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Preface

The background to IDA 2010, the 9th International Symposium on Intelligent
Data Analysis (IDA), is rather unusual. Previously, the symposia were held bien-
nially at European venues. Over this time, the IDA Symposium had established
an identity, a dedicated group of Program Committee members, and a regular
audience. However, this success had come at a cost to the original ambitions for
the symposium – concerned with interfacing AI, statistics and computer science
for important and difficult real-world data analysis problems – being compro-
mised in favor of more standard data mining content. IDA 2010 was organized
explicitly to re-align the IDA Symposia series with a set of objectives evolved
from the original ambitions. This should be construed not as a criticism of rou-
tine data mining research but rather as an admission that the IDA symposium
had taken the path of least resistance with respect to the call for papers and the
reviewing process.

This is the proceedings volume of IDA 2010, a special event held only a year
after the eighth symposium in an attempt to revitalize the area of IDA. There
were two major changes compared to previous symposia. First, the Call for Pa-
pers (CfP) was completely rewritten, placing great emphasis on algorithms and
systems that support modelling and analysis of complex real-world systems. Mo-
reover, the CfP explicitly discouraged submissions that might be characterized
as “incremental advances in data mining algorithms.” Second, the reviewing me-
chanism was extended to include a “senior Programme Committee,” in response
to perceived shortcomings in the existing reviewing process. In part, this was
an experiment in reviewing which is discussed in our contribution in the present
volume.

IDA 2010 took place at the wonderful Biosphere-2 in Arizona, USA, May 19-
21, 2010. The invited speakers were Lise Getoor (University of Maryland, USA)
and David Krakauer (Santa Fe Institute). The meeting received more than 40
submissions. While this may seem a low number, it should be interpreted in the
context of both a new CfP and a novel point in the annual conference calendar.
The Program Committee selected 21 submissions for publication. This inclu-
ded five papers which were focussed on important and challenging applications,
but were perhaps preliminary – the precise type of submission we were keen to
encourage.

It is a pleasure to express our gratitude to the many people involved in the
organization of the symposium and the reviewing of submissions. Some specific
thanks are in order. These proceedings would not exist without the efforts of
Richard Van Stadt. We are indebted to Lupe Jacobo for local organization.
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Finally, we are very grateful for the generous support of a number of sponsors:
School of Information: Science, Technology and Arts, University of Arizona;
Sante Fe Institute; University of Konstanz, Germany, and the ALADDIN project.

May 2010 Paul Cohen
Niall Adams

Michael Berthold
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José-Maria Peña Technical University of Madrid, Spain



Organization IX

Ruggero Pensa University of Turin, Italy
Adriana Prado University of Antwerp, Belgium
Bhanu Prasad Florida A&M University, Tallahassee, Florida,

USA
Ronaldo Prati Universidade Federal do ABC, Brazil
Fabrizio Riguzzi University of Ferrara, Italy
Gordon Ross Imperial College, UK
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Statistical Modelling for Data from Experiments with Short Hairpin
RNAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Frank Klawonn, Torsten Wüstefeld, and Lars Zender
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Changing the Focus of the IDA Symposium

Niall M. Adams1, Paul R. Cohen2, and Michael R. Berthold3

1 Department of Mathematics, Imperial College London, UK
2 Department of Computer Science, University of Arizona, USA

3 Dept. of Computer and Information Science, University of Konstanz, Germany

Abstract. The IDA Symposium series had evolved into a meeting ap-
parently concerned with routine data mining. This report describes our
attempts to re-focus the ninth IDA symposium on objectives derived
from the genesis of the series. These attempts included a dramatically
modified call for papers, and a drastically changed reviewing procedure.

1 Background

Since 1995, The Intelligent Data Analysis (IDA) Symposium series has been a
biennial event at locations around Europe. The series has produced a selection
of high quality proceedings ([1,2,3,4,5,6,7,8]).

Originally conceived with the objective of promoting work at the intersection
of data analytic disciplines (including statistics, machine learning, and artificial
intelligence) for dealing with challenging real world problems, the Symposium
has lost some of this ambition and focus. Instead of encouraging papers on com-
plex, real-world problems, there was a tendency to favour papers looking much
like mainstream data mining or machine learning. A rather unkind characterisa-
tion of such material is that it often appears to represent incremental advances
on existing methodology and algorithms for well defined learning tasks: classifi-
cation, regression, clustering, etc. While there is absolutely nothing wrong with
such fare, there are already ample outlets for it, and there are not enough outlets
for research that engages statistics, machine learning and artificial intelligence
for modeling complex, real-world systems.

For some time, the IDA council had been keen to orient the IDA series in
the direction of the original ambitions, updated according to the tremendous
advances in data collection, data storage and analysis methodology that have
occurred in the interim. [9] gives some ideas about the modern ambitions for
IDA, including the importance of data challenges and the complexity of data
analysis processes in modern real world problems. In order to address these new
ambitions, we convened this extra Symposium (the ninth, in 2010), which broke
the biennial cycle and was held for the first time in the USA.

There seem to be a number of possible reasons why the focus of IDA had
slipped. First, many authors around the world are keen to submit work about
vanilla data mining – a very rich and important subject. Second, aspects of the
standard reviewing process may have acted to favour such material. Based on
these conjectures, we decided to revise the call for papers and reviewing process.

P.R. Cohen, N.M. Adams, and M.R. Berthold (Eds.): IDA 2010, LNCS 6065, pp. 1–5, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 N.M. Adams, P.R. Cohen, and M.R. Berthold

These revisions are discussed in the following sections, followed by a discussion
of what happened, and some recommendations for the future.

We note that the reinvigoration of both conferences and journals seems to
be part of the zeitgeist. Many recent conferences are including breaking news
sections, or otherwise encouraging different types of submission.

2 Call for Papers

It is interesting to speculate about the the role and importance of the Call for
Papers (CfP). Notably, the CfP had perhaps not changed sufficiently between
IDA Symposia over recent years. IDA has become a regular part of the conference
calendar and developed a specific identify associated with this CfP.

We produced a completely rewritten CfP for this symposium. This CfP in-
cluded the following

“IDA 2010 . . . particularly encourages papers about
1. end-to-end software systems that incorporate several of these [data

processing and analysis] technologies;
2. applications of these technologies to modeling complex systems such

as gene regulatory networks, economic systems, ecological systems,
resources such as water, and dynamical social systems such as online
communities; and

3. robustness, scaling properties, and other usability issues that arise
when these technologies are put into in practice.”

Note the special emphasis on applications, processes, and practicality. The par-
ticular tastes and interests of the conveners placed great stress on modeling
complex and dynamic systems.

In addition, and notably, the CfP explicitly discouraged certain types of sub-
mission, with

“Papers about established technology will only be accepted if the tech-
nology is embedded in intelligent data analysis systems, or is applied to
analysing and/or modeling complex systems. IDA 2010 does not encour-
age papers about isolated algorithms that refine, polish, extend slightly,
or offer minor variants of established ideas; and it will not publish papers
about classification, clustering, dimension reduction, and other conven-
tional data mining topics unless they clearly contribute to problems of
modeling complex systems.”

Of course, a modified CfP is insufficient: the submitting population may not
respond, or the programme committee may not take the details of the CfP into
account. This, and other aspects of reviewing, are discussed in the next section.

3 Reviewing

There was a perception that the reviewing of the IDA Symposia (and perhaps
many other meetings) had adopted a specific character, perhaps in response to
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the deluge of data mining papers. Essentially, this reviewing appeared to look
for easy rejects, by emphasizing what was wrong with a submission, rather than
what was right. This approach often manifested as a narrow criticism of em-
pirical experiments or the presence of free parameters. While these criticisms
occasionally cut at the heart of a research effort, they more frequently cite tech-
nical infractions. They are the standard criticisms of unengaged reviewers who
approach papers looking for reasons to reject them. Narrow, incremental algo-
rithmic papers can be protected from these criticisms, but these are not the
kinds of papers we wanted to publish in IDA.

There are two interesting aspects to the IDA view. First, very complicated
problems are not going to be handled by single algorithms, but by cleverly con-
structed processes using a set of carefully designed algorithms. In this context,
it is difficult to analyse performance over a collection of public domain data sets.
Arguing about empirical performance of algorithms necessarily reduces the prob-
lem to pre-processed data sets, with algorithms as filters. This in turn leads to
incremental refinements to existing algorithms and increasing abstraction from
real problems. Again, we would like to stress that there is nothing wrong with this
approach, it is simply not what IDA was intended to address. We thus modified
the reviewing process for this IDA symposium to prevent easy rejects based on
the standard criticisms of narrow, incremental work, and to encourage reviewers
to focus on the new CfP.

Our proposed solution was rather ambitious. On the premise that it is easier to
reject a paper than accept – which often leads to a specific sort of accepted paper
– we felt that the relative anonymity of reviewing was not helping. While not
wanting to disregard rigourous technical reviewing, we did want to emphasise
the CfP. To this end, we introduced a senior PC, in addition to the regular
PC, whose role was to overrule the regular PC if it was felt that a paper had
merit with respect to the CfP despite technical shortcomings. However, to make
such a judgment, members of the senior PC had to be willing (in principle) to
publish a short summary in support of the paper with their name on it. This is
a realisation of the idea that it is easier to trust a reviewer willing to publicly
support a paper, than an anonymous reviewer who might be taking the path of
least resistance. The senior PC was composed of members of the IDA council,
and senior colleagues elected by recommendation.

The reviewing process worked as follows. Each member of the regular PC
delivered a report with a recommendation, as in previous years. The regular PC
were requested to pay attention to the new CfP, but to provide rigourous review.
The only thing the senior PC was able to do was overrule a reject decision from
the regular PC, at the risk of possibly publishing a short document in support. In
this way, either regular or senior PC could recommend acceptance, but only the
regular PC could reject. The senior PC were not asked to make reject decisions
- they either accepted, or made no comment. This mechanism was simply an
attempt to support interesting papers that did not meet the technical standards
of narrow, incremental work.
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4 What Happened

There were only 40 submissions to the Symposium. This may seem few, but a
number of things need to be taken into account, including the new CfP, and a
new slot in the calendar that overlapped with big meetings.

The submissions were a mixture of standard material and papers aligned with
the new CfP. Each submission was reviewed by members of the regular PC, and
at least one member of the senior PC, in the manner described above.

The senior PC recommendations were broadly in line with those of the regular
PC. Very few rejects were overruled by the senior PC. We do not have a complete
explanation for this – perhaps publicly supporting a paper is too intimidating,
or perhaps the papers were not sufficiently exciting to energise the senior PC.
On the other hand, many of the regular PC engaged fully with the revised call
for papers, and toned down negative reviews, and specifically cited the new CfP
in their reviews. When it came to the final decisions, such remarks were valuable
and carried significant weight.

In the end, 21 papers were accepted. Five of these were identified as application
papers, which were accepted because they tackled interesting and challenging
application domains, even if their analysis was in some cases preliminary.

5 Where Next?

We were somewhat successful in attracting submissions matching the new CfP.
The effectiveness of the revised reviewing process is more equivocal. Requiring
the senior PC to “put their money where there mouth is” might have discouraged
aggressively supportive reviewing (although this remark lives in the context of
the submitted papers). However, the regular PC was sympathetic to the new CfP
and reviewed accordingly, for the most part, so there were few opportunities for
the senior PC to overrule the regular PC.

What have we learned? The CfP is important, and we think it should change
frequently. Reviewing is important, but the two-tier system proved unnecessary
because the regular PC generally did what we hoped the senior PC would do,
leaving few opportunities for the senior PC to accept papers that it felt were
wrongly rejected. It is possible that this role of the senior PC will become more
important in future symposia, where we receive more papers. However, encour-
aging all reviewers to be guided by the CfP is crucial. In future, we might suggest
a modified reviewer form, where reviewers are asked explicitly to comment (and
score) the extent to which a submission has matched the CfP.
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Graph Identification
(Extended Abstract)

Lise Getoor�

University of Maryland
College Park, MD, USA
getoor@cs.umd.edu

http://www.cs.umd.edu/~getoor

There is a growing amount of observational data describing networks— exam-
ples include social networks, communication networks, and biological networks.
As the amount of available data increases, so has our interest in analyzing these
networks in order to uncover (1) general laws that govern their structure and
evolution, and (2) patterns and predictive models to develop better policies and
practices. However, a fundamental challenge in dealing with this newly avail-
able observational data describing networks is that the data is often of dubious
quality—it is noisy and incomplete—and before any analysis method can be
applied, the data must be cleaned, missing information inferred and mistakes
corrected. Skipping this cleaning step can lead to flawed conclusions for things
as simple as degree distribution and centrality measures; for more complex an-
alytic queries, the results are even more likely to be inaccurate and misleading.

In this work, we introduce the notion of graph identification, which explicitly
models the inference of a “cleaned” output graph from a noisy input graph.
We show how graph identification can be thought of as a series of probabilistic
graph transformations. This is done via a combination of component models,
in which the component models construct the output graph by merging nodes
in the input graph (entity resolution), adding and deleting edges (link predic-
tion), and labeling nodes (collective classification). We then present a simple,
general approach to constructing local classifiers for predicting when to make
these graph modifications, and combining the inferences into an overall graph
identification framework. The problem is extremely challenging because there
are dependencies among the transformation; ignoring the dependencies leads to
sub-optimal results and modeling the dependencies correctly is also non-trivial.

Graph identification is closely related to work in information extraction [12];
information extraction, however, traditionally infers structured output from un-
structured data (e.g., newspaper articles, emails), while graph identification is
specifically focused on inferring structured data (i.e., the cleaned graph) from
other structured data (i.e., the noisy graph, perhaps produced from an informa-
tion extraction process). There is significant prior work exploring the components
of graph identification individually; representatives include work on collective
classification [7,5,6,13], link prediction [4,10,8], and entity resolution [1,2,14].
More recently, there is work that looks at various ways these tasks are inter-
dependent and can be modeled jointly [15,11,16,9,3]. To our knowledge, however,
� Joint work with Galileo Namata.
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previous work has not formulated the complex structured prediction problem as
interacting components which collectively infer the graph via a collection of
probabilistic graph transformations.

In addition to defining the problem and describing a component solution ap-
proach, we present a complete system for graph identification. We show how
the performance of graph identification is sensitive to the intra- and inter-
dependencies among inferences. We evaluate on two real-world citation networks,
with varying degrees of noise, and present a summary of our results showing (1)
the overall utility of combining all of the components and (2) some of subtleties
involved.

References

1. Benjelloun, O., Garcia-Molina, H., Su, Q., Widom, J.: Swoosh: A generic approach
to entity resolution. Technical report, Stanford University (2005)

2. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. ACM
Transactions on Knowledge Discovery from Data 1(1) (2007)

3. Bhattacharya, I., Godbole, S., Joshi, S.: Structured entity identification and doc-
ument categorization: two tasks with one joint model. In: KDD (2008)

4. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks.
In: CIKM (2003)

5. Lu, Q., Getoor, L.: Link-based classification. In: ICML (2003)
6. McDowell, L., Gupta, K.M., Aha, D.W.: Cautious inference in collective classifica-

tion. In: AAAI (2007)
7. Neville, J., Jensen, D.: Iterative classification in relational data. In: AAAI Work-

shop on Learning Statistical Models from Relational Data (2000)
8. O’Madadhain, J., Hutchins, J., Smyth, P.: Prediction and ranking algorithms for

event-based network data. SIGKDD Explorations Newsletter 7(2), 23–30 (2005)
9. Poon, H., Domingos, P.: Joint unsupervised coreference resolution with Markov

logic. In: EMNLP (2008)
10. Popescul, A., Ungar, L.H.: Statistical relational learning for link prediction. In:

IJCAI 2003 Workshop on Learning Statistical Models from Relational Data (2003)
11. Roth, D., Yih, W.-T.: A linear programming formulation for global inference in

natural language tasks. In: CoNLL (2004)
12. Sarawagi, S.: Information extraction. Foundations and Trends in Databases 1(3)

(2008)
13. Sen, P., Namata, G.M., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.:

Collective classification in network data. AI Magazine 29(3), 93–106 (2008)
14. Singla, P., Domingos, P.: Entity resolution with Markov logic. In: ICDM (2006)
15. Taskar, B., Wong, M.-F., Abbeel, P., Koller, D.: Link prediction in relational data.

In: NIPS (December 2003)
16. Wick, M.L., Rohanimanesh, K., Schultz, K., McCallum, A.: A unified approach for

schema matching, coreference and canonicalization. In: KDD (2008)



Intelligent Data Analysis of Intelligent Systems

David C. Krakauer, Jessica C. Flack, Simon Dedeo,
Doyne Farmer, and Daniel Rockmore

Santa Fe Institute, Santa Fe, New Mexico, 87501, USA

Abstract. We consider the value of structured priors in the analysis of
data sampled from complex adaptive systems. We propose that adap-
tive dynamics entails basic constraints (memory, information process-
ing) and features (optimization and evolutionary history) that serve to
significantly narrow search spaces and candidate parameter values. We
suggest that the property of “adaptive self-awareness”, when applicable,
further constrains model selection, such that predictive statistical models
converge on a systems own internal representation of regularities. Prin-
cipled model building should therefore begin by identifying a hierarchy
of increasingly constrained models based on the adaptive properties of
the study system.

1 Introduction

The explosion of large, well curated data sets in the biological and social sciences,
coupled to an exponential increase in computing power, has generated a rather
novel predicament for quantitative science. This is the prospect of sophisticated
analysis coupled to remedial comprehension. The traditional bias towards com-
pact descriptions of data, ideally founded on an understanding of microscopic
dynamics and interactions, has until recently, served as the Gold standard for
scientific insight. Maxwell’s equations, Newton’s theory of color, Einsteins theory
of gravitation, Mendel’s “laws” of chromosomal segregation, Boltzman’s contri-
butions to statistical mechanics, and Turing’s theory of computation, are all
representative of this traditional construction. They all share the very desirable
property of being graspable by a single mind as a coherent unity, and provide
both predictive, and in some cases, engineering insights. We might call this intel-
ligent approach to empirical phenomena - intelligible data analysis. In contrast,
the proliferation of visually stunning illustrations of high dimensional data sets,
that often serve as the conclusion of quantitative analyses, represent intelligently
analyzed, unintelligible data analysis.

So what are we to do? The luxury of assuming simple, typically linear, rela-
tionships between elements of a small set of observables, is no longer something
we can afford. Much of the adaptive world does not present itself in this form.
This should not justify ceding prediction to powerful computers, except in those
cases where scientific explanation is not the priority - for example, medical di-
agnosis or industrial design. In this contribution, we argue for intelligible data
analysis realized through the appreciation of key properties of intelligent, or
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perhaps more accurately, adaptive systems. We suggest that adaptive dynamics
implies a set of constraints, on both function and mechanism, that can prof-
itably be used to constrain prior beliefs. With these constraints we explore a
far smaller number of dimensions than is possible under effectively unlimited
processing power with a reduced sensitivity to noise. We can make this claim
stronger by recognizing that for many adaptive systems, intelligible data analy-
sis of their own states is at a premium, and so an elementary form of “adaptive
self-awareness” or self-observation imposes further limitations on the complexity
of a model. Stated differently, if our statistical model for behavior is accurate,
we might expect it to converge on the system’s own model for behavior.

In summary our principles are as follows:

1. The results of data analysis should be intelligible and not merely predictive.
2. Properties of adaptive dynamics impose cognitive constraints - structured

priors - on the space of degenerate explanations.
3. Elementary “adaptive self-awareness” or self-observation imposes further con-

straints on these solutions.

2 From Kepler’s Curves to the Machine-Read Mind

In the following two examples we illustrate on the one hand issues of compre-
hensibility, and on the other hand, issues relating to the value of a priori system
knowledge. In the first example from the 16th century, we discuss how lim-
ited computing power can lead to more parsimonious representations of data -
celestial orbits. In the second example from our own century, we discuss how
classification using machine learning techniques often tells us little about how a
cognitive system performs discrimination, when it ignores system mechanics.

2.1 Sensible Bounds on Computability

The contributions of Copernicus and Kepler to our understanding of celestial mo-
tion are well known. These are worth summarizing, as they epitomize a canonical
mode of intelligent data analysis based on compressed descriptions of carefully
curated regularities. From his observatory, Copernicus (1473-1543) made a num-
ber of important observations and reached several important insights: (1) The
retrograde motion of the planets is a result of the relative motions of the earth,
(2) the rotation of the earth is responsible for the apparent rotation of the stars,
(3) the annual cycle of the sun is caused by the earth rotation around the sun,
and (4) all celestial motion is circular and hence the apparent motion of the
planets is based on epicycles moving along larger circles – deferents - neither of
which need be orbiting a larger mass.

Kepler (1571-1630) worked on the Mars orbital data provided by Tycho Brahe.
After consistently failing to fit Martian motion using circular orbits and ovoids,
Kepler determined the path compatible with a simple ellipse. This idea was
generalized to all planetary orbits with the sun occupying in each case one focus.
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Subject to the limitations of measurement, the Copernican circle was not in all
cases demonstrably worse than the Keplerian ellipse. Moreover, Kepler had no
mechanical model from which the ellipse could be derived, and hence the criterion
for its acceptance was simply parsimony.

In more modern terms, assuming the data to be elliptical, we need a rather
unintelligible, infinite Fourier sum (epicycles) to provide a perfect fit. Hence
the key to an efficient representation of the data was a rational choice of basis
function. Kepler had intuited an appropriate function space in order to derive a
compact representation of the data. If Kepler had had access to super computers,
and subject to the limits of resolution of the data, there would have been little
need to forego the epicycles. It is only later, with Newton and the inverse square
law, that the ellipse is provided with foundational support.

The conclusion of this case study is that finite computational power, when
coupled to accurate data, can be a powerful selection pressure on model de-
velopment, selecting against unintelligible, high-dimensional representation. If
Copernicus had a sufficiently powerful computer, Kepler and his parsimonious
ellipses might have been out of a job.

2.2 Sensible Bounds on Information

Recently some progress has been made in the once questionable pursuit of mind
reading. In particular, the extent to which functional magnetic imaging can
be used to infer subjective states of mind. The approach is to use appropriate
statistical algorithms - support vector machines - to classify brain states upon
varied but systematic stimulation.

Kamitani and Tong [17] introduced the idea of “ensemble feature selectivity”
- whereby very large populations of cells (V1-V4) in the visual cortex represent
each of eight possible stimulus orientations using linear combinations of activity
patterns. In a subsequent study, Hanson and Halchenko [18] used activity data
from the full brain of ten subjects on two data sets - houses and faces - and
using statistical classifiers observed disjoint networks of brain areas diagnostic
for either face or house stimuli.

In both studies, the classification did not rely on unique activity at the micro-
scopic level, but statistical averages at the population level. The value of these
studies is to illustrate the nature of large-scale statistical localization involved
in perception. These projects do not make use of a model or theory of neural
activity that constrains the choice of statistical model – the goal is observer
discrimination.

The conclusion of this case study is that powerful data analysis tools can
be used to reveal consistent correlations between physical and subjective expe-
riences, but that without some form of structured prior, these rely heavily on
global information unlikely to be available to the system itself: the experimen-
talist can see the whole brain, but this is not something we should assume that
the discriminating machinery of the brain can see. Consideration of connectivity,
for example, might allow for clustering using a more confined function space.
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3 Properties of Adaptive Systems

The following brief case studies represent instances of data analyses where prior
knowledge of adaptive functions modify those structures and models we use in
their analysis. It is our contention that knowledge of these structured priors al-
lows us to place sensible bounds on energetic, computational and memory capac-
ities. These restrict the search space of models according to mechanical principles
relevant to the system itself, and will tend to increase the predictive power of
models out of sample by eliminating sensitive dependence on high dimensional
representations. We seek to avoid problems of over-fitting of data, illustrated
through epicycles, or allowing access to global information, assumed in the FMRI
studies. These examples span biology, social systems and cultural artifacts.

4 Case Studies in Intelligible Analysis of Adaptive
Systems

4.1 Conflict in Animal Society

Conflict plays a critical role in the evolution of social systems -both positive and
negative - and is typically manifested in the form of fights between individuals
over the course of their lifetimes. Much is understood about control mechanisms
[19], [6], [7], [22], factors driving escalation of pair-wise contests [8], [9], [10], [11],
the influence of third parties on conflict outcome through coalition formation
[12], [13], audience [14], [15], reputation effects [16], and redirected aggression
[21]. Less is understood about the causes of conflict, and very little understood
about the dynamics of multiparty conflict –conflicts that spread to involve more
than two individuals and come to encompass a sizable fraction of a group.

The standard methods for analysis of conflict derive from game theory. Game
theory seeks to identify normative strategies that maximize some measure of pay-
off in the face of uncertainty. Games are classified according to payoff structures
(constant sum, non-zero sum, symmetric etc), representation (extensive or nor-
mal form), information sets (imperfect, perfect) and solution concepts (weak and
strong Nash, evolutionary stable strategy etc). The work of Thomas Schelling is
perhaps the best known on conflict, and includes the idea of the focal point of
a coordination game - a maximum payoff solution that is independently salient
to all non-communicating players.

The problem with game theory is that it provides no quantitative frame-
work for the analysis of large bodies of data relating to strategic interactions.
To remedy this deficit we sought to invent an inductive game theory [23], or
set of inferential models describing individual decision rules capable of explain-
ing features of strategic time series data. In order to make analysis intelligible
and respect the principle of “system self-awareness”, we considered a cognitively
structured strategy space indexed by memory capacity and coordination load.

The data are as follows. A time series of fight bouts of a given duration
alternating with peace bouts. The data are derived from large populations of non-
human primates in captivity. Fights-bouts have a membership that is a subset
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of the total population, whereas peace-bouts include the entire population. We
seek to predict membership in a given fight-bout by using information present
in previous fight bouts. Hence for any pair of individuals in consecutive bouts A
and B, we might want to know the probability that B engages in a fight following
a fight involving A. The probabilities will vary for different pairs of individuals.
In order to remove time-independent effects on individual participation in fights,
we compute ΔP (A → B); the difference between the null-expected P and that
measured from the data on the number of fights (N) involving B following fights
involving A:

ΔP (A → B) =
N(B|A) − Nnull(B|A)

N(A)
, (1)

where Nnull(B|A) is the average from a large Monte Carlo set of null models
generated by time-shuffling the series but not shuffling identities within fights.
This model can be extended to include high order correlations.

ΔP (AB → C) =
N(C|AB) − Nnull(C|AB)

N(AB)
, (2)

as can ΔP (A → BC), the extent to which the presence of an individual at the
previous step predicts the presence of a pair at the next step:

ΔP (A → BC) =
N(BC|A) − Nnull(BC|A)

N(A)
, (3)

These probabilities can be reinterpreted as decision rules that live in the space
of two-step correlation functions that vary in the demand placed on memory
and the computation of coordination. This class is illustrated in Figure 1. In-
dependent psychological testing and behavioral observation restricts the subset
of candidate rules to a few tuples towards the apex of the lattice. Using these
simple rules, with suitable coarse graining over individual identities (where A
might be some class of indistinguishable individuals), we are able to predict -
generate a forward model - for collective features of the population dynamics,
including the distributions of fight bouts – consecutive fights that are propagated
until termination by a given choice of probabilistic rule set. Hence antecedent
knowledge of primate cognition restricts the structure of the statistical model.
In so doing, we analyze within an intelligible low-dimensional space of solutions,
and respect the endogenous computational properties of the sample population.

4.2 Unintelligent Agents in an Intelligent Economy

As originally observed by Adam Smith, the economy is a complex system in which
agents interact with one another to produce aggregate behavior whose emergent
behaviors are qualitatively different from those of the individual actors. The main-
stream approach to economics over the last fifty years has focused on the strategic
interaction of rational agents, typically assuming that the behavior of agents can
be modeled as the Nash equilibria of an economic game. Many criticisms of this
approach have been made [24]. For example, is it plausible to imagine that real
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Fig. 1. Structured cognitive prior for strategy space. All strategies live in the
space of 1-step Markov transition functions. Starting with the simplest model class
C(1, 1), we can add individuals to either the first or second fight, systematically building
up strategies of increasing complexity based coordination, and memory constraints.

agents possess the information sources and information processing to do the diffi-
cult computations needed to find the equilibria? Perhaps even more detrimental
to economics is the fact that for the modeler, since equilibrium models are difficult
to formulate and solve, and are generally require analytic solutions, it is necessary
to make drastic simplifications. This means neglecting important aspects, such as
institutional structure, or dynamic interactions between agents under changing
conditions.

At the other side of the spectrum is the subfield of economics called econo-
metrics, which consists of making purely data driven statistical models. This
approach fits functions to data, typically without strong priors about the mech-
anisms generating such data. Many of the best predictive models in economics,
such as those that make forecasts of GDP growth or unemployment, are econo-
metric models. This approach suffers, however, from a lack of clear interpretation.
It is predictive but not intelligible.

An alternative is to abandon the quest to incorporate the strategic interac-
tions of agents and instead focus on the institutions that structure their be-
havior. The modern economy has culturally evolved, or engineered, a diversity
of instruments to facilitate trading. Hence economic actors and economic mar-
kets have co-evolved to solve problems of pressing economic concern, such as
the institutions through which goods are bought and sold. The auctions used
in the nineteenth century, such as those modeled by Walras, were cumbersome
and slow. Modern markets, in contrast, typically employ the continuous double
auction, which has the advantage of being fast and convenient to use. Transac-
tions can be made instantaneously and the user need only place trading orders
for a given price and volume, rather than needing to compute an entire demand
schedule, as was done in the 19th century Paris Bourse.

In zero-intelligence models, agents are assumed to make their decisions more or
less at random [25]. They must nonetheless respect the structure of the auction.
This means that if the bid placed by a buyer is at a price equal to or greater than
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the best offer by a seller, there will be an immediate transaction; if not, the bid
will sit in an order book, waiting for a seller to make an offer at a lower price.
Buyers and sellers can cancel their standing orders at any time. Zero intelligence
models have shown that this imposes strong constraints on possible outcomes.
Thus, knowing the rates at which orders flow in and out of the market, it is
possible to predict properties of prices, such as the volatility (the rate of which
prices vary), as well as the average spread (the typical difference between the
lowest selling price offered and the highest buying price bid) [26,27].

In this case the prior is incorporated by explicitly addressing how the structure
of the market mechanism for making trades shapes outcomes, as reflected in the
price. Zero intelligence models can be improved by taking some of the strategic
properties of the agents into account, either by empirically characterizing the
behavior of real agents, or by imposing the principle of market efficiency, which
states that no agent can make riskless profits [28]. It is thus possible to build
up from simple models to more sophisticated models , which can make rather
striking predictions about the relationship between one set of state variables and
another.

4.3 Authenticating Art with Visual Priors

The art object is a product of cultural coevolution – material culture evolving
upon the constraints of an evolved perceptual system. The content of figurative
or landscape paintings are identifiable by virtue of key shared features with nat-
ural scenes and objects. Above and beyond matters of accurate representation,
there is individual variation in style. How is recognition of subject maintained
alongside a signature of the author.

The process of art authentication – the determination of the creator of a work
of art – is a complicated one, accomplished primarily through connoisseurship
(the opinion of an expert on the artist in question), often supplemented by
various kinds of physical evidence derived from the analysis of the materials used
to create the work in question. The connoisseur brings a deep familiarity with
the artist, an encyclopedic knowledge of the corpus of work, and experience and
information that helps him or her rule on the consistency of the work in question
within the body of work. Phrased in this way, the problem of authentication takes
on a statistical cast and recently, with the advent of easily obtained high fidelity
digital representations of visual art, progress has been made on making sense of
a quantitative and statistical approach to authentication (see e.g., [3,2]). This
line of work is known as visual stylometry.

The methods that have been developed for visual stylometry are varied, but of
particular relevance for this paper is recent work that uses the biologically-inspired
method of sparse coding [1]. Sparse coding is an idea first developed by Olshausen
and Field to understand visual coding [4,5]. The idea is based on the fact that “nat-
ural scenes," i.e., those scenes that our visual system encounters every day, have
a certain (non-random) statistical structure. Given that, Olshausen and Field hy-
pothesize that the visual system would have evolved to take advantage of that
structure in the sense that the structure of the receptive field characteristics in
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the visual cortex would optimally encode a randomly sampled natural scene. The
visual system has evolved a strong prior expectation of the structure of the natural
world.

Translated to the domain of visual stylometry, the sparse coding approach
takes the form of basis construction for patches of a given size (say n × n)
so that a random patch of a (digitized) work of art by a given artist can be
reconstructed by using only relatively few basis functions. As applied to the
problem of authentication, we start with a corpus of digital representations of
secure works by the artist in question. Having fixed the patch size at n × n
we start with the standard basis of n2 single pixel filters. A training epoch
consists of choosing from the secure corpus a random image and then from
this, a random collection of n × n patches. Weights for any given image are
chosen by minimizing a natural cost function that trades off between information
preservation and sparsity, and having done this. These weights then provide the
information from which the basis is updated. Details of this can be found in [1].
Therein, the landscape drawings by Pieter Bruegel the Elder (1525–1569) were
analyzed. The secure corpus consisted of eight drawings and, 2048 patches were
chosen and 1000 epochs were run in order to find the sparse coding basis. In this
framework, authentication is transformed into a question of is a random patch of
a questioned work, on average as sparsely represented as a secure work? It turns
out that with respect to a set of secure Bruegel drawings and other drawings
once attributed to Bruegel, but now no longer believed (by the connoisseurs) to
be authentic, this kind of classification framework works well, generally finding
practically infinitesimal p-values to support the expert opinions.

Hence rather than apply ad hoc methods of spectral analysis to a field of het-
erogeneous pixel intensities, a result that tends to exaggerate the dimensionality
of the incoming data, one employs insights form the fact that art works both
mimic the statistics of natural scenes and have culturally evolved to stimulate
organically evolved visual systems. This form of intelligent data analysis renders
intelligible results in a form congruent with those natural to evolved mechanisms
of perception.

5 Conclusions

In this short paper, we proposed the use of the adaptive property of many com-
plex systems, to short circuit the apparent high dimensionality of data sampled
from complex system data sets. We suggest that memory and computing limita-
tions, as well as evolutionary trajectories, can be useful sources of information
for structuring a priori constraints on statistical models. In a subset of com-
plex systems, “adaptive self awareness” implies that experimental priors can be
informed by the system’s own priors. This is because adaptive systems need low-
dimensional information about their own states in order to predict and control
variables of selective consequence.

We introduced three case studies where these considerations have proved to be
of value. The first involved the analysis of conflict time series using probabilistic
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models in the framework of inductive game theory [23]. The cognitive limitations
of the agents placed strong restrictions on the space of plausible decision rules
for explaining collective dynamics. The second was the analysis of the double
auction mechanism for trading. This mechanism includes significant memory
and coordination properties – allowing that very simple Markovian agents are
sufficient to account for macroscopic variables such as price-impact functions and
volatility. Hence assumptions of infinite memory and computing power required
under perfect rationality are eliminated. The third is the use of sparse coding
algorithms for authenticating artworks [1]. These algorithms make use of evolved
properties of visual systems that exploit redundancies in natural scenes. This
significantly reduces the dimensionality of the feature vectors required to cluster
paintings.

We see the future of computer assisted scientific research as cleaving to some
of the early aspirations of artificial intelligence research. Rather than use Moore’s
law to solve problems by brute force with little comprehension of the target of
analysis (chess is of course the iconic example), use knowledge of the mechanics
of the system to constrain the choice of learning model. We leave the last word
to artificial intelligence pioneer John McCarthy:

“Chess is the Drosophila of artificial intelligence. However, computer
chess has developed much as genetics might have if the geneticists had
concentrated their efforts starting in 1910 on breeding racing Drosophila.
We would have some science, but mainly we would have very fast fruit
flies.”
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Abstract. In this paper we give a detailed description of a new method-
ology—nonlinear time series analysis—for computer performance data.
This methodology has been used successfully in prior work [1,9]. In this
paper, we analyze the theoretical underpinnings of this new methodology
as it applies to our understanding of computer performance. By doing
so, we demonstrate that using nonlinear time series analysis techniques
on computer performance data is sound. Futhermore, we examine the
results of blindly applying these techniques to computer performance
data when we do not validate their assumptions and suggest future work
to navigate these obstacles.

1 Introduction

Traditional performance analysis methods used by the computer systems com-
munity implicitly assume that the systems under study are linear and time in-
variant. Most also treat these systems as stochastic. It has recently been estab-
lished, however, that computers are actually deterministic nonlinear dynamical
systems[1,9]. This not only calls into question those prior analyses—whose un-
derlying assumptions are not in accord with these conditions—but also suggests
a new dynamics-based methodology for computer performance analysis. In this
paper, we outline this methodology, demonstrate its results, and offer a careful
assessment of the five critical assumptions on which it rests, which echo common
themes in the intelligent data analysis literature.

Prior work in computer performance analysis has considered primarily sta-
tistical techniques ranging from the obvious (mean, median, etc.) to the more
involved (e.g., correlation [5] or confidence intervals [4]) for understanding and
classifying program performance. These techniques rely on a number of assump-
tions. For instance, that the underlying system is linear and that samples are
taken randomly; however, computer systems are nonlinear—e.g., the cost of a
load may be two cycles if it hits in the L1 cache or hundreds of cycles otherwise—
and a recent paper shows that commercial tools for understanding Java perfor-
mance do not use random sampling and thus produce incorrect results [10]. It
follows that statistical techniques are unable to model some aspects of perfor-
mance. This paper explores the feasibility of using techniques from nonlinear
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dynamics as an integrated, effective methodology for analyzing computer sys-
tems. Since these techniques expect the underlying system to be nonlinear and
to change with time, they can accurately model performance characteristics that
linear, time-invariant techniques cannot. Furthermore, nonlinear time series anal-
ysis (TSA) techniques come with their own set of assumptions. In this work, we
explain the following key assumptions associated with nonlinear TSA, in the con-
text of computer performance analysis, and evaluate the implications of those
assumptions in the context of experiments on real hardware and software.

1. Data length: Nonlinear systems behave in complicated ways, often on mul-
tiple time scales, and nonlinear time-series analysis algorithms are quite sen-
sitive to data length. Thus, it is critical to have a long-enough trace, but one
cannot know a priori how long is long enough. We address this assumption
with experimental evidence in Section 4.

2. Sampling rate: Nonlinear time-series analysis techniques are valid only if
the measurements of the system are evenly spaced in time. In the experiment
demonstrated in Section 3, this assumption is valid to within .05%.

3. Smoothness of state space: A computer is typically regarded to have
a finite number of discrete states, but many nonlinear time-series analysis
techniques require that the states of the system lie on a continuum. This
conflict is resolved in Section 4.2.

4. Observer effects: When we make a measurement of a physical system, we
are recording the image of a map from the internal state of the system to an
observable quantity. Dynamical systems theory requires this mapping to be
smooth. This topic is examined in more detail in Section 4.2.

5. Stationarity: Nonlinear time-series analysis techniques implicitly assume
that a time series is from a single behavioral regime. This concept is explored
in Section 5.

2 Dynamical Systems Background

In this section, we provide the reader with some necessary background from the
theory of dynamical systems and time series analysis. A longer introduction to
the topic can be found in [2].

2.1 Nonlinear Dynamical Systems

A dynamical system is a system that can be completely described at any instant
by a fixed set of variables, and whose state evolves with time via a given rule.
When those state variables evolve deterministically and continuously in time, the
system can be modeled by a differential equation and is known as a flow. If there
are finitely many state variables, then the differential equation is ordinary [7].
That is, trajectories of the system in state space can be modeled by initial value
problems of the ordinary differential equation ẋ = f(x), where f is a vector field
defined on the state space, X . Alternatively, a deterministic dynamical system
is called a map if the state variables evolve in discrete time increments. In this
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case, the evolution of the system is determined by iterations of a function, Φ,
on X . When the evolution rule (f or Φ) of a dynamical system is nonlinear,
the dynamics can be very complicated, as well as radically different in different
regions of state space. In this case, traditional linear tools such as statistical or
frequency analysis can produce misleading results.

2.2 Nonlinear Time Series Analysis

The goal of dynamical analysis is to extract information about the state-space
behavior of a dynamical system. In particular, we would like to know what
typical trajectories look like and how nearby trajectories behave relative to one
another. Unfortunately, experimental conditions often restrict one to measuring
a single state variable which, at the outset, would seem to omit a great deal of
information. One of the central tools for nonlinear time series analysis is known
as Takens’ delay coordinate embedding theorem, which was introduced to the
IDA community in [3]. The theorem was proved in [12], and extended in [11],
which is the definitive reference. Given a smooth map, Φ : X → X , and a smooth
function h : X → R, a time delay embedding of dimension m and delay τ is a map
Ψ : A ⊂ X → Rm such that Ψ(x) = (h(x), h(Φτ (x)), . . . , h(Φ(m−1)τ (x)), where
A is an invariant set of Φ. The embedding theorem states that for almost every
choice of h (all but a set of measure 0), the map Ψ will be a diffeomorphism, i.e.,
a map that preserves topology, provided m > 2d where d is the box counting
dimension of A. In practice, h is the function that maps the position of the
system in state space to an experimental observation and the image points of
Ψ lie in a set that is topologically equivalent to the invariant set A, called the
attractor. (An attractor A lies within some larger set that contracts to A as time
approaches infinity.)

Because the embedding procedure preserves the topology—-but not the ge-
ometry—of the state space, most of the analyses that dynamicists apply to em-
bedded data involve computing topological invariants. Two of the most useful
topological invariants are the correlation dimension—-one member of the broad
family of fractal dimensions—and the Lyapunov exponent. Correlation dimen-
sion is particularly useful when one is working with chaotic systems because
the attractors of such systems are generally fractal (self-similar). The Lyapunov
exponent is a measurement of the average rate at which neighboring state-space
points separate. This represents the fundamental notion of chaos: any two points
(initial conditions) that are arbitrarily close in state space can diverge from each
other exponentially.

These definitions and conditions place important requirements on data and
algorithms for computing topological invariants. The underlying system must
exist on a continuous state space; the measured quantity must be a smooth
function of the state variables and be sampled evenly in time; the time series
must be long enough to reach and cover the attractor; and it cannot include
more than one attractor. These requirements are the formal statements of the
assumptions listed in Section 1.
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3 A Methodology for Computer Performance Analysis

In this section, we show how the mathematics and algorithms of nonlinear dy-
namics can be used to characterize computer performance, yielding results that
are both more useful and more accurate than those produced by traditional
computer-systems techniques. We use an example to demonstrate the analysis
methodology; we then explore the various assumptions on which this methodol-
ogy rests both by varying the parameters of the example and via mathematical
arguments. A fuller treatment of this and several other examples, as well as
broader discussion of the implications, can be found in [9].

3.1 Preconditions: Program Execution as an Iterated Map

One way to think of a computer executing a program is as an iterated map; each of
the N transistors in a computer is either on or off, thus giving rise to a finite state
space X of 2N variables and a deterministic update rule that is dependent upon
both the computer’s implementation and the program. The map, F , describes how
to update the system at any given time step. When a computer program is loaded
into memory, the system (software and hardware)has an initial configuration x0 ∈
X ; at each time click, the computer updates each of its N transistors based upon
the equation: xn+1 = F (xn). In the following sections, we describe the details of
a simple program that leads to a map F and use our methodology to show that
its dynamics have strong indications of chaotic dynamics.

3.2 A Microkernel Experiment

We study the simple program,

for ( i = 0 ; i < N; i++)
for ( j = i ; j < N; j++)

data [ i ] [ j ] = 0 ;

which initializes an array in row major order. Microkernels like this, which are
often used in the computer systems community to study computer performance,
are far simpler than real programs, but they provide a useful starting point for
evaluation of methodologies like the one proposed in this paper. We conjecture
that the performance dynamics of this code will represent a single attractor with
relatively low dimension. Figure 1(a) shows a time series of cache performance
measured during the execution of this code on an Intel Core2 R© processor. The
loop was executed repeatedly and measurements were taken every 100K clock
cycles; at each sample time, the number of cache misses that occurred over
that 100K cycle window was normalized by dividing by 100K cycles and then
recorded. Each data point in Figure 1(a) is one of these measurements. In all, we
collected 85K data points; only part of this dataset is shown in the figure. Note
that the cache behavior is not purely periodic, as one might expect given the
simplicity of this loop; rather, there is interesting dynamical structure evident
in this time series. Traditional computer performance analysis techniques would
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need to be augmented (e.g., via additional instrumentation) to understand this
dynamical behavior. The nonlinear dynamics methodology proposed here not
only brings out this behavior naturally, but offers immediate and useful infor-
mation about understanding it (viz., the composition of multiple periodicities in
a chaotic signal).
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Fig. 1. Row major dynamics

3.3 Reconstructing the Dynamics

The first step in extracting useful information about the dynamics of a time se-
ries like Figure 1(a) is to reconstruct the state space using the delay-coordinate
embedding process described in Section 2.2. Since neither the dimension nor the
time scales are known, this begins with constructing estimates for those val-
ues. Using standard nonlinear time-series analysis heuristics—average mutual
information to determine the delay τ and false nearest neighbor relationships to
estimate the dimension m, both as implemented in the TISEAN toolset [6]—we
obtained the embedding parameter values m = 12 and τ = 1. Per the embed-
ding theorems, the state-space dynamics can be faithfully reconstructed using
these parameter values. A projection of this twelve-dimensional reconstruction is
shown in Figure 1(b); this particular projection plots x(t+ τ) versus x(t), where
x is the number of cache misses per cycle at time t. This plot clearly brings
out the structure that the time series hinted at: the dynamics have a significant
periodic component—the dark triangle—but there is evidence of other period-
icities at work. This kind of structure is a clear indication of low-dimensional
deterministic dynamics.
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3.4 Characterizing the Dynamics

To verify the conjecture that the cache behavior of the row-major loop on the
Intel Core2 R© computer has low-dimensional dynamics, we calculated values for
various topological invariants of the reconstructed trajectory in Figure 1(b)—
the second step in the methodology proposed here. As mentioned in Section 2.2,
many such invariants exist. The Lyapunov exponent and the correlation dimen-
sion, which we calculate here, are useful in characterizing the dynamics and
comparatively easy to extract from experimental data. These quantities not only
help us analyze the dynamical system, but they also can be used to strengthen
our assumptions that we have stationarity and sufficient data length as we will
see in Section 4.

Correlation dimension. The correlation dimension algorithm effectively mea-
sures the fraction of points in state space (R12) that are ε-close to each other as ε
scales from zero. For a self-similar (i.e., fractal) set, this number should grow via
a power law, with non-integer power. Self-similarity, as mentioned in Section 2.2,
is a strong indication of chaos, but the correlation dimension is more broadly
useful as a means for comparing two trajectories—e.g., the cache behavior of the
same code on two different computers. To compute it, one plots the logarithm
of the correlation sum—a quantity defined in detail in [2]—versus ε, as shown in
Figure 1(c), and looks for horizontal regions in the curve. (Algorithmic effects,
in conjunction with the attractor size, cause the curve to oscillate when ε is very
large or very small.) The highlighted region in Figure 1(c) suggests a correlation
dimension of 1.169± .013. This is not only a strong validation of the conjecture
that the dynamics of the cache behavior of the row-major loop is both determin-
istic and low dimensional, but also a first indication that they may be chaotic:
i.e., that the memory use of this code varies from run to run in a manner that
depends strongly on small perturbations.

Lyapunov exponent. The standard algorithms for computing Lyapunov ex-
ponents pick pairs of state-space points that are close to each other and then
iterate forward in time to track how quickly they spread apart. In Figure 1(d),
we have plotted the logarithm of the value of this “stretching factor,” averaged
over many pairs of points, versus the spreading time. This graph shows textbook
form: a straight line up to 15 iterations, followed by saturation when the spread
between points reaches the diameter of the attractor in Figure 1(b). The slope of
this line is the Lyapunov exponent of the attractor; here, its value is .057± .0013
cache misses per cycle. This affirms the conjecture that the cache behavior is
chaotic—a result that traditional techniques cannot handle and do not consider.

3.5 Implications for Analysis

Taken together, the non-integer correlation dimension and positive Lyapunov
exponent are strong indicators of low-dimensional chaos in the performance of a
simple microkernel on a popular microprocessor. This has severe consequences
for computer systems performance analysis. For example:
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– Computer architects validate architectural simulators by comparing end-to-
end metrics (e.g., execution time) on a simulator to end-to-end metrics on a
machine that the simulator is supposed to model. Given the chaotic nature
of computer systems, such a validation is likely to fail: even a tiny difference
in the initial conditions on the simulator and real hardware can cause the
simulator and the hardware to produce vastly different end-to-end metrics.
Thus, validation may conclude that a simulator does not accurately model
the hardware even when it does; and vice versa.

– It significantly complicates the task of understanding the performance of a
computer system: we may think we understand how a system performs, but
that performance may have more to do with a small, seemingly insignificant,
artifact of the initial conditions than with the system itself. For example,
prior work [8] shows that small changes to the environment results in dra-
matically different results from a performance comparison.

– It significantly complicates the task of improving the performance of a com-
puter system: we may think that our new idea improves performance but it
may be that the performance improvement is an artifact of something com-
pletely irrelevant (e.g., if the particular environment that we used for our
experiments is biased towards our new idea [8]).

4 Validation

In this section, we address the five assumptions upon which this methodology
rests, using a combination of theory and experiment to establish their validity
in the context of computer performance analysis.

4.1 Assumptions Verified by Experiment

Data length. One can test whether or not a time series from a computer perfor-
mance experiment is long enough to be a representative sample of the dynamics
simply by repeating the dynamical analysis on different-size subsets of that se-
ries. In the case of Figure 1, for example, the correlation dimension and Lyapunov
exponent computed from the first 40K points of the trajectory are identical, up
to a standard error interval, to those computed from the full trajectory. This
indicates that all of the dynamics that are present in the larger data set are also
present in the smaller data set. A related concern is whether the larger data set
is truly large enough; the fact that its topological invariants do not change if
one shortens it somewhat, suggest that it is. Using the first 20K points of the
trajectory, however, we found that the correlation dimension was uncomputable,
suggesting that this snippet of the time series was an inadequate sample of the
dynamics. Establishing these boundaries via this kind of subset testing—and, if
needed, longer experiments—is critical to the success of this methodology.

Stationarity. A similar experiment shows that the dynamics are equivalent
for disjoint subsets of 40K points (i.e. the first half of the trace vs. the second
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half). This indicates that the system is in a single regime for the duration of the
experiment—i.e., that the time series is measured from a single attractor. Our
original intent in starting with a microkernel experiment was to explore whether
this was the case, and our conjecture was that the uniform, repetitive dynamics
of this microkernel would lead to a single attractor. Real programs, of course,
are far more complicated, which can challenge the methodology proposed here.
These issues are discussed further in Section 5.

4.2 Assumptions Verified by Theory

Smoothness of state space. Consider the map Φ from the summary of the
embedding theorem in Section 2.2. The smoothness of Φ, required by the theo-
rem, is equivalent to the existence of a continuous state space of the computer
system. Initially, this appears to be contrary to our description of the computer
as having 2N states for some finite N . The resolution of this issue is a matter of
perspective. If we consider the computer system to be an electronic circuit, then
its state is determined by the voltage drops across the various components. Most
importantly, the behavior of the circuit is described completely by a finite sys-
tem of ordinary differential equations, ẋ = f(x)—in other words, the trajectory
of the system can be modeled as a flow in a continuous state space.

Furthermore, suppose that Φt : X → X represents the flow of the vector field
f . Since this flow is continuous, it follows that for a fixed t, Φt represents a
smooth map on a continuous space. In particular, if we let t be the period of a
single clock cycle, then Φt ≡ F as defined in Section 3.

Observer effects. The measurement function h is the function that maps the
current state of the system to the normalized number of cache misses that oc-
curred over the previous 100K clock cycles. To justify that a dynamical systems-
based methodology is the right way to analyze computer performance data like
this, we must answer the question: is h a smooth function?

In an experimental setting, one deals with error by expressing the range of
the measurement function h in the form of intervals of a fixed (possibly undeter-
mined) length, centered at the experimental observations. Then the smoothness
condition will be satisfied up to experimental error if h has a smooth continuous
selector—that is, if there is a smooth function γ : X → R, such that γ(x) ∈ h(x)
for each x ∈ X .

In the case of the methodology proposed here, we can construct γ explicitly.
The dynamical system being studied is a coupling of the computer system and
the hardware performance monitor (HPM) on the microprocessor chip that is
being used to gather the data. When we read the number of cache misses from the
internal register in the HPM, we are making an observation about the voltages
across each of the transistors in the register. For simplicity, we imagine that the
register contains a number in fixed-point format, though the following analysis
is valid for floating-point numbers as well.

Let uj , vj be the averagevalues of the voltage across a transistor that is read as a
0 or a 1, respectively, and define the function, aj(x) = 2j x−uj

vj−uj
. We can then define
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γ(x) =
∑m

−m aj(xj), where xj is the voltage across the transistor that represents
the bit j units to the left of the decimal place. It is clear that each of the xj is a state
variable of the system and furthermore, that the number of cache misses reported
by the HPM is the expected value of γ. It follows that γ is a smooth continuous
selector for h and the embedding theorems hold, up to experimental error.

This argument depends on the workings of the hardware performance moni-
tors. Specifically, we are making the assumption that the reading taken from the
HPM (the number of cache misses) depends entirely on the state of the computer
system and does not depend on the state of the HPM. We can easily construct an
example where this assumption is violated. If the number of cache misses exceeds
the capacity of the HPM register then the register will overflow and produce a
discontinuity. In this situation, most of the measurements will be dependent only
on the state of the computer system, but isolated measurements (after a rollover)
will have strong dependence on the state of the HPM, thus producing the dis-
continuity. We can explore this situation by reading only the k least significant
bits from the HPM register and repeating the dynamical-systems analysis. The
resulting attractor, as shown in Figure 2 for k = 10, clearly differs both geomet-
rically and topologically from those in Figure 1(b). Luckily, the HPM registers
on modern microprocessors are typically 64 bits wide and are typically reset at
the start of an experiment, so the overflow is extremely unlikely to happen.
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Sampling rate. The final requirement for a dynamical-systems based method-
ology to be effective in a computer performance analysis problem, per the em-
bedding theorems, is that the data are measured at even sampling intervals.
Operating systems effects, among other things, can alter measurement timing
in a running computer; in order to establish that these variations are within
acceptable bounds, we can appeal to the underlying mathematics. In particular,
the sampling interval can be assumed to be constant by the continuity of the
flow Φt. Since the error in the sampling interval is small, this corresponds to a
small change in the state of the system under the action of Φt. Therefore, the
small perturbations in sampling rate can be regarded as small perturbations in
state space that are absorbed up to the experimental error represented by the
intervals in the range of h.
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5 Dynamical Analysis of Complex Programs

In view of the vast differences between microkernels like the one in Section 3 and
real programs, the requirement that the data come from a single attractor is a
serious potential limitation of the dynamical systems methodology for computer
performance analysis. In this section, we explore the results of relaxing that
assumption: first by adding various percentages of transient noise to the time
series and then by using a program trace that alternates between two different
microkernels.
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Fig. 3. Two relaxations of the single-attractor assumption. Average number of cache
misses per cycle over the previous 100K cycles are plotted on the y-axis; the x-axis is
time in cycles × 105.

5.1 Transient Data

We first explore how well our methodology works on a data set where various
percentages of the row-major program have been replaced with surrogate data
(i.e., random data generated to have similar mean and variance as the row-major
trace). An example is shown in Figure 3(a). To establish the limits of the tech-
niques on which our methodology is based, we varied the percentage of the trace
consisting of surrogate, then embedded the resulting data and computed the
correlation dimension and Lyapunov exponent of the reconstructed trajectory.
Unsurprisingly, we found that as the noise percentage increases, the calculations
diverge from the true values (from Section 3.4) and the error bars grow. The ef-
fects play out differently in the two calculations, of course; added noise tends to
increase any kind of fractal dimension. As a result, our computation of correlation
dimension was inaccurate with any level of surrogate added. On the other hand,
the Lyapunov exponent calculations are actually statistically accurate (though
with a greater amount of uncertainty). This reflects the greater noise immunity
of the associated algorithms, which average over both time and space.

5.2 Multiple Attractors

The experiment in the previous section explores a situation like the one that arises
in a program that has a transient phase (e.g., initialization) and then a long,



28 Z. Alexander et al.

stationary phase. Another common situation in the dynamics of real programs is
two or more alternating phases. To evaluate how well our methodology works in
that situation, we created a program trace that alternates between the row-major
microkernel of Section 3 and a column-major version of the same loop. An exam-
ple time series from one of these experiments is shown in Figure 3(b). Because of
the different ways in which these microkernels touch memory, the time series has
two clear regimes: the cache miss rate is high when initializing the array in column-
major order and low in row-major order. This translates to two different attractors
in drastically different regions of the reconstructed state space—a situation that
the dynamical systems methods in the previous sections cannot handle without
some preprocessing of the data. One way to do so is to use a ‘cut and paste’ ap-
proach to concatenate the data points from each attractor into a single time series,
then analyze the results separately. If we know the attractor boundaries (as in our
synthetic example), the cutting-and-pasting is easy. However, in real programs we
do not know the attractor boundaries; in future work we will consider using tech-
niques from phase detection and signal processing to identify them.

Using the cut-and-paste approach for our synthetic program, we found that
the topological invariant results were statistically identical to the results that we
obtained by running each microkernel in isolation. This verifies our hypothesis
that the seperate chunks come from the same attractor. The results on the two
time series derived by concatenating the chunks are interesting: the correlation
dimension is statistically accurate while the Lyapunov exponent is markedly dif-
ferent. This, too, derives from the underlying algorithms: correlation dimension
is a static property that does not care about the ordering of the points. The
Lyapunov exponent, on the other hand, is dynamic, and the ‘paste’ operation
disturbs the state-space flow at the chunk boundaries.

6 Conclusions

We have shown that computer systems are deterministic nonlinear dynamical
systems and that standard nonlinear time series analysis tools provide an ef-
fective and theoretically grounded methodology for the study of such systems.
We conclude that the computer systems community can benefit greatly from
active research in the application of these methods to computer performance
analysis. Future contributions to this field are likely to come from multiple aca-
demic disciplines as there is a need for the design of novel experiments to provide
meaningful time series data; as well as a need for improved time series analysis
techniques, tailored specifically for the computer systems community.
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Abstract. Extraction of named entity relations in textual data is an im-
portant challenge in natural language processing. For that purpose, we
propose a new data mining approach based on recursive sequence min-
ing. The contribution of this work is twofold. First, we present a method
based on a cross-fertilization of sequence mining under constraints and
recursive pattern mining to produce a user-manageable set of linguis-
tic information extraction rules. Moreover, unlike most works from the
state-of-the-art in natural language processing, our approach does not
need syntactic parsing of the sentences neither resource except the train-
ing data. Second, we show in practice how to apply the computed rules
to detect new relations between named entities, highlighting the interest
of hybridization of data mining and natural language processing tech-
niques in the discovery of knowledge. We illustrate our approach with
the detection of gene interactions in biomedical literature.

Keywords: Sequential Data, Recursive Mining, Named Entity Rela-
tions, Pattern Discovery, Natural Language Processing.

