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Abstract. The container relocation problem, where containers that are
stored in bays are retrieved in a fixed sequence, is a crucial port operation.
Existing approaches using branch and bound algorithms are only able to
optimally solve small cases in a practical time frame. In this paper, we
investigate iterative deepening A* algorithms (rather than branch and
bound) using new lower bound measures and heuristics, and show that
this approach is able to solve much larger instances of the problem in a
time frame that is suitable for practical application.
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1 Introduction

The retrieval of containers out of storage and onto transport vehicles is a common
and crucial port operation. The containers in a storage bay must be retrieved one
by one in a fixed sequence that is pre-determined by various constraints (e.g.,
maintenance of vessel balance, safety issues, etc.). The problem arises when the
next container to be retrieved is not at the top of its stack, since all other
containers above it must then be first relocated onto other stacks within the
bay. The relocation of a container is an expensive operation that essentially
dominates all other aspects of the problem, and therefore it is important that
the retrieval plan minimizes the number of such relocations.

There are two versions of this Container Relocation Problem in existing lit-
erature: the restricted variant only allows the relocation of containers that are
above the target container, while the unrestricted variant allows the relocation of
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any container. Previous research has largely concentrated on only the restricted
variant, which is also the focus of this study. We propose two new lower bound
measures that are superior to the existing lower bound the restricted variant.
We also investigate the effects of some greedy heuristics for the purpose of rapid
updating of best known solutions during interative depeening A* search. Our
research shows that using IDA* for the Container Relocation Problem is far
superior to the standard branch and bound approach proposed in existing liter-
ature. In particular, we show that the restricted variant can be well solved for
instances of practical size using IDA*.

2 Problem Description

In the container yard of a port, containers are stored in blocks (see Figure 1); each
block consists of multiple bays; each bay consists of multiple stacks of containers;
and each stack consists of multiple tiers. Container blocks typically comprise up
to 20 bays, with each bay having maximum capacities between 2-10 stacks and
3-7 tiers.

Fig. 1. Blocks in a Container Yard

Containers are retrieved from the bays using yard cranes, loaded onto AGVs,
and transported onto quay cranes that finally load them onto vessels. The loading
sequence of the containers by the quay cranes seeks to minimize the berth time
of the vessel while satisfying various loading constraints (e.g., vessel balance and
safety issues); the quay crane loading schedule determines the pickup sequence
of the containers from the yards.

This study focuses on the yard crane scheduling problem, where the goal is to
produce an operational plan for the retrieval of all containers in a given pickup
sequence that minimizes the total time spent. Figure 2 illustrates an instance of
the problem, where the numbers represent the pickup sequence of the containers.
If the container that is to be retrieved next in the pickup sequence (called the
target container) is on top of its stack, then it is simply retrieved. However, if
this is not the case then all containers on top of the target container must first
be relocated onto other stacks in the bay. The nature of yard crane operations is
such that minimizing the total time taken by an operational plan is functionally
equivalent to minimizing total number of relocations ([1,2,3,4,5]).
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Fig. 2. Yard Crane Operations

3 Existing Approaches

Kim and Hong [4] described a standard branch and bound algorithm for the
restricted variant that can optimally solve instances of up to 5 stacks by 5 tiers
within 4 minutes, but is too slow for practical use for larger instances. A heuristic
rule for generating solutions based on the expected number of relocations for a
random operational plan was proposed as an alternative; this heuristic is able to
find solutions that are within 10% of optimal for instances of up to 5 × 5 with
running time of up to 2 seconds. While the unrestricted variant was mentioned,
no solution was suggested for it.

Kim and Hong’s work [4] was extended by Aydin [6], which proposed alter-
native branching rules for the standard branch and bound algorithm for the
restricted variant while using the same lower bound. In combination with two
greedy heuristics, the branch and bound algorithm was found to perform well for
instances of up to 7 stacks by 7 tiers with about 37 containers, although the test
cases had relatively low load factors (55% − 75%). A variant of the container
relocation problem where traverse travel is modeled as a variable cost propor-
tional to the number of stacks traveled was also considered (which is beyond the
scope of this study).

