wn) = 〈v1, . . . , vm〉
where each vk for k = 1, . . . ,m is obtained from tk by substituting wi,j for
xi,j for all i and j. We simply write f(〈x1,1, . . . , x1,m1〉, . . . , 〈xn,1, . . . , xn,mn〉) =
〈t1, . . . , tm〉 to denote the definition of f . For example, both f(〈x1, x2〉) =
〈ax1b, cx2d〉 and g(〈x1, x2〉, 〈y1, y2〉) = 〈x1y1, y2x2〉 are linear regular functions
where x1, x2, y1, y2 ∈ X and a, b, c, d ∈ Σ, while h(〈x1〉) = 〈x1x1〉 is not, since x1
appears twice in the right-hand side. f is said to be nonerasing, if every variable
in the left-hand side of the definition of f appears in the right-hand side. f is
terminal-free, if the right-hand side of its definition contains no symbols from Σ.

An alphabet N is said to be indexed when we assume a function dim that
assigns positive integers to symbols in N .

A multiple context-free grammar (mcfg) is a tuple G = 〈Σ,N, F, P, S〉, where

– Σ is an (unindexed) alphabet whose elements are called terminal symbols,
– N is an indexed alphabet whose elements are called nonterminal symbols,
– F is a finite set of linear regular functions,
– P is a finite set of rules of the form A → f(B1, . . . , Bn) where A,B1, . . . ,
Bn ∈ N and f : (Σ∗)dim(B1) × · · · × (Σ∗)dim(Bn) → (Σ∗)dim(A) ∈ F ,

– S ∈ N is called the start symbol whose dimension is 1.

For a rule π = A → f(B1, . . . , Bn), the head and the body of π refer to A and
f(B1, . . . , Bn), respectively, and the rank of π is defined to be rank(π) = n. If
rank(π) = 0 and f() = w, we simply write A → w for π with suppressing f . If
f is terminal-free, π is also said to be terminal-free.

For each A ∈ N , LG(A) is recursively defined as the smallest set of dim(A)-
tuples of strings satisfying that if A→ f(B1, . . . , Bn) ∈ P and wi ∈ LG(Bi) for
i = 1, . . . , n, then f(w1, . . . ,wn) ∈ LG(A). The language L(G) generated by G is
the set {w ∈ Σ∗ | 〈w〉 ∈ LG(S) }. L(G) is called a multiple context-free language
(mcfl). Two grammars G and G′ are equivalent if L(G) = L(G′).

Example 1. Let G1 be the mcfg 〈Σ1, N1, F1, P1, S〉 such that Σ1 = {a, b, c, d},
N1 = {S,A,B} with dim(S) = 1, dim(A) = dim(B) = 2, F1 consists of e,
f , g and the constant functions appearing in the body of rules in P1 below
where e(〈x1, x2〉, 〈y1, y2〉) = 〈x1y1x2y2〉, f(〈x1, x2〉) = 〈ax1, bx2〉, g(〈x1, x2〉) =

Chomsky-Schützenberger-Type Characterization of MCFLs 599

〈cx1, dx2〉, and P1 = {S → e(A,B), A → f(A), A → 〈a, b〉, B → g(B), B →
〈c, d〉}. Let us call the rules in P1 π1, π2, . . . , π5 in the order written above. For
example, 〈a, b〉 ∈ LG1(A) by π3, 〈aa, bb〉 ∈ LG1(A) by π2, 〈c, d〉 ∈ LG1(B) by π5
and 〈aacbbd〉 ∈ LG1(S) by π1. We have L(G1) = { amcnbmdn | m,n ≥ 0 }.
For a nonterminal symbol A of an mcfg G, a series of rule application steps to
obtain a tuple of strings of terminal symbols w ∈ LG(A) is called a derivation
of w in G.

By q-MCFG(r) we denote the collection of mcfgs G such that dim(A) ≤ q
for all A ∈ N and rank(π) ≤ r for all π ∈ P . q-MCFL(r) is the class of mcfls
generated by grammars in q-MCFG(r).
G is said to be nonerasing, if all f ∈ F are nonerasing. It is known that

every G ∈ q-MCFG(r) has an equivalent nonerasing grammar in q-MCFG(r) [8].
Grammars from 1-MCFG(r) are identified with cfgs.

Proposition 1 (Seki et al. [8] and Rambow and Satta [6]). For q ≥ 1,
q-MCFL(r) � (q+1)-MCFL(r). For q ≥ 2, r ≥ 1, q-MCFL(r) � q-MCFL(r+1)
except for 2-MCFL(2) = 2-MCFL(3). For q ≥ 1, r ≥ 3 and 1 ≤ k ≤ r − 2,
q-MCFL(r) ⊆ (k + 1)q-MCFL(r − k).

Proposition 2 (Rambow and Satta [6]). Each family q-MCFL(r) for r ≥ 2
is a substitution closed full AFL. That is, they are closed under homomorphism,
inverse homomorphism, intersection with regular languages, union, concatena-
tion, the Kleene plus and substitution.

Proposition 3 (Seki et al. [8]). Let G ∈ q-MCFG(r) be given. It is decidable
in O(|w|q(r+1)) time whether w ∈ L(G) for any w ∈ Σ∗.

Multiple Dyck Languages. Let q and r be fixed. We define the notion of
the multiple Dyck language in q-MCFL(r) on an indexed alphabet, where we
assume that the maximum dimension of elements of the indexed alphabet does
not exceed r. For an indexed alphabet Δ, let

Δ̂ = { a[i], ā[i] | a ∈ Δ, 1 ≤ i ≤ dim(a) }.

Definition 1. The multiple Dyck grammar DΔ on an indexed alphabet Δ is the
mcfg that has nonterminal symbols Sm with dim(Sm) = m for m ≤ q, among
which the start symbol is S1, and that has rules of the following three types:

1. all the possible terminal-free rules allowed in q-MCFG(r);
2. rules of the form Sm → fa(Sm) where fa(〈x1, . . . , xm〉) = 〈a[1]x1ā

[1], . . . ,
a[m]xmā

[m]〉 for a ∈ Δ with dim(a) = m;
3. rules of the form Sm → f(Sm) with f(〈x1, . . . , xm〉) = 〈t1, . . . , tm〉 where

each ti is either xi, xia
[1]ā[1] or a[1]ā[1]xi for some a ∈ Δ of dimension 1.

The language L(DΔ) is called the multiple Dyck language over Δ ∪Δ.

600 R. Yoshinaka, Y. Kaji, and H. Seki

We note that rules of type 3 are redundant if r > 1. If q = 1 and r > 1, L(DΔ)
is indeed the (context-free) Dyck language over Δ ∪Δ.

Every element of tuples in LDΔ(Sm) is well-bracketed. Moreover pairs of cor-
responding parentheses in a string from L(DΔ) are partitioned into groups each
of which consists of exactly 〈a[1], ā[1]〉, . . . , 〈a[dim(a)], ā[dim(a)]〉 for some a ∈ Δ. If
some member of such a group A is inside some member of a group B, then all
members from A are inside some member of B. For example, b[1]a[1]ā[1]a[2]ā[2]b̄[1]

b[2]a[3]ā[3]b̄[2] is allowed, while b[1]a[1]ā[1]b̄[1]a[2]ā[2]b[2]a[3]ā[3]b̄[2] is not, where
dim(a) = 3 and dim(b) = 2. The way of combining parentheses is restricted
by available means in q-MCFG(r).

3 Theorem

This section discusses Chomsky-Schützenberger type characterization of mcfls.

3.1 Informal Example of Construction

We first review an idea of the proof of Theorem 1 by using a simple example.
Let G0 be the cfg 〈Σ0, N0, P0, S〉 where Σ0 = {a, b, c}, N0 = {S,A,B}, P0 =
{S → aA, A → bAB, A → a, B → c}. We call the four rules π1, π2, π3 and π4
in the order as written above. Let Δ = {[[π1,1, [[π2,1, [[π2,2, [[a, [[b, [[c} and let
us write]]x to denote [[x for each [[x ∈ Δ. Also let h : (Δ ∪ Δ)∗ → Σ∗

0 be
the homomorphism defined by h([[x) = x for x ∈ Σ0 and h(z) = ε for other
z ∈ Δ ∪ Δ. Figure 1 shows an example of a derivation tree (called t0) in G0.
Intuitively, [[π,i and]]π,i mean the left end and the right end of a derivation

S

a A

b A B

a c

[[a]]a [[π1,1]]π1,1

[[b]]b [[π2,1]]π2,1 [[π2,2]]π2,2

[[a]]a [[c]]c

Fig. 1. A derivation tree in G0

starting from the i-th nonterminal symbol in the body of the rule π. For x ∈ Σ0,
a pair [[x and]]x denotes x. In the figure, paired symbols in Δ ∪Δ are placed
on the left-side and the right-side of each edge. For a tree t, let α(t) denote
the string over Δ ∪Δ obtained by concatenating these labels in the depth-first
left-to-right order. For example,

α(t0) = [[a]]a [[π1,1 [[b]]b [[π2,1 [[a]]a]]π2,1 [[π2,2 [[c]]c]]π2,2]]π1,1

Chomsky-Schützenberger-Type Characterization of MCFLs 601

S[1]

A[1] B[1] A[2] B[2]

a A[1] c b A[2] d

a b

[[
[1]
π1]]

[1]
π1

[[
[1]
π1,1]]

[1]
π1,1 [[

[1]
π1,2]]

[1]
π1,2 [[

[2]
π1,1]]

[2]
π1,1 [[

[2]
π1,2]]

[2]
π1,2

[[
[1]
π2]]

[1]
π2

[[
[1]
a]]

[1]
a

[[
[1]
π2,1]]

[1]
π2,1

[[
[1]
π3]]

[1]
π3

[[
[1]
a]]

[1]
a

[[
[1]
π5]]

[1]
π5

[[
[1]
c]]

[1]
c

[[
[2]
π2]]

[2]
π2

[[
[1]
b]]

[1]
b

[[
[2]
π2,1]]

[2]
π2,1

[[
[2]
π3]]

[2]
π3

[[
[1]
b]]

[1]
b

[[
[2]
π5]]

[2]
π5

[[
[1]
d]]

[1]
d

Fig. 2. A derived tree in G1

for t0 in the figure. For a tree t, let yield(t) denote the string obtained by concate-
nating the labels of leaf nodes of t from left to right. Then, yield(t) = h(α(t)) for
a derivation tree t in G0 and L(G0) = h({α(t) | t is a derivation tree in G0 }).
Therefore, what we should do is to construct a right-linear grammar GR0 such
that L(GR0)∩D = {α(t) | t is a derivation tree in G0 } in this particular exam-
ple where D is the Dyck language over Δ∪Δ. GR0 can be defined by considering
the finite-state tree traversal that emits [[x and]]x when it visits x ∈ Σ0, emits
[[π,i when it visits the i-th nonterminal symbol in the body of π, and emits]]π,i

when it returns from that nonterminal symbol. Note that nonterminal symbols
in N0 are used as ‘finite states’ (nonterminal symbols of GR0) when the traversal
goes down while a new nonterminal symbol T is used when it goes up.

