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Abstract. Precision Agriculture applies state-of-the-art GPS technology in con-
nection with site-specific, sensor-based crop management. It can also be de-
scribed as a data-driven approach to agriculture, which is strongly connected with
a number of data mining problems. One of those is also an inherently important
task in agriculture: yield prediction. Given a yield prediction model, which of the
predictor variables are the important ones?

In the past, a number of approaches have been proposed towards this problem.
For yield prediction, a broad variety of regression models for non-spatial data can
be adapted for spatial data using a novel spatial cross-validation technique. Since
this procedure is at the core of variable importance assessment, it will be briefly
introduced here. Given this spatial yield prediction model, a novel approach to-
wards assessing a variable’s importance will be presented. It essentially consists
of picking each of the predictor variables, one at a time, permutating its values
in the test set and observing the deviation of the model’s RMSE. This article
uses two real-world data sets from precision agriculture and evaluates the above
procedure.

Keywords: Precision Agriculture, Spatial Data Mining, Regression, Spatial
Cross-Validation, Variable Importance.

1 Introduction

Data-driven technology has become part of our everyday lives, while data-driven man-
agement techniques have become necessary and common in industry and services. Im-
provements in efficiency can be made in almost any part of businesses. This is especially
true for agriculture, due to the modernization and better affordability of state-of-the-art
GPS technology. Agricultural companies nowadays harvest not only crops but also a
growing amount of data. Site-specific crop management (SSM) therefore heavily de-
pends on knowledge discovery from large amounts of site-specific, possibly noisy geo-
data. This led to the term precision agriculture (PA) being coined. PA is an agricultural
concept based on the assumption of in-field heterogeneity. The abovementioned GPS,
as well as ground-based, aerial or satellite sensors and image acquisition in connection
with geographic information systems (GIS) allow to assess and understand variations.
These data are nowadays routinely collected and available to farm operators. It can be
expected that a large amount of information is contained, yet hidden, in these agricul-
tural field data. This is usually information about the soil and crop properties enabling a
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higher operational efficiency – appropriate data processing techniques should therefore
be applied to find this information. This is a rather common problem for which the term
data mining has been coined. Data mining techniques aim at finding those patterns in
the data that are both valuable and interesting for crop management. In PA, it must ad-
ditionally be taken into account that the data are spatial: each data record has a specific
location on the field and is accompanied by natural neighboring data points. Therefore,
it must not be considered independent of its neighbors.

Yield prediction is a specific agricultural problem commonly occurring. As early
as possible, a farmer would like to know how much yield he is about to expect. The
ability to predict yield used to rely on farmers’ long-term knowledge of particular fields,
crops and climate conditions. However, this knowledge is assumed to be available in the
data collected during normal farming operations throughout the season(s). A multitude
of sensor data are nowadays collected, measuring a field’s heterogeneity. These data
are fine-scale, often highly correlated and carry spatial information which must not be
neglected. Furthermore, it is of interest to know which of these sensor data are the
most relevant for a yield prediction setup. Given novel sensors, we would like to assess
whether they contribute novel information or whether this information is not already
contained in more traditional data sources.

The problem of yield prediction can be treated as a problem of data mining and,
specifically, regression. However, it should be noted that a regression problem on spa-
tial data must be treated differently from regression on non-spatial data, as described
in [7]. This article will serve as a continuation of [19]: in the previous article, the spatial
data were treated with regression models which do not take the spatial relationships
into account. This lead to serious underestimation of the true prediction error, which is
shown in [20] where we compared the results on non-spatial data with those obtained
on spatial data. This article builds on the previously established suitable spatial cross-
validation framework (summarised in Section 3.1) and presents an approach to assess
the importance of certain variables in the abovementioned precision agriculture data
sets.

1.1 Research Target

The main research target of this work is to build upon yield prediction approaches to
establish a novel approach towards assessing a variable’s importance. The regression
work presented in [19,23] will be used as a baseline for this work. The spatial regres-
sion model with spatial cross-validation has recently been described in [20] (a short
summary is given below) and will be used as a core of the proposed variable importance
assessment. Our approach will be described in detail and results from its application on
two precision agriculture data sets will be detailed below.

