
On Generalizations of Network Design Problems with
Degree Bounds

Nikhil Bansal1, Rohit Khandekar1, Jochen Könemann2,
Viswanath Nagarajan1, and Britta Peis3

1 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
2 University of Waterloo

3 Technische Universität Berlin

Abstract. Iterative rounding and relaxation have arguably become the method of
choice in dealing with unconstrained and constrained network design problems.
In this paper we extend the scope of the iterative relaxation method in two direc-
tions: (1) by handling more complex degree constraints in the minimum spanning
tree problem (namely laminar crossing spanning tree), and (2) by incorporating
‘degree bounds’ in other combinatorial optimization problems such as matroid
intersection and lattice polyhedra. We give new or improved approximation al-
gorithms, hardness results, and integrality gaps for these problems.

1 Introduction

Iterative rounding and relaxation have arguably become the method of choice in dealing
with unconstrained and constrained network design problems. Starting with Jain’s ele-
gant iterative rounding scheme for the generalized Steiner network problem in [14], an
extension of this technique (iterative relaxation) has more recently lead to breakthrough
results in the area of constrained network design, where a number of linear constraints
are added to a classical network design problem. Such constraints arise naturally in
a wide variety of practical applications, and model limitations in processing power,
bandwidth or budget. The design of powerful techniques to deal with these problems is
therefore an important goal.

The most widely studied constrained network design problem is the minimum-cost
degree-bounded spanning tree problem. In an instance of this problem, we are given an
undirected graph, non-negative costs for the edges, and positive, integral degree-bounds
for each of the nodes. The problem is easily seen to be NP-hard, even in the absence
of edge-costs, since finding a spanning tree with maximum degree two is equivalent to
finding a Hamiltonian Path. A variety of techniques have been applied to this problem
[5,6,11,17,18,23,24], culminating in Singh and Lau’s breakthrough result in [27]. They
presented an algorithm that computes a spanning tree of at most optimum cost whose
degree at each vertex v exceeds its bound by at most 1, using the iterative relaxation
framework developed in [20,27].

The iterative relaxation technique has been applied to several constrained network
design problems: spanning tree [27], survivable network design [20,21], directed graphs
with intersecting and crossing super-modular connectivity [20,2]. It has also been ap-
plied to degree bounded versions of matroids and submodular flow [15].

F. Eisenbrand and B. Shepherd (Eds.): IPCO 2010, LNCS 6080, pp. 110–123, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Generalizations of Network Design Problems with Degree Bounds 111

In this paper we further extend the applicability of iterative relaxation, and obtain
new or improved bicriteria approximation results for minimum crossing spanning tree
(MCST), crossing matroid intersection, and crossing lattice polyhedra. We also provide
hardness results and integrality gaps for these problems.

Notation. As is usual, when dealing with an undirected graph G = (V, E), for any
S ⊆ V we let δG(S) := {(u, v) ∈ E | u ∈ S, v �∈ S}. When the graph is clear from
context, the subscript is dropped. A collection {U1, · · · , Ut} of vertex-sets is called
laminar if for every pair Ui, Uj in this collection, we have Ui ⊆ Uj , Uj ⊆ Ui, or
Ui ∩ Uj = ∅. A (ρ, f(b)) approximation for minimum cost degree bounded problems
refers to a solution that (1) has cost at most ρ times the optimum that satisfies the degree
bounds, and (2) satisfies the relaxed degree constraints in which a bound b is replaced
with a bound f(b).

1.1 Our Results, Techniques and Paper Outline

Laminar MCST. Our main result is for a natural generalization of bounded-degree MST
(called Laminar Minimum Crossing Spanning Tree or laminar MCST), where we are
given an edge-weighted undirected graph with a laminar family L = {Si}mi=1 of vertex-
sets having bounds {bi}mi=1; and the goal is to compute a spanning tree of minimum cost
that contains at most bi edges from δ(Si) for each i ∈ [m].

The motivation behind this problem is in designing a network where there is a hi-
erarchy (i.e. laminar family) of service providers that control nodes (i.e. vertices). The
number of edges crossing the boundary of any service provider (i.e. its vertex-cut) rep-
resents some cost to this provider, and is therefore limited. The laminar MCST problem
precisely models the question of connecting all nodes in the network while satisfying
bounds imposed by all the service providers.

From a theoretical viewpoint, cut systems induced by laminar families are well stud-
ied, and are known to display rich structure. For example, one-way cut-incidence ma-
trices are matrices whose rows are incidence vectors of directed cuts induced by the
vertex-sets of a laminar family; It is well known (e.g., see [19]) that such matrices are
totally unimodular. Using the laminar structure of degree-constraints and the iterative
relaxation framework, we obtain the following main result, and present its proof in
Section 2.

Theorem 1. There is a polynomial time (1, b + O(log n)) bicriteria approximation al-
gorithm for laminar MCST. That is, the cost is no more than the optimum cost and the
degree violation is at most additive O(log n). This guarantee is relative to the natural
LP relaxation.