S → [[a]]a [[π1,1 A T →]]π1,1 T
A→ [[b]]b [[π2,1 A T →]]π2,1 [[π2,2 B T →]]π2,2 T
A→ [[a]]a T B → [[c]]c T
T → ε

A similar idea can be applied to mcfg. Let G1 be the mcfg from Example 1.
Figure 2 shows a tree that illustrates the derivation in the example. (This kind
of tree is called a derived tree in mcfg. Here we use derived tree without formal
definition since derived tree is not needed in the formal proofs in the rest of
this paper.) In the figure, A[j] (j = 1, 2) denotes a (hypothetical) nonterminal
symbol that derives the j-th component wj of 〈w1, w2〉 ∈ LG1(A). S[1], B[1] and
B[2] are used in the same purpose. A horizontal arc between A[1] and A[2] means
that these two nodes together represent an instance of A in the derivation. Let

Γ = {π1, π2, . . . , π5, 〈π1, 1〉, 〈π1, 2〉, 〈π2, 1〉, 〈π4, 1〉, a, b, c, d}.
The symbol 〈π, i〉 (1 ≤ i ≤ rank(π)) corresponds to the i-th nonterminal symbol
in the body of the rule π. For example, 〈π1, 1〉 and 〈π1, 2〉 correspond to A

602 R. Yoshinaka, Y. Kaji, and H. Seki

and B, respectively. For each π ∈ P1, define dim(π) to be the dimension of
the head of π. For each π ∈ P1 and i (1 ≤ i ≤ rank(π)), define dim(〈π, i〉) to
be the dimension of the i-th nonterminal symbol in the body of π. For each
x ∈ Σ1, define dim(x) = 1. Thus, dim(π1) = dim(a) = · · · = dim(d) = 1 and
dim(x) = 2 for other x ∈ Γ . We abbreviate symbols in Γ̂ as [[[1]

π1
,]][1]π1

, [[[1]
π2

,
]][1]π2

, [[[2]
π2

,]][2]π2
, . . ., [[[1]

π1,1,]]
[1]
π1,1, [[

[2]
π1,1,]]

[2]
π1,1, Similarly to cfg’s case, [[[j]

π,i (rsp.

]]
[j]
π,i) denotes the left (rsp. right) end of a derivation for the j-th component

of the i-th nonterminal symbol in the body of π. For the mcfg G1, we also
have L(G1) = h({α(t) | t is a ‘derived tree’ in G1 }) where h is defined similarly
to cfg’s case. Hence, it suffices to give a right-linear grammar GR1 such that
L(GR1)∩L(DΓ) = {α(t) | t is a ‘derived tree’ in G1 }. The construction of GR1

is a little cumbersome but not difficult:

S[1] → [[[1]
π1

[[
[1]
π1,1A

[1] T →]]
[1]
π1,1 [[

[1]
π1,2 B

[1] T →]]
[1]
π1,2 [[

[2]
π1,1 A

[2]

T →]]
[2]
π1,1 [[

[2]
π1,2 B

[2] T →]]
[2]
π1,2]][1]π1

T

A[1] → [[[1]
π2

[[[1]
a]][1]a [[

[1]
π2,1 A

[1] T →]]
[1]
π2,1]][1]π2

T

A[2] → [[[2]
π2

[[
[1]
b]]

[1]
b [[

[2]
π2,1 A

[2] T →]]
[2]
π2,1]][2]π2

T

A[1] → [[[1]
π3

[[[1]
a]][1]a]][1]π3

T A[2] → [[[2]
π3

[[
[1]
b]]

[1]
b]][2]π3

T

B[1] → [[[1]
π4

[[[1]
c]][1]c [[

[1]
π4,1 B

[1] T →]]
[1]
π4,1]][1]π4

T

B[2] → [[[2]
π4

[[
[1]
d]]

[1]
d [[

[2]
π4,1 B

[2] T →]]
[2]
π4,1]][2]π4

T

B[1] → [[[1]
π5

[[[1]
c]][1]c]][1]π5

T B[2] → [[[2]
π5

[[
[1]
d]]

[1]
d]][2]π5

T
T → ε .

3.2 Formal Construction

Let us arbitrarily fix positive integers q and r. We now give our Chomsky-
Schützenberger type characterization for q-MCFL(r). Without loss of generality,
we may assume that any G ∈ q-MCFG(r) satisfies the following conditions:

– G is nonerasing;
– if G has a rule A→ f(B1, . . . , Bn) and 1 ≤ i < j ≤ n, then Bi �= Bj .

Indeed every mcfg in q-MCFG(r) has an equivalent one in q-MCFG(r) with this
property.

Let G = 〈Σ,N, F, P, S〉 ∈ q-MCFG(r) be given. Our goal is to find an indexed
alphabet Δ, a right-linear grammar R over Δ̂, and a homomorphism h : Δ̂∗ →
Σ∗ such that L(G) = h(L(DΔ) ∩ L(R)).

Let

Δ = { [[a | a ∈ Σ } ∪ { [[π | π ∈ P } ∪ { [[π,i | 1 ≤ i ≤ rank(π), π ∈ P }
where dim([[a) = 1 for a ∈ Σ, dim([[π) = dim(A) and dim([[π,i) = dim(Bi) if
π ∈ P is of the form A → f(B1, . . . , Bn). Hereafter we write]]∗ instead of [[∗
for each [[∗ ∈ Δ. By (̃·) we denote the homomorphism from Σ∗ to Δ̂∗ such that
ã = [[[1]

a]][1]a .

Chomsky-Schützenberger-Type Characterization of MCFLs 603

The nonterminal symbols of the right-linear grammar R is

{T } ∪ {A[k] | A ∈ N, 1 ≤ k ≤ dim(A) }

and the start symbol is S[1]. The rules of R are given as follows. Suppose that
G has a rule π of the form A→ f(B1, . . . , Bn) and f is represented as

f(〈x1,1, . . . , x1,m1〉, . . . , 〈xn,1, . . . , xn,mn〉) = 〈t1, . . . , tm〉
where tk = uk,0xik1,jk1uk,1 . . . xikpk

,jkpk
uk,pk

with uk,0, . . . , uk,pk
∈ Σ∗

for k = 1, . . . ,m.

For each k = 1, . . . ,m, if pk = 0, then R has the rule

A[k] → [[[k]
π ũk,0]]

[k]
π T

and otherwise, R has the following pk + 1 rules:

A[k] → [[[k]
π ũk,0 [[

[jk1]
π,ik1

B
[jk1]
ik1

,

T →]]
[jk(l−1)]
π,ik(l−1)

ũk,l−1 [[
[jkl]
π,ikl

B
[jkl]
ikl

for 1 < l ≤ pk,

T →]]
[jkpk

]
π,ikpk

ũk,pk
]][k]

π T.

Moreover R has
T → ε,

which is the unique terminating rule of R.
We define the homomorphism h : Δ̂∗ → Σ∗ so that for z ∈ Δ̂,

h(z) =

{
a if z = [[[1]

a for some a ∈ Σ;
ε otherwise.

3.3 Correctness

Lemma 1. L(G) ⊆ h(L(R) ∩ L(DΔ)).

Proof. By induction we show that if 〈w1, . . . , wm〉 ∈ LG(A), then there are
v1, . . . , vm ∈ Δ̂∗ such that 〈v1, . . . , vm〉 ∈ LDΔ(Sm) and A[k]⇒∗

R vk and h(vk) =
wk for each k = 1, . . . ,m.

Suppose that 〈w1, . . . , wm〉 ∈ LG(A) due to π = A → f(B1, . . . , Bn) ∈ P
and 〈wi,1, . . . , wi,mi〉 ∈ LG(Bi) for i = 1, . . . , n where f(〈w1,1, . . . , w1,m1〉, . . . ,
〈wn,1, . . . , wn,mn〉) = 〈w1, . . . , wm〉. Note that the case of n = 0 provides the
basis of the induction.

The induction hypothesis says that for each i = 1, . . . , n we have vi,1, . . . ,

vi,mi ∈ Δ̂∗ such that 〈vi,1, . . . , vi,mi〉 ∈ LDΔ(Smi), h(vi,j) = wi,j andB[j]
i ⇒∗

R vi,j

604 R. Yoshinaka, Y. Kaji, and H. Seki

for j = 1, . . . ,mi, where we have B
[j]
i ⇒∗

R vi,jT ⇒R vi,j because T → ε is the
unique terminating rule of R. Let us represent f as

f(〈x1,1, . . . , x1,m1〉, . . . , 〈xn,1, . . . , xn,mn〉) = 〈t1, . . . , tm〉
where tk = uk,0xik1,jk1uk,1 . . . xikpk

,jkpk
uk,pk

with uk,0, . . . , uk,pk
∈ Σ∗

for k = 1, . . . ,m.

