

Lecture Notes
in Business Information Processing 49

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Antonia Albani Jan L.G. Dietz (Eds.)

Advances in
Enterprise Engineering IV

6th International Workshop, CIAO! 2010
held at DESRIST 2010
St. Gallen, Switzerland, June 4-5, 2010
Proceedings

13

Volume Editors

Antonia Albani
University of St. Gallen
Müller-Friedberg-Strasse 8
9000 St. Gallen, Switzerland
E-mail: antonia.albani@unisg.ch
and
Delft University of Technology
Mekelweg 4
2628 CD Delft, The Netherlands
E-mail: a.albani@tudelft.nl

Jan L.G. Dietz
Delft University of Technology
Mekelweg 4, 2628 CD Delft
The Netherlands
E-mail: j.l.g.dietz@tudelft.nl

Library of Congress Control Number: 2010926924

ACM Computing Classification (1998): J.1, H.3.5, H.4.1, D.2

ISSN 1865-1348
ISBN-10 3-642-13047-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13047-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180 5 4 3 2 1 0

Preface

Enterprise engineering is an emerging discipline that studies enterprises from
an engineering perspective. This means that enterprises are considered to be
purposefully designed and implemented systems, which consequently can be re-
designed and re-implemented if there is a need for change. Behavioral and man-
agerial knowledge is perfectly adequate to identify the need for a change, but it
is insufficient to bring it about. Next, enterprise engineering is rooted in both
the organizational sciences and the information system sciences. The rigorous
integration of these traditionally disjoint scientific areas has become possible fol-
lowing the recognition that communication is a form of action. Since then it has
been quite common to speak of communicative acts, like requesting and promis-
ing. Consequently, communication (and information) is given an organizational
interpretation: requests and promises are commitments, and communication is
entering into and complying with commitments. This important insight clarifies
the fact that enterprises belong to the category of social systems, i.e., their ac-
tive elements (actors) are social individuals (human beings). Founding itself on
this new scientific paradigm, enterprise engineering addresses the challenges that
enterprises are currently faced with, both the internal and the external ones. The
unifying role of human beings makes it possible to address problems in a holistic
way, to achieve unity and integration in bringing about organizational change.
This has not been shown before.

The development of such an innovative approach, as enterprise engineering is,
requires the active involvement of a variety of research institutes and a tight col-
laboration between them. This is achieved by a continuously expanding network
of universities and companies, called the CIAO! Network (www.ciaonetwork.org).
Since 2005 this network has organized the annual CIAO! workshop, and since
2008 its proceedings have been published as ”Advances in Enterprise Engineer-
ing” within the Springer LNBIP series. The book you are going to read contains
the proceedings of the CIAO! Workshop 2010, which was held in conjunction
with the DESRIST 2010 conference in St. Gallen, Switzerland.

June 2010 Antonia Albani
Jan L.G. Dietz

An Introduction to Enterprise Engineering

The Paradigm Shift

Enterprise engineering is an emerging discipline that studies enterprises from
an engineering perspective. The first paradigm of this discipline is that enter-
prises are purposefully designed and implemented systems. Consequently, they
can be re-designed and re-implemented, if there is a need for change. All kinds
of changes are accommodated: strategic, tactical, operational, and technologi-
cal. The second paradigm of enterprise engineering is that enterprises are social
systems. This means that the system elements are social individuals, and that
the essence of an enterprise’s operation lies in the entering into and complying
with commitments between these social individuals1.

The Theoretical Roots

Enterprise engineering is rooted in both the organizational sciences and the infor-
mation system sciences. Three concepts are already paramount to the theoreti-
cal and practical pursuit of enterprise engineering: enterprise ontology, enterprise
architecture, and enterprise governance. Enterprise ontology concerns the under-
standing of an enterprise in a way that is fully independent of any implementation.
The (one and only) ontological model of an enterprise shows the essence of its oper-
ation. It is the starting point for designing and implementing all kinds of changes.
It is also extremely stable over time; most changes appear to be changes in the
implementation. Enterprise architecture concerns the identification, the specifica-
tion, and the application of design principles, which come in addition to the spe-
cific requirements of every change project. Design principles are the operational
shape of an enterprise’s strategic basis (mission, vision). Only in this way can one
achieve and guarantee that the operations of an enterprise are fully compliant with
its mission and strategies. Lastly, enterprise governance constitutes the organiza-
tional conditions for incorporating enterprise ontology and enterprise architecture
in an enterprise’s practice. It constitutes the primary condition for making the
enterprise engineering approach feasible and beneficial.

The Current Evidence

The vast majority of strategic initiatives fail, meaning that enterprises are un-
able to gain success from their strategy. The high failure rates are reported from

1 Basically and principally, only humans can take the role of social individual. We
do recognize, however, the increasing belief among researchers that in the future
artifacts could also take this role.

VIII An Introduction to Enterprise Engineering

various domains: total quality management, business process reengineering, six
sigma, lean production, e-business, customer relationship management, as well
as from mergers and acquisitions. It appears that these failures are mostly the
avoidable result of an inadequate implementation of the strategy. Rarely are they
the inevitable consequence of a poor strategy. Abundant research indicates that
the key reason for strategic failures is the lack of coherence and consistency, col-
lectively also called congruence, among the various components of an enterprise.
At the same time, the need to operate as an integrated whole is becoming in-
creasingly important. Globalization, the removal of trade barriers, deregulation,
etc., have led to networks of cooperating enterprises on a large scale, enabled by
the virtually unlimited possibilities of modern information and communication
technology. Future enterprises will therefore have to operate in an ever more
dynamic and global environment. They need to be more agile, more adaptive,
and more transparent. In addition, they will be held more publicly account-
able for every effect they produce. These challenges are traditionally addressed
by black-box-thinking-based knowledge, i.e., knowledge concerning the function
and the behavior of enterprises, as contained in the organizational sciences.
Such knowledge is sufficient, and perfectly adequate, for managing an enterprise
(within the range of control). However, it is definitely inadequate for changing an
enterprise. In order to bring about changes, white-box-based knowledge is needed,
i.e., knowledge concerning the construction and the operation of enterprises.
Developing and applying such knowledge requires no less than a paradigm shift
in our thinking about enterprises, since the organizational sciences are domi-
nantly oriented towards organizational behavior, based on black-box thinking.

The Evolutionary Milestones

The current situation in the organizational sciences resembles very much the one
that existed in the information systems sciences around 1970. At that time, a
revolution took place in the way people conceived information technology and its
applications. Since then, people have been aware of the distinction between the
form and the content of information. This revolution marks the transition from
the era of data systems engineering to the era of information systems engineer-
ing. The comparison we draw with the information systems sciences is not an
arbitrary one. On the one hand, the key enabling technology for shaping future
enterprises is modern information and communication technology (ICT). On the
other hand, there is a growing insight in the information systems sciences that
the central notion for understanding profoundly the relationship between orga-
nization and ICT is the entering into and complying with commitments between
social individuals. These commitments are raised in communication, through the
so-called intention of communicative acts. Examples of intentions are requesting,
promising, stating, and accepting. Therefore, as the content of communication
was put on top of its form in the 1970s, the intention of communication is now
put on top of its content. It explains and clarifies the organizational notions
of collaboration and cooperation, as well as authority and responsibility. It also

An Introduction to Enterprise Engineering IX

puts organizations definitely in the category of social systems, very distinct from
information systems. Said revolution in the information systems sciences marks
the transition from the era of information systems engineering to the era of
enterprise engineering, while at the same time merging with relevant parts of
the organizational sciences, as illustrated in Fig. 1.

Fig. 1. Enterprise Engineering

The mission of the discipline of enterprise engineering is to combine (relevant
parts from) the organizational sciences and the information systems sciences, and
to develop theories and methodologies for the analysis, design, and implementa-
tion of future enterprises. Two crucial concepts have already emerged that are
considered paramount for accomplishing this mission: enterprise ontology and
enterprise architecture. A precondition for incorporating these methodologies
effectively in an enterprise is the establishment of enterprise governance.

Theoretically, enterprise ontology is the understanding of an enterprise’s con-
struction and operation in a fully implementation independent way. Practically,
it is the highest-level constructional model of an enterprise, the implementation
model being the lowest one2. Compared to its implementation model, the onto-
logical model offers a reduction of complexity of well over 90%. Only by applying
this notion of enterprise ontology can substantial changes of enterprises be made
intellectually manageable.

Theoretically, enterprise architecture is the normative restriction of design
freedom. Practically, it is a coherent and consistent set of principles that guides

2 Dietz, J.L.G., Enterprise Ontology – Theory and Methodology, Springer, 2006, ISBN
978-3-540-29169-5

X An Introduction to Enterprise Engineering

the (re)design and (re)implementation of an enterprise, and that comes in ad-
dition to the specific requirements of a change project3. These principles are
derived from the enterprise’s strategic basis (mission, vision). Only by applying
this notion of enterprise architecture can consistency be achieved between the
strategic basis and the operational business rules of an enterprise.

Enterprise governance is the organizational competence for continuously ex-
ercising guiding authority over enterprise strategy and architecture development,
and the subsequent design, implementation, and operation of the enterprise4.
Adopting this notion of enterprise governance enables an enterprise to be compli-
ant with external and internal rules, and to perform in an optimal and societally
responsible way.

Modeling and Simulation

Every time that a change happens in the business environment or a change is
required due to certain circumstances, it results in analysis and design of some
aspects of the enterprise (organization, business processes, supporting technol-
ogy, etc.). Current trends in business process management show that processes-
oriented approaches are receiving increasing attention in analyzing and designing
enterprises and implementing innovations addressing the external forces (cus-
tomers, competitors, environment, etc.). As the very core of process innovation
is change, and changes always need to be evaluated in comparison with different
scenarios and situations, this demands an even more integral role of modeling
and simulation in the design, redesign, and process improvement activities of
enterprise engineering. Obviously any change is risky and may have serious con-
sequences for enterprises. Early mitigation of risks associated with redesign and
innovation is highly important, especially in situations with many uncertainties.
Here is where modeling and simulation play an enormous role in the analysis,
design, redesign, comparison of alternatives, and measurement of the effects of
changes5.

Ontology-Based Development of Information Systems

Based on the notion of enterprise engineering, new modeling methodologies are
needed to cope with the specific aspects of an enterprise as a designed and en-
gineered artifact. Such methodologies should not only comprise methods and
models to design the enterprise in order to understand and change it, but also

3 Hoogervorst, J.A.P., Dietz, J.L.G.: Enterprise Architecture in Enterprise Engineer-
ing. In: Enterprise Modeling and Information Systems Architecture, Vol. 3, No. 1,
July 2008, pp 3-11, ISSN 1860-6059

4 Hoogervorst, J.A.P., Enterprise Governance and Enterprise Architecture, Springer,
2009, ISBN 978-3-540-92670-2

5 Barjis, J. (2007). Automatic Business Process Analysis and Simulation Based on
DEMO. Journal of Enterprise Information Systems, Vol. 1, No. 4, pp. 365-381

An Introduction to Enterprise Engineering XI

to design and implement information systems supporting the operations and
decision makings of such enterprises. Several enterprise modeling methodologies
exist and are widely applied in practice today. But most of them are not based on
a well-founded theory that integrates the notion of construction and operation
of the enterprise in a fully implementation-independent way. Said approaches
therefore result in unnecessarily complex, unstable, and unwieldy models in-
cluding not only the essential features of an enterprise. The same holds for the
models of the supporting information systems, which are based on those enter-
prise models. In order to provide valuable information to business people who
make decisions about requirements, use the solutions and make decisions about
future strategies, both the enterprise models and the supporting information sys-
tem models need to be provided on a high level of abstraction. Therefore, there
is a need for new and innovative methodologies applying the notion of enter-
prise ontology, and for new methods transforming such ontological models into
information system models6. The resulting information system models have a
reference character. That means that they are stable since they are based on on-
tological models, which are completely implementation independent. A business
domain is not going to change often, but the implementation of that business
domain may change easily.

June 2010 Jan L.G. Dietz
Antonia Albani

Joseph Barjis

6 Albani, A., Dietz, J., 2008. Software and Data Technologies, Second International
Conference, ICSOFT/ENASE 2007, Barcelona, Spain, July 22-25, 2007, Revised
Selected Papers. Vol. 22. Springer Verlag, Ch. Benefits of Enterprise Ontology for
the Development of ICT-Based Value Networks, pp. 322.

Organization

The CIAO! workshop is organized annually as an international forum for
researchers and practitioners in the general field of enterprise engineering.
Organization of the workshop and peer review of the contributions made to
this workshop are accomplished by an outstanding international team of experts
in the fields of enterprise engineering.

Workshop Chairs

Antonia Albani University of St. Gallen (Switzerland) and
Delft University of Technology (The Netherlands)

Jan L.G. Dietz Delft University of Technology (The Netherlands)

Program Committee

Wil van der Aalst
Eduard Babkin
Joseph Barjis
Bernhard Bauer
Emmanuel delaHostria
Johann Eder
Joaquim Filipe
Rony G. Flatscher
Birgit Hofreiter
Jan Hoogervorst
Stijn Hoppenbrouwers
Christian Huemer
Peter Loos

Graham Mcleod
Aldo de Moor
Hans Mulder
Nikolaus Müssigmann
Moira Norrie
Martin Op ’t Land
Erik Proper
Gil Regev
Pnina Soffer
Pedro Sousa
José Tribolet
Jan Verelst

Table of Contents

Enterprise Ontology

Aligning the Constructs of Enterprise Ontology and Normalized
Systems . 1

Philip Huysmans, David Bellens, Dieter Van Nuffel, and Kris Ven

Towards a G.O.D. Organization for Organizational Self-Awareness 16
David Aveiro, António Rito Silva, and José Tribolet

Organizational Modeling

Understanding the Realization of Organizations . 31
Joop de Jong and Jan L.G. Dietz

A Bottom-Up Competency Modeling Approach . 50
João Marques, Marielba Zacarias, and José Tribolet

System Development

Context-Aware Collaborative Platform in Rural Living Labs 65
Olfa Mabrouki, Abdelghani Chibani, Yacine Amirat,
Monica Valenzuela Fernandez, and
Mariano Navarro de la Cruz

A Formal Approach to Architectural Descriptions – Refining the ISO
Standard 42010 . 77

Sabine Buckl, Sascha Krell, and Christian M. Schweda

Author Index . 93

Aligning the Constructs of Enterprise Ontology
and Normalized Systems

Philip Huysmans, David Bellens, Dieter Van Nuffel, and Kris Ven

Department of Management Information Systems,
University of Antwerp, Antwerp, Belgium

{philip.huysmans,david.bellens,dieter.vannuffel,kris.ven}@ua.ac.be

Abstract. Literature suggests that, due to their complexity, organiza-
tions need to be designed in order to be effective and evolvable. Re-
cently, two promising approaches have been introduced that are rele-
vant in this regard. Enterprise Ontology creates essential models that
are implementation-independent. Normalized Systems is concerned with
the development of information systems with proven evolvability. In this
paper, we combine both approaches. To this end, we express the transac-
tion pattern—a central construct of Enterprise Ontology—using the con-
structs of Normalized Systems. By aligning these constructs, we attempt
to introduce traceability between the Enterprise Ontology level and the
Normalized Systems level. The resulting artefact exhibits the benefits
of both Enterprise Ontology and Normalized Systems. We illustrate the
application of the artefact in the context of enterprise architectures.

Keywords: Enterprise Ontology, Normalized Systems, Enterprise
Architecture.

1 Introduction

Contemporary organizations have to be agile in order to be able to adapt to chang-
ing market environments. A change of the organization as a whole affects many
different organizational elements. Given the complexity of organizations, it can be
argued that organizations should be designed in order to exhibit true agility [7].
Enterprise architecture is proposed as a way to control this complexity. Despite
the multitude of frameworks available, no common scientific or theoretical foun-
dation seems to be agreed upon. Therefore, it is difficult to compare and evaluate
the recommendations made by these frameworks [10]. In this paper, we explore an
approach which focuses on the organizational ability to change. We base our ap-
proach on the systems theoretic concept of evolvability by applying the theorems
of Normalized Systems. By adhering to the four theorems of Normalized Systems
during software design and development, software architectures of proven evolv-
ability are obtained [11]. Based on these theorems, Normalized Systems proposes
five software elements to design the modular structure of software. This modular
structure ensures that the software is free from so-called combinatorial effects. En-
terprise Ontology provides abstract, implementation-independent organizational

A. Albani and J.L.G. Dietz (Eds.): CIAO! 2010, LNBIP 49, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 P. Huysmans et al.

constructs which can describe a broad organizational scope with few construct
instantiations (i.e., transactions) [2]. In order to work towards evolvable organi-
zations, we explore an implementation of Enterprise Ontology transactions which
are evolvable. Normalized Systems suggests that we therefore need an implemen-
tation which is free of combinatorial effects. Different alternatives seem to be avail-
able to reach this goal. A first alternative would be to define an implementation
which closely mimics the structure of the transaction pattern, and ensure that this
implementation is free of combinatorial effects. While a complete specification of
the implementation is not possible on this abstraction level, we could base further
specification upon this implementation. A second alternative would be to imple-
ment a completely specified Enterprise Ontology model, in which we could then
eliminate the combinatorial effects. In this paper, we explore the first alternative.
More specific, we explore the expression of the transaction pattern—a core Enter-
prise Ontology construct—in Normalized Systems elements. While similar, more
practice-driven approaches may exist, we limit ourselves to the combination of En-
terprise Ontology and Normalized Systems, because of their scientific foundation.

The rest of the paper is structured as follows. In Section 2, we introduce
Normalized Systems and Enterprise Ontology. We then describe the alignment
of the constructs in Section 3. Next, We position our approach within enterprise
architectures in Section 4. Finally, we offer our conclusions in Section 5.

2 Scientific Foundations

In this section, we provide a brief introduction to both Enterprise Ontology and
Normalized Systems. We primarily focus on the constructs of both approaches
that were used in our research.

2.1 Enterprise Ontology

Theoretical Foundation. In order to grasp the complexity of organizations,
models can be constructed. These models abstract away from the information
that is available in the real world. Depending on the way of abstraction, very
diverse models can be made. Enterprise Ontology views the organization as a
social system [2]. Therefore, it is well suited to describe the interaction between
an organization and its environment. Enterprise Ontology assumes that commu-
nication between human actors is a necessary and sufficient basis for a theory of
organizations [2]. This is based on the language action perspective and Haber-
mas theory of communicative action. The strong theoretical foundation ensures
a consistent modelling methodology. Clear guidelines are provided to create ab-
stract models. Since only the ontological acts are represented in the models, the
same model will be created for organizations who perform the same function,
but operate differently. For example, consider the BPR case at Ford [6]. The
ontological model of the processes of the situation before and after reengineering
are identical. Because of the focus on the essential business processes, Enterprise
Ontology models can be very concise. Therefore, they provide a good overview

Aligning the Constructs of Enterprise Ontology and Normalized Systems 3

of a broad enterprise scope. Many case studies are reported where large organi-
zations are described with few modelling artefacts (e.g. [13]).

In this paper, we will focus on the transaction pattern as the basic construct
of Enterprise Ontology. We currently focus on the transaction as the main En-
terprise Ontology primitive for two main reasons. First, the transaction pattern
is a core element of the Enterprise Ontology theory. The transaction pattern
is specified by the transaction axiom, the second axiom from the Ψ -theory on
which Enterprise Ontology is based. Second, it is the basis on which other mod-
els elaborate. It therefore seems logical to base our initial effort on achieving a
correct mapping of the transaction pattern.

The transaction pattern evolved thanks to contributions from many researchers
[1,5,15,17]. The transaction pattern describes the coordination necessary to pro-
duce a certain result. This result is represented by a production fact. There are al-
ways two actors involved in a transaction: the initiator actor who wants to achieve
the fact, and the executor actor who performs the necessary actions to create the
fact. Delivering a product, performing a service or subscribing to an insurance are
examples of production facts which could be created by completing a transaction.

EnterpriseOntologyArtefact. Thehigh-level structure of the transactionpat-
tern consists of three phases. In the order phase, the actors negotiate the subject
of the transaction. In the execute phase, the subject of the transaction is brought
about. In the result phase, the result of the transaction is presented and accepted.
In different versions of the transaction pattern, different ontological process steps
are identified in the three phases. These steps are called coordination acts. The
successful completion of an act results in a coordination fact. Enterprise Ontology
distinguishes between the basic, standard and complete transaction pattern.

The graphical representation of the transaction pattern is shown in Figure 1.
The combination of a coordination act and fact is represented by a circle in
a square. The combination of a production act and fact is represented by a
diamond in a square. Small circles represent process entry points, and small
circles with a cross represent a choice between alternate flows. Light-grey boxes
indicate which acts fall under the authority of a certain actor. In Figure 1, A01
is the initiator actor, and A02 is the executor actor.

Basic Transaction Pattern: The basic transaction pattern consists of the five stan-
dard acts which occur in a successful scenario (i.e., request, promise, execute, state
and accept) [2, p. 90]. These five acts are shown in the centre of Figure 1. In the
order-phase, the initiator actor first requests the creation of a fact. The executor
actor then promises to fulfil this request. In the execute-phase, the executor ac-
tually performs the necessary actions to create the fact in the execute act. In the
result phase, the executor first states the successful completion of the fact. Fi-
nally, the initiator accepts this statement. Consider this transaction in the case of
a simple product delivery process. In a first process step, the customer requests
the product. Once this request is adequately specified, the request coordination
fact is created. Second, the supplier promises to deliver the product according to
the agreed terms. This creates the promise coordination fact. The third process

4 P. Huysmans et al.

Fig. 1. Graphical representation of the Enterprise Ontology Transaction Pattern

step is the actual delivery. This results in the production fact “Product X has
been delivered”. In the fourth process step, the supplier states that the delivery
has been completed. If the customer is satisfied with the delivery, he will accept
the delivery in the fifth process step. Once the accept coordination fact is created,
the transaction is considered to be completed.

Standard Transaction Pattern: The standard transaction pattern is the basic
transaction pattern, augmented with the scenario in which the actors dissent [2,
p. 93]. The coordination facts which indicate a dissent are represented by a
double circle in Figure 1 (i.e., decline and reject facts). In the order-phase, the
executor actor can decline the incoming request of the initiator actor. The initia-
tor then has to decide whether he resubmits his request, or quits the transaction.
In our example, the supplier could decline the delivery of a product which does
not belong to his catalogue. The customer would need to select another product,
or quit the transaction and search another supplier. The execute-phase is iden-
tical to the execute-phase in the basic transaction pattern. In the result-phase,
the initiator actor can reject the stated production fact instead of accepting it.
The executor then has to decide whether he wants to repeat the execution act
and make the statement again, or stop the transaction.

Complete Transaction Pattern: In the complete transaction pattern, cancelation
patterns are added to the standard transaction pattern. In Figure 1, the cance-
lation patterns are started in the four additional process entry points. According

Aligning the Constructs of Enterprise Ontology and Normalized Systems 5

to [2], every coordination fact can be cancelled at any time by the responsible
actor. This cancelation can then be allowed or refused by the other actor. For
example, when the customer changes his mind after requesting the delivery of
a product, he can cancel his request. The executor then has to decide whether
he allows this cancelation, in which case the transaction ends, or refuses the
cancelation, and proceeds with the transaction.

2.2 Normalized Systems

Theoretical Foundation. The basic assumption of Normalized Systems is that
information systems should be able to evolve over time, and should be designed
to accommodate change. As this evolution due to changing business requirements
is mostly situated during the mature life cycle stage of an information system,
it takes the form of software maintenance. Software maintenance is considered
to be the most expensive phase of the information system’s life cycle, and often
leads to an increase of architectural complexity and a decrease of software qual-
ity [4]. This phenomenon is also known as Lehman’s law of increasing complexity,
expressing the degradation of information system’s structure over time [9]. Be-
cause changes applied to information systems are suffering from Lehman’s law,
the impact of a single change will increase over time as well [8]. Therefore to
genuinely design information systems accommodating change, they should ex-
hibit stability towards these requirements changes. In systems theory, stability
refers to the fact that bounded input to a function results in bounded output
values, even as t → ∞. When applied to information systems, this implies that
no change propagation effects should be present within the system. This means
that a specific change to an information system should require the same effort,
irrespective of the information system’s size or point in time when being applied.
Combinatorial effects occur when changes require increasing effort as the system
grows; and should thus be avoided. Normalized systems are defined as informa-
tion systems exhibiting stability with respect to a defined set of changes [11], and
are as such defying Lehman’s law of increasing complexity [8,9] and avoiding the
occurrence of combinatorial effects. In this sense, evolvability is operationalized
as a number of anticipated changes that occur to software systems during their
life cycle [12].

The normalized systems approach deduces a set of four design theorems that
act as design rules to identify and circumvent most combinatorial effects [11,12].
It needs to be emphasized that each of these theorems is not completely new,
and even relates to the heuristic knowledge of developers. However, formulating
this knowledge as theorems that identify these combinatorial effects aids to build
systems containing minimal combinatorial effects. The first theorem, separation
of concerns, implies that every change driver or concern should be separated
from other concerns. This theorem allows for the isolation of the impact of each
change driver. Parnas described this principle already in 1972 [14] as what was
later called design for change. Applying the theorem prescribes that each module
can contain only one submodular task (which is defined as a change driver), but
also that workflow should be separated from functional submodular tasks.

6 P. Huysmans et al.

The second theorem, data version transparency, implies that data should be
communicated in version transparent ways between components. This requires
that this data can be changed (e.g., additional data can be sent between compo-
nents), without having an impact on the components and their interfaces. This
theorem can, for example, be accomplished by appropriate and systematic use
of web services instead of using binary transfer of parameters. This also implies
that most external APIs cannot be used directly, since they use an enumeration
of primitive data types in their interface.

The third theorem, action version transparency, implies that a component can
be upgraded without impacting the calling components. This theorem can be
accomplished by appropriate and systematic use of, for example, polymorphism
or a facade pattern.

The fourth theorem, separation of states, implies that actions or steps in a
workflow should be separated from each other in time by keeping state after every
action or step. This suggests an asynchronous and stateful way of calling other
components. Synchronous calls resulting in pipelines of objects calling other
objects which are typical for object-oriented development result in combinatorial
effects.

Normalized Systems Artefacts. The design theorems show that software
constructs, such as functions and classes, by themselves offer no mechanisms
to accommodate anticipated changes in a stable manner. Normalized Systems
therefore proposes to encapsulate software constructs in a set of five higher-level
software elements (i.e., data, action, flow, connector and trigger elements). These
elements are modular structures that adhere to these design theorems, in order
to provide the required stability with respect to the anticipated changes [11]. To
map the Enterprise Ontology transaction pattern, three of these five higher-level
software elements are needed. We will now elaborate on these three elements.

From the second and third theorem it can straightforwardly be deduced that
the basic software constructs, i.e., data and actions, have to be encapsulated in
their designated construct.

Data Element: A data element represents an encapsulated data construct with
its get- and set-methods to provide access to their information in a data version
transparent way. So-called cross-cutting concerns, for instance access control and
persistency, should be added to the element in separate constructs.