1.2 Article Structure

This article will start with a brief introduction into the area of precision agriculture and
a more detailed description of the available data in Section 2. This will be followed
by an outline of the key techniques, a short summary of our novel spatial sampling
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technique described previously in [20], as well as our proposed approach towards vari-
able importance assessment in Section 3. The results obtained from the modeling phase
will be presented in Section 4. The article will be completed with a short conclusion in
Section 5, which will also point out further lines of research.

2 Data Description

This section will present a summary on the available data sets.
The data available in this work were collected during the growing season of 2007 on

two fields north of Köthen, Germany. The data for the two fields, called F440 and F611,
respectively, were interpolated using kriging [24] to a grid with a resolution of 10 by
10 meters. Each grid cell represents a record with all available information. The fields
grew winter wheat. Nitrogen fertilizer (N) was applied three times during the grow-
ing season. Overall, for each field there are six input attributes – accompanied by the
respective current year’s yield (2007) as the target attribute. These available attributes
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Fig. 1. Statistical Summary for the two available data sets (F440, F611)
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Table 1. Statistical summary of data sets, see also Figure 1

F440 F611
min mean median max min mean median max

EC25 39.47 50.13 50.22 60.69 38.41 54.44 53.17 81.98
N1 50.00 63.57 70.00 70.00 42.00 65.09 68.00 70.00
N2 2.00 47.60 48.00 80.00 0.00 47.89 50.00 80.00
N3 0.00 37.98 40.00 95.00 0.00 45.61 50.00 68.00
REIP32 721.33 725.11 725.19 728.14 721.41 724.37 724.41 726.09
REIP49 724.50 727.20 727.34 729.82 721.30 727.12 727.23 729.41
YIELD07 0.49 7.37 6.89 13.92 1.32 5.42 5.51 11.88

will be described in the following. In total, for the F440 field there are 6446 records, for
F611 there are 4970 records. Descriptive statistics are displayed in Table 1. For further
information on the available data attributes we refer to [19].

The response variable YIELD07 (wheat yield) is measured in metric tons per hectare
( t

ha ). The soil’s apparent electrical conductivity EC25 is measured by non-invasive geo-
physical instruments and represents a number of physical soil properties. The red edge
inflection point (REIP32, REIP49) values are obtained through image processing of
high-resolution imagery of the field. The plants’ chlorophyll content can be measured
by calculating the REIP value and allows to deduce the plants’ state of nutrition and
thus the previous crop growth. The 32 and 49 numbers in the indicators refer to the
growing stage of winter wheat. The amount of fertilizer applied to each subfield can be
measured, resulting in three attributes N1, N2, N3. N1 on the F440 field had only four
levels from {50,57,60,70}.

3 Spatial Data Mining

Spatial autocorrelation is the correlation among values of a single variable attributable
to the proximity of those values in geographic space, introducing a deviation from the
independent observations assumption of classical statistics. Spatial autocorrelation can
be assessed using the semivariogram, and its presence is often known beforehand be-
cause of the nature of the data at hand [9].

In previous articles using the above data, such as [21,19], the main focus was on
finding a suitable regression model to predict the current year’s yield sufficiently well.
However, it should be noted that the used regression models, such as neural networks
[21,22] or support vector regression [19], among others, generally assume statistical
independence of the data records. However, with the given geolocated data records
at hand, this is clearly not the case, due to (natural) spatial autocorrelation (cp. [7]).
Therefore, the spatial relationships between data records have to be taken into account.

3.1 Spatial vs. Non-spatial Data Treatment

To account for these spatial relationships, a novel and model-independent spatial cross-
validation technique has been presented in [20] and is summarised below. It has partly
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been adapted from existing approaches [4,5] towards the context of crop yield predic-
tion and spatial regression more generally.