We define vk by

vk = [[[k]
π ũk,0 [[

[jk1]
π,ik1

vik1,jk1]]
[jk1]
π,ik1

ũk,1 . . . [[
[jkpk

]
π,ikpk

vikpk
,jkpk

]]
[jkpk

]
π,ikpk

ũk,pk
]][k]

π . (1)

It is easy to see that for each k, h(vk) = wk and A[k]⇒∗
R vk by B

[j]
i ⇒∗

R vi,jT .
Hence it is enough to show that 〈v1, . . . , vm〉 ∈ LDΔ(Sm). Let

v′ikl,jkl
= [[

[jkl]
π,ikl

vikl,jkl
]]
[jkl]
π,ikl

ũk,l, (2)

v′k = v′ik1,jk1
. . . v′ikpk

,jkpk
(3)

for l = 1, . . . , pk and k = 1, . . . ,m. By (1), (2), (3),

vk = [[[k]
π ũk,0v

′
k]]

[k]
π . (4)

Applying appropriate rules of type 2 and type 3 of Definition 1 to

〈vi,1, . . . , vi,mi〉 ∈ LDΔ(Smi),

for i = 1, . . . , n, we have

〈v′i,1, . . . , v′i,mi
〉 ∈ LDΔ(Smi)

by (2). Applying to those the rule Sm → f ′(Sm1 , . . . , Smn) of type 1 where f ′ is
obtained by removing all the occurrences of terminal symbols in the definition
of f , we get 〈v′1, . . . , v′m〉 ∈ LDΔ(Sm) by (3). By (4), appropriate rules of type 3
and type 2 provide

〈v1, . . . , vm〉 ∈ LDΔ(Sm). �

Lemma 2. Suppose that A[k]⇒∗
R w and w is well-bracketed. Then there is a

rule π ∈ P such that the head of π is A and the outermost parentheses of w are
just [[[k]

π ,]][k]
π .

Lemma 3. h(L(R) ∩ L(DΔ)) ⊆ L(G).

Proof. We show by induction that whenever 〈w1, . . . , wm〉 ∈ LDΔ(Sm) and
A[k]⇒∗

R wk for k = 1, . . . ,m where m = dim(A), we have 〈h(w1), . . . , h(wm)〉 ∈
LG(A).

Let us consider the derivation of wk in R. By Lemma 2, each wk has the form
wk = [[[k]

πk
w′

k]]
[k]
πk

for some rule πk ∈ P and w′
k ∈ Δ̂∗. The outermost parentheses

of 〈w1, . . . , wm〉 are exactly [[[1]
π1
,]][1]π1

, . . . , [[[m]
πm

,]][m]
πm

and thus 〈w1, . . . , wm〉 ∈

Chomsky-Schützenberger-Type Characterization of MCFLs 605

LDΔ(Sm) implies that π1 = π2 = · · · = πm. We may hereafter omit the subscript
of πk as π. Let π be A→ f(B1, . . . , Bn) and f represented as

f(〈x1,1, . . . , x1,m1〉, . . . , 〈xn,1, . . . , xn,mn〉) = 〈t1, . . . , tm〉
where tk = uk,0xik1,jk1uk,1 . . . xikpk

,jkpk
uk,pk

with uk,0, . . . , uk,pk
∈ Σ∗

for k = 1, . . . ,m. (5)

If pk = 0, the only rule of R that derives [[[k]
π is A[k] → [[[k]

π ũk,0]]
[k]
π T and thus

wk = [[[k]
π ũk,0]]

[k]
π . If pk ≥ 1, we have

A[k]⇒
R

[[[k]
π ũk,0 [[

[jk1]
π,ik1

B
[jk1]
ik1

∗⇒
R
wk.

Corresponding to the occurrence of [[
[jk1]
π,ik1

,]]
[jk1]
π,ik1

must occur in wk. The only

rule that provides]]
[jk1]
π,ik1

is T →]]
[jk1]
π,ik1

ũk,1 [[
[jk2]
π,ik2

B
[jk2]
ik2

unless pk = 1. Thus

A[k]⇒
R

[[[k]
π ũk,0 [[

[jk1]
π,ik1

B
[jk1]
ik1

∗⇒
R

[[[k]
π ũk,0 [[

[jk1]
π,ik1

vk,1T

⇒
R

[[[k]
π ũk,0 [[

[jk1]
π,ik1

vk,1]]
[jk1]
π,ik1

ũk,1 [[
[jk2]
π,ik2

B
[jk2]
ik2

∗⇒
R
wk.

for some vk,1, which must be well-bracketed. Then we need]]
[jk2]
π,ik2

corresponding

to the occurrence of [[
[jk2]
π,ik2

. Repeatedly applying this discussion, we finally get

A[k] ∗⇒
R

[[[k]
π ũk,0 [[

[jk1]
π,ik1

vk,1]]
[jk1]
π,ik1

ũk,1 . . . [[
[jkpk

]
π,ikpk

vk,pk
]]
[jkpk

]
π,ikpk

ũk,pk
]][k]

π T
∗⇒
R
wk.

This holds for any pk ≥ 1. By Lemma 2

wk = [[[k]
π ũk,0 [[

[jk1]
π,ik1

vk,1]]
[jk1]
π,ik1

ũk,1 . . . [[
[jkpk

]
π,ikpk

vk,pk
]]
[jkpk

]
π,ikpk

ũk,pk
]][k]

π .

Let wi,j = vk,l if xi,j occurs as the l-th variable in tk, i.e., wikl,jkl
= vk,l. We

note that B[j]
i ⇒∗

R wi,jT ⇒R wi,j and

h(wk) = uk,0h(wik1,jk1)uk,1 . . . h(wikpk
,jkpk

)uk,pk
. (6)

Applying Lemma 2 to each wi,j , which must be well-bracketed, we have wi,j =
[[[j]

ρi,j
w′

i,j]]
[j]
ρi,j

for some rule ρi,j of G. Here the third outermost parentheses of
〈w1, . . . , wm〉 consist of exactly

∑
1≤i≤n mi pairs

〈 [[[1]
ρi,1

,]][1]ρi,1
〉, . . . , 〈 [[[mi]

ρi,mi
,]][mi]

ρi,mi
〉 for i = 1, . . . , n.

By 〈w1, . . . , wm〉 ∈ LDΔ(Sm), for each i = 1, . . . , n and j = 1, . . . ,mi, all of

〈 [[[1]
ρi,j

,]][1]ρi,j
〉, . . . , 〈 [[[mi]

ρi,j
,]][mi]

ρi,j
〉

606 R. Yoshinaka, Y. Kaji, and H. Seki

must occur as third outermost parentheses in 〈w1, . . . , wm〉. Recall that the head
of the rule ρi,j is Bi and that Bi = Bi′ implies i = i′. Hence i �= i′ implies
ρi,j �= ρi′,j′ for any j and j′. Therefore for any i, j, it holds that

〈 [[[1]
ρi,1

,]][1]ρi,1
〉 = 〈 [[[1]

ρi,j
,]][1]ρi,j

〉, . . . , 〈 [[[mi]
ρi,mi

,]][mi]
ρi,mi

〉 = 〈 [[[mi]
ρi,j

,]][mi]
ρi,j

〉

and we have ρi such that ρi = ρi,1 = · · · = ρi,mi . In the dervation of
〈w1, . . . , wm〉 ∈ LDΔ(Sm), at some point the rule Smi → f[[ρi

(Smi) of type 2,
where f[[ρi

(〈x1, . . . , xm〉) = 〈 [[[1]
ρi
x1]]

[1]
ρi
, . . . , [[[mi]

ρi
xm]][mi]

ρi
〉, must be applied to

〈wi,1, . . . , wi,mi〉 ∈ LDΔ(Smi). By the induction hypothesis, we have 〈h(wi,1),
. . . , h(wi,mi)〉 ∈ LG(Bi) for i = 1, . . . , n. Applying the rule π to those tuples, we
obtain by (5) and (6)

f(〈h(w1,1), . . . , h(w1,m1)〉, . . . , 〈h(wn,1), . . . , h(wn,mn)〉)
= 〈h(w1), . . . , h(wm)〉 ∈ LG(A). �

Theorem 3. A language L is in q-MCFL(r) if and only if there are a multiple
Dyck language D ∈ q-MCFL(r), a regular language R and a homomorphism h
such that

L = h(D ∩R).

Proof. By Lemmas 1 and 3 and Proposition 2. ��

3.4 Generator Theorem

It is easy to get the stronger Chomsky-Schützenberger-type characterization for
q-MCFL(r) by the standard technique.

Let
Δ′ = { [[a | a ∈ Σ } ∪ { [[m, [m | 1 ≤ m ≤ q }

where dim(a) = 1 and dim([[m) = dim([m) = m and h′ : Δ̂′∗ → Σ∗ be the
homomorphism mapping each [[a to a for a ∈ Σ and other symbols to the
empty string.

For a given mcfg G ∈ q-MCFG(r), let Δ and R be the indexed alphabet
and the right-linear grammar from Section 3.2, respectively. Let us enumerate
all the elements of dimension m in Δ \ { [[a | a ∈ Σ } and denote them by
[[m,1, . . . , [[m,km for each m. We then define a right-linear grammar R′ from R

by replacing [[
[j]
m,i with [[[j]

m [[j]
m . . . [[j]

m︸ ︷︷ ︸
i-times

[[[j]
m and]]

[j]
m,i with]][j]m][j]

m . . .][j]
m︸ ︷︷ ︸

i-times

]][j]m .

We have
L(G) = h′(L(DΔ′) ∩ L(R′)).

Corollary 1. There are a multiple Dyck language D ∈ q-MCFL(r) and a ho-
momorphism h such that a language L is in q-MCFL(r) if and only if there is a
regular language R such that L = h(D ∩R).

Chomsky-Schützenberger-Type Characterization of MCFLs 607

4 Conclusion

This paper introduced multiple Dyck languages and then proved a Chomsky-
Schützenberger-type representation theorem for each class q-MCFL(r) as well
as the generator theorem. The literature (e.g. [7,4]) has proposed other parame-
ters such as degree and well-nestedness that give further classifications of mcfls.
Theorem 3 and Corollary 1 hold for those subclasses as well by accordingly mod-
ifying the definition of rules of type 1 of multiple Dyck grammars in Definition 1.

Logical characterizations for several classes of languages have been obtained
in the literature. For example, the class of regular languages coincides with the
class of languages that are definable in monadic second-order logic (see [9]).
Also, the class of cfls is exactly the class of languages definable in an existential
second-order logic where the second-order variable ranges only over matching
predicates [5]. A matching predicate M is a binary predicate over the set of
positions of symbols in a given string such that each position belongs to at most
one pair (i, j) satisfying M(i, j) and M is not crossing ((i, j) ∈M , (k, l) ∈M and
i < k < j imply i < l < j). Intuitively, M(i, j) means that the symbols occurring
at the positions i and j form a pair of a left parenthesis and its corresponding
right one. This suggests us to extend a matching predicate to a 2r-ary predicate
Mr to express r pairs of left and right parentheses in Δ̂ of Section 2.3. It is left
as future study to give a logic that characterizes mcfls by using these extended
matching predicates.

