

Lecture Notes in Computer Science 6056
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Phong Q. Nguyen David Pointcheval (Eds.)

Public Key
Cryptography –
PKC 2010

13th International Conference
on Practice and Theory in Public Key Cryptography
Paris, France, May 26-28, 2010
Proceedings

13

Volume Editors

Phong Q. Nguyen
David Pointcheval
École Normale Supérieure
Département d’Informatique
45 rue d’Ulm, 75230 Paris Cedex 05, France
E-mail: {phong.nguyen, david.pointcheval}@ens.fr

Library of Congress Control Number: 2010926287

CR Subject Classification (1998): E.3, K.6.5, C.2, D.4.6, K.4.4, E.4

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-13012-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13012-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© International Association for Cryptologic Research 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The 13th International Conference on Practice and Theory in Public Key Cryp-
tography (PKC 2010) was held May 26–28, 2010, at the École Normale Supérieure
(ENS) in Paris, France. PKC 2010 was sponsored by the International Associ-
ation for Cryptologic Research (IACR), in cooperation with the École Normale
Supérieure (ENS) and the Institut National de Recherche en Informatique et
en Automatique (INRIA). The General Chairs of the conference were Michel
Abdalla and Pierre-Alain Fouque.

The conference received a record number of 145 submissions and each sub-
mission was assigned to at least 3 committee members. Submissions co-authored
by members of the Program Committee were assigned to at least five commit-
tee members. Due to the large number of high-quality submissions, the review
process was challenging and we are deeply grateful to the 34 committee mem-
bers and the 163 external reviewers for their outstanding work. After extensive
discussions, the Program Committee selected 29 submissions for presentation
during the conference and these are the articles that are included in this vol-
ume. The best paper was awarded to Petros Mol and Scott Yilek for their paper
“Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions.” The re-
view process was run using the iChair software, written by Thomas Baignères
and Matthieu Finiasz from EPFL, LASEC, Switzerland, and we are indebted to
them for letting us use their software.

The program also included two invited talks: it was a great honor to have
Daniele Micciancio and Jacques Stern as invited speakers. Their talks were enti-
tled, respectively, “Duality in Lattice Based Cryptography” and “Mathematics,
Cryptography, Security.” We would like to genuinely thank them for accepting
our invitation and for contributing to the success of PKC 2010.

Finally, we would like to thank our sponsors Google, Ingenico, and Techni-
color for their financial support and all the people involved in the organization of
this conference. In particular, we would like to thank the Office for Courses and
Colloquiums (Bureau des Cours-Colloques) from INRIA and Gaëlle Dorkeld, as
well as Jacques Beigbeder and Joëlle Isnard from ENS, for their diligent work
and for making this conference possible. We also wish to thank Springer for
publishing the proceedings in the Lecture Notes in Computer Science series.

May 2010 Phong Q. Nguyen
David Pointcheval

PKC 2010

13th International Conference on
Practice and Theory in Public Key Cryptography

Paris, France, May 26–28, 2010

General Chairs

Michel Abdalla CNRS and ENS, Paris, France
Pierre-Alain Fouque ENS, Paris, France

Program Chairs

Phong Q. Nguyen INRIA and ENS, Paris, France
David Pointcheval CNRS, ENS and INRIA, Paris, France

Program Committee

Alexandra Boldyreva Georgia Institute of Technology, USA
Xavier Boyen University of Liege, Belgium
Dario Catalano University of Catania, Italy
Jung Hee Cheon Seoul National University, South Korea
Jean-Sébastien Coron University of Luxembourg
Marc Fischlin TU Darmstadt, Germany
Eiichiro Fujisaki NTT Labs, Japan
Craig Gentry IBM, USA
Maria Isabel Gonzalez Vasco Universidad Rey Juan Carlos, Madrid, Spain
Stanislaw Jarecki UC Irvine, California, USA
Jonathan Katz University of Maryland, USA
Eike Kiltz CWI, The Netherlands
Fabien Laguillaumie University of Caen, France
Dong Hoon Lee Korea University, Seoul, South Korea
Reynald Lercier DGA/CELAR and University of Rennes,

France
Benôıt Libert Université Catholique de Louvain, Belgium
Vadim Lyubashevsky University of Tel-Aviv, Israel
Mark Manulis TU Darmstadt and CASED, Germany
Alfred Menezes University of Waterloo, Canada
Kenny Paterson Royal Holloway, University of London, UK
Duong Hieu Phan University of Paris 8, France
Benny Pinkas University of Haifa, Israel
Alon Rosen IDC Herzliya, Israel
Kazue Sako NEC, Japan

VIII Organization

Hovav Shacham UC San Diego, California, USA
Igor Shparlinski University of Macquarie, Sydney, Australia
Martijn Stam EPFL, Switzerland
Keisuke Tanaka Tokyo Institute of Technology, Japan
Ramarathnam Venkatesan Microsoft Research, Bangalore and Redmond,

India and USA
Damien Vergnaud ENS, Paris, France
Ivan Visconti University of Salerno, Italy
Bogdan Warinschi Bristol University, UK
Brent Waters University of Texas, USA
Duncan Wong City University of Hong Kong, China

External Reviewers

Michel Abdalla
Divesh Aggarwal
Shweta Agrawal
Adi Akavia
Koichiro Akiyama
Frederik Armknecht
Ali Bagherzandi
Aurélie Bauer
Amos Beimei
Daniel J. Bernstein
Raghav Bhaskar
James Birkett
Jens-Matthias Bohli
Joppe Bos
Charles Bouillaguet
John Boxall
Emmanuel Bresson
Jin Wook Byun
David Cash
Guilhem Castagnos
Julien Cathalo
Pierre-Louis Cayrel
Sanjit Chatterjee
Céline Chevalier
Kwantae Cho
Kyu Young Choi
Raymond Choo
Ji Young Chun
Cas Cremers
Maria Cristina Onete
Özgür Dagdelen

Vanesa Daza
Sebastiaan de Hoogh
Cécile Delerablée
Olivier de Marneffe
Breno de Medeiros
Alexander W. Dent
Claus Diem
Mario Di Raimondo
Vivien Dubois
Laila El Aimani
Nadia El Mrabet
Pooya Farshim
Anna Lisa Ferrara
Dario Fiore
Jun Furukawa
David Galindo
Nicolas Gama
Essam Ghadafi
Domingo Gomez Perez
Choudary Gorantla
Vipul Goyal
Robert Granger
Matthew Green
Thomas Gross
Jens Groth
Jaime Gutierrez
Daewan Han
Darrel Hankerson
Carmit Hazay
Brett Hemenway
Javier Herranz

Organization IX

Mathias Herrmann
Dennis Hofheinz
Thomas Holenstein
Jeongdae Hong
Qiong Huang
Jung Yeon Hwang
Thomas Icart
Toshiyuki Isshiki
Malika Izabachène
Tibor Jager
Ayman Jarrous
Haimin Jin
Seny Kamara
Koray Karabina
Akinori Kawachi
Yutaka Kawai
Mitsuru Kawazoe
Jihye Kim
Kitak Kim
Minkyu Kim
Myungsun Kim
Woo Kwon Koo
Takeshi Koshiba
Hugo Krawczyk
Virendra Kumar
Robin Künzler
Benôıt Larroque
Hyung Tae Lee
Ji-Seon Lee
Kwangsu Lee
Munkyu Lee
Anja Lehmann
Arjen K. Lenstra
Allison Lewko
Yehuda Lindell
Xiaomin Liu
Satya Lokam
Julio Lopez
Xizhao Luo
Lior Malka
Toshihide Matsuda
Payman Mohassel
Tal Moran
Michael Naehrig
Toru Nakanishi

Gregory Neven
Ryo Nishimaki
Yasuyuki Nogami
Tatsuaki Okamoto
Josh Olsen
Adam O’Neill
Claudio Orlandi
Alina Ostafe
Adriana Palacio
Omkant Pandey
C. Pandu Rangan
Hyun-A Park
Jehong Park
Jong Hwan Park
Sylvain Pasini
Chris Peikert
Olivier Pereira
Angel L. Perez del Pozo
Bertram Poettering
Hyun Sook Rhee
Maike Ritzenhofen
Ben Riva
Francisco Rodriguez-Henriquez
Yannis Rouselakis
Ahmad-Reza Sadeghi
Alessandra Scafuro
Thomas Schneider
Berry Schoenmakers
Dominique Schröder
Michael Scott
Jae Hong Seo
Elaine Shi
Thomas Sirvent
William Skeith
Damien Stehlé
Mario Strefler
Willy Susilo
Koutarou Suzuki
Tamir Tassa
Edlyn Teske-Wilson
Berkant Ustaoglu
Vinod Vaikuntanathan
Carmine Ventre
Jorge L. Villar
Panagiotis Voulgaris

X Organization

Christian Wachsmann
Christopher Wolf
Keita Xagawa
Xiaokang Xiong
Guomin Yang
Scott Yilek

Kazuki Yoneyama
Tsz Hon Yuen
Aaram Yun
Zongyang Zhang
Vassilis Zikas

Sponsors

Financial support by the following sponsors is gratefully acknowledged:

– ENS
– Google
– Ingenico
– Technicolor

Table of Contents

Encryption I

Simple and Efficient Public-Key Encryption from Computational
Diffie-Hellman in the Standard Model . 1

Kristiyan Haralambiev, Tibor Jager, Eike Kiltz, and Victor Shoup

Constant Size Ciphertexts in Threshold Attribute-Based Encryption 19
Javier Herranz, Fabien Laguillaumie, and Carla Ràfols

Cryptanalysis

Algebraic Cryptanalysis of the PKC’2009 Algebraic Surface
Cryptosystem . 35

Jean-Charles Faugère and Pierre-Jean Spaenlehauer

Maximizing Small Root Bounds by Linearization and Applications to
Small Secret Exponent RSA . 53

Mathias Herrmann and Alexander May

Implicit Factoring with Shared Most Significant and Middle Bits 70
Jean-Charles Faugère, Raphaël Marinier, and Guénaël Renault

Protocols I

On the Feasibility of Consistent Computations . 88
Sven Laur and Helger Lipmaa

Multi-query Computationally-Private Information Retrieval with
Constant Communication Rate . 107

Jens Groth, Aggelos Kiayias, and Helger Lipmaa

Further Observations on Optimistic Fair Exchange Protocols in the
Multi-user Setting . 124

Xinyi Huang, Yi Mu, Willy Susilo, Wei Wu, and Yang Xiang

Network Coding

Secure Network Coding over the Integers . 142
Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin

Preventing Pollution Attacks in Multi-source Network Coding 161
Shweta Agrawal, Dan Boneh, Xavier Boyen, and
David Mandell Freeman

XII Table of Contents

Tools

Groth–Sahai Proofs Revisited . 177
Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi

Constant-Round Concurrent Non-Malleable Statistically Binding
Commitments and Decommitments . 193

Zhenfu Cao, Ivan Visconti, and Zongyang Zhang

Elliptic Curves

Faster Squaring in the Cyclotomic Subgroup of Sixth Degree
Extensions . 209

Robert Granger and Michael Scott

Faster Pairing Computations on Curves with High-Degree Twists 224
Craig Costello, Tanja Lange, and Michael Naehrig

Efficient Arithmetic on Hessian Curves . 243
Reza R. Farashahi and Marc Joye

Lossy Trapdoor Functions

CCA Proxy Re-Encryption without Bilinear Maps in the Standard
Model . 261

Toshihide Matsuda, Ryo Nishimaki, and Keisuke Tanaka

More Constructions of Lossy and Correlation-Secure Trapdoor
Functions . 279

David Mandell Freeman, Oded Goldreich, Eike Kiltz,
Alon Rosen, and Gil Segev

Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions 296
Petros Mol and Scott Yilek

Protocols II

Efficient Set Operations in the Presence of Malicious Adversaries 312
Carmit Hazay and Kobbi Nissim

Text Search Protocols with Simulation Based Security 332
Rosario Gennaro, Carmit Hazay, and Jeffrey S. Sorensen

Discrete Logarithm

Solving a 676-Bit Discrete Logarithm Problem in GF(36n) 351
Takuya Hayashi, Naoyuki Shinohara, Lihua Wang,
Shin’ichiro Matsuo, Masaaki Shirase, and Tsuyoshi Takagi

Table of Contents XIII

Using Equivalence Classes to Accelerate Solving the Discrete Logarithm
Problem in a Short Interval . 368

Steven D. Galbraith and Raminder S. Ruprai

Encryption II

Functional Encryption for Inner Product: Achieving Constant-Size
Ciphertexts with Adaptive Security or Support for Negation 384

Nuttapong Attrapadung and Benôıt Libert

Security of Encryption Schemes in Weakened Random Oracle Models
(Extended Abstract) . 403

Akinori Kawachi, Akira Numayama, Keisuke Tanaka, and
Keita Xagawa

Fully Homomorphic Encryption with Relatively Small Key and
Ciphertext Sizes . 420

Nigel P. Smart and Frederik Vercauteren

Signatures

Unlinkability of Sanitizable Signatures . 444
Christina Brzuska, Marc Fischlin, Anja Lehmann, and
Dominique Schröder

Confidential Signatures and Deterministic Signcryption 462
Alexander W. Dent, Marc Fischlin, Mark Manulis,
Martijn Stam, and Dominique Schröder

Identity-Based Aggregate and Multi-signature Schemes Based on
RSA . 480

Ali Bagherzandi and Stanis�law Jarecki

Lattice Mixing and Vanishing Trapdoors: A Framework for Fully
Secure Short Signatures and More . 499

Xavier Boyen

Author Index . 519

Simple and Efficient Public-Key Encryption
from Computational Diffie-Hellman in the

Standard Model

Kristiyan Haralambiev1,�, Tibor Jager2, Eike Kiltz3,��, and Victor Shoup4,� � �

1 Dept. of Computer Science, New York University, Courant Institute,
251 Mercer Street, New York, NY 10012, USA

kkh@cs.nyu.edu
2 Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany

tibor.jager@rub.de
3 Cryptology & Information Security Group, CWI, Amsterdam, The Netherlands

kiltz@cwi.nl
4 Dept. of Computer Science, New York University, Courant Institute,

251 Mercer Street, New York, NY 10012, USA
shoup@cs.nyu.edu

Abstract. This paper proposes practical chosen-ciphertext secure
public-key encryption systems that are provably secure under the compu-
tational Diffie-Hellman assumption, in the standard model. Our schemes
are conceptually simpler and more efficient than previous constructions.
We also show that in bilinear groups the size of the public-key can be
shrunk from n to 2

√
n group elements, where n is the security parameter.

1 Introduction

Security against chosen-ciphertext attack (CCA) is nowadays considered to be
the standard security notion for public-key encryption. In this work we are inter-
ested in practical schemes with proofs of security under mild security assump-
tions (such as the computational Diffie-Hellman assumption), without relying
on heuristics such as the random oracle model [2].

ElGamal Encryption. Let G be a cyclic group generated by g. The ElGamal
encryption scheme, described as a key-encapsulation mechanism (Gen,Enc,Dec),
is as follows

Gen : sk = z, pk = Z = gz, Enc(pk) : C = gr,K = Zr,

Dec(sk , C) : K = Cz ∈ G,

where all appearing exponents are chosen at random. It can be proved one-way
(OW-CPA) secure under the computational Diffie-Hellman (DH) assumption,

� Supported by NSF award number CNS-0716690.
�� Supported by the research program Sentinels.

� � � Supported by NSF award number CNS-0716690.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 1–18, 2010.
c© International Association for Cryptologic Research 2010

2 K. Haralambiev et al.

but its semantic (IND-CPA) security is equivalent to the stronger DDH as-
sumption. To obtain an IND-CPA secure variant from the DH assumption one
commonly uses the Goldreich-Levin [13] hard-core predicate fgl(·, R) with ran-
domness R to extract a pseudorandom bit from the Diffie-Hellman seed. By a
standard randomness-reusing technique one obtains a scheme that encapsulates
n-bit keys:

Gendh : skdh = (z1, . . . , zn), pk dh = (Z1 = gz1 , . . . , Zn = gzn),
Enc(pk) :Cdh = gr, Kdh = (fgl(Zr

1 , R), . . . , fgl(Zr
n, R)) ∈ {0, 1}n,

(1)

where decapsulation reconstructs the seed values Zr
i by computing Zr

i = Czi

dh.
Combined with a one-time pad it yields an IND-CPA secure encryption scheme.

IND-CCA security from Decisional Assumptions. Whereas CPA-secure
schemes can be constructed generically, building CCA-secure schemes seems
more difficult and usually requires stronger hardness assumptions. The first prac-
tical CCA-secure encryption scheme (without random oracles) was proposed in
a seminal paper by Cramer and Shoup [10]. Their construction was later gener-
alized to hash proof systems [9]. However, the Cramer-Shoup encryption scheme
and all its variants [22,7,20,21,16,17] inherently rely on decisional assumption,
e.g., the Decisional Diffie-Hellman (DDH) assumption or the quadratic residuos-
ity assumption. Moreover, there are groups, such as certain elliptic curve groups
with bilinear pairing map, where the DDH assumption does not hold, but the
DH problem appears to be hard.

IND-CCA security from Computational Assumptions. The DDH as-
sumption has often been criticized as being too strong [3,12] and in general
wrong in certain cryptographically relevant groups [19]. Schemes based on the
DH assumption are preferred but, surprisingly, even with strong tools such as
the Cramer Shoup framework [10] such schemes seem to be hard to obtain.

Canetti, Halevi and Katz [5] proposed the first practical public-key encryp-
tion scheme based on a computational assumption, namely the Bilinear DH
assumption in bilinear groups. Later, as a general tool to construct secure cryp-
tographic primitives against active attacks, Cash et al. [8] proposed the Twin
Diffie-Hellman (2DH) assumption. Though seemingly a stronger assumption,
the interactive Strong 2DH assumption (which is the 2DH assumption where
the adversary is additionally given an oracle that solves the 2DH problem for
fixed bases) is implied by the standard DH assumption. Building on “IBE tech-
niques” [4,5], Cash et al. obtained the first practical encryption scheme which
is CCA-secure assuming the strong 2DH assumption, and therefore also assum-
ing the standard DH assumption. Here the decisional 2DH oracle provided by
Strong 2DH assumption plays a crucial role in distinguishing consistent from
non-consistent ciphertexts. However, to prove IND-CCA security, [8] had to add
n group elements to the ciphertext of the scheme from Equation (1) which ren-
ders the scheme quite impractical. In independent work, Hanaoka and Kuro-
sawa [14] used a different approach based on broadcast encryption, and could
thereby reduce the number of group elements in the ciphertexts to a constant.
According to [14], their approach is not based on the twinning framework.

Simple and Efficient Public-Key Encryption from Computational DH 3

Recently, Hofheinz and Kiltz gave a CCA-secure encryption scheme based on
the factoring assumption [18].

1.1 Our Contributions

In this paper we propose a number of new encryption schemes that are CCA-
secure assuming the standard DH assumption. We apply the Twin Diffie-Hellman
framework from [8] to the CPA-secure scheme given in Equation (1). Therefore
our schemes are simple and intuitive. As summarized in [15, Table 1], they
improve efficiency of prior schemes from [8,14].

A scheme from Strong DH. To illustrate our main ideas we first give a toy
scheme that is IND-CCA secure assuming the Strong DH assumption [1] (The
Strong DH assumption is that the DH assumption holds when the adversary is
equipped with a (fixed-base) DDH oracle.) This is essentially the same scheme
as ElGamal from Equation (1), but one more group element is added to the
ciphertext.

Gensdh : sk = (sk dh, x, x
′), pk = (pk dh, X = gx, X ′ = gx′

)
Encsdh(pk) : C = (Cdh, (XtX ′)r), K = Kdh,

(2)

where t = T(Cdh) is the output of a target collision resistant hash function.
Decryption only returns K if the ciphertext C = (C0, C1) is consistent, i.e., if
Cxt+x′

0 = C1. In all other cases it rejects and returns ⊥. The additional element
(XtX ′)r from the ciphertext is used as a handle for an all-but-one simulation
technique (based on techniques from identity-based encryption [4]) to be able to
simulate the decryption oracle for all ciphertexts, except the challenge cipher-
text. The above simulation technique works only if consistent ciphertexts can
be distinguished from inconsistent ones, which is why we need the DDH oracle
provided by the Strong DH assumption.

First scheme from DH. Our first scheme, which is secure under the (standard)
DH assumption, applies the twinning framework to the above idea by adding an
additional element (Y tY ′)r to the ciphertext.

Gendh1 : sk = (sk dh, x, x
′, y, y′),

pk = (pk dh, X = gx, X ′ = gx′
, Y = gy, Y ′ = gy′

)
Encdh1(pk) : C = (Cdh, (XtX ′)r, (Y tY ′)r),

K = Kdh.

(3)

Again, decryption only returnsK if the ciphertext is consistent, and⊥ otherwise.
By analogy to the scheme from Equation (2) it is IND-CCA secure under the
Strong 2DH assumption which, by the Twinning theorem from [8], is implied by
the standard DH assumption. Again, the Decisional 2DH oracle provided by the
Strong DH assumption is crucial for distinguishing consistent from inconsistent
ciphertexts in the reduction.

Second scheme from DH. Our second scheme from the DH assumption ap-
plies an “implicit rejection technique” to remove the second element from the
ciphertext.

4 K. Haralambiev et al.

Gendh2 : sk = (sk dh, x, x
′, y, y′),

pk = (pk dh, X = gx, X ′ = gx′
, Y = gy, Y ′ = gy′

)
Encdh2(pk) : C = (Cdh, (XtX ′)r),

K = KG ⊕Kdh, where KG = G((Y tY ′)r),

(4)

where G : G → {0, 1}n is a secure pseudorandom generator. Decryption only
returns K if the ciphertext C = (C0, C1) is consistent, i.e., if Cxt+x′

0 = C1.
In that case KG is computed as KG = G(Cyt+y′

0). Unfortunately, we are not
able to show full CCA security of this KEM but, instead, we are able to prove
the weaker constrained CCA (CCCA) security [16] under the DH assumption.
A CCCA-secure KEM plus a symmetric authenticated encryption scheme (i.e.,
a MAC plus a one-time pad) yields CCA-secure encryption. The intuition be-
hind the security is similar to the scheme from Equation (3) with the difference
that, during the simulation, the values Y and Y ′ are set-up such that, if the
ciphertext is inconsistent, then the simulated decryption will produce KG that
is uniform in the adversary’s view and therefore K = KG ⊕Kdh is also uniform.
Consequently, when combined with symmetric authenticated encryption such
inconsistent decryption queries will get rejected by the symmetric cipher.

Reducing the size of the Public-Keys. Our schemes are quite practical,
except for the large public-key which consists of ≈ n group elements. We also
propose two methods to reduce the size of the public-key when our schemes are
instantiated over bilinear groups. Most interestingly, we note that the public-key
can be shrunk from n to 2

√
n elements by ”implicitly defining” the n elements of

pkdh as Zi,j := ê(Zi, Z
′
j), for i, j ∈ [1,

√
n]. (Here ê : G×G→ GT is a symmetric

bilinear map.) Note that now only the 2
√
n elements Zi, Z

′
j need to be stored in

the public-key.1 Furthermore, in bilinear groups it is also possible to move the
n values Z1, . . . , Zn from the public-key pkdh into the system parameter that
can be shared among many users. In that case the public-key only contains one
group element, but the system parameters are still of size ≈ n. We remark that
the observation of putting public-key elements into the systems parameters is
not new and has been made before, e.g., for Water’s IBE scheme [24]. Finally, we
also sketch how our ideas can be extended to construct an IBE scheme. All our
bilinear constructions are CCA secure under the Bilinear DH (BDH) assumption.

2 Preliminaries

2.1 Notation

In the following we let (Gκ)κ∈N be a family of prime-order groups, indexed by
security parameter κ. Occasionally we write G shorthand for some group Gκ ∈
(Gκ)κ∈N, when the reference to the security parameter κ is clear. We denote with

1 We remark that this is a generic technique that may also be applied to other Diffie-
Hellman based constructions suffering from large public keys, such as the DDH-based
lossy trapdoor functions in [23,11].

Simple and Efficient Public-Key Encryption from Computational DH 5

poly(κ) an unspecified positive integer-valued polynomial, and with negl(κ) a neg-
ligible function in κ, that is, |negl(κ)| < o(1/κc) for every positive integer c. For
a positive integer n, we denote with [n] the set [n] = {1, . . . , n}.

2.2 Key Encapsulation Mechanisms

Let n = n(κ) be a polynomial. A key-encapsulation mechanism (Gen,Enc,Dec)
with key-space {0, 1}n consists of three polynomial-time algorithms (PTAs). Via
(pk , sk) ← Gen(1n) the randomized key-generation algorithm produces pub-
lic/secret keys for security parameter κ ∈ N; via (C,K) ← Enc(pk) the random-
ized encapsulation algorithm creates an uniformly distributed symmetric key
K ∈ {0, 1}n, together with a ciphertext C; via K ← Dec(sk , C) the possessor of
secret key sk decrypts ciphertext C to get back a key K which is an element in
{0, 1}n or a special rejection symbol ⊥. For consistency, we require that for all
κ ∈ N, and all (C,K) ← Enc(pk) we have Pr[Dec(sk , C) = K] = 1, where the
probability is taken over the choice of (pk , sk) ← Gen(1n), and the coins of all
the algorithms in the expression above.

Chosen-Ciphertext Security. The common requirement for a KEM is in-
distinguishability against chosen-ciphertext attacks (IND-CCA) [10] where an
adversary is allowed to adaptively query a decapsulation oracle with ciphertexts
to obtain the corresponding session key. More formally, for an adversary A we
define the advantage function

AdvCCAA
KEMdh1

(κ) := Pr

⎡⎢⎢⎣b = b′ :

(pk , sk)← Gen(1n)
(C,K0)← Enc(pk)
K1 ← {0, 1}n; b← {0, 1}
b′ ← ADec(·)(pk ,Kb, C)

⎤⎥⎥⎦− 1
2
,

where oracle Dec(Ci) returns Ki ← Dec(sk , Ci). The restriction is that A is only
allowed to query Dec(·) on ciphertexts Ci different from the challenge ciphertext
C. A key encapsulation mechanism is said to be indistinguishable against cho-
sen ciphertext attacks (IND-CCA) if for all PTA adversaries A, the advantage
AdvCCAA

KEMdh1
(κ) is a negligible function in κ.

It was proved in [10] that an IND-CCA secure KEM and a CCA-secure sym-
metric encryption scheme yields an IND-CCA secure hybrid encryption scheme.

Constrained Chosen-Ciphertext Security. Chosen-ciphertext security
can be relaxed to indistinguishability against constrained chosen-ciphertext at-
tacks (IND-CCCA) [16]. Intuitively, one only allows the adversary to make a
decapsulation query if it already has some “a priori knowledge” about the decap-
sulated key. This partial knowledge about the key is modeled implicitly by letting
the adversary additionally provide an efficiently computable Boolean predicate
pred : {0, 1}n → {0, 1}. If pred(K) = 1 then the decapsulated key K is returned,
and ⊥ otherwise. The amount of uncertainty the adversary has about the session
key (denoted as plaintext uncertainty uncertA) is measured by the fraction of
keys for which the predicate evaluates to 1. We require this fraction to be neg-
ligible for every query, i.e. the adversary has to have a high a priori knowledge

6 K. Haralambiev et al.

about the decapsulated key when making a decapsulation query. More formally,
for an adversary A we define the advantage function

AdvCCCAA
KEMdh2

(κ) := Pr

⎡⎢⎢⎣b = b′ :

(pk , sk) ← Gen(1n)
(C,K0) ← Enc(pk)
K1 ← {0, 1}n; b← {0, 1}
b′ ← ACDec(·,·)(pk ,Kb, C)

⎤⎥⎥⎦− 1
2
,

where oracle CDec(pred i, Ci) first computes Ki ← Dec(sk , Ci). If Ki = ⊥ or
pred i(Ki) = 0 then return ⊥. Otherwise, return Ki. The restriction is that A is
only allowed to query CDec(pred i, Ci) on predicates pred i that are provided as
PTA and on ciphertexts Ci different from the challenge ciphertext C.

To adversary A in the above experiment we also associate A’s plaintext un-
certainty uncertA(κ) when making Q decapsulation queries, measured by

uncertA(κ) :=
1
Q

∑
1≤i≤Q

Pr
K∈{0,1}n

[pred i(K) = 1] ,

where pred i : G → {0, 1} is the predicate A submits in the ith decapsulation
query. Finally, a key encapsulation mechanism is said to be indistinguishable
against constrained chosen ciphertext attacks (IND-CCCA) if for all PTA ad-
versaries A with negligible uncertA(κ), the advantage AdvCCCAA

KEMdh2
(n) is a

negligible function in κ.
It was proved in [16] that an IND-CCCA secure KEM plus a symmetric en-

cryption scheme secure in the sense of authenticated encryption yields an IND-
CCA secure hybrid encryption scheme.

We refer to the full version [15, Appendix A] for other definitions of standard
cryptographic primitives such as hash functions and pseudorandom generators.

2.3 Diffie-Hellman Assumptions

Let G = Gκ be a cyclic group generated by g. Define

dh(A,B) := C, where A = ga, B = gb, and C = gab. (5)

The problem of computing dh(A,B) given randomA,B ∈ G is the computational
Diffie-Hellman (DH) problem. The DH assumption asserts that this problem is
hard, that is, Pr[A(A,B) = dh(A,B)] ≤ negl(κ) for all probabilistic polynomial-
time algorithms A. The DH predicate is defined as

dhp(A, B̂, Ĉ) := dh(A, B̂) ?= Ĉ.

The Strong DH assumption states that it is hard to compute dh(A,B), given
random A,B ∈ G, along with access to a decision oracle for the predicate
dhp(A, ·, ·), which on input (B̂, Ĉ), returns dhp(A, B̂, Ĉ).

Let dh be defined as in (5). Define the function

2dh : G3 → G2

(A1, A2, B)
→ (dh(A1, B), dh(A2, B)).

Simple and Efficient Public-Key Encryption from Computational DH 7

This function, introduced in [8], is called the twin DH function. One can also
define a corresponding twin DH predicate:

2dhp(A1, A2, B̂, Ĉ1, Ĉ2) := 2dh(A1, A2, B̂) ?= (Ĉ1, Ĉ2).

The twin Diffie-Hellman assumption states it is hard to compute 2dh(A1, A2, B),
given random A1, A2, B ∈ G. The strong twin DH assumption states that it
is hard to compute 2dh(A1, A2, B), given random A1, A2, B ∈ G, along with
access to a decision oracle for the predicate 2dhp(A1, A2, ·, ·, ·), which on input
(B̂, Ĉ1, Ĉ2), returns 2dhp(A1, A2, B̂, Ĉ1, Ĉ2). It is clear that the (strong) twin
DH assumption implies the DH assumption.

We will make use of a result from [8], which essentially states that the DH
assumption implies the strong twin Diffie-Hellman assumption.

Lemma 1 (Theorem 3 of [8]). Let G be a group of prime order p, log2 p =
poly(κ). Suppose A is an adversary against the strong twin Diffie-Hellman prob-
lem in G, running in polynomial-time in κ and having non-negligible success
probability. Then there exists a polynomial-time adversary B against the compu-
tational Diffie-Hellman problem in G having non-negligible success probability.

2.4 Hard-Core Functions

In the following we denote with fgl : G × {0, 1}u → {0, 1}ν a Goldreich-Levin
hard-core function [13] for dh(A,B) with randomness space {0, 1}u and range
{0, 1}ν, where u and ν are suitable integers (depending on the given group rep-
resentation).

The following lemma is from [8, Theorem 9].

Lemma 2. Let G = Gκ be a prime-order group generated by g. Let A1, A2, B
$←

G be random group elements, R $← {0, 1}u, and let K = fgl(dh(A1, B), R).
Let Uν

$← {0, 1}ν be uniformly random. Suppose there exists a proba-
bilistic polynomial-time algorithm B having access to an oracle computing
2dhp(A1, A2, ·, ·, ·) and distinguishing the distributions

Δdh = (g,A1, A2, B,K,R) and Δrand = (g,A1, A2, B, Uν , R)

with non-negligible advantage. Then there exists a probabilistic polynomial-time
algorithm computing dh(A,B) on input (A,B) with non-negligible success prob-
ability.

3 Chosen-Ciphertext Secure Key Encapsulation

In this section we build our first CCA-secure key-encapsulation mechanism whose
security is based on the DH assumption.

Let G = Gκ be a group of prime order p and let n = n(κ) be a polynomial.
Let Ts : G → Zp be a hash function with key s that is assumed to be target
collision resistant (see [15, Appendix A] for a formal definition). Let KEMdh1 =
(Gen,Enc,Dec) be defined as follows.

8 K. Haralambiev et al.

Gen(1κ) Choose a random generator g $← G and randomness R $← {0, 1}u for
fgl. Choose a random seed s for the hash function Ts, choose random integers
x, x′, y, y′, z1, . . . , zn

$← Zp, and set X = gx, X ′ = gx′
, Y = gy, Y ′ = gy′

,
Z1 = gz1, . . . , Zn = gzn . Set

pk = (g,X,X ′, Y, Y ′, Z1, . . . , Zn, R, s) and sk = (pk , x, x′, y, y′, z1, . . . , zn)

and return (pk , sk).
Enc(pk) On input of public key pk , sample r $← Zp. Set C0 = gr, t = Ts(C0),

C1 = (XtX ′)r, C2 = (Y tY ′)r, and

K = (fgl(Zr
1 , R), . . . , fgl(Zr

n, R))

Return ((C0, C1, C2),K).

Dec(sk , (C0, C1, C2)) Set t = Ts(C0). If C1 �= Cxt+x′
0 or C2 �= Cyt+y′

0 then return
⊥. Otherwise compute and return

K = (fgl(Cz1
0 , R), . . . , fgl(Czn

0 , R)).

Theorem 1. Let Ts be a target collision-resistant hash function and suppose
that the computational Diffie-Hellman assumption holds in G. Then KEMdh1 is
IND-CCA secure.

In the proof we use a trick from [4] to set up the public key and challenge cipher-
text in a way to perform an all-but-one simulation. This enables the simulator to
embed the given Diffie-Hellman challenge, while at the same time being able to
decapsulate any ciphertext submitted by the adversary. We combine this tech-
nique with the twinning technique from [8], to be able to check for consistency
of submitted ciphertexts.
Proof. In the following we write (C∗

0 , C
∗
1 , C

∗
2) to denote the challenge ciphertext

with corresponding key K∗
0 , denote with K∗

1 the random key chosen by the
IND-CCA experiment, and set t∗ = Ts(C∗

0).
We proceed in a sequence of games. We start with a game where the chal-

lenger proceeds like the standard IND-CCA game (i.e., K∗
0 is a real key and K∗

1
is a random key), and end up with a game where both K∗

0 and K∗
1 are chosen

uniformly random. Then we show that all games are computationally indistin-
guishable under the computational Diffie-Hellman assumption. Let Wi denote
the event that A outputs b′ such that b′ = b in Game i.

Game 0. This is the standard IND-CCA game. By definition we have

Pr[W0] =
1
2

+ AdvCCAA
KEMdh1

(κ)

Simple and Efficient Public-Key Encryption from Computational DH 9

Game 1. We proceed as in Game 0, except that the challenger returns ⊥ if
the adversary queries to decapsulate a ciphertext (C′

0, C
′
1, C

′
2) with C′

0 = C∗
0 .

Note that the probability that the adversary submits a ciphertext such that
C′

0 = C∗
0 before seeing the challenge ciphertext is bounded by q/p, where q is

the number of chosen-ciphertext queries issued by A. Since q = poly(κ), we
have q/p ≤ negl(κ). Moreover, a ciphertext is inconsistent, thus gets rejected, if
C′

0 = C∗
0 and C′

1 �= C∗
1 or C′

2 �= C∗
2 , and is rejected by definition if C′

1 = C∗
1 and

C′
2 = C∗

2 . Therefore
|Pr[W1]− Pr[W0]| ≤ negl(κ).

Game 2. We define Game 2 like Game 1, except for the following. Now the
challenger aborts, if the adversary asks to decapsulate a ciphertext (C′

0, C
′
1, C

′
2)

with C′
0 �= C∗

0 and Ts(C′
0) = Ts(C∗

0). By the target collision resistance of Ts, we
have

|Pr[W2]− Pr[W1]| ≤ negl(κ).

Game 3. We define Game 3 like Game 2, except that we sample K∗
0

$← {0, 1}nν

uniformly random. Note that now bothK∗
0 andK∗

1 are chosen uniformly random,
thus we have

Pr[W3] =
1
2
.