1 Introduction

Due to the explosion of available textual data, text mining and Information Ex-
traction (IE) from texts have become important topics of study in recent years.
In particular, detection of relations between named entities is a challenging task
to automatically discover new relationships in texts. The detection of gene inter-
actions in biomedical texts and the discovery of companies relations (sell/buy) in
newspapers belong to the scope of that problem. Some previous works use hand-
crafted linguistic IE rules for that task which is time consuming [7,5]. Other
methods based on Machine Learning (ML) techniques [10] give good results but
run as a “black box”: their outcomes are not really understandable by a user
and Natural Language Processing (NLP) cannot fully take benefit from them.

A key idea of this paper is to propose a cross-fertilization of data mining and
NLP techniques to profit from the advantages of the two fields. More precisely, we
propose a method based on recursive sequential pattern mining with constraints
coming from the NLP field to tackle the problem of the discovery of named
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entity relations. Sequence mining, in particular sequential pattern mining [1],
is a well-known data mining technique that allows to extract regularities in a
sequence database. The recursive pattern mining [4] and the constraint-based
paradigm [14] enable to give prominence to the most significant patterns. As we
will see (Section 2), these techniques have suitable properties for our goal.

The contribution of this work is twofold. First, we propose a recursive pattern
mining approach based on constrained sequential patterns to produce a user-
manageable set of linguistic IE rules. The recursive sequential pattern mining
enables the effective mastering of the number of discovered patterns that are re-
turned. If recursive mining has already been used in the context of itemsets (i.e.,
data described by items), we show how such a method can deal with sequential
data and we prove new properties on recursive pattern mining on sequences.
Second, we show how to apply sequential patterns as linguistic IE rules to de-
tect new relations in texts. We illustrate our approach with the detection of gene
interactions in biomedical literature. With regards to the issue of the detection
of named entity relations, the main advantages of our approach with respect to
existing ones are that the results are automatically discovered and easily under-
standable by a human. To the best of our knowledge, it is the first approach
combining sequential pattern mining methods and linguistic information.

The paper is organized as follow. Section 2 presents the background in data
mining and existing approaches that tackle the problem of the detection of named
entity relations. Section 3 gives the main contributions of this paper. Espe-
cially, we describe the discovery of linguistic IE rules to detect relations between
entities. Section 4 presents a case study about IE rules for gene interaction
detection.

2 Background

This section provides the background on sequential pattern mining and recursive
mining. Related work on named entity relation detection is then presented.

2.1 Sequential Pattern Mining under Constraints

Sequential pattern mining [1] is a data mining technique that aims at discovering
correlations between events through their order of appearance. Sequential pat-
tern mining is an important field of data mining with broad applications (e.g.,
biology, marketing, security) and there are many algorithms to extract frequent
sequences [19,15,22].

In the context of sequential patterns extraction, a sequence is an ordered list of
distinct literals called items. A sequence S is denoted by 〈i1i2 . . . in〉 where ik, 1 ≤
k ≤ n, is an item. Let S1 = 〈i1i2 . . . in〉 and S2 = 〈i′1i′2 . . . i′m〉 be two sequences.
S1 is included in S2 if there exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m such that
i1 = i′j1 , i2 = i′j2 , . . ., in = i′jn

. S1 is called a subsequence of S2. S2 is called a
super-sequence of S1, denoted by S1 	 S2. An extracted sequential pattern, S1, is
maximal if there is no other extracted sequential pattern, S2, such that S1 	 S2.
A sequence database SDB is a set of tuples (sid, S) where sid is a sequence ID
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and S a sequence. A tuple (sid, S) contains a sequence T , if T is a subsequence
of S. The support of a sequence T in a sequence database SDB is the number of
tuples in the database containing T : supSDB(T ) = |{(sid, S) ∈ SDB|(T 	 S)}|
where |A| represents the cardinality of set A1. Note that we do not mention
the database when it is clear from the context: sup(T ). In this paper, we use
sequences of items for sake of simplicity and because it is enough for the case
study. However, this approach can be straightforwardly generalized to sequences
of itemsets.

The constraint-based pattern mining framework is a powerful paradigm to
discover new highly valuable knowledge [13]. Constraints provide a focus on the
most promising knowledge by reducing the number of extracted patterns to those
of potential interest for the user. More precisely, constraint-based mining task
selects all the sequential patterns included in SDB and satisfying a predicate
which is called constraint. There are a lot of constraints to evaluate the relevance
of sequential patterns. The most well-known example is the frequency constraint.
Given a minimum support threshold minsup, the problem of frequent sequential
pattern mining is to find the complete set of sequential patterns whose support is
greater than or equal to minsup. There are many other constraints highlighting
the best sequential patterns with respect to the user objectives [14]. In this work,
we will see that we use both syntactic constraints and constraints coming from
linguistic information.

2.2 Recursive Pattern Mining

Recursive pattern mining [4] is a process that gives prominence to the most sig-
nificant patterns and filters the specific ones. The key idea of recursive pattern
mining is to repeat the pattern mining process on the output in order to re-
duce it until few and significant patterns are obtained. That recursive process is
ended when the result becomes stable. The final recursive patterns bring forward
information coming from each mining step. More precisely, a recursive pattern
produces a k-summary (i.e., a set with at most k patterns) summarizing the
data according to a measure (e.g., frequency, growth rate) where k is a given
number. One of the advantages of recursive pattern mining is that the number of
returned frequent patterns is well mastered. If recursive mining is already used
with item data [4], to the best of our knowledge, we propose here the first use
on sequential data. Such a use requires to demonstrate properties on sequential
data and Section 3.5 is devoted to this task.

2.3 Related Work

Several approaches have been widely applied to extract knowledge from texts:
NLP, in particular information extraction, and ML.

IE methods need linguistic resources such as grammars. That kind of ap-
proaches apply linguistic IE rules to extract information [7,5]. However, the
1 The relative support is also used: supSDB(T ) =
|{(sid, S) s.t. (sid, S) ∈ SDB ∧ (T � S)}|

|SDB| .
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resources are very often handcrafted. Those methods are thus time consuming
and very often devoted to specific corpus. In contrast, ML methods, for example
support vector machines or conditional random fields [10], are less time consum-
ing than IE methods. They give good results but they need many features and
their outcomes are not really understandable by a user and not usable in NLP
systems as linguistic patterns.

A good trade-off is a combination of IE and ML techniques which aims at
automatically learning the linguistic IE rules [12,18]. However in most cases the
learning process is done with a syntactic parsing of the text (shallow parsing
or deep parsing). Therefore, the quality of the learned rules is relied on results
of syntactic process which is currently not often a reliable process. Unlike those
methods, our proposed approach does not need syntactic parsing of the sentences
neither resource except the training data.

Some works [8] do not use syntactic parsing and learn surface patterns us-
ing sequence alignment of sentences to derive ”motifs”. One drawback of that
approach is that the sequence alignment implies that patterns are learned with
contiguous words. An inexact matching is nevertheless used to apply the pat-
terns on the application corpus. Other works [9] implicitly uses sequence mining
in order to compute information extraction rules. However, the number of pat-
terns (i.e., IE rules) is not well mastered and thus they cannot be presented to
an expert. Using n-grams is another technique very widespread to automatically
extract patterns. The drawbacks of n-grams is that the size of the extracted pat-
terns is set for all patterns to n and the elements in patterns must be contiguous.
Moreover n-gram can be seen as a specific instance of sequential pattern. Unlike
n-grams, in sequential pattern mining, discovered patterns can have different
sizes, and items within sequential patterns are not necessarily contiguous.

3 Recursive Sequence Mining to Discover Named Entity
Relations

This section presents the discovery of patterns as linguistic IE rules to detect
relations between named entities in texts. First, an overview of the approach is
given. Second, the use of sequential pattern mining for the detection of named
entity relations is explained. Third, linguistic constraints are discussed. Fourth,
the algorithm is presented. Finally properties about the recursive pattern mining
step are proven.

3.1 Overview

The main idea of our approach is to extract the frequent patterns satisfying user-
defined constraints. As the order of words in texts is important, our approach
is based on sequential pattern mining which aims at discovering correlations
between events through an ordered relation. The order of words within the sen-
tence corresponds to the ordered relation to supply sequential pattern mining.
Some linguistic constraints (cf. Section 3.3) are used in order to drive the mining
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process towards the user objectives. Even if the number of produced patterns is
reduced thanks to the constraint, the output still remains too large for individual
and global analysis by the end-user. That is why a recursive pattern mining step
is performed in order to give prominence to the most significant patterns and to
control the output size. That step needs that important properties on recursive
pattern mining (cf. Section 3.5) are proven. In addition to usual evaluations by
using Precision and Recall measures, Section 4 shows that this small number of
computed sequential patterns enables a validation by linguists.

3.2 Sequential Pattern Mining for Named Entity Relations

For the extraction of sequential patterns as linguistic IE rules, the database
is built from texts which contain relations and where the named entities are
identified and replaced by the specific item Named Entity. In order to avoid
problems introduced by the anaphoric structures [23], we consider sequences
containing a relation, i.e. a verb or a noun, and at least two named entities.

The choice of the support threshold minsup is a well-known issue in data
mining. We note in our applications that some interesting words for named
entity relation detection are not very frequent so that we set a low value of
minsup. As a consequence, a huge set of patterns is discovered and it needs to
be filtered in order to return only interesting and relevant patterns.

3.3 Linguistic Constraints

In pattern mining, the constraints allow to precisely define the user interest.
The most commonly used constraint is the constraint of frequency (minsup)
because it satisfies suitable mining properties. However, it is possible to use
different constraints in conjunction to the frequency [13]. In our work, we use
mainly two linguistic constraints on sequential patterns to discover named entity
relations.

The first constraint is that the pattern must contain two named entities (C2ne).
The set SAT (C2ne) represents the set of patterns that satisfy C2ne:
SAT(C2ne) = {S = 〈i1i2 . . . im〉 | |{j | j ∈ 1 . . .m ∧ ij = Named Entity}| ≥ 2}.
Indeed, the targeted relation is between at least two named entities.

The second constraint is that the pattern must contain a verb or a noun (Cvn)
in order to express a named entity relation. The set SAT (Cvn) represents the set
of patterns that satisfy Cvn: SAT (Cvn)={S =〈i1i2 . . . im〉|∃j, verb(ij)ornoun(ij)}
where verb(ij) (resp. noun(ij)) is a predicate that returns true if ij is a verb (resp.
noun).

Note that other linguistic constraints can be added to give more precision with
respect to the kind of searched relations. In the following, for the sake of clarity,
all constraints are grouped in only one constraint CG and SAT (CG) is the set of
patterns satisfying CG. From the constraint-based paradigm, the C2ne and Cvn

constraints belong to the category of regular expression constraints introduced
by [6].
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3.4 Algorithm

Algorithm 1 presents the whole process to discover named entity relations.
Firstly, the text is POS tagged (Step 1), i.e., each word is replaced by its lemma
and linguistic informations. That step defines the items of the sequence database.
The POS tagged text is then sliced in sequences (Step 2). The type of slice
size (a sequence) can be for example the phrase, the whole sentence or the
paragraph.

Sequential pattern mining is then applied (Step 3) to find the frequent se-
quential patterns in the database. The patterns are then filtered with respect
to user-defined constraints (Step 4). Method CheckConstrainsts prunes the se-
quential patterns that do not satisfy CG. Therefore, the constrainedPatterns set
contains all frequent sequential patterns that satisfy CG. In order to avoid the
redundancy between patterns, only maximal patterns (cf. Section 2.1) are kept
(Step 5). The computation of the maximality is done in post processing because
it is not time consuming. It takes less than 2 minutes. However that phase can
be done in the sequential pattern mining step (Step 3).

Even if the new set of sequential patterns, maximalConstrainedPatterns , is
significantly smaller than the complete set sequencePatterns, it can still be
too large to be analyzed and validated by a human user. Therefore we use
recursive pattern mining [4] to filter very specific patterns. As we are inter-
ested to keep some patterns for each relation expression, i.e., for each verb or
noun, Xi, the set maximalConstrainedPatterns is thus divided into several sub-
sets S(Xi) (Step 6)2. A subset S(Xi) is the set of all sequential patterns of
maximalConstrainedPatterns containing the item Xi. More formally, S(Xi) =
{S ∈ maximalConstrainedPatterns | 〈Xi〉 	 S}. Note that Xi are elements la-
beled as a verb or a noun. The most k (k > 1) representative elements for each
S(Xi) are then computed. Each subset S(Xi) is then recursively3 mined with a

support threshold, min supR, equal to max{ |S(Xi)|
k

, 2} in order to extract fre-
quent sequential patterns satisfying CG (Steps 7–14). It means that the extracted
sequential patterns become the sequences of the new database to mine. That pro-
cess ends when the number of extracted patterns is less than or equal to k. Some
properties about the recursive pattern mining step are given in Section 3.5.

At the end of the process, the number of sequential patterns is well-mastered.
Indeed, recursive mining goes on until the number of sequential patterns is less
than or equal to k, and as recursive mining always stops (Theorem 1), the number
of sequential patterns for each subset is thus less than or equal to k. Therefore
the number of returned sequential patterns is less than or equal to n × k where
n is the number of subsets S(Xi) in SAT (CG). Note that k is set a priori by the
user so that sequential patterns can be analyzed by a human. The sequential
patterns are then validated by the user and considered as linguistic IE rules for
the detection of relations between named entities.

2 The S(Xi) are not necessarily disjoint.
3 The recursive process is given in iterative writing in Agorithm 1.



36 P. Cellier et al.

Algorithm 1. Discovery of Named Entity Relation Patterns
Input: text: text ; minsup: support threshold ; slice type: scope of a sequence in text;

CG: constraints ; k: recursive mining threshold
Output: patterns, set of returned frequent sequential patterns
Method:
1: POSTaggedText := POS Tagging(text)
2: textSDB := Slicing(POSTaggedText , slice type)
3: frequentSequentialPatterns := SequenceMining(textSDB , minsup)
4: constrainedPatterns := CheckConstrainsts (frequentSequentialPatterns , CG)
5: maximalConstrainedPatterns := Maximal(constrainedPatterns )
6: patternSets := Split(maximalConstrainedPatterns )
7: patterns := ∅
8: for all S(Xi) ∈ patternSets do
9: while |S(Xi)| > k do

10: min supR := max{ |S(Xi)|
k

, 2}
11: FP := SequenceMining(S(Xi), min supR)
12: CP := CheckConstrainsts(FP)
13: S(Xi) := Maximal(CP)
14: end while
15: patterns := patterns ∪ S(Xi)
16: end for

3.5 Properties of Recursive Pattern Mining

In this section, important properties about recursive pattern mining are demon-
strated. These properties are new in the context of sequential data.

The first property is about the frequency of the returned patterns. For each
subset S(Xi), the k or less extracted sequential patterns returned after recursive
pattern mining are frequent in the sequence database textSDB. In other words,
they belong to the complete set of frequent sequential patterns in textSDB,
frequentSequentialPatterns, with respect to minsup (Property 1).

Property 1. Let S(X) be a set of frequent sequential patterns in textSDB that
contain X . The sequential patterns of S(X) after recursive pattern mining are
frequent in textSDB with respect to minsup.

Proof. The proof is conducted recursively on the number of recursive pattern
mining steps.

Base case: No recursive pattern mining. All elements of S(X) are frequent in
textSDB with respect to minsup (Step 3 of Algorithm 1).

Hypothesis: We assume that after j recursive pattern mining steps all elements
of S(X) are frequent in textSDB with respect to minsup. Let Sj(X) be the set
of sequential patterns after j recursive pattern mining steps.

Recursive Case: Let Sj+1(X) be the set of sequential patterns after j + 1
recursive pattern mining steps and p ∈ Sj+1(X). It implies that p is frequent in
Sj(X) and thus there exists at least one element in Sj(X), e, such that p 	 e.
The pattern e is frequent in textSDB (recursive hypothesis). Thanks to the anti-
monotonicity of the support, p is thus also frequent in textSDB. �
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We prove that the recursive pattern mining stops (Theorem 1). Unfortunately,
the proof cannot be based on the strictly decreasing of the number of patterns
during the recursive pattern mining, because that number may not decrease for
some steps. That is why we base the proof according to the size of the largest
maximal frequent sequential patterns because it strictly decreases during the
recursive pattern mining (Property 2).

Property 2. Let Sj(X) be the result set of sequential patterns recursively mined
at step j of the recursive pattern mining (Steps 7-14) and Sj+1(X) the result
set at step j + 1 then: ∀p ∈ Sj+1(X) |p| < max{|pl| | pl ∈ Sj(X)}
where |p| is the size of the pattern, i.e., the number of items in p.

Proof. Let p be an element of Sj+1(X): p ∈ Sj+1(X). Let Ep be the set of all
elements of Sj(X) such that: ∀e ∈ Ep p 	 e.

The support threshold for the sequential mining (Step 11) is greater than
or equal to 2 (Step 10) and p is frequent in Sj(X). It implies that |Ep| ≥ 2.
However, the elements of Sj(X) are maximal (Step 13), so that the elements of
Ep are also maximal ( indeed Ep ⊆ Sj(X) ) and thus p cannot be equal to any
element of Ep: ∀e ∈ Ep p � e ( i.e., p 	 e and p �= e) ⇒ ∀e ∈ Ep |p| < |e|
and ∀e ∈ Ep |e| ≤ max{|pl| | pl ∈ Sj(X)} ⇒ |p| < max{|pl| | pl ∈ Sj(X)} �
Theorem 1. Let k be an integer, k > 1. The recursive pattern mining of S(X)
stops (cf Algorithm 1).

Proof. The proof is conducted recursively on the size of patterns of S(X).
Base case: the size of patterns of S(X) is 0. The number of patterns in S(X)

is thus 0. In addition, 0 < k and thanks to Step 9 of Algorithm 1, the recursive
pattern mining stops.

Hypothesis: We assume that the recursive pattern mining stops when the size
of patterns of S(X) is lower than or equal to T .

Recursive Case: the size of patterns of S(X) is lower than or equal to T + 1.
Thanks to Property 2, after one application of the recursive pattern mining on
S(X) we know that S(X) contain patterns such that their size is lower than
or equal to T . The recursive pattern mining thus stops thanks to the recursive
hypothesis. �

4 Case Study: Discovery of Gene Interaction Patterns

This section presents the discovery of frequent sequential patterns as linguistic
information extraction rules for gene interaction detection. The named entities
are the genes. Experiments are conducted on texts from biological and medical
literature. A linguistic analysis of this case study is given in [3].

4.1 Training Dataset

We merge two different corpora containing genes and proteins to build the train-
ing dataset. The first corpus contains sentences from PubMed abstracts, anno-
tated by Christine Brun. It contains 1806 annotated sentences. That corpus is
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available as a secondary source of learning tasks “Protein-Protein Interaction
Task (Interaction Award Sub-task, ISS)” from BioCreAtIvE Challenge II [10].
The second corpus contains sentences of interactions between proteins annotated
by an expert. That dataset, containing 2995 sentences with gene interactions, is
described in [16]. The training corpus thus contains 4801 sentences.

A POS tagging is then performed on the merged corpus using the treetagger
tool [17]. The sentences are then split into sequences to build the database. For
example, let us consider two sentences that contain gene interactions:

– “Here we show that <Gene SOX10>, in synergy with <Gene PAX3>, strongly
activates <Gene MITF > expression in transfection assays.”

– “The <Gene Menin>-<Gene JunD> interaction was confirmed in vitro and
in vivo.”

Those sentences generate two sequences4:

– 〈 here@rb we@pp show@vvp that@in/that Named Entity ,@, in@in synergy@nn
with@in Named Entity ,@, strongly@rb activate@vvz Named Entity
expression@nn in@in transfection@nn assay@nns .@sent 〉

– 〈 the@dtNamed Entity -@:Named Entity interaction@nnbe@vbdconfirm@vvn
in@in vitro@nn and@cc in@in vivo@rb .@sent 〉

The gene names, i.e., the named entities, are replaced by a specific item, Named
Entity, and the other words are replaced by the combinations of their lemma and
their POS tag. The order relation between items in a sequence is the order of
words within the sentence. For experiments, the sequences of the database are
the sentences where each word is replaced by the corresponding item. It means
that slice type is the whole sentence.

4.2 Recursive Sequential Pattern Mining

For the sequential pattern mining, we set a support threshold minsup equal
to 10. With that threshold some irrelevant patterns are not taken into account
while many patterns of gene interactions are discovered. We conducted other ex-
periments with greater minsup values (15 and 20). With those thresholds some
relevant patterns for interaction detection are lost. The number of frequent se-
quential patterns that are extracted is high. More than 32 million frequent se-
quential patterns are discovered. Although the number of extracted patterns is
high the extraction of all frequent patterns spends only 15 minutes. The extrac-
tion tool is dmt4 [11].

The application of constraints significantly reduces the number of sequential
patterns. Indeed, the number of sequential patterns satisfying the constraints is
about 65, 000. However, that number is still prohibitive for analysis and valida-
tion by a human expert. Recall that the application of constraints is not time
consuming (couple of minutes).
4 ′rb′, ′pp′, . . . after ′@′ are tags given by treetagger, for example : ′rb′ means adverb,

′pp′ means personal pronoun.
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The sequential patterns, which are computed in the previous step, are divided
into several subsets. The recursive pattern mining of each subset exhibits at
most k sequential patterns to represent that subset. In this experiment, we set
the parameter k to 4. We get 515 subsets (365 for nouns, 150 for verbs). At
the end of the recursive pattern mining, there remain 667 candidate sequential
patterns that represent interactions. That number, which is significantly smaller
than the previous one, guarantees the feasibility of an analysis of those patterns
as linguistic IE rules by an expert. The recursive pattern mining of those subsets
is not time consuming. It takes about 2 minutes.

The 667 remaining sequential patterns were analyzed by two users. They val-
idated 232 sequential patterns for interaction detection in 90 minutes. It means
that 232 sequential patterns represent several forms of interactions between genes.
Among those patterns, some explicitly represent interactions. For example,
〈Named Entity deplete@vvn Named Entity .@sent〉, 〈activation@nn of@in
Named Entity by@in Named Entity .@sent〉 or 〈Named Entity be@vbd inhibit@vvn
by@in AGENE@np .@sent〉 describe well-known interactions (inhibition, activa-
tion). Other patterns represent more general interactions between genes, meaning
that a gene plays a role in the activity of another gene for instance 〈Named Entity
involve@vvn in@inNamed Entity .@sent〉or 〈that@in/thatNamed Entity play@vvz
role@nn in@inNamed Entity .@sent〉.Mostof remainingpatterns representmodal-
ities or biological context.

The validated sequential patterns are linguistic IE rules that can be used on
biomedical texts to detect interactions between genes. Note that the application
of those patterns do not need a syntactic analysis of the sentence.

4.3 Detection of Gene Interactions

Following the case study, we have conducted some experiments in order to eval-
uate the quality of the sequential patterns found in the previous section from a
quantitative point of view. For that purpose, we consider three sets of data well-
known in literature: GeneTag from the data set Genia [20], BioCreative from [21]
and AIMed from [2]. In those datasets, the names of genes or proteins are labeled
as named entities. In each corpus, we randomly took 200 sentences and tested
whether the linguistic patterns can be applied. For each sentence, we manually
measure the performance of linguistic sequential patterns to detect those inter-
actions. Note that we also carried out a POS tagging of those sentences in order
to correctly apply the pattern language. Table 1 presents the scores of the appli-
cation of the patterns as linguistic IE rules: Precision, Recall and f -score5. The
scores are similar in the three corpora. Moreover, the precision is very good and
the recall is correct. Further investigations with different values of the parameter
k are a promising issue: indeed, higher k is, more specific patterns are.

Note that the scope of the extracted linguistic IE rules in the experiments
is the whole sentence. That scope may introduce ambiguities in the detection
of interactions and thus false positives when more than two genes appear in

5 The used f -score function is : f -score = 2 × Precision × Recall
P recision + Recall

.
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Table 1. Tests on several corpora

Corpus Precision Recall F-Score
BioCreative [21] 0.92 0.767 0.836
GeneTag [20] 0.909 0.8 0.851

AIMed [2] 0.93 0.84 0.88

the same sentence. Several cases are possible: when several binary interactions
are present in the sentence, when the interaction is n-ary (n ≥ 3) or when
an interaction is found with a list of genes. The case of n-ary interactions can
be solved with a training dataset containing n-ary interactions. The other two
cases can be treated by introducing limitations of pattern scope, for example
cue-phrases (e.g., but, however). False negatives mainly depend on the absence
of some nouns or verbs of interaction in the patterns. For example, the noun
“modulation” is not learned in a pattern whereas the verb “modulate” appears.
This suggests that the use of linguistic resources (e.g., lexicon or dictionary) can,
manually or semi-automatically, improve patterns and thus interaction detection.

5 Conclusion and Future Work

This paper proposes a method based on a cross-fertilization of sequence mining
under constraints and recursive pattern mining to produce a user-manageable set
of linguistic information extraction rules, such as the discovery relations between
named entities. The constraints enable to drive the mining process towards the
user objectives by filtering irrelevant patterns. The recursive sequence mining
allows the effective mastering of the number of discovered patterns that are
returned. In addition, we prove important properties on recursive pattern mining
on sequences. To the best of our knowledge, it is the first approach combining
sequential pattern mining methods, constraints and linguistic information.

The case study shows the feasibility and the interest of our method to discover
the named entity relations. We have conducted experiments on biomedical textual
data to detect gene interactions. Our proposed approach does not need syntactic
parsing neither resource except the training data. In addition, the patterns as lin-
guistic IE rules are understandable by a user. From a qualitative point of view, it
is interesting to note that the subcategorization of the verbs given by the POS tag-
ging indicates the passive or active verbs and identifies the direction of the relation.
Prepositions can also convey that kind of information, which is precious when the
pattern does not contain a verb. Promising future work consists of designing more
complex linguistic constraints and pushing them within the mining process.
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Abstract. People in the locality of earthquakes are publishing anecdotal infor-
mation about the shaking within seconds of their occurrences via social network 
technologies, such as Twitter. In contrast, depending on the size and location of 
the earthquake, scientific alerts can take between two to twenty minutes to  
publish. We describe TED (Twitter Earthquake Detector) a system that adopts 
social network technologies to augment earthquake response products and  
the delivery of hazard information. The TED system analyzes data from these 
social networks for multiple purposes: 1) to integrate citizen reports of  
earthquakes with corresponding scientific reports 2) to infer the public level of 
interest in an earthquake for tailoring outputs disseminated via social network 
technologies and 3) to explore the possibility of rapid detection of a probable 
earthquake, within seconds of its occurrence, helping to fill the gap between the 
earthquake origin time and the presence of quantitative scientific data. 

Keywords: Twitter, micro-blogging, social network, citizen reporting, earth-
quake, hazard, geospatial-temporal data, time series. 

1   Introduction 

Social network technologies are providing the general public with anecdotal earth-
quake hazard information before scientific information has been published from  
authoritative sources [1]. The United States Geological Survey (USGS) National 
Earthquake Information Center (NEIC) rapidly determines the location and size of felt 
earthquakes within the U.S. and most magnitude 5.0 and greater earthquakes world-
wide. The USGS rapidly disseminates this information to National and international 
agencies, scientists and the general public. Due to the propagation time of seismic 
energy from an earthquake’s hypocenter to globally-distributed seismometers and the 
latencies in the collection, analysis, and validation of these global seismic data,  
published scientific alerts can take between two and twenty minutes to produce, de-
pending on the size and location of the quake. In contrast, people in the vicinity of 
earthquakes are publishing information within seconds of their occurrence via social 
networking and micro-blogging technologies. This paper describes how the analysis 
of geospatial-temporal data from social networking sites is being adopted by the 
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USGS in an attempt to augment its earthquake response products and the delivery of 
hazard information. While the anecdotal and qualitative information from social  
networking sites is not a replacement for the high quality quantitative earthquake 
information from the USGS, mining and publishing this rapidly available information 
can provide 1) integration of first hand hazard accounts with scientific information, 2) 
a wide spread outreach tool and 3) potentially provide early detections of reported 
shaking events.  

TED (Twitter Earthquake Detector) is a software application developed to mine 
real-time data from popular social networking and micro-blogging sites (e.g., Twitter, 
Jaiku), searching for indicators of earthquake (or other hazard) activity directly from 
the public. In addition, TED integrates traditional scientific earthquake information, 
location and magnitude, from the USGS internal global earthquake data stream with 
geospatial-temporal corresponding citizen reports from popular social networking and 
micro-blogging sites. One indication of the level of public interest can be inferred 
when the density of hazard-related chatter in time and a geographic locality corre-
sponds to that of an actual hazard event. When an earthquake is picked up from the 
USGS internal global earthquake data stream, the system immediately integrates citi-
zen reported firsthand accounts of experienced shaking with the corresponding scien-
tific information. TED then uses these same social networking and micro-blogging 
technologies to rapidly disseminate the combined scientific and citizen information to 
a large number of people potentially already “listening”.  Additionally, analysts work-
ing on earthquake response products currently have only scientifically derived loca-
tion, corresponding population and magnitude information available in the minutes 
following an earthquake. The rapid integration of firsthand hazard accounts can po-
tentially help guide the initial response actions taken to meet NEIC’s mission.  

This same detected increase in earthquake related chatter used to infer public inter-
est in an earthquake is being investigated for use as a real-time preliminary indicator 
of a potential earthquake.  Early work has indicated that such detections are possible 
within seconds of an earthquake and could potentially be used to create preliminary 
alerts (e.g., emails, pages, and micro-blog updates) for USGS operations staff as an 
early hazard warning, thus filling the gap from when an earthquake occurs until the 
time scientific data become available to then confirm or refute the reported shaking 
event. 

We describe the collection, filtering, archiving, and analysis of Twitter data and 
show how these data can be effectively correlated against the USGS internal earth-
quake stream as one indication of public interest in an earthquake. Integration of these 
data successfully augments current earthquake response products produced by the 
USGS. We also evaluate the usage of these Twitter data as a real-time hazard  
detection tool. Preliminary results suggest that these data, if handled carefully, can be 
useful as an early detection indicator. 

2   Related Work 

Twitter [2] is one of the more widely used micro-blogging platforms, with a global 
outreach spreading from developed, urban nations to developing countries [3]. It en-
ables a form of blogging that allows users to send short status update messages 
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(maximum of a 140 characters) called tweets. Twitter provides access to thoughts, 
activities, and experiences of millions of users in real-time, with the option of sharing 
the user’s location. This rich source of data is motivating a growing body of scientific 
literature about micro-blogging. Most of the work has focused on social aspects such 
as studying user motivations [4,5] and user collaboration [6,7,8]. Some micro-
blogging collaboration research has focused specifically on crisis management and 
collective problem solving in mass emergency events [9,10,11].  

Our interest in the use of Twitter data is not for the crisis management that follows 
a hazard event, rather it is in the rapid assessment, reporting, and potentially the near 
real-time detection of a hazard event. De Longueville, et al. [12] performed a post-
mortem analysis of tweets related to a wild fire near the French city of Marseille. 
Their analysis showed that the Twitter traffic was generally well synchronized to the 
temporal and spatial dynamics of the Marseille fire event, but warns that tweets from 
media sources and aggregators (users that compile and republish existing sources) 
will complicate automatic event detection. Intelligent blog-based event detection has 
not been limited to hazard events. Online chatter has been used to predict the rank of 
book sales [13] and recommend topical news items [14]. Cheong & Lee [3] describe a 
general collective intelligence retrieval methodology that can be used to mine micro-
blogs to identify trends for decision-making.  

The USGS has an established history of Internet-based citizen reporting using the 
“Did You Feel It?” system (“DYFI?”) [15], which generates ground shaking intensity 
maps based on volunteered Internet questionnaires. The DYFI questionnaires allow a 
calibrated assignment of Modified Mercalli Intensity to each submission, producing 
quantitative map of intensity. The Modified Mercalli Intensity scale [16] is based on 
postal questionnaires where respondents summarize shaking effects, damage maps 
produced by emergency response agencies, and reports produced by the earthquake 
engineering community. The “DYFI?” system provides a calibrated quantitative as-
sessment of an earthquake event; however, it depends on users visiting the USGS 
website and completing a questionnaire. Collecting a sufficient amount of data to 
generate an intensity map typically takes on the order of minutes. The data mined 
from Twitter are neither calibrated nor quantitative; however, an earthquake can be 
detected on the order of seconds and does not require direct interaction with the 
USGS website. 

3   Methodology 

3.1   Gathering Data 

TED harvests real-time tweets by establishing a continuous HTTP connection to Twit-
ter's Streaming API applying a query parameter to reduce the stream to only tweets 
that contain one or more of the specified keywords: namely earthquake, quake and 
tsunami in several languages.  The stream of tweets returned from Twitter is in JSON 
format which is then parsed locally and inserted into a MySQL database. All of this 
runs 24x7 in multiple separated redundant processes, in order to compensate for  
network interruptions or other failures.   
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In addition to the keyword filtering, other data cleaning techniques are applied to 
the incoming tweets. Tweets from the multiple processes are merged, ordering the 
tweets, accounting for duplicates, and filling any data gaps. Data from aggregators, 
users who regularly redistribute second hand earthquake information, are removed 
from the data set.  The number of aggregator users has thus far remained below one 
half of a percent of all users that have sent earthquake related tweets over the past five 
months. Additionally, tweets containing strings commonly used to indicate retweet-
ing, rebroadcasting a tweet from another user, are removed.  All of these removed 
tweets are archived in a separate table in the database currently preserved for histori-
cal analysis, as necessary.  

For each keyword filtered tweet TED archives the tweet creation time, text, Twitter 
user location, Twitter tweet ID, Twitter user ID, and the time the tweet was inserted 
into the TED database.  Additionally, after each tweet is inserted into the database, the 
latitude and longitude estimate of the sender’s location, if provided, is determined via 
the Google Maps API Geocoding Service [17] and stored with the tweet.  Roughly 
15% of the earthquake related tweets that we have archived have come from GPS 
enabled devices, generally providing very accurate locations at the time of each tweet.  
Another 35% percent of the tweets have generic user locations such as “123 A St. San 
Francisco, CA, USA”, or “San Francisco, CA, USA”,  or “San Francisco”, or “The 
Bay Area”.  The remaining 50% of the tweets do not provide a specific location and 
are not used by the TED system. 

The TED system also ingests seismically derived earthquake information from the 
USGS near real-time internal global earthquake stream 24x7.  From these earthquake 
messages TED archives the earthquake origin time, region name, hypocenter (latitude, 
longitude, and depth), the magnitude, and the authoritative source of the scientifically 
derived earthquake information. These scientific earthquake messages arrive any-
where from two minutes up to around twenty minutes after an earthquake’s origin 
time, depending on the size and location of the earthquake. 

3.2   Integrating Seismically Derived and Citizen Reported Earthquake 
Information 

TED integrates firsthand public accounts of shaking with the corresponding scientific 
information for an earthquake.  For earthquakes in areas populated with active Twitter 
users, TED can then gauge a potential level of public interest in that earthquake by 
detecting a “significant” and rapid increase in the number of related tweets. When an 
earthquake location, from the USGS near real-time internal global earthquake stream, 
is inserted into the system, the tweet archive is searched for geo-spatially and tempo-
rally correlated tweets.  Geo-spatial correlation is determined by computing distance 
from the hypocenter (latitude, longitude and depth) for which ground shaking may 
have been felt.  We define an earthquake’s possible felt area as all points on the 
Earth’s surface whose hypo-central distance is less than an estimated maximum felt 
distance Rf, in km, which is a function of magnitude M defined as:  

Rf = 10 0.3204*M+0.602 (0)
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We derived Rf empirically from felt observations submitted to the “Did You Feel It?” 
system.  This relation does not take into account such factors as spatial variation in 
ground-motion attenuation and rupture finiteness. However, for our current system 
this simple approximation has proved sufficient over the three months the system has 
been running. 

Temporal correlation is accomplished by collecting the tweets, in the TED archive, 
from five minutes before the earthquake origin time up to the time when the data sets 
are being integrated, which may range anywhere from two to sixteen minutes after the 
origin time.  The time frame before the event origin time measures the present noise 
level.  The time frame after the event is limited to a maximum of sixteen minutes to 
help limit the input to context relative tweets with firsthand accounts of shaking rather 
than much of the conversational chatter, retweets, media reports and geographically 
wider spread reactions that occur in longer time frames following an earthquake.     

3.3   Significance Detection   

TED uses a geospatial-temporal correlated earthquake tweet data set to infer a level of 
public interest in an earthquake.  Since there are dozens of located, unfelt earthquakes 
on the planet every day, a check for a significant increase in related tweets helps pre-
vent flooding users with information that they may not find useful and cause users to 
ignore the information all together.  We use a significance ratio function, S, to deter-
mine if an earthquake has generated a significant increase in tweet traffic to warrant 
public distribution. A trigger is declared if S exceeds one. The significance ratio func-
tion accounts for the possibility of zero pre-event noise and is defined: 

S = A/(mB+Z) (1)

Where A is the tweets-per-minutes after the event, B is the tweets-per-minute before 
the event, Z is a constant that defines the required value for A when B is zero to cause a 
trigger, and m is a constant that controls how much A must increase with increasing 
noise levels to cause a trigger.   For earthquakes with S greater than one, the TED sys-
tem produces 1) an alert tweet with hypocenter, preliminary magnitude, and region, 2) 
an interactive map of the plotted epicenter and tweets, 3) a histogram of tweets per 
time unit around the earthquake origin time, 4) a downloadable KML file that plots 
tweets over time, 5) a list of the top ten cities with the highest number of tweets, and 6) 
a web page that includes all of the above and the actual text for all correlated tweets. 
The purpose of these integrated output products is to rapidly provide a summary of 
personal accounts from the impacted region to earthquake responders and the public. It 
is anticipated that TED products will be replaced as validated and calibrated informa-
tion becomes available. TED will also rapidly provide information via Twitter (instead 
of only the web and email) and hopefully draw users to the USGS website for detailed 
information. These output products can augment current earthquake response informa-
tion provided to USGS analysts and to the public. 

3.4   Preliminary Hazard Detection 

The analysis of the real-time spatio-temporal data being captured by the TED system 
may also allow for the rapid detection of an earthquake before quantitative scientific 
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information is available. In fact, creating a time series of earthquake-related tweets 
and monitoring this time series for spatio-temporal spikes is analogous to how ground 
motion data from a seismometer are evaluated for earthquake activity.  As a proof of 
concept, three months of filtered and archived tweets were discretized per time unit to 
create a time series of their temporal distribution.  This time series was then scanned 
for spikes, which are temporally correlated indications of a citizen reported earth-
quake. The times of these spikes were then compared against the USGS scientifically 
confirmed catalog of earthquake events [18] as confirmation of an actual earthquake. 
The early results are promising however, more sophisticated heuristics need to be 
defined from historical data analysis to better characterize these spikes of chatter and 
further reduce false detections. This has been left for future work. 

4   Difficulties and Issues 

It is clear that significant limitations exist in a system based on citizen reporting.  The 
issues that tend to plague the system are lack of quantitative information, out of con-
text tweets, incorrect or lack of geo-locations, and the robustness of external data 
sources such as Twitter and geo-locating services. The main drawback, because the 
NEIC's mission is scientific information about earthquakes, is the lack of quantitative 
information such as epicenter and magnitude. Without quantitative verified data, 
alerts provoking response measures are not possible. The main advantage of Twitter is 
speed, especially in sparsely instrumented areas.  

Not all tweets containing the word earthquake or quake, in any language, corre-
spond to people feeling shaking caused by an earthquake.  Analysis of data for the 
past few months indicates that the background level of noise (out of context tweets 
geographically and time clustered) is generally very low, except following major 
earthquakes.  For example, after the magnitude 4.3 Morgan Hill, CA earthquake on 
March 30, 2009 the number of earthquake tweets sent from the surrounding region 
increased from roughly one tweet per hour before the event to 150 tweets per minute 
for a full five minutes after the event [1].  This is a signal to noise ratio of 9000.  
However, background noise levels are not constant.  For example, in the hours and 
days following the magnitude 7 earthquake in Haiti in mid January 2010, people all 
over the planet were tweeting about earthquakes. Fortunately, this kind of chatter is 
generally not geographically centered and dies down a few days after the event. How-
ever, there are other types of chatter that could produce geographically and time cen-
tered “earthquake” tweets. For example, a geographically concentrated spike of 
tweets was observed during the Great California Shake Out [19] in October 2009. 
One can imagine a large enough group of twitter users enjoying a fun game of Quake 
while eating Dairy Queen's Oreo Brownie Earthquake dessert producing misleading 
data for an automated system.  

Inaccurate tweet geo-locations are a serious issue when using geospatially related 
tweets for threshold detections and to map indications of the region exposed to the 
hazard, or shaking in the case of an earthquake.  The location of a tweet is only as 
accurate as the location string the user entered in their Twitter profile, as this is the 
location provided with tweets. A location is not required to set up a Twitter account 
and can be as vague or specific as the user wants. Some Twitter applications for GPS 
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enabled devices update the location string on a per tweet basis, this is about 15% of 
the earthquake tweets we have seen in the past three months.  However, most tweets 
that provide a location use the static location in the user’s profile. Given this, a tweet 
from a New Yorker on vacation in San Francisco will most likely mis-locate to New 
York. Since these tweets are likely not spatially correlated, requiring a minimum 
number of earthquake tweets in a region before declaring it a felt region will reduce 
their contaminating effect.  We expect that tweet location accuracy will increase with 
time due to both the increased use of GPS enabled devices and Twitter’s introduction, 
in November 2009, of its Geolocation API that will allow users to have their tweets 
tagged with their current location. 

Citizen reporting based hazard detection is only as good as the reporting.  It is con-
ceivable that a motivated group of citizens could attempt to spoof a hazard.  To avoid 
“attacks” aimed at fooling the system, refined characterization of detection spikes 
would help to reduce malicious attacks, but unlikely eliminate them.  

5   Results and Evaluation 

Analyzing the outputs produced from integrating geo-spatially and temporally corre-
lated citizen reports of earthquakes with seismically derived earthquake information, 
confirms their potential to augment existing earthquake products produced by the 
USGS.   For example, Fig. 1 shows an interactive Google Map with the earthquake 
epicenter and correlated tweets plotted.  It provides an indication of areas with per-
ceived shaking and provides access to the geo-located tweets’ text.  Comparing the 
geospatial distribution of the tweets against the scientifically calibrated “DYFI?” 
intensity map indicates that the early arriving tweets can roughly correspond with 
perceived shaking as shown in Fig. 2.   This correlation is further explored in Earle et 
al. 2010, [1].   

 

Fig. 1. Earthquake epicenter (circled waveform) and geospatially and temporally corresponding 
earthquake tweets (balloons) plotted on an interactive Google Map for the magnitude 4.3 earth-
quake in Southern California on January 16, 2010 
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Fig. 2. Comparison of the intensity map (upper left) produced using Internet questionnaires 
submitted to the USGS “Did You Feel It?” system (DYFI?) [15] to maps produced by counting 
geospatially and temporally correlated tweets (remaining plots at discrete time intervals after 
the earthquake) for the magnitude 4.3 earthquake in the San Francisco Bay Area on March 30th, 
2009. The colors of the plotted circles indicate the number of tweets in that region. Tweets with 
precise latitude and longitude geo-locations are plotted as triangles. 

 

Fig. 3. Histogram of number of earthquake tweets every thirty seconds before and after the 
magnitude 3.7 earthquake in Pleasanton, CA on October 13, 2009 (local date), with earthquake 
origin time indicated by the red vertical line at 2009-10-14 03:27:41 UTC 
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At a glance, the main advantage of mining citizen reports via Twitter is the speed 
of information availability, especially compared to areas that are sparsely instru-
mented with seismometers. Even using data from hundreds of globally distributed 
sensors we cannot detect many earthquakes below magnitude 4.5, due to a lack of 
available local instrumentation. In limited cases, these earthquakes can be identified. 
By manually scanning a real-time Twitter search for earthquake tweets, we detected 
two earthquakes in 2009 that were missed by our real-time seismometer-based earth-
quake association algorithm. The first was a magnitude 4.7 earthquake near Reykja-
vik, Iceland. The second was a magnitude 3.1 earthquake near Melbourne, Australia. 
These earthquakes likely would have been detected in days to weeks using late arriv-
ing data and locations from contributing foreign seismic networks, however, Twitter 
enabled quicker USGS distribution of earthquake magnitude and epicenter. 

To further investigate the possibility of detecting earthquakes based on citizen re-
ports, we compared earthquake related tweet activity against the USGS earthquake 
catalog. To do this comparison we created a time series of tweets-per-minute using a 
month and a half of archived keyword filtered tweet data as shown in Fig. 4.  We then 
searched the time series for sudden increases in temporally related tweets and then 
correlated these peaks with earthquakes. All of the major spikes, with the exception of 
one on October 15th, coincide with earthquakes.  The one on October 15th was an 
emergency preparedness drill conducted by the state of California [19].  It is interest-
ing to note for this spike the onset was much more gradual than the onset for earth-
quakes. Fig. 3 shows an example of the rapid onset for an actual earthquake. Correct 
differentiation between rapid and gradual increases in tweet frequency may reduce 
false detections.  It is important to note that earthquakes detected by tweets will only 
be those felt by human observers. There are dozens of located earthquakes on any 
given day that are not felt, because they are too deep, and or in sparsely populated 
areas. A tweet-based system will not detect such earthquakes.  This comparison has 
demonstrated a match of tweet-based detection with actual felt earthquakes. 

 

Fig. 4. Plotted time series of earthquake tweets per minute from September 20, 2009 through 
November 8, 2009 with major spikes identified with corresponding earthquake region and 
magnitude 

For a tweet based detection system to be viable, the number of false detections 
needs to be low.  Background noise from out of context earthquake tweets can in-
crease false detections. An evaluation of the background noise around geospatially 
and temporally related tweets was performed by comparing the number of tweets 
before and after a verified earthquake.  For every event that TED picks up from the 
USGS near real-time internal global earthquake stream, it calculates the average 
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number of geospatially and temporally correlated tweets-per-minute for ten minutes 
prior and post the event origin time.  Looking at this noise level for all earthquakes 
from December 1, 2009 through January 27, 2010 (2291 total) 99% of the earth-
quakes had 0.1 or less tweets-per-minute in the ten minutes prior to the event.  The 
remaining 1% were typically in the range of 0.1 to 1.8 tweets-per-minute for the ten 
minutes prior to the earthquake.  Figure 3 shows an example of an earthquake with 
high pre-event noise and still the onset of the earthquake related tweets is clear. The 
influence of background noise in a geospatially and temporally related tweet data set 
is small.  

In order for tweet based earthquake detection to be useful, it must precede the 
availability of seismically derived information. From TED outputs we have seen 
many earthquakes that show an increase in earthquake related tweet frequency that 
precedes the availability of seismically derived data. For example, the USGS alert for 
a small, magnitude 3.7, earthquake in a densely instrumented region in central Cali-
fornia was available 3.2 minutes after the earthquake’s origin time, while a detectable 
increase in correlated tweet frequency was seen in 20 seconds. In a second case, we 
examined a large, magnitude 7.6, earthquake in a moderately instrumented region of 
Indonesia. Initial seismically derived information was available 6.7 minutes after the 
earthquake’s origin time, while a rapid increase in "gempa" (Indonesian for earth-
quake) tweets was seen in 81 seconds. In both cases, numerous earthquake tweets 
were available in considerably less time than it took to distribute the initial seismi-
cally derived estimates of magnitude and location.  This demonstrates that rapid tweet 
based detection can potentially fill the gap between when an earthquake occurs and 
when seismically derived information is available. 

6   Future Work 

Future work includes developing a more sophisticated hazard detection algorithm for 
the real-time input tweet stream.  The current plan is to group keyword filtered tweets 
into five or ten second time intervals as the tweets are being archived from the Twitter 
stream in order to produce a continuous real-time tweet time series. A short time in-
terval was chosen to both reduce latency and to help make the time series continuous 
around clustered earthquake chatter.  From this real-time time series both a long term 
average (LTA) and short term average (STA) will be calculated and used to produce a 
second time series of STA/LTA ratio, which should further improve the signal to 
noise ratio (just as it does for automatic seismic phase arrival detection from ground 
motion time series data from seismometers). This noise reduced time series is what 
will be monitored for significant increases in the temporal density of hazard related 
chatter, with the goal of reducing false detections.  Current evaluation has shown 
significant increases in the temporal density of hazard related chatter with a rapid, 
almost instantaneous, onset within seconds of an earthquake’s occurrence. Heuristics 
need to be further refined from continued historical data analysis to better characterize 
these spikes of chatter and further reduce false detections. This kind of real-time time 
series analysis is quite similar to how real-time waveform time series data from  
seismometers are monitored for seismic activity.  
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Additionally, further timing analysis is necessary to get a better handle on how 
long after a hazard event, or categorized types of events (i.e. small earthquake in 
densely populated area, large earthquake in a sparsely populated area, etc.) tweet 
based hazard detection can work.  We anticipate that relying on external sources for 
services such as geocoding will be an inherent bottleneck, and may require more 
robust or internal solutions for such services in order to meet timing requirements in 
the long term. One step in reducing geocoding time dependencies will be  incorporat-
ing the use of Twitter’s newly added geolocation tags when provided with incoming 
keyword filtered tweets.  This will improve over time as more Twitter client applica-
tions incorporate this feature.  From a more detailed analysis of our current system we 
hope to move from a proof of concept to an operational system with defined expecta-
tions of reliability and accuracy.    

7   Conclusions 

While TED's detection and distribution of anecdotal earthquake information cannot 
replace instrumentally based earthquake monitoring and analysis tools, we have dem-
onstrated that TED can integrate citizen reported and seismically derived earthquake 
information and then, based on inferred degrees of interest, rapidly disseminate the 
information to large numbers of people via social networking technologies. Addition-
ally, we have shown that mining and publishing this information can fill the gap  
between the time an earthquake occurs and the time confirmed scientific information 
is available. The anticipated impacts of this novel use of social networking sites for 
the earth sciences include: 

 Rapid preliminary indicators of shaking or other hazards in populated areas, 
potentially before the arrival of seismically validated alerts. 

 The ability to pool together and make readily accessible citizen contributed 
earthquake information (e.g. eye witness reports, shaking felt, photos) from 
individuals local to a hazard. 

 Improved public outreach by providing authoritative earthquake alerts thru 
social media outlets. 

 Provide useful data and products that augment the existing suite of USGS 
earthquake response products. 

There is a high degree of uncertainty and variability in these data derived from anec-
dotal micro-blogs. Therefore, TED outputs and notifications based on citizen report-
ing alone cannot definitively state an earthquake occurred but will state that social 
network chatter about earthquakes, has increased in a specified area at a specified 
time and seismically derived information will follow. For more information on this 
project, please e-mail USGSted@usgs.gov or follow @USGSted on Twitter.  
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Abstract. This paper presents a method for the identification of leukaemia cells 
within images of blood smear microscope slides, which is currently a time con-
suming manual process. The work presented is the first stage of a procedure 
aimed at classifying the sub-types of Acute Myeloid Leukaemia. This paper 
utilises the techniques of Otsu, Cellular Automata and heuristic search and 
highlights a comparison between random and seeded searches. We present a 
novel Cellular Automata based technique that helps to remove noise from the 
images and additionally locates good starting points for candidate white blood 
cells. Our results are based on real world image data from a Haematology  
Department, and our analysis shows promising initial results. 

Keywords: Otsu, Cellular Automata, Heuristic search, Hill Climbing,  
Simulation Annealing. 

1   Introduction 

Haematologists have concluded that the effectiveness of microscope analysis of human 
blood smears can be vastly improved by the use of techniques such as image segmenta-
tion, classification and white blood cell counts, specifically in the pathology of leu-
kaemia [1, 2]. At the same time, there are difficulties in identifying the various types of 
blast cells because the diagnosis can be either Acute Lymphoblastic Leukaemia (ALL) 
or Acute Myeloblastic Leukaemia (AML) which indicates different treatment. With 
AML, there are 8 subtypes, M0 to M7, which can be differentiated on their morpho-
logical features. A counting procedure is needed that should cover over 20% of the 
immature cells (blast cells) in the marrow for the diagnosis of acute leukaemia. 

Recently, computer technology has had a big impact on medical imaging technology. 
Whole slide digital scanners has made research on pathological image analysis more 
attractive, by enabling quantitative analysis tools to decrease the evaluation time pa-
thologists spend on each slide. This also reduces the variation in decision making proc-
esses among different pathologists or institutions and introduces reproducibility [3].  

This paper aims to help the medical doctors in the efficient detection of leukaemia 
cells. We employ new techniques based on Cellular Automata and heuristic search 
which can reduce the time taken by a haematologist in detecting leukaemia cells.  
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This paper is organised as follows: in the rest of this section we detail the motiva-
tion behind our paper; in section 2 we describe previous work in the area, section 3 
details our proposed methodology for identifying leukaemia cells and section 4 ex-
plains in detail our methods. The data sets and experiments are presented in section 5 
and are followed by section 6 in which we discuss the results. Lastly, in section 7, we 
draw conclusions and discuss future research. 

1.1   Leukaemia 

Blood cancer is a condition known as Leukaemia, and is a disease which has no 
known cause where the bone marrow produces large numbers of abnormal cells [4]. 
Diagnosis of blood cancer has been determined by observing the image of a blood 
sample through a microscope. According to [5] the analysis of white blood cell counts 
through microscope imagery can provide useful information the about patient’s 
health. When viewing the image of white blood cells, especially for the diagnosis of 
leukaemia, there are problems in identifying the blast cells if the blasts are minimal in 
number, the staining of the cells is poor, or if the image is being viewed by an inexpe-
rienced morphologist, in these cases the diagnosis might be delayed or incorrect. 
These problems can also lead to fatigue amongst the medical staff involved with this 
procedure. 

There are many types of leukaemia and each of them is classified according to the 
specified type of cell which is affected by the disease. The types of leukaemia are: 
 

• Acute Lymphocytic Leukaemia (ALL)  
• Acute Myeloid Leukaemia (AML)  
• Chronic Lymphocytic Leukaemia (CLL)  
• Chronic Myeloid Leukaemia (CML)  
 

This research focuses on the detection of white blood cells within Acute Myeloid 
Leukaemia (AML) which is a serious illness caused by the abnormal growth and 
development of early granular white blood cells. AML begins with abnormalities in 
the bone marrow blast cells, the white blood cells that contain small particles, or 
granules. The AML blasts do not mature, and they become too numerous in the blood 
and bone marrow. As the cells build up, they hamper the body's ability to fight infec-
tion and cause bleeding. Therefore, it is necessary to treat this disease as soon as pos-
sible after diagnosis. The recognition of the blast cells in the bone marrow of the 
patients suffering from myeloid leukaemia is a very important step, it is followed by 
categorising it into subtypes which will allow the proper treatment of the patients. The 
clinicians have to identify these abnormal cells under the microscope in order to de-
tect that a patient is suffering from leukaemia, after which they will need a sample 
from the patient's bone marrow to count the leukaemia cells (blast cells) to confirm 
the diagnosis [5]. 

AML are classified as M0 to M7 according to French-British Group (FAB)  
classification. The blast cells of these subtypes are different in size, shape, amount of 
cytoplasm, shape and amount of nucleus and the constituent in the cytoplasm. It is 
important to identify certain subtypes such as M3 (acute promyelocytic leukaemia) 
because the treatment is different from other subtypes and it is a good prognosis  
for the patient. However sometimes morphologists have encountered problems in 
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classifying this subtype and have resulted in misclassification. Inter-observer varia-
tion in classification can lead to improper treatment for the patient, which can affect 
the survival rate of patients. 

2   Previous Work 

In this paper, we are using four techniques to detect possible leukaemia cells. We use 
Otsu's method, Cellular Automata, and the heuristic search methods of Hill Climb-
ing and Simulated Annealing. There are a few papers which have attempted to detect 
white blood cells but not leukaemia cells. Most of the papers are based on morpho-
logical techniques. Previous work in [6] has concentrated on using the nucleus for 
classification through image segmentation. The sample images are extracted from an 
accredited image repository, the Atlas of Blood Cells Differentiation, which is high-
lighted in [6]. The datasets consisted of 113 images that contain 134 expert-labelled 
leukocytes (white blood cells). In [8] a colour gradient method to smooth the image is 
employed instead of using gray scale before applying a GVF (Gradient Vector Flow) 
snake based method. Scale-space filtering and the watershed algorithm were applied 
to colour images for detecting nuclei in [9]. This paper attempted to locate cell mem-
branes, it required a few steps to apply edge detection but the case studies are differ-
ent from leukaemia cells because leukaemia cells have different features. Another 
technique using eigen cells for detecting white blood cells was introduced in [10] but 
this study had limited success in correctly classify all of the white blood cells. Most of 
these approaches are based on colour images. However, in the case of overlapping 
cell there can be some problems. In [7] a histogram of pixel counts focusing on the 
touching cells was created and an edge cutting algorithm was then applied to separate 
the cells. This technique can be used for touching cells but not for overlapping cells. 
The technique is not possible to use in this project because cutting the cells will create 
different morphological features which might lead to incorrect classification.   

Cellular Automata have been used in image processing for removing noise in pic-
tures and modelling the development of tumours. This technique is used to transform 
one image into another. Cellular Automata models have been developed in three-
dimensions to show tumour development. A number of studies involving Cellular 
Automata and cellular image processing have been in the area of tumour growth pre-
diction via 3D simulation. [11, 12]. Cellular Automata can also reduce the noise in 
cellular images, e.g. in [13] plasma and red blood cells were removed from images. 

Heuristic search and optimisation techniques have been previously applied to mi-
croscope imagery and the identification of leukaemia cells. Circle detection has been 
performed using genetic algorithms and sobel's method in [14] which detected circlers 
but not morphological features. In [15], they apply seed regions by using heuristic 
search based on the diameter of the cells which are less than 25um. This technique 
can be performed if the cells do not overlap or have no neighbours. Particle Swarm 
Optimization combined with Neural Networks was used to escape from local opti-
mum in an application for detecting the colour nucleus in large-scale image data [16]. 
These ideas can be used as an extension to our research and can help in the clustering 
of the different types of leukaemia cells.  
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Our research uses Cellular Automata to remove noise such as plasma and red blood 
cells. At the same time, it identifies for each point in the image a representation of the 
shortest distance that point is away from the background. We use Cellular Automata 
to find the “best” starting point before proceeding to the heuristic search, which is 
used to search for the best circular regions representing the Leukaemia cells. For the 
heuristic search based methods we used the two techniques of Hill Climbing and 
Simulated Annealing.  

3   Work Process 

In this paper we present two heuristic search based techniques which are aimed at 
detecting candidate leukaemia cells within an image of a blood smear microscope 
slide. The difference between the two types of method is that we use a Cellular 
Automata to locate good starting points in our “seeded” method.  Fig. 1 shows the 
flowchart consisting of the two methods with seeding shown at the top and random at 
bottom. In the seeded search, the process involves applying Otsu's method, running 
the Cellular Automata, detecting the starting coordinates, colour image clustering and 
coordinate overlap checking. With the random method, we use Otsu's method and 
then start at a randomly generated set of points. Lastly we use Hill Climbing and 
Simulated Annealing to find the best candidate leukaemia cells. 