References

1. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages.
In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems,
pp. 118–161. North Holland, Amsterdam (1963)

2. Engelfriet, J.: Context-free graph grammars. In: Handbook of formal languages,
vol. 3, Springer, Heidelberg (1997)

3. Kaji, Y.: Universal recognition problems and a representation theorem using dyck-
type languages for multiple context-free grammars. Bachelor’s thesis, Osaka Univer-
sity (1991)

4. Kanazawa, M.: The pumping lemma for well-nested multiple context-free languages.
In: Diekert, V., Nowotka, D. (eds.) Developments in Language Theory. LNCS,
vol. 5583, pp. 312–325. Springer, Heidelberg (2009)

5. Lautemann, C., Schwentick, T., Thérien, D.: Logics for context-free languages. In:
Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 205–216. Springer,
Heidelberg (1995)

6. Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting
systems. Theoretical Computer Science 223(1-2), 87–120 (1999)

7. Seki, H., Kato, Y.: On the generative power of multiple context-free grammars and
macro grammars. IEICE Transactions 91-D(2), 209–221 (2008)

8. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88(2), 191–229 (1991)

9. Thomas, W.: Languages, automata, and logic. In: Handbook of formal languages,
vol. 3. Springer, Heidelberg (1997)

Complexity of Guided Insertion-Deletion in
RNA-Editing

Hans Zantema1,2

1 Department of Computer Science, TU Eindhoven, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

H.Zantema@tue.nl
2 Institute for Computing and Information Sciences, Radboud University

Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstract. Inspired by RNA-editing, we study an elementary formalism
of string replacement based on insertion and deletion using a fixed fi-
nite set of guides, and in which only occurrences of a single symbol are
inserted or deleted. While in this replacement mechanism computation
lengths are at most exponential by construction, we show that this ex-
ponential upper bound is tight. Moreover, we show that both the class of
regular languages and the class of context-free languages are not closed
under this replacement mechanism.

1 Introduction

DNA molecules and RNA molecules can be seen as strings over the alphabet
{C,G,A, T } or {C,G,A,U}, containing all genotype information of organisms.
Replication of this information is one of the most basic mechanisms in life: strings
are exactly copied by the well-known mechanisms of DNA-replication and RNA-
translation. However, there are also biological mechanisms not yielding an exact
copy of a string, but a slight modification. A particular class of such mechanisms
is called RNA-editing. Inspired by RNA-editing, but abstracting from biological
details, in [6] the computational power of insertion-deletion systems is studied. In
[6] an insertion step is the replacement of a string uv by uαv for u, α, v taken from
a particular finite set of triples u, α, v. Similarly, a deletion step replaces uαv by
uv for another finite set of triples u, α, v. In [5] the restriction is considered where
u and v are both empty. An extension based on guides has been given in [2]. All
of these approaches claim full computational power, that is, they generate all
recursively enumerable languages.

However, in many RNA-editing mechanisms occurring in nature, only very
restricted instances of these formats apply. Often only the particular symbol U is
inserted and deleted, instead of arbitrary strings α, see for instance [1]. Inspired
by this restriction, in this paper we study a variant in which only instances
of one particular symbol 0 are added or removed, not even depending on the
surrounding strings u, v. Instead there is a set G of guides being a fixed finite
set of strings. Depending on G, a deletion step is the replacement of a substring
s by a guide g ∈ G, where g is obtained from s by removing one or more

A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide (Eds.): LATA 2010, LNCS 6031, pp. 608–619, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Complexity of Guided Insertion-Deletion in RNA-Editing 609

occurrences of 0. Similarly, an insertion step is the replacement of a substring
s by g ∈ G, where g is obtained from s by adding one or more occurrences of
0. So, both by insertion steps and deletion steps, substrings s are replaced by
guides from the given set G, where in doing so only occurrences of 0 are either
added or removed. In order to avoid unbounded growth of strings by insertion
steps, we require all guides to start and end in elements distinct from 0.

Although our mechanism is clearly an over-simplification of real RNA-editing,
it covers a natural and basic ingredient of RNA-editing which we consider to
be worthwhile to study in separation. We emphasize the contrast with DNA-
computing: where DNA-computing tries to exploit an extreme form of paral-
lelism based on the high number of DNA molecules, we study the behavior of
a specific kind of sequential computation. On the other hand, similar insertion-
deletion mechanisms occur as primitives of DNA-computing, see e.g. [4].

For a fixed set of guides, starting from any initial string, there is an upper
bound on the size of the strings that can be reached from this initial string. As
a consequence, the number of these reachable strings is bounded by a function
that is exponential in the size of the initial string. So if a string is reachable
from the initial string, it is also reachable in a number of steps which is at most
exponential in the size of the initial string. A main topic of this paper is the
investigation whether this upper bound is tight. It is. This is quite surprising:
since substrings are only replaced by guides from a given finite set, at a first
glance one may expect that after a small number of steps all substrings are
replaced by guides and further computation by insertion or deletion steps will
have no effect any more. In fact, we succeed in proving this exponential lower
bound for the alphabet {0, 1} and a set G of guides consisting of 12 elements.

As another main result we prove that both the class of regular languages and
the class of context-free languages are not closed under this insertion-deletion
mechanism. More precisely, although the set of strings reachable from a single
string is finite and hence regular, we give an example of a regular language L
for which we prove that the language of all strings reachable from strings in L
is not regular, and a similar example for the class of context-free languages. For
both cases the alphabet is {0, 1} and the set G consists of only four guides.

Both these main results are obtained by a construction in which particular
string rewriting is mimicked by the insertion-deletion mechanism. For the expo-
nential lower bound we use a length preserving string rewriting system inspired
by counting in binary numbers, therefore requiring an exponential number of
steps to reach the number 2n − 1 represented by n ones from the initial number
0 represented by n zeros. For proving that the classes of languages ar not closed
under our replacement mechanism we take the string rewrite systems 21 → 12,
essentially performing bubble-sort, and for which the strings reachable from (12)∗

form a non-regular language and the strings reachable from {(12)k3k} form a
non-context-free language.

Although the focus of this paper is on our guide-oriented mechanism, we also
give a sketch of how the results apply to a natural instance of the insertion-
deletion mechanism from [6], namely where particular strings of the shape uv

610 H. Zantema

are replaced by u0v or conversely, in which u, v are not allowed to start or end
in 0.

This paper is organized as follows. In Section 2 we give the basic definitions
and prove the exponential upper bound. In Section 3 we present the theory
relating string rewriting to the insertion-deletion replacement mechanism, being
the preparation of our main results. In Section 4 we present our results on the
classes of regular languages and of context-free languages. In Section 5 we prove
the exponential lower bound. In Section 6 we sketch how our results apply for
the alternative insertion-deletion mechanism. We conclude in Section 7.

2 Preliminaries

Let Σ be a finite alphabet with 0 ∈ Σ. Let Σ∗ be the set of finite strings over
Σ. For u ∈ Σ∗ write |u| for the size of u, that is, the number of elements.

Definition 1. The relation < is defined to be the smallest transitive relation on
Σ∗ satisfying uv < u0v for all u, v ∈ Σ∗.

A string g ∈ Σ∗ is called a guide if g is non-empty and both the first and the
last element of g is not 0.

For a finite set G of guides and u, v ∈ Σ∗, we write u→G v if either

– u = xsy and v = xgy for x, s, y ∈ Σ∗, g ∈ G, g < s (a delete step), or
– u = xsy and v = xgy for x, s, y ∈ Σ∗, g ∈ G, s < g (an insert step).

So u < v means that u can be obtained from v by removing one or more 0’s.
Note that by →G-steps the replacements are always towards guides: a substring
s is replaced by g ∈ G in which only 0’s are either deleted or inserted.

In order to provide some intuition for guided insertion and deletion we consider
G = {1101, 1011}. Then we have 111 →G 1101 and 111 →G 1011, both by insert
steps, but both from 1101 and 1011 no →G-step is possible. Starting from 10111
we can do an insert step to 101011, while from 101011 we can do a delete step
back to 10111. Repeating this we can go on forever. However, from 10111 we can
also do an insert step to 101101, from which no further step is possible.

The reason why we disallow guides to start or end in 0 is that we do not
want unbounded growth of strings by insert steps. For instance, if we would
allow 10 ∈ G, this would cause unbounded creation of zeros in the sequence
1 →G 10 →G 100 →G 1000 →G 10000 →G · · · of insert steps, not being in the
flavor of RNA-editing.

For n ∈ N and → any relation on strings we write u→n v if there exist strings
u0, u1, . . . , un such that u0 = u, un = v, and ui → ui+1 for all i = 0, 1, . . . , n−1.
So u →n

G v means that v can be obtained from u in n →G-steps. We write
u→∗

G v if there exists n ≥ 0 such that u→n
G v.

Our first theorem states that the minimal number of steps in u →∗
G v is at

most exponential in the size of u.

Theorem 1 (upper bound). For every finite set G of guides there is an expo-
nential function f : N → N such that if u, v ∈ Σ∗ satisfy u→∗

G v, then u→k
G v

for some k ≤ f(|u|).

Complexity of Guided Insertion-Deletion in RNA-Editing 611

Proof. Let m be the highest number of consecutive zeros occurring in strings
from G. Let n = |u|. Let u →∗

G v. Then the only difference between u and v is
in the sizes of groups of consecutive zeros. Every such group in v is either equal
to the corresponding group in u if it was not changed by u→∗

G v, or it is equal
to a group of consecutive zeros occurring in a string from G. Since there are at
most n such groups, we obtain

#{v | u→∗
G v} ≤ (m + 2)n.

Then in a shortest path u →∗
G v there will be no duplicate occurrences of the

same string, so u→k
G v with k ≤ (m+ 2)n. ��

3 Relation to String Rewriting

One of the goals of this paper is to prove that the exponential upper bound of
Theorem 1 is tight: to choose G, um, vm for which um →∗

G vm, but for which
we can show that um →k

G vm is only possible for k being exponential in |um|.
Another goal is to prove that classes of languages are not closed under →∗

G.
Both goals are achieved for Σ = {0, 1} and are based on a common approach
for mimicking a particular kind of string rewriting by →G. In this section we
introduce how to encode strings over another signature Δ into strings over Σ =
{0, 1} and investigate how rewriting in Δ∗ relates to →G-steps over Σ∗ for a
particular choice of G. The results are the basic lemmas as we need them for
both of the goals of this paper.