We claim that
|Pr[W3]− Pr[W2]| ≤ negl(κ)

under the computational Diffie-Hellman assumption. We prove this by a hybrid
argument. To this end, we define a sequence of hybrid games H0, . . . , Hn, such
that H0 equals Game 2 and Hn equals Game 3. Then we argue that hybrid Hi is
indistinguishable from hybrid Hi−1 for i ∈ {1, . . . , n} under the computational
Diffie-Hellman assumption. The claim follows, since n = n(κ) is a polynomial.
We define H0 exactly like Game 2. Then, for i from 1 to n, in hybrid Hi we
set the first iν bits of K∗

0 to independent random bits, and proceed otherwise
exactly like in hybrid Hi−1. Thus, hybrid Hn proceeds exactly like Game 3.

Let Ei denote the event that A outputs 1 in Hybrid i. Suppose

|Pr[E0]− Pr[En]| = 1/poly0(κ), (6)

that is, the success probability of A in Hybrid 0 is not negligibly close to the
success probability in Hybrid n. Note that then there must exist an index i such
that |Pr[Ei−1]− Pr[Ei]| = 1/poly(κ) (since if |Pr[Ei−1]− Pr[Ei]| ≤ negl(κ) for
all i, then we would have |Pr[E0]− Pr[En]| ≤ negl(κ)).

Suppose there exists an algorithm A for which (6) holds. Then we can con-
struct an adversary B having access to a 2dhp oracle and distinguishing the
distributions Δdh and Δrand, which by Lemma 2 is sufficient to prove secu-
rity under the computational Diffie-Hellman assumption in G. Adversary B re-
ceives a challenge δ = (g,A1, A2, B, L,R) as input, and has access to an oracle

10 K. Haralambiev et al.

evaluating 2dhp(A1, A2, ·, ·, ·). B guesses an index i ∈ [n], which with proba-
bility at least 1/n corresponds to the index i such that |Pr[Ei−1]− Pr[Ei]| =
maxi |Pr[Ei−1]− Pr[Ei]|, and proceeds as follows.

Set-up of the public key. B picks random integers d, e, f $← Zp, and setsX =
Ae

1, X
′ = A−et∗

1 gd, Y = A2, Y ′ = A−t∗
2 gf , and Zi = A1, where t∗ = Ts(B).

R is used as randomness for fgl(·, R), the rest of the public key is generated
as in Game 0. Note that X,X ′, Y, Y ′, Zi are independent and uniformly
distributed group elements.

Handling decapsulation queries. When A issues a decapsulation query
(C0 = gr, C1, C2), B computes t = Ts(C0), X̃ = (C1/C

d
0)1/(et−et∗), and

Ỹ = (C2/C
f
0)1/(t−t∗). Assuming t �= t∗ and that the ciphertext is formed

correctly (that is, C0 = gr, C1 = (XtX ′)r, and C2 = (Y tY ′)r) we have

X̃ = ((XtX ′)r/(gr)d)1/(et−et∗) = (Aer(t−t∗)
1 grd/grd)1/(et−et∗)

= Ar
1 = dh(A1, C0),

and likewise Ỹ = Ar
2 = dh(A2, C0). B tests consistency of ciphertexts

by querying 2dhp(A1, A2, C0, X̃, Ỹ), which returns 1 if and only if X̃ =
dh(A1, C0) and Ỹ = dh(A2, C0).

If this test is passed, then B sets K∗
0 = (K∗

0,1, . . . ,K
∗
0,n) as K∗

0,i =
fgl(X̃, R) and K∗

0,j = fgl(C
zj

0 , R) for j ∈ [n] \ {i}. Since by Game 2 we
have t �= t∗ for all queries issued by A, B can answer all decapsulation
queries correctly.

Set-up of the challenge ciphertext. B sets C∗
0 = B, C∗

1 = Bd, and C∗
2 =

Bf . Note that, by the set-up of X,X ′, Y, Y ′, this is a consistent ciphertext,
since we have

(Xt∗X ′)logg B = ((Ae
1)

t∗A−et∗
1 gd)logg B = Bd

and (similarly) (Y t∗Y ′)logg B = Bf . Then B samples i−1 uniformly random
bits K1, . . . ,Ki−1, sets Ki = L, Kj = fgl((C∗

0)zj , R) for j from i + 1 to n,
and outputs the challenge ((C∗

0 , C
∗
1 , C

∗
2), (K1, . . . ,Kn)).

Now, if δ $← Δdh then L = fgl(dh(B,Zi), R). Thus A’s view when interacting
with B is identical to Hybrid Hi−1. If δ $← Δrand, then A’s view is identical to
Hybrid Hi. Thus B can use A to distinguish δ ∈ Δdh from δ ∈ Δrand. �

We remark that the same proof strategy can be used to prove that the KEM given
in equation (2) (Section 1) is CCA-secure under the Strong DH assumption.

4 Constrained Chosen-Ciphertext Secure Key
Encapsulation

In this section we build a more efficient variant of our first CCA-secure key-
encapsulation mechanism, which we cannot prove CCA-secure. However, we can

Simple and Efficient Public-Key Encryption from Computational DH 11

prove that it is secure in the sense of constrained CCA security, which is sufficient
to obtain CCA-secure hybrid encryption. Again the security is based on the DH
assumption.

Let G = Gκ be a group of prime order p and let n = n(κ) be a polynomial.
Let KEMdh2 = (Gen,Enc,Dec) be defined as follows.

Gen(1κ) Choose a random generator g $← G and randomnessR $← {0, 1}u for fgl.
Choose a random seed s for the hash function Ts : G → Zp, choose random
integers x, x′, y, y′, z1, . . . , zn

$← Zp, and set X = gx, X ′ = gx′
, Y = gy,

Y ′ = gy′
, Z1 = gz1 , . . . , Zn = gzn . Let G : G → {0, 1}n be a pseudorandom

generator. Set

pk = (g,X,X ′, Y, Y ′, Z1, . . . , Zn, R, s,G) and sk = (pk, x, x′, y, y′, z1, . . . , zn)

and return (pk, sk).
Enc(pk) On input of public key pk, sample r $← Zp. Set C0 = gr, t = Ts(C0),

C1 = (XtX ′)r, KG = G((Y tY ′)r), and

Kdh = (fgl(Zr
1 , R), . . . , fgl(Zr

n, R))

Set K = KG ⊕Kdh and return ((C0, C1),K).
Dec(sk, (C0, C1)) Set t = Ts(C0). If C1 �= Cxt+x′

0 then return ⊥. Otherwise
compute KG = G(Cyt+y′

0) and

Kdh = (fgl(Cz1
0 , R), . . . , fgl(Czn

0 , R)),

and return K = KG ⊕Kdh.

Theorem 2. Let Ts be a target collision-resistant hash function, G be a pseudo-
random generator, and suppose that the computational Diffie-Hellman assump-
tion holds in G. Then KEMdh2 is IND-CCCA secure.

Since we removed one element from the ciphertext (which was crucial to apply
the twinning technique from the proof of Theorem 1 to check for consistency
of ciphertexts) we have to use different means to prove the constrained chosen-
ciphertext security of KEMdh2. Here we exploit the new set-up of the encapsu-
lated key, which allows us to reject invalid ciphertexts “implicitly.” Due to space
restrictions, the proof is deferred to the full version [15].

5 Reducing the Size of the Public Key

Let (G,GT) be a bilinear group that is equiped with an efficiently computable
pairing ê : G × G → GT . (See, e.g., [6,4].) In this section we show that by
instantiating our scheme from Equation (2) (Section 1) in bilinear groups we are
able to reduce the size of the public-key considerably.

12 K. Haralambiev et al.

5.1 Bilinear Diffie-Hellman Assumption

Let

bdh(A,B,C) := D, where A = ga, B = gb, C = gc, and D = ê(g, g)abc. (7)

The problem of computing bdh(A,B,C) given randomA,B,C ∈ G is the compu-
tational Bilinear Diffie-Hellman (DH) problem. The BDH assumption [6] asserts
that this problem is hard, that is, Pr[A(A,B,C) = bdh(A,B,C)] ≤ negl(κ) for
all probabilistic polynomial-time algorithms A.

In the bilinear setting, the Goldreich-Levin theorem [13] gives us the following
lemma for a fgl : GT × {0, 1}u → {0, 1}ν.

Lemma 3. Let G = Gκ be a prime-order group generated by g equipped with
a pairing ê : G × G → GT . Let A,B,C $← G be random group elements,
R

$← {0, 1}u, and let K = fgl(bdh(A,B,C), R). Let Uν
$← {0, 1}ν be uniformly

random. Suppose there exists a probabilistic polynomial-time algorithm B distin-
guishing the distributions

Δbdh = (g,A,B,C,K,R) and Δrand = (g,A,B,C, Uν , R)

with non-negligible advantage. Then there exists a probabilistic polynomial-time
algorithm computing bdh(A,B,C) on input (A,B,C) with non-negligible success
probability, hence breaking the BDH assumption.

5.2 Public-Key Encryption with Public Keys of Size O(1)

Our first idea is a variant where the elements sys = (g,X,X ′, Z1, . . . , Zn) ∈ Gn+3

can be put into the system parameters (that can be shared among many users)
and the public-key to contain only one single group element Y . Our encryption
scheme can be viewed as a BDH-variant of a Decisional BDH scheme from [7,20].
It is defined as follows.

Gen(1κ) Given the system parameters sys choose a random integer y $← Zp, and
set Y = gy. Set

pk = Y and sk = y

and return (pk , sk).
Enc(pk) On input of public key pk , sample r $← Zp. Set C0 = gr, t = T(C0),

C1 = (XtX ′)r, and K = (K1, . . . ,Kn), where

Ki = fgl(ê(Y r, Zi), R), for i ∈ [1, n].

Return ((C0, C1),K).
Dec(sk , (C0, C1)) If ê(C0, X

tX ′) �= ê(g, C1) then return ⊥. Otherwise, compute,
for each i ∈ [1, n],

Ki = fgl(ê(Cy
0 , Zi), R)

and return K = (K1, . . . ,Kn) ∈ {0, 1}nν.
Note that the consistency of the ciphertext is publicly verifiable, i.e., anyone
could verify a ciphertext being consistent or not.

Simple and Efficient Public-Key Encryption from Computational DH 13

Theorem 3. Let T be a target collision-resistant hash function and suppose
that the computational Bilinear Diffie-Hellman assumption holds in G. Then the
above scheme is an IND-CCA secure KEM.

Proof. We proceed in a sequence of games similarly to Theorem 1.
As before, we write (C∗

0 , C
∗
1) to denote the challenge ciphertext with corre-

sponding key K∗
0 , denote with K∗

1 the random key chosen by the IND-CCA
experiment, and set t∗ = Ts(C∗

0).
We start with a game where the challenger proceeds like the standard

IND-CCA game (i.e., K∗
0 is a real key and K∗

1 is a random key), and end up with
a game where both K∗

0 and K∗
1 are chosen uniformly random. Then we show

that all games are computationally indistinguishable under the computational
Bilinear Diffie-Hellman assumption. Let Wi denote the event that A outputs b′

such that b′ = b in Game i.

Game 0. This is the standard IND-CCA game. By definition we have

Pr[W0] =
1
2

+ AdvCCAA
KEMbdh1

(κ)

Game 1. We proceed as in Game 0, except that the challenger aborts, if the
adversary queries to decapsulate a ciphertext (C′

0, C
′
1) with C′

0 = C∗
0 . Note that

the probability that the adversary submits a ciphertext such that C′
0 = C∗

0
before seeing the challenge ciphertext is bounded by q/p, where q is the number
of chosen-ciphertext queries issued by A. Since q = poly(κ), we have q/p ≤
negl(κ). Moreover, a ciphertext is inconsistent, thus gets rejected, if C′

0 = C∗
0

and C′
1 �= C∗

1 , and is rejected by definition if C′
0 = C∗

0 and C′
1 = C∗

1 . Therefore

|Pr[W1]− Pr[W0]| ≤ negl(κ).

Game 2. We define Game 2 like Game 1, except for the following. Now the
challenger aborts, if the adversary asks to decapsulate a ciphertext (C′

0, C
′
1)

with C′
0 �= C∗

0 and Ts(C′
0) = Ts(C∗

0). By the target collision resistance of Ts, we
have

|Pr[W2]− Pr[W1]| ≤ negl(κ).

Game 3. We define Game 3 like Game 2, except that we sample K∗
0

$← {0, 1}nν

uniformly random. Note that now bothK∗
0 andK∗

1 are chosen uniformly random,
thus we have

Pr[W3] =
1
2
.

We claim that
|Pr[W3]− Pr[W2]| ≤ negl(κ)

under the computational Bilinear Diffie-Hellman assumption. We prove this by a
hybrid argument. To this end, we define a sequence of hybrid games H0, . . . , Hn,

14 K. Haralambiev et al.

such that H0 equals Game 2 and Hn equals Game 3. Then we argue that hy-
brid Hi is indistinguishable from hybrid Hi−1 for i ∈ {1, . . . , n} under the com-
putational Bilinear Diffie-Hellman assumption. The claim follows, since n = n(κ)
is a polynomial. We define H0 exactly like Game 2. Then, for i from 1 to n, in
hybrid Hi we set the first iν bits of K∗

0 to independent random bits, and pro-
ceed otherwise exactly like in hybrid Hi−1. Thus, hybrid Hn proceeds exactly
like Game 3.

Let Ei denote the event that A outputs 1 in Hybrid i. Suppose that

|Pr[E0]− Pr[En]| = 1/poly0(κ), (8)

that is, the success probability of A in Hybrid 0 is not negligibly close to the
success probability in Hybrid n. Note that then there must exist an index i such
that |Pr[Ei−1]− Pr[Ei]| = 1/poly(κ) (since if |Pr[Ei−1]− Pr[Ei]| ≤ negl(κ) for
all i, then we would have |Pr[E0]− Pr[En]| ≤ negl(κ)).

Suppose that there exists an algorithm A for which (8) holds. Then we
can construct an adversary B distinguishing the distributions Δbdh and Δrand,
which by Lemma 3 is sufficient to prove security under the computational
Bilinear Diffie-Hellman assumption in G. Adversary B receives a challenge
δ = (g,A,B,C, L,R) as input, guesses an index i ∈ [n], which with proba-
bility at least 1/n corresponds to the index i such that |Pr[Ei−1]− Pr[Ei]| =
maxi |Pr[Ei−1]− Pr[Ei]|, and proceeds as follows:

Set-up of the system parameters. B picks random integers d, e, f $← Zp,
and sets X = Ae, X ′ = A−et∗gd, and Zi = A, where t∗ = T(C). The
rest of the public key is generated as in Game 0. Note that C,X,X ′, Zi are
independent and uniformly distributed group elements.

Set-up of the public key. B sets Y = B.
Handling decapsulation queries. When A issues a decapsulation query

(C0 = gr, C1), B computes t = Ts(C0) and tests the consistency of the
ciphertext by verifying

ê(C0, X
tX ′) ?= ê(g, C1).

If the equality holds, then B sets K = (K1, . . . ,Kn) as Kj =
fgl(ê(Czj

0 , Y), R) for j ∈ [n] \ {i} and Ki = fgl(ê(X̃, Y), R), where X̃ :=
(C1/C

d
0)1/(et−et∗). Note that

X̃ = ((XtX ′)r/(gr)d)1/(et−et∗) = (Ar(et−et∗)grd/grd)1/(et−et∗)

= Ar = dh(A,C0).

Since by Game 2 we have t �= t∗, B can answer all decapsulation queries
correctly for all queries issued by A.

Set-up of the challenge ciphertext. B sets C∗
0 = C and C∗

1 = Cd. Note
that, by the set-up of X,X ′, this is a consistent ciphertext, since we have

(Xt∗X ′)logg C = ((Ae
1)

t∗A−et∗
1 gd)logg C = Cd

Simple and Efficient Public-Key Encryption from Computational DH 15

Then B samples i− 1 uniformly random groups of ν bits K∗
1 , . . . ,K

∗
i−1, sets

K∗
i = L, K∗

j = fgl(ê(C∗
0 , Y)zj , R) for j from i + 1 to n, and outputs the

challenge ((C∗
0 , C

∗
1), (K∗

1 , . . . ,K
∗
n)).

Now, if δ $← Δbdh then we have L = fgl(bdh(A,B,C), R). Thus A’s view when
interacting with B is identical to HybridHi−1. If δ $← Δrand, thenA’s view is iden-
tical to Hybrid Hi. Thus B can use A to distinguish δ ∈ Δbdh from δ ∈ Δrand. �

5.3 Public-Key Encryption with Public-Key of Size O(
√

n)

Our second idea reduces the size of the public-key from ≈ n to ≈ 2
√
n group

elements (and no systems parameters). Assume n is a square and set η :=
√
n.

The public key contains elements Z1, Z
′
1, . . . , Zη, Z

′
η ∈ G which implicitly define

η2 = n distinct elements Zi,j = ê(Zi, Z
′
j) in the target group GT . In our new

scheme these elements can be used in place of Z1, . . . , Zn.

Gen(1κ) Choose a random generator g $← G and randomness R $← {0, 1}u for
fgl. Choose a random seed s for the hash function Ts, choose random integers
x, x′, z1, z′1, . . . , zη, z

′
η

$← Zp, and set X = gx, X ′ = gx′
, Z1 = gz1 , Z ′

1 = gz′
1 ,

... , Zη = gzη , Z ′
η = gz′

η . Set

pk = (g,X,X ′, Z1, Z
′
1, . . . , Zη, Z

′
η, R, s) and sk = (pk , x, x′, z1, z′1, . . . , zη, z

′
η)

and return (pk , sk).
Enc(pk) On input of public key pk , sample r $← Zp. Set C0 = gr, t = Ts(C0),

C1 = (XtX ′)r, and K = (K1,1, . . . ,Kη,η), where

Ki,j = fgl(ê(Zr
i , Z

′
j), R), for i, j ∈ [1, η].

Return ((C0, C1),K).
Dec(sk , (C0, C1)) First reject if ê(C0, X

tX ′) �= ê(g, C1). Otherwise, for each
i, j ∈ [1, η] compute

Ki,j = fgl(ê(Czi
0 , Z

′
j), R).

and return K = (K1,1, . . . ,Kη,η) ∈ {0, 1}nν.
Like in the previous scheme, the consistency of the ciphertext is publicly
verifiable. Furthermore, decryption can alternatively check consistency of
the ciphertext by testing if Cxt+x′

0 = C1.

Theorem 4. Let Ts be a target collision-resistant hash function and suppose
that the computational Bilinear Diffie-Hellman assumption holds in G. Then the
above scheme is an IND-CCA secure KEM.

Proof. The proofs goes analogously to that of Theorem 3 with Game 3 defining
hybrid games H1,0, H1,1, H1,2, . . . , H1,η, H2,1, H2,2, . . . , H2,η, H3,1, . . . , Hη,η

(for convenience, we denote with H−
i,j the game preceding Hi,j in this ordering,

16 K. Haralambiev et al.

e.g. H−
3,1 = H2,η). Assuming that each two consecutive hybrid games are indis-

tinguishable by A, Game 2 (which is the same as H1,0) is indistinguishable from
Hη,η (which is the same as Game 3). But when both K∗

0 and K∗
1 are chosen

uniformly random then we have

Pr[W3] =
1
2
.

So all we have to show is that indeed the hybrid games are indistinguishable.
Suppose that there exists an algorithm A for which

|Pr[Eη,η]− Pr[E1,0]| = 1/poly0(κ), (9)

where Ei,j denotes the event that A outputs 1 in Hi,j . Then there are i∗, j∗ ∈
{1 . . .η} such that Pr[Ei∗,j∗]− Pr[E−

i∗,j∗] = 1/poly(κ), where E−
i,j denotes the

event that A outputs 1 in H−
i,j . (If no such indices exist and the difference is

negligible for all (i, j), then |Pr[Eη,η]− Pr[E1,0]| = negl(κ).)
Then we can construct an adversary B distinguishing the distributions Δbdh

and Δrand, which by Lemma 3 is sufficient to prove security under the computa-
tional Bilinear Diffie-Hellman assumption in G. Adversary B receives a challenge
δ = (g,A,B,C, L,R) as input, guesses indices i, j ∈ [η], which with probability
at least 1/η2 correspond to the indices i∗, j∗ such that

∣∣Pr[E−
i∗,j∗]− Pr[Ei∗,j∗]

∣∣ =
maxi,j

∣∣Pr[E−
i,j]− Pr[Ei,j]

∣∣, and proceeds as follows:

Set-up of the public-key. B picks random integers d, e, f $← Zp, and setsX =
Ae, X ′ = A−et∗gd, Zi∗ = A, and Z ′

j∗ = B, where t∗ = Ts(C). The rest of the
public key is generated as in scheme definition. Note that C,X,X ′, Zi∗ , Z

′
j∗

are independent and uniformly distributed group elements.
Handling decapsulation queries. When A issues a decapsulation query

(C0 = gr, C1), B computes t = Ts(C0) and tests the consistency of the
ciphertext by verifying

ê(C0, X
tX ′) ?= ê(g, C1).

If the equality holds, then B sets K = (K1,1, . . . ,Kη,η) as:
– Ki,j = fgl(ê(C0, Z

′
j)

zi , R) for i ∈ [η] \ {i∗} and j ∈ [η],

– Ki∗,j = fgl(ê(C0, Zi∗)z′
j , R) for j ∈ [η] \ {j∗}, and

– Ki∗,j∗ = fgl(ê(X̃, B), R), where X̃ := (C1/C
d
0)1/(et−et∗).

Note that

X̃ = ((XtX ′)r/(gr)d)1/(et−et∗) = (Ar(et−et∗)grd/grd)1/(et−et∗)

= Ar = dh(A,C0).

Since by Game 2 we have t �= t∗, B can answer all decapsulation queries
correctly for all queries issued by A.

Simple and Efficient Public-Key Encryption from Computational DH 17

Set-up of the challenge ciphertext. B sets C∗
0 = C and C∗

1 = Cd. Note
that, by the set-up of X,X ′, this is a consistent ciphertext, since we have

(Xt∗X ′)logg C = ((Ae
1)

t∗A−et∗
1 gd)logg C = Cd

Then B sets the key K∗ = (K∗
1,1,K

∗
1,2, . . . ,K

∗
i∗,j∗ , . . . ,K

∗
η,η) accordingly:

– the bits before K∗
i∗,j∗ uniformly at random;

– K∗
i∗,j∗ = L;

– and K∗
i,j = fgl(bdh(C,Zi, Z

′
j), R) for the remaining ν-bit blocks K∗

i,j , i.e.
i > i∗ or (i = i∗ ∧ j > j∗), which is possible because B knows zi or z′j ;

and outputs the challenge ((C∗
0 , C

∗
1),K∗).

Now, if δ $← Δbdh then we have L = fgl(bdh(A,B,C), R). Thus A’s view when
interacting with B is identical to Hybrid H−

i∗,j∗ . If δ $← Δrand, then A’s view
is identical to Hybrid Hi,j . Thus B can use A to distinguish δ ∈ Δbdh from
δ ∈ Δrand. �

We remark that the above construction also extends to a Boneh-Boyen-style [4]
identity-based encryption scheme selective-identity secure under the computa-
tional Bilinear Diffie-Hellman assumption. The IBE scheme has the same pa-
rameters as the above scheme, a user secret key for an identity id contains 2n
group elements of the form (gziz

′
j · (X idX ′)si,j , gsi,j) ∈ G2.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 143–158. Springer, Heidelberg (2001)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
New York (November 1993)

3. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM Journal on Computing 36(5), 915–942 (2006)

6. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

7. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: ACM CCS 2005, pp. 320–329. ACM Press, New York (Novem-
ber 2005)

8. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008)

18 K. Haralambiev et al.

9. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

10. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

11. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 282–298. Springer, Heidelberg (2010)

12. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

13. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st
ACM STOC, pp. 25–32. ACM Press, New York (May 1989)

14. Hanaoka, G., Kurosawa, K.: Efficient chosen ciphertext secure public key encryp-
tion under the computational Diffie-Hellman assumption. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008)

15. Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and efficient public-key
encryption from Computational Diffie-Hellman in the standard model. Cryptology
ePrint Archive, Report 2010/033 (2010), http://eprint.iacr.org/

16. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

17. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg
(2009)

18. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009)

19. Joux, A.: A one round protocol for tripartite Diffie-Hellman. Journal of Cryptol-
ogy 17(4), 263–276 (2004)

20. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

21. Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-
Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 282–297. Springer, Heidelberg (2007)

22. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004)

23. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: 40th
ACM STOC, pp. 187–196. ACM Press, New York (2008)

24. Waters, B.R.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

http://eprint.iacr.org/

Constant Size Ciphertexts
in Threshold Attribute-Based Encryption

Javier Herranz1, Fabien Laguillaumie2, and Carla Ràfols1

1 Dept. Matemàtica Aplicada IV, Universitat Politècnica de Catalunya,
C. Jordi Girona 1-3, Mòdul C3, 08034, Barcelona, Spain

{jherranz,crafols}@ma4.upc.edu
2 GREYC - Université de Caen Basse-Normandie,

Boulevard du Maréchal Juin, BP 5186, 14032 Caen Cedex, France
fabien.laguillaumie@unicaen.fr

Abstract. Attribute-based cryptography has emerged in the last years
as a promising primitive for digital security. For instance, it provides good
solutions to the problem of anonymous access control. In a ciphertext-
policy attribute-based encryption scheme, the secret keys of the users de-
pend on their attributes. When encrypting a message, the sender chooses
which subset of attributes must be held by a receiver in order to be able
to decrypt.

All current attribute-based encryption schemes that admit reasonably
expressive decryption policies produce ciphertexts whose size depends at
least linearly on the number of attributes involved in the policy. In this
paper we propose the first scheme whose ciphertexts have constant size.
Our scheme works for the threshold case: users authorized to decrypt
are those who hold at least t attributes among a certain universe of at-
tributes, for some threshold t chosen by the sender. An extension to the
case of weighted threshold decryption policies is possible. The security
of the scheme against selective chosen plaintext attacks can be proven
in the standard model by reduction to the augmented multi-sequence of
exponents decisional Diffie-Hellman (aMSE-DDH) problem.

Keywords: attribute-based encryption, provable security, pairings.

1 Introduction

Encryption is the cryptographic primitive which provides confidentiality to dig-
ital communications. In a traditional public key encryption scheme, a message
is encrypted with the public key of the intended receiver, who is the only person
able to decrypt. This level of confidentiality is enough for many real-life ap-
plications, including e-mail and key escrow. However, new situations requiring
different cryptographic functionalities appear constantly.

Let us consider for example the case of anonymous access control : a system
must be accessible only to those who have received the appropriate rights, which
are defined by the system administrator. Let us imagine how such a process
could be implemented with a standard public key encryption scheme. First, a

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 19–34, 2010.
c© International Association for Cryptologic Research 2010

20 J. Herranz, F. Laguillaumie, and C. Ràfols

user A claims that he is actually user A. Second, the system sends to this user
a challenge: a ciphertext computed with the public key of A (obtained from a
certification authority, maybe), for some random plaintext. Third, A decrypts
and sends back the plaintext. Fourth, if the plaintext is correct, the system checks
if user A must have access to the system, and if so, A is accepted. This solution
has some weaknesses, the main one being the lack of anonymity, as user A must
reveal his identity to the system. Furthermore, each time the system wants to
change its access control policy, it has to update the database containing all the
users that have the right to access the system.

A more desirable solution, employing encryption, would be as follows. First,
in a (possibly interactive, physical) registration process, every potential user
receives a secret key that depends on his age, his job, his company, his expertise,
etc., in short, on his attributes. Later, the system defines his policy for access
control as a (monotonic) family of subsets of attributes: attributes in one of such
subsets must be held by a user in order to have the right to access the system;
in particular, in an extreme case, this policy can contain a unique subset with
the unique attribute ‘right to access system X’. When a user tries to access
the system, he receives as a challenge a ciphertext computed by the system, on
a random message, using the current access policy. If the policy changes, the
system administrator just has to take into account the new policy for generating
the future challenges. A user is able to decrypt the challenge only if his attributes
satisfy the considered policy. In this way, if a user answers such a challenge
correctly, he does not leak who he is, only the fact that his attributes satisfy the
access control policy.

Ciphertext-policy attribute-based encryption (ABE for short, from now on) is
the cryptographic primitive which precisely realizes the functionality described
in the previous paragraph. This primitive can be traced back to identity-based
encryption [Sha84] (which can be seen as the particular case of ABE where the
policy contains a single subset with a single attribute) and to fuzzy identity-
based encryption [SW05] (the particular case of ABE where the policy is always
defined by a predetermined threshold t: only users holding at least t attributes
can decrypt).

Related work. The first paper dealing explicitly with ABE was [GPSW06]. Two
different and complementary notions of ABE were defined there: key-policy ABE,
where a ciphertext is associated to a list of attributes, and a secret key is associ-
ated to a policy for decryption; and ciphertext-policy ABE, where secret keys are
associated to a list of attributes (i.e. credentials of that user) and ciphertexts are
associated to policies for decryption. It seems that ciphertext-policy ABE can
be more useful for practical applications than key-policy ABE. Another related
notion is that of fuzzy identity-based encryption [SW05], which can be seen as
a particular case of both key-policy and ciphertext-policy ABE.

A construction of a key-policy ABE scheme was provided in [GPSW06], while
the first ciphertext-policy ABE scheme was proposed in [BSW07], but its security
was proved in the generic group model. Later, a generic construction to transform
a key-policy ABE scheme into a ciphertext-policy ABE scheme was given in

Constant Size Ciphertexts in Threshold Attribute-Based Encryption 21

[GJPS08], with the drawback that the size of the ciphertexts is O(s3), if s is the
number of attributes involved in the decryption policy.

The most efficient ciphertext-policy ABE schemes in terms of ciphertext size
can be found in [Wat08, DHMR08], the size of a ciphertext depending linearly
on the number of attributes involved in the specific policy for that ciphertext.
For example, in the case of (t, s)-threshold decryption policies, where there are s
involved attributes and a user can decrypt only if he holds t or more attributes,
the size of the ciphertexts in one of the schemes in [Wat08] is s+O(1), whereas
the size of the ciphertexts in the scheme in [DHMR08] is 2(s− t) +O(1). Both
schemes admit however general policies (general monotonic access structures)
and make use of secret sharing techniques.

All the constructions mentioned so far only achieve security under selective
attacks, a model in which the attacker specifies the challenge access structure
before the setup phase. The first CP-ABE scheme with full security has appeared
very recently [LO+10]. The size of the ciphertexts in this scheme is 2s+O(1).

A concept which is more generic than attribute-based encryption is that of
predicate encryption [KSW08]: the decryption policy, chosen by the sender of
the message, is hidden in the ciphertext, in such a way that even the receiver gets
no information on this policy, other than the fact that his attributes satisfy it
or not. Because of this additional strong privacy requirement, current proposals
for predicate encryption consider quite simple (not very expressive) policies.

We stress that all the existing proposals for ABE schemes produce ciphertexts
whose size depends (at least) linearly on the number of attributes involved in
the policy for that ciphertext. An exception is the scheme in [EM+09], where
ciphertexts have constant size; but this scheme admits only (s, s)-threshold de-
cryption policies. Note that for this particular threshold case where t = s, the
scheme in [DHMR08] already achieved constant-size ciphertexts. For more ex-
pressive or general decryption policies, no existing scheme has short ciphertexts.
This fact can limit the applications of ABE in real life, if we consider for example
the case of anonymous access control, with a low bandwidth available for the
communication between the user and the system administrator.

An essential feature of ABE schemes is their collusion resistance property,
which guarantees that a ciphertext can leak no information about the plaintext
to users whose attributes do not satisfy the considered policy, even if the union
of the attributes of these colluding users satisfies the policy. This property is
essential to guarantee a reasonable level of security in many of the applications
of ABE schemes, like anonymous access control or access to encrypted data.

A notion similar to ciphertext-policy ABE but without this collusion resis-
tance property has been considered under different names: policy-based encryp-
tion [BM05], cryptographic work flow [AMS06], etc. This notion is actually
equivalent to the primitive of dynamic distributed identity-based encryption
[CCZ06, DHMR07, DP08, DHMR08]: the sender chooses ad-hoc a set of identi-
ties and a monotonic access structure defined on this set; the ciphertext can be
decrypted only if users associated to the identities of some subset in the access
structure cooperate.

22 J. Herranz, F. Laguillaumie, and C. Ràfols

Our contribution. In this paper we propose the first collusion-resistant ABE
scheme which produces constant size ciphertexts and which admits reasonably
expressive decryption policies. Our scheme is inspired by the dynamic threshold
(identity-based) encryption scheme from [DP08], in which the ciphertext’s size
was constant as well. As we have just said, this scheme directly leads to a weak
ABE scheme, without the collusion resistance property. The challenge was to
modify this scheme in order to achieve collusion resistance without losing the
other security and efficiency properties, in particular that of constant size ci-
phertexts. The resulting scheme works for threshold policies: the sender chooses
ad-hoc a set S of attributes and a threshold t, and only users who hold at least
t of the attributes in S can decrypt. An extension is possible in order to support
also weighted threshold policies.

Our new scheme achieves security against selective chosen plaintext attacks
(sCPA), in the standard model, under the assumption that the augmented multi-
sequence of exponents decisional Diffie-Hellman (aMSE-DDH) problem is hard
to solve. This is essentially the same level of security that was proved for the
scheme in [DP08]. Using well-known techniques, it is possible to obtain security
against chosen ciphertext attacks (CCA), in the random oracle model.

Organization of the paper. We define the syntactics of attribute-based encryp-
tion and the required security properties in Section 2, where we also describe
the aMSE-DDH problem, on which the security of our scheme will be based. Sec-
tion 3 contains the description of our scheme, the details on its correctness and
consistency checking, and finally the formal proof of its security. In Section 4 we
discuss how to extend our threshold scheme to the case of weighted threshold
decryption policies, and the (im)possibility to achieve CCA security from CPA
security in the standard model using a generic conversion due to [Wat08]. The
work is concluded in Section 5.

2 Preliminaries

In this section we describe the algorithms that form an attribute-based encryp-
tion scheme which supports threshold decryption policies, as well as the basic
security requirements for such schemes. We also introduce the computational
problem called aMSE-DDH problem, to which we will relate the security of our
scheme.

2.1 Attribute-Based Encryption

In a ciphertext-policy attribute-based encryption (ABE, for short) system, each
user receives from a master entity a secret key which depends on the attributes
that he satisfies (to soften the natural limitation of the unique trusted authority,
the possibility to distribute the key extraction among several authorities has
been investigated in [Cha07]). A sender can encrypt a message so that it can
be decrypted only by users whose attributes satisfy some policy of his choice,
and which may depend of the message. Since the basic scheme that we propose

Constant Size Ciphertexts in Threshold Attribute-Based Encryption 23

in Section 3 works for threshold decryption policies, we describe the protocols
and security model with respect to these threshold policies: the sender chooses
a subset S of attributes and a threshold t such that 1 ≤ t ≤ |S|, and encrypts
a message m for the pair (S, t). A particular user will be able to decrypt the
ciphertext only if he holds t or more attributes in S. The protocols and security
model for ABE schemes supporting more general decryption policies can be
described in a very similar way.

Syntactic Definition. A ciphertext-policy attribute-based encryption scheme
ABE = (Setup,Ext,Enc,Dec) supporting threshold decryption policies consists
of four probabilistic polynomial-time algorithms:

– The randomized setup algorithm Setup takes a security parameter λ and a
universe of attributes P = {at1, . . . , atm} as inputs and outputs some public
parameters params, containing in particular the set P , which will be common
to all the users of the system, along with a secret key msk for the master
entity. The public parameters will be an input of all the following algorithms.
We write (params,msk) ← ABE.Setup(1λ,P) to denote an execution of this
algorithm.

– The key extraction algorithm Ext is an interaction between a user and the
master entity. The user proves to the master entity that he enjoys a subset
A ⊂ P of attributes. After verifying that this is actually the case, the master
entity uses his master secret key msk to generate a secret key skA (which
depends on the subset A of attributes), and gives it to the user. We refer to
an execution of this protocol as skA ← ABE.Ext(params, A,msk).

– The encryption algorithm Enc takes a subset of attributes S ⊂ P , a thresh-
old t such that 1 ≤ t ≤ |S|, and a message M as inputs. The output is
a ciphertext C. We denote an execution of the encryption algorithm as
C ← ABE.Enc(params, S, t,M).

– The decryption algorithm Dec takes a ciphertext C for the pair (S, t) and a
secret key skA corresponding to some subset A of attributes as inputs. The
output is a message M̃ . We write M̃ ← ABE.Dec(params, C, (S, t), skA) to
refer to an execution of this protocol.

For correctness, it is required that

ABE.Dec(params,ABE.Enc(params, S, t,M), (S, t), skA) = M,

whenever |A ∩ S| ≥ t and the values params,msk, skA have been obtained by
properly executing the protocols ABE.Setup and ABE.Ext.

