
Aligning the Constructs of Enterprise Ontology

and Normalized Systems

Philip Huysmans, David Bellens, Dieter Van Nuffel, and Kris Ven

Department of Management Information Systems,
University of Antwerp, Antwerp, Belgium

{philip.huysmans,david.bellens,dieter.vannuffel,kris.ven}@ua.ac.be

Abstract. Literature suggests that, due to their complexity, organiza-
tions need to be designed in order to be effective and evolvable. Re-
cently, two promising approaches have been introduced that are rele-
vant in this regard. Enterprise Ontology creates essential models that
are implementation-independent. Normalized Systems is concerned with
the development of information systems with proven evolvability. In this
paper, we combine both approaches. To this end, we express the transac-
tion pattern—a central construct of Enterprise Ontology—using the con-
structs of Normalized Systems. By aligning these constructs, we attempt
to introduce traceability between the Enterprise Ontology level and the
Normalized Systems level. The resulting artefact exhibits the benefits
of both Enterprise Ontology and Normalized Systems. We illustrate the
application of the artefact in the context of enterprise architectures.

Keywords: Enterprise Ontology, Normalized Systems, Enterprise
Architecture.

1 Introduction

Contemporary organizations have to be agile in order to be able to adapt to chang-
ing market environments. A change of the organization as a whole affects many
different organizational elements. Given the complexity of organizations, it can be
argued that organizations should be designed in order to exhibit true agility [7].
Enterprise architecture is proposed as a way to control this complexity. Despite
the multitude of frameworks available, no common scientific or theoretical foun-
dation seems to be agreed upon. Therefore, it is difficult to compare and evaluate
the recommendations made by these frameworks [10]. In this paper, we explore an
approach which focuses on the organizational ability to change. We base our ap-
proach on the systems theoretic concept of evolvability by applying the theorems
of Normalized Systems. By adhering to the four theorems of Normalized Systems
during software design and development, software architectures of proven evolv-
ability are obtained [11]. Based on these theorems, Normalized Systems proposes
five software elements to design the modular structure of software. This modular
structure ensures that the software is free from so-called combinatorial effects. En-
terprise Ontology provides abstract, implementation-independent organizational

A. Albani and J.L.G. Dietz (Eds.): CIAO! 2010, LNBIP 49, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 P. Huysmans et al.

constructs which can describe a broad organizational scope with few construct
instantiations (i.e., transactions) [2]. In order to work towards evolvable organi-
zations, we explore an implementation of Enterprise Ontology transactions which
are evolvable. Normalized Systems suggests that we therefore need an implemen-
tation which is free of combinatorial effects. Different alternatives seem to be avail-
able to reach this goal. A first alternative would be to define an implementation
which closely mimics the structure of the transaction pattern, and ensure that this
implementation is free of combinatorial effects. While a complete specification of
the implementation is not possible on this abstraction level, we could base further
specification upon this implementation. A second alternative would be to imple-
ment a completely specified Enterprise Ontology model, in which we could then
eliminate the combinatorial effects. In this paper, we explore the first alternative.
More specific, we explore the expression of the transaction pattern—a core Enter-
prise Ontology construct—in Normalized Systems elements. While similar, more
practice-driven approaches may exist, we limit ourselves to the combination of En-
terprise Ontology and Normalized Systems, because of their scientific foundation.

The rest of the paper is structured as follows. In Section 2, we introduce
Normalized Systems and Enterprise Ontology. We then describe the alignment
of the constructs in Section 3. Next, We position our approach within enterprise
architectures in Section 4. Finally, we offer our conclusions in Section 5.

2 Scientific Foundations

In this section, we provide a brief introduction to both Enterprise Ontology and
Normalized Systems. We primarily focus on the constructs of both approaches
that were used in our research.

