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Abstract. This paper delivers an example of applying intelligent data analysis
to biological data where the success of the project was only possible due to joint
efforts of the experts from biology, medicine and data analysis. The initial and
seemingly obvious approach for the analysis of the data yielded results that did
not look plausible to the biologists and medical doctors. Only a better under-
standing of the experimental setting and the data generating process enabled us
to develop a more suitable model for the underlying experiments and to provide
results that are coherent with what could be expected from our knowledge and
experience.

The data analysis problem we discuss here is the identification of signif-
icant changes in experiments with short hairpin RNA. A simple Monte Carlo
test yielded incoherent results and it turned out that the assumptions on the un-
derlying experiments were not justified. With a Bayesian approach incorporat-
ing necessary prior knowledge from the biologists, we could finally solve the
problem.

1 Introduction

A fundamental part of intelligent data analysis [1] is the combination of expertise in
data analysis and in the domain from which the data originate. Both partners, the data
analysis expert and the data expert must cooperate and develop a basic understanding
of the other’s scientific field. This is usually a learning process that takes time and can
lead to failures in the initial phase that are seldom reported.

This paper describes an application where biological data from the so called third
generation microRNA based shRNA (shRNAmir) technology were analyzed. The data
come from mouse experiments and a goal of this project is the characterization of new
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cellular signalling networks that are essential for regenerative processes of the liver.
The results can lead to new pharmacological strategies for the treatment of patients
with chronic liver damages.

The data are similar, but not identical to standard microarray experiments. In mi-
croarray experiments, measurements for two or more conditions are taken for the
expression of genes and one is interested in identifying those genes with a significant
change of expression. In contrast to standard microarray experiments our measurements
are based on simple counting procedures requiring a statistical evaluation which is not
as obvious as it seems at first sight.

This paper describes the whole process of modelling the problem with failures and
success as a case study in intelligent data analysis. Section 2 describes the biological
background and Section 3 provides a more abstract and formal definition of the prob-
lem. Sections 4 and 5 discuss two approaches that failed to explain the observed data in
the end, leading to the finally successful model derived in Section 6. The final conclu-
sions address open problems and future work that will be based on the ideas described
in this paper.

2 Biological Background

Our research group is taking advantage of genetic approaches to study the regulation of
liver regeneration. The liver has a tremendous potential to regenerate upon tissue dam-
age by toxins or infection. It is unique that, in contrast to many other epithelial organs,
differentiated hepatocytes, which normally reside in the G0 phase of the cell cycle, can,
upon liver damage, re-enter the cell cycle and give rise to new hepatocytes. However,
when chronic liver damage occurs (e.g. chronic viral hepatitis), there is eventually an
exhaustion of the regenerative capacity of hepatocytes and only partial compensation by
a stem cell compartment (bipotential liver progenitor cells). The consequence is chronic
liver failure, which represents a major health problem worldwide. A unique system for
conducting multiplex in vivo RNA interference (RNAi) screens for new positive and
negative regulators of liver regeneration was developed. Combining a well character-
ized mouse model of liver repopulation with third generation microRNA based short
hairpin RNA (shRNAmir) technology, we show that mouse livers can be stably repopu-
lated with complex shRNAmir libraries [2,3]. RNA interference is a naturally occurring
process, where the presence of double stranded RNA leads to a targeted degradation of
a cellular messenger RNA which is sequence complementary to one of the two RNA
strands. Since its discovery RNA interference is being used routinely to knock down
any gene of choice in vitro as well as in vivo. The RNAi pathway can be harnessed in
experimental systems by introducing shRNAs into a cell, which after processing by the
internal enzymatic machinery releases a double stranded RNA such as an siRNA, which
finally releases one strand. This strand can find a sequence complementary messenger
RNA and triggers the degradation of the respective messenger RNA, thus reducing or
abolishing the amount of corresponding protein.

Using our in vivo RNAi screening platform, we are characterizing new cellular sig-
nalling networks which regulate the proliferation of hepatocytes during chronic liver
damage. It is the ultimate goal of our work to translate the obtained genetic information
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into new pharmacological strategies which can increase the liver’s regenerative potential
during chronic liver damage. Such therapies are holding the great promise to prolong
patients’ survival until they are eligible for definite treatment by liver- or hepatocyte
transplantation.