Action Element: The second element, action element, contains a core action
representing one and only one functional task. Arguments and parameters need
to be encapsulated as separate data elements, and cross-cutting concerns like
logging and remote access should be again added as separate constructs. [16]
distinguish between four different implementations of an action element: stan-
dard actions, manual actions, bridge actions and external actions. In a standard
action, the actual task is programmed in the action element and performed by
the same information system. In a manual action, a human act is required to
fulfil the task. The user then has to set the state of the life cycle data element

Aligning the Constructs of Enterprise Ontology and Normalized Systems 7

through a user interface, after the completion of the task. A process step can
also require more complex behaviour. A single task in a workflow can be required
to take care of other aspects, which are not the concern of that particular flow.
Consider the ordering of parts for an assembly. The assembly workflow needs to
know when the parts are ready to be assembled, but it is not concerned with
how the parts are prepared. Therefore, a separate workflow will be created to
handle the concerns of the individual parts. Bridge actions create these other
data elements going through their designated flow. Fourth, when an existing,
external application is already in use to perform the actions on, for instance, the
different parts of an assembly, the action element would be implemented as an
external action. These actions call other information systems and set their end
state depending on the external systems’ reported answer.

Workflow Element: Based upon the first and fourth theorem, workflow has to
be separated from other action elements. These action elements must be isolated
by intermediate states, and information systems have to react to states. A third
element is thus a workflow element containing the sequence in which a number
of action elements should be executed in order to fulfil a flow. A consequence
of the stateful workflow elements is that state is required for every instance of
use of an action element, and that the state therefore needs to be linked or
be part of the instance of the data element serving as argument. We call this
data element the life cycle data element of a flow. A graphical representation
of a flow element is shown in Figure 2. This representation is consistent with
the representation of Normalized Systems workflow elements, which are based
on state machines [11, p. 143]. The black circles represent the different states
of the flow, being the life cycles states of the corresponding data element. The
state name is notated next to the state symbol. The squares represent the action
elements.

3 Translating the Transaction Pattern

As discussed in Section 2.1, the transaction pattern of Enterprise Ontology is
the starting point for our research. In this section, we present the mapping of
the transaction pattern to the constructs of Normalized Systems, which are dis-
cussed in Section 2.2. We will start by translating the basic transaction pattern,
and iteratively add more details in the standard transaction pattern and the
cancelation patterns.

3.1 The Basic Transaction Pattern

We start by mapping the basic transaction pattern. The basic transaction pat-
tern consists of the process steps request, promise, execute, state and accept. In
Normalized Systems, this transaction pattern process is represented by a flow
element. A flow element is driven by precisely one data element, the life cycle
data element. Consider a transaction T01. In order to define a Normalized Sys-
tems flow, we thus need a T01 data element. The completion of the different acts

8 P. Huysmans et al.

in the transaction process is represented by the creation of ontological facts. In
Normalized Systems, these facts are represented by the states which occur in
the flow element, being the life cycle states of the corresponding data element.
To reach these states, a state transition is required. A state transition is realized
by an action element. The successful completion of that action element results
in the defined life cycle state. In order to define the control flow of the process,
we therefore need to specify the trigger states, state transitions and transaction
actions. Regarding the request coordination fact, this implies that the T01 flow
element, and thus also the corresponding T01 data element, should reach the
state Requested. This means that upon initiation of a T01 transaction, a new
T01 data element is instantiated trough its default constructor, resulting in the
life cycle state Initial. The genuine act of requesting is encapsulated in the action
element Request. The concerns of creating the data element and handling the
request are separated as they can clearly evolve independently from each other.
The request could, for example, contain additional information that needs to be
processed. Since we are currently only regarding the successful flow of the trans-
action, we do not yet need any branching. The state transition can be expected
to always result in the end state Requested. The resulting Normalized Systems
flow is shown in Figure 2, and schematically represented in Table 1.

While all state transitions are defined as action elements, their different nature
can mean that they need to be implemented differently. Consider the notification
of the initiator actor in the promise process step. If this notification requires a
human action, e.g., a manager who has to decide, the Promise action element
would be implemented as a manual action. However, the promise process step

Table 1. Specification of the basic transaction pattern flow element

Workflow name Basic Transaction Pattern
Data element T01-basic
Start state Action name End state Failed state

Initial Request Requested
Requested Promise Promised
Promised Execute Executed
Executed State Stated
Stated Accept Accepted

Fig. 2. Graphical representation of the basic transaction pattern flow

Aligning the Constructs of Enterprise Ontology and Normalized Systems 9

can also require more complex behaviour. When for example the product first
needs to be reserved in the warehouse, the Promise action element would be
implemented as a bridge action triggering a flow element on another data ele-
ment, e.g., a Part element. When an existing application is already in use to
perform these reservations, the Promise action element would be implemented
as an external action.

3.2 The Standard Transaction Pattern

The standard transaction pattern adds the scenario in which the actors can dis-
sent. When translating these additions to Normalized Systems primitives, some
additional actions and states have to be included due to the Normalized Systems
theorems. The resulting Normalized Systems flow element is graphically repre-
sented in Figure 3. Based on separation of concerns, the decision of the executor
actor to promise or decline the request needs to be separated from the actual
coordination act (i.e., the communication of the decision). The communication
method can change independently, as shown by the various implementations of
the Promise action element in the basic transaction pattern. Since the decision
logic to promise or decline can also change independently of the communication
method, these two actions should not be combined in one action element. Doing
so would introduce a combinatorial effect. Therefore, we introduce an additional
action element ValidateRequest. In the case where the executor decides to
handle the request, the state RequestValidated is set. Otherwise, the state Re-
questInvalidated is set. The actual Promise action element remains identical to
the action element described in the basic transaction pattern. If the request is
however declined, the initiator actor needs to decide whether or not to resubmit
the request. This decision logic is again separated from the other actions by
encapsulating the decision logic in an action element ValidateDecline. If the
initiator decides to resubmit, the state is set to DeclineValidated. The Resubmit
action element then allows the initiator actor to possibly change the request and
to resubmit it which will again result in the state Requested. If the initiator de-
cides to abort the transaction, the state is set to DeclineValidated, which triggers
the Quit action element to reach the end state Quitted.

Analogously, the initiator actor has to decide whether he accepts the stated
production fact. We therefore introduce the ValidateState action element,
which results in the StateValidated state in case of a successful acceptance, or
in the StateInvalidated state in case of an unsuccessful one. The StateValidated
state triggers the Accept action element, which contains the actual accept coor-
dination act. In case the initiator does not accept the state coordination fact, the
workflow is brought to the Rejected state through the Reject action element.
The decision whether to handle the reject is taken in the ValidateReject action
element. The reject handling itself is implemented as a dedicated HandleReject
action element. If the executor does not handle the reject, the transaction reaches
the end state Stopped through the Stop action element. All the described state
transitions for the standard transaction pattern are summarized in Table 2.

10 P. Huysmans et al.

Table 2. Specification of the standard transaction pattern flow element

Workflow name Standard Transaction Pattern
Data element T01-standard

Start state Action name End state Failed state
Initial Request Requested

Requested ValidateRequest RequestValidated RequestInvalidated
RequestInvalidated Decline Declined
RequestInvalidated ValidateDecline DeclineValidated DeclineInvalidated
DeclineInvalidated Quit Quitted
DeclineValidated Resubmit Requested
RequestValidated Promise Promised

Promised Execute Executed
Executed State Stated
Stated ValidateState StateValidated StateInvalidated

StateInvalidated Reject Rejected
Rejected ValidateReject RejectValidated RejectInvalidated

RejectInvalidated Stop Stopped
RejectValidated HandleReject Stated
StateValidated Accept Accepted

3.3 The Cancelation Patterns

The complete transaction pattern also includes the various cancelation patterns
and is shown in Figure 1. A cancelation consists of two main issues: deciding
whether or not to allow a cancel request and handling the cancelation itself.
The first issue actually consists of initially receiving the cancel request, then
deciding whether or not to allow the requested cancelation, and third potentially
to notify the initiator of the rejected cancel request. As such, based on separation
of states and separation of concerns, these three concerns will be separated.
First, upon arrival of a cancel request, a dedicated CancelRequest data element
will be created. This implies that for every life cycle data element that can
be cancelled, a related CancelRequest data element instance will be created if
such a request arrives. For example, for a life-cycle data element called Order,
a corresponding OrderCancelRequest data element will be created. Second, an
action element AcceptCancelation will implement the decision whether or not
to accept. Third, in case of an rejected request, the initiator will probably have to
be notified. This functionality is represented by a bridge action Refuse executing
the notification in the way as discussed in [16]. In case of an allowed cancelation,
the CancelTransaction standard action element will initiate the cancelation
handling which will be explained next. The Normalized Systems specification
for the workflow representing the cancel request issue is shown in Table 3 and
Figure 4. In case of an allowed cancelation, CancelTransaction standard action
element will initiate the handling itself explained hereafter.

Aligning the Constructs of Enterprise Ontology and Normalized Systems 11

Fig. 3. Graphical representation of the standard transaction pattern flow

Table 3. Specification of the cancelation pattern flow element

Workflow name Transaction Cancelation
Data element T01-CancelRequest

Start state Action element End state Failed state
Initial CheckValidity CancelRequestValid

CancelRequestValid AcceptCancelation Allowed not-Allowed
not-Allowed Refuse Refused

Allowed CancelTransaction Canceled

If the cancelation is allowed, it may be necessary to partly or completely
roll back the transaction. Given the divergence of business contexts, a roll back
can imply different actions given the state of the transactions. Therefore, the
cancelation process will be designed using multiple scenarios implemented as
separate action elements on the same life cycle data element. Consider the case
where various parts are ordered to complete the assembly of a product. In case
the parts have not yet been received, an order cancelation can be submitted

12 P. Huysmans et al.

Fig. 4. Graphical representation of the cancelation pattern

to the parts supplier. In case the parts are already received and reserved, they
should be released and made available for future assemblies. Thus, the scenario
and constituent action elements are dependent on the life cycle data element’s
state when the cancelation request is initiated.

Since a cancelation can occur regardless of the current state of the transaction,
it is modelled in the Enterprise Ontology transaction pattern as a separate entry
point. However, the Normalized Systems theorems do not allow that the state of
the main flow is simply altered by any other flow because a flow element actively
interfering with another flow element is considered a so-called GOTO statement.
In accordance with the seminal work of Dijkstra [3], Normalized Systems does
not allow this kind of statements, and therefore prohibits such a direct state
transition by another flow.

We outline the solution for adding cancelation patterns consistent with Nor-
malized Systems theorems as described in [16]:

– A cancelRequest data attribute is added to the data element operating the
flow.

– A cancel can be initiated in multiple ways. The particular situation should
be assigned to the value of the cancelRequest data attribute by the
CancelTransaction standard action element.

– The engine operating the respective flow element checks the cancelRequest
data attribute. If this field is set, the current state of the flow will be saved
in the so-called parking state field. The regular state field of the workflow
will be set to “cancel requested”.

– An action element will subsequently be triggered to decide which cancelation
flow—i.e., sequence of action elements on the corresponding life cycle data
element—has to be triggered as the cancelation scenario will differ accord-
ing to the life cycle state as also illustrated by the cancelation patterns in
Enterprise Ontology. Therefore, this action element will use the value of the
so-called parking state field, uniquely describing the life cycle state of the
corresponding data element when the cancel request was communicated.

This implies that a cancelation is handled as a sequence of action elements on the
same life cycle data element. This is in line with the observation that requesting,

Aligning the Constructs of Enterprise Ontology and Normalized Systems 13

promising, executing, stating, declining, or cancelling a fact addresses the same
concern. However, the sequence of actions about the cancel request itself are
separated in their designated elements. It should be noted that we present a
generic cancelation pattern. The possibility of triggering different cancelation
flows, based on the value of the cancelRequest data attribute, allows us to
implement the four different Enterprise Ontology cancelation patterns.

4 Application in Enterprise Architecture

In the previous section, we presented a translation of the Enterprise Ontology
transaction pattern in Normalized Systems constructs. This artefact could be
used in the context of enterprise architectures. We now outline the implication
of our artefact in enterprise architectures as defined by Hoogervorst [7]. Hooger-
vorst proposes a method to design so-called construction models that enable the
implementation of the implementation-independent Enterprise Ontology models.
Based on the ontological models, four enterprise design domains (i.e., business,
organization, information and technology) need to be designed. Enterprise ar-
chitecture provides “the normative guidance for the design process” [7]. The
architecture consists of principles, which have to be respected during the design
of the construction models. These principles are the result of strategic choices.
Therefore, organizations with identical ontological models can be implemented
differently based on their different architectural principles, since different con-
struction models will be designed. This is how organizations can differentiate
from each other.

However, certain characteristics can be useful for any organization, such as
evolvability. When the architecture needs to achieve such general strategic char-
acteristics, architectural principles could be proposed which are more generally
accepted. To achieve this, we need to know which principles affect the evolv-
ability of construction models. According to Normalized Systems, the occurance
of combinatorial effects affects evolvability. Principles which are analogous to
the Normalized Systems theorems could thus affect the occurance of combinato-
rial effects—and therefore, evolvability—in contruction models. Such principles
would need to guide the implementation of transactions to avoid combinatorial
effects. Therefore, our implementation of the transaction pattern seems to fit
the concept of enterprise architecture as intented by Hoogervorst: it guides the
design of the transaction implementation by restricting design freedom, since
only Normalized Systems elements can be used. Our artefact provides a basis
for the further development of construction models which are free of combi-
natorial effects. The use of our construct is not limited to the design domain
information technology. For example, designing the processes of the design do-
main organization based on our artefact enforces adherence to the Normalized
Systems theorems, while respecting the integration between the processes which
implement a certain transaction.

14 P. Huysmans et al.

5 Discussion and Conclusions

This paper presents the first implementation of Enterprise Ontology transactions
with explicit attention to combinatorial effects. It has two important contribu-
tions. First, our artefact shows that a mapping between Enterprise Ontology and
Normalized Systems constructs is feasible. More specifically, it shows that such
a mapping is feasible very early in the design process. Moreover, we presented a
generic and systematic mapping. While it is possible that the mapping artefact
needs to be refined or adapted, it can be used for the implementation of any
transaction. This means that our artefact can be used as a starting point for de-
signing evolvable organizations. We further illustrated this point by suggesting
the use of the artefact within enterprise architectures. While our implementation
remains at an abstract level, further specification of construction models can be
guided by existing research, both scientific and practical. On the scientific level,
Normalized Systems has proven to prevent combinatorial effects in software im-
plementations. On the practical level, large-scale mission-critical systems are
already developed using Normalized Systems elements.

Second, our mapping shows that the Normalized Systems theorems do im-
pact the implementation of Enterprise Ontology models, when combinatorial
effects need to be avoided. In order to implement transactions which are free of
combinatorial effects, several guidelines can be prescribed:

– Additional state transitions need to be created in order to comply with the
separation of concerns and separation of state theorems. We introduced these
state transitions during the mapping of the standard transaction pattern.

– Based on previous research, we propose an implementation of the cancelation
patterns which enables an implementation of different roll-back scenarios and
adhering to the Normalized Systems theorems.

Following these guidelines will not affect the Enterprise Ontology models itself,
since they are implementation-independent. The occurrence of combinatorial ef-
fects during changes will only affect the actual implementation of the Enterprise
Ontology models. While we do not claim to have removed all combinatorial
effects in our implementation, we achieved an effective and efficient mapping
method by specifying these guidelines early in the design process. Effective,
because the use of Normalized Systems elements implies the adherence to archi-
tectural principles. Efficient, because combinatorial effects are prevented instead
of removed.

The presented approach suggests following future research subjects. First, we
presented the mapping of a single transaction. Obviously, the construction of
an organization implies the integration of several transactions. In subsequent re-
search, we will focus on an approach to integrate different transactions, while re-
specting the Normalized Systems theorems. While the current mapping is mainly
influenced by the separation of concerns and separation of states theorems, it
can be expected that guidelines for integration will need to focus on the data and
action version transparency theorems. Second, the focus of this paper was on the

Aligning the Constructs of Enterprise Ontology and Normalized Systems 15

conceptual mapping of constructs. In following publications, we will report on
the applications of our artefact in various cases.

References

1. Auramäki, E., Hirschheim, R., Lyytinen, K.: Modelling offices through discourse
analysis: the sampo approach. Computer Journal 35(4), 342–352 (1992)

2. Dietz, J.L.: Enterprise Ontology: Theory and Methodology. Springer, Berlin (2006)
3. Dijkstra, E.: Go to statement considered harmful. Communications of the

ACM 11(3), 147–148 (1968)
4. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J., Mockus, A.: Does code decay?

assessing the evidence from change management data. IEEE Transactions on Soft-
ware Engineering 27(1), 1–12 (2001)

5. Goldkuhl, G.: Generic business frameworks and action modeling. In: Proceedings of
the Conference on Communication Modeling—Language/Action Perspective 1996,
Springer, Heidelberg (1996)

6. Hammer, M.: Reengineering work: Don’t automate, obliterate. Harvard Business
Review 68(4), 104 (1990)

7. Hoogervorst, J.A.P.: Enterprise Governance and Enterprise Engineering (The En-
terprise Engineering Series), 1st edn. Springer, Heidelberg (2009)

8. Lehman, M.: Programs, life cycles, and laws of software evolution. Proceedings of
the IEEE 68, 1060–1076 (1980)

9. Lehman, M.M., Ramil, J.F.: Rules and tools for software evolution planning and
management. Annals of Software Engineering 11(1), 15–44 (2001)

10. Leist, S., Zellner, G.: Evaluation of current architecture frameworks. In: SAC 2006:
Proceedings of the 2006 ACM symposium on Applied computing, pp. 1546–1553.
ACM, New York (2006), http://doi.acm.org/10.1145/1141277.1141635

11. Mannaert, H., Verelst, J.: Normalized Systems—Re-creating Information Technol-
ogy Based on Laws for Software Evolvability, Koppa, Kermt, Belgium (2009)

12. Mannaert, H., Verelst, J., Ven, K.: Exploring the concept of systems theoretic
stability as a starting point for a unified theory on software engineering. In: Man-
naert, H., Ohta, T., Dini, C., Pellerin, R. (eds.) Proceedings of Third International
Conference on Software Engineering Advances (ICSEA 2008), pp. 360–366. IEEE
Computer Society, Los Alamitos (2008)

13. Mulder, H.: Rapid enterprise design. Ph.D. thesis, TU Delft (2006)
14. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Communications of the ACM 15(12), 1053–1058 (1972)
15. van Reijswoud, V.: The structure of business communication: Theory, model and

application. Ph.D. thesis, Technische Universiteit Delft (1996)
16. Van Nuffel, D., Mannaert, H., De Backer, C., Verelst, J.: Deriving normalized

systems elements from business process models. In: International Conference on
Software Engineering Advances, pp. 27–32 (2009),
http://doi.ieeecomputersociety.org/10.1109/ICSEA.2009.13

17. Winograd, T., Flores, F.: Understanding Computers and Cognition: A New Foun-
dation for Design. Addison Wesley, Reading (1986)

http://doi.acm.org/10.1145/1141277.1141635
http://doi.ieeecomputersociety.org/10.1109/ICSEA.2009.13

A. Albani and J.L.G. Dietz (Eds.): CIAO! 2010, LNBIP 49, pp. 16–30, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Towards a G.O.D. Organization for Organizational
Self-Awareness

David Aveiro1,2, António Rito Silva2,3, and José Tribolet2,3

1 Exact Sciences and Engineering Centre, University of Madeira, Caminho da Penteada
9000-390 Funchal, Portugal

2 Center for Organizational Design and Engineering, INESC-INOV
Rua Alves Redol 9, 1000-029 Lisboa, Portugal

3 Department of Information Systems and Computer Science, Instituto Superior Técnico,
Technical University of Lisbon

{david.aveiro,jose.tribolet,rito.silva}@ist.utl.pt

Abstract. In this paper we draw on concepts from the Design and Engineering
Methodology for Organizations, and also from its theoretical foundations, to
discuss our notions of Organizational Self-Awareness and ontological meta
model. These are deemed as central notions to understand and present, in a clear
and precise manner, solutions for our main research purpose: finding concepts
and methods to better handle organizational change caused by unexpected ex-
ceptions causing dysfunction in an organization's activity. Based on ontological
notions like state base of a world and the ontological parallelogram, we arrive at
precise definitions of what we call organizational self and its awareness. These
then serve to put in perspective our proposal for the G.O.D Organization, con-
sidered to exist in every organization and being responsible for the Generation,
Operationalization and Discontinuation of organization artifacts – e.g., actor
role pizza deliverer – reflecting change of the organizational self. The main
contribution of this paper is a discussion and clarification of how one can per-
ceive an organization in a precise and thorough way, as to be able to keep a fact
record of its relevant changes and, as a consequence, have a dynamic and “liv-
ing model” of the organization.

Keywords: organizational engineering, organizational self-awareness, organ-
izational change, model, meta-model.

1 Introduction

Our initial research efforts had the general purpose of understanding and clarifying
what the function perspective of an organization should be. Normally, the function
concept is associated with behavior, activity or operation of an organization or of a
certain organizational unit like a marketing or IT department, normally responsible
for the respective function [1]. In [2] we find that the function perspective means
looking at a system from the point of view of the using system, in terms of provided
functionality, i.e., kinds of behavior that can be caused. We regarded this to be an
incomplete use of the term function. As a result of a review that we undertook on how

 Towards a G.O.D. Organization for Organizational Self-Awareness 17

this concept is used in such diverse areas as enterprise engineering, information sys-
tems, biology, sociology and philosophy, we found that, besides the aspect of behav-
ior, also central to the function concept is the normative aspect (e.g., [3]), that is, the
existence of certain normally expected values – norms – for certain vital properties of
a system. In an organization, deviations from such norms imply a state of dysfunction
that can possibly compromise its viability. Dysfunctions will have a cause which may
be expected or unexpected. If the cause is expected, certain resilience strategies may
already exist that can be activated to eliminate or circumvent dysfunctions [4], [3]. If
the cause is unknown we will be in the presence of an unexpected exception. This
unexpected exception will have to to be handled so that its concrete nature is detected
and actions are undertaken that either eliminate or circumvent it, solving the dysfunc-
tion. The handling of unexpected exceptions constitutes another central aspect of the
function perspective, namely change through the (re)Generation, Operationalization
and Discontinuation of organizational artifacts which will eliminate or circumvent the
determined cause of dysfunction. We consider an organization artifact (OA) as a
construct of an organization like a business rule (e.g. “if invoice arrives, check list of
expected items”) or an actor role (e.g. library member). Change of OAs to handle dys-
functions is considered a special kind of dynamics that – inspired in philosophy litera-
ture on this subject – we call microgenesis [5]. We find that change is also driven by
the detection of opportunities of improvement which will increase the viability of an
organization and place it ahead of competition [6]. This is proactive change, as
opposed to reactive change in the cases of resilience and microgenesis.

The focus of our research is in reactive change and on modeling the aspects of re-
silience strategies to solve known exceptions causing dysfunctions and (microgenesis)
dynamics of handling unexpected exceptions also causing dysfunctions. This paper,
focuses on theoretical issues underpinning our solutions for modeling resilience and
microgenesis dynamics. In section 2 we develop on our main research problem and
related work. Sections 3 and 4, the main contributions of this paper, present our dis-
cussion on the issues of organizational self-awareness and ontological meta model,
necessary for a precise specification of our solutions. Section 5 provides a summary
of or solution proposal – addressed in another report – which serves to consolidate the
contributions of our discussion. Section 6 concludes with a short review of our contri-
butions and issues raised for related work.

2 Problem, Motivation and Related Work

Above findings helped us to identify two relevant and closely interrelated more
focused problems. On one hand, a large amount of time is lost, in organizations, in
the handling of unknown exceptions causing dysfunctions as exception handling can
sometimes take almost half of the total working time, and the handling of, and
recovering from, exceptions is expensive [7]. On another hand, current OE
approaches seem to lack in concepts and method for a continuous update of organiza-
tional models, so that they are always up to date and available as a more useful input
for the process of continuous change of organizational reality and decision on possi-
ble evolution choices. We focus on these problems in the context of small timely
changes, as opposed to large impact changes in the context of IT/IS projects, mergers,

18 D. Aveiro, A.R. Silva, and J. Tribolet

acquisitions and splittings of organizations. It seems that the root problem for the
above mentioned interrelated problems is an absence of concepts and method for ex-
plicit capture, and management of information of exceptions and their handling,
which includes the design and operationalization of OAs that solve caused dysfunc-
tions. Not immediately capturing this handling and the consequent resulting changes
in reality and the model of reality itself, will result that, as time passes, the organiza-
tion will be less aware of itself than it should be, when facing the need of future
change due to other unexpected exceptions.

In terms of related research, the lack of awareness of organizational reality has
been addressed in [8], with the coining of the term “Organizational Self-Awareness”
(OSA). This construct has been further refined in [9] and [10]. OSA stresses the
importance and need of continuously available, coherent, updated and updateable
models of organizational reality. A recently proposed research discipline named Or-
ganizational Design and Engineering (ODE) [11], also defends this and further raises
the importance of capturing and making organizational history and lessons learned
available to organizational actors. OSA, and ODE claim that current OE approaches
have the shortcoming of lacking in concepts and methods for a continuous update of
models of organizational reality, aligned with the continuous change happening in the
real terrain. However, both OSA and ODE have, for the most part, only addressed the
issues of identification and formulation of this problem and, in terms of solution,
mostly the aspect of representation, leaving the change aspect as future work.

This shortcoming of lack of continuous update of models aligned with the continu-
ous change of reality has been addressed, by and large, in research and practice in the
context of Workflow Management Systems (WfMS) – see, for example, [12] and
[13]. However, current solutions assume that an organization will be using a WfMS,
which will not be the case of many organizations. And, even in the case of organiza-
tions using WfMS, relevant activities may happen outside of IT context and we may
also want to address exceptions related to them.

From our review and proposal of a broader notion of the function perspective and
related insights brought from Complex Adaptive Systems (CAS) literature, we find
that we may have two main types of change dynamics: resilience and microgenesis.
From CAS [4] (p. 33) and philosophy [3], we find that systems maintain an internal
model of the world (of themselves and the environment) so that they can activate spe-
cific resilience strategies to react, appropriately and in time, to certain known excep-
tions or fluctuations in critical norms that guarantee the system's viability. We also
find that a system adapts with incremental changes [5], having as a main purpose to
survive and evolve among competition, by having credit mechanisms which favor
changes (adaptations) that increase the system's viability and constitute criteria of
measuring success [4] (p. 34), [14] (p. 5). One of the premises from CAS theory is
that, to solve new exceptions, “rule pieces” that constitute current resilience strategies
that solve similar exceptions may be re-utilized to build new resilience strategies or
new OAs to solve the new exceptions. From unexpected exception handling in WfMS
[12] and insights from ODE discipline [11], we find that information on the history of
organization change is an essential asset in the moments where change is again
needed, i.e., in microgenesis dynamics. Modeling resilience and microgenesis dynam-
ics and keeping a systematic history of their execution is deemed as a solution to our
main research problem, so that exception handling and organization change is more

 Towards a G.O.D. Organization for Organizational Self-Awareness 19

efficient and effective. Microgenesis is the main focus of our main research project.
To precisely specify its dynamics we needed to also precisely specify resilience dy-
namics. Resilience and microgeneis have been the focus of other reports to be pub-
lished elsewhere. In this paper we present a discussion on essential notions needed for
a precise specification of microgenesis dynamics.