Image OTSU

Cellular Automata

Hill Climbing/
Simulated
Annealing

Seeded search

Random search  

Fig. 1. Research Methodology Flowchart 

4   Method  

In the following sections we present the methods that we have used in this paper 
which are Otsu's method, Cellular Automata, coordinate detection, colour image clus-
tering, checking for overlapping coordinates and lastly the heuristic search methods 
which are Hill Climbing and Simulated Annealing. 

4.1   Otsu 

We used Otsu's method for extracting objects from their background using the 
MATLAB image processing toolbox [17]. In applying Otsu's method we use a grey 
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scale threshold for the separation of the two objects between the foreground and 
background. The results shown in fig. 3(b) and fig. 4(b) are the image with greyscales 
after applying Otsu’s method. 

4.2   Cellular Automata 

Cellular Automata (CA) are a type of complex system that have very few parameters 
and are a development of Conway's game of life [19]. In this paper we use a CA to 
convert a black and white cell image to a matrix (the same size as the input image) 
where each point in the matrix represents the shortest distance each point in the image 
is away from the background. We represent the background as white (or “dead”) and 
the cells body (as identified by Otsu) as black (or “alive”). To create the output “dis-
tance” matrix, we initially define C(0) as the input image, we then create a series of 
matrices C(i) where each C(i) is the CA applied to C(i-1). The CA itself works by 
looking at each pixel x,y; if the pixel is already “dead” it stays dead, otherwise its 
immediate adjoining neighbours (City Block distance of one) are examined. If any 
neighbours are “dead”, the point itself becomes “dead” otherwise it remains “alive”. 
We examine only the neighbours of each point, thus a corner point will only have 
three neighbours to examine. This process is repeated until all of the points within 
C(i)  are “dead” or white. 

Throughout the procedure we maintain another matrix CP (the same size as the in-
put matrix), where each x,y element represents the CA iteration that the point “died”, 
i.e. turned from black to white. For example, if after 5 applications of the CA, which 
has created matrices C(1), C(2), ..., C(5), point 100,200 “dies” (it was “alive” in C(4) 
but “dead” in C(5), then we set the element 100,200 in matrix CP to 5. 

We hypothesise that the values in the CP matrix represent the shortest path be-
tween an “alive” point and a “dead” point. Therefore points within the CP matrix with 
high values represent dense areas of the input image and thus good starting points for 
locating the largest cells within the input image. An example of the visualisation of 
matrix CP can be seen in figure 3(c). 

Once we have the CA image (the visual representation of matrix CP), we need to 
identify points of high value which are located next to each other, e.g. dense spots and 
areas. We first apply a rudimentary filtering based on the expected size (radius) of the 
five white blood cells (Neutrophil, Eosinophil, Basophil, Monocyte and Lymphocyte). 
From the literature, and on consulting expert opinion, we have identified that 8 micro-
metres is a reasonable demarcation between the size of red and white cells. Due to 
each image possibly being under varying magnification, we assume that the maxi-
mum value in the CP matrix corresponds to the size of the largest white cell, and 
apply a filter accordingly, i.e. we transform the matrix CP to a binary image based on 
this computed threshold, see fig. 3(d) for an example. 

4.3   Detecting Coordinates  

Now that we have an indication of where the regions of high density are (as shown in 
fig. 3(d)) we need to locate the centre of the regions so that they can be used as possi-
ble good starting points for locating the white blood cells, i.e. our “seeds”. By produc-
ing row and column sums over the filtered image, we can define rectangular regions 
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where horizontal and vertical non-zero totals intersect, as seen in fig. 3(e). Using 
these regions, we can determine the centre of the candidate dense areas, and thus 
define an x,y starting point. The intensity within the CP matrix at the point will be 
used as the starting radius r. 

4.4   Colour Image Clustering 

We now have a candidate list of starting points. We now perform an additional check 
to identify whether each point is identifying a leukaemia cell. We categorise the cells 
based on colour, that is how many points are pink i.e. plasma and red blood cells and 
how many are purple, that is leukaemia cells. Given the colour (three value RGB 
scale) of a pixel within the circle identified by each potential starting point, we see 
how close it is (using Euclidean distance) to either a pink or purple vector. Once we 
have categorised each point, we decide on whether we have a potential leukaemia cell 
based on whether the pink or purple counts are greater. 

4.5   Checking Coordinate Overlap 

Once we have detected the starting points, we need to ensure that these starting 
points do not overlap. Given the centre and radius of two circles, there are three 
possible states; the circles do not overlap, one circle is contained within another, 
and the circles overlap. We define a similarity measure which returns a value be-
tween 0 (the circles are separate) and 1 (the circles are identical), values in between 
represent how much of the circles overlap or are contained. We have omitted the 
derivation of this measure due to space constraints; however we note that it is  
simple to identify which state (as above) the two circles are in by examining the 
distance between the centres and comparing this against the two radiuses. The cal-
culation of how much two circles overlap is evaluated by calculating the area of the 
overlapping segments using Pythagoras’s theorem and the circle segment area equa-
tion [20]. If two circles overlap then we merge them. We acknowledge that this may 
not be the correct policy (it is if two circles are contained), but we are leaving this 
as a task for future work. 

4.6   Heuristic Search 

We use heuristic search to locate the best position of the required number of circles 
for each input image. We either have a number of random starting circles, or seeded 
starting circles depending on if we are using the CA or not. Each circle is represented 
as an x,y,r triple representing the centre and radius. We use Hill Climbing and Simu-
lated Annealing, which are described in more detail in a later section. We use fitness 
function number 6 from table 1. The small generator for Hill Climbing and Simulated 
Annealing are the same, we choose either an x,y or r from one of the circles and ran-
domly add/subtract (equal chance) a value between 1 and 50. Boundary checks are 
made to ensure that we do not move off the image. The seeded methods can identify 
the number of circles, however the random methods cannot, hence we set the number 
of starting circles for the random methods to the same number as the corresponding 
seeded method.  
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Table 1. Fitness Function Evaluation 

Number Method Correlation
1 F=∑R(i)((B(i)-W(i))/(B(i)+W(i)) 0.697
2 F=∑ (B(i)-W(i))/(B(i)+W(i)) 0.782
3 F=∑ (R(i)B(i))/(B(i)+W(i)) 0.721
4 F=∑ (R(i)B(i))/W(i) 0.879
5 F=∑ B(i)/(B(i)+W(i)) 0.782
6 F=∑ R(i)(B(i)+1)/(W(i)+1) 0.903
7 F=∑ B(i)-W(i) 0.588
8 F=∑ B(i) 0.430

 

4.6.1   Experiments Finding Fitness Function 
We tested a number of potential fitness functions methods before finally choosing the 
most viable fitness function based on 10 test cases that we ranked from worst to best 
using a single image. The idea is that we rate how good a potential circle is based on 
the number of valid points (white points from the black and white image) it covers. 
We performed a simple correlation analysis based on scale 1 to 10 from best to worst, 
based on a number of potential circles (we created a number of test cases that were 
easily ranked). We ranked the images by eye, and correlated the rank against image 
fitness. The aim was to choose a fitness function whose value agreed most with the 
ranking. Table 1 details the fitness functions we evaluated, the equations are in abbre-
viated form, the best performing function, and the one we use in this paper, is  
described fully in equation 1. 

Within equation 1 and table 1, we define C as our list of circles, Ci as the ith circle 
and |C| as the number of circles within C. R(i) is the radius of circle i, B(i) is the num-
ber of black points within circle i for a given image, W(i) is the number of white 
points for a given image. 
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4.6.2   Algorithms 
The following sections describe the heuristic search methods of Hill Climbing and 
Simulated Annealing in more detail. 
 

4.6.2.1   Hill Climbing. Hill Climbing is a local search procedure which utilises the 
concept of searching the neighbourhood of a solution for a better one. This technique 
iterates a number of times, each time a new point is selected from the neighbourhood 
of the current point. If that new point provides a better value of the evaluation  



 Detecting Leukaemia (AML) Blood Cells Using CA and Heuristic Search 61 

function, the new point becomes the current point. Otherwise other points in the 
neighbourhood are selected and tested again. The main disadvantage of using Hill 
Climbing is that it often gets stuck in a local maxima during the search [21]. Below is 
the algorithm for Hill Climbing used in this paper. 
 

Input: Black and White Image BW 
       Number of circles N 
       Number of iterations ITER 
Create C = N circles (using CA or Random) 
Let Fit = F(C) applied to BW (equation 1) 
For i = 1 to ITER 
   Create Cnew from C using change generator 
   Let Fnew = F(Cnew) applied to BW 
   If Fnew ≥ Fit 
      Fit = Fnew, C = Cnew 
   End if 
End For 
Output: Highest Fitness F and circles C 

 
4.6.2.2   Simulated Annealing. Simulated Annealing is a heuristic search technique 
which aims at improving the problems inherent in Hill Climbing. In Simulated An-
nealing a temperature is maintained which is used to determine the probability of 
accepting a worse point [21]. 
 

Input: Black and White Image BW 
       Number of circles N 
       Number of iterations ITER 
       Start and end temperature TZero, TFinal 
Define lamda (equation 2) 
Create C = N circles (using CA or Random) 
Let t = TZero, Let Fit = F(C) 
For i = 1 to ITER 
   Create Cnew from C using change generator 
   Let Fnew = F(Cnew)    
   Diff = fnew - fit, P = exp(Diff/t) 
   If Fnew ≥  fit 
        Fit = Fnew, C = Cnew 
   Else 
      If random value (0,1) ≤ P 
         Fit = Fnew, C = Cnew 
      End If 
   End If 
   t = lamda × t 
End For 
Output: Highest Fitness F and circles C 

 

The parameter λ  is calculated based on [18] shown in eqaution 2: 

j

TzeroTFinal ))log()exp((log( −=λ  (2)
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5   Data Sets and Experiments 

We used ten images of leukaemia cells (AML). An example image is shown in Fig. 
3(a) and Fig. 4(a). The images were 1280 by 960 in size. We executed each of the 
four algorithms 10 times for 10000 iterations; the repeats were so that any sampling 
bias is removed from the stochastic nature of the algorithms. We used the image data 
sets from Hospital University Science Malaysia (USM), Kota Bahru, Kelantan. 

6   Results 

This section shows all the results for the colour image clustering and heuristic search 
methods. 

6.1   Colour Image Clustering 

We clustered the pixels using Euclidean distance as described below. By using 
Euclidean distance we can determine whether a candidate cell is purple (a leukaemia 
cell (AML)) or pink (either plasma or red blood cells).  We acknowledge that basing 
the clustering on colour alone is not the best method due to variations between image 
colourings that will change which can change overtime. The result of our methods is 
shown in table 2 and represents an overall accuracy of 91.5% by using clustering 
using colour. The outputs are shown in the fig. 3(f). 

Table 2. Calculating the clustering for the 10 images 

Actual 
Image  Pink Purple 

Pink   
1 

Purple  3 
Pink 3 3 

2 
Purple   
Pink   

3 
Purple  2 
Pink   

4 
Purple  7 
Pink   

5 
Purple  5 
Pink   

6 
Purple  3 
Pink 11 3 

7 
Purple   
Pink 13 2 

8 
Purple   
Pink   

9 
Purple  4 
Pink   

Predicted 

10 
Purple  2 
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6.2   Check Coordinate Overlap 

Hill Climbing and Simulated Annealing cannot be performed if the starting circles 
overlap. This program checks if the circles overlap based on the equation by [20]. A 
non-overlapping example is shown in fig. 3(f). If the starting circles are shown in fig 
2(a) to overlap, then a new random set are generated as shown in fig 2(b). 

6.3   Comparison Random/Seeded Hill Climbing and Simulated Annealing  

Table 3 compares our four techniques which are Hill Climbing, Hill Climbing seeded, 
Simulated Annealing, Simulated Annealing seeded on the 7 images which are image 
1, 3, 4, 5, 6, 9, 10. As for images 2, 7 and 8 the colour clustering did not target the 
leukaemia cells as stated in the Table 2. Overall, Simulated Annealing seeded 
achieves the highest fitness function value in 4 out of 7 cases. 

Although Simulated Annealing random gained the highest fitness value in a num-
ber of images, it did not target the correct cells. This indicates that our fitness function 
probably needs improving upon; however, it does indicate that our seeding strategy 
works effectively. As shown in the final averages in the results table, Hill Climbing 
seeded has the highest value of all of the methods. This is a surprising result, since 
one would expect Simulated Annealing to out perform Hill Climbing. However as we 
are seeding Simulated Annealing, the search may deviate from the seeded point rap-
idly in the early stages of the algorithm, where Hill Climbing will always improve 
upon (or maintain) the fitness of the seeded starting points. The table below states the 
fitness function on which the equation is based (1). 

Table 3. Data from Hill Climbing and Simulated Annealing  

Image HC HCSeed SA SASeed Max. 

1 229796.20 2222000.00 94805.21 2226000.00 2226000.00 

3 141609.90 1051636.00 1334923.60 967496.00 1334923.60 

4 951630.35 3422380.00 5260004.69 3406880.00 5260004.69 

5 784762.14 4174590.00 75808.42 4239900.00 4239900.00 

6 809407.93 2880000.00 4378871.82 2884300.00 4378871.82 

9 44192.84 3560000.00 189514.99 3553350.00 3560000.00 

10 515361.48 2062600.00 905159.28 2062600.00 2062600.00 

Average 496680.12 2767600.86 1748441.14 2762932.29 N/A 

 

 

(a) 

 

(b) 

Fig. 2. Finding the new coordinate if the starting point circle are overlap 
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Fig. 3. The seeded search process for Hill Climbing and Simulated Annealing from colour 
image until detecting the leukaemia cell seeded 

 

(a) (b) 
 

(c) 

 

(d) 

Fig. 4. Example Images from Stages within the Proposed Methodology, (a) Input Image, (b) 
After the Application of Otsu, (c) After the Application of Random Hill Climbing, (d) After the 
Application of Random Simulated Annealing 
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7   Conclusion 

In this paper we have presented a comparison between random and seeded search for 
the location of potential leukaemia cells. With the random search methods, there were 
only three steps which consist of Otsu's method, random coordinate generation and 
the application of a heuristic search. The seeded method consists of more steps, which 
are Otsu's, Cellular Automata seed generation, coordinate location, colour image 
clustering, and heuristic search. 

The Cellular Automata correctly identified good starting points for 7 images after 
filtering based on the minimum and maximum sizes of white blood cells. These pre-
liminary methods need refining for the other images, and may have failed to work due 
to the quality of the images. On the 7 images that we applied our work to, an overall 
accuracy of 91.5% was attained. Our research has identified that the Cellular Auto-
mata approach produces excellent starting positions, and that Heuristic search can 
refine the positions, however, we need to improve our fitness function. Additionally 
our approach has some limitations when applied to images that contain overlapping 
cells. These two issues will be the focus of future work. Additionally, we will look 
into using the circle similarity metric to rate the repeatability of our experiments. 

The Heuristic Search method of Simulated Annealing seems to achieve the best 
overall result but is more variable than Hill Climbing, thus Hill Climbing seeded 
tends to have a better average. 

This research project is still in its infancy, with the overall goal being to identify the 
individual AML subtypes M0 to M7 using classification techniques such as Neural 
Networks (as in [6]) applied to the results generated by this paper.  
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Abstract. This paper introduces a novel method for obtaining increased
predictive performance from transparent models in situations where pro-
duction input vectors are available when building the model. First, la-
beled training data is used to build a powerful opaque model, called
an oracle. Second, the oracle is applied to production instances, gener-
ating predicted target values, which are used as labels. Finally, these
newly labeled instances are utilized, in different combinations with nor-
mal training data, when inducing a transparent model. Experimental
results, on 26 UCI data sets, show that the use of oracle coaches signif-
icantly improves predictive performance, compared to standard model
induction. Most importantly, both accuracy and AUC results are robust
over all combinations of opaque and transparent models evaluated. This
study thus implies that the straightforward procedure of using a coaching
oracle, which can be used with arbitrary classifiers, yields significantly
better predictive performance at a low computational cost.

Keywords: Decision trees, Rule learning, Coaching.

1 Introduction

There are situations in predictive classification where interpretable models are
required, thus limiting the choice of technique to those producing transparent
models. It is, however, generally known that these techniques are weaker in terms
of predictive performance than techniques producing opaque models, and yet
predictive performance is usually of the utmost importance, both for obtaining
accurate predictions from the model and because accurate models have higher
explanatory value. In real-life applications, prediction is usually a one-shot event,
where a model is painstakingly built using available training data utilized in
various ways, and then the model is applied once, and only once, to previously
unseen, production, data. Usually, the only important evaluation criterion in this
situation is accuracy on the production data. The two main ramifications of the
above are that:
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a) all work that goes into building the model is really only preparation for the
prediction using production data

b) all means of maximizing production accuracy should be employed during
model construction.

Few methods are, however, explicitly geared towards this. Various techniques,
like cross-validation, hold out available data in order to estimate production
accuracy, instead of trying to take advantage of all the available data. The only
commonly observed constraint is that the data on which the model is evaluated
must never be used to build the model. In many cases, however, this constraint is
overly restrictive. In some situations, the only unknown data are the target values
for the production data; all input vectors for the production data are available
when building the model, and this data usually consists of a substantial number
of instances. A typical example illustrating this is when predictive classification is
used to target recipients of a marketing campaign and the training data consists
of past response data. Here, the very same customer signatures that will later
be used as production data input vectors are available to the data miner and
could therefore be used for the model construction.

The purpose of this paper is to suggest a very straightforward, and yet effec-
tive, way of increasing production accuracy for transparent models when produc-
tion data input vectors are available. The proposed method thus requires that
bulk predictions are made, and is unsuitable when prediction instances arrive
one at a time. The method, drawing inspiration from rule extraction, semi-
supervised learning and transductive learning, utilizes a powerful opaque model
to label production instances, yielding additional training instances which are
then used to build the transparent model. In this context, we name the opaque
model the oracle, since the target values it produces are treated as ground truth
by the training regime of the transparent model.

2 Background

A predictive classification model is a function f mapping each instance x to one
label in a predefined set of discrete classes {c1, c2, . . . , cn}. Since a predictive
classification model should be able to assign every possible input vector to one of
the predefined classes, the model must partition the input space; i.e., the classes
have to be non-overlapping and exhaustive. Normally, predictive models are
obtained by applying some supervised learning technique on historical (training)
data. Most supervised learning techniques require that the correct value of the
target variable is available for every training instance. A training instance, thus,
consists of an input vector x(i) with a corresponding target value y(i). The
predictive model is an estimation of the function y = f(x; θ) able to predict
a value y, given an input vector of measured values x and a set of estimated
parameters θ for the model f . The process of finding the best θ values is the
core of the data mining technique.

For predictive classification, the most important criterion is accuracy, i.e.,
the number of correct classifications made by the model when applied to novel
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data should be as high as possible. For situations where a black-box prediction
machine is sufficient, most data miners will use techniques like artificial neural
networks (ANNs), ensembles or support vector machines, which all have a very
good track record of producing accurate models, in a variety of domains. All these
techniques produce, however, opaque models, making it impossible to assess the
model, or even to understand the reasoning behind individual predictions. When
models need to be comprehensible, the most straightforward option is to sacrifice
accuracy by using techniques producing less accurate but transparent models,
most typically decision trees like C4.5/C5.0 [1] and CART [2], or rule sets like
RIPPER [3].

In this paper, we study the situation where transparent models are manda-
tory and the input vectors in the production set are already determined and
available when building the model. In real-world applications, this is actually a
very common scenario, meaning that the predictive model is explicitly built for
the prediction task at hand. In this exact situation, the unlabeled production
instances, i.e., the very same instances that later will be used for the actual
prediction, could also be used for building the model.

2.1 Related Work

Semi-supervised learning uses both labeled and unlabeled data when building the
models. The main motivation for semi-supervised learning is the fact that labeled
data is hard or costly to obtain in many applications, while unlabeled data is
often cheap and easily accessible. The overall goal is, of course, to produce better
(more accurate) models by using both labeled and unlabeled data, compared to
using only labeled data. In most situations, the number of available labeled
instances is much smaller than the number of unlabeled instances. It should
be noted that semi-supervised classification is still inductive since a model is
ultimately built and used for the actual classification.

Naturally, several fundamental approaches to semi-supervised learning, as well
as numerous variations, exist; for a good survey see [4]. The simplest approach
is self training, where a model is first built using the labeled data only, and is
then used to label unlabeled instances, thus increasing the size of the labeled
data set. This process is normally repeated several iterations, but eventually the
final classifier would be trained on a combination of initially labeled instances
and instances labeled by the intermediate models. So, simply put, the classifier
uses its own predictions to teach itself.

Our approach is somewhat similar to self training, but there are two main dif-
ferences: First we use one (stronger) classifier to label the instances, and another
(weaker but transparent) classifier for the final model. Technically, we refer to
this technique as coaching. Second, since the purpose is increased accuracy on
a specific production set, we explicitly utilize the fact that we have the corre-
sponding production input vectors available.

Transductive learning also utilizes both labeled and unlabeled data, and the
overall purpose is similar to our approach; i.e., to obtain high accuracy on specific
instances; see e.g. [5]. But the main difference is again that we explicitly focus
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on situations where the final model must be transparent, leading to a process
where a stronger model coaches a weaker.

Rule extraction is the process of generating a transparent model based on
a corresponding opaque predictive model. Rule extraction has been heavily in-
vestigated in the neural network domain, and the techniques have been applied
mainly to ANN models; for an introduction and a good survey of traditional
methods, see [6]. There are two fundamentally different extraction strategies,
decompositional (open-box or white-box ) and pedagogical (black-box ). Decom-
positional approaches focus on extracting rules at the level of individual units
within a trained ANN, while pedagogical approaches treat the opaque model as
a black box. The core pedagogical idea is to view rule extraction as a learning
task, where the target concept is the function originally learnt by the opaque
model. Black-box rule extraction is, consequently, an instance of predictive mod-
eling, where each input-output pattern consists of the original input vector xi

and the corresponding prediction f(xi; θ) from the opaque model. Two typical
and well-known black-box rule extraction algorithms are TREPAN [7] and VIA
[8]. Naturally, extracted models must be as similar as possible to the opaque
models. This criterion, called fidelity, is therefore a key part of the optimization
function in most rule extraction algorithms. Most, if not all, rule extraction al-
gorithms targeting fidelity use 0/1 fidelity, i.e., maximize the number of identical
classifications.

An interesting discussion about the purpose of rule extraction is found in
[9], where Zhou argues that rule extraction really should be seen as two very
different tasks; rule extraction for neural networks and rule extraction using
neural networks. While the first task is solely aimed at understanding the inner
workings of a trained neural network, the second task is explicitly aimed at
extracting a comprehensible model with higher accuracy than a comprehensible
model created directly from the data set. The motivation for that rule extraction
using neural networks may work is that a highly accurate opaque model often is
a better representation of the underlying relationships than the set of training
instances. One example is that training instances misclassified by the opaque
model may very well be atypical, i.e., learning such instances could reduce the
generalization capability.

But the opaque model is also a very accurate model of the function between
input and output, so it could be used to label novel instances with unknown
target values, as they become available. Naturally, the rule extraction algorithm
could then use these newly labeled instances as learning examples. Despite this,
no rule extraction algorithm that we are aware of use anything but training data
(and possibly artificially generated instances) when extracting the transparent
model. We have previously showed that the use of oracle data, i.e., production
input vectors labeled by an opaque oracle model, could be beneficial for rule
extraction [10]. In that study, we used our specialized rule extraction algorithm
G-REX [11], but in this paper we extend the suggested methodology to gen-
eral predictive classification. Specifically, only well-known and readily available
classifiers are used in this study.
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3 Method

As mentioned in the introduction, the purpose of this study was to evaluate
whether the use of a high-accuracy opaque model (serving as a coaching oracle)
may be beneficial for creating transparent predictive models. More specifically,
decision trees and rule sets induced directly from training data only were com-
pared to decision trees and rule sets built using different combinations of training
data and oracle data. For simplicity, and to allow easy replication of the exper-
iments, the Weka workbench [12] was used for all experiments1. In this study,
two kinds of ensemble models were used as oracles, a large Random Forest [13]
and a number of RBF neural networks, trained and combined using standard
bagging [14]. For the actual classification, J48 and JRip were used since they
represent what probably are the most famous tree inducer C4.5 [1] and rule in-
ducer RIPPER [3], respectively. J48 obviously builds decision trees while JRip
produces ordered rule sets. In the experimentation, all Weka settings were left
at the default values for the different techniques.

For the evaluation, 4-fold cross-validation was used. The reason for not using
the more standard value of ten folds was the fact that the use of only four
folds results in what we believe to be a more representative proportion between
training and production data. On each fold, the ensemble (the Random Forest
or the bagged RBFs) was first trained, using training data only. This ensemble
(the oracle) was then applied to the production instances, thereby producing
production predictions; i.e., labeling the instances. This resulted in three different
data sets:

– The training data: this is the original training data set, i.e., original input
vectors with corresponding correct target values.

– The ensemble data: this is the original training instances but with ensemble
predictions as target values instead of the always correct target values.

– The oracle data: this is the production instances with corresponding ensem-
ble predictions as target values.

In the experimentation, all different combinations of these data sets were evalu-
ated as training data for the techniques producing transparent models; i.e., J48
and JRip. In practice, this setup means that J48 and JRip will optimize different
combinations of training accuracy, training fidelity and production fidelity. More
specifically, we had the following seven different setups:

– Induction (I): Standard induction using original training data only. This
maximizes training accuracy.

– Extraction (E): Standard extraction, i.e., using ensemble data only. Maxi-
mizes training fidelity.

– Explanation (X): Uses only oracle data, i.e., maximizes production fidelity.
– Indanation2 (IX): Uses training data and oracle data, i.e., will maximize

training accuracy and production fidelity.
1 Our Weka OracleClassifier will be made available on our webpage.
2 These describing names, combining the terms induction, extraction and explanation

in different ways, are of course made-up.
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– Exduction (IE): Uses training data and ensemble data. This means that if a
specific training instance is misclassified by the ensemble, there will be two
training instances for J48 and JRip, having identical inputs but different tar-
get values. So, here training accuracy and training fidelity are simultaneously
maximized.

– Extanation (EX): Uses ensemble data and oracle data, i.e., will maximize
fidelity towards the ensemble on both training and production data.

– Indextanation (IEX): Uses all three data sets, i.e., will try to maximize
training accuracy, training fidelity and production fidelity simultaneously.

Table 1 below summarizes the different setups.

Table 1. Setups

Data Maximizes
Setup Train Ensemble Production Train Acc Train Fid. Prod. Fid.
I x x
E x x
X x x
IE x x x x
IX x x x x
EX x x x x
IEX x x x x x x

3.1 Experiments

This study contains two experiments. In the first experiment, J48 trees and
JRip rule sets were built using an oracle ensemble consisting of 30 bagged RBF
neural networks. In the second experiment, a Random Forest with 300 trees was
used as the oracle. In the experiments, both accuracy and area under the ROC
curve (AUC) were used for evaluation. While accuracy is based only on the final
classification, AUC measures the ability to rank instances according to how likely
they are to belong to a certain class; see e.g. [15]. AUC can be interpreted as
the probability of ranking a true positive instance ahead of a false positive. For
the evaluation, 10x4-fold cross-validation was used. The reported accuracies and
AUCs were therefore averaged over the 4x10 folds. The 26 data sets used are all
well-known and publicly available from the UCI Repository [16].

4 Results

Table 2 below shows the accuracy results for J48 in Experiment 1; i.e., when
using bagged RBFs as the oracle. Comparing mean accuracies and mean ranks,
it is very obvious that the use of production data paid off since IX, EX and
IEX (combining production data with training or ensemble data) clearly out-
performed the other setups. As a matter of fact, if these setups are explicitly
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Table 2. Experiment 1 - Accuracy J48

I E X IE IX EX IEX
Balance S .783 .807 .862 .813 .868 .860 .858
Bcancer .721 .718 .727 .723 .731 .725 .727
Bcancer W .949 .953 .962 .951 .961 .963 .963
CMC .508 .514 .515 .521 .528 .520 .526
Colic .851 .827 .807 .847 .857 .843 .855
Credit-A .854 .802 .795 .840 .847 .799 .820
Credit-G .717 .721 .728 .731 .750 .739 .745
Diabetes .743 .739 .757 .746 .759 .759 .754
Ecoli .820 .820 .831 .819 .850 .846 .848
Glass .676 .651 .682 .667 .715 .702 .706
Haberman .707 .740 .743 .740 .731 .744 .737
Heart-C .764 .774 .823 .765 .823 .816 .815
Heart-H .787 .814 .828 .816 .823 .835 .836
Heart-S .782 .791 .825 .783 .824 .837 .822
Hepatitis .794 .813 .855 .801 .843 .848 .841
Iono .894 .881 .911 .888 .924 .914 .918
Iris .938 .941 .954 .944 .955 .955 .956
Labor .766 .771 .858 .798 .852 .847 .855
Liver .632 .621 .638 .631 .659 .646 .641
Lymph .765 .777 .775 .764 .807 .799 .800
Sonar .714 .691 .761 .694 .772 .771 .764
Tae .548 .497 .503 .511 .525 .509 .516
Vehicle .722 .654 .665 .691 .693 .666 .677
Vote .963 .946 .946 .955 .960 .950 .956
Wine .924 .923 .959 .925 .974 .973 .965
Zoo .933 .933 .911 .942 .949 .949 .959
Mean .779 .774 .793 .781 .807 .800 .802
Avg Rank 5.37 5.92 3.94 5.00 2.02 2.98 2.77

compared to standard J48 tree induction (the I setup), the results show that IX
and IEX win 22 and lose 4 against standard J48, while EX wins 21 and loses 5.

To determine if there are any statistically significant differences, we use the
statistical tests recommended by Demšar [17] for comparing several classifiers
over a number of data sets, i.e., the Friedman test [18], followed by the Nemenyi
post-hoc test [19]. With seven classifiers and 26 data sets, the critical distance
(for α = 0.05) is 1.77, so based on these tests, all three approaches utilizing the
production data together with training or ensemble data obtained significantly
higher accuracies than the three approaches using only training or ensemble
data. Furthermore, it is interesting to observe that augmenting the production
data with training data only is the best setup overall, clearly outperforming even
the other setups also using production data.

Table 3 below shows the AUC results for J48 utilizing bagged RBFs as the
oracle.
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Table 3. Experiment 1 - AUC J48

I E X IE IX EX IEX
Balance S .86 .88 .93 .88 .93 .94 .94
Bcancer .60 .61 .62 .61 .62 .61 .62
Bcancer W .96 .95 .97 .96 .97 .96 .97
CMC .69 .66 .66 .71 .71 .66 .71
Colic .83 .81 .80 .84 .85 .83 .84
Credit-A .87 .84 .81 .91 .88 .84 .90
Credit-G .67 .69 .65 .71 .70 .71 .72
Diabetes .74 .69 .71 .76 .76 .71 .76
Ecoli .96 .96 .96 .96 .97 .97 .97
Glass .81 .76 .80 .81 .81 .78 .84
Haberman .54 .57 .57 .57 .56 .57 .57
Heart-C .77 .77 .83 .78 .83 .83 .84
Heart-H .76 .78 .81 .79 .81 .82 .82
Heart-S .78 .80 .83 .79 .82 .84 .85
Hepatitis .66 .71 .76 .69 .76 .77 .76
Iono .88 .87 .91 .88 .92 .92 .92
Iris .99 .99 1.00 .99 1.00 1.00 1.00
Labor .73 .73 .85 .77 .85 .84 .83
Liver .62 .59 .62 .62 .64 .62 .63
Lymph .79 .78 .81 .80 .83 .80 .82
Sonar .72 .69 .77 .71 .77 .77 .77
Tae .72 .69 .69 .71 .73 .69 .71
Vehicle .77 .66 .68 .79 .73 .68 .79
Vote .98 .97 .96 .97 .97 .97 .97
Wine .96 .95 .98 .96 .99 .99 .98
Zoo .99 .99 .98 .99 .99 .99 1.00
Mean .79 .78 .81 .81 .82 .81 .83
Avg Rank 5.13 5.90 4.35 4.19 2.65 3.62 2.15

Although the mean AUCs over all data sets appear to indicate that all setups
performed similarly, the mean ranks give a more detailed and completely different
picture. Most importantly, the results clearly show that the use of production
data is beneficial also when considering the ranking ability of the models. Looking
for statistically significant differences, the differences in mean ranks show that
IX and IEX both obtained significantly higher AUCs than standard J48 (I). A
closer inspection shows that even if the differences are quite small, the successful
approaches have slightly higher AUCs on almost all data sets compared to normal
induction. As an example, a pairwise comparison between IX and I shows 23
outright wins for IX and only 2 for I.

Table 4 below shows a summary of accuracy and AUC results for JRip using
bagged RBFs as the oracle. Looking at the average ranks on accuracy, IX and
IEX are clearly superior to all the other setups. A further analysis shows that
IX and IEX obtained significantly higher accuracies than the three setups not
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utilizing the production data, also when using JRip as classifier. In addition, the
two setups combining production data with training data were actually signifi-
cantly more accurate than setup X, i.e., utilizing only production data. Finally,
the difference between EX and I is also statistically significant. The AUC results
when using JRip for the classification are quite similar to the J48 results. Here,
however, all three setups combining the production data with either training or
ensemble data are significantly better than standard JRip (I). In addition, IX,
EX and IEX also obtained significantly higher AUCs than both E and X.

Table 4. Experiment 1 - JRip Transparent Model

I E X IE IX EX IEX
Accuracy Mean .775 .772 .780 .785 .800 .796 .802

Avg Rank 5.12 6.15 4.63 4.35 2.35 3.02 2.38

AUC Mean .79 .78 .79 .80 .81 .81 .82
Avg Rank 4.85 5.73 5.00 4.27 2.62 3.08 2.46

Summarizing Experiment 1, by looking at Table 5 below, where a + indicates a
statistically significant difference based on the Nemenyi post-hoc test, the most
important result is that the setups combining training data with production
data (IX and IEX) obtained significantly higher accuracy and AUC compared
to standard model induction (I), both when using J48 and JRip as the actual
classifier. In addition, IE and IEX also had significantly better results on a large
majority of the data sets compared to X, clearly indicating that building the
model using only production data is an inferior choice.

Table 5. Experiment 1 - Significant differences

I X
J48 Jrip J48 Jrip

Acc Auc Acc Auc Acc Auc Acc Auc
IX + + + + + + +
EX + + +
IEX + + + + + + +

Table 6 below shows a summary of the results from Experiment 2; i.e., when
using a 300 tree Random Forest as the oracle. Looking at the J48 mean accura-
cies and mean ranks, there is a clear ordering showing that IX and EX (using
training or ensemble data together with the production data) outperformed X
and IEX (using only production data or all three data sets) which in turn out-
performed the approaches not utilizing the production data at all, i.e., I, E and
IE. Comparing I with E and IX with EX, the obtained accuracies are identical
on most data sets. The explanation is that the large Random Forrest managed
to obtain perfect training accuracy quite often, thus making the ensemble data
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identical to the training data. The average ranks for JRip accuracy show that
IX and EX are clearly superior to all the other setups. As a matter of fact, the
results show that IX and EX obtained significantly higher accuracies than all
setups not utilizing the production data. In addition, the two setups utilizing the
production data together with either training or ensemble data were significantly
more accurate than setup X, i.e., utilizing only production data.

Looking at the AUC results for J48 using the Random Forest as oracle, the
picture is familiar. Here, the two best setups are IX and EX, both obtaining sig-
nificantly higher AUCs than all setups not using the production data, including,
of course, normal use of J48 (I). The AUC results when using JRip as classifier,
finally, are quite similar to the J48 results. The only difference is that IEX here
outperforms both IX and EX. Again, all three setups combining the production
data, with either training or ensemble data, are significantly better than setups
not using the production data.

Table 6. Experiment 2 - Summary

I E X IE IX EX IEX
Accuracy J48 Mean .779 .779 .802 .773 .813 .812 .805

Avg Rank 5.42 5.50 3.38 6.17 1.85 2.12 3.56
JRip Mean .775 .774 .787 .778 .804 .804 .807

Avg Rank 5.35 5.50 4.15 5.81 2.27 2.21 2.71

AUC J48 Mean .79 .79 .81 .77 .82 .82 .81
Avg Rank 4.83 4.87 4.10 5.98 2.35 2.33 3.56

JRIP Mean .79 .79 .79 .78 .81 .81 .82
Avg Rank 4.90 4.79 5.08 5.65 2.73 2.73 2.12

Table 7 below shows the statistically significant differences in Experiment 2.
Again, setups using production data, together with training or ensemble data,
performed significantly better than standard use of J48 or JRip. A small differ-
ence, compared to Experiment 1, is that when using J48 as classifier, building
the tree using production data only actually performed relatively well.

Table 7. Experiment 2 - Significant differences

I X
J48 Jrip J48 Jrip

Acc Auc Acc Auc Acc Auc Acc Auc
IX + + + + + +
EX + + + + + + +
IEX + + + +

The overall result from the two experiments is thus that the setups utilizing
production data predictions obtained from the oracle almost always yield sig-
nificantly better transparent models than normal induction. Furthermore, when
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using data from the oracle, the best results are obtained when combining pro-
duction and training data.

5 Conclusions

We have in this paper suggested and evaluated a novel method for increasing
predictive performance for transparent models. This method is suitable in the
very common situation where the predictive model is built for a specific pre-
diction task, and the input vectors for the actual production data are available
already when inducing the model. The procedure consists of building a pow-
erful opaque model, called an oracle, using the available labeled training data
and then applying this model on the production instances to obtain predicted
values which are used as labels. This oracle data is then combined in different
ways with the training data to form a new training set for a classifier producing
transparent models. The method is very general in that any opaque model can
serve as the oracle and any technique producing transparent models can benefit
from using oracle data during training.

The results show that using an oracle coach almost always yields significantly
better predictive performance for the transparent model, compared to standard
induction using only training data. This result is robust in that it holds for both
transparent model representations used, i.e., J48 decision trees and JRip ordered
rule sets, for performance measured either as accuracy or AUC and also for both
types of opaque oracle models used. Regarding how to use the oracle labeled
data, the experiments show that oracle data for production instances should
preferably be combined with just the original training instances to obtain the
best performance, but that other combinations also utilizing the oracle data were
strong alternatives.

The overall conclusion is that the suggested method virtually guarantees in-
creased predictive performance, compared to normal training, at a low compu-
tational cost. Oracle coaching is thus recommended if production input vectors
are available when building the model, and the situation requires a transparent
model.
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Abstract. This paper delivers an example of applying intelligent data analysis
to biological data where the success of the project was only possible due to joint
efforts of the experts from biology, medicine and data analysis. The initial and
seemingly obvious approach for the analysis of the data yielded results that did
not look plausible to the biologists and medical doctors. Only a better under-
standing of the experimental setting and the data generating process enabled us
to develop a more suitable model for the underlying experiments and to provide
results that are coherent with what could be expected from our knowledge and
experience.

The data analysis problem we discuss here is the identification of signif-
icant changes in experiments with short hairpin RNA. A simple Monte Carlo
test yielded incoherent results and it turned out that the assumptions on the un-
derlying experiments were not justified. With a Bayesian approach incorporat-
ing necessary prior knowledge from the biologists, we could finally solve the
problem.

1 Introduction

A fundamental part of intelligent data analysis [1] is the combination of expertise in
data analysis and in the domain from which the data originate. Both partners, the data
analysis expert and the data expert must cooperate and develop a basic understanding
of the other’s scientific field. This is usually a learning process that takes time and can
lead to failures in the initial phase that are seldom reported.

This paper describes an application where biological data from the so called third
generation microRNA based shRNA (shRNAmir) technology were analyzed. The data
come from mouse experiments and a goal of this project is the characterization of new
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cellular signalling networks that are essential for regenerative processes of the liver.
The results can lead to new pharmacological strategies for the treatment of patients
with chronic liver damages.

The data are similar, but not identical to standard microarray experiments. In mi-
croarray experiments, measurements for two or more conditions are taken for the
expression of genes and one is interested in identifying those genes with a significant
change of expression. In contrast to standard microarray experiments our measurements
are based on simple counting procedures requiring a statistical evaluation which is not
as obvious as it seems at first sight.

This paper describes the whole process of modelling the problem with failures and
success as a case study in intelligent data analysis. Section 2 describes the biological
background and Section 3 provides a more abstract and formal definition of the prob-
lem. Sections 4 and 5 discuss two approaches that failed to explain the observed data in
the end, leading to the finally successful model derived in Section 6. The final conclu-
sions address open problems and future work that will be based on the ideas described
in this paper.

2 Biological Background

Our research group is taking advantage of genetic approaches to study the regulation of
liver regeneration. The liver has a tremendous potential to regenerate upon tissue dam-
age by toxins or infection. It is unique that, in contrast to many other epithelial organs,
differentiated hepatocytes, which normally reside in the G0 phase of the cell cycle, can,
upon liver damage, re-enter the cell cycle and give rise to new hepatocytes. However,
when chronic liver damage occurs (e.g. chronic viral hepatitis), there is eventually an
exhaustion of the regenerative capacity of hepatocytes and only partial compensation by
a stem cell compartment (bipotential liver progenitor cells). The consequence is chronic
liver failure, which represents a major health problem worldwide. A unique system for
conducting multiplex in vivo RNA interference (RNAi) screens for new positive and
negative regulators of liver regeneration was developed. Combining a well character-
ized mouse model of liver repopulation with third generation microRNA based short
hairpin RNA (shRNAmir) technology, we show that mouse livers can be stably repopu-
lated with complex shRNAmir libraries [2,3]. RNA interference is a naturally occurring
process, where the presence of double stranded RNA leads to a targeted degradation of
a cellular messenger RNA which is sequence complementary to one of the two RNA
strands. Since its discovery RNA interference is being used routinely to knock down
any gene of choice in vitro as well as in vivo. The RNAi pathway can be harnessed in
experimental systems by introducing shRNAs into a cell, which after processing by the
internal enzymatic machinery releases a double stranded RNA such as an siRNA, which
finally releases one strand. This strand can find a sequence complementary messenger
RNA and triggers the degradation of the respective messenger RNA, thus reducing or
abolishing the amount of corresponding protein.

Using our in vivo RNAi screening platform, we are characterizing new cellular sig-
nalling networks which regulate the proliferation of hepatocytes during chronic liver
damage. It is the ultimate goal of our work to translate the obtained genetic information
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into new pharmacological strategies which can increase the liver’s regenerative potential
during chronic liver damage. Such therapies are holding the great promise to prolong
patients’ survival until they are eligible for definite treatment by liver- or hepatocyte
transplantation.

For our experiments we used the mouse as a model organism. The mouse genome
consists of approximately 30000 genes. For this study we used a focused shRNA library
with 631 shRNAs targeting 301 genes. Therefore we have in average a coverage of 2
shRNAs per gene. The 301 genes were chosen based on frequent deletions in human
HCCs (hepatocellular cancers).

631 shRNAs were introduced into mouse livers. The first half of those livers (n=6)
were harvested directly after intrahepatic shRNA delivery. The second half of the pop-
ulation (n=6) underwent a protocol for chronic liver damage (intraperitonal CCl4 treat-
ment) after shRNA delivery into the livers was accomplished. CCl4 induces cell death
with subsequent compensatory proliferation of surviving hepatocytes. As mentioned
above, in this setting hepatocytes containing an shRNA which confers a proliferative
advantage will expand, whereas hepatocyes containing an shRNA whose gene knock-
down confers a disadvantage under the conditions of chronic liver damage will be re-
duced in number over time. To quantify the representation of each shRNA in the whole
population, we are using a PCR amplification protocol of all shRNAs in the population.
PCR products containing the individual shRNA sequences are then subjected to deep
sequencing. In average we are applying 8 - 12 million sequence reads per biological
sample. Deep sequencing analysis yields the total number of sequence reads for each
hairpin, which together with the total number of applied reads can be used to calcu-
late the percent of representation for each shRNA in the population. If this procedure
is done for the starting population (livers directly after shRNA delivery) and for the
population after manipulation, both populations can be compared to find out whether
a certain shRNA is enriched, stays unchanged or is depleted in the system. However,
a straight forward analysis of shifts in shRNA representation is hampered by the fact,
that strong changes of single hairpins mask smaller changes or suggest changes in un-
changed hairpins. Therefore we needed to establish a specific analysis method for this
approach to take the experimental setting into account.

The newly used statistical approach helped us to define bona fide candidates. Al-
ready preliminary experiments verified, that one highly enriched hairpin influences the
hepatocyte proliferation under chronic liver damage in a positive way, recognized by
several biological parameters, like survival.

3 Problem Formalization

In our experiments, short hairpin RNA (shRNA) [4] is attached to genes. Most of the
genes will be marked by one specific hairpin, but some of the genes can also be marked
by more than one hairpin. This is not just redundancy, but also related to different func-
tions of the gene. We use a few hundred different types of hairpins in our experiments.
The number of different types of hairpins will be denoted by h. We deal with a pool of
more than 1012 genes. Some hairpins can be easier adapted to the corresponding genes,
for others it is more difficult. Therefore, when marking the genes with the hairpins, we
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cannot say in advance, how successful the process is for the different types of genes.
Therefore, we draw a sample – the sample size is usually a few million – from the pool
of 1012 genes and count, how often we find each of the hairpins. Let mi be the counts
for hairpin i (i ∈ {1, . . . , h}). The sample size is therefore

m =
h∑

i=1

mi.

From the theoretical point of view, we draw m balls (genes) from an urn with more
than 1012 balls of h different colours (types of hairpins) without replacement. Due to
the large number of genes in the initial pool compared to the sample we draw, we can
neglect the fact that we draw the sample without replacement and consider it as an ex-
periment with replacement. In this way, we can assume that our sample originates from
a multinomial distribution with h possible outcomes. We do not know the probabilities
for the outcomes, but we draw a sample of size m. Of course, we could estimate these
probabilities by p̂i = mi

m .
After some time, the distribution of the hairpins might have changed and we repeat

the experiment again. We do not necessarily draw a sample of exactly the same size.
We draw now a sample of size n instead of m from the possibly changed multinomial
distribution. We could estimate the probabilities for this multinomial distribution in the
same way as before as q̂i = ni

n where ni is now the count for hairpin i for the second

sample. This implies n =
∑h

i=1 ni.
We are now interested in those hairpins i for which the numbers have changed sig-

nificantly, corresponding to up- or down-regulated genes.

4 The Seemingly Obvious Statistical Model and a Monte Carlo
Test

In order to identify those hairpins for which the number has changed significantly from
the initial to the final sample, we could apply a statistical test with the null hypothesis
that the initial and the final sample originate from multinomial distributions with the
same underlying probabilities, i.e. the null hypothesis would be pi = qi for all i ∈
{1, . . . , h}.

This test can be easily implemented as a Monte Carlo test [5]. We choose the com-
bination of probabilities for the multinomial distribution that would generate the two
samples with highest probability. The maximum likelihood estimator for this problem
is obtained by joining the two samples and estimate the probabilities as r̂i = mi+ni

m+n .
Then we draw two samples from a (pseudo-)random number generator for this multi-
nomial distribution of size m and n. We now obtain simulated estimations p̂sim

i and q̂sim
i

and can compare these with the estimates p̂i and q̂i from the original sample. If

p̂sim
i , q̂sim

i ∈ [p̂i, q̂i] or p̂sim
i , q̂sim

i ∈ [q̂i, p̂i] (1)

holds, then p̂sim
i and q̂sim

i variate less than p̂i and q̂i. In other words, if this is not the
case, the difference between p̂i and q̂i can be explained by simple random variations in
the two samples from the multinomial distribution with the same probabilities.
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Of course, we have to repeat this test a large number of times, say 100,000 times.
We can then check, how often in these 100,000 simulations condition (1) is satisfied for
each hairpin. The proportion of the simulations where this condition is satisfied can be
viewed as a (simulated) p-value. We carry out multiple testing here, since we run the
test for all h hairpins in parallel. Therefore, a correction for multiple testing must be
incorporated into the p-values. We use the simple Bonferroni correction [6] where we
have to multiply the obtained p-values with the number of tests we have carried out, i.e.
with the number of hairpins h.

Even after Bonferroni correction, more than 90% of the hairpins have a p-value
smaller than 0.001. That would mean that more than 90% of the hairpins (or genes)
have changed significantly from the initial sample to the final sample. This is in contra-
diction to all experiences biologists have and does not seem plausible. But what could
cause this effect?

To explain this effect, we have to go back to our initial considerations that we do
actually draw our samples from very large (> 1012), but finite hairpin pools (or poula-
tions). We have made the implicit assumption that the overall size of the pool remains
stable which is an incorrect assumption. In order to illustrate the effect of a changing
pool size, let us consider a simplified example with much smaller samples and hairpin
pools. Assume, our original hairpin pool contains only three different types of hairpins,
1000 of each. So we have diminished the pool size to 3000 instead of the original more
than > 1012 hairpins in the pool. We draw a sample of size 30 from this pool. In the
ideal case, we would obtain 10 representatives from each type of hairpin. Now assume
that before we draw the final sample, the first and the second type of hairpin have not
changed their quantity and remain at the level of 1000. But the third type of hairpin has
increased from 1000 to 4000. So the final sample will be drawn from a pool of hairpins
with 1000, 1000 and 4000 replicates from each type. If the final sample has the same
size as the initial sample, in our example 30, we would expect in the ideal case to draw
5 hairpins of the first, 5 of the second and 20 of the third type of hairpin. So the counts
for the initial sample were (10,10,10) and for the final sample (5,5,20) giving the im-
pression that the quantities of all hairpins have changed (under the wrong assumption
that the size of the pool has not changed).

For our real-world data this would mean that if a single hairpin with a high num-
ber in the initial sample would change significantly in quantity, the proportions of all
other hairpins will be affected, even though they might not have changed in quantity.
Therefore, we must take a possible change of the hairpin pool size in our model into
account.

5 A Modified Approach

Assume the initial hairpin pool contains kinit
i replicates of hairpin i. We do not know

these numbers and cannot even estimate them from the sample because we do not know
the overall pool size kinit =

∑h
i=1 kinit

i . Since the samples we draw are quite large, we
can at least assume that

p̂i ≈ kinit
i

kinit
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holds. The same applies to the final sample that contains the unknown number of kfinal
i

replicates of hairpin i. But we can also assume that

q̂i ≈ kfinal
i

kfinal
(2)

holds where kfinal =
∑h

i=1 kfinal
i

Assume that hairpin i changes from the initial to the final sample by the (unknown)
regulation factor ci, i.e. kfinal

i = cik
init
i . With equation (2), we obtain

q̂i ≈ cik
init
i∑h

j=1 cjkinit
j

. (3)

When we extend the right hand side of equation (3) by the factor
1

kfinal
1

kfinal
, we get

q̂i =
cip̂i∑h

i=1 cj p̂j

(i ∈ {1, . . . , h}) (4)

where we have replaced approximately in equation (2) by equal. We should choose the
regulation factors ci in such a way that equation (4) is satisfied.

Without any restrictions on the regulation factors ci, one possible solution would be
ci = q̂i

p̂i
. But this would mean that we explain the changes in the relative frequencies of

the hairpins in the two samples by assuming that each hairpin has changed proportion-
ally to the change of the measurements which does not go along with the considerations
and the simple example we have provided in the previous section.

From the experience of the biologists we know that most of the regulation factors
should be roughly 1. Therefore, we should try to find a solution for the ci with as
little deviations from 1 as possible. This can be formulated as an optimization problem.
Minimize the objective function

L(c1, . . . , ch) =
h∑

i=1

(1 − ci)2 (5)

under the constraints (4).
To solve this problem, we replace all variable ci in the objective function (5) by using

equation (4) from which we obtain

q̂i

q̂j
=

cip̂i

cj p̂j
.

This implies

ci =
p̂j q̂i

p̂iq̂j
cj

and for j = 1, we finally get

ci =
p̂1q̂i

p̂iq̂1
c1. (6)
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This simplifies the objective function (5) to

L = (1 − c1)2 +
h∑

i=2

(
1 − p̂1q̂i

p̂iq̂1
c1

)2

=
h∑

i=1

(
1 − p̂1q̂i

p̂iq̂1
c1

)2

. (7)

In order to find the minimum of this quadratic function, we compute the root of the
derivative.

dL

dc1
= −2

h∑
i=1

(
1 − p̂1q̂i

p̂iq̂1
c1

)
p̂1q̂i

p̂iq̂1
= −2

h∑
i=1

(
p̂1q̂i

p̂iq̂1
− p̂2

1q̂
2
i

p̂2
i q̂

2
1
c1

)
= 0 (8)

This leads to

c1 =
q̂1

p̂1
·
∑h

i=1
q̂i

p̂i∑h
i=1

q̂2
i

p̂2
i

. (9)

With equation (6) we obtain the solution

ci =
q̂i

p̂i
·
∑h

j=1
q̂j

p̂j∑h
j=1

q̂2
j

p̂2
j

. (10)

From this equation it is clear that the regulation factors ci only depend on the ratios
of the relative frequencies p̂i and q̂i, but not on the absolute frequencies. Therefore, a
change from an initial count for hairpin i of mi = 2 to a final count of ni = 4 would
be treated in the same way as a change from mi = 20, 000 to ni = 40, 000. But it is
obvious that the chance that the change from mi = 20, 000 to ni = 40, 000 is a pure
random effect is much lower than for the change from mi = 2 to ni = 4. Therefore,
this simple model is also not suitable for our purposes.

6 A Bayesian Maximum Likelihood Approach

The approach described in the previous section has introduced a penalty for regulation
factors deviating from 1, representing the idea that most of the expression values of
genes (or hairpins) will not change. This actually represents prior knowledge on the
regulation factors. Bayesian methods are designed to take such prior knowledge into
account. Therefore we develop a Bayesian approach here with a prior that reflects the
knowledge that normally the regulation factors will be close to 1.

We slightly change the notation in order to handle up- and down-regulations in a
symmetric way. If we just use a factor directly, then up-regulation corresponds to values
from the infinite interval (1,∞), whereas down regulations lie in the finite interval
[0, 1). Therefore, we use the parametrization eci for the regulation factors. In this way,
up-regulation is equivalent to ci ∈ (0,∞) and down-regulation to ci ∈ (−∞, 0), so
that up- and down-regulation are just a matter of the sign.

We want to estimate the values for the regulation factors. As mentioned before, we
have prior knowledge about the possible values for the regulation factors. This knowl-
edge will be given by a prior distribution fprior(x). We assume that the priors are inde-
pendent and that all hairpins have the same type of prior. How we choose the prior, will
be discussed later on.
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Let us assume that the estimates p̂i = mi

m for the probabilities of the multinomial
distribution in the first sample are more or less correct. This means we have 
 · mi

hairpins in our original pool of more than 1012 hairpins. The constant 
 is unknown,
but independent of the hairpin i. Given the true, but unknown regulation factors eci , we
find a proportion of

qi =
eci · 
 · mi∑h

j=1 ecj · 
 · mj

=
eci · mi∑h

j=1 ecj · mj

of hairpin i in the final pool. Then the likelihood for drawing ni replicates of hairpin i
(i ∈ {1, . . . , h}) from our final samples is, including the prior,

L(c1, . . . , ch) =
h∏

i=1

fprior(ci) · qni

i . (11)

Note that we have omitted the constant factor(
n

n1! · . . . · nh!

)

that is independent of the values ci.
The log-likelihood is then

ln(L(c1, . . . , ch)) =
h∑

i=1

(ln(fprior(ci)) + ni · ln(pi))

=
h∑

i=1

(
ln(fprior(ci)) + ni · ci + ni · ln(mi)

−ni · ln
(

h∑
j=1

ecj · mj

))

= −n · ln
(

h∑
i=1

eci · mi

)
+

h∑
i=1

ni · ci +
h∑

i=1

ln(fprior(ci))

+
h∑

i=1

ni · ln(mi). (12)

The prior should definitely be a symmetric distribution with mean zero, preferring no
regulation at all and treating up- and down-regulations in the same way. We should
choose an uninformative prior. There are various concepts of uninformative priors.
Based on the principle of maximum entropy [7], we would have to choose a Gaus-
sian prior for which we still have to fix the variance σ2. There are, of course, other
ways to define uninformative priors that are based on maximizing the entropy or the
KullbackLeibler divergence of the posterior distribution or on the Fisher information
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(Jeffrey’s prior). For an overview on Bayesian inference and priors, we refer to [8]. To
keep things simple, we stick to a Gaussian prior with mean μ = 0.

fprior(x) =
1

σ
√

2π
e

−x2

2σ2

Inserting this prior into the log-likelihood (12), we obtain

ln(L(c1, . . . , ch)) = −n · ln
(

h∑
i=1

eci · mi

)
+

h∑
i=1

ni · ci

−
h∑

i=1

(
ln(σ) +

1
2

ln(2π) +
c2
i

2σ2

)

+
h∑

i=1

ni · ln(mi)

= −n · ln
(

h∑
i=1

eci · mi

)
+

h∑
i=1

ni · ci

− 1
2σ2

h∑
i=1

c2
i (13)

+

(
h∑

i=1

ni · ln(mi)

)
− h · ln(σ) − h

2
· ln(2π).

The last line of equation (13) does not depend on the unknown parameters ci, so that it
can be neglected for the maximization of the log-likehood. The log-likelihood (and also
the likelihood) is maximized when the function

T (c1, . . . , ch) = −n · ln
(

h∑
i=1

eci · mi

)
+

h∑
i=1

ni · ci − 1
2σ2

h∑
i=1

c2
i (14)

is maximized.
Determining the maximum of this objective function and in this way obtaining the

maximum likelihood estimates for the regulation factors ci is not an easy task. A closed
form solution cannot be provided. We apply a gradient method here. We carry out the
gradient method twice, using the two obvious and most extreme initializations. The
likelihood function consists of two main parts. The priors that are maximized for ci =
0, which is our first initialization, and the factors qni

i which are maximized when we
choose the raw regulation factors, i.e.

eci =
ni/n

mi/m
=

q̂i

q̂i
(15)

which give our second initialization.
In this way, we obtain two (local) maxima of the likelihood function from the two

initializations and in the best case these two local maxima should be more or less iden-
tical. This provides also a hint, how much we can trust our result.
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We still have to specify the value for σ in our Gaussian prior. We estimate σ based
on the raw regulation factors. We compute the values ci based on equation (15) and
estimate the standard deviation from these ci values. Since we have some very extreme
raw regulation factors due to very small counts for some hairpins, we do not estimate
the standard deviation by the sample standard deviation, but based on the more robust
interquartile range IQR of the values ci, i.e. σ̂ = 1.349 · IQR.

7 Results

First of all, it should be mentioned that we carry out Laplace correction [9,10] for the
counting. This means that we replace the values mi and ni by (mi + 1) and (ni +
1), respectively. Of course, this changes the sums m and n to (m + h) and (n + h),
respectively. Laplace correction is required, because there are experiments where the
initial or the final count for some hairpins is zero. This would require ci = ±∞ for
our second initialization for the gradient method and would also cause problems in the
likelihood function (11) when one of the initial counts mi is zero. Then the likelihood
function would become zero automatically when the corresponding final count ni is
nonzero.

