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Abstract— In this work AM-FM features extracted from 
surface electromyographic (SEMG) signals were compared 
with standard time and frequency domain features, for the 
classification of neuromuscular disorders at different force 
levels. SEMG signals were recorded from a total of 40 subjects: 
20 normal and 20 abnormal cases, at 10%, 30%, 50%, 70% 
and 100% of maximum voluntary contraction (MVC), from the 
biceps brachii muscle. For the classification, three classifiers 
were used: (i) the statistical K-nearest neighbour (KNN), (ii) 
the neural self-organizing map (SOM) and (iii) the neural 
support vector machine (SVM). For all classifiers the leave-
one-out methodology was implemented for the classification of 
the SEMG signals into normal or pathogenic. The test results 
reached a classification success rate of 77% for the AM-FM 
features whereas standard features failed to provide any 
meaningful results on the given dataset. 
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I. INTRODUCTION 

 The electromyographic (EMG) examination provides 
important information for the assessment of neuromuscular 
disorders and is generally carried out using needle 
electrodes. Surface electrodes and the acquisition of surface 
EMG signals provide a non-invasive alternative to needle 
EMG for the detection of neuromuscular disorders. At 
present a surface detected signal is preferred only for 
obtaining “global” information about the time and/or 
intensity of superficial muscle activation [1]. 

Time and frequency features have been extensively used 
in EMG signal classification [2]-[6]. Using needle EMG, 
Abel et al. [3] used turned analysis and small signals 
segments to obtain 75% classification rate for 45 cases (12 
normal, 18 myopathy, and 15 neuropathy patients). However 
authors concluded that the classification methods used, did 
not offer better results than the interference pattern analysis 
and could not match the diagnostic success of an 
experienced clinician. Christodoulou et al. [4] developed a 
modular neural networks system where multiple features 
extracted from needle EMG signals were fed into multiple 
classifiers to yield 87.5% classification rate in 38 cases (12 
normal, 13 myopathy, and 13 motor neuron disease cases). 

Abou-Chadi et al [5] compared three neural networks 
systems for surface EMG classification. Unsupervised 
techniques gave 80% correct classification when tested on 
10 cases (5 myopathy and 5 normal) selected from a pool of 
28 cases. Recordings were performed for 5 seconds at 50% 
MVC. Abou-Chadi et al [5] reached the conclusion that 
when SEMG is properly processed, it may provide the 
physician with a diagnostic assisting tool. Also for surface 
EMG, Kaplanis [6] reached a correct classification score of 
82.9% on 111 cases (91 normal and 20 abnormal cases). 
One may comment that this result may be misleading due to 
a higher number of control subjects as compared with 
pathogenic cases, however normalisation based on the 
number of subjects for each group during the classification 
process was performed. 
 For the classification of surface EMG signals, we 
presented an earlier study on the use of Amplitude-
Modulation Frequency-Modulation (AM-FM) features in 
[7]. In the current paper, we compare the performance of the 
AM-FM features against time and frequency features.   

We provide a description of the data acquisition process 
in Section II. In section III we describe the extraction 
algorithms for the standard time and frequency features and 
the AM-FM features. In Section IV, we present results using 
three different classifiers: (i) the statistical K-nearest 
neighbour (KNN) classifier, (ii) the neural self-organizing 
map (SOM) and (iii) and the neural support vector machine 
(SVM).  We give the results in Section V and provide 
concluding remarks in Section VI. 