This guarantee is substantially stronger than what follows from known results for the
general minimum crossing spanning tree (MCST) problem: where the degree bounds
could be on arbitrary edge-subsets E1, . . . , Em. In particular, for general MCST a
(1, b + Δ− 1) [2,15] is known where Δ is the maximum number of degree-bounds an
edge appears in. However, this guarantee is not useful for laminar MCST as Δ can be as
large as Ω(n) in this case. If a multiplicative factor in the degree violation is allowed,
Chekuri et al. [8] recently gave a very elegant

(
1, (1 + ε)b + O(1

ε log m)
)

guarantee
(which subsumes the previous best (O(log n), O(log m) b) [4] result). However, these

112 N. Bansal et al.

results also cannot be used to obtain a small additive violation, especially if b is large.
In particular, both the results [4,8] for general MCST are based on the natural LP relax-
ation, for which there is an integrality gap of b + Ω(

√
n) even without regard to costs

and when m = O(n) [26] (see also [3]). On the other hand, Theorem 1 shows that a
purely additive O(log n) guarantee on degree (relative to the LP relaxation and even in
presence of costs) is indeed achievable for MCST, when the degree-bounds arise from
a laminar cut-family.

The algorithm in Theorem 1 is based on iterative relaxation and uses two main new
ideas. Firstly, we drop a carefully chosen constant fraction of degree-constraints in each
iteration. This is crucial as it can be shown that dropping one constraint at a time as in
the usual applications of iterative relaxation can indeed lead to a degree violation of
Ω(Δ). Secondly, the algorithm does not just drop degree constraints, but in some itera-
tions it also generates new degree constraints, by merging existing degree constraints.

All previous applications of iterative relaxation to constrained network design treat
connectivity and degree constraints rather asymmetrically. While the structure of the
connectivity constraints of the underlying LP is used crucially (e.g., in the ubiquitous
uncrossing argument), the handling of degree constraints is remarkably simple. Con-
straints are dropped one by one, and the final performance of the algorithm is good only
if the number of side constraints is small (e.g., in recent work by Grandoni et al. [12]),
or if their structure is simple (e.g., if the ‘frequency’ of each element is small). In con-
trast, our algorithm for laminar MCST exploits the structure of degree constraints in a
non-trivial manner.

Hardness Results. We obtain the following hardness of approximation for the general
MCST problem (and its matroid counterpart). In particular this rules out any algorithm
for MCST that has additive constant degree violation, even without regard to costs.

Theorem 2. Unless NP has quasi-polynomial time algorithms, the MCST problem
admits no polynomial time O(logα m) additive approximation for the degree bounds
for some constant α > 0; this holds even when there are no costs.

The proof for this theorem is given in Section 3, and uses a a two-step reduction from
the well-known Label Cover problem. First, we show hardness for a uniform matroid
instance. In a second step, we then demonstrate how this implies the result for MCST
claimed in Theorem 2.

Note that our hardness bound nearly matches the result obtained by Chekuri et al.
in [8]. We note however that in terms of purely additive degree guarantees, a large gap
remains. As noted above, there is a much stronger lower bound of b + Ω(

√
n) for LP-

based algorithms [26] (even without regard to costs), which is based on discrepancy. In
light of the small number of known hardness results for discrepancy type problems, it
is unclear how our bounds for MCST could be strengthened.

Degree Bounds in More General Settings. We consider crossing versions of other clas-
sic combinatorial optimization problems, namely matroid intersection and lattice poly-
hedra. We discuss our results briefly and defer the proofs to the full version of the
paper [3].

On Generalizations of Network Design Problems with Degree Bounds 113

Definition 1 (Minimum crossing matroid intersection problem). Let r1, r2 : 2E →
Z be two supermodular functions, c : E → R and {Ei}i∈I be a collection of subsets of
E with corresponding bounds {bi}i∈I . Then the goal is to minimize:

{cT x
∣∣ x(S) ≥ max{r1(S), r2(S)}, ∀ S ⊆ E;

x(Ei) ≤ bi, ∀ i ∈ [m]; x ∈ {0, 1}E}.
We remark that there are alternate definitions of matroid intersection (e.g., see Schri-
jver [25]) and that our result below extends to those as well.

Let Δ = maxe∈E |{i ∈ [m] | e ∈ Ei}| be the largest number of sets Ei that any
element of E belongs to, and refer to it as frequency.

Theorem 3. Any optimal basic solution x∗ of the linear relaxation of the minimum
crossing matroid intersection problem can be rounded into an integral solution x̂ such
that x̂(S) ≥ max{r1(S), r2(S)} for all S ⊆ E and

cT x̂ ≤ 2cT x∗ and x̂(Ei) ≤ 2bi + Δ− 1 ∀i ∈ I.

The algorithm for this theorem again uses iterative relaxation, and its proof is based on
a ‘fractional token’ counting argument similar to the one used in [2].

An interesting special case is for the bounded-degree arborescence problem (where
Δ = 1). As the set of arborescences in a digraph can be expressed as the intersection
of partition and graphic matroids, Theorem 3 readily implies a (2, 2b) approximation
for this problem. This is an improvement over the previously best-known (2, 2b + 2)
bound [20] for this problem.

The bounded-degree arborescence problem is potentially of wider interest since it is
a relaxation of ATSP, and it is hoped that ideas from this problem lead to new ideas
for ATSP. In fact Theorem 3 also implies an improved (2, 2b)-approximation for the
bounded-degree arborescence packing problem, where the goal is to pack a given num-
ber of arc-disjoint arborescences while satisfying degree-bounds on vertices (arbores-
cence packing can again be phrased as matroid intersection). The previously best known
bound for this problem was (2, 2b + 4) [2]. We also give the following integrality gap.