Security Model for ABE Schemes. Most previous schemes (all but the
one in [LO+10]) consider only security under selective chosen plaintext attacks.
This is also the security level that will be provably achieved by our scheme.
Indistinguishability under selective chosen plaintext attacks (IND-sCPA security,
for short) for an attribute-based encryption scheme ABE supporting threshold
decryption policies and for a security parameter λ ∈ N is defined by considering
the following game that an attacker A plays against a challenger:

24 J. Herranz, F. Laguillaumie, and C. Ràfols

1. The challenger specifies a universe of attributes P of size m and gives it to
the attacker A.

2. A selects a subset S ⊂ P of s attributes and a threshold t such that 1 ≤ t ≤ s.
3. The challenger runs (params,msk) ← ABE.Setup(1λ,P) and gives params

to A.
4. [Secret key queries:] A adaptively sends subsets of attributes B ⊂ P , with

the restriction |B∩S| < t, and must receive skB ← ABE.Ext(params, B,msk)
as the answer.

5. A outputs two messages M0,M1 of the same length.
6. [Challenge:] The challenger picks a random bit b� ∈ {0, 1}, computes
C� ← ABE.Enc(params, S, t,Mb�) and gives C� to A.

7. Step 4 is repeated.
8. A outputs a bit b.

The advantage of such an adversary A in breaking the IND-sCPA security of the
ABE scheme is defined as

AdvIND-sCPA
A,ABE (λ) = |2 Pr[b = b�]− 1| .

An attribute-based encryption scheme ABE is said to be IND-sCPA secure if
AdvIND-sCPA

A,ABE (λ) is negligible with respect to the security parameter λ, for any
polynomial time adversary A.

Note also that collusion resistance follows from the fact that the adversary can
make multiple adaptive secret key queries both before and after the challenge
phase.

This is not the strongest security notion that one can consider for ABE
schemes. On the one hand, the attacker A can be allowed to make decryption
queries, for ciphertexts C′ of his choice (corresponding to pairs (S′, t′)), with the
restriction that the challenge ciphertext C∗ is never queried for the challenge
pair (S, t). On the other hand, A can be allowed to choose the challenge pair
(S, t) not at the beginning of the game, but at the same time when he chooses
the two messages M0,M1. In this case, we say that A is a chosen ciphertext
attacker, and that his goal is to break the CCA security of the ABE scheme.

2.2 The Augmented Multi-sequence of Exponents Diffie-Hellman
Problem

Our scheme uses an admissible bilinear map (or pairing) as an ingredient and its
security relies on the hardness of a problem that we call the augmented multi-
sequence of exponents decisional Diffie-Hellman problem, which is a slight mod-
ification of the multi-sequence of exponents decisional Diffie-Hellman problem
considered in [DP08]. The generic complexity of these two problems is covered
by the analysis in [BBG05], because the problems fit their general Diffie-Hellman
exponent problem framework.

Let G1,G2,GT be three groups of the same prime order p (this is called a
bilinear group triple in the sequel), and let e : G1 × G2 −→ GT be a non-
degenerate and efficiently computable bilinear map. Let g0 be a generator of

Constant Size Ciphertexts in Threshold Attribute-Based Encryption 25

G1 and let h0 be a generator of G2. In practice, the bilinear map e can be
implemented on any pairing-friendly (hyper-)elliptic curve [FST10]; no more
assumptions are made on the groups G1 and G2, or on the hypothetical existence
of an efficient isomorphism from the one to the other.

Let �̃, m̃, t̃ be three integers. The (�̃, m̃, t̃)-augmented multi-sequence of ex-
ponents decisional Diffie-Hellman problem ((�̃, m̃, t̃)-aMSE-DDH) related to the
group triplet (G1,G2,GT) is as follows:

Input: the vector−→x �̃+m̃ = (x1, . . . , x�̃+m̃) whose components are pairwise distinct
elements of (Z/pZ)� which define the polynomials

f(X) =
�̃∏

i=1

(X + xi) and g(X) =
�̃+m̃∏

i=�̃+1

(X + xi),

the values ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0, g
γ
0 , . . . , g

γ �̃+t̃−2

0 , g
κ·γ·f(γ)
0 , (l.1)

gωγ
0 , . . . , gωγ �̃+t̃−2

0 , (l.2)

gα
0 , g

αγ
0 , . . . , gαγ �̃+t̃

0 , (l.3)
h0, h

γ
0 , . . . , h

γm̃−2

0 , h
κ·g(γ)
0 (l.4)

hω
0 , h

ωγ
0 , . . . , hωγm̃−1

0 , (l.5)

hα
0 , h

αγ
0 , . . . , hαγ2(m̃−t̃)+3

0 (l.6)

where κ, α, γ, ω are unknown random elements of (Z/pZ)�, and finally an element
T ∈ GT .

Output: a bit b.

The problem is correctly solved if the output is b = 1 when T = e(g0, h0)κ·f(γ)

or if the output is b = 0 when T is a random value from GT . In other words, the
goal is to distinguish if T is a random value or if it is equal to e(g0, h0)κ·f(γ).

More formally, let us denote by real the event that T is indeed equal to T =
e(g0, h0)κ·f(γ), by random the event that T is a random element from GT and by
I(−→x �̃+m̃, κ, α, γ, ω, T) the input of the problem. Then, we define the advantage
of an algorithm B in solving the (�̃, m̃, t̃)-aMSE-DDH problem as

Adv
(�̃,m̃,t̃)−aMSE-DDH
B (λ) =

∣∣∣Pr
[
B(I(−→x �̃+m̃, κ, α, γ, ω, T)) = 1

∣∣real]
−Pr

[
B(I(−→x �̃+m̃, κ, α, γ, ω, T)) = 1

∣∣random
] ∣∣∣

where the probability is taken over all random choices and over the random coins
of B.

The onlydifference with the multi-sequence of exponents decisionalDiffie-Hellman
problem from [DP08] is the presence in the input of two additional lines (l.2) and
(l.5). The generic hardness of this problem is a consequence of Theorem A.2 from
[BBG05]. It is stated in the next proposition whose proof follows (almost exactly)
that of Corollary 3 in [DP08].

26 J. Herranz, F. Laguillaumie, and C. Ràfols

Proposition 1. For any probabilistic algorithm B making at most qG queries
to the the oracle that computes the group operations (in groups G1,G2,GT of
order p) and the bilinear pairing e(·, ·), its advantage in solving the aMSE-DDH
problem satisfies

Adv
(�̃,m̃,t̃)−aMSE-DDH
B (λ) ≤ (qG + 2s+ 2)2 · d

2p

where s = 4m̃+ 3�̃+ t̃+ 3 and d = max{2(�̃+ 2), 2(m̃+ 2), 4(m̃− t̃) + 10}.

3 The New ABE Scheme

This section is dedicated to the presentation of our ciphertext-policy attribute-
based encryption scheme.

In the decryption process, we will use the algorithm Aggregate of [DP08].
Given a list of values {g

r
γ+xi , xi}1≤i≤n, where r, γ ∈ (Z/pZ)� are unknown and

xi �= xj if i �= j, the algorithm computes the value

Aggregate({g
r

γ+xi , xi}1≤i≤n) = g
r∏n

i=1(γ+xi) .

using O(n2) exponentiations.
Although the algorithm Aggregate of [DP08] is given for elements in GT , it is

immediate to see that it works in any group of prime order. Running Aggregate
for elements in G1 results in our case in a more efficient decryption algorithm.

3.1 Description of the Scheme

Setup, ABE.Setup(1λ,P).
The master entity chooses a suitable encoding τ sending each of the m attributes
at ∈ P onto a (different) element τ(at) = x ∈ (Z/pZ)�. He also chooses a bilinear
group triple (G1,G2,GT) of prime order p (such that p is λ bits long) and a
bilinear map e : G1×G2 −→ GT . He selects a generator g of G1 and a generator
h of G2.

After that, he chooses a set D = {d1, . . . , dm−1} consisting of m− 1 pairwise
different elements of (Z/pZ)�, which must also be different to the values x =
τ(at), for all at ∈ P . For any integer i lower or equal to m − 1, we denote as
Di the set {d1, . . . , di}. Next, the master entity picks at random α, γ ∈ (Z/pZ)�

and sets u = gαγ and v = e(gα, h). The master secret key is then msk = (g, α, γ)
and the public parameters are

params =
{
P ,m, u, v,

{
hαγi

}
i=0,...,2m−1

,D, τ
}

.

Key Extraction, ABE.Ext(params, A,msk).
Given any subset A ⊂ P of attributes, the master entity picks r ∈ (Z/pZ)� at

random and computes skA =
{{

g
r

γ+τ(at)

}
at∈A

,
{
hrγi

}
i=0,...,m−2

, h
r−1

γ

}
.

Constant Size Ciphertexts in Threshold Attribute-Based Encryption 27

Encryption, ABE.Enc(params, S, t,M).
Given a subset S ⊂ P with s = |S| attributes, a threshold t satisfying 1 ≤ t ≤ s,
and a message M ∈ GT , the sender picks at random κ ∈ (Z/pZ)� and computes⎧⎪⎨⎪⎩

C1 = u−κ,

C2 = h
κ·α· ∏

at∈S

(γ+τ(at))
∏

d∈Dm+t−1−s

(γ+d)

,
K = vκ.

The value C2 is computed from the set {hαγi}i=0,...,2m−1 that can be found in
the public parameters. The ciphertext is then (C1, C2, C3), where C3 = K ·M .

Decryption, ABE.Dec(params, (C1, C2, C3), (S, t), skA).
Any user with a set of attributes A such that |A ∩ S| ≥ t can use the secret key
skA to decrypt the ciphertext, as follows. Let AS be any subset of A ∩ S with
|AS | = t. The user computes, from all at ∈ AS , the value

Aggregate({g
r

γ+τ(at) , τ(at)}at∈AS) = g
r∏

at∈AS
(γ+τ(at)) .

With the output of the algorithm Aggregate the user computes

L = e(g
r∏

at∈AS
(γ+τ(at)) , C2) = e(g, h)

r·κ·α· ∏
at∈S\AS

(γ+τ(at))
∏

d∈Dm+t−1−s

(γ+d)

.

For simplicity we define τ(d) = d for all d ∈ D and given a set AS ⊂ S, P(AS ,S)(γ)
is

P(AS ,S)(γ) =
1
γ

⎛⎝ ∏
at∈(S∪Dm+t−1−s)\AS

(γ + τ(at))−
∏

at∈(S∪Dm+t−1−s)\AS

τ(at)

⎞⎠.

The crucial point is that, since |AS | ≥ t, the degree of the polynomial P(AS ,S)(X)
is lower or equal to m− 2. Therefore, from the values included in skA, the user
can compute hrP(AS,S)(γ).

After that, the user calculates

e(C1, h
rP(AS,S)(γ)) · L = e(g, h)κ·r·α·∏at∈(S∪Dm+t−1−s)\AS

τ(at) (1)

and
e(C1, h

r−1
γ) = e(g, h)−κ·α·r · e(g, h)κ·α (2)

From Equation (1) the user can obtain

e(g, h)κ·r·α =
(
e(C1, h

rP(AS,S)(γ)) · L
)1/

∏
at∈(S∪Dm+t−1−s)\AS

τ(at)

and multiply this value in Equation (2). The result of this multiplication leads to
K = e(g, h)κ·α. Finally, the user recovers the message by computing M = C3/K.

28 J. Herranz, F. Laguillaumie, and C. Ràfols

3.2 Consistency Checking and Efficiency Considerations

It is not hard to prove that the new ABE scheme satisfy the correctness property:
if all the protocols are correctly executed, and if |A ∩ S| ≥ t, then skA allows to
recover plaintexts that have been encrypted for the pair (S, t).

It is worth noting that, by adding gα to the public parameters (this modifica-
tion does not affect the security proof that we present in the next section), the
users can check the consistency of the secret key they receive from the master
entity. To do so, they must verify that, for all their attributes at ∈ A,

e
(
g

r
γ+τ(at) , hαγ · (hα)τ(at)

)
= e (gα, hr)

and then that, for i = 1, . . . ,m− 2,

e
(
gα, hrγi

)
= e

(
u, hrγi−1

)
Finally, they have to check that e(u, h

r−1
γ) = e (gα, hr) /v.

In terms of efficiency, the main contribution of this new scheme is the constant
size of the ciphertext, which consists of one element of each group G1, G2 and
GT . The encryption requires no pairing computations, but m + t + 1 exponen-
tiations. The decryption process requires 3 pairing evaluations and O(t2 + m)
exponentiations. The size of the secret key is linear in the number of attributes,
as in all existing ABE schemes.

3.3 Security Analysis

We are going to prove that our scheme is IND-sCPA secure, assuming that the
aMSE-DDH problem is hard to solve.

Theorem 1. Let λ be an integer. For any adversary A against the IND-sCPA
security of our attribute-based encryption scheme, for a universe of m attributes
P, and a challenge pair (S, t) with s = |S|, there exists a solver B of the (�̃, m̃, t̃)-
aMSE-DDH problem, for �̃ = m− s, m̃ = m+ t− 1 and t̃ = t+ 1, such that

AdvaMSE-DDH
B (λ) ≥ 1

2
· AdvIND-sCPA

A (λ).

Proof. We are going to construct an algorithm B that uses the adversary A as a
black-box and that solves the (m− s,m+ t−1, t+1)-augmented multi-sequence
of exponents decisional Diffie-Hellman problem. The main trick in the proof will
be to use the input of the aMSE-DDH problem to compute evaluations of some
polynomials in γ “in the exponent”.

Let I(−→x 2m+t−1−s, κ, α, γ, ω, T) be the input of the algorithm B. First, B spec-
ifies a universe of attributes, P = {at1, . . . , atm}. Next, the adversary A chooses
a set S ⊂ P of cardinal s that he wants to attack, and a threshold t such that 1 ≤
t ≤ s. Without loss of generality, we assume S = {atm−s+1, . . . , atm} ⊂ P . From
now on, we will denote by AS the subset A ∩ S, for any subset of attributes A.

Constant Size Ciphertexts in Threshold Attribute-Based Encryption 29

Simulation of the setup. The algorithm B defines the encoding of the at-
tributes as τ(ati) = xi for i = 1, . . . ,m. Observe that the encodings of the first
m− s elements are the opposite of the roots of f(X), and the encodings of the
attributes in S are the opposite of some roots of g(X).

The values corresponding to the “dummy” attributes D = {d1, . . . , dm−1} are
defined as dj = xm+j if j = 1 . . .m + t − 1 − s. For j = m + t − s, . . . ,m − 1,
the dj ’s are picked uniformly at random in (Z/pZ)� until they are distinct from
{x1, . . . , x2m+t−1−s, dm+t−s, . . . , dj−1}.

The algorithm B defines g := g
f(γ)
0 . Note that B can compute g with the

elements of line (l.1) of its input, since f is a polynomial of degree �̃. To complete
the setup phase, B sets h = h0 and computes

– u = gαγ = g
α·γ·f(γ)
0 with line (l.3) of its input, which is possible since Xf(X)

is a polynomial of degree �̃ + 1. Indeed, α · γ · f(γ) is a linear combination
of {αγ, . . . , αγ �̃+1} and the coefficients of this linear combination are known
to B, so the value u can be computed from line (l.3).

– v = e(g, h)α = e(gf(γ)α
0 , h0) with line (l.3) for gf(γ)α

0 . Note that the value
gα could be computed by B and added to the public parameters, in case the
verification of the consistency of the secret keys is desired for the scheme.

The algorithm B can compute the values {hαγi}i=0,...,2m−1 from line (l.6) of its
input. Eventually, B gives to A the resulting

params = {P ,m, u, v, {hαγi}i=0,...,2m−1,D, τ}.

Simulation of key extraction queries. Whenever the adversary A makes a
key extraction query for a subset of attributes A = {ati1 , . . . , atin} ⊂ P satisfying
that 0 ≤ |AS | ≤ t− 1, the algorithm B must produce a tuple of the form

skA =
{{

g
r

γ+τ(at)

}
at∈A

,
{
hrγi

}
i=0,...,m−2

, h
r−1

γ

}
,

for some random value r ∈ (Z/pZ)�. To do so, B implicitly defines r = (ωyAγ +
1)QA(γ), where yA is randomly picked in (Z/pZ)�, and the polynomial QA(X)
is defined as QA(γ) = 1 when |AS | = 0, or QA(X) = λA ·

∏
at∈AS

(X + τ(at))

otherwise, in which case λA = (
∏

at∈AS
τ(at))−1.

The elements which form skA are then computed as follows:

– For any at ∈ AS , B defines

Qat(γ) = QA(γ)/(γ + τ(at)) = λA ·
∏

ãt∈AS , ãt�=at

(γ + τ(ãt)).

Then g
r

γ+τ(at) = g
f(γ)ωyAγQat(γ)
0 · gf(γ)Qat(γ)

0 . The first factor of the product
(whose exponent is a polynomial in γ of degree at most (m− s) + 1 + t− 2)
can be computed from line (l.2), whereas the second factor (whose exponent
is a polynomial in γ of degree at most (m−s)+ t−2) can be computed from
line (l.1).

30 J. Herranz, F. Laguillaumie, and C. Ràfols

– For any at ∈ A \ AS , B defines the polynomial fat(X) = f(X)/(X + τ(at)).
Then g

r
γ+τ(at) = g

fat(γ)ωyAγQA(γ)
0 · gfat(γ)QA(γ)

0 . Again, the first factor of this
product can be computed from line (l.2), and the second factor can be com-
puted from line (l.1).

– The values
{
hrγi

}
i=0,...,m−2

can be computed from line (l.4) and (l.5), since

hrγi

= hQA(γ)ωyAγi+1 · hQA(γ)γi

.
– Finally, B has to compute h

r−1
γ = hQA(γ)ωyA · h

QA(γ)−1
γ . The first factor of

the product can be computed from line (l.5) and the second factor can be
computed from line (l.4), since by definition of λA, QA(X) is a polynomial
with independent term equal to 1 and thus QA(γ)−1

γ is a linear combination
of {1, γ, . . . , γt−2}.

Note that QA(γ) �= 0 (otherwise γ = τ(at) for some at ∈ AS and γ is public),
in which case it is not hard to see that r is uniformly distributed in Z/pZ. If
the choice of yA leads to r = 0 (which occurs only with negligible probability
anyhow), it suffices to pick a different value for yA. That is, in the simulation r
is uniformly distributed in (Z/pZ)�.

Simulation of the challenge. Once A sends to B the two messages M0 and
M1, B flips a coin b ∈ {0, 1}, and sets C�

3 = T ·Mb. To simulate the rest of the
challenge ciphertext, B implicitly defines the randomness for the encryption as
κ′ = κ/α, and sets C�

2 = h
κ·g(γ)
0 (given in line (l.4) of the aMSE-DDH input). To

complete the ciphertext, B computes C�
1 =

(
g

κ·γf(γ)
0

)−1
from line (l.1) of the

input, which is equal to u−κ′
.

After the challenge step A may make other key extraction queries, which are
answered as before.

Guess. Finally, A outputs a bit b′. If b′ = b, B answers 1 as the solution to
the given instance of the aMSE-DDH problem, meaning that T = e(g0, h0)κ·f(γ).
Otherwise, B answers 0, meaning that T is a random element.

We now have to analyze the advantage of the algorithm B:

AdvaMSE-DDH
B (λ) =

∣∣∣Pr
[
B(I(−→x �̃+m̃, κ, α, γ, ω, T)) = 1

∣∣real]−
Pr
[
B(I(−→x �̃+m̃, κ, α, γ, ω, T)) = 1

∣∣random
] ∣∣∣

=
∣∣∣Pr

[
b = b′

∣∣real]− Pr
[
b = b′

∣∣random
] ∣∣∣.

When the event real occurs, then A is playing a real attack and therefore
|Pr

[
b = b′

∣∣real]− 1/2| = 1
2AdvIND-sCPA

A,Π (λ). During the random event, the view of
A is completely independent of the bit b; in this case, the probability Pr[b = b′]
is equal to 1/2. Summing up, we obtain

AdvaMSE-DDH
B (λ) ≥ 1

2
AdvIND-sCPA

A,Π (λ). ��

Constant Size Ciphertexts in Threshold Attribute-Based Encryption 31

4 Extensions

In this section we discuss two possible extensions of the basic scheme that we have
described and analyzed in the previous section. First, we study the possibility
of supporting more general decryption policies, not only threshold ones. After
that, we discuss the options to obtain security against chosen ciphertext attacks.

4.1 More General Decryption Policies

Although we have considered in this paper the special case of threshold de-
cryption policies, attribute-based encryption schemes can be defined for general
decryption policies. Such a policy is determined by a monotone increasing family
Γ ⊂ 2P of subsets of attributes, in P = {at1, . . . , atn}. This family (or access
structure) is chosen by the sender at the time of encryption, in such a way that
only users whose subset of attributes A belong to Γ can decrypt. Even if many
users collude, each of them having a subset of attributes out of Γ , the encryption
scheme must remain secure.

The threshold ABE scheme that we have described and analyzed in this pa-
per is inspired on the dynamic threshold identity-based encryption scheme of
[DP08]. It is claimed in [DP08] that the threshold scheme there can be ex-
tended to admit “all the classical cases” of more general access structures.
However, this is not completely true, because their extension only applies to
a sub family of access structures, weighted threshold ones. A family Γ ⊂ 2P is
a weighted threshold access structure if there exist a threshold t and an assign-
ment of weights ω : P → Z+ such that A ∈ Γ ⇐⇒

∑
at∈A

ω(at) ≥ t. Of course,

there are many access structures which are not weighted threshold, for example
Γ = {{at1, at2}, {at2, at3}, {at3, at4}} in the set P = {at1, at2, at3, at4}.

The same extension proposed in [DP08] works for our threshold ABE scheme.
Let K be an upper bound for ω(at), for all at ∈ P and for all possible as-
signments of weights that realize weighted threshold decryption policies. Dur-
ing the setup of the ABE scheme, the new universe of attributes will be P ′ =
{at1||1, at1||2, . . . , at1||K, . . . , atn||1, . . . , atn||K}. During the secret key request
phase, if an attribute at belongs to the requested subset A ⊂ P , the secret key
skA will contain the elements g

r

γ+τ(at(j)) corresponding to at(j) = at||j, for all
j = 1, . . . ,K.

Later, suppose a sender wants to encrypt a message for a weighted threshold
decryption policy Γ , defined on a subset of attributes S = {at1, . . . , ats} (without
loss of generality). Let t and ω : S → Z+ be the threshold and assignment of
weights that realize Γ . The sender can use the threshold ABE encryption routine
described in Section 3.1, with threshold t, but applied to the set of attributes
S′ = {at1||1, . . . , at1||ω(at1), . . . , ats||1, . . . , ats||ω(ats)}. In this way, if a user
holds a subset of attributes A ∈ Γ , he will have ω(at) valid elements in his
secret key, for each attribute at ∈ A. In total, he will have

∑
at∈A

ω(at) ≥ t valid

elements, so he will be able to run the decryption routine of the threshold ABE
scheme and decrypt the ciphertext.

32 J. Herranz, F. Laguillaumie, and C. Ràfols

The security analysis can be extended to this more general case, as well.
Therefore, we can conclude that our ABE scheme with constant size ciphertexts
also admits weighted threshold decryption policies.

4.2 Security under Chosen Ciphertext Attacks

Some ABE schemes proposed in the literature [BSW07, CN07, Wat08] achieve
security under selective chosen ciphertext attacks (sCCA security). This is done
in two steps. Firstly sCPA security is proved, and secondly the scheme is shown
to admit delegation of secret keys: it is possible to compute a valid secret key
skA′ from a valid secret key skA, for any A′ ⊂ A. If this is the case, the basic
ABE scheme can be viewed as a hierarchical ABE scheme, where the hierarchy
is the classical one: a user holding attributes A is over a user holding attributes
A′, if A′ ⊂ A. Finally, the techniques developed in [CHK04] can be applied to
this sCPA secure hierarchical ABE scheme, which results in a sCCA secure ABE
scheme, in the standard model.

Unfortunately our scheme does not seem to admit delegation of secret keys.
Therefore, it is still an open problem to come up with an ABE scheme with
constant size ciphertexts, achieving sCCA security in the standard model. In
contrast, if one requires security in the random oracle model only, such a result
is easily obtained by applying to our scheme (a variant of) some classical CPA
to CCA transformation, such as the Fujisaki-Okamoto one [FuOk99].

5 Conclusion

We have proposed in this paper the first (reasonably expressive) attribute-based
encryption scheme with constant size ciphertexts. The design of the scheme is in-
spired by the dynamic threshold encryption scheme in [DP08]. Our ABE scheme
works for threshold policies: the sender chooses, at the time of encryption, the
involved set of attributes and a threshold, in such a way that only those users
holding (at least) this threshold of the involved attributes can decrypt. How-
ever, the scheme can be easily extended to admit weighted threshold decryption
policies, as well.

Although finding attribute-based encryption schemes with short ciphertexts
supporting even more expressive decryption policies is an important open prob-
lem, weighted threshold decryption policies are quite expressive and can cover a
wide range of applications. Therefore, we think that our proposal achieves a fair
trade-off between expressiveness and efficiency.

Our scheme employs bilinear pairings, and its security is based on the as-
sumption that a newly introduced problem, the augmented Multi-Sequence of
Exponents Decisional Diffie-Hellman (aMSE-DDH) problem, is hard. It remains
an open problem to obtain a scheme with constant ciphertext’s length whose
security is based on a more standard algorithmic problem and which achieves
full security (i.e. not only selective security).

Constant Size Ciphertexts in Threshold Attribute-Based Encryption 33

Acknowledgments

This work was partially done while Javier Herranz and Carla Ràfols were visiting
Université de Caen Basse-Normandie.

The work of Javier Herranz is supported by a Ramón y Cajal grant, partially
funded by the European Social Fund (ESF) of the Spanish MICINN Ministry.
Carla Ràfols holds an FPI grant of the Spanish MICINN Ministry. The work
of both these authors is partially supported by the Spanish MICINN Ministry
under project MTM2009-07694. The work of Fabien Laguillaumie is supported
by the French ANR-07-TCOM-013-04 PACE Project.

References

[AMS06] Al-Riyami, S., Malone-Lee, J., Smart, N.P.: Escrow-free encryption sup-
porting cryptographic workflow. International Journal of Information Se-
curity 5(4), 217–229 (2006)

[BM05] Bagga, W., Molva, R.: Policy-based cryptography and applications. In:
S. Patrick, A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 72–87.
Springer, Heidelberg (2005)

[BSW07] Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based
encryption. In: Proceedings of IEEE Symposium on Security and Privacy,
pp. 321–334. IEEE Society Press, Los Alamitos (2007)

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

[CG99] Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosys-
tem secure against adaptive chosen ciphertext attack. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg
(1999)

[CHK04] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-
based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

[CCZ06] Chai, Z., Cao, Z., Zhou, Y.: Efficient ID-based broadcast threshold de-
cryption in ad hoc network. In: Proceedings of IMSCCS 2006, vol. 2, pp.
148–154. IEEE Computer Society, Los Alamitos (2006)

[CN07] Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In:
Proceedings of Computer and Communications Security, CCS 2007, pp.
456–465. ACM, New York (2007)

[Cha07] Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg
(2007)

[DHMR07] Daza, V., Herranz, J., Morillo, P., Ràfols, C.: CCA2-secure threshold
broadcast encryption with shorter ciphertexts. In: Susilo, W., Liu, J.K.,
Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 35–50. Springer, Hei-
delberg (2007)

[DHMR08] Daza, V., Herranz, J., Morillo, P., Ràfols, C.: Extended access struc-
tures and their cryptographic applications. To appear in Applica-
ble Algebra in Engineering, Communication and Computing (2008),
http://eprint.iacr.org/2008/502

http://eprint.iacr.org/2008/502

34 J. Herranz, F. Laguillaumie, and C. Ràfols

[DP08] Delerablée, C., Pointcheval, D.: Dynamic threshold public-key encryp-
tion. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 317–334.
Springer, Heidelberg (2008)

[EM+09] Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-
policy attribute-based encryption scheme with constant ciphertext length.
In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp.
13–23. Springer, Heidelberg (2009)

[FST10] Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic
curves. Journal of Cryptology 23(2), 224–280 (2010)

[FuOk99] Fujisaki, E., Okamoto, T.: How to enhance the security of public-key en-
cryption at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS,
vol. 1560, pp. 53–68. Springer, Heidelberg (1999)

[GJPS08] Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy
attribute-based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part II. LNCS, vol. 5126, pp. 579–591. Springer, Heidelberg (2008)

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption
for fine-grained access control of encrypted data. In: Proceedings of Com-
puter and Communications Security, CCS 2006, pp. 89–98. ACM, New
York (2006)

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008)

[LO+10] Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully se-
cure functional encryption: attribute-based encryption and (hierarchical)
inner product encryption. To appear in Proceedings of Eurocrypt 2010
(2010), http://eprint.iacr.org/2010/110

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Hei-
delberg (2005)

[Sha79] Shamir, A.: How to share a secret. Communications of the ACM 22, 612–
613 (1979)

[Sha84] Shamir, A.: Identity-based cryptosystems and signature schemes. In:
Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–
53. Springer, Heidelberg (1985)

[Wat08] Waters, B.: Ciphertext-policy attribute-based encryption: an expressive,
efficient, and provably secure realization. (2008), manuscript available at,
http://eprint.iacr.org/2008/290

http://eprint.iacr.org/2010/110
http://eprint.iacr.org/2008/290

Algebraic Cryptanalysis of the PKC’2009
Algebraic Surface Cryptosystem

Jean-Charles Faugère and Pierre-Jean Spaenlehauer

UPMC, Université Paris 06, LIP6
INRIA Centre Paris-Rocquencourt, SALSA Project

CNRS, UMR 7606, LIP6
Bôıte courrier 169 – 4, place Jussieu, 75252 Paris Cedex 05, France

Jean-Charles.Faugere@inria.fr, Pierre-Jean.Spaenlehauer@lip6.fr

Abstract. In this paper, we fully break the Algebraic Surface Cryp-
tosystem (ASC for short) proposed at PKC’2009 [3]. This system is
based on an unusual problem in multivariate cryptography: the Section
Finding Problem. Given an algebraic surface X(x, y, t) ∈ Fp[x, y, t] such
that degxy X(x, y, t) = w, the question is to find a pair of polynomials
of degree d, ux(t) and uy(t), such that X(ux(t), uy(t), t) = 0. In ASC,
the public key is the surface, and the secret key is the section. This
asymmetric encryption scheme enjoys reasonable sizes of the keys: for
recommended parameters, the size of the secret key is only 102 bits and
the size of the public key is 500 bits. In this paper, we propose a mes-
sage recovery attack whose complexity is quasi-linear in the size of the
secret key. The main idea of this algebraic attack is to decompose ideals
deduced from the ciphertext in order to avoid to solve the section find-
ing problem. Experimental results show that we can break the cipher for
recommended parameters (the security level is 2102) in 0.05 seconds. Fur-
thermore, the attack still applies even when the secret key is very large
(more than 10000 bits). The complexity of the attack is Õ(w7d log(p))
which is polynomial with respect to all security parameters. In particu-
lar, it is quasi-linear in the size of the secret key which is (2d + 2) log(p).
This result is rather surprising since the algebraic attack is often more
efficient than the legal decryption algorithm.

Keywords: Multivariate Cryptography, Algebraic Cryptanalysis,
Section Finding Problem (SFP), Gröbner bases, Decomposition of ideals.

1 Introduction

In 1994, Shor designed a quantum algorithm to compute efficiently discrete loga-
rithm and factorization [16]. Hence, if one could construct a quantum computer,
a huge number of well established public key cryptosystems – for instance, RSA
or Elliptic Curve based systems – would be seriously threatened. Therefore,
cryptographers are continuously searching for post-quantum alternatives. The
first step to design new cryptosystems is to identify hard problems to use as
trapdoors. So far, most of the problems used in post-quantum cryptology can

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 35–52, 2010.
c© International Association for Cryptologic Research 2010

36 J.-C. Faugère and P.-J. Spaenlehauer

be classified into three main categories: Multivariate cryptography, Code-based
cryptography and Lattice-based cryptography.

In this context, Akiyama, Goto, and Miyake propose a new multivariate public-
key algorithm at PKC’2009: the Algebraic Surface Cryptosystem (ASC for short)
[3]. Interestingly, its security is based on a difficult problem which is not common:

Section Finding Problem (SFP). Given an algebraic surface defined by the
polynomial X(x, y, t) ∈ Fp[x, y, t] (where Fp denotes the finite field of cardinality
p), the question is to find two polynomials ux(t), uy(t) ∈ Fp[t] of degree d, such
that X(ux(t), uy(t), t) = 0.

As stated in [3], this problem is computationally hard: the only algorithm
known so far induces to find roots of a huge multivariate polynomial system.
Hence the idea of ASC is to use the surface as public key and the knowledge of a
section of this surface as the trapdoor. In comparison to HFE [15] or other multi-
variate systems, ASC has some interesting and unusual properties. In particular,
the keys are unexpectedly short. The security of multivariate systems is usually
related to the difficulty of finding a zero of a system of low degree polynomials
(often quadratic) in a huge number of variables. For instance, in the case of HFE,
the size of the public key is precisely the size of the multivariate system: 265680
bits for a security of 280. In contrast with HFE, ASC enjoys a small public key
of 500 bits for a security of 2102. More generally, for a security level of 2d, the
size of the public key of HFE is O(d3). In comparison, the public key of ASC
is a unique high degree polynomial in only three variables: its size is O(d) bits
for a security of 2d. Actually, the authors explains that the keys of ASC are
among the shortest of known post-quantum cryptosystems. More precisely, let
w denote the degree of the public surface X in x and y. For a security level of
p2d, the size of the secret key is 2d log(p) bits and the size of the public key is
about wd log(p). The main observation is that the sizes of the keys are linear in
d log(p), which is the logarithm of the security level.

Although a completely different version of ASC [2] has been attacked by
Ivanov and Voloch [11], by Uchiyama and Tokunaga [17] and by Iwami [12], the
new version of ASC, presented at PKC’2009, is resistant to all known attacks.
We would like to mention that the decryption algorithm raises some questions.
Indeed, one step of this algorithm is to recover some factors of given degree D
of a univariate polynomial. In order to find those factors, the designers propose
to recombine the irreducible factors of the polynomial by solving a knapsack.
However, this problem is known to be NP-hard [10]. Therefore, it is not clear if
the cryptosystem remains practical for high security parameters.

Main Results. In this paper, we describe a message recovery attack which
can break ASC in polynomial time. One important step of the legal decryption
algorithm is the factorization of a univariate polynomial. The key idea of the
algebraic attack is to perform this factorization step implicitly by decomposing
ideals deduced from the ciphertext. Indeed, decomposition of ideals can be seen
as a generalisation of the standard factorization of polynomials. Hence, this
technique allows us to bypass the Section Finding Problem, which is hard.

Algebraic Cryptanalysis of the PKC’2009 Algebraic Surface Cryptosystem 37

We present three versions of this attack. The Level 1 Attack is high-level,
deterministic, offers a good view of the mechanisms involved and can be im-
plemented straightforwardly into a Computer Algebra System such as Magma

(code given in Appendix B). However, this version is not very efficient and can-
not break ASC for the recommended parameters. The Level 2 Attack is based on
the following observation: the polynomials occurring in ASC have a high degree
in t and a rather low degree in x and y. Thus, it is natural to see expressions in
t as coefficients instead of polynomials in t; in other words, in order to speed up
the attack, we have to perform the computations in the ring Fp(t)[x, y] (where
Fp(t) is the field of fractions) instead of Fp[x, y, t]. In the Level 3 Attack, we
replace the ground field Fp(t) by a finite field FpD ≈ Fp[t]/(P (t)) for a large
enough D to avoid the swelling of the intermediate coefficients and to recover
the initial message modulo P (t). Even more efficiently, we can split P (t) into
several irreducible factors Pi(t) of small degree; the Chinese Remainder Theorem
is then used to recombine the congruences and retrieve the original message. In
this third version of the attack, the size of the plaintext determines the number
of congruences required as well as the size of the finite fields considered. There-
fore, the complexity of the Level 3 Attack is expected to be quasi-linear in the
size of the secret key. This behaviour is confirmed by experimental results to-
gether with a complexity analysis. The binary complexity1 of the Level 3 Attack
is (Theorem 1):

Õ(w6size(m))

where size(m) denotes the binary size of the plaintext, w is the degree of X in
the variables x and y and Õ() is the “soft Oh” notation (see e.g. [18, Definition
25.8]). Since the size of the secret key is smaller than size(m), the attack is also
quasi-linear in the size of the secret key. In practice, size(m) ≈ dw log(p) (where
d is the degree of the secret section). Thus the complexity of the attack is

Õ(w7d log(p)).

This can be compared with a lower bound on the binary complexity (see page
47) of the decryption algorithm:

Õ(log(p)(w3d3 + dw log(p))).

It can be noted that the decryption algorithm is cubic in the size of the secret
key. Therefore, increasing the size of the secret key does not secure the system,
since the cost of the decryption algorithm increases faster than the cost of the
attack.