II. MATERIAL AND DATA ACQUISITION  
Surface EMG recordings were acquired from 20 control 

subjects (NOR) and 20 neuromuscular cases (11 myopathy 
and 9 neuropathy cases). Patients referred were first 
examined and diagnosed by their physician and were 
divided according to the general type of neuromuscular 
disorder (myopathy or neuropathy). The data were collected 
at a special Electromyography / Electroencephalography / 
Evoked Potential (EMG/EEG/EP) lab at the Department of 
Clinical Neurophysiology at the Cyprus Institute of 
Neurology and Genetics, Nicosia, Cyprus [6]. The Nicolet 
Viking IV electromyography a two-channel amplifier used 
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where in (4), n is a variable displacement from 1 to 4, based 
on the argument that provides the minimum condition 
number to arcos function. 

system through a force transducer, which was connected 
directly to a calibration circuit. The subject was required to 
pull at maximum voluntary contraction (MVC) three times 
with an interval of two minutes in between. A note of the 
MVC was made on the oscilloscope with a red tape. 
Recordings were made at five different force levels, i.e. at 
10%, 30%, 50%, 70% and 100% of MVC from the biceps 
brachii muscle generated under isometric voluntary 
contraction (IVC). 

 From the two generated estimates, the histograms for 32 
equal width bins were computed and were used as input 
feature sets for classification. The histograms were further 
normalized by division of the histogram with the number of 
SEMG signal points in order to alleviate any bias due to 
different signals lengths. Figure 1 shows a sample of SEMG 
signal from a normal subject and its corresponding AM-FM 
histograms (only shown 1000 samples points for visibility).  

III. FEATURE EXTRACTION 

A. Standard Features 
For each surface EMG (SEMG) epoch, at each force level, 
the following parameters were measured in the time domain:  
1. Turns per second (t/s): Number of slope reversals 

separated from the previous one and the following turn 
by an amplitude difference greater than 20 µV. 

2. Zero crossings per second (z/c): Defined as the number 
 of sign reversals exceeding a threshold of 20 µV. 
For each 512 ms epoch, the average power spectrum (PS) 
curve was computed by taking the FFT of 512 points, with 
25% overlap segments. The following parameters were 
computed from the power spectrum curve: 
3. Median frequency: Frequency dividing the area under 
 the PS curve into two equal parts. 
4. Mean frequency 

Fig. 1. Sample of SEMG signal from a normal subject at 100% force level 
and its corresponding AM-FM histograms. First 32 samples show the 
histogram of the instantaneous amplitude. This is followed by the histogram 
of the instantaneous phase and the instantaneous frequency. 

5. Maximum frequency 
6. Total power: Calculated as the total area under the PS 

curve, with values reported in nV2/Hz. Logarithmic 
units were taken due to the large spread of values 
recorded. 

IV. CLASSIFICATION 

7.  Maximum power 

The seven standard features and the three AM-FM 
histograms (i.e. 96 bins) were used as two different feature 
vectors and were inputted into three classifiers. The leave-
one-out methodology was applied where for each input 
pattern to be classified all the remaining patterns were used 
as the training set. The average of all classifications scores 
was the final score. This made the classification procedure 

The above seven features were normalized before use by 
subtracting their mean value and dividing with their standard 
deviation.  

B. AM-FM features  
Amplitude-modulation frequency-modulation (AM-FM) 

models can be used to characterize non-stationary signal 
behavior [8], [9]. Using a multi-scale filter bank, for any 
given signal , we compute a one-dimensional, single 
scale analytic signal, as given by [8]: 

( )kf

 

         (1) ( ) ( ) ( ){ ,kfjHkfkf AS += }

where  denotes the Hilbert transform operator. We

 

estimate the instantaneous amplitude (IA), the instantaneous

 

phase (IP) and the instantaneous frequency (IF) of the signal

 

using  

{}⋅H

 a
                     (2) AS

 
                     (3) arctan

real
ϕ

         

                     (4) ( ) ( ) ( ) (
arccos1 ∂ f ASϕϕ

( ) ( )

( ) ( )( )
( )( )

)
( ) .

2

,








−++
≅

∂
=








=

=

kf
nkfnk

nk
kk

kf
kfimag

k

kfk

AS

AS
k

AS

AS

 
 

unit was fully electrically isolated to IEC 601-1 and BSS 
5724, Part 1 Type BF. The input impedance of the system, 
Ζin was stated to be > 1000 MΩ. Through the system the 
low and high frequency values for recording were set at 20 
and 500 Hz respectively. 