We ground our research in a particular Organizational Engineering approach,
namely, the Design & Engineering Methodology for Organizations (DEMO) [2].
From several approaches to support OE being proposed, DEMO seems to be one of
the most coherent, comprehensive, consistent and concise [2]. It has shown to be
useful in a number of applications, from small to large scale organizations – see, for
example, [15] and [16] (p. 39). Nevertheless, DEMO suffers from the shortcoming
referred above. Namely, DEMO models have been mostly used to devise blueprints to
serve as instruments for discussion of broader scale organizational change or devel-
opment/change of IT systems [16] (p. 58) and does not, yet, provide modeling con-
structs and a method for a continuous update of its models as reality changes, driven
by exceptions (microgenesis) nor for the continuous control (resilience) that we need
to exert on organizations to guarantee viability. Contributions of our research – pre-
sented in the next sections – are heavily based in DEMO so, while proceeding, the
reader which is unfamiliar with this methodology is advised to also consult [2] or [15]
or other publications in: www.demo.nl.

3 Organizational Self-Awareness

3.1 Review of DEMO Concepts

We adopt the formal definition of ontological model of a world (from [17]) as: the
specification of its state space and its process space. Both are expressed in business
rules. By state space is understood the set of allowed or lawful states. It is specified
by means of the state base and the existence laws. The state base is the set of fact
types of which instances may exist in a state of the world. The existence laws deter-
mine the inclusion or exclusion of the coexistence of facts. We adopt also the onto-
logical system definition from [18] (citing [19]) which concerns the construction and
operation of a system. The corresponding type of model is the white-box model,
which is a direct conceptualization of the ontological system definition presented
next. Something is a system if and only if it has the next properties: (1) composition: a
set of elements of some category (physical, biological, social, chemical etc.); (2) envi-
ronment: a set of elements of the same category, where the composition and the envi-
ronment are disjoint; (3) structure: a set of influencing bonds among the elements in
the composition and between these and the elements in the environment; (4) produc-
tion: the elements in the composition produce services that are delivered to the
elements in the environment. From [18] we find that in the Ψ-theory based DEMO
methodology, four aspect models of the complete ontological model of an organiza-
tion are distinguished. The Construction Model (CM) specifies the construction of the
organization: the actor roles in the composition and the environment, as well as
the transaction kinds in which they are involved. The Process Model (PM) specifies
the state space and the transition space of the C-world. The State Model (SM)

20 D. Aveiro, A.R. Silva, and J. Tribolet

specifies the state space and the transition space of the P-world. The Action Model
(AM) consists of the action rules that serve as guidelines for the actor roles in the
composition of the organization.

We see that the definition of ontological model of [17], is extended into the more
complete definition above. In [2] it is said that, from the AM one can derive all other
aspect models, namely that “the AM is in a very literal sense the basis of the other
aspect models since it contains all information that is (also) contained in the CM, PM,
and SM; but in a different, and not so easily accessible, way”. We agree that one can
in fact obtain all information for the PM from the AM. But for the SM and CM this
claim does not appear to be true. Many fact types and event types – part of the SM –
do appear in action rules but one may not be able to consistently derive, for example,
unicity and dependency laws from them. In action rules we do find reference to all
transactions and P-acts and C-acts that create C-facts and P-facts. If we consider that a
set of action rules constitutes and defines an actor role in the AM – just like presented
in [2] – we will still be missing relevant information needed to completely obtain the
CM namely: (1) which are the external actor roles (2) how internal actor roles are
composed or decomposed in other (composite or simple) actor roles and (3) how all
these actors interact through transactions. So it appears that, the AM is not sufficient
to derive all other aspect models and completely describe an organization. Not only
that happens but the AM, in the original DEMO method [2] and in the current [20], is
the third one being elicited. On top of that, the only research work we found evaluat-
ing application of DEMO in projects – in a 10 year span – verified that the Action
Model was not part of any project experience until then [21]. We consider that the
AM is in fact an essential aspect to have a precise modeling of an organization, but
probably should not be considered as the base from which all other models can be
derived.

Before presenting some of our main claims, we present, in Figures 1 and 2, respec-
tively, the meaning triangle and the ontological parallelogram, taken from [22] which
explain how (individual) concepts are created in the human mind. We will also base
our claims in the model triangle, taken from [2] and presented in Figure 3. We find
that the model triangle coherently overlaps the meaning triangle. This happens be-
cause a set of symbols – like a set of DEMO representations (signs) that constitute a
symbolic system – allows the interpretation of a set of concepts – like a set of DEMO
aspect models, part of the ontological model, constituting a conceptual system. This
conceptual system, in turn, consists in the conceptualization of the “real” inter-
subjective organizational self, i.e., the set of OAs constituting the concrete organiza-
tion system's composition structure and production. Figure 4 is an adaptation from the
model triangle of Figure 3 and depicts our reasoning. We call the set of all DEMO
diagrams, tables and lists used to formulate the ontological model as ontological rep-
resentation. Now relating with the meaning triangle, we can verify that a particular
sign (e.g., a transaction symbol with label membership fee payment), part of an onto-
logical representation (e.g., actor transaction diagram) designates (i.e., allows the
interpretation or is the formulation) of the respective concept of the particular transac-
tion part of the respective ontological model (e.g., construction model). This subjec-
tive concept, in turn, refers to a concrete object of the shared inter-subjective reality
of the organization's human agents (e.g., the particular OA transaction T02). Figure 5,

 Towards a G.O.D. Organization for Organizational Self-Awareness 21

Fig. 1. The meaning triangle Fig. 2. The ontological parallelogram

Fig. 3. The model triangle

Fig. 4. Model triangle applied to organizations

an adaptation from the meaning triangle depicts this other reasoning. Another ex-
ample of an OA related with T02 would be the transaction initiation OA, relating
T02 with actor role registrar (also designated by A02) and formulated by a line
connecting the transaction and actor role symbols of T02 and A02. Actor role regis-
trar is, in turn, another OA of the construction space of the library. Once such role
is communicated to all employees of a library, it becomes a “living” abstract object
part of the shared inter-subjective reality of the library's human agents. Such object,
along with other OAs of the organizational inter-subjective reality, give human
agents a way to conceptualize their organizational responsibilities – in this case,

22 D. Aveiro, A.R. Silva, and J. Tribolet

requesting membership fee payments to aspirant members. We name this set of all
abstract objects living in the inter-subjective reality of an organization's members as
the organizational self.

3.2 Devising the Notion of Organizational Self-Awareness

With the previous clarifications and preparation of scope, we now present one ma-
jor claim of our research which is that every organization should formally maintain
an OAs base which is a clear and coherent specification of the organization sys-
tem's composition, structure and production. These properties of an organization
system can be named as organizational self. The ontological model of an organiza-
tion consists in the conceptualization of the set of OAs constituting its current or-
ganizational self. OAs are, themselves, inter-subjective concepts existing in the
minds of an organization's human agents. But, following the logic of the ontological
parallelogram, thoughts in one's mind and, thus, concepts, can be viewed as objects,
as we can think about our own thoughts. So we consider OAs as concepts that are
objects of the shared inter-subjective reality of an organization's human agents.
Such OAs, in turn, specify: (1) the types of facts allowed to exist in the organization
world, along with the laws restricting coexistence of facts – i.e., the state space
OAs; (2) the types of events allowed to occur in the organization world, along with
laws restricting the sequencing of occurrence of events – i.e., the process space
OAs; (3) the action rules which are guidelines for allowed action, grouped in actor
roles – i.e., what we suggest to call the action space OAs; and (4) the composition
of the organization, in terms of allowed elementary (and/or composite) actor roles,
how these are composed or decomposed in other (elementary or composite) actor
roles, allowed external actor roles and allowed interactions between all such actor
roles, through allowed transactions – i.e., what we suggest to call the construction
space OAs.

An important notion that we point out in this paper is the fact that an organization –
besides producing a set of products or services for its environment – also produces
itself. That is, enclosed in its day-to-day operation, there will be parts of its operation
which change the organization system itself, i.e., change the set of OAs that constitute
its composition, structure and production. Another important notion is that, in parallel
to this process of change, we have what we propose to call the process of Organiza-
tional Self-Awareness (OSA). We propose to redefine OSA as the continuous
synchronization of the “real” organization system – i.e., the “real” and concrete or-
ganizational self – with its ontological model – i.e., the conceptual organizational self
– and its ontological representation – i.e., a symbolic system which is a formulation of
the conceptual organizational self. We can see that communication, the used symbolic
system and rules for arranging the OAs play a major role in OSA. Because both the
organizational self and its ontological model live in the minds of an organization's
human agents and each individual subjective images may differ or be incoherent, a
strong effort must be in place to synchronize all minds for the most coherent possible
specification of the organizational self.

 Towards a G.O.D. Organization for Organizational Self-Awareness 23

Fig. 5. Meaning triangle applied to a transaction OA

One cannot change what one is not aware of and, because organizational reality is
constantly changing, following the tenets of OSA and ODE: if one wants to change
the organization in a controlled and precise manner, it is helpful that one (1) has an
ontological model of the organizational self and and respective ontological represen-
tation as most updated and coherent as possible, as well as (2) keeps a record of the
change history of the organizational self. This means that, also enclosed in the day-to-
day operation of an organization, there will be parts of its operation which change the
organizational self. By formally and explicitly specifying these change acts one keeps
a definite and updated record of produced OAs. Such a record – the OAs base – con-
stitutes the means for one to always be able to conceptualize the most current and
updated ontological model of the organizational self. This leads to another important
claim of this paper which is: the continuous production of the organizational self
should include the synchronized production of the collective and subjective “picture”
(awareness) of the organizational self – the conceptualization that constitutes its on-
tological model – by the synchronized production of the respective symbolic system –
an ontological representation that allows the interpretation of the ontological model
and the conceptualization (awareness) of the organizational self.

Awareness means to be aware of the present and have memory of the past and how
it shaped the present. Human consciousness is constantly aware of its actions and how
they change reality, because reality and actions that are also part of reality, are con-
stantly reflected in its consciousness and memorized. In a similar manner, organiza-
tional awareness of an organization O is realized by O constantly “reflecting” and
“memorizing” all kinds of relevant acts that change relevant organizational reality,
along with the “as-was” and “as-is” states of O's self. To separate concerns, we pro-
pose that such acts are performed by a (sub-)organization considered to exist in every
organization that we call: G.O.D. Organization (GO). The GO's production world
will contain the current state of O's self as well as its relevant state change history.
The GO has the role of continuously realizing and capturing changes of organiza-
tional reality. Thus, by implementing the GO pattern in a real organization, in an
appropriate manner, providing automatic generation of ontological representations
derived from the OAs base, one can achieve Organizational Self-Awareness. This is
possible because one can implement clear rules that, based on the arrangement of
OAs of the organizational self, automatically produce the appropriate ontological

24 D. Aveiro, A.R. Silva, and J. Tribolet

representation which, in turn, allows the appropriate interpretation of the ontological
model that is the correct conceptualization of the organizational self. In other words,
as another step of devising a solution to our research problem, we claim that every
organization has a G.O.D. Organization (GO) responsible for its microgenesis
dynamics and the GO's world state base includes a record of the set of OAs that con-
stitute the organizational self as well a record of its state transitions, up to its most
current state, i.e., the set of all facts of Generation, Operationalization and/or
Discontinuation of each OA.

We adopt the formal definition of a world, presented in [17], where B is the set of
facts that constitute the state base of a world, and S the set of facts that are current,
specifying the current state of the world where . Therefore, we will refer to the
set of facts of the GO that constitute the state base of the organizational self (OS) as
GB and to the subset of facts that constitute the current state of the OS as GS where

. In other words, every organization has a set GS which constitutes the
specification of the OS's current state and a set GB which constitutes the full history
of the OS, including its current state. In [2] it is considered that the notion of system
state is ambiguous, because changes in the composition or structure of a system may
also be considered as state changes. Current notions of coordination and production
worlds of an organization O provided in DEMO do not address the issue of changes in
the state of the composition and structure and production of the organization system.
They only addresses changes in the state of its operation. These worlds focus on what
O produces to its environment and coordination dynamics that occur for such produc-
tion. Following our above claims, this ambiguity issue is solved by modeling state
changes of the organization system as state transitions occurring in the production
world of the GO, reflecting the Generation, Operationalization and Discontinuation of
OAs of O. In other words, the world of O keeps a fact record of its “normal” produc-
tion and the world of GO keeps a fact record of the production of O's self.

For a precise formulation of our proposal of the G.O.D. organization we needed to
address the notion of ontological meta-model, presented next.

4 Ontological Meta Model

OAs constituting the organizational self are arranged in a certain manner as to specify
all the spaces (state, process, action and structure) of an organization's world, i.e., they
have to obey certain rules of arrangement between them. We will call the specifica-
tion of these rules as the ontological meta model. The ontological meta-model is the
conceptualization of the OA space. By OA space we understand the set of allowed
OAs. It is specified by the OA base and OA laws. The OA base is the set of OA kinds
of which instances, called OAs, may occur in the state base (set GB) of the GO's
world. The OA laws determine the inclusion or exclusion of the coexistence of OAs.

The definition of the OA space is quite similar to the definition of state space of an
organization's production world – specified in World Ontology Specification
Language (WOSL) [22] – and, thus, it is appropriate to use WOSL to express the on-
tological meta-model in, what we propose to call: the Organization Space Diagram
(OSD). DEMO's OSD is currently called as the DEMO Meta Model (DMM), the

 Towards a G.O.D. Organization for Organizational Self-Awareness 25

chosen name for the specification provided in [23] and consisting, in practice, in the
OSD corresponding to the four DEMO aspect models: SM, CM, PM and AM. They
are called, respectively: Meta State Model, Meta Construction Model, Meta Process
Model and Meta Action Model. We argue that, also respectively, State Organization
Space Diagram, Construction Organization Space Diagram, Process Organization
Space Diagram and Action Organization Space Diagram would be more coherent
names. We argue this, because each of these are specifying, in WOSL, what we call
the OA space of each of DEMO's aspect models. That is, these diagrams formulate,
for each aspect model, the OA kinds out of which instances – OAs – can occur in the
organizational self and coexistence rules governing how to arrange these instances.
Another reason we propose to use the expression Organization Space Diagram is be-
cause we're in fact looking at a Space Diagram which, following the model triangle
[2], is a symbolic system which is a formulation of the conceptual system of the onto-
logical meta model. So, for coherency reasons, one should not use terms “Meta” and
“Model” to name those figures but use, instead, the term Organization Space Dia-
gram. The OSD allows the interpretation, in one's mind, of the ontological meta
model. The complete set of organization artifact kinds and laws governing the ar-
rangement of their instances constitutes the organization space. The conceptualization
of the organization space consists in the ontological meta model which, in turn, is
formulated in what we call the Organization Space Diagram. A depiction of this rea-
soning is present in Figure 6, another adaptation from the model triangle.

For a particular organization, each of its aspect models consists in the conceptuali-
zation of organization artifacts, instances of organization artifact kinds of their respec-
tive organization space. Following the adopted philosophical stances for an ontology
and the logic of the ontological parallelogram, each aspect model is a set of concepts
that refer to “real” organization artifacts. We remind that these artifacts, although be-
ing abstract objects, are objects of the inter-subjective reality of the organization's
human agents. A certain organization artifact will be a member of an organization
artifact class. Continuing our example of the previous section, organization artifact
T02 is a member of class TRANSACTION KIND which is a particular organization
artifact kind, also living in the inter-subjective reality (but objective in terms of the
ontological parallelogram). Class TRANSACTION KIND is an extension of the sub-
jective and generic type transaction kind, from which the concept of membership fee
payment is an instance. Figure 7 depicts this last reasoning and example.

Summarizing, the ontological model of an organization is the set of all concepts
that refer to the “real” inter-subjective organization artifacts that constitute the “real”
inter-subjective organization, i.e., the organizational self. The ontological meta model
applies to every organization and is the set of all types that refer to the “real”
inter-subjective organization artifact kinds and constitute the “real” inter-subjective
organization space. All DEMO representations (sets of symbols/signs) are a way to
formulate the set of concepts that constitute the conceptual system that the ontological
model of an organization is. They denote the set of organization artifacts that consti-
tute the organizational self. The DEMO OSD is a way to formulate the set of generic
types that constitute the organization space.

26 D. Aveiro, A.R. Silva, and J. Tribolet

Fig. 6. Model triangle applied to the organization space

Fig. 7. Ontological parallelogram applied to a transaction organization artifact

An organization's action manifests by its agents following a certain order specified
in the organizational self and these same agents constantly change the shape of this
same self, as needed, continuously generating, operationalizing and discontinuing
organization artifacts that conform with certain types part of the conceptual system
that is the ontological meta model. The main business of the G.O.D. Organization of a
particular organization O is to formally manage the life cycle of all relevant
inter-subjective organization artifacts of O that constitute its self and are instances of
organization artifact kinds. Organization artifacts specify the previously mentioned
state space, structure space, process space and action space of O, shaping, in turn,
the operation of O.

The G.O.D. organization is addressed in detail in another report but, in the next
section, we present an overview of it, which serves to consolidate our above discus-
sion of notions of organizational self-awareness and ontological meta model.

5 G.O.D. Organization Overview

Figure 8 presents, on the top, the formulation of part of the ontological meta model in
the shape of part of the Construction OSD and of the State OSD. On the bottom left
we find the formulation of part of the ontological model of the library, namely part of

 Towards a G.O.D. Organization for Organizational Self-Awareness 27

its Organization Construction Diagram (OCD) and of its State Space Diagram (SSD).
Organization artifacts represented in these two diagrams are instances of their
respective kinds represented on the respective OSD. On the bottom right we find the
formulation of part of the G.O.D. Organization's ontological model, i.e., part of the
G.O.D. Organization's OCD and SSD. In the Library's SSD we find a fact type – that
we can identify by name FT01 – expressed in the following predicative sentence, also
depicted in Figure 8: copies of [book] are delivered in [shipment]. To express
fact instances and fact types, we're adopting the notation used in the current version
(3) of DEMO [20] which makes diagrams much more readable. FT01 itself is an OA
(a fact type) of the state space of the library's SM, constituting part of the library's
organizational self. FT01 allows the specification of fact instances describing which
book instances of external object class BOOK are delivered in a certain instance of
SHIPMENT.

Following our claim presented above, although, from the perspective of the onto-
logical model, FT01 belongs to the type level, it happens that, from the point of view
of the GO – responsible for change dynamics – FT01 is looked upon as a fact – a par-
ticular OA – instance of a certain fact type (from the meta model, thus, a meta type) –
which is a particular OA kind. In our example, FT01 is a fact type of the library,

Fig. 8. G.O.D. Organization Overview

[

28 D. Aveiro, A.R. Silva, and J. Tribolet

which, from the perspective of the GO is an OA, which is an instance of a particular
OA kind, namely a fact type. Because FT01 is an OA that is part of the current organ-
izational self of the library, it belongs to the respective set GS. We find object classes
ORGANIZATION ARTIFACT and ORGANIZATION ARTIFACT KIND on the
(part of the) G.O.D. Organization's ontological model depicted on the right part of
Figure 8. The first is the population of all OAs that constitute a particular organiza-
tional self – in this case, of the library – while the second is the population of all OA
kinds that constitute what we have previously called the organization space.

Changes in the organizational self will occur by state changes of bundles of OAs –
whose population is represented by object class ORGANIZATION ARTIFACT
BUNDLE – as never an isolated OA will be created. Let's suppose that, for some rea-
son, one needs to specify a new result kind, to be added to the library's SM, affecting
shipments, namely: [shipment] has been returned. This implies the generation of an
associated transaction kind, as well as of an actor role to initiate it. All this, in turn,
implies that the GO will produce OAs, instances of (1) OA kinds, that are object
classes at meta level: fact type, transaction kind, actor role as well as of (2) OA kinds
that are fact types at meta level: [fact type] is the result kind of [transaction kind],
[elementary actor role] is an initiator of [transaction kind], etc. All such instances
will be part of a bundle that will be operationalized after its generation and approval.

A major contribution of our research is making the aspect of change of the
organizational self explicit with the GO. This (sub)organization allows us to make an
“operational bridge” between the meta model and model levels so that we can keep a
precise and thorough track of the state of the organizational self and its state transi-
tions or, in other words, the life cycle of organization artifacts that constitute the
organizational self. The OAs that are current and constitute an organization's current
self, will be the ones that are part of bundles whose last result was that they have been
operationalized. The conceptualization of this set of OAs constitutes the organiza-
tion's ontological model.

6 Conclusions

Current notions of coordination and production worlds provided in DEMO do not
address the issue of changes in the state of the composition and structure of the or-
ganization system which means that one can use DEMO only to take “static pictures”
of an organization. Following our claims presented in this paper, this ambiguity issue
is solved by modeling such state changes as state transitions occurring in the produc-
tion world of the G.O.D. Organization, reflecting the Generation, Operationalization
and Discontinuation of OAs. OAs are a central concept in this paper which we pro-
pose to be abstract objects, existing in the inter-subjective reality of human agents of
an organization and constituting the organizational self which, in turn, defines the
operation of the organization. The conceptualization of the organizational self consti-
tutes the organization's ontological model. Keeping a precise record of the acts of
production of OAs is the way that we propose to realize Organizational Self-
Awareness, that we (re)define as the continuous synchronization of the real organiza-
tional self with its ontological representation, for a correct conceptualization of the
ontological model. This implies that the OAs base should be constantly available to

 Towards a G.O.D. Organization for Organizational Self-Awareness 29

all relevant human agents of an organization, so that they can always conceptualize
the current and correct “version” of the part of the organizational self that they should
be aware of.

We have shown how the G.O.D. Organization makes a bridge between the worlds
of model and meta model, where the latter contains the set of generic OA (meta level)
types out of which a set of (model level) OA instances can be generated that consti-
tute an organization's self. With our proposal of the G.O.D. Organization, DEMO no
longer is limited to a “static” picture of an organization and we can now have a full
trace of the state of the organization system. The current picture of the organization,
or, in other words, its ontological model, simply consists in the conceptualization of
the set of OAs that are current, i.e., belonging to a bundle of OAs whose last event
was “has been operationalized”.

As related research being addressed in other reports, we delve on the specification
of the full ontological model of the G.O.D. Organization which ends up being the
specification of a method to formally capture microgenesis dynamics and realize Or-
ganizational Self-Awareness. We also address the ontological model of what we call
the Control Organization, responsible for resilience dynamics, i.e., observing if cer-
tain critical properties characterizing an organization's operation – called measures –
are respecting the values – called viability norms – that guarantee an organization's
viability and activating (and deactivating) bundles of transactions to overcome dys-
functions on such norms and, if unsuccessful, to make a request for the G.O.D. or-
ganization to initiate what we call an Organizational Engineering Process to handle
the problem and change the organizational self to solve it.

Acknowledgment

Research work that led to results presented in this paper was possible thanks to the
financial support of a PhD scholarship (Ref.: SFRH / BD / 13384 / 2003) subsidized
by “Fundação para a Ciência e a Tecnologia - Ministério da Ciência, Tecnologia e
Ensino Superior” of the Portuguese government and by the European Social Fund.

References

1. Applegate, L.M., McFarlan, F.W., McKenney, J.L.: Corporate information systems man-
agement: text and cases. Irwin/McGrawHill (1999)

2. Dietz, J.L.G.: Enterprise ontology: theory and methodology. Springer, New York (2006)
3. Christensen, W.D., Bickhard, M.H.: The process dynamics of normative function. The

Monist 85, 3–29 (2002)
4. Holland, J.H.: Hidden order: how adaptation builds complexity. Basic Books, New York

(1996)
5. Bickhard, M.H.: Error dynamics: the dynamic emergence of error avoidance and error vi-

cariants. Journal of Experimental & Theoretical Artificial Intelligence 13, 199–209 (2001)
6. Brown, S.L., Eisenhardt, K.M.: Competing on the edge: strategy as structured chaos. Har-

vard Business School Press, Boston (1998)
7. Saastamoinen, H., White, G.M.: On handling exceptions. In: Proceedings of conference on

Organizational computing systems, pp. 302–310. ACM, New York (1995)

30 D. Aveiro, A.R. Silva, and J. Tribolet

8. Tribolet, J.: Organizações, pessoas, processos e conhecimento: da reificação do ser hu-
mano como componente do conhecimento à “consciência de si” organizacional (organiza-
tions, people, processes and knowledge: from the reification of the human being as com-
ponents of knowledge to the knowledge of organizational self). Sistemas de informação
organizacionais. Sílabo Editora, Lisbon, Portugal (2005)

9. Magalhães, R., Zacarias, M., Tribolet, J.: Making sense of enterprise architectures as tools
of organizational self-awareness (OSA). In: Proceedings of the Second Workshop on
Trends in Enterprise Architecture Research (TEAR 2007), June 2007, vol. 6, pp. 61–70
(2007)

10. Zacarias, M., Magalhães, R., Caetano, A., Pinto, H.S., Tribolet, J.: Towards organizational
self-awareness: an initial architecture and ontology. In: Handbook of ontologies for busi-
ness interaction, pp. 101–121. Information Science Reference (2007)

11. Magalhães, R., Silva, A.R.: Organizational design and engineering (ode) - ode white paper
- Version 1 (2009)

12. Mourão, H.: Supporting effective unexpected exceptions handling in workflow manage-
ment systems within organizational contexts. Science Faculty of Lisbon University (2007)

13. Casati, F., Pozzi, G.: Modeling exceptional behaviors in commercial workflow manage-
ment systems. In: Proceedings of the Fourth CoopIS International Conference on Coopera-
tive Information Systems, pp. 127–138 (1999)

14. Axelrod, R., Cohen, M.D.: Harnessing complexity: organizational implications of a scien-
tific frontier. Basic Books, New York (2001)

15. Dietz, J.L.G., Albani, A.: Basic notions regarding business processes and supporting in-
formation systems. Requirements Engineering 10, 175–183 (2005)

16. Op’ t Land, M.: Applying architecture and ontology to the splitting and allying of enter-
prises. TU Delft (2008)

17. Dietz, J.L.G.: Architecture building strategy into design. Academic Service - Sdu Uit-
gevers bv. (2008)

18. Dietz, J.L.G.: On the nature of business rules. In: Advances in Enterprise Engineering I,
pp. 1–15 (2008)

19. Bunge, M.A.: Treatise on basic philosophy, a world of systems, vol. 4. Reidel Publishing
Company, Dordrechtz (1979)

20. Dietz, J.L.G.: Demo-3 models and representations (2009), http://www.demo.nl
21. Dumay, M., Dietz, J.L.G., Mulder, H.: Evaluation of demo and the language/action per-

spective after 10 years of experience. In: Proceedings of LAP 2005 (2005)
22. Dietz, J.L.G.: A world ontology specification language. In: Meersman, R., Tari, Z.,

Herrero, P. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 688–699. Springer, Heidelberg
(2005)

23. Dietz, J.L.G.: Demo meta model specification (forthcoming, 2009),
 http://www.demo.nl

A. Albani and J.L.G. Dietz (Eds.): CIAO! 2010, LNBIP 49, pp. 31–49, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Understanding the Realization of Organizations

Joop de Jong1,2 and Jan L.G. Dietz1

1 Delft University of Technology,
P.O. Box 5031, 2600 GA Delft, The Netherlands

2 Mprise
P.O. Box 598, 3900 AN Veenendaal, The Netherlands

jdjong@mprise.nl, j.l.g.dietz@tudelft.nl

Abstract. An organization can be understood as a social system, i.e. a system
whose elements are social individuals or actors. The actors operate in an envi-
ronment of customers, suppliers, partners and others which share a part of the
organization‘s world. The effects of the acts of all of these actors can be under-
stood as state changes of the organization’s world. All information that is
needed by the actors consists in either the facts that constitute the world’s states
or in information that is derived from these facts. In DEMO (Design and Engi-
neering Methodology for Organizations) an organization is conceived as the
layered nesting of three aspect organizations: the B-organization (from Busi-
ness), the I-organization (from Intelligence) and the D-organizations (from
Document). Whereas B-actors perform business acts, I-actors remember and
derive information concerning the business, and D-actors store, transport and
retrieve documents that contain this information. The design of the integration
between the B-, the I-, and the D-organization is called the realization of the
organization. This paper presents and discusses how the realization of
organizations can be understood thoroughly, as well as how the I-organization
can be derived from the B-organization, and the D-organization from the
I-organization.