We implemented in Magma 2.15-7 the three variants. The Level 3 Attack
can break ASC with parameters recommended in [3] (d = 50, p = 2, w = 5)
in only 0.05 seconds. Experiments confirm that increasing the size of the secret
key with the parameters p and d does not really increase the security of the

1 The binary complexity is the number of arithmetic operations on bits, whereas the
arithmetic complexity is the number of arithmetic operations in the base ring.

38 J.-C. Faugère and P.-J. Spaenlehauer

system. We are still able to break it in few seconds, even when the size of the
secret key is more than 10000 bits! We also try to increase the parameter w (the
degree in x and y of the public surface). For a reasonable size of the public key
(less than 4000 bits), the message can be recovered in few hours. Finally, we try
to figure out whether it is possible to secure the system by increasing the size
of the support of the surface (the parameter k). However, as predicted by the
complexity analysis, this parameter has very few effect on the complexity of the
attack. Thereby, we can consider the system as fully broken.

Structure of the Paper
After this introduction, the paper is organized as follows. In Section 2, we give
a short description of the ASC cryptosystem as it is presented in [3]. Then, we
explain the theoretical foundations of the attack. In Section 3, we describe the
three variants of the attack and we show a concrete example by applying it to
the toy example given in [3]. We also perform a precise complexity analysis in
Section 5. Finally, we give some experimental results showing that the attack is
scalable.

2 Description of the Cryptosystem

We give here a short description of ASC. For a more detailed presentation of
this cryptosystem, we refer the reader to [3]. We consider the ring of polynomials
Fp[x, y, t] where p is a prime number. For any polynomial P ∈ Fp[x, y, t], ΛP

denotes its support in Fp(t)[x, y] (that is to say the set of couples (i, j) ∈ N2

such that t�xiyj is a monomial of P).

2.1 Parameters

The cryptosystem ASC has four parameters: p is the cardinality of the ground
field, and d is the degree of the secret section. These two parameters are especially
important for the security. They have a direct impact on the binary size of the
secret key, which is 2d log p. Another parameter is w the degree in x and y of
the public surface X . The last parameter is k, the cardinality of ΛX (which is
the support of X in Fp(t)[x, y]). The parameters w, d and p have an impact on
the size of the public key which is approximatively dw log(p) bits.

2.2 Keys

The secret key is a pair of polynomials (ux(t), uy(t)) of degree d.
The public key is given by:

– A surface described by an irreducible polynomial X(x, y, t) ∈ Fp[x, y, t] such
that X(ux(t), uy(t), t) = 0 and card(ΛX) = k.

– Λm the support of the plaintext polynomial and {d(m)
ij ∈ N}(i,j)∈Λm

the
degrees of the coefficients.

– Λf the support of the divisor polynomial and {d(f)
ij ∈ N}(i,j)∈Λf

the degrees
of the coefficients.

Algebraic Cryptanalysis of the PKC’2009 Algebraic Surface Cryptosystem 39

For encryption/decryption it is required that:

Λm ⊂ ΛfΛX = {(i1 + i2, j1 + j2) : (i1, j1) ∈ Λf , (i2, j2) ∈ ΛX}.
max{i : (i, j) ∈ ΛX} < max{i : (i, j) ∈ Λm} < max{i : (i, j) ∈ Λf}.
max{j : (i, j) ∈ ΛX} < max{j : (i, j) ∈ Λm} < max{j : (i, j) ∈ Λf}.

degt(X(x, y, t)) < max{d(m)
ij }(i,j)∈Λm

< max{d(f)
ij }(i,j)∈Λf

.

2.3 Encryption/Decryption

Encryption. Consider a plaintext embedded into a polynomial

m(x, y, t) =
∑

(i,j)∈Λm

mij(t)xiyj

where deg(mij(t)) = d
(m)
ij . Choose a random divisor polynomial

f(x, y, t) =
∑

(i,j)∈Λf

fij(t)xiyj

where deg(fij(t)) = d
(f)
ij . Then select four random polynomials r0, r1, s0, s1 such

that, for � ∈ {0, 1},

r�(x, y, t) =
∑

(i,j)∈Λf

r
(�)
ij (t)xiyj, s�(x, y, t) =

∑
(i,j)∈ΛX

s
(�)
ij (t)xiyj

and ∀i, j,deg(r(�)ij (t)) = deg(fij(t)), deg(s(�)ij (t)) = deg(Xij(t)). Finally, construct
the ciphertext (F0(x, y, t), F1(x, y, t)) where

F0(x, y, t) = m(x, y, t) + f(x, y, t)s0(x, y, t) +X(x, y, t)r0(x, y, t),
F1(x, y, t) = m(x, y, t) + f(x, y, t)s1(x, y, t) +X(x, y, t)r1(x, y, t).

Decryption. Consider h�(t) = F�(ux(t), uy(t), t), � ∈ {0, 1} and compute the
difference h0(t)−h1(t) = f(ux(t), uy(t), t)(s0(ux(t), uy(t), t)−s1(ux(t), uy(t), t)).
Next, find a factor of h0(t)− h1(t) whose degree matches deg(f(ux(t), uy(t), t)).
Let f̃(t) denote this factor. Then computes m̃(ux(t), uy(t), t) = h0(t) mod f̃(t).
Finally, retrieve m̃(x, y, t) by solving the linear system:

m̃(ux(t), uy(t), t) =
∑

m̃ijkux(t)iuy(t)jtk.

There are potentially several factors of h0(t) − h1(t) whose degree is equal to
deg(f(ux(t), uy(t), t)). So, we have to verify that we picked the good one. To
do so, the designers of ASC propose to use a MAC to verify that m̃(x, y, t) =
m(x, y, t). If the verification fails, we start again by considering another factor
of h0(t)− h1(t).

To find factors of h0(t)−h1(t) whose degree matches deg(f(ux(t), uy(t), t)), the
designers propose to factor h0(t) − h1(t), then recombine its irreducible factors
by solving a knapsack problem. However, the knapsack problem is NP-hard [10].
Therefore, as pointed out in [3], it is not clear if the decryption algorithm remains
practicable when the security parameters are high.

40 J.-C. Faugère and P.-J. Spaenlehauer

2.4 Security of the System

The designers of the cryptosystem propose the following parameters:

– p = 2.
– d should be greater than 50.
– w = degxy(X) = max{i+ j : (i, j) ∈ ΛX} should be greater than 5.
– The lower bound on k is 3.

The size of the secret key is around 100 bits and the size of the public key is close
to 500 bits. According to the designers of ASC, there is so far no known attack
faster than exhaustive search for these parameters. Therefore, the security level
of ASC is expected to be the cost of exhaustive search of the secret key, namely
p2d+2.

3 Description of the Attack

Overview of the Attack
In this section, we propose a message recovery attack on the cryptosystem de-
scribed above.

The main point of the attack is to decompose ideals, instead of factoring the
univariate polynomial obtained by evaluating F0−F1 in the section (ux, uy). This
way, we can implicitly manipulate the so-called divisor polynomial f occurring
in the decryption process. Consequently, we can avoid to solve the underlying
Section Finding Problem, and we obtain a polynomial attack on ASC.

First, we present a high-level and deterministic version of the attack (Algo-
rithm 1) based on two fundamental lemmas. Then, we speed-up the algorithm
by considering the field of fractions Fp(t) (Algorithm 2). Indeed, polynomials
occurring in ASC have a high degree in t. Since the complexity of Gröbner bases
algorithms is linear in the complexity of the arithmetic in the ground field, it
seems natural to compute in the field of fractions Fp(t). Finally, we use a modular
approach to implement efficiently the attack: we perform computations in some
well-chosen finite fields Fp[t]/(P) and recombine the results by using the Chi-
nese Remainder Theorem (Algorithm 3). Doing this, the size of the coefficients
of intermediate values are bounded (these coefficients can be huge when compu-
tations are performed in the field of fractions). This allows us to break bigger
instances of ASC. In particular, we are able to break the system with recom-
mended parameters in 0.05 seconds. Furthermore, this will allow us to perform
a precise complexity analysis and to show that this attack is quasi-linear in the
size of the secret key. Experimentally, we are able to break with this technique
some instances where the size of the secret key is greater than 10000 bits.

Now we compare the efficiency of the three versions of the attack on a small
example. For instance, we consider the following parameters p = 11, d = 8,
w = 5 and k = 3 and we use our Magma implementation. The Level 1 Attack
(code given in Appendix) recover the plaintext in 136 seconds. As predicted,
the Level 2 Attack is faster and can break the system in 74 seconds. Using the
modular approach in the Level 3 Attack really speeds up the computations: it
retrieves the plaintext in 0.06 seconds.

Algebraic Cryptanalysis of the PKC’2009 Algebraic Surface Cryptosystem 41

3.1 Level 1 Attack: Decomposition of Ideals

The two following lemmas are the key elements of the attack.

Lemma 1. Let I be the ideal I = 〈F0 − F1, X〉 ⊂ Fp[x, y, t]. Then I = I1 ∩ I2
where I1 = 〈f,X〉 and I2 = 〈s0 − s1, X〉. Generically, the ideals I1 and I2 are
prime ideals of Fp[x, y, t].

Proof. I = 〈F0 − F1, X〉 = 〈f (s0 − s1), X〉 = I1 ∩ I2.

Lemma 1 shows that, once we managed to decompose the ideal 〈F0 − F1, X〉 =
〈f (s0 − s1), X〉, we can manipulate implicitly the polynomial f through I1.

Remark 1. In order to decompose I, a strategy is to eliminate x from I by
computing a Gröbner basis of I∩Fp[y, t]. Generically, this Gröbner basis contains
only one polynomial Q. If p is big enough, Q has in general two factors which
depend on y and t (we do not consider the factors which are in Fp[t]). This fact
is confirmed experimentally. The two factors correspond to I1 and I2. Then, we
can construct I1 (resp. I2) by adding to I an appropriate factor of Q. Since
degy(f) > degy(s1 − s0), the factor of Q with the highest degree in y is the one
corresponding to I1. To factor efficiently the bivariate polynomial Q, we can use
for instance the algorithm in [14].

Lemma 2. Let J be the ideal of Fp[x, y, t] generated by J = 〈F0, F1, X〉 + I1.
Then m(x, y, t) ∈ J. Moreover, J is a zero-dimensional ideal.

Proof. J = 〈F0, F1, X〉+ I1 = 〈F0, F1, X, f〉 = 〈m, f,X〉.

Remark 2. Lemma 2 shows that we can compute explicitly a multivariate ideal
which contains m. Since we know Λm, we can recover m by solving the following
linear system:

NFJ (m) =
∑

(i,j)∈Λm

d
(m)
ij∑

k=0

mijkNFJ (xiyjtk) = 0

where NFJ denotes the normal form with respect to the ideal J for a chosen
monomial ordering (the definition of the normal form is given in Appendix).
Since λm ∈ J for all λ ∈ Fp, we retrieve m up to multiplication by a scalar.

Remark 3. For efficiency purpose, we compute the Gröbner bases with respect
to the graded reverse lexicographical ordering (Definition 1 in appendix). Instead
of computing the Gröbner basis of 〈F0 − F1, X〉 ∩ Fp[y, t], it is also possible to
compute a resultant to eliminate the variable x.

Remark 4. The normal form NFJ is a linear application from Fp[x, y, t] onto
Fp[x, y, t]/J . In the last step of the attack, we are searching for the intersection
of its kernel with the Fp-linear subspace generated by Γm (where Γm denotes the
support of m in Fp[x, y, t]). Therefore, the linear system has card(Γm) unknowns

42 J.-C. Faugère and P.-J. Spaenlehauer

Algorithm 1. Level 1 Attack
1: Compute a Gröbner basis of the ideal 〈F0 − F1, X〉 ∩ Fp[y, t]. Generically this

Gröbner basis contains only one polynomial Q(y, t).
2: Factor Q =

∏
Qi(y, t). Let Q0(y, t) ∈ Fp[y, t] denote an irreducible factor with

highest degree with respect to y.
3: Compute a Gröbner basis of the ideal J = 〈F0, F1, X, Q0〉.
4: To retrieve the plaintext (up to multiplication by a scalar in Fp), solve the linear

system over Fp ∑
(i,j)∈Λm

d
(m)
ij∑

k=0

mijkNFJ (xiyjtk) = 0.

If the system has no solution, go back to Step 2 and pick another factor of Q.

and deg(J) equations (deg(J) = dim(Fp[x, y, t]/J) when Fp[x, y, t]/J is seen as a
Fp-vector space). From the Bézout bound [13], deg(J) ≈ deg(m)deg(X)deg(f).
The decryption algorithm requires that deg(m(ux, uy, t)) ≥ card(Γm) (in order
to solve the final linear system) and one can remark that deg(X)deg(f) >
deg(m(ux, uy, t)) ≈ ddegxy(m)+degt(m) (since degxy(f) > degxy(m), degt(f) >
degt(m) and deg(X) > d). Therefore, the linear system has more equations than
unknowns: card(Γm) ≤ deg(m(ux, uy, t)) ≤ deg(X)deg(f) ≤ deg(J).

3.2 Level 2 Attack: Computing in the Field of Fractions Fp(t)

Polynomials appearing in ASC have a high total degree, but their degree in
the variables x and y is low. Hence, it is natural to consider these polynomials
as bivariate polynomials in x and y over the field of fractions Fp(t). Indeed,
the degree in x and y are completely independent of the security parameter
d. In this section, we explain how to adapt the attack in this context. Doing
that, we expect to have a lower complexity. Indeed, many operations on ideals
– for instance Gröbner basis computations – are linear in the complexity of the
arithmetic in the ground field.

From now on, K denotes the field of fractions Fp(t).
First, we need to transpose the key lemmas in this new context. This can be

done for Lemma 1 without any major modification:

Lemma 3. Let I be the ideal I = 〈F0 − F1, X〉 (seen as an ideal of K[x, y]).
Then there exists I1 and I2 two strict ideals of K[x, y] such that I = I1 ∩ I2 and
〈f,X〉 ⊂ I1.

Unfortunately, Lemma 2 cannot be directly transposed in the context of the field
of fractions. Indeed, the variety of the ideal J = 〈F0, F1, X〉+I1 = 〈m, f,X〉 (seen
as an ideal of K[x, y]) is generically empty since it is generated by three inde-
pendent equations. Therefore we have to introduce a new variable z if we want
to keep the ideal zero-dimensional and strictly included in K[x, y, z]. Roughly
speaking, the role of z is to deform the ideal 〈m, f,X〉 in order to introduce new
elements in the variety:

Algebraic Cryptanalysis of the PKC’2009 Algebraic Surface Cryptosystem 43

Algorithm 2. Level 2 Attack: computing in the field of fractions K = Fp(t)
1: Compute the resultant Resx(F0 − F1, X) ∈ K[y].
2: Factor the resultant Resx(F0 − F1, X) =

∏
Qi(y). Let Q0(y) ∈ K[y] denote an

irreducible factor of highest degree in y.
3: Compute a grevlex-Gröbner basis of the ideal J = 〈F0 + z, F1 + z, X, Q0〉 ⊂

K[x, y, z].
4: Consider the following linear system over K:

NFJ (z) +
∑

(i,j)∈Λm

mij(t)NFJ (xiyj) = 0.

If the system has no solution, then go back to Step 2 and choose another factor of
the resultant.

5: Return m =
∑

(i,j)∈Λm
mij(t)xiyj where (mij(t)) is the unique solution of the

linear system.

Lemma 4. Let J ⊂ K[x, y, z] be the ideal J = 〈F0 + z, F1 + z,X〉 + I1. Then
m(x, y, t) + z ∈ J. Moreover, J is a zero-dimensional ideal.

Proof. 〈F0 + z, F1 + z,X〉+ I1 = 〈F0 + z, F1 + z,X, f〉 = 〈m+ z, f,X〉 .

To be able to recover the plaintext, we need to solve a linear system with
card(Λm) unknowns and deg(J) equations. In practice, there are more equations
than unknowns. Thus, if we choose a wrong factor of the resultant (a factor
which is not a divisor of f), then the linear system has generically no solution,
and we just have to restart from Step 2 until we find an appropriate factor. In
practice, the irreducible factor of the resultant with the highest degree in y is
almost always a good choice.

Remark 5. It is also possible to combine the two versions of the attack by com-
puting a Gröbner basis of the elimination ideal and factoring it in Fp[x, y, t],
as in Level 1 attack (Steps 1 and 2 in Algorithm 1). Then, once we found
Q0 ∈ Fp[x, y, t], we retrieve the message by computing a Gröbner Basis of
J = 〈F0 + z, F1 + z,X,Q0〉 ⊂ K[x, y, z] in the field of fractions (Steps 3, 4, 5
in Algorithm 2).

3.3 Level 3 Attack: Computing in Finite Fields Fpm

In this section, we study how to implement efficiently the attack in practice. In
order to speed up the attack and to compute efficiently in the field of fractions,
we perform all computations modulo polynomials of Fp[t]. Indeed, a bound on
the degree of m with respect to t is known since degt(m) ≤ max{d(m)

i,j }.
We choose a constant C and n = degt(m) log(p)/C irreducible polynomials

P1, . . . , Pn of degree close to C/ log(p) such that
∑

deg(Pi) > degt(m). Then for
each Pi, we consider

Fp[t]/(Pi) = Fpdeg(Pi) .

44 J.-C. Faugère and P.-J. Spaenlehauer

Algorithm 3. Level 3 Attack: computing in the finite fields K = Fp[t]/(P)
1: Choose n ≈ degt(m) log(p)/C irreducible polynomials of degree ≈ C/ log(p) such

that
∑

deg(Pi) > degt(m).
2: for i from 1 to n do
3: Consider K = Fp[t]/(Pi).
4: Compute the resultant Resx(F0 − F1, X) ∈ K[y].
5: Factor the resultant Resx(F0 − F1, X) =

∏
Qi(y). Let Q0(y) ∈ K[y] denote an

irreducible factor of highest degree in y.
6: Compute a grevlex-Gröbner basis of the ideal J = 〈F0 + z, F1 + z, X, Q0〉 ⊂

K[x, y, z].
7: Consider the following linear system over K:

NFJ (z) +
∑

(i,j)∈Λm

mij(t)NFJ (xiyj) = 0.

If the system has no solution, then go back to Step 2 and choose another factor
of the resultant.

8: Retrieve a congruence m mod Pi =
∑

(i,j)∈Λm
mij(t)xiyj where (mij(t)) is the

solution of the linear system.
9: end for

10: Use the CRT to retrieve m = m mod
∏

Pi.

Considering all computations in K = Fp[t]/(Pi) instead of Fp(t), the attack yields
m mod Pi. Finally we use the Chinese Remainder Theorem (CRT) to recover
m mod

∏
Pi. Since deg(

∏
Pi) > degt(m), we retrieve the plaintext.

Remark 6. The linear system at step 7 in Algorithm 3 has only card(Λm)
unknowns and deg(J) ≈ degxy(m)degxy(f)degxy(X) equations. For practical
parameters, card(Λm) ≈ k is smaller than deg(J), thus the linear system is
overdetermined and has in general only one solution. This fact is confirmed by
experiments.

The value
∑

deg(Pi) ≈ degt(m) is only dependent of the size of the plaintext.
Therefore, the number of times we have to run the main loop of Algorithm 3
is linear in the size of the plaintext. Since the cost of arithmetic operations in
Fp[t]/(P) only depends on C (which is a constant chosen by the attacker), we
expect this Level 3 Attack to be linear or quasi-linear in the size of the plaintext.
This expectation will be confirmed by a complexity analysis and by experimental
results. Besides, we would also like to mention that the main loop of Algorithm 3
can be easily parallelized.

4 A Concrete Example

We consider here the toy example given in [3]. We have

– p = 17.
– The secret key is (ux, uy) = (14t3 + 12t2 + 5t+ 1, 11t3 + 3t2 + 5t+ 4).

Algebraic Cryptanalysis of the PKC’2009 Algebraic Surface Cryptosystem 45

– The public surface is
X = (t+ 10)x3y2 + (16t2 + 7t+ 4)xy2 + (3t16 + 8t15 + 13t14 + 8t13 + 3t12 +
12t11 + 4t10 + 8t9 + 7t8 + 4t7 + 13t6 + 2t5 + 5t4 + 4t3 + 14t2 + 9t+ 14).

– The support of m and f are

Λm = {(4, 4), (0, 0)}, dm
00 = 17, dm

44 = 17,
Λf = {(5, 5), (1, 2), (0, 0)}, df

00 = 13, df
12 = 11, df

55 = 18.

Here we show how to recover the message m from the ciphertext (F0, F1) (given
in [3]) with the Level 3 Attack:

1. Since degt(m) = 17, we choose (for instance) P1, P2, P3, P4 ∈ Fp[t] irreducible
such that

∑
deg(Pi) ≥ 18. In particular,

P1 = t5 + t+ 14,
P2 = t5 + 14t4 + 4t3 + 4t+ 4,

P3 = t5 + 9t4 + 15t3 + 8t2 + 4t+ 8,
P4 = t5 + 11t4 + 11t3 + 8t2 + 7t+ 8.

First, we consider the finite field K = Fp[t]/(P1).
2. Compute the resultant in K[y]:

Resx(F0 −F1, X) = (9t4 + 14t3 + 4t2 + 6t+ 13)y30 + (5t4 + t3 + 14t2 + 15t+
8)y27 +(6t4 +9t3 +10t2 + 7t+ 14)y26 +(7t4 + 4t3 + 8t2 +5t+ 8)y25 +(8t4 +
4t3 + 7t2 + 7t+ 6)y24 + (12t4 + 9t3 + 8t2 + 13t)y23 + (9t4 + 4t3 + 9t2 + 15t+
6)y22 +(3t4 +6t3 +10t2 +6t+6)y21 +(9t4 +9t3 +13t2 +15t+6)y20 +(4t4 +
4t3 + 15t2)y19 + (2t4 + 11t3 + 2t2 + 5t+ 2)y16.

3. Then factor it in K[y]:
Resx(F0−F1, X) = y16(y+8t4 +3t3 +16t2 +8t+2)(y2 +2t4 +14t3 +14t2 +
6t+10)(y2 +15t4 +3t3 +3t2 +11t+7)(y2 +(14t4 +7t3 +4t)y+13t4 +10t3 +
7t2 +8t+1)(y7 +(12t4 +7t3 + t2 +5t+15)y6 +(t4 +5t3 +7t2 +12t+11)y5 +
(9t4 + 14t3 + 5t2 + 10t+ 10)y4 + (4t4 + 7t3 + t2 + 7t+ 14)y3 + (11t4 + 13t3 +
12t2 +8t+4)y2 +(15t4 +9t3 +16t2 +14t+14)y+14t4 +3t3 +9t2 +15t+8).

4. Consider Q0 an irreducible factor with highest degree:
Q0 = y7 +(12t4 +7t3 + t2 +5t+15)y6 +(t4 +5t3 +7t2 +12t+11)y5 +(9t4 +
14t3 + 5t2 + 10t+ 10)y4 + (4t4 + 7t3 + t2 + 7t+ 14)y3 + (11t4 + 13t3 + 12t2 +
8t+ 4)y2 + (15t4 + 9t3 + 16t2 + 14t+ 14)y + (14t4 + 3t3 + 9t2 + 15t+ 8).

5. Compute a Gröbner basis G with respect to the grevlex ordering of the ideal
J = 〈F0 + z, F1 + z,X,Q0〉 ⊂ K[x, y, z].

6. Since Λm = {(0, 0), (4, 4)} compute NFJ (x4y4):
NFJ (x4y4) = N1z+N2 = (15t4 +3t3 + t2 +13t+16)z+(5t4 +11t2 + t+ 7).

7. Solve the linear system z +m44NFJ(x4y4) +m00 = 0 over K:{
m00 = N2/N1 mod P1

m44 = −1/N1 mod P1.

8. Recover a congruence: m = m00 +m44x
4y4 mod P1.

9. Repeat the process with P2, P3 and P4.

46 J.-C. Faugère and P.-J. Spaenlehauer

10. Use the CRT to retrieve m = m mod
∏
Pi:

m = (5t17 +15t16 +4t15 +9t14 +7t13 +2t12 +3t11 +8t10 +11t9 +6t17 +6t8 +
3t16 + 10t7 + 11t15 + 7t6 + t5 + t13 + 14t4 + 10t12 + 3t3 + 3t11 + 12t2 + 8t10 +
11t+ 6t9 + 2)x4y4 + (13t8 + 2t7 + 2t6 + 10t5 + 5t4 + 2t3 + 15t2 + 3t+ 11).

5 Complexity Analysis

In this part, we investigate the complexity of the Level 3 Attack. To simplify
the notations, we suppose here that the complexity of multiplying two n × n
matrices is O(n3). We note that C is a parameter chosen by the attacker. This
parameter fixes the size of the finite fields considered. Indeed, we choose finite
fields K = Fp/(Pi) with deg(Pi) ≈ C/ log(p). Hence, log(card(K)) ≈ C.

1. First, we estimate the complexity of the computation of the resultant with
respect to x in K[x, y] (where K = Fp[t]/(Pi)). According to [18] (Corollary
11.18), this can be done in Õ(w3) operations in K, and the degree of the
resultant is O(w2).

2. The probabilistic Cantor-Zassenhaus algorithm [18] factors a polynomial of
degree n over a finite field Fq in Õ(n2 +n log(q)) arithmetic operations in Fq.
Therefore the arithmetic complexity in K of the factorization of the resultant
is

Õ(w4 + w2 log(card(K))) = Õ(w4 + w2C).

3. The degree of regularity of an ideal is an important indicator of the com-
plexity of computing its Gröbner basis with respect to the grevlex ordering:
it is the highest degree of the polynomials occuring in the F5 Algorithm.
According to [13,5,4], if an ideal is spanned by m generic equations in n
variables, then the complexity of computing a Gröbner basis is:

O
(
m3
(

dreg + n− 1
n− 1

)3
)

.

Since the ideal J = 〈m+ z, f,X〉 is generated by three independent equa-
tions, its degree of regularity can be estimated from the Macaulay bound
(see [13]) as

dreg(J) = (degxy(m+ z)− 1) + (degxy(f)− 1) + (deg(X)xy − 1) + 1.

For practical parameters, degxy(m+z) ≈ degxy(f) ≈ deg(X)xy ≈ w. There-
fore, dreg ≈ 3w. The arithmetic complexity in K of the Gröbner basis com-
putation is then:

O
(

33
(

dreg(J) + 2
2

)3
)

= O(w6).

Algebraic Cryptanalysis of the PKC’2009 Algebraic Surface Cryptosystem 47

4. Finally we have a linear system to solve. The number of variables is card(Λm).
For practical parameters, card(Λm) ≈ k, which is less than 1000 (the re-
commended parameter is k = 3). Hence, this step is negligible in practice
compared to the Gröbner basis computation, since an overdetermined linear
system with less than 1000 variables in a finite field can be easily solved.
Furthermore, this step is analog to the linear system which is solved in the
legal decryption algorithm. Therefore this step of the attack is faster than
the decryption algorithm which has to be efficient for practical parameters.

The cost of an arithmetic operation in K is quasi-linear in log(card(K)) ≈ C.
The number of times we have to run the main loop of the attack is size(m)/C.
The complexity of the CRT is Õ(size(m) log(size(m))) [18]. Putting all the steps
together, we find the total complexity of the attack:

Theorem 1. The total binary complexity of the Level 3 Attack is

Õ(size(m)w3) + Õ(size(m)(w4 + w2C)) + Õ(size(m)w6) + Õ(size(m)).
resultant factorization Gröbner CRT

Hence, the total binary asymptotic complexity of the attack is upper bounded by

Õ(w6size(m)).

Corollary 1. If we assume that size(m) ≈ wd log(p) (which is the case in prac-
tice), then the binary complexity of the attack is: Õ(dw7 log(p)).

Consequently, the attack is polynomial in all the security parameters and it is
quasi-linear in the size of the secret key which is 2d log(p). It can be noted that
the parameter k has few effect on the complexity of the attack.

A Lower Bound on the Complexity of the Decryption Algorithm
The complexity of this attack has to be compared with a lower bound on the cost
of the decryption process. During the decryption algorithm, one has to factor
(F0−F1)(ux(t), uy(t), t) over Fp[t]. The degree of this polynomial is at least dw.
To the best of our knowledge, the best probabilistic factorization algorithms have
an arithmetic complexity of Õ(d2w2 + dw log(p)) [18]. Moreover, there is also a
knapsack to solve after the factorization. The complexity of this step is difficult
to estimate so we do not consider it here (remember that we try to establish a
lower bound). The last step of the decryption process is the resolution of a linear
system with O(dw) variables: the arithmetic complexity of this step is O(w3d3).
Finally, the total binary complexity of the decryption algorithm is unsharply
lower bounded by Õ(log(p)(w3d3 + dw log(p))) which is cubic in the parameters
d and w, and quadratic in log(p). In comparison, the attack is quasi-linear in d
and log(p), and polynomial of degree 7 in w.

6 Experimental Results

Workstation. The experimental results have been obtained with a Xeon bi-
processor 3.2 GHz, with 64 GB of RAM. The instances of ASC have been

48 J.-C. Faugère and P.-J. Spaenlehauer

generated with Magma2.15-7. To compute the Gröbner basis, we use the F4 [7]
implementation in Magma.

To generate our instances, we pick �, d ∈ N and we consider the following
parameters:

– w = 2�+ 5.
– Λm = {(4 + �, 4 + �), (0, 0)}.
– ΛX = {(3 + �, 2 + �), (1 + �, 2 + �), (0, 0)}.
– Λf = {(5 + �, 5 + �), (1 + �, 2 + �), (1, 2), (0, 0)}.
– ∀(i, j) ∈ Λm, d

(m)
ij = (2�+ 5)d+ 21.

– ∀(i, j) ∈ Λm, d
(f)
ij = (2�+ 5)d+ 22.

Construction of X, ux and uy

ux, uy ∈ Fp[t] are random polynomials of degree d.
To construct X(x, y, t), we pick two random polynomials R1, R2 ∈ Fp[t] of

degree 20 and we consider

X = R1(t)(x3+�y2+� − ux(t)3+�uy(t)2+�) +R2(t)(x1+�y2+� − ux(t)1+�uy(t)2+�).

Then we verify that X(x, y, t) is irreducible. If not, we restart by picking another
R1 and another R2.

Table 1 shows the complexity of the Level 3 Attack for different values of p
and d. Each entry in the table is obtained by considering the average results over
20 random instances of the cryptosystem.

Table Notations
tres denotes the time used for the computation of the resultant. tfact is the time
used by the factorization of the resultant, whereas tGB denotes the cost of the
Gröbner basis computation. The time for solving the linear system and for the
recombination by the CRT is negligible and hence are not given in the table.
According to [3], there were no known attack better than exhaustive search when
d ≥ 50 and w ≥ 5. Therefore the security bound is the cost of the exhaustive
search of the secret section, namely p2d+2.

Interpretation of the Results
It is worth remarking that the first line of Table 1 corresponds to the parameters
recommended by the designers [3] and are broken in 0.05 seconds. The major
observation is that the complexity of the attack behaves as predicted by the
complexity analysis: it is quasi-linear in the parameter d. We also ran some
experiments to study the impact of the parameter k (the cardinality of the
support of the surface X) on the complexity: as expected, increasing k has very
few effect on the cost of the attack. To summarize, we see in Table 1 that trying
to secure the system by increasing the size of the secret key (that is to say by
increasing the parameters p and d) is pointless: even when the size of the secret
key is bigger than 10000 bits, the system can be broken in few seconds.

Algebraic Cryptanalysis of the PKC’2009 Algebraic Surface Cryptosystem 49

Table 1. Level 3 Attack – Experimental results with w = 5

p d w k
size of

public key
size of

secret key tres tfact tGB ttotal
security
bound

2 50 5 3 310 bits 102 bits 0.02s 0.02s 0.01s 0.05s 2102

2 100 5 3 560 bits 202 bits 0.03s 0.02s 0.02s 0.07s 2202

2 200 5 3 1060 bits 402 bits 0.05s 0.05s 0.05s 0.15s 2402

2 400 5 3 2060 bits 802 bits 0.1s 0.1s 0.1s 0.30s 2802

2 800 5 3 4060 bits 1602 bits 0.2s 0.2s 0.2s 0.65s 21602

2 1600 5 3 8060 bits 3202 bits 0.3s 0.3s 0.4s 1.0s 23202

2 2000 5 3 10060 bits 4002 bits 0.45s 0.4s 0.4s 1.3s 24002

2 5000 5 3 25060 bits 10002 bits 0.8s 1.3s 0.8s 3.0s 210002

17 50 5 3 1267 bits 409 bits 0.2s 2.4s 0.4s 3.0s 2409

17 100 5 3 2289 bits 818 bits 0.3s 5.1s 0.6s 3.0s 2818

17 400 5 3 8420 bits 3270 bits 1.45s 27.7s 3.9s 33.1s 23270

17 800 5 3 16595 bits 6500 bits 3.1s 70s 9.5s 83s 26500

10007 500 5 3 34019 bits 13289 bits 29s 217s 64s 310s 213289

The Parameter w
In order to secure the system, one can think of increasing the parameterw since the
attack is inO(w7). However, we showed that the complexity decryption algorithm
is lower bounded by O(w3). Consequently, the parameter w should not be too
high if the owner of the secret key wants to be able to decrypt. Table 2 gives the
experimental results of the attack when w increases.

Interpretation of the Results
The main observation is that the complexity of the attack still behaves as pre-
dicted: when w is increased, the Gröbner basis computation is the most expensive
step. Increasing w seems to be the best counter-measure against the attack. How-
ever, it should be noted that the attack is still feasible in practice, even when
the public key is big.

Table 2. Level 3 Attack – Experimental results: increasing w

p d w k
size of

public key
size of

secret key tres tfact tGB tLinSys ttotal
security
bound

2 50 5 3 310 bits 102 bits 0.02s 0.02s 0.01s 0.001s 0.05s 2102

2 50 15 3 810 bits 102 bits 0.7s 0.3s 4.4s 0.03s 5.4s 2102

2 50 25 3 1310 bits 102 bits 3s 1s 32s 0.2s 37s 2102

2 50 35 3 1810 bits 102 bits 10s 3s 260s 1s 274s 2102

2 50 45 3 2310 bits 102 bits 30s 7s 1352s 4s 1393s 2102

2 50 55 3 2810 bits 102 bits 70s 12s 4619s 13s 4714s 2102

2 50 65 3 3310 bits 102 bits 147s 22s 12408s 27s 12604s 2102

2 50 75 3 3810 bits 102 bits 288s 38s 37900s 56s 38280s 2102

50 J.-C. Faugère and P.-J. Spaenlehauer

7 Conclusion

In this paper, we analyze the security of the PKC’2009 Algebraic Surface Cryp-
tosystem. We provide three variants of a message recovery attack. We also esti-
mate very precisely the complexity of the Level 3 Attack and we show that it is
polynomial in all the parameters of the system. Furthermore, it is quasi-linear
in the size of the secret key, whereas the decryption algorithm proposed in [3] is
cubic.

Experimental results confirm the theoretical analysis. We show that the attack
can easily break ASC with recommended parameters. The best choice to try to
secure ASC against the attack is to take p and d as small as possible (p = 2
and d = 50) and increase w. However our implementation is polynomial in w
and can break the system in few hours, even when w = 75 (this value should be
compared to the initial recommended w = 5).

Thereby, we consider that the system is fully broken, but we believe that the
section finding problem is still an interesting problem; in this paper, we have
simply shown how to avoid to solve it in the context of ASC.

Acknowledgements. We wish to thank the anonymous referees for their help-
ful comments and suggestions. We are also thankful to Maki Iwami for useful
discussions.