2.1 Enterprise Ontology

Theoretical Foundation. In order to grasp the complexity of organizations,
models can be constructed. These models abstract away from the information
that is available in the real world. Depending on the way of abstraction, very
diverse models can be made. Enterprise Ontology views the organization as a
social system [2]. Therefore, it is well suited to describe the interaction between
an organization and its environment. Enterprise Ontology assumes that commu-
nication between human actors is a necessary and sufficient basis for a theory of
organizations [2]. This is based on the language action perspective and Haber-
mas theory of communicative action. The strong theoretical foundation ensures
a consistent modelling methodology. Clear guidelines are provided to create ab-
stract models. Since only the ontological acts are represented in the models, the
same model will be created for organizations who perform the same function,
but operate differently. For example, consider the BPR case at Ford [6]. The
ontological model of the processes of the situation before and after reengineering
are identical. Because of the focus on the essential business processes, Enterprise
Ontology models can be very concise. Therefore, they provide a good overview

Aligning the Constructs of Enterprise Ontology and Normalized Systems 3

of a broad enterprise scope. Many case studies are reported where large organi-
zations are described with few modelling artefacts (e.g. [13]).

In this paper, we will focus on the transaction pattern as the basic construct
of Enterprise Ontology. We currently focus on the transaction as the main En-
terprise Ontology primitive for two main reasons. First, the transaction pattern
is a core element of the Enterprise Ontology theory. The transaction pattern
is specified by the transaction axiom, the second axiom from the Ψ -theory on
which Enterprise Ontology is based. Second, it is the basis on which other mod-
els elaborate. It therefore seems logical to base our initial effort on achieving a
correct mapping of the transaction pattern.

The transaction pattern evolved thanks to contributions from many researchers
[1,5,15,17]. The transaction pattern describes the coordination necessary to pro-
duce a certain result. This result is represented by a production fact. There are al-
ways two actors involved in a transaction: the initiator actor who wants to achieve
the fact, and the executor actor who performs the necessary actions to create the
fact. Delivering a product, performing a service or subscribing to an insurance are
examples of production facts which could be created by completing a transaction.

EnterpriseOntologyArtefact. Thehigh-level structure of the transactionpat-
tern consists of three phases. In the order phase, the actors negotiate the subject
of the transaction. In the execute phase, the subject of the transaction is brought
about. In the result phase, the result of the transaction is presented and accepted.
In different versions of the transaction pattern, different ontological process steps
are identified in the three phases. These steps are called coordination acts. The
successful completion of an act results in a coordination fact. Enterprise Ontology
distinguishes between the basic, standard and complete transaction pattern.

The graphical representation of the transaction pattern is shown in Figure 1.
The combination of a coordination act and fact is represented by a circle in
a square. The combination of a production act and fact is represented by a
diamond in a square. Small circles represent process entry points, and small
circles with a cross represent a choice between alternate flows. Light-grey boxes
indicate which acts fall under the authority of a certain actor. In Figure 1, A01
is the initiator actor, and A02 is the executor actor.

Basic Transaction Pattern: The basic transaction pattern consists of the five stan-
dard acts which occur in a successful scenario (i.e., request, promise, execute, state
and accept) [2, p. 90]. These five acts are shown in the centre of Figure 1. In the
order-phase, the initiator actor first requests the creation of a fact. The executor
actor then promises to fulfil this request. In the execute-phase, the executor ac-
tually performs the necessary actions to create the fact in the execute act. In the
result phase, the executor first states the successful completion of the fact. Fi-
nally, the initiator accepts this statement. Consider this transaction in the case of
a simple product delivery process. In a first process step, the customer requests
the product. Once this request is adequately specified, the request coordination
fact is created. Second, the supplier promises to deliver the product according to
the agreed terms. This creates the promise coordination fact. The third process

4 P. Huysmans et al.

Fig. 1. Graphical representation of the Enterprise Ontology Transaction Pattern

step is the actual delivery. This results in the production fact “Product X has
been delivered”. In the fourth process step, the supplier states that the delivery
has been completed. If the customer is satisfied with the delivery, he will accept
the delivery in the fifth process step. Once the accept coordination fact is created,
the transaction is considered to be completed.

Standard Transaction Pattern: The standard transaction pattern is the basic
transaction pattern, augmented with the scenario in which the actors dissent [2,
p. 93]. The coordination facts which indicate a dissent are represented by a
double circle in Figure 1 (i.e., decline and reject facts). In the order-phase, the
executor actor can decline the incoming request of the initiator actor. The initia-
tor then has to decide whether he resubmits his request, or quits the transaction.
In our example, the supplier could decline the delivery of a product which does
not belong to his catalogue. The customer would need to select another product,
or quit the transaction and search another supplier. The execute-phase is iden-
tical to the execute-phase in the basic transaction pattern. In the result-phase,
the initiator actor can reject the stated production fact instead of accepting it.
The executor then has to decide whether he wants to repeat the execution act
and make the statement again, or stop the transaction.