Let Σ = {0, 1}. Let n ≥ 2. Let Δ = {1, 2, . . . , n}. For a, b ∈ Δ∪ {⊥} we write
[a, b] for the string consisting of 2n + 1 ones, and at most two zeros according
the following rules:

– if a �= ⊥ then there is one zero between the a-th and a + 1-th one;
– if b �= ⊥ then there is one zero between the b+ n-th and b+ n+ 1-th one;
– there is no zero between any two other consecutive ones.

For instance, for n = 4 we have [1, 3] = 10111111011 and [⊥, 2] = 1111110111.
For k ∈ N, k ≥ 1, a k-string encoding is defined inductively as follows:

– If a, b ∈ Δ ∪ {⊥}, not both being ⊥, then [a, b] is a 1-string encoding.
– If [a, b] is a 1-string encoding and w is a k-string encoding, then [a, b]00w is

a k + 1-string encoding.

So a k-string encoding consists of k ingredients of the shape [a, b], separated by
k − 1 copies of 00.

For a, b ∈ Δ ∪ {⊥} we write a � b ⇐⇒ a = ⊥ ∨ a = b.

Lemma 1. Let G consist only of 2-string encodings, and let u be a k-string
encoding satisfying u →G v. Then v is a k-string encoding too. Moreover, one
can write

u = x[a1, a2]00[a3, a4]y, v = x[b1, b2]00[b3, b4]y,

for [b1, b2]00[b3, b4] ∈ G and either ai � bi for i = 1, 2, 3, 4 or bi � ai for
i = 1, 2, 3, 4.

612 H. Zantema

Proof. If u = v then the lemma is trivial; assume u �= v. Let g = [b1, b2]00[b3, b4]
be the element of G used for the step u→G v, so u = x′sy′ and v = x′gy′ with
either s < g or g < s. Then both s and g contain exactly 4n+2 ones. In g there is
exactly one group of two consecutive zeros: between the 2n+ 1-th and 2n+ 2-th
one. Since s is part of the k-string encoding u with 4n+2 ones, it also contains a
group of two consecutive zeros, say between its p-th and p+1-th one. If p �= 2n+1
then in s we have two consecutive zeros between its p-th and p+ 1-th one, and
at most one zero between its 2n + 1-th and 2n + 2-th one. For g it is the other
way around. This contradicts the assumption that either s < g or g < s. Hence
p = 2n+ 1. Hence we can write s = [a1, a2]00[a3, a4]. Now choosing x = x′ and
y = y′ gives the desired result: observe that if [a1, a2]00[a3, a4] < [b1, b2]00[b3, b4]
then ai � bi for i = 1, 2, 3, 4. ��

We will consider string rewriting over Δ with respect to string rewrite rules of
the shape ab → cd for a, b, c, d ∈ Δ. More precisely, we have a rewrite system
R of such rules, and we write s →R t for s, t ∈ Δ∗ if and only if we can write
s = xaby and t = xcdy for some x, y ∈ Δ∗ and some rule ab → cd in R. For
such a rewrite system R we define GR to consist of the following four 2-string
encodings:

[a, a]00[b, b]
[⊥, a]00[⊥, b]
[c, a]00[d, b]
[c,⊥]00[d,⊥]

for every rewrite rule ab→ cd in R.
In order to relate →R-rewriting to →GR computations on string encodings we

give an encoding encod from Δ∗ to string encodings. This is inductively defined
by

encod(i) = [i,⊥], encod(is) = [i,⊥]00encod(s),

for i ∈ Δ and s ∈ Δ∗.
First we show that every →R-step can be mimicked by 4 →GR-steps after

encoding.

Lemma 2. Let s, s′ ∈ Δ∗ satisfy s→R s′. Then

encod(s) →4
GR

encod(s′).

Proof. We can write s = xaby and s′ = xcdy for a rule ab → cd in R. Then we
have

encod(s) = encod(x)00[a,⊥]00[b,⊥]00encod(y)
→G encod(x)00[a, a]00[b, b]00encod(y)
→G encod(x)00[⊥, a]00[⊥, b]00encod(y)
→G encod(x)00[c, a]00[d, b]00encod(y)
→G encod(x)00[c,⊥]00[d,⊥]00encod(y)
= encod(s′).

��

Complexity of Guided Insertion-Deletion in RNA-Editing 613

Next we will prove the converse of this lemma: all →GR-computations on string
encodings can be mimicked by →R-steps. In order to do so we need a technical
lemma in which we require that R is both left-non-overlapping and right-non-
overlapping, that is, if ab → cd and a′b′ → c′d′ are rules of R then b �= a′

(left-non-overlapping) and c �= d′ (right-non-overlapping).

Lemma 3. Let R be left-non-overlapping and right-non-overlapping. Let s ∈
Δ∗, |s| = k, and let

u = [a1, b1]00[a2, b2]00 · · · 00[ak, bk]

be a k-string encoding satisfying encod(s) →∗
GR

u. Let i satisfy ⊥ �= ai �= bi �= ⊥.
Then either i > 1 and bi−1bi → ai−1ai is a rule of R, or i < k and bibi+1 →
aiai+1 is a rule of R.

Proof. Initially in encod(s) no pattern ⊥ �= ai �= bi �= ⊥ occurs since bi = ⊥
for all i. Using Lemma 1, the only way the pattern ⊥ �= ai �= bi �= ⊥ can be
introduced is by an insert step with respect to the element [c, a]00[d, b] of GR,
for ab → cd being a rule of R. Then by definition the property holds. We will
prove that the property remains in applying →GR as long as ⊥ �= ai �= bi �= ⊥.
We distinguish the two cases:

– i > 1 and bi−1bi → ai−1ai is a rule of R.
Using Lemma 1, by keeping ⊥ �= ai �= bi �= ⊥ the only way the property

can be disturbed is by applying→GR on the position [ai−2, bi−2]00[ai−1, bi−1]
where ai−1 or bi−1 is replaced by ⊥.

If ai−1 is replaced by ⊥ then this is by a delete step with respect to
the element [⊥, a]00[⊥, b] of G for a rule ab → cd of R and b = bi−1. But
then both ab → cd and bbi → ai−1ai are rules of R, contradicting R is
left-non-overlapping.

If bi−1 is replaced by ⊥ then this is by a delete step with respect to
the element [c,⊥]00[d,⊥] of G for a rule ab → cd of R and d = ai−1. But
then both ab → cd and bi−1bi → dai are rules of R, contradicting R is
right-non-overlapping.

– i < k and bibi+1 → aiai+1 is a rule of R.
This case follows by symmetry.

��
In the rest of our analysis the direction of →R does not play a role; for s, t ∈ Δ∗

we write s↔R t if and only if either s→R t or t→R s.
We define a decoding map decod from string encodings to Δ∗. For a 1-string

encoding [a, b] we define decod([a, b]) = a if a > 0, otherwise decod([a, b]) = b.
Remember that in a 1-string encoding [a, b] not both a and b are 0.

For k > 1 and a k-string encoding [a, b]00u where u is a k− 1-string encoding
we inductively define

decod([a, b]00u) = decod([a, b])decod(u).

614 H. Zantema

Lemma 4. Let R be left-non-overlapping and right-non-overlapping. Let s ∈
Δ∗, |s| = k, and let u, v be k-string encodings satisfying encod(s) →∗

GR
u→GR v.

Then either decod(u) = decod(v) or decod(u) ↔R decod(v).

Proof. We distinguish all four possibilities of u→GR v, for a rule ab→ cd of R.
Due to Lemma 1, steps in encod(s) →∗

GR
u→GR v with respect to [⊥, a]00[⊥, b]

and [c,⊥]00[d,⊥] are delete steps, and steps with respect to [a, a]00[b, b] and
[c, a]00[d, b] are insert steps.

– u →GR v is an insert step with respect to [a, a]00[b, b] ∈ GR. In this case
decod(u) = decod(v).

– u →GR v is a delete step with respect to [⊥, a]00[⊥, b] ∈ GR. So u =
· · · [p, a]00[q, b] · · · and v = · · · [⊥, a]00[⊥, b] · · ·; since u �= v we conclude that
p and q are not both ⊥. Then using left-non-overlappingness and Lemma 3
we conclude that ab→ pq is a rule of R. Since decod([p, a]00[q, b]) = pq and
decod([⊥, a]00[⊥, b]) = ab, we conclude decod(v) →R decod(u).

– u →GR v is an insert step with respect to [c, a]00[d, b] ∈ GR. Then u =
· · · [p, a]00[q, b] · · · and v = · · · [c, a]00[d, b] · · · for p = ⊥ or q = ⊥. Using
left-non-overlappingness and Lemma 3 we conclude that p = ⊥ and q �= ⊥
is not possible, and similar for p �= ⊥ and q = ⊥. So p = q = ⊥. Since
decod([⊥, a]00[⊥, b]) = ab and decod([c, a]00[d, b]) = cd and ab→ cd is a rule
of R, we conclude decod(u) →R decod(v).

– u →GR v is a delete step with respect to [c,⊥]00[d,⊥] ∈ GR. In this case
decod(u) = decod(v).

��
Lemma 5. Let R be left-non-overlapping and right-non-overlapping. Let s, s′ ∈
Δ∗ satisfy encod(s) →k

GR
encod(s′). Then s↔m

R s′ for some m ≤ k.

Proof. Immediate from Lemma 4 and decod(encod(s)) = s for every s ∈ Δ∗. ��
By an example we show that non-overlappingness is essential in Lemma 5. Let
R consist of the two rules 12 → 33, 21 → 33, and let s = 121 and s′ = 333. Then

encod(s) = [1,⊥]00[2,⊥]00[1,⊥]→GR [1, 1]00[2, 2]00[1,⊥]→GR

[1, 1]00[2, 2]00[1, 1]→GR [⊥, 1]00[⊥, 2]00[1, 1]→GR [⊥, 1]00[⊥, 2]00[⊥, 1]→GR

[3, 1]00[3, 2]00[⊥, 1]→GR [3, 1]00[3, 2]00[3, 1]→GR

[3,⊥]00[3,⊥]00[3, 1]→GR [3,⊥]00[3,⊥]00[3,⊥] = encod(s′),

while s↔m
R s′ does not hold for any m.

Now we finished all preparations for the main results.

4 Formal Language Properties

In this section we prove that neither the class of regular languages, nor the
class of context-free languages is closed under →∗

G. For basics on these classes
of languages we refer to standard text books like [3].

For a regular expression r we write L(r) for the language generated by r.

