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Abstract. In 1991, Yannakakis [17] proved that no symmetric extended
formulation for the matching polytope of the complete graph Kn with n
nodes has a number of variables and constraints that is bounded subex-
ponentially in n. Here, symmetric means that the formulation remains
invariant under all permutations of the nodes of Kn. It was also conjec-
tured in [17] that “asymmetry does not help much,” but no correspond-
ing result for general extended formulations has been found so far. In
this paper we show that for the polytopes associated with the matchings
in Kn with �log n� edges there are non-symmetric extended formulations
of polynomial size, while nevertheless no symmetric extended formula-
tion of polynomial size exists. We furthermore prove similar statements
for the polytopes associated with cycles of length �log n�. Thus, with
respect to the question for smallest possible extended formulations, in
general symmetry requirements may matter a lot.

1 Introduction

Linear Programming techniques have proven to be extremely fruitful for com-
binatorial optimization problems with respect to both structural analysis and
the design of algorithms. In this context, the paradigm is to represent the prob-
lem by a polytope P ⊆ R

m whose vertices correspond to the feasible solutions
of the problem in such a way that the objective function can be expressed by
a linear functional x �→ 〈c, x〉 on R

m (with some c ∈ R
m). If one succeeds in

finding a description of P by means of linear constraints, then algorithms as
well as structural results from Linear Programming can be exploited. In many
cases, however, the polytope P has exponentially (in m) many facets, thus P
can only be described by exponentially many inequalities. Also it may be that
the inequalities needed to describe P are too complicated to be identified.

In some of these cases one may find an extended formulation for P , i.e., a
(preferably small and simple) description by linear constraints of another poly-
hedron Q ⊆ R

d in some higher dimensional space that projects to P via some
(simple) linear map p : R

d → R
m with p(y) = Ty for all y ∈ R

d (and some
matrix T ∈ R

m×d). Indeed, if p� : R
m → R

d with p�(x) = T tx for all x ∈ R
m

denotes the linear map that is adjoint to p (with respect to the standard bases),
then we have max{〈c, x〉 : x ∈ P} = max{〈p�(c), y〉 : y ∈ Q}.
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As for an example, let us consider the spanning tree polytope Pspt(n) =
conv{χ(T ) ∈ {0, 1}En : T ⊆ En spanning tree of Kn}, where Kn = ([n], En)
denotes the complete graph with node set [n] = {1, . . . , n} and edge set En =
{{v, w} : v, w ∈ [n], v �= w}, and χ(A) ∈ {0, 1}B is the characteristic vector of
the subset A ⊆ B of B, i.e., for all b ∈ B, we have χ(A)b = 1 if and only if b ∈ A.
Thus, Pspt(n) is the polytope associated with the bases of the graphical matroid
of Kn, and hence (see [7]), it consists of all x ∈ R

En
+ satisfying x(En) = n − 1

and x(En(S)) ≤ |S| − 1 for all ⊆ [n] with 2 ≤ |S| ≤ n − 1, where R
E
+ is the

nonnegative orthant of R
E , we denote by En(S) the subset of all edges with both

nodes in S, and x(F ) =
∑

e∈F xe for F ⊆ En. This linear description of Pspt(n)
has an exponential (in n) number of constraints, and as all the inequalities define
pairwise disjoint facets, none of them is redundant.

The following much smaller exended formulation for Pspt(n) (with O(n3) vari-
ables and constraints) appears in [5] (and a similar one in [17], who attributes
it to [13]). Let us introduce additional 0/1-variables ze,v,u for all e ∈ En, v ∈ e,
and u ∈ [n] \ e. While each spanning tree T ⊆ En is represented by its char-
acteristic vector x(T ) = χ(T ) in Pspt(n), in the extended formulation it will be
represented by the vector y(T ) = (x(T ), z(T )) with z

(T )
e,v,u = 1 (for e ∈ En, v ∈ e,

u ∈ [n]\e) if and only if e ∈ T and u is contained in the component of v in T \e.
The polyhedron Qspt(n) ⊆ R

d defined by the nonnegativity constraints x ≥ 0,
z ≥ 0, the equations x(En) = n − 1, x{v,w} − z{v,w},v,u − z{v,w},w,u = 0 for all
pairwise distinct v, w, u ∈ [n], as well as x{v,w} +

∑
u∈[n]\{v,w} z{v,u},u,w = 1 for

all distinct v, w ∈ [n], satisfies p(Qspt(n)) = Pspt(n), where p : R
d → R

E is the
orthogonal projection onto the x-variables.

For many other polytopes (with exponentially many facets) associated with
polynomial time solvable combinatorial optimization problems polynomially sized
extended formulations can be constructed as well (see, e.g., the recent survey [5]).
Probably the most prominent problem in this class for which, however, no such
small formulation is known, is the matching problem. In fact, Yannakakis [17]
proved that no symmetric polynomially sized extended formulation of the match-
ing polytope exists.