Complete Transaction Pattern: In the complete transaction pattern, cancelation
patterns are added to the standard transaction pattern. In Figure 1, the cance-
lation patterns are started in the four additional process entry points. According

Aligning the Constructs of Enterprise Ontology and Normalized Systems 5

to [2], every coordination fact can be cancelled at any time by the responsible
actor. This cancelation can then be allowed or refused by the other actor. For
example, when the customer changes his mind after requesting the delivery of
a product, he can cancel his request. The executor then has to decide whether
he allows this cancelation, in which case the transaction ends, or refuses the
cancelation, and proceeds with the transaction.

2.2 Normalized Systems

Theoretical Foundation. The basic assumption of Normalized Systems is that
information systems should be able to evolve over time, and should be designed
to accommodate change. As this evolution due to changing business requirements
is mostly situated during the mature life cycle stage of an information system,
it takes the form of software maintenance. Software maintenance is considered
to be the most expensive phase of the information system’s life cycle, and often
leads to an increase of architectural complexity and a decrease of software qual-
ity [4]. This phenomenon is also known as Lehman’s law of increasing complexity,
expressing the degradation of information system’s structure over time [9]. Be-
cause changes applied to information systems are suffering from Lehman’s law,
the impact of a single change will increase over time as well [8]. Therefore to
genuinely design information systems accommodating change, they should ex-
hibit stability towards these requirements changes. In systems theory, stability
refers to the fact that bounded input to a function results in bounded output
values, even as t → ∞. When applied to information systems, this implies that
no change propagation effects should be present within the system. This means
that a specific change to an information system should require the same effort,
irrespective of the information system’s size or point in time when being applied.
Combinatorial effects occur when changes require increasing effort as the system
grows; and should thus be avoided. Normalized systems are defined as informa-
tion systems exhibiting stability with respect to a defined set of changes [11], and
are as such defying Lehman’s law of increasing complexity [8,9] and avoiding the
occurrence of combinatorial effects. In this sense, evolvability is operationalized
as a number of anticipated changes that occur to software systems during their
life cycle [12].

The normalized systems approach deduces a set of four design theorems that
act as design rules to identify and circumvent most combinatorial effects [11,12].
It needs to be emphasized that each of these theorems is not completely new,
and even relates to the heuristic knowledge of developers. However, formulating
this knowledge as theorems that identify these combinatorial effects aids to build
systems containing minimal combinatorial effects. The first theorem, separation
of concerns, implies that every change driver or concern should be separated
from other concerns. This theorem allows for the isolation of the impact of each
change driver. Parnas described this principle already in 1972 [14] as what was
later called design for change. Applying the theorem prescribes that each module
can contain only one submodular task (which is defined as a change driver), but
also that workflow should be separated from functional submodular tasks.

6 P. Huysmans et al.

The second theorem, data version transparency, implies that data should be
communicated in version transparent ways between components. This requires
that this data can be changed (e.g., additional data can be sent between compo-
nents), without having an impact on the components and their interfaces. This
theorem can, for example, be accomplished by appropriate and systematic use
of web services instead of using binary transfer of parameters. This also implies
that most external APIs cannot be used directly, since they use an enumeration
of primitive data types in their interface.

The third theorem, action version transparency, implies that a component can
be upgraded without impacting the calling components. This theorem can be
accomplished by appropriate and systematic use of, for example, polymorphism
or a facade pattern.

The fourth theorem, separation of states, implies that actions or steps in a
workflow should be separated from each other in time by keeping state after every
action or step. This suggests an asynchronous and stateful way of calling other
components. Synchronous calls resulting in pipelines of objects calling other
objects which are typical for object-oriented development result in combinatorial
effects.