A calibrated force measurement system, with a total 
weight of 40 kg was placed at the foot end of a couch, used 
for the subjects to lie down. The weights were lifted via a 
strap placed at the subjects’ wrist and connected to the 
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distributed over the output node matrix [11]. The weights 
are adapted without supervision in such a way, so that the 
density distribution of the input data is preserved and 
represented on the output nodes. This mapping of similar 
input patterns to output nodes, which are close to each other, 
represents a discretisation of the input space, allowing a 
visualization of the distribution of the input data. The output 
nodes are usually ordered in a two dimensional grid and at 
the end of the training phase, the output nodes are labeled 
with the class of the majority of the input patterns of the 
training set, assigned to each node.  
 In the evaluation phase, a new input pattern was assigned 
to the winning output node with the weight vector closest to 
the new input vector. In order to classify the new input 
pattern, the majority of the labels of the output nodes in an 
RxR neighborhood window centered at the winning node, 
were considered. The number of the input patterns in the 
neighborhood window for the two classes m={1, 2}, 
(1=normal, 2=pathogenic), was computed as: 

              (5) ∑
=

=
L

i
miim NWSN

1

where L is the number of the output nodes in the RxR 
neighborhood window with L=R2 (e.g. L=9 using a 3x3 
window), and Nmi is the number of the training patterns of 
the class m assigned to the output node i. Wi=1/(2 di), is a 
weighting factor based on the distance di of the output node i 
to the winning output node. Wi gives the output nodes near 
to the winning output node a greater weight than the ones 
farther away (e.g. in a 3x3 window, for the winning node 
W=1, for the four nodes perpendicular to the winning node 
Wi=0.5 and for the four nodes diagonally located Wi 
=0.3536, etc). The evaluation input pattern was classified to 

the class m of the SNm with the greatest value, as normal or 
pathogenic. 

C. The SVM Classifier 
The Support Vector Machine (SVM) was also used for 

developing classification models for the problem. The 

D. Combining 
 From each subject, five feature vectors were calculated 
one for each force level and inputted to the classifiers. The 
five classification outputs per subject were further combined 
using majority voting, i.e. the subject was assigned to the 
class where the majority of the five individual SEMG 
signals per force level were assigned. This was done in order 
to get a final and more reliable estimate of the classification 
result, since as it was shown in [4], modular neural networks 
system enhanced the diagnostic performance of the 
individual classifiers making the whole system more robust 
and reliable. 

V. RESULTS 
 Surface EMG recordings from 20 control subjects (NOR) 
and 20 neuromuscular subjects (11 myopathy (MYO) and 9 
neuropathy (NEURO)) were recorded at 10%, 30%, 50%, 
70% and 100% of maximum voluntary contraction (MVC), 
from the biceps brachii muscle. For each SEMG recording 
two different feature vectors were extracted as described 
above (i) seven standard features from time and frequency 
domain (ii) the AM-FM features instantaneous amplitude 
(IA), instantaneous phase (IP), and the instantaneous 
frequency (IF). The IA, IP, IF were normalized by the signal 
length in order to alleviate any biases due to different signals 
lengths and their histograms were used as input to the three 
classifiers.   

method is initially based on a nonlinear mapping of the 
initial data set using a function φ(.) and then the 
identification of a hyperplane which is able to achieve the 
separation of two categories of data. Details about the 
implementation of the SVM algorithm used can be found in 
[12]. The SVM network was implemented using Gaussian 
Radial Basis Function (RBF) kernels; this was decided, as 
the rest of the kernel functions could not achieve satisfactory 
results.  

the leave-one-out methodology. In the KNN algorithm, in 
order to classify a new input pattern, its k nearest neighbors 
from the training set were identified. The new pattern was 
classified to the most frequent class among its neighbors 
based on a similarity measure that is usually the Euclidean 
distance. In this work the KNN system was implemented for 
several values of k (k=1, 3, 5, 7, 9, 11, 13 and 15) and it was 
tested using for input the two different feature vectors at the 
different force levels.  