To illustrate how our approach helps to obtain a more realistic picture about the
regulation factors, we take a look at results from one of our experiments with h = 400
hairpins, an initial sample size of m = 6, 682, 558 and a final sample size of n =
15, 105, 284. Table 1 shows the results for some selected hairpins. The second column
shows the initial count of the corresponding hairpin, the third column the final count.
The fourth column contains the raw factor according to equation (15). Our maximum
likelihood estimates based on the two above mentioned initializations for the gradient
method can be seen in the last two columns.

Table 1. Some results from one of our experiments

estimated factor
hairpin no. initial count final count raw factor init. ci = 0 init. ci = raw factor

1 47 2 −53.12 −18.05 −18.45
2 448 3 −337.55 −108.94 −111.56
3 3940 1534 −5.81 −5.64 −5.79
4 5178 25517 2.18 2.24 2.18
5 18980 43938 1.02 1.05 1.02
6 18385 44546 1.07 1.10 1.07

Negative signs of regulation factors indicate down-regulations. For instance, if equa-
tion (15) yields values like 0.5 or 0.25, we would not enter these values in the table, but
the values −2.00 and −4.00 instead, respectively.

Most of our data look like the ones in the last two rows where we have more or
less no regulation. A certain fraction of the hairpins shows a moderate regulation as for
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hairpin 3 and 4 in the table. The unregulated and the moderate (raw) regulation factors
are confirmed by our approach.

The first two entries are more extreme concerning the regulation factors. Such ex-
treme regulation factors can only occur when at least one of the two counts for the
hairpin is comparatively small. Some of these extreme cases are very interesting from
the biological and medical point of view. Although our approach still yields very large
regulation factors, they are downsized to roughly one third compared to the raw factors.

Comparing the last two columns, the gradient method seems to yield quite similar
results for the two extremely different initializations.

As mentioned already in Section 2, the statistical evaluation helped us to define bona
fide candidate hairpins that influence the hepatocyte proliferation under chronic liver
damage in a positive way.

8 Conclusions

We have a presented a typical experience in intelligent data analysis. In the beginning,
the way how to analyze the data seems to be obvious. But it turns out that the initial
simplified understanding of the question to be solved by data analysis and the modelling
of the process that generates the data were not sufficient to provide suitable answers.
Only with the joint expertise, in our case from biology, medicine and data analysis, a
solution can be found in the end.

Our project is still in an initial phase. We are now in the process of analyzing data
from repeated experiments and need to find out what causes sometimes extreme varia-
tions between experiments.

Apart from the estimation of the regulation factors that we have presented in this
paper, we are now developing methods to compute confidence intervals for them.

We are also interested in using other priors. But a sensitivity analysis of our Gaussian
prior with the respect to the parameter (standard deviation) σ has shown that the results
do not change significantly when we vary σ in a reasonable range. Therefore, we would
not expect significant changes when we use other priors.
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Abstract. This paper introduces a newproject, InfraWatch, that demon-
strates the many challenges that a large complex data analysis application
has to offer in terms of data capture, management, analysis and report-
ing. The project is concerned with the intelligent monitoring and analy-
sis of large infrastructural projects in the public domain, such as public
roads, highways, tunnels and bridges. As a demonstrator, the project in-
cludes the detailed measurement of traffic and weather load on one of the
largest highway bridges in the Netherlands. As part of a recent renovation
and re-enforcement effort, the bridge has been equipped with a substantial
sensor network, which has been producing large amounts of sensor data for
more than a year. The bridge is currently equipped with a multitude of vi-
bration and stress sensors, a video camera and weather station. We pro-
pose this bridge as a challenging environment for intelligent data analysis
research. In this paper we outline the reasons for monitoring infrastruc-
tural assets through sensors, the scientific challenges in for example data
management and analysis, and we present a visualization tool for the data
coming from the bridge. We think that the bridge can serve as a means to
promote research and education in intelligent data analysis.

1 Introduction

In practical projects involving data, one often has to model and analyze com-
plex, dynamic systems. An example of this, which is gaining importance, is the
monitoring of infrastructural assets such as bridges, tunnels, etc. [1]. Nowadays,
the use of advanced sensing and monitoring systems provides the opportunity to
collect real-time information from such structures, in order to monitor their per-
formance and to deduce relevant knowledge for decisions on their maintenance
demand. Asset owners can use this information to assess the life time perspective
of (crucial) infrastructural links and to plan the window within which mainte-
nance can be conducted. When considering the stock of infrastructural assets in
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view of service-life assessment, monitoring and sensing systems are very valuable
instruments that can be used to extract actual information about its condition
and performance.

In terms of condition, sensor systems are mounted in or to structures that
monitor the environmental as well as the internal condition. Environmental con-
ditions are related to the climatic changes in which the structure has to be
operational, and, in terms of performance, the external and internal actions act-
ing on the structure are recorded. Long and enduring 24/7 monitoring systems
are necessary that generate large amounts of data that needs to be evaluated
in a smart way such that relevant changes in the data will be noticed and asset
management systems will be informed and/or alarmed efficiently.

Managing the huge amounts of data, extracted from the monitoring systems,
requires integral knowledge in the field of data management. The best repre-
sentation for storing the data is not necessarily the best representation for the
evaluation of the data. Intelligent Data Analysis is needed for the smart evalua-
tion of data extracted from the degradation mechanisms. The ultimate challenge
is to design, develop and optimize a data management system for measuring and
reporting the actual performance of large infrastructural projects. Such a system
should provide monitoring, notification and reporting services. The goal of such
a system is to manage the output of sensors in an optimal way for infrastructure
condition assessment.

In this paper we present the InfraWatch project. The goal of this project is to
construct a data management system with the above properties for a particular
infrastructural asset, the “Hollandse Brug”, one of the Netherlands’ major high-
way bridges. All the challenges mentioned above are present in this project. We
present some initial experiments on the bridge data, and discuss the concrete
challenges of this project and argue that it is interesting for the intelligent data
analysis community for a variety of reasons. It contains important challenges,
but it also provides an attractive and tangible environment for defining data
analysis tasks, demonstrating the value of methods, and promoting research and
education in intelligent data analysis.

In the next section we introduce the problem of infrastructural asset mon-
itoring and the entailed requirements for data management and analysis on a
general level. After that, we will zoom in on the concrete case of the Hollandse
Brug.

2 Monitoring Infrastructure

In view of asset management of large infrastructural projects, monitoring the
actual performance in real-time conditions is becoming indispensable. The actual
performance of infrastructural assets in relation to their action loads (traffic,
climate, etc.), is considered to be the key element for managing the maintenance
requests and for the control of the budgets in the long run. Decisions made
regarding the maintenance needs can be considered in view of the technical and
economical perspective of an infrastructural asset, and even more importantly, in
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view of its functional perspective. Monitoring the performance of infrastructure
requires (1) sensor systems to measure, and (2) data management and intelligent
data analysis systems for dealing with the large streams of data coming from the
sensors. Both are necessary to come up with an optimized system for condition
monitoring. In the design of such a system, choices need to be made for

1. The type of sensors: depending on the used materials and other parameters,
different types of sensors can be used to trace a structure’s actual condition,
i.e. sensors for chloride concentration, moisture content, carbonation, etc.

2. The placement of the sensors: the layout and the grid density for the sen-
sors to be positioned in order to get a reliable response of the condition
monitoring.

3. The data management: The data received from the sensors will need to be
collected, processed and stored by the system and further processed. Results
should be communicated by notification and reporting services.

4. Asset Modelling: In addition to the information coming from the data, for
prediction of the condition of the asset in the future, modeling of (parts
of) the assets is needed. The combination of the data-driven approach with
computational modeling gives predictions about the condition of the asset
in the future.

Points 1 and 2 are engineering decisions; from the data management and analysis
point of view, we assume the type and configuration of sensors are given and
we have no control over them. Point 3, data management, contains a number of
challenges that hold for infrastructure monitoring in general, and we will discuss
these here. The modeling methods relevant for point 4 will strongly depend on
the concrete context. Therefore we will discuss point 4 in the next section, after
we have introduced the concrete setting of the Hollandse Brug.

2.1 Data Management

Monitoring systems for infrastructural assets are continuously producing large
quantities of data. Clearly, it is infeasible to store on location all sensor output at
a high resolution, for example more than once per second. Still, for some appli-
cations, such detailed data may be required. At the same time, it is unrealistic to
perform all computation required for data analysis on-site. Therefore, a sophisti-
cated data management strategy will have to be developed that brings together
computing power and the necessary data. This strategy will have to take into
account local data collection at different time-resolutions, periodic replication to
an off-line data warehouse, scheduled snapshots of intense measurement, as well
as some amount of local data analysis for monitoring recent events.

Data collected in monitoring systems roughly serves two purposes:

1. Large scale data mining for analyzing patterns in the stream of sensor output
or between different (types of) sensors, as well as analyzing trends over time,
for example for finding so-called concept drift.
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2. On-line data analysis of (to a certain degree) real-time data for monitoring
the integrity of the infrastructure and detecting recent changes.

The first purpose may involve a large range of analysis techniques, and typically
requires substantial computational resources. Therefore, this purpose entails the
periodic downloading of recent measurement data to a data warehouse, where
it can be massaged and analyzed at will. It seems unlikely that all sensor data
will be stored at the highest resolution available, at least not for the entire life-
span of the infrastructure/monitoring system. The data management system will
therefore need to allow for sensor-dependent data storage that may also vary over
time. For specific periods of interest, say a notoriously busy day of the year, one
may be interested in intense measurement of data, to allow for specific integrated
types of data analysis. The effect of varying traffic load on the infrastructure may
be assessed by involving video-streams as well as vibration and stress sensors.
On the other hand, the influence of weather may be analyzed on a much larger
time scale.

The real-time monitoring will clearly have different data management require-
ments. Such a system component will be using a recent history of sensor output
(say one day) to compare these to characteristics of load and infrastructure re-
sponse over much longer periods, with the intent of detecting recent changes in
this relationship. Obviously, this on-line tracking of changes in the infrastruc-
ture will have to be done on site, and therefore cannot involve huge amounts
of computation. One intended approach is to analyze stress parameters over a
longer period off-line, and detect significant patterns and key characteristics that
represent nominal behavior of the infrastructure. These patterns may then be
uploaded to the monitoring system (with the occasional update), where they can
be used to compare to similar results obtained on the recently acquired sensor
data. In this way, no large collections of data will need to be stored and processed
on-site.

3 The Hollandse Brug

The InfraWatch project is centred around an import highway bridge that is al-
ready producing substantial quantities of data: the Hollandse Brug. This is a
bridge between the Flevoland and Noord-Holland provinces and is located at
the place where the Gooimeer joins the IJmeer (see Figure 1). The bridge was
opened in June 1969. National Road A6 uses this bridge. There is also a connec-
tion for rail parallel to the highway bridge, as well as a lane for cyclists on the
west side of the car bridge. In April 2007 it was announced that measurements
would have shown that the bridge did not meet the quality and security require-
ments. Therefore, the bridge was closed in both directions to freight traffic on
April 27, 2007. The repairs were launched in August 2007 and a consortium of
companies, Strukton, RWS and Reef has installed a monitoring configuration
underneath the first south span of the Hollandse Brug with the main aim to col-
lect data for evaluating how the bridge responds. The sensor network is part of
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Fig. 1. Aerial picture of the situation of the Hollandse Brug, which connects the ‘island’
Flevoland to the province Noord-Holland, and the adjacent railway bridge (top)

the strengthening project which was necessary to upgrade the bridges capacity
by overlaying.

The monitoring system comprises 145 sensors that measure different aspects
of the condition of the bridge, at several locations along the bridge (see Figure 2
for an illustration). The following types of sensors are employed:

– 34 ‘geo-phones’ (vibration sensors) that measure the vertical movement of
the bottom of the road-deck as well as the supporting columns.

– 16 strain-gauges embedded in the concrete, measuring horizontal longitudi-
nal stress, and an additional 34 gauges attached to the outside.

– 28 strain-gauges embedded in the concrete, measuring horizontal stress per-
pendicular to the first 16 strain-gauges, and an additional 13 gauges attached
to the outside.

– 10 thermometers embedded in the concrete, and 10 attached on the outside.

Furthermore, there is a weather station, and a video-camera provides a continu-
ous video stream of the actual traffic on the bridge. Additionally, there are also
plans to monitor the adjacent railway bridge.

Clearly, the current monitoring set-up is already providing many challenges for
data management. For one, the 145 sensors are producing data at rates of 100 Hz,
which can amount to a gigabyte of data per day. Adding to that is the continuous
stream of video. Although the InfraWatch projects is in its early stages, data is
already being gathered and under provisional monitoring. However, the current
data available for analysis consists of short snapshots of stress and video data,
that is being manually transported from the site to the monitoring location
(typically an office environment or Leiden University). One of the aims of the
project is to develop sophisticated methods for data management, as outlined in
the previous section.
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Fig. 2. Detail of the diagram explaining the individual sensor placement

Prior to the start of the InfraWatch project, an initial monitoring applica-
tion was developed, that allows the visual inspection of both video and sensor
information. The application allows the user to navigate through a selected time-
frame, and watch the traffic passing over the bridge, while the data over one or
more sensors is displayed in synchronised fashion. The user can select the nature
of the sensor as well as the location of it, which does not necessarily have to
correspond with the location of the camera. Using this application, it is fairly
easy to already observe some patterns in the data. For example, the vertical
load data nicely corresponds with heavy vehicles passing. However, more sophis-
ticated data analysis should be developed in the course of the project, that also
takes into account multivariate behaviour of the data, and spatial relationships
between sensors, to name just a few options. In the next sections, we provide
some suggestions for the range of analysis approaches this data allows.

4 Data Analysis

We need to distinguish two forms of data analysis: the first form, which we call
model construction and which happens offline, consists of analysing data to find
patterns in them; the patterns together form a model of the data. The second
form, which we call model application, happens online and consists of checking
whether the data stream is still consistent with the model. The Hollandse Brug
data poses interesting challenges on both sides.

1) Model construction: much data mining research focuses on the model con-
struction task. Many algorithms for detecting patterns in data, and constructing
descriptive or predictive models from these patterns, have been described in the
literature. The sensor data that we need to deal with here, however, have charac-
teristics that render it impossible to use standard data mining algorithms. First,
there is the temporal dimension. Each sensor essentially produces a time series of
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data. Analysis of time series is a well-investigated problem. However, in this case
we cannot analyse each time series on its own: relationships between different
time series are relevant. A simple example of this is that a pattern might state
that two particular time series normally correlate negatively; but patterns may
actually involve much more complicated forms of relationships between (possibly
more than two) time series. In addition, these time series may have a different
granularity. It is currently not known how such data are best analysed. Second,
there is a spatial dimension: the sensors are related to each other though their
spatial location. The relative position of sensors may be indicated with a graph
structure. In that case, patterns may involve combinations of graph structures
and time series patterns (for instance, two sensors tend to correlate if they are
the same type of sensor and are connected to each other in the spatial graph).
It is not obvious how to represent such patterns, and a fortiori no algorithms for
discovering them are known. Third, the data are dynamic: there may be concept
drift, which implies that the patterns relevant at some point in time gradually
become less relevant. Models should therefore be adapted regularly. But while a
slow shift in the patterns may be normal, a sudden change may indicate a reason
for alarm. The question is: how can we distinguish these two different cases?

2) Model application is an equally important task in this context. Model ap-
plication will happen online, in real-time, with limited computational resources.
It is crucial, then, that the developed models can indeed be applied efficiently.
This is true for many, but not all models; for instance, for probabilistic graphical
models it is known that inference is NP-hard, which makes it non-obvious that
they can be applied in this context. The efficient applicability of the learned
models is an additional constraint on the data mining task.

Viewed as a whole, we are confronted with data with a complex and evolving
relational and spatio-temporal structure. Applying statistical, data mining and
pattern recognition techniques to such data is a non-trivial task: there are open
questions regarding the optimal representation of the data, how to represent the
patterns, what algorithms can be used to detect these patterns in the data (again,
existing algorithms will likely not suffice for this task), how to detect significant
shifts in the patterns, and how to efficiently detect significant deviations of the
data with respect to a given pattern. The development of suitable representations
and algorithms to solve these problems is an important research task.

The format of the data and the way it is generated is clearly reminiscent
of data streams. The context of this project is somewhat different than what
is typically considered in data stream mining: for instance, due to the offline
analysis of data, the usual constraints on data stream mining algorithms (namely,
that model construction happens online) are less stringent here. This allows us to
explore a wider range of algorithms. Nevertheless, it is clear that stream mining
is relevant for this project.

In recent years there has been a growing interest in the study and analysis
of data streams. Typical examples of such streams include continuous sensor
readings. Traditional data mining approaches are not suitable for mining such
streams, because they assume static data stored in a database, whereas streams
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are continuous, high speed, and unbounded. Therefore, streams must be analyzed
as they are produced and high quality, online results need to be guaranteed.

Until now, most pattern mining techniques focus either on non-streaming
data, or only consider very simple patterns, such as identifying the hot items
from one stream, or constantly maintaining the frequencies in a window sliding
over the stream. The challenging task is to extend the existing state-of-the-art
into two, orthogonal directions: On the one hand, the mining of more complex
patterns in streams, such as sequential patterns and evolving graph patterns, and
on the other hand, more natural stream support measures taking into account
the temporal nature of most data streams. Clearly, the classical pattern mining
algorithms do not fulfil the constraints imposed on stream processing algorithms.
Mining data streams, or stream mining, is therefore a challenging task.

The most popular techniques that have been developed so-far are random-
ization and approximation, sampling, sketches, and summaries. Randomization
and approximation techniques render stream mining algorithms sufficiently fast,
at the expense of no longer guaranteeing exactness. Sampling implies that a
small sample of the data stream is taken, and costly algorithms are run on the
sample. Sketches and summaries help dealing with the abundance of data by
instead of storing the complete data stream, which is infeasible, a summary of
the relevant features is kept that allows for answering queries about the stream
approximately.

5 First Experiments

Although the InfraWatch project has only recently started, the sensor network
has been up and running for more than a year. During this period, a number
of experiments have been performed and specific samples of data have been
collected. Some exploratory analysis has been performed to investigate what
challenges need to be faced in different aspects of the structural modeling. This
section gives some examples.

In theory, one can interpret ‘traffic’ as a series of discrete events, with events
being a vehicle passing a particular point at a certain time. However, each in-
dividual event will appear to a vibration or load sensor as a signal over some
period of time. This temporal spread of the signal is caused by three factors:

1. The physical size of the vehicle. As a vehicle will have a certain length, it
will take some time to pass a particular sensor. One can safely assume that
this factor is monotone in the length of the vehicle (in the direction of travel)
and its speed.

2. The sensitivity area of the sensor. As the sensor is connected to a rigid part
of the structure, any movement of the structure will be conducted along it,
causing a change in signal of the sensor, even if the vehicle is not exactly
located over the sensor. However the effect of the vehicle on the signal will
diminish with the distance from the sensor. In effect, the area of sensitivity
will act as a form of smoothing on the signal, producing a bump, rather than
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Fig. 3. The 10 axle test truck that was driven across the bridge in the early morning

Fig. 4. Measurement of a load (top) and vibration sensor at the moment when the test
truck was passing. Individual axles can be observed.

a single peak in the sensor data. The effect of this factor will differ between
vibration and load sensors, with the latter being bigger, due to complete
bridge sections carrying the load of a vehicle.

3. Specific physical properties of the structure, such as the resonance frequency
of the bridge. Sudden events, such as a heavy vehicle entering specific sections
of the bridge may cause the bridge to subtly sway at a specific frequency
that is a physical property of the bridge, and that depends on structural
characteristics, such as the size, weight and rigidity of each section. This
resonance will cause a signal that starts at the vehicle passing, but that
continues for some duration after the event. A Fourier analysis will reveal
such dominant frequencies in the spectrum.

One of the essential tasks of the project is to match the continuous signals caused
by these three factors with the discrete events of the actual traffic. One way to
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approach this, is to consider isolated events, and determine their effect in the
sensor-space. Figure 3 shows two pictures of such an isolated test. Trucks were
driven with a specific speed (ranging between 50 and 90 km/h) over the sensor
network in the early morning, when regular traffic is sparse. Prior to the test, the
weight and load distribution over the 10 axles was determined. Different loads
were tested, to get a proper variation in examples. Using the resulting data, the
sensor-network can effectively used as a Weigh-In-Motion (WIM) system [2].

Figure 4 shows the effect of a test run on both a load and a vibration sensor.
The right graph also shows a subtle vibration of the bridge superimposed on the
load signal. This vibration was determined to be approx. 2.5 Hz, over a period
of one month. Sudden changes, or gradual drift of this resonance frequency can
point to structural degradation of the bridge.

An alternative means of matching continuous signals with discrete events is
to remove (or at least minimize) the variable of speed. Figure 5 (left) shows a
situation of slow-moving traffic on the far lane of the bridge. By careful manual
annotation of consecutive individual video-frames, one can determine the indi-
vidual events, including some estimate of the size of the vehicle. The right graph
shows the effect that the five highlighted vehicles have had on one of the strain-
gauges. In such slow-moving conditions, the individual bumps can be identified,
and matched to the video-stream. However, there will be a certain amount of
‘stretch’ in the signal, due to the intermittent nature of the passing vehicles. This
will make the bumps vary in width in a manner that is somewhat independent
of the length of the vehicle.

For the above-mentioned settings, annotation of the video-stream was per-
formed manually, by carefully inspecting individual frames. In order to be able
to process large periods of video and sensor-streams, we have been experiment-
ing with automatic detection of vehicles in the images, using a technique for
separating the background from the moving traffic (see Figure 6). This tech-
nique is flexible and robust, in the sense that it can deal with slight movement
of the camera (due to wind and bridge movement), as well as with changing
environmental situations (such as weather and lighting). The figure for example
shows a rainy day, with a number of large water drops on the lens. Based on
the detected location of moving objects, a further aggregation step identifies ac-
tual vehicles. The current implementations works fairly consistently, but a clear
matching from blobs to events (especially over multiple frames) is still a major
challenge.

6 Education Opportunities

Besides being an excellent research challenge and a complex fielded application
of Data Mining techniques, the InfraWatch project and its Hollandse Brug are
also intended to serve educational purposes [9]. Because of its practical nature,
the project will, and has already been an important tool in the teaching of intel-
ligent data analysis techniques to computer science students in the first place.
Rather than the traditional focus on basic analysis techniques and algorithms,
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Fig. 5. Slow-moving traffic, and the corresponding output of one of the strain-gauges

Fig. 6. Estimating large blobs of moving objects: (left) the input image, (middle) the
expected background over the recent past, (right) the estimated location of moving
objects

we now have an opportunity to demonstrate the many complications that tend
to arise in actual analysis projects [4,5], and how these should be tackled. These
complications include the measuring of data (noise, sensor-failure, ...), the con-
tinuous flow of data (data volume, versioning issues, sample rates), the range of
analysis paradigms (multivariate analysis, streams, relational aspects), and the
inclusion of domain knowledge (spatial aspects, feature extraction). Apart from
making the existing data analysis education more attractive and realistic, the
project will also serve to attract potential students to analysis-related courses
and computer science in general.

7 Conclusion

In this paper we have introduced the InfraWatch project, which has as main goal
the setting up of an intelligent infrastructure monitoring system, in particular a
data management and analysis system for the Hollandse Brug. It is clear that this
system will have online and offline components, and the challenges involved are:
determining which functionality is best offered online and offline, determining
the optimal representation for online and offline data storage and processing,
determining what kind of models are most suitable for this kind of systems, and
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developing the necessary data analysis techniques for constructing and applying
such models.

We believe the project offers a very attractive environment for data analysis
for students, scientists and experienced practitioners alike. It provides a tangible
and even somewhat spectacular application, with challenges on all levels: stu-
dents can try to analyse infrastructural data with existing techniques and see
what they can find; practitioners can tackle a number of concrete challenges us-
ing their expertise on data mining; scientists can study the presented challenges
in depth and develop novel techniques and approaches to solve them. Solving the
problems defined within the project will require bringing together expertise from
very diverse areas in intelligent data analysis, including data and knowledge rep-
resentation, spatio-temporal data mining, graph mining, sequence mining, data
stream mining, computer vision, data visualisation, and more.
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Abstract. This Paper presents a platform to mine epileptiform activity
from Electroencephalograms (EEG) by combining the methodologies of
Deterministic Finite Automata (DFA) and Knowledge Discovery in Data
Mining (KDD) TV-Tree. Mining EEG patterns in human brain dynam-
ics is complex yet necessary for identifying and predicting the transient
events that occur before and during epileptic seizures. We believe that an
intelligent data analysis of mining EEG Epileptic Spikes can be combined
with statistical analysis, signal analysis or KDD to create systems that
intelligently choose when to invoke one or more of the aforementioned
arts and correctly predict when a person will have a seizure. Herein, we
present a correlation platform for using DFA and Action Rules in pre-
dicting which interictal spikes within noise are predictors of the clinical
onset of a seizure.

1 Introduction

Epilepsy is a neurological disorder that makes people susceptible to recurrent un-
provoked seizures due to electrical disturbances in the brain. Unfortunately, 30%
of patients that suffer from epilepsy are not well controlled on medication. Only
a small fraction of these can be helped by seizure surgery [5]. Therefore, it would
be life changing to a large number of individuals if a system could be developed
that would predict a seizure hours, minutes, or even seconds before its clinical
onset. The challenge in this problem is that the dimensionality is huge; in the
human brain there are approximately 100 billion neurons, each with about 1000
connections (synapses)[28]. Even in the rat brain it is estimated that there are
approximately 200 million neurons [4], [1]. The connections are wired such that
the problem is highly chaotic. In a certain class of seizures it would be helpful
if they could be detected even a few seconds prior to the start of a seizure. The
dimensionality of the problem can be significantly reduced, with only a small loss
of information by recording electrical potentials at multiple points on the surface
of the skull or, using depth electrodes, in the hippocampus (EEG). EEGs are
accepted as one of the best means of evaluating neurocognitive functions [15].
EEG spike/seizure detection and prediction is made more complicated by the
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following: (1) For a single individual, no two seizures or even their EEG corre-
lates are exactly alike, (2) seizures from different individuals vary significantly,
(3) there is no single metric that consistently changes during all seizures, (4) cor-
relation among channels can change significantly from one seizure to the next,
and (5) even experts disagree as to what constitutes a seizure [27]. Occasionally,
the reduction in dimensionality does result in an indeterminate mapping from
EEG record to animal state (i.e. it is not surjective or onto). For the reasons
listed above, rigid seizure detection rules do not produce good results [7], [26].
Interictal spikes are brief (20 - 70 ms) sharp spikes of electrical phenomena that
stand out when compared to background EEG rhythms and may be indicative
of an underlying epileptic process. Because they are considered as an indicator
of the presence of epileptic seizures, and may actually precede a seizure (sentinel
spike), the detection of these interictal, transient spikes which may be confused
with artifact or noise is indeed a crucial element in the prediction of epileptic
conditions.

2 Recording Epileptogenesis

Until 1992 most EEG analysis was based on analysis of brain slices [14] or anes-
thetized animals [3]. Kainic acid, a chemoconvulsant extracted from seaweed, was
introduced to induce seizures in animals. This provided a major breakthrough
particularly with the advent of monitoring the animals on video, but the equally
significant subclinical seizures were impossible to detect with video monitoring
alone. The field was further advanced through the development of a tethered
recording system [2] in which multi-channel cortical and sub-cortical recordings
could be obtained. The quality of recordings were further improved by incorpo-
rating a small pre-amplifier close to the skull, allowing for a significant increase
in the signal to noise (S/N) ratio. As shown in Figure 1, electrodes were placed
stereotaxically in the hippocampus and secured in the skull [25], [24] Additional
electrodes were placed directly on the dura. Dental cement was applied to hold

A B C D 

E F G H I J 

Fig. 1. Implantable Tethered System Devices: (A-D) Stereotaxic placement of cortical
electrodes. (E) Dental cement polymer applied to hold the electrodes in place. Note
dental cement on q-tip. (F) The tethered pre-amplifier connects to the implanted elec-
trodes and sends the signals to Epilepsy Monitoring Unit).
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D                                                                     E                                                                 F

A                                                                     B                                                                   C

Fig. 2. Rat 6K2 : Progression of a Clinical convulsive seizure: (A) Video capture shows
the Rat to be in a normal sleeping stage. (B-C) Rat exits sleeping stage and starts
having a p3 seizure (racine scale). (D-F) The seizure magnitude escalades and leads to
a violent uncontrollable seizure - p5 (racine scale).

the electrode pins together in a plastic cap that was later connected to the pre-
amplifier. The pre-amplified signal was sent to an amplifier and from there to a
computer for storage.

Our facility has the capability of continuously monitoring up to 64 tethered or
untethered rats. Untethered rats underwent video monitoring and the tethered
rats underwent both video and EEG monitoring. This paper will discuss an
algorithm for analyzing the EEG of a rats experiencing an event that evolves
into a P5 Seizure [18] This event occurs somewhat infrequently, and we have
collected EEG data set with three events that includes both the seizures and
several minutes surrounding the events. As seen in Figure 2, a rat experienced
a kainite-induced seizure that evolved from stage P3 to P5. In frame A, the rat
was sleeping. In Frame B, 58 seconds later, the rat experienced a P3 seizure
evidenced by the circular clawing (forelimb clonus). In Frame C, 28 seconds
later, convulsive activity stopped and there was no epileptic activity on the EEG.
Frame D was taken 1 minute later and at this point the rat began to experience a
P5 seizure that lasted several seconds. Frames E and F were taken subsequently
and demonstrate the intensity of the seizure. Not seen in this figure is that
this rat was eating calmly shortly after the end of the seizure. The availability
of EEG data for this seizure and 2 other similar seizures, along with video,
allowed us to test the hypothesis that a novel deterministic finite automata
(DFA) methodology will be able to differentiate the different aspects (sleeping,
P3 seizure, between seizures, and P5 seizure) of the EEG record.
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I II III

§1 §2

Fig. 3. Rat p3 seizure (racine scale): §1: 6K2’s EEG state correlating to Figure 2’s
Stage B denoted by circular clawing §2: I. Normal EEG wave-form while Rat is a
sleep. II. Appearance of Sentinel Spike prior to P3 (Racine Scale) seizure. III. Possible
Interictal Spike often misinterpreted as Artifact and vice-versa.

2.1 EEG Analysis

For our analysis EEG potentials were sampled at 800Hz. EEG electrodes were
placed bilaterally in the hippocampi (referenced to a common dural screw) and
a separate channel recorded from the dura. Each EEG contains a approximately
100,000 time points. As such, its interpretation is non-trivial and attempts at
automating the analysis have met with only limited success. In this paper, we
seek to demonstrate the efficacy of the DFA algorithm to distinguish all 4 states
in each seizure event and distinguish artifact from interictal spikes and other
noise. An author (RL) has begun to integrate statistical analysis with Action
Rules [9], [19], [21] in Signals with a system influenced Dr. Zdzislaw Pawlak [17],
[20], [23]. Fourier Action Rules Trees of signal distortion [10] and 3) Machine

I II III IV

}

§4§3

Fig. 4. Rat P3’s Seizure (Racine Scale): §3: I. A P3 (Racine Scale) seizure in progress.
II. Period of no Electrographic seizing activity. III. Electrographic outburst indicating
the violent seizure time. IV. End of Electroencephalographic seizure event. §4: Covers
periods D, E and F in Figure 2 showing the EEG analysis while 6K2 experiences the
P5 (Racine Scale) seizure Figure 2.
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Learning with Signal Noise, Genetic algorithms [12] and FS-trees, Rough Sets,
LERS, PNC2, J45, CART, & Orange. [11]

Figure 3§1 illustrates one rat’s normal EEG wave-form while asleep. Point II
in Figure 3§1 illustrates a Sentinel Spike, the hallmark indicator that a seizure
is imminent. Point III in Figure 3§1 shows a region in which the EEG record
deviates from baseline. An important task is to determine whether this deviation
is simply artifact or if it represents epileptiform activity (an interictal spike)
Figure 3§2 provides details of the P3 seizure. Figure 4§3 provides a zoomed-out
overall view of all four stages and Figure 4§4 provides details of the P5 (Racine
Scale) stage.

3 Methods

3.1 Deterministic Finite Automata (DFA)

Deterministic finite automata can be used in many applications. We used this
methodology to track the current state of a finite-state EEG system. As time
moved forward the particular system state would change dependent on such
quantities as amplitude, slope, second derivative, Short-Term Fourier Transform
STFT (average frequency) as well as other signal features. For the current anal-
ysis, programming was done using Visual Basic subroutines and data was stored
using the European Data Format (EDF). At time zero we begin at state zero.
The state at the next time step is assumed to be dependent only on the cur-
rent system state and conditions (input state) during the current time step (e.g.
slope). A consequence of this is that the current state is independent of the or-
der in which the input states occurred (in this sense it is similar to a Markov
chain).

Illustrative Example of our DFA Methodology. To motivate reader un-
derstanding we illustrate the concept of our usage of DFA using a simplified
transition table given in Figure 5. The table in Figure 5 has a total of ten
columns. The first column is the current system state. As one moves from one
time point of the EEG to the next, the state of the system changes. The state
to which the system changes is based upon the transition matrix; each of the
columns in the transition matrix represents a current parametric set (e.g. slope
within a particular range). More generally, the columns may represent a condi-
tion in which current or past parameters have specified values. It should comprise
a collectively exhaustive and mutually exclusive set such that there are no events
that either fall into multiple columns or do not fall into any of the columns. One
proceeds from one system state at a given time point to the next system state
at the next time point until a terminal event occurs. Terminal events can be the
identification of spikes, seizures or artifact.

As mentioned previously, the first column of the transition table corresponds
to the current system state. The particular input state at the current time
(columns 5 - 10) is ascertained by investigating parameters at that time or
at prior times. For this example, we have six mutually exclusive, collectively
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0 0 0 0 0 2 0 0 2 0
1 0 0 1 0 3 0 0 3 0
2 0 1 0 10 4 3 10 4 3
3 0 1 1 11 5 0 11 5 0
4 0 2 0 12 6 5 12 6 5
5 0 2 1 13 7 0 13 7 0
6 0 3 0 14 6 7 14 16 7
7 0 3 1 15 7 0 15 16 0
8 1 0 0 0 10 0 0 10 0
9 1 0 1 0 11 0 0 11 0
10 1 1 0 0 12 11 0 12 11
11 1 1 1 0 13 0 0 13 0
12 1 2 0 0 14 13 0 14 13
13 1 2 1 0 15 0 0 15 0
14 1 3 0 0 14 15 0 16 15
15 1 3 1 0 15 0 0 16 0
16 0 0 0 24 18 17 24 18 17
17 0 0 1 25 19 0 25 19 0
18 0 1 0 26 20 19 26 20 19
19 0 1 1 27 21 0 27 21 0
20 0 2 0 28 22 21 28 22 21
21 0 2 1 29 23 0 29 23 0
22 0 3 0 30 22 23 30 32 23
23 0 3 1 31 23 0 31 32 0

n-1 1 3 0 0 30 31 0 32 31
n 1 3 1 0 31 0 0 32 0

State  # of 1/4 # of 2/5 # of 3/6 Input 1 Input 2 Input 3 Input 4 Input 5 Input 6
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Fig. 5. Sample Transition Table: where the number of possible states is 31, the number
of states with slope too high required for rejection is 2, number of states required for
slopes in the range for acceptance is 4, and the number of states with slope too low
requiring rejection is 2

exhaustive input states. These are presented in Table 1 where α, β, and γ are
limits selected by the authors using expert knowledge of what parameters would
be characteristic of spikes. We note that states 4, 5 and 6 are the same as 1, 2,

Table 1. Six mutually exclusive, collectively exhaustive input states. Where
α, β, and γ are user selected constants. States 4, 5 and 6 are the same as 1, 2, and 3
except that the second derivative is less then a given value.

Input State Conditions

1 | m = y2−y1
t2−t1

| > α ∧ | f”(x)or d2y

dt2
| < γ

2 α > | m = y2−y1
t2−t1

| > β ∧ | f”(x)or d2y

dt2
| < γ

3 | m = y2−y1
t2−t1

| < β ∧ | f”(x)or d2y

dt2
| < γ

4 | m = y2−y1
t2−t1

| > α ∧ | f”(x)or d2y

dt2
| > γ

5 α > | m = y2−y1
t2−t1

| > β ∧ | f”(x)or d2y

dt2
| > γ

6 | m = y2−y1
t2−t1

| < β ∧ | f”(x)or d2y

dt2
| > γ
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and 3 except that the absolute value of the second derivative (f”(x)or d2y
dt2 )is less

than γ. The purpose of the use of slope (m = y2−y1
t2−t1

) is to differentiate between
the normal state, the possibility of a spike, and likely artifact (artifact, such as
that noted when the animal is chewing, is often distinguished from spike because
the slope is much greater).

The purpose of the use of f”(x) is to ensure that there is actually a peak and
not just a baseline shift. Columns 2 - 4 indicate the number of times that input
states 1 or 4, 2 or 5. or 3 or 6 respectively have occurred. For example, looking at
system state 12 one notes that there has been a single event in which the input
state 1 or 4 existed, two events in which input state 2 or 5 existed and no events
in which the state 3 or 6 existed. To register a spike, there must be two time
points in which (m = y2−y1

t2−t1
) falls in the range expected for a spike (input states

2 or 5), followed by one time point in which f”(x) is high (input state 5) which
corresponds to a peak, followed by two time points in which the slope again
falls in the correct range (input states 2 or 5). This sequence must occur before
one obtains two slopes greater than the range or two slopes less than the range.
In this example a spike is indicated by system state 32. A heuristic definition
can then be used to establish the seizure state by requiring a certain number of
spikes in a particular time interval (e.g. 20 detected spikes in 10 seconds).

We now consider the sample path through the transition matrix illustrated
by the chain of circles noted. For this sample the sequence of input states are
assumed to be: 2, 2, 3, 1, 2, 5, 5, 5, 5 We initially start with state 0, time interval 0.

I   II               III    IV                                   V             VI            VII                                  VIII                        IX

Fig. 6. Correctly Detecting Spike: Direct Screen Capture from Visual Studio Platform
where I. Indicates red line programmed to identify the existence of pre-seizure spike.
II. Current State. III. Current Slope. IV. Red ”pop-Up” programmed to alert a pre-
seizure spike is detected. V. Current 2nd Derivative. VI. Current Standard Deviation.
VII. Input State. VIII. Time of Day, and IX. Beginning of correctly predicted Seizure.
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At this time, the slope was calculated to be appropriate for a spike, i.e. α <|
slope | < β, with the second derivative γ (input state = 2). As a result the
transition matrix indicated a change to system state 2. For the second time
interval the input state was calculated to be the same as that in the first time
interval (input state = 2), and the transition matrix (row 3, column 6) indicated
a change to system state 4. In the next time interval input state 3 was calculated
and the system state of 5 (row5, column7) was determined. Subsequent input
states could then be coupled with the current system states to draw a time path
through the transition matrix. In this case, a spike is registered at the end of the
path because state 32 is obtained at the end of the chain. Had there been too
many slopes that did not meet criteria, the system state would return to zero
(see for example system state 9, input state 1).

3.2 Results

For our analysis of the data we used the same six input states given in the ex-
ample above. These used only the slope and standard deviation to determine
the input state. The transition table was significantly bigger, having 336 entries.
This required 7 slopes in the correct range, but allowed 4 slopes to be too great
and 6 slopes to be too small to terminate a spike search sequence. A screen
capture of the code correctly identifying a spike is given in Figure 6. Similarly, a

I   II               III    IV                                   V             VI            VII                                  VIII                        IX

Fig. 7. Correctly Detecting Artifact : Direct Screen Capture from Visual Studio Plat-
form where I. Indicates red line programmed to identify the existence of Artifact. II.
Current State. III. Current Slope. IV. Red ”pop-Up” programmed to alert a pre-
seizure spike is detected. V. Current 2nd Derivative. VI. Current Standard Deviation.
VII. Input State. VIII. Time of Day, and IX. Possible spike located visually. Pro-
gramm soon detects it as a positive.
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I II III IV

Fig. 8. Results: Seizure Correctly Predicted : Code correctly identifies a seizure 6 sec-
onds before its onset. I. Excel Spreadsheet with CSV output. II. Excel built in graph.
III. The Spikes Detected references and IV. Seizure Detected at location 6 seconds
before onset.

screen capture of the code correctly rejecting artifact is given in Figure 7. The al-
gorithm was quite successful at determining the presence of spikes and using the
heuristic definitions of seizures (> 20spikes in 10seconds), was able to detect
all seizures without difficulty. This determination was made within 6 seconds
of the onset of the seizure. Figure 8 gives the EEG recording on which the
detected spikes are indicated. Unfortunately, the code was unable, using only
slope and standard deviation, to differentiate between either sleep and inter-
seizure period or between the P3 and P5 portions of the seizure.

3.3 Conclusions

DFA is an extremely flexible platform that can be used to identify spikes and
seizures and to sort various events that occur during seizures. The flexibility al-
lows it to mimic and also use other techniques in its determination. In the present
case, we have only scratched the surface of the true capability of the methodol-
ogy. It is possible to greatly extend our analysis through the use of much more
sophisticated input states. These could use algorithms such as Fourier series
or wavelet analysis to determine the best path through the transition matrix.
It is not restricted to linear analysis such as Neural Networks, Random Forest
and Machine Learning’s J45 to define strong classifiers for items such as Sen-
tinel Spikes; it is also possible to use sequential non-linear analysis to establish
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whether or not spikes have occurred. By generalizing the input states to include
past parameters, it is even possible to force the current state to be dependent
on the path taken to get to the current state. The transition matrix can also
be modified in such a way that multiple final deterministic states are possible
(i.e. multiple end points could be identified). It is our plan to investigate fur-
ther methods in which the DFA algorithm can be successfully employed. This
includes the process of integrating KDD with the DFA methods and also con-
sidering the use of time domain analysis of EEG signal by statistical analysis
and characteristics computation [13] with different frequencies [22], non-linear
dynamics and chaos theory [8], and intelligent systems such as artificial neural
network and other artificial-intelligence structures [6], [16].
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Abstract. The study of evolution has become an important research
issue, especially in the last decade, due to a greater awareness of our
world’s volatility. As a consequence, a new paradigm has emerged to
respond more effectively to a class of new problems in Data Mining. In
this paper we address the problem of monitoring the evolution of clusters
and propose the MClusT framework, which was developed along the lines
of this new Change Mining paradigm. MClusT includes a taxonomy of
transitions, a tracking method based in Graph Theory, and a transition
detection algorithm. To demonstrate its feasibility and applicability we
present real world case studies, using datasets extracted from Banco de
Portugal and the Portuguese Institute of Statistics. We also test our ap-
proach in a benchmark dataset from TSDL. The results are encouraging
and demonstrate the ability of MClusT framework to provide an efficient
diagnosis of clusters transitions.

Keywords: Bipartite Graphs, Change Mining, Clustering, Monitoring,
Transitions.

1 Introduction

The celerity at which the evolution takes place, typically characterized by breaks
and paradigms shifts, has increased exponentially in the last decades. The rapid
progress made in science and technology has contributed to the emergence of a
volatile and fast pace evolving world, which demands new perspectives in knowl-
edge discovery upon data, such as time-oriented perspectives. The paradigm of
Change Mining arises as a consequence of this evolution and encompasses Data
Mining mechanisms that monitor models and patterns over time, compare them,
detect and describe changes, and quantify them on their interestingness [1]. The
Change Mining’s underlying challenge lays not only in the adaptation of models
to changes in data distribution but also in the understanding of changes them-
selves. In this paper we propose the MClusT framework, which is built along
these lines, to tackle the problem of monitoring the transitions experienced by
clusters over time, through the identification of temporal relationships among
them. Our transitions tracking mechanism includes a taxonomy of clusters tran-
sitions, a method for tracking clusters obtained at different snapshots, and a
transition detection algorithm.

P.R. Cohen, N.M. Adams, and M.R. Berthold (Eds.): IDA 2010, LNCS 6065, pp. 114–124, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.liaad.up.pt


Bipartite Graphs for Monitoring Clusters Transitions 115

1.1 Applications

The monitoring of the dynamics of cluster structures is very important in many
real world applications, since it fosters the creation of sustainable knowledge
about the underlying phenomenon and, consequently, the adoption of pro-active
attitudes. Besides, it may correlate to some important or critical events in the
real applications or unveil the emergence of new ones. For these reasons, this
study can benefit several areas, such as Marketing, Fraud Detection, Economy,
Sociology and Health. For example, the study of the evolution of customer’s
segments allow the detection of shifts in preferences and consumer habits, which
can sustain the forecast of trends and consequent redefinition of Marketing’s
strategies and policies. The domain knowledge acquired by these means can act
as a powerful differentiating factor in the market and strongly contributes to the
creation, or reinforcement, of the company’s competitive advantages. Traditional
Data Mining is not able to help companies achieve these goals since it relies on
static data and does not take into account their evolving nature. Therefore, the
study of the dynamics of clusters contributes to the achievement of a greater un-
derstanding of cluster’s evolutionary processes, broadening horizons and opening
new paths in the way of thinking problems.

1.2 Organization of the Paper

This paper is organized as follows. In Section 2 we provide a brief overview of the
current state of the art. In Section 3 we formally introduce our MClusT frame-
work. In this section we present our taxonomy for clusters transitions and explain
how bipartite graphs can be used to detect and classify external transitions. In
Section 4 we show and discuss three experiments, using datasets extracted from
Banco de Portugal’s Central Balance-Sheet Database (CBSD), datasets from the
Portuguese Institute of Statistics (INE) and a benchmark dataset from the Time
Series Data Library [23]. Section 5 concludes our study.

2 Related Work

Clustering - the separation and classification of observations - is one of the most
basic cultural activities of humankind [2]. For this reason, it has been a recur-
rent and extremely appealing subject to a wide community of researchers and
practitioners from different areas, reflecting the interdisciplinary nature of this
technique. Clustering is an unsupervised learning task, since there are no la-
bels assigned to observations. It is also an exploratory Data Analysis technique
which aims to find the underlying structure in data, through the discovery of
the natural grouping and the hidden relationships in a set of multidimensional
observations. The main intention of Clustering techniques is to obtain a set of
homogeneous, well-separated, and meaningful clusters. To accomplish this task,
a huge variety of algorithms have been developed. These developments are sum-
marized in a few surveys [3][4]. Despite the extensive study of the Clustering
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problem, there is not much work conducted in the monitoring of cluster transi-
tions. In this context of change, the research endeavor has been mainly directed
to the adaptation of clusters to changed populations.

The dynamic nature of most datasets encouraged new directions in research.
This effort is clearly present in the areas of Machine Learning and Data Analysis.
Currently, there are several algorithms that directly or indirectly aim to capture
and, especially, understand the dynamic nature of these datasets, particularly
susceptible to the occurrence of changes in the underlying structure. The last
decade has been especially profuse in the design of transition detection algo-
rithms. Based on the recent literature, it was possible to deduce a preliminary
classification for algorithms built in this context. In general, there are algo-
rithms designed to operate in relatively static (snapshots) or highly dynamic
(Data Streams) environments. The first may be focused on the transitions expe-
rienced by generic patterns [5,6,7], clusters [8,9,10] or association rules [11,12].
In the context of Data Streams, approaches focusing unclassified data are quite
common (here we include clustering algorithms for mobile objects or spatio-
temporal objects). Lu & Hang identified the specific requirements for group-
ing a set of observations in a Data Stream environment [13]. These approaches
[14,15,16,17,18,19,20] elect clusters as its main data structure and are concerned
with the efficiency and scalability of algorithms.

Based on our knowledge, the only research that addresses a problem closely
related to ours is the one presented in [8]. MONIC framework also proposes a
cluster transition model to track cluster changes, supporting cluster comparisons
across the time axis. However, while it uses the concept of Cluster Overlap,
MClusT uses a different metric, based on Conditional Probability. Moreover,
MONIC does not provide an appealing way of visualizing the output. Thus,
our approach extends their work, since we resort to Bipartite Graphs to detect
and classify cluster transitions, which allows for a visual experience and a better
understanding of the monitoring process. The MClusT taxonomy is also distinct.

3 Bipartite Graphs

We developed the MClusT framework in order to model and understand the
evolution of clusters structures (also referred to as Clustering - Definition 1)
obtained at different timepoints. In this context, the concept of evolution refers
to transitions experienced by clusters in the time interval under observation
[ti, ti+1].

Definition 1 - Clustering:
A Clustering ξ is a specific partitioning of a dataset D into K partitions, usually
denoted as clusters ξ = {C1, ..., Ci, ..., CK}, such that:

1. Ci ∩ Cj = ∅, ∀i�=j - clusters are disjoint sets (or mutually exclusive);
2. ∪K

i=1Ci = D - clusters are collectively exhaustive;
3. Observations assigned to a given cluster are more similar to each other than

to observations assigned to other clusters belonging to Clustering ξ.
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In the literature there are, at least, eight taxonomic schemes for the classi-
fication of transitions in clusters, patterns or concepts that evolve over time
[9,14,16,15,21,20,8,10]. Thus, to capture the changes likely to occur in cluster
structures we considered the following taxonomy: Birth, Death, Split, Merge
and Survival of clusters. These transitions are external, as they relate to changes
in the whole Clustering. The key concept for the detection and evaluation of
these transitions is the concept of mapping, which can be defined as the pro-
cess of discovering the exact matches between clusters obtained at timepoint
ti and clusters obtained at a later timepoint ti+1, in case they still exist. In
this framework, the mapping process explores the concept of conditional prob-
ability and is restricted by a pre-defined threshold - Survival Threshold τ -,
which assumes the minimum of τ = 0.5. The use of conditional probabilities
requires structurally identical datasets, ie, datasets composed by the same ob-
servations, in each timepoint under analysis. These conditional probabilities are
computed for every pair of possible connections between clusters obtained at dif-
ferent timepoints and they represent the edge’s weights in a bipartite graph. The
use of bipartite graphs is related to its usefulness in modeling matching problems
and the fact that graph based representations are visually appealing, exploiting
the power of the eye and human intuition. The foundations of our transitions
detection algorithm are based in this idea, which can be defined as follows
(Definition 2).

Definition 2 - Weighted Bipartite Graphs:
Given the Clusterings ξi, ξj (i < j), obtained at ti, tj, a graph G = (V, E) can
be constructed, where V is a set of vertices, or nodes, representing the discov-
ered clusters, and E denotes a set of weighted edges between any pair of clusters
belonging to ξi and ξj . Formally, the weights assigned to the edge connecting clus-
ters C(ti) and C(tj) are estimated in accordance with the conditional probability
(Equation 1):

weight(Cm(ti), Cu(tj)) = P (X ∈ Cu(tj)|X ∈ Cm(ti)) =

=
∑

P (x ∈ Cm(ti) ∩ Cu(tj))∑
P (x ∈ Cm(ti))

where X is the set of observations assigned to cluster Cm(ti) (m = 1, ..., p) and
P (X ∈ Cu(tj)|X ∈ Cm(ti)) represents the probability of X belonging to cluster
Cu from tj knowing that X belongs to cluster Cm obtained at a previous times-
tamp ti
C(ti) = {C1, ..., Cm, ..., Cp}
C(tj) = {C1, ..., Cu, ..., Cr}.

In order to detect changes, we formally define the transitions that a cluster C ∈ ξi

can experience, with respect to ξj , (i < j). It was introduced a new threshold
to help the definition of these transitions: the Split Threshold ρ (it’s assumed,
by default, that ρ = 0.2). This formal design is based on MONIC framework’s
external transitions [8] and is depicted in Table 1.
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Table 1. Formal definition of clusters transitions, according to the defined taxonomy

Transitions’ Taxonomy Notation Formal Definition
Cluster’s Birth ∅ → Cu(tj) 0 < weight(Cm(ti), Cu(tj)) < τ∀m

Cluster’s Death Cm(ti) → ∅ weight(Cm(ti), Cu(tj)) < ρ∀u

Cluster’s Split Cm(ti)
⊂→ {C1(tj), ..., Cr(tj)} (∃u : weight(Cm(ti), Cu(tj)) ≥ ρ)∧∑ r

u=1 weight(Cm(ti), Cu(tj)) ≥ τ

Cluster’s Merge {C1(ti), ..., Cp(ti)} ⊂→ Cu(tj) (weigth(Cm(ti), Cu(tj)) ≥ τ)∧
∃Cp ∈ ξi \ {Cm} : weigth(Cp(ti), Cu(tj)) ≥ τ

Cluster’s Survival Cm(ti) → Cu(tj) (weigth(Cm(ti), Cu(tj)) ≥ τ)∧
� ∃Cp ∈ ξi \ {Cm} : weigth(Cp(ti), Cu(tj)) ≥ τ

The implementation of the transition detection algorithm, in software R 2.10.0,
was supported by the definitions presented in Table 1. The output data, generated
by the algorithm, was then represented through bipartite graphs, which were de-
signed in Microsoft Office Visio 2007.

To better understand our approach, in next section we present our first ex-
periments.

4 Experiments

In order to show the feasibility and application of the proposed framework and
glean insights about the evolution of clusters, we experimented MClusT in real
datasets extracted from Banco de Portugal’s Central Balance-Sheet Database
(CBSD) and Portuguese Institute of Statistics (INE). But before the introduction
of these case studies, we show an experiment using a benchmark dataset from
the Time Series Data Library, available at [23].

4.1 Experiment Using a Benchmark Dataset

We tested the evolution method using a Macro-Economic dataset from the Time
Series Data Library. This dataset contains 42 observations representing the quar-
terly consumer expenditure in U.K. on durable goods, all other goods and ser-
vices, investment, inventory investment, imports of goods and services, gross
domestic product and personal disposable income. We divided this data into
two different sets, each corresponding to a period of seven years, since a year has
only three observations. We’ll refer to the first seven years as t1 and the latter
seven years as t2. The attributes were normalized using Z-scores, due to signifi-
cant differences on scale and dispersion. In order to discover the clusters (input
of our study) from these datasets, we conducted experiments using two differ-
ent algorithms for clustering: the Agglomerative Hierarchical Algorithm using
Ward’s Index, and K-means Partitional Algorithm. Although there were exper-
iments with other algorithms, the mentioned ones have achieved good quality
levels. In both algorithms, the determination of the critical clustering structure,
through the identification of the best number of clusters (best K), was supported
by the analysis of an internal validation measure: the Silhouette Width [22]. Af-
terwards, we applied our transitions detection algorithm, setting a fixed ρ = 0.2
and varying the Survival Threshold (τ = 0.5 and τ = 0.8). However, in this pa-
per we only present results for ρ = 0.2 and τ = 0.5. These parameters are more
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Fig. 1. Bipartite graphs, corresponding to timestamps t1 and t2, with the thickness
of the edges indicating weights that are equal or greater to Survival Threshold; the
edges whose weights are below the Split Threshold were removed from the graphs, due
to their insignificance. The right-hand side graph corresponds to the Agglomerative
Hierarchical Clustering and the left-hand side to the K-means Clustering.

relaxed and allow the detection of a wider variety of transitions. The resulting
graphs, showing the transitions between clusters, are depicted in Figure 1.

Figure 1 is composed by two sub-figures, each corresponding to a different
clustering algorithm. The analysis of the bipartite graphs depicted in this fig-
ure allows us to know that, using the Hierarchical Algorithm, we obtain a
partition in six clusters, at period t1, and a partition in three clusters in pe-
riod t2. On the other hand, using the K-means algorithm, we obtain a parti-
tion in five clusters in each period. Regarding cluster transitions we can ob-
serve that,using the Hierarchical Algorithm, our approach detects a survival
(C2(t1) → C1(t2)) and two merges ({C1(t1), C2(t1), C3(t1), C4(t1)} ⊂→ C2(t2))
and {C4(t1), C5(t1), C6(t1)} ⊂→ C3(t2)). Alternatively, the results obtained for K-
means Algorithm suggest that there were two merges ({C1(t1), C2(t1), C4(t1)} ⊂→
C3(t2)) and {C4(t1), C5(t1)} ⊂→ C5(t2)), a split (C3(t1)

⊂→ {C1(t2), C4(t2)}) and
three cluster’s births (∅ → C1(t2), ∅ → C2(t2) and ∅ → C4(t2)).

4.2 First Case Study - Portuguese Activity Sectors

For the first case study, we extracted three datasets from CBSD. Each dataset
corresponds to a year (2005, 2006 and 2007) and consists of 439 observations
characterized by 10 continuous attributes. The observations represent activity
sectors, according to the higher granularity level of CEA (Portuguese Classifi-
cation of Economic Activities), and the attributes are financial and economic
aggregated indicators (e.g. net income, investment rate and labor productivity).
These attributes were also standardized. It should be noted that the activity



120 M. Oliveira and J. Gama

Fig. 2. Bipartite graphs, corresponding to timestamps 2005, 2006 and 2007, with the
thickness of the edges indicating weights that are equal or greater to Survival Threshold;
the edges whose weights are below the Split Threshold were removed from the graphs,
due to their insignificance. The right-hand side graph corresponds to the Agglomerative
Hierarchical Clustering and the left-hand side to the K-means Clustering.

sectors and performance indicators are exactly the same, for all periods un-
der analysis (this will generate balanced bipartite graphs, that are graphs with
equal cardinality). In order to discover the clusters structure and detect the
transitions undergone by clusters, we submitted the datasets to the same exper-
imental conditions as Macro-Economics’ datasets. The resulting bipartite graphs
are portrayed in Figure 2.

On the right-hand side of Figure 2 we observe two bipartite graphs, one cor-
responding to transitions experienced during the time interval [2005, 2006] and
another one corresponding to transitions occurred during [2006, 2007]. In the for-
mer, there were two surviving clusters (C3(2005) → C2(2006) and C6(2005) →
C3(2006)), a merge of three clusters ({C1(2005), C2(2005), C4(2005)} ⊂→C1(2006))
and a split (C5(2005) ⊂→ {C1(2006), C2(2006), C3(2006)}). In the latter, all clus-
ters survived (C1(2006) → C1(2007), C2(2006) → C3(2007) and C3(2006) →
C4(2007)) and a new one has emerged (∅ → C2(2007)). The left-hand side of
Figure 2 corresponds to the K-Means Algorithm’ s bipartite graphs. Using the
same strategy and the Silhouette Width validation measure, K-means algorithm
resulted in a different partition (five clusters to all timepoints under analysis). The
detected transitions also differ from the ones obtained for the Agglomerative Hi-
erarchical Algorithm, as expected. Thereby, during [2005, 2006] we detect the sur-
vival of two clusters (C1(2005) → C3(2006) and C5(2005) → C2(2006)), a merge
of three clusters ({C2(2005), C3(2005), C4(2005)} ⊂→ C5(2006)) and two births
(∅ → C1(2006) and ∅ → C4(2006)). At period [2006, 2007], four clusters survived
(C1(2006) → C1(2007), C2(2006) → C5(2007) and C4(2006) → C3(2007)), two
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clusters merged ({C3(2006), C5(2006)} ⊂→ C2(2007)) and a new one has emerged
(∅ → C4(2007)).