For our experiments we used the mouse as a model organism. The mouse genome
consists of approximately 30000 genes. For this study we used a focused shRNA library
with 631 shRNAs targeting 301 genes. Therefore we have in average a coverage of 2
shRNAs per gene. The 301 genes were chosen based on frequent deletions in human
HCCs (hepatocellular cancers).

631 shRNAs were introduced into mouse livers. The first half of those livers (n=6)
were harvested directly after intrahepatic shRNA delivery. The second half of the pop-
ulation (n=6) underwent a protocol for chronic liver damage (intraperitonal CCl4 treat-
ment) after shRNA delivery into the livers was accomplished. CCl4 induces cell death
with subsequent compensatory proliferation of surviving hepatocytes. As mentioned
above, in this setting hepatocytes containing an shRNA which confers a proliferative
advantage will expand, whereas hepatocyes containing an shRNA whose gene knock-
down confers a disadvantage under the conditions of chronic liver damage will be re-
duced in number over time. To quantify the representation of each shRNA in the whole
population, we are using a PCR amplification protocol of all shRNAs in the population.
PCR products containing the individual shRNA sequences are then subjected to deep
sequencing. In average we are applying 8 - 12 million sequence reads per biological
sample. Deep sequencing analysis yields the total number of sequence reads for each
hairpin, which together with the total number of applied reads can be used to calcu-
late the percent of representation for each shRNA in the population. If this procedure
is done for the starting population (livers directly after shRNA delivery) and for the
population after manipulation, both populations can be compared to find out whether
a certain shRNA is enriched, stays unchanged or is depleted in the system. However,
a straight forward analysis of shifts in shRNA representation is hampered by the fact,
that strong changes of single hairpins mask smaller changes or suggest changes in un-
changed hairpins. Therefore we needed to establish a specific analysis method for this
approach to take the experimental setting into account.

The newly used statistical approach helped us to define bona fide candidates. Al-
ready preliminary experiments verified, that one highly enriched hairpin influences the
hepatocyte proliferation under chronic liver damage in a positive way, recognized by
several biological parameters, like survival.

3 Problem Formalization

In our experiments, short hairpin RNA (shRNA) [4] is attached to genes. Most of the
genes will be marked by one specific hairpin, but some of the genes can also be marked
by more than one hairpin. This is not just redundancy, but also related to different func-
tions of the gene. We use a few hundred different types of hairpins in our experiments.
The number of different types of hairpins will be denoted by h. We deal with a pool of
more than 1012 genes. Some hairpins can be easier adapted to the corresponding genes,
for others it is more difficult. Therefore, when marking the genes with the hairpins, we
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cannot say in advance, how successful the process is for the different types of genes.
Therefore, we draw a sample – the sample size is usually a few million – from the pool
of 1012 genes and count, how often we find each of the hairpins. Let mi be the counts
for hairpin i (i ∈ {1, . . . , h}). The sample size is therefore

m =
h∑

i=1

mi.

From the theoretical point of view, we draw m balls (genes) from an urn with more
than 1012 balls of h different colours (types of hairpins) without replacement. Due to
the large number of genes in the initial pool compared to the sample we draw, we can
neglect the fact that we draw the sample without replacement and consider it as an ex-
periment with replacement. In this way, we can assume that our sample originates from
a multinomial distribution with h possible outcomes. We do not know the probabilities
for the outcomes, but we draw a sample of size m. Of course, we could estimate these
probabilities by p̂i = mi

m .
After some time, the distribution of the hairpins might have changed and we repeat

the experiment again. We do not necessarily draw a sample of exactly the same size.
We draw now a sample of size n instead of m from the possibly changed multinomial
distribution. We could estimate the probabilities for this multinomial distribution in the
same way as before as q̂i = ni

n where ni is now the count for hairpin i for the second

sample. This implies n =
∑h

i=1 ni.
We are now interested in those hairpins i for which the numbers have changed sig-

nificantly, corresponding to up- or down-regulated genes.