The approach consists of subdividing the agriculture site into spatially contiguous
regions. This may be performed by overlaying the site with a regular grid. However,
there are drawbacks with this approach: due to the fields being different, the grid would
have to be manually adapted to each field being processed. Furthermore, agriculture
fields are rarely of regular shape, hence at the field borders the grid cells are likely to
be irregular as well, leading to further necessary processing. A third issue is to which
of the surrounding grid cells a data record on the cell borders should be assigned. To
overcome these issues, a clustering-based approach has been developed. This simple,
yet effective method employs k-means clustering on the data records’ coordinates (lon-
gitude, latitude) to partition the site into k contiguous parts of roughly equal size. This
is depicted for the F440 site in Figure 2.

Fig. 2. k-means clustering on F440, k = 10

Having partitioned the field into k subfields, cross-validation at the level of spatial
partitions may be carried out in order to assess the predictive performance of different
regression models in the spatial domain. The only difference is that the subdivision
of the whole data set into training and test subsets has to be done according to the
spatial clusters determined in the previous step. This avoids the issue of having the
same or similar samples in training and test sets, which non-spatial techniques mostly
neglect. In a non-spatial setup, this leads to model overfitting and an underestimation of
the prediction error (compare [4,6] for similar observations in a classification context).
With the above procedure, the estimated prediction error is much less influenced by
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model overfitting. Therefore, the prediction error of the spatial procedure is usually
much higher than the one in a non-spatial setup. This result could be confirmed in [20]
using tree-based regression techniques as well as a support vector machine.

3.2 Regression Techniques and Error Estimation

In previous work ([19,21]), numerous regression modeling techniques have been com-
pared on similar data sets. It was determined that among those models which represent
non-linear relationships between variables, SVR has constantly shown favorable RMSE
values. It has furthermore recently been shown to work rather successfully in spatial
classification tasks, albeit without spatial cross-validation, as in [17]. Resampling-based
estimation methods (such as cross-validation and the bootstrap) for dependent data in
general have been investigated recently in the context of time series data [8] and paired
data [6].

In this work, SVR will be compared against standard linear regression modeling
and tree-based models, all of those in the aforementioned spatial cross-validation setup.
Experiments are conducted in R [18]. It is assumed that the reader is mostly familiar
with the regression techniques below. Therefore, the techniques used are described in
short. References to further details are given, where appropriate.

Support Vector Regression. Support Vector Machines (SVMs) are a supervised learn-
ing method discovered by [1]. They were originally described for the use in clas-
sification, but can also be applied to regression tasks, where optimization of a cost
function is achieved. The model produced by support vector regression depends
only on a subset of the training data – which are essentially the support vectors.
Further details can be found in [19]. In the current experiments, the svm imple-
mentation from the e1071 R package has been used. We set a radial kernel and
cost=50. These settings were determined empirically by best.svm.

Regression Trees. Regression trees have seen some usage in agriculture [10,12,16].
Essentially, they are a special case of decision trees where the outcome (in the
tree leaves) is a continuous function instead of a discrete classification. The rpart R
package has been used, with the settings for rpart.control of minsplit=30
and the complexity parameter cp=0.001, pruning and maxdepth were left at
the defaults. These settings were determined experimentally.

Bootstrap Aggregating. Bootstrap aggregating (or bagging) [2] is generally described
as a method for generating multiple versions of a predictor and using these for ob-
taining an aggregate predictor. In the regression case, the prediction outcomes are
averaged. Multiple versions of the predictor are constructed by taking bootstrap
samples of the learning set and using these as new learning sets. Bagging is gen-
erally considered useful in regression setups where small changes in the training
data set can cause large perturbations in the predicted target variables. The bagging
implementation in the R ipred package has been used here. We set nbagg=250,
while leaving the parameters in rpart.control at their defaults.