Theorem 4. For any ε > 0, there exists an instance of unweighted minimum crossing
arborescence for which the LP is feasible, and any integral solution must violate the
bound on some set {Ei}mi=1 by a multiplicative factor of at least 2 − ε. Moreover, this
instance has Δ = 1, and just one non-degree constraint.

Thus Theorem 3 is the best one can hope for, relative to the LP relaxation. First,
Theorem 4 implies that the multiplicative factor in the degree cannot be improved be-
yond 2 (even without regard to costs). Second, the lower bound for arborescences with
costs presented in [2] implies that no cost-approximation ratio better than 2 is possible,
without violating degrees by a factor greater than 2.

Crossing Lattice Polyhedra. Classical lattice polyhedra form a unified framework for
various discrete optimization problems and go back to Hoffman and Schwartz [13] who
proved their integrality. They are polyhedra of type

{x ∈ [0, 1]E | x(ρ(S)) ≥ r(S), ∀S ∈ F}

114 N. Bansal et al.

where F is a consecutive submodular lattice, ρ : F → 2E is a mapping from F to
subsets of the ground-set E, and r ∈ R

F is supermodular. A key property of lattice
polyhedra is that the uncrossing technique can be applied which turns out to be cru-
cial in almost all iterative relaxation approaches for optimization problems with degree
bounds. We refer the reader to [25] for a more comprehensive treatment of this subject.

We generalize our work further to crossing lattice polyhedra which arise from clas-
sical lattice polyhedra by adding “degree-constraints” of the form ai ≤ x(Ei) ≤ bi

for a given collection {Ei ⊆ E | i ∈ I} and lower and upper bounds a, b ∈ R
I . We

mention that this model covers several important applications including the crossing
matroid basis and crossing planar mincut problems, among others.

We can show that the standard LP relaxation for the general crossing lattice polyhe-
dron problem is weak; details are deferred to the full version of the paper in [3]. For
this reason, we henceforth focus on a restricted class of crossing lattice polyhedra in
which the underlying lattice (F ,≤) satisfies the following monotonicity property

(∗) S < T =⇒ |ρ(S)| < |ρ(T)| ∀ S, T ∈ F .

We obtain the following theorem whose proof is given in [3].

Theorem 5. For any instance of the crossing lattice polyhedron problem in which F
satisfies property (∗), there exists an algorithm that computes an integral solution of
cost at most the optimal, where all rank constraints are satisfied, and each degree bound
is violated by at most an additive 2Δ− 1.

We note that the above property (∗) is satisfied for matroids, and hence Theorem 5
matches the previously best-known bound [15] for degree bounded matroids (with both
upper/lower bounds). Also note that property (∗) holds wheneverF is ordered by inclu-
sion. In this special case, we can improve the result to an additive Δ− 1 approximation
if only upper bounds are given.

1.2 Related Work

As mentioned earlier, the basic bounded-degree MST problem has been extensively stud-
ied [5,6,11,17,18,23,24,27]. The iterative relaxation technique for degree-constrained
problems was developed in [20,27].

MCST was first introduced by Bilo et al. [4], who presented a randomized-rounding
algorithm that computes a tree of cost O(log n) times the optimum where each degree
constraint is violated by a multiplicative O(log n) factor and an additive O(log m) term.
Subsequently, Bansal et al. [2] gave an algorithm that attains an optimal cost guarantee
and an additive Δ−1 guarantee on degree; recall that Δ is the maximum number of de-
gree constraints that an edge lies in. This algorithm used iterative relaxation as its main
tool. Recently, Chekuri et al. [8] obtained an improved

(
1, (1 + ε)b + O(1

ε log m)
)

ap-
proximation algorithm for MCST, for any ε > 0; this algorithm is based on pipage
rounding.

The minimum crossing matroid basis problem was introduced in [15], where the au-
thors used iterative relaxation to obtain (1) (1, b + Δ − 1)-approximation when there
are only upper bounds on degree, and (2) (1, b + 2Δ − 1)-approximation in the pres-
ence of both upper and lowed degree-bounds. The [8] result also holds in this matroid

On Generalizations of Network Design Problems with Degree Bounds 115

setting. [15] also considered a degree-bounded version of the submodular flow problem
and gave a (1, b + 1) approximation guarantee.

The bounded-degree arborescence problem was considered in Lau et al. [20], where
a (2, 2b + 2) approximation guarantee was obtained. Subsequently Bansal et al. [2]
designed an algorithm that for any 0 < ε ≤ 1/2, achieves a (1/ε, bv/(1 − ε) + 4)
approximation guarantee. They also showed that this guarantee is the best one can hope
for via the natural LP relaxation (for every 0 < ε ≤ 1/2). In the absence of edge-costs,
[2] gave an algorithm that violates degree bounds by at most an additive two. Recently
Nutov [22] studied the arborescence problem under weighted degree constraints, and
gave a (2, 5b) approximation for it.

Lattice polyhedra were first investigated by Hoffman and Schwartz [13] and the nat-
ural LP relaxation was shown to be totally dual integral. Even though greedy-type algo-
rithms are known for all examples mentioned earlier, so far no combinatorial algorithm
has been found for lattice polyhedra in general. Two-phase greedy algorithms have been
established only in cases where an underlying rank function satisfies a monotonicity
property [10], [9].