In this experiment, the differences in terms of transitions between the Hierar-
chical and the K-means Algorithm are more evident in time interval [2006, 2007].
The merge occurred in [2005, 2006] was captured by both Clustering algorithms,
so we assumed this was an important transition. The inspection of the dataset
suggested that these three clusters were grouped into one because the activity
sectors assigned to them experienced a worsening in their economic and finan-
cial performance, which was reflected in the mitigation of their initial differences.
But why did this happen? To answer this question we searched for relevant in-
formation about the topic and we found out that, in 2006, there has been a
homogenization of the information process within the SIMPLEX portuguese
program, which aimed to incorporate in one document (the Simplified Business
Information) and a single delivery operation the information that companies are
required to provide to public institutions. Moreover, the reporting of the Busi-
ness information became mandatory, which contributed to the increase of the
coverage degree of CBSD. For this reason, the data became more reliable and
complete, reflecting a more realistic image of the country, which may be the
cause of the detected cluster’s merge.

4.3 Second Case Study - Portuguese Regional Development Index

The second case study was designed using datasets extracted from the Por-
tuguese Institute of Statistics (INE). These datasets focus on the Portuguese
Regional Development Index, which are available for year 2004 and year 2006,
and can serve as a working basis for multiple stakeholders on issues of territory.
Each dataset consists of 30 observations, corresponding to the units of analysis
of NUTS III (Nomenclature of territorial units for statistics level III), and 4
continuous attributes, which summarize the regional development in all aspects
(Cohesion, Competitiveness and Environmental Quality). Similarly to the first
experiment, the observations and attributes are exactly the same for both years.
Experimental conditions are also the same. The resulting graphs, that illustrate
the transitions, are depicted in Figure 3.

On the right-hand side of Figure 3 is depicted the bipartite graph obtained
using the Agglomerative Hierarchical Algorithm. During [2004, 2006] there were
three survivals (C1(2004) → C2(2006), C2(2004) → C3(2006) and C5(2004) →
C4(2006)) and a merge of two clusters ({C3(2004), C4(2004)} ⊂→ C1(2006)).
On the left-hand side of the same Figure, corresponding to K-Means Bipar-
tite Graphs, we detect seven survivals (C1(2004) → C6(2006), C2(2004) →
C8(2006), C3(2004) → C2(2006), C4(2004) → C4(2006), C5(2004) → C3(2006),
C6(2004) → C7(2006) and C7(2004) → C5(2006)) and a cluster’s birth (∅ →
C1(2006)).

To understand the changes suggested by the detected transitions, we inspected
the reasons that may be behind these inter-anual differences. Starting with the
hierarchical algorithm, we conclude that the cause of cluster’s merge is the
fact that the sub-regions in the interior of Portugal improved its levels of



122 M. Oliveira and J. Gama

Fig. 3. Bipartite graphs, corresponding to timestamps 2004 and 2006, with the thick-
ness of the edges indicating weights that are equal or greater to Survival Threshold; the
edges whose weights are below the Split Threshold were removed from the graphs, due
to their insignificance. The right-hand side graph corresponds to the Agglomerative
Hierarchical Clustering and the left-hand side to the K-means Clustering.

environmental quality, leading to the convergence of sub-regions in the North
and South of the country (C3(2004)) and sub-regions in the interior Center of
the country (C4(2004)) into a single group (C1(2006)). Regarding the K-Means
Algorithm, the dataset inspection suggested the emergence of a new group of sub-
regions (C1(2006)): Minho-Lima, Dao-Lafoes and Cova da Beira, with increasing
levels of competitiveness. However, the high number of survivals indicates that,
in general, there were no significant differences in the Regional Development
Index between 2004 and 2006.

5 Conclusions

In this paper we introduced a framework for addressing the problem of moni-
toring and detecting changes in cluster structures. The novelty lies in the use of
bipartite graphs and conditional probabilities to monitor the transitions defined
in the taxonomy. We presented experiments with datasets extracted from Time
Series Data Library, Banco de Portugal’s Central Balance-Sheet Database and
the Portuguese Institute of Statistics to illustrate the applicability and feasi-
bility of MClusT. Despite the fact that results vary according to the selected
Clustering Algorithm, in these illustrative examples, the framework proved to
be efficient and able to provide an effective diagnosis of the transitions experi-
enced by clusters. As future work we intend to develop a similar method to deal
with other representation schemes of clusters, e.g., representations exploring the
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summary statistics of clusters. It is also our purpose to create a method to assess
the quality of transitions suggested by distinct clustering algorithms.
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Abstract. We present a data mining approach to model the cooling infrastructure
in data centers, particularly the chiller ensemble. These infrastructures are poorly
understood due to the lack of “first principles” models of chiller systems. At
the same time, they abound in data due to instrumentation by modern sensor
networks. We present a multi-level framework to transduce sensor streams into an
actionable dynamic Bayesian network model of the system. This network is then
used to explain observed system transitions and aid in diagnostics and prediction.
We showcase experimental results using a HP data center in Bangalore, India.

1 Introduction

Over the last decade, data centers have grown from housing a few hundred multipro-
cessor systems to tens of thousands of servers in warehouse-sized buildings. However,
widespread use of data centers has been accompanied with steep increases in power
consumption and high costs, a matter of great concern to both owners and users of data
centers. According to the EPA, US data centers have become energy hogs and their con-
tinued growth is expected to demand the construction of 10 new power plants by 2011
[1,2]. Globally, datacenters currently consume 1–2% of the world’s electricity [3] and
are already responsible for more CO2 emissions than entire countries such as Argentina
or The Netherlands.

Data centers constitute a mix of computing elements, networking infrastructure, stor-
age systems along with power management and cooling capabilities (see Figure 1, left),
all of which offer opportunities for improving energy efficiency and achieving more
sustainable data centers. For instance, huge inefficiencies abound in average server uti-
lization (believed to be at most 10–15%), and thus one approach to achieve greener
IT is to use virtualization and migration to automatically provision new systems as de-
mand spikes and consolidate applications when demand falls. Similarly, dynamic man-
agement of an ensemble of chiller units in response to varying load characteristics is
another strategy to make a data center more energy efficient. There are even end-to-end
methodologies proposed [5] that track inefficiencies at all levels of the IT infrastructure
“stack” and derive overall measures of the efficiency of energy flow during data center
operation.

A key problem is the unavailability, inadequacy, or in-feasibility of theoretical mod-
els or “first principles” methodologies to optimize design and usage of data centers.
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Fig. 1. (left) Elements of a data center [4]. (right) Schematic of a typical cooling infrastructure.

While some components can be modeled, (e.g., an operating curve for an individ-
ual chiller unit, a Computational Fluid Dynamics (CFD) based prediction of air flows
through rows of racks for static conditions, temperature profiles to reveal hot spots in
clusters [6]), these methods are computationally intensive and difficult to deploy in
real time. Furthermore, what is missing is the ability to understand complex interac-
tions between the multiple components of data centers. Needless to say, optimizing
each component separately does not necessarily lead to a greener installation on the
whole. Data-driven approaches to data center management are hence more attractive:
by mining sensor streams from an installation, we can obtain a real-time perspective
into system behavior and identify strategies to improve efficiency metrics.

2 Data Centers

A typical data center is organized as racks of computing equipment arranged as rows. A
large data center could contain thousands of racks occupying several tens of thousands
of square feet of space. The cooling infrastructure of a data center typically looks as
shown in Figure 1 (right).

The focus of this paper is the chiller ensemble in the data center cooling infrastruc-
ture. Each chiller unit is composed of four basic components, namely, evaporator, multi-
stage centrifugal compressor, economizer and water-cooled or air-cooled condenser.
Liquid refrigerant is distributed along the length of the evaporator to absorb enough
heat from the water returning from the data center and circulated through the evapora-
tor tubes to vaporize. The gaseous refrigerant is then drawn into the compressor. Com-
pressed gas passes from the multi-stage compressor into the condenser. Cooling tower
water circulated through the condenser tubes absorbs heat from the refrigerant, causing
it to condense. The liquid refrigerant then passes through an orifice plate into the econ-
omizer. Flashed gases enter the compressor while the liquid flows into the evaporator
to complete the circuit. Some terms used in the context of chillers are given below.
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IT cooling load. This is the amount of heat that is generated (and thus needs to be
dissipated) at a data center. It is approximately equivalent to the power consumed by
the equipment since almost all of it is dissipated as heat. It is commonly specified in
kilowatts (KW).
COP. The coefficient of performance (COP) of a chiller unit indicates how efficiently
the unit provides cooling, and, it is defined as the ratio between the cooling provided
and the power consumed, i.e.,

COPi =
Li

Pi
(1)

where Li is the cooling load on the ith chiller unit and Pi is the power consumed by it.
Chiller utilization. This is the percentage of the total capacity of a chiller unit that is
in use. It depends on a variety of factors, mainly, the mass flow rate of water that passes
through a chiller and the degree of cooling provided, that is, the difference between the
inlet and outlet temperatures (Tin − Tout). For a particular Tout, an administrator can
control the utilization at a chiller through power capping or by changing the mass flow
rate of water.

Ensemble of Chiller Units. The number of chiller units required depends on the size
and thermal density of a data center. While one unit may be sufficient for a small data
center, several units operating as an ensemble may be required to satisfy the cooling
demand of a large data center. Figure 2 shows an ensemble of chiller units that collec-
tively provide cooling for a data center. Out of the five units shown, three are air-cooled
while the remaining two are water-cooled.

Fig. 2. Five chiller units work in tandem to provide cooling for a large data center

Operational Challenges. Although operating curves for individual chiller units exist,
no model is available for operation of an ensemble, especially one consisting of het-
erogeneous units. Additionally, shift and/or drift of response characteristics with time
further complicate their management. The operational goals are to satisfy the cooling
requirements while minimizing the total power consumption of the ensemble and max-
imizing the average lifespan of the units. While multiple factors impact the lifespan
of a chiller unit, an important one is: rapid and large oscillations in utilization value.
High amplitude and frequent variations in utilization due to varying load or some failure
condition result in decreased lifespan, and, thus, need to be minimized.
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3 Prior Work

Earlier work in data center management adopt a “first principles” approach by conduct-
ing detailed CFD-based modeling of air and temperature flows [7]. The computational
infeasibility of such large-scale simulations coupled with the relative ease of gathering
real-time data from sensors has led others, most notably within HP labs, to alterna-
tively explore the use of data analysis techniques. For instance, modeling of rack-level
temperature data specifically in relation to CRAC layout has been undertaken in [8,9].
Optimization opportunities at multiple levels of smart center architecture have also been
studied in [5]. More recent work[10] focuses on sensor data mining to identify anoma-
lous and deviant behavior. Other related work includes the InteMon system from CMU
[11,12] that dynamically tracks correlations among multiple time series [13] but only
studies a few time series. While all these works constitute important strides in analytics,
in order to support high-level knowledge discovery capabilities, we must raise the level
of abstraction at which we study and infer patterns from sensor data streams. In particu-
lar, we must generalize from correlations and anomalies in time series datasets to being
able to model the entire complexity of relationships underlying system variables [14]
and, in this manner, promote life-cycle modeling of IT systems. More importantly, sus-
tainability considerations and prior domain knowledge about life-cycle modeling must
drive and inform the design of data mining algorithms. Other methods [15] have been
proposed to capture the dynamics of time-series by modeling them as Markov chains
and then applying clustering to the models to discover different cluster dynamics.

We have recently demonstrated the usefulness of data mining in characterizing uti-
lization of the cooling infrastructure of a data center [16]. In this study, our primary
goal was to link the multivariate numeric time series data, e.g., temperatures recorded
from chiller units, power utilization etc. to sustainability characterization. We decom-
posed this goal into cluster analysis and event encoding to obtain abstract symbolic
representation of the data, followed by motif mining, and sustainability characteriza-
tion. Thus, this approach uses motif patterns as a crucial intermediate representation
to aid in data reduction. The present work builds upon these successes to develop an
actionable model of the data center’s cooling infrastructure. Similar motivations can be
found in [17] who use a (dynamic) Bayesian network model of a production plant to
detect faults and anomalies. Unlike this work, however, we show how such networks
can be efficiently learned using frequent episode mining over sensor streams. Further-
more, our networks are defined over clustered representations of the time series data
rather than raw sensor signals.

4 Methods

Our proposed framework for analyzing the cooling infrastructure is illustrated in Fig-
ure 3. First, data reduction is performed in a few different ways. The raw time series
data is compressed using piece-wise aggregate approximation following discretization
using equal frequency bins. This helps capture the average dynamics of the variables.
A higher-order aspect of the time series involves repeating or oscillatory behavior. This
is inferred by mining frequently repeating motifs or patterns in the time series, as de-
scribed in our earlier work [16]. This information is integrated with the average behavior
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Fig. 3. Framework for modeling data center cooling infrastructure

by recording the windows in which a time series exhibits motif patterns. Finally, it is
also pertinent to mine relationships involving “control” actions that were taken during
the operation of the chiller units. In this paper, we focus on ON/OFF actions.

A graphical model in the form of a Dynamic Bayesian Network (DBN) is learnt
from the above data. This model captures the dependencies between the variables in
the system over different time lags. Here, we focus on the target variable of utiliza-
tion and seek to identify suitable parents for modeling in the DBN. Unlike classical
methods to learn BNs [18], we demonstrate a powerful approach to learn DBNs by cre-
ating bridges to the frequent episode mining literature [19]. To apply the learned DBN,
we define states of the system by clustering together the combined utilization of the
chiller units. This allows the operation of the chiller ensemble to be represented as a
sequence of state transitions. We now use the dependencies and (conditional) indepen-
dency relationships found in learning the graphical model to find the most probable ex-
planation behind the state transitions. This framework can then be applied for activities
like data center diagnostics, performance improvement, load balancing, and preventive
maintenance.

4.1 Motif Discovery

In this work, time series motifs are defined as contiguous sub-sequences that follow
the same pattern and repeat several times over the entire time series. Each time series
T = 〈t1, . . . , tm〉 in our data is an ordered collection of real values that a particular
variable takes at different sampling times. In order to discover motif in a time series,
we first discretize the time-series and use the discretization levels as symbols to encode
the time series. This sequence of discrete symbols is then analyzed to detect the change
points. We raise the level of abstraction further by doing a run-length encoding of the
symbol sequence and noting where transitions from one symbol to another occur. This
gives us a sequence of transition events for input to serial episode mining as illustrated
below:
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Symbol Sequence : d d d d a a a a a c c c c b b b b b b

⇓
Event Sequence : 〈(d-a, 5), (a-c, 10), (c-b, 14)

Frequent episode mining is now conducted over this sequence of transitions. We look for
serial episodes with inter-event constraints that repeat sufficiently often. The structure
of a serial episode is given below.

〈E1
(0,d1]→ E2 . . .

(0,dn−1]→ En〉 (2)

Here E1, . . . , En are the event-types in the episode α. Each pair of event-types in α is
associated with an inter-event constraint. For example the pair E1 → E2, is associated
with (0, d1] such that in an occurrence of α event E2 occurs no later than time d1 of
event E1. The mining process follows the level-wise procedure ala Apriori, i.e., can-
didate generation followed by counting. The candidate generation scheme is based on
matching the n−1 size suffix of one n-node frequent episode with the n−1 size prefix
of the another n-node frequent episode at a given level to generate candidates for the
next level. The same frequent episode mining algorithm is presented in our earlier work
[16]. There it is applied in a slightly different context.

2000 2500 3000 3500 4000 4500 5000

56
60

(a) Occurrences of a motif

2500 2600 2700 2800 2900 3000

55
.5

57
.0

58
.5

(b) Detailed occurrences

Fig. 4. Illustration of a repeating motif in the utilization of a water cooled chiller unit

4.2 DBN Structure Learning

In this section we discuss probabilistic graphical models and provide the intuition be-
hind building a graphical model for the variables in the chiller ensemble. We focus on
Bayesian networks, specifically dynamic Bayesian networks where the random vari-
ables are time-stamped.

A Bayesian network (BN) is a graphical model denoted by B = (G, P ) where G is
a directed acyclic graph (DAG) and P is a set of conditional probability distributions.
The graph G = (V, E) consists of a set of nodes V representing the random variables
{X1, . . . , XN} in the system and a set of directed edges E. Each directed edge in E,
denoted by i → j, indicates that random variable Xi is a parent of random variable Xj .
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The conditional probabilities in P are used to capture statistical dependence relation-
ships between child nodes and parent nodes. In particular, given a random variable Xi

in the graph, we denote by par(Xi) the set of random variables that are parents of Xi .
The statistical dependence between Xi and its parent nodes par(Xi) is captured by the
conditional probabilities P (Xi|par(Xi).

To model a discrete-time random process X(t), t = 1, . . . , T ; X(t) = [X1(t)X2(t)
· · ·XN(t)] as studied here, we use the more expressive formalism of dynamic Bayesian
networks. In particular, we focus on time-bounded causal networks, where for a given
w > 0, the nodes in par(Xi(t)), parents for the node, Xi(t), belong to a w-length history
window, [t−w, t). Note that parent nodes cannot belong to the current time slice t for
Xi(t).

This assumption limits the range-of-influence of a random variable, Xk(t), to vari-
ables within w time-slices of t and also indicates that the random variables Xi(t) and
Xj(t) are conditionally independent given their corresponding parent sets in the history
window. Further, we also assume that the underlying data generation model is station-
ary, so that joint-statistics can be estimated using contingency tables.

The learning of network structures involves learning the parent set, par(Xi(t)), for
each Xi(t), i = 1, . . . , N . In this work we assume that there are no spurious inde-
pendencies in the data, i.e., if a random variable Xj(t − τ) is a parent of Xi(t), then
the mutual information I(Xi(t); Xj(t − τ)|S) conditioned on a subset S ⊆ par(X) is
always greater than zero. Moreover time-bounded causality enables us to learn the par-
ents of each node Xi(t) independent of any other node in the same time slice. We use
a greedy approach to learn the parent set of each node Xi(t). And proceed by adding
a node which has the highest conditional mutual information to the parent set of Xi(t)
as shown in Eqn 3:

pari+1(Xi(t)) ← pari(Xi(t)) ∪ argmax I(Xi(t); Xj(t − τ)|pari(Xi(t))) (3)

The search is continues until the number of nodes in the parent set is k (where k is
an user-defined parameter) or the conditional mutual information drops to zero. The
structure learning is then followed by maximum likelihood estimation of the conditional
probability tables.

4.3 State Transition Modeling

In analyzing complex systems it is usual to try and summarize the operating character-
istics into a finite set of states where the systems spends most of its time. The utilization
information of the chiller ensemble is important from both the aspect of efficiency and
sustainability. Therefore we define the states of our system in terms of the combined
utilization of all the chiller units.

In order to obtain a finite set of states, we fist perform a k-means clustering on the
utilization vectors and use the cluster labels as symbols to encode the multi-variate time
series of the combined utilization. Thus the multivariate series of utilizations is now
encoded as a single long state sequence.

Over the state sequence the points of interest are the times where the system moves
from one state to another. The exact transition times can be affected by the clustering
scheme used but on the average they capture changes in the operating characteristics.
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Fig. 5. Illustration of rendering multivariate time series data as a sequence of state-transitions
using clustering. The arrows are drawn between corresponding vectors on the time series plot
and the 3-d plot.

An interesting question to ask now is: What causes the state transitions to take place.
In the context of our modeling, this question translates to: what factors in the system
cause the utilization of the chiller to go up or down? This can be answered by observ-
ing the changes that take place in the system around the state transitions. The problem
with this approach is the lack of availability of sufficient data around the change points.
We propose an alternative approach where we decompose the question by asking what
causes each of the changes in the chiller units. From the graphical model already learnt
we know the set of variables in the system that directly affect the utilization. These
variables belong to the parent set of the utilization nodes. The task of finding the most
probable causes for a transition amounts to evaluating the following probability distri-
bution:

Pr(S) =
∏

i∈UtilizationVariables

Pr(Si|Xi(t) = ai, Xi(t − 1) = bi) (4)

where Si = par(Xi(t)) \ Xi(t− 1) and S = ∪Si. The most likely values that S takes
can be considered the best explanation of the transition. Here t is the time at which a
state transition occurs, ai, bi are the discrete values the utilization variable takes before
and after the state-transitions. These can be approximated by the cluster centers of each
cluster used to define a state.

5 Results and Discussion

We applied our methods to chiller data obtained from a large HP production data center
covering an area of 70,000 square feet Its cooling demand is met by an ensemble of five
chiller units. The ensemble consists of two types of chillers: three are air-cooled and
the remaining two are water-cooled. The data is collected from October 21, 2009 to
November 13, 2009, totaling over 576 hours of data consisting of over 47 variables.

5.1 Graphical Model

For learning the graphical models, the raw time series data was aggregated over win-
dows of 15 minutes and augmented with results from motif mining conducted over the
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Table 1. A few important system variables in the chiller ensemble data

System Variable Description
AC_CH(i)_EVAP_E_TEMP Temperature of water entering air-cooled chiller i
MAIN_HEADER_TEMP_1_F Water temperature at distribution header
WC_CH(i)_IN_TEMP Temperature of water entering water-cooled chiller i
WC_CH(i)_OUT_TEMP Temperature of water leaving water-cooled chiller i
AC_CH(i)_RLA Percentage utilization of air-cooled chiller i
WC_CH(i)_RLA Percentage utilization of water-cooled chiller i

same data. The motif information is in form of a binary valued sequence for each time
series. The binary values indicate whether or not motif occurrences were seen in each
15 minute window. A finer grained representation of the motifs will be explored it the
future.

Since utilization of a chiller mostly determines its energy consumption, we have
shown that portion of the learned dynamic Bayesian network in Figure 6. Three air-
cooled chiller utilization variables: AC_CH1_RLA, AC_CH2_RLA, AC_CH3_RLA;
and two water-cooled ones: WC_CH1_RLA and WC_CH2_RLA are shown together
with their parents and grandparents. In the DBN, almost every node has itself from the
previous time slice as one of its parents, which is expected since the data is continu-
ous valued time series data. In order to assist in creation of a causal Bayesian network,
partial domain information was incorporated through constraints such as limiting nodes
that could become parents. Three utilization variables show direct dependency on water
temperature. This is, again, expected since the aim of the chiller ensemble is to maintain
water temperature close to the set point.

Fig. 6. Graphical Model learned from the discretized time series data. Shown are the parent nodes
for only the utilization variables of the five chiller units.

More interesting relationships are revealed by two air-cooled units (1 and 3) that
directly depend on the utilization of water cooled chiller. This would indicate that these
two chillers ramp up or down based on how the water cooled chiller (which has higher
capacity) is operating.
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5.2 State Transitions

The operational states of the system, as shown in Figure 7, are obtained by clustering to-
gether the combined utilization of all the chillers in the ensemble. Here we use k-means
clustering with k = 10 and organize the states in decreasing order of total power con-
sumption. Since the objective of this work is to operate a chiller ensemble more energy
efficiently, we color code the system states to reflect their power consumption. The color
red indicates the maximum power consumption (about 3298 KW) while the color blue
indicates the least consumption (2148 KW). Also shown, for each state, are the average
utilization values of the five chillers as a histogram with first three (starting from the left)
being air-cooled ones and the last two being water-cooled units. The time spent by the
system in each state is also listed (maximum in state 9, while least in state). The arrows
show the transitions between states, with the gray-scale indicating the frequency of the
transition (darkest implying most often).

The system states are mainly characterized by the number and kind of chiller units
operating, their utilization levels and power consumption. Some states are quite similar,
e.g., states 3 and 7, which have the same chiller units operating with not much difference
in their utilization levels. Other states show marked difference, e.g., state 10 has three
chillers operating (one air-cooled and two water-cooled) while state 6 has four working
units (two air-cooled and two water-cooled). Note that consequently state 10 consumes
less power than state 6. A data center chiller operator will be interested in understanding
the variables that influence transitions from state 10 to 6.

Transition: State 10 → State 6. When the chiller ensemble makes a transition from
state 10 to state 6, air cooled chiller-1 turns on. The graphical model can be queried to

Fig. 7. Transitions in the state-based representation of the combined utilization of the chiller
ensemble. Edges representing 5 or fewer transitions are not shown. And edges representing more
than 5 transitions are labeled by the actual counts.
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Table 2. List of most-likely value assignments of the parent-set of node AC_CH1_RLA i.e.
utilization of air-cooled chiller 1

par(Xi(t)) Delay Value Pr(par(Xi(t))|Xi(t), Xi(t − 1))
WC_CH1_RLA 1 (75.37, 77.38] 0.27
WC_CH1_RLA 1 (72.36, 75.37] 0.18
WC_CH1_RLA 1 (77.38, 79.71] 0.18

provide the most probably explanation for this change. Using the model from Section
5.1, we estimate values of parent of utilization node when these state transitions take
place, as listed in Table 2. Note that utilization levels of the parent (WC_CH1_RLA) are
high when these transitions take place. These and other similar insights would facilitate
more energy efficient management of the chiller resources.

In the future, we also plan to incorporate system alarms as nodes in the graphical
model with the objective of discovering the variables that most significantly influence
a particular alarm. This causal inference would provide valuable information to a data
center chiller operator on corrective steps needed to handle the alarm. Furthermore, op-
erator actions would be added to the model to enable discovery of dependencies between
state transitions and such actions. This would allow an operator to query what actions
could be taken (if any at all) to move the system from a less energy efficient state to a
more efficient one.

6 Conclusions and Future Work

We have presented an expressive framework for reasoning about data center chillers
using data mining techniques. Our methods raise the abstraction level from raw sensor
streams to networks of relationships between higher order variables. While in this paper
we have focused on determining the model structure and dependencies, in the future, we
plan to build a diagnostic and advisory system. We will enrich the time series with alarm,
sustainability and user action information with the objective of achieving the following
goals: (1) inference of the probable cause of a chiller alarm, e.g., an alarm indicating
that the water supply temperature has consistently been above the set point; (2) provide
best course of action to handle an alarm, with actions learnt from past data; (3) monitor
sustainability metrics, such as energy use or carbon footprint, and recommend state
changes towards more sustainable operation. Although our current studies have focused
on one particular subsystem of a data center, we posit that our methods are general and
can be targeted toward other complex system modeling tasks.
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Abstract. We investigate which of two Artificial Intelligence techniques is su-
perior at making predictions about complex carcinogen systems. Artificial Neu-
ral Networks are shown to provide good predictions of carcinogen toxicology 
bands for drugs which are themselves used to treat cancerous cells, by using a 
novel system of molecular descriptors derived from the molecules’ mass spec-
trometry intensities, reduced in dimensionality by Principal Component Analy-
sis, to form a series of orthogonal descriptors which retain 95% of the variance 
of the original data.  

The creation of molecular descriptors from PCA-resolved mass spectrometry 
data is shown to be superior to the use of Self-Organising Maps, the selection of 
a series of modal fragments, or the use of every peak (within the confines of the 
precepts of Artificial Intelligence). A new system of backpropagation which in-
creases network efficacy in this case is also proposed.  

Keywords: artificial neural network, ANN, carcinogenicity, QSAR. 

1   Introduction 

Computer-based drug design is an important area of pharmaceutical chemistry [1,2]. 
Quantitative Structure-Activity Relationships (QSARs), determined computationally 
from experimental observations, are widely used to suggest candidate drugs for early 
screening, reducing both the time and money spent on synthesis and in vivo testing 
[3]. Computational approaches to the design of new drugs have become progressively 
more significant and sophisticated as computer power has increased, and all major 
pharmaceutical companies now make extensive use of these methods.  

Many properties of a chemical contribute to the decision as to whether it is viable 
as a drug. Apart from the obvious question of efficacy, the harm that a drug itself 
presents must be sufficiently low that it not outweigh the drug’s therapeutic value. 
The carcinogenicity and teratogenicity of a drug is an important area in this regard, 
but modelling these kinds of complex and dynamic systems presents a significant 
barrier to the advancement of this technology. Chicu, at al. [4] have used statistical 
methods to predict chemicals’ toxicity in crustacea and fish, while Williams [5]  
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predicted the carcinogenic effects of ATPase inhibitors using chemical structure.  
Conolly et al. [6] modelled respiratory tract carcinogens in a similar way.  

Artificial Intelligence techniques have, with great success, provided insight into 
complex data in other spheres [7,8,9,10,11,12,13,14] suggesting that techniques such 
as Artificial Neural Networks (ANNs) will provide an accurate link between molecu-
lar descriptors and physical data.  

However, numerous potential architectures, parameter settings and dimensionality-
reduction techniques exist in Artificial Neural Networking and optimising these is an 
essential step in the use of the method. Furthermore, it is necessary to represent phys-
ical phenomena in a theoretical frame and, consequently, discerning a representative 
series of molecular descriptors is imperative. Matter [15] and Hopfinger et al. [16] 
proposed that this could be achieved by creating a series of molecular descriptors to 
represent an energy-minimised three-dimensional drug, and Tanabe et al. [17] subse-
quently predicted carcinogenicities using three-dimensional geometrical molecular 
descriptors as a basis for supervised learning. We describe here an extension of their 
work using mass spectral data, which is surprisingly effective considering its relative 
simplicity. 

2   Molecular Descriptors and Data 

A molecular descriptor specifies some feature of a molecule, such as its dipole mo-
ment, size, or electron distribution, in an unambiguous way; the complete description 
of a molecule thus requires many descriptors. Since we can anticipate that the effec-
tiveness of drugs must be related in some way to properties at the molecular level, it is 
evident that connections exist between a suitably-chosen set of molecular descriptors 
and the activity of a drug. 

Although the most widely used molecular descriptors are a direct expression of 
properties of the molecule itself, there are many examples where some derivable 
property of the molecule, such as its infrared spectrum, have been used as descriptors: 
this is a standard approach in Computational QSAR analysis. We have therefore in-
vestigated whether the mass spectra of candidate drugs might constitute suitable 
proxy molecular descriptors. As mass spectra contain substantial amounts of informa-
tion about a sample, it is reasonable to suppose that a single mass spectrum might be 
able to replace a substantial number of more conventional descriptors. Mass Spec-
trometry data were obtained from the National Institute of Standards and Technology. 
The data series included a CAS Number, and a list of peaks and their intensities. 

The wealth of data in a mass spectrum presents, however, a problem as well as an 
advantage. When seeking correlations between an experimental spectrum and a drug’s 
properties, unsupportable and unjustified interaction models might emerge through 
overfitting, so our initial step is to reduce the dimensionality of the data. All mass 
spectra were treated with Principal Component Analysis, creating a series of quasi-
molecular descriptors which contained 95% of the original data variance (Table 1). 
The number of quasi-molecular descriptors was reduced from several thousand to 
146. These new descriptors were preliminarily compared with modal (intensities of 
popular fragments) and banded (similarly-sized fragments banded together) peaks. 
These alternative systems were good comparators as they represent other valid  
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Table 1. 146 Principal Components representing 95% of the variance of the original data 

Transformed Data Cumulative Responsibility 
PC 1 0.0709 
PC 2 0.1303 
PC 3 0.1738 
PC 4 0.2076 
PC 5 0.2355 
PC 6 0.2596 
PC 7 0.2823 
… … 
PC 140 0.9460 
PC 141 0.9468 
PC 142 0.9476 
PC 143 0.9483 
PC 144 0.9491 
PC 145 0.9498 
PC 146 0.9504 

 
methods of reducing the number of inputs, which is necessary in Artificial Neural 
Networking to generate realistic, short processing runs. However, these alternative 
molecular descriptors generated predictions no better than those generated through 
randomisation (ie if bands had been selected at random). See Section 5.  

2.1   Toxicity Data 

Training data (oral, rat, TD50) were sourced from the National Toxicology Program 
(NTP) [18] and The Carcinogenic Potency Project, Berkeley University [19], and 
carefully concatenated and their units reconciled. These data were logarithmically 
banded into nine distinct groups (1-9; 1=most carcinogenic, 9=least carcinogenic), 
and tabulated along with the CAS Number of the chemical which they represented. 

3   Self-Organising Maps 

The PCA-resolved mass spectra molecular descriptors were used as inputs for 12×12 
hexagonal self-organising maps (SOMs) with various interaction settings. No simple 
relationship between a 2-dimensionally-mapped series of molecular descriptors and 
the carcinogenicity of a molecule was found (see section 5). Following a series of 
runs, using a wide range of parameters and architectures this method of dimensional-
ity reduction was discounted. Computational physical and biological scientists 
should be wary of the use of generic techniques in data mining, except on a case-by-
case basis with proper double cross-validation testing. It is the nature of complex 
systems, such as the activity of carcinogens, that it is hard to understand in advance 
why one technique succeeds where another fails in discerning patterns and making 
predictions. 
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Fig. 1. The random-start Self-Organising Map Decision Tree 

4   Artificial Neural Networks 

Standard feed-forward Artificial Neural Networks, using a sigmoidal transfer function 
and a novel backpropagation system (which also guarded against pareto equilibria, 
when a Neural Network falls into a false minimum, from which it is unable to es-
cape), were then applied to the problem. Where the network was moving away from a 
real equilibrium a randomisation of the weights occurred, and processing began again. 
The new system of backpropagation works as follows: 

Let  w = the weight assigned to the connection between two nodes 

         O = output value of a node, following application of the transfer function 

         ε = T – O = the overall error (where T is the target value) 
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Then the error of the output node, 

                                       )()( 1-1-
kjkjkj TO ψψε ×=                                            (1) 

where Toutput,j = the ideal output, and the inverse transfer function (reverse of the TF),  

                                        
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ +
×=

2000
-1

2000
1

log100)(1-

t

t

tψ

                                 (2) 

Therefore, the change in connection weight, 

                                     
∑ ,,1

,,1-

i
ikik

jkjk
kjkj

wO

wO
w

×

×
=Δ

−

ε

                                      (3) 

where is the learning parameter. Therefore, let the target output of the hidden layer, 
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where Nk=number of nodes in layer k. The system is then processed backwards. 

The new system stems from the necessity, with a more complicated data set, to in-
voke a similar change in error during backpropagation, which will prevent overcor-
rection. This decreases the time a system takes to arrive at a minimum. This is 
achieved by calculating the inverse error gradient1 at each node and then using this to 
calculate the amount by which the weights should be altered in the subsequent itera-
tion. This allows the network to spring out of pareto equilibria when the amount by 
which each weight changes in each iteration is high, while not adversely affecting the 
final equilibrium because the change increment is small towards the end. This system 
was found to reduce typical processing time by 11% as fewer iterations are necessary 
to achieve the same minimum equilibrium2. 

                                                           

1 The inverse error gradient is the reciprocal of the error gradient, ie 
jii

ww ≠∂
∂ε

. 

2 That is to say that over seven program runs using different carcinogen data sets, the novel 
system of backpropagation arrived at the minimum error on average 11% faster than an 
equivalent network using standard backpropagation. 
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Fig. 2. A data flow diagram for the Artificial Neural Network Method 

5   Results 

Through the use of ANNs, we were able to accurately identify a QSAR for the predic-
tion of carcinogenicity using PCA-resolved Mass Spectral data to describe the  
molecules (Fig 3). This QSAR was tested using a series of molecules not present in the 
training set and also by the leave-three-out cross validation method. Leave-three-out 
was selected as opposed to leave-one-out to ensure that the system was resolving in 
favour of dissimilar molecules. 174 out of 196 test molecules were banded to within the 
success criterion (within one band of their actual band as given by Berkeley or the 
NTP), representing an accuracy rate of 89%, which we consider viable. This compares 
to 53 out of 196 selected accurately following the use of Self-Organising Maps. 
 

Table 2. Average % of correctly-identified carcinogens (one band margin of error) 

Processing Architecture % Accuracy (average) Weighted-kappa Value 
Banded Mass Spec + ANN 20 0.18 
Modal Mass Spec + ANN 25 0.21 
PCA Mass Spec + SOM 27 0.20 
PCA-resolved Mass Spec +ANN 89 0.76 
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Systems in which the raw data consisted of modal (49/196) or banded (39/196) Mass 
Spectra failed to identify sufficiently accurate models. 

As an additional, if somewhat qualitative, test of reliability, Table 3 shows pre-
dicted carcinogenicity band for some drugs compared with their International Agency 
for Research on Cancer classification. This classification ranks chemicals into 5 
groups with the following definitions: 

1: carcinogenic to humans.  
2A: probably carcinogenic to humans. 
2B: possibly carcinogenic to humans. 
3: not classifiable as to its carcinogenicity to humans. 
4: probably not carcinogenic to humans. 

 

Table 3. Predicted carcinogenicity band (ANN) for some example drugs compared with their 
International Agency for Research on Cancer’s Classification 

Chemotherapeutic 
Drug 

CAS No.
Predicted 
Carcinogen 
Band 

IARC 
Group 

Chlorambucil 305-03-3 2 1 
Cyclophosphamide 50-18-0 2 1 
Mechlorethamine 51-75-2 3 2A 
Methotrexate 59-05-2 7 3 
Fluorouracil 51-21-8 6 3 
Uracil 66-22-8 4 2B 

 

          Actual Carcinogen Band 

Fig. 3. Carcinogen Band prediction by Artificial Neural Network 
 

Predicted 
Carcinogen 

Band 
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Actual Carcinogen Band 

Fig. 4. Carcinogen Band prediction by Self-Organising Map 

6   Conclusions 

The carcinogenicity of a potential cancer drug is discernible using a series of Artifi-
cial Neural Networks and PCA-resolved Mass Spectral data. This clearly implies that 
mass spectral intensities may be used as reliable molecular descriptors in this, and 
possibly other cases, through the use of this technique. The selection of a set of the 
most frequent or banded fragments does not allow accurate prediction. 

It has also been shown that reducing the burden of dimensionality does not neces-
sarily compromise the reliability of the process: the selection of a smaller set of or-
thogonal descriptors is accurately achieved using Principal Component Analysis, but 
this process is not satisfactory when using Self-Organising Maps, which, with this 
dataset, destroy the underlying nuances of the data which act as molecular descriptors. 

The novel system of backpropagation proposed is both more efficient and reliable 
in monitoring a series of connection weights within an Artificial Neural Network 
(11% faster for similar levels of accuracy), and has the potential to be applied more 
generally in this field. 

This application of Artificial Intelligence to a complex pharmaceutical problem has 
wide-reaching implications for the analysis of complex biological systems by physical 
and life scientists, as it lays the building blocks for drug design to become even more 
efficient, and allows doctors prescribing nascent or experimental treatments to under-
stand more fully the drug regime they are recommending.  

Further optimisation of the network architecture and the discovery of additional da-
ta (both mass spectral and carcinogenicity) would lead to improvements in the accu-
racy of the network.  

Predicted 
Carcinogen 

Band 
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Various options are open as to how to proceed. An investigation into the incorpora-
tion of Support Vector Machines or Fuzzy processes into the system would be ex-
tremely interesting, as would the analysis of a Fuzzy success criterion (currently a 
prediction is right or wrong, but information on how wrong would be useful). 
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Abstract. This paper addresses the issue of a content-based information
retrieval system that works on fMRI images from neuroscientific journal
publications. We present a general framework for automatic extraction,
characterisation and classification of fMRI images, based on their func-
tional properties. The proposed method identifies the section of each of
those images, by morphological processing, and estimates the coordinates
of the brain activated regions, in relation to a standard reference template
using locality preserving projections. Those regions are then segmented,
and their physical and geometrical properties evaluated. We formulate a
feature vector based on these characteristics, and cluster the images and
corresponding journal publications using self organizing maps.

1 Introduction

There is an ever increase in the number of scientific publications in many areas
in general, and in neurosciences in particular. Hundreds of articles are published
each month, with a considerable amount currently comprising functional mag-
netic resonance image (fMRI, [1]) experiments.

When comparing the results obtained with a particular experimental setup
and existing literature, one may validate, integrate or confront different theories.
A proper compilation of all the reported information is therefore crucial, and is
currently mostly performed in a rather human-intensive manner. Whether you
are a seasoned neuroscientist in search for the explanation for an unexpected ac-
tivation result, or a machine learning researcher attempting to validate a newly
proposed analysis method, it is rather common to spend a considerable amount
of time scanning through the vast list of publications, in search for comparable
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experimental outcomes to yours. The automatic extraction of the relevant infor-
mation is not always a simple task, and constitutes the subject of information
retrieval and data mining [2]. Such meta-research is the topic of the current
publication.

The intrinsic multi-modal nature of the publications provides ample scope for
mining information at various levels. Such information is encoded both in the
image content, as well as in highly structured text structures – title, abstract,
captions, and the various sections. Several attempts to build atlases of brain
functions often use a considerable amount of curator work, with persons going
through the papers, and extracting by hand all the relevant information, e.g.,
Talairach’s coordinates, experimental setups,... In a recent paper, it was esti-
mated that as much as 30 to 60 minutes are required for a research assistant to
enter the details of a single publication [3]. Yet, brain atlases comprise informa-
tion from thousands of such papers. For good reviews of several such atlases, see
for example [4,5]. The growing interest in building and exploiting them can be
seen, for example, in the lively discussions published in [6].

We believe that it is possible to automize part of the data collecting process,
rendering the complete procedure consistent and reproducible for vast amounts
of data. The tools presented in this paper can easily be adapted for the analysis
and modelling of a complex literature field, in particular when pictorial repre-
sentations of data or information visualisation is concerned. However, it must
be noted that the approach outlined in this paper can only be seen as the first
step towards it. With this clear proof-of-concept mindset, we will therefore focus
our attention on a rather homogeneous data set, made of activation patterns in
fMRI reports.

Consider a typical fMRI image, depicted in Fig. 1. In a cursory glance, it is
easy to identify the kind of section of the image (axial, as opposed to sagittal or
coronal); the approximate coordinates of that section; the anatomical features
of the section; as well as the functionally activated region or ”blob” within the
section. We do that by relating the image to an internal representation of our

Fig. 1. A prototypical fMRI image. Activity is present in the occipital area, and its
intensity is usually reported using a colour code.
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anatomical and physiological knowledge of the brain. This relation takes into ac-
count physical and geometrical properties of the underlying structural image, as
well as of the superimposed blob. In addition to the activation location, typical
image analysis features, such as intensity, area, perimeter, shape, compactness,
elongation... can be used to fully characterize the activity (c.f. [7]). Such details
were collected automatically in our research, and a number of journal publica-
tions were clustered accordingly.

In the following sections, we will first describe the extraction and characteri-
zation of the brain images and functional activation patters. Classification using
the self organizing maps follows. We conclude with some remarks on current
limitations of the proposed method, as well as suggestions to overcome them.

2 Image Characterization

We randomly selected 11 articles from various issues of NeuroImage journal
by Elsevier publications and extracted about 100 figures using the linux com-
mand pdfimages. After pre-processing, we identified the fMRI images present
in these figures by morphological image processing methods. 144 fMRI images
were obtained, each characterized based on its functional properties and physical
properties such as volume type, section type and co-ordinates of the section. We
incorporated all these characteristics to formulate a feature vector that tries to
describe every fMRI image in a 16 dimensional space. The following subsections
explain the theory involved at various stages of these processes.

2.1 fMRI Image Extraction

Journal publications have a uniform style of reporting, but the figures in arti-
cles have non-homogenous content such as several images, plots, annotations, cap-
tions, etc... Hence, it is necessary to morphologically process the figure in order to
extract fMRI images of interest. In the first stage of image extraction, figures were
pre-processed by means of conventional methods such as histogram equalization,
high pass filtering and gray level thresholding. After pre-processing, edge detec-
tion using the Sobel method returned edges at those points where the gradient of
the figures is maximum, thereby separating the background from the objects in
the figures. This was followed by structural operations to distinctly isolate each
object in the figure. After filtering out noise and exceedingly small objects, it was
possible to segment all the other objects remaining in the figure. After extracting
the images corresponding to every object, the next step was to identify and obtain
fMRI images based on some simple properties such as colored activation regions,
shape metrics and aspect ratio of the sections. The Fig. 2 illustrates the effects of
morphological image processing in extracting fMRI images.

2.2 fMRI Image Processing

Once the fMRI images have been extracted, they have to be specifically pro-
cessed to identify the volume that was used to register and normalize the fMRI
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Fig. 2. fMRI image extraction from a figure using morphological image processing
methods. The four fMRI images are selected, while the plots on the right side are
rejected (note the crossed-out frames).

image. Also, the type of the section needs to be identified in order to estimate
the co-ordinates of the section.

Volume Identification

Most articles use either the SPM [8] or Colin [9] volumes to normalize their
fMRI images. Colin volumes contain high resolution sections compared to SPM
volumes. Regarding the spatial separation between adjacent sections, in SPM
volumes is 2mm whereas, in Colin volumes is 1mm. Based on the resolution of
the extracted fMRI images, it is possible to differentiate volume types. Simple
edge detection using the Canny method finds edges by looking for the local max-
ima of the gradient of the image. As a result, both strong and weak edges are
detected, even in the presence of noise. The fMRI image based on Colin volume
has more detailed edges than the SPM volume. Fig. 3 depicts the difference be-
tween Colin and SPM volume types.

Section Identification

Since activation regions are three dimensional in nature, views from three dif-
ferent planes are required to represent them in two dimensions. Thus we have
axial sections along the transversal plane that travels from the top to bottom,
the sagittal section that travels along the median plane from left to right and the
coronal section along the frontal plane that travels from front to back. Instead of
focusing on the internal features of each section, the shape of the section is used
to identify the section type. After appropriate thresholding, the fMRI images
are converted to binary images thereby prominently outlining the shape of the
section. Simple symmetry serves to distinguish the sections from one another.
The axial section is symmetric about both the horizontal and vertical axis. The
coronal section is symmetric only with respect to its vertical axis. The sagittal
section is asymmetric. Fig. 4 shows how symmetry can be used to distinguish
between the different sections of the fMRI image.
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(a) (b)

(c) (d)

Fig. 3. Volume identification — (a) image normalized to the Colin reference volume;
(b) image normalized to the SPM reference. (c) and (d) are the corresponding images,
after edge detection.

2.3 Coordinate Estimation

An extracted fMRI image, with its volume type and section identified, does not
completely characterize the image as its relative spatial position is still unknown.
However, standard reference templates for every volume type are available. The
extracted fMRI image can be compared with the corresponding sections of the
standard reference template, and the best matching section will give the relative
spatial position or the co-ordinates of the fMRI image. Standard comparison
metrics such as mutual information or statistical correlation measures perform
poorly. The eigenfaces approach, based on principal component analysis is also
not very promising. These failures are due to the fact that images from successive
sections of the standard reference templates are almost identical to each other,
except for some local features that are subtle in nature. An efficient subspace
learning algorithm should be able to discover the nonlinear local manifold struc-
ture of the image space which is more important than the global structure in the
Euclidean space. A locality preserving projection based method for classification
of images [10] is described below.

The image set X is first projected onto the PCA subspace defined by the
strongest principal components. Next, a nearest neighbor graph G, with n nodes
is constructed, where the ith node corresponds to the image xi. An edge is placed
between nodes i and j if xj is among the k nearest neighbors of xi or vice-versa.
The constructed nearest neighbor map is an approximation to the local manifold
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Section identification — Left column contains the original fMRI images and
on the right their corresponding binary masks. From top to bottom, we have axial,
sagittal and coronal sections.

structure. A Gaussian kernel can be used as a weight matrix S of the graph G.
The eigenvalues and eigenvectors of the generalized eigenvector problem,

XLXTw = λXDXT w, (1)

are computed where, D is the diagonal eigenvalue matrix, whose entries are
column sums of the matrix S and L = D−S is the Laplacian matrix. The local
manifold structure is mapped onto a two dimensional space to select the best
matching image.

Fig. 5 shows the results of co-ordinate estimation based on Laplacian-Eigen
mapping. For the sample fMRI image (a), the best matching section from the
standard reference template is shown in (b). The results of the estimation are
compared to sections that are located 4mm away on either side of the best
matching section. This gives a good idea of the accuracy of the co-ordinate
estimation.
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(a) (b)

(c) (d)

(a)

(c) (d)(b)

(e)

Fig. 5. Co-ordinate estimation — (a) Sample fMRI image; (b) best matching section;
(c) and (d) neighboring sections, separated by +/- 4mm from the best matching section.
(e) Two dimensional manifold mapping with highlighted sections.

2.4 Activation Region Analysis

Activation regions are generated in response to stimulation. The properties of
the activation region largely define the fMRI image and hence it is crucial that
a comprehensive analysis of the blobs is carried out in order to classify fMRI
images. Activation regions can be easily segmented based on hue information.
Fig. 6 illustrates the segmentation of activation regions based on their RGB
values.
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(a) (b)

Fig. 6. Activation region analysis — (a) sample fMRI image with multiple activation
regions; (b) segmented binary image

The physical and geometrical properties characterize the activated region.
These properties are obtained by segmenting the activation regions and morpho-
logically processing each region. The location of maximum activation is given by
the centroid of mass of the largest activation region. The intensity of the activa-
tions is given by its color scale. The size of the activation region is given by its
area and perimeter. Even though it not possible to exactly describe an arbitrary
shape, various measures are used to try to objectively define the shape. Com-
pactness measures the deviation of the object from a circular shape, whereas the
extent of the region is computed as the ratio of the area of the region to the
area of the bounding box of the region. Eccentricity specifies the eccentricity of
the ellipse that has the same second moments as the region and the Orientation

Table 1. Feature vector for prototype image shown in Fig. 1

# Property Value
1 Section of the image Axial
2 Co-ordinates of the section 68
3 Number of activation regions 1
4 Peak color Yellow
5 Fringe color Yellow
6 Area 1535 pixels
7 Perimeter 187 pixels
8 Compactness 0.4532
9 Centroid of mass (x co-ordinate) 97
10 Centroid of mass (y co-ordinate) 198
11 Centroid of color (x co-ordinate) 70
12 Centroid of color (y co-ordinate) 192
13 Eccentricity 0.8012
14 Solidity 0.8148
15 Extent 0.6786
16 Orientation 4.2233
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gives the angle between the x-axis and the major axis of the ellipse. Solidity
specifies the ratio of the area of the region to that of the area of the smallest
possible convex polygon that bounds the region.

In the case of multiple activation regions, each one of them is treated as
if it was the only activation region in the fMRI image and a feature vector
corresponding to every activation region is formulated. The feature vector for
Fig. 1 is shown in Tab. 1.

3 Results

To cluster images with similar activation areas, an algorithm that organizes data
according to its similarity was needed. The algorithm should be able to search for
similarities between the fMRI images in a higher dimensional space and project
them to a lower dimensional space that preserves the input space’s distance
information [11].

3.1 Self Organization

Self Organizing Map (SOM) [12] is an excellent tool for unsupervised clustering
and two dimensional visualization of higher dimensional data spaces and hence,
an evident choice for this clustering operation. The SOMs perform a lattice
projection that preserves similarity information from the input space, through
competitive and Hebbian learning rules.

As an input pattern is fed into the network, the only map unit activated is the
winning neuron best representing the input pattern, called best matching unit
(BMU). During the learning process, the neighborhood of the winning neuron is
also taken into account, by changing the location of the neighbor neurons.

After training, the spatial locations of the neurons in the lattice are indicative
of the intrinsic statistical features contained in the input patterns; the continuous
input space is mapped on a discrete set of prototype vectors.

A simple explanation of the algorithm follows.
Let mj(t) denote the weight vector of neuron j at iteration step t, hj,c the

neighborhood function centered around the winning neuron c and α the learning
parameter. x(t) is the input pattern fed into the network at iteration t.

The winning neuron at time step t is found using the minimum-distance cri-
terion, between the input vector and the weight vectors of the map:

c = argmin
j

‖x(t) − mj‖ (2)

Afterwards, the neurons in the neighborhood of the BMU are pulled closer to
the input vector, by adjusting the weight vector

mj(t + 1) = mj(t) + αhj,c[x(t) − mj(t)] (3)

Using the feature vectors of the different activation areas, several SOMs with
different sizes and initializations were trained. They all exhibited similar results
for the different runs, demonstrating the robustness of the method.
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Group 1

SOM
(U−M AP)

Group 2

Prototype 

im age

Fig. 7. Self Organizing Map — U-matrix trained with the 16 dimensional feature vec-
tors. Two distinct cluster regions are observed at the lower left and right sides of the
map. The prototype image in Fig. 1 joins its natural cluster.

3.2 Image Clustering

144 fMRI images were extracted from 11 articles and clustered using the self
organizing maps. The results are shown in Fig. 7. The SOM was trained with a
size of 15x10, hexagonal shape and no cylindrical continuity. From the figure, we
find that fMRI images with similar activation regions are grouped together. Two
clear clusters are expanded in the figure. The one at the lower left side of the
map has fMRI images that show activations close to the parietal region, while
the images belonging to the cluster at the bottom right show activation in the
occipital region. These two clusters exhibit a good degree of separation, typical
from the high discriminative ability of the SOMs. Two other, isolated units are
also depicted, to illustrate the clear separation attained. One should note that,
although the fMRI images that are grouped together exhibited similar functional
activation regions, they were extracted from articles that did not follow the same
experimental set-up. Furthermore, not all images came from similar reporting
formats. In their original publications, the analysed images may appear alone or
within a multi-modal image set.

On other hand, the map shows a small number of grouping areas (minima),
indicating that, aside from the aforementioned clusters, the data is not rich
enough to fully populate other SOM regions. By increasing the number of image
sources, the SOM would probably give a better segmentation result.
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To evaluate the performance of the clustering, the feature vector of the pro-
totype image shown in Fig. 1 was employed. Naturally, this information was not
used during the training phase. As expected, the image fell on group 2, which
has a similar functional profile.

The identifications of the relevant figures from articles, and the extraction
of the fMRI images therein was somewhat computationally intensive, as it in-
volves scanning through all articles and morphologically processing the figures.
However, once in possession of the fMRI images, the construction of the feature
vector and the clustering is far less demanding. The clustering process for the
144 fMRI images consumed just about a couple of minutes. When compared to
the fully manual mode of compiling information from journal articles [3], our
automated approach saves a considerable amount of time and manual labour.

4 Concluding Remarks

Our goal was to develop an automatic content-based information retrieval system
for fMRI images, published in neuroscience journals. We presented a framework
for clustering these images, based on their anatomical and functional charac-
teristics that involved locality preseving projections over non-linear manifold
structures. The clustering was performed over a feature vector comprising phys-
ical and geometrical properties, characterizing the activation regions reported in
the images. With that in mind, we also proposed a novel method for estimating
the coordinates of the activated regions.

As stated earlier, there is a considerable variability in the brain-image-
displaying approach. For this reason, our extraction methods could not be ap-
plied in a purely automated manner, but a small degree of human intervention
was required, to eliminate some non-fMRI images. This intervention may be
minimised or even entirely removed by adding prior information on the specific
morphological nature of the brain images and by using more complex semantic
image processing methods.

With a clear proof of concept in mind, we used only a small set of articles and
images, yet ensuring the existence of at least two clear groups of activation re-
gions. The results of our clustering are rather encouraging, even when applied to
a limited set of fMRI images. The scalability of the feature extraction is clearly
linear with the number of images, whereas SOM has been used successfully in very
large scale problems. Furthermore, the increase in the number of analysed images
should lead to a more representative clustering of neuronal functional activities.

In addition to the extension to larger data sets, future research will focus on
the robustness of the method, as well as the integration of these outcomes to a
text mining approach. Finally, we hope to test these methods in situations where
there is either a clear agreement between different research reports or a challenge
between theories. The former is a key aspect to the construction of functional
neuro-atlases, whereas the latter may lead to true findings in neuroscience.
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Abstract. Outlier detection is an important research topic that focuses
on detecting abnormal information in data sets and processes. This pa-
per addresses the problem of determining which class of kernels should
be used in a geometric framework for nearest neighbor-based outlier de-
tection. It introduces the class of similarity kernels and employs it within
that framework. We also propose the use of isotropic stationary kernels
for the case of normed input spaces. Two definitions of similarity scores
using kernels are given: the k-NN kernel similarity score (kNNSS) and
the summation kernel similarity score (SKSS). The paper concludes with
preliminary experimental results comparing the performance of kNNSS
and SKSS for outlier detection on four data sets. SKSS compared favor-
ably to kNNSS.

Keywords: similarity kernels, similarity scores, outlier detection, near-
est neighbors.

1 Introduction

Outlier detection is a growing field within the data mining community. It fo-
cuses on detecting abnormal observations in data sets and processes. Detection
of credit card fraud, computer networks attacks and suspicious activity in elec-
tronic commerce are common applications. Hawkins defined an outlier as “an
observation that deviates so much from other observations as to arouse suspi-
cion that it was generated by a different mechanism” [10]. Some of the current
definitions of outliers use a global approach, e.g. [12], while others focus on a
neighborhood around each data point. The work of Breunig et al. [4] was the
first one using scores to describe outliers. Outlier detection methods range from
traditional approaches like nearest neighbor-based and statistical methods to
more recent approaches such as information theoretic and spectral outlier detec-
tion. Our work focuses on the nearest neighbor-based approach, which relies on
similarities (or equivalently, on distances) between data points. A recent survey
on the different approaches to outlier detection can be found in [5].
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The computational complexity of straightforward implementations of nearest
neighbor-based outlier detection is O(n2), where n is the number of data points.
Although this is not efficient for large data sets, there are techniques that allow
for almost linear complexity without sacrificing much accuracy [3,17,22].

A great number of outlier-detection algorithms are limited to numerical data.
They benefit from a variety of statistical techniques and well-established met-
rics. Currently, there is an increasing interest in working on data sets with
non-numerical attributes. Accordingly, several similarity-based outlier detection
algorithms have been proposed to deal with non-numerical data. [5].

Kernels methods have given researchers the ability to deal with both numeric
and non-numeric data types within a single framework [19]. Several works have
proposed the “kernelization” of different outlier detection algorithms
[8,19,14,18,15,20]. Kernel functions map input data points to a high dimensional
feature space to which simple algorithms are applied implicitly. Of particular in-
terest to our work is the geometric framework proposed in [8]. It applies nearest-
neighbor outlier detection techniques to the high dimensional feature space. The
distances between two points in the feature space can be easily calculated using
the kernel function. However, it is an open problem to determine which classes
of kernel functions are well suited to outlier detection problems [21,16].

Our work has three main contributions. First, we introduce the concept of
similarity kernels and we argue that similarity kernels should be used for kernel
nearest neighbor-based outlier detection. It is noted that our concept of similarity
kernel extends the class of isotropic stationary kernels as defined in [9]. For the
case of normed input spaces, we propose to restrict kernel nearest neighbor-
based outlier detection to the class of isotropic stationary kernels. Those kernels
guarantee invariance to translations and rotations in the input space.

Second, two similarity scores using kernels are defined: the k-NN kernel simi-
larity score (kNNSS) and the summation kernel similarity score (SKSS). kNNSS
is a characterization in terms of similarity kernels of the well-known k-NN score
[5]. Recently, in [1], the outlier score of an observation x was defined as the sum
of distances from x to a fixed number of its nearest neighbors. In contrast to
that work, SKSS is computed as the sum of the similarities between x and all
observations within a ball of a fixed radius centered on x. To our knowledge,
SKSS is a new type of density-based score.

Finally, SKSS is compared to kNNSS on two numerical data sets and two
categorical data sets. The Gaussian kernel was used in the numerical cases.
The Hamming distance kernel [6] and a diffusion kernel [13] were used on the
categorical data. It is proved that those categorical kernels are similarity kernels.
Preliminary results suggest that SKSS can be a valuable similarity score for
nearest neighbor-based outlier detection.