Keywords: enterprise engineering, enterprise ontology, information manage-
ment, DEMO.

1 Introduction

In order to cope with current and future problems and challenges in enterprises, a
conceptual model of the enterprise is needed that is coherent, comprehensive, consis-
tent and concise, and that only shows the essence of the construction and the opera-
tion of an enterprise’ organization, abstracted from all realization and implementation
issues. By realization is meant the activity of establishing the heterogeneous organiza-
tion as a layered nesting of homogenous organizations and by implementation is
meant the activity of making the organization operational by means of appropriate
technology [1]. The way of thinking and the way of modeling such a conceptual
model of the enterprise are provided by the Design and Engineering Methodology for
Organizations, DEMO for short [1, 2]. Although DEMO abstracts from all realization
issues, the underlying ψ-theory of DEMO conceives the organization as the layered

32 J. de Jong and J.L.G. Dietz

nesting of three aspect organizations, viz. the B-organization (from Business), the I-
organization (from Intelligence) and the D-organizations (from Document).

Dietz [1] writes that all three homogeneous systems are in the category of social
systems. In previous papers Dietz [3] and Maij cs. [4] derive a set of use cases from
the ontological model of the B-organization of the organization that constitute the
starting point for the development of information systems, using one of the UML –
based engineering methods. According to Shishkov and Dietz [5], the B-organization
provides a starting point for the definition of functional requirements of information
systems. Mallens, Dietz and Hommes [6] define an information system based on the
B-organization as a system in the category of rational systems. They call the elements
of the system rational individuals which perform rational actions like collecting, re-
calling, providing knowledge, calculating and making logical deductions. At last,
Mulder [7] writes about actors from the I- and D-organization as rational components
embedded in an information system and infrastructure system, respectively. Till now
conceptual models of the B-, I- and D-organization are lacking.

This paper contributes to the design of a conceptual model of the B-organization,
the I-organization and the D-organization that abstracts from all implementation is-
sues in order to cope with current and future problems and challenges in remembering
and reproducing facts and in archiving and collecting documents.

Section 2 provides a summary of the ψ-theory. Actor roles and transaction types
are building blocks for the construction of the organization. A subject who fulfills an
actor role uses several abilities while performing a transaction. As a prelude to section
4 some important issues for conceptual modeling the B-, I- and D-organization are
discussed in section 3. Section 4 presents the way the conceptual models of the I-
organization and of the D-organization are derived from the conceptual model of the
B-organization and from the conceptual model of the I-organization, respectively. It
discusses the way of modeling the I-organization and the D-organization and elabo-
rates some important I- and D-transaction kinds. All steps from the creation of an
original fact up to its storage in a fact bank, as well as the steps taken for information
delivery based on the original facts are discussed. The paper ends with some conclu-
sions and directions for further research in section 5.

2 Summary of the Ψ-Theory

For a good understanding of this paper a summary of the ψ-theory on which Dietz [1]
based the DEMO methodology is presented. Dietz argues that in order to cope with
the current and future challenges, a conceptual model of the organization is needed
that is coherent, comprehensive, consistent and concise, and that only shows the es-
sence of the operation of an organization model. Such a model, called an ontological
model, abstracts from all implementation and realization issues. The underlying the-
ory is called the ψ-theory. The ψ-theory consists of four axioms, viz. the operation
axiom, the transaction axiom, the composition axiom and the distinction axiom, and
the organization theorem. In this section, these axioms and the organization theorem
are elaborated briefly. An exception is made for the composition axiom which is of no
importance for the subject of this paper.

 Understanding the Realization of Organizations 33

The operation axiom states that the operation of the organization is constituted by
the activities of actors, which are elementary chunks of authority and responsibility
fulfilled by human beings. Actors perform two kinds of acts: production acts, or P-
acts for short, and coordination acts, or C-acts for short. These acts have definite re-
sults, namely production facts and coordination facts, respectively.

Fig. 1. The standard transaction pattern elaborated (left) and in DEMO notation (right)

By performing P-acts, actors contribute to bringing about goods or services or in-
formation or data that are delivered to other actors. A P-act is either material or imma-
terial. Examples of material acts are manufacturing and storage of goods and transpor-
tation acts or computing and deducing information acts. Examples of immaterial acts
are the judgment by a court to condemn someone, granting an insurance claim and
selling goods. By performing C-acts, actors enter into and comply with commitments
towards each other regarding the performance of P-acts. A C-act is defined by its
proposition and its intention. The proposition consists of a P-fact, e.g. “Purchase order
#200 is delivered” and a delivery date. The intention represents the purpose of the
performer; examples of intentions are “request”, “promise” and “decline”. The effect
of performing a C-act is that both the performer and the addressee of the act get in-
volved in a commitment regarding the referred P-act.

The transaction axiom states that coordination acts are performed as steps in uni-
versal patterns. These patterns, also called transactions, always involve two actor
roles, i.e. two chunks of authority and responsibility. They are aimed at achieving a
particular result, the P-fact. Figure 1 exhibits the standard transaction pattern. A trans-
action evolves in three phases: the order phase (O-phase for short), the execution
phase (E-phase for short) and the result phase (R-phase for short). One of the two
partaking actor roles is called the initiator, the other the executor of the transaction. In
the order phase, the initiator and the executor pursue to reach agreement about the P-
fact that the executor is going to bring about as well as the intended time of creation.
In the execution phase, the executor brings about this P-fact. In the result phase, the
initiator and the executor pursue to reach agreement about the P-fact that is actually
produced as well as the actual time of creation (both of which may differ from the

34 J. de Jong and J.L.G. Dietz

requested one). Only if this agreement is reached will the P-fact become existent. The
path request-promise-execute-state-accept in figure 1 is called the basic pattern; it is
the course that is taken when the initiator and the executor keep consenting. However,
they may also dissent. There are two states where this may happen, namely the states
“requested” and “stated”. Instead of promising one may respond to a request by de-
clining it, and instead of accepting one may respond to a statement by rejecting it. It
brings the process in the state “declined” or “rejected” respectively. These states are
indicated by a double disk, meaning that they are discussion states. If a transaction
ends up in a discussion state, the two actors must ‘sit together’, discuss the situation at
hand and negotiate about how to get out of it. The possible outcomes are a renewed
request or statement (probably with a modified proposition) or a failure (quit or stop).

The distinction axiom states that there are three distinct human abilities playing a
role in the operation of actors, called performa, informa and forma (cf. fig. 2). Those
abilities are recognized in both kinds of acts that actors perform.

forma

informa

performa

uttering information
 (speaking, writing)
perceiving information
 (listening, reading)

documental action
 (storing, transmitting,
copying, destroying etc.)

intellectual action
(reproducing, deducing,

reasoning, computing etc.)

expressing thought
 (formulating)
educing thought
 (interpreting)

exposing commitment
 (as performer)
evoking commitment
 (as addressee)

original action
(deciding, judging)

COORDINATION PRODUCTIONACTOR ROLES

Fig. 2. The three human capabilities

Let us first look at the P-act of an actor. The forma ability is the human ability to
conduct documental actions, such as storing, retrieving, transmitting, etc. These are
all actions by which the content of the documents or data is of no importance. Actors
which use the forma ability to perform P-acts are called documental actors or D-actors
for short. The informa ability is the human ability to conduct intellectual actions, such
as reasoning, computing, remembering and recalling of knowledge, etc. These are all
actions by which the content of data or documents, abstracted from the form aspects,
is of importance. Actors which use the informa ability to perform P-acts are called
intellectual actors, or I-actors for short. The performa ability is the human ability to
conduct new, original actions, such as decisions, judgments etc. The performa ability
is considered as the essential human ability for doing business, of any kind. Actors
which use the performa ability to perform P-acts are called business actors or B-actors
for short. Earlier in this section we gave a short summary about the operation axiom
and wrote about manufacturing, storage of goods and transportation as P-acts. Actu-
ally, that is not fully true. These actions have to be considered as actions which are
based on original decisions. The P-act must be considered as taking this decision and
the P-fact must be considered as the ultimate decision.

 Understanding the Realization of Organizations 35

Let us next look at the C-act of an actor. By performing C-acts, actors enter into
and comply with commitments towards each other with respect to the performance of
P-acts. The effect of performing a C-act is that both the performer and the addressee
of the act get involved in a commitment concerning the referred P-act. That commit-
ment is a result of a performative exchange that only can taken place by actors in their
performa ability. However the only way of the performer of the C-act to expose its
commitment and to make it knowable to the addressee, is to express its informa abil-
ity, followed by the inducement in the mind of the addressee of an equivalent thought,
by means of its informa ability. The intellectual understanding between both actors
comes into existence by informative exchange. Expressing a thought can only be done
by formulating it in a sentence in some language, and at the same time uttering it in
some form, such as speaking or writing. Significational understanding between both
actors only comes into existence by a formative exchange by actors in their forma
ability. That means that the performer has to use a language that is known to the
addressee. So, during a C-act both the performer and the addressee shape between
abilities several times. We would put with great emphasis that B-actors, I-actors and
D-actors only distinguish themselves by the kind of production act.

The last part of the ψ-theory that we would like to explain is the organization
theorem. It states that the organization of an enterprise is a social system that is con-
stituted as the layered integration of three homogeneous systems: the B-organization,
the I-organization, and the D-organization. The D-organization supports the I-
organization, and the I-organization supports the B-organization (cf. fig. 3). All three
systems are called aspects systems of the total organization of the enterprise. A sys-
tem can be considered from two different perspectives, namely from the function per-
spective or from the construction perspective. The function perspective on a system is
based on the teleological system notion which is concerned with the (external) behav-
ior or performance of a system.

Fig. 3. The layered integration of an enterprise system

This notion is adequate for the purpose of controlling or using a system. It is about
services or products which are delivered by the system. The construction perspective
on a system is based on the ontological system notion. Systems have to be designed
and constructed. During the design and engineering process questions of being effec-
tively and efficiency of the chosen design have to be answered by the constructor of

36 J. de Jong and J.L.G. Dietz

the system. Our point of departure in this paper is the ontological system notion. The
integration between the three organizations is established through the cohesive unifi-
cation of human being. Let us elaborate this point more in detail. We take the I-
organization as our starting point. From the functional perspective the I-organization
provides an information service to the B-organization, i.e. to a B-actor which actually
interprets the received data as required information in order to execute a particular
act, i.e. a C-act or a P-act. However, how does a B-actor receive information from an
I-actor actually? The answer is given by the distinction axiom. The subject who ful-
fills the B-actor role is able to shape, for a while, into an informa shape to receive the
requested information [1, 8]. This information is produced by cooperating I-actors and
it is based on original facts which have been stored in fact banks inside the organiza-
tion boundary. To get fact data from a factbank I-actors shape into a forma shape in
order to initiate a D-actor for retrieving the needed fact data. I-actors do not only re-
produce existent facts but they also remember new facts which are created by B-
actors. That means actually that the corresponding fact data have to be recorded in a
fact bank within the organization boundary in order to be used later on by an I-actor
for a specific infological action. Recording the fact data in a fact bank is done by a D-
actor which is initiated by the I-actor which has been shaped into its forma form.

3 Prelude to Conceptual Modeling the B-, I- and D-Organization

3.1 Organizations Affect a Social World

An organization is understood to be a system which activities affect a social world.
The notion of world is a very general one: there is a world of educating students; a
world of manufacturing, transporting and delivering cars; a world of adjudicating sus-
pects of criminal acts, etc. As an example, let us look at the world of manufacturing
and delivering Ford cars; factories purchase raw materials, companies work on pro-
ducing and assembling parts, others are busy in carrying raw materials and parts from
one warehouse to the other and to distribution centers, a worldwide dealer channel
sell new cars, etc. etc. Actually a large amount of companies cooperate and collabo-
rate in a worldwide network and affect the state of the world of manufacturing and
delivering Ford cars continuously. The state of this world changes by new original
production facts which are created by actors within that network. Each purchase of a
new part, each production fact in manufacturing a car, each transport fact leads to a
state transition of this world.

Dietz [1] writes about a social world as an ‘universe of discourse’ that at any mo-
ment is in a particular state and which is defined as a set of facts. These facts are said
to be current during the time the state prevails. The creation of a new fact leads to a
state transition of the concerning world. A state change is called a transition. A transi-
tion is defined as an ordered pair of states, e.g. T1 = <S1, S2> is the transition from the
state S1 to the state S2. The occurrence of transition is called an event. An event there-
fore can be defined as a pair <T1, t1>, where T1 is a transition and t is a point in time.
Transitions take place several times during the lifetime of a world; events however are
unique: they take place only once. DEMO defines a social world by their ontological
model. In other worlds, it defines a social world by a conceptual model that abstracts

 Understanding the Realization of Organizations 37

from all implementation and realization issues. The ontological model is defined as a
world consisting of the specification of its state space and its transition space. By state
space is understood the set of allowable or lawful states and by transition space is
understood the set of allowed or lawful sequences of transitions. The knowledge
about the states and the state transitions of a world is called factual knowledge, which
contrasts with procedural knowledge or know-how [1]. In the previous section we
discerned two kinds of facts, viz. P-facts and C-facts. Every fact kind has its own
world, so we talk about a C-world and a P-world.

Figure 4A exhibits an example of a specific actor network that operates on a world.
The B-nodes (B1-B6) correspond with B-actors, the I-nodes (I1-I9) correspond with
I-actors, and the D-nodes (D1-D9) correspond with D-actors. The links between
nodes represent the transactions between actors. As you see in fig. 4A the actors are
not brought together in organizations which operate on a shared world. However, it is
impossible in practice to cover a world by one organization completely. Thousands of
companies share the world of manufacturing and delivering Ford cars. Therefore, or-
ganization boundaries have to be drawn in the actor network to separate companies
from each other (cf. fig. 4B). Considerations for splitting and merging organizations
are still subject for research [9]. Figure 4B exhibits that actors are drawn inside as
well as outside the organization boundary. Actors outside the organization boundary
are called external actors; the others are called internal actors. The outside actors be-
long to a different organization. Although this organization shares our world they are

Fig. 4. Scoping the organization within a world

38 J. de Jong and J.L.G. Dietz

understood to be out of scope. The example by figure 4B exhibits that two links are
defined between internal and external B-nodes, namely the link between node B1 and
node B and the link between node B5 and node B6. By the corresponding transactions
between the corresponding B-actors original facts are created. There are also defined
links between internal B-nodes and external I-nodes, namely a link between nodes B2
and I2 and a link between nodes B5 and I7. Those links correspond with infological
transactions between I-actors and B-actors whereby the underlying original facts are
created by other organizations. New original facts which are created by B-actors
inside the organization boundary (B2, B3, and B5) are always archived within this
organization. Those facts are used as elementary building blocks for information pro-
duction for B-actors inside or outside the organization boundary. The algorithms for
the production of information are defined in the Object Property List, part of the
DEMO state model of the organization. As fig. 4B exhibits the information for B2
and B5 is produced by another organization. Information production always takes
place within the organization the concerning algorithm has been defined in the Object
Property List.

3.2 Fact Handling through All Aspect Organizations

The essence of the organization is fixed by stakeholders and is fully determined by
what they want to contribute to the environment of the organization. The contribution
to the environment is provided by B-actors which are not able to operate effectively
and efficiently without up-to-date information. According to the DEMO way of think-
ing information must be understood as supporting B-actors in their coordination acts
[10]. For example, an executing B-actor does not perform the coordination act ‘prom-
ise’ before the ability to fulfill the request of the initiating B-actor has been checked.
Another example is that the acceptance of a ‘state’ act cannot be done before the pro-
duction result was delivered according to the conditions agreed upon. These rules,
which link information to coordination acts, are modeled by the DEMO action model.

Let us discuss now the question how information comes into existence. All infor-
mation which is requested by all B-actors affecting a world is derived from the factual
knowledge of this world. Both the internal and the external world contain the factual
knowledge which is needed for creating information for B-actors which are defined
inside the organization boundary. B-actors, which affect the world we talk about, cre-
ate new original P-facts which are archived in fact banks. A specific original fact is
put into the fact bank that corresponds to the transaction kind by which it is created.
An I-actor performs the intellectual action ’remembering’ and D-actors perform the
datalogical transactions ‘transmit’ and ‘store’ for actual storage. I-actors understand
P-facts which have been stored in fact banks as elementary building blocks for deriv-
ing information in order to support B-actors. D-actors understand these P-facts as
documents without any semantic meaning. For them unique identified packages of
data without meaning in itself are kept in the fact bank. The meaning of a data pack-
age is remembered by an I-actor and must be reproduced by an I-actor if some other I-
actors within the I-organization want to use the concerning fact for their infological
actions. From the ontology point of view a fact exists and can never be disturbed or
removed. It can only be copied for the benefit of actors within the I-organization. The
D-organization provides copies of data packages that correspond with the requested

 Understanding the Realization of Organizations 39

facts to I-actors in the I-organization for computing, reasoning, deducing, etc. At the
end of the information delivery chain the derived fact is offered to the initial re-
quester. The initial requester is always a B-actor in its informa ability. The B-actor
extracts information from the offered derived fact in order to use the information in
his conversations with other B-actors.

In summary, actors within the D-organization archive fact data into fact banks and
collect fact data from fact banks. They are not conscious of the application of these
data packages in intellectual actions which are performed within the I-organization.
Actors within the I-organization remember facts, reproduce facts and perform intel-
lectual actions on facts without any understanding of the meaning of the derived facts
for B-actors. For example, the I-organization produces a monthly report with the
turnover per product group. Actors within the I-organization have the competences
and the authorities to construct such a report by making use of relevant facts which
are collected by the D-organization. However, the I-actors do not have any idea about
the added value of this report for the salesman who has asked for it.

For the right understanding of the exchange of production results between actors of
the B-, I- and D-organization we look at the theory of semiotics [11, 12]. Actors which
operate within a social system coordinate their actions with each other. So, any actor
which needs some semantic meaning from another actor receives, according to the
theory of semiotics, a sign. According to Stamper [13]: “business is getting things
done by using information. All information is ‘carried’ by signs…” and “it must be a
syntactically correct sign that is defined as anything that stands for something else for
some community”. Syntactically correct means that the sign is presented in a language
that the receiver is able to understand. However, understanding a language is not the
same as understanding the meaning of what is mentioned. The semiotic framework
states that a sign has a semantic meaning. In other words, a sign has to be interpreted
by the receiver to get a meaning or to get information. A sign becomes information
when it can be used intentionally for certain purposes, such as communication.

Applied to the I-organization that supports the B-organization, I-actors do not offer
information but only meaning or derived facts to B-actors. Finally, only the B-actors
are able to determine of the offered semantic meaning is purposeful for them to act in
its social world. In other words, I-actors do not deliver information but only original
facts or derived facts. We discuss this notion in the next section more thoroughly.

4 Conceptual Modeling the B-, I- and D-Organization

4.1 The I-Organization Derived from the B-Organization

According to the Generic System Development Process model, GSDP for short [1, 8],
the object system (OS) is designed and engineered from the using system (US) (cf.
fig. 5). The development process of the I-organization can be considered as an in-
stance of the GSDP; the B-organization is understood as the US and the I-
organization is understood as the OS.

Let us discuss the use of GSDP more in detail. The most prominent system in the
GSDP is the OS which is the system being designed, engineered and implemented. In

40 J. de Jong and J.L.G. Dietz

addition to the OS we discern a US. The US is the system that will use the functions
or services offered by the OS, once it is operational. The development of a single ho-
mogeneous system of any type can be understood as an instance of the GSDP. GSDP
uses the extended version of the system notion of Bunge [2]. The production of a sys-
tem is defined as what is brought by the elements in the composition and transferred
to the elements in the environment as the result of the interactions among the ele-
ments in the environment and the elements in the composition. Through its function, a
system is able to support some other system, which uses the function. The function of
the OS does not contain any information about the construction of the OS. The devel-
opment of an OS consists of the phases design, engineering, and implementation.

In the first step, the functional requirements are determined. This step starts from
the construction of the US and ends with the function of the OS. That has to be con-
sidered as a black box model that clarifies the behavior of the OS in terms of func-
tional relationships between input and output of the OS. In this step the total service
needed by actors of the US is analyzed. The services needed by the construction
model of the B-organization are twofold. Firstly, services to remember new created
C-facts and P-facts and secondly services for delivering facts and derived facts in or-
der to support B-actors from the US with information.

In the second step, the specifications are devised. That starts with the specified
function of the US-system and ends with the highest construction model of the OS-
system. In our example the highest construction model of the I-organization. The total
design of a system is understood as a process of alternate analysis and synthesis steps.
An analysis step is one in which the problem is better understood; a synthesis step is
one in which the solution becomes more clear. The construction model of the I-
organization contains the construction of both defined services, viz. the construction
for remembering C-facts and P-facts and the construction for reproducing original
facts as well as the construction for determining derived facts, which are defined both
inside and outside the organization, in order to support B-actors from the US with
information. Derived facts are determined by performing intellectual actions, such as
reasoning, calculating, etc. on original facts. Intellectual actions can be understood as

Fig. 5. Generic System Development Process

 Understanding the Realization of Organizations 41

actions performed according to known procedures or algorithms. No original facts are
generated by intellectual actions. A derived fact is not understood as a document or a
sound or a picture but it must be understood as a part of semantic meaning.

In the third step, the engineering of the designed system takes place. The engineering
of a system is the process in which a number of white box models, or construction mod-
els, are produced, such that every model is fully derivable from the previous one and the
available specifications. Engineering starts from the ontological model and ends with
the ultimate implementation model. In contrary to designing, engineering is not a matter
of creativity but of craftsmanship. These white-box models clarify the internal construc-
tion and operation of the OS in terms of collaboration between its elements to deliver
products to its environment. In case of the I-organization, source code of supporting
software belongs to the ultimate implementation model of the I-organization.

During the fourth step, the implementation of the engineered model takes place. By
implementation is understood the assignment of technological means to the elements
in the implementation model, so that the system can be put into operation.

4.2 The Transaction Kinds between the B- and I-Organization

The highest construction model of the I-organization contains the construction of two
service types. Firstly, the service type for remembering C-facts and P-facts. Secondly,
the service type for delivering original facts as well as for delivering derived facts,
which are defined both inside and outside the organization, in order to support B-
actors with information.

Before we discuss the transaction types in detail it is important to understand two
different matters. Firstly, a subject which fulfils actor roles always operates from one
of three abilities, viz. the performa, informa or forma ability. A subject is also able to
shape from any specific ability into any other ability. Secondly, according to the sys-
tem theory of Bunge [14], transactions between actors only could happen between
actors of the same category. Actually, a transaction between a B-actor and an I-actor
is not correct. However, in which way does a B-actor receive the requested informa-
tion? Let us discuss these issues step by step. Firstly, the subject who fulfills the B-
actor role must shape into the informa ability. Secondly, the subject in its informa
ability is only able to initiate a transaction with another I-actor as an external I-actor.
The previous section exhibits that all subjects which fulfill B-actor roles and which
need information fulfill external I-actor roles.

Figure 6 exhibits the transaction types which could happen in performing services
from both service types. Figure 6.1 regards the first service type. The transactions in
figure 6.1-6.4 regard the second service type. As said yet, a transaction between two
actors of the same category is not correct. The first character of the actor code deter-
mines the actor kind, ‘B’ stands for B-actor, ‘I’ stands for I-actor and ‘D’ stands for
D-actor. A short elaboration of each transaction kind is given below:

1. The subject that fulfils B-actor B-A01 shapes from its performa ability into its in-
forma ability. It formulates a C-fact or a P-fact and initiates, as an external I-actor,
a transaction with I-actor I-A01. The result of this transaction will be the remem-
bering of an original C-fact or P-fact.

2. The subject that fulfils B-actor B-A01 shapes from its performa ability into its in-
forma ability and initiates as an external I-actor a transaction with I-actor I-A02.
The initiating subject asks for the reproduction of a original act.

42 J. de Jong and J.L.G. Dietz

3. The subject that fulfils B-actor B-A01 shapes from its performa ability into its in-
forma ability and initiates as an external I-actor a transaction with I-actor I-A03.
The initiating subject asks for a derived fact which is defined in the state model of
the current organization.

4. The subject that fulfils B-actor B-A01 shapes from its performa ability into its in-
forma ability and initiates as an external I-actor a transaction with I-actor I-A04.
The initiating subject asks for a derived fact which is defined outside the current
organization.

1)

2)

3)

4)

Fig. 6. The set of actor kind combinations between the B-organization and the I-organization

A B-actor in its forma ability is not able to initiate, as an external D-actor, a trans-
action with any D-actor directly. First, putting any document straight on into a fact
bank is not possible. Some intelligent actions have to be executed in advance, e.g. the
determination of the store. Such action is executed by an I-actor. Second, getting a
document directly out of a fact bank is also impossible. Before getting this document
you have to know where it has been stored. Finding its store can only be done by an
intelligent action executed by an I-actor. Summarizing, remembering and reproduc-
tion of documents must always be done by the I-organization. There is no direct link
between de B-organization and the D-organization.

4.3 The D-Organization Derived from the I-Organization

The development process of the D-organization can be considered as an instance of
the GSDP (cf. fig. 5). The I-organization can be understood as the US and the

 Understanding the Realization of Organizations 43

D-organization can be understood as the OS. Let us discuss the use of GSDP for de-
signing the highest construction model of the D-organization more in detail.

In the first step, the functional requirements are determined. This step starts from
the construction of the US and ends with the function of the OS. In this step the total
service needed by actors of the US is analyzed. The services needed by the construc-
tion model of the I-organization are twofold. Firstly, services to archive new created
C-facts and P-facts to remember and secondly services for collecting fact data which
corresponds with the fact to reproduce.