2 Crossing Spanning Tree with Laminar Degree Bounds

In this section we prove Theorem 1 by presenting an iterative relaxation-based algo-
rithm with the stated performance guarantee. During its execution, the algorithm selects
and deletes edges, and it modifies the given laminar family of degree bounds. A generic
iteration starts with a subset F of edges already picked in the solution, a subset E of
undecided edges, i.e., the edges not yet picked or dropped from the solution, a laminar
family L on V , and residual degree bounds b(S) for each S ∈ L.

The laminar family L has a natural forest-like structure with nodes corresponding
to each element of L. A node S ∈ L is called the parent of node C ∈ L if S is the
inclusion-wise minimal set in L \ {C} that contains C; and C is called a child of S.
Node D ∈ L is called a grandchild of node S ∈ L if S is the parent of D’s parent.
Nodes S, T ∈ L are siblings if they have the same parent node. A node that has no
parent is called root. The level of any node S ∈ L is the length of the path in this forest
from S to the root of its tree. We also maintain a linear ordering of the children of
each L-node. A subset B ⊆ L is called consecutive if all nodes in B are siblings (with
parent S) and they appear consecutively in the ordering of S’s children. In any iteration
(F, E,L, b), the algorithm solves the following LP relaxation of the residual problem.

min
∑

e∈E

cexe (1)

s.t. x(E(V)) = |V | − |F | − 1

x(E(U)) ≤ |U | − |F (U)| − 1 ∀U ⊂ V

x(δE(S)) ≤ b(S) ∀S ∈ L
xe ≥ 0 ∀e ∈ E

For any vertex-subset W ⊆ V and edge-set H , we let H(W) := {(u, v) ∈ H | u, v ∈
W} denote the edges induced on W ; and δH(W) := {(u, v) ∈ H | u ∈ W, v �∈ W}
the set of edges crossing W . The first two sets of constraints are spanning tree con-
straints while the third set corresponds to the degree bounds. Let x denote an optimal

116 N. Bansal et al.

extreme point solution to this LP. By reducing degree bounds b(S), if needed, we as-
sume that x satisfies all degree bounds at equality (the degree bounds may therefore be
fractional-valued). Let α := 24.

Definition 2. An edge e ∈ E is said to be local for S ∈ L if e has at least one end-point
in S but is neither in E(C) nor in δ(C)∩ δ(S) for any grandchild C of S. Let local(S)
denote the set of local edges for S. A node S ∈ L is said to be good if |local(S)| ≤ α.

The figure on the left shows a set S, its

B1

B2
C1

S C4
C3

C2

children B1 and B2, and grand-children
C1, . . . , C4; edges in local(S) are drawn
solid, non-local ones are shown dashed.

Initially, E is the set of edges in the
given graph, F ← ∅, L is the original
laminar family of vertex sets for which
there are degree bounds, and an arbitrary
linear ordering is chosen on the children
of each node in L. In a generic iteration (F, E,L, b), the algorithm performs one of the
following steps (see also Figure 1):

1. If xe = 1 for some edge e ∈ E then F ← F ∪ {e}, E ← E \ {e}, and set
b(S)← b(S)− 1 for all S ∈ L with e ∈ δ(S).

2. If xe = 0 for some edge e ∈ E then E ← E \ {e}.
3. DropN: Suppose there at least |L|/4 good non-leaf nodes in L. Then either odd-

levels or even-levels contain a set M ⊆ L of |L|/8 good non-leaf nodes. Drop
the degree bounds of all children ofM and modify L accordingly. The ordering of
siblings also extends naturally.

4. DropL: Suppose there are more than |L|/4 good leaf nodes in L, denoted by N .
Then partitionN into parts corresponding to siblings in L. For any part {N1, · · · ,
Nk} ⊆ N consisting of ordered (not necessarily contiguous) children of some node
S:
(a) Define Mi = N2i−1 ∪N2i for all 1 ≤ i ≤ �k/2� (if k is odd Nk is not used).
(b) Modify L by removing leaves {N1, · · · , Nk} and adding new leaf-nodes {M1,
· · · , M�k/2�} as children of S (if k is odd Nk is removed). The children of S in
the new laminar family are ordered as follows: each node Mi takes the position
of either N2i−1 or N2i, and other children of S are unaffected.

(c) Set the degree bound of each Mi to b(Mi) = b(N2i−1) + b(N2i).

Assuming that one of the above steps applies at each iteration, the algorithm terminates
when E = ∅ and outputs the final set F as a solution. It is clear that the algorithm
outputs a spanning tree of G. An inductive argument (see e.g. [20]) can be used to show
that the LP (1) is feasible at each each iteration and c(F) + zcur ≤ zo where zo is
the original LP value, zcur is the current LP value, and F is the chosen edge-set at the
current iteration. Thus the cost of the final solution is at most the initial LP optimum zo.
Next we show that one of the four iterative steps always applies.

Lemma 1. In each iteration, one of the four steps above applies.

