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Abstract— Optical imaging techniques are nowadays highly 

popular in neuroscience research, due to their high spatial and 

temporal resolution. Optical recordings data are coming in the 

form of sequential snapshots (i.e. videos) reflecting changes in 

neural activity. By adopting carefully designed stimulation 

paradigms, these signals constitute an invaluable source of 

information regarding the emerging spatiotemporal dynamics 

of brain’s response. However, the volume of collected data can 

obscure the understanding of underlying mechanisms. In par-

ticular, the comparison between different recording conditions 

is a challenging task that is usually solved empirically.  

 We introduce an algorithmic technique that identifies spa-

tial domains of coherent evoked activity, produces a meaning-

ful summary of the involved videos and facilitates the compari-

son of response dynamics. A self-organizing network (SON) 

lies in the core of the methodology and is responsible for the 

segmentation of imaged areas into disjoint, functional homo-

geneous regions. The obtained segments are then ordered 

according to the strength of response and the ones below an 

adaptively defined threshold are suppressed. In this way, re-

gions of interest (ROIs) are defined automatically for each 

response individually and can subsequently be compared 

across-responses revealing the spatial aspects of neural code 

that usually give rise to functional maps.  

Our technique is demonstrated using averaged responses 

from rat S1 somatosensory cortex.   For the first time, some 

evidence is provided that the deflection direction of a single 

whisker might be reflected in the location of activation’s first 

entry. 

Keywords— Optical recordings, Neural Gas, visual summa-

ries. 

I. INTRODUCTION  

Optical imaging is a relatively new recording technique 

that uses microscopes and cameras with high spatial and 

temporal resolution. This explains why only a few methodo-

logical papers have appeared so far, concerned with the 

signal understanding task in the collected data. The analysis 

usually starts, in an exploratory mode, with the displayed 

data observed by an experienced user and proceeds with the 

manual definition of ROIs and the extraction of associated 

time-courses of activity. For a more thorough treatment, 

Wavelet-analysis [1] and multivariate decompositions 

(PCA, spatial-ICA) [2] have been attempted on the raw 

data. More recently, a manifold learning approach has been 

introduced [3] with the advantage to produce an advanced 

parsimonious visualization of the data.  

It is the scope of this work to introduce a novel metho-

dology that fully automates the detection of ROIs, and 

hence can be repeatedly applied as a means of studying the 

putative temporal-dependent modulations of a complex, 

spatially-encoding scheme with which the brain differen-

tiates the external world stimuli. Moreover, treating data 

from a control condition as surrogates for the response-

related video-segmentation, we can define finely-tuned 

thresholds for the precise detection of significantly activated 

brain regions.  

While the original motive stemmed from the recent ad-

vances in handling video databases [4], the realized algo-

rithmic steps were borrowed from previous work on mining 

information from multisite encephalographic recordings [5]. 

In a nutshell, we first exploit the original Neural Gas algo-

rithm so as to identify spatial domains of coherently-evoked 

neural activity, then derive a temporal course for each group 

of pixels and associate a response strength with it, based on 

a conventional SNR estimator. Using the obtained SNR 

measurements, the segments are ordered and color-coded. 

The procedure is repeated for different response latency-

ranges and, by keeping a uniform scale for the color-code, 

the evolution of response dynamics is mapped in the most 

intelligible way, as a series of activation topographies. The 

distribution of SNR measurements from the spontaneous 

activity data can be exploited in a thresholding scheme that 

will reveal the segments of significant stimulus-evoked 

activations.       

To introduce and demonstrate our methodology, we util-

ize data from a study targeting rat somatosensation. The 

scope of that study and some relevant background elements 

are provided in Section 2. Section 3 is devoted to the pres-

entation of the video synopsis technique, while Section 4 
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includes a brief report on some new experimental findings 

resulted from its application. 

 

II. EXPERIMENTAL DATA 

Rodent’s whiskers are highly sensitive tactile detectors, 

similar to primate fingertips that are actively moved through 

space to extract information about the environment. A so-

matosensory stimulus evokes a topographical response in 

cortex, and a physical map of the whisker pad can be found 

in stained sections of rodent cortex [6]. It is proven that 

single whisker deflections evoke a specific response that 

rapidly spreads across the barrels [7] and beyond [8], espe-

cially when the animal is anesthetized [9] [10] [11] [12]. 

The responding neural activity gives the impressions that a 

particular cortical area responds exclusively to a specific 

stimulus [13]. However the way in which all this neural 

activity encodes the stimulus information, is still unknown.  