Complexity of Guided Insertion-Deletion in RNA-Editing 615

Theorem 2. The class of regular languages is not closed under →∗
G, that is,

there exists a regular language L over Σ = {0, 1} and a finite set G of guides
such that

{v ∈ Σ∗ | ∃u ∈ L : u→∗
G v}

is not regular.

Proof. Choose n = #Δ = 2 and let R consist of the single rule 21 → 12. Choose

L = L([1,⊥]00[2,⊥]00)∗[1,⊥]00[2,⊥]) = {encod(s) | s ∈ L((12)+)}.

Since R describes bubble-sort we obtain (12)k →∗
R 1k2k for k > 0, so by Lemma 2

we obtain encod((12)k) →∗
GR

encod(1k2k). Conversely, from Lemma 5 we obtain
that if encod((12)k) →∗

GR
encod(s′) for s′ ∈ L(1+2+), then (12)k ↔∗

R s′, from
which we conclude s′ = 1k2k, since R preserves both the number of 1’s and the
number of 2’s. Combining this yields

{v ∈ Σ∗ | ∃u ∈ L : u→∗
GR

v} ∩ {encod(s) | s ∈ L(1+2+)}

= {encod(1k2k) | k > 0}.
Since {encod(s) | s ∈ L(1+2+)} = L(([1,⊥]00)∗[1,⊥]00[2,⊥](00[2,⊥])∗) is regu-
lar, {encod(1k2k) | k ∈ N} is not regular, being a straightforward application of
the pumping lemma ([3], Theorem 4.1), and regularity is closed under intersec-
tion ([3], Theorem 4.8), we conclude that {v ∈ Σ∗ | ∃u ∈ L : u →∗

GR
v} is not

regular. ��
The set G = GR of guides in Theorem 2 consists of the four strings

1 101 101 00 101 101 1 = [2, 2]00[1, 1]
1 1 1 101 00 1 1 101 1 = [⊥, 2]00[⊥, 1]
101 1 101 00 1 10101 1 = [1, 2]00[2, 1]
101 1 1 1 00 1 101 1 1 = [1,⊥]00[2,⊥]

Here spaces are only added for readability.
The following theorem is very similar, but then for context-free languages.

Theorem 3. The class of context-free languages is not closed under →∗
G, that

is, there exists a context-free language L over Σ = {0, 1} and a finite set G of
guides such that

{v ∈ Σ∗ | ∃u ∈ L : u→∗
G v}

is not context-free.

Proof. Choose n = #Δ = 3 and let R consist of the single rule 21 → 12.
Choose L = {encod((12)k3k) | k > 0} which is context-free as being gener-
ated by S ::= encod(123) | encod(12)00S00encod(3). Since (12)k3k →∗

R 1k2k3k,
by Lemma 2 we obtain encod((12)k3k) →∗

GR
encod(1k2k3k). Conversely, from

Lemma 5 we obtain that if encod((12)k3k) →∗
GR

encod(s′) for s′ ∈ L(1+2+3+),

616 H. Zantema

then (12)k3k ↔∗
R s′, from which we conclude s′ = 1k2k3k, since R preserves the

frequency of all separate numbers. Combining this yields

{v ∈ Σ∗ | ∃u ∈ L : u→∗
GR

v} ∩ {encod(s) | s ∈ L(1+2+3+)}
= {encod(1k2k3k) | k > 0}.

Since {encod(s) | s ∈ L(1+2+3+)} is regular, {encod(1k2k3k) | k ∈ N} is not
context-free, being a straightforward application of the pumping lemma ([3],
Theorem 7.18), and the intersection of a regular and a context-free language is
context-free ([3], Theorem 7.27), we conclude that {v ∈ Σ∗ | ∃u ∈ L : u→∗

GR
v}

is not context-free. ��

5 The Exponential Lower Bound

In this section we prove an exponential lower bound for the number of
→G-steps. For doing so we need a string rewrite system R meeting our for-
mat with exponential reduction length. We choose R to consist of the following
three rewrite rules over Δ = {1, 2, 3, 4}:

21 → 41, (1)
34 → 42, (2)
24 → 32. (3)

Observe that R is both left-non-overlapping and right-non-overlapping. This
system was inspired by the system 0e → 1e, 1e → c0e, 0c → 1, 1c → c0
describing binary counting from 0ne representing zero to 1ne representing 2n−1.
Here e marks the end of the binary number, and c represents the carry. The rules
0e → 1e, 1e → c0e describe adding one to the binary number; the other rules
are for processing the carry. Since at every step at most one is added to the
value, and in the computation from 0ne to 1ne the value increases by 2n−1, this
requires an exponential number of steps. This system was changed to R in order
to have all left hand sides and right hand sides of rules of size 2, and meet the
non-overlappingness requirement. In the R encoding 1 serves as the end symbol,
and 2 and 4 represent the bits. The symbol 3 behaves slightly different from the
carry, but still forces reduction lengths to be exponential. The following lemma
describes how 2m1 rewrites to 4m1 with the required exponential lower bound.

Lemma 6. For every m > 0 there is a reduction 2m1 →∗
R 4m1, but if 2m1 ↔k

R

4m1 then k ≥ 2m − 1.

Proof. We prove existence by induction on m. For m = 1 the claim is immediate
from rule (1). For the induction step we get

2m1 →∗
R 24m−11 (induction hypothesis)

→∗
R 3m−121 (rule (3), m− 1 times)

→R 3m−141 (rule (1))
→∗

R 42m−11 (rule (2), m− 1 times)
→∗

R 4m1 (induction hypothesis).

Complexity of Guided Insertion-Deletion in RNA-Editing 617

For the lower bound on the number of steps define the weight W on strings
as follows:

W (i) = i, W (si) = 2W (s) + i

for strings s and i = 1, 2, 3, 4. Observe that by applying rule (2) the weight of a
string remains the same, since 2∗3+4 = 2∗4+2. Similarly, by applying rule (3)
the weight of a string remains the same too, since 2 ∗ 2 + 4 = 2 ∗ 3 + 2. Observe
that in converting 2m1 by the shape of the rules the symbol 1 only occurs as
the last symbol of the string, by which rule (1) only applies at the rightmost
position. Hence in such conversions the weight of the string increases by exactly
4 by applying rule (1).

Let f(m) be the number of (1)-steps in the above R-reduction from 2m1
to 4m1. Inspecting this reduction easily yields f(m) = 2m − 1. So W (4m1) =
W (2m1) + 4 ∗ (2m − 1). Hence every ↔R-conversion from 2m1 to 4m1 needs at
least 2m − 1 steps of rule (1). ��
Now we arrive at the main theorem.

Theorem 4 (lower bound). For Σ = {0, 1} there exists a set G ⊆ Σ∗ of 12
strings, and um, vm ∈ Σ∗ for m = 1, 2, 3, . . ., such that |um−1| < |um| = |vm|
and um →∗

G vm for every m, but if um →k
G vm then k is at least exponential in

|um| = |vm|.
Proof. Choose um = encod(2m1), vm = encod(4m1). Choose G = GR for R as
defined above. Combining Lemma 2 and Lemma 6 we obtain

um = encod(2m1) →∗
G encod(4m1) = vm.

For the lower bound part assume encod(2m1) = um →k
G vm = encod(4m1) for

any m. Then by Lemma 5 we conclude 2m1 ↔p
R 4m1 for p ≤ k. Then by Lemma

6 we conclude k ≥ p ≥ 2m− 1. Note that |um| = |vm| = 12m+10, so k is indeed
at least exponential in |um| = |vm|. ��
The set G = GR of guides in Theorem 4 consists of the 12 strings

1 101 1 1 101 1 1 00 101 1 1 101 1 1 1 = [2, 2]00[1, 1]
1 1 1 1 1 101 1 1 00 1 1 1 1 101 1 1 1 = [⊥, 2]00[⊥, 1]
1 1 1 101 101 1 1 00 101 1 1 101 1 1 1 = [4, 2]00[1, 1]
1 1 1 101 1 1 1 1 00 101 1 1 1 1 1 1 1 = [4,⊥]00[1,⊥]

1 1 101 1 1 101 1 00 1 1 1 101 1 1 101 = [3, 3]00[4, 4]
1 1 1 1 1 1 101 1 00 1 1 1 1 1 1 1 101 = [⊥, 3]00[⊥, 4]
1 1 1 101 1 101 1 00 1 101 1 1 1 1 101 = [4, 3]00[2, 4]
1 1 1 101 1 1 1 1 00 1 101 1 1 1 1 1 1 = [4,⊥]00[2,⊥]

1 101 1 1 101 1 1 00 1 1 1 101 1 1 101 = [2, 2]00[4, 4]
1 1 1 1 1 101 1 1 00 1 1 1 1 1 1 1 101 = [⊥, 2]00[⊥, 4]
1 1 101 1 101 1 1 00 1 101 1 1 1 1 101 = [3, 2]00[2, 4]
1 1 101 1 1 1 1 1 00 1 101 1 1 1 1 1 1 = [3,⊥]00[2,⊥]

Here spaces are only added for readability.

618 H. Zantema

6 Alternative Format

In this section we sketch how our results apply to another format: the natural
restriction of the insertion-deletion mechanism from [6] to the case where only
0s are inserted or deleted.

Observe that in all our results we had G = GR for a particular string rewriting
systems R, and that in Lemma 2 the used→G-steps all satisfy the following extra
conditions:

– Every g ∈ G is either only used for delete steps, or only for insert steps.
– For delete steps exactly two zeros are removed, on positions that are fixed

for every g ∈ G.
– For insert steps exactly two zeros are inserted, on positions that are fixed

for every g ∈ G.
– In every g ∈ G the pattern 00 occurs exactly once, in between the two

positions to be inserted or deleted.

So every insert step →G for g ∈ G is an application of a rewrite rule of the shape
uv00wx→ u0v00w0x, in which g = u0v00w0x. Similarly, every delete step →G

for g ∈ G is an application of a rewrite rule of the shape u0v00w0x→ uv00wx,
in which g = uv00wx. Here all strings u, v, w, x start and end by 1, and do not
contain the pattern 00. In its turn, rules of this shape can be mimicked by rules
in which by every step only a single 0 is inserted or deleted. This is done as
follows: a rule of the shape uv00wx→ u0v00w0x is replaced by the four rules

uv00wx→ uv000wx
uv000wx→ u0v000wx
u0v000wx→ u0v000w0x
u0v000w0x→ u0v00w0x,

and similar for rules of the shape u0v00w0x→ uv00wx: take the same rules in
opposite direction. Let SR be the resulting set of rewrite rules. By construction
we have for s, s′ ∈ Δ∗: if encod(s) →m

GR
encod(s′) then encod(s) →4m

SR
encod(s′).