On Generalizations of Network Design Problems with Degree Bounds 117

DropL step

Good leaves {Ni}5i=1
S

1 2 3 4

S

1 2 3 4

DropN step

Good non-leaf S

S

M2M1
T

S

N5
T N3N2N1 N4

Fig. 1. Examples of the degree constraint modifications DropN and DropL

Proof. Let x∗ be the optimal basic solution of (1), and suppose that the first two steps
do not apply. Hence, we have 0 < x∗

e < 1 for all e ∈ E. The fact that x∗ is a basic
solution together with a standard uncrossing argument (e.g., see [14]) implies that x∗ is
uniquely defined by

x(E(U)) = |U | − |F (U)| − 1 ∀U ∈ S, and x(δE(S)) = b(S), ∀S ∈ L′,

where S is a laminar subset of the tight spanning tree constraints, and L′ is a subset of
tight degree constraints, and where |E| = |S|+ |L′|.

A simple counting argument (see, e.g., [27]) shows that there are at least 2 edges
induced on each S ∈ S that are not induced on any of its children; so 2|S| ≤ |E|. Thus
we obtain |E| ≤ 2|L′| ≤ 2|L|.

From the definition of local edges, we get that any edge e = (u, v) is local to at most
the following six sets: the smallest set S1 ∈ L containing u, the smallest set S2 ∈ L
containing v, the parents P1 and P2 of S1 and S2 resp., the least-common-ancestor L
of P1 and P2, and the parent of L. Thus

∑
S∈L |local(S)| ≤ 6|E|. From the above,

we conclude that
∑

S∈L |local(S)| ≤ 12|L|. Thus at least |L|/2 sets S ∈ L must have
|local(S)| ≤ α = 24, i.e., must be good. Now either at least |L|/4 of them must be
non-leaves or at least |L|/4 of them must be leaves. In the first case, step 3 holds and in
the second case, step 4 holds.

It remains to bound the violation in the degree constraints, which turns out to be rather
challenging. We note that this is unlike usual applications of iterative rounding/relaxation,
where the harder part is in showing that one of the iterative steps applies.

It is clear that the algorithm reduces the size of L by at least |L|/8 in each DropN or
DropL iteration. Since the initial number of degree constraints is at most 2n−1, we get
the following lemma.

Lemma 2. The number of drop iterations (DropN and DropL) is T := O(log n).

Performance guarantee for degree constraints. We begin with some notation. The
iterations of the algorithm are broken into periods between successive drop iterations:
there are exactly T drop-iterations (Lemma 2). In what follows, the t-th drop iteration

118 N. Bansal et al.

is called round t. The time t refers to the instant just after round t; time 0 refers to the
start of the algorithm. At any time t, consider the following parameters.

– Lt denotes the laminar family of degree constraints.
– Et denotes the undecided edge set, i.e., support of the current LP optimal solution.
– For any set B of consecutive siblings in Lt, Bnd(B, t) =

∑
N∈B b(N) equals the

sum of the residual degree bounds on nodes of B.
– For any set B of consecutive siblings in Lt, Inc(B, t) equals the number of edges

from δEt(∪N∈BN) included in the final solution.

Recall that b denotes the residual degree bounds at any point in the algorithm. The
following lemma is the main ingredient in bounding the degree violation.

Lemma 3. For any set B of consecutive siblings in Lt (at any time t), Inc(B, t) ≤
Bnd(B, t) + 4α · (T − t).

Observe that this implies the desired bound on each original degree constraint S: using
t = 0 and B = {S}, the violation is bounded by an additive 4α · T term.

Proof. The proof of this lemma is by induction on T − t. The base case t = T is trivial
since the only iterations after this correspond to including 1-edges: hence there is no
violation in any degree bound, i.e. Inc({N}, T) ≤ b(N) for all N ∈ LT . Hence for any
B ⊆ L, Inc(B, T) ≤∑

N∈B Inc({N}, T) ≤∑
N∈B b(N) = Bnd(B, T).

Now suppose t < T , and assume the lemma for t+1. Fix a consecutive B ⊆ Lt. We
consider different cases depending on what kind of drop occurs in round t + 1.

DropN round. Here either all nodes in B get dropped or none gets dropped.
Case 1: None of B is dropped. Then observe that B is consecutive in Lt+1 as well;

so the inductive hypothesis implies Inc(B, t + 1) ≤ Bnd(B, t + 1) + 4α · (T − t− 1).
Since the only iterations between round t and round t + 1 involve edge-fixing, we have
Inc(B, t) ≤ Bnd(B, t)−Bnd(B, t+1)+ Inc(B, t+1) ≤ Bnd(B, t)+4α · (T− t−1) ≤
Bnd(B, t) + 4α · (T − t).

Case 2: All of B is dropped. Let C denote the set of all children (in Lt) of nodes in
B. Note that C consists of consecutive siblings in Lt+1, and inductively Inc(C, t + 1) ≤
Bnd(C, t + 1) + 4α · (T − t − 1). Let S ∈ Lt denote the parent of the B-nodes;
so C are grand-children of S in Lt. Let x denote the optimal LP solution just before
round t + 1 (when the degree bounds are still given by Lt), and H = Et+1 the support
edges of x. At that point, we have b(N) = x(δ(N)) for all N ∈ B ∪ C. Also let
Bnd′(B, t + 1) :=

∑
N∈B b(N) be the sum of bounds on B-nodes just before round

t + 1. Since S is a good node in round t + 1, |Bnd′(B, t + 1) − Bnd(C, t + 1)| =
|∑N∈B b(N) −∑

M∈C b(M)| = |∑N∈B x(δ(N)) −∑
M∈C x(δ(M))| ≤ 2α. The

last inequality follows since S is good; the factor of 2 appears since some edges, e.g.,
the edges between two children or two grandchildren of S, may get counted twice. Note
also that the symmetric difference of δH(∪N∈BN) and δH(∪M∈CM) is contained in
local(S). Thus δH(∪N∈BN) and δH(∪M∈CM) differ in at most α edges.