Normalized Systems Artefacts. The design theorems show that software
constructs, such as functions and classes, by themselves offer no mechanisms
to accommodate anticipated changes in a stable manner. Normalized Systems
therefore proposes to encapsulate software constructs in a set of five higher-level
software elements (i.e., data, action, flow, connector and trigger elements). These
elements are modular structures that adhere to these design theorems, in order
to provide the required stability with respect to the anticipated changes [11]. To
map the Enterprise Ontology transaction pattern, three of these five higher-level
software elements are needed. We will now elaborate on these three elements.

From the second and third theorem it can straightforwardly be deduced that
the basic software constructs, i.e., data and actions, have to be encapsulated in
their designated construct.

Data Element: A data element represents an encapsulated data construct with
its get- and set-methods to provide access to their information in a data version
transparent way. So-called cross-cutting concerns, for instance access control and
persistency, should be added to the element in separate constructs.

Action Element: The second element, action element, contains a core action
representing one and only one functional task. Arguments and parameters need
to be encapsulated as separate data elements, and cross-cutting concerns like
logging and remote access should be again added as separate constructs. [16]
distinguish between four different implementations of an action element: stan-
dard actions, manual actions, bridge actions and external actions. In a standard
action, the actual task is programmed in the action element and performed by
the same information system. In a manual action, a human act is required to
fulfil the task. The user then has to set the state of the life cycle data element

Aligning the Constructs of Enterprise Ontology and Normalized Systems 7

through a user interface, after the completion of the task. A process step can
also require more complex behaviour. A single task in a workflow can be required
to take care of other aspects, which are not the concern of that particular flow.
Consider the ordering of parts for an assembly. The assembly workflow needs to
know when the parts are ready to be assembled, but it is not concerned with
how the parts are prepared. Therefore, a separate workflow will be created to
handle the concerns of the individual parts. Bridge actions create these other
data elements going through their designated flow. Fourth, when an existing,
external application is already in use to perform the actions on, for instance, the
different parts of an assembly, the action element would be implemented as an
external action. These actions call other information systems and set their end
state depending on the external systems’ reported answer.

Workflow Element: Based upon the first and fourth theorem, workflow has to
be separated from other action elements. These action elements must be isolated
by intermediate states, and information systems have to react to states. A third
element is thus a workflow element containing the sequence in which a number
of action elements should be executed in order to fulfil a flow. A consequence
of the stateful workflow elements is that state is required for every instance of
use of an action element, and that the state therefore needs to be linked or
be part of the instance of the data element serving as argument. We call this
data element the life cycle data element of a flow. A graphical representation
of a flow element is shown in Figure 2. This representation is consistent with
the representation of Normalized Systems workflow elements, which are based
on state machines [11, p. 143]. The black circles represent the different states
of the flow, being the life cycles states of the corresponding data element. The
state name is notated next to the state symbol. The squares represent the action
elements.

3 Translating the Transaction Pattern

As discussed in Section 2.1, the transaction pattern of Enterprise Ontology is
the starting point for our research. In this section, we present the mapping of
the transaction pattern to the constructs of Normalized Systems, which are dis-
cussed in Section 2.2. We will start by translating the basic transaction pattern,
and iteratively add more details in the standard transaction pattern and the
cancelation patterns.

3.1 The Basic Transaction Pattern

We start by mapping the basic transaction pattern. The basic transaction pat-
tern consists of the process steps request, promise, execute, state and accept. In
Normalized Systems, this transaction pattern process is represented by a flow
element. A flow element is driven by precisely one data element, the life cycle
data element. Consider a transaction T01. In order to define a Normalized Sys-
tems flow, we thus need a T01 data element. The completion of the different acts

8 P. Huysmans et al.

in the transaction process is represented by the creation of ontological facts. In
Normalized Systems, these facts are represented by the states which occur in
the flow element, being the life cycle states of the corresponding data element.
To reach these states, a state transition is required. A state transition is realized
by an action element. The successful completion of that action element results
in the defined life cycle state. In order to define the control flow of the process,
we therefore need to specify the trigger states, state transitions and transaction
actions. Regarding the request coordination fact, this implies that the T01 flow
element, and thus also the corresponding T01 data element, should reach the
state Requested. This means that upon initiation of a T01 transaction, a new
T01 data element is instantiated trough its default constructor, resulting in the
life cycle state Initial. The genuine act of requesting is encapsulated in the action
element Request. The concerns of creating the data element and handling the
request are separated as they can clearly evolve independently from each other.
The request could, for example, contain additional information that needs to be
processed. Since we are currently only regarding the successful flow of the trans-
action, we do not yet need any branching. The state transition can be expected
to always result in the end state Requested. The resulting Normalized Systems
flow is shown in Figure 2, and schematically represented in Table 1.