Conversely one can prove:

Lemma 7. Let R be left-non-overlapping and right-non-overlapping. Let s, s′ ∈
Δ∗ satisfy encod(s) →k

SR
encod(s′). Then encod(s) →m

GR
encod(s′) for some

m ≤ k/4.

So our basic lemmas, and hence also Theorems 2, 3 and 4 all hold for →GR

replaced by →SR . Note that all rules of SR are of the shape uv → u0v or
u0v → uv, for none of the u, v starting or ending in 0. So in this way all our
results apply for the insertion-deletion mechanism from [6], where strings of the
shape uv are replaced by uαv or conversely, for the restricted case of α always
being 0 and u, v are not allowed to start or end in 0. As this format easily implies
an exponential upper bound of computation lengths similar to Theorem 1, also
in this format this bound is tight.

Complexity of Guided Insertion-Deletion in RNA-Editing 619

7 Conclusions

In the literature [4,6,5,2] several insertion-deletion mechanisms have been de-
scribed, often inspired by RNA-editing. All of these have full computational
power, more precisely, they generate all recursively enumerable languages. All
of these mechanism allow to insert or delete strings of arbitrary shape. In bio-
logical RNA-editing mechanisms, however, not arbitrary strings are deleted or
inserted, but often only occurrences of a single symbol. This paper restricts to a
natural format in which only occurrences of such a single symbol 0 are inserted
or deleted. By nature then the computational power is of a much lower level, for
instance, in a given setting the number of distinct strings that can be generated
typically is bounded by an exponential function. Results in this paper indicate
that within these limitations the complexity is as rich as it could be: we gave in-
stances for which we proved that corresponding computation lengths are at least
exponential, and for which the classes of regular and context-free languages are
not closed.

Acknowledgments. We are grateful to Dragan Bosnacki and Erik de Vink for
fruitful discussions.

References

1. Alfonzo, J., Thiemann, O., Simpson, L.: The mechanism of U insertion/deletion
RNA editing in kinetoplastid mitochondria. Nucleic Acids Research 25(19), 3751–
3759 (1997)

2. Biegler, F., Burrell, M.J., Daley, M.: Regulated RNA rewriting: Modelling RNA
editing with guided insertion. Theoretical Computer Science 387(2), 103–112 (2007)

3. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation. Addison-Wesley, Reading (2001)

4. Kari, L., Thierrin, G.: Contextual insertion/deletions and computability. Informa-
tion and Computation 131, 47–61 (1996)

5. Margenstern, M., Paun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-deletion
systems. Theoretical Computer Science 330, 339–348 (2005)

6. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion
systems. Natural Computing 2(4), 321–336 (2003)

Author Index

Aravantinos, Vincent 58
Arrighi, Pablo 70
Arslan, Abdullah N. 82

Blanchet-Sadri, Francine 94, 106
Bousquet, Nicolas 118
Brzozowski, Janusz 1
Buszkowski, Wojciech 130

Cabessa, Jérémie 142
Caferra, Ricardo 58
Carrascosa, Rafael 154
Casadio, Claudia 166
Champarnaud, Jean-Marc 178
Choffrut, Christian 190
Clark, Alexander 16
Costa Florêncio, Christophe 202
Coste, François 154
Crespi Reghizzi, Stefano 214
Crochemore, Maxime 227
Cruz-Santos, William 239

Delzanno, Giorgio 524
Di Giampaolo, Barbara 249
Dubernard, Jean-Philippe 178

Ehlers, Rüdiger 261

Fernau, Henning 202

Gagie, Travis 273
Gallé, Matthias 154
Gawrychowski, Pawe�l 273
Grattage, Jonathan 70
Gruber, Hermann 285
Grumberg, Orna 561
Gulan, Stefan 285
Gupta, Gopal 536

Hemmerling, Reinhard 297
Hovland, Dag 309

Iliopoulos, Costas 227
Infante-Lopez, Gabriel 154

Jain, Sanjay 321
Jeanne, Hadrien 178
Jordan, Charles 333

Kaji, Yuichi 596
Kanazawa, Makoto 344
Kasprzik, Anna 380
Kim, Jane I. 94
Klunder, Barbara 356
Kötzing, Timo 380
Kubica, Marcin 227
Kupferman, Orna 561
Kurth, Winfried 297
Kutrib, Martin 368

La Torre, Salvatore 249
Letichevsky, Alexander A. 392
Leupold, Peter 403
Lin, Zhe 130, 414
Löding, Christof 118
Lopatková, Markéta 500
Luo, Qinglong 321

Malcher, Andreas 190, 368
Mandrioli, Dino 214
Manea, Florin 426
Marschall, Tobias 439
Melichar, Bořivoj 32
Mercaş, Robert 94, 106
Mereghetti, Carlo 190
Milo, Nimrod 451
Morales-Luna, Guillermo 239
Mráz, Frantǐsek 500
Muscholl, Anca 50

Nagy, Benedek 463
Napoli, Margherita 249
Neary, Turlough 475
Nebel, Markus E. 585

Otto, Friedrich 463

Palano, Beatrice 190
Peltier, Nicolas 58
Peñaloza, Rafael 488

622 Author Index

Pinhas, Tamar 451
Plátek, Martin 500
Policriti, Alberto 512

Radoszewski, Jakub 227
Rahmann, Sven 439
Rosa-Velardo, Fernando 524
Rytter, Wojciech 227, 356

Saeedloei, Neda 536
Sakthi Balan, Muthiah 549
Salvati, Sylvain 344
Seki, Hiroyuki 596
Seshan, Parameswaran 549
Severa, William 94
Sheinvald, Sarai 561
Shoukourian, Arsen S. 392
Shoukourian, Samvel K. 392
Simmons, Sean 94, 106

Smoleňová, Kataŕına 297
Stephan, Frank 321

Tamm, Hellis 573
Tiseanu, Cătălin 426
Tomescu, Alexandru I. 512

Vezzi, Francesco 512
Villa, Alessandro E.P. 142

Waleń, Tomasz 227
Weinberg, Frank 585
Weissenstein, Eric 106

Yoshinaka, Ryo 596

Zantema, Hans 608
Zeugmann, Thomas 333
Ziv-Ukelson, Michal 451

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	Complexity in Convex Languages
	Convex Languages
	Languages Defined by Partial Orders
	Closure Properties
	Complexity of Decision Problems
	Quotient Complexity
	Quotient Complexity of Boolean Operations
	Complexities of Product, Star and Reversal
	Unary Convex Languages
	Closed and Ideal Language Classes
	Conclusions
	References

	Three Learnable Models for the Description of Language
	Introduction
	How
	Canonical DFA
	CFGs with Congruence Classes
	Regular Languages

	Distributional Lattice Grammars
	Maximal Elements

	Representation
	Discussion
	References

	Arbology: Trees and Pushdown Automata
	Introduction
	BasicNotions
	Alphabet
	Tree, Tree Pattern, Tree Template
	Language, Grammar, Finite and Pushdown Automata

	Linear Notation of Trees
	One Visit Linear Notation

	Properties of Linear Notations of Trees
	On Determinisation of Pushdown Automata
	Exact Tree Pattern Matching
	Subtree Matching
	Multiple Subtree Matching

	Indexing Trees
	Finding Repeats in Trees
	Conclusion
	References

	Analysis of Communicating Automata
	Basics
	Symbolic Representations
	Faulty Channels
	Partial Order Approach
	Conclusion and Outlook
	References

	Regular Papers
	Complexity of the Satisfiability Problem for a Class of Propositional Schemata
	Introduction
	Regular Schemata
	Syntax and Semantics
	Additional Definitions

	Deciding the Unsatisfiability of Regular Schemata
	Termination and Complexity
	Maximal Number of States
	Consequences

	Conclusion
	References

	A Simple n-Dimensional Intrinsically Universal Quantum Cellular Automaton
	Introduction
	An Intrinsically Universal QCA
	Conclusion
	References

	A Fast Longest Common Subsequence Algorithm for Similar Strings
	Introduction
	Preliminaries
	An Algorithm for the Parametric LCS Problem
	Main LCS Algorithm
	Conclusion
	References

	Abelian Square-Free Partial Words
	Introduction
	Preliminaries
	The Infinite Case with a Finite Number of Holes
	The Case with Infinitely Many Holes
	The Distinct Finite Case
	Conclusion
	References

	Avoidable Binary Patterns in Partial Words
	Introduction
	Avoidability on Partial Words
	Binary Patterns 2-Avoidable by Iterated Morphisms
	Binary Patterns 2-Avoidable by Non-iterated Morphisms
	References

	Equivalence and Inclusion Problem for Strongly Unambiguous B\"{u}chi Automata
	Introduction
	Definitions and Background
	Equivalence for Strongly Unambiguous B\"{u}chi Automata
	Extension to Strongly k-Ambiguous Automata
	Periodic Words in Deterministic Automata
	Conclusion
	References

	Pregroup Grammars with Letter Promotions
	Introduction and Preliminaries
	The Normalization Theorem
	LPPP and Weighted Graphs
	Main Results
	References

	A Hierarchical Classification of First-Order Recurrent Neural Networks
	Introduction
	The Model
	Attractors
	Recurrent Neural Networks and Muller Automata
	The RNN Hierarchy
	Conclusion
	References

	Choosing Word Occurrences for the Smallest Grammar Problem
	Introduction
	Iterative Repeat Replacement Algorithms
	Definitions and Notation
	General Scheme
	Limitations of IRR

	Optimization of the Occurrences Choice
	Global Optimization of Occurrences Replacement
	IRR with Occurrence Optimization
	Widening the Explored Space: The ZZ Algorithm

	Experiments
	Conclusions
	References

	Agreement and Cliticization in Italian: A Pregroup Analysis
	The Pregroup Calculus in Linguistic Analysis
	Basic Properties of Pregroups
	Extension to Multiple Pregroups

	A Pregroup Grammar for Italian
	Verbs and Verb Phrases
	The Auxiliary Verbs
	Finite Verb-Forms and Declarative Sentences