Again since all iterations between time t and t + 1 are edge-fixing:

Inc(B, t) ≤ Bnd(B, t)− Bnd′(B, t + 1) + |δH(∪N∈BN) \ δH(∪M∈CM)|
+Inc(C, t + 1)

On Generalizations of Network Design Problems with Degree Bounds 119

≤ Bnd(B, t)− Bnd′(B, t + 1) + α + Inc(C, t + 1)
≤ Bnd(B, t)− Bnd′(B, t + 1) + α + Bnd(C, t + 1) + 4α · (T − t− 1)
≤ Bnd(B, t)− Bnd′(B, t + 1) + α + Bnd′(B, t + 1) + 2α+4α ·(T − t− 1)
≤ Bnd(B, t) + 4α · (T − t)

The first inequality above follows from simple counting; the second follows since
δH(∪N∈BN) and δH(∪M∈CM) differ in at most α edges; the third is the induction
hypothesis, and the fourth is Bnd(C, t + 1) ≤ Bnd′(B, t + 1) + 2α (as shown above).

DropL round. In this case, let S be the parent ofB-nodes inLt, andN ={N1, · · · , Np}
be all the ordered children of S, of which B is a subsequence (since it is consecutive).
Suppose indices 1 ≤ π(1) < π(2) < · · · < π(k) ≤ p correspond to good leaf-nodes
in N . Then for each 1 ≤ i ≤ �k/2�, nodes Nπ(2i−1) and Nπ(2i) are merged in this
round. Let {π(i) | e ≤ i ≤ f} (possibly empty) denote the indices of good leaf-nodes
in B. Then it is clear that the only nodes of B that may be merged with nodes outside
B are Nπ(e) and Nπ(f); all other B-nodes are either not merged or merged with another
B-node. Let C be the inclusion-wise minimal set of children of S in Lt+1 s.t.

– C is consecutive in Lt+1,
– C contains all nodes of B \ {Nπ(i)}ki=1, and
– C contains all new leaf nodes resulting from merging two good leaf nodes of B.

Note that ∪M∈CM consists of some subset of B and at most two good leaf-nodes in
N \B. These two extra nodes (if any) are those merged with the good leaf-nodes Nπ(e)

and Nπ(f) of B. Again let Bnd′(B, t + 1) :=
∑

N∈B b(N) denote the sum of bounds
on B just before drop round t + 1, when degree constraints are Lt. Let H = Et+1 be
the undecided edges in round t + 1. By the definition of bounds on merged leaves, we
have Bnd(C, t + 1) ≤ Bnd′(B, t + 1) + 2α. The term 2α is present due to the two extra
good leaf-nodes described above.

Claim 6. We have |δH(∪N∈BN) \ δH(∪M∈CM)| ≤ 2α.

Proof. We say that N ∈ N is represented in C if either N ∈ C or N is contained
in some node of C. Let D be set of nodes of B that are not represented in C and the
nodes of N \ B that are represented in C. Observe that by definition of C, the set D ⊆
{Nπ(e−1), Nπ(e), Nπ(f), Nπ(f+1)}; in fact it can be easily seen that |D| ≤ 2. Moreover
D consists of only good leaf nodes. Thus, we have | ∪L∈D δH(L)| ≤ 2α. Now note that
the edges in δH(∪N∈BN) \ δH(∪M∈CM) must be in ∪L∈DδH(L). This completes the
proof.

As in the previous case, we have:

Inc(B, t) ≤ Bnd(B, t)− Bnd′(B, t + 1) + |δH(∪N∈BN) \ δH(∪M∈CM)|
+Inc(C, t + 1)

≤ Bnd(B, t)− Bnd′(B, t + 1) + 2α + Inc(C, t + 1)
≤ Bnd(B, t)− Bnd′(B, t + 1) + 2α + Bnd(C, t + 1) + 4α · (T − t− 1)
≤ Bnd(B, t)− Bnd′(B, t + 1)+2α+Bnd′(B, t + 1)+2α+4α · (T − t− 1)
= Bnd(B, t) + 4α · (T − t)

120 N. Bansal et al.

The first inequality follows from simple counting; the second uses Claim 6, the third
is the induction hypothesis (since C is consecutive), and the fourth is Bnd(C, t + 1) ≤
Bnd′(B, t + 1) + 2α (from above).

This completes the proof of the inductive step and hence Lemma 3.

3 Hardness Results

We now prove Theorem 2. The first step to proving this result is a hardness for the more
general minimum crossing matroid basis problem: given a matroidM on a ground set
V of elements, a cost function c : V → R+, and degree bounds specified by pairs
{(Ei, bi)}mi=1 (where each Ei ⊆ V and bi ∈ N), find a minimum cost basis I in M
such that |I ∩Ei| ≤ bi for all i ∈ [m].

Theorem 7. Unless NP has quasi-polynomial time algorithms, the unweighted min-
imum crossing matroid basis problem admits no polynomial time O(logc m) additive
approximation for the degree bounds for some fixed constant c > 0.