References

1. Adams, W.W., Loustaunau, P.: An introduction to Gröbner bases. American Math-
ematical Society (1994)

2. Akiyama, K., Goto, Y.: An Algebraic Surface Public-key Cryptosystem. IEIC
Technical Report (Institute of Electronics, Information and Communication Engi-
neers) 104(421), 13–20 (2004)

3. Akiyama, K., Goto, Y., Miyake, H.: An Algebraic Surface Cryptosystem. In:
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, p. 442. Springer,
Heidelberg (2009)

4. Bardet, M., Faugere, J.-C., Salvy, B.: On the complexity of Gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: Proceedings of the
International Conference on Polynomial System Solving, pp. 71–74 (2004)

5. Bardet, M., Faugere, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic behaviour of the de-
gree of regularity of semi-regular polynomial systems. In: Proceedings of the Eight
International Symposium on Effective Methods in Algebraic Geometry, MEGA
(2005)

6. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, varieties, and algorithms: an intro-
duction to computational algebraic geometry and commutative algebra. Springer,
Heidelberg (1997)

7. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Jour-
nal of Pure and Applied Algebra 139, 61–88 (1999)

8. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the 2002 international symposium on
symbolic and algebraic computation, pp. 75–83. ACM, New York (2002)

Algebraic Cryptanalysis of the PKC’2009 Algebraic Surface Cryptosystem 51

9. Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. Journal of Symbolic Computa-
tion 16(4), 329–344 (1993)

10. Garey, M.R., Johnson, D.S., et al.: Computers and Intractability: A Guide to the
Theory of NP-completeness. W.H. Freeman, San Francisco (1979)

11. Ivanov, P., Voloch, J.F.: Breaking the Akiyama-Goto cryptosystem. Arithmetic,
Geometry, Cryptography and Coding Theory 487 (2009)

12. Iwami, M.: A Reduction Attack on Algebraic Surface Public-Key Cryptosystems.
In: Workshop of Research Institute for Mathematical Sciences (RIMS) Kyoto Uni-
versity, New development of research on Computer Algebra, RIMS Kokyuroku,
vol. 1572. Springer, Heidelberg (2007)

13. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of alge-
braic equations. In: EUROCAL, vol. 162, pp. 146–156. Springer, Heidelberg (1983)

14. Lecerf, G.: New recombination algorithms for bivariate polynomial factorization
based on Hensel lifting. To appear in AAECC (2007)

15. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomi-
als (IP): Two new families of asymmetric algorithms. In: Maurer, U.M. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

16. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: SFCS 1994: Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, Washington, DC, USA, pp. 124–134. IEEE Computer Society
Press, Los Alamitos (1994)

17. Uchiyama, S., Tokunaga, H.: On the Security of the Algebraic Surface Public-key
Cryptosystems. In: Proceedings of SCIS (2007)

18. Von Zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge University
Press, Cambridge (2003)

A Gröbner Bases and Normal Form

In this section, we shortly describe some fundamental tools from commutative
algebra, which are useful for the attack presented in this paper. For a more
complete presentation of those tools, the reader can refer to [6,1].

From now on, K is a field and R denotes the ring K[x1, . . . , xn]. We suppose
given an admissible monomial ordering <: for the attack we consider the grevlex
(graded reverse lexicographical) ordering.

Definition 1 (Grevlex ordering). The grevlex ordering is defined as follows.
Let m1 = xα1

1 . . .xαn
n ,m2 = xβ1

1 . . .xβn
n be two monomials. Then m1 > m2 if

–
∑n

i=1 αi >
∑n

i=1 βi or
–
∑n

i=1 αi =
∑n

i=1 βi and the rightmost nonzero entry of (α1−β1, . . . , αn−βn)
is negative.

For any polynomial P ∈ R, LM(P) denotes its leading monomial with respect
to <. For any ideal I ⊂ R, LM(I) denotes the ideal generated by 〈{LM(P) :
P ∈ I}〉.
Definition 2 (Normal form). Let I be an ideal of R, and f ∈ R be a polyno-
mial. Then there exist unique polynomials h, g ∈ R such that h is monic, g ∈ I,
f = h+ g and no monomial of h is in LM(I). Then h is called the normal form
of f with respect to I and <, and is noted NFI(f).

52 J.-C. Faugère and P.-J. Spaenlehauer

The normal form is a K-linear application and its main property is:

Proposition 1. Let I be an ideal of R, and f ∈ R be a polynomial. Then f ∈ I
if and only if NFI(f) = 0.

To be able to compute the normal form, we need another fundamental tool:
Gröbner bases.

Definition 3 (Gröbner basis). Let I be an ideal of R. A finite subset of poly-
nomials G ⊂ I is called a Gröbner basis of I (with respect to the monomial
ordering <) if 〈LM(G)〉 = LM(I).

B Magma Code for the Level 1 Attack

In the following piece of code, p and d are the parameters of the system. deg t is
the degree of m with respect to t and Lambda m denotes the support of m (these
values are public). F0 and F1 are the ciphertext, and X is the public surface.

R<x,y,t>:=PolynomialRing(GF(p),3,"grevlex");
Res:=Resultant(R!(F0-F1),R!X,x); // Eliminate x
F:=Factorization(Res); // Factor the resultant
// Pick the irreducible factor of highest degree in y
maxdeg:=Max([Degree(R!f[1],R!y) : f in F]);
exists(Q0){f[1]:f in F| Degree(R!f[1],R!y) eq maxdeg};
J:=Ideal([R!Q0,R!X,R!F0,R!F1]);
Groebner(J); // Compute the Gröbner basis of J
Coeffm:=PolynomialRing(GF(p),#Lambda_m*(deg_t+1));
R2<x,y,t>:=PolynomialRing(Coeffm,3);
// Construct the linear system
plaintext:=&+[Coeffm.((i-1)*(deg_t+1)+j)*

R2!NormalForm(R!x^Lambda_m[i][1]*
R!y^Lambda_m[i][2]*R!t^(j-1),J) :
i in [1..#Lambda_m], j in [1..deg_t+1]];

// Solve the linear system:
V:=Variety(Ideal(Coefficients(plaintext)));

Maximizing Small Root Bounds by Linearization
and Applications to Small Secret Exponent RSA

Mathias Herrmann and Alexander May�

Horst Görtz Institute for IT-Security
Faculty of Mathematics

Ruhr University Bochum, Germany
mathias.herrmann@rub.de, alex.may@rub.de

Abstract. We present an elementary method to construct optimized
lattices that are used for finding small roots of polynomial equations.
Former methods first construct some large lattice in a generic way from a
polynomial f and then optimize via finding suitable smaller dimensional
sublattices. In contrast, our method focuses on optimizing f first which
then directly leads to an optimized small dimensional lattice.

Using our method, we construct the first elementary proof of the
Boneh-Durfee attack for small RSA secret exponents with d ≤ N0.292.
Moreover, we identify a sublattice structure behind the Jochemsz-May
attack for small CRT-RSA exponents dp, dq ≤ N0.073. Unfortunately, in
contrast to the Boneh-Durfee attack, for the Jochemsz-May attack the
sublattice does not help to improve the bound asymptotically. Instead,
we are able to attack much larger values of dp, dq in practice by LLL
reducing smaller dimensional lattices.

Keywords: linearization, lattices, small roots, small secret exponent,
RSA, CRT-RSA.

1 Introduction

The RSA cryptosystem is currently the most widely deployed cryptosystem.
To perform a decryption or signature generation, an element x ∈ ZN is raised
to the d-th power, where d ∈ Z∗

φ(N) is the secret key. In order to speed up
this process, one might be tempted to use a small value of d. However, once
d ≤ N

1
4 , Wiener [Wie90] showed using a continued fraction approach that d can

be reconstructed from just the public parameters e and N in polynomial time.
This result has been further improved by Boneh and Durfee to d ≤ N0.292 using
a lattice based technique [BD99].

Another possibility to speed up the decryption and signature generation has
been proposed by Quisquater and Couvreur [QC82]. They make use of the knowl-
edge of the prime factorization of N = pq to compute xd modulo p and modulo q
� This research was supported by the German Research Foundation (DFG) as part

of the project MA 2536/3-1 and by the European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 53–69, 2010.
c© International Association for Cryptologic Research 2010

54 M. Herrmann and A. May

and finally combine the result using the Chinese Remainder Theorem. The run-
ning time of this process is approx. 4 times faster than a standard decryption. To
further lower the number of required operations, one can additionally use small
CRT exponents, i.e. one can choose d such that dp = d mod p and dq = d mod q
are both small.

At Crypto ’07, Jochemsz and May [JM07] proposed the first polynomial time
attack on CRT exponents that are smaller than N0.073. However, the experi-
mental results of Jochemsz and May for small dimensional lattices are much
better than theoretically predicted. For example, using a lattice dimension of
56, theoretically the attack should not work at all, while in practice this lattice
dimension is sufficient to reconstruct private keys up to a size of N0.01. Such a
discrepancy between theoretically predicted and practically achieved results is
a strong indication that the involved lattice structure is not optimal. This led
Jochemsz and May to conjecture that an analysis of sublattice structures could
lead to a theoretically superior bound.

In this paper we propose a method that can be applied to attack small CRT-
exponents. Our new approach leads to smaller dimensional lattices than in the
Jochemsz-May attack and fully explains the gap between the practical results
of Jochemsz and May and their theoretical analysis. Unfortunately, our analysis
shows that our smaller dimensional lattices asymptotically lead to the same
bound N0.073 as in [JM07], thereby answering the conjecture of Jochemsz and
May that sublattices improve the bound in the negative.

Although we do not achieve an asymptotic improvement, our new approach
enables us to attack much larger values of dp, dq in practice, compared to [JM07],
by using smaller dimensional lattices. We implemented our algorithm and showed
that e.g. for a 2000-bit N we can efficiently recover 47-bit dp, dq, whereas the
technique of [JM07] only allows to recover about 35-bit dp, dq in a comparable
amount of time.

Our method is lattice-based and uses the technique of unravelled linearization
introduced by Herrmann and May at Asiacrypt ’09 [HM09], which can be seen as
a hybrid method between usual linearization and Coppersmith’s method [Cop97].
The central idea of unravelled linearization is to perform as a first step a lineariza-
tion on the initial polynomial and keep the induced relations of the linearization
in mind. These relations are afterwards used in a second step where we back-
substitute in order to eliminate some monomials, thereby partially unravelling
the first linearization step. In order to explicitly compute the induced relations,
we propose to use a Gröbner basis computation.

We illustrate the technique of unravelled linearization by showing the first
elementary proof of the Boneh-Durfee bound d ≤ N0.292 for small secret RSA
exponents. Optimization of bounds is in our framework a simple task. There-
fore, we conjecture that the Boneh-Durfee bound cannot be improved unless a
different polynomial equation is used.

The rest of the paper is organized as follows: In Section 2 we will review some
basic results from lattice theory. Section 3 will describe the method of unravelled
linearization for the case of small RSA exponents d with a proof of d ≤ N0.292.

Maximizing Small Root Bounds by Linearization 55

We will then apply our method to attack small CRT exponents in Section 4,
where we achieve the Jochemsz-May bound of N0.073 with smaller dimensional
lattices. In Section 5, we demonstrate that our improved lattices allow for much
better practical results in attacking small CRT-exponents.

2 Basics

Before we explain the details of unravelled linearization and how to use it to
improve the analysis of small CRT-exponents, we want to give some necessary
background information on lattice theory and the lattice-based method of Cop-
persmith [Cop97].

A lattice is a discrete additive subgroup of Rn. That is, for a set of linearly
independent basis vectors b1, . . . , bdim ∈ Rn, dim ≤ n, the set

L :=

{
x ∈ Rn | x =

dim∑
i=0

aibi with ai ∈ Z

}
is called a lattice. One can describe a lattice by its basis matrix B, where we
write the vectors bi as row vectors.

Let L be a lattice with basis b1, . . . , bdim, and let b∗1, . . . , b
∗
dim be the result

of applying Gram-Schmidt orthogonalization to the basis vectors. Then the de-
terminant of L is defined as det(L) =

∏dim
i=1 ||b∗i ||. For a lattice of full rank, i.e.

dim = n, the determinant of a lattice equals the absolute value of the determi-
nant of a lattice basis matrix.

Lattices have proved to be very useful in cryptanalysis mostly because of a
powerful and efficient lattice reduction algorithm due to Lenstra, Lenstra and
Lovász [LLL82]. This so-called LLL algorithm outputs an approximation of a
shortest lattice vector in time polynomial in the bit-length of the entries of the
basis matrix and in the dimension of the lattice dim. Using the LLL algorithm as
a building block, Coppersmith [Cop96a, Cop96b] designed a rigorous algorithm
that allows to efficiently compute small roots of bivariate polynomials over the
integers or univariate modular polynomials. Additionally, he gave a heuristic
extension to multivariate polynomials.

Coppersmith’s idea is to construct, on input some polynomial f , a set of
coprime polynomials which contain the same roots over the integers. Then one
can use standard elimination and root finding techniques to extract these roots.
Howgrave-Graham [HG97] gave a simple reformulation of Coppersmith’s method
that defines the following condition.

Theorem 1 (Howgrave-Graham). Let g(x1, . . . , xk) be a polynomial in k
variables with n monomials. Furthermore, let m be a positive integer. Suppose
that

1. g(r1, . . . , rk) = 0 mod bm, where |ri| ≤ Xi, i = 1, . . . , k and
2. ||g(x1X1, . . . , xkXk)|| ≤ bm√

n
,

where the norm of g is defined as the Euclidean norm of its coefficient vector.

Then g(r1, . . . , rk) = 0 holds over the integers.

56 M. Herrmann and A. May

3 Unravelled Linearization and the Boneh-Durfee Attack

In this section, we will apply the method of unravelled linearization, introduced
by Herrmann and May [HM09], to attack RSA with small secret exponent d.
This will lead to an elementary proof of the Boneh-Durfee bound d ≤ N0.292.

In 1999, Boneh and Durfee [BD99] showed with a lattice-based Coppersmith-
type attack, that private RSA keys smaller than N0.284−ε can be recovered in
polynomial time. The attack’s running time is dominated by LLL-reducing some
large dimensional lattice basis B, whose dimension depends on 1

ε . It turns out
that the associated lattice L(B) contains a smaller dimensional sublattice L′

that allows to show an improved bound of N0.292−ε.
The identification and analysis of this sublattice L′, however, is a complicated

task due to the fact that its lattice basis is no longer triangular and, there-
fore, the computation of the lattice determinant det(L′) is much more involved.
Boneh and Durfee developed for the analysis of det(L′) a notion called geometri-
cally progressive matrices that allowed for handling these non-triangular lattice
bases. Blömer and May [BM01] followed a different approach and showed that
asymptotically it does not influence the determinant if some specific columns
are removed. This allowed them to rebuild some triangular structure of the basis
matrix. Both approaches are, however, quite complex methods for optimizing
lattice bases.

As opposed to the methods of [BD99] and [BM01] our new approach will
not manipulate a basis matrix but rather it will manipulate the underlying
polynomial from which a basis matrix is derived. This will directly lead to a
low-dimensional sublattice with a basis of triangular structure that allows for an
easy determinant calculation.

The method of our choice for this task is the technique of unravelled lin-
earization [HM09]. However, before we introduce our method we briefly re-
call the original Boneh-Durfee attack in order to illustrate the similarities and
differences.

The polynomial to be analyzed is derived from the RSA key equation ed =
1 mod φ(N). Rewrite this as

ed = 1 + xφ(N)
⇔ ed = 1 + x(N + 1︸ ︷︷ ︸

A

+ (−p− q)︸ ︷︷ ︸
y

)

and search for small modular roots of the polynomial

f(x, y) := 1 + x(A + y) mod e.

Therefore, we fix an integer m and define the polynomials

gi,k(x, y) := xifkem−k and hj,k(x, y) := yjfkem−k.

A lattice basis is constructed by using the coefficient vectors of the so-called
x-shifts gi,k(xX, yY) for k = 0, . . . ,m and i = 0, . . . ,m − k as basis vectors.

Maximizing Small Root Bounds by Linearization 57

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x xy x2 x2y x2y2 y xy2 x2y3

e2 e2

xe2 e2X
fe e eAX eXY
x2e2 e2X2

xfe eX eAX2 eX2Y
f2 1 2AX 2XY A2X2 2AX2Y X2Y 2

ye2 e2Y
yfe eAXY eY eXY 2

yf2 2AXY A2X2Y 2AX2Y 2 Y 2XY 2 X2Y 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 1. Boneh-Durfee basis matrix for m = 2, t = 1

The valuesX and Y denote upper bounds on the sizes of the solutions. Addition-
ally, we use the so-called y-shifts hj,k(xX, yY) for k = 0, . . . ,m and j = 1, . . . , t,
where t is some parameter that has to be optimized. Figure 1 shows an example
for the parameters m = 2 and t = 1. Note that the coefficient vectors of the shift
polynomials gi,k(xX, yY) and hj,k(xX, yY) are written as row vectors.

Boneh and Durfee’s improved analysis showed that one obtains superior values
forX and Y , if one takes only a subset of the y-shifts. For our example this means
we exclude ye2 and yfe. Hence, the resulting lattice basis is no longer triangular
and, therefore, deriving a closed determinant formula for general m and t is a
complex task.

We now use the technique of unravelled linearization to construct a lattice
basis which yields the best known asymptotic bound N0.292 and yet retains a
triangular lattice basis.

The first step in the process is to perform a suitable linearization of the original
polynomial. In our case, we glue together the monomials in the following way

1 + xy︸ ︷︷ ︸
u

+Ax mod e.

This leaves us with the linear polynomial f̄(u, x) = u + Ax and additionally
a relation xy = u − 1 derived from the substitution. Although Coppersmith’s
method is a construction method suited for polynomial equations and does not
give improved bounds in the case of linear equations, we now construct a lattice
basis using exactly the same x-shifts as in the original Boneh-Durfee attack. I.e.,
we construct polynomials

ḡi,k(u, x) := xif̄kem−k for k = 0, . . . ,m and i = 0, . . . ,m− k, (1)

and use their coefficient vectors as basis vectors. One can show that this leads
to the Wiener bound of N0.25.

However, if we also include y-shifts of the form h̄j,k(u, x, y) := yj f̄kem−k, then
we obtain a benefit. This may sound strange at first glance since the monomial y
is not even present in our new polynomial f̄(u, x). The reason for the improved

58 M. Herrmann and A. May

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x u x2 ux u2 u2y

e2 e2

xe2 e2X
f̄e eAX eU
x2e2 e2X2

xf̄e eAX2 eUX
f̄2 A2X2 2AUX U2

yf̄2 −A2X −2AU A2UX 2AU2 U2Y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 2. Boneh-Durfee lattice for m = 2, t = 1 using unravelled linearization

bound becomes clear, when we incorporate the induced relation xy = u− 1 and
use it to substitute each occurrence of xy by the term u− 1.

The advantage can be seen by comparing the shift yf2 from the original
analysis with the new shift yf̄2. As noted previously, the improved analysis
uses only the shift yf2 and neither yfe nor ye2. But yf2 introduces three new
monomials y, xy2 and x2y3 in the Boneh-Durfee lattice basis – thereby destroying
the triangular structure.

Let us compare this with our new unravelled linearization approach, which
we depicted in Figure 2 for the same parameters m = 2 and t = 1. The shift
yf̄2 introduces the monomials x2y, uxy and u2y. We replace each occurrence
of xy by u − 1, i.e., we replace x2y by ux − x and uxy by u2 − u. But the
monomials ux, x, u2 and u are already present in the lattice bases. Thus, the
only new monomial that comes from the shift yf̄2 is u2y, thereby retaining the
triangular structure.

In order to keep the triangular structure in general, we look at an arbitrary
shift yif̄ �. Notice that for the ease of notation we will omit the factor em−� as it
does not influence the set of monomials. Since f̄ = u+ Ax we can expand yif̄ �

by the binomial theorem

u�yi +
(
�

1

)
Au�−1xyi + . . . +

(
�

�

)
A�x�yi.

The first term introduces a new monomial u�yi. However, we will now derive a
certain restriction under which all other monomials are already present in the
lattice basis. Let us therefore look at the monomials of the second term after the
substitution of xy

u�−1xyi = u�−1(u − 1)yi−1 = u�yi−1 − u�−1yi−1.

The monomials u�yi−1 and u�−1yi−1 appear in yi−1f̄ � and yi−1f̄ �−1, respectively.
In general, the (j+1)th term of the binomial expansion contains monomials that
appear in yi−j f̄ �−k for k = 0, . . . , j.

Therefore, the shift yif̄ � introduces exactly one new monomial u�yi if all shifts
yi−j f̄ �−k for j = 1, . . . , i−1 and k = 0, . . . j were used in the construction of the

Maximizing Small Root Bounds by Linearization 59

lattice basis. This is exactly to the restriction that was called increasing pattern
in [BM01].

Since the y-shifts hj,k in the original Boneh-Durfee attack satisfy this increas-
ing pattern restriction as shown in [BM01], we take in our analysis the y-shifts
h̄j,k for the same set of indices (j, k) as in [BD99]. I.e., we define the y-shifts

h̄j,k = yj f̄kem−k for j = 1, . . . , t and k =
⌊m
t

⌋
j, . . . ,m. (2)

We show that this set of y-shifts h̄j,k satisfies our requirement, i.e. we show that
if yif̄ � is a y-shift, then all of yi−j f̄ �−k for j = 1, . . . , i− 1 and k = 0, . . . , j are
also used as shifts. Notice that it is sufficient to show yi−j f̄ �−j is used as a shift.

Since yif̄ � is in the set of y-shifts, we know that � ∈ {�m
t �i, . . . ,m} and

therefore �− j ∈ {�m
t �i− j, . . . ,m− j}. For yi−j f̄ �−j on the other hand, we have

�− j ∈ {�m
t �(i− j), . . . ,m}. Our requirement is thus fulfilled if the condition⌊m

t

⌋
(i− j) ≤

⌊m
t

⌋
i− j

holds. We can rewrite this as
⌊

m
t

⌋
≥ 1, which holds if m ≥ t.

Given the set of shift polynomials, we proceed with the computation of the
determinant. For the following asymptotic analysis we let t = τm. Further,
for the optimization we omit roundings as their contribution is negligible for
sufficiently large m.

We are able to directly compute the contributions of the shift polynomials
from (1) and (2). Here, we denote by sx the contribution ofX to the determinant.

sx =
m∑

k=0

m−k∑
i=0

i =
1
6
m3 + o(m3)

sy =
τm∑
j=1

m∑
k= 1

τ
j

j =
τ 2

6
m3 + o(m3)

su =
m∑

k=0

m−k∑
i=0

k +
τm∑
j=1

m∑
k= 1

τ
j

k =
(

1
6

+
τ

3

)
m3 + o(m3)

se =
m∑

k=0

m−k∑
i=0

(m − k) +
τm∑
j=1

m∑
k= 1

τ
j

(m − k) =
(

1
3

+
τ

6

)
m3 + o(m3)

dim(L) =
m∑

k=0

m−k∑
i=0

1 +
τm∑
j=1

m∑
k= 1

τ
j

1 =
(

1
2

+
τ

2

)
m2 + o(m2)

Using these values together with the upper boundsX = N δ, Y = N
1
2 , U = N δ+ 1

2

on the variables in the usual enabling condition det(L) = XsxY syUsuese ≤
em dim(L), we obtain an optimized value of τ = (1 − 2δ) and finally derive the
desired Boneh-Durfee bound1

δ ≤ 1
2

(
2−

√
2
)
≈ 0.292.

1 The given bound is for full size e, i.e. we set e ≈ N .

60 M. Herrmann and A. May

Notice that our choice of τ fulfills our previous restriction m ≥ t. To summarize,
the method of unravelled linearization provides a simple and elegant way to
capture the sublattice structure in the Boneh-Durfee attack. In the following
section, we will use the same method to recover the hidden sublattice structure
in the Jochemsz-May attack on small CRT-RSA exponents. This sublattice was
previously unknown and was conjectured to be the key for improving the CRT-
RSA attack bound.

4 CRT Exponents

The task of attacking small CRT exponents was first mentioned as an open
problem in Wiener [Wie90]. At PKC ’06, Bleichenbacher and May [BM06] gave
an attack that worked in the case where e is significantly smaller than N . They
started with the CRT-RSA equations edp = 1 + k(p− 1) and edq = 1 + l(q− 1),
and derived a single polynomial in the unknowns (dp, dq, k, l) by setting q = N

p
and eliminating p:

e2dpdq − e(dp + dq) + e(dqk + dpl)− (k + l − 1)− (N − 1)kl = 0. (3)

This equation can be linearized to

e2x1 + ex2 − (N − 1)x3 − x4 = 0 (4)

with unknowns

x1 = dpdq, x2 = dqk + dpl − dp − dq, x3 = kl, x4 = (k + l − 1).

For dp, dq ≤ N δ we get k, l ≤ N
1
2+δ and Eq. (4) directly leads to a lattice attack

provided that δ ≤ min{ 1
4 ,

2
5 −

2
5α}, where α = logN e. However, for a full size e,

i.e. α = 1, this attack does not work.
In 2007, Jochemsz and May [JM07] improved the analysis by exploiting the full

algebraic structure of Eq. (3) with a Coppersmith-type attack. For the case α =
1, they showed that it is possible to find small solutions if δ ≤ 0.073. However,
in their experiments they noticed a big gap between the theoretically predicted
bound and the experimentally observed bound. Namely, the experiments were far
better than theoretically expected indicating the possibility of a better bound.

E.g., using their analysis, a lattice dimension of 56 should not suffice for
attacking small CRT-exponents, while practically it allows for solving up to
dp, dq ≤ N0.01. Jochemsz and May reported that the smallest LLL vectors came
from a sublattice and conjectured that identifying the sublattice structure would
improve the bound – analogous to the case of the Boneh-Durfee attack where
the sublattice lifts the bound from N0.284 to N0.292.

In this section, we show that this conjecture is false. By using the method
of unravelled linearization, we will capture the sublattice structure behind the
Jochemsz-May attack. This will completely explain the experimental behavior
in [JM07] and therefore close the gap between practice and theoretical analysis.

Maximizing Small Root Bounds by Linearization 61

As a result, we construct lattices of much smaller dimension than in [JM07],
whose theoretical analysis exactly matches the experiments that we present in
the subsequent section.

Very disappointingly from a cryptanalytic point of view, the size of the CRT-
exponents dp, dq that we are able to attack in polynomial time converges for
growing lattice dimension to the same bound N0.073 as in [JM07]. Thus, asymp-
totically we are unable to improve on the bound although we fully exploit the
sublattice structure. Nevertheless, we think that our method is of independent
interest and will prove to be useful for other attacks since it is simple and leads
to an easy analysis.

Let us describe the attack in detail. Starting point is the polynomial equa-
tion (3). We proceed similar to [BM06] and perform an (almost) identical
linearization.

e2 dpdq︸︷︷︸
u

−e (dp + dq)︸ ︷︷ ︸
v

+e (dqk + dpl)︸ ︷︷ ︸
w

−(k + l︸ ︷︷ ︸
x

−1)− (N − 1) kl︸︷︷︸
y

= 0 (5)

We now use the method of unravelled linearization with the linear polynomial
f = e2u − ev + ew − x − Ay + 1, where A = N − 1. The next step is to build
up a lattice following the extended strategy from [JM06]. This means we use the
monomials of fm−1 as shifts and furthermore include extrashifts in the variables
u and v up to some parameter t which has to be optimized later.

The benefit in unravelled linearization comes from the fact that the variables
u, v, w, x, y are related. Namely, we have

vwx = (dp + dq)(dpl + dqk)(k + l)
= d2

pkl + d2
pl

2 + dpdq(k + l)2 + d2
qk

2 + d2
qkl

= (d2
p + d2

q)kl + (d2
pl

2 + d2
qk

2) + dpdq(k + l)2

= ((dp + dq)2 − 2dpdq)kl + ((dpl + dqk)2 − 2dpdqkl) + dpdq(k + l)2

= (v2 − 2u)y + w2 − 2uy + ux2. (6)

This non-obvious relation can be computed easily using a Gröbner basis compu-
tation. Recall the equations given by the linearization. These are 5 linearization
equations in 9 unknowns, so we can eliminate via Gröbner basis computation the
four variables dp, dq, k, l and obtain Eq. (6) in the unknowns u, v, w, x, y only.
This equation now serves in the back-substitution step of unravelled lineariza-
tion, where we replace each occurrence of vwx by the monomials v2y, uy, w2

and ux2.
To exemplify our method, we use the parameters m = 2 and t = 1. This is the

smallest choice where Jochemsz and May [JM07] found positive experimental
results. In the framework of unravelled linearization, it is obvious why we do not
obtain a positive result for smaller parameters. In order to improve upon the
bound from Bleichenbacher, May [BM06], we have to use relation (6). However,
the lattice parameters m = 2 and t = 1 are the smallest ones for which the
monomial vwx appears.

62 M. Herrmann and A. May

A lattice basis B for (m, t) = (2, 1) is given in Figure 3. We use here the
notation from the original Coppersmith method over the integers – as opposed
to the modular approach taken in Section 3. That is, we construct a lattice basis
with the coefficient vectors of the shift polynomials as column vectors (refer
to [Cop97] for details). For simplicity we omit the left hand side of the basis
matrix, which contains just the inverses of the corresponding upper bounds of
the monomials on its diagonal. The entries that come from the substitution are
printed in bold letters.

For the lattice attack to work, we require the enabling condition det(L) > 1
(see [Cop97]). In our example, computation of the determinant of the basis
matrix yields

⎛⎜⎜⎜⎝

f uf vf xf wf yf u2f uvf uwf uxf yuf v2f vwf vxf yvf

u e2 1
v e 1
w e 1
x 1 1
1 1
u2 e2 1
uv e e2 1
uw e e2 1
ux 1 e2 1
v2 e 1
vw e e 1
vx 1 e 1
wx e 1
x2 1
w2 e 1 e
u3 e2

u2v e e2

u2w e e2

u2x 1 e2

uv2 e e2

uvw e e e2

uvx 1 e e2

uw2 e
uwx 1 e
ux2 1 1 e
v3 e
v2w e e
v2x 1 e
vw2 e
vx2 1
y A 1
yu A e2 1 −4 −4e
yv A e 1
yx A 1
yw A e
y2 A
yu2 A e2

yuv A e e2

yuw A e
yux A 1
y2u A
yv2 A 1 e e
yvw A e
yvx A 1
y2v A

⎞⎟⎟⎟⎠
Fig. 3. Matrix of unravelled linearized polynomial for m = 2, t = 1

Maximizing Small Root Bounds by Linearization 63

det(B) = U−21V −20W−14X−14A15.

We have upper bounds (U, V,W,X) = (N2δ, N δ, N
1
2+2δ, N

1
2 +δ) for the un-

knowns (dpdq, dp + dq, dqk + dpl, k + l), respectively. Thus, with A ≈ N the
enabling condition det(L) > 1 reduces to δ < 1

104 ≈ 0.01. This perfectly matches
the experimental results of Jochemsz and May for parameters (m, t) = (2, 1).

We now proceed to the asymptotic analysis and start by analyzing the simpler
case without any extrashifts. I.e., we shift in the monomials of fm−1 only, but
we have to exclude all monomials that are divisible by vwx, since these can be
written as the linear combination from Eq. (6).

To compute the value of the determinant we begin by counting the number of
shift polynomials as each one contributes with a factor of A to the determinant.
The number of shift polynomials equals the number of monomials in the set{

ue1ve2we3xe4ye5 | ei ∈ N0,

5∑
i=1

ei ≤ m− 1, e2 = 0 or e3 = 0 or e4 = 0

}
.

Their number can be computed as∣∣∣∣∣
{

(e1, . . . , e5) ∈ N5
0 |

5∑
i=1

ei ≤ m− 1

}∣∣∣∣∣
−
∣∣∣∣∣
{

(e1, . . . , e5) ∈ N5
0 |

5∑
i=1

ei ≤ m− 1, e2, e3, e4 ≥ 1

}∣∣∣∣∣ .
Let us derive the size of the first set by counting. Write e1+e2+e3+e4+e5+h =
m−1 for some slack variable h ∈ {0, . . . ,m−1} to transform the inequality into
an equality. If we set e′i = ei + 1 and h′ = h+ 1 then the number of tuples that
fulfill the equation

e′1 + e′2 + e′3 + e′4 + e′5 + h′ = (m− 1) + 6 with e′i, h
′
i ≥ 1

is exactly the number of ordered partitions of m+5 in 6 partitions. Let us write
m + 5 = 1 + 1 + . . . + 1, then one obtains an ordered 6-partition of m + 5 by
choosing 5 out of the m+4 signs as breakpoints for the partition. We have

(
m+4

5

)
possibilities for this choice.

The size of the second set is derived in a similar fashion, where we require
e′1 + e2 + e3 + e4 + e′5 + h′ = m+ 2. In this case, the number of tuples is

(
m+1

5

)
.

Summing up, we obtain for the number of shifts

#shifts =
(
m+ 4

5

)
−
(
m+ 1

5

)
=

1
8
m4 + o(m4).

The second part contributing to the determinant comes from the monomials
that occur in the lattice basis. This is the product of the diagonal entries in the
submatrix on the left that has been omitted in Figure 3. As mentioned before,

64 M. Herrmann and A. May

the diagonal entries consist of the inverses of the upper bound of the monomial
corresponding to that row. The explicit computation is given in Appendix A,
while we only state the results here.

#u =
(
m+ 1

2

)
+ 3

(
m+ 2

4

)
=

1
8
m4 + o(m4)

#v = #w = #x =
(
m+ 2

3

)
+ 2

(
m+ 2

4

)
=

1
12
m4 + o(m4).

Recall that the enabling condition for the lattice attack is det(L) > 1. With
the previously derived values and neglecting low order terms as well as setting
A = N , we are able to write the determinant as

det(L) = U− 1
8 m4

V − 1
12m4

W− 1
12 m4

X− 1
12m4

N
1
8 m4

.

If we use the upper bounds (U, V,W,X) = (N2δ, N δ, N
1
2+2δ, N

1
2+δ) on the sizes

of the variables, we derive the condition

δ <
1
14
≈ 0.071.

This is the same asymptotic bound that was obtained by Jochemsz and
May [JM07] without extrashifts. So, unfortunately, our new lattice does not im-
prove the asymptotic bound of [JM07]. But, as opposed to [JM07], our approach
requires smaller lattice dimensions. Asymptotically, [JM07] need to LLL-reduce
a lattice of size m3, while our approach requires only lattice dimension 1

2m
3.

Figure 4 shows a comparison of the two methods in terms of the size of dp, dq

that can be attacked.
While our approach clearly allows for attacking larger values of CRT-

exponents in practice, we would also like to stress the fact that as opposed

200 400 600 800 1000
Dimension0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Δ

Jochemsz�May

Our approach

Fig. 4. Comparison of the achievable bound depending on the lattice dimension

Maximizing Small Root Bounds by Linearization 65

to [JM07] the experimental behavior of our attack can be completely explained
by our theoretical analysis – thereby also explaining the experimental behavior
of [JM07]. We will show this in the subsequent section.

If we also use so-called extrashifts then we end up with a slightly improved
bound of dp, dq ≤ N0.073 as in [JM07]. The analysis can be done in a similar fash-
ion to the case without extrashifts. We carry out the calculations in Appendix B.

5 Experiments

The reason for carrying out various experiments for attacking CRT-RSA is
twofold. First, we want to show that our analysis from Section 4 is indeed op-
timal. That is, the experimental behavior can be perfectly predicted by the
analysis and there is no hope to improve the bound by this approach. Second, as
our lattice-based approach is heuristic, we have to verify that the polynomials
that we obtain after the lattice reduction are indeed coprime and thus allow for
efficient recovery of their roots.

Table 1. Experimental Results

N dp, dq δ lattice parameters dim JM LLL-time JM LLL-time(s)
1000 bit 11 bit 0.0096 m = 2, t = 1, dim = 30 56 14 2
1000 bit 18 bit 0.0178 m = 3, t = 1, dim = 60 115 6100 258
1000 bit 22 bit 0.0226 m = 3, t = 2, dim = 93 – – 3393
1000 bit 24 bit 0.0244 m = 4, t = 1, dim = 105 – – 7572
1000 bit 29 bit 0.0291 m = 4, t = 2, dim = 154 – – 61298
2000 bit 21 bit 0.0096 m = 2, t = 1, dim = 30 56 40 4
2000 bit 35 bit 0.0178 m = 3, t = 1, dim = 60 115 20700 613
2000 bit 45 bit 0.0226 m = 3, t = 2, dim = 93 – – 13516
2000 bit 47 bit 0.0244 m = 4, t = 1, dim = 105 – – 34305
5000 bit 48 bit 0.0096 m = 2, t = 1, dim = 30 56 379 39
5000 bit 89 bit 0.0178 m = 3, t = 1, dim = 60 – – 5783
5000 bit 113 bit 0.0226 m = 3, t = 2, dim = 93 – – 74417
10000 bit 96 bit 0.0096 m = 2, t = 1, dim = 30 56 2500 360
10000 bit 179 bit 0.0178 m = 3, t = 1, dim = 60 – – 31226

We reimplemented the attack of [JM07] and used in the experiments the same
modulus sizes and lattice parameters as done in [JM07]. Table 1 clearly shows
the speedup for the LLL reduction. For example with parameters m = 3 and
t = 1 our method is 20 to 30 times faster than the one of Jochemsz and May.
As previously mentioned, this is due to the reduced lattice dimension2. While
Jochemsz and May required the reduction of a lattice of dimension 115, our
lattice only has dimension 60. Because of this smaller lattice dimension we were

2 The lattice we are considering here is the one that serves as input to the LLL reduc-
tion routine. That is the sublattice containing zeros in the coordinates corresponding
to the shift polynomials.

66 M. Herrmann and A. May

able to perform experiments on parameter sets that have been out of reach
before.

Notice that the experimental results on the achievable sizes of dp and dq

perfectly match the theoretically predicted bound δ. This is a strong indication
that our approach is indeed optimal.

We ran our experiments using sage 4.1.1. and used the L2 reduction algorithm
from Nguyen and Stehlé [NS09]. The calculations were performed on an Quad
Core Intel Xeon processor running at 2.66 GHz.