4 The Seemingly Obvious Statistical Model and a Monte Carlo
Test

In order to identify those hairpins for which the number has changed significantly from
the initial to the final sample, we could apply a statistical test with the null hypothesis
that the initial and the final sample originate from multinomial distributions with the
same underlying probabilities, i.e. the null hypothesis would be pi = qi for all i ∈
{1, . . . , h}.

This test can be easily implemented as a Monte Carlo test [5]. We choose the com-
bination of probabilities for the multinomial distribution that would generate the two
samples with highest probability. The maximum likelihood estimator for this problem
is obtained by joining the two samples and estimate the probabilities as r̂i = mi+ni

m+n .
Then we draw two samples from a (pseudo-)random number generator for this multi-
nomial distribution of size m and n. We now obtain simulated estimations p̂sim

i and q̂sim
i

and can compare these with the estimates p̂i and q̂i from the original sample. If

p̂sim
i , q̂sim

i ∈ [p̂i, q̂i] or p̂sim
i , q̂sim

i ∈ [q̂i, p̂i] (1)

holds, then p̂sim
i and q̂sim

i variate less than p̂i and q̂i. In other words, if this is not the
case, the difference between p̂i and q̂i can be explained by simple random variations in
the two samples from the multinomial distribution with the same probabilities.
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Of course, we have to repeat this test a large number of times, say 100,000 times.
We can then check, how often in these 100,000 simulations condition (1) is satisfied for
each hairpin. The proportion of the simulations where this condition is satisfied can be
viewed as a (simulated) p-value. We carry out multiple testing here, since we run the
test for all h hairpins in parallel. Therefore, a correction for multiple testing must be
incorporated into the p-values. We use the simple Bonferroni correction [6] where we
have to multiply the obtained p-values with the number of tests we have carried out, i.e.
with the number of hairpins h.

Even after Bonferroni correction, more than 90% of the hairpins have a p-value
smaller than 0.001. That would mean that more than 90% of the hairpins (or genes)
have changed significantly from the initial sample to the final sample. This is in contra-
diction to all experiences biologists have and does not seem plausible. But what could
cause this effect?

To explain this effect, we have to go back to our initial considerations that we do
actually draw our samples from very large (> 1012), but finite hairpin pools (or poula-
tions). We have made the implicit assumption that the overall size of the pool remains
stable which is an incorrect assumption. In order to illustrate the effect of a changing
pool size, let us consider a simplified example with much smaller samples and hairpin
pools. Assume, our original hairpin pool contains only three different types of hairpins,
1000 of each. So we have diminished the pool size to 3000 instead of the original more
than > 1012 hairpins in the pool. We draw a sample of size 30 from this pool. In the
ideal case, we would obtain 10 representatives from each type of hairpin. Now assume
that before we draw the final sample, the first and the second type of hairpin have not
changed their quantity and remain at the level of 1000. But the third type of hairpin has
increased from 1000 to 4000. So the final sample will be drawn from a pool of hairpins
with 1000, 1000 and 4000 replicates from each type. If the final sample has the same
size as the initial sample, in our example 30, we would expect in the ideal case to draw
5 hairpins of the first, 5 of the second and 20 of the third type of hairpin. So the counts
for the initial sample were (10,10,10) and for the final sample (5,5,20) giving the im-
pression that the quantities of all hairpins have changed (under the wrong assumption
that the size of the pool has not changed).

For our real-world data this would mean that if a single hairpin with a high num-
ber in the initial sample would change significantly in quantity, the proportions of all
other hairpins will be affected, even though they might not have changed in quantity.
Therefore, we must take a possible change of the hairpin pool size in our model into
account.