Proof. We reduce from the label cover problem [1]. The input is a graph G = (U, E)
where the vertex set U is partitioned into pieces U1, · · · , Un each having size q, and all
edges in E are between distinct pieces. We say that there is a superedge between Ui and
Uj if there is an edge connecting some vertex in Ui to some vertex in Uj . Let t denote
the total number of superedges; i.e.,

t =
∣
∣∣
∣

{
(i, j) ∈

(
[n]
2

)
: there is an edge in E between Ui and Uj

}∣
∣∣
∣

The goal is to pick one vertex from each part {Ui}ni=1 so as to maximize the number of
induced edges. This is called the value of the label cover instance and is at most t.

It is well known that there exists a universal constant γ > 1 such that for every
k ∈ N, there is a reduction from any instance of SAT (having size N) to a label cover
instance 〈G = (U, E), q, t〉 such that:

– If the SAT instance is satisfiable, the label cover instance has optimal value t.
– If the SAT instance is not satisfiable, the label cover instance has optimal value

< t/γk.
– |G| = NO(k), q = 2k, |E| ≤ t2, and the reduction runs in time NO(k).

We consider a uniform matroidM with rank t on ground set E (recall that any subset
of t edges is a basis in a uniform matroid). We now construct a crossing matroid basis
instance I onM. There is a set of degree bounds corresponding to each i ∈ [n]: for
every collection C of edges incident to vertices in Ui such that no two edges in C are
incident to the same vertex in Ui, there is a degree bound in I requiring at most one
element to be chosen from C. Note that the number of degree bounds m is at most
|E|q ≤ NO(k 2k). The following claim links the SAT and crossing matroid instances.
Its proof is deferred to the full version of this paper.

Claim 8. [Yes instance] If the SAT instance is satisfiable, there is a basis (i.e. subset
B ⊆ E with |B| = t) satisfying all degree bounds.

[No instance] If the SAT instance is unsatisfiable, every subset B′ ⊆ E with |B′| ≥ t/2
violates some degree bound by an additive ρ = γk/2/

√
2.

On Generalizations of Network Design Problems with Degree Bounds 121

The steps described in the above reduction can be done in time polynomial in m and
|G|. Also, instead of randomly choosing vertices from the sets Wi, we can use condi-
tional expectations to derive a deterministic algorithm that recovers at least t/ρ2 edges.
Setting k = Θ(log log N) (recall that N is the size of the original SAT instance), we
obtain an instance of bounded-degree matroid basis of size max{m, |G|} = N loga N

and ρ = logb N , where a, b > 0 are constants. Note that log m = loga+1 N , which
implies ρ = logc m for c = b

a+1 > 0, a constant. Thus it follows that for this constant
c > 0 the bounded-degree matroid basis problem has no polynomial time O(logc m)
additive approximation for the degree bounds, unless NP has quasi-polynomial time
algorithms.

We now prove Theorem 2.

Proof. [Proof of Theorem 2] We show how the bases of a uniform matroid can be
represented in a suitable instance of the crossing spanning tree problem. Let the uniform
matroid from Theorem 7 consist of e elements and have rank t ≤ e; recall that t ≥ √e
and clearly m ≤ 2e. We construct a graph as in Figure 2, with vertices v1, · · · , ve

corresponding to elements in the uniform matroid. Each vertex vi is connected to the
root r by two vertex-disjoint paths: 〈vi, ui, r〉 and 〈vi, wi, r〉. There are no costs in
this instance. Corresponding to each degree bound (in the uniform matroid) of b(C)
on a subset C ⊆ [e], there is a constraint to pick at most |C| + b(C) edges from
δ({ui | i ∈ C}). Additionally, there is a special degree bound of 2e− t on the edge-set
E′ =

⋃e
i=1 δ(wi); this corresponds to picking a basis in the uniform matroid.

Observe that for each i ∈ [e], any

ui

vi

u1

r

w1

ve
v1

wi

ue

we

Fig. 2. The crossing spanning tree instance used
in the reduction

spanning tree must choose exactly three
edges amongst {(r, ui), (ui, vi), (r, wi),
(wi, vi)}, in fact any three edges suffice.
Hence every spanning tree T in this graph
corresponds to a subset X ⊆ [e] such
that: (I) T contains both edges in δ(ui)
and one edge from δ(wi), for each i ∈ X ,
and (II) T contains both edges in δ(wi)
and one edge from δ(ui) for each i ∈
[e] \X .

From Theorem 7, for the crossing matroid problem, we obtain the two cases:

Yes instance. There is a basis B∗ (i.e. B∗ ⊆ [e], |B∗| = t) satisfying all degree bounds.
Consider the spanning tree

T ∗ = {(r, ui), (ui, vi), (r, wi) | i ∈ B∗}
⋃
{(r, wi), (ui, wi), (r, ui) | i ∈ [e] \B∗}.

Since B∗ satisfies its degree-bounds, T ∗ satisfies all degree bounds derived from the
crossing matroid instance. For the special degree bound on E′, note that |T ∗ ∩ E′| =
2e− |B∗| = 2e− t; so this is also satisfied. Thus there is a spanning tree satisfying all
the degree bounds.