While all state transitions are defined as action elements, their different nature
can mean that they need to be implemented differently. Consider the notification
of the initiator actor in the promise process step. If this notification requires a
human action, e.g., a manager who has to decide, the Promise action element
would be implemented as a manual action. However, the promise process step

Table 1. Specification of the basic transaction pattern flow element

Workflow name Basic Transaction Pattern

Data element T01-basic

Start state Action name End state Failed state

Initial Request Requested

Requested Promise Promised

Promised Execute Executed

Executed State Stated

Stated Accept Accepted

Fig. 2. Graphical representation of the basic transaction pattern flow

Aligning the Constructs of Enterprise Ontology and Normalized Systems 9

can also require more complex behaviour. When for example the product first
needs to be reserved in the warehouse, the Promise action element would be
implemented as a bridge action triggering a flow element on another data ele-
ment, e.g., a Part element. When an existing application is already in use to
perform these reservations, the Promise action element would be implemented
as an external action.

3.2 The Standard Transaction Pattern

The standard transaction pattern adds the scenario in which the actors can dis-
sent. When translating these additions to Normalized Systems primitives, some
additional actions and states have to be included due to the Normalized Systems
theorems. The resulting Normalized Systems flow element is graphically repre-
sented in Figure 3. Based on separation of concerns, the decision of the executor
actor to promise or decline the request needs to be separated from the actual
coordination act (i.e., the communication of the decision). The communication
method can change independently, as shown by the various implementations of
the Promise action element in the basic transaction pattern. Since the decision
logic to promise or decline can also change independently of the communication
method, these two actions should not be combined in one action element. Doing
so would introduce a combinatorial effect. Therefore, we introduce an additional
action element ValidateRequest. In the case where the executor decides to
handle the request, the state RequestValidated is set. Otherwise, the state Re-
questInvalidated is set. The actual Promise action element remains identical to
the action element described in the basic transaction pattern. If the request is
however declined, the initiator actor needs to decide whether or not to resubmit
the request. This decision logic is again separated from the other actions by
encapsulating the decision logic in an action element ValidateDecline. If the
initiator decides to resubmit, the state is set to DeclineValidated. The Resubmit
action element then allows the initiator actor to possibly change the request and
to resubmit it which will again result in the state Requested. If the initiator de-
cides to abort the transaction, the state is set to DeclineValidated, which triggers
the Quit action element to reach the end state Quitted.

Analogously, the initiator actor has to decide whether he accepts the stated
production fact. We therefore introduce the ValidateState action element,
which results in the StateValidated state in case of a successful acceptance, or
in the StateInvalidated state in case of an unsuccessful one. The StateValidated
state triggers the Accept action element, which contains the actual accept coor-
dination act. In case the initiator does not accept the state coordination fact, the
workflow is brought to the Rejected state through the Reject action element.
The decision whether to handle the reject is taken in the ValidateReject action
element. The reject handling itself is implemented as a dedicated HandleReject
action element. If the executor does not handle the reject, the transaction reaches
the end state Stopped through the Stop action element. All the described state
transitions for the standard transaction pattern are summarized in Table 2.