5 A Modified Approach

Assume the initial hairpin pool contains kinit
i replicates of hairpin i. We do not know

these numbers and cannot even estimate them from the sample because we do not know
the overall pool size kinit =

∑h
i=1 kinit

i . Since the samples we draw are quite large, we
can at least assume that

p̂i ≈ kinit
i

kinit
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holds. The same applies to the final sample that contains the unknown number of kfinal
i

replicates of hairpin i. But we can also assume that

q̂i ≈ kfinal
i

kfinal
(2)

holds where kfinal =
∑h

i=1 kfinal
i

Assume that hairpin i changes from the initial to the final sample by the (unknown)
regulation factor ci, i.e. kfinal

i = cik
init
i . With equation (2), we obtain

q̂i ≈ cik
init
i∑h

j=1 cjkinit
j

. (3)

When we extend the right hand side of equation (3) by the factor
1

kfinal
1

kfinal
, we get

q̂i =
cip̂i∑h

i=1 cj p̂j

(i ∈ {1, . . . , h}) (4)

where we have replaced approximately in equation (2) by equal. We should choose the
regulation factors ci in such a way that equation (4) is satisfied.

Without any restrictions on the regulation factors ci, one possible solution would be
ci = q̂i

p̂i
. But this would mean that we explain the changes in the relative frequencies of

the hairpins in the two samples by assuming that each hairpin has changed proportion-
ally to the change of the measurements which does not go along with the considerations
and the simple example we have provided in the previous section.

From the experience of the biologists we know that most of the regulation factors
should be roughly 1. Therefore, we should try to find a solution for the ci with as
little deviations from 1 as possible. This can be formulated as an optimization problem.
Minimize the objective function

L(c1, . . . , ch) =
h∑

i=1

(1 − ci)2 (5)

under the constraints (4).
To solve this problem, we replace all variable ci in the objective function (5) by using

equation (4) from which we obtain

q̂i

q̂j
=

cip̂i

cj p̂j
.

This implies

ci =
p̂j q̂i

p̂iq̂j
cj

and for j = 1, we finally get

ci =
p̂1q̂i

p̂iq̂1
c1. (6)
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This simplifies the objective function (5) to

L = (1 − c1)2 +
h∑

i=2

(
1 − p̂1q̂i

p̂iq̂1
c1

)2

=
h∑

i=1

(
1 − p̂1q̂i

p̂iq̂1
c1

)2

. (7)

In order to find the minimum of this quadratic function, we compute the root of the
derivative.

dL

dc1
= −2

h∑

i=1

(
1 − p̂1q̂i

p̂iq̂1
c1

)
p̂1q̂i

p̂iq̂1
= −2

h∑

i=1

(
p̂1q̂i

p̂iq̂1
− p̂2

1q̂
2
i

p̂2
i q̂

2
1

c1

)
= 0 (8)

This leads to

c1 =
q̂1

p̂1
·
∑h

i=1
q̂i

p̂i∑h
i=1

q̂2
i

p̂2
i

. (9)

With equation (6) we obtain the solution

ci =
q̂i

p̂i
·
∑h

j=1
q̂j

p̂j

∑h
j=1

q̂2
j

p̂2
j

. (10)

From this equation it is clear that the regulation factors ci only depend on the ratios
of the relative frequencies p̂i and q̂i, but not on the absolute frequencies. Therefore, a
change from an initial count for hairpin i of mi = 2 to a final count of ni = 4 would
be treated in the same way as a change from mi = 20, 000 to ni = 40, 000. But it is
obvious that the chance that the change from mi = 20, 000 to ni = 40, 000 is a pure
random effect is much lower than for the change from mi = 2 to ni = 4. Therefore,
this simple model is also not suitable for our purposes.

6 A Bayesian Maximum Likelihood Approach

The approach described in the previous section has introduced a penalty for regulation
factors deviating from 1, representing the idea that most of the expression values of
genes (or hairpins) will not change. This actually represents prior knowledge on the
regulation factors. Bayesian methods are designed to take such prior knowledge into
account. Therefore we develop a Bayesian approach here with a prior that reflects the
knowledge that normally the regulation factors will be close to 1.

We slightly change the notation in order to handle up- and down-regulations in a
symmetric way. If we just use a factor directly, then up-regulation corresponds to values
from the infinite interval (1,∞), whereas down regulations lie in the finite interval
[0, 1). Therefore, we use the parametrization eci for the regulation factors. In this way,
up-regulation is equivalent to ci ∈ (0,∞) and down-regulation to ci ∈ (−∞, 0), so
that up- and down-regulation are just a matter of the sign.