Here, symmetric refers to the symmetric group S(n) of all permutations
π : [n] → [n] of the node set [n] of Kn acting on En via π.{v, w} = {π(v), π(w)}
for all π ∈ S(n) and {v, w} ∈ En. Clearly, this action of S(n) on En induces
an action on the set of all subsets of En. For instance, this yields an action
on the spanning trees of Kn, and thus, on the vertices of Pspt(n). The ex-
tended formulation of Pspt(n) discussed above is symmetric in the sense that,
for every π ∈ S(n), replacing all indices associated with edges e ∈ En and
nodes v ∈ [n] by π.e and π.v, respectively, does not change the set of constraints
in the formulation. Phrased informally, all subsets of nodes of Kn of equal cardi-
nality play the same role in the formulation. For a general definition of symmetric
extended formulations see Section 2.

In order to describe the main results of Yannakakis paper [17] and the
contributions of the present paper, let us denote by M�(n) = {M ⊆ En :
M matching in Kn, |M | = �} the set of all matchings of size � (a matching
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being a subset of edges no two of which share a node), and by P�
match(n) =

conv{χ(M) ∈ {0, 1}En : M ∈ M�(n)} the associated polytope. According to
Edmonds [6] the perfect matching polytope Pn/2

match(n) (for even n) is described
by

Pn/2
match(n) = {x ∈ R

En
+ : x(δ(v)) = 1 for all v ∈ [n],
x(E(S)) ≤ (|S| − 1)/2 for all S ⊆ [n], 3 ≤ |S| odd} (1)

(with δ(v) = {e ∈ En : v ∈ e}). Yannakakis [17, Thm.1 and its proof] shows that
there is a constant C > 0 such that, for every extended formulation for Pn/2

match(n)
(with n even) that is symmetric in the sense above, the number of variables and
constraints is at least C ·

(
n

�n/4�
)

= 2Ω(n). This in particular implies that there is
no polynomial size symmetric extended formulation for the matching polytope
of Kn (the convex hulls of characteristic vectors of all matchings in Kn), of which
the perfect matching polytope is a face.

Yannakakis [17] also obtains a similar (maybe less surprising) result on travel-
ing salesman polytopes. Denoting the set of all (simple) cycles of length � in Kn

by C�(n) = {C ⊆ En : C cycle in Kn, |C| = �}, and the associated polytopes by
P�

cycl(n) = conv{χ(C) ∈ {0, 1}En : C ∈ C�(n)}, the traveling salesman polytope

is Pn
cycl(n). Identifying Pn/2

match(n) (for even n) with a suitable face of P3n
cycl(3n),

Yannakakis concludes that all symmetric extended formulations for Pn
cycl(n) have

size at least 2Ω(n) as well [17, Thm. 2 and its proof].
Yannakakis’ results in a fascinating way illuminate the borders of our principal

abilities to express combinatorial optimization problems like the matching or the
traveling salesman problem by means of linear constraints. However, they only
refer to linear descriptions that respect the inherent symmetries in the problems.
In fact, the second open problem mentioned in the concluding section of [17] is
described as follows: “We do not think that asymmetry helps much. Thus, prove
that the matching and TSP polytopes cannot be expressed by polynomial size
LP’s without the asymmetry assumption.”

The contribution of our paper is to show that, in contrast to the assumption
expressed in the quotation above, asymmetry can help much, or, phrased differ-
ently, that symmetry requirements on extended formulations indeed can matter
significantly with respect to the minimal sizes of extended formulations. Our
main results are that both P�log n�

match (n) and P�log n�
cycl (n) do not admit symmetric

extended formulations of polynomial size, while they have non-symmetric ex-
tended formulations of polynomial size (see Cor. 1 and 2 for matchings, as well as
Cor. 3 and 4 for cycles). The corresponding theorems from which these corollar-
ies are derived provide some more general and more precise results for P�

match(n)
and P�

cycl(n). In order to establish the lower bounds for symmetric extensions,
we generalize the techniques developed by Yannakakis [17]. The constructions
of the compact non-symmetric extended formulations rely on small families of
perfect hash functions [1,8,15].

The paper is organized as follows. In Section 2, we provide definitions of
extensions, extended formulations, their sizes, the crucial notion of a section
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of an extension, and we give some auxilliary results. In Section 3, we present
Yannakakis’ method to derive lower bounds on the sizes of symmetric extended
formulations for perfect matching polytopes in a general setting, which we then
exploit in Section 4 in order to derive lower bounds on the sizes of symmetric
extended formulations for the polytopes P�

match(n) associated with cardinality
restricted matchings. In Section 5, we describe our non-symmetric extended for-
multions for these polytopes. Finally, in Section 6 we present the results on
P�

cycl(n). Some remarks conclude the paper in Section 7.

2 Extended Formulations, Extensions, and Symmetry

An extension of a polytope P ⊆ R
m is a polyhedron Q ⊆ R

d together with
a projection (i.e., a linear map) p : R

d → R
m with p(Q) = P ; it is called a

subspace extension if Q is the intersection of an affine subspace of R
d and the

nonnegative orthant R
d
+. For instance, the polyhedron Qspt(n) defined in the

Introduction is a subspace extension of the spanning tree polytope Pspt(n). A
(finite) system of linear equations and inequalities whose solutions are the points
in an extension Q of P is an extended formulation for P . The size of an extension
is the number of its facets plus the dimension of the space it lies in. The size of
an extended formulation is its number of inequalities (including nonnegativity
constraints, but not equations) plus its number of variables. Clearly, the size
of an extended formulation is at least as large as the size of the extension it
describes. Conversely, every extension is described by an extended formulation
of at most its size.