References

[BD99] Boneh, D., Durfee, G.: Cryptanalysis of RSA with Private Key d Less than
N 0.292. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11.
Springer, Heidelberg (1999)

[BM01] Blömer, J., May, A.: Low Secret Exponent RSA Revisited. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 4–19. Springer, Heidelberg (2001)

[BM06] Bleichenbacher, D., May, A.: New Attacks on RSA with Small Secret
CRT-Exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 1–13. Springer, Heidelberg (2006)

[Cop96a] Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation;
Factoring with High Bits Known. In: Maurer [Mau96], pp. 178–189 (1996)

[Cop96b] Coppersmith, D.: Finding a Small Root of a Univariate Modular Equation.
In: Maurer [Mau96], pp. 155–165 (1996)

[Cop97] Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Expo-
nent RSA Vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

[HG97] Howgrave-Graham, N.: Finding Small Roots of Univariate Modular Equa-
tions Revisited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997.
LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997)

[HM09] Herrmann, M., May, A.: Attacking Power Generators Using Unravelled
Linearization: When Do We Output Too Much? In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 487–504. Springer, Heidelberg
(2009)

[JM06] Jochemsz, E., May, A.: A Strategy for Finding Roots of Multivariate Poly-
nomials with New Applications in Attacking RSA Variants. In: Lai, X.,
Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer,
Heidelberg (2006)

[JM07] Jochemsz, E., May, A.: A Polynomial Time Attack on RSA with Private
CRT-Exponents Smaller Than N 0.073. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 395–411. Springer, Heidelberg (2007)

[LLL82] Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring Polynomials with Ra-
tional Coefficients. Mathematische Annalen 261(4), 515–534 (1982)

[Mau96] Maurer, U.M. (ed.): EUROCRYPT 1996. LNCS, vol. 1070. Springer,
Heidelberg (1996)

[NS09] Nguyen, P.Q., Stehlé, D.: An LLL Algorithm with Quadratic Complexity.
SIAM J. Comput. 39(3), 874–903 (2009)

[QC82] Quisquater, J.J., Couvreur, C.: Fast Decipherment Algorithm for RSA
Public-key Cryptosystem. Electronics Letters 18, 905 (1982)

[Wie90] Wiener, M.J.: Cryptanalysis of Short RSA Secret Exponents. IEEE Trans-
actions on Information Theory 36(3), 553–558 (1990)

Maximizing Small Root Bounds by Linearization 67

A Counting #u, #v, #w, #x

The monomials that contribute to the determinant are exactly the monomials of
fm that do not contain the variable y. Denote such a monomial by ue1ve2we3xe4 .
In order to count the number of u’s that contribute to the determinant we
proceed as follows.

Let e1 = 0. We have e2 + e3 + e4 ≤ m with ei ∈ N0, which transform into
e′2 + e′3 + e′4 +h′ ≤ m+ 4 for a slack variable h′ ∈ {1, . . . ,m+1} and e′i = ei +1.
The number of such tuples is just the number of 4-partitions of m+ 4, which is(
m+3

3

)
. From these tuples we have to remove the ones with ei ≥ 1 for i = 2, 3, 4,

because of the substitutions of vwx. The number of these tuples is
(
m
3

)
. For

e1 = 1, we proceed similarly and obtain
(
m+2

3

)
−
(
m−1

3

)
. We carry this out for

all possibilities of e1 and end up with e1 = m, where we get
(3
3

)
−
(0
3

)
.

Now we know the number of occurences for each power ui, i = 0, . . . ,m.
In order to count the total number of u we compute the weighted sum as
follows.

#u =
m+3∑
i=3

(m+ 3− i)
(
i

3

)
−

m∑
i=0

(m− i)
(
i

3

)

=
m+3∑

i=m+1

(m+ 3− i)
(
i

3

)
+

m∑
i=3

((m+ 3− i)− (m− i))
(
i

3

)

= 2
(
m+ 1

3

)
+
(
m+ 2

3

)
+ 3

m∑
i=3

(
i

3

)
=
(
m+ 2

3

)
−
(
m+ 1

3

)
+ 3

m+1∑
i=3

(
i

3

)

Using the identities
(
n
k

)
−
(

n−1
k

)
=
(
n−1
k−1

)
and

∑n
i=0

(
i
k

)
=
(
n+1
k+1

)
we eventually

obtain

#u =
(
m+ 1

2

)
+ 3

(
m+ 2

4

)
.

Thus, #u = 1
8m

4 + o(m4).
Counting the number of occurrences of v, w and x can be done in a similar

way and we obtain

#v = #w = #x =
m+3∑
i=3

(m+ 3− i)
(
i

3

)
−

m+1∑
i=1

(m+ 1− i)
(
i

3

)

= 2
m+1∑
i=0

(
i

3

)
+
(
m+ 2

3

)
= 2

(
m+ 2

4

)
+
(
m+ 2

3

)
=

1
12
m4 + o(m4).

68 M. Herrmann and A. May

B Improving the Bound Using Extrashifts

In the following we will show that it is possible to improve the bound δ < 1
14 ≈

0.0714 to δ ≈ 0.0734 by using so-called extrashifts. In this case, we use the set
of shifts

S =
t⋃

t1=0

t−t1⋃
t2=0

{ue1+t1ve2+t2we3xe4ye5 | ue1ve2we3xe4ye5 is monomial of fm−1}.

To estimate the number of shifts, one may use a combinatorial proof as in
Section 4 and count the number of all monomials minus the monomials hav-
ing e2, e3, e4 ≥ 1. However, we choose to use a computational approach here and
simply evaluate a series of sums.

The shift monomials can be characterized by the set S1 \ S2, where S1 is
the set of all shifts and S2 are the shifts that have to be removed due to the
substitution of vwx.

ue1ve2we3xe4ye5 ∈ S1 ⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e5 = 0, . . . ,m− 1
e4 = 0, . . . ,m− 1− e5
e3 = 0, . . . ,m− 1− e5 − e4
e2 = 0, . . . ,m− 1− e5 − e4 − e3 + t

e1 = 0, . . . ,m− 1− e5 − e4 − e3 − e2 + t

ue1ve2we3xe4ye5 ∈ S2 ⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e5 = 0, . . . ,m− 1
e4 = 1, . . . ,m− 1− e5
e3 = 1, . . . ,m− 1− e5 − e4
e2 = 1, . . . ,m− 1− e5 − e4 − e3 + t

e1 = 0, . . . ,m− 1− e5 − e4 − e3 − e2 + t

Setting t = τm, the resulting number of shifts is

|S1 \ S2| =
(

1
8

+
τ

2
+
τ2

2

)
m4 + o(m4).

In a similar fashion we derive the exponents of the variables u, v, w and x con-
tributing to the determinant. For example, to calculate the number of occur-
rences of u, we compute

su =
m∑

e4=0

m−e4∑
e3=0

m−e4−e3+t∑
e2=0

m−e4−e3−e2+t∑
e1=0

e1

−
m∑

e4=1

m−e4∑
e3=1

m−e4−e3+t∑
e2=1

m−e4−e3−e2+t∑
e1=0

e1

=
(

1
8

+
τ

2
+

3τ2

4
+
τ3

3

)
m4 + o(m4).

Maximizing Small Root Bounds by Linearization 69

For the other values we obtain

sv =
(

1
12

+
τ

3
+
τ2

2
+
τ3

3

)
m4 + o(m4)

sw =
(

1
12

+
τ

3
+
τ2

4

)
m4 + o(m4)

sx =
(

1
12

+
τ

3
+
τ2

4

)
m4 + o(m4).

We use these values together with the upper bounds (U, V,W,X) = (N2δ, N δ,

N
1
2+2δ, N

1
2+δ) to compute the determinant of the lattice. After that, we are able

to solve the enabling condition det(L) > 1 for δ and optimize the value of τ to
maximize δ. We obtain τ ≈ 0.381788, which finally leads to the bound

δ ≤ 0.0734142.

Implicit Factoring with Shared Most Significant and
Middle Bits

Jean-Charles Faugère, Raphaël Marinier, and Guénaël Renault

UPMC, Université Paris 06, LIP6
INRIA, Centre Paris-Rocquencourt, SALSA Project-team

CNRS, UMR 7606, LIP6
4, place Jussieu

75252 Paris, Cedex 5, France
jean-charles.faugere@inria.fr, raphael.marinier@polytechnique.edu,

guenael.renault@lip6.fr

Abstract. We study the problem of integer factoring given implicit information
of a special kind. The problem is as follows: let N1 = p1q1 and N2 = p2q2 be two
RSA moduli of same bit-size, where q1,q2 are α-bit primes. We are given the im-
plicit information that p1 and p2 share t most significant bits. We present a novel
and rigorous lattice-based method that leads to the factorization of N1 and N2 in
polynomial time as soon as t ≥ 2α +3. Subsequently, we heuristically generalize
the method to k RSA moduli Ni = piqi where the pi’s all share t most significant
bits (MSBs) and obtain an improved bound on t that converges to t ≥ α +3.55 . . .
as k tends to infinity. We study also the case where the k factors pi’s share t con-
tiguous bits in the middle and find a bound that converges to 2α +3 when k tends
to infinity. This paper extends the work of May and Ritzenhofen in [9], where
similar results were obtained when the pi’s share least significant bits (LSBs). In
[15], Sarkar and Maitra describe an alternative but heuristic method for only two
RSA moduli, when the pi’s share LSBs and/or MSBs, or bits in the middle. In
the case of shared MSBs or bits in the middle and two RSA moduli, they get bet-
ter experimental results in some cases, but we use much lower (at least 23 times
lower) lattice dimensions and so we obtain a great speedup (at least 103 faster).
Our results rely on the following surprisingly simple algebraic relation in which
the shared MSBs of p1 and p2 cancel out: q1N2− q2N1 = q1q2(p2− p1). This
relation allows us to build a lattice whose shortest vector yields the factorization
of the Ni’s.

Keywords: implicit factorization, lattices, RSA.

1 Introduction

Efficient factorization of large integers is one of the most fundamental problem of Al-
gorithmic Number Theory, and has fascinated mathematicians for centuries. It has been
particularly intensively studied over the past 35 years, all the more that efficient fac-
torization leads immediately to an attack of the RSA Cryptosystem. In the 1970’s, the
first general-purpose sub-exponential algorithm for factoring was developed by Morri-
son and Brillhart in [11] (improving a method described for the first time in [7]), using

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 70–87, 2010.
c© International Association for Cryptologic Research 2010

Implicit Factoring with Shared Most Significant and Middle Bits 71

continued fraction techniques. Several faster general-purpose algorithms have been pro-
posed over the past years, the most recent and efficient being the general number field
sieve (GNFS) [8], proposed in 1993. It is not known whether factoring integers can be
done in polynomial time on a classical Turing machine. On quantum machines, Shor’s
algorithm [16] allows polynomial-time factoring of integers. However, it is still an open
question whether a capable-enough quantum computer can be built.

At the same time, the problem of factoring integers given additional information
about their factors has been studied since 1985. In [14], Rivest and Shamir showed
that N = pq of bit-size n and with balanced factors (log2(p) ≈ log2(q) ≈ n

2) can be
factored in polynomial time as soon as we have access to an oracle that returns the
n
3 most significant bits (MSBs) of p. Beyond its theoretical interest, the motivation
behind this is mostly of cryptographic nature. In fact, during an attack of an RSA-
encrypted exchange, the cryptanalyst may have access to additional information beyond
the RSA public parameters (e,N), that may be gained for instance through side-channel
attacks revealing some of the bits of the secret factors. Besides, some variations of the
RSA Cryptosystem purposely leak some of the secret bits (for instance, [17]). In 1996,
Rivest and Shamir’s results were improved in [2] by Coppersmith applying lattice-based
methods to the problem of finding small integer roots of bivariate integer polynomials
(the now so-called Coppersmith’s method). It requires only half of the most significant
bits of p to be known to the cryptanalyst (that is n

4).
In PKC 2009, May and Ritzenhofen [9] significantly reduced the power of the oracle.

Given an RSA modulus N1 = p1q1, they allow the oracle to output a new and different
RSA modulus N2 = p2q2 such that p1 and p2 share at least t least significant bits (LSBs).
Note that the additional information here is only implicit: the attacker does not know
the actual value of the t least significant bits of the pi’s, he only knows that p1 and p2

share them. In the rest of the paper, we will refer to this problem as the problem of
implicit factoring. When q1 and q2 are α-bit primes, May and Ritzenhofen’s lattice-
based method rigorously finds in quadratic time the factorization of N1 and N2 when
t ≥ 2α + 3. Besides, their technique heuristically generalizes to k− 1 oracle queries
that give access to k different RSA moduli Ni = piqi with all the pi’s sharing t least
significant bits. With k− 1 queries the bound on t improves to: t ≥ k

k−1 α . Note that
these results are of interest for unbalanced RSA moduli: for instance, if N1 = p1q1,
N2 = p2q2 are 1000-bit RSA moduli and the qi’s are 200-bit primes, knowing that p1

and p2 share at least 403 least significant bits out of 800 is enough to factorize N1 and N2

in polynomial time. Note also that the method absolutely requires that the shared bits be
the least significant ones. They finally apply their method to factorize k n-bit balanced
RSA moduli Ni = piqi under some conditions and with an additional exhaustive search
of 2

n
4 .

Very recently, in [15], Sarkar and Maitra applied Coppersmith and Gröbner-basis
techniques on the problem of implicit factoring, and improved heuristically the bounds
in some of the cases. Contrary to [9], their method applies when either (or both) LSBs or
MSBs of p1, p2 are shared (or when bits in the middle are shared). Namely, in the case of
shared LSBs they obtain better theoretical bounds on t than [9] as soon as α ≥ 0.266n.
Besides, their experiments often perform better than their theoretical bounds, and they
improve in practice the bound on t of [9] when α ≥ 0.21n. Note finally that their bounds

72 J.-C. Faugère, R. Marinier, and G. Renault

are very similar in the two cases of shared MSBs and shared LSBs. Readers interested
in getting their precise bounds may refer to their paper [15].

Unfortunately, Sarkar and Maitra’s method is heuristic even in the case of two RSA
moduli, and does not generalize to k ≥ 3 RSA moduli. In fact, when the pi’s share
MSBs and/or LSBs, their method consists in building a polynomial f1 in three vari-
ables, whose roots are (q2 + 1,q1,

p1−p2
2γ), where γ is the number of shared LSBs be-

tween p1 and p2. That is, p1−p2
2γ represents the part of p1− p2 where the shared bits do

not cancel out. To find the integer roots of f1, they use the Coppersmith-like technique
of [5] which consists in computing two (or more) new polynomials f2, f3, . . . sharing
the same roots as f1. If the variety defined by f1, f2, f3, . . . is 0-dimensional, then the
roots can be easily recovered computing resultants or Gröbner basis. However, with
an input polynomial with more than two variables, the method is heuristic: there is no
guarantee for the polynomials f1, f2, f3, . . . to define a 0-dimensional variety. We repro-
duced the results of Sarkar and Maitra and we observed that f1, f2, f3, . . . almost never
defined a 0-dimensional variety. They observed however that it was possible to recover
the roots of the polynomials directly by looking at the coefficients of the polynomi-
als in the Gröbner basis of the ideal generated by the fi’s, even when the ideal was of
positive dimension. The assumption on which their work relies is that it will always be
possible. For instance, in the case of shared MSBs between p1 and p2, they found in
their experiments that the Gröbner basis contained a polynomial multiple of x− q2

q1
y−1

whose coefficients lead immediately to the factorization of N1 and N2. They support
their assumption by experimental data: in most cases their experiments perform better
than their theoretical bounds. It seems nevertheless that their assumption is not fully
understood.

Our contribution consists of a novel and rigorous lattice-based method that address
the implicit factoring problem when p1 and p2 share most significant bits. That is, we
obtained an analog of May and Ritzenhofen’s results for shared MSBs, and our method
is rigorous contrary to the work of Sarkar and Maitra in [15]. Namely, let N1 = p1q1

and N2 = p2q2 be two RSA moduli of same bit-size n. If q1,q2 are α-bit primes and
p1, p2 share t most significant bits, our method provably factorizes N1 and N2 as soon
as t ≥ 2α +3 (which is the same as the bound on t for least significant bits in [9]). This
is the first rigorous bound on t when p1 and p2 share most significant bits. From this
method, we deduce a new heuristic lattice-based for the case when p1 and p2 share t
bits in the middle. Moreover, contrary to [15], these methods heuristically generalize to
an arbitrary number k of RSA moduli and do not depend on the position of the shared
bits in the middle, allowing us to factorize k RSA moduli as soon as t ≥ k

k−1 α +6 (resp.

t ≥ 2k
k−1 α +7) most significant bits (resp. bits in the middle) are shared between the pi’s

(more precise bounds are stated later in this paper). A summary of the comparison of
our method with the methods in [9] and [15] can be found in table 1.

Let’s give the main idea of our method with 2 RSA moduli in the case of shared
MSB’s. Consider the lattice L spanned by the row vectors v1 and v2 of the following
matrix:

(
K 0 N2

0 K −N1

)
where K = �2n−t+ 1

2 �

Implicit Factoring with Shared Most Significant and Middle Bits 73

Table 1. Comparison of our results against the results of [9] and [15] with k RSA moduli

May, Ritzenhofen’s
Results [9]

Sarkar, Maitra’s Results [15] Our results

k = 2

When p1, p2 share
t LSBs: rigor-
ous bound of
t ≥ 2α + 3 using
2-dimensional
lattices of Z2.

When p1, p2 share either t
LSBs or MSBs: heuristic
bound better than t ≥ 2α + 3
when α ≥ 0.266n, and ex-
perimentally better when
α ≥ 0.21n. In the case of
t shared bits in the middle,
better bound than t ≥ 4α + 7
but depending on the position
of the shared bits. Using
46-dimensional lattices of Z46

When p1, p2 share t MSBs: rig-
orous bound of t ≥ 2α +3 using
2-dimensional lattices of Z3. In
the case of t bits shared in the
middle: heuristic bound of t ≥
4α +7 using 3-dimensional lat-
tices of Z3.

k ≥ 3

When the pi’s
all share t LSBs:
heuristic bound of
t ≥ k

k−1 α using
k-dimensional
lattices of Zk.

Cannot be directly applied.

When the pi’s all share t
MSBs (resp. bits in the mid-
dle): heuristic bound of t ≥

k
k−1 α + δk (resp. t ≥ 2k

k−1 α +
δk), with δk ≤ 6 (resp. ≤ 7) and

using k-dimensional (k(k+1)
2 -

dimensional) lattices of Z
k(k+1)

2 .

Consider also the following vector in L:

v0 = q1v1 + q2v2 = (q1K,q2K,q1q2(p2− p1))

The key observation is that the t shared significant bits of p1 and p2 cancel out in the
algebraic relation q1N2−q2N1 = q1q2(p2− p1). Furthermore, we choose K in order to
force the coefficients of a shortest vector of L on the basis (v1,v2) to be of the order
of 2α ≈ q1 ≈ q2. We prove in the next section that v0 is indeed a shortest vector of L
(thus N1 and N2 can be factored in polynomial time) as soon as t ≥ 2α + 3. Besides,
we generalized this construction to an arbitrary number of k RSA moduli such that a
small vector of the lattice harnesses the same algebraic relation, and to shared middle
bits. However, the generalized constructions in both cases become heuristic: we use the
Gaussian heuristic to find a condition on t for this vector to be a shortest of the lattice.

Applications of implicit factoring have not yet been extensively studied, and we be-
lieve that they will develop. The introduction of [9] gives some ideas for possible ap-
plications. They include destructive applications with malicious manipulation of public
key generators, as well as possibly constructive ones. Indeed, our work shows that when
t ≥ 2α +3, it is as hard to factorize N1 = p1q1, as generating N2 = p2q2 with p2 sharing
t most significant bits with p1. This problem could form the basis of a cryptographic
primitive.

Throughout this paper, we heavily use common results on euclidean lattice. A sum-
mary of these results can be found in appendix A. The paper is organized as follows. In
section 2, we present our rigorous method in the case of shared MSB’s and two RSA

74 J.-C. Faugère, R. Marinier, and G. Renault

moduli, we generalize it to k RSA moduli in section 3. In section 4, we present our
method in the case of shared bits in the middle. Finally, in section 5 we present our
experiments that strongly support the assumption we made in the case of k RSA moduli
and of shared middle bits.

2 Implicit Factoring of Two RSA Moduli with Shared MSBs

In this section, we study the problem of factoring two n-bit RSA moduli: N1 = p1q1

and N2 = p2q2, where q1 and q2 are α-bit primes, given only the implicit hint that p1

and p2 share t most significant bits (MSBs) that are unknown to us. We will show that
N1 and N2 can be factored in quadratic time as soon as t ≥ 2α + 3. By saying that
the primes p1, p2 of maximal bit-size n−α + 1 share t MSBs, we really mean that
|p1− p2| ≤ 2n−α−t+1.

Let’s consider the lattice L spanned by the row vectors (denoted by v1 and v2) of the
following matrix:

M =
(

K 0 N2

0 K −N1

)
where K = �2n−t+ 1

2 �

We have the following immediate lemma that makes our method work:

Lemma 1. Let v0 be the vector of L defined by v0 = q1v1 + q2v2. Then v0 can be
rewritten as v0 = (q1K,q2K,q1q2(p2− p1)).

Note that the shared MSBs of p1 and p2 cancel each other out in the difference p2− p1.
Each of the coefficients of v0 are thus integers of roughly (n+α−t) bits. Provided that t
is sufficiently large,±v0 may be a shortest vector of L that can be found using Lagrange
reduction on L. Moreover, note that as soon as we retrieve v0 from L, factoring N1 and
N2 is easily done by dividing the first two coordinates of v0 by K (which can be done in
quadratic time in n). Proving that v0 is a shortest vector of L under some conditions on
t is therefore sufficient to factorize N1 and N2.

We first give an intuition on the bound on t that we can expect, and we give after that
a proof that ±v0 is indeed the shortest vector of L under a similar condition.

The volume of L is the square root of the determinant of the Gramian matrix of L

given by MMt =
(

K2 + N2
2 −N1N2

−N1N2 K2 + N2
1

)
. That is, vol(L) = K

√
N2

1 + N2
2 + K2 which can

be approximated by 22n−t because K2 ≈ 22(n−t) is small compared to the N2
i ≈ 22n.

The norm of v0 is approximately 2n+α−t , because each of its coefficients have roughly
n+α−t bits. If v0 is a shortest vector of L, it must be smaller than the Minkowski bound
applied to L: 2n+α−t ≈ ‖v0‖ ≤

√
2Vol(L)1/2 ≈ 2n−t/2, which happens when t ≥ 2α .

The following lemma affirms that v0 is indeed a shortest vector of L under a similar
condition on t.

Lemma 2. Let L be the lattice generated by the row vectors v1 and v2 of M and let
v0 = q1v1 + q2v2 = (q1K,q2K,q1q2(p2− p1)) as defined in Lemma 1. The vector ±v0
is the shortest vector of the lattice L as soon as t ≥ 2α + 3.

Implicit Factoring with Shared Most Significant and Middle Bits 75

Proof. Let (b1,b2) be the resulting basis from the Lagrange reduction on L. This re-
duced basis verifies ‖b1‖ = λ1(L),‖b2‖ = λ2(L), and, by Hadamard’s inequality one
have: ‖b1‖‖b2‖ ≥ Vol(L). As v0 is in the lattice, ‖b1‖ = λ1(L) ≤ ‖v0‖. Hence we

get ‖b2‖ ≥ Vol(L)
‖v0‖ . Moreover, if v0 is strictly shorter that b2, v0 is a multiple of b1;

for otherwise b2 would not be the second minimum of the lattice. In this case, v0 =
ab1 = a(bv1 + cv2),a,b,c ∈ Z, and looking at the first two coefficients of v0, we get
that ab = q1 and ac = q2. Since the qi’s are prime, we conclude that a = ±1, that is,
v0 = ±b1. Using the previous inequality, a condition for v0 to be strictly shorter than
b2 is:

‖v0‖2 < Vol(L) (1)

Let’s upper-bound the norm of v0 and lower-bound Vol(L). We first provide simple
bounds that proves the lemma when t ≥ 2α +4 and derive secondly tighter bounds that
require only t ≥ 2α + 3.

The pi’s have at most n−α + 1 bits, and they share their t most significant bits
so |p2− p1| ≤ 2n−α+1−t. We thus have the inequality ‖v0‖2 ≤ 22(n−t)+1(q2

1 + q2
2) +

q2
1q2

2(p1− p2)2 which implies

‖v0‖2 ≤ 22(n+α−t)+2 + 22(α+n+1−t)≤ 22(n+α−t)+3 (2)

We can lower-bound the volume of L, using that N1,N2 ≥ 2n−1 and K2 ≥ 22(n−t):

Vol(L)2 = K2(N2
1 + N2

2 + 22(n−t))> 24n−2t−1 (3)

Using inequalities (2) and (3), the inequality (1) is true provided that: 22(n+α−t)+3 ≤
22n−t− 1

2 which is equivalent to (as t and α are an integers):

t ≥ 2α + 4 (4)

We have thus proved the lemma under condition (4). We now refine the bounds on ‖v0‖
and Vol(L) in order to prove the tight case.

The integers q1 and q2 are α-bit primes, therefore qi ≤ 2α −1, (i = 1,2). Define ε1

by 2α −1 = 2α−ε1 . We get q2
i ≤ 22α−2ε1 ,(i = 1,2). Moreover, since K = �2n−t+ 1

2 �, we
have K2 ≤ 22(n−t)+1. From these inequalities, we can upper-bound K2q2

i

K2q2
i ≤ 22(n−t+α)+1−2ε1, (i = 1,2) (5)

The pi’s have at most n−α + 1 bits and they share t bits, so (p2− p1)2 ≤ 22(n−α+1−t).
Thus, using the upper-bound on the q2

i , we have

q2
1q2

2(p2− p1)2 ≤ 22(n−t+α+1−2ε1) (6)

We can finally bound ‖v0‖2 = K2(q2
1 + q2

2)+ q2
1q2

2(p2− p1)2 using (5) and (6):

‖v0‖2 ≤ 22(n+α−t)+2−2ε1 + 22(n−t+α+1−2ε1) ≤ 22(n+α−t)+3−ε1 (7)

76 J.-C. Faugère, R. Marinier, and G. Renault

Let’s now define ε2 by the equality 2n−t+1/2− 1 = 2n−t+1/2−ε2 . We have that K =
�2n−t+ 1

2 � ≥ 2n−t+1/2−ε2 and N2
i ≥ 22n−2, we can therefore lower-bound Vol(L)2:

Vol(L)2 = K2(N2
1 + N2

2 + 22(n−t))> K2(N2
1 + N2

2)≥ 24n−2t−2ε2 (8)

Using the inequalities (7) and (8), the condition (1) is true under the new condition
22(n+α−t)+3−ε1 ≤ 22n−t−ε2 which is equivalent to t ≥ 2α + 3 + ε2− ε1.

Since ε1 = log2(
1

1− 1
2α

), ε2 = log2(
1

1− 1

2
n−t+ 1

2

) and α ≤ n− t, we have ε2 ≤ ε1 and the

result follows.

From the preceding Lemmas 1 and 2, one can deduce the following result.

Theorem 1. Let N1 = p1q1,N2 = p2q2 be two n-bit RSA moduli, where the qi’s are α-
bit primes and the pi’s are primes that share t most significant bits. If t ≥ 2α + 3, then
N1 and N2 can be factored in quadratic time in n.

Proof. Let L be the lattice generated by v1 and v2 as above. Since the norms of v1 and
v2 are bounded by 2n+1, computing the reduced basis (b1,b2) takes a quadratic time in
n. By Lemma 2 we know that b0 =±v0 as soon as t ≥ 2α + 3. The factorization of N1

of N2 follows from the description of v0 given by the lemma 1.

Remark 1. For our analysis, the value K = �2n−t+ 1
2 � is indeed the best possible value. If

we use K = �2n−t+γ�, we obtain the bound t ≥ 2α + f (γ) with f (γ) = 3
2 − γ + log2(2+

22γ). The minimum of f is 3 and is attained in γ = 1
2 .

3 Implicit Factoring of k RSA Moduli with Shared MSBs

The construction of the lattice for 2 RSA moduli naturally generalizes to an arbitrary
number k of moduli. Similarly, we show that a short vector v0 of the lattice allows
us to recover the factorization of the Ni’s. This vector takes advantage of the relations
qiNj−q jNi = qiq j(p j− pi) for all i, j ∈ {1, . . . ,k}. However, we were unable to prove
that v0 is a shortest vector of the lattice. Therefore, our method relies on the Gaussian
heuristic to estimate the conditions under which v0 should be a shortest vector of the
lattice. Experimental data in section 5 confirms that this heuristic is valid in nearly all
the cases.

In this section, we are given k RSA moduli of n bits N1 = p1q1, . . . ,Nk = pkqk where
the qi’s are α-bit primes and the pi’s are primes that all share t most significant bits.

Let us construct a matrix M whose row vectors will form a basis of a lattice L; this
matrix will have k rows and k+

(k
2

)
= k(k+1)

2 columns. Denote by s1, . . . ,sm with m =
(k

2

)
all the subsets of cardinality 2 of {1,2, . . . ,k}. To each of the si’s, associate a column
vector ci of size k the following way. Let a,b be the two elements of si, with a< b. We
set the a-th element of ci to Nb, the b-th element of ci to −Na, and all other elements to
zero. Finally, one forms M by concatenating column-wise the matrix KIk×k, where Ik×k

is the identity matrix of size k, along with the matrix Cm composed by the m column
vectors c1, . . . ,cm. K is chosen to be �2n−t+ 1

2 �. We will call v1, . . . ,vk the row vectors
of M.

Implicit Factoring with Shared Most Significant and Middle Bits 77

To make things more concrete, consider the example of k = 4. Up to a reordering of
the columns (that changes nothing to the upcoming analysis),

M =

⎛⎜⎜⎝
K 0 0 0 N2 N3 N4 0 0 0
0 K 0 0 −N1 0 0 N3 N4 0
0 0 K 0 0 −N1 0 −N2 0 N4

0 0 0 K 0 0 −N1 0 −N2 −N3

⎞⎟⎟⎠ where K = �2n−t+ 1
2 � (9)

Notice that the columns k + 1 to k + m correspond to all the 2-subsets of {1,2,3,4}.
Similarly to the case of 2 RSA moduli (lemma 1), L contains a short vector that

allows us to factorize all the Ni’s:

Lemma 3. Let v0 be the vector of L defined by v0 = ∑k
i=1 qivi. Then v0 can be rewritten

as follows:
v0 = (q1K, . . . ,qkK, . . . ,qaqb(pb− pa), . . .︸ ︷︷ ︸

∀{a,b}⊂{1,...,k}

)

Proof. For 1 ≤ i ≤ m, let a,b be such that si = {a,b} and a < b. By the construction
of the ci’s, we get that the (k + i)-th coordinate of v0 is equal to qaNb− qbNa = qaqb

(pb− pa). ��

Remark that v0 is short because its m last coordinates harness the cancellation of the t
most significant bits between the pi’s. Retrieving ±v0 from L leads immediately to the
factorization of all the Ni’s, dividing its first k coordinates by K.

Assumption 1. If ±v0 is shorter than the Gaussian heuristic λ1(L) ≈
√

d
2πe Vol(L)

1
d

applied to the d-dimensional lattice L then it is a shortest vector of L.

This assumption is supported by experimental data in the section 5. We found it to be
almost always true in practice. This condition can be seen as an analog of condition 1
of section 2 in the case of two RSA moduli.

Let’s derive a bound on t so that v0 is smaller than the Gaussian heuristic applied to
L. The norm of v0 can be computed and upper-bounded easily: ‖v0‖2 = K2

(
∑k

i=1 q2
i

)
+∑{i, j}⊂{1,...,k} q2

i q2
j(pi− p j)2 ≤ k222(n+α−t)+1. Computing the volume of L is a bit

more involved, we refer to Lemma 5 of appendix B: Vol(L) = K
(
K2 + ∑k

i=1 N2
i

) k−1
2

and thus Vol(L) ≥ 2n−t
(√

k2n−1
)k−1

.

We now seek the condition on t for the norm of v0 to be smaller than the Gaussian
heuristic. Using the two previous inequalities on ‖v0‖ and Vol(L), we get the stricter
condition:

k222(n+α−t)+1 ≤ k
2πe

(
2n−t

(√
k2n−1

)k−1
) 2

k

Expanding everything and extracting t, we get the following condition:

t ≥ k
k−1

α + 1 +
k

2(k−1)

(
2 +

log2(k)
k

+ log2(πe)
)

(10)

When k ≥ 3, we can derive a simpler and stricter bound on t: t ≥ k
k−1 α + 6

78 J.-C. Faugère, R. Marinier, and G. Renault

Finally, as ±v0 is now the shortest vector of L under Assumption 1, it can be found
in time C (k, k(k+1)

2 ,n) where C (k,s,B) is the time to find a shortest vector of a k-
dimensional lattice of Zs given by B-bit basis vectors. We just proved the following
theorem:

Theorem 2. Let N1 = p1q1, . . . ,Nk = pkqk be k n-bit RSA moduli, with the qi’s being
α-bit primes, and the pi’s being primes that all share t most significant bits. Under
Assumption 1, the Ni’s can be factored in time C (k, k(k+1)

2 ,n), as soon as t verifies
equation (10).

Remark 2. Note that we can find a shortest vector of the lattice of Theorem 2 using
Kannan’s algorithm (Theorem 6 in appendix A) in time O(P(n,k)k

k
2e +o(k)) where P

is a polynomial. It implies that we can factorize all N1, . . . ,Nk in time polynomial in
n as soon as k is constant or kk is a polynomial in n. Unfortunately, to the best of our
knowledge, this algorithm is not implemented in the computer algebra system Magma
[1] on which we implemented the methods. In our experiments, to compute a short-
est vector of the lattice, we used instead the Schnorr-Euchner’s enumeration algorithm
which is well known (see [4,3]) to perform well beyond small dimension (≤ 50) and
this step in Magma took less than 1 minute for k ≤ 40. One may also reduce the lattice
using LLL algorithm instead of Schnorr-Euchner’s enumeraion. If t is not too close to
the bound of Theorem 2, the Gaussian heuristic suggests that the gap (see Definition
1 in the appendix) of the lattice is large, and thus LLL may be able to find a shortest
vector of L even in medium dimension (50–200).

Similarly to the case of 2 RSA moduli, K = �2n−t+ 1
2 � is optimal for our analysis.

Indeed, if we redo the analysis with K = �2n−t+γ�, we find that the optimal value for
γ is the one that minimizes the function fk = γ
→ 1

2 k log2(k−1 + 22γ−1)− γ , which is
γ = 1

2 regardless of k.
Finally, note that a slightly tighter bound (differing to equation 10 by a small additive

constant) may be attained by bounding ‖v0‖ and Vol(L) more precisely.

4 Implicit Factoring with Shared Bits in the Middle

In this section, we are given k RSA moduli of n bits N1 = p1q1, . . . ,Nk = pkqk where
the qi’s are α-bit primes and the pi’s are primes that all share t bits from position t1 to
t2 = t1 + t. More precisely, these RSA moduli all verify:

Ni = piqi = (pi22t2 + p2t1 + pi0)qi

where p is the integer part shared by all the moduli. Contrary to the LSB case presented
in [9] and the MSB one developed in the previous sections, the method we present
here is heuristic even when k = 2. We sketch now our method when k = 2 and present
the details on the general result later. When k = 2, we have a system of two equations
in four variables p1,q1, p2,q2: N1 = p1q1 = (p122t2 + p2t1 + p10)q1 and N2 = p2q2 =
(p222t2 + p2t1 + p20)q2. Similarly to the LSB’s case (see [9]), this system can be reduced
modulo 2t2 . One obtains a system of two equations with 5 variables p, p10 , p20, q1, q2:{

(p2t1 + p10)q1 = N1 mod 2t2

(p2t1 + p20)q2 = N2 mod 2t2 (11)

Implicit Factoring with Shared Most Significant and Middle Bits 79

The problem can now be seen as a modular implicit factorization of N1 and N2 with
shared MSBs. Thus, we adapt the method we proposed in section 2 to the modular case.
More precisely, we consider the lattice L defined by the rows of the matrix

M =

⎛⎝K 0 N2

0 K −N1

0 0 2t2

⎞⎠ (12)

Let v0 be the vector (q1K,q2K,r) with r being the unique remainder of q1N2− q2N1

modulo 2t2 in]− 2t2−1,2t2−1]. Clearly, v0 is in L. As in the section 3, we search for a
condition on the integer t under which±v0 is the shortest vector in L under Assumption
1 (here, the dimension of the lattice L is 3). The integer K will be set at the end of the
analysis.