In the second step, the specifications are devised. That starts with the specified
function of the US-system and ends with the highest construction model of the OS-
system. The construction model of the D-organization contains the construction of
both defined services, viz. the construction for archiving C-facts and P-facts and the
construction for collecting fact data in order to support reproducing I-actors with the
corresponding facts. D-actors are working together in order to support I-actors for
documental actions like storage, retrieval and transmission.

We discussed in the previous section that original facts must be understood as ele-
mentary building blocks for information. Based on the building blocks intellectual
actions are performed in order to get new semantic meaning or derived facts. How-
ever, derived facts do not only have a meaning but they also have a form. This form
could be, for example, a written text, a picture, a sound, a gesture, a touch. In brief,
communication between people can be done by all our senses. It can be done by sev-
eral types of documents. The D-organization in an organization contains all actors
which produce actions on documents in order to support actors from the I-
organization. Those actions are called datalogical actions.

4.4 The Transaction Kinds between the I- and D-Organization

The construction model of the D-organization contains the construction of two service
types. Firstly, the service type for archiving new created C-facts and P-facts to re-
member and secondly the service type for collecting fact data which corresponds with
the fact to reproduce.

Before we discuss the transaction types in detail we have to know that a transaction
between an I–actor and a D-actor cannot happen. Therefore, the initiator of the trans-
action must first shape into the forma ability before it is able to initiate a transaction
as an external D-actor with another D-actor within the D-organization.

Figure 7 exhibits the transaction types which could happen in performing services
from both service types. The first character of the actor code determines the actor
kind, ‘B’ stands for B-actor, ‘I’ stands for I-actor and ‘D’ stands for D-actor.

A short elaboration of the each transaction kind is given below:
1. The subject that fulfils I-actor I-A01 shapes from its informa ability into its forma

ability and initiates as an external D-actor a transaction with D-actor D-A01. The
initiating subject requests for archiving a package of data that corresponds with the
fact to remember.

2. The subject that fulfils I-actor I-A02 shapes from its informa ability into its forma
ability and initiates as an external D-actor a transaction with D-actor D-A02. The
initiating subject asks for collecting a package of data that corresponds with the
fact to reproduce.

44 J. de Jong and J.L.G. Dietz

1)

2)

Fig. 7. The set of actor kind combinations in the D-organization

4.5 Archiving and Collecting Information

The information delivery chain can be divided in two kinds. The first kind contains
the steps that a new fact takes from the start of its existence until its storage into a fact
bank (cf. fig. 8). Such a fact can be understood as an elementary building block for
the production of information. The second kind describes the way back from retriev-
ing the corresponding fact data from the fact bank, producing a derived fact based on
original fact data and finally the offering of the derived fact as information to a B-
actor that has requested for it (cf. fig. 9).

The first kind of the information delivery chain starts with the B-actor B-A02. B-
A02 creates a new original fact, for example the purchase of a car. After acceptance
of the P-fact by B-A01 the actual P-fact starts to exist. That P-fact must be stored into
the fact bank that corresponds with B-T02. B-A02 shapes into its informa ability,
formulates the P-fact and initiates, as an external I-actor of the I-organization, the
transaction I-T01 with I-actor I-A01 within the I-organization for remembering the
P-fact. I-actors perform infological actions according to algorithms or procedures.
I-A01, called rememberer, adds an identification to the P-fact and determines its stor-
age place. Although the P-fact has to be understood as semantic meaning, it always
must have a carrier. The carrier itself is fully irrelevant for I-actors. It could be a pa-
per document, a digital document, sound waves, a picture or anything else. Actors
within the I-organization and between the B-organization and the I-organization only
exchange semantic meaning. Therefore those actors operate in their informa ability.

For actual remembering the P-fact the rememberer I-A01 shapes into its forma
ability and requests, as an external D-actor of the D-organization, the archiver D-A01
to archive the corresponding fact data of the P-fact. During those steps the semantic
meaning of the document is irrelevant, only the form of the document is important.
Subsequently, D-A01 initiates the transaction to activate the transmitter for transport-
ing the document to its destination and to activate the storer for storing the document.

The discussion about the first kind of the information delivery chain ends with two
examples. The first example illustrates the situation that every actor role in figure 8 is
performed by a different subject. The second example illustrates the situation that all
actor roles are performed by the same subject.

 Understanding the Realization of Organizations 45

Fig. 8. Archiving P-facts

Firstly, an aspirant member John (B-A01) asks Bill (B-A02) for a membership of
the library. Bill promises John to register his membership. Bill formulates the regis-
tration based on some information that he receives from John. Subsequently, he asks
Tom (I-A01) for remembering the registration. Tom promises that he will remember
the requested membership registration. Although he knows that the complete registra-
tion is a new original fact, he needs an identifier for finding the registration later back
in a data store. Tom determines the identifier and links it to the registration. From
now the registration is identified by an identifier and has to be preserved on a safe
place. Next, based on the identifier Tom determines a safe store and asks Jim for ar-
chiving the unique defined data package in that store. Jim is willing to perform this
request and asks for a transmitter and a storer to bring it to the given store. After
archiving has been performed Tom receives a state from Jim. Tom accepts that ar-
chiving has been performed and sends a state to Bill that remembering has been ar-
ranged correctly. After accepting this state Bill sends a state to John that the registra-
tion has been performed. After acceptance by John the registration really exists. If
John rejects the registration a roll-back of the previous steps has to be done.

Secondly, assume that all steps of the registration are performed by Bill. Bill for-
mulates the registration and remembers that registration in his mind or by storing is
on a safe place. That could be in a card index on his desk, transmitting is not neces-
sary, or in a card index in another room, transmitting is necessary.

The second kind describes the way back from retrieving the corresponding fact
data from the fact bank, producing a derived fact and finally offering it to a B-actor
that has requested for it. Figure 9 exhibits the second kind of the chain. The initiative
for retrieving is indirectly taken by a B-actor which needs information for being ac-
tive in conversations with its connected B-actors.

46 J. de Jong and J.L.G. Dietz

Fig. 9. Delivery of derived facts

It starts with a B-actor B-A02. B-A02 shapes into the informa ability and asks for
information it needs. Two kinds of factual information processes are discerned.
Firstly, the process of determining a derived fact is discerned. That derived fact is
derived by infological actions from elementary facts. This process corresponds with
an internal information link within the DEMO construction model of the organization.
Secondly, the process of determining an external fact is discerned. That external fact
is determined outside the organization boundary. It could be an elementary fact or a
derived fact. This process corresponds with an external information link within the
DEMO construction model of the organization.

Let us first discuss the first kind of information process that delivers derived facts.
B-A02 initiates a transaction, as an external I-actor of the I-organization, with the
producer of a derived fact I-A01. Based on original facts which are remembered by
the I-organization, I-A01 derives a new fact that is defined in the Object Property List
of the DEMO state model of the organization. I-A01 asks I-A02 to reproduce the
needed original facts. However, I-A02 is only able to reproduce if it knows the unique
identification and storage place of the corresponding document in the data store. If the
I-actor asks the D-actor, for example, for a specific contract regarding the delivery of
product X by supplier Y, the transaction between both actors will not succeed,
because both actors do not understand each other. The transaction will only be suc-
cessful if the I-actor asks for the unique identified document stored on the unique
identified storage place. Now the question comes up: how does I-A02 know the iden-
tification of the corresponding data package and the identification of the storage
place? We discussed already that the rememberer (cf. fig. 8) in the I-organization de-
termines the unique identification and the storage place of new facts. Regarding this
question, there is only one answer possible: the subject that fulfills the actor role

 Understanding the Realization of Organizations 47

I-A02 in figure 9 must be equal to the subject that remembers the concerning fact in
figure 7. For collecting the needed fact I-A02 shapes into its forma ability and asks
for, as an external D-actor of the D-organization, the fact data collector D-A01 for
collecting the identified data package from the given store. Actually, D-A01 collects
the needed data package by initiating a transmission and a retrieving transaction with
the transmitter D-A02 and the retriever D-A03, respectively.

The discussion about the second kind of the information delivery chain also ends
with two examples. The first example illustrates the situation that every actor role in
figure 9 is performed by a different subject. The second example illustrates the situa-
tion that all actor roles are performed by the same subject.

Firstly, Mary (B-A02) registers loans of books in the library. When someone asks
her for a loan registration she checks first if the number of books, which has been lent
already by the requester, does not exceed a maximum allowed number of books. She
asks Kim (I-A01) for providing her this information. Kim promises Mary to provide
her the requested information; she is able to fulfill her promise because of the avail-
ability of an algorithm for computing the corresponding derived fact. The algorithm
works on original facts which have been created by previous production acts and
which are remembered within the I-organization. Before computing the mentioned
algorithm Kim asks Tom (I-A02) one or more times to reproduce an original fact.
Tom promises that he will reproduce the requested fact. He knows the unique identi-
fication as well as the storage place of the fact data that corresponds with the fact be-
cause he has determined the identifier and the storage place for remembering this fact
earlier. Next, Tom asks Jim to collect the unique defined data package. Jim is willing
to perform this request and asks a transmitter and a retriever to deliver the fact data.
After collecting has been performed Tom receives a state from Jim. Subsequently,
Tom sends a state to Kim that the requested fact has been reproduced. When all re-
quested facts are available Kim computes the algorithm and sends a state to Mary that
the requested information has been produced.

Secondly, assume that all steps of the registration are performed by Mary. Mary
computes the information she needs. She collects all original facts from the places
where she has stored these facts earlier.

Fig. 10. Delivery of external facts

Figure 9 exhibits the presence of merely one I-actor for calculating the derived
fact. However, in practice the derived fact can be calculated by several I-actors, each
with their own responsibility and authorities. This is understood as a granularity issue
which is not a subject of this paper.

48 J. de Jong and J.L.G. Dietz

The second kind of information process that delivers external facts is exhibited in
figure 10. B-A02 initiates a transaction, as an external I-actor of the I-organization,
with the deliverer of an external fact I-A01. That external fact is determined outside
the organization boundary completely. The information process belongs to another
organization. The operation between both organizations is elaborated in the imple-
mentation model of the organization.

5 Conclusions and Further Research

The distinguishing feature of this paper for the DEMO community is that the focus of
current organization engineering research is extended to the B-organization, the I-
organization and the D-organization. It explains the realization of the organization by
discussing the way of cooperation between B-actors, I-actors and D-actors within the
same world and more specific within the same organization. The structure of the
complete information delivery chain, from the creation of an original production fact
until the delivery of a derived fact that intentionally can be used for certain purposes,
is elaborated from the ontological perspective. We understand the drawing of an or-
ganization scope within a world as the first step in implementing an operational or-
ganization. In our opinion, scope discussions are sourcing discussions and for that
reason also implementation discussions.

Further research has to be done about the cooperation of several organizations
working on different worlds and cooperating within the same enterprise. For example,
cooperation with information suppliers, human resource recruiters, accountancy firms,
asset management organizations. Other subjects for further research are the granular-
ity of the I- and D- organization and the link with supporting IT-applications.

References

1. Dietz, J.L.G.: Enterprise Ontology – theory and methodology. Springer, Heidelberg (2006)
2. Dietz, J.L.G.: The deep structure of business processes. Communications of the

ACM 49(5), 59–64 (2006)
3. Dietz, J.L.G.: Deriving Use Cases from Business Process Models. In: Song, I.-Y., Liddle,

S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 131–143.
Springer, Heidelberg (2003)

4. Maij, E., et al.: Use cases and DEMO: aligning functional features of ICT-infrastructure to
business processes. International Journal of Medical Informatics 65, 179–191 (2002)

5. Shishkov, B., Dietz, J.L.G.: Deriving use cases from business processes: the advantages of
DEMO. In: The Fifth International Conference on Enterprise Information Systems, An-
gers, France (2003)

6. Mallens, P.J.M., Dietz, J.L.G., Hommes, B.J.: The Value of Business Process Modelling
with DEMO prior to Information Systems Modeling with UML. In: EMMSAD 2001: Pro-
ceedings, 6th CAISE/IFIP8.1 International Workshop on Evaluation of Modeling Methods
in Systems Analysis and Design (2001); Interlaken

7. Mulder, J.B.F.: Rapid Enterprise Design, Technical University Delft, Delft (2006)
8. Dietz, J.L.G.: Architecture, building strategy into design. In: NAF working group Extensi-

ble Architecture Framework (xAF) (2008)

 Understanding the Realization of Organizations 49

9. Op ’t Land, M., Applying Architecture and Ontology to the Splitting and Allying of Enter-
prises. Delft University of Technology, Delft (2008)

10. Dietz, J.L.G.: DEMO: Towards a discipline of organisation engineering. European Journal
of Operational Research 128, 351–363 (2001)

11. Stamper, R.K.: Information in Business and Administrative Systems. Wiley, New York
(1973)

12. Liu, K.: Semiotics in Information Systems Engineering. Cambridge University Press,
Cambridge (2000)

13. Stamper, R.K., et al.: Understanding the Roles of Signs and Norms in Organisations. Jour-
nal of Behaviour and Information Technology 19(1), 15–27 (2000)

14. Bunge, M.A.: Treatise on Basic Philosophy, A World of Systems, vol. 4. D. Reidel Pub-
lishing Company, Dordrecht (1979)

A Bottom-Up Competency Modeling Approach

João Marques2, Marielba Zacarias1,3, and José Tribolet2,3

1 Universidad do Algarve, Portugal
2 Instituto Superior Técnico of Lisbon, Portugal

3 Organizational Engineering Center (CEO)
jmt@inesc.pt, mazacaria@ualg.pt, jose.tribolet@ist.utl.pt

Abstract. Competency-based management i.e. linking and assigning
work according to the competencies required, has been acknowledged as a
key enabler of organizational effectiveness and highlights the importance
of modeling organizational competencies. Whereas Enterprise Architec-
tures (EA) model organizations from different perspectives that describe
and inter-relate their processes and resources, most EA frameworks pro-
vide limited means to model competencies. Available competency model-
ing approaches rely on static classification models that prove difficult to
adjust to the constant changes in competency requirements. We propose
a bottom-up modeling approach for representing organizational compe-
tencies using semantic units such as actions, goals and resources that (1)
provides a more flexible competency classification framework, (2) allows
answering questions about different competency-related concerns, and
(3) allows assessing the alignment between the competencies required by
activities and the competencies held by the actors performing them. This
paper describes the competency model proposed and a set of tools used
in supporting the model building process. Some benefits of the model
are illustrated with a case study in an organizational setting.

1 Introduction

Enterprise Architectures (EA) are effective means to communicate the organi-
zation’s structure, processes and goals. EA are widely used for systems develop-
ment or process (re)design ends, and allow modeling organizations from different
but interconnected perspectives, where most commonly depicted perspective en-
compass strategy, process, information, application and technology-related per-
spectives [1]. EA focus on business processes results in provisioning of limited
means to model human competencies, of great relevance for competency-based
approaches of Human Resource Management (HRM). HRM activities play a ma-
jor role in ensuring the organization’s survival and prosperity [2,3,4]. A firm’s
current and potential human resources are important considerations in the de-
velopment and execution of its strategic plan, and nurturing “brainpower” plays
a fundamental role as a source of competitive advantage. As a result, it is not
difficult to understand why competencies are becoming a central theme in HRM
practices. In competency-based management, job outputs are linked with human
competencies as an approach for assigning work and producing work outputs.

A. Albani and J.L.G. Dietz (Eds.): CIAO! 2010, LNBIP 49, pp. 50–64, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Bottom-Up Competency Modeling Approach 51

We define competencies as capabilities made accessible in the form of human
actions and resources provided to the organization. Organizational activities re-
quire a number of competencies held by human actors. The main motivation
of this research is developing means to capture and model the relationships
created between human actors and activities by describing on one side, the com-
petencies required by activities and on the other, the competencies provided by
human actors . Organizations must be able to dynamically (re)schedule human
resources according to the actual competency requirements of its activities. The
more knowledge-oriented the activity, the more important it becomes describing
the competencies required by the activity and the human actors that hold such
competencies. However, current business environments are constantly changing,
and so are competency requirements. Whereas there is a large amount of re-
search on competency modeling in the area of knowledge representation, most
approaches rely on static classification models that prove difficult to adjust con-
stant changes [5]. Moreover, the process of capturing and describing is largely
manual, and cannot keep up the pace of such organizational changes. Hence, two
important questions remain unanswered:

1. How to capture and model information related to organizational competency-
related, so they can be defined and represented in a more flexible manner
under a constantly changing business environment?

2. How to express the alignment between the competency required by activities
and the competencies held by organizational actors?

Our research addresses these questions through a bottom-up modeling approach
for representing organizational competencies through a combined use of seman-
tic units such as actions, resources, and goals that (1) provides a more flexible
competency classification framework, (2) allows answering questions about dif-
ferent competency-related concerns, and (3) is linked to process-related concepts
in order to allow assessing the alignment between the competencies required by
activities and the competencies held by the actors performing them. This paper
describes the competency model proposed and a set of tools used in supporting
the model building process. The remainder of this paper is structured as follows;
section 2 summarizes related work on EA, business process modeling and com-
petency modeling approaches. Section 3 describes the proposed model. Section
4 illustrates some model benefits with a case study. Section 5 summarizes the
tools used in building the model. Section 6 gives our conclusions and outlook.

2 Related Work

Most Business Process Modeling (BPM) approaches and EA frameworks do not
provide means of relating human actors and activities through competencies. Inte-
grated DEFinition Methods (IDEF) [6] defines concepts such as function, input,
and output but does not provide means for representing how activities are car-
ried out by actors. The Business Process Modeling Notation(BPMN) [7] focuses
on describing the activity flows within business processes. The diagram elements

52 J. Marques, M. Zacarias, and J. Tribolet

include activities, flow and connecting objects, artifacts, and swimlanes. The lat-
ter are used to associate functional capabilities or responsibilities to a particular
actor. However, such elements are not well suited to model the competencies re-
quired to perform the set of activities included within each swimlane, since re-
sponsibilities are represented at very high levels of abstraction. Other modeling
languages, such as IDEF3 [8] or Role Activity Diagram (RAD) [9] focuses on de-
scribing process flow but they neither specify the behavior of human or automated
actors, nor the required competencies for each activity. The business process mod-
eling methodology DEMO [10] also lacks competency modeling means.

Enterprise Architecture (EA) frameworks allow to represent organizations
from several, but inter-related perspectives. The most commonly depicted en-
terprise perspectives are the process, information, application, and technology
perspectives [1]. Whereas the former describes enterprise activities i.e. what or-
ganizations do, the remaining perspectives describe its resources i.e. the entities
required for their operation. Though these frameworks, allow resource-related
perspectives where competencies could be included, they are mostly process-
driven approaches that tend to disregard the modeling of competencies. The
Open Group Architecture Framework (TOGAF) [11] and the Integrated Ar-
chitecture Framework IAF [12] are industry standard architecture frameworks.
While both include business, information systems, and technology infrastructure
architectures, they overlook the relationship between actor and activities, since
they do not include competency-related concepts within the business architec-
ture. The Zachman framework [13] is a generic enterprise classification framework
that comprises functional (activity) and organizational (actor) dimensions but
does not specify how to represent each dimension or how to relate them.

Two EA frameworks better suited for specifying actor-activity linkages are
Archimate [14] and the CEO framework [15]. Archimate presents a unified way
of modeling EA, in which the concept of service plays a fundamental role in
connecting business processes and business functions. While the former is a col-
lection of causally related units of internal behavior such as activities, the latter
allows to group behavior according to, for instance, required skills or knowledge.
The CEO framework presents three constructs for organizational modeling: en-
tity, role, and activity. Activities describe how entities collaborate through roles
to produce specific outcomes, where roles represent sets of services. Such relation
can be modeled as a marketplace, in which activities demand roles and actors
offer them. With this approach, it is possible to select the actors that provide
the roles required by a given activity. Nonetheless, in spite of providing means of
linking activities and actors through competencies, these frameworks lack proper
means of modeling competencies, their components and inter-dependencies.

There is a large amount of research on competency modeling in the area of
knowledge representation. Tarasov [16] proposes the use of ontologies to formally
represent individual and enterprise competencies where individual and enterprise
models share a common conceptual core that simplifies competency matching
and gap analysis. Gronau [17] presents the Knowledge Management Description
Language (KMDL) to manage skill catalogues, which unlike common business

A Bottom-Up Competency Modeling Approach 53

process modeling languages, allows to model the creation, use and need of knowl-
edge in common processes. KMDL provides an object library containing infor-
mation, task, position, requirements, person, knowledge object, and knowledge
descriptor concepts. CommOnCv [18], which aims at dealing with the problem-
atics of e-recruitment, models competencies as a set of resources mobilized to
reach an objective, or to carry out a mission within a particular context. The
same author presents the Competency, Resource, Aspect, and Individual (CRAI)
model in [19], which structures and formalizes the concept of competency, and
provides guidelines for its deployment in competency management information
systems. Overbeek [20] proposes a knowledge market paradigm as a means of
improving the fit between the demand and supply of knowledge through an ap-
proach to match actors and tasks based on the cognitive characteristics provided
by actors that are required by specific types of tasks.

Competencies are frequently represented as hierarchical structures of compe-
tency trees. Lang and Pigneur [21] propose using a standard vocabulary displayed
in a tree to describe the competencies held by actors instead of textual descrip-
tions, as a means to simplify competency processing. Varela and Soares [22] pro-
pose a competency tree with dynamically defined upper categories. Although
structuring competencies in trees simplify their management, they present some
other problems related to flexibility and reusability. Since trees are usually deep,
the description of the competency is not easily decomposable, leading to a dis-
persion of concepts between multiple nodes. Moreover, reusing competencies in
different contexts is hindered as broader functional categorization is embedded at
the tree’s upper levels. To overcome such shortcomings, [5] proposes a framework
for competency modeling based on a multi-dimensional tree structure, where
each dimension relates the element with its usage context, allowing the creation
of multiple views on the same object while keeping its uniqueness. Nodes in
the same dimension are connected using intra-dimension links showing allowing
to group elementary concepts in coarser-grained concepts. Inter-dimension links
associate nodes from different dimensions, allowing to represent competencies
through a multi-dimensional composition of concepts.

3 Competency Model Proposed

The competency model presented here allows a formal representation of compe-
tencies held by organizational actors and required by organizational activities.
It presupposes that a competency involves a capability associated with a given
subject matter in order to reach an objective. Our model combines the afore-
mentioned multi-dimensional competency tree structure with the meta-model
for organizational modeling put forward by [23]. Aveiro’s meta-model is a fact-
oriented modeling approach based on description logics and Object-Role Mod-
eling (ORM) [24], and it is fully described in terms of entities and relation-
ships. An entity represents things that have physical interest or virtual existence
that is of interest to be modeled. Entities are described with nouns (or noun
phrases). A relation captures relations between entities, and is itself an entity. It
is expressed as a <Subject - Predicate - Object> triple, where Subjects and

54 J. Marques, M. Zacarias, and J. Tribolet

Objects are entities while Predicates define the particular type of relation be-
tween them. Predicates are expressed with verbs.

The model is built upon the following entities: (1) Competency, (2) Task,
(3) Goal, (4) Action, and (5) Resource. Such entities define the competency
concept in a general way. Competency expresses the set of Knowledge, Skills,
and Attitudes (KSA) provided by Actors when playing a given role to carry out
a formal organizational activity. Examples of competencies include: Program SQL,

Administrate Unix System, or Implement ITIL.
KSA are modeled in terms of actions and resources associated to <Task,Goal>

pairs. A Task is the unit of work undertaken by an Actor with a particular Compe-
tency. The relationship In Order To represents the cause-effect relationship
between the Task and its Goal. In other words, it represents the competency pur-
pose. Our model decouples Task from its Goal, allowing them to be reused in differ-
ent and unrelated competencies. Goal expresses a state or condition to be brought
about or sustained through a Task. Examples include: Satisfy client expectations, Re-

port data from source systems, Ensure design specifications.
Tasks are described through Action-Resource relationships. Action expresses

the type of KSA brought into play by an actor in order to carry out a task.
Actions may be mental, interpersonal or physical. Mental Actions correspond
to such data-related operations as Analyze or Understand. Interpersonal Actions
correspond to people-oriented operations like Ask or Interview. Physical Actions
correspond to things-related operations like Make, Write or Develop. Resource com-
prises the physical or abstract entities on which actions operate, and are identi-
fied with nouns (or noun phrases). Some examples include: development tool, SQL,

Unix Operating System, and databases. Resources may range between single items
to very complex resources composed of several items. By decoupling Action and
Resources, our model allows their re-use in different competencies. For instance,
Task Write SQL queries is described by Action Write and Resource SQL queries, each
of which can be present in other competencies.

Figure 1 depicts the model entities and relations and shows that competen-
cies and resources can be organized in a tri-dimensional structure composed by
(1) actions, (2) resources and (3) goals. These dimensions allows to interconnect
competency to different EA views. Figure 1 illustrates how the proposed compe-
tency model is related to organization and business views. The organization view
describes who are the organizational actors and the roles played by such actors.
Actors provide competencies to activities through the roles they play in execut-
ing such activities. The business view describe the activities composing business
processes, their goals, inputs/outputs, as well as their coordination mechanisms.
Activities have goals formally acknowledged by the organization. The purpose
of competencies is to help achieve activity goals. Section 3.1 describe the model
relations and data types.

3.1 Relations and Data Types

The model defines two data types (1) verbs and (2) nouns. The Verb type is
used to express the part of the competency statement referring to an action, or

A Bottom-Up Competency Modeling Approach 55

CO
M

PE
TE

N
CY

 V
IE

W
O

RG
AN

IZ
AT

IO
N

 V
IE

W
BUSINESS VIEW

Task
Mental Action

Action Resource

Verb

Competency

Mental Action

Mental Action
Noun

Activity

Goal

Actor Role

operates on

identified withidentified with

In-Order-To

plays

use

execute-Activity

Input

Output

produce

has-Goalhas-Competency

has-Resource

has-Task

has-Competency

has-Goal

has-Resourcehas-Action

Process

has-Activity

Fig. 1. Competency Model

capability. Verbs may describe mental actions, like “to know”, and “to decide”;
interpersonal actions, like “to ask”, and “to interview”; physical actions, like “to
write”, and “to drive”; or any combination of these three types, as in [25]. The
Noun type is used to express the part of the competency statement referring
to the subject or object of a verb. Nouns may vary from broader concepts like
“business applications” or “operating system”, to specific ones like “SAP” or
“Linux”. It is expected that both Verb and Noun types may be used on the
definition of unrelated competencies. Examples of such expressions are “to code
a bubble-sort in C” and “to code a Web-service in Java”. To cope with the
representation of such features, the Verb-Noun type allows them to be uniformly
reused while defining different competencies. It is also useful to show information
of the capabilities related each subject, and vice-versa. Hence, we reify verb-noun
as a predicate to define the following relations:

– Verb-Noun - Has - Verb
– Verb-Noun - Has - Noun

Actions are identified with verbs. To formally model actions, the following rela-
tion is defined: Action - Has - Verb.