Existing work on the storage of inbound containers so as to minimise relo-
cations during retrieval include [7] and [2], which both proposed formulae for
estimating the expected number of relocations. Kim et al. [3] developed a math-
ematical model and used a dynamic programming technique for this purpose,
producing a decision tree for use during the storage process.

Avriel et al. [8] proposed a 0-1 integer-programming model and a heuristic
method to solve a similar (but not identical) relocation problem of stowing con-
tainers onto a vessel.

4 Notation and Terminology

The following notation will be employed in this paper.
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𝐿 : A bay layout
𝑁 : Number of containers in the initial bay layout
𝑆 : Maximum number of stacks in the bay
𝑇 : Maximum number of tiers in the bay
𝐹 (𝐿) : The minimum number of relocations required for layout 𝐿
𝑐𝑠,𝑡 : The retrieval order of the container on tier 𝑡 of stack 𝑠
𝑠 : The stack containing the target
𝑡 : The tier containing the target; the target container is therefore 𝑐𝑠,𝑡
𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡(𝑠) : The smallest retrieval order in stack 𝑠, i.e., 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡(𝑠) = min 𝑐𝑠,𝑡.

By convention, we order the stacks in ascending order 1..S from left to right,
and the tiers 1..T from bottom to top.

5 Iterative Deepening A*

For a given bay layout, if the target container is at the top of its stack, then it
can be immediately retrieved, resulting in a smaller bay layout with the same
cost in terms of number of required relocations. Successive target containers can
be retrieved as long as they are on top of their respective stacks at the time
of retrieval, until the minimum equivalent layout is reached where there are
either no more containers or there exists other container(s) on top of the target
container. Hence, all layouts encountered in the search can be replaced by its
minimum equivalent layout.

Every node n in the search tree corresponds to a minimum layout; every path
from the root node to a leaf node corresponds to a solution to the initial layout.
Branching occurs when relocation takes place. If the bay has S stacks, then every
node in the search tree will have at most S − 1 children. Figure 3 illustrates the
nodes in the first two levels of a search tree of the restricted variant.

Fig. 3. First 2 Levels of a Search Tree for the Restricted Variant

The approach proposed in this study is an iterative deepening A* (IDA*) algo-
rithm. In the first iteration, a strictly optimistic (i.e., non-overestimating) lower
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bound cost threshold t is estimated for the initial problem, which guarantees the
permissibility of the solution. A depth-first branch and bound is then performed.
Each node n in the search tree has a corresponding cost f(n) = g(n) + h(n),
where g(n) is the number of relocations already made to arrive at that node
(known as confirmed relocations) and h(n) is a strictly optimistic estimation of
the minimum number of relocations required to solve the problem from that
node (known as identified relocations). Over the course of the search, the best
lower bound lb(n) for each node n is updated as all its children n′ are evaluated,
where lb(n) = max lb(n′) + 1.

One iteration of IDA* ends when the branch and bound has determined that
all remaining nodes n have f(n) > t. This process is repeated with the threshold
t incremented by 1, or set to the best lower bound found for the initial layout in
the previous iteration, whichever is greater. The algorithm is completed when a
solution is found with cost equal to t.

5.1 Lower Bounds

Recall that the estimated cost f(n) of a particular layout is the sum of its
confirmed relocations g(n) and its identified relocations h(n). In order for the
solution to be admissible, h(n) must never overestimate the number of reloca-
tions required. We examine three admissible lower bound measures that can be
used as h(n).

Lower Bound 1 (LB1): If a container is situated above another container with
smaller retrieval order, then it must be relocated at least once. LB1 counts the
number of such containers, i.e.,

LB1(L) = |{cs,t | ∃t′,t′<t such that cs,t′ < cs,t}| (1)

All the shaded containers in Figure 4(a) must be relocated at least once. This is
the lower bound described by Kim and Hong [4].