No instance. Every subset B′ ⊆ [e] with |B′| ≥ t/2 (i.e. near basis) violates some
degree bound by an additive ρ = Ω(logc m) term, where c > 0 is a fixed constant.
Consider any spanning tree T that corresponds to subset X ⊆ [e] as described above.

122 N. Bansal et al.

1. Suppose that |X | ≤ t/2; then we have |T ∩ E′| = 2e− |X | ≥ 2e− t + t
2 , i.e. the

special degree bound is violated by t/2 ≥ Ω(
√

e) = Ω(log1/2 m).
2. Now suppose that |X | ≥ t/2. Then by the guarantee on the no-instance, T violates

some degree-bound derived from the crossing matroid instance by additive ρ.

Thus in either case, every spanning tree violates some degree bound by additive ρ =
Ω(logc m).

By Theorem 7, it is hard to distinguish the above cases and we obtain the correspond-
ing hardness result for crossing spanning tree, as claimed in Theorem 2.

References

1. Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima in lattices,
codes, and systems of linear equations. J. Comput. Syst. Sci. 54(2), 317–331 (1997)

2. Bansal, N., Khandekar, R., Nagarajan, V.: Additive guarantees for degree bounded network
design. In: STOC, pp. 769–778 (2008)

3. Bansal, N., Khandekar, R., Könemann, J., Nagarajan, V., Peis, B.: On Generalizations of
Network Design Problems with Degree Bounds (full version),Technical Report (2010)

4. Bilo, V., Goyal, V., Ravi, R., Singh, M.: On the crossing spanning tree problem. In: Jansen,
K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS,
vol. 3122, pp. 51–60. Springer, Heidelberg (2004)

5. Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K.: What would Edmonds do? Augment-
ing paths and witnesses for degree-bounded MSTs. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624, pp. 26–39.
Springer, Heidelberg (2005)

6. Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K.: Push relabel and an improved approxima-
tion algorithm for the bounded-degree MST problem. In: Bugliesi, M., Preneel, B., Sassone,
V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 191–201. Springer, Heidelberg
(2006)

7. Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University
Press, Cambridge (2000)

8. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent Randomized Rounding for Matroid Poly-
topes and Applications (2009), http://arxiv.org/abs/0909.4348

9. Faigle, U., Peis, B.: Two-phase greedy algorithms for some classes of combinatorial linear
programs. In: SODA, pp. 161–166 (2008)

10. Frank, A.: Increasing the rooted connectivity of a digraph by one. Math. Programming 84,
565–576 (1999)

11. Goemans, M.X.: Minimum Bounded-Degree Spanning Trees. In: FOCS, pp. 273–282 (2006)
12. Grandoni, F., Ravi, R., Singh, M.: Iterative Rounding for Multiobjective Optimization Prob-

lems. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 95–106. Springer,
Heidelberg (2009)

13. Hoffman, A., Schwartz, D.E.: On lattice polyhedra. In: Hajnal, A., Sos, V.T. (eds.) Proceed-
ings of Fifth Hungarian Combinatorial Coll, pp. 593–598. North-Holland, Amsterdam (1978)

14. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem.
In: Combinatorica, pp. 39–61 (2001)

15. Király, T., Lau, L.C., Singh, M.: Degree bounded matroids and submodular flows. In: Lodi,
A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 259–272. Springer,
Heidelberg (2008)

http://arxiv.org/abs/0909.4348

On Generalizations of Network Design Problems with Degree Bounds 123

16. Klein, P.N., Krishnan, R., Raghavachari, B., Ravi, R.: Approximation algorithms for finding
low degree subgraphs. Networks 44(3), 203–215 (2004)

17. Könemann, J., Ravi, R.: A matter of degree: Improved approximation algorithms for degree
bounded minimum spanning trees. SIAM J. on Computing 31, 1783–1793 (2002)

18. Könemann, J., Ravi, R.: Primal-Dual meets local search: approximating MSTs with nonuni-
form degree bounds. SIAM J. on Computing 34(3), 763–773 (2005)

19. Korte, B., Vygen, J.: Combinatorial Optimization, 4th edn. Springer, New York (2008)
20. Lau, L.C., Naor, J., Salavatipour, M.R., Singh, M.: Survivable network design with degree or

order constraints (full version). In: STOC, pp. 651–660 (2007)
21. Lau, L.C., Singh, M.: Additive Approximation for Bounded Degree Survivable Network

Design. In: STOC, pp. 759–768 (2008)
22. Nutov, Z.: Approximating Directed Weighted-Degree Constrained Networks. In: Goel, A.,

Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX 2008 and RANDOM 2008. LNCS,
vol. 5171, pp. 219–232. Springer, Heidelberg (2008)

23. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Many birds with one
stone: Multi-objective approximation algorithms. In: STOC, pp. 438–447 (1993)

24. Ravi, R., Singh, M.: Delegate and Conquer: An LP-based approximation algorithm for Min-
imum Degree MSTs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4051, pp. 169–180. Springer, Heidelberg (2006)

25. Schrijver, A.: Combinatorial Optimization. Springer, Heidelberg (2003)
26. Singh, M.: Personal Communication (2008)
27. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to within one

of optimal. In: STOC, pp. 661–670 (2007)

	On Generalizations of Network Design Problems with Degree Bounds
	Introduction
	Our Results, Techniques and Paper Outline
	Related Work

	Crossing Spanning Tree with Laminar Degree Bounds
	Hardness Results
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