Goal expresses the competency end-result. It corresponds to a mission to carry
out, as in goal modeling literature. In Order To expresses the causal-relationship
between the competency and its end-result. It is useful to show information of
which Task is related to a Goal, and vice-versa. We reified In Order To as an
entity, to define its relations with the Task and Goal entities:

– In Order To - Has - Task
– In Order To - Has - Goal

56 J. Marques, M. Zacarias, and J. Tribolet

Goals are organized in hierarchies where Task goals are sub-goals of activities.
However, such hierarchy is not reflected here since it is part of the business
view.

Task refers to a particular unit of work reflecting described in terms of a partic-
ular Action and an associated resource, and reflects a particular KSA. The mean-
ing of a Task is thus defined by an <Action,Resource> pair. Such meaning is
formally expressed with the relations below. We first reify the <Action,Resource>
relationship to define its relations. Then we associate Task with the reified rela-
tionship. Resources are organized in hierarchies. Top-level resources refer to broad
subject matters.

– Action-Resource - Has - Action
– Action-Resource - Has - Resource
– Task - Has - Action-Resource
– Resource - Has - Resource

Finally, the meaning of a Competency, is given by a Task, its Goal, and both
higher and lower-level competencies. The following relations are defined in the
perspective of a Competency:

– Competency - Has - Task
– Competency - Has - In Order To
– Competency - Has - Competency
– Competency - Is-Part-Of - Actor

The last relation is extrinsic to the entity Competency since it is the inverse of
the relation Has, intrinsic to the entity Actor (defined in the organization view).

4 Case Study

This section describes a case study undertaken to assist in the design and eval-
uation of the competency model proposed in section 3, through an Action Re-
search methodology. Action research is applied research. It happens where the
researcher is allied to the group under study and attempts to provide practi-
cal contributions while developing theoretical knowledge. It produces practical
and theoretical outcomes, frequently emancipatory outcomes and makes explicit
the researcher biases [26]. The research took place in a Portuguese professional
services company, which will be from this point forward refer to as Customer.
The Customer provides audit, consulting, financial advisory, and risk manage-
ment services. The research has been developed in the Customer’s Technology
Integration (TI) area.

The Customer follows a framework for assessing performance and career de-
velopment named Consulting Global Excellence Model, which is organized in
shared and specialization components. The shared component contains common
development and performance themes which apply to all practitioners. These
themes are grouped into four common areas: Service Excellence, Marketing, Sales
& Communications, Management Effectiveness, and Leadership Effectiveness.

A Bottom-Up Competency Modeling Approach 57

The Specialization component contains specific development and performance
themes, which apply to practitioners of each service area. There are currently six
specializations: Enterprise Applications, Human Capital, Strategy & Operations,
Outsourcing, Project Controllers, and Technology Integration (TI). Competencies
refer to the set of KSA that practitioners need to develop.

The research setting involved two organizations: the Center for Organizational
Engineering (CEO) of Lisbon, and the Customer’s TI area. The research team
included a student pursuing his master degree at the CEO while working at
the Customer’s TI area, and practitioners with experience in competency-based
management. It also included two CEO researchers acting as counselors. In the
team’s first meeting, they agreed to select the TI area due to (1) the heavy
workload of most areas at the moment of the study, (2) IT culture where peo-
ple are more likely to try new and innovative approaches, and (3) the student’
knowledge of the setting.

The Customer’s TI area adopts a top-down approach for classifying expected
career level competencies in static competency clusters and themes. Individ-
ual competencies were related to specific roles. For example, the The Business
and IT Strategy cluster encompasses four themes; (1) Technology Awareness in
Clients’ Business/Industry, (2) Technology Drivers/Enablers in Clients’ Busi-
ness/Industry, (3) Ascertains Clients’ Technological Needs, and (4) IT Strategy
Development. Each theme defines a set of individual competencies for the roles
Analyst, Consultant, Senior Consultant, Manager, Senior Manager, and Part-
ner/Director. The list below shows the competencies defined for each of these
roles for the IT Strategy Development theme.

– Analyst : Assists in the development of specific components of the IT strategy.
– Consultant: Assists in the development of specific components of the IT strategy.
– Senior Consultant: Develops implementation plans for specific components of the IT strat-

egy (e.g., work plan, transitional architecture plans)
– Manager: Designs, develops, and validates new IT strategies for clients and develops IT

stragegy implementation plans.

– Senior Manager: Gains consensus for IT strategy implementation plans

– Partner Director: Supports IT strategy implementation plans with the client’s top leaders.

Our plan was to evaluate our approach in capturing and representing compe-
tency’s building blocks, namely actions and resources, to define distinct isolated
competencies. Following a bottom-up approach, these competencies would then
be composed into coherent sets, so they could be bound to employees and ac-
tivities, as well as the Customer’s predefined competency themes and clusters.
This section shows results on capturing individual competencies and the latter
type of binding. The results were gathered using the following method: (1) Initial
action and resource set definition, (2) task capture, (3) manual maintenance and
review of new actions and resources; and (4) Representing these elements and
their inter-relationship.

Initial action and resource definition. As seen before, similar actions are typi-
cally described using different verbs, and the same verb may be used in describing
different actions. For instance, both appraise and evaluate verbs are related with as-
sessing the value of something. Likewise, similar resource items may be described

58 J. Marques, M. Zacarias, and J. Tribolet

using different nouns, and the same noun may be used in describing different re-
source items. For instance, SAS may refer to SAS Enterprise Guide R© or SAS Enter-

prise Miner R©. Hence, a basic set of action types and resources and their meanings,
has been discussed and validated by the practitioners. Following the recommenda-
tions on job analysis in [25], the use of specific verbs instead of summary verbs has
proved easier to achieve consensus around meanings. For example, achieving con-
sensus around the meaning of the action build was easier than discussing the mean-
ing of the action consult. The initial action and resource set was collected from sup-
port documentation where competencies were described as illustrated in the list
above. Here, actions and resources have been highlighted to show how they were
extracted. Resource nouns were collected without qualifiers (e.g. complex technical

documentation, quality deliverables, complex client processes). This action ended with
52 distinct action types, and 223 resources identify regarding the TI universe.

Maintenance and review of new elements entails identifying and eliminating
synonyms. It was also verified that each element conveyed the same meaning to
the participants.

From the 52 distinct action types collected from the support documentation,
the most recurrent were physical and mental actions: develop, understand, iden-

tify, manage, and ensure (see Table 1). This makes sense due to the area of the

Table 1. Predominant Action Type Set

Action Meaning Type Freq.

Develop
acquire, arise, break, build up, educate, evolve, explicate, formulate, germinate, get, grow, make grow,
modernise, modernize, originate, prepare, produce, recrudesce, rise, spring up, train, and uprise.

Physical 8,98%

Understand empathise, empathize, infer, interpret, read, realise, realize, see, sympathise, sympathize, and translate. Mental 7,42%
Identify describe, discover, distinguish, key, key out, name, and place. Mental 7,03%
Manage bring off, care, carry off, contend, cope, deal, do, finagle, get by, grapple, handle, make do, make out, ne Mental 6,25%
Ensure ascertain, assure, check, control, guarantee, insure, secure, see, and see to it. Mental 4,69%

Fig. 2. Mental actions performed by TI human resources

A Bottom-Up Competency Modeling Approach 59

Fig. 3. Competencies of the Business and IT Strategy cluster

observed subjects, in which problem-solving capabilities are regarded as the most
important, and where they aim at understanding client’s technological needs,
identifying potential issues and/or IT opportunities, and ensuring quality deliv-
erables, while managing and developing IT solutions. Though action collection
started with this basic set, it was extended in the task capture phase.

Task capture. Tasks were collected with task statements in the form (Action

Resource→Goal). The use of goals proved to ease task statement writing, as they
tend to make it more objective. A total of 32 task statements were captured
from 12 participants.

Model representation entails representing the competency model and its el-
ements in a language suitable for its visualization, discussion and later actual-
ization. The model was formalized and built with Proteg (section 5), which was
used to create, visualize, and manipulate the model in various representation
formats for discussing the collected information with the selected subjects. Once
the model was created, a number of queries were made to evaluate the model:

Q1 What type of actions is the Customer capable of?
Q2 What are the Customer competencies?
Q3 What competencies does“Business & IT Strategy” competency cluster include?
Q4 Which activities/actors/roles/goals are associated to a given competency?
Q5 Which resources are associated to the “Business & IT Strategy” cluster?

The model answered successfully all questions. Due to space limitations, we only
show exemplary answers to Q1, Q3, and Q5 (figures 2-4). Figure 2 shows the
mental actions that the Customer’s TI human resources are capable of perform-
ing. Figure 3 shows the competencies themes comprised within the Busines and IT

Strategy cluster; Technology Integration, Service Excellence and Management Effectiveness,
as well as the individual competencies comprised within each theme. Figure 4
offers a resource-oriented view by showing the six resources comprised in this
competency cluster; IT Cost, IT Governance, IT Operation, Project & Portfolio Management,
Scorecard Models, and Sourcing Agreements.

60 J. Marques, M. Zacarias, and J. Tribolet

Fig. 4. Resources used within the Business and IT Strategy cluster

5 Supporting Tools

The model was built using various tools including: an ontology editor, an English
lexical database useful for natural language processing, and a micro-blogging ap-
plication.Tasks were collected with task statements, using two complementary
tools: Yammer R© and Microsoft Excel R© forms. Yammer R© (yammer.com) is a micro-
blogging tool for enterprises. In Yammer R©, co-workers exchange short, frequent
answers to a simple question, such as “What are you working on?” As employees
answer that question, a company feed is created in one central location, enabling
co-workers to discuss ideas, post news, ask questions and share links and other
information. The company feed can be accessed in real time via the desktop, the
Web, IM, SMS text messaging, mobile devices or email. Yammer R© also serves as a
company directory in which every employee has a profile; it also features a knowl-
edge base in which past conversations are archived and searchable. Anyone in a
company can start their Yammer R© network and begin inviting colleagues; privacy
of each network is ensured by limiting access to those with a valid company email
address. A Yammer R© network has been created to capture competencies-related
information in a more informal manner. Practitioners were invited to freely send
brief text updates describing what they were doing at the time. Unlike Yammer R©,
the Microsoft Excel R© form was sent by email to all practitioners. Here, practitioners
described up to five tasks using a closed-vocabulary (the action and resource set),
and related them to existing competency themes and clusters.

In order to assist the manual review and maintenance of new elements, Word-

Net R© (wordnet.princeton.edu) has been used to identify synonyms among dis-
tributionally similar words. WordNet R© [27] is a lexical database for the English
language. It groups English words into sets of synonyms called synsets, pro-
vides short, general definitions, and records the various semantic relations be-
tween these synonym sets. The purpose is twofold: to produce a combination of

A Bottom-Up Competency Modeling Approach 61

dictionary and thesaurus that is more intuitively usable, and to support auto-
matic text analysis and artificial intelligence applications. An application has
been developed using a C# interface for WordNet R©. For each element in initial
action and resource set, the application returns its synonyms from WordNet R©

database, which are then manually compared to the remaining elements in a
recursive manner, until no two elements with the same meaning exist.

The ontology editor Prot ÈgÈ R© was the tool selected to create, visualize, and
manipulate the model in various representation formats for discussing the col-
lected information with the subjects involved in the case study. Prot ÈgÈ R© (pro-
tege.stanford.edu) is an ontology editor and a knowledge base editor put for-
ward by the Standford University. At its core, Prot ÈgÈ R© implements a rich set
of knowledge-modeling structures and actions that support the creation, visual-
ization, and manipulation of ontologies in various representation formats such as
frames, RDF [28] or OWL [29]. The representation format used was Prot ÈgÈ R©-
frames. All graphical views were generated using Jambaya R© plug-in. This plug-in
is developed by the CHISEL at the University of Victoria [30]. Below we show
the formal definition of the task entity with Prot ÈgÈ R©-Frames representing the
intrinsic relations of the Competency entity defined in section 3.1.

(defclass Competency
(is-a Entity)
(role concrete)
(multislot hasInOrderTo

(type INSTANCE)
;+ (allowed-classes In+Order+To)

(create-accessor read-write))
(multislot hasCompetency

(type INSTANCE)
;+ (allowed-classes Competency)

(create-accessor read-write))
(multislot inverse_of_hasCompetency

(type INSTANCE)
;+ (allowed-classes Competency)

(create-accessor read-write))
(multislot hasTask

(type INSTANCE)
;+ (allowed-classes Task)

(create-accessor read-write)))

6 Conclusions and Outlook

This paper proposes a multi-dimensional approach to represent competencies
in terms of the following semantic units; actions, resources and goals where
each unit represents a different dimension as depicted in figure 5. These units
are building blocks that allow defining elementary competencies. Following a
bottom-up approach, these competencies can be composed into macro compe-
tencies such as themes, clusters, so they can be handled as a unit, and thus
bound to actors and activities, specifying supply and demand of competencies.

Arguably, the proposed model is too complex to be practical. However, com-
petencies are indeed complex concepts that to properly be connected to other
enterprise views and concepts entails regarding them from different perspectives.
Moreover, the case study provided empirical evidence of the model feasibility and

62 J. Marques, M. Zacarias, and J. Tribolet

Fig. 5. Competency dimensions

usefulness. The advantage shown by this case study is three-fold. First, defining
competencies by selecting from a set of action types and resources was easier than
defining whole competency definitions. Second, separate action and resource sets
are proving to be more stable than competency definitions that do not make this
separation. Third, this decoupling allows using the action classification proposed
in [20] and matching actor cognitive characteristics to organizational activities.
Nonetheless, since the number of elementary competencies can be rather high,
it is necessary to use automated tools to support competency capture and rep-
resentation. We have explored a number of tools that eased model building and
discussion but further research is required for larger number of competencies.
Future work also entails addressing issues regarding both tool development and
modeling such as:

– Activity-Actor alignment : devise alignment metrics between the competency
suppliers (actors) and requesters (activity)

– Semantic Web compliance: prepare the model for usage with semantic Web
(including searching and reasoning), and semantic-enabled wikis

– Automated maintenance and review of new semantic blocks : explore Word-
Net to test for synonyms in questionnaire answers and action logs;

– Automated semantic blocks discovery: explore automated discovery of seman-
tic units from job descriptions, using rule-based grammars and text mining
techniques.

References

1. Schekkerman, J.: How to Survive in the Jungle of Enterprise Architecture Frame-
works. Trafford (2004)

2. Porter, M.E.: Competitive Advantage: Creating And Sustaining Superior Perfor-
mance: With A New Introduction. Free Press, New York (1985)

A Bottom-Up Competency Modeling Approach 63

3. Schuler, R.S.: Strategic Human Resources Management: Linking the People with
the Strategic Needs of the Business. Organizational Dynamics Summer 21, 18–32
(1992)

4. Schuler, R.S., Jackson, S.E.: Understanding Human Resource Management in the
Context of Organizations and Their Environments. Annual Review of Psychol-
ogy 46, 237–264 (1995)

5. Caetano, A., Pombinho, J., Tribolet, J.: Representing Organizational Competen-
cies. In: SAC 2007: Proceedings of the 2007 ACM symposium on Applied comput-
ing, pp. 1257–1262. ACM, New York (2007)

6. Federal Information Processing Standards Publication 183: Integration Definition
For Function Modeling (IDEF0) (December 1993)

7. White, S.A.: Business Process Modeling Notation (BPMN). Business Process Man-
agement Initiative (BPMI), Version 1.0 (May 2004)

8. Mayer, R.J., Menzel, C.P., Painter, M.K.: deWitte, P.S., Blinn, T., Perakath, B.:
IDEF3 Process Description Capture Method Report. Knowledge Based Systems,
Inc. (September 1995)

9. Ould, M., Huckvale, T.: Process Modelling: Why, What And How. In: Software
Assistance For Business Re-Engineering, pp. 81–97. John Wiley and Sons Ltd.,
Chichester (1994)

10. Dietz, J.L.G.: Enterprise Ontology. Springer, Heidelberg (2006)
11. The Open Group: The Open Group Architectural Framework (TOGAF), Version

8.1 Enterprise Edition (2003),
http://www.opengroup.org/architecture/togaf8-doc/arch/

12. CAP Gemini: Integrated architecture framework IAF (2007),
http://www.capgemini.com/resources/

13. Zachman, J.A.: A Framework For Information Systems Architecture. IBM Systems
Journal 26(3), 454–470 (1987)

14. Lankhorst, M.: Enterprise Architecture at Work, Modelling, Communication and
Analysis. Springer, Heidelberg (2005)

15. Sousa, P., Caetano, A., Vasconcelos, A., Pereira, C., Tribolet, J.: Enterprise Ar-
chitecture Modeling with the Unified Modeling Language. In: Enterprise Modeling
and Computing with UML. IGI Global, pp. 69–97 (2006)

16. Tarassov, V., Sandkuhl, K., Henoch, B.: Using Ontologies for Representation of
Individual and Enterprise Competence Models. In: 2006 International Conference
on Research, Innovation and Vision for the Future, pp. 206–213 (2006)

17. Gronau, N., Uslar, M.: Creating Skill Catalogues for Competency Management
Systems with KMDL. In: Khosrow-Pour, M. (ed.) Innovations Through Informa-
tion Technology. IDEA Group Press (2004)

18. Harzallah, M., Leclére, M., Triche, F.: CommOnCV: Modelling The Competencies
Underlying A Curriculum Vitae. In: SEKE 2002: Proceedings of the 14th interna-
tional conference on Software engineering and knowledge engineering, pp. 65–71.
ACM, New York (2002)

19. Harzallah, M., Berio, G., Vernadat, F.: IT-Based Competency Modeling And Man-
agement: From Theory To Practice In Enterprise Engineering And Operations.
Computers In Industry 48(2), 157–179 (2002)

20. Overbeek, S., van Bommel, P., Proper, H.: Embedding knowledge exchange and
cognitive matchmaking in a dichotomy of markets. Expert Systems with Applica-
tions (36), 12236–12255 (2009)

http://www.opengroup.org/architecture/togaf8-doc/arch/
http://www.capgemini.com/resources/

64 J. Marques, M. Zacarias, and J. Tribolet

21. Lang, A., Pigneur, Y.: Digital Trade of Human Competencies. In: HICSS 1999:
Proceedings of the Thirty-second Annual Hawaii International Conference on Sys-
tem Sciences, Washington, DC, USA, vol. 5, p. 5008. IEEE Computer Society, Los
Alamitos (1999)

22. Varela, A.R., Soares, F.M.: Modelação e análise da interacção entre recursos hu-
manos e processos de negócio. Master’s thesis, Instituto Superior Técnico, Univer-
sidade Técnica de Lisboa (2003)

23. Aveiro, D., Mendes, J., Tribolet, J.: Organizational Modeling With A Semantic
Wiki. In: SAC 2008: Proceedings of the 2008 ACM symposium on Applied com-
puting, pp. 592–593. ACM, New York (2008)

24. Nijssen, G.M., Halpin, T.: Conceptual Schema and Relational Database Design,
2nd edn. Prentice Hall, Englewood Cliffs (1996)

25. Fine, S.A., Cronshaw, S.F.: Functional Job Analysis: A Foundation for Human
Resources Management. Lawrence Erlbaum Associates, Mahwah (1999)

26. Baskerville, R.L.: Investigating Information Systems With Action Research (Octo-
ber 1999)

27. Fellbaum: WordNet: An Electronic Lexical Database (Language, Speech, and Com-
munication). The MIT Press, Cambridge (May 1998)

28. W3C: Resource Description Framework (RDF) (2002)
29. W3C: Web Ontology Language (OWL) Guide (2004)
30. Storey, M.A., Noy, N.F., Musen, M., Best, C., Fergerson, R., Ernst, N.: Jambalaya:

an Interactive Environment for Exploring Ontologies. In: IUI 2002: Proceedings of
the 7th international conference on Intelligent user interfaces, p. 239. ACM, New
York (2002)

Context-Aware Collaborative Platform
in Rural Living Labs

Olfa Mabrouki1,2, Abdelghani Chibani2, Yacine Amirat2,
Monica Valenzuela Fernandez3, and Mariano Navarro de la Cruz3

1 CityPassenger SA, Avenue de l’Atlantique
Les Conquérents BP 903, 91976 Courtaboeuf Cedex, France

omabrouki@citypassenger.com
2 Université Paris XII Val-de-Marne, LiSSi, E.A. 3956

120-122 rue Paul Armangot, 94400 Vitry sur seine, France
{olfa.mabrouki,chibani,amirat}@univ-paris12.fr

3 Grupo Tragsa, Gerencia TIC ||ICT Division
Subdireccin de I+D+i ||Subdirectorate of Innovation and R&D

Julin Camarillo, 6 B; 4 planta Madrid Spain
{mvaf,mnc}@tragsa.es

Abstract. In this paper, we present a collaborative context-aware
framework for rural living labs or rural innovation ecosystems as So-
cial Spaces for Research and Innovation (SSRI). The proposed framework
exploits seamless integration of standard ubiquitous computing technolo-
gies to support smart collaboration and knowledge sharing between ru-
ral communities. We underline an open collaborative platform based on
context-aware components useful in any rural living lab area. This plat-
form is focused on the bus component which acts as a connector for the
different living labs. The bus architecture gives the advantage to facil-
itate the dynamic integration of living lab services using discovery and
binding methods. It guarantees also the large scale interconnection of all
the living labs. Building such framework requires resolving a main issue
of the design approach. Moreover, we experiment the use of such plat-
form in rural community of fishery sector. The work presented in this
paper is one of the main results of the Collaboration@Rural (C@R) Euro-
pean research project: a collaboration platform for working and living in
rural areas (FP6-2005-IST-5-03492) that aims to build a platform of net-
worked living labs for context-aware collaborative working in rural areas.

Keywords: rural living labs, collaborative platform, context awareness,
ubiquitous computing, orchestration.

1 Introduction

The term Living Lab (LL) was given at the first time in 2003 by ProfWilliam
Mitchell from MIT, Media Lab and School of Architecture and city planning.
He defines this new concept as a research methodology for sensing, prototyp-
ing, validating and refining complex solutions in multiple and evolving real life
contexts.

A. Albani and J.L.G. Dietz (Eds.): CIAO! 2010, LNBIP 49, pp. 65–76, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

66 O. Mabrouki et al.

This new concept is also represented as innovation environments where stake-
holders form a partnership of enterprises, users, public agencies and research
organizations. Since then, many definitions of LL have been proposed in the lit-
erature. In a LL, cooperation is established for creating, prototyping and using
new products and services in real-life environments. Users are not seen as an
object of innovation and customers but as early stage contributors and innova-
tors [1]. Thus, we might view LLs as concrete implementations of user driven
open innovation environments [2]. Consequently, we have agreed on the follow-
ing definition: LL is a research methodology for innovation that challenges the
whole research and innovation process in real-life conditions by human, social,
cultural, organizational and institutional aspects, and has an impact on sustain-
able service,business and technology development.

Several researches in the field of LL were undertaken in the literature. The
most of them concerns the proposition of ubiquitous technologies applications to
impact socially and economically LLs environments. Other works deal with LLs
in education [3] and home environment [4]. In the last five years, the European
commission funded researches to build LLs as open innovation platforms. These
LLs are intended to be used in a real-world environment for collaboration among
stakeholders in the value of ICT (Information and Communication Technologies)
production [5].

Hence, the paradigm of LL is used more and more in the area of ubiquitous
computing as it involves user in the early phases of service innovation. Moreover,
Rural Living Labs (RLLs) are a special kind of this paradigm that enhances ICT
rural development and that are user-centered design. Ubiquitous collaboration
in LLs targets to provide users with integrated context-aware services capable
of exploiting all the facilities of both wired and wireless environments. These
services allow creating flexible and effective virtual teams. Such integrated ser-
vices placed in the rural context may be adapted to different users situations
and environment characteristics.

The C@R LLs have been setting up to experiment advanced collaborative work
and business innovations to enhance attractiveness of rural areas and strengthen
rural development. Within the C@R project, a LLs vision and methodology have
been developed and implemented to create rural and regional innovation envi-
ronments. This project aims to propose and develop an innovative collaborative
platform for rural communities and demonstrate the use of this platform by inte-
grating various tools for various user communities. It promotes the development
of an open collaborative architecture which enables the reuse and the contextual-
ization of services and collaborative tools. Seven LLs have been launched; six in
Europe and one in South-Africa, to establish and experiment collaborative plat-
forms and applications enhancing Small and medium enterprises (SME) related
work and business collaboration in specific sectors.

In this paper, we highlight our proposal for designing the collaborative context-
aware platform for LLs and managing context-aware services. The methodology
used is called Open Service Oriented Architecture (OSOA). The context-aware col-
laborative platformenhances social and economic conditions in rural environments

Context-Aware Collaborative Platform in Rural Living Labs 67

through the introduction and experimenting of new ways ofworking and managing
business. This platform is focused on the bus component which acts as a connector
for the different LLs. The bus architecture gives the advantage to facilitate the dy-
namic integration of LL services using discovery and binding methods. The paper
is organized in the following way: section II introduces the framework for context-
aware collaborative platform in LLs. In the section III, we illustrate the use of this
framework for rural LLs in the fishery sector.

2 Framework for Context-Aware Collaborative Platform
in Living Labs

An efficient methodology to set up a framework for context-aware collaborative
platform is indispensable. We present and argue the use of the OSOA approach
for the design of such architecture. Then, we describe the framework with its
several layers and highlight the different features of context-aware components
in this framework.

2.1 Framework Modeling Methodology: OSOA Approach

Service Oriented Architecture (SOA) nowadays is a well known term providing
principles of how to develop and integrate a system of loosely coupled services.
SOA defines not only the low-level software architecture design principles but is
a complete enterprise software concept including among others security, gover-
nance, deployment and integration. The term Open Service Oriented Architec-
ture (OSOA) which is used to define the C@R SOA [6][7] approach also defines
a set of principles to develop and integrate a system of loosely coupled services
but also components. The differences to a traditional SOA approach are the con-
cepts built upon and how they are combined to provide the ground of a service
oriented collaborative working environment (CWE).

On the software architectural level there currently exist many different flavors
and interpretations of service-oriented architecture (SOA) concepts, which are
being promoted by different organizations. One of the most popular and active
SOA developers group is the Open SOA (OSOA) Collaboration [8], which rep-
resents an informal group of industry leaders with a common goal. They work
together on the definition of a language-neutral programming model able to
meet the needs of enterprise developers who are developing software following
the SOA principles.

The OSOA follows similar concepts and represents a system that exploits the
SOA benefits using language-neutral concepts to build the ground for a service
oriented CWE. Since the C@R architecture will be used in a broad community,
among different LLs, and in a diverse set of use case scenarios it is essential
to build the architecture upon well defined standards and to avoid proprietary
concepts. The most important standards used in the C@R OSOA improve the
quality of developed software and thus ensure the interoperability, maintainabil-
ity and reusability of the individual components. This enables the utilization of
advanced Collaborative Working Environments even in rural setups.

68 O. Mabrouki et al.

The C@R CWE System is certainly a different and wider concept than the
OSOA Collaboration Group proposal and other SOA approaches, as it is not just
considering software developers agreeing on a software architecture providing
user services, but as a whole Open System to enable a CWE considering all
available actors: users, equipment, service providers,software providers, CWE
system designers and stakeholders.