Extensions or extended formulations of a family of polytopes P ⊆ R
m (for

varying m) are compact if their sizes and the encoding lengths of the coeffi-
cients needed to describe them can be bounded by a polynomial in m and the
maximal encoding length of all components of all vertices of P . Clearly, the
extension Qspt(n) of Pspt(n) from the Introduction is compact.

In our context, sections s : X → Q play a crucial role, i.e., maps that assign
to every vertex x ∈ X of P some point s(x) ∈ Q ∩ p−1(x) in the intersection
of the polyhedron Q and the fiber p−1(x) = {y ∈ R

d : p(y) = x} of x under
the projection p. Such a section induces a bijection between X and its image
s(X) ⊆ Q, whose inverse is given by p. In the spanning tree example from the
Introduction, the assignment χ(T ) �→ y(T ) = (x(T ), z(T )) defined such a section.
Note that, in general, sections will not be induced by linear maps. In fact, if a
section is induced by a linear map s : R

m → R
d, then the intersection of Q with

the affine subspace of R
d generated by s(X) is isomorphic to P , thus Q has at

least as many facets as P .
For a family F of subsets of X , an extension Q ⊆ R

d is said to be indexed
by F if there is a bijection between F and [d] such that (identifying R

F with
R

d via this bijection) the map 1F = (1F )F∈F : X → {0, 1}F whose component
functions are the characteristic functions 1F : X → {0, 1} (with 1F (x) = 1 if and
only if x ∈ F ), is a section for the extension, i.e., 1F (X) ⊆ Q and p(1F(x)) = x
hold for all x ∈ X . For instance, the extension Qspt(n) of Pspt(n) is indexed by
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the family {T (e) : e ∈ En}∪{T (e, v, u) : e ∈ En, v ∈ e, u ∈ [n] \ e}, where T (e)
contains all spanning trees using edge e, and T (e, v, u) consists of all spanning
trees in T (e) for which u and v are in the same component of T \ {e}.

In order to define the notion of symmetry of an extension precisely, let the
group S(d) of all permutations of [d] = {1, . . . , d} act on R

d by coordinate
permutations. Thus we have (σ.y)j = yσ−1(j) for all y ∈ R

d, σ ∈ S(d), and
j ∈ [d].

Let P ⊆ R
m be a polytope and G be a group acting on R

m with π.P = P
for all π ∈ G, i.e., the action of G on R

m induces an action of G on the set X
of vertices of P . An extension Q ⊆ R

d of P with projection p : R
d → R

m

is symmetric (with respect to the action of G), if for every π ∈ G there is a
permutation κπ ∈ S(d) with κπ.Q = Q and

p(κπ.y) = π.p(y) for all y ∈ R
d. (2)

The prime examples of symmetric extensions arise from extended formula-
tions that “look symmetric”. To be more precise, we define an extended for-
mulation A=y = b=, A≤y ≤ b≤ describing the polyhedron Q = {y ∈ R

d :
A=y = b=, A≤y ≤ b≤} extending P ⊆ R

m as above to be symmetric (with re-
spect to the action of G on the set X of vertices of P ), if for every π ∈ G
there is a permutation κπ ∈ S(d) satisfying (2) and there are two permuta-
tions �=

π and �≤π of the rows of (A=, b=) and (A≤, b≤), respectively, such that
the corresponding simultaneous permutations of the columns and the rows of the
matrices (A=, b=) and (A≤, b≤) leaves them unchanged. Clearly, in this situation
the permutations κπ satisfy κπ.Q = Q, which implies the following.

Lemma 1. Every symmetric extended formulation describes a symmetric
extension.

One example of a symmetric extended formulation is the extended formulation
for the spanning tree polytope described in the Introduction (with respect to
the group G of all permutations of the nodes of the complete graph).

For the proof of the central result on the non-existence of certain symmetric
subspace extensions (Theorem 1), a weaker notion of symmetry will be sufficient.
We call an extension as above weakly symmetric (with respect to the action
of G) if there is a section s : X → Q for which the action of G on s(X)
induced by the bijection s works by permutation of variables, i.e., for every
π ∈ G there is a permutation κπ ∈ S(d) with s(π.x) = κπ.s(x) for all x ∈ X .
The following statement (and its proof, for which we refer to [12]) generalizes
the construction of sections for symmetric extensions of matching polytopes
described in Yannakakis’ paper [17, Claim 1 in the proof of Thm. 1].

Lemma 2. Every symmetric extension is weakly symmetric.

Finally, the following result (again, we refer to [12] for a proof) will turn out to
be useful in order to derive lower bounds on the sizes of symmetric extensions
for one polytope from bounds for another one.