B. The SOM Classifier  
The SOM was chosen because it is an unsupervised 

learning algorithm where the input patterns are freely 

Table 1 tabulates the AM-FM correct classifications 
success rate for the three classifiers KNN, SOM and SVM 
and for the five force levels. In addition, the five force level 
scores per subject were combined with majority voting and 
the results are also given in Table 1. For the KNN classifier 
the values provided in Table 1 are for k=11 which gave the 
best results and for the SOM for a 7x7 map matrix and an 
evaluation neighborhood window 3x3 for the same reason. 

independent of bootstrap sets and the results more robust 
and reliable. 

A. The KNN Classifier 
The statistical k-nearest neighbor (KNN) classifier [10] 

was used for the classification of the SEMG signals using 
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Best classifier was by far the SVM with average success 
rate 70.0% compared to 58.0 % for the SOM and 55.5% for 
the KNN classifier. Best force level was the 100% MVC 
with average success rate 66.7% for the three classifiers. 
Best individual result was 75% with the SVM classifier at 
100% and 30% MVC. These results need further 
investigation and interpretation. 

Combining the five force level scores per subject with 
majority voting improved the average success rate, reaching 
in the case of the SVM classifier from 70.0% to 77.5%. 
Combining all the outputs from all the classifiers gave 
62.5%. From the three AM-FM features, the best was the IF 
feature with average success rate 68.0% followed by the IA 
with 55.0% and the IP with 53.5%. 

The same experiment was repeated using the seven time 
and frequency domain features described in section III. 
Standard features failed to provide any meaningful results 
on the given dataset reaching an average correct 
classification rate of 38.1% as tabulated in Table 2. These 
results are well below the 50% threshold for a two-class 
problem, which shows the need of a careful extraction and 
selection of features for this kind of problem and the 
superiority of the AM-FM algorithm. Feature selection 
among the standard features did not differentiate 
significantly the above trend.  

VI. CONCLUDING REMARKS 
In this work it was shown that AM-FM approaches 

provide new feature sets, which can be used successfully for 
the classification of SEMG signals with a high success rate; 
comparable to results obtained when using needle EMG data 
[3], [4]. The AM-FM features significantly outperformed the 
standard time and frequency domain features showing that 
these new features can provide the tool for successful 
SEMG classification. The results also show that SEMG can 
be used as a non-invasive alternative to needle EMG for the 
assessment of neuromuscular disorders.  

Additionally in future work, cumulative density functions 
(CDF) and probability density functions (PDF) can be 
extracted from the AM-FM representations and used for 
classification instead of the histograms for an improved 
classification performance. These along with efficient neural 
classifiers like the SVM can provide the tools for designing 
a successful SEMG diagnostic system.   
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Table 2   Standard features correct classifications rate in % per classifier, 
per force level and when the five force level scores were combined using 

majority voting. 

Force Level KNN SOM SVM Average 
10% 40.0 38.5 37.5 38.7 
30% 40.0 47.5 42.5 43.3 
50% 42.5 45.5 47.5 45.2 
70% 32.5 46.5 20 33.0 

100% 25.0 48.5 17.5 30.3 
Average 36.0 45.3 33.0 38.1 

     

Combined 25.0 35.0 22.5 27.5 
 
 

 
Table 1  AM-FM features correct classifications rate in % per classifier, per 

force level and when the five force level scores were combined using 
majority voting. 

Force Level KNN SOM SVM Average 
10% 52.5 55.0 67.5 58.3 
30% 50.0 60.0 75.0 61.7 
50% 60.0 57.5 67.5 61.7 
70% 52.5 55.0 65.0 57.5 

100% 62.5 62.5 75.0 66.7 
Average 55.5 58.0 70.0 61.2 

     

Combined 57.5 60.0 77.5 65.0 
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