10 P. Huysmans et al.

Table 2. Specification of the standard transaction pattern flow element

Workflow name Standard Transaction Pattern

Data element T01-standard

Start state Action name End state Failed state

Initial Request Requested

Requested ValidateRequest RequestValidated RequestInvalidated

RequestInvalidated Decline Declined

RequestInvalidated ValidateDecline DeclineValidated DeclineInvalidated

DeclineInvalidated Quit Quitted

DeclineValidated Resubmit Requested

RequestValidated Promise Promised

Promised Execute Executed

Executed State Stated

Stated ValidateState StateValidated StateInvalidated

StateInvalidated Reject Rejected

Rejected ValidateReject RejectValidated RejectInvalidated

RejectInvalidated Stop Stopped

RejectValidated HandleReject Stated

StateValidated Accept Accepted

3.3 The Cancelation Patterns

The complete transaction pattern also includes the various cancelation patterns
and is shown in Figure 1. A cancelation consists of two main issues: deciding
whether or not to allow a cancel request and handling the cancelation itself.
The first issue actually consists of initially receiving the cancel request, then
deciding whether or not to allow the requested cancelation, and third potentially
to notify the initiator of the rejected cancel request. As such, based on separation
of states and separation of concerns, these three concerns will be separated.
First, upon arrival of a cancel request, a dedicated CancelRequest data element
will be created. This implies that for every life cycle data element that can
be cancelled, a related CancelRequest data element instance will be created if
such a request arrives. For example, for a life-cycle data element called Order,
a corresponding OrderCancelRequest data element will be created. Second, an
action element AcceptCancelation will implement the decision whether or not
to accept. Third, in case of an rejected request, the initiator will probably have to
be notified. This functionality is represented by a bridge action Refuse executing
the notification in the way as discussed in [16]. In case of an allowed cancelation,
the CancelTransaction standard action element will initiate the cancelation
handling which will be explained next. The Normalized Systems specification
for the workflow representing the cancel request issue is shown in Table 3 and
Figure 4. In case of an allowed cancelation, CancelTransaction standard action
element will initiate the handling itself explained hereafter.

Aligning the Constructs of Enterprise Ontology and Normalized Systems 11

Fig. 3. Graphical representation of the standard transaction pattern flow

Table 3. Specification of the cancelation pattern flow element

Workflow name Transaction Cancelation

Data element T01-CancelRequest

Start state Action element End state Failed state

Initial CheckValidity CancelRequestValid

CancelRequestValid AcceptCancelation Allowed not-Allowed

not-Allowed Refuse Refused

Allowed CancelTransaction Canceled

If the cancelation is allowed, it may be necessary to partly or completely
roll back the transaction. Given the divergence of business contexts, a roll back
can imply different actions given the state of the transactions. Therefore, the
cancelation process will be designed using multiple scenarios implemented as
separate action elements on the same life cycle data element. Consider the case
where various parts are ordered to complete the assembly of a product. In case
the parts have not yet been received, an order cancelation can be submitted

12 P. Huysmans et al.

Fig. 4. Graphical representation of the cancelation pattern

to the parts supplier. In case the parts are already received and reserved, they
should be released and made available for future assemblies. Thus, the scenario
and constituent action elements are dependent on the life cycle data element’s
state when the cancelation request is initiated.

Since a cancelation can occur regardless of the current state of the transaction,
it is modelled in the Enterprise Ontology transaction pattern as a separate entry
point. However, the Normalized Systems theorems do not allow that the state of
the main flow is simply altered by any other flow because a flow element actively
interfering with another flow element is considered a so-called GOTO statement.
In accordance with the seminal work of Dijkstra [3], Normalized Systems does
not allow this kind of statements, and therefore prohibits such a direct state
transition by another flow.

We outline the solution for adding cancelation patterns consistent with Nor-
malized Systems theorems as described in [16]:

– A cancelRequest data attribute is added to the data element operating the
flow.

– A cancel can be initiated in multiple ways. The particular situation should
be assigned to the value of the cancelRequest data attribute by the
CancelTransaction standard action element.

– The engine operating the respective flow element checks the cancelRequest
data attribute. If this field is set, the current state of the flow will be saved
in the so-called parking state field. The regular state field of the workflow
will be set to “cancel requested”.

– An action element will subsequently be triggered to decide which cancelation
flow—i.e., sequence of action elements on the corresponding life cycle data
element—has to be triggered as the cancelation scenario will differ accord-
ing to the life cycle state as also illustrated by the cancelation patterns in
Enterprise Ontology. Therefore, this action element will use the value of the
so-called parking state field, uniquely describing the life cycle state of the
corresponding data element when the cancel request was communicated.