140 V. Kaibel, K. Pashkovich, and D.O. Theis

Lemma 3. Let Q ⊆ R
d be an extension of the polytope P ⊆ R

m with projection
p : R

d → R
m, and let the face P ′ of P be an extension of a polytope R ⊆ R

k

with projection q : R
m → R

k. Then the face Q′ = p−1(P ′) ∩ Q ⊆ R
d of Q is an

extension of R via the composed projection q ◦ p : R
d → R

k.
If the extension Q of P is symmetric with respect to an action of a group G

on R
m (with π.P = P for all π ∈ G), and a group H acts on R

k such that, for
every τ ∈ H, we have τ.R = R, and there is some πτ ∈ G with πτ .P ′ = P ′ and
q(πτ .x) = τ.q(x) for all x ∈ R

m, then the extension Q′ of R is symmetric (with
respect to the action of the group H).

3 Yannakakis’ Method

Here, we provide an abstract view on the method used by Yannakakis [17] in or-
der to bound from below the sizes of symmetric extensions for perfect matching
polytopes, without referring to these concrete poytopes. That method is capable
of establishing lower bounds on the number of variables of weakly symmetric
subspace extensions of certain polytopes. By the following lemma, which is ba-
sically Step 1 in the proof of [17, Theorem 1], such bounds imply similar lower
bounds on the dimension of the ambient space and the number of facets for
general symmetric extensions (that are not necessarily subspace extensions).

Lemma 4. If, for a polytope P , there is a symmetric extension in R
d̃ with f

facets, then P has also a symmetric subspace extension in R
d with d ≤ 2d̃ + f .

The following simple lemma provides the strategy for Yannakakis’ method, which
we need to extend slightly by allowing restrictions to affine subspaces.

Lemma 5. Let Q ⊆ R
d be a subspace extension of the polytope P ⊆ R

m with
vertex set X ⊆ R

m, and let s : X → Q be a section for the extension. If S ⊆ R
m

is an affine subspace, and, for some X� ⊆ X∩S, the coefficients cx ∈ R (x ∈ X�)
yield an affine combination of a nonnegative vector

∑

x∈X�

cxs(x) ≥ 0d with
∑

x∈X�

cx = 1 , (3)

from the section images of the vertices in X�, then
∑

x∈X� cxx ∈ P ∩ S holds.

Proof. Since Q is a subspace extension, we obtain
∑

x∈X� cxs(x) ∈ Q from
s(x) ∈ Q (for all x ∈ X�). Thus, if p : R

d → R
m is the projection of the

extension, we derive

P � p(
∑

x∈X�

cxs(x)) =
∑

x∈X�

cxp(s(x)) =
∑

x∈X�

cxx . (4)

As S is an affine subspace containing X�, we also have
∑

x∈X� cxx ∈ S.

Due to Lemma 5 one can prove that subspace extensions of some polytope P
with certain properties do not exist by finding, for such a hypothetical extension,
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a subset X� of vertices of P and an affine subspace S containing X�, for which
one can construct coefficients cx ∈ R satisying (3) such that

∑
x∈X� cxx violates

some inequality that is valid for P ∩ S.
Actually, following Yannakakis, we will not apply Lemma 5 directly to a hy-

pothetical small weakly symmetric subspace extension, but we will rather first
construct another subspace extension from the one assumed to exist that is in-
dexed by some convenient family F . We say that an extension Q of a polytope P
is consistent with a family F of subsets of the vertex set X of P if there is a
section s : X → Q for the extension such that, for every component function sj

of s, there is a subfamily Fj of F such that sj is constant on every set in Fj , and
the sets in Fj partition X . In this situation, we also call the section s consistent
with F . The proof of the following lemma can be found in [12].

Lemma 6. If P ⊆ R
m is a polytope and F is a family of vertex sets of P for

which there is some extension Q of P that is consistent with F , then there is
some extension Q′ for P that is indexed by F . If Q is a subspace extension,
then Q′ can be chosen to be a subspace extension as well.

Lemmas 5 and 6 suggest the following strategy for proving that subspace exten-
sions of some polytope P with certain properties (e.g., being weakly symmetric
and using at most B variables) do not exist by (a) exhibiting a family F of
subsets of the vertex set X of P with which such an extension would be consis-
tent and (b) determining a subset X� ⊂ X of vertices and an affine subspace S
containing X�, for which one can construct coefficients cx ∈ R satisying

∑

x∈X�

cx1F(x) ≥ 0F with
∑

x∈X�

cx = 1 , (5)

such that
∑

x∈X� cxx violates some inequality that is valid for P ∩ S.
Let us finally investigate more closely the sections that come with weakly

symmetric extensions. In particular, we will discuss an approach to find suitable
families F within the strategy mentioned above in the following setting. Let
Q ⊆ R

d be a weakly symmetric extension of the polytope P ⊆ R
m (with respect

to an action of the group G on the vertex set X of P ) along with a section
s : X → Q such that for every π ∈ G there is a permutation κπ ∈ S(d) that
satisfies s(π.x) = κπ.s(x) for all x ∈ X (with (κπ.s(x))j = sκ−1