We want to estimate the values for the regulation factors. As mentioned before, we
have prior knowledge about the possible values for the regulation factors. This knowl-
edge will be given by a prior distribution fprior(x). We assume that the priors are inde-
pendent and that all hairpins have the same type of prior. How we choose the prior, will
be discussed later on.
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Let us assume that the estimates p̂i = mi

m for the probabilities of the multinomial
distribution in the first sample are more or less correct. This means we have � · mi

hairpins in our original pool of more than 1012 hairpins. The constant � is unknown,
but independent of the hairpin i. Given the true, but unknown regulation factors eci , we
find a proportion of

qi =
eci · � · mi∑h

j=1 ecj · � · mj

=
eci · mi∑h

j=1 ecj · mj

of hairpin i in the final pool. Then the likelihood for drawing ni replicates of hairpin i
(i ∈ {1, . . . , h}) from our final samples is, including the prior,

L(c1, . . . , ch) =
h∏

i=1

fprior(ci) · qni

i . (11)

Note that we have omitted the constant factor
(

n

n1! · . . . · nh!

)

that is independent of the values ci.
The log-likelihood is then

ln(L(c1, . . . , ch)) =
h∑

i=1

(ln(fprior(ci)) + ni · ln(pi))

=
h∑

i=1

(
ln(fprior(ci)) + ni · ci + ni · ln(mi)

−ni · ln
(

h∑

j=1

ecj · mj

))

= −n · ln
(

h∑

i=1

eci · mi

)
+

h∑

i=1

ni · ci +
h∑

i=1

ln(fprior(ci))

+
h∑

i=1

ni · ln(mi). (12)

The prior should definitely be a symmetric distribution with mean zero, preferring no
regulation at all and treating up- and down-regulations in the same way. We should
choose an uninformative prior. There are various concepts of uninformative priors.
Based on the principle of maximum entropy [7], we would have to choose a Gaus-
sian prior for which we still have to fix the variance σ2. There are, of course, other
ways to define uninformative priors that are based on maximizing the entropy or the
KullbackLeibler divergence of the posterior distribution or on the Fisher information
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(Jeffrey’s prior). For an overview on Bayesian inference and priors, we refer to [8]. To
keep things simple, we stick to a Gaussian prior with mean μ = 0.

fprior(x) =
1

σ
√

2π
e

−x2

2σ2

Inserting this prior into the log-likelihood (12), we obtain

ln(L(c1, . . . , ch)) = −n · ln
(

h∑

i=1

eci · mi

)
+

h∑

i=1

ni · ci

−
h∑

i=1

(
ln(σ) +

1
2

ln(2π) +
c2
i

2σ2

)

+
h∑

i=1

ni · ln(mi)

= −n · ln
(

h∑

i=1

eci · mi

)
+

h∑

i=1

ni · ci

− 1
2σ2

h∑

i=1

c2
i (13)

+

(
h∑

i=1

ni · ln(mi)

)
− h · ln(σ) − h

2
· ln(2π).

The last line of equation (13) does not depend on the unknown parameters ci, so that it
can be neglected for the maximization of the log-likehood. The log-likelihood (and also
the likelihood) is maximized when the function

T (c1, . . . , ch) = −n · ln
(

h∑

i=1

eci · mi

)
+

h∑

i=1

ni · ci − 1
2σ2

h∑

i=1

c2
i (14)

is maximized.
Determining the maximum of this objective function and in this way obtaining the

maximum likelihood estimates for the regulation factors ci is not an easy task. A closed
form solution cannot be provided. We apply a gradient method here. We carry out the
gradient method twice, using the two obvious and most extreme initializations. The
likelihood function consists of two main parts. The priors that are maximized for ci =
0, which is our first initialization, and the factors qni

i which are maximized when we
choose the raw regulation factors, i.e.