	Clitic Pronouns and Agreement in Italian
	Preverbal Clitics
	The Modal Verbs
	Agreement with Past Participles and Auxiliary Verbs
	Cliticization with Modal and Auxiliary Verbs
	Finite Verb-Forms and Declarative Sentences

	Conclusions
	References

	Geometricity of Binary Regular Languages
	Introduction
	Preliminaries
	Geometrical Languages
	Words, Paths and Trajectories
	Basic Definitions and Properties
	Right Trajectories of a Point

	A Geometricity Test for Binary Regular Languages
	A Polynomial Algorithm for Checking Geometricity
	No Conflict Inside the Right Boundary of P and the Left Boundary of R
	No Conflict on the Border of the Heart

	Conclusion
	References

	On the Expressive Power of FO[+]
	Introduction
	Preliminaries
	Bounded Languages
	Closure Properties of ${\mathcal L}$(FO[+])
	Negative Closure Properties
	Positive Closure Properties
	An Application: Dyck Languages

	References

	Finding Consistent Categorial Grammars of Bounded Value: A Parameterized Approach
	Introduction
	Categorial Grammars
	Complexity Notions
	Results
	Reparameterizations
	Consequences for the Complexity of Learning
	References

	Operator Precedence and the Visibly Pushdown Property
	Introduction
	Basic Definitions and Properties
	Known Properties of Floyd Grammars

	Closure under Concatenation
	Closure under Kleene Star
	Regular Languages with Prescribed Precedences

	Conclusions
	References

	On the Maximal Number of Cubic Runs in a String
	Introduction
	Preliminaries
	Fibonacci Strings
	Upper Bound
	Lower Bound
	References

	On the Hamiltonian Operators for Adiabatic Quantum Reduction of SAT
	Introduction
	SAT and AQC
	Satisfiability Problem
	AQC Formulation of SAT

	Procedural Construction of the Hamiltonian Operators
	Hyperplanes in the Hypercube
	The Hamiltonian Operators H_{E}
	Hamiltonian Operator H$_{Zφ}$

	Conclusions
	References

	Parametric Metric Interval Temporal Logic
	Introduction
	Parametric Dense-Time Metric Interval Temporal Logic
	Decidability of PMITL
	Computational Complexity in Fragments of PMITL
	Parameterization of Time Intervals
	References

	Short Witnesses and Accepting Lassos in ω-Automata
	Introduction
	Preliminaries
	Finding Shortest Accepting Lassos
	The Rabin Acceptance Condition and Its Special Cases
	Generalized B\"{u}chi and Streett Automata
	Muller Automata

	Finding Shortest Witnesses
	Conclusion
	References

	Grammar-Based Compression in a Streaming Model
	Introduction
	LZ77 in a Streaming Model
	Logspace CFG Construction
	Recent Work
	References

	Simplifying Regular Expressions
	Introduction
	Basic Notions
	Alphabetic Width versus Reverse Polish Notation Length
	Constructing ε-NFAs from Regular Expressions, Revisited
	Alphabetic Width and the Size of ε-NFAs
	Conclusion and Further Research
	References

	A Programming Language Tailored to the Specification and Solution of Differential Equations Describing Processes on Networks
	Introduction
	Related Work
	Solving Differential Equations on Graphs
	XL
	Functional Dependence of Growth
	Improving the Numerical Solution
	Extending XL to Support ODEs
	Monitor Functions

	Results
	Conclusions and Future Work
	References

	The Inclusion Problem for Regular Expressions
	Introduction
	Regular Expressions
	1-Unambiguous Regular Expressions

	Rules for Inclusion
	Properties of the Algorithm
	Preservation of 1-Unambiguity
	Invertibility of the Rules
	Termination and Polynomial Run-Time
	Soundness and Completeness

	Related Work and Conclusion
	References

	Learnability of Automatic Classes
	Introduction
	Preliminaries
	Automatic Learning of Automatic Classes
	Consistent Learning
	Automatic Learning from Fat Text
	References

	Untestable Properties Expressible with Four First-Order Quantifiers
	Introduction
	Preliminaries
	An Untestable Property
	Conclusion
	References

	The Copying Power of Well-Nested Multiple Context-Free Grammars
	Introduction
	The Double Copying Theorem for Context-Free Languages
	Combinatorics on Words
	Multiple Context-Free Grammars
	The Double Copying Theorem for Well-Nested Multiple Context-Free Languages
	Conclusion
	References

	Post Correspondence Problem with Partially Commutative Alphabets
	Introduction
	The Classical Post Correspondence Problem
	Post Correspondence Problem with p.c. Alphabets
	Reversal Bounded Multicounter Machines

	Two Special Cases of Partially Commutative PCP
	Partially Commutative PCP(2)
	Partially Commutative PCP with One Periodic Morphism

	Partially Commutative Weak PCP
	Weak-PCP(1, k)
	References

	Reversible Pushdown Automata
	Introduction
	Preliminaries and Definitions
	Structural Properties and Computational Capacity
	Closure Properties
	Decidability Questions
	References

	String Extension Learning Using Lattices
	Introduction
	Definitions and Basic Properties
	ExampleSECs
	Properties of SECs
	Query Learning of SECs
	Conclusion and Outlook
	References

	The Equivalence Problem of Deterministic Multitape Finite Automata: A New Proof of Solvability Using a Multidimensional Tape
	Introduction
	Partially Commutative Semigroups
	A New Proof of Solvability
	References

	Primitive Words Are Unavoidable for Context-Free Languages
	The Language of Primitive Words
	Preliminaries
	Unavoidable Languages
	Non-primitive Words in Context-Free Languages
	Conclusion
	References

	Modal Nonassociative Lambek Calculus with Assumptions: Complexity and Context-Freeness
	Introduction and Preliminaries
	NL$_{S4}$ Enriched with Non-logical Assumptions
	Main Results
	Variants
	Conclusion
	References

	Hard Counting Problems for Partial Words
	Introduction
	Basic Definitions
	Several NP-Complete Problems and the Associated Counting Problems
	Further Hard Counting Problems for Partial Words
	References

	Exact Analysis of Horspool’s and Sunday’s Pattern Matching Algorithms with Probabilistic Arithmetic Automata
	Introduction
	Preliminaries
	Basic PAA Construction
	An Alternative PAA Construction
	Reducing the State Space
	Results and Discussion
	References

	SA-REPC – Sequence Alignment with Regular Expression Path Constraint
	Motivation
	Preliminaries
	Problem Definition of SA-REPC
	An Algorithm for the SA-REPC Problem
	Scoring Scheme Refinement for Constraint Matching Region

	The Application of SA-REPC to microRNA Target Prediction
	Utilizing Path-constrained Semi-local Alignment for microRNA Target Prediction
	Test Results

	Conclusions and Open Problems
	References

	CD-Systems of Stateless Deterministic R(1)-Automata Accept All Rational Trace Languages
	Introduction
	Stateless R-Automata with Constant Window Size
	CD-Systems of Stateless Deterministic R-Automata with Window Size 1
	Rational Trace Languages
	Concluding Remarks
	References

	A Boundary between Universality and Non-universality in Extended Spiking Neural P Systems
	Introduction
	SNPSystems
	Counter Machines
	A Small Universal Extended SN P System
	Lower Bounds for Small Universal SN P Systems
	Conclusion
	References

	Using Sums-of-Products for Non-standard Reasoning
	Introduction
	Description Logics and Inference Relations
	The SumProd Problem
	Pinpointing Formula
	Access Control
	Utility from Preference Formulae
	Best Entailment Degree

	Solving the SumProd Problem
	Axiomatic Automata
	Computing a CNF Formula

	Conclusions
	References

	Restarting Automata with Structured Output and Functional Generative Description
	Introduction
	Basic Principles of Analysis by Reduction

	Restarting Automata as a Formal Framework for {\sf FGD}
	Representation of {\sf FGD} by Enhanced ${\tt t-sRL}$-Automaton
	Concluding Remarks

	References

	A Randomized Numerical Aligner (rNA)
	Introduction
	An On-Line Algorithm for String Matching with k Mismatches
	A Randomized Numerical String Aligner with k Mismatches
	Experimental Results
	References

	Language-Based Comparison of Petri Nets with Black Tokens, Pure Names and Ordered Data
	Introduction
	Preliminaries
	Nets in Which Tokens Carry Pure Names
	Pure Names vs. Black Tokens
	Pure Names vs. Ordered Data
	Conclusions and Open Problems
	References

	Verifying Complex Continuous Real-Time Systems with Coinductive CLP(R)
	Introduction
	Timed Automata
	Pushdown Timed Automata (PTA)
	Modeling PTA with Coinductive CLP(R)
	The Generalized Railroad Crossing (GRC)
	Modeling the GRC with Coinductive CLP(R)
	Verifying Safety and Utility Properties
	Conclusions and Related Work
	References

	Incremental Building in Peptide Computing to Solve Hamiltonian Path Problem
	Introduction
	Background and Preliminaries
	A Brief Look into the Existing Models
	Peptide Computing
	Solving Hamiltonian Path Problem – Previous Method

	Incremental Building of Peptide Sequences
	Remarks
	Conclusion
	References

	Variable Automata over Infinite Alphabets
	Introduction
	Variable Automata over Infinite Alphabets
	Properties of VFAs
	Deterministic VFA
	Determinization

	VariableB\"{u}chi Automata
	References

	Some Minimality Results on Biresidual and Biseparable Automata
	Introduction
	Definitions
	RFSA, BiRFSA and Biseparable Automata
	Lower Bound Techniques for the Size of NFAs
	Transition-Minimal ϵ-NFAs
	Transition Minimality of Reversible BiRFSAs
	References

	Extending Stochastic Context-Free Grammars for an Application in Bioinformatics
	Introduction
	Formal Definitions
	RNA Molecules
	Stochastic Context-Free Grammars
	Determining the Most Probable Derivation

	Application
	Data
	Grammars
	Observations and Dicussion
	Runtime

	Conclusion
	Possible Other Applications
	Further Research

	References

	Chomsky-Sch\"{u}tzenberger-Type Characterization of Multiple Context-Free Languages
	Introduction
	Preliminaries
	Theorem
	Informal Example of Construction
	Formal Construction
	Correctness
	Generator Theorem

	Conclusion
	References

	Complexity of Guided Insertion-Deletion in RNA-Editing
	Introduction
	Preliminaries
	Relation to String Rewriting
	Formal Language Properties
	The Exponential Lower Bound
	Alternative Format
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