π (j)(x)).
In this setting, we can define an action of G on the set S = {s1, . . . , sd} of

the component functions of the section s : X → Q with π.sj = sκ−1
π−1 (j) ∈ S for

each j ∈ [d]. In order to see that this definition indeed is well-defined (note that
s1, . . . , sd need not be pairwise distinct functions) and yields a group action,
observe that, for each j ∈ [d] and π ∈ G, we have

(π.sj)(x) = sκ−1
π−1(j)(x) = (κπ−1 .s(x))j = sj(π−1.x) for all x ∈ X , (6)

from which one deduces 1.sj = sj for the one-element 1 in G as well as (ππ′).sj =
π.(π′.sj) for all π, π′ ∈ G. The isotropy group of sj ∈ S under this action is
isoG(sj) = {π ∈ G : π.sj = sj}. From (6) one sees that, for all x ∈ X and
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π ∈ isoG(sj), we have sj(x) = sj(π−1.x). Thus, sj is constant on every orbit of
the action of the subgroup isoG(sj) of G on X . We conclude the following.

Remark 1. In the setting described above, if F is a family of subsets of X such
that, for each j ∈ [d], there is a sub-family Fj partitioning X and consisting of
vertex sets each of which is contained in an orbit under the action of isoG(sj)
on X , then s is consistent with F .

In general, it will be impossible to identify the isotropy groups isoG(sj) without
more knowledge on the section s. However, for each isotropy group isoG(sj), one
can at least bound its index (G : isoG(sj)) in G.

Lemma 7. In the setting described above, we have (G : isoG(sj)) ≤ d .

Proof. This follows readily from the fact that the index (G : isoG(sj)) of the
isotropy group of the element sj ∈ S under the action of G on S equals the
cardinality of the orbit of sj under that action, which due to |S| ≤ d, clearly is
bounded from above by d.

The bound provided in Lemma 7 can become useful, in case one is able to
establish a statement like “if isoG(sj) has index less than τ in G then it contains
a certain subgroup Hj”. Choosing Fj as the family of orbits of X under the action
of the subgroup Hj of G, then F = F1 ∪ · · · ∪ Fd is a familiy as in Remark 1.
If this family (or any refinement of it) can be used to perform Step (b) in the
strategy outlined in the paragraph right after the statement of Lemma 6, then
one can conclude the lower bound d ≥ τ on the number of variables d in an
extension as above.

4 Bounds on Symmetric Extensions of P�
match(n)

In this section, we use Yannakakis’ method described in Section 3 to prove the
following result.

Theorem 1. For every n ≥ 3 and odd � with � ≤ n
2 , there exists no weakly sym-

metric subspace extension for P�
match(n) with at most

(
n

(�−1)/2

)
variables (with

respect to the group S(n) acting via permuting the nodes of Kn as described in
the Introduction).

From Theorem 1, we can derive the following more general lower bounds. Since
we need it in the proof of the next result, and also for later reference, we state
a simple fact on binomial coefficients first.

Lemma 8. For each constant b ∈ N there is some constant β > 0 with
(
M−b

N

)
≥

β
(
M
N

)
for all large enough M ∈ N and N ≤ M

2 .

Theorem 2. There is a constant C > 0 such that, for all n and 1 ≤ � ≤
n
2 , the size of every extension for P�

match(n) that is symmetric (with respect
to the group S(n) acting via permuting the nodes of Kn as described in the
Introduction) is bounded from below by C ·

(
n

�(�−1)/2�
)
.
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Proof. For odd �, this follows from Theorem 1 using Lemmas 1, 2, and 4. For
even �, the polytope P�−1

match(n − 2) is (isomorphic to) a face of P�−1
match(n) defined

by xe = 1 for an arbitrary edge e of Kn. From this, as � − 1 is odd (and not
larger than (n− 2)/2) with �(� − 2)/2� = �(�− 1)/2�, and due to Lemma 8, the
theorem follows by Lemma 3.

For even n and � = n/2, Theorem 2 provides a similar bound to Yannakakis
result (see Step 2 in the proof of [17, Theorem 1]) that no weakly symmetric
subspace extension of the perfect matching polytope of Kn has a number of
variables that is bounded by

(
n
k

)
for any k < n/4.

Theorem 2 in particular implies that the size of every symmetric extension for
P�

match(n) with Ω(log n) ≤ � ≤ n/2 is bounded from below by nΩ(log n), which
has the following consequence.

Corollary 1. For Ω(log n) ≤ � ≤ n/2, there is no compact extended formulation
for P�

match(n) that is symmetric (with respect to the group G = S(n) acting via
permuting the nodes of Kn as described in the Introduction).

The rest of this section is devoted to indicate the proof of Theorem 1. Through-
out, with � = 2k+1, we assume that Q ⊆ R

d with d ≤
(
n
k

)
is a weakly symmetric

subspace extension of P2k+1
match(n) for 4k + 2 ≤ n. We will only consider the case

k ≥ 1, as for � = 1 the theorem trivially is true (note that we restrict to n ≥ 3).
Weak symmetry is meant with respect to the action of G = S(n) on the set X of
vertices of P2k+1

match(n) as described in the Introduction, and we assume s : X → Q
to be a section as required in the definition of weak symmetry. Thus, we have
X = {χ(M) ∈ {0, 1}En : M ∈ M2k+1(n)}, where M2k+1(n) is the set of all
matchings M ⊆ En with |M | = 2k +1 in the complete graph Kn = (V, E) (with
V = [n]), and (π.χ(M)){v,w} = χ(M){π−1(v),π−1(w)} holds for all π ∈ S(n),
M ∈ M2k+1(n), and {v, w} ∈ E.