The paper is structured as follows: in Section 2 we provide a brief description
of concepts and methods that are relevant to our paper. Our approach is pre-
sented in section 3. Our experimental findings are shown in Section 4. Finally,
concluding remarks and a few comments regarding future work are provided in
Section 5.
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2 Related Work

2.1 Kernels

Kernel functions were introduced in machine learning as a way of finding non-
linear patterns in data sets through the application of linear methods to a high
dimensional representation of the data [7]. Kernels are positive semi-definite
functions defined as follows: [19]

Definition 1. A symmetric function K : X ×X → R is called a positive semi-
definite kernel function if and only if for any positive integer n, any choice of
n objects x1, .., xn ∈ X, and any choice of real numbers c1, .., cn the following
property holds:

n∑
i=1

n∑
j=1

cicjK(xi, xj) ≥ 0 (1)

Kernel functions are defined on pairs of objects from a variety of data types.
For every kernel function K : X × X → R there exists a unique mapping φ,
φ : X → H , where H is a high dimensional feature space. Typically, the mapping
φ is used implicitly through the expression K(xi, xj) =< φ(xi), φ(xj) >, where
xi and xj are data points in X and <,> denotes the inner product on H .
Throughout this paper we often refer to a kernel matrix K instead of the kernel
function K. A kernel matrix is an n x n matrix containing the values of the
corresponding kernel function evaluated on all possible pairs of data points from
a data set containing n objects. Kernels have been categorized based on whether
they are local or not, stationary or non-stationary, separable or non-separable,
among other characteristics [9]. Isotropic stationary kernels are of particular
interest to our work:

Definition 2. A kernel function K : X×X → R is isotropic stationary if there
is a function gK : R → R such that:

K(x, z) = gK(‖x − z‖) (2)

It follows from this definition that isotropic stationary kernels are invariant to
translations and rotations. The well-known Gaussian RBF kernel is an example
of an isotropic stationary kernel. On the other hand, the linear kernel K(xi, xj) =
xT

i xj and the polynomial kernel of degree p, defined as K(xi, xj) = (xT
i xj +1)p,

are examples of kernels that are not isotropic stationary. [9]

2.2 The Hamming Distance Kernel

The Hamming distance kernel [6] is based on the well-known Hamming distance.
To follow the notation given in [6], let us assume a categorical data set consisting
of m attributes, where the ith-attribute takes values in a finite categorical domain
Di. The cross product over all domains Di is denoted by Dm, i.e. Dm =

∏m
i=1 Di.
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Definition 3. The Hamming distance kernel function KH(s, t) between two in-
put categorical objects s and t is defined as:

KH(s, t) =
∑

u∈Dm

∏m
i=1 λδ(ui,si)λδ(ui,ti)

where λ ∈ (0, 1) and δ(si, ti) is 0 when si = ti, and 1 otherwise.

2.3 Diffusion Kernels

Diffusion kernels are a family of kernel functions defined on graphs [13]. Every
data point that could possibly appear on the data set is considered a vertex of
the graph. Two vertices are linked if and only if they differ on only one attribute.
The following expression shows the diffusion kernel we used in our experiments:

KDK(β)(x, y) =
m∏

i=1

(
1 − e−|Di|β

1 + (| Di | −1)e−|Di|β

)δ(xi,yi)

(3)

where m is the number of attributes in the data set, x = (x1, .., xm) and y =
(y1, .., ym) are categorical data points, |Di| is the number of values that the i-th
attribute can take, and δ(xi, yi) returns 0 for xi = yi and 1 otherwise.

2.4 Geometric Framework for Unsupervised Anomaly Detection

Nearest neighbor-based outlier detection techniques are based on the assumption
that outliers appear in low density regions while normal data points are located
in highly dense neighborhoods. A distance measure is thus required to be able to
define neighborhoods for points in the data set. The geometric framework in [8] is
based on the fact that the feature space H is a Hilbert space. Therefore, for every
data points yi, yj in H the inner product < yi, yj > is well defined, and it can be
calculated as K(φ−1(yi), φ−1(yj)). Given two data points xi, xj from X , the dis-
tance dφ(xi, xj) between xi and xj is defined as d(φ(xi), φ(yj)). By using the well-
known distance equation d(yi, yj) =

√
< yi, yi > + < yj , yj > −2 < yi, yj >, the

following distance equation is obtained:

dφ(xi, xj) =
√

K(xi, xi) + K(xj , xj) − 2K(xi, xj) (4)

Nearest neighbor-based outlier detection methods can be applied to data sets of
arbitrary type, provided there is a kernel for that data type.

3 Proposed Approach

This section is divided in three subsections. In the first subsection, we introduce
the class of similarity kernels and discuss some basic properties. In the second
subsection, a relationship between the class of similarity kernels and the class
of isotropic stationary kernels is presented. The advantage of using isotropic
stationary kernels for normed input spaces is discussed as well. In the third
subsection we offer a definition for two kernel similarity scores on which outlier
detection can be based.
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3.1 Similarity Kernels for Nearest Neighbor-Based Outlier
Detection

To the best of our knowledge, nothing has been published about the classes of
kernels that should be used within the geometric framework proposed in [8]. In
this paper, we address that question by establishing a relationship between the
concept of similarity and a class of kernel functions that we define as similarity
kernels. It is required that any similarity function must fulfill the following three
properties: First, for any fixed input space X , the similarity of any object to
itself is always equal to a constant c. Second, that constant c is an upper bound
to the similarity between any two objects in X . Finally, there exists a number
d such that d is a lower bound to the similarity of any two objects in X . Based
on these properties, we introduce the following definition:

Definition 4. A positive semi-definite kernel function K defined on some in-
put space X is a similarity kernel if and only if there exist c ∈ R+ such that
K(x, x) = c for all x ∈ X.

Note that given a similarity kernel K, equation 4 can be written as:

dφ(xi, xj) =
√

2c − 2K(xi, xj) (5)

Consequently, K(xi, xj) can be interpreted as a similarity measure between xi

and xj . It remains to show that all similarity kernels K satisfy the properties
we require from a similarity measure. The first of those properties is fulfilled by
definition. To prove that c = K(x, x) is an upper bound for all values of K, let us
assume an arbitrary data set D with n objects {x1, x2, ..., xn}. Let us denote by
K the corresponding n×n kernel matrix. Let xi and xj be two arbitrary objects
from D, and let z be a vector of length n containing 1 in the position i, −1 in
position j and 0 in all remaining positions. Because K is positive semi-definite,
we have zT Kz ≥ 0. Consequently:

zT Kz = K(xi, xi) + K(xj , xj) − 2K(xi, xj) = 2c − 2K(xi, xj) ≥ 0 (6)
K(xi, xj) ≤ c (7)

Following the same approach, but assuming that z is the vector containing 1 in
positions i and j and 0 in all remaining positions, it is concluded that -c is a
lower bound for all values of the kernel matrix. As a direct consequence of these
properties, similarity kernels can be normalized to the interval [−1, 1] simply by
dividing the kernel by c.

It is worthy of noting that the closure properties given in section 3.4.1 of [19],
which establish how to obtain new kernels from previously defined kernels, are
preserved for the class of similarity kernels, i.e.:

1. The sum of two similarity kernels is also a similarity kernel.
2. The product of a similarity kernel and a positive scalar is a similarity kernel.
3. If K1(x, y) and K2(x, y) are similarity kernels then K(x, y)=K1(x, y)K2(x, y)

is also a similarity kernel.
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4. If K(x, y) is a similarity kernel, and ϕ : X → Rn, then K(ϕ(x), ϕ(y)) is a
similarity kernel.

Other classical operations over similarity kernels produce similarity kernels as
well. For instance, a polynomial function with positive coefficients composed
with a similarity kernel is a similarity kernel. The composition of an exponential
function with a similarity kernel is also a similarity kernel.

3.2 Similarity Kernels and Isotropic Stationary Kernels

From definition 2, it is obvious that all isotropic stationary kernels are within the
class of similarity kernels. Isotropic stationary kernels must be defined on normed
spaces, while similarity kernels are not constrained to any particular input space.
Consequently, the class of isotropic stationary kernels is a proper subset of the
class of similarity kernels. For any isotropic stationary kernel, equation 4 can be
written as follows:

dφ(xi, xj) =
√

2gK(0) − 2gK(‖xi − xj‖) (8)

When X is a normed space, nearest neighbor-based outlier detection methods
should be invariant to translations and rotations in X . From definition 2, it is
clear that any nearest neighbor-based outlier detection based on an isotropic
stationary kernel will remain invariant to translations and rotations in X . On
the other hand, given any non-stationary kernel function K, there exists input
values x1, x2 and t ∈ X such that K (x1, x2) �= K (x1 + t, x2 + t). However, it
is not clear whether the non-stationary quality of K could actually influence
the accuracy of outlier detection in the presence of arbitrary translations or
rotations. The following example provides a positive answer to that question for
the case of an arbitrary translation.

We generated a two-dimensional data set containing 4 outliers and 46 non-
outliers. A second data set was obtained by adding the vector (100, 100) to all
points in the original data set. Figure 1 shows the performance of k-NN outlier
detection [8] on both data sets. The polynomial kernel with p = 2 was used. The
number of neighbors, k, was set equal to 3, and four data points were selected
as outliers. The different results obtained show that outlier detection results can
become inconsistent under translations in X when a non-stationary kernel is
used. We believe that similar examples could be devised for arbitrary rotations
when non-isotropic kernels are used. For the sake of invariance, we suggest the
use of isotropic stationary kernels whenever possible.

3.3 Kernel Similarity Scores

Our kernel similarity scores make use of the interpretation of each value Ki,j

of a n × n similarity kernel matrix K as a similarity measurement. The goal is
to calculate a similarity score vector s, where si provides an estimate of how
similar xi is to other objects within a certain neighborhood. Consequently, for
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Fig. 1. Outlier detection using k-NN scores with a polynomial kernel of degree 3 and
k=3. Detected outliers are denoted by ’*’. Left: Original data set. Right: Original
data set translated by (100, 100).

two objects xi and xj , if si < sj then xi is more likely to be an outlier than xj .
The vector s allows ranking objects by their likelihood of being outliers. Those
objects having the lowest similarity scores are more likely to be outliers.

In this section we define two specific kernel similarity scores: the k-NN kernel
similarity score (kNNSS) and the summation kernel similarity score (SKSS). The
k-NN kernel similarity score is a characterization of the well-known k-NN score
[5]. It assigns scores to data points based on the sum of their similarities to their
k nearest neighbors. To our knowledge, SKSS has not been proposed before in
the literature. It uses a density-based approach [12,11], but instead of counting
the number of nearest neighbors within a neighborhood of each data point xi,
the SKSS score of xi is equal to the sum of the similarities between xi and all
data points within a ball of a fixed radius implicitly determined by a parameter
p. The definitions for kNNSS and SKSSS follow:

Definition 5. Let xi be a point in a data set X with n data points, K ∈ Rn×n a
similarity kernel matrix defined on X, Ki ∈ Rn the i-th row of K, and k a posi-
tive integer parameter. The k-NN kernel similarity score of xi, kNNSS(xi, K, k),
is defined as:

kNNSS(xi, K, k) =
k∑

j=1

Ks
ij (9)

where Ks
i ∈ Rn−1 is the row vector obtained by sorting Ki in descending order

without including the diagonal element Ki,i.

Definition 6. Let xi be a point in a data set X with n data points, K ∈ Rn×n

a similarity kernel matrix defined on X, and Ki ∈ Rn the i-th row of K. The
summation kernel similarity Score (SKSS) of xi, SKSS(xi, K, p), is defined by:

SKSS(xi, K, p) =
∑

Ks
i,j≥p

(Ks
i,j) (10)
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where p is a real-valued similarity threshold, and Ks
i ∈ Rn−1 is the row vector

obtained from Ki by removing the diagonal element Ki,i.

Considering that similarity kernels can be normalized in the interval [-1, 1] (or
[0,1] when all kernel values are non-negative), it is safe to assume that p lies on
that normalized interval.

The computational complexity of calculating both kernel similarity scores for
a data set X with n data points is O(n2), assuming the kernel matrix K is given.
Consequently, approximation techniques such as the one mentioned in [8] should
be used for applications with large data sets. Because our experiments involved
small data sets we did not implement any approximation technique in this work.
However, it is worth of noting that kNNSS is slightly more expensive to compute
than SKSS when using straightforward implementations. That is because of the
sorting step involved in determined the k nearest neighbors for each object.

4 Experimental Comparison of Kernel Similarity Scores

4.1 The Data Sets

We used two numerical data sets and two categorical data sets to compare the
performance of kNNSS and SKSS for outlier detection. The data sets were ob-
tained from the UCI Machine Learning Repository [2]. The Gaussian kernel was
employed in the numerical cases. The Hamming distance kernel and the diffusion
kernel from equation 3 were used in the categorical cases. For some data sets, we
randomly removed a substantial amount of samples from one of the classes, in
order to comply with the assumption that outliers constitute a small percentage
of the data. A brief description of each data set follows.

The yeast data set: A data set consisting of 1484 data points with 8 real-
valued attributes. The data points correspond to proteins taken from the SWISS-
PROT database. They are classified into ten different classes of localization sites.
We chose the 463 proteins with cytosolic or cytoskeletal localization as non-
outliers. The 20 proteins corresponding to peroxisomal localization were labeled
as outliers.

The breast cancer Winsconsin (diagnostic) data set: It consists of 569
data points with 32 real-valued attributes. It categorizes points as benign or
malignant. We used the 357 benign cases from the data set as non-outliers. A
random sample of 15 malignant cases were kept as outliers.

The lymphography data set: It contains 148 instances with 18 categorical
attributes. Those instances corresponding to the metastases and malign lymph
classes form the majority of the data set. The other 6 points, related to the
normal and fibrosis categories, were considered outliers.

The post-operative data set: A categorical data set containing 148 in-
stances with 18 attributes. Instances are classified according to where patients
should go after surgery: the ICU, home, or the general hospital. The 64 instances
where the patients were sent to the general hospital constituted our non-outliers
observations. We randomly chose 4 entries from the rest of the data to be outliers.
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4.2 The Similarity Kernels

Here we prove that the Hamming distance kernel and the diffusion kernel satisfy
our definition of similarity kernels.

From the definition of the diffusion kernel given in section 2.3, it is clear that
KKD(x, x) = 1 for all x ∈ X . Because all diffusion kernels are positive semi-
definite, it is concluded that the diffusion kernel used in this work is a similarity
kernel.

The Hamming distance kernel is defined in [6] in the framework of positive
semi-definite kernels. It is not immediate from its definition whether it has a
constant diagonal. However, the Hamming distance kernel is characterized by
the following recursive formulas: [6]

K0(s, t) = 1 (11)

Kj(s, t) =
[
λ2(| Dj | −1 − δ(sj , tj)) + (2λ − 1)δ(sj , tj) + 1

]
Kj−1(s, t) (12)

KH(s, t) = Km(s, t) (13)

where 1 ≤ j ≤ m and m is the number of attributes in the data set.

Table 1. Experimental results. The columns labeled as ‘q’ indicate the number of data
points to return as outliers. Values in the other columns represent how many of the q
tentative outliers were true outliers. The last row of each table shows the sum of true
outliers detected through each score.

Yeast data set Breast cancer data set
Gaussian kernel Gaussian kernel
σ = 3 σ = 0.5 σ = 200 σ = 50
kNNSS SKSS kNNSS SKSS

q k = 16 p = 0.25 k = 10 p = 0.1
5 3 5 5 5
10 8 9 8 9
15 9 9 11 10
20 11 11 12 12
25 11 11 12 12

sum: 42 45 48 48

Lymphography data set Post-operative data set
Hamming kernel Diffusion kernel Hamming kernel Diffusion kernel
λ = 0.2 λ = 0.4 β = 0.3 β = 0.5 λ = 0.1 λ = 0.1 β = 0.9 β = 0.3
kNNSS SKSS kNNSS SKSS kNNSS SKSS kNNSS SKSS

q k = 8 p = 0.2 k = 16 p = 0.05 k = 2 p = 0.05 k = 2 p = 0.35
2 2 2 2 2 1 1 1 1
4 4 4 4 4 1 2 1 1
6 5 6 4 4 1 2 1 2
8 5 6 6 5 1 2 2 3
10 6 6 6 6 2 2 2 3

sum: 22 24 22 21 6 9 7 10
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It is easy to see that KH(s, s) is an algebraic expression that depends only
on λ and Dj. Consequently, KH(s, s) is equal to a constant value regardless
of the particular data point s. To show that this constant is positive, we set
K0(s, s) = 1 as a base step and prove by induction that if Kj(s, s) > 0 then
Kj+1(s, s) > 0 for 1 ≤ j ≤ m:

Kj+1(s, s) =
(
λ2(| Dj+1 | −1) + 1

)
Kj(s, s) (14)

=
(
λ2(| Dj+1 |) + (1 − λ2)

)
Kj(s, s) > 0 (15)

4.3 Experimental Results

A tuning process allowed us to obtain the best values for each kernel and score
parameter. The best value of the parameter σ for the Gaussian kernel was ob-
tained from the interval [0.1, 1000] for each similarity score. The best value for
the parameters of the categorical kernels were determined, for each similarity
score, from the set {0.1, 0.2, ..., 0.9}. The values for the score parameter k were
chosen from the set {1, 2, 3, 4, 5, 6, 8, 10, 13, 16}. The values of p were restricted
to the interval [0.05, 0.5]. The experimental results are shown in table 1.

For the breast cancer and the lymphography data sets, both similarity scores
performed about equally. For the yeast and post-operative data sets the highest
detection rates corresponded to SKSS. Overall, SKSS showed slightly better
results than kNNSS.

5 Conclusions

In this paper, the concept “similarity kernel” was introduced by giving a for-
mal definition for it. Similarity kernels should be used for unsupervised nearest
neighbor-based outlier detection. For any similarity kernel K, the distance be-
tween two points xi and xj in the feature space are inversely proportional to
K(xi, xj). Consequently, the kernel values can be considered as similarity val-
ues. Additionally, our definition of similarity kernels satisfy desirable properties
of similarity measures. Isotropic stationary kernels should be used for nearest
neighbor-based outlier detection whenever possible, in order to maintain invari-
ance to translations and rotations. The class of isotropic stationary kernels is a
proper subset of the class of similarity kernels. It would be interesting to deter-
mine whether both classes of kernels are the same when constrained to normed
spaces.

Two kernel similarity scores were defined in this work: kNNSS and SKSS.
The first one is a characterization of the well-known k-NN score in terms of
kernels. The second one is a new density-based similarity score. The two scores
were compared on four data sets, where SKSS compared favorably to kNNSS.
Although these are preliminary results, they suggest that SKSS might be a good
alternative to the kNN approach for unsupervised outlier detection. The fact
that no sorting procedure is needed to calculate SKSS is another point favoring
the use of SKSS.
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We believe that the kernel nearest-neighbor approach is an excellent option
for domains with a large number of attributes. It could be particularly useful for
input spaces with complex data structures for which effective similarity kernels
could be defined. However, the values of kernel and score parameters need to
be determined in order to obtain good detection accuracy. Consequently, an
interesting follow up to this work would be to devise methods for automatic
estimation of those parameters. Another interesting path would be to determine
which other kernel functions are also similarity kernels.
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Abstract. Experts in scientific fields routinely operate under less-than-ideal 
conditions. We present a deployed data analysis system for cosmogenic isotope 
dating, a domain that is fraught with difficult automation issues. First, experts 
must work with a huge array of possible parameters. Our system ACE handles 
this issue by pushing the bounds of software flexibility. Furthermore, isotope 
dating experts reason about groups of samples using a large number of vague 
and contradictory heuristics. Calvin, an argumentation system, addresses this is-
sue. Our intelligent data analysis tool is in daily use by isotope dating experts. 

1   Introduction 

Certain kinds of problems are endemic to many scientific fields: the collection and 
maintenance of vast quantities of data, a need to experiment with various input pa-
rameters, and difficulties in interpreting results in a consistent, transparent, and unbi-
ased way. Integrated, usable systems to support experts in these tasks can make an 
enormous difference to the speed and quality of these experts’ work. 

One field rife with these problems (and more) is cosmogenic isotope dating. Dating 
calculations rely on more than a dozen variables, some of which are actually tables of 
several hundred values. New estimations of these variables are published frequently, 
sometimes several times a year, making just the task of tracking and understanding 
background information for dating quite challenging. Using this enormous collection 
of background data generally involves the scientist experimenting with possible pa-
rameter choices to determine which ones make the most sense in context, as well as 
determine the samples’ sensitivity to possible environmental perturbations. 

Once a collection of samples has been dated, they need to be interpreted to  
determine the most likely age of the overall landform. This is a difficult problem: 
geological processes take place over an extremely long period of time, and evidence 
remaining today is scarce and noisy. Experts in geological dating, like experts in any 
field, are only human, and can be biased in favor of one theory over another. In the 
example in Figure 1, subsurface rocks are exposed over time as the soil around them 
erodes. A geoscientist would be faced with the situation shown on the right of the 
figure; his1 task is to derive the original situation, shown at the left. 
                                                           
∗ This material is based upon work supported by the NSF under Grant No. ATM-0325812. 
1 We use the male pronoun purely for linguistic simplicity; obviously some isotope dating 

experts are female. 
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Fig. 1. Deducing past events from the evidence available now 

Before our work in this area, many geoscientists kept their background data in Mi-
crosoft Excel spreadsheets, and performed dating calculations in custom spreadsheets 
using the same software. A better solution to this problem would be to store back-
ground data in a way that could be identical between different groups, all accessed 
and used by the same software. Because of the ever-changing nature of this field, 
software for performing these calculations must be extremely flexible, allowing users 
to easily write, modify, and share equations and input parameters easily. 

Understanding and interpreting ages once they have been calculated was not auto-
mated or standardized in any way. Students were expected to pick up analysis tech-
niques by observing experts, and the degree of sophistication in analysis was widely 
variable. A symbolic AI system that explicitly encodes the knowledge of domain 
experts would help less-experienced researchers come to better conclusions. Present-
ing analysis of datasets in clear, structured ways can help students learn to perform 
the same analysis. Finally, an automated system does not dismiss hypotheses due to 
personal bias, and can instead give every hypothesis equal treatment. 

We created two discrete systems that work closely together to address these two 
problems. The Age Calculation Engine (ACE) stores background data and can calcu-
late sample ages using any level of calculation sophistication and any set of back-
ground data the user desires. Calvin (named for the always-arguing comic character) 
forms and ranks arguments about what processes have affected the dated samples, a 
critical step in determining the overall age of a landform. ACE and Calvin provide 
several contributions to software engineering, AI, and the larger scientific community: 

• ACE is an incredibly flexible system, able to store and present types of data deter-
mined at runtime in a seamless, consistent way 

• The calculations performed by ACE can be determined by the user at runtime by 
visually assembling discrete components 
• Calvin's rule base and ACE’s data repository compose an explicit representation of 
the knowledge of two dozen experts in landform dating 

• Calvin incorporates a rich system of confidence that captures the reasoning of real 
scientists in a useful way 

• Finally, they are both real tools that are in daily use by real scientists 
 

In the following section, we discuss the general problem of cosmogenic isotope dat-
ing, highlighting its challenges and the approach that experts take to solving it. Next, 
we describe how we used principles of software engineering to make ACE as flexible 
as possible. Then we show how Calvin uses argumentation, a symbolic AI technique, 
to automate reasoning about dated samples. Finally, we discuss our results. 
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2   Cosmogenic Isotope Dating 

The first step in a new isotope dating project is to collect as many samples as possible 
from a landform. At least five samples is best [11]; five to ten samples is about the 
norm. Experts would prefer to collect far more samples, but often only a handful of 
suitable boulders are available. While collecting samples, the expert also makes quali-
tative field observations that are often crucial for interpreting initial dating results. 

Once he has gathered a set of samples in the field, the expert dates each sample. 
This dating method is based on in-situ accumulation of rare nuclides in rocks exposed 
to cosmic radiation [14]. Because the production rates of these nuclides are known, 
their concentrations can be used to calculate how long these rocks have been exposed. 

Production rates of cosmogenic nuclides depend on the local cosmic-ray intensity. 
Cosmic ray intensity is a itself a function of geomagnetic pole position, atmospheric 
compositions, and other variables, all of which are themselves complex functions over 
time. Prior to our work, the geoscientist would numerically integrate these various 
functions in Microsoft Excel to find the long-term production and average out short-
term variations. The quality of this rate depends on the quality calibration and the 
quality of the data sets estimating various other geological variables over time. All of 
these variables mean that experts in isotope dating must collate and work with enor-
mous amounts of data simply to date individual samples at the state of the art. Then, 
because not all experts use the same parameters for estimating cosmic ray intensity 
and production, it is also difficult to compare ages determined by different groups. 

Once the expert has determined an exposure age for each individual sample, his 
work is still far from finished. The exposure age of each sample takes the form of a 
value with error bars, and the expert’s next step is to derive an absolute landform age 
from the group of individual sample exposure times. For most landforms, the surface 
exposure times of boulders on the surface are true measure of the age of the landform. 
However, the different formation and evolution processes of different landforms 
complicate the expert’s task of determining an overall age for a landform. 

Instead, initial sample ages are usually spread over a wide range and the researcher 
must construct an explanation for the spread in apparent ages, usually a geologic 
process acting on the samples over time. Once he has found a process that explains 
the majority of the data (through the use of contradictory and often controversial heu-
ristics), he uses further calculations and educated guesswork to remove its effects 
from the sample set and arrive at a single age for the landform. In real landforms, 
more than one process may have been at work, but experts generally focus on isolat-
ing the one that most affected the ages of the samples. 

Isotope dating experts face two distinct but related problems in trying to determine 
a single age of a landform. First, they must date each individual sample. The back-
ground data in use (e.g. sea level and pole position estimates for the last several thou-
sand years) is significant and varies between groups. This makes it quite difficult to 
place results, even from the same location, on the same time scale. Determining a 
sample’s age involves a complex numeric integration with a large number of vari-
ables, and more variables are added to this calculation as the state of the art advances. 

The second major problem in dating a landform is to determine its overall age from 
a set of samples. Here, experts we spoke to varied wildly in the level of sophistication 
they used in their analysis—one expert told the interviewer “it’s always the oldest 
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sample,” while others spoke at great length about how to determine the most repre-
sentative age. Knowledge about how to perform this analysis is largely not taught  
incourses; instead, students are expected to pick it up during graduate work by ob-
serving experts. This makes student education slow and difficult, as well as leading to 
publication of results that experts told us candidly were “obviously wrong.” 

We chose to address these two problems with two distinct systems that work 
closely together. For calculating the ages of individual samples, as well as storing 
sample data and collating background data, we designed and implemented ACE, a 
workflow-based design environment for cosmogenic nuclide dating [1]. To reason 
about the most likely landform age from a set of dated samples and store knowledge 
about how that reasoning is performed, we created Calvin, a symbolic argumentation 
system [12]. 

3   ACE: Design and Architecture 

The Age Calculation Engine—ACE—is a design environment for developing and 
evaluating cosmogenic nuclide dating techniques. It is designed to meet the needs of 
geoscientists working on problems surrounding cosmogenic nuclide dating and, ulti-
mately, to provide Calvin with dated sets of samples to reason over. 

All information processed by ACE is stored in a repository. The Sample Browser 
provides the primary user interface for ACE, allowing users to sort, search and filter 
samples based on their attributes. A screenshot of ACE’s sample browser is shown in 
Figure 2. In this screenshot, the sample browser has been asked to display attributes 
related to the age of samples (View: Ages), to only show samples with calculated ages 
(Filter: Dated Samples) and to sort the samples by experiment and then by age. The 
user could have further refined the display by entering a search term. Typing “26” as 
a query would further filter the results to only display samples TI2 and Tl3, for  
instance. 

From this browser, geoscientists can create experiments, which specify all of the 
parameters needed to date samples, as well as which collections of background data to 
use via the “Make Experiment...” button. The user can also ask for the samples to be 
dated (“Date Samples...”) and then sent to Calvin for analysis (“Analyze Ages...”). 

The ACE workflow engine is used to apply experiments to undated samples, 
thereby dating them. It is also used to calibrate experiments to provide them with the 
“production rate” of a particular nuclide. Calibration is performed with respect to a 
calibration set, which contains samples that have been dated using other methods. 

This process leads to a “production rate” that can then be used by dating workflows 
to determine the age of uncalibrated samples based on the amount of that same nu-
clide they contain. Workflows are simply groups of components that have been ar-
ranged in a particular way; a single component can be connected to multiple input and 
output components. This allows workflows to branch and loop based on conditional 
logic, as well as doing basic serial processing on a sample. For simplicity, the only 
thing passed between components is a set of samples; each component performs its 
calculation on the set of samples it receives and then passes the samples to subsequent 
components. 

 



 End-to-End Support for Dating Paleolandforms 175 

 

 

Fig. 2. A screenshot of the ACE sample browser 

In designing ACE, our key goals were flexibility and extensibility. The former was 
needed because geoscientists work with heterogeneous data types, and the latter was 
needed to allow these scientists to extend and expand the system without external sup-
port. Flexibility manifests in many ways throughout the system. 
●  Scientists can create multiple repositories and easily switch between them. Data is 
stored in a human-readable format. This approach allows scientists to make copies of 
their data, easily place it under version control, edit files by hand and gives them a 
sense of control over their data. Our geoscientist collaborators were adamant that they 
wanted to know where their data was stored, and this solution best meets that need. 
●  ACE allows data of all types to be imported into its repositories: samples, calibra-
tion sets, and data collections. Data collections of any type can be imported: the tem-
plate editor provides users with the ability to specify the structure of data sets. 
●  Workflow structures can be further customized for individual experiments. Work-
flows consist of two types of entities: components and placeholders. A placeholder 
essentially acts as a template for a component which can be specified as part of the 
experiment specification. For instance, there are multiple sea-level datasets that geo-
scientists may use when determining if a particular sample was ever submerged. 
When an experiment is created, a scientist selects specific values for all of the place-
holders contained in its underlying workflow. If he wants to understand the impact 
that different types of sea-level data have on the ages produced by the experiment's 
workflow, for instance, he can instantiate the experiment multiple times, selecting a 
different sea-level component each time. 

ACE provides extensibility in a number of ways. Components can be added at any 
time and incorporated into new workflows. The factor editor allows users to define 
new types of placeholders that can then be incorporated into workflows. The template 
editor allows new data types to be defined and then incorporated into ACE in the form 
of data collections. Finally, the nuclide editor allows new nuclides to be defined that 
then allow new types of samples to be imported and analyzed. 
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4   Calvin: Design and Architecture 

Calvin begins where ACE leaves off, with a set of individually dated samples. It ana-
lyzes groups of these samples to determine what process affected the whole landform. 
Our selection of an appropriate framework for solving this problem rested primarily 
on data we gathered during extensive interviews. From these interviews, we arrived at 
an argumentation framework as the best one for Calvin. This selection led to a need to 
represent both expert knowledge and expert sources and comparison of confidence.  

We interviewed about two dozen experts in isotope dating, amassing around forty 
hours of formal interviews and a similar length of informal interviews. Transcripts of 
formal interviews are in [12]. Experts in isotope dating consistently use the method of 
multiple simultaneous hypotheses [4]. Then they form arguments for and against 
every hypothesis, judging their relative and absolute strength to arrive at a solution.  

In our interviews, we learned that experts reason with contradictory heuristics: 
Geologist: The thing about inheritance is, it’s usually thought about as quantized, 

not incremental... 
Interviewer: So it shouldn't be a spread of ages 
Geologist: Yeah, however, you can convince me you would see a continuum. That 

is, not only do experts disagree with each other, they sometimes disagree with them-
selves. Human experts are able to sort out these conflicting impulses to believe or 
disbelieve a conclusion on the basis of specific evidence or additional facts:  

Interviewer: So you explain the spread in ages with field observations?  
Geologist: Well, but why did you sample those in the first place? You chose these 

because you thought they would give the age of the landform and you were wrong so 
why should I believe your follow-up [...] The ages that are obviously wrong in line 
with processes you are sure are active would give higher credibility so for example if 
there are lots of samples that are too young but you also observe that the landform is 
very active, [...] if you see ages that are consistent with that, you know that are too 
young, then you can be pretty sure. Finally, experts themselves know that they reason 
in the form of arguments:  

Interviewer: So we’re trying to understand what it is that you do Geologist: Well, 
what we do is we argue with each other. 

Symbolic argumentation is a natural framework both to accurately reflect the struc-
ture of reasoning revealed in these interviews. It encodes domain knowledge directly 
in the form of rules and can present the reasoning behind its conclusions, making it an 
excellent teaching tool. It also elegantly captures the concept of reasoning with con-
tradiction and problems of weighing confidence in competing arguments. 

4.1   Reasoning Process 

Only a few, known processes affect most landforms. Because the possible processes 
are known, experts do not generally need to form novel hypotheses to find an  
explanation for their data. Therefore, Calvin gives every hypothesis from the list of 
‘usual suspects’ equal consideration, as recommended in [4] and by experts during 
interviews. 

Most of Calvin’s work revolves around generating arguments for each hypothesis 
in its list of candidate explanations. This process involves finding the applicable  
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information in its knowledge base, unifying that knowledge with the data from ACE, 
and using that unification to construct a collection of arguments about the conclusion. 

Calvin considers candidate hypotheses one at a time. Arguments for and against 
each hypothesis are built using backwards chaining. First, the engine finds all the 
rules in its knowledge base that apply to this hypothesis—i.e., those that refer to the 
same conclusion. Unification is applied to each of these rules, resulting in either a 
new conclusion to consider or a comparison to input data. Calvin builds the most 
complete possible set of arguments from its knowledge base for and against each 
hypothesis. 

Every rule in Calvin contains both a conclusion and a template for evidence that 
will support that conclusion. The primary portion of a rule is an implication of the 
form A ⇒ C , where A may be either a single literal or the conjunction (or disjunc-
tion) of several literals, and C is the conclusion that A supports. Calvin uses its rules 
to form an argument (not a proof) for each element in A. From arguments in favor of 
A, Calvin creates an argument for C. The representation of the argument contains 
both the rule and the arguments for the antecedents. However stronger arguments 
against the conclusion may be found, and Calvin's belief in it overturned. This is the 
main distinction between an argumentation system and a classical first-order logic 
system. 

Calvin’s rules contain several additional elements that serve important functions: a 
quality rating, a guard, and a confidence template. The quality rating and confidence 
template are used to judge the relative and absolute strengths of arguments; these are 
discussed in Section 4.2. Guards prevent the engine from building arguments using 
rules that are not applicable to the current case. For example, Calvin knows that snow 
cover is more likely if sample age is inversely correlated with elevation. This rule 
only makes sense for sample sets with large enough elevation ranges to have variable 
snowfall. Otherwise, random differences in the data might be interpreted as a mean-
ingful correlation. The guard on this rule tells the engine to ignore the rule unless this 
precondition holds. Other argumentation systems typically do not require an explicit 
guard mechanism because they instead defeat rules explicitly [6], [9]. 

The antecedents in a rule are templates for the evidence that will satisfy that  
rule and therefore argue for the rule’s conclusion. These patterns define both what 
evidence is needed to satisfy the rule and where that evidence can be located: that  
is, whether to build an argument for a new conclusion or refer to the data input by  
the user. Calvin has four types of evidence: observations, calculations,  
simulations (which are more complex calculations), and arguments. Calvin 
also forms confidence for weighing final arguments differently for different types of 
evidence (see Section 4.2). 

The arguments for a conclusion C are a collection of trees constructed by Calvin's 
engine by unifying rules with evidence. Alternatively, each argument can be viewed 
as a tuple of the conclusion and support for the argument, as in the Logic of  
Argumentation of [8]. The root of each tree in the collection is a rule whose conclu-
sion is C, such as the rule A  ⇒ C .  Each child of this root is one of the literals in A  
unified with evidence. This evidence may be either additional collections of argument 
trees or a reference to the input data. Calvin's backwards-chaining engine generally 
makes no distinction between negative and positive evidence. This is not a valid 
method in classical logic, where the knowledge that A  ⇒  C certainly does not imply 
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that A C . However, Calvin's reasoning mimics that of experts, who are not neces-
sarily logical. Experts not only apply rules in this negative fashion, they regard it as a 
sufficiently defensible practice that they discuss it in published reasoning. For exam-
ple, [7] states that, since there is no visual evidence of erosion, erosion is unlikely. 

4.2   Weighing Arguments 

Some arguments carry greater weight than others, but precise comparisons between 
arguments are not always easy to perform. For example, some arguments for exhuma-
tion on a hypothetical moraine might be: 
1. This moraine has a flat crest, which is a visual sign of matrix erosion. Matrix ero-

sion causes exhumation. 
2. This landform is a moraine, and moraines usually have a matrix, which is soft and 

erodes quickly. Matrix erosion causes exhumation. 
3. This landform has samples as old as 50ky, and various processes often disturb the 

surface and cause exhumation over such a long time period. 
Clearly (1) and (2) are similar arguments, sharing the same root rule. Calvin would 
derive these arguments as a single tree with two branches. However (1) is a stronger 
argument for exhumation because it draws on empirical observations rather than gen-
eral knowledge about moraines. This issue is often handled in argumentation systems 
by referring to the specificity of arguments, with more-specific arguments carrying 
more weight [5]. However, (3) seems to contradict this choice of weighting: although 
it refers to information that is specific to this landform, it seems weaker than (1). 
Furthermore, the relationship between (2) and (3) is surprisingly difficult to quantify. 
How, then, are we—or Calvin—to judge the relative and absolute strengths of these 
three arguments in a way that preserves the intuitive relationships between them? 

The central principal of Calvin's confidence system is that not only can specific evi-
dence be trivial or critical, but the knowledge used to connect the evidence to the con-
clusion is also of variable quality. Defining confidence with two dimensions clarifies 
why one argument is better than another: (1) uses high-quality evidence and high-
quality knowledge; (2) uses high-quality knowledge but moderate-quality evidence; 
and (3) uses high-quality evidence but low-quality knowledge. Separating the sources 
of confidence greatly enhances our understanding of the strengths of these three argu-
ments. To instantiate this, Calvin represents confidence as a two-dimensional vector. 
One element of the vector is determined by the rules used to form the argument, and 
the other is determined by how closely the observed situation matched those rules. 

As part of our knowledge engineering process, we asked experts about the strength 
of their belief in their heuristics to determine the appropriate qualitative validity to 
assign to each rule. When Calvin unifies evidence with a rule, it creates a confidence 
vector for the rule’s conclusion from the closeness of the current situation to the rule's 
threshold(s) (closer to thresholds gives less confidence) and the validity assigned to 
the rule. Calvin's engine uses this confidence vector to find an overall confidence in 
chains of arguments and in sets of argument trees. 

To judge the strengths of the arguments it generates, Calvin manipulates confidence 
values in two distinct ways. The first operates along a single chain of reasoning: snow 
cover is more likely in cold areas; this area is cold because it is at high elevation. It 
makes sense to choose the validity of the least-valid rule for the overall conclusion, so 
that the chain is only as strong as its weakest link. Applicability is ‘created’ by the  
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direct use of observed evidence. In this case, how high the sampled area is compared to 
the rule’s threshold determines the applicability. A few rules lower or raise the appli-
cability of knowledge passed through them to handle cases where an observation is 
not specific to the knowledge being applied, as in argument (2). 

The second and more-complicated use of confidence occurs when a number of dif-
ferent chains of reasoning are all applied to the same conclusion (because an argu-
ment is a collection of trees), e.g.: (a) erosion is more likely because the landform is 
old; (b) erosion is less likely because there is no visible sign of it. Note that a chain of 
reasoning supporting the conclusion might have higher validity but lower applicabil-
ity than a chain of reasoning refuting the conclusion. There are often several inde-
pendent chains of reasoning both supporting and refuting the conclusion, each with its 
own confidence level. Calvin, like many existing argumentation systems [10], assigns 
confidence in two stages, first locally up a single chain of reasoning and then globally 
across many chains of reasoning arguing about the same conclusion. 

To determine its overall confidence in a conclusion, Calvin first aggregates groups 
of lower-validity confidences in into higher-validity confidences. Then, if the highest-
validity confidences for and against the conclusion are at least two levels apart, the 
highest-validity confidence is returned intact as the overall confidence: it is suffi-
ciently strong to completely override the weaker rebutting evidence. This difference 
implies a huge difference in overall strength—it is the difference between a logical 
tautology and a general rule of thumb. In contrast, a single level of difference in valid-
ity is less drastic, for example the difference between the preceding statement and a 
statement that ‘snow cover is plausible in cold areas.’ The resulting confidence in 
other situations is illustrated in Table 1. Calvin reduces its overall confidence in a 
conclusion according to how close two competing confidences are. Table 1 shows the 
possible ranks of confidence reduction and when they apply. 

Table 1. Reduction Operations in Confidence Combination 

Reduction Operation Occurs When
Validity >, AND Validity =, AND

Do Nothing Applicability >>
Applicability- Applicability >= Applicability >>

Applicability- - ‘Against’ Applicability >
Validity- - Applicability <

Validity-, Applicability- ‘For’ Applicability >
Validity-, Applicability- Applicability =

 

4.3   Presenting Conclusions 

Once Calvin has finished building arguments, it needs to present its reasoning and 
conclusions to the user, who makes the final decision about what arguments are most 
convincing. We strongly believe that information should be presented visually when-
ever possible, and worked toward that end. Calvin presents its results first as a sum-
mary screen showing all of the arguments it has produced and their overall confidence 
values. These are positioned on the screen and marked with colors based on their 
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individual strength. The user can view the individual arguments for a conclusion by 
selecting it on the summary screen. A similar screen is presented for every conclusion 
about which Calvin generated a set of arguments. The user navigates between these 
screens by double-clicking on arguments in the summary screen or by selecting them 
from the left-hand navigation panel. Finally, whenever possible, Calvin shows its 
reasoning using graphs. Figure 3 shows some screenshots of Calvin's user interface. 

5   Results 

ACE has met all of its design goals: it provides a flexible and extensible design 
environment for cosmogenic nuclide dating techniques. During its design and  
implementation, our collaborators rigorously checked its calculations for accuracy. 
They (and their wider research community) have been actively using the software 
for more than a year without the need for our help in maintaining or debugging it. A 
review of posts on the ACE website reveal that aspects of ACE’s flexibility and 
extensibility are being used to extend the system as geoscientists add new tools for 
their own use. 

 

Fig. 3. Labelled screenshots of Calvin's user interface 
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To judge Calvin’s success, we needed to compare its arguments to the arguments of 
domain experts. Experts typically publish some of their qualitative reasoning, includ-
ing information about both rejected and accepted conclusions. We used these publica-
tions to assess Calvin's ability to reproduce expert human reasoning. Specifically, we 
compared Calvin's reasoning to the reasoning in eighteen randomly-selected papers 
discussing one or more isotope dating problems in detail. These publications provide a 
broad basis of comparison. To compare Calvin's output with this prose, we extracted 
every statement from these papers that made an assertion and distilled it to the conclu-
sion being argued and the evidence presented for that conclusion. We then entered the 
data from the paper, ran Calvin, and compared its output to these argument summaries. 

Calvin performed quite well at reproducing arguments published in isotope dating 
papers. For 62.7% of the arguments in published work, Calvin came to the same con-
clusion, supported by the same evidence, at about the same confidence level as the 
argument in the original paper (we found judging confidence levels from prose rela-
tively difficult, and only divided these arguments into ‘strong’ and ‘weak’ categories). 
On a further 26.1% of these arguments, Calvin succeeded in two of these elements 
(recognizing the same evidence as important but to a different conclusion, coming to 
the same conclusion with different evidence or a vastly different confidence level) 
[12]. In a few cases, Calvin produced arguments that did not appear in the paper. In 
one such case, when examining [2], Calvin argued that the samples were exhumed 
because of a disagreement with ages determined for this landform via other methods. 
We consulted with a domain expert to judge Calvin's new argument:  

I think I see both sides here. From the results, the fact that the ages are younger 
than the C14 data means that exhumation should be taken very seriously [...but] 
there is not much in the way of material that could bury them. However the peaks 
themselves are eroding...  

Clearly choosing not to explicitly address exhumation in [2] was a major oversight! 
Although Calvin does not give the same mechanism for burial and exhumation, it has 
found a major gap in the reasoning published by these authors. 

Calvin also produced arguments strikingly similar to the statements in some pa-
pers. These similarities were especially obvious when the authors expressed signifi-
cant doubt about their own conclusions. For example, consider this passage from [3]:  

“The ca. 56 ka age on the Jago lateral moraine appears to be a clear outlier that 
we attribute to inheritance. The age of the Okpilak ridge is uncertain; correlation 
with the Jago ridge supports the suggestion that the two older boulders from the 
Okpilak ridge contain inherited isotopes. Alternatively [...] the young age cluster 
on the Jago ridge records accelerated moraine degradation and consequent boul-
der exhumation [...] On the other hand, the stabilization age indicated by the [...] 
ca. 27 ka age is consistent with Hamilton's (1982) age constraints for deglacia-
tion...”  

Calvin finds it quite likely that the 56ka sample is an outlier and attributes the dif-
ference to inheritance. However it, too, grapples with explaining the age of the Okpa-
lik ridge: inheritance is supported by correlation with the Jago moraine, the 25ka 
expected age, and the climate of the area. However, this implies that 2/3 of the sam-
ples from that ridge contain significant inheritance, leading to a conflicted overall 
argument for inheritance. Calvin also finds significant support for exhumation on both 
moraines, coming to the same uncertain conclusion as the authors. 
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6   Conclusion 

Calvin and ACE are fully implemented and deployed software systems for experts in 
cosmogenic isotope dating. They have been downloaded from our website, http:// 
ace.hwr.arizona.edu/, 178 times. ACE pushes the bounds of software flexibility,  
contributing new ideas about software design and data presentation. Although real 
experts are using it, no input has been needed from the original designers since its 
release. Building Calvin required us to solve a complex problem: how to determine 
and compare confidence. Our solution of a two-element vector to represent confi-
dence and the associated system for weighing rebutting arguments appears to be 
novel. This system, while complex in its implementation, elegantly captures expert 
reasoning. 

In designing both ACE and Calvin, we allowed the needs and desires, as well as 
the current processes, of existing experts in the field to guide our decisions. Because 
experts requested different or more sophisticated calculations, and above all more 
flexibility, every time we spoke with them about their desires for ACE, it is built to be 
as flexible a system as we could possibly make it. When we discussed groups of sam-
ples, experts presented their reasoning as arguments, replete with vague assertions and 
contradictions. Therefore, we designed and implemented Calvin as an argumentation 
system to generate arguments as close as possible to those presented by experts. 

While our initial results are extremely promising, we look forward to examining 
the successes and shortcomings of our solutions in a more rigorous fashion. We 
would like to conduct a formal user study with scientists who have been using ACE 
for long enough to become ‘expert’ in using it. Calvin's performance will be more 
rigorously assessed using automatic annotation to extract arguments from published 
work [13]. 

ACE and Calvin are intended as general solutions for problems of data organiza-
tion and analysis in any scientific field, not just cosmogenic isotope dating. To that 
end, we are now in the process of expanding both solutions to the similar (but hardly 
identical) problem of accurately dating layers in ice cores. 
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Abstract. Precision Agriculture applies state-of-the-art GPS technology in con-
nection with site-specific, sensor-based crop management. It can also be de-
scribed as a data-driven approach to agriculture, which is strongly connected with
a number of data mining problems. One of those is also an inherently important
task in agriculture: yield prediction. Given a yield prediction model, which of the
predictor variables are the important ones?

In the past, a number of approaches have been proposed towards this problem.
For yield prediction, a broad variety of regression models for non-spatial data can
be adapted for spatial data using a novel spatial cross-validation technique. Since
this procedure is at the core of variable importance assessment, it will be briefly
introduced here. Given this spatial yield prediction model, a novel approach to-
wards assessing a variable’s importance will be presented. It essentially consists
of picking each of the predictor variables, one at a time, permutating its values
in the test set and observing the deviation of the model’s RMSE. This article
uses two real-world data sets from precision agriculture and evaluates the above
procedure.

Keywords: Precision Agriculture, Spatial Data Mining, Regression, Spatial
Cross-Validation, Variable Importance.

1 Introduction

Data-driven technology has become part of our everyday lives, while data-driven man-
agement techniques have become necessary and common in industry and services. Im-
provements in efficiency can be made in almost any part of businesses. This is especially
true for agriculture, due to the modernization and better affordability of state-of-the-art
GPS technology. Agricultural companies nowadays harvest not only crops but also a
growing amount of data. Site-specific crop management (SSM) therefore heavily de-
pends on knowledge discovery from large amounts of site-specific, possibly noisy geo-
data. This led to the term precision agriculture (PA) being coined. PA is an agricultural
concept based on the assumption of in-field heterogeneity. The abovementioned GPS,
as well as ground-based, aerial or satellite sensors and image acquisition in connection
with geographic information systems (GIS) allow to assess and understand variations.
These data are nowadays routinely collected and available to farm operators. It can be
expected that a large amount of information is contained, yet hidden, in these agricul-
tural field data. This is usually information about the soil and crop properties enabling a
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higher operational efficiency – appropriate data processing techniques should therefore
be applied to find this information. This is a rather common problem for which the term
data mining has been coined. Data mining techniques aim at finding those patterns in
the data that are both valuable and interesting for crop management. In PA, it must ad-
ditionally be taken into account that the data are spatial: each data record has a specific
location on the field and is accompanied by natural neighboring data points. Therefore,
it must not be considered independent of its neighbors.

Yield prediction is a specific agricultural problem commonly occurring. As early
as possible, a farmer would like to know how much yield he is about to expect. The
ability to predict yield used to rely on farmers’ long-term knowledge of particular fields,
crops and climate conditions. However, this knowledge is assumed to be available in the
data collected during normal farming operations throughout the season(s). A multitude
of sensor data are nowadays collected, measuring a field’s heterogeneity. These data
are fine-scale, often highly correlated and carry spatial information which must not be
neglected. Furthermore, it is of interest to know which of these sensor data are the
most relevant for a yield prediction setup. Given novel sensors, we would like to assess
whether they contribute novel information or whether this information is not already
contained in more traditional data sources.

The problem of yield prediction can be treated as a problem of data mining and,
specifically, regression. However, it should be noted that a regression problem on spa-
tial data must be treated differently from regression on non-spatial data, as described
in [7]. This article will serve as a continuation of [19]: in the previous article, the spatial
data were treated with regression models which do not take the spatial relationships
into account. This lead to serious underestimation of the true prediction error, which is
shown in [20] where we compared the results on non-spatial data with those obtained
on spatial data. This article builds on the previously established suitable spatial cross-
validation framework (summarised in Section 3.1) and presents an approach to assess
the importance of certain variables in the abovementioned precision agriculture data
sets.

1.1 Research Target

The main research target of this work is to build upon yield prediction approaches to
establish a novel approach towards assessing a variable’s importance. The regression
work presented in [19,23] will be used as a baseline for this work. The spatial regres-
sion model with spatial cross-validation has recently been described in [20] (a short
summary is given below) and will be used as a core of the proposed variable importance
assessment. Our approach will be described in detail and results from its application on
two precision agriculture data sets will be detailed below.

1.2 Article Structure

This article will start with a brief introduction into the area of precision agriculture and
a more detailed description of the available data in Section 2. This will be followed
by an outline of the key techniques, a short summary of our novel spatial sampling
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technique described previously in [20], as well as our proposed approach towards vari-
able importance assessment in Section 3. The results obtained from the modeling phase
will be presented in Section 4. The article will be completed with a short conclusion in
Section 5, which will also point out further lines of research.

2 Data Description

This section will present a summary on the available data sets.
The data available in this work were collected during the growing season of 2007 on

two fields north of Köthen, Germany. The data for the two fields, called F440 and F611,
respectively, were interpolated using kriging [24] to a grid with a resolution of 10 by
10 meters. Each grid cell represents a record with all available information. The fields
grew winter wheat. Nitrogen fertilizer (N) was applied three times during the grow-
ing season. Overall, for each field there are six input attributes – accompanied by the
respective current year’s yield (2007) as the target attribute. These available attributes
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Fig. 1. Statistical Summary for the two available data sets (F440, F611)
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Table 1. Statistical summary of data sets, see also Figure 1

F440 F611
min mean median max min mean median max

EC25 39.47 50.13 50.22 60.69 38.41 54.44 53.17 81.98
N1 50.00 63.57 70.00 70.00 42.00 65.09 68.00 70.00
N2 2.00 47.60 48.00 80.00 0.00 47.89 50.00 80.00
N3 0.00 37.98 40.00 95.00 0.00 45.61 50.00 68.00
REIP32 721.33 725.11 725.19 728.14 721.41 724.37 724.41 726.09
REIP49 724.50 727.20 727.34 729.82 721.30 727.12 727.23 729.41
YIELD07 0.49 7.37 6.89 13.92 1.32 5.42 5.51 11.88

will be described in the following. In total, for the F440 field there are 6446 records, for
F611 there are 4970 records. Descriptive statistics are displayed in Table 1. For further
information on the available data attributes we refer to [19].

The response variable YIELD07 (wheat yield) is measured in metric tons per hectare
( t

ha ). The soil’s apparent electrical conductivity EC25 is measured by non-invasive geo-
physical instruments and represents a number of physical soil properties. The red edge
inflection point (REIP32, REIP49) values are obtained through image processing of
high-resolution imagery of the field. The plants’ chlorophyll content can be measured
by calculating the REIP value and allows to deduce the plants’ state of nutrition and
thus the previous crop growth. The 32 and 49 numbers in the indicators refer to the
growing stage of winter wheat. The amount of fertilizer applied to each subfield can be
measured, resulting in three attributes N1, N2, N3. N1 on the F440 field had only four
levels from {50,57,60,70}.

3 Spatial Data Mining

Spatial autocorrelation is the correlation among values of a single variable attributable
to the proximity of those values in geographic space, introducing a deviation from the
independent observations assumption of classical statistics. Spatial autocorrelation can
be assessed using the semivariogram, and its presence is often known beforehand be-
cause of the nature of the data at hand [9].

In previous articles using the above data, such as [21,19], the main focus was on
finding a suitable regression model to predict the current year’s yield sufficiently well.
However, it should be noted that the used regression models, such as neural networks
[21,22] or support vector regression [19], among others, generally assume statistical
independence of the data records. However, with the given geolocated data records
at hand, this is clearly not the case, due to (natural) spatial autocorrelation (cp. [7]).
Therefore, the spatial relationships between data records have to be taken into account.

3.1 Spatial vs. Non-spatial Data Treatment

To account for these spatial relationships, a novel and model-independent spatial cross-
validation technique has been presented in [20] and is summarised below. It has partly
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been adapted from existing approaches [4,5] towards the context of crop yield predic-
tion and spatial regression more generally.

The approach consists of subdividing the agriculture site into spatially contiguous
regions. This may be performed by overlaying the site with a regular grid. However,
there are drawbacks with this approach: due to the fields being different, the grid would
have to be manually adapted to each field being processed. Furthermore, agriculture
fields are rarely of regular shape, hence at the field borders the grid cells are likely to
be irregular as well, leading to further necessary processing. A third issue is to which
of the surrounding grid cells a data record on the cell borders should be assigned. To
overcome these issues, a clustering-based approach has been developed. This simple,
yet effective method employs k-means clustering on the data records’ coordinates (lon-
gitude, latitude) to partition the site into k contiguous parts of roughly equal size. This
is depicted for the F440 site in Figure 2.

Fig. 2. k-means clustering on F440, k = 10

Having partitioned the field into k subfields, cross-validation at the level of spatial
partitions may be carried out in order to assess the predictive performance of different
regression models in the spatial domain. The only difference is that the subdivision
of the whole data set into training and test subsets has to be done according to the
spatial clusters determined in the previous step. This avoids the issue of having the
same or similar samples in training and test sets, which non-spatial techniques mostly
neglect. In a non-spatial setup, this leads to model overfitting and an underestimation of
the prediction error (compare [4,6] for similar observations in a classification context).
With the above procedure, the estimated prediction error is much less influenced by
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model overfitting. Therefore, the prediction error of the spatial procedure is usually
much higher than the one in a non-spatial setup. This result could be confirmed in [20]
using tree-based regression techniques as well as a support vector machine.

3.2 Regression Techniques and Error Estimation

In previous work ([19,21]), numerous regression modeling techniques have been com-
pared on similar data sets. It was determined that among those models which represent
non-linear relationships between variables, SVR has constantly shown favorable RMSE
values. It has furthermore recently been shown to work rather successfully in spatial
classification tasks, albeit without spatial cross-validation, as in [17]. Resampling-based
estimation methods (such as cross-validation and the bootstrap) for dependent data in
general have been investigated recently in the context of time series data [8] and paired
data [6].

In this work, SVR will be compared against standard linear regression modeling
and tree-based models, all of those in the aforementioned spatial cross-validation setup.
Experiments are conducted in R [18]. It is assumed that the reader is mostly familiar
with the regression techniques below. Therefore, the techniques used are described in
short. References to further details are given, where appropriate.

Support Vector Regression. Support Vector Machines (SVMs) are a supervised learn-
ing method discovered by [1]. They were originally described for the use in clas-
sification, but can also be applied to regression tasks, where optimization of a cost
function is achieved. The model produced by support vector regression depends
only on a subset of the training data – which are essentially the support vectors.
Further details can be found in [19]. In the current experiments, the svm imple-
mentation from the e1071 R package has been used. We set a radial kernel and
cost=50. These settings were determined empirically by best.svm.

Regression Trees. Regression trees have seen some usage in agriculture [10,12,16].
Essentially, they are a special case of decision trees where the outcome (in the
tree leaves) is a continuous function instead of a discrete classification. The rpart R
package has been used, with the settings for rpart.control of minsplit=30
and the complexity parameter cp=0.001, pruning and maxdepth were left at
the defaults. These settings were determined experimentally.

Bootstrap Aggregating. Bootstrap aggregating (or bagging) [2] is generally described
as a method for generating multiple versions of a predictor and using these for ob-
taining an aggregate predictor. In the regression case, the prediction outcomes are
averaged. Multiple versions of the predictor are constructed by taking bootstrap
samples of the learning set and using these as new learning sets. Bagging is gen-
erally considered useful in regression setups where small changes in the training
data set can cause large perturbations in the predicted target variables. The bagging
implementation in the R ipred package has been used here. We set nbagg=250,
while leaving the parameters in rpart.control at their defaults.

Random Forests. According to [3], random forests are a combination of tree predic-
tors such that each tree depends on the values of a random vector sampled indepen-
dently and with the same distribution for all trees in the forest. Random forests are
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basically a variant of bagging where regression trees are used as the internal pre-
dictor. In addition to resampling the observations, it also resamples the variables,
which prevents overfitting, especially in high-dimensional problems. The random-
Forest R package has been used. The setting for ntree was kept at the default of
500 trees to grow.

Linear Regression. Linear regression is the most widely used regression technique in
an agricultural context. It is therefore used as a benchmark model for accuracy
assessment. We use the implementation of ordinary-least-squares linear regression
lm from the stats package.

The performance of the models will be determined using the root mean squared error
(RMSE). The RMSE is based on the difference between an observed target value ya and
the model prediction y.