This implies that a cancelation is handled as a sequence of action elements on the
same life cycle data element. This is in line with the observation that requesting,

Aligning the Constructs of Enterprise Ontology and Normalized Systems 13

promising, executing, stating, declining, or cancelling a fact addresses the same
concern. However, the sequence of actions about the cancel request itself are
separated in their designated elements. It should be noted that we present a
generic cancelation pattern. The possibility of triggering different cancelation
flows, based on the value of the cancelRequest data attribute, allows us to
implement the four different Enterprise Ontology cancelation patterns.

4 Application in Enterprise Architecture

In the previous section, we presented a translation of the Enterprise Ontology
transaction pattern in Normalized Systems constructs. This artefact could be
used in the context of enterprise architectures. We now outline the implication
of our artefact in enterprise architectures as defined by Hoogervorst [7]. Hooger-
vorst proposes a method to design so-called construction models that enable the
implementation of the implementation-independent Enterprise Ontology models.
Based on the ontological models, four enterprise design domains (i.e., business,
organization, information and technology) need to be designed. Enterprise ar-
chitecture provides “the normative guidance for the design process” [7]. The
architecture consists of principles, which have to be respected during the design
of the construction models. These principles are the result of strategic choices.
Therefore, organizations with identical ontological models can be implemented
differently based on their different architectural principles, since different con-
struction models will be designed. This is how organizations can differentiate
from each other.

However, certain characteristics can be useful for any organization, such as
evolvability. When the architecture needs to achieve such general strategic char-
acteristics, architectural principles could be proposed which are more generally
accepted. To achieve this, we need to know which principles affect the evolv-
ability of construction models. According to Normalized Systems, the occurance
of combinatorial effects affects evolvability. Principles which are analogous to
the Normalized Systems theorems could thus affect the occurance of combinato-
rial effects—and therefore, evolvability—in contruction models. Such principles
would need to guide the implementation of transactions to avoid combinatorial
effects. Therefore, our implementation of the transaction pattern seems to fit
the concept of enterprise architecture as intented by Hoogervorst: it guides the
design of the transaction implementation by restricting design freedom, since
only Normalized Systems elements can be used. Our artefact provides a basis
for the further development of construction models which are free of combi-
natorial effects. The use of our construct is not limited to the design domain
information technology. For example, designing the processes of the design do-
main organization based on our artefact enforces adherence to the Normalized
Systems theorems, while respecting the integration between the processes which
implement a certain transaction.

14 P. Huysmans et al.

5 Discussion and Conclusions

This paper presents the first implementation of Enterprise Ontology transactions
with explicit attention to combinatorial effects. It has two important contribu-
tions. First, our artefact shows that a mapping between Enterprise Ontology and
Normalized Systems constructs is feasible. More specifically, it shows that such
a mapping is feasible very early in the design process. Moreover, we presented a
generic and systematic mapping. While it is possible that the mapping artefact
needs to be refined or adapted, it can be used for the implementation of any
transaction. This means that our artefact can be used as a starting point for de-
signing evolvable organizations. We further illustrated this point by suggesting
the use of the artefact within enterprise architectures. While our implementation
remains at an abstract level, further specification of construction models can be
guided by existing research, both scientific and practical. On the scientific level,
Normalized Systems has proven to prevent combinatorial effects in software im-
plementations. On the practical level, large-scale mission-critical systems are
already developed using Normalized Systems elements.

Second, our mapping shows that the Normalized Systems theorems do im-
pact the implementation of Enterprise Ontology models, when combinatorial
effects need to be avoided. In order to implement transactions which are free of
combinatorial effects, several guidelines can be prescribed:

– Additional state transitions need to be created in order to comply with the
separation of concerns and separation of state theorems. We introduced these
state transitions during the mapping of the standard transaction pattern.

– Based on previous research, we propose an implementation of the cancelation
patterns which enables an implementation of different roll-back scenarios and
adhering to the Normalized Systems theorems.

Following these guidelines will not affect the Enterprise Ontology models itself,
since they are implementation-independent. The occurrence of combinatorial ef-
fects during changes will only affect the actual implementation of the Enterprise
Ontology models. While we do not claim to have removed all combinatorial
effects in our implementation, we achieved an effective and efficient mapping
method by specifying these guidelines early in the design process. Effective,
because the use of Normalized Systems elements implies the adherence to archi-
tectural principles. Efficient, because combinatorial effects are prevented instead
of removed.