eci =
ni/n

mi/m
=

q̂i

q̂i
(15)

which give our second initialization.
In this way, we obtain two (local) maxima of the likelihood function from the two

initializations and in the best case these two local maxima should be more or less iden-
tical. This provides also a hint, how much we can trust our result.
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We still have to specify the value for σ in our Gaussian prior. We estimate σ based
on the raw regulation factors. We compute the values ci based on equation (15) and
estimate the standard deviation from these ci values. Since we have some very extreme
raw regulation factors due to very small counts for some hairpins, we do not estimate
the standard deviation by the sample standard deviation, but based on the more robust
interquartile range IQR of the values ci, i.e. σ̂ = 1.349 · IQR.

7 Results

First of all, it should be mentioned that we carry out Laplace correction [9,10] for the
counting. This means that we replace the values mi and ni by (mi + 1) and (ni +
1), respectively. Of course, this changes the sums m and n to (m + h) and (n + h),
respectively. Laplace correction is required, because there are experiments where the
initial or the final count for some hairpins is zero. This would require ci = ±∞ for
our second initialization for the gradient method and would also cause problems in the
likelihood function (11) when one of the initial counts mi is zero. Then the likelihood
function would become zero automatically when the corresponding final count ni is
nonzero.

To illustrate how our approach helps to obtain a more realistic picture about the
regulation factors, we take a look at results from one of our experiments with h = 400
hairpins, an initial sample size of m = 6, 682, 558 and a final sample size of n =
15, 105, 284. Table 1 shows the results for some selected hairpins. The second column
shows the initial count of the corresponding hairpin, the third column the final count.
The fourth column contains the raw factor according to equation (15). Our maximum
likelihood estimates based on the two above mentioned initializations for the gradient
method can be seen in the last two columns.

Table 1. Some results from one of our experiments

estimated factor
hairpin no. initial count final count raw factor init. ci = 0 init. ci = raw factor

1 47 2 −53.12 −18.05 −18.45

2 448 3 −337.55 −108.94 −111.56

3 3940 1534 −5.81 −5.64 −5.79

4 5178 25517 2.18 2.24 2.18

5 18980 43938 1.02 1.05 1.02

6 18385 44546 1.07 1.10 1.07

Negative signs of regulation factors indicate down-regulations. For instance, if equa-
tion (15) yields values like 0.5 or 0.25, we would not enter these values in the table, but
the values −2.00 and −4.00 instead, respectively.

Most of our data look like the ones in the last two rows where we have more or
less no regulation. A certain fraction of the hairpins shows a moderate regulation as for
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hairpin 3 and 4 in the table. The unregulated and the moderate (raw) regulation factors
are confirmed by our approach.

The first two entries are more extreme concerning the regulation factors. Such ex-
treme regulation factors can only occur when at least one of the two counts for the
hairpin is comparatively small. Some of these extreme cases are very interesting from
the biological and medical point of view. Although our approach still yields very large
regulation factors, they are downsized to roughly one third compared to the raw factors.

Comparing the last two columns, the gradient method seems to yield quite similar
results for the two extremely different initializations.

As mentioned already in Section 2, the statistical evaluation helped us to define bona
fide candidate hairpins that influence the hepatocyte proliferation under chronic liver
damage in a positive way.

8 Conclusions

We have a presented a typical experience in intelligent data analysis. In the beginning,
the way how to analyze the data seems to be obvious. But it turns out that the initial
simplified understanding of the question to be solved by data analysis and the modelling
of the process that generates the data were not sufficient to provide suitable answers.
Only with the joint expertise, in our case from biology, medicine and data analysis, a
solution can be found in the end.

Our project is still in an initial phase. We are now in the process of analyzing data
from repeated experiments and need to find out what causes sometimes extreme varia-
tions between experiments.

Apart from the estimation of the regulation factors that we have presented in this
paper, we are now developing methods to compute confidence intervals for them.

We are also interested in using other priors. But a sensitivity analysis of our Gaussian
prior with the respect to the parameter (standard deviation) σ has shown that the results
do not change significantly when we vary σ in a reasonable range. Therefore, we would
not expect significant changes when we use other priors.
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