In order to identify suitable subgroups of the isotropy groups isoS(n)(sj) (see
the remarks at the end of Section 3), we use the following result on subgroups of
the symmetric group S(n), where A(n) ⊆ S(n) is the alternating group formed
by all even permutations of [n]. This result is Claim 2 in the proof of Thm. 1 of
Yannakakis paper [17]. Its proof relies on a theorem of Bochert’s [3] stating that
any subgroup of S(m) that acts primitively on [m] and does not contain A(m)
has index at least �(m + 1)/2�! in S(m) (see [16, Thm. 14.2]).

Lemma 9. For each subgroup U of S(n) with (S(n) : U) ≤
(
n
k

)
for k < n

4 , there
is a W ⊆ [n] with |W | ≤ k and Hj = {π ∈ A(n) : π(v) = v for all v ∈ W} ⊆ U .

As we assumed d ≤
(
n
k

)
(with k < n

4 due to 4k + 2 ≤ n), Lemmas 7 and 9 imply
Hj ⊆ isoS(n)(sj) for all j ∈ [d]. For each j ∈ [d], two vertices χ(M) and χ(M ′)
of P2k+1

match(n) (with M, M ′ ∈ M2k+1(n)) are in the same orbit under the action
of the group Hj if and only if we have

M ∩ E(Vj) = M ′ ∩ E(Vj) and Vj \ M = Vj \ M ′ . (7)

Indeed, it is clear that (7) holds if we have χ(M ′) = π.χ(M) for some per-
mutation π ∈ Hj . In turn, if (7) holds, then there clearly is some permu-
tation π ∈ S(n) with π(v) = v for all v ∈ Vj and M ′ = π.M . Due to
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|M | = 2k + 1 > 2|Vj | there is some edge {u, w} ∈ M with u, w �∈ Vj . De-
noting by τ ∈ S(n) the transposition of u and w, we thus also have πτ(v) = v
for all v ∈ Vj and M ′ = πτ.M . As one of the permutations π and πτ is even,
say π′, we find π′ ∈ Hj and M ′ = π′.M , proving that M and M ′ are contained
in the same orbit under the action of Hj .

As it will be convenient for Step (b) (referring to the strategy described after
the statement of Lemma 6), we will use the following refinements of the parti-
tionings of X into orbits of Hj (as mentioned at the end of Section 3). Clearly,
for j ∈ [d] and M, M ′ ∈ M2k+1(n),

M \ E(V \ Vj) = M ′ \ E(V \ Vj) (8)

implies (7). Thus, for each j ∈ [d], the equivalence classes of the equivalence
relation defined by (8) refine the partitioning of X into orbits under Hj , and
we may use the collection of all these equivalence classes (for all j ∈ [d]) as the
family F in Remark 1. With

Λ = {(A, B) : A ⊆ E matching and there is some j ∈ [d] with
A ⊆ E \ E(V \ Vj), B = Vj \ V (A)} ,

(with V (A) =
⋃

a∈A a) we hence have F = {F (A, B) : (A, B) ∈ Λ} , where

F (A, B) = {χ(M) : M ∈ M2k+1(n), A ⊆ M ⊆ E(V \ B)} .

In order to construct a subset X� ⊆ X which will be used to derive a con-
tradiction as mentioned after Equation (5), we choose two arbitrary disjoint
subsets V�, V

� ⊂ V of nodes with |V�| = |V �| = 2k + 1, and define M� =
{M ∈ M2k+1(n) : M ⊆ E(V� ∪ V �)} as well as X� = {χ(M) : M ∈ M�}.
Thus, M� is the set of perfect matchings on K(V� ∪ V �). Clearly, X� is con-
tained in the affine subspace S of R

E defined by xe = 0 for all e ∈ E\E(V�∪V �).
In fact, X� is the vertex set of the face P2k+1

match(n) ∩ S of P2k+1
match(n), and for this

face the inequality x(V� : V �) ≥ 1 is valid (where (V� : V �) is the set of all edges
having one node in V� and the other one in V �), since every matching M ∈ M�

intersects (V� : V �) in an odd number of edges. Therefore, in order to derive the
desired contradiction, it suffices to find cx ∈ R (for all x ∈ X�) with∑

x∈X� cx = 1,
∑

x∈X� cx ·1F(x) ≥ 0F , and
∑

x∈X� cx

∑
e∈(V�:V �) xe = 0. For

the details on how this can be done we refer to [12].

5 A Non-symmetric Extension for P�
match(n)

We shall establish the following result on the existence of extensions for cardi-
nality restricted matching polytopes in this section.