Reference Architecture Design. The main purpose of the C@R project is
to introduce and involve collaborative works environments which will raise rural
development. Actually, the issue is related to the networked LLs where users
need to collaborate, communicate and exchange information. Setting up an open
collaborative architecture that enables the reuse, the contextualization and the
personalized of services and tools is mandatory to cover the rural character of
such LLs.

Architecture layers. A layered architecture design realizes decoupled com-
ponents [9]depicted in the figure 1 to deal with different aggregation levels of
business functionality, namely:

– CCS. Collaborative Core Services implemented as reusable software com-
ponents that encapsulate distinctive core functionality. Such functionality
provides basic services (e.g. 3 G connectivity, SMS delivery, order creation
etc.). CCSs plug into the C@R Control BUS where they are registered. Every
CCS provides a public API, implemented as a Web-service;

– SCT. Software Collaboration Tools [9] comprise aggregated functionality,
which can be integrated into a final RLL application, but is of such a degree
of independence to be usable for various applications even across different
Living Labs. Simple SCTs provide only one CCS and more sophisticated
SCTs orchestrate several CCSs into a business process to the RLL appli-
cation via a web service interface. SCTs can be defined using different lan-
guages. One of the basic objectives of C@R is to use as much as possible
standard languages. Current implementations of the SCTs use BPEL [10]
and/or BPMN [11] that allows the creation of scripts, which are executed
by the orchestration engine;

– OC. Orchestration Capabilities [12] provide collaborative functions and li-
braries that will be used by executable scripts that define the composition of
SCTs. Three orchestration capabilities are identified, namely Context Aware-
ness, Distributed Workspace, and Advanced Services. A Collaborative sit-
uation may involve atomic functions from different OCs such as Messages
Broadcasting, Shared Display, Videoconference systems, etc. categorized as
the three identified orchestration capabilities. OCs can be implemented as
Web Services (following the CCS design) or as static libraries deployed to-
gether with the Control BUS;

– RLL. Rural Living Lab applications cover end user interactions (via a User
Interface) with a system supporting collaborative workflows that overcome
problems related to rural activities. These applications make use of underlying

Context-Aware Collaborative Platform in Rural Living Labs 69

layered business functionality encapsulated in SCTs but also linking directly
to CCS and OC functionality.

Additional to these layers a Control BUS has been conceptualized and imple-
mented in order to centrally deal with component registration and brokerage.

Fig. 1. Framework for context-aware networked RLLs

Control Bus. Control functions of the elements of the C@R Architecture are
encapsulated in the Control BUS. It acts as a resource broker, where signaling
information about resources is exchanged, enabling the system to search for re-
sources, managing their interconnection and supporting collaboration among dif-
ferent CWEs. The BUS acts as an informing middleware that is a conceptual
inter-layer space designed for CCS component harmonization, homogenization
and adaptation to standards. It makes the C@R architecture more powerful and
flexible allowing an easy integration of proprietary or new standard CCS compo-
nents. This key piece of C@R architecture consists of five modules (see figure 2):

– Bus maintenance. This module is responsible for keeping the logs of all
the BUS activities, and for all tasks related to the management of the BUS
itself. Furthermore, the module offers configuration files and interfaces for
the administrators to control the behavior of the BUS;

– Registrar. This module is responsible for keeping a database of all com-
ponents (CCS and Orchestration Capability) connected to the system. Fur-
thermore it implements search functionality, allowing any element to look for
other elements (CCS, Orchestration Capability) connected to the platform;

70 O. Mabrouki et al.

– Connector. This module allows interconnection of components and the
management of release and monitoring of connections among them;

– Instantiation management. This module serves to support the instanti-
ation process;

– Bus Inter-working. This module is responsible for negotiating the com-
munication with other C@R platform BUSes, or even control layers of other
platforms. It provides collaboration among different BUSes and enables
resources sharing.

Fig. 2. Control bus

BUS implementations require the establishment of information channels with
the resources that it pretends to manage and interconnect. Those Control Com-
munications are centralized by the BUS and use Web Services as transport tech-
nology, while Data Communications are P2P and may use any kind of transport
technology.

Orchestration capabilities. The Orchestration Capabilities (OC), as defined
by C@R [12], provides collaborative functions and libraries that will be used
by executable scripts that define the composition of SCTs. Three orchestration
capabilities have been identified:

– Distributed Workspaces includes the minimum necessary methods and data
structures to build high-level collaborative functions;

– Context Awareness adds functions providing environmental status and meth-
ods for context change reaction;

– Access to Advanced Services includes SIP/IMS & Security capabilities.

C@R has analyzed current collaboration activities performed at Rural Areas
(using the seven Rural Living Labs included in C@R. This analysis concluded
on the identification of 45 services that where common to two or more RLL and
60 services that are specific for only one RLL. The identified common services
are the candidates for being including in any of the OCs of C@R in order to
provide the basic support for creating complex collaboration services.

Context-Aware Collaborative Platform in Rural Living Labs 71

Context-aware components. Context awareness was introduced for the first
time by Schilit and Theimer [13]. They defined context of an entity as a set of
information concerning the identity of the entity, its location, identities of nearby
objects and changes to those objects. Ryan et al. [14] present context of an entity
as its environmental information, such as location, time, temperature and its
identity. Dey [15] considers context of an entity as its physical, social, emotional,
and mental (focus-of-attention) environments, location and orientation, date and
time of day, other objects in the environment.

The majority of these researchers share a common vision of context as it
represents a set on information about location, time and activity of a person.
In the C@R architecture, CCS components are contextaware components as
they provide contextual information about the user. Actually, these components
provide information about user location, user profile, spoken languages and Web
sensors, namely the following components have been implemented and used in
the individual Living Labs (see figure 3):

Fig. 3. Context-aware components

– User profile: the User Profile Component (UPC) describes the user per-
sonal information, preferences and role. Once the user is authenticated, it
is possible to load his particular profile and particular preferences. In this
way, available components and their settings are customized on startup. The
context awareness API related to UPC allows full access with appropriate
authorization to context information component to allow technicians the
reuse of the UPC by simply invoking some methods. This component is for
its nature distributed and cross-LLs as potentially. It is expected to run
on the top of different databases which are implemented into several and
heterogeneous products both open source and commercial licenses;

72 O. Mabrouki et al.

– Geo-Catalogue: catalogue services are the key technology for locating,
managing and maintaining distributed resources. With catalogue services,
client applications are capable of searching for resources in a standardized
way (i.e. through standardized interfaces and operations). Catalogue compo-
nent developed for C@R architecture automatically collects CCS component
metadata and provides their registration into metadata catalogue. This in-
ternal component gives to users/developers possibility to register metadata
records for new developed CCS as well as to know which CCS are currently
available in the C@R architecture. Once registered metadata can be searched,
extended or updated using some of metadata applications (Metadata editor
or Metadata Catalogue System);

– Web sensor: this component presents many opportunities for adding a real-
time sensor dimension to the Internet and the Web. This has extraordinary
significance for science, environmental monitoring,transportation manage-
ment, public safety, facility security, disaster management, utilities Supervi-
sory Control and Data acquisition (SCADA) operations, industrial controls,
facilities management and many other domains of activity;

– MDLC: the Multilanguage Data Loading Component is a context-aware
component which allows user applications to retrieve a set of configuration
files that contain the localized texts needed to interact with the end users.
This software component enables user applications to adapt their interfaces
to a particular user. Hence,the communication happens in terms of their pre-
ferred language. The component aims to empower user applications with the
capability to perform the loading of different languages as a set of localized
texts at the interface level stored in configuration files which are particular
to a specific application.

3 Experimenting C@R Platform in the Fishery Sector

Among the different rural regions of LLs, we have chosen as an experiment
example the Cudillero living lab (in Asturias, Spain). This LL has been developed
in collaboration with public administrations, the local authorities and the fishery
guilds. Applications developed for the fishermen try to enhance current business
processes in order to make fishing production more profitable, e.g. helping on
the day-by-day activity of the users in the vessels and in the auction process
via the transmission of reports on the catches (arrival hour, sizes of the catches,
total weight of the catches, etc.) and thereby contributing with a significant time
and workload saving. The applications also contribute to improve the safety of
fishermen in case of accidents or health emergencies, providing an immediate
response from the health authorities. Furthermore, the collaboration between
vessel and port will serve to optimize the organization of the port activities.

The following use cases have been implemented in the Cudillero RLL: GPS
based catches data sending; Weather reports; Alerts management service and
safety on board; Messages delivery service by instant messaging and presence.
Based on mockups and prototypes validated by the user community, the software

Context-Aware Collaborative Platform in Rural Living Labs 73

platform is implemented according to the principles of the proposed reference
architecture. Once prototypes are developed, the basic software components and
their interactions are determined. As a result the three layered architecture is
mapped onto the individual components (see Figure 4, for use case Catches data
sending). From bottom to top, CCS (Collaborative Core Services) components
are the atomic resources which are orchestrated thanks to a control middleware,
by service scripts and collaborative functions in the SCT layer of the architecture.
These collaborative core services (CCSs) in layer 1 are registered in the resources
broker (Bus) enabling the system to search for resources and managing their
interconnection. A homogeneous layer (BusCCSOperations library) registers and
connects CCSs to the Bus, in order to make each identified CCS available to the
C@R platform.

Fig. 4. Prototypes in basic components, in this case catches data sending

Services for Cudillero operate in a main domain where two sub domains are
distinguished: the fishing boats sub domain and the fishery sub domain (see
figure5). Each sub domain relies on one C@R bus. Different sub domains are
registered in the Cudillero domain through the bus internetworking capability.
This module also enables the reutilization of basic resources or the information
exchange with other domains as other ports (i.e. Aviles port). Layer 2 in Cud-
illero utilizes a specific component as an Orchestration Capability: the authen-
tication Authorization and Audit Service (AAAS). AAAS acts as a transversal
service that needs to be preregistered in the bus to let the rest of CCSs to be
authenticated to the C@R platform.

74 O. Mabrouki et al.

Fig. 5. Software components in Cudillero sub domains

Fig. 6. CDS APP main data screen

Layer 3 defines the Collaborative services instantiation process. SCTs or soft-
ware collaboration tools are the key elements to instantiate the collaborative
platform relying in each bus. The SCTs deal with the modeling of the business
processes of each sub domain. This piece of software is first compiled to get a
BPEL script. These scripts contain information about all the necessary elements
and basic services to be connected and started to run the platform. This BPEL
script is uploaded to the SCT scripts repository. When the instantiation process
begins, the SCT is downloaded to a server (composition engine) configured with
some instantiation parameters (additional code). As a result, CCSs defined in

Context-Aware Collaborative Platform in Rural Living Labs 75

the SCT are deployed to the server, registered to the bus and started. Most of
the software components are identified as Collaborative Core Services (CCSs)
except the AAAS that acts as a transversal service that needs to be preregistered
in the bus to let the rest of CCSs to be authenticated to the C@R platform.

Two special CCSs were distinguished in each sub domain: 1) CDS App -
Catches Data Sending Application, see Figure 5, and 6) FIS App - Fishery
Information System Application. These specific CCSs (CCS applications) consist
of the graphic user interfaces and the service framework. These are main threads
that use and orchestrate the basic services (rest of CCSs) to compose end user
applications.

4 Conclusion

One of the key objectives of C@R is the development of a reference architecture
reflecting advantageous concepts that overcome a variety of challenges and pain
points typical for rural CWEs. Deriving common characteristics of such archi-
tecture turned out to be difficult due to the limited capabilities of end users to
reflect on technical needs and to the differences in target sectors of the 7 Living
Labs involved.

C@R found out overlaps between architectural needs if not between all Living
Labs at least between some of them. These overlaps have been translated into
several principles (decoupling, open standard compliancy, flexible infrastructure
support, service orchestration, interoperability, etc.) that drove the architectural
design and the implementations in the individual Living Labs.

The common principles of the reference architecture have been realized exem-
plary and subsequently validated in terms of added value. Such common princi-
ples include the usage of most important standards (e.g. web services, BEPL),
component representation (e.g. BPMN), tools (e.g. Intalio Designer), reusable, en-
capsulated functionality (OC services, CCSs), security models (e.g. AAS) or ser-
vice brokerage (e.g. BUS). Besides commonalities the flavored implementations in
the different Living Labs also showed distinctive differences that reflect the local
specifics, e.g. the usage of the sub domain concept in Cudillero (fishing boats) or
the limited usage of the BUS in Sekhukhune due to network impediments. The
full potential of architectural benefits couldnt be leveraged during the lifetime of
the project. Nevertheless the validation of architecture implementations in dis-
tinctive experiments provided promising results: In particular the C@R reference
architecture is capable to facilitate the reuse of collaboration services, concepts
and components across design and runtime environments of different CWEs.

The required degree of flexibility to develop and operate software collaboration
tools has been assured through the usage of the most relevant standards in the
fields associated to services. Openness and interoperation of CCS components
for SCT orchestration coming from different platforms have been showcased.
The performance of SCTs using the base components of the architecture is sat-
isfactory and cost and effort required to develop software collaboration tools are
competitive.

76 O. Mabrouki et al.

References

1. Hippel, E.V.: Democratizing Innovation. MIT Press Books, vol. 1. The MIT Press,
Cambridge (2006)

2. Guzman, J.G., Schaffers, H., Bilicki, V., Merz, C., Valenzuela, M.: Living labs
fostering open innovation and rural development: Methodology and results, Asia-
Pacific Tech. Monitor (September 2007)

3. Abowd, G.D.: Classroom 2000: An experiment with the instrumentation of a living
educational environment. IBM Systems Journal 38, 508–530 (2000)

4. Kidd, C.D., Orr, R., Abowd, G.D., Atkeson, C.G., Essa, I.A., Macintyre, B., My-
natt, E., Starner, T.E., Newstetter, W.: The aware home: A living laboratory for
ubiquitous computing research, pp. 191–198 (1999)

5. Oliveira, A., Fradinho, E., Caires, R.: From a successful regional information society
strategy to an advanced living lab in mobile technologies and services. In: Hawaii
International Conference on System Sciences, vol. 4, p. 83a (2006)

6. D2.1.3, C.P.D.: C@r and osoa design (July 2008)
7. D2.5.1, C.P.D.: C@r and osoa design (July 2008)
8. Edwards, M.: Open service oriented architecture (June 2006),

http://www.osoa.org

9. D2.1.5, C.P.D.: Workflows for rural activities (October 2009)
10. OASIS: Bpel web services business process execution language version 2.0.,

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpelv2.0-OS.html

11. Group, O.M.: Bpmn, http://www.bpmn.org
12. D2.5.2, C.P.D.: Integration of distributed workspaces, localization and context

awareness and access to advanced service components into sct for rural environ-
ments (October 2009)

13. Schilit, B., Theimer, M.: Disseminating active map information to mobile hosts.
IEEE Network 8, 22–32 (1994)

14. Ryan, N.S., Pascoe, J., Morse, D.R.: Enhanced reality fieldwork: the context-aware
archaeological assistant. In: Gaffney, V., van Leusen, M., Exxon, S. (eds.) Computer
Applications in Archaeology 1997, British Archaeological Reports, Oxford, Tempus
Reparatum (October 1998)

15. Dey, A.K.: Context-aware computing: The cyberdesk project. In: AAAI 1998
Spring Symposium on Intelligent Environments, Palo Alto, pp. 51–54. AAAI Press,
Menlo Park (1998)

http://www.osoa.org
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpelv2.0-OS.html
http://www.bpmn.org

A Formal Approach to Architectural
Descriptions – Refining the ISO Standard 42010

Sabine Buckl1, Sascha Krell2, and Christian M. Schweda1

1 Lehrstuhl für Informatik 19
Technische Universität München

Boltzmannstraße 3, 85748 Garching, Germany
{sabine.buckl,schweda}@in.tum.de
2 Professur für Wirtschaftsinformatik
Universität der Bundeswehr München

Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
sascha.krell@unibw.de

Abstract. Architectural descriptions representing and modeling the ar-
chitecture of a system or parts thereof are typically used in the engineer-
ing disciplines to plan, develop, maintain, and manage complex systems.
Primarily originating from construction engineering, the means of ar-
chitecting and architectural descriptions have been successfully trans-
ferred to related disciplines like software engineering. While a rich and
formal theory on conceptual modeling exists as well as frameworks on
how to approach architectural descriptions, e.g. the ISO standard 42010,
only few attempts have yet been made to integrate the prescriptions
and guidelines from these sources into a formal architectural descrip-
tion framework. In this paper, we establish such a framework against the
background provided by the ISO standard 42010 by formally defining the
terms concern, view, viewpoint, and architectural description. Further, an
outlook discusses potential application areas of the framework.

1 Motivation

Development, design, and maintenance of architectures have a long history in
the engineering disciplines. Primary originating from construction engineering
the objectives of architecture – to be strong or durable (firmitas), useful (utili-
tas), and beautiful (venustas) [1] – and their means have been applied to other
disciplines to address challenges in related domains (cf. [2,3]). One of these dis-
ciplines is software engineering, in whose context the term architecture can be
defined in accordance with the ISO Std. 42010 as ”the fundamental organiza-
tion of a system embodied in its components, their relationships to each other,
and to the environment, and the principles guiding its design and evolution” [4].
In the same sense, Rechtin coined the following proverb ”every system has an
architecture” in [5]. He thereby, emphasized on the fact that an architecture is
an intrinsic property of a system that cannot be neglected. The architecture,
however, is not necessarily documented, i.e. made explicit. This idea yields a

A. Albani and J.L.G. Dietz (Eds.): CIAO! 2010, LNBIP 49, pp. 77–91, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

78 S. Buckl, S. Krell, and C.M. Schweda

delicate but central distinction of the two terms architecture and architecture
description that will reverberate through the remainder of the article. During
the software development process, for instance, a variety of different documen-
tations, so called ”views” or ”models”, of the system under consideration are
created and used to facilitate the communication between the involved stake-
holders, e.g. customers, software architects, and software engineers. Examples
for such ”views” are different diagrams corresponding to the different diagram
types as proposed by the UML, the de-facto standard for software engineer-
ing [6]. In accordance with the ISO Std. 42010 the entirety of these views is
referred to as architectural description, a ”collection of products documenting
the architecture” [4] of the system.

In the context of architectural descriptions, the way human beings, i.e. stake-
holders, comprehend knowledge about what is perceived to exist, i.e. the system
under consideration, plays an important role. The science dealing with such as-
pects is referred to as epistemology [7]. In [8] Becker and Niehaves present an
epistemological reference framework for information systems research, which de-
tails on questions in which way a person can arrive at true cognition. In the
context of architectural descriptions, especially the ontological aspect discussed
in the framework is of interest. The ontological aspect is concerned with the ob-
ject of cognition, i.e. the architecture of the system under consideration. Thereby
three positions can be differentiated

ontological realism, according to which the system’s architecture exists inde-
pendently of human cognition,

ontological idealism, according to which the system’s architecture is a con-
struct depending on the consciousness of the observing person, and

kantianism, according to which the system’s architecture consists of parts,
which are dependent and independent of the observing person.

Abstaining from in-depth discussions on the ontological perspective, we resort
ourselves to the position of ontological realism that well aligns to the under-
standing of Rechting [5].

Although the importance of architectural descriptions, e.g. in the context of
software engineering is unquestioned, no general formal framework for such de-
scriptions has yet been developed. For special purpose languages as e.g. the
UML, formalization approaches have nevertheless been undertaken, see e.g. [9].
The absence of a general framework is especially interesting as rich and for-
mal theories for conceptual modeling exists as well as frameworks on how to
approach architectural descriptions (cf. [4]). Building on the framework of the
ISO Std. 42010, Dijkman et al. present in [10] a basic formalization approach
targeting consistency of viewpoints in the context of multi-viewpoint modeling.
Doubtlessly their approach provides a valuable contribution in the field, but does
not deliver a comprehensive formalization for the field of architecture descrip-
tion. This in contrast is the experienced research gap, that our paper addresses
by introducing and discussing frameworks for conceptual modeling and for ar-
chitectural descriptions in Section 2. These frameworks are used as foundation

Refining the ISO Standard 42010 79

for the approach to architectural descriptions presented in Section 3, which for-
mally defines the terms concern, view, viewpoint, and architectural description.
Finally, Section 4 provides a critical reflection of the contribution of the paper
and discusses future topics of research.

2 Describing Architectures

Postponing more elaborate considerations on the structure of an architectural
description to Section 2.2, we restrict ourselves to an intuitive understanding of
description as a purposeful abstraction of an architecture, i.e. as some sort of
conceptual model thereof. This aligns with the definition of the latter term given
by Mylopoulos, who claims in [11] that the activity of conceptual modeling,
which is the activity of creating conceptual models, is ”the activity of describ-
ing the physical and social world around us for purposes of communication and
understanding”. He further states, that conceptual models are developed for
certain users or stakeholders, as we call them in accordance with the ISO Std.
42010 (cf. [4]). In the remainder of the paper, we will understand architectural
descriptions as conceptual models of the architecture, more precisely as specifi-
cations of conceptual models of the architecture. We precedingly discuss further
properties of conceptual models and on ways to describe these properties in a
more abstract fashion in the following section.

2.1 Introduction to Conceptual Models

Guizzardi introduces in [12] a framework that can be applied to promote the
understanding of the relationships between architectures, conceptual models
thereof, and architectural descriptions. Figure 1 summarizes the framework,
thereby also introducing additionally relevant concepts as conceptualization and
modeling language.

Central concepts of the framework are on the one hand the (mental) model
of the architecture and the corresponding model specification. The mental model
thereby alludes to a stakeholder’s understanding of what the architecture looks
alike. The model specification is therein understood as the representation of a
model using an appropriate modeling language. This introduces the concept of the
representation that in accordance to Guizzardi [12] can be understood as
function mapping from the space of model entities to a corresponding space
of syntactically correct instantiations of modeling language constructs.
Complementing the representation function, the framework provides the inter-
pretation function that conversely maps from syntactically correct instantiations
of the modeling language constructs to corresponding model entities. With these
definitions at hand, it intuitively becomes clear that the purposefulness and ap-
propriateness of an architectural description, i.e. a model specification, heavily
depends on the backing modeling language’s ability to express and represent the
concepts’ underlying the mental model. Staying in the field of conceptual model-
ing, Guizzardi derives in [12] a framework for evaluating the appropriateness of a

80 S. Buckl, S. Krell, and C.M. Schweda

Modeling Language

Architectural Description

Architectural Mental
Model

Conceptualization Modeling Language

Concern Viewpoint

Model Specification
(View)

Model Specification
(View)

Model Specification
(View)

Cohesion
set

Ontological
commitment

instance of used to compose

representation

interpretation

instance of used to compose

Fig. 1. Conceptual modeling on architectures

modeling language. This framework builds on a basic idea coined by Gurr in [13]
according to which the representation function needs to be an isomorphism with
the interpretation function as its inverse. Elaborating on the difficulties associated
with proofing the isomorphism nature of a function mapping mental models to
representations thereof, Guizzardi reformulates the demand to two requirements
for the representation function and two complementing requirements targeting
the interpretation function. These requirements read as follows:

Lucidity. A specification must be lucid with respect to its corresponding model,
which means that every construct in the specification must represent at most
one entity from the model. Thereby, overloaded representation constructs are
forbidden. (injective representation function)

Soundness. A specification must be sound with respect to its corresponding
model, which means that every construct in the specification must repre-
sent at least one entity from the model. Thereby, construct excess in the
representation is avoided. (surjective representation function)

Laconicity. A specification must be laconic with respect to the corresponding
model, which means that every entity in the model can be derived by inter-
pretation from at most one construct in the specification. Thereby, construct
redundancy is forbidden. (injective interpretation function)

Completeness. A specification must be complete with respect to the correspond-
ing model, which means that every entity in the model must be derivable by
interpretation from at least one construct in the specification. Thereby, it is
ensured that the entire model can be derived from its specification. (surjective
interpretation function)

In the light of above requirements, different definitions for the term modeling
language are discussed in literature, where e.g. Guizzardi in [12] stays to a

Refining the ISO Standard 42010 81

structural perspective on languages inspired by the idea of the two mappings.
More advantageous for our subsequent considerations is a notion of language
that provides more insights into the internals of modeling. In this vein, we adopt
the definition advocated by Kühn in [14], where he names the following language
constituents:

Syntax.1 The syntax defines the structure of the language, i.e., the constructs
that form the language body, and the grammar, i.e., the rules for combining
the constructs to valid language expressions.

Semantics. The semantics provides the meaning for the language constructs,
i.e., prescribes the interpretation of the constructs to corresponding model
entities.

Notation.2 The notation introduces user-perceivable concepts, as e.g. symbols,
used to present language constructs to a language user.

In terms of Kühn [14], the representation function of Guizzardi [12] consists of
semantic and notational aspects. Explicitly accounting for the latter concepts is
beneficial for our subsequent consideration due to multiple reasons, of which the
most prominent one is ”notational plurality”. This aspect is discussed by Kühn
on a general level, but also emphasized in the context of different architecture-
related disciplines, as e.g. EA management, for which Buckl et al. present in [15]
a technique for decoupling notational aspects from semantic ones and show how
such a technique can be implemented in a tool. With this in mind, one can justify
to abstain from in-depth considerations on the notational aspect of languages.

2.2 ISO Std. 42010

The ISO Std. 42010 on architectural descriptions for software and systems engi-
neering [4] establishes a terminological framework for discussions on architectural
descriptions. As part of this framework, the relevant terms of architecture and
architectural description are defined. A more in-depth discussion on the struc-
ture of an architectural description is provided along a metamodel3 for such
descriptions, of which Figure 2 presents the relevant part for this article. The
concepts introduced thereby are defined in [4] as follows:

Stakeholder. A stakeholder is an individual, team, organization, or role having
concerns with respect to the system.

Concern. A concern is an area of interest in a system pertaining to developmen-
tal, technological, business, operational, organizational, political, regulatory,
social, or other influences important to one or more of its stakeholders.

View. A view is a representation of a system from the perspective of an iden-
tified set of architecture-related concerns. Thereby, the system is abstracted
to architectural models.

1 In other language specifications, the concept is alluded to as abstract syntax.
2 In other language specifications, the concept is alluded to as concrete syntax.
3 The standard actually uses the term ”conceptual model” and denotes ”metamodel”

only as alternative term. To avoid confusions, the remainder of the article employs
the latter term.

82 S. Buckl, S. Krell, and C.M. Schweda

Viewpoint. A viewpoint contains conventions for the construction and inter-
pretation of a view.

The notion of architectural model is further detailed in the standard, leading to
the conclusion that such model should be identified with a model specification
in terms of Guizzardi [12]. In addition, explanation for the distinction between
view and model is provided, emphasizing on the possibility to reuse architectural
models in different views. While such modularity might in fact be beneficial
during applications of the framework, it does to us seem only of minor importance
in the context of the subsequent formal approach to architectural descriptions. In
this vein, we apply without loss of generality a simplification to the metamodel
by uniquely identifying views and architectural models and subsuming these
concepts under the term ”view”.