Random Forests. According to [3], random forests are a combination of tree predic-
tors such that each tree depends on the values of a random vector sampled indepen-
dently and with the same distribution for all trees in the forest. Random forests are
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basically a variant of bagging where regression trees are used as the internal pre-
dictor. In addition to resampling the observations, it also resamples the variables,
which prevents overfitting, especially in high-dimensional problems. The random-
Forest R package has been used. The setting for ntree was kept at the default of
500 trees to grow.

Linear Regression. Linear regression is the most widely used regression technique in
an agricultural context. It is therefore used as a benchmark model for accuracy
assessment. We use the implementation of ordinary-least-squares linear regression
lm from the stats package.

The performance of the models will be determined using the root mean squared error
(RMSE). The RMSE is based on the difference between an observed target value ya and
the model prediction y.

3.3 Variable Importance

The interdependencies between variables in the data sets rule out standard feature se-
lection approaches such as forward selection [14] or backward elimination [11]. A rel-
atively new and intuitive computational approach for assessing variable importance is
based on measuring the increase in prediction error associated with permuting a pre-
dictor variable [26]. We adapt this approach to spatial prediction problems by assessing
RMSE increase on spatial cross-validation partitions rather than non-spatial test sets.

Given any model fitted on a cross-validation training sample, we choose one variable
at a time and permute its values randomly in the test set. The remaining variables are left
unchanged. We quantify the increase in RMSE caused by the permutation. No specific
model is needed, each of the regression models is suitable for assessing the variable
importance in this way. To obtain a sufficient number of replications, the permutation is
repeated 200 times for each variable. The permutation is embedded in a 10-fold leave-
one-out cross-validation setup, after having partitioned the agriculture sites into k = 10
sub-parts. The partitioning is rather stable due to the characteristics of the used cluster-
ing technique, therefore the k-means procedure is repeated only 10 times. The setting
of parameter k = 10 was determined empirically and is currently under investigation.

4 Results

The main research target of this article is to assess the importance of variables in a
spatial cross-validation setup. The results for the two available data sets described in
Section 2 are presented below.

4.1 Results for F440

The overall RMSE of different models for the F440 field can be seen in Figure 3(a). lm
returns the highest RMSE at 1.2 dt/ha, rf the lowest at around 1 dt/ha. This range has
to be kept in mind when considering the RMSE increase after variable permutation.

The relative order of the variable importance for the tree-based models bagging, rf
and rt is quite similar, which is due to the underlying tree construction. In each case,
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lm svr rf bagging rt
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Fig. 3. F440: 3(a) shows each model’s RMSE for a spatial cross-validation setup with 10 repeti-
tions, 10 clusters; remaining figures show the increase in RMSE after permuting the respective
variable (200 permutations): 3(b) lm, 3(c) rt, 3(d) rf, 3(e) bagging, 3(f) svr; the predictors are
EC25, N3, N2, N1, REIP32, REIP49 (top to bottom)

the best predictor is the REIP49 variable with an increase of 0.06 at an average model
RMSE of 1.0 (rf). This was expected, since the REIP49 value is closest to harvest and
represents the amount of biomass on the field. For bagging and rf, the remaining vari-
ables increase the RMSE much less when permuted. For rf, the second most important
predictor is the REIP32 variable – this is also the expected behaviour since the applica-
tion of N2 and N3 tries to equalize the vegetation growth.

The remaining variables, especially the fertilizer dressings, are rather insignificant in
the tree-based models. Since the N1 variable has only four different values in F440, it
is clear that it will be rarely built into the trees since these are usually biased towards
variables with a high number of values. Similarly, this also holds true for N2, N3: these
have 45 and 50 different levels, whereas REIP32 and REIP49 have 367 and 397 different
levels, respectively. Nevertheless, EC25 has 851 different levels and still has close to no
importance for yield prediction. Another reason for the insignificance of the variables
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lm svr rf bagging rt
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Fig. 4. F611: 4(a) shows each model’s RMSE for a spatial cross-validation setup with 10 repeti-
tions, 10 clusters; remaining figures show the increase in RMSE after permuting the respective
variable (200 permutations): 4(b) lm, 4(c) rt, 4(d) rf, 4(e) bagging, 4(f) svr; the predictors are
EC25, N3, N2, N1, REIP32, REIP49 (top to bottom)

with a low number of distinct levels is that it is much more likely that the variable’s
value in the test set is the same before and after the permutation.