The presented approach suggests following future research subjects. First, we
presented the mapping of a single transaction. Obviously, the construction of
an organization implies the integration of several transactions. In subsequent re-
search, we will focus on an approach to integrate different transactions, while re-
specting the Normalized Systems theorems. While the current mapping is mainly
influenced by the separation of concerns and separation of states theorems, it
can be expected that guidelines for integration will need to focus on the data and
action version transparency theorems. Second, the focus of this paper was on the

Aligning the Constructs of Enterprise Ontology and Normalized Systems 15

conceptual mapping of constructs. In following publications, we will report on
the applications of our artefact in various cases.

References

1. Auramäki, E., Hirschheim, R., Lyytinen, K.: Modelling offices through discourse
analysis: the sampo approach. Computer Journal 35(4), 342–352 (1992)

2. Dietz, J.L.: Enterprise Ontology: Theory and Methodology. Springer, Berlin (2006)
3. Dijkstra, E.: Go to statement considered harmful. Communications of the

ACM 11(3), 147–148 (1968)
4. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J., Mockus, A.: Does code decay?

assessing the evidence from change management data. IEEE Transactions on Soft-
ware Engineering 27(1), 1–12 (2001)

5. Goldkuhl, G.: Generic business frameworks and action modeling. In: Proceedings of
the Conference on Communication Modeling—Language/Action Perspective 1996,
Springer, Heidelberg (1996)

6. Hammer, M.: Reengineering work: Don’t automate, obliterate. Harvard Business
Review 68(4), 104 (1990)

7. Hoogervorst, J.A.P.: Enterprise Governance and Enterprise Engineering (The En-
terprise Engineering Series), 1st edn. Springer, Heidelberg (2009)

8. Lehman, M.: Programs, life cycles, and laws of software evolution. Proceedings of
the IEEE 68, 1060–1076 (1980)

9. Lehman, M.M., Ramil, J.F.: Rules and tools for software evolution planning and
management. Annals of Software Engineering 11(1), 15–44 (2001)

10. Leist, S., Zellner, G.: Evaluation of current architecture frameworks. In: SAC 2006:
Proceedings of the 2006 ACM symposium on Applied computing, pp. 1546–1553.
ACM, New York (2006), http://doi.acm.org/10.1145/1141277.1141635

11. Mannaert, H., Verelst, J.: Normalized Systems—Re-creating Information Technol-
ogy Based on Laws for Software Evolvability, Koppa, Kermt, Belgium (2009)

12. Mannaert, H., Verelst, J., Ven, K.: Exploring the concept of systems theoretic
stability as a starting point for a unified theory on software engineering. In: Man-
naert, H., Ohta, T., Dini, C., Pellerin, R. (eds.) Proceedings of Third International
Conference on Software Engineering Advances (ICSEA 2008), pp. 360–366. IEEE
Computer Society, Los Alamitos (2008)

13. Mulder, H.: Rapid enterprise design. Ph.D. thesis, TU Delft (2006)
14. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Communications of the ACM 15(12), 1053–1058 (1972)
15. van Reijswoud, V.: The structure of business communication: Theory, model and

application. Ph.D. thesis, Technische Universiteit Delft (1996)
16. Van Nuffel, D., Mannaert, H., De Backer, C., Verelst, J.: Deriving normalized

systems elements from business process models. In: International Conference on
Software Engineering Advances, pp. 27–32 (2009),
http://doi.ieeecomputersociety.org/10.1109/ICSEA.2009.13

17. Winograd, T., Flores, F.: Understanding Computers and Cognition: A New Foun-
dation for Design. Addison Wesley, Reading (1986)

http://doi.acm.org/10.1145/1141277.1141635
http://doi.ieeecomputersociety.org/10.1109/ICSEA.2009.13

	Aligning the Constructs of Enterprise Ontology and Normalized Systems
	Introduction
	Scientific Foundations
	Enterprise Ontology
	Normalized Systems

	Translating the Transaction Pattern
	The Basic Transaction Pattern
	The Standard Transaction Pattern
	The Cancelation Patterns

	Application in Enterprise Architecture
	Discussion and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