In the particular experimental study performed on anes-

thetized rats, optical recording data were used to identify the 

characteristics of stimulus responses that code the direction 

of the stimulus. A Voltage Sensitive Dye (VSD) was first 

applied on animal cortex that transformed the intracellular 

voltages differences into optical signal that was then record-

ed with special CCD cameras. 

The experiments were carried out at School of Medicine 

of Yale University (D.J. Davis, R. Sachdev and V.A. Pieri-

bone, in preparation) and focused on the neural activation in 

layer 2/3 of cortex following single whisker movements 

(stimulation sweeps) [14] [15] or no deflection (background 

activity sweeps). The background activity sweeps were used 

to subtract the cardiac and dye bleaching artifacts from 

stimulation sweeps [16] and also to produce sweeps of 

spontaneous cortical activity (control sweeps).  

Stimuli were whisker deflections on two different direc-

tions (caudal and rostral) and three different amplitudes. 

Here, we use only averaged videos corresponding to the 

maximum amplitude in both directions, and averaged videos 

corresponding to spontaneous activity (artifact-corrected 

data). Each video was one second in duration and had been 

sampled at a rate of 0.5 kHz. This means 500 frames for 

each video, with a frame of [80 x 80] pixels. Stimuli onset 

time (when applied) was at 150 ms (75th frame). The pre-

processing of all the averaged videos included:  1) a simple 

algebraic transformation that associates each pixel (n,m) 

with a signal expressing the relative increase in fluorescence 

DF/F due to stimulus onset [3], 2) temporal band-pass filter-

ing and spatial low-pass filtering.  3) definition of the useful 

part of Field Of View (FOV). 

 

III. THE METHOD 

A. Feature extraction 

We first define the feature vectors that will be used in the 

subsequent clustering step. A conjunction of temporal and 

spatial domain features will be adopted, so that clustering 

will naturally result into connected segments consisting of 

pixels which reflect similar activation-timecources. Regard-

ing the temporal domain, signal values at consecutive laten-

cies of interest (LOIs) will form the first part of the feature 

vector that is associated with each pixel (the simplest way to 

select LOIs is based on the time interval around the peak(s) 

in the time-dependent curve of integrated activity from a 

response video (see, fig.1a). The second part of the feature 

vector is formed by the corresponding pair (x,y) of pixel 

coordinates in the FOV. Both parts of the feature vector are 

concatenated after proper scaling (to counterbalance for the 

range differences) and weighting (based on a factor 0≤β≤1) 

so as to control the relative importance of the two domains 

in the overall representation.   

With superscripts to denote the two different domains, 

the data matrix (containing all feature vectors from ‘useful’ 

pixels) takes the form: 

 

Where N is the number of pixels (of actual FOV), w is 

the number of selected latencies and r denotes the range of 

values in either domain. 

B. Spatial Segmentation via Neural-Gas based clustering of 

pixels 

After the feature extraction step, the N formed patterns 

conveying the spatiotemporal response dynamics are fed to 

a clustering routine which take over their partition into 

homogenous groups representing well localized activities of 

similar temporal morphology. Neural-Gas network is em-

ployed to accomplish this task, due to its efficiency [17]. 

The algorithm is executed using the combined (temporal 

+spatial) representation, however the results are transferred 

to both domains and visualized separately. 

Strictly speaking, the “Neural-Gas” algorithm is applied 

to the data matrix  X
data

=[X1X2 …XN].  This algorithm is 

an artificial neural network model, which converges effi-

ciently to a small, user-defined number k<N of codebook 

vectors, using a stochastic gradient descent procedure with a 

‘‘soft-max’’ adaptation rule that minimizes the average 

distortion error. The network ability to respect the intrinsic 
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data dimensionality is known [8] and this makes it the best 

candidate for our summarization purposes. The computed 

code vectors Oj ∈ R
w+2

, j=1,2,…k are used in a simple en-

coding scheme: the nearest code vector are assigned to each 

Xi in X
data

. This procedure divides the response manifold 

V⊂ R
w+2

 into k Voronoi-regions 

 

From a more practical point of view, the bulk of informa-

tion contained in the data matrix is represented, in a parsi-

monious way, by a (Nxk) partition matrix U, with elements 

uij such that 

 

Next, the computed k-partition is applied, individually, to 

both parts (temporal & spatial) of the patterns. Hence tem-

poral signals and pixel-coordinates are grouped accordingly. 