(a) Lower Bound 1 (LB1) (b) Lower Bound 3 (LB3)

Fig. 4. Lower Bounds LB1 and LB3

Lower Bound 2 (LB2): Observe in Figure 4(a) that there are three possible
destinations to relocate container 11: on stacks 1, 3 and 4 (the rightmost stack is
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full and cannot hold any more containers). For all of the three possible choices,
there will be a container with a smaller retrieval order below container 11 Hence,
container 11 has to be relocated at least one more time. This inspection can be
performed on all containers above the target (container 1), and the number of
such cases is added to LB1, i.e.,

LB2(L) = LB1(L) + |{cs̄,t | t > t̄ and ∀s′ �=s̄, ∃t′ such that cs′,t′ < cs̄,t}| (2)

Lower Bound 3 (LB3): Given a layout L and a set of containers S, let L − S
denote the resultant layout when all containers in S are removed from L. It is
apparent that for any layout L′ = L−S, F (L′) ≤ F (L). This observation allows
an extension of LB2 to all containers (rather than only containers in stack s̄),
as illustrated by the following example.

Let L be the bay layout given in Figure 4(a). Consider container 15 on stack 4
in L; the container in stack 4 with smallest retrieval order is container 2, which
will therefore be the target container when stack 4 is next considered. Suppose
all containers with a smaller retrieval order than 2 is removed (container 1 in
this case) along with all containers above them (containers 10 and 11 in this
example); this results in a smaller layout L′ = L − {c2,2, c2,3, c2,4} as depicted
in Figure 4(b). We can then use the same analysis as LB2 for container 15 in
L′, i.e., for all of the possible destination stacks for its relocation, there will be
a container with a smaller retrieval order than 15. Hence, container 15 must be
relocated an additional time.

L′
s,t = L − {cs′,t′ | ∃t′′,t′′≤t′ such that cs′,t′′ < smallest(s)} (3)

LB3(L) = LB1(L) +
∑

s,t

(LB2(L′
s,t) − LB1(L′

s,t)) (4)

5.2 Probe Heuristics

The deepest nodes explored in each iteration of IDA* can be viewed as forming
a frontier. Subsequent iterations push the frontier further and further towards
the leaf of the search tree and stops when the first leaf node is reached.

IDA* requires the computation of f(n′) for all children n′ of a node n be-
fore we can determine if n is on the frontier of the current iteration. It could
potentially improve the effectiveness of the search if we could make good use
of this information. If a child n′ of a node on the frontier seems promising, we
could invest the time to complete the partial solution represented by n′ using
a heuristic, which may turn out to be superior to the best known solution. In
particular, we will apply a heuristic probe to n′ if f(n′) ≤ (lb + b)/2, where lb is
the lower bound of the root node found in previous iteration, and b is the cost
of the best known solution found so far. The best known solution is updated if
the heuristic finds a better solution, thus narrowing the search window.

This subsection describes the heuristics used to generate complete solutions
during probing. These heuristics are used when the target container is not on
the top of its stack, and provide criteria for moving a container from the top of
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one stack to another. We repeat the process until all containers are retrieved.
Clearly, the height of destination stack must be less than T (we call such stacks
incomplete stacks) and the destination stacks must differ from the source stack.
In the following discussion, we implicitly assume that only incomplete stacks
(other than the source stack) are considered when selecting the destination stack.

We examine four such heuristics.

PR1: The stack with minimum height; if there are multiple eligible stacks, then
the leftmost eligible stack (with the smallest number) is selected.

PR1 is a simple heuristic that selects the shortest stack on the premise that
it minimizes the possibility that the relocated container will be placed above a
container with smaller retrieval order.

PR2: The stack with highest smallest(s) (refer to Section 4).