We have ‖v0‖2 = K2(q2
1 + q2

2)+ r2 and]−2t2−1,2t2−1] � r = q1N2−q2N1 mod 2t2

= q1q2(p20 − p10) mod 2t1+t with |p20− p10 | ≤ 2t1 and qi ≤ 2α . Thanks to the upper-
triangular shape of M, the volume of L is easily computed: VolL = K22t2 . Thus, we
can respectively upper-bound and lower-bound ‖v0‖2 and VolL by 22α+1K2 + 22t1+4α

and K22t2 ; a condition on t so that v0 is smaller than the Gaussian heuristic follows:
22α+1K2 + 22t1+4α ≤ 3

2πe(K
22t2)

2
3 . This condition is equivalent to

t ≥ 3
2

[
log2(2

2α+1− 2
3 t1 K

2
3 + 2

4
3 t1+4αK−

4
3)+ log2(

2πe
3

)
]

and the integer value of K which minimizes the right-hand of this inequality is K =
2α+t1 . Hence, under Assumption 1, one can factorize N1,N2 in polynomial-time as soon
as

t ≥ 4α +
3
2

(1 + log2(πe)) (13)

A stricter and simpler condition on t is: t ≥ 4α + 7.
We now inspect when Assumption 1 is not verified, that is we study the possible

existence of exceptional short vectors in L that are smaller than v0. These vectors may
appear when there exists small coefficients c1, c2 (< 2α) such that c1N1−c2N2 mod 2t2

is small (say ≈ 2t2−γ). In particular, to make easier the analysis, we examine the case
when the simple vector v1 defined with c1 = c2 = 1 is smaller than v0. The inequality
‖v1‖2 < ‖v0‖2 is equivalent to t− γ < 2α . So this inequality is possible only for small
t and large γ which can be considered as an exception. In our experiments, these excep-
tional shorts vectors (and, in particular, simple vectors v1) almost never appear in the
k = 2 case with t verifying the bound 13.

The method for k ≥ 3 is a straightforward generalization of the k = 2 case by using
the results of section 3. Let’s consider the lattice L defined by the rows of the matrix M
given by

M =
K Ik×k Cm

0 2t2 Im×m

⎛⎜⎝
⎞⎟⎠

80 J.-C. Faugère, R. Marinier, and G. Renault

where Cm is the matrix defined in section 3 and formed by the concatenation of m =
(k

2

)
column vectors of k rows and Ik×k (resp. Im×m) is the identity matrix of size k× k (resp.
m×m). Thus, M is a square upper triangular matrix of size (m + k)× (m + k) and the
volume of the m+ k-dimensional lattice L is easily computed: VolL = Kk2mt2 .

The vector
v0 = (q1K, . . . ,qkK, . . . ,r(a,b), . . .︸ ︷︷ ︸

∀{a,b}⊂{1,...,k}

)

with r(a,b) defined as the unique remainder of qaqb(pb− pa) = qaNa−qbNb modulo 2t2

in]− 2t2−1,2t2−1], is clearly a vector of L. As we do above, we search for a condition
on the integer t under which ±v0 is the shortest vector in L under Assumption 1. The
integer K will be set at the end of the analysis to be optimal.

We have ‖v0‖2 = K2(q2
1 + · · ·+ q2

k) + ∑{a,b}⊂{1,...,k} r2
(a,b), that we can bound by

‖v0‖2 ≤ k22αK2 + m22t1+4α . A condition on t, under Assumption 1, follows:

k22α K2 + m24α+2t1 ≤ m+ k
2πe

(Kk2mt2)
2

m+k .

This condition is equivalent to

t ≥ m+ k
2m

[
log2

(
k22α− 2m

m+k t1K
2m

m+k + m24α+ 2k
m+k t1 K−

2k
m+k

)
+ log2

(
2πe

m+ k

)]
(14)

The value of K which minimizes the right-hand of this inequality is given by the zero

of the derivative of the function K
→ k22α− 2m
m+k t1K

2m
m+k + m24α+ 2k

m+k t1 K−
2k

m+k . Actually,
K is given by the solution of the equation

2mk
m+ k

22α− 2m
m+k t1 K

m−k
m+k =

2km
m+ k

24α+ 2k
m+k t1 K−

m+3k
m+k

and thus, after simplification, K = 2α+t1 which is an integer value. A general condition
on t becomes

t ≥ m+ k
2m

[
log2

(
(m+ k)22α 2m+k

m+k

)
+ log2

(
2πe

m+ k

)]
and the general result immediately follows.

Theorem 3. Let N1 = p1q1, . . . ,Nk = pkqk be k n-bit RSA moduli, where the qi’s are α-
bit primes and the pi’s are primes that all share t bits from the position t1 to t2 = t1 + t.
Under Assumption 1, the Ni’s can be factored in time C (k(k+1)

2 , k(k+1)
2 ,n), as soon as

t ≥ 2α +
2

k−1
α +

k + 1
2(k−1)

log2(2πe)

As in the case of k = 2, we inspect the general case k ≥ 3 for the existence of ex-
ceptional vectors v1 = (c1K, . . . ,ckK, . . . ,ciNi−c jNj mod 2t2 , . . .) which will disprove
Assumption 1, that is, with ci’s (< 2α) and ciNi− c jNj mod 2t2 small (say ≈ 2t2−γ).

Implicit Factoring with Shared Most Significant and Middle Bits 81

The condition under which the simple vector v1 with c1 = c2 = · · · = ck = 1 verify
‖v1‖2 < ‖v0‖2 is given by

t− γ < α +
1
2

+
1
2

log(
(k + 1)22α−1−1

(k−1)
)≈ 2α

Thus, as in the case of k = 2, for t and α small and γ large enough, this type of simple
vectors may appear. Moreover, the degree of liberty for choosing the ci increases with
k, thus, exceptional vectors may appear more frequently when k grows. This fact was
observed during our experiments.

Remark 3. During our first experiments, in few cases, our method fails to factor the
Ni’s. After analysis of the random generation functions used in our code, it turns out
that the qi where randomly generated in the interval

]
2α−1,2α]. Thus, the probability

that a lot of qi’s have exactly size α is high. If, moreover, α is small enough compared
to t2 (α < t2 = t +t1), the corresponding Ni−Nj mod 2t2 may be very small. This could
be explained by the following fact: some of the most significant bits (and at least the
highest bit) of Ni mod 2t2 and Nj mod 2t2 will be a part of the shared bits between
the pi’s and thus they cancel themselves in (Ni−Nj) mod 2t2 . Hence, in this case, we
have an exceptional short vector in L and our method fails; on the other hand, if one use
these moduli then an attacker may use this extra information to easily factor them with
another method.

5 Experimental Results

In order to check the validity of Assumption 1 and the quality of our bounds on t, we
implemented the methods on Magma 2.15 [1].

5.1 Shared MSBs

We generated many random 1024-bit RSA moduli, for various values of α and t. We
observed that the results were similar for other values of n. In the case where k = 2,
we used the Lagrange reduction to find with certainty a shortest vector of the lattice,
and for 3 ≤ k ≤ 40 we compared Schnorr-Euchner’s algorithm (that provably outputs
a shortest vector of the lattice) with LLL (that gives an exponential approximation of a
shortest vector). We used only LLL for k = 80.

Table 2. Results for k = 2 and 1024-bit RSA moduli with shared MSBs

α (bit-size of the qi’s) Bound of Theorem 1 t ≥ 2α +3 Best experimental t
150 303 302
200 403 402
250 503 502
300 603 602

82 J.-C. Faugère, R. Marinier, and G. Renault

Table 3. Results for k = 3,10,40 and 1024-bit RSA moduli with shared MSBs

α (bit-size
of the qi’s)

Theoretical
bound t

Best experimental t
using LLL algo.

Best experimental t using
Schnorr-Euchner’s algo.

Failure rate of
Assumption 1

Results for k = 3 (Theoretical bound of Theorem 2: t ≥ 3
2 α +5.2 . . .)

150 231 228 228 0% (t = 227)
200 306 303 303 0% (t = 302)
250 381 378 378 0% (t = 377)
300 456 453 453 0% (t = 452)
350 531 528 528 0% (t = 527)
400 606 603 603 0% (t = 602)

Results for k = 10 (Theoretical bound of Theorem 2: t ≥ 10
9 α +4.01 . . .)

150 171 169 169 0% (t = 168)
200 227 225 225 3% (t = 224)
250 282 280 280 3% (t = 279)
300 338 336 336 1% (t = 335)
350 393 391 391 2% (t = 390)
400 449 447 447 0% (t = 446)

Results for k = 40 (Theoretical bound of Theorem 2: t ≥ 40
39 α +3.68 . . .)

150 158 156 155 2% (t = 154)
200 209 208 207 3% (t = 206)
250 261 259 258 1% (t = 257)
300 312 310 309 1% (t = 308)
350 363 362 361 0% (t = 360)
400 414 413 412 2% (t = 411)

We conducted experiments for k = 2,3,10,40 and 80, and for several values for α .
For specific values of k, α and t, we said that a test was successful when the first vector
of the reduced basis of the lattice was of the form±v0 (that is, it satisfies Assumption 1
in the heuristic case k≥ 3). For each k and each α , we generated 100 tests and found ex-
perimentally the best (lowest) value of t that had 100% success rate. We compared this
experimental value to the bounds we obtained in Theorems 2 and 1. For the first value
of t that does not have 100% success rate and for k≥ 3, we analyzed the rate of failures
due to Assumption 1 not being valid. Note that failures can be of two different kinds:
the first possibility is that ‖v0‖ is greater than the Gaussian heuristic, and the second
one is that ‖v0‖ is smaller than the Gaussian heuristic yet v0 is not a shortest vector of
the lattice (that is, Assumption 1 does not hold). We wrote down the percentage of the
cases where Assumption 1 was not valid among all the cases where ‖v0‖ was smaller
than the Gaussian heuristic. These results are shown in tables 2 and 3. Let’s take an ex-
ample. For k = 10 and α = 200 (second line of the part corresponding to k = 10 in table
3), Theorem 2 predicts that v0 is a shortest vector of the lattice as soon as t ≥ 227. It
turned out that it was always the case as soon as t ≥ 225, which is better than expected.
For t = 224, Assumption 1 was not valid in 3% of the cases.

Implicit Factoring with Shared Most Significant and Middle Bits 83

Table 4. Results for k = 5 and 1024-bit RSA moduli with shared bits in the middle (α ∈ {99,100},
t1 = 20, theoretical bound t ≥ 254)

Experimental
t

Failure rate of ‖v0‖<
Gaussian heuristic

Failure rate with Schnorr-
Euchner’s algo.

Failure rate with
LLL’s algo.

261 0% 0% 0%
260 0% 1% 1%
259 0% 1% 1%
258 0% 1% 0%
257 0% 3% 2%
256 0% 6% 5%
255 0% 17% 10%
254 0% 33% 19%
253 0% 58% 28%
252 2% 90% 58%
251 96% 100% 89%

Let’s analyze the results now. In the rigorous case k = 2, we observe that the attack
consistently goes one bit further with 100% success rate than our bound in Theorem 1.

In all our experiments concerning the heuristic cases k≥ 3, we observed that we had
100% success rate (thus, Assumption 1 was always true) when t was within the bound
(10) of Theorem 2. That means that Theorem 2 was always true in our experiments.
Moreover, we were often able to go a few bits (up to 3) beyond the theoretical bound
on t. When the success rate was not 100% (that is, beyond our experimental bounds on
t), we found that Assumption 1 was not true in a very limited number of the cases (less
than 3%). Finally, up to dimension 80, LLL was always sufficient to find v0 when t was
within the bound of Theorem 2, and Schnorr-Euchner’s algorithm allowed us to go one
bit further than LLL in dimension 40.

5.2 Shared Bits in the Middle

Contrary to the case of shared MSBs, Assumption 1 may fail when we apply our method
with shared bits in the middle (see section 4). When k = 2 the phenomenon of excep-
tional short vectors rarely appeared when t was within the bound of Theorem 3 (less
than 1% of failure and did not depend on the position t1, moreover, we were generally
allowed to go 2 or 3 bits further with 90% of success). When k ≥ 3 it was not still
the case. When Schnorr-Euchner’s algorithm did not return v0, we tried to find it in
a reduced basis computed by LLL. If neither of these algorithms was able to find v0
then our method failed. The table 4 shows the result of our experiments for k = 5 RSA
moduli of size n = 1024 and qi’s of size α ∈ {100,99} (see Remark 3). As one can
see, our method can be successfully applied in this case. During these experiments, the
failure rate of our method was equal to the failure rate of finding v0 in a reduced basis
computed by LLL. More generally, our experiments showed that for the same size of
problems the rate of success is approximately 80% when t was within the bound of
Theorem 3 and allowed us to go one or two bits further with success rate ≈50%.

84 J.-C. Faugère, R. Marinier, and G. Renault

5.3 Efficiency Comparisons

Additionally, we show in table 5 the lowest value of t with 100% success rate and the
running-time of LLL and Schnorr-Euchner’s algorithm for several values of k (k RSA
moduli with pi’s factors sharing t MSBs). For each k, we show the worst running-time
we encountered when running 10 tests on an Intel Xeon E5420 at 2.5Ghz. We see that
all individual tests completed in less than 1 second for 2 ≤ k ≤ 20. We used Schnorr-
Euchner’s algorithm up to k = 60 where it took at most 6200 seconds. LLL completes
under one minute for 20≤ k≤ 40 and in less than 30 minutes for 40≤ k≤ 80.

Table 5. Running time of LLL and Schnorr-Euchner’s algorithm, and bound on t as k grows.
(Shared MSBs with α = 300 and n = 1024)

 300

 350

 400

 450

 500

 550

 600

 650

 0 10 20 30 40 50 60 70 80
100

101

102

103

104

t (
nu

m
be

r
of

 M
SB

s
sh

ar
ed

 a
m

on
g

th
e

p i
’s

)

la
tti

ce
 r

ed
uc

tio
n

tim
e

(i
n

se
co

nd
s)

k (number of RSA moduli)

t

Schnorr-Euchner

LLL

6 Conclusion

In this article we have studied the problem of integers factorization with implicit hints.
We have presented new lattice based methods in order to factorize k ≥ 2 RSA moduli
Ni = piqi with polynomial complexity in log(Ni) when pi’s share unknown MSBs or
contiguous bits in the middle. In the case k = 2 and shared MSBs, our method is the first
one to be completely rigorous. These new results can be seen as an extension of the ones
presented in [9] and [15] where, respectively, May and Ritzenhofen gave same type of
results in the case where the pi’s share LSBs and Sarkar and Maitra presented heuristic
methods based on the Coppersmith’s algorithm for finding small roots of polynomials
for k = 2 moduli with shared MSBs (and/or LSBs) or bits in the middle . Our method
gives comparable theoretical results as the one of May and Ritzenhofen and it is more
efficient than the Sarkar and Maitra’s method.

Implicit Factoring with Shared Most Significant and Middle Bits 85

Whether the method can be applied for k ≥ 3 Ni’s RSA moduli with pi’s sharing
MSBs and LSBs remains an open issue. In this case, the problem has much more vari-
ables and our method can not be directly applied. One possible way to follow for attack-
ing this problem is to use algebraic techniques, in particular elimination theory, jointly
with lattice based methods. This would be an interesting focus for future research.

Acknowledgments

We would like to thank the referees for their valuable comments. We thank Alexander
May and Maike Ritzenhofen for their very helpful comments on a draft version of this
article and, more particularly, for those which initiated the results of section 4.

References

1. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J.
Symbolic Comput. 24(3-4), 235–265 (1997); Computational algebra and number theory,
London (1993)

2. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring with high
bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178–189.
Springer, Heidelberg (1996)

3. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

4. Hanrot, G., Stehlé, D.: Improved analysis of Kannan’s shortest lattice vector algorithm. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 170–186. Springer, Heidelberg
(2007)

5. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials with new
applications in attacking rsa variants. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

6. Kannan, R.: Improved algorithms for integer programming and related lattice problems. In:
STOC, pp. 193–206. ACM, New York (1983)

7. Lehmer, D.H., Powers, R.E.: On factoring large numbers. Bulletin of the AMS 37, 770–776
(1931)

8. Lenstra, A.K., Lenstra Jr., H.W.: The development of the number field sieve. Lecture Notes
in Mathematics, vol. 1554. Springer, Berlin (1993)

9. May, A., Ritzenhofen, M.: Implicit factoring: On polynomial time factoring given only an im-
plicit hint. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 1–14. Springer,
Heidelberg (2009)

10. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic perspec-
tive. The Kluwer International Series in Engineering and Computer Science, vol. 671.
Kluwer Academic Publishers, Boston (2002)

11. Morrison, M.A., Brillhart, J.: A method of factoring and the factorization of F7. Mathematics
of Computation 29(129), 183–205 (1975)

12. Nguyen, P.Q., Stehlé, D.: Floating-point lll revisited. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)

13. Pujol, X., Stehlé, D.: Rigorous and efficient short lattice vectors enumeration. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 390–405. Springer, Heidelberg (2008)

14. Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In: Pichler, F. (ed.)
EUROCRYPT 1985. LNCS, vol. 219, pp. 31–34. Springer, Heidelberg (1986)

86 J.-C. Faugère, R. Marinier, and G. Renault

15. Sarkar, S., Maitra, S.: Further Results on Implicit Factoring in Polynomial Time. Advances
in Mathematics of Communications 3(2), 205–217 (2009)

16. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In:
FOCS, pp. 124–134. IEEE, Los Alamitos (1994)

17. Vanstone, S.A., Zuccherato, R.J.: Short rsa keys and their generation. J. Cryptology 8(2),
101–114 (1995)

A Common Results on Lattice

An integer lattice L is an additive subgroup of Zn. Equivalently, it can be defined as
the set of all integer linear combinations of d independent vectors b1, . . . ,bd of Zn. The
integer d is called the dimension of L, and B = (b1, . . . ,bd) is one of its bases. All the
bases of L are related by a unimodular transformation. The volume (or determinant) of
L is the d-dimensional volume of the parallelepiped spanned by the vectors of a basis
of L and is equal to the square root of the determinant of the Gramian matrix of B. It
does not depend upon the choice of B. We denote it by Vol(L).

We state (without proofs) common results on lattices that will be used throughout
this paper. Readers interested in getting more details and proofs can refer to [10].

Definition 1. For 1 ≤ r ≤ d, let λr(L) be the least real number such that there exist at
least r linearly independent vectors of L of euclidean norm smaller than or equal to
λr(L). We call λ1(L), . . . ,λd(L) the d minima of L, and we call g(L) = λ2(L)

λ1(L) ≥ 1 the gap
of L.

Lemma 4 (Hadamard). Let B = (b1, . . . ,bd) be a basis of a d-dimensional integer
lattice of Zn. Then the inequality ∏d

i=1 ‖bi‖ ≥ Vol(L) holds.

Theorem 4 (Minkowski). Let L be a d-dimensional lattice of Zn. Then there exists a

non zero vector v in L which verifies ‖v‖ ≤
√

d Vol(L)
1
d . An immediate consequence is

that λ1(L) ≤
√

d Vol(L)
1
d

Theorem 5 (Lagrange reduction). Let L be a 2-dimensional lattice of Zn, given by a
basis B = (b1,b2). Then one can compute a Lagrange-reduced basis B′ = (v1,v2) of L
in time O(n log2(max(‖b1‖,‖b2‖))). Besides, it verifies ‖v1‖ = λ1(L) and ‖v2‖ =
λ2(L). More information about the running time of the Lagrange reduction may be
found in [10].

Theorem 6 (Kannan’s algorithm, see [6,13,4]). Let L be a d-dimensional lattice of
Zn given by a basis (b1, . . . ,bd). One can compute a shortest vector of L (with norm

equal to λ1(L)) in time O(P(logB,n)d
d
2e +o(d)) where P is a polynomial and B =

maxi(‖bi‖). This is done by computing a HKZ-reduced basis of L.

Theorem 7 (LLL). Let L be a d-dimensional lattice of Zn given by a basis (b1, . . . ,bd).
Then LLL algorithm computes a reduced basis (v1, . . . ,vd) that approximates a shortest

vector of L within an exponential factor ‖v1‖ ≤ 2
d−1

4 Vol(L)
1
d . The running time of

Nguyen and Stehlé’s version is O(d5(d + logB) logB) where B = maxi(‖bi‖), see [12].

Implicit Factoring with Shared Most Significant and Middle Bits 87

In practice, LLL algorithm is known to perform much better than expected. It has been

experimentally established in [3] that we can expect the bound ‖v1‖ ≤ 1.0219d Vol(L)
1
d

on ‖v1‖ on random lattices and that finding a shortest vector of a lattice with gap greater
than 1.0219d should be easy using LLL.

B Exact Computation of the Volume of Lattice L of Section 3

In this section, we compute exactly the volume of the lattice L defined at the beginning
of section 3. As a visual example of the construction of this lattice, the reader may take
a look at the matrix defined in equation (9) in the case of k = 4. We use the notations of
section 3.

Lemma 5. Let L be the lattice whose construction is described at the beginning of

section 3. Then its volume is equal to Vol(L) = K
(
K2 + ∑k

i=1 N2
i

) k−1
2 .

Proof. Let G be the Gramian matrix (of size k×k) of L. Its diagonal terms are 〈vi,vi〉=
K2 + ∑k

u=1
u �=i

N2
u and its other terms are: 〈vi,vj〉= −NiNj. Observe that we can rewrite G

as follows G =
(
K2 + ∑k

i=1 N2
i

)
Ik×k + J where Ik×k is the identity matrix of size k and J

is the k× k matrix with terms −NiNj. If we let χJ be the characteristic polynomial of J
and λ0 = K2 + ∑k

i=1 N2
i , we observe that det(G) = χJ(−λ0).

All the columns of J are multiples of (N1,N2, . . . ,Nk)t . The rank of J is thus 1.
The matrix J has therefore the eigenvalue 0 with multiplicity k− 1. The last eigen-
value is computed using its trace: Tr(J) = −∑k

i=1 N2
i . Therefore, up to a sign χJ(X) =

Xk−1
(
X + ∑k

i=1 N2
i

)
. We conclude that det(G) = χJ

(
−K2−∑k

i=1 N2
i

)
, hence det(G) =

K2
(
K2 + ∑k

i=1 N2
i

)k−1
and Vol(L) =

√
det(G) = K

(
K2 + ∑k

i=1 N2
i

) k−1
2 ��

On the Feasibility of Consistent Computations

Sven Laur1 and Helger Lipmaa2,3

1 University of Tartu, Estonia
2 Cybernetica AS, Estonia

3 Tallinn University, Estonia

Abstract. In many practical settings, participants are willing to de-
viate from the protocol only if they remain undetected. Aumann and
Lindell introduced a concept of covert adversaries to formalize this type
of corruption. In the current paper, we refine their model to get stronger
security guarantees. Namely, we show how to construct protocols, where
malicious participants cannot learn anything beyond their intended out-
puts and honest participants can detect malicious behavior that alters
their outputs. As this construction does not protect honest parties from
selective protocol failures, a valid corruption complaint can leak a single
bit of information about the inputs of honest parties. Importantly, it is
often up to the honest party to decide whether to complain or not. This
potential leakage is often compensated by gains in efficiency—many stan-
dard zero-knowledge proof steps can be omitted. As a concrete practical
contribution, we show how to implement consistent versions of several
important cryptographic protocols such as oblivious transfer, conditional
disclosure of secrets and private inference control.

Keywords: Consistency, equivocal and extractable commitment,
oblivious transfer, private inference control.

1 Introduction

Although classical results assure the existence of secure two- and multi-party
protocols for any functionality in the presence of malicious adversaries, the com-
putational overhead is often prohibitively large in practice. Hence, cryptogra-
phers have sought more restricted models for malicious behavior, which are still
realistic but facilitate more efficient protocol construction. A model of covert
adversaries [2] proposed by Aumann and Lindell considers a setting, where cor-
rupted parties are unwilling to deviate from the protocol unless they remain
uncaught. More precisely, they defined a hierarchy of security models, where
malicious behavior that alters the outputs of honest parties is detectable with
high probability. However, none of these models guarantee input-privacy because
a malicious adversary might potentially issue a detectable attack that completely
reveals inputs of all honest parties. We extend their hierarchy with a new security
model (consistent computing), which guarantees that malicious participants can-
not learn anything beyond their intended outputs and honest participants can

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 88–106, 2010.
c© International Association for Cryptologic Research 2010

On the Feasibility of Consistent Computations 89

Table 1. Comparison of various security objectives in a malicious model

Objective Input-privacy Output-privacy Complaint handling Detectability
Multi-party protocols

Security Yes Yes Secure Optional
Consistency Limited leaks Limited leaks Possible Optional
K-leakage Limited leaks Limited leaks Possible No
Covert Model No No Impossible Partial
Privacy No No Impossible No

Two-party protocols
Security Yes Yes Secure Yes
Consistency Yes Yes Possible Yes
K-leakage Limited leaks Limited leaks Possible No
Covert Model No No Impossible Yes
Privacy No No Impossible No

detect malicious behavior that alters their outputs. As a result, a valid corrup-
tion complaint leaks only a single bit of information about the inputs of honest
parties as opposed to the complete disclosure. Moreover, an honest participant
can often decide whether to complain or not. If a complaint is not filed, then no
information will be leaked at all unless the adversary learns it indirectly.

Our security model also guarantees that no participant can change their in-
put during a multi-round protocol, which consists of many sub-protocols, i.e.,
there exists an input that is consistent with all outputs. Additionally, the client
can prove cheating to third parties without active participation from the server,
since the protocol failure together with a proof that shows correctness of client’s
actions is sufficient. Hence, our security model is sufficient for many client-server
applications, where a server’s long-term reputation is more valuable than infor-
mation revealed by corruption complaints.

Finally, note that the ability to detect cheating from legitimate protocol fail-
ures can be important, as well. A good example is private inference control [31],
where the client makes queries to the server’s database. To protect the server’s
privacy, certain query patterns are known to be forbidden and should be rejected,
though without the server necessarily getting to know which one of the “forbid-
den” query patterns was used. Hence, a client really needs to know whether the
query failed due to insufficient privileges or the server just cheated.

Our Contributions. Our main contribution is the new security model, which
provides more strict security guarantees than the semihonest model, all flavors
of covert models [2], and the k-leakage model [23] as depicted in Table 1.

We also present concrete, efficient protocols for consistent adaptive oblivi-
ous transfer and consistent conditional disclosure of secrets. Notably, all our
constructions are much more efficient than their fully secure counterparts. For
instance, the new consistent oblivious transfer protocol is secure against un-
bounded malicious clients, uses 2 messages per query, and has communication
and computation comparable to that of the underlying private oblivious trans-
fer protocol. As a main technical tool, we use list commitment schemes, which

90 S. Laur and H. Lipmaa

allow to commit to a list of elements so that, given a short certificate, one can
later verify the value of a single element of the committed list. Besides conven-
tional hiding and binding properties, we need equivocality and extractability.
See Sect. 3 for details and constructions.

Notation. Throughout this paper, k denotes the security parameter, {Ak} is
a shorthand for a non-uniform adversary. The shorthand t(k) ∈ poly(k) denotes
that t(k) can be bounded by a polynomial and ε(k) ∈ negl(k) means that ε(k)
decreases asymptotically faster than any reciprocal of a polynomial.

Full Version and History. Full version of this paper can be found at [20]. The
first version of this eprint from the March of 2006 already defines consistency
(although under a different name). The 2-message argument system from [14]
was influenced by the first version of the eprint.

2 Definition of Consistent Computations

Achieving security against malicious behavior usually involves a large computa-
tional overhead, since one must provide a universal fraud detection mechanism
such that honest parties can detect a fraud even if it does not affect their con-
crete private outputs. As a possible trade-off between efficiency and security, we
could protect honest parties only against such actions that alter their outputs.
As a result, malicious adversaries might still cause selective protocol failures,
where honest parties fail if their inputs are in a specific range. In the following,
we use the standard ideal versus real world paradigm to formalize this concept
of consistent computations for various protocols. Note that we use standard se-
curity definitions [8,18] with modified ideal world implementations, which give
additional power to the adversary, see Fig. 1 as an example.

For clarity and brevity, we present the definitions without delving into subtle
technical issues. In particular, we have omitted all low-level details of the ideal
and real world executions, as these are thoroughly discussed in common reference
materials [8,18]. Other more model specific details are separately discussed at
the end of the section.

P1 TTP P2
x1−−−−−−−−−−−−−−−−−→ x2←−−−−−−−−−−−−−−−−−

π(·)←−−−−−−−−−−−−−−−−−
π(x1, x2)

?= 0
y2 or ⊥−−−−−−−−−−−−−−−−−→

y1←−−−−−−−−−−−−−−−−− Abort or Proceed←−−−−−−−−−−−−−−−−−

Fig. 1. Ideal world model for consistent two-party computations. A corrupted partic-
ipant P2 can cause selective halting by specifying a predicate π(·). In the standard
model, the dominant party P2 can cause only a premature abortion.

On the Feasibility of Consistent Computations 91

Idealized Implementations. In an idealized two-party protocol corresponding
to consistent computing, both parties send their inputs x1, x2 to the trusted
third party TTP, which computes the corresponding outputs y1, y2. Next, a
corrupted participant sends the description of a randomized halting predicate
π(·) to TTP, who internally computes π(x1, x2). If π(x1, x2) = 1, then TTP halts
the computations and sends ⊥ to the honest participant. If π(x1, x2) = 0, then
TTP sends back the outputs yi exactly the same way as in the standard ideal
model. In particular, the corrupted party can still cause a premature abortion
and thus still learn its output.

Generalization to the multi-party setting is straightforward. However, there
are two subtle issues connected with fairness and detectability. A protocol guar-
antees fair selective abortion if an adversary can specify only a single predicate
π(·) such that TTP halts the computations and sends ⊥ to all participants iff
π(x1, . . . , xn) = 1. Alternatively, corrupted participants can separately specify
different halting predicates πi(·) for each party Pi and thus some parties might
get their outputs while others do not. Also, note that the identity of the mali-
cious coalition might remain hidden for multi-party protocols, whereas this can-
not happen in a two-party protocol. A consistent protocol provides detectability
if TTP sends ⊥ to Pi together with the identity of a corrupted participant who
specified the halting predicate whenever πi(x1, . . . , xn) = 1.

Consistency can also be formalized for adaptive computations, where the out-
puts of each round can depend on the inputs submitted in previous rounds.
For the sake of brevity, we define consistency only for client-server protocols,
where the server initially commits to his or her input, and after that the client
can issue various oblivious queries. This model covers many practical settings
such as selling digital goods and private inference control [1,31]. To start such
a protocol, a server sends his or her input x to TTP. After that the client(s)
can adaptively issue various queries qi to TTP. When a query qi arrives, TTP
sends a notification message to the server who can then specify a description of
a halting predicate πi(x1, . . . , xi). Next, TTP evaluates the predicate and sends
f(qi, x) back to the client if πi(q1, . . . , qi) = 0, otherwise the client receives ⊥.
As a small subtlety, note that the ability to issue halting predicates one-by-one
is needed only in the adaptive corruption model, where there are many clients
and the server might become corrupted in the middle of computations.

Formal Security Definitin. As usual, we define security of a protocol by com-
paring its output distribution in the standalone setting with the corresponding
output distribution in the ideal world. More formally, fix a security parameter k
and let Dk denote the input distribution of all parties including the adversaryAk.
W.l.o.g. we assume that each input is a pair (φi, xi), where the auxiliary input
φi models the internal state of the participant before the protocol and xi is the
actual protocol input. Now, if we fix the exact details how protocols are executed
and what the plausible attacks are, then a protocol instance Πk and an adversary
Ak together determine uniquely a joint output distribution RealDk

(Ak,Πk) of
all parties including Ak. Let IdealDk

(A◦
k,Π

◦
k) denote the joint output distribu-

tion determined by the ideal world adversary and the corresponding ideal world

92 S. Laur and H. Lipmaa

implementation Π◦
k. We say that the protocol family {Πk} securely implements

{Π◦
k} if for any non-uniform polynomial-time adversary {Ak} there exists a non-

uniform polynomial-time adversary {A◦
k} such that for any input distribution

family {Dk}, the output distributions RealDk
(Ak,Πk) and IdealDk

(A◦
k,Π

◦
k)

are computationally indistinguishable. If the output distributions are statisti-
cally indistinguishable or coincide, then we can talk about statistical and perfect
security. Finally, a protocol family {Πk} correctly implements {Π◦

k} if for any
input distribution family {Dk} the output distributions coincide provided that
the adversaries remain inactive (corrupt nobody) in both worlds.

Basic Properties. Note that the only difference between the formal defini-
tions of consistency and security in the malicious model is in the description of
the ideal world execution. Hence, we can treat a consistent protocol as a secure
implementation of a modified functionality that allows explicit specification of
halting predicates. As a result, standard composability results carry over and
each consistent protocol in a sequential composition can be replaced with the
ideal implementation. However, the resulting hybrid protocol does not necessar-
ily correspond to a consistent ideal world execution. For instance, if we execute
two client-server protocols in a row, then the server’s input is not guaranteed to
be the same for both ideal implementations. Also, a malicious server can specify
two halting predicates instead of a single one.

The main advantage of consistent computations over other weakened security
models is an explicit correctness guarantee. By the construction of the idealized
model of consistent computations, an honest participant reaches the accepting
state iff his or her output is consistent with the inputs submitted in the beginning
of the protocol. Hence, a successful protocol run provides consistency guarantees
in the real world, as well. Consequently, a non-accepting honest participant can
prove without the help of other participants that a malicious attack was car-
ried out. Moreover, any consistent protocol can be augmented with a complaint
handling mechanism that reveals nothing beyond the validity of the complaint.

Theorem 1. Let a protocol family {Πk} be a correct and consistent implemen-
tation of a functionality {Π◦

k} such that all messages are signed by their creators.
Then an honest participant can prove the existence of a malicious attack that al-
ters his or her output without help from others provided that the signature scheme
is secure. This proof can be converted to a zero-knowledge proof if the messages
received by the honest participant reveal nothing about his or her input.

Proof (Sketch). For the proof, note that by our security assumptions no partic-
ipant can forge messages sent by others. Hence, if an honest party reveals his or
her input and randomness together with all received messages, then anybody can
verify correctness of her computations. Since the protocol implements correctly
{Π◦

k}, semi-honestly behaving participants cannot cause a non-accepting output.
This proof can be converted to a zero-knowledge proof, since it is sufficient to
present all received messages and then prove that there exists a valid input and
randomness that leads to the non-accepting state. The corresponding statement

On the Feasibility of Consistent Computations 93

belongs to an NP-language and thus has an efficient zero-knowledge proof. The
claim follows as messages in the proof reveal nothing about his or her input. ��
Note that the last assumption in Theorem 1 is not a real restriction and can be
easily met by using a secure public key cryptosystem. Namely, if all messages
are encrypted with public keys of corresponding recipients, then messages leak
no information to outside observers but the protocol remains consistent.

However, differently from secure computations, a valid complaint reveals addi-
tional information, namely, the adversary learns that the corresponding halting
predicate πi(x1, . . . , xn) holds. On the other hand, a honest party does not have
to issue a complaint and thus the adversary is not guaranteed to learn halt-
ing predicates—in some applications, the honest parties can untraceably recover
from protocol failures. For all consistent and detectable protocols, such a com-
plaint also reveals the identity of the maliciously behaving participant. Hence,
there is a trade-off between the utility of a single bit πi(x1, . . . , xn) and a long-
term reputation of a participant. As a result, consistency of computations is
an adequate protection mechanism for all settings, where participants are un-
willing to cheat if they are caught with high probability or a single bit leakage
is much smaller compared to the amount of information revealed by legitimate
protocol outputs. For instance, the intended output of privacy-preserving data-
aggregation is usually several kilobytes (if not megabytes) long, and therefore
the effect of a single bit leakage is likely to be irrelevant.

The same argumentation holds also for consistent protocols without account-
ability. However, finding the identity of the culprit is difficult in such settings,
because everybody must prove the correctness of their actions and the corre-
sponding zero-knowledge proofs can be intractable in practice. Finally, note that
the potential damage of a valid complaint depends on the set of possible halting
predicates πi. In Section 6, we study this question explicitly and show how to
restrict the class of enforceable predicates.

Relation to Other Security Definitions. The concept of covert corruption is
rather old and has been discussed in many contexts. The earliest definitions were
given for the multi-party setting [15,9] and only recently modified to work in two-
party settings by Aumann and Lindell [2]. In particular, note that the definition
of t-detectability given in [15] and various definitions of ε-detectability given
in [2] guarantee only that malicious behavior, which alters the outputs of honest
parties, is detected with notable probability. However, none of the definitions
limit the amount of information acquired during a successful fraud attempt.
Thus, our definition of consistent computations is a natural strengthening of
these definitions, which also guarantees the privacy of inputs. Another related
security notion is the k-leakage model [23], where the adversary can learn up
to k bits of auxiliary information about the inputs of honest parties. Similarly
to consistent computations, the adversary cannot alter outputs without being
detected. However, differently from consistent computations, the information
is guaranteed to reach adversary and such an attack is undetectable. Hence,
the k-leakage model provides less strict security guarantees. See Table 1 for a
comprehensive summary.