By within-group averaging of the former, k response pro-

files are computed (segment-based averages). Each one 

serves as indicative response profile for the spatial domain 

contained in formed segment (i.e. the corresponding group 

of pixels). 

C. Tracking response dynamics via piecewise 

implementation. 

To study the evolution of response dynamics and in par-

ticular the spatial aspects of the dynamical changes, we 

perform repeatedly the above described segmentation pro-

cedure, using different (optionally overlapping) time-

segments in the pixel-activity representation (eq.1). Howev-

er, all the intermediate SNR-values obtained in each seg-

mentation step are treated together during the ordering 

scheme. In this way, a common color map (Fig.2b) is ob-

tained that can facilitate the comparative visualization of 

response topographies. Figure 2c, serves as a demonstration 

of this procedure. It includes the successive segmentations 

(using the overlapping time windows indicated in Fig,2a) of 

the 3 videos corresponding to the two somatosensory res-

ponses and the spontaneous activity.  

D. Data-sieving. 

To simplify the whole picture, we exploit the outcomes 

from the application of piecewise segmentation to sponta-

neous activity data and form an empirical distribution for 

the SNR-values. As can be seen in Fig.2d, there are a few 

segments that present high SNR-values even without stimu-

lation. This experimental fact be explained via the tendency 

of the clustering algorithm (not in particular of Neural-Gas) 

to identify similar activations in combination with the ten-

dency of SNR-estimator to recognize waveform-similarities 

as high signal content. Based on this empirical distribution, 

an SNR-value can be defined as threshold associated with a 

user-defined significance level. All the segments with re-

sponse strength (i.e. SNR-value) below the thresholds can 

be considered as part of spatial domains non responsive to a 

particular stimulus.  By the same token, the derived thre-

shold can be used in the detection of stimulus first entry, by 

locating the first segment (during the post-stimulus latency 

range) that exceeds it. 

.  

IV. RESULTS  

Using the described framework for video-synopsis, we 

contrasted the data corresponding to (averaged) responses 

from caudal and rostral deflection of the shame whisker and 

also compared them against spontaneous activity. Rostral 

deflection resulted in larger amplitude responses than caud-

al (Fig 2a). Using k=100, β=0.5 and the latency ranges 

shown in Fig.2a, we show that whisker stimulation induces 

a stimulus-specific pattern of dynamical changes (see 

Fig.2c), with the strength and the velocity of spatial spread 

being the most differentiating characteristics. To provide a 

fine description of the spatial aspects of stimulus encoding 

in S1 barrel cortex, we locate and compare the earliest en-

tries of response (based on the above Data-sieving proce-

dure). Figure 2e shows the response topographies after 

thresholding, and Figure 2f includes the detected top on 

SNR-rank segments from both deflection-directions. Figure 

2f suggests that rostral and caudal deflections of the same 

whisker are also encoded topographically on the S1 having 

distinct areas of maximum activation.  

 

Figure 1: The main steps of the segmentation methodology. a) Feature 
extraction selecting LOIs based on the time interval around the peak. b) 

Temporal visualization of ordered segments. c) Spatial domain visualiza-

tion of ordered segments. 
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CONCLUSIONS 

We introduce a novel method that summarizes optical 

recording data by identifying spatial domains of coherent 

evoked activations and present them in an orderly fashion. 

The obtained visualizations support comparisons across 

different recording conditions and facilitate the 

understanding of neural response dynamics at a single 

glance. Without limiting the applicability of the method, rat 

somatosensory responses were utilized for demonstration 

purposes. The preliminary results reveal some new aspects 

of somatosensory encoding on the cortex. We provide 

evidence that a spatiotemporal code exists at the cortical 

level for the directionality of whisker deflection. 
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Figure 2: a) Overlapping time-windows used in the piecewise implementation of the main segmentation step. b) The ordered SNR-rank color code. c) 

Piecewise application of the segmentation step. d) Empirical Distribution of the SNR-values from the spontaneous activity data and the selected threshold c 
(corresponding to P-value 0.001). e) Response topographies after Data-Sieving. f) First entry response-locus (top SNR-rank segments) for both deflection 

directions  

 IFMBE Proceedings Vol. 29  

 

338 V. Tsitlakidis et al.


	An efficient Video-Synopsis technique for optical recordings with application to the analysis of rat barrel-cortex responses
	INTRODUCTION
	EXPERIMENTAL DATA
	THE METHOD
	RESULTS
	CONCLUSIONS
	REFERENCES