PR2 is motivated by the observation that if a container c is relocated to a stack
with smallest(s) greater than its retrieval order, then container c need not be
relocated again in the future. By picking the stack with the highest smallest(s)
value, we maximise the probability of this occurence.

PR3:

a) If there are one or more stacks with smallest(s) greater than the retrieval
order of target container cs̄,t̄, select the stack with lowest smallest(s);

b) Otherwise, select the stack with highest smallest(s).

If there are multiple stacks with smallest(s) greater than the retrieval order of
container c, any such stack is an equally good choice for c. Therefore, we prefer
the stack with the lowest smallest(s) to maximize the number of containers that
could satisfy this criterion in the future. Figure 5(a) illustrates the motivation
for case a) for PR3 when compared to PR2, where containers that require at
least one additional relocation are shaded.

PR4: Similar to PR3, except in case b) we perform an additional check: if the
container to be relocated is not the 2nd smallest in the source stack, and
the stack with highest smallest(s) has only one available slot, then pick
the stack with the 2nd highest smallest(s) instead.

PR4 is motivated by the example illustrated by Figure 5(b). No matter which
stack is selected as the destination for container 7, it must be relocated again.
If we follow case b) of PR3 and choose stack 2 for container 7, then container
4 has to be relocated to stack 1, and at least one more relocation is needed for
container 4. However, if we follow PR3 and pick stack 1 (the stack with 2nd
highest smallest(s)) for container 7, then container 4 can be relocated to stack
2 and no future relocation is needed.
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(a) PR2 versus PR3 (b) PR3 versus PR4

Fig. 5. Comparison of Probe Heuristics

6 Experiments and Analysis

Each test case is composed of three parameters N, S and T . A total of 125
sets of instances are randomly generated, with S ∈ [6, 10], T ∈ [3, 7] and N ∈
[(S−1)×T, S×T−1]; 100 instances were generated for each combination of S, T
and N . Note that a layout has solutions if and only if any container with retrieval
order i has at most i−1+e containers over it, where e = S×T −N is number of
empty slots. This check only needs to be performed for containers with retrieval
order i = 1, 2, ..., T − e; infeasible layouts are discarded and regenerated.

All experiments were conducted on a DELL personal desktop computer with
a Pentium 4 CPU clocked at 3.0GHz, loaded with 1.0GB RAM and running
the Windows XP operating system. All algorithms were implemented in C++
and compiled using Visual Studio C++ 2008 Team Edition (the default Release
configuration for the Win32 platform was used).

The number of relocations estimated by lower bound LB2 is 4.26% larger than
that of LB1 on average. The number of relocations estimated by lower bound
LB3 is 10-20% larger than that of LB1. In general, the gap in performance
between LB3 and LB1 increases as the size of the instances increase.

When the probe heuristics PR1, PR2, PR3 and PR4 are applied to the initial
layouts of each test case, the average number of relocations (over all 12,500 cases)
are 44.07, 37.87, 33.36, and 33.07 respectively. Since none of the heuristics strictly
dominates all others over all test cases, we created a composite heuristic PR+
that simply takes the best solution found by PR1, PR2, PR3 and PR4.

Our best approach for solving the restricted variant using IDA* is as follows.
We first construct an initial solution using heuristic PR+ (i.e., the best solution
found by PR1, PR2, PR3 and PR4). During the search, LB3 is used as the lower
bound to prune nodes, and heuristic PR4 is used to probe the children of frontier
nodes. We refer to the resulting algorithm as IDA PR+ LB3 PR4. We impose a
strict time limit of 1 second of CPU time for each test instance; once the time
limit is reached, the best solution found so far is reported.