Different results can be reported for svr. While the EC25 variable is still insignifi-
cant, most importance is given to N1, N3 and REIP49. This different ordering is likely to
be due to svr measuring smooth non-linear variable importance with interaction, while
tree-based models measure non-linear variable importance with higher-order interac-
tions and discontinuities.

4.2 Results for F611

The overall RMSE for each of the models is quite different from the F440 site. lm
returns an RMSE of 0.66 dt/ha and is very close to being the best model. rf and bagging
seem are rather close around 0.66 dt/ha, while rt and svr are rather far from this mark
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at 0.69 and 0.73 dt/ha. This might hint to linear interactions between the variables. The
rather bad performance of svr might as well be attributed to simple linear interactions.

The results for the variable importance are similar to the ones on the F440 site.
Except for the svr model, the REIP49 value is by far the most important predictor. It
influences the lm model’s RMSE by 0.08 dt/ha at an average RMSE of 0.66 dt/ha.
Similarly, the bagging model’s RMSE is raised by 0.12 dt/ha at an average RMSE of
roughly 0.66 dt/ha. There may yet be non-linear, high-order interactions, seen in the svr,
where REIP32 is the most important variable, followed by REIP49 and N1. However,
since the svr’s overall level of RMSE is higher at 0.74 dt/ha and the RMSE increase of
the REIP values is around 0.07 and 0.04 dt/ha, this result should be taken with care.

4.3 Remarks

Assessing the importance of individual variables in multiple-variable models is difficult
since the importance of any particular variable is influenced by other, correlated or inter-
acting, variable in the data set. In our data sets, due to agricultural management decisions,
the N2 and N3 variable are determined partly based on the REIP32 and REIP49 values
and are therefore not fully independent of those. Therefore, e.g. if one of REIP32,REIP49
has been included in the model, the remaining variable N2,N3 is less likely to be chosen.
If the other variable is included nevertheless, it is likely to have a smaller influence on
the prediction than if included without the presence of the other variable.

5 Conclusions and Future Work

This article focused on a central data analysis task: regression. A procedure for measur-
ing spatial variable importance has been developed and tested using two real-world data
sets. This was achieved by adopting a variable importance approach and combining it
with a clustering-based spatial cross-validation approach developed earlier [20]. The
resulting spatial variable importance assessment was tested using two precision agri-
culture data sets. The key question which of the available data attributes is informative
regarding yield prediction was answered.

Based on practical experiences, the hypothesis that the vegetation indicators REIP49
and REIP32 should be most important for yield prediction could be confirmed. Although
the different modeling techniques are partly biased (as explained), it is highly likely that
the N1 and N3 dressings have a significant impact on yield, whereas the EC25 and N2
variables are rather unimportant. It can also be confirmed that the results of variable
importance are quite similar for two different fields, growing the same crop in the same
season and in the same climatic region.

The developed procedure may be applied to further areas where similar spatial data
need to be analysed, such as land cover classification [5], landslide susceptibility mod-
eling [4], species habitat analysis [13,15].

5.1 Future Work

Despite having improved and validated the yield prediction task, the data sets carry fur-
ther information. From a theoretical point of view, our spatial cross-validation setup is
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a spatially constrained case of a standard cross-validation setup. Therefore, it would be
interesting to see whether the spatial case converges towards the non-spatial case when
the number of clusters is raised. Furthermore, additional predictor variables should be
considered in future yield prediction setups.

Conditional permutation-based variable importance measures as proposed by [25]
provide a framework for investigating the importance of variables conditional on other
variables, which provides additional insights when interactions are present, in the con-
text of the F440/F611 data sets, e.g. between N2/N3 and REIP32/REIP49, as noted
above.
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