Theorem 3. For all n and �, there are extensions for P�
match(n) whose sizes can

be bounded by 2O(�)n2 log n (and for which the encoding lengths of the coefficients
needed to describe the extensions by linear systems can be bounded by a constant).
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In particular, Theorem 3 implies the following, although, according to Corol-
lary 1, no compact symmetric extended formulations exist for P�

match(n) with
� = Θ(log n).

Corollary 2. For all n and � ≤ O(log n), there are compact extended formula-
tions for P�

match(n).

The proof of Theorem 3 relies on the following result on the existence of small
families of perfect-hash functions, which is from [1, Sect. 4]. Its proof is based
on results from [8,15].

Theorem 4 (Alon, Yuster, Zwick [1]). There are maps φ1, . . . , φq(n,r) :
[n] → [r] with q(n, r) ≤ 2O(r) log n such that, for every W ⊆ [n] with |W | = r,
there is some i ∈ [q(n, r)] for which the map φi is bijective on W .

Furthermore, we will use the following two auxilliary results that can be de-
rived from general results on polyhedral branching systems [11, see Cor. 3 and
Sect. 4.4]. The first one (Lemma 10) provides a construction of an extension
of a polytope that is specified as the convex hull of some polytopes of which
extensions are already available. In fact, in this section it will be needed only
for the case that these extensions are the polytopes themselves (this is a special
case of a result of Balas’, see [2, Thm.2.1]). However, we will face the slightly
more general situation in our treatment of cycle polytopes in Section 6.

Lemma 10. If the polytopes Pi ⊆ R
m (for i ∈ [q]) have extensions Qi of size si,

respectively, then P = conv(P1∪· · ·∪Pq) has an extension of size
∑q

i=1(si+2)+1.

The second auxilliary result that we need deals with describing a 0/1-polytope
that is obtained by splitting variables of a 0/1-polytope of which a linear de-
scription is already available.

Lemma 11. Let S be a set of subsets of [t], P = conv{χ(S)∈{0, 1}t : S ∈ S} ⊆
R

t, the corresponding 0/1-polytope, J = J(1)�· · ·�J(t) a disjoint union of finite
sets J(i),

S� = {S� ⊆ J : There is some S ∈ S with
|S� ∩ J(i)| = 1 for all i ∈ S, |S� ∩ J(i)| = 0 for all i �∈ S} , (9)

and P � = conv{χ(S�) ∈ {0, 1}J : S� ∈ S�}. If P = {y ∈ [0, 1]t : Ay ≤ b} for
some A ∈ R

s×t and b ∈ R
s, then

P � = {x ∈ [0, 1]J :
t∑

i=1

A�,i ·
∑

j∈J(i)

xj ≤ bi for all i ∈ [t]} . (10)

In order to prove Theorem 3, let φ1, . . . , φq be maps as guaranteed to exist
by Theorem 4 with r = 2� and q = q(n, 2�) ≤ 2O(�) log n, and denote Mi =
{M ∈ M�(n) : φi is bijective on V (M)} for each i ∈ [q]. By Theorem 4, we
have M�(n) = M1 ∪ · · · ∪Mq. Consequently,

P�
match(n) = conv(P1 ∪ · · · ∪ Pq) (11)
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with Pi = conv{χ(M) : M ∈ Mi} for all i ∈ [q], where we have

Pi = {x ∈ R
E
+ : xE\Ei

= 0, x(δ(φ−1
i (s))) = 1 for all s ∈ [2�],

x(Ei(φ−1
i (S))) ≤ (|S| − 1)/2 for all S ⊆ [2�], |S| odd} ,

where Ei = E \
⋃

j∈[2�] E(φ−1
i (j)). This follows by Lemma 11 from Edmonds’

linear description (1) of the perfect matching polytope P�
match(2�) of K2�. As the

sum of the number of variables and the number of inequalities in the description
of Pi is at most 2O(�) + n2 (the summand n2 comes from the nonnegativity
constraints on x ∈ R

E
+ and the constant in O(�) is independent of i), we obtain an

extension of P�
match(n) of size 2O(�)n2 log n by Lemma 10. This proves Theorem 3.

6 Extensions for Cycle Polytopes

By a modification of Yannakakis’ construction for the derivation of lower bounds
on the sizes of symmetric extensions for traveling salesman polytopes from the
corresponding lower bounds for matching polytopes [17, Thm. 2], we obtain
lower bounds on the sizes of symmetric extensions for P�

cycl(n). The lower bound
� ≥ 42 in the statement of the theorem (whose proof can be found in [12]) is
convenient with respect to both formulating the bound and proving its validity.

Theorem 5. There is a constant C′ > 0 such that, for all n and 42 ≤ � ≤ n,
the size of every extension for P�

cycl(n) that is symmetric (with respect to the
group S(n) acting via permuting the nodes of Kn as described in the Introduc-
tion) is bounded from below by C′ ·

( �n
3 �

�(� �
6 �−1)/2�

)
.

Corollary 3. For Ω(log n) ≤ � ≤ n, there is no compact extended formula-
tion for P�

cycl(n) that is symmetric (with respect to the group S(n) acting via
permuting the nodes of Kn as described in the Introduction).