Fig. 2. Metamodel of the ISO Std. 42010 [4]

With this shortened version of the standard at hand, we briefly revisit the con-
cepts introduced in Section 2.1. The stakeholder concept allows to make explicit
the owner of a mental model that is represented as part of an architectural de-
scription. The conceptualization underlying the mental model as reflected in the
corresponding modeling language is mirrored in the stakeholder’s concerns. Put
in other words, a concern employs an underlying conceptualization that again
is tightly linked to the syntax and semantics of the modeling language, while
notational aspects may not apply here. These notational aspects finally come
into play during the construction of the actual views, which are developed and
interpreted along the guidelines stated in the viewpoint. From this, one can sen-
sibly derive that the modeling language constitutes a part of the viewpoint. The
above considerations lay the basis for our subsequent elaborations on a formal
approach to architectural descriptions.

Refining the ISO Standard 42010 83

3 A Formal Approach to Architectural Descriptions

The ISO Std. 42010 provides a valuable framework for understanding architec-
tural descriptions embedded into their creation and utilization context, as well
as their related stakeholders. This is achieved by a metamodel of concepts used
for making the description’s context explicit. Following the interpretation of ar-
chitectural descriptions or more precisely their constituting views as models of
the architecture in terms of conceptual modeling, a disadvantage of the informal
conceptualization of the standard becomes apparent. In particular, the stan-
dard does not allow for reasoning on an architectural description’s underlying
representation and interpretation function, which recruits from corresponding
functions in the constituting viewpoints.

Subsequently, a formalization of the concepts from the metamodel of the ISO
Std. 42010 is provided, which can be used for profound formal considerations on
the model nature of an architectural description. Preparing this formalization,
we introduce two basic concepts as follows:

– the set of all possible architectures A, which corresponds to the ”set of pos-
sible worlds” as introduced by Guizzardi in [12], and

– the set of all entities and relationships D. The entities and relationships
make up the constituents of an architecture, i.e. exist in the corresponding
”world”.

With these basic notions in mind, our roadmap for this section at first reconciles
the terms of conceptualization and modeling language, respectively. Building on
a formalized understanding of these terms, we derive relationships on the cor-
responding structures, leading to the notion of an ontological commitment of a
language in respect to a conceptualization (cf. [12]). Formal definitions for con-
cerns and viewpoints are presented as extensions of conceptualizations and model-
ing languages, respectively. Alongside, formalized relationships are introduced to
define the terms of embedding, equivalence, and orthogonality of concerns on the
one hand, as well as the appropriateness of a viewpoint in respect to a concern on
the other hand. Concluding our formalization approach, we elaborate on consis-
tency requirements on architecturaldescriptions that employ multiple viewpoints.
For the subsequent discussions, it also has to be noted that albeit the formality of
the presented model, we do not assume that each stakeholder describes his or her
conceptualizations, concerns, or viewpoints on such an abstract level.

3.1 Conceptualization and Modeling Language

Guizzardi introduces his definition of conceptualization in [12] as a set of struc-
turing principles used (implicitly) during the creation of a mental model. In
this vein, a conceptualization provides concepts that are used to classify real-
world entities and relationships4 to classes or association types. In line with this
understanding, a conceptualization z ∈ Z is described as a tuple consisting of:
4 Entities and relationships are subsequently subsumed as ”instances”.

84 S. Buckl, S. Krell, and C.M. Schweda

– the set of admissible architectures Az ⊆ A,
– the set of admissible instances Dz ⊆ D, and
– the set of concepts5 Rz ⊆ ⋃

n∈N
(Az → P(Dn

z)).

The above definition yields a contextual and extensional understanding of con-
cepts, i.e., defines the concept not solely over its instances, but in relation to
the architecture that they are contained in, and understands a concept in a
set-theoretic fashion. This also explains, why the powerset notation is used: a
concept 〈a,D1〉 is a tuple of an architecture and the corresponding instances
that together form the extension of the concept.

With this understanding of conceptualizations, we can further establish an
equivalence relationship ≡ ⊆ Z × Z. This relationship builds on the existence
of a bijective function dz : Dz1 → Dz2 . Based on this, the equivalence of two
conceptualizations z1 = 〈Az1 ,Dz1 ,Rz1〉 and z2 = 〈Az2 ,Dz2 ,Rz2〉 can be defined
as:

z1 ≡ z2 ⇔ Az1 = Az2 ∧
∀ 〈a, {d1, ..., dn}〉 ∈ Rz1 : 〈a, {dz(d1), ..., dz(dn)}〉 ∈ Rz2 .

Pursuing the path from a conceptualization towards a modeling language, a lan-
guage l ∈ L is defined as tuple l = 〈Sl, il, nl〉 with three constituents: (abstract)
syntax Sl, a mapping function il : Sl → Dl ∪ Rl reflecting the semantics, and
a notation mapping nl. The latter mapping defines for each syntactical concept
the corresponding symbolic representation. Resorting to the considerations from
Section 2.1, we abstain from discussions on the notation function here.

Linking conceptualizations and modeling languages, we resort to the notion
of ontological commitment as discussed by Guizzardi in [12]. In these terms,
a modeling language commits itself to a conceptualization, iff it is suitable to
represent the conceptualization’s concepts. In the operationalization of the com-
mitment relationship ∼ ⊆ L × Z, the suitability is formalized as the existence
of a bijective function m : Dl ∪Rl → Dz ∪Rz such that

l ∼ z ⇔ ∃ L ⊆ image(il) : m(L) = Dz ∪Rz.

Refraining to the equivalence relationship between conceptualizations as de-
fined above, an alternative definition of the ontological commitment relation-
ship can be established between a modeling language and an equivalence class
of conceptualizations [z]≡. Based on this notion, a modeling language l com-
mits itself to a set of (equivalent) conceptualizations [z]≡, iff a bijective function
m : Dl ∪Rl → Dz ∪Rz exists such that

l ∼ [z]≡ ⇔ ∃ L ⊆ image(il) : m(L) = Dz ∪Rz,

where z on the right hand side denotes an arbitrary element from the equivalence
class [z]≡ := {z′ ∈ Z|z′ ≡ z}.
5 The symbol P represents the powerset of a given set.

Refining the ISO Standard 42010 85

3.2 Concern and Viewpoint

An architectural concern represents a stakeholder’s ”area of interest” in an ar-
chitecture. In this vein, the concern is reflected by a distinct mental model of
the architecture or more precisely a part thereof, complemented with an under-
lying conceptualization. The concern further denotes which parts of the overall
architecture are mirrored in the corresponding ”model”, i.e. selects the relevant
instances. Put in other words, a concern goes beyond a sole conceptualization
but also brings along a filter function f that determines which parts of the ar-
chitecture are of interest. Formally, a concern c ∈ C can be defined as tuple
c = 〈Ac,Dc,Rc, fc〉 with:

– the set of admissible architectures Ac ⊆ A,
– the set of admissible instances Dc ⊆ D,
– the set of concepts Rc ⊆ ⋃

n∈N
(Ac → P(Dn

c)) that is further consistent with
– the filter function fc : Ac → P(Dc).

The term ”consistent” in this case means

∀〈a, {d1, ..., dn}〉 ∈ Rc : {d1, ...dn} ⊆ fc(a).

At this point it is necessary to give some general remarks. We do not try to for-
malize the term mental model or tantamount architecture6 itself. In our opinion
this is a pointless task, because of the impossibility to discover the complete
nature of a complex system. Any kind of identification, with a colored graph
for example, would be a simplification of that system, which might be allowed
for modeling purposes but not for a formalization approach, aiming at a com-
plete and consistent specification. Neither we can give construction rules for the
above introduced filter functions with the same argument. A certain filter func-
tion strongly relies on a specific theory about the modeled field, which cannot
be anticipated in advance. The intension behind a concern has thus to be left to
philosophical observations.

Figure 2 makes obvious that a viewpoint can relate to more than one concern.
From our perspective such an aggregation of concerns can only be made, if the
aggregated concerns can themselves be interpreted as one consistent concern
again. Descriptive this means, all participating concerns must employ a compat-
ible conceptualization, reflected in an assignment of equal concepts for the same
instances, or must in contrast be completely disjoint, i.e. filter for other parts of
the architecture under consideration. Otherwise, we would gain complex types,
which could cause problems in interpreting them, i.e. there might be no corre-
spondent entity in the real world domain for a given complex type. This would
break the soundness requirement of Guizzardi (cf. Section 2.1) hence depriving
an architectural description using this ”inconsistent” viewpoint of its validity as
representation of a mental model of the architecture. In these cases, it would be
more beneficial to define a further viewpoint to avoid this situation.
6 Epistemological, an architecture could be as well understood as the intension of a

system of interest.

86 S. Buckl, S. Krell, and C.M. Schweda

Approaching the notion of a ”consistent aggregation” of concerns, we can
establish a relationship among concerns expressing that one concern can be
embedded into another one. Put in other words, embedding (c1 � c2) means that
the area of interest represented by one concern c1 is completely covered by the
area of interest of another concern c2. The embedding-relationship (� ⊆ C × C)
can formally be defined via an auxilliary set D′

c1
⊆ Dc2 of instances covered by

c2 and a bijective function dc : D′
c1

→ Dc2 as follows7

c1 � c2 ⇔ Ac1 = Ac2 ∧
∀ 〈a, {d1, ..., dn}〉 ∈ Rc1 : 〈a, {dc(d1), ..., dc(dn)}〉 ∈ Rc2 ∧
∀ a ∈ Ac2 : {dc(d) | d ∈ fc1(a)} ⊆ fc2(a).

From the above embedding-relationship between concerns, we can consistently
derive an equivalence-relationship as a mutual embedding. In formal terms, the
equivalence of concerns ≡ ⊆ C × C can be defined as

c1, c2 ∈ C : c1 ≡ c2 ⇔ c1 � c2 ∧ c2 � c1.

The equivalence of concerns thereby builds on the equivalence of the underlying
conceptualizations z(c1) and z(c2), respectively. In more detail two concerns c1
and c2 are equivalent (regarding a bijective function dc) as follows:

c1 ≡ c2 ⇔ z(c1) ≡ z(c2) ∧ ∀ a ∈ Ac2 : {dc(d) | d ∈ fc1(a)} = fc2(a).

Following the logic of this observation it becomes apparent, that the ”biggest”
possible concern comprehends the interests of all stakeholders and consequently
reflects the whole architecture. It is out of doubt that such a concern would
be overly sized to be handled effectively. Nevertheless, the embedded-relation
is capable of building the foundation for abstract concerns, which comprise the
interests of different stakeholders.

We suggest two additional terms in the matter of further improvement for
the understanding of compatibility of concerns. Both provide sufficient but not
necessary conditions for compatibility.

At first, we are aiming at concerns, which do not ”affect” each other, and
can therefore be put together without depriving the description’s soundness. To
substantiate this depiction, we establish the notion of orthogonality: Two con-
cerns c1, c2 ∈ C are orthogonal c1⊥c2, if they cover different areas of interest,
more precisely, if there is no bijective function d that maps the concerns’ in-
stances (Dc1 and Dc2) consistently for all commonly admissible architectures.
Preparing a formalization of orthogonality, we introduce the auxiliary function
A : C×C → P(A) of architectures that are admissible in respect to two concerns,
as follows

A(c1, c2) := dom(fc1) ∩ dom(fc2).

7 In the definition we apply the bijection dc to a set of instances. Thereby, we want
to denote the set that results from element-wise application of the bijection.

Refining the ISO Standard 42010 87

With this shorthanded notation, the orthogonality of concerns can be defined
as8

c1⊥c2 ⇔� ∃ d : Dc1 → Dc2 : ∀ a ∈ A(c1, c2) : fc1(a) ∩ d(fc2(a)) = ∅,
where d is a bijective function.

The second sufficient prerequisite for compatibility of concerns is conceptual-
ization compatibility. To allow for a concise definition of the latter relation, we
introduce another auxiliary function Rd : C × C → A× ⋃

n P(Dn) as follows9

Rd(c1, c2) := {〈a, δ〉|a ∈ A(c1, c2) ∧ δ ⊆
⋃

n

(fc1(a) ∩ d(fc2(a)))n}.

For two given concerns c1, c2, the value of Rd(c1, c2) denotes the possible concepts
as tuples 〈a, δ〉 over common instances and corresponding architectures that are
admissible for both concerns. The value thereby depends on the selection of the
bijective function d : Dc1 → Dc2 in the sense of the former definition. For the
context of a specific architecture a ∈ A(c1, c2) Figure 3 illustrates the meaning
of Rd(c1, c2).

Rd(c1,c2)

fc1(a) d(fc2(a)) fc2(a)

d

Fig. 3. Illustrating Rd(c1, c2) in the context of an architecture a

This allows for a concise definition of a conceptualization compatibility-
relationship via a bijective function d : Dc1 → Dc2 as

c1 ∼ c2 ⇔ ∀ a ∈ A(c1, c2)
∀ δ1 ∈ {{d1, ...dn} | 〈a, {d1, ...dn}〉 ∈ Rc1 ∩ Rd(c1, c2)}
∀ δ2 ∈ {{d(d1), ...d(dn)} | 〈a, {d1, ...dn}〉 ∈ Rc2 ∩ Rd(c1, c2)} :
δ1 ⊆ δ2 ∨ δ2 ⊆ δ1 ∨ δ1 ∩ δ2 = ∅.

For subsequent considerations about the term viewpoint, we assume to have a
single concern, that might aggregate the interests of a set of stakeholders in the
sense of the prior relations.

Refraining our considerations from Section 2.1, a viewpoint can be understood
as an extension of a modeling language in the same manner, as a concern extends
an underlying conceptualization. In this vein, we define a viewpoint v ∈ V as a
tuple v = 〈Sv, iv, nv, fv〉 with:
8 Footnote 7 also applies in this definition.
9 Footnote 7 also applies in this definition.

88 S. Buckl, S. Krell, and C.M. Schweda

– an abstract syntax denoted by a set Sv of the instances of Dv that the
viewpoint employs,

– a semantics denoted by a mapping function iv : Sv → Dv ∪Rv,
– a notation denoted by a function10 nv, and
– a filter, determining the relevant part of an architecture, mirrored in a func-

tion
fv : Av → P(Dv).

Rounding up the definition from above, we operationalize the relationship be-
tween a viewpoint and the (aggregated) concern that it is meant to address.
Constructing this addresses-relationship, we can rely on the definition of the on-
tological commitment that relates conceptualizations and modeling languages,
of which concerns and viewpoints are extensions. Therefore, it is justifiable to
start with the generalized notion of commitment, building on the notion of equiv-
alence classes of conceptualizations. Based on this, we establish an addresses-
relationship as ∼ ⊆ V × [C]≡ via a bijective function m : Dv ∪ Rv → Dc ∪ Rc,
as:

v ∼ [c]≡ ⇔ Ac = dom(fv) ∧
∀ a ∈ Ac : {m(d) | d ∈ fv(a)} = fc(a).

3.3 View and Architectural Description

Inline with the prefabricates of the preceding section, we define a view mv cor-
responding to a viewpoint v as the application of v to an architecture a ∈ A. We
understand a view as a function mv : Av → P(Sv), that satisfies the following
expression

∀ a ∈ Av : {iv(s) | s ∈ mv(a)} ∩ Dv = fv(a).

The function mv evaluates to the elements of the viewpoint’s syntax that are
needed to represent the relevant architectural instances in a sound and lucid
way (cf. Section 2.1). This formalization of view hence complies with the term
specification model introduced by Guizzardi in [12].

A considerable advantage of a multi-viewpoint description of an architecture
can only be achieved, if all views can be tied together in a ”sensible” way.
Our proposal establishes this correlation by connecting the sets Dv and Sv of
all implemented viewpoints v into one cohesion set at architectural description
level. This set allocates all instances to their underlying concepts defined in Rv

in the different viewpoints as well as the abstract syntax as context in which
these elements are embedded.

With Vad we denominate the set of all viewpoints realized within an archi-
tectural description ad. The cohesion set CSad of an architectural description is
defined as:

CSad := 〈Esem
VAD

, Esyn
VAD

〉
10 Resorting to the argumentation at the modeling language, we abstain from detailing

the notation function.

Refining the ISO Standard 42010 89

with
Esem
Vad

:= {〈s, {iv(s)}〉 | ∃ v ∈ Vad : s ∈ Sv ∧ iv(s) ∈ Rv}
Esyn
Vad

:= {〈s, {iv(s)}〉 | ∃ v ∈ Vad : s ∈ Sv ∧ iv(s) ∈ Dv}.
Finally, we have all ingredients at hand to present the essential characterization
for an architectural description ad(a) of an architecture a as the unity of all its
views mv and the cohesion set CSad, in short

ad(a) := 〈
⋃

v∈Vad

mv(a), CSad〉.

In this manner, we are constructing an architectural description strictly bot-
tom up. For a real world case this might be insufficient, if all instances to be
modeled are familiar. In this case, it would be possible to create a taxonomy
(or even ontology) of instances to be modeled in advance and purport them as
presetting to the architects. The conceptualization would then be known from
the outset. Since this condition cannot be achieved under all circumstances, we
neglected this proceeding. The implicit assumed matching process over all com-
ponents in our procedure might seem fairly complex, but it assures to detect all
structural relationships and semantical embodiments. Based on the cohesion set
constituents, as introduced above, we can establish a mechanism to check for
validity of the various semantic representations over the different views as well
as the embodiment of instances into the different structural environments.

4 Conclusion and Outlook

In this paper, we provided a formal approach for describing architectures of
systems. This approach builds on basic principles of conceptual modeling, as
outlined by Guizzardi in [12] and by Kühn in [14]. It further accounts for the
multi-perspectivity of architectural descriptions especially of complex systems,
as discussed in the ISO Std. 40201 [4]. Bringing these perspectives together in
a formal way seems to us valuable to allow for well-founded discussions on the
nature of architectural descriptions in many application fields as e.g. software
engineering or enterprise architecture (EA) management. In the former field,
other formal approaches relevant to multi-perspective modeling exist, such as
the ”precise UML” approach initially outlined by Breu et al. in [9] and fur-
ther developed in subsequent publications. This approach necessarily deals with
multi-perspectivity as incorporated in the UML, but can resort itself to less
general considerations than our paper, as the approach builds on the concrete
language and viewpoints as defined by the modeling technique. In the light of
an increasing interest in domain specific languages (DSLs) for software engineer-
ing, our general considerations, e.g. on compatibility and embedding of concerns,
may be helpful to provide formal underpinnings usable during the development
of DSLs. The field of EA management presents itself as an even more interesting
field of application for our approach, as it up to this point lacks a widely-agreed
technique for describing EAs. Some researchers even doubt that such a technique

90 S. Buckl, S. Krell, and C.M. Schweda

fitting the needs of all companies can be found [16,17]. In this vein, our formal
approach may be helpful for the advancement of the field. One may think of
the construction of application- or enterprise-specific architectural description
techniques and languages, whose internal consistency can be assessed in a more
formal way based on the contribution of this paper.

Staying to the application field of EA management, we outline a possibly
interesting direction for future research. Buckl et al. proposed in [16] a pattern-
based approach to EA management that encompasses a method for construct-
ing appropriate viewpoints for different stakeholders’ given concerns in respect
to the EA. As part of this approach syntax and semantics corresponding to
a concern’s underlying conceptualization are made explicit as object-oriented
metamodels and textual descriptions, respectively. While this departs from the
abstract and intentional nature of the concern, it in contrast allows for more
intricate considerations on compatibility and embeddings of concerns based on
this paper’s considerations. Put in other words, an experienced modeler can
check for the compatibility of two object-oriented metamodels in an almost al-
gorithmic manner, while the complementing semantic descriptions ensure that
no accidental synonyms invalidate the compatibility check. This formal technique
for compatibility checking becomes even more interesting with later versions of
the pattern-based approach, which are documented in an online catalog of pat-
terns, of which the V-patterns describe corresponding architectural viewpoints
(see [18]). In the course of the refinement of the approach, further V-pattern
have been added and new concerns have been described. Complementing this
increase in material, also relationships between the patterns have been estab-
lished (cf. [19]) to reflect that different viewpoints build on each other, i.e., that
one viewpoint is ”embedded” into another. While up to this point, these whole-
part-relationships are derived in an informal and subjective manner, the formal
architectural description model presented in this paper may allow for a revision
of the relationships. In a long term perspective, an ordering relationship on the
concerns and related viewpoints could be derived. With the help of this rela-
tionship, a using company could easily understand how their currently selected
concerns could be generalized to more comprehensive ones, and could determine,
which additional information had to be collected to support this generalization.
Thereby, the formal approach towards architectural descriptions would help in
the development of a tool support for pattern-based EA management methods.

References

1. Pollio, V.: Vitruvii De Architectura Libri Decem – Zehn Bücher über Architektur –
Übersetzt und mit Anmerkungen versehen von Curt Fensterbusch, 5th edn. Primus-
Verlag, Darmstadt (1996)

2. Freestone, R.: Urban Planning in a Changing World: The Twentieth Century Ex-
perience (Studies in History, Planning, and the Environment). Spon Press, London
(2000)

3. Reussner, R., Hasselbring, W.: Handbuch der Software-Architektur. Dpunkt Ver-
lag, Heidelberg (2006)

Refining the ISO Standard 42010 91

4. International Organization for Standardization: Iso/iec 42010:2007 systems and
software engineering – recommended practice for architectural description of
software-intensive systems (2007)

5. Rechtin, E.: Systems Architecting of Organizations – Why Eagles can’t swim. CRC
Press LLC, New York (1999)

6. Object Management Group (OMG): Uml 2.2 superstructure specification
(formal/2009-02-02) (2009), http://www.uml.org (cited 2010-02-25)

7. Burrel, G., Morgan, G.: Sociological Paradigms and Organizational Analysis.
Heinemann Educational Publishers, London (1979)

8. Becker, J., Niehaves, B.: Epistemological perspectives on is research: a framework
for analysing and systematizing epistemological assumptions. Information Systems
Journal 17, 197–214 (2007)

9. Breu, R., Hinkel, U., Hofmann, C., Klein, C., Paech, B., Rumpe, B., Thurner, V.:
Towards a formalization of the unified modeling language. In: Aksit, M., Matsuoka,
S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 344–366. Springer, Heidelberg (1997)

10. Dijkman, R.M., Quartel, D.A., van Sinderen, M.J.: Consistency in multi-viewpoint
design of enterprise information systems. Information and Software Technol-
ogy 50(7-8), 737–752 (2008)

11. Mylopoulos, J.: Conceptual modeling and Telos, pp. 49–68. Wiley, New York (1992)
12. Guizzardi, G.: Ontological foundations for structural conceptual models. PhD the-

sis, CTIT, Centre for Telematics and Information Technology, Enschede, The
Netherlands (2005)

13. Gurr, C.A.: On the isomorphism, or lack of it, of representations. In: Visual lan-
guage theory, New York, NY, USA, pp. 293–305. Springer, Heidelberg (1998)

14. Kühn, H.: Methodenintegration im Business Engineering. PhD thesis, Universität
Wien (2004)

15. Buckl, S., Ernst, A.M., Lankes, J., Matthes, F., Schweda, C., Wittenburg, A.:
Generating visualizations of enterprise architectures using model transformation
(extended version). Enterprise Modelling and Information Systems Architectures
– An International Journal 2(2), 3–13 (2007)

16. Buckl, S., Ernst, A.M., Lankes, J., Schneider, K., Schweda, C.M.: A pattern based
approach for constructing enterprise architecture management information mod-
els. In: Wirtschaftsinformatik 2007, Karlsruhe, Germany, pp. 145–162. Univer-
sitätsverlag Karlsruhe (2007)

17. Kurpjuweit, S., Aier, S.: Ein allgemeiner Ansatz zur Ableitung von
Abhängigkeitsanalysen auf Unternehmensarchitekturmodellen. In: 9. Interna-
tionale Tagung Wirtschaftsinformatik (WI 2007), Wien, Austria, pp. 129–138.
Österreichische Computer Gesellschaft (2009)

18. Chair for Informatics 19 (sebis), Technische Universität München: Eam pattern
catalog wiki (2009), http://eampc-wiki.systemcartography.info (cited 2010-
02-25)

19. Ernst, A.M.: A Pattern-Based Approach to Enterprise Architecture Management.
PhD thesis, Technische Universität München, München, Germany (2010) (in sub-
mission)

http://www.uml.org
http://eampc-wiki.systemcartography.info

Author Index

Amirat, Yacine 65
Aveiro, David 16

Bellens, David 1
Buckl, Sabine 77

Chibani, Abdelghani 65

de Jong, Joop 31
de la Cruz, Mariano Navarro 65
Dietz, Jan L.G. 31

Fernandez, Monica Valenzuela 65

Huysmans, Philip 1

Krell, Sascha 77

Mabrouki, Olfa 65
Marques, João 50

Schweda, Christian M. 77
Silva, António Rito 16

Tribolet, José 16, 50

Van Nuffel, Dieter 1
Ven, Kris 1

Zacarias, Marielba 50

	Title Page
	Preface
	Organization
	Table of Contents
	Enterprise Ontology
	Aligning the Constructs of Enterprise Ontology and Normalized Systems
	Introduction
	Scientific Foundations
	Enterprise Ontology
	Normalized Systems

	Translating the Transaction Pattern
	The Basic Transaction Pattern
	The Standard Transaction Pattern
	The Cancelation Patterns

	Application in Enterprise Architecture
	Discussion and Conclusions
	References

	Towards a G.O.D. Organization for Organizational Self-Awareness
	Introduction
	Problem, Motivation and Related Work
	Organizational Self-Awareness
	Review of DEMO Concepts
	Devising the Notion of Organizational Self-Awareness

	Ontological Meta Model
	G.O.D. Organization Overview
	Conclusions
	References

	Organizational Modeling
	Understanding the Realization of Organizations
	Introduction
	Summary of the Ψ-Theory
	Prelude to Conceptual Modeling the B-, I- and D-Organization
	Organizations Affect a Social World
	Fact Handling through All Aspect Organizations

	Conceptual Modeling the B-, I- and D-Organization
	The I-Organization Derived from the B-Organization
	The Transaction Kinds between the B- and I-Organization
	The D-Organization Derived from the I-Organization
	The Transaction Kinds between the I- and D-Organization
	Archiving and Collecting Information

	Conclusions and Further Research
	References

	A Bottom-Up Competency Modeling Approach
	Introduction
	Related Work
	Competency Model Proposed
	Relations and Data Types

	Case Study
	Supporting Tools
	Conclusions and Outlook
	References

	System Development
	Context-Aware Collaborative Platform in Rural Living Labs
	Introduction
	Framework for Context-Aware Collaborative Platform in Living Labs
	Framework Modeling Methodology: OSOA Approach

	Experimenting C@R Platform in the Fishery Sector
	Conclusion
	References

	A Formal Approach to Architectural Descriptions – Refining the ISO Standard 42010
	Motivation
	Describing Architectures
	Introduction to Conceptual Models
	ISO Std. 42010

	A Formal Approach to Architectural Descriptions
	Conceptualization and Modeling Language
	Concern and Viewpoint
	View and Architectural Description

	Conclusion and Outlook
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