To accurately gauge the performance of the algorithm, we first try to solve as
many instances optimally as possible disregarding the time limit. We used a high
performance computing server to run IDA PR+ LB3 PR4 over a long period of
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Table 1. Collated Results of IDA PR+ LB3 PR4 for the Restricted Variant

Instance Best Known IDA PR+ LB3 PR4

T Count LB Reloc Reloc LB Gap Best Gap time(s) opt %

3 1500 13592 13592 13592 0.00% 0.00% 0 100.00%
4 2000 33095 33095 33095 0.00% 0.00% 0.12 100.00%
5 2500 63506 63507 63511 0.01% 0.01% 11.105 99.80%
6 3000 105549 105669 105918 0.35% 0.24% 117.729 92.63%
7 3500 160329 162660 164482 2.59% 1.12% 468.413 61.29%

Total 12500 376071 378523 380598 1.20% 0.55% 597.367 87.35%

time. For each instance we allow IDA PR+ LB3 PR4 to explore as many as 230

nodes.
Table 1 gives the collated results for the 12,500 instances. The results for all

instances with same number of tiers are grouped together and the total number of
relocations for the group is reported. Count shows the total number of instances
in the group. The next two columns LB and Reloc gives the best known lower
bounds and solutions, totaled over all instances in the group; the disparities
between these two values arise when the algorithm is unable to find an optimal
solution despite searching 230 nodes.

The remaining five columns provide the results of IDA PR+ LB3 PR4 under
the 1 second time limit on a Pentium 4 desktop computer. Reloc gives the total
number of relocations of the best solutions found by the algorithm for all in-
stances in the group. This is followed by the percentage difference between this
value and the best known lower bound (LB Gap), and between this value and
the best known solutions (Best Gap), respectively. time(s) gives the total time in
seconds elapsed before IDA PR+ LB3 PR4 produced a solution, summed over
all instances in the group; this value is somewhat inaccurate as we used the
standard C library clock() function for this purpose, which has a precision of 1
millisecond, and many instances can be solved in less than 1ms. Finally, the last
column opt % gives the percentage of instances in the group that was solved op-
timally, where the number of relocations of the solution matches the best known
lower bound.

The data shows that the majority of instances with T ≤ 6 can be solved
optimally within 1 second. For large instances where T = 7, more than half the
instances are solved optimally, and the average gap between the solution found
and the best known lower bound is about 2.59%; this equates to an average
difference from optimal of fewer than 2 relocations. We can conclude that our
IDA PR+ LB3 PR4 can solve instances of up to 7 tiers and 10 stacks to near
optimal within 1 second for the restricted variant.

Our algorithm is a significant improvement over Kim and Hong [4], whose
branch and bound approach is only able to solve instances of up to 5 tiers by
5 stacks within 4 minutes, and the solution found by the proposed heuristic is
about 10% off the optimal solution.
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Although Aydin [6] used a branch and bound algorithm similar to Kim and
Hong [4] and is able to solve about 91% of instances of up to 7 tiers by 7 stacks,
the test case generation strategies for that research have load factors ranging
from 55% - 75%. Hence, the largest instance consists of only 7 × 7 × 0.75 = 37
containers. In contrast, the test instances in our work are nearly fully loaded
and consists of up to 69 containers. Since every subtree of the search tree with a
root node containing m containers is itself a search tree, our algorithm actually
solves several instances of the problem with m = 37 containers over the course
of searching for solutions for larger instances.

7 Conclusions

In this paper, we examined the use of IDA* algorithms on the container relo-
cation problem. We introduced two new lower bound measures for branch and
bound pruning; in particular, the LB3 lower bound measure has proven to be
much more effective than the LB1 measure that has been suggested in existing
literature. We also made use of probe heuristics for promising partial solutions
in order to narrow the search window; the heuristic PR3 has been found to be
especially useful for this purpose. The resultant IDA PR+ LB3 PR4 algorithm
is able to solve instances of up to 7 tiers and 7 stacks to within 1 to 2 relocations
of optimal for the restricted variant, which largely covers the set of practical
cases. Hence, the restricted variant of the container relocation problem can be
considered well solved for instances of practical size.
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