On the other hand, if we drop the symmetry requirement, we find extensions of
the following size.

Theorem 6. For all n and �, there are extensions for P�
cycl(n) whose sizes can

be bounded by 2O(�)n3 log n (and for which the encoding lengths of the coefficients
needed to describe the extensions by linear systems can be bounded by a constant).

Before we prove Theorem 6, we state a consequence that is similar to Corollary 1
for matching polytopes. It shows that, despite the non-existence of symmetric
extensions for the polytopes associated with cycles of length Θ(log n) (Corol-
lary 3), there are non-symmetric compact extensions of these polytopes.

Corollary 4. For all n and � ≤ O(log n), there are compact extended formula-
tions for P�

cycl(n).

The rest of the section is devoted to prove Theorem 6, i.e., to construct an ex-
tension of P�

cycl(n) whose size is bounded by 2O(�)n3 log n. We proceed similarly
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to the proof of Theorem 3 (the construction of extensions for matching poly-
topes), this time starting with maps φ1, . . . , φq as guaranteed to exist by Theo-
rem 4 with r = � and q = q(n, �) ≤ 2O(�) log n, and defining Ci = {C ∈ C�(n) :
φi is bijective on V (C)} for each i ∈ [q]. Thus, we have C�(n) = C1 ∪ · · · ∪ Cq,
and hence, P�

cycl(n) = conv(P1 ∪ · · · ∪ Pq) with Pi = conv{χ(C) : C ∈ Ci}
for all i ∈ [q]. Due to Lemma 10, it suffices to exhibit, for each i ∈ [q], an
extension of Pi of size bounded by O(2� · n3) (with the constant independent
of i). Towards this end, let, for i ∈ [q], Vc = φ−1

i (c) for all c ∈ [�], and de-
fine Pi(v�) = conv{χ(C) : C ∈ Ci, v

� ∈ V (C)} for each v� ∈ V�. Thus, we have
Pi = conv

⋃
v�∈V�

Pi(v�), and hence, due to Lemma 10, it suffices to construct
extensions of the Pi(v�), whose sizes are bounded by O(2� · n2).

In order to derive such extensions define, for each i ∈ [q] and v� ∈ V�, a di-
rected acyclic graph D with nodes (A, v) for all A ⊆ [� − 1] and v ∈ φ−1

i (A), as
well as two additional nodes s and t, and arcs

(
s, ({φi(v)}, v)

)
and

(
([� − 1], v), t

)

for all v ∈ φ−1
i ([� − 1]), as well as

(
(A, v), (A ∪ {φi(w)}, w)

)
for all A ⊆ [� − 1],

v ∈ φ−1
i (A), and w ∈ φ−1

i ([� − 1] \ A). This is basically the dynamic program-
ming digraph (using an idea going back to [10]) from the color-coding method
for finding paths of prescribed lengths described in [1]. Each s-t-path in D cor-
responds to a cycle in Ci that visits v�, and each such cycle, in turn, corresponds
to two s-t-paths in D (one for each of the two directions of transversal).

Defining Qi(v�) as the convex hull of the characteristic vectors of all s-t-paths
in D in the arc space of D, we find that Pi(v�) is the image of Qi(v�)) under the
projection whose component function corresponding to the edge {v, w} of Kn

is given by the sum of all arc variables corresponding to arcs ((A, v), (A′, w))
(for A, A′ ⊆ [� − 1]) if v� �∈ {v, w}, and by the sum of the two arc variables
corresponding to (s, ({φi(w)}, w)) and (([� − 1], w), t) in case of v = v�. Clearly,
Qi(v�) can be described by nonnegativity constraints, flow conservation con-
straints for all nodes in D different from s and t, and by the equation stating
that there must be exactly one flow-unit leaving s. As the number of arcs of D
is in O(2� · n2), we thus have found an extension of Pi(v�) of the desired size.

7 Conclusions

The results presented in this paper demonstrate that there are polytopes which
have compact extended formulations though they do not admit symmetric ones.
These polytopes are associated with matchings (or cycles) of some prescribed
cardinalities (see [4] for a recent survey on general cardinality restricted com-
binatorial optimization problems). Similarly, for the permutahedron associated
with [n] there is a gap between the smallest sizes Θ(n log n) of a non-symmetric
extension [9] and Θ(n2) of a symmetric extension [14].

Nevertheless, the question whether there are compact extended formulations
for general matching polytopes (or for perfect matching polytopes), remains
one of the most interesting open question here. In fact, it is even unknown
whether there are (non-symmetric) extended formulations of these polytopes of
size 2o(n).
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Actually, it seems that there are almost no lower bounds known on the sizes
of (not necessarily symmetric) extensions, except for the one obtained by the
observation that every extension Q of a polytope P with f faces has at least f
faces itself, thus Q has at least log f facets (since a face is uniquely determined
by the subset of facets it is contained in) [9]. It would be most interesting to
obtain other lower bounds, including special ones for 0/1-polytopes.

Acknowledgements. We thank Christian Bey for useful discussions on subspaces
that are invariant under coordinate permutations.
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