3.3 Variable Importance

The interdependencies between variables in the data sets rule out standard feature se-
lection approaches such as forward selection [14] or backward elimination [11]. A rel-
atively new and intuitive computational approach for assessing variable importance is
based on measuring the increase in prediction error associated with permuting a pre-
dictor variable [26]. We adapt this approach to spatial prediction problems by assessing
RMSE increase on spatial cross-validation partitions rather than non-spatial test sets.

Given any model fitted on a cross-validation training sample, we choose one variable
at a time and permute its values randomly in the test set. The remaining variables are left
unchanged. We quantify the increase in RMSE caused by the permutation. No specific
model is needed, each of the regression models is suitable for assessing the variable
importance in this way. To obtain a sufficient number of replications, the permutation is
repeated 200 times for each variable. The permutation is embedded in a 10-fold leave-
one-out cross-validation setup, after having partitioned the agriculture sites into k = 10
sub-parts. The partitioning is rather stable due to the characteristics of the used cluster-
ing technique, therefore the k-means procedure is repeated only 10 times. The setting
of parameter k = 10 was determined empirically and is currently under investigation.

4 Results

The main research target of this article is to assess the importance of variables in a
spatial cross-validation setup. The results for the two available data sets described in
Section 2 are presented below.

4.1 Results for F440

The overall RMSE of different models for the F440 field can be seen in Figure 3(a). lm
returns the highest RMSE at 1.2 dt/ha, rf the lowest at around 1 dt/ha. This range has
to be kept in mind when considering the RMSE increase after variable permutation.

The relative order of the variable importance for the tree-based models bagging, rf
and rt is quite similar, which is due to the underlying tree construction. In each case,
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Fig. 3. F440: 3(a) shows each model’s RMSE for a spatial cross-validation setup with 10 repeti-
tions, 10 clusters; remaining figures show the increase in RMSE after permuting the respective
variable (200 permutations): 3(b) lm, 3(c) rt, 3(d) rf, 3(e) bagging, 3(f) svr; the predictors are
EC25, N3, N2, N1, REIP32, REIP49 (top to bottom)

the best predictor is the REIP49 variable with an increase of 0.06 at an average model
RMSE of 1.0 (rf). This was expected, since the REIP49 value is closest to harvest and
represents the amount of biomass on the field. For bagging and rf, the remaining vari-
ables increase the RMSE much less when permuted. For rf, the second most important
predictor is the REIP32 variable – this is also the expected behaviour since the applica-
tion of N2 and N3 tries to equalize the vegetation growth.

The remaining variables, especially the fertilizer dressings, are rather insignificant in
the tree-based models. Since the N1 variable has only four different values in F440, it
is clear that it will be rarely built into the trees since these are usually biased towards
variables with a high number of values. Similarly, this also holds true for N2, N3: these
have 45 and 50 different levels, whereas REIP32 and REIP49 have 367 and 397 different
levels, respectively. Nevertheless, EC25 has 851 different levels and still has close to no
importance for yield prediction. Another reason for the insignificance of the variables
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lm svr rf bagging rt
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(a) F611, RMSE of models for spatial CV
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Fig. 4. F611: 4(a) shows each model’s RMSE for a spatial cross-validation setup with 10 repeti-
tions, 10 clusters; remaining figures show the increase in RMSE after permuting the respective
variable (200 permutations): 4(b) lm, 4(c) rt, 4(d) rf, 4(e) bagging, 4(f) svr; the predictors are
EC25, N3, N2, N1, REIP32, REIP49 (top to bottom)

with a low number of distinct levels is that it is much more likely that the variable’s
value in the test set is the same before and after the permutation.

Different results can be reported for svr. While the EC25 variable is still insignifi-
cant, most importance is given to N1, N3 and REIP49. This different ordering is likely to
be due to svr measuring smooth non-linear variable importance with interaction, while
tree-based models measure non-linear variable importance with higher-order interac-
tions and discontinuities.

4.2 Results for F611

The overall RMSE for each of the models is quite different from the F440 site. lm
returns an RMSE of 0.66 dt/ha and is very close to being the best model. rf and bagging
seem are rather close around 0.66 dt/ha, while rt and svr are rather far from this mark
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at 0.69 and 0.73 dt/ha. This might hint to linear interactions between the variables. The
rather bad performance of svr might as well be attributed to simple linear interactions.

The results for the variable importance are similar to the ones on the F440 site.
Except for the svr model, the REIP49 value is by far the most important predictor. It
influences the lm model’s RMSE by 0.08 dt/ha at an average RMSE of 0.66 dt/ha.
Similarly, the bagging model’s RMSE is raised by 0.12 dt/ha at an average RMSE of
roughly 0.66 dt/ha. There may yet be non-linear, high-order interactions, seen in the svr,
where REIP32 is the most important variable, followed by REIP49 and N1. However,
since the svr’s overall level of RMSE is higher at 0.74 dt/ha and the RMSE increase of
the REIP values is around 0.07 and 0.04 dt/ha, this result should be taken with care.

4.3 Remarks

Assessing the importance of individual variables in multiple-variable models is difficult
since the importance of any particular variable is influenced by other, correlated or inter-
acting, variable in the data set. In our data sets, due to agricultural management decisions,
the N2 and N3 variable are determined partly based on the REIP32 and REIP49 values
and are therefore not fully independent of those. Therefore, e.g. if one of REIP32,REIP49
has been included in the model, the remaining variable N2,N3 is less likely to be chosen.
If the other variable is included nevertheless, it is likely to have a smaller influence on
the prediction than if included without the presence of the other variable.

5 Conclusions and Future Work

This article focused on a central data analysis task: regression. A procedure for measur-
ing spatial variable importance has been developed and tested using two real-world data
sets. This was achieved by adopting a variable importance approach and combining it
with a clustering-based spatial cross-validation approach developed earlier [20]. The
resulting spatial variable importance assessment was tested using two precision agri-
culture data sets. The key question which of the available data attributes is informative
regarding yield prediction was answered.

Based on practical experiences, the hypothesis that the vegetation indicators REIP49
and REIP32 should be most important for yield prediction could be confirmed. Although
the different modeling techniques are partly biased (as explained), it is highly likely that
the N1 and N3 dressings have a significant impact on yield, whereas the EC25 and N2
variables are rather unimportant. It can also be confirmed that the results of variable
importance are quite similar for two different fields, growing the same crop in the same
season and in the same climatic region.

The developed procedure may be applied to further areas where similar spatial data
need to be analysed, such as land cover classification [5], landslide susceptibility mod-
eling [4], species habitat analysis [13,15].

5.1 Future Work

Despite having improved and validated the yield prediction task, the data sets carry fur-
ther information. From a theoretical point of view, our spatial cross-validation setup is
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a spatially constrained case of a standard cross-validation setup. Therefore, it would be
interesting to see whether the spatial case converges towards the non-spatial case when
the number of clusters is raised. Furthermore, additional predictor variables should be
considered in future yield prediction setups.

Conditional permutation-based variable importance measures as proposed by [25]
provide a framework for investigating the importance of variables conditional on other
variables, which provides additional insights when interactions are present, in the con-
text of the F440/F611 data sets, e.g. between N2/N3 and REIP32/REIP49, as noted
above.
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Abstract. According to Koestler, the notion of a bisociation denotes
a connection between pieces of information from habitually separated
domains or categories. In this paper, we consider a methodology to find
such bisociations using a network representation of knowledge, which is
called a BisoNet, because it promises to contain bisociations. In a first
step, we consider how to create BisoNets from several textual databases
taken from different domains using simple text-mining techniques. To
achieve this, we introduce a procedure to link nodes of a BisoNet and
to endow such links with weights, which is based on a new measure for
comparing text frequency vectors. In a second step, we try to rediscover
known bisociations, which were originally found by a human domain
expert, namely indirect relations between migraine and magnesium as
they are hidden in medical research articles published before 1987. We
observe that these bisociations are easily rediscovered by simply follow-
ing the strongest links. Future work includes extending our methods to
non-textual data, improving the similarity measure, and applying more
sophisticated graph mining methods.

1 Introduction

The concept of association is at the heart of many of today’s powerful ICT
technologies such as information retrieval and data mining. These technologies
typically employ “association by similarity or co-occurrence” in order to discover
new information that is relevant to the evidence already known to a user.

However, domains that are characterized by the need to develop innovative
solutions require a form of creative information discovery from increasingly com-
plex, heterogeneous and geographically distributed information sources. These
domains, including design and engineering (drugs, materials, processes, devices),
areas involving art (fashion and entertainment), and scientific discovery disci-
plines, require a different ICT paradigm that can help users to uncover, select,
re-shuffle, and combine diverse contents to synthesize new features and prop-
erties leading to creative solutions. People working in these areas employ cre-
ative thinking to connect seemingly unrelated information, for example, by using
metaphors or analogical reasoning. These modes of thinking allow the mixing
of conceptual categories and contexts, which are normally separated. The func-
tional basis for these modes is a mechanism called bisociation (see [1]).
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According to Arthur Koestler, who coined this term, bisociation means to
join unrelated, and often even conflicting, information in a new way. It means
being “double minded” or able to think on more than one plane of thought
simultaneously. Similarly, Frank Barron [2] says that the ability to tolerate chaos
or seemingly opposite information is characteristic of creative individuals.

Several famous scientific discoveries are good examples of bisociations, for
instance Isaac Newton’s theory of gravitation and James C. Maxwell’s theory
of electromagnetic waves. Before Newton, a clear distinction was made between
sub-lunar (below the moon) and super-lunar physics (above the moon), since
it was commonly believed that these two spheres where governed by entirely
different sets of physical laws. Newton’s insight that the trajectories of planets
and comets can be interpreted in the same way as the course of a falling body
joined these habitually separated domains. Maxwell, by realizing that light is
an electromagnetic wave, joined the domains of optics and electromagnetism,
which, at his time, were also treated as unrelated areas of physical phenomena.

Although the concept of bisociation is frequently discussed in cognitive sci-
ence, psychology and related areas (see, for example, [1,2,3]), there does not seem
to exist a serious attempt at trying to formalize and computerize this concept. In
terms of ICT implementations, much more widely researched areas include asso-
ciation rule learning (for instance, [4]), analogical reasoning (for example, [5,6]),
metaphoric reasoning (for example, [7]), and related areas such as case-based
reasoning (for instance, [8]) and hybrid approaches (for example, [9]).

In order to fill this gap in current research efforts, the BISON project1 was
created. This project focuses on a knowledge representation approach with the
help of networks of named entities, in which bisociations may be revealed by link
discovery and graph mining methods, but also by computer-aided interactive
navigation. In this paper we report first results obtained in this project.

The rest of this paper is structured as follows: in Section 2 we provide a defini-
tion of the core notion of a bisociation, which guides our considerations. Based on
this definition, we justify why a network representation—a so-called BisoNet—is
a proper basis for computer-aided bisociation discovery. Methods for generating
BisoNets from heterogeneous data sources are discussed in Section 3, including
procedures for selecting the named entities that form its nodes and principles
for linking them based on the information extracted from the data sources. In
particular, we present a new measure for the strength of a link between concepts
that are derived from textual data. Such link weights are important in order to
assess the strength of indirect connections like bisociations.

Afterwards, in Section 5 we report results on a benchmark data set (consisting
of titles and abstracts of medical research articles), in which a human domain
expert already discovered hidden bisociations. By showing that with our system
we can create a plausible BisoNet from this data source, in which we can redis-
cover these bisociations, we provide evidence that the computer-aided search for
bisociations is a highly promising technology.

Finally, in Section 6 we draw conclusions from our discussion.

1 See http://www.bisonet.eu/ for more information on this EU FP7 funded project.
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2 Bisociation and BisoNets

Since the core notion of our efforts is bisociation, we start by trying to provide
a sufficiently clear definition, which can guide us in our attempts to create a
system able to support a user in finding bisociations. A first definition within
the BISON project2 characterizes bisociation as follows:

A bisociation is a link L that connects two domains D1 and D2 that are
unconnected given a specific context or view V by which the domains are
defined. The link L is defined by a connection between two concepts c1
and c2 of the respective domains.

Although the focus on a connection between two habitually (that is, in the con-
text a user is working in) separated domains is understandable, this definition
seems somewhat too narrow. Linking two concepts from the same domain, which
are unconnected within the domain, but become connected by employing indi-
rect relations that pass through another domain, may just as well be seen as
bisociations. The principle should rather be that the connection is not fully con-
tained in one domain (which would merely be an association), but needs access
to a separate domain. Taking this into account, we generalize the definition:

A bisociation is a link L between two concepts c1 and c2, which are
unconnected given a specific context or view V . The concepts c1 and c2
may be unconnected, because they reside in different domains D1 and D2
(which are seen as unrelated in the view V ), or because they reside in
the same domain D1, in which they are unconnected, and their relation
is revealed only through a bridging concept c3 residing in some other
domain D2 (which is not considered in the view V ).

In both of these characterizations we define domains formally as sets of concepts.
Note that a bridging concept c3 is usually also required if the two concepts c1
and c2 reside in different domains, since direct connections between them, even
if they cross the border between two domains, can be expected to be known and
thus will not be interesting or relevant for a user.

Starting from the above characterization of bisociation, a network represen-
tation, called a BisoNet, of the available knowledge suggests itself: each concept
(or, more generally, any named entity) gives rise to a node. Concepts that are
associated (according to the classical paradigm of similarity or co-occurrence)
are connected by an edge. Bisociations are then indirect connections (technically
paths) between concepts, which cross the border between two domains.

Note that this fits both forms of bisociations outlined above. If the concepts c1
and c2 reside in different domains, the boundary between these two domains
necessarily has to be crossed. If they reside in the same domain, one first has to
leave this domain and then come back in order to find a bisociation.

2 See http://www.inf.uni-konstanz.de/bisonwiki/index.php5, which, however, is
not publicly accessible at this time.
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Fig. 1. Illustration of the structure of the BisoNet generator

3 BisoNet Generation

A system for generating BisoNets requires three ingredients: (1) A component
to access the original, usually heterogeneous data sources. In order to cope
with different data formats, we suggest, in Section 3.1, a two-layer architec-
ture. (2) A method for choosing the named entities that are to form the nodes
of the BisoNet. Here we rely on standard keyword extraction techniques, as dis-
cussed in Section 3.2. (3) A procedure for linking the nodes of a BisoNet and for
endowing them with weights that indicate the association strength. For this we
suggest, in Section 4, a new association measure for keywords.

3.1 Data Access and Pre-processing

As explained above, a BisoNet is a network that promises to contain bisociations.
In order to generate such networks, we first have to consider two things: we must
be able to read different and heterogeneous data sources, and we have to be able
to merge the information derived from them in one BisoNet. Data sources can be
databases (relational or of any other type), text collections, raw text, or any data
that provide information about a domain. Due to the wide variety of formats
a data source can have, the choice we made here is not to provide an interface
of maximal flexibility that can be made to read any data source type, but to
structure our creation framework into two separate steps.

In the first step, we directly accesses the data source and therefore a parser
has to be newly developed for or at least adapted to the specific format of the
data source. The second step is actual the BisoNet generation part. It takes its
information from the first step, always in the same format, and therefore can
generate a BisoNet from any data source, as far as it is parsed and exported in
the form provided by the first step process (see Figure 1 for a sketch).

The way data should be provided to the second layer is fairly simple, because
in this paper we confine our considerations to textual data. As a consequence,
the second layer creates nodes from data that are passed as records containing
textual fields. These textual fields can contain, for now, either words or authors
names. This procedure and data format is well adapted to textual databases or
text collections, but is meant to evolve in future development in order to be
able to take other types of data sources into account. However, since most of the
data sources that we have used so far were textual data sources, this protocol
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seems simple and efficient. Future extensions could consist in including raw data
fields (for example, to handle images), and will then require an adaptation of
the second layer to be able to create nodes from other objects than textual data.

The second layer builds a BisoNet by extracting keywords using standard
text mining techniques such as stop word removal and stemming (see [10]).
The extracted keywords are weighted by their TFIDF (Text Frequency - Inverse
Document Frequency) value (see [11]), thus allowing us to apply a (user-defined)
threshold in order to filter the most important keywords, as will be detailed
in Section 3.2. Links between nodes are created according to the presence of
co-occurrences of the corresponding keywords in the same documents, and are
weighted using a similarity measure adapted to the specific requirements of our
case, which will be presented in Section 4. In the case that author lists are
provided with each text string, extracted keywords are also linked to the related
authors. These links are weighted according to the number of times a keyword
occurs in a given author’s work.

3.2 Creating Nodes

In our BisoNets nodes represent concepts. As we only talk about textual
databases, we made the choice to characterize concepts by keywords that are
extracted from the textual records taken from the data sources. In the second
layer of our framework, each textual record j is processed with a stop word re-
moval algorithm. Then the text frequency values are computed for each remain-
ing term i as follows: tfi,j = ni,j∑

k nk,j
, where ni,j is the number of occurrences

of the considered term in textual record j and
∑

k nk,j is the sum of number of
occurrences of all terms in textual record j.

Naturally, this procedure of keyword extraction is limited in its power to cap-
ture the contents of the text fields. The reason is that we are ignoring synonyms
(which should be handled by one node rather than two or more), hyper- and
hyponyms, pronouns (which may refer to a relevant keyword and thus may have
to be counted for the occurrence of this keyword) etc. However, such linguistic
properties are very difficult to take into account and need sophisticated tools
(like thesauri etc.). Since such advanced text mining is not the main goal of
our work (which rather focuses on BisoNet creation), keeping the processing
simple seemed a feasible option. Nevertheless, advanced implementations may
require such advanced processing, because ignoring, for example, synonyms and
pronouns can distorts the statistics underlying, for instance, the term frequency
value: ignoring pronouns that refer to a keyword, or not merging two synonyms
makes the term frequency lower than it should actually be.

After all records have been processed, the inverse document frequency of each
keyword i is computed the following way: idfi = log |D|

|{d∈D|ti∈d}| , where |D| is
the total number of records in the database and |{d ∈ D | ti ∈ d}| is the number
of records in which the term ti appears.

Each node is then weighted with its corresponding average TFIDF value:
tfidfi = 1

|D|
∑|D|

j=1 tfi,j · idfi.
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This TFIDF approach is a very well known approach in text mining that is
easy to implement and makes one able to easily apply a threshold, thus select-
ing only the most important nodes (keywords). A node then contains, as an
attribute, a list of the term frequency values of its associated term in the differ-
ent documents of the collection. This allows us to compute similarity measures
presented in Section 4 in order to create links.

According to the definition of a bisociation presented in Section 2, two con-
cepts have to be linked by other concepts that are not in their proper domain
(so-called bridging concepts). This leads us to introduce the notion of domains,
into which the nodes are grouped, so that we can determine when borders be-
tween domains are crossed. In order to be able to classify nodes according to
their membership in different domains, it is important that they keep, also as an
attribute, the domains the data sources belong to, from which they have been
extracted. Since the same keyword can occur in several data sources, taken from
different domains, one has to be able (for example, for graph mining and link dis-
covery purposes) to know whether a certain keyword has to be considered from
a certain domain’s point of view. The nodes therefore keep this information as
vector of domains their associated keyword belongs to.

This can be interesting, for example, to mine or navigate the BisoNet, keeping
in mind that a user may be looking for ideas related to a certain keyword belong-
ing to a domain A. The results of a search for bisociations might also belong to
domain A, because it is the domain of interest of the user. However, these results
should be reached following paths using keywords from other domains, that is
to say bisociations. This procedure provides related keywords of interest for the
user, as they belong to its research domain, but they might be also original and
new connections as they are the result of a bisociation process.

4 Linking Nodes: Different Metrics

As explained in Section 3.2, nodes are associated with a keyword and a set of doc-
uments in which this keyword occurs with a certain term frequency. Practically,
this is represented using a vector of real values containing, for each document,
the term frequency of the node’s keyword. In order to determine whether a link
should be created between two nodes or not, and if there is to be a link, to assign
it a weight, we have to use a similarity measure to compare two nodes (that is
to say: the two vectors of term frequency values).

Links in our BisoNets are weighted using similarity measures shown below.
This approach allows us to use several different kinds of graph mining algorithms,
such as simply thresholding the values to select a subset of the edges, or more
complex ones, like calculating, for example, shortest paths.

4.1 Cosine and Tanimoto Measures

One basic metric that directly suggests itself is an adaptation of the Jaccard
index (see [12]): J(A, B) = |A∩B|

|A∪B| .
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Here |A ∩ B| represents the number of elements at the same index that both
have a positive value in the two vectors and |A∪B| the total number of elements
in the two vectors.

It can also be interpreted as a probability, namely the probability that both
elements are positive, given that at least one is positive (contain a given term i,
i.e., tfi > 0).

Cosine similarity is a measure of similarity between two vectors of n dimen-
sions by finding the angle between them. Given two vectors of attributes, A and
B, the cosine similarity, cos(θ), is represented using a dot product and mag-
nitude as cos(θ) = A·B

‖A‖‖B‖ , where, in the case of text matching, the attribute
vectors A and B are usually the tf-idf vectors of the documents.

This cosine similarity metric may be extended such that it yields the Jaccard
index in the case of binary attributes. This is the Tanimoto coefficient T (A, B),
represented as T (A, B) = A·B

‖A‖2+‖B‖2−A·B .
These measures allow us to compare two nodes according to the number of

similar elements they contain, but do not take into account the importance of
the text frequency values.

4.2 The Bison Measure

In the Jaccard measure, as applied above, we would consider only whether a term
frequency is zero or positive and thus neglect the actual value (if it is positive).
However, considering two elements at the same index i in two vectors, one way
of taking their values into account would be to use their absolute difference (that
is, in our case, the absolute difference of the term frequency values for two terms,
but the same document). With this approach, it is easy to compare two vectors
(of term frequency values) by simply summing these values and dividing by the
total number of values (or the total number of elements that are positive in at
least one vector).

However, this procedure does not properly take into account that both values
have to be strictly positive, because a vanishing term frequency value means that
the two keywords do not co-occur in the corresponding document. In addition,
we have to keep in mind that having two elements, both of which have a term
frequency value of 0.2, should be less important than having two elements with
a term frequency value of 0.9. In the first case, the keywords associated with
the two nodes we are comparing appear only rarely in the considered document.
On the other hand, in the latter case these keywords appear very frequently
in this document, which means that they are strongly linked according to this
document.

A possibility of taking the term frequency values itself (and not only their
difference) into account is to use the product of the two term frequency values
as a coefficient to the (absolute) difference between the term frequency values.
This takes care of the fact that the two term frequency values have to be positive,
and that the similarity value should be the greater, the larger the term frequency
values are (and, of course, the smaller their absolute difference is). However, in
our case, we also want to take into account that it is better to have two similar
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term frequency values of 0.35 (which means that the two keywords both appear
rather infrequently in the document) than to have term frequency values of 0.3
and 0.7 (which means the first keywords appears rarely, while the other quite
frequently).

In order to adapt the product to this consideration, we use the expression
in Equation 1, in which k can be adjusted according to the importance one is
willing to give to low term frequency values.

B(A, B) = (tfA
i · tfB

i )k · (1 − | tfA
i − tfBi |), tfA

i , tfB
i ∈ [0, 1] (1)

Still another thing that we have to take into account in our case is that the same
difference between tfA

i and tfB
i can have a different impact depending on whether

tfA
i and tfB

i are large or small. To tackle this issue, we combine Equation 1 with
the use of the arctan function, and thus obtain the similarity measure shown
in Equation 2, which we call the Bison measure. This form has the advantage
that it takes into account that two term frequency values for the same index
have to be positive, that the similarity should be the greater, the larger the term
frequency values are, and that the same difference between tfA

i and tfB
i should

have a different impact according to the values of tfA
i and tfB

i .

B(A, B) = (tfA
i · tfB

i )k ·
(

1 − | arctan(tfA
i ) − arctan(tfB

i )|
arctan(1)

)
, tfA

i , tfB
i ∈ [0, 1]

(2)

4.3 The Probabilistic Measure

Another way of measuring the similarity between two nodes is based on a proba-
bilistic view. Considering two terms, it is possible to compute, for each document
they appear into, the probability of randomly selecting this document by ran-
domly choosing an occurrence of the considered term, all of which are seen as
equally likely. This value is given by the law of conditional probabilities shown
in Equation 3

P (di/tj) =
P (tj/di) · P (di)

P (tj)
(3)

with P (tj) =
∑

d

P (tj/d) · P (d)

This leads us to represent a node by a vector of all the conditional probabilities
of the documents they appear in instead of a vector of text frequencies.

Having this representation, we can compare two nodes using the similarity
measure shown in Equation 4.

S(A, B) =

√
1
n
·
∑

n

(P (dn/tA) − P (dn/tB))2 (4)
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We can add that P (di/tj) in Equation 3 is equivalent to the term frequency if
P (di) is constant, which is the case in most of the textual data sources. We can
however use this P (di) to give arbitrary weights to certain documents.

5 Benchmarks

Having shown how BisoNets can be built from textual data sources, we present
benchmark applications in this section. The idea is to provide a proof of principle,
that this approach of creating a BisoNet can help a user to discover bisociations.

In order to assess how effective the different similarity measures are, we count
how many domain crossing links there are in the generated BisoNets, then we
use different threshold values on the links in order to keep only the “strongest”
edges according to the similarity measure used.

5.1 The Swanson Benchmark

Swanson’s approach [13] to literature-based discovery of hidden relations be-
tween concepts A and C via intermediate B-terms is the following: if there is
no known direct relation A-C, but there are published relations A-B and B-C
one can hypothesize that there is a plausible, novel, yet unpublished indirect
relation A-C. In this case the B-terms take the role of bridging concepts. In his
paper [13], Swanson investigated plausible connections between migraine (A) and
magnesium (C), based on the titles of papers published before 1987. He found
eleven indirect relations (via bridging concepts B) suggesting that magnesium
deficiency may be causing migraine.

We tried our approach on the Swansons data source which consists of 8000
paper titles, taken from the PubMed database, published before 1987 and talking
about either migraine or magnesium, to see if it was possible to find again these
relations between migraine and magnesium. In order to generate a BisoNet,
we implemented a parser for text files containing the data from PubMed able to
export them in the format understandable by the second layer of our framework.
Then, this second layer performed the keywords extraction, using these keywords
as nodes and linking these nodes in the way described in Section 3.

By ranking and filtering the edges we then produced BisoNets that contained
the “strongest” edges and their associated nodes. The left graphic of Figure 2
shows how many domain crossing links that are kept using different threshold
values on the edges. On this graphic, we can observe that the Bison measure is the
one able to keep the most crossing-domain links even if only the very strongest
edges are kept (threshold set to keep only the best 5% of the edges). These tests
demonstrate that the Bison measure is very well suited for bisociation discovery,
since with it the strongest links are the bisociative ones.

We can observe this also in Figure 3 where the difference between the Tani-
moto and the Bison measure is graphically highlighted, showing that if we keep
only the 5% best edges, the Tanimoto measure loses any relation between mag-
nesium and migraine whereas the Bison measure manages to keep at least some.
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Fig. 2. Comparison between different similarity measures on the Swanson benchmark
on the left and on the biology-music benchmark on the right

Fig. 3. Example of two BisoNets generated from the Swanson benchmark using the
Bison similarity measure and the probabilistic similarity measure
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5.2 The Biology and Music Benchmark

As we aim to discover bisociations, that is associations between concepts that ap-
pear unrelated from a certain, habitual point of view, an interesting benchmark
would be to look for bisociations in data coming from very different domains. We
therefore use here data from two databases: the PubMed database that has al-
ready been talked about in the Swanson benchmark, and the FreeDB3 database
which is a freely available music database providing music titles, music styles
and artist names.

We use exactly the same procedure as for the Swanson benchmark, that is
reading the databases, performing textual pre-processing on terms and then
launching the BisoNet creation framework to obtain a BisoNet containing terms
linked to each other using the similarity distances described in this article. We
consider here as potential keywords every word and author in the articles of
the PubMed database, and every word of song titles, authors and styles in the
FreeDB database.

The right graphic of Figure 2 shows how many domain crossing links that are
kept using different threshold values on the edges.

6 Conclusion and Further Work

In this article, we provided a definition of the notion of a bisociation, as under-
stood by Koestler, which is the key notion of the BISON project. Building on
this definition, we then defined the concept of a BisoNet, which is a network
bringing together data sources from different domains, and therefore may help a
user to discover bisociations. We presented a way we create nodes using simple
text-mining techniques, and a procedure to generate links between nodes, which
is based on comparing text frequency vectors using a new similarity measure.

We then tested our approach on benchmarks in order to rediscover bisociations
between magnesium and migraine that have been discovered by Swanson using
articles published before 1987. We see that bisociations between these two terms
are easily discovered using the generated BisoNet, thus indicating that BisoNets
are a promising technology for such investigations.

Using the second benchmark, we show that, even while mixing very different
data sources, we are still able to produce BisoNets containing domain crossing
links.

In summary, we venture to say that this work can be easily applied to any
kind of textual data source in order to mine data looking for bisociations, thanks
to the two layers architecture implementation. In addition, we are working on
generalizing these techniques to non-textual data sources, introducing different
types of attributes for the nodes, and therefore, other types of similarity measures
in order to link the heterogeneous set of nodes. Further work also consists in
performing other benchmarks and applying graph mining algorithms in order to
confirm the quality of the so generated BisoNets.
3 http://www.freedb.org/
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Abstract. The aim of Structural Health Monitoring (SHM) is to de-
tect and identify damages in man-made structures such as bridges by
monitoring features derived from vibration data. A usual approach is to
deal with vibration measurements, obtained by acceleration sensors dur-
ing the service life of the structure. In this case, only normal data from
healthy operation are available, so damage detection becomes a novelty
detection problem. However, when prior knowledge about the structure
is limited, the set of candidate features that can be extracted from the
set of sensors is large and dimensionality reduction of the input space can
result in more precise and efficient novelty detectors. We assess the effect
of linear, nonlinear, and random projection to low-dimensional spaces in
novelty detection by means of probabilistic and nearest-neighbor meth-
ods. The methods are assessed with real-life data from a wooden bridge
model, where structural damages are simulated with small added weights.

Keywords: novelty detection, dimensionality reduction, damage detec-
tion, structural health monitoring, sensor network.

1 Introduction

The monitoring process oriented to damage identification in civil, mechanical,
and aerospace structures is known as Structural Health Monitoring (SHM) [8].
Current instrumentation technology makes it possible to continuously acquire
and store vibration data from multiple parts of the structure. Consequently,
signal processing and intelligent data analysis techniques are necessary to trans-
form sensor data into information about the condition of the structure [8,21].
The usefulness of machine learning for SHM is addressed, e.g., in [22].

However, this is not a straightforward process, since SHM poses some dis-
tinctive challenges. Typically, it involves the analysis of the frequency domain of
several signals with the aim to distinguish the effect of damages, with unknown
characteristics, from the undamaged behavior. Additionally, current trends in
SHM lead to use vibration data obtained from unknown excitation, input to a
structure by ambient factors such as wind or traffic [6]. That way, the structure
remains in its normal operating condition.

P.R. Cohen, N.M. Adams, and M.R. Berthold (Eds.): IDA 2010, LNCS 6065, pp. 208–219, 2010.
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The purpose of this work is to test the application of projection algorithms
for damage detection in a setting where output acceleration measurements are
collected by a sensor network. Our earlier work in [19] showed how the features
explained in Section 2 can be used for “supervised” damage detection while
considering a relatively small feature set. The feature sets were randomly selected
subsets of the original large feature space and the selection process contributed
to reduce dimensionality. Thus, it is expected that damage detection could also
be possible with other suitable projections to lower dimensional spaces.

However, [19] used labeled data from damaged cases in the classifier training,
which is prohibitively impractical in real world complex SHM applications. The
prior knowledge about the structure and the possible damages must be assumed
limited, in order to simulate realistic conditions in a complex SHM application.
In this situation, where little is known about the damages that might appear in
the structure and only information about the normal operation is available for
training, the system should detect instances that do not fit in the model, i.e.,
the aim is novelty detection [22,4].

Under these assumptions, no criteria based on the physical model of the struc-
ture can be considered to select among potential features. Unlike in [22], we
avoid performing supervised or manual selection of features, while still limiting
the scope to transmissibility features. Therefore, the dimensionality of the input
space becomes large and difficult to handle with data-based models.

Distances between randomly distributed data points in a high-dimensional
feature space tend to be very similar and achieving a representative training set
requires potentially an extremely large set of data. Also, some numerical issues
arise in the implementation of the methods for high dimensions, as seen later
in the experiments. The application of dimensionality reduction approaches [12]
to transform data to simpler representations that preserve relevant information
could then result in more accurate damage detectors. Apart from that advan-
tage, improvement in the computational load of the monitoring process can be
important if the ultimate aim is to achieve on-line detection.

In this work, three dimensionality reduction approaches: a flexible nonlin-
ear technique, Curvilinear Component Analysis (CCA) [5]; the classical linear
approach, Principal Component Analysis (PCA) [7]; and a computationally in-
expensive1 Random Projection (RP) [2] are assessed for novelty detection with
density-based and distance-based methods.

In order to assess the performance of novelty detection, the test data set,
unlike the training set, includes labeled normal and faulty instances. Four simple
classification approaches are evaluated. Three of them are based on probabilistic
models whereas the other one relies on a nearest-neighbor method. Interpretation
of the results uses Receiver Operating Characteristic (ROC) curves and the area
under the curve (AUC, aka. AUROC) [16,3].

The rest of the paper is organized as follows: Section 2 introduces the ap-
plication field and the problem of feature extraction and selection in a sensor-
network environment. Section 3 describes the three projection methods used in

1 i.e., suitable for a wireless sensor network.
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the paper and Sec. 4 explains the models for novelty detection. Section 5 de-
scribes the experiments and their results. Section 6 concludes the paper.

2 Features for Structural Health Monitoring

Damage detection in structural health monitoring is based on the principle that
damages cause changes in the vibration response of a structure with respect to
its normal behavior [21]. The measured vibration signals must be consequently
processed with time- or frequency-based methods to extract features that are
sensitive to damages. Researchers have proposed many damage-sensitive fea-
tures, most of them in the frequency domain [13]. There are local and global
approaches, general or specific to certain problems and they assume different
levels of knowledge about the structure [21].

Some interesting features are those based on the concept of transmissibil-
ity [10,22], which describes how well vibration travels from one point of the
structure to another and is therefore well-suited for sensor networks. These fea-
tures are useful for detection of even nonlinear types of damage and can be
used for damage localization, because the information they convey is local in
nature [10]. Due to its differential nature, they are also less sensitive to the
environmental variability of the measurements.

For that reason, the proposed features in this paper are, as in our previous
one [19], (frequency specific) transmissibility magnitudes. They are defined as
the magnitude of the ratio of acceleration amplitudes measured by two sensors,
s1 and s2, at a specific frequency2 f , during a time window i

Ti(s1, s2, f) =
∣∣∣∣Xs1(f)
Xs2(f)

∣∣∣∣ . (1)

The whole combination of pairs of sensors and frequency bins can easily give rise
to a high-dimensional feature space, difficult to process by a novelty detection
algorithm. In this work, we have 4541 features.

3 Dimensionality Reduction with PCA, CCA, and
Random Projection

In this paper, three methods are considered to reduce the dimensionality of
data: principal component analysis, curvilinear component analysis and random
projection. They greatly differ both in the approach and computational cost.

Principal Component Analysis is a classical signal decomposition method used
in signal processing and pattern recognition [7]. PCA decomposes the original
measurement signal into components in a new, orthogonal coordinate system,
which forms a basis. The important property of the basis is that its k leading
orthogonal vectors are the ones that explain the most of the variance in original
data. For that reason, PCA is useful for dimensionality reduction.
2 More precisely, a frequency bin due to the discrete bins of the Discrete Fourier

Transform used for computation.
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Curvilinear Component Analysis is an adaptive algorithm for nonlinear di-
mensionality reduction, which minimizes a cost function based on inter-point
distances in both input and output space [5]. The particular implementation
used in this work is adapted to realistic noisy data [9]. Let Dij be the Euclidean
distance between vectors xi and xj , in the d-dimensional input space, and Yij the
corresponding distances between yi and yj in the k-dimensional output space.
The function to minimize is

E =
∑
ij

⎧⎨
⎩

(Dij − Yij)2Fλ(Yij) if Yij > Dij (Unfolding)

(D2
ij − Y 2

ij)
2Fλ(Yij)/4D2

ij if Yij <= Dij (Projection)
, (2)

where Fλ(Yij) is a monotonically decreasing function, exponential in this case.
This technique also provides an interpolation-extrapolation method to project
test data without the need of retraining the whole model.

Random Projection of data onto lower-dimensional space is an inexpensive
method of linear dimensionality reduction that has, nevertheless, shown
reasonable results, especially when applied to high-dimensional data sets for
mappings to moderate numbers of dimensions [2]. It is justified by the Johnson-
Lindenstrauss lemma, which states that a set of n points in a d-dimensional
space can be embedded onto a randomly selected subspace whose dimension-
ality is logarithmic with respect to n, such that the pairwise distances change
only by a small factor [1]. The implemented algorithm maps any d-dimensional
vector x onto a k-dimensional vector y, with k << d, by means of a sparse
matrix Rk×d, where rij is ±√

3 with probability 1/6 each, or 0 with probability
2/3, using the equation y = Rx.

4 Novelty Detection in Projected Spaces

One cannot usually build a preliminary large-size structure just to try out all
possible damages in advance. Thus, instead of having a conventional classification
problem, we should deal with a novelty detection problem, i.e., try to detect
data samples that are somehow different from the original set of data. This
problem, which also appears in domains such as intrusion, fraud, or industrial
fault detection, is also known as anomaly detection [4], one-class classification,
or data description [17]: in order to detect damages (outliers) we need to be able
to describe the normal (target) set of data well.

Since practically no samples from the outlier set are available, the decision
boundary needs to be based on data from normal cases and some additional
assumptions. Without the limiting assumptions, the optimal classifier would have
too relaxed decision threshold and classify everything as “normal”. However,
finding the proper value of decision threshold is not considered a significant issue
in this work, since ROC curves analyze the situation over all possible thresholds.

Many different novelty detection approaches have been proposed. A compre-
hensive review of recent research can be found in [4]. In this work, four novelty
detection methods were assessed:
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k-Nearest Neighbor (k-NN) method [7,17] compares the distance between a new
data point x and its (kth) nearest neighbor NN(x) in the training set with the
distance between that neighbor NN(x) and its nearest neighbor NN(NN(x)).
Thus, the method assumes the relative scale between the features is appropriate.

Gaussian method [7] fits a single multivariate normal distribution to the train-
ing data and the area of low density (“tail” below some threshold) is assigned
for outliers. For novelty detection, it is enough to compute the squared Maha-
lanobis distance with a full inverted covariance matrix to obtain results that are
insensitive to scaling of dimensions.

Mixture of Gaussians (MoG) [15] consists of several normal component distri-
butions. In our case, the component distributions were restricted to have diagonal
covariance matrices to limit the number of free parameters. This corresponds to
the naive-Bayes model used in [19], except this time the outlier data is unavail-
able and so the mixture components need to be fitted to the normal class by
assigning weights through Expectation Maximization (EM).

Parzen density estimation [14] fits even more component distributions to the
data space: one for each training vector. In this case, an equal and spherical
covariance is assigned to each of the Gaussian kernels, i.e., all the dimensions of
each component share the same length h. This single parameter is determined
using a Maximum Likelihood solution [17].

5 Experiments and Results

In order to investigate the roles of the projection method, the dimensionality of
the space, and the choice of novelty detection model in the accuracy of novelty
detection, we performed empirical experiments where a series of methods were
applied from raw data to decision (see Fig. 1).

Fig. 1. General setup of the tests
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PCA, CCA, and random projection were used to reduce the dimensionality
of the original feature space to a previously fixed set of lower dimensionalities.
All of them were implemented in Matlab and some functions included in SOM
Toolbox [20] were used. Later, each of the four novelty detection methods were
used to estimate a model from training data and provide the degree of novelty
of the test data. The novelty detection phase was implemented by utilizing Data
Description Toolbox (dd_tools [18]) for Matlab.

AUROC [16,3] was used as the performance measure to compare novelty de-
tectors, because it integrates out the dependency on decision threshold, but
closer analysis can still be conducted by inspecting the ROC curves to see what
kind of trade-offs are made while varying the threshold.

5.1 Data Preprocessing

Data was measured from a wooden bridge structure in laboratory conditions. For
that purpose, it was equipped with 15 acceleration sensors placed as depicted in
Fig. 2. This setting was previously used in [11] and [19]. The bridge was subject
to vibration produced with an electrodynamic shaker that simulated random
ambient excitation. Small masses were attached to the structure during certain
measurements in order to simulate damages, since they change the vibration
profile locally. Unlike in [22], the location of the sensors was not optimized ac-
cording to the known locations of the damages: sensors formed a regular lattice
and some of the damages laid outside of it.

The sampling frequency was 256 Hz and the resulting data set consisted of
2509 blocks of 32 seconds each. The candidate features were the (frequency
specific) transmissibility magnitudes below 120 Hz, with a frequency resolution
of 0.5 Hz. These features were obtained after a 512-point Fast Fourier Transform
(FFT) was used for the frequency analysis of signals.

Although there are 105 possible pairs of sensors (s1,s2), only pairs of adja-
cent sensors were considered. This is justified by the concept of nearest-neighbor
coupling [10], which assumes that in the case where a single excitation is applied
anywhere except at or near a boundary condition degree-of-freedom, transmis-
sibility between two certain sensors s1 and s2 is only sensitive to the changes in

7 2

3

1

6
8

9

10

12

shaker

5

4

11

15

13

14

Fig. 2. Wooden bridge structure and placement of the sensors
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stiffness or damping between them. Thus, there are 19 pairs of sensors and the
final feature space, composed of all the transmissibility magnitudes at all pairs,
has 4541 features. Consecutive transmissibility values were averaged to avoid
aberrant values, so that only two final values were computed for each block and
frequency bin, producing the 4541 feature values every 16 seconds.

75% of the normal instances in the data set were randomly selected for train-
ing, whereas the rest, along with all the faulty samples, were used for testing.

5.2 Projections

For a more convenient comparison, the target dimensionalities for the three
projection algorithms were the same and covered different orders of magnitude:
{2, 3, 4, 5, 8, 10, 16, 20, 32, 50, 100, 200, 500}. The random selection of the training
samples and, therefore, the projection and classifier training was repeated 10
times for each combination to examine the statistics of the performance.

5.3 Novelty Detection Results

The main results of the paper are presented in four figures (Figures 3, 4, 5, and
6). In each of the figures, a different novelty detector was evaluated against the
13 projected training sets, which have been obtained with the three projection
methods under evaluation (PCA, CCA, random projection). As a reference, also
the performance for the original 4541-dimensional feature space is shown.

As shown in Figure 3, the best performance for the nearest-neighbor3 nov-
elty detector was achieved with data projected by PCA to the range of about
20 dimensions. Interestingly, there seems to be a decrease in the performance
when either increasing or decreasing the number of features with respect to this
optimum. The best results for the CCA-based projection were obtained when
the number of features was 200 or over. Random projection reached the same
level of performance than PCA for high dimensionalities, but the performance
decreased rapidly with less than 50 projected features.

Figure 4 illustrates the use of a single Gaussian distribution as the density
estimate in different projected spaces. CCA-based projection had the best per-
formance reaching the one for the unprojected case at the dimensionalities above
100, unlike all the other projection methods. Similar results were achieved with
Gaussian mixture models (Fig. 5), except that the specific implementation of
the EM algorithm did not work for input dimensionalities of above 100: thus the
worst-case AUROC values of 0.5 for high dimensional projection spaces4.

Figure 6 depicts the performance of non-parametric Parzen density estimator.
Again, CCA provided the best results, but PCA and RP catched up at 100 di-
mensions. At the highest dimensionalities, the implementation failed completely
due to numerical issues.

3 k = 1 was determined by leave-one-out density estimation [18].
4 The worst-case value was set manually after observing the program fail.
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Fig. 7. ROC curves with lowest, median, and highest AUROC value produced by
nearest neighbor method at (a) 16-dimensional projected space by PCA and (b) 500-
dimensional projected space by CCA

The best median AUROC was 0.7450 and it was achieved with a 500-dim.
CCA projection and a classifier based on Parzen density estimation, but the im-
plementation started to suffer from numerical problems. The nearest neighbor
classifier achieved similar performance with median AUROC of 0.7448, with-
out suffering from numerical instability. Another close competitor was the 16-
dimensional PCA, where the nearest neighbor method was able to reach a me-
dian AUROC of 0.7112. The corresponding ROC curves for the last two cases
are shown in Figure 7 (a) and (b).

6 Summary and Conclusions

We have investigated three different projection methods in the dimensionality
reduction of measurement data in a structural health monitoring application,
where the data comes from a sensor network environment and has very large
dimensionality. Novelty detection was performed in a density-based framework
using non-parametric density estimation with Parzen windows, Mixture of Gaus-
sians models, and single multivariate Gaussian distributions. It was also per-
formed in a distance-based framework, using nearest neighbors. The accuracy of
the novelty detectors was tested with labeled data in several projected spaces.

The experiments show that, in general, CCA is the best projection method
for the novelty detectors assessed in this work. This agrees with the expected
results, since the method should be more powerful due to its nonlinear nature.
However, PCA was able to compete at lower dimensionalities (16 − 20) with a
nearest neighbor classifier. The poor results with higher dimensionalities might
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be related to the aspect that the monitored features are supposed to be constants
and large part of the variance is caused by noise.

It seems that, as expected, random projection preserves the structure of data
well only for high output dimensionalities. In the experiments, there was a de-
terioration of performance for dimensions lower than 50. In general, the nearest
neighbors method was the one that provided better results in a larger span of
dimensionalities for all the projections.

Decisions derived from these conclusions must take into account the aims
and requirements of the specific problem. For instance, if the damage detection
must be carried out in a resource-constrained environment, we must keep in
mind that CCA is the most computationally expensive method of projection,
especially when the desired output dimensionality increases.

At least two directions for future research can be considered: searching for
better feature extraction and better models for novelty detection (e.g. including
temporal dynamics). On the feature extraction side, the applicability of trans-
missibility features needs to be investigated further. For example, the amount of
noise and placement of the damage are assumed to have a large impact on the
quality of the features and limit the damage detection performance.
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Abstract. We propose a generic framework and methods for simplifi-
cation of large networks. The methods can be used to improve the un-
derstandability of a given network, to complement user-centric analysis
methods, or as a pre-processing step for computationally more complex
methods. The approach is path-oriented: edges are pruned while keep-
ing the original quality of best paths between all pairs of nodes (but
not necessarily all best paths). The framework is applicable to different
kinds of graphs (for instance flow networks and random graphs) and con-
nections can be measured in different ways (for instance by the shortest
path, maximum flow, or maximum probability). It has relative neighbor-
hood graphs, spanning trees, and certain Pathfinder graphs as its special
cases. We give four algorithmic variants and report on experiments with
60 real biological networks. The simplification methods are part of on-
going projects for intelligent analysis of networked information.

1 Introduction

In many fields, information is naturally represented as networks of interlinked
people, genes, computers, web pages, concepts, or other objects. Networks or
graphs are a simple yet powerful formalism, but for finding or extracting the
most relevant parts of large networks, intelligent data analysis can be useful.

As an example, consider biological networks and their analysis. Public bio-
logical databases are interlinked and form a huge graph of biological concepts.
Intelligent query mechanisms allow users to extract smaller subgraphs, maxi-
mally relevant to user-specified query nodes [1,2]. In research efforts such as
Bison [3], heterogeneous information repositories are merged to large networks
which are then analyzed and explored with intelligent methods.

In this paper, we propose a generic framework and methods for simplification
of large, weighted networks. The proposed methods can be used to improve the
understandability of a given graph, to complement user-centric analysis methods,
or as a pre-processing step for computationally more complex methods.

A property of primary interest in many applications is the strength of an
(indirect) connection between some given nodes. Such measures are crucial, for
example, in link prediction. The proposed framework builds on the assumption
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that connections between nodes are measured using the best path between them
and then removes edges while keeping the original quality of connection for all
pairs of nodes.

The elegance of the proposed solution is in its wide genericity. It is applicable
to different kinds of graphs (for example, flow networks and random graphs) and
connectivity can be measured in different ways (for example, by the shortest
path, maximum flow, or maximum probability). The proposed framework has
both relative neighborhood graphs and spanning trees as its special cases.

On the other hand, the assumption that the connection between nodes is mea-
sured with the best path between them is quite strong. This assumption allows,
however, a clear specification of the result without reference to an algorithm that
computes it. Since the proposed methods are computationally efficient, they may
be a practical compromise also in applications where more complex measures of
connectivity would otherwise be preferred. We will address this in the experi-
mental section.

The remainder of this article is organized as follows. We first formalize the
problem of path-oriented network simplification in Section 2. In Section 3 we
present a range of algorithms to prune redundant edges. We briefly review related
work in Section 4. We present and discuss experimental results in Section 5 and
finally draw some conclusions in Section 6.

2 Path-Oriented Edge and Graph Redundancy

Our goal is to simplify a given weighted graph G = (V, E) by removing redundant
edges. In this section we define the necessary notations and concepts, we give a
simple theorem that allows efficient pruning, and we give some examples.

2.1 Definitions

We assume a weighted graph G = (V, E) is given. In the following, we assume G is
undirected, but the definitions and methods can be easily generalized for directed
graphs. An edge e ∈ E is a pair e = {u, v} of nodes in V . Each edge has a weight
w(e) ∈ R. A path P is a set of edges P = {{u1, u2}, {u2, u3}, . . . , {uk−1, uk}} ⊂
E. We use the notation u1

P� uk to say that P is a path between u1 and uk, or,
equivalently, to say that u1 and uk are the endvertices of P .

In order to allow different definitions of redundancy, we parameterize our
problem and methods with a path quality function q : {P | P is a path in G} →
R. Without loss of generality, we assume that larger values of q indicate higher
quality; this assumption can be easily reversed if necessary.

A natural and simple way to measure relatedness between two nodes u and
v in a weighted graph is to consider the quality of the best path between them.
This best path quality Q is thus defined as Q(u, v; E) = max

P⊂E:u P�v
q(P ). If u

and v are not connected, Q(u, v; E) = −∞.
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In this paper, we will study the problem of pruning a graph without affecting
the best path quality for any pair of nodes. We say that an edge e ∈ E is
redundant if and only if

Q(u, v; E) = Q(u, v; E \ {e}) for all {u, v} ∈ V, (1)

in other words, if the best path quality Q does not depend on edge e for any
nodes u, v in G.

Fig. 1. Edge e is
redundant

Figure 1 illustrates the idea in a small graph. Here edges
have lengths, and the length of an edge or a path corresponds
to the length of the edge or path in the drawing of Figure 1
(i.e., path length is not defined by the number of edges in it).
Now, while there is a direct edge e = {u, v} between nodes u
and v, there exists a shorter path between them. Since edge
e does actually not belong to the shortest path between any
pair of nodes in the graph, pruning it has no effect on any shortest path.

A non-redundant graph is a graph that contains no redundant edges. We define
a completely pruned graph as a non-redundant graph that maintains the best
path quality of the original graph for all its node pairs. Formally: given a graph
G = (V, E), a completely pruned graph H = (V, F ) is one where F ⊆ E, and
Q(u, v; E) = Q(u, v; F ) for all u, v ∈ V , and H is non-redundant.

A couple of notes about pruning redundant edges that are in order, especially
for the case in which node weights and path qualities may have ties: First, the
trivial approach of taking the union of the best paths between all pairs of nodes
does then not necessarily lead to a completely pruned graph, since ties might
be solved differently for different pairs of nodes; second, a given graph may not
have a unique completely pruned subgraph.

2.2 Monotone Path Quality Functions

Many path quality measures q are monotone in the sense that replacing a seg-
ment of a path by a better one with respect to q never decrease the quality of
the whole path. Formally, let R and S be two paths with identical endvertices.
Function q is monotone if for any path P containing R as a subpath, i.e., P ⊃ R,
we have

q(R) ≤ q(S) ⇒ q(P ) ≤ q(P \ R ∪ S). (2)

Monotonicity is a natural property for many path quality functions but not for
all. Consider, for instance, average edge weight. A path consisting of edges with
weights 10, 2, 1, 2, 10 has a smaller average weight (5) than an alternative path
with weights 10, 1, 10 (average weight 7), even though the average of 2, 1, 2 is
larger than 1.

Monotonicity of path quality allows efficient pruning, as shown by the follow-
ing theorem. We omit the proof for brevity.

Theorem 1. Let G = (V, E) be a graph and e ∈ E an edge with endvertices

w1 and w2, in other words w1
{e}� w2. Edge e is redundant if and only if there
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exists another path S ⊂ E : w1
S� w2, e �∈ S, between the endvertices such that

q(S) ≥ q(e).

Theorem 1 says that redundancy of an edge (such as e in Figure 1) with respect
to all pairs of nodes is equivalent to its redundancy with respect to its own
endvertices. This means that edge redundancy can be evaluated efficiently by
just checking if there is a path between the endvertices (u and v) which is at
least as good as the direct edge. Redundancy with respect to all other pairs of
nodes follows.

The following corollary is a special case of Theorem 1 for paths of length two.

Corollary 1. Let G = (V, E) be a graph and e = {u, v} an edge in E. Edge e
is redundant if there exists a path S = {{u, w}, {w, v}} such that q(S) ≥ q(e).

Corollary 1 gives an even faster way of identifying some redundant edges: for
each edge e, find the shared neighbors w of the endvertices u, v and check if the
path from u via w to v is at least as good as edge e itself. Obviously, this test
cannot be used to infer non-redundancy of edges.

In Section 3 we will present algorithms that use Theorem 1 and Corollary 1
to solve the pruning problem with different trade-offs between completeness of
pruning and time complexity.

Next, however, we give examples of different path quality functions q one
could use in specific graph contexts.

2.3 Example Instances of the Framework

Flow networks are graphs where edge weights define their capacities. The
maximum capacity c(P ) of a path is limited by each of its edges: c(P ) =
min{u,v}∈P w({u, v}). The use of c as path quality function would guarantee
that the amount of flow that the best path has is always conserved. The global
property of network flow is much more commonly used; we will return to this in
the experimental section.

(a) Conserve amount of best flow (b) Conserve highest probability

Fig. 2. Simplification of different types of graphs

Using the path capacity c above as path quality function actually has the
property that completely pruned graphs are spanning trees that maximize the
smallest edge weight in the tree (Figure 2a). Arbitrary spanning trees could
be obtained by simply defining q(P ) = 1, in other words, q indicates that the
endpoints of path P are connected.
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As a more complex example, assume that the weight w(e) ∈]0, 1] of an edge is
the probability that the connection exists, and that edges are mutually indepen-
dent. Such graphs are called probabilistic or Bernoulli random graphs. The best
path is the one that most likely exists; the probability of a path P is simply the
probability that all of its edges co-exist: q(P ) =

∏
{u,v}∈P w({u, v}). Figure 2b

illustrates network simplification with this path quality function.
Shortest paths are commonly looked for in networks where edge weights cor-

respond to distances between nodes. This is an example of a setting where the
path quality—in this case path length—should be minimized rather than max-
imized. It is easy to change the definitions of this paper. Alternatively, one can
transform the weights w(e) to w′(e) = e−w(e) and use the same multiplicative q
that was defined above for probabilistic networks.

A relative neighborhood graph discards those edges whose endvertices have a
shared neighbor that is closer to both endvertices than the endvertices are to each
other. Again, edge and path qualities are measured by distances, so we need to
minimize q(P ) = max{u,v}∈P w({u, v}). An alternative is to transform w′(e) =
1/w(e) and use the path quality function q defined above for flow networks. In
either case, paths of at most two edges should be considered (cf. Corollary 1).

3 Algorithms

3.1 Variations

The four algorithmic variants we next present result from two axes of variation:
(A) whether to use Theorem 1 or Corollary 1 to search and identify redundancies,
and (B) whether to perform iterative search or static search.

Strategies to identify redundancy. Based on Theorem 1, the global best path
search determines the redundancy of an edge by finding and evaluating the best
path connecting its endpoints (and not including the edge itself). By the theorem,
global best path search guarantees correct identification of redundancy.

Triangle search, in turn, takes advantage of Corollary 1 and identifies non-
redundancy by only checking paths consisting of two edges. In other words, tri-
angle search is based on 3-cliques search. Triangle search misses some redundant
edges but is faster than global best path search.

Iterative versus static pruning. The iterative variant works dynamically: changes
to the graph take effect immediately and may affect the redundancy of other
edges. Iterative pruning results in a completely pruned graph. The result is not
unique but depends on the order in which edges are processed.

The static variant, in turn, determines the redundancy of all edges in a single
batch, based on the original graph only. Then, all redundant edges are removed.

There is another important difference between the static and iterative vari-
ants. If the static method would be applied directly based on the definition (1),
pruning would be too aggressive. In the case of ties, too many edges would be re-
moved, affecting some best path qualities, possibly even leading to disconnected



A Framework for Path-Oriented Network Simplification 225

components. Therefore an edge is removed only when the quality of the best
path is strictly higher than the quality of the edge. This guarantees that all best
path qualities are maintained. Static pruning thus prunes less edges than the
iterative variant, and does not necessarily produce a non-redundant graph. The
static method is faster, however, and its result is unique.

3.2 Outlines of Algorithms

Of the four algorithmic variants that we present, the Iterative-Global variant is
the most complete and the only one guaranteed to produce a completely pruned
graph. It is outlined as Algorithm 1. It first converts a multigraph (with parallel
edges) into a simple one (Line 2). Then it finds, for each edge, the best possible
alternative path P (Line 4). If it is at least as good as the edge, then the edge
is pruned as redundant (Line 6).

Algorithm 1. Iterative-Global Algorithm
Input: A weighted graph G(V, E), a path quality function q
Output: Subgraph H ⊂ G
1: F ← E
2: If F contains parallel edges, prune all but the best one.
3: for each e = {ui, uj} ∈ F do
4: Find path P = {{ui, ui+1}, . . . , {uj−1, uj}} ⊂ F \ {e} that maximizes q(P )
5: if q(e) ≤ q(P ) then
6: F ← F \ {e}
7: Return H = (V, F )

A straightforward implementation of the multigraph processing takes O(|E|2)
time (Line 2). On Line 4, we use Dijkstra’s algorithm with a complexity
of O

(
(|E| + |V |) log |V |) to find the best path. This is done for all |E| edges.

The computational complexity of the whole Iterative-Global method without
any optimizations is then O

(|E|(|E| + |V |) log |V |).
The Iterative-Triangle algorithm is very similar to the Iterative-Global one.

The only difference is that on Line 4 of Algorithm 1 the best path search is
replaced by the triangle search:

4: Find path P = {{ui, uk}, {uk, uj}} ⊂ F \ {e} that maximizes q(P ).

The computational cost of a triangle search for a single edge is O(|V |). The total
time complexity of Iterative-Triangle is thus O(|E|2 + |E||V |).

The Static-Global method, outlined in Algorithm 2, differs from Iterative-
Global in two respects. First, all best paths are computed in a single batch in
the set E of original edges (Lines 3–4). Second, the path quality check on Line 6
requires proper inequivalence.

Our implementation computes all-pairs shortest paths in time O(|V |(|E| +
|V |) log |V |). The total time complexity is thus O(|E|2 + |V |(|E| + |V |) log |V |).
This could be improved slightly by using Johnson’s algorithm [4].
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Algorithm 2. Static-Global Algorithm
Input: A weighted graph G(V, E), a path quality function q
Output: Subgraph H ⊂ G
1: F ← E
2: If F contains parallel edges, prune all but the best one.
3: for each e = {ui, uj} ∈ F do
4: Find path P = {{ui, ui+1}, . . . , {uj−1, uj}} ⊂ E \ {e} that maximizes q(P )
5: for each e = {ui, uj} ∈ F do
6: if q(e) < q(P ) then
7: F ← F \ {e}
8: Return H = (V, F )

The Static-Triangle variant is again very similar to the global one, and the
difference is again only to replace best path search on Line 4 of Algorithm 2 with
the triangle search:

4: Find path P = {{ui, uk}, {uk, uj}} ⊂ E \ {e} that maximizes q(P ).

The Static-Triangle variant is the fastest and the least complete of the four vari-
ants. Its worst-case computational complexity is identical to Iterative-Triangle.
However, as pruning takes place during the process, the complexity is typically
lower.

4 Related Work

Literature on network simplification and subgraph extraction is next. Here, we
review some main approaches and their representatives.

Simplification of flow networks aims at removing edges while not affecting
network flow for any node pair. This implies that the problem setting is more
conservative than the one studied here. The methods proposed in [5,6] are based
solely on the topology of the graph, not the weights. Generalization of those
methods to other kinds of graphs is a topic for possible further work.

Pathfinder networks [7,8] are in many aspects similar to our pruned graphs
and the global algorithm variants. The formulation is parameterized by r, to
define Minkowski distance measure for pairs of nodes, and by q, a maximum
path length considered (in other words, triangle search corresponds to q = 2
and global search to q = |N | − 1). Pathfinder networks then keep edges for
which no better path exists with respect to r and q. While originally proposed
for psychological research, Pathfinder networks are now gaining popularity in
visualization of very large co-citation networks.

Neighborhood graphs originate from computational geometry. Given a set of
points in some space, the task is to link proximal points by edges. When ex-
actly to link two points varies between methods. A popular instance is Rela-
tive Neighborhood Graph [9], where an edge connects u, v ∈ V if and only if
d(u, v) ≤ max(d(u, z), d(z, v)). See Veltkamp [10] for an overview of geomet-
ric graphs. The idea of relative neighborhood graphs can be applied to regular
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graphs—the distance between two nodes is the weight of the edge connecting
them, or infinite if none exists. This is a special case of the framework proposed
here.

Minimum spanning tree extraction is an old problem with specific solu-
tions [11,12]. The model proposed in this paper can be used to find spanning
trees, among others, but not necessarily minimal ones.

5 Experiments

To assess the methods proposed in the previous sections, we conducted exper-
iments with various real graphs from the biomedical domain. With the exper-
iments we aim to find initial answers to the following questions. How many
edges are removed? How do the removed edges affect more complex measures of
relatedness? What are the removed edges like semantically? How efficient and
scalable are the methods?

5.1 Experimental Setup

Our data source is the Biomine database [1] which integrates information from
twelve major biomedical databases. In the Biomine graph, nodes are biological
entities such as genes, proteins, and biological processes. Edges correspond to
known or predicted relations between entities, and have weights between 0 and 1.

For the tests, we picked 60 pairs of genes, such that each pair was related to
the same phenotype according to Köhler et al. [13]. For each pair, the Biomine
search engine1 was then used to obtain a 500 node subgraph that contains the
neighborhoods of the two given nodes. (Pairs whose neighborhoods were not
connected were discarded.) For scalability tests, we additionally obtained a series
of graphs for each pair, with sizes increasing from 500 to 3000 nodes.

We experimented with two classes of graphs, flow graphs and probabilistic
ones, to get a perspective on the performance of the methods in different settings.
In both cases, we directly used the weights provided by Biomine as the capacities
or probabilities, respectively.

The algorithms were implemented in Java. Best paths were computed using
a separate tool kindly provided by Lauri Eronen. All tests were run on standard
PCs with x86 64 architecture with Intel Core 2 Duo a 3.16GHz, running Linux.

5.2 Results

5.2.1 How Many Edges Are Removed?
We first evaluate the effectiveness of the methods in terms of the number of
edges removed. Given a transformation of a graph G = (V, E) to H = (V, F ),
we measure the relative size reduction s = (|E| − |F |)/|E|.
1 biomine.cs.helsinki.fi
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The results obtained for flow graphs are shown in Figure 3a. The Iterative-
Global variant is the most effective, pruning even more than 30% of edges on av-
erage. Static-Global follows, pruning approximately 25%. The two Triangle vari-
ants have roughly equal performance, both pruning slightly less than 20%. Fig-
ure 3b shows the results obtained for probabilistic graphs. The fraction of edges
removed by Global variants is around 9%, and for Triangle variants around 7%.
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Fig. 3. (a) and (b): Fraction of edges removed by each of the four algorithmic vari-
ants. (c) and (d): Fraction of more complex measures lost in simplification. Each
boxplot shows the distribution of results over 60 test graphs. IG=Iterative-Global,
IT=Iterative-Triangle, SG=Static-Global, ST=Static-Triangle.

In absolute numbers, flow graphs lost approximately 120 to 240 edges out of
740 original ones. Probabilistic graphs lost approximately 50 to 60 edges. The
results indicate that a relatively large number of edges can be removed without
affecting the best path connectivity between any pair of nodes.

5.2.2 WhatAre theEffects onMoreComplexConnectivityMeasures?
In order to get a better understanding of the characteristics of the proposed
methods, we next evaluate their effect on some other measures.

Effect on maximum flow. For flow networks, a natural measure of connectivity
between two given nodes is the maximum total flow from one node to the other,
using all possible paths. In each of the graphs in our experiments, we also mea-
sured the maximum flow between the two nodes originally used to obtain the
graph, computed with the Edmonds-Karp algorithm [14].

Figure 3c shows how much the maximum flow was reduced by each of the
four algorithmic variants; f = ((MaxFlow(G) − MaxFlow(H))/MaxFlow(G).
Iterative-Global loses approximate 80% of the flow capacity, closely followed by
Static-Global. The Triangle variants only lose about 30% on average. (Iterative-
Triangle seems to have lost slightly less flow capacity than Static-Triangle, but
this difference is due to handling edges in random order.)

Effect on graph reliability. In a probabilistic graph, the two-terminal network
reliability (ttnr) is a natural measure of global connectivity between two given
nodes [1]. The reliability can be estimated with a Monte Carlo approach: generate
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a large number of realizations of the probabilistic graph, and count the relative
frequency of graphs containing a path between the two given nodes. In our
experiments, we used 10 million Monte Carlo realizations in the evaluation of
each graph to minimize estimation error.

Figure 3d shows the relative loss of reliability, r = (ttnr(G) −
ttnr(H))/ttnr(G). All relative losses of Global variants are below 4%, and on
average below 0.5%. Relative losses of Triangle variants are even less. In other
words, edge pruning based on the best path quality had almost no effect on the
more global network reliability.

5.2.3 What Are the Removed Edges Like Semantically?
An interesting issue is what the pruned edges are like. In Biomine, certain types
of edges can be considered elementary; they connect entities that strongly be-
long together in biology. These include genes and the proteins they code for,
homologous genes (in other words, the genes are essentially the same but in
different organisms), and synonyms. An expert user most likely would not like
any of these links to be pruned. On the other hand, since these relations are so
elementary, other nodes need (and should) be connected to only one of them;
the other connections could be considered semantically irrelevant.

With this idea, we designed the following experiment. We defined the edge
types codes for, is homologous to, subsumes, and has synonym as “important.”
Then, we computed the number of those edges, adjacent to an important edge,
that are “semantically irrelevant.” For the sake of completeness, we also counted
the number of “other edges” that are neither important nor adjacent to any
important edge.
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Fig. 4. (a)–(d): Shares of different semantic categories among all removed edges (static
methods in probabilistic graphs; note different vertical scales). (e): Mean running times
(in logarithmic scale) of 60 runs as functions of the size of the input flow network.

An analysis of the edges removed by the simplification method in probabilis-
tic graphs shows that practically none of the removed edges were important
(Figure 4a), 32–56% were irrelevant (b), and 12–48% were “other edges” (c), in
other words those on which our crude semantic classification could not decide,
and 15–33% were parallel ones (d). Looking at each of the semantic categories,
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we observe that about 22–30% of semantically irrelevant edges were pruned, and
2–7% of other edges (results not shown). Even though the last percentage seems
low, the category is by far the largest and, as stated above, stands for 12–48% of
all removed edges. The results indicate that in our application the simplification
method could considerably complement and extend expert-based or semantic
methods, while not violating their principles.

5.2.4 How Efficient and Scalable Are the Methods?
Finally, we compare running times of the four variants. For this purpose, we
used differently sized variants from 500 to 3000 nodes for each of the 60 graphs.

The mean running times for flow graphs are given in Figure 4e (results are
similar for probabilistic graphs). Static-Triangle always needed less than 0.1
second to complete, even for a graph consisting of 3000 nodes. (The other variants
were considerably slower. However, this comparison is not fully fair and should be
considered at most indicative: Since the best path computation was implemented
by an external tool, the global versions and especially the iterative versions
suffered from the unnecessary cost of repetitive passing of graph files and starting
new processes.)

6 Conclusion

We have addressed the problem of network simplification. The viewpoint is path-
oriented: In the simplified network, and for any pair of its nodes, the best path
qualities have been maintained. The framework is applicable to a large variation
of network types and path qualities, some of which we illustrated with examples.
Example instances include relative neighborhood graphs, spanning trees, and
certain Pathfinder graphs.

Based on properties of monotone path quality functions, we gave four algorith-
mic variants of varying computational complexity that simplify a given network
with varying degrees of completeness. Experiments performed on 60 real biologi-
cal networks illustrate the potential of this approach. A rough semantic analysis
of the simplification indicates that in our experimental setting, practically no se-
mantically important edges were removed. Instead, the proposed method could
complement semantics-based simplification by identifying additional redundant
edges.

The simplification methods are part of larger on-going, system-oriented
projects (Bison2 and Biomine3) aimed at intelligent analysis of networked in-
formation. One of the next steps is validation of the simplification methods in
user studies. For future work, an interesting topic is further generalization of the
framework to more greedy network compression where some loss of best path
qualities could be traded against removal of more edges.

2 www.bisonet.eu
3 biomine.cs.helsinki.fi
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Abstract. Data-driven knowledge discovery is becoming a new trend in various 
scientific fields. In light of this, the goal of the present paper is to introduce a 
novel framework to study one interesting topic in cognitive and behavioral stud-
ies -- multimodal communication between human-human and human-robot in-
teraction. We present an overall solution from data capture, through data coding 
and validation, to data analysis and visualization. In data collection, we have 
developed a multimodal sensing system to gather fine-grained video, audio and 
human body movement data. In data analysis, we propose a hybrid solution 
based on visual data mining and information-theoretic measures. We suggest 
that this data-driven paradigm will lead not only to breakthroughs in under-
standing multimodal communication, but will also serve as a successful case 
study to demonstrate the promise of data-intensive discovery which can be ap-
plied in various research topics in cognitive and behavioral studies.  

Keywords: Scientific Discovery, Cognitive and Behavioral Studies, Human-
Human Interaction, Human-Robot Interaction, Information Visualization, Data 
mining. 

1   Introduction 

With advances in computing and sensing technologies, the dominant methodology of 
science has been changing over recent years. Bell et al. [1] predicted that the first three 
paradigms in science – empirical, theoretical and computational simulation – have 
successfully carried us to where we are and will continue to make incremental  
progress, but meanwhile dramatic breakthroughs will be achieved by the next fourth 
paradigm of science – data-intensive science, which will help bring about a profound 
transformation of scientific research (see also [2]). In brief, a vast volume of scientific 
data captured by new instruments in various labs is likely to be substantially publically 
accessible for the purposes of continued and deeper data analysis. This analysis will 
result in the development of many new theories from such data mining efforts. Indeed, 
data-driven discovery has already happened in various research fields, such as earth 
sciences, medical sciences, biology and physics, to name a few. However, cognitive 
and behavioral studies still mostly rely on traditional experimental paradigms  
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(reviewed below). The goal of the present paper is to introduce a contemporary frame-
work to study one interesting topic in behavioral studies -- multimodal communication 
in human-human and human-robot interaction. We present an overall solution from 
data capture, through data coding and validation, to data analysis and visualization. We 
suggest that this data-driven paradigm will not only lead to breakthroughs in under-
standing multimodal communication but also more generally serve as a successful case 
study to demonstrate the promise of this data-intensive approach which can be applied 
in many other research topics in cognitive and behavioral studies.  

Everyday human collaborative behavior (from maintaining a conversation to 
jointly solving a physical problem) seems so effortless that we often notice it only 
when it goes awry. One common cognitive explanation of how we (typically) manage 
to work so well together is called “mind-reading” [3]. The idea is that we form mod-
els of and make inferences about the internal states of others; for example, along the 
lines of “He is pointing at the object, so he must want me to pick it up.” Accordingly, 
previous empirical methods on human-human communication are rather limited. For 
example, survey-based methods have been widely used to study human social  
interaction. This kind of measure relies on participants to recall and self-report their 
experiences, and although these reports may be predictive and diagnostic, they need 
not be objectively correct, and thus are at best an imperfect indication of what makes 
for “good” versus “not good” social interactions. Another popular approach is based 
on video coding in which human researchers code and interpret video data of human-
human everyday interaction based on the prior notions about what is worth counting. 
But this rather subjective method may confirm what we already know but overlook 
important aspects of social interactions that we do not yet know – the ultimate goal of 
scientific discovery.  

It is not at all clear that mind-reading theories about the states of others – and in-
ferences from such internal representations – can explain the real-time smooth fluidity 
of such collaborative behaviors as everyday conversation or joint action. The real-
time dynamics of the behaviors of collaborating social partners involve micro-level 
behaviors, such as rapid shifts of eye movements, head turns, and hand gestures, and 
how the partners co-organize in an interaction. These behaviors seem to be composed 
of coordinated adjustments that happen on time scales of fractions of seconds and that 
are highly sensitive to the task context and to changing circumstances. Previous sur-
vey and video-coding approaches don’t have access to such fine-grained behavioral 
data, to say nothing of interpreting such micro-level behaviors. An understanding of 
micro-level real-time behaviors, however, has potential applications to building effec-
tive teams that can solve problems effectively, to building better social environments 
to facilitate human-human communication, to helping people that have various com-
munication problems (e.g. autism), to building artificial agents (intelligent robots, 
etc.) that work seamlessly with people through human-like communication, and to 
building social training contexts for people to learn better (classroom interaction be-
tween teachers and students). Indeed, a fundamental problem in understanding both 
natural and artificial intelligent systems is the coordination of joint activity between 
social partners.  

In both human-human communication and human-robot interaction, there is grow-
ing interest in micro-analytic studies of just what happens – in real time – as individ-
ual agents interact. Within this new trend, an understanding of human collaboration 
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requires a level of analysis that concentrates on sensory-motor behaviors as a complex 
dynamic system in which the behaviors of social partners continually adjust to and 
influence each other. Although there is a growing consensus for the need for such an 
approach, there has been little progress. The limits to progress include issues concern-
ing how to measure fine-grained behaviors in real-time interactions, and how to ana-
lyze, quantify, and model the results.  

This paper presents a contemporary framework to study real-time multimodal 
communication between autonomous agents (humans or robots). In the following 
sections, we will introduce a set of novel solutions under this data-driven paradigm, 
including how to collect high-resolution behavioral data from multimodal interaction 
(Section 2), how to code and mange the whole dataset (Section 3), and how to analyze 
and visualize the data to discover new patterns and principles in both human-human 
and human-robot interaction (section 4). With this set of data capture, data coding and 
data analysis techniques, our framework allows us to study critical questions that 
cannot be asked before using traditional methods, to discover new knowledge that is 
unlikely to be acquired using traditional paradigms, and to demonstrate the power of 
this data-driven approach to cognitive and behavioral fields.   

2   Data Collection – A Multimodal Sensing System 

The first component in a complete data-driven paradigm is data acquisition. Toward 
this end, we have developed a multimodal sensing environment in which we ask two 
agents (humans or robots) to interact with each other with pre-defined communication 
tasks. We have successfully used this experimental setup to collect high-resolution 
data from three interaction scenarios (each with its own specific research goals): 
adult-adult interaction to capture the fundamental principles in human-human com-
munication, child-parent interaction to study social environments of developing chil-
dren, human-robot interaction to discover behavioral patterns that the robot should 
emulate in order to perform human-like interaction. For instance, we asked parents to 
teach children a set of novel object names, and we asked human participants to teach 
the robot those names as well. In some other experiments, we asked participants to 
learn from the robot who acted as a teacher by uttering those object names. For an-
other example, in adult-adult interaction, an informed confederate was asked to be-
have in certain ways when he was interacting with his social partner. In all of the 
studies, multiple sensing systems are used to simultaneously record multimodal multi-
streaming behavioral data from these two agents (be they humans or robots). As 
shown in Figure 1, the raw data collected from various sensing systems includes:   
• Video: there are up to 6 video streams recorded simultaneously with a frequency of 

30 frames per second, and the resolution of each frame is 720x480. Approximate 
180,000 image frames were recorded in a 6-minute interaction.  

• Audio: The speech of the participants is recorded at a frequency of 44.1kHz. 
• Body motion: there are multiple position sensors in Polhemus motion tracking 

system, one on each participant’s body part, e.g. the head or hands. Each sensor 
provided 6 dimensional (x,y,z, yaw, pitch, and roll) data points at a frequency of 
120Hz. In a 6-minute interaction, we have collected 864,000 position data points 
from each participant.  
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Fig. 1. A multimodal sensing system is developed to collect fine-grained behavioral data in-
cluding motion tracking data, eye tracking data, video and audio data. We have successfully 
used this experimental paradigm to conduct studies of adult-adult interaction, child-parent 
interaction and human-robot interaction. In each study, we have collected multi-stream multi-
modal data for further data analysis and knowledge discovery.  

• Eye gaze: an eye tracker records the course of a participant’s eye movements over 
time at 60Hz.  

These data are synchronized based on a central time-clock and therefore we can easily 
align them to analyze sequential patterns across data streams.   

3   Coding of Multimodal Data 

The next component in our data-driven paradigm is automatic data coding – deriving 
various time series from raw multimodal data.  

Video Processing. The recording rate for each camera is 30 frames per second. The 
resolution of each image frame is 720x480 pixels. As shown in Figure 2, we analyze 
the image data in two ways: (1) At the pixel level, we use the saliency map model 
developed by Itti et al. [4] to measure which areas in an image are most salient based 
on motion, intensity, orientation and color cues. Itti’s saliency map model applies 
bottom-up attention mechanisms to topographically encode for conspicuity (or  
“saliency”) at every location in the visual input. (2) At the object level, the goal is to 
automatically extract visual information, such as the locations and sizes of objects,  
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Fig. 2. An example of visual data processing with three raw video streams (the left column). 
We calculated saliency maps from each video stream (the middle column) and also extracted 
visual objects from the scene (the right column). Next, a set of time series are derived based on 
measures such as sizes and locations of each of those objects, visual saliency and also head and 
hand movements.  

hands, and faces, from sensory data in each camera. These are based on computer 
vision techniques, and include several major steps. The combination of using pre-
defined simple visual objects and utilizing start-of-the-art computer vision techniques 
results in high accuracy in visual data processing. The technical details can be found 
in [5].  

Motion data Processing Six motion tracking sensors on participants’ heads and 
hands recorded 6 DOF of their head and hand movements at the frequency of 240 Hz.  
Given the raw motion data {x, y, z, h, p, and r} from each sensor, the primary interest 
in the current work is the overall dynamics of body movements. We grouped the 6 
DOF data vector into position {x, y, z} and orientation data {h, p, r}, and then we 
developed a motion detection program that computes the magnitudes of both position 
movements and orientation movements. We next cluster hand movement trajectories 
into several action prototypes (e.g. reaching, holding, and manipulating).  

Speech processing We first segment the continuous speech stream into multiple spo-
ken utterances based on speech silence. Next, we ask human coders to listen to the 
recording and transcribe the speech segments. From the transcriptions, we calculate 
the statistics of linguistic information, such the size of vocabulary, the average num-
ber of words per spoken utterance, the frequent frames in spoken utterances.  

In addition to automatic coding, we realized that some information may be hard  
to extract automatically. For instance, whether a person is holding an object cannot be 
easily detected just based on the distances between hands and the visual objects  
captured from video cameras as one may put hands close to an object without holding it. 
In light of this, we have also developed a manual coding program to allow human cod-
ers to record those derived variables. In the future, we are interested in investigating a 
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solution that can take advantage of both fast automatic coding and potentially more 
accurate human coding.   

Overall, as a result of sensory data processing (shown in Figure 2), we derived 
more than 200 time series from various sensing systems and they capture different 
kinds of perception and action variables in multimodal social interaction, such as sizes 
and saliency of objects from different cameras, trajectories of head and hand move-
ments, and the distances of objects to a participant. This data processing route has 
been used in different studies we’ve conducted using the multimodal sensing system.  

4   Knowledge Discover and Data Mining  

With huge amounts of multimodal data collected from various studies of human-
human and human-robot studies, a critical component in data-intensive discovery is 
the ability to discover new patterns from such data. Now how can we discover what 
we do not know what we are looking for? Classic approaches to data-mining often 
require that one has some idea of what one is looking for. More specifically, advances 
in machine learning and data mining provide tools for the discovery of only pre-
defined structures in complex heterogeneous time series (hidden Markov models, 
dynamic time warping, Markov random fields, to name a few, e.g. [6]). A relevant 
research field to knowledge discovery is information visualization with the goal to 
visually present data to highlight certain aspects of patterns and structures so that 
researchers can easily spot interesting patterns based on their visual perception sys-
tems. As shown in Figure 3, data mining and information visualization are tradition-
ally treated as two irrelevant topics. Data mining algorithms rely on mathematical and 
statistical techniques to discover patterns while information visualization researchers 
are interested in finding novel techniques to visually present data in more informative 
ways. However, it is worth noting that these two topics share the same ultimate re-
search goal – building tools and developing new techniques to allow users (e.g. re-
searchers) to obtain a better understanding of massive data.  

 

Fig. 3. Left: Information visualization techniques focus on developing informative ways to 
visualize data.  Middle: Data mining algorithms rely on mathematics and statistics to find 
complex patterns from data. Right: While data mining and information visualization are tradi-
tionally treated as two separate topics, they share the same research goal. In light of this, our 
hybrid and interactive approach builds the links between these two and by doing so forms a 
closed loop between visualization and data mining. 
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Discovering new knowledge requires the ability to detect unknown, surprising, 
novel, and unexpected patterns. For this purpose, we propose that the techniques de-
veloped in data mining and information visualization can be integrated to build a better 
pattern/knowledge discovery system. In the case of our multimodal data, a huge 
amount of information must be cut and summarized to be useful. But statistics and 
measures extracted from raw data may exclude embedded patterns or even be mislead-
ing. We need a mechanism to represent the overall statistics but still make fine-grained 
data accessible. Information visualization provides a unique opportunity to accomplish 
this task. Often, potential users of information visualization are not aware of the bene-
fits of visualization techniques on data mining; or they use those techniques only as a 
first phase in the data analysis process. As shown in Figure 3 (right), we suggest a 
more interactive mode between data mining and information visualization. In our sys-
tem, researchers can not only visualize raw data at the beginning but also visualize 
processed data and results. In this way, data mining and visualization can bootstrap 
each other – more informative visualization based on new results will lead to the dis-
covery of more complicated patterns which in turn can be visualized again to lead to 
more findings. More importantly, researchers play a critical role in this human-in-the-
loop knowledge discovery by applying data mining techniques on the data, examining 
visualization results and deciding what to focus on at the next round based on theoreti-
cal knowledge in one’s mind. In this way, domain knowledge, computational power, 
and visualization tools can be integrated together to allow researchers to reduce the 
search space created by huge datasets, and quickly and effectively identify interesting 
patterns. In the following, we will briefly introduce visualization and information tools 
we developed and used in our data-driven research paradigm.   

4.1   Visual Data Mining System  

As we discussed earlier, most data mining algorithms can effectively search and  
discover only pre-determined patterns and those patterns need to fit a specific defini-
tion of statistical reliability. This limitation significantly constrains what can be 
achieved. A large amount of time must be invested in prototyping a number of pilot 
data analysis algorithms, many of which turn out to be dead ends.  In light of this, we 
have developed a hybrid approach that allows us to use a small number of very prom-
ising data mining tools as a first pass, and then from these suggested interest-
ing/unusual patterns, we perform more directed, more detailed and deeper analyses 
with human inspection -- adding domain-specific expertise as a part of data analysis, 
followed by more automatic data mining. This idea of interactive human-in-the-loop 
data mining is implemented by our information visualization system [7] which has 3 
key components: (1) a smooth interface between visualization and data mining; (2) a 
flexible tool to explore and query temporal data derived from raw multimedia data; 
and (3) a seamless interface between raw multimedia data and derived time series and 
events. We have developed various ways to visualize both temporal correlations and 
statistics of multiple derived variables as well as conditional and high-order statistics. 
Our visualization tool allows us to explore, compare, and analyze multi-stream  
derived variables and simultaneously switch to access raw multimedia data. As shown 
in Figure 4, our visualization system follows the general principles of building scien-
tific data visualization systems: “overview, zoom & filter, details-on-command” as  
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Fig. 4. There are two major display components in our visualization system: a multimedia 
playback window (left) and a visualization window (right). The multimedia playback window 
is a digital media player that allows us to access video and audio data and play back both raw 
and preprocessed data in various ways. The visualization window is the main tool that allows us 
to visually explore the derived data streams and discover new patterns. 

proposed by [8]. We embody these principles in the case of multimedia visual data 
mining of social and behavioral data, which comprises two major display components 
as shown in Figure 4: a multimedia playback window and a visual data mining win-
dow. The multimedia playback window is a media player that allows us to access and 
process raw multimedia data, and plays them back in various ways. The visualization 
window is the main tool that allows us to manipulate and visually explore derived 
data streams to discover new patterns. More importantly, when we visually explore a 
dataset, these two display windows are coordinated to allow us to switch between 
synchronized raw data and derived data. We have developed various functions to 
visualize derived data streams individually or together to highlight different aspects of 
multimedia multivariate data (see [7] for details).  

As an example to demonstrate the utilities of visual data mining, Figure 5 shows a 
set of eye movement data (e.g. where a person is looking at). Each stream in the fig-
ure corresponds to the same derived variable but collected from different participants. 
In this example, since all of the data streams are temporally aligned, we can easily 
compare those time series to spot interesting patterns. More specifically, there are at 
least two immediate outcomes from this visual exploration. First, we can discover 
those moments that all the participants behave similarly. This pattern can be spotted 
by examining multiple time series vertically. Moreover, we can visually examine the 
timing of their eye movement behaviors which usually cannot be captured by statisti-
cal analysis. Meanwhile, by examining those data streams horizontally, we can also 
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easily find those individuals who are different with others (e.g. participant 3 in this 
example). Moreover, this explicit and informative visualization allows us to also dis-
cover in what ways those individuals are different. In the our example, participant 3 
seems to always generate eye movements right before most of people do so – the 
pattern that can be easily detected through this visualization.  

4.2   Information-Theoretic Measures 

In multimodal communication, one agent’s activities are embedded in, influenced by, 
and influence the momentary behaviors of the other social partner such that the whole 
human-human interaction can be viewed as two coupled complex systems. As the first 
steps to understand those two coupled complex systems, we use information-theoretic 
measures to measure information flows between various time series derived from the 
same agent and those time series derived from two agents. We will use the data from 
child-parent interaction as an example here. Given multi-streaming continuous time 
series extracted from child-parent interaction, we are interested in quantifying this 
multimodal inter-person information exchange at the bit level. Our data mining and 
pattern discovery process consists of two steps. We need to first convert a continuous 
time series into a discrete stream of system states so that we can form probabilistic 
distributions of the states of each variable over time. We can then apply information 
metrics (e.g. entropy and mutual information) to quantify the amount of information 
in bits.  

The discretization technique we employed in the first step is based on Symbolic 
Aggregate Approximation (SAX) [8]. The goal here is to provide an efficient and 
accurate symbolic representation of time series which makes it easier to apply infor-
mation theoretic measures. In brief, SAX first transforms the input time series data 
into Piecewise Aggregate Approximation (PAA) representation and then symbolizes 
the distribution space of PAA representation into a set of discrete symbols. Compared  
 

 

Fig. 5. Application of our visualization program to the problem of comparing the same derived 
variable collected from multiple participants. By visually exploring those multiple streams in 
parallel, researchers can easily detect the shared behavioral patterns across participants. 
Namely, most participants generate the same behaviors or perceive the same information at 
those moments. At those moments, they also demonstrate individual differences. Moreover, we 
can also easily identify individuals that are different with the whole group. For instance, par-
ticipant 3 seems to be an outlier whose gaze data are quite different with other participants. 
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with other approaches, SAX allows lower-bounding distance measures to be defined 
on the symbolic space that are identical with the original data space. Thus, the infor-
mation loss through this symbolization and its potential effects on subsequent data 
processing is minimal when we convert time series into this efficient symbolic repre-
sentation.  

With symbolic representations of various derived time series from multimodal hu-
man-human communication, we have applied and integrated various temporal data 
mining algorithms in our system. Here we will use entropy rate [9] as a simple exam-
ple, which measures uncertainty in time series when the previous state of a series is 
given or the previous state of two series are given. In our case, the entropy rate, which 
measures the uncertainty in a distribution of the transitive probability from one state 

to another would be a suitable choice. Suppose that { }NiiiI ,,, 21 L=  is series of 

symbols, and the entropy rate of the series I is as follows. 
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We next calculated the entropy rates of individual variables extracted from raw 
multimedia data. To capture temporal dynamics of each variable, instead of calculat-
ing the overall entropy over time, we defined a sliding window with the size of 2 
seconds and applied this moving window to time series data so that a local entropy 
time series was computed. Figure 6 shows several individual entropy measures in 
parallel. The first two entropy time series H1 and H2 are from the child while H3 and 
H4 are from the parent. More specifically, H1 measures the entropy of the object held 
by the child’s hands. H2 measures the entropy of the child’s hands. H3 measures the 
entropy of the same object from the caregiver’s view (captured by the caregiver’s 
camera) and H4 measures the entropy of the parent’s hands. By aligning these indi-
vidual entropy measures side by side, we can immediately detect several patterns 
between these variables: 1) H1 and H2 are quite correlated; 2) Moreover, H2 is a 
precursor of H1 since the manipulation of the object causes the changes of the visual 
appearance of that object from the camera’s view; 3) H3 and H4 are not correlated 
since the object is in the child’s hands but not the parent’s hands; and 4) H1 and H3 
are not correlated since the object manipulated by the child is barely seen from the 
parent’s view. Moreover, we can spot potentially important temporal events. For 
example, the red box in Figure 6 highlights such an event. In this example, the parent 
briefly took the object away from the child which causes the increase of the entropy 
on the parent’s side (both the hands and the visual object) and as well as the decrease 
of the entropies on the child’s side (the visual object is farther away; and the child’s 
hand is not manipulating the object). From this example, we suggest that even simple 
information-theoretic measures, such as the entropy rate of a temporal variable, can 
lead to insightful results to quantify the dynamic communication between the two 
agents. We have developed various other measures such as mutual information and 
transfer entropy to quantify information flows not only in child-parent interaction and 
human-robot and adult-adult interaction.  
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Fig. 6. An example of entropy rates from four time series – two from the child and two from 
the parent. From this example, we can see the moment with consequential information flows 
between those four variables and as well as which variable leads to changes of other variables.  

4.3   Interactive Data Mining  

We argue that a critical challenge of data-intensive discovery lies in not only pure 
amounts of data that need to be mined but also the huge search space of potentially 
interesting patterns created by the data. For example, in our dataset, one can treat each 
time series independently and by doing so, we just focus on patterns within a single 
time series. However, if we truly view multimodal communication between two 
agents as two complex systems, we need to analyze correlations embedded in a subset 
of two, three or more time series which leads to combinational exploration. 

A solution for this challenge in particular and for intelligent data analysis of scien-
tific discovery more generally clearly relies on advanced data mining algorithms to 
process huge amounts of data and extract potentially interesting patterns. But more 
importantly, we suggest that the exploratory nature of scientific discovery also re-
quires an interactive platform allowing scientists to be in the loop of data mining, 
examine the current results generated and then guide data mining algorithms toward 
the right directions, which significantly enhances both effectiveness and efficiency of 
knowledge discovery. Thus, this human-guided computation can seamlessly integrate 
human expertise and statistical pattern discovery power.  

Toward this end, our data mining system supports various procedures that allow us 
to examine both raw and derived data, and gain insights and hypotheses about inter-
esting patterns embedded in the data. All this is accomplished by human observer’s 
visual system. In order to quantify and extend these observations, researchers need to 
develop and use data mining algorithms to extract and measure the patterns detected 
in visual exploration. We notice that different researchers may have different prefer-
ences of programming languages and may prefer to use certain software packages. To 
increase the flexibility to be compatible with data mining, our system allows users to 
use any programming language to obtain new results. Thus, data researchers can im-
plement new data mining algorithms using their own analysis tools (from Matlab, to 
R and to C/C++) and as far as they write the results into text files (e.g. CSV form) 
with pre-defined formats, our system monitors user’s workspace in real time and will 
automatically load new derived variables into the variable list so that we can immedi-
ately visually examine these new results. In this way, our visualization system sup-
ports a close and flexible coupling between visual exploration and data mining. The 
insights gleaned from visualization can be used to guide further data mining. Mean-
while, the results from the next round of data mining can be visualized which allows 
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us to obtain new insights and develop more hypotheses with the data. Overall, our 
data analysis system is “open-minded” by not adding any constraints, assumptions or 
simplification on raw and derived data, but instead allows us to guide the direction 
and systematically explore the data through informative visualization, which is truly 
the power of visual data mining.  

5   Conclusions  

Human-human and human-robot multimodal communication can be viewed as two 
coupled complex systems interacting with each other through perception and action.  
Inspired by this conceptualization, we invented and implemented a novel data-
intensive paradigm that allows us to investigate micro-level behaviors, such as head 
turns and gaze shifts, generated by autonomous agents (humans or robots). To achieve 
this goal, our paradigm includes a multimodal sensing system to collect fine-grained 
sensory data, automatic coding programs to extract temporal variables from raw mul-
timedia data, a visual data mining system to visualize multi-streaming data, a set of 
quantitative measures (e.g. information theoretic measures) to calculate  information 
exchanges between variables and states derived from two agents, and an interactive 
framework that allows us to integrate information visualization and data mining. We 
have implemented each of these components and have begun to use this new para-
digm to discover new knowledge in both human-human communication [5] and hu-
man-robot interaction [10]. We argue that data-intensive discovery approaches have 
great potentials to lead to lots of breakthroughs in cognitive and behavioral studies in 
the near future.  
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Abstract. Rock art, human-made markings on stone, is an important cultural  
artifact and the earliest expression of abstract thinking. While there are tens of 
millions of photographs of rock art in existence, there have been no large-scale 
attempts to organize, classify or cluster them. This omission is not due to a lack 
of interest, but reflects the extraordinary difficultly of extracting useful data 
from an incredibly heterogeneous and noisy dataset. As we shall show, rock art 
is likely to resist efforts of automatic extraction from images for a long time. In 
this work we show that we can use CAPTCHAs, puzzles designed to tell hu-
mans and computers apart, to segment and index rock art. Unlike other CAPT-
CHAs which operate on inherently discrete data and expect discrete responses, 
our method considers inherently real-valued data and expects real-valued re-
sponses. This creates a challenge which we have overcome by using a recently 
introduced distance measure. We demonstrate our system is capable of acting as 
a secure CAPTCHA, while producing data that allows for indexing the rock art. 

Keywords: CAPTCHA, Image Processing, Cultural Artifacts, Rock Art. 

1   Introduction 

Rock art is the archaeological term for human-made markings on stone, including pe-
troglyphs, carvings into stone surfaces and pictographs, paintings on stone. Fig. 1 il-
lustrates some examples of each, which hint at the astonishing variability of rock art 
in terms of complexity and appearance. 

Petroglyphs and pictographs are perhaps the earliest expressions of abstract thinking. 
Studies of rock art have implications beyond anthropology and history. For example, a 
recent study postulates the existence of a now-extinct Australian bat species based on 
extraordinarily detailed pictographs known to be at least 17,500 years old [13]. 
 

 

Fig. 1. A selection rock art hints at their incredible variability, complexity and beauty 
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Petroglyphs have been used in studies of climate change; the changing inventories of 
species in the Dampier Archipelago from the Pleistocene to the early Holocene period 
have been reconstructed partly by petroglyph evidence [4]. However, in spite of these 
successes, progress in petroglyph research has been frustratingly slow. A decade ago, 
Walt et al. summed up the state of petroglyph research by noting, “Complete-site and 
cross-site research thus remains impossible, incomplete, or impressionistic” [15]. 
Surprisingly, there has been little change in the intervening decade. We believe that 
this is due only to the difficultly of extracting the petroglyphs from raw images. More 
concretely, we claim that given the extracted “outline” data, indexing, classification 
and clustering of rock art would be relatively easy. Since this is the fundamental as-
sumption in our work, let us immediately demonstrate it. In Fig. 2 we have clustered 
eight rock art images, for which we have (human extracted) “skeleton” data, in the 
form of a binary bitmap. 

 

Fig. 2. A clustering of eight petroglyphs using the GHT measure proposed in [16] 

This result hints at the fact that if we could only extract the skeletonized data, a 
wealth of opportunities for anthropological data mining would open up. However, as 
we shall demonstrate, in the vast majority of cases, the extraction of meaningful data 
from photographs of rock art is likely to be beyond the capabilities of image segmen-
tation algorithms for a long time. With this in mind, we proposed to extract useful in-
formation from unconstrained images of rock art by turning the problem into a 
CAPTCHA [1]. CAPTCHAs (“Completely Automated Public Turing test to tell 
Computers and Humans Apart”) are tests given by a machine to ensure that a re-
sponse is generated by a human, not a computer. The most familiar instantiation of 
them is a sequence of distorted letters that the user must reproduce. Fig. 3 shows two 
examples. 



 Using CAPTCHAs to Index Cultural Artifacts 247 

 

Fig. 3. Two examples of CAPTCHAs. In order to solve the CAPTCHA, and get access to the 
next webpage (in this case, offering a free email account) the user must type in 28iVW and 
jw62K respectively. 

These CAPTCHAs operate on inherently discrete data (text, albeit distorted) and 
expect discrete responses (keystrokes); we can therefore use equality tests to decide if 
the test was passed, i.e. equals('28iVW ','28iVW ')? 

In contrast, our method considers inherently real-valued data (photographs of rock 
art) and expects real-valued responses (mouse movements). We cannot expect to test 
for equality. This creates a significant challenge which we have overcome by using a 
recently introduced distance measure [16] to test if a tracing of a petroglyph is close 
enough to a real pattern to indicate human intelligence. 

2   Background and Related Work 

2.1   Background on Rock Art 

The earliest petroglyphs have traditionally been associated with the appearance of 
modern humans in Europe such as the famous example from the Lascaux Cave, 
France, and an early one from the Chauvet Cave, France which dates back to as early 
as 30,000 years ago [14].  Recent work has shown that the idea of expressing abstract 
motifs appears much earlier, 77,000 years ago in South Africa [8].  Given this long 
history, this art is one of the most valuable sources of humanity that has persisted to 
the present time. 

Beyond their value as an aesthetic expression, petroglyphs provide a rich source of 
information for researchers. Repeated motifs can be identified and traced through 
time and space, which in turn may shed light on the dynamic histories of human 
populations, patterns of their migrations and interactions, and even continuities to pre-
sent indigenous societies. However, the nature of petroglyphs poses an extremely dif-
ficult challenge. As in the case of any other artifacts of history, damages to petro-
glyphs are permanent and irreversible.  In addition, unlike other artifacts that can be 
preserved and protected within the confines of a controlled environment in a museum, 
petroglyphs are mostly left in their natural settings, exposed to elements of nature that 
will erode them inevitably with time. There is an urgent need to identify petroglyphs 
and to archive them for humanity. 

An understanding of similarity must be at the heart of any effort to analyze petro-
glyphs and other cultural artifacts. For example, an image of a horseman incised on a 
fossilized ostrich eggshell fragment was recently found among eolian deposits in the 
Gobi Desert, Mongolia [11]. An obvious thing to do with such an image in order to 
place it in a cultural context is to ask if a similar image exists among the many petro-
glyphs in the region. In Section 4.2 we show that we can support such queries.  
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2.2   Background on Image Processing 

Another fundamental assumption in this work is that there is no automatic segmenta-
tion algorithm that can robustly segment rock art. To demonstrate this, we conducted 
a simple experiment on what is probably one of the most amiable images imaginable, 
the famous petroglyphs of Alta, Norway. 

We took one image of a reindeer as shown in Fig. 4.left, and tried segmenting it 
with six different methods: the Sobel method, Prewitt method, Roberts method, 
Laplacian of Gaussian method, Zero-cross method and Canny method. In each case 
we spent fifteen minutes adjusting the parameters to achieve the best (subjectively) 
feature extraction. The best result, using the Prewitt method, is shown in Fig. 4.right. 

 

Fig. 4. left) Reindeer rock art from Norway, dating to 4200 to 500 BC. The rock carvings have 
been retouched in bright red by researchers, making them extremely high contrast.  right) a 
segmentation of the image using the Prewitt method, carefully tuned. 

Note that while our efforts have paid off in that we have captured much of the ani-
mal in question, we are missing a large section of the rump. What is worse, we have 
many spurious lines corresponding to cracks in the rock. Of course, it is possible that 
a more sophisticated algorithm could be tuned to do a better job; however, this tuned 
version is unlikely to generalize to other petroglyphs. Furthermore, it is worth restat-
ing that this example is among the highest contrast, cleanest examples of rock art. 

2.3   Background on Human Computation 

The last five years has seen a flurry of research on Human Computation, much of it 
leveraging off the pioneering work of Luis von Ahn [2]. The essence of human com-
putation is to have computers do as much work as possible to solve a given problem, 
but to outsource certain critical steps to humans. These steps are ones which are diffi-
cult for computers, but simple for humans. One of the most famous examples is the 
Google Image Labeler, which is a program that allows the user to label random im-
ages to help improve the quality of Google’s image search results. Like many such ef-
forts, human time is donated for free, because the task is embedded in a fun game; 
hence the recently coined term, Games with a Purpose, or GWAP [3]. 

2.4   Distance Measures for Line Drawings 

As noted in Section 2.1, an effective and robust similarity measure is crucial to  
mining petroglyphs and, as we shall see, in testing to see if a "skeleton" drawing  
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submitted to a CAPTCHA can be attributed to human intelligence. After soliciting 
feedback and advice from various researchers in the data mining and image process-
ing community, and testing dozens of possible measures, we proposed a distance 
measured based on the Generalized Hough Transform (GHT) [16]. The utility of this 
measure can be subjectively judged in Fig. 2 and objectively measured by classifying 
hand drawn symbols (Farsi digits, icons, etc.) that are “petroglyph-like” [16]. 

The GHT is a useful method to detect arbitrary two-dimensional shapes [5][12], in 
which shapes are constituted of edge points (simply the dark pixels in the binary rep-
resentation of shapes). The goal of GHT is to find the best fit between a query shape 
Q and a candidate shape C. That is, if we place Q onto C (with only translation in the 
plane allowed), the number of matched edge points should be the maximal. 

For clarity and simplicity, here we give a toy example to illustrate how it works. 
Fig. 5.left shows a query shape Q and candidate shapes C1 and C2. A best fit between 
Q and C1 is also shown on the right of Fig. 5, and we can consider that Q is found in 
C1 at this particular alignment.  

C2Q C1

 

Fig. 5. left) Toy examples of a query Q and candidate matches C1 and C2. Each cell is a pixel, 
and the dark colors denote edge points of shapes. right) The GHT aligns Q and C1 by maximiz-
ing matched edge points between them.  

The GHT can effectively detect shapes, but it does not explicitly encode a distance 
measure. To find a numeric evaluation of it, we defined the minimal unmatched edge 
points (MUE) of Q, which is simply the number of edge points in Q minus maximal 
matched points. In our example, with the similar shape C1, its value is 12 − 8 = 4 (re-
flected by the four arrows in Fig. 5.right). If we had compared Q to C2, the MUE 
would equal 6, meaning Q is less similar to C2 than C1.  

We also considered several slight variations of MUE to enable higher-level data 
mining algorithms, and we will use one of them, the clustering distance variant [16], 
in all experiments in this paper.  

3   CAPTCHA-ROCK 

3.1   A Simple Image-Based Stickman CAPTCHA  

While the goal of this research is to introduce a method that will allow us to capture 
data from real photographs of petroglyphs, for ease of exposition we will begin dis-
cussing the problem as if our only intention were to produce an image-based 
CAPTCHA with artificial data.  

It is simple to write a program to produce random instances of a “stick figure”;  
Fig. 6 shows four examples. 
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Fig. 6. Four examples of a parameterized Stickman 

To ensure each stickman is unique (with very high probability), we have param-
eterized the code. The following features are parameterized: 

• The head size and aspect ratio 
• The length of the humerus, forearm, femur, tibia and foot  
• The angles of knees, elbows, ankle and torso (these may be asymmetric) 

There are other elements of a human stick figure that we could represent and param-
eterize, but this simple model is sufficient for our purposes.  

For reasons that we will see shortly, it is useful to ask what the average distance is 
between two randomly created figures under the GHT-distance measure discussed in 
the previous section. To calculate this, we generated 1,000 pairs of stickmen and cal-
culated the distance between each pair, summarizing the results in Fig. 7.   

0 1 2 3 4 5 6 7 8 9  

Fig. 7. left) A pair of randomly generated stickmen. right) The distribution of GHT distances 
between 1,000 pairs of randomly generated stickmen. 

If we instead produce random stickmen, and ask humans to trace their outline on 
the screen with the mouse pointer (as in Fig. 8.left), we might expect the distances be-
tween the generated and traced outlines to be generally smaller. 

To verify this, we generated 20 stickmen and asked volunteers to trace them. How 
well a person can trace the stickmen depends on their dexterity, input device, screen 
size, etc. Given these variations, we asked three volunteers to trace each stickman on 
their own machines. Fig. 8.right shows the distribution of these distances.  

0 1 2 3 4 5 6 7 8 9  

Fig. 8. left) A randomly generated stickman in black and a human tracing of it in red. right) The 
distribution of GHT distances between randomly generated stickmen and human tracings of 
them are shown with a finer bucket size (in red), because there is less data. The distribution of 
GHT distances between two randomly generated stickmen is shown for context (in blue).  
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It is easy to see that we could use these results to create a simple stickman 
CAPTCHA. We could produce a stickman, and ask the user to trace it. If a human 
traces the stickman, we can be near certain that the distance to the template will be 
less than 3 (from Fig. 8). For simplicity here we assume that the attacker has the code 
to produce the stickmen, and simply sends a random stickman as his guess. If that is 
so, his guess will almost certainly be greater than 3 (from Fig. 7/Fig. 8) and we can 
reject his attempt. Of course the attacker could use an image processing algorithm to 
produce a “customized guess”, and we could counter by imbedding the stickman in 
field of distracters and distortions, however, a better idea is to find “stickmen” in rock 
art, the subject of the next section.  

3.2   A CAPTCHA-ROCK System Helping Extract Data from Petroglyphs 

Motivated by our experiences with the stickmen CAPTCHA, we can now ask: is it 
possible to design a CAPTCHA system which provides high security (serves as a 
CAPTCHA) while collecting useful information about rock art (serves as a Human 
Computation tool)? The reCAPTCHA [2] proposed by Luis von Ahn is the ideal pa-
radigm to follow.  In this system, which is designed to transcribe degraded text from 
scanned books and newspapers, each test gives the user two words to recognize, one 
of which is a “control word”, whose answer is known, and the other one is an un-
known word. If the user can correctly type the “control word”, the reCAPTCHA as-
sumes that the inputs come from a human and the answer for the “unknown word” is 
correct (or at least plausible). Once an “unknown word” receives enough "votes" from 
a same answer, it can become a “control word”. This system has already transcribed 
several hundred million words, which OCR systems failed to parse.  

We can use the same idea to build our CAPTCHA-ROCK system. An example is 
shown in Fig. 9, in which the user is asked to trace both petroglyphs correctly to pass 
the CAPTCHA. 

Please trace both petroglyphs with your mouse pointer 

Help with the digitization of important cultural artifacts, visit www.cs.ucr.edu/~eamonn/anthropology/

Too hard? Get a different pair to work on 

Don’t understand? Get video or text help  

Can’t do this? Get an audio or text only test 

 

Fig. 9. A CAPTCHA-ROCK consists of two rock art images: one control image and one un-
known image. Note that users do not know which one is which. 

There are still three extra problems/questions we must solve to make this work: 

• How should we build the initial “control image” set? 
To frustrate robots that break challenges by simple random guesses, the set of control 
words in reCAPTCHA contains more than 100,000 items. Do we also need such a 
large “control image” set? We believe that the answer is no. We can frustrate an at-
tacker that attempts to simply memorize the entire control image set (with solution 
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tracings) by performing simple scale and translation operations to images. This means 
that even if the attacker's algorithm correctly detects which image is the control image 
(perhaps by color), the relative location of the petroglyph within the image may have 
changed just enough so that even if the attacker sends the right trace, it will be in the 
wrong location.  

As we shall show in the next section, our initial experiments show that even for a 
control set containing only 143 images, by using these simple scale and translation 
operations, CAPTCHA-ROCK has a pass rate of 0.020% to attackers, even after the  
attacker has been given a careful tracing for each image in the control set.  

• Is one trace per image enough?    
Assume two histograms in Fig. 8 have an overlap. To assure the low pass rate for ro-
bots, we have to set a smaller threshold. In this case a false negative occurs: some le-
gitimate attempts by humans would be denied.  

Our solution is to store multiple traces for one image. When a tentative solution is 
submitted by a user, we compare it to all traces and pass it if there is at least one dis-
tance below the threshold. Although human traces for the same image vary, by com-
paring to more than one "interpretation", the possibility of finding a close enough 
match increases. Note that this will not affect the pass rate for robot significantly. If a 
random trace is far from one trace, it is also far from other traces of the same image. 

Based on our experiments which will be presented in Section 4.1, three traces per 
image improve the human pass rate, without helping the attackers.  

• When can we promote an “unknown image” to a “control image”? 
Once we have recorded three traces for an “unknown image”, we promote it into the 
control set. Note that as a control image, the CAPTCHA-ROCK system will obtain 
more traces for the image. What should we do with these additional traces? We could 
ignore them, we could add them to the original three traces, or we could temporarily 
merge the new offering with the other three, expunging the one that has the furthest 
average distance from the others. We leave these considerations for future work. 

4   Experimental Results 

4.1   Quantitative Evaluation of CAPTCHA-ROCK System 

We have designed all experiments such that they are not only reproducible, but easily 
reproducible. To this end, we have built a webpage [17] which contains all datasets 
and code used in this work. In this section, we intend to show that: 

• Our CAPTCHA-ROCK is very easy for humans to solve (high pass rate) and 
hard for robots (low pass rate). 

• Storing multiple traces for each image helps increase the pass rate for humans, 
while not affecting the pass rate for robots significantly. 

• A small “control image” set is sufficient, at least to bootstrap the system. 
We randomly chose 143 images from our rock art image database, and had four vol-
unteers draw traces for each image. The volunteers worked completely independely of 
each other.  We call this initial trace dataset Trace_ini.  
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For reasons we will see shortly, we performed two rounds of rescaling and 2-
dimensional translation to each trace in Trace_ini. In the first round, we rescaled each 
trace image to 10%~50% of its original size, and translated it in 2 dimensions by 
plus/minus 0~3 times of  the size in the X and Y axis independently. We call this new 
dataset Trace_robot. In the second round, every 4 traces of the same image in 
Trace_ini were performed by a same rescale and transition, and this dataset is called 
Trace_human. 

As we assume that there is no automatic algorithm for extracting rock art data, we 
need to come up with an attack model. We make the pessimistic assumption that the 
attacker has our entire 143 image database, together with a human trace for each im-
age. These seems to suggest that if the attacker simply submits a random tracing, he 
would have a one in 143 chance of passing the test, but recall that the images have 
been rescaled/translated in the plane. Such distortion means that even if the attacker 
happens to send the correct trace, it will probably not line up with the stored template, 
and will fail the test due to the penalty to the distance of centers of mass.  

We first tested the system with one randomly chosen (of four possibilities) trace 
from Trace_human for the “control image”. To model the attacks from robots, each 
time we picked one trace from Trace_robot (but not those from the same person of 
the challenge trace). There were thus 3×143 tries for each challenge. As the human 
input, we picked the other three traces of the “control image” in Trace_human. 

Using a threshold of seven, only 41 of 245,388 robot tests could pass, a pass rate of 
0.014%; whereas 1,632 of 1,716 human tests passed, a pass rate of 94.99%. 

Then we tested with three traces for each image. As noted in Section 3.2, each in-
put from the user was compared to three traces of the “control image”, and if its dis-
tance to one of them was below the threshold, the user passed the test. Each time we 
picked three traces of the same image from Trace_human as traces of the “control im-
age”. To model the attacks from robots, each time we picked one trace from the fourth 
person in Trace_robot. Thus, there were 143 tries for each challenge. As the human 
input we picked the remaining trace of the “control image” in Trace_human. 

Using the same threshold of 7, only 22 of 81,796 robot tests could pass, a pass rate 
of 0.020%; while only 5 of 572 human tests could not pass, a pass rate of 99.13%. 

Although our pass rate for robots is slightly larger than the generally accepted fig-
ure of 0.01% [6], note that all results are based on the initial control image set, with 
only 143 images. We expect the robot rate to decrease with more data, while the hu-
man rate should stay almost constant. Further recall that these results assume the pes-
simistic and unrealistic assumption that the attacker has traces for the entire database.  

4.2   Supporting Similarity Search 

The major goal of this work is to produce a dataset that will enable research by an-
thropologists. However, a minor goal is to produce a tool for non-specialists to query 
a database of petroglyphs. This tool could be used to support tourism [7], and to en-
courage an appreciation of indigenous people’s cultural achievements.  

We envision the following scenario: A hiker on a trail spots a petroglyph, and 
wants to know if it is known, and if so, what anthropologists and/or tribal historians 
have said about it.  She photographs the petroglyph on her iPhone, traces the outline, 
and submits the query... 
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In order for this query to return the correct answer, our system must have several 
invariances. Some are trivial, as we are operating on a binary representation of the 
data, color and contrast invariance is automatically achieved1. However, as shown in 
Fig. 10, there need to be at least somewhat invariant in size, angle of view, etc. 

 

Fig. 10. Left) A petroglyph from Utah that has been indexed in our database. Right) An image 
of the same petroglyph found on Flickr.com. Could this image be used as a query to retrieve the 
anthropologist’s annotated version in our database? 

To test the feasibility of this scenario we obtained several examples of images of 
petroglyphs that we know are in our database (referred to the “control image” set in 
Section 4.1), but which were taken on a different day, by a different person, with a 
different camera etc. To normalize our expectations we also obtained photographs of 
petroglyphs that are known not to be in our database. 

We had volunteers trace these petroglyph images. Note that in each case, these vol-
unteers had not seen the data in the database, and were not familiar with our project. 

Recall from the previous section that each petroglyph in our data collection had 
been traced by four independent volunteers. This means that for each petroglyph we 
had four models we could use to index it. We could also choose to have only one 
model for each petroglyph instead, by either averaging all four, or choosing the most 
typical one. However, here we kept all four models, both for simplicity, and because 
(as we shall see) it is instructive.  

Our small dataset in this preliminary experiment does not warrant calculating pre-
cision/recall or similar statistics. Instead, we show typical results, and archive all re-
sults at [17]. Fig. 11 shows an example of a query using a (different photograph of) 
petroglyph that is in our database. The results are quite promising. Note that the query 
was taken from an image that was not as tightly cropped, and the user issuing the 
query (rightly or wrongly) traced a hook-like appendage on the left leg of the figure. 
Furthermore, note that among the four tracings in the database there is significant dis-
agreement. For example, one individual did not trace the head as a circle. In spite of 
this, query-by-content is clearly successful in this example, as the first four matches 
are correct (the maximum possible). 

In Fig. 12, we see two more queries for which the relevant petroglyph (traced from 
a different photograph) is known to be in the database. For the “wheel” the 1st, 2nd and 
4th matches are correct, and the two others are at least plausible. For the bighorn sheep 
petroglyph, the first four matches are correct (the maximum possible), and the 5th 
match is also plausible.  

                                                           
1 For faint petroglyphs changing the contrast/color balance can enhance the petroglyphs visibil-

ity[9][10]. 
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1st NN 2nd NN 3rd NN 4th NN 5th NN Query   
Trace      

Query Image 

 

Fig. 11. left) A query petroglyph that happens to be in our database and its tracing.  right) The 
five nearest neighbors to the query; the first four all refer to the same image, the correct target. 

Query not true match not true match 

not true match Query  

Fig. 12. An abstract (top) and animal petroglyph (bottom) which had been traced and issued as 
queries to our database. The list of the five nearest neighbors to each are shown left to right.   

Finally, we consider the more difficult case, queries for which we know the rele-
vant petroglyph is not in the database. Here the judgment of quality is subjective. 
Note also that we might expect to do better and better at this case as the database 
grows larger and larger.  In Fig. 13 we show two queries and their best matches. In 
both cases the returned answers are reasonable.  

Query Best match  Query Best match   

Fig. 13. left) An anthromorph is used as a query, and it retrieves another stylized human figure 
with similar limbs right) A petroglyph of concentric circles retrieves a "sunburst". 
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5   Conclusions and Future Work 

In this work, we consider the problem of digitizing large collections of rock art to en-
able the data mining of this neglected cultural resource. We have framed the feature 
extraction problem as a CAPTCHA, the first CAPTCHA we are aware of to produce 
and expect real-valued data. There are many private individuals that have on the order 
of hundreds of thousand of rock art images (i.e. the collection of Mark and Billo 
[10]), and Flicker.com appears to have on the order of one million rock art images. 
We believe that we could process all this data in less than one year, under realistic as-
sumptions.  

We note several limitations of our work. We could become victims of our own 
success, given that there are only tens of millions of rock images in existence, but 
there is a need for tens of millions of CAPTCHAs per day. So even if we capture only 
a small fraction of the CAPTCHA market, we may run out of rock art images. We be-
lieve that we may be able to bypass this issue by generating synthetic rock art images, 
in a spirit similar to the stickmen shown in Section 3.1. In addition, a significant frac-
tion of petroglyphs images may not be amenable to our system; our CAPTCHA is not 
usable by blind users; and our system may be difficult to use on small screens such as 
iPhones. All these issues are the subject of ongoing research.   
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