94 S. Laur and H. Lipmaa

Subtle Details. Note that halting predicates must be efficiently computable.
Otherwise, participation in an idealized computation can provide significant
gains to the adversary. Hence, we require that for any adversary {Ak}, the
time needed to evaluate halting predicates is polynomial in the running-time
of {Ak}.

Also, observe that many important cryptographic protocols are not secure
in the strict sense. The problem starts with classical zero-knowledge proofs, for
which, we know only how to construct simulators A◦ that work in expected poly-
nomial time. However, a model where ideal world adversaries have expected poly-
nomial running time causes many technical and philosophical drawbacks [19].
For instance, we loose sequential composability guarantees. Hence, we use an
alternative formalization. A protocol {Πk} is secure in a weak polynomial se-
curity model, if for any time bound t(k) ∈ poly(k), for any notable difference
ε(k) ∈ Ω(k−c), and for any polynomial-time real world adversary {Ak}, there
exists an polynomial-time ideal world adversary {A◦

k} such that no non-uniform
distinguisher {Bk} with running-time t(k) that can distinguish RealDk

(Ak,Πk)
and IdealDk

(A◦
k,Π

◦
k) with advantage more than ε(k). This definition has the

virtue of being formalized with strict time bounds and thus free of technical
issues. In particular, it is sequentially composable and formalizes our knowledge
about the reductions as precisely as possible.

3 List Commitment Schemes

To achieve consistency, a corrupted participant must be unable to change his or
her input during the protocol without being caught. The latter can be achieved
by forcing participants to commit to their inputs. More precisely, we need com-
mitment schemes for lists of elements, such that individual elements can later
be decommitted by presenting short certificates. A list commitment scheme is a
quadruple of probabilistic polynomial-time algorithms (gen, com, cert, open) with
the following semantics. The key-generator algorithm gen(1k) is used to generate
public parameters ck that fix the message space Mk and the maximal number
of list elements Nk ∈ poly(k). Given a list x = (x1, . . . , xn) ∈Mn with n ≤ Nk,
the commitment algorithm comck(x) outputs a pair (c, d) of commitment and
decommitment values. The certificate generation algorithm certck(d, i) returns
a partial decommitment value (certificate) si for the ith element. The verifi-
cation algorithm openck(c, s) returns either a pair (i, xi) or ⊥. It is required
that openck(c, certck(d, i)) = (i, xi) for all possible values of ck ← gen(1k) and
(c, d) ← comck(x). We now define various (optional) security properties through
games that are played between a challenger and a nonuniform adversary.

Binding and Hiding. A list commitment scheme is computationally binding if
every polynomial-time adversary {Ak} wins the following game with negligible
probability:

On the Feasibility of Consistent Computations 95

1. Challenger generates ck ← gen(1k) and sends ck to Ak.
2. Ak generates a commitment ĉ and two certificates ŝ0 and ŝ1.
3. Ak wins if the commitment can be opened to different values of xi.

That is, locations coincide i0 = i1 but ⊥ �= x0 �= x1 �= ⊥ for the
openings (i0, x0)← openck(ĉ, ŝ0) and (i1, x1)← openck(ĉ, ŝ1).

A list commitment scheme is statistically hiding if for any non-uniform adversary
A the probability that Ak wins the following game is negligibly close to one half:

1. Challenger generates ck ← gen(1k) and sends ck to Ak.
2. Ak sends two lists x(0),x(1) ∈ Mn with n ≤ Nk to the challenger.
3. Challenger generates a random bit b← {0, 1}, computes

(c, d) ← comck(x(b)) and sends the commitment value c to Ak.
4. In the next phase, Ak can make a number of oracle queries to certck(d, ·)

provided that x(0)
i = x

(1)
i for any queried index i.

5. Ak wins the game if he or she correctly guesses the bit b.

Equivocality. In several proofs, we use simulators that send a fake commit-
ment value ĉ to the adversary and then gradually open parts of it according to
the instructions sent by TTP. To preserve the closeness of real and simulated
executions in such a setting, the commitment scheme must be equivocal. A list
commitment scheme lc is perfectly equivocal if there exist three additional al-
gorithms gen◦, com◦ and equiv, such that no unbounded adversary {Ak} can
distinguish between the following two experiments:

Normal Execution:

1. Challenger generates ck ← gen(1k) and sends ck to Ak.
2. Ak sends x = (x1, . . . , xn) to the oracle O who computes

(c, d) ← comck(x), si ← certck(d, i) and replies with (c, s1, . . . , sn).

Simulated Execution:

1. Challenger generates (ek, ck)← gen◦(1k) and sends ck to Ak.
2. The oracle Ô computes (ĉ, η) ← com◦

ek(n) and, given x = (x1, . . . , xn)
from Ak, computes ŝi ← equivek(ĉ, η, i, xi) and replies with (ĉ, ŝ1, . . . , ŝn).

One can build non-interactive equivocal commitment schemes based on any
one-way functions in the common reference string (CRS) model [12]. In the
standard model, 3 messages are needed to implement an equivocal commitment
scheme. Thus, all subsequent results that use equivocal commitment schemes
require at least 3 messages. However, as the initialization phase can be shared
between different runs, the round complexity is not a problem in practice.

Extractability. Many commitment schemes have an explicit extraction mech-
anism such that a person who possesses some extra information sk can open
commitments without decommitment value, see for instance [29,13]. These com-
mitments are often used in simulator constructions, where one has to extract

96 S. Laur and H. Lipmaa

inputs for committed values. For obvious reasons, such trapdoors do not exist
when the final commitment value is shorter than the length of a committed
string.

Buldas and Laur showed that if the creator of a commitment gets no addi-
tional information besides the commitment parameters ck, then all committed
elements are efficiently extractable given white-box access to the committing
algorithm and to the randomness used by it. See the definition of knowledge-
binding and corresponding proofs in [5]. However, in the context of two- and
multi-party computations, an adversary always gets additional inputs and thus
we must amend the definition. A list commitment scheme is white-box extractable
if for any polynomial-time adversary {Ak} there exists a polynomial-time extrac-
tor machine {KAk

} such that for any input distribution Dk and for any family
of advice strings {ak} the adversary Ak can win the following game with negligi-
ble probability. The family of advice strings {ak} in the game models unknown
future events, which might help the adversary to open the commitments.

1. Challenger generates ck ← gen(1k), φ← Dk and a new random tape ω.
2. Ak gets φ and ck as inputs and ω as the random tape and outputs

a list commitment c together with size n, (c, n) ← Ak(φ, ck;ω).
3. KAk

gets φ, ck and ω as inputs and outputs (x̂1, . . . , x̂n) ← KAk
(φ, ck;ω).

4. Given advice ak, Ak outputs certificates (s1, . . . , sm) ← Ak(ak).
5. The adversary wins if Ak outputs at least one certificate that is consistent

with the commitment and that corresponds to a list element, not correctly
guessed by the extractor, i.e., if ∃j : ⊥ �= (i, x∗) = openck(c, sj) ∧ x∗ �= x̂i.

Currently it is not know how to construct a non-interactive compressing com-
mitment scheme that is provably white-box extractable.1 However, if we consider
interactive commitment schemes, where a sender executes a zero-knowledge proof
of knowledge that he or she knows how to open all elements under the list com-
mitment, we can construct such a knowledge extractor by definition. By using
suitable zero-knowledge techniques as detailed in [24], the total communication
between the receiver and the sender can be made sublinear, although the com-
putational overhead might be too large for practical applications.

As the security of proofs of knowledge is often defined in a weaker model [3],
we also relax other definitions to be compatible. A list commitment scheme is
weakly white-box extractable if for any polynomial-time adversary {Ak} and an
error bound ε(k), there exists a extractor machine {KAk

} such that, for any input
distribution Dk and for any family of advice strings {ak}, the adversary Ak wins
the extractability game with a probability at most ε(k) and the running-time of
KAk

is at most O(poly(k)/ε(k)) times slower than Ak.

Double-Layered Commitments. There are two principally different ways
how to construct a list commitment scheme with extractability and equivo-
cality properties. First, one can commit elements individually using ordinary
1 The results of [5] assure existence of extractors KAK ,Dk

that depend on Dk.

On the Feasibility of Consistent Computations 97

commitment scheme with these properties, such as [13]. As a result, we get
strong extractability guarantees but cannot get beyond linear communication
complexity. Alternatively, we can first build a double-layered equivocal commit-
ment scheme, and then add extractability by an interactive proof of knowledge.
A double-layered commitment scheme dlc is specified by a conventional commit-
ment scheme cs and a list commitment scheme lc. The key-generator procedure
dlc.gen runs both key generation procedures and outputs a pair of resulting pub-
lic parameters (ck1, ck2). To commit to x = (x1, . . . , xn), one first computes
conventional commitments (ci, di) ← cs.comck1(xi) for i ∈ {1, . . . , n} and then
outputs (c∗, d∗)← lc.comck2(c1, . . . , cn). To decommit xi one has to first decom-
mit ci by giving lc.certck2(d∗, i) and then also reveal di so that the receiver could
compute cs.openck1

(ci, di). Other operations are defined analogously.

Theorem 2. Let lc be a binding commitment scheme and cs be a conventional
commitment scheme. Then dlc inherits statistical hiding, perfect hiding; compu-
tational binding; statistical equivocality and perfect equivocality from cs.

Proof. Hiding and binding are evident. For the equivocality, note that given the
equivocation key ek for cs, it is possible to use cs.com◦ to generate a list ĉ1, . . . , ĉn
of fake commitments for lower level that can be later opened to any values using
the function cs.equivek and the claim follows. ��

The list commitment scheme does not have to be hiding. Hence, we can use
hash trees to compress large lists into succinct digests. The corresponding con-
struction is based on a collision-resistant hash function family {Hk} and the
length of certificates is known to be of size O(k logn). The Pedersen commit-
ment scheme [27] is a good candidate of the conventional commitment scheme,
as it is perfectly equivocal in the CRS model and can be easily set up in the stan-
dard model. More precisely, the public parameter is a uniformly chosen group
element y ∈ 〈g〉 and the corresponding equivocality trapdoor is the discrete log
of y. As the first option, parameters can be generated jointly by the sender and
the receiver by using a secure three-message multiplication protocol to multi-
ply two random group elements. Alternatively, the client may specify y since
the Pedersen commitment scheme is perfectly hiding. Then, we lose equivocality
unless we are willing to find the discrete logarithm of y in exponential time.

4 Consistent Adaptive Oblivious Transfer

Oblivious transfer protocols are often used as building blocks for complex pro-
tocols. In an adaptive oblivious transfer protocol, a server has an input database
x = (x1, . . . , xn) of �-bit strings and a client can adaptively query up to m ele-
ments from this database. The client should learn nothing beyond xq1 , . . . , xqm

and the the server should learn nothing. In particular, the client should learn
⊥ if its query is not in the range {1, . . . , n}. In the asymptotic setting, all pa-
rameters m, n, � must be polynomial in the security parameter k. Two standard
security notions for the oblivious transfer protocol in the malicious model are

98 S. Laur and H. Lipmaa

Client’s inputs: adaptively chosen indexes q1, . . . , qm.
Server’s inputs: a database x = (x1, . . . , xn).
Common inputs: a description of lc and ot.

Trusted setup

If needed, the trusted dealer executes the shared setup phase for ot.
The trusted dealer broadcasts public parameters ck ← lc.gen(1k) to everybody.

Commitment phase

The server computes (c, d) ← lc.comck(x) and sends the commitment (c, n) to
the client. Then the server computes si ← lc.certck(d, i) for each i ∈ {1, . . . , n},
and stores the database of partial decommitment values s ← (s1, . . . , sn).

Query phase. To fetch the qith element form the database:
1. The client sends Qi ← ot.query(qi) to the server.
2. The server returns Ri ← ot.reply(s, Qi).
3. The client computes Ai ← ot.decode(qi, Ri) and (j, x∗) ← lc.openck(c, Ai).

If j = qi then the client outputs x∗, otherwise the client outputs ⊥.

Protocol 1. The new consistent adaptive oblivious transfer protocol

security and privacy. In brief, private protocols guarantee only that a malicious
client cannot learn anything beyond xq1 , . . . , xqm but do not assure that an hon-
est client indeed learns xq1 , . . . , xqm if the server is malicious. As such they are
inapplicable for many practical applications.

In most adaptive oblivious transfer protocols that are secure in the malicious
model, the server first commits to his or her individual database elements, and
then at every query helps the client to “decrypt” a single database element, see
for example [7,28]. A natural alternative is to use a sublinear-length commitment
scheme together with suitable zero-knowledge techniques as detailed in [24].
However, the resulting low-communication protocol is only a theoretical solution
with computational overhead that is too large for practical applications.

As a practical solution, we show how to convert any private oblivious transfer
protocol into a consistent protocol with low computational and communicational
overhead, see Prot. 4. By using protocols [17,22] for oblivious transfer, we get an
efficient protocol with almost optimal communication. For the sake of simplicity,
we assume that the underlying private 1-out-of-n oblivious transfer protocol ot has
2 moves and is determined by a triple of algorithms (query, reply, decode) such that
for any qi ∈ {1, . . . , n} and x ∈ {0, 1}�×n, we have decode(qi, reply(x, query(qi))) =
xqi . This assumption is not a big restriction, since most practical oblivious transfer
protocols are in this form, and generalization to multi-round protocols is obvious.
As a second simplification, we use a trusted setup phase for generating the public
parameters. One can eliminate the need for a trusted dealer by running a secure
multiparty protocol, but the explicit use of the trusted setup makes security proofs
more modular.

The underlying idea behind the protocol is rather simple. First, the server uses
a list commitment scheme lc to commit all inputs x. Then the server computes
an intermediate database s = (s1, . . . , sn) of certificates corresponding to every
xj . In an query phase, the client and the server execute the oblivious transfer

On the Feasibility of Consistent Computations 99

protocol ot with the server’s input s to fetch the qjth certificate sqj . If this value
opens a database element x∗ that is consistent with the commitment of x and
the query qj , then we output x∗, otherwise we return ⊥.

Theorem 3. If the oblivious transfer protocol ot is computationally private in
the shared setup model and the list commitment scheme lc is binding and equiv-
ocal, then Prot. 4 is a consistent adaptive m-out-of-n oblivious transfer protocol
in the polynomial security model provided that nm ∈ poly(k).

Proof. For the proof, we fix a security parameter k, consider an adversary Ak

and show how to convert it into an ideal world adversaryA◦
k such that the output

distributions are close enough for any input pair (φc, φs).
Security of honest client. Let Ak be a corrupted server and Ck an hon-
est client. As the number of potential queries is polynomial, we can construct a
black-box extractor KAk,C that fixes random coins of the client and the malicious
server, and makes all nm queries in order to recover all valid openings (j, x̂j).
As the slowdown is polynomial and the commitment scheme is binding, double
openings x̂j �= x̂′j are revealed with negligible probability. Hence, we can use
KAk,C in the construction of ideal world server. By the definition, the oblivious
transfer protocol ot is private in the shared setup model if for any adaptively
chosen inputs vectors q = (q1, . . . , qm) and q = (q1, . . . , qm) the output distri-
bution of Ak is computationally indistinguishable. Hence, we can replace the
missing messages in the ideal world by simulating the honest receiver with input
q = (1, . . . , 1). We can combine these results and consider the following ideal
world adversary A◦

k:

1. Run the setup phase to obtain public parameters for lc and ot.
2. Choose randomness ω and store (x̂1, . . . , x̂n) ← KAk,Ck(φs, ck;ω).
3. Send (x̂1, . . . , x̂n) to TTP and specify halting predicates π1, . . . , πm through

the interaction between the client Ck(q) and the adversaryAk(φs, ck;ω), that
is, πi(q1, . . . , qi) = 1 iff Ck with input q1, . . . , qi obtains xqi �= ⊥.

4. Output whatever Ak(φs, ck;ω) outputs in interaction with Ck(q).

Let (ψc, ψs) denote the outputs of the real execution and (ψ◦
c , ψ

◦
s) the outputs

of the ideal execution. W.l.o.g. we can assume that the output of Ak contains
φs, ck, ω and thus given the advice φc we can efficiently compute ψc form ψs

or ψ◦
s . Hence, the distributions (ψc, ψs) and (ψc, ψ

◦
s) must be computationally

indistinguishable, or otherwise we can distinguish ψs form ψ◦
s , which violates

the privacy of ot. Now, note that for fixed (φs, ck, ω) the corresponding outputs
ψc and ψ◦

c can differ only if the client recovers xqj �= x̂qj . As this can hap-
pen with negligible probability, the distributions (ψc, ψ

◦
s) and (ψ◦

c , ψ
◦
s) must be

computationally indistinguishable and thus also (ψc, ψs) and (ψ◦
c , ψ

◦
s).

Security of honest server. Since the output of the server in the ideal and
real model is empty, only the output of a malicious client Ak must be analyzed.
Consider a hybrid implementation of the protocol, where all instances of ot
are replaced with ideal implementations of oblivious transfer protocol with the
database s. Then as the ot protocol is private in the shared setup model, there

100 S. Laur and H. Lipmaa

exists an adversary A∗
k such that the output distributions of Ak and A∗

k are
computationally indistinguishable.

To complete the proof, we construct a true ideal world adversaryA◦
k and show

that the outputs of A◦
k and A∗

k are computationally indistinguishable. Indeed,
let the ideal world adversary A◦

k proceed as follows:

1. Generate the equivocality key (ek, ck) ← lc.gen◦(1k) and broadcast ck.
2. Compute (ĉ, η)← lc.com◦

ck,ek(n) and send ĉ to the adversary A∗
k.

3. If A∗
k queries qj , obtain xqj from TTP and reply ŝj ← lc.equivek(ĉ, η, qj , xqj).

4. Return whatever the adversary A∗
k finally outputs.

Then it is easy to see that in the hybrid world A∗
k plays the first equivocality

game with the honest server and in the ideal world A∗
k plays the second equivo-

cality game with a challenger consisting of the simulatorA◦
k, TTP and the honest

server. To nitpick, A∗
k does not query all faked decommitment values at once,

but clearly we can write a wrapper that queries all decommitments and then
gradually releases them to A∗

k. Thus, the outputs of A∗
k and A◦

k must be com-
putationally indistinguishable or otherwise A∗

k together with the distinguisher
would break the equivocality property. ��

Corollary 1. If ot is (weakly) statistically server-private and lc is statistically
equivocal, then Prot. 4 is (weakly) statistically server-private.

Proof. If ot is statistically private, then for each Ak there exists poly(k) times
slower A∗

k such that the output distributions are statistically close. Weak statis-
tical privacy guarantees only the existence of A∗

k without bounds on the running
time. Both claims follow as A◦

k is only poly(k) times slower than A∗
k. ��

The limitation that the number of potential queries must be polynomial in k
seems to be essential for getting a low-communication solution with a small
computational overhead. To bypass this restriction, we can either use list com-
mitment schemes that are both extractable and equivocal.

Corollary 2. If the oblivious transfer protocol ot is computationally private in
the shared setup model and the list commitment scheme lc is (weakly) white-
box extractable and equivocal, then Prot. 4 is a consistent adaptive m-out-of-n
oblivious transfer protocol in the (weak) polynomial security model.

Proof. Note that the algorithm pair (Ak, Ck) can be treated as a compound
adversary, which generates a list commitment (c, n) and then later opens m
elements according to the advice a = (q1, . . . , qm). As the commitment scheme
is white-box extractable, there exists an extractor machine KAk,Ck

that, given
the parameters ck, the server’s input φs and the random tape ω, outputs a list
of candidate elements x̂ = (x̂1, . . . , x̂n) such that at the end of the execution Ck

accepts xqj �= x̂qj with negligible probability. This extractor can be used in the
simulator construction of Thm. 3 instead of KAk,Ck .
Weak extractability. The same construction is valid for a weakly extractable
commitment scheme. However, in this case for any notable error bound ε(k), we

On the Feasibility of Consistent Computations 101

can choose KAk,Ck
such that (ψc, ψ

◦
s) and (ψ◦

c , ψ
◦
s) are ε(k)-close. As (ψc, ψs) and

(ψc, ψ
◦
s) are computationally indistinguishable, we can guarantee that, for a large

enough k, distributions (ψc, ψs) and (ψ◦
c , ψ

◦
s) are computationally 2ε(k)-close. As

the slowdown is O(poly(k)/ε(k)), we have established that for any notable error
bound ε(k), we can construct a polynomial-time ideal world adversary, i.e., the
correspondence {Ak}
→ {A◦

k} is valid in the weak polynomial model. ��

Comparison with Other Protocols. If nm is polynomial in k, then we can use
very communication efficient list commitments that stretch the input O(k logn).
By combining it with the most efficient private oblivious transfer protocol [17]
we get a protocol with a communication complexity O(k ·m log2 n). Moreover, if
we neglect the setup, then for the amortized round complexity is two messages
per query. The latter is significantly better than the communication complexity
Ω(mn) of the secure adaptive oblivious transfer protocols [11,10,6,25] relying
on zero-knowledge proofs. With an explicit use of the PCP theorem one can
achieve polylogarithmic communication [24] but this approach is only optimal
in the asymptotic sense.

As for the computational complexity, note that additional computational over-
head (compared to private protocols) comes from the commitment phase. For a
hash tree based list commitment scheme, this computational overhead is O(n)
hashing and commitment operations. If the number of queries is bounded or
nm ∈ poly(k), then there are no additional costs besides computing the commit-
ment. If the server must handle an unbounded number of queries, the server has
to prove that he or she knows how to open the commitment. In a communica-
tion inefficient version proof, the server sends all lower level commitment values
c1, . . . , cn to the client and proves knowledge of each decommitment value. The
client first checks that the root of the Merkle tree is correct and then verifies indi-
vidual proofs. Such zero-knowledge proofs are particularly efficient for Petersen
commitments. Again the overhead is O(n) operations. By using suitable conver-
sion methods [24] we can achieve polylogarithmic communication by increasing
the computational overhead by a polynomial factor. Although the construction
still relies on the PCP theorem, the underlying proof is much simpler—the server
does not have to prove correctness in the query phases.

Aumann and Lindell described a 1-out-of-2 oblivious transfer protocol [2],
which is secure in the covert model. Although the resulting security guarantees
are weaker than for the consistent protocol, see Table 1, their protocol still has
7 messages and a much higher communication complexity. To be fair, three of
those messages are used to implement trusted setup for the private oblivious
transfer but there are still 4 messages per query and a malicious sender can
change its input during the protocol.

5 Consistent Conditional Disclosure of Secrets

Let q = (q1, . . . , qn) denote the client’s vector of inputs and let x be a secret pos-
sessed by the server. Then conditional disclosure of secrets (CDS) for a predicate
ρ is a protocol, where the client should learn

102 S. Laur and H. Lipmaa

cdsρ(q, x) =

{
x, if ρ(q) = 1 ,

⊥, otherwise ,

and the server should learn nothing. CDS protocols are often used to convert
client-server protocols secure in a semihonest model to protocols that preserve
the privacy of inputs in the malicious model, see [1,21] for the details.

In the context of the current work, we are more interested in the direct appli-
cation of CDS protocols. Namely, note that a CDS protocol provides a way to
distribute a secret only if the client’s input satisfies certain condition, i.e., the
client has credentials to access the secret. As an example, consider a video on
demand service, where a client should obtain a key to a video stream only if his
or her balance is non-negative: credit > 0. However, the server should be unable
to tell the client’s exact balance. The CDS protocols described in [1,21] consist
of two moves and the client’s query consists of ciphertexts of q1, . . . , qn. As the
CDS protocols of say [21] are based on an additively homomorphic cryptosys-
tem, the server can do a limited amount of cryptocomputing to form ciphertexts
that decrypt to the secret if the condition ρ is met. Thus, the client must of-
ten send some additional encryptions of auxiliary inputs w1, . . . , wn to help the
server, i.e., q = (credit, w1 . . . , wn) for our example. Since the solutions [1,21]
provide only privacy in the malicious model, it is difficult to prove that the server
maliciously declines access and the server cannot easily refute false accusations.

Now consider an extended CDS protocol, where the server first publicly com-
mits to x and the CDS protocol is executed to recover the corresponding de-
commitment value. As the proof of Thm. 3 and Cor. 2 directly generalizes, the
resulting protocol is consistent under the same assumptions. If the set of plausi-
ble client inputs is exponential, the exhaustive knowledge extraction technique
from Thm. 3 becomes infeasible and the construction, where the server proves
that he or she knows how to open the commitment is the only option. The latter
is not a big problem, as many conventional commitment schemes have efficient
proofs of knowledge for this. For instance, the equivocal Pedersen commitment
scheme has this property. Also, note that the server does not have to prove
knowledge of the decommitment value to everybody. It is sufficient, if the server
proves it to a respected peer during an initialization phase. If we can guarantee
that such auditors are semihonest, then we can further optimize the proof.

Moreover, Thm. 1 assures that the client can prove that the server acts mali-
ciously to third parties. As anybody can repeat the second phase of a CDS pro-
tocol enlisted in [1,21] with a different secret x, the corresponding honest-verifier
zero-knowledge proof is very efficient. The complaining client has to reveal x to
the prover and then additionally prove (in zero-knowledge if necessary) that the
reply of the server is invalid.

The ability to complain makes CDS protocols very appealing in TV or mil-
itary broadcasts with complex access policy, where credentials are granted by
giving out random keys. This problem is commonly known as private inference
control [31]. In this setting, a server holds a database of private keys that are used

On the Feasibility of Consistent Computations 103

to encrypt various content, e.g., documents with different confidentiality levels.
Clients have acquired different credentials and the server’s task is to release cor-
rect keys. For security reasons, the server should not learn which documents are
accessed by different clients. At the same time, the server should deny access
for clients who do not have appropriate credentials. However, the client should
be able to distinguish between denial of service attacks, where the server acts
maliciously, and legitimate denials, where the client has no right to obtain a cor-
responding key. Moreover, to make the service accountable against inside attacks
the client should be able to prove to third parties that the denial is illegitimate.

We emphasize that the proofs of knowledge can be skipped if it is possible
to force the server to construct commitments of keys semi-honestly during the
initialization phase either by organizational means or by auditing. As efficient
CDS protocols exists for all NP/poly predicates [21], we have established that
accountable private inference control is possible. More importantly, the solution
is really practical if a complaining client is willing to reveal his input.

6 Discussion and Open Problems

Both solutions for oblivious transfer and conditional disclosure of secrets are
based on a simple principle: the server first creates a list of possible answers and
commits to it. Since all answers are independent of each other and a client can
verify that the answer is correct, the server has to prove only that he knows how
to decommit and not that all answers are consistent with some server’s input.
As soon as the answers must satisfy a certain constraint or the client cannot
check whether he or she obtained a decommitment value for a correct answer,
the construction of a consistent protocol becomes much more complicated.

Nevertheless, any such protocol must give rise to a list commitment scheme.
Indeed, we can view any client-server protocol for computing f(q, x) as a com-
pact commitment to a list with elements xq = f(q, x) where q takes all plausible
values. For three-move protocols, the first message is the commitment and the
second message together with the third corresponds to interactive opening pro-
cedure. The second and third message can be compacted into a single decommit-
ment value provided that a colluding client and server cannot fool third parties
who know the first message. As the query should not leak information about
other entries, construction of such commitment schemes with implicit correct-
ness guarantees seems a highly non-trivial task. Hence, the question whether one
can construct three-move consistent protocols for other tasks is an interesting
question, which might shed a light on what type of restrictions are implicitly
enforceable by the design of a list commitment scheme.

Another open question is how much can be learned from the complaints
and whether is it possible to limit this exposure. By the definition of consis-
tency the complaint leaks an output of a polynomial-time randomized predi-
cate. In practice, we can further restrict the set of enforceable predicates π. For
instance, one can force memoryless consistency in the oblivious transfer pro-
tocol. Namely, a client-server protocol is memoryless-consistent if the halting

104 S. Laur and H. Lipmaa

predicates π1, . . . , πm are independent from previous queries, i.e., πi(q1, . . . , qi) =
πi(qi) and the server cannot relate results of different queries.

Theorem 4. Prot. 4 is memoryless consistent if no instantiations of ot protocols
share random variables.

Proof. Assume that an adversary A breaks the memoryless-consistent property
of Prot. 4. That is, it can force the client to abort iff a predicate πi holds on
client’s queries (q1, . . . , qi), where πi is a non-trivial function of at least two
different values qa and qb for a < b ≤ i. Since the protocol is stateless then the
adversary can play the role of the client in round b > a, to breach the privacy of
the client in round a: given its knowledge of whether the client aborted in round
b, it will have some advantage in guessing qa, given the value πi(qa, qb). ��

Analogous results can be stated for protocols consisting of several CDS protocols.
However, memoryless consistency has a certain cost. Many efficient protocols for
oblivious transfer [30,1,22] and CDS [1,21] are based on homomorphic encryp-
tion. In these protocols, the trusted setup phase assures that the client indeed
knows the secret key. This setup phase is replaced with a corresponding proof
of knowledge in practice. Now, if each sub-protocol has a different key pair, the
preprocessing phase becomes rather complex. Hence, it is beneficial to share the
key among many protocol instances, see [21] for further details.

By doing so we loose memoryless consistency and thus a natural question
arises: can we still bound the set of enforceable halting predicates. As all of
these protocols send the client input in an encrypted form to the server and the
replies are also encryptions, it is easy to force affine predicates. Given a list of
encryptions Enc(q1), . . . ,Enc(q�), the server can multiply all replies with

Enc((q1α1 + · · ·+ qiαi − β)r) = (Enc(q1)α1 · · ·Enc(qi)αiEnc(−β))r

for a random message space element r. As a result, the replies are unaltered when
q1α1 + · · · + qiαi = β and uniformly distributed otherwise. Consequently, the
server can easily force halting predicates corresponding to affine combinations
of received ciphertexts πi(q1, . . . , qi) = [q1α1 + · · · + qiαi = β]. By multiplying
replies with several such ciphertexts, the server can also force conjunctions of
such affine combinations.

Note that these attacks are applicable for any additively homomorphic en-
cryption scheme. Hence, one can ask whether this is a complete description
of halting predicates or not. Of course, this question makes sense only for de-
terministic predicates, as any client server interaction can be formalized as a
randomized predicate. For all deterministic predicates, it is reasonable to com-
pare the behavior of a concrete cryptosystem with its idealized counterpart that
is implemented through encryption, decryption and ciphertext-addition oracles.
We say that a homomorphic cryptosystem has special cryptocomputing proper-
ties if the malicious server can force deterministic predicates that cannot be
forced if the underlying cryptosystem is ideal. As there are cryptosystems that
allow to cryptocompute quadratic polynomials [4] and even polynomials of any

On the Feasibility of Consistent Computations 105

length [16], cryptosystems with special properties exist. However, in all of these
cases these properties follow directly from the design of a cryptosystem. Thus, it
is reasonable to assume that standard additively homomorphic cryptosystems,
such as Paillier [26], are without special properties and the set of enforceable
predicates is limited to affine tests and their conjunctions. Any provable rejec-
tion to this fact would be interesting by itself as it would advance the set of
cryptocomputable predicates.

Acknowledgments. Both authors were supported by the European Regional
Development Fund through the Estonian Centre of Excellence in Computer Sci-
ence, EXCS. The second author was also supported by Estonian Science Foun-
dation, grant #8058.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital
Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

2. Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Protocols
for Realistic Adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
137–156. Springer, Heidelberg (2007)

3. Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

4. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)

5. Buldas, A., Laur, S.: Knowledge-Binding Commitments with Applications in Time-
Stamping. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
150–165. Springer, Heidelberg (2007)

6. Cachin, C., Camenisch, J.: Optimistic Fair Secure Computation. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)

7. Camenisch, J., Neven, G., Shelat, A.: Simulatable Adaptive Oblivious Transfer.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer,
Heidelberg (2007)

8. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology 13(1), 143–202 (2000)

9. Canetti, R., Ostrovsky, R.: Secure Computation with Honest-Looking Parties:
What If Nobody Is Truly Honest? In: Proc. of STOC 1999, pp. 255–264. ACM
Press, New York (1999)

10. Cramer, R., Damg̊ard, I.: Linear zero-knowledge – a note on efficient zero-
knowledge proofs and arguments. In: Proc. of STOC 1997, pp. 436–445. ACM
Press, New York (1997)

11. Crépeau, C., van de Graaf, J., Tapp, A.: Committed Oblivious Transfer and Pri-
vate Multi-Party Computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 110–123. Springer, Heidelberg (1995)

12. Crescenzo, G.D., Ishai, Y., Ostrovsky, R.: Non-Interactive and Non-Malleable Com-
mitment. In: Proc. of STOC 1998, pp. 141–150. ACM Press, New York (1998)

13. Di Crescenzo, G.: Equivocable And Extractable Commitment Schemes. In: Cimato,
S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 74–87. Springer,
Heidelberg (2003)

106 S. Laur and H. Lipmaa

14. Di Crescenzo, G., Lipmaa, H.: Succinct NP Proofs from An Extractability Assump-
tion. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS,
vol. 5028, pp. 175–185. Springer, Heidelberg (2008)

15. Franklin, M.K., Yung, M.: Communication complexity of secure computation. In:
Proc. of STOC 1992, pp. 699–710. ACM Press, New York (1992)

16. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Proc. of
STOC 2009, pp. 169–178. ACM Press, New York (2009)

17. Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with
Constant Communication Rate. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815.
Springer, Heidelberg (2005)

18. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge (2001)

19. Goldreich, O.: On Expected Probabilistic Polynomial-Time Adversaries: A Sugges-
tion for Restricted Definitions and Their Benefits. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 174–193. Springer, Heidelberg (2007)

20. Laur, S., Lipmaa, H.: On the Feasibility of Consistent Computations. Eprint
2006/088

21. Laur, S., Lipmaa, H.: A New Protocol for Conditional Disclosure of Secrets And
Its Applications. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521,
pp. 207–225. Springer, Heidelberg (2007)

22. Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication.
In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650,
pp. 314–328. Springer, Heidelberg (2005)

23. Mohassel, P., Franklin, M.K.: Efficiency Tradeoffs for Malicious Two-Party Com-
putation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006)

24. Naor, M., Nissim, K.: Communication Preserving Protocols for Secure Function
Evaluation. In: Proc. of STOC 2001, pp. 590–599. ACM Press, New York (2001)

25. Ogata, W., Kurosawa, K.: Oblivious Keyword Search. Journal of Complexity
20(2–3), 356–371 (2004)

26. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

27. Pedersen, T.P.: Non-Interactive And Information-Theoretic Secure Verifiable Se-
cret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

28. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient And Com-
posable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

29. Santis, A.D., Crescenzo, G.D., Persiano, G.: Necessary and Sufficient Assumptions
for Non-iterative Zero-Knowledge Proofs of Knowledge for All NP Relations. In:
Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853,
pp. 451–462. Springer, Heidelberg (2000)

30. Stern, J.P.: A New And Efficient All Or Nothing Disclosure of Secrets Protocol.
In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371.
Springer, Heidelberg (1998)

31. Woodruff, D.P., Staddon, J.: Private Inference Control. In: Proc. of ACMCCS 2004,
pp. 188–197. ACM Press, New York (2004)

Multi-query Computationally-Private
Information Retrieval with Constant

Communication Rate

Jens Groth1, Aggelos Kiayias2, and Helger Lipmaa3,4

1 University College London, UK
j.groth@ucl.ac.uk

2 Department of Informatics, University of Athens, Greece
aggelos@di.uoa.gr

3 Cybernetica AS, Estonia
lipmaa@research.cyber.ee
4 Tallinn University, Estonia

Abstract. A fundamental privacy problem in the client-server setting
is the retrieval of a record from a database maintained by a server
so that the computationally bounded server remains oblivious to the
index of the record retrieved while the overall communication between
the two parties is smaller than the database size. This problem has
been extensively studied and is known as computationally private
information retrieval (CPIR). In this work we consider a natural
extension of this problem: a multi-query CPIR protocol allows a client
to extract m records of a database containing n �-bit records. We give
an information-theoretic lower bound on the communication of any
multi-query information retrieval protocol. We then design an efficient
non-trivial multi-query CPIR protocol that matches this lower bound.
This means we settle the multi-query CPIR problem optimally up to a
constant factor.

Keywords: Computationally private information retrieval, multi-query
CPIR, lower bound on communication.

1 Introduction

A (single-server) computationally-private information retrieval (CPIR) proto-
col enables a client to query a database without revealing which data it is
extracting. Several cryptographic techniques based on various computational
hardness assumptions have been proposed for CPIR with sublinear communi-
cation. In this paper, we go beyond the well-studied single-query case and in-
vestigate communication-efficient CPIR protocols for the case where the client
has multiple queries. A multi-query CPIR protocol allows a client to extract m
records of a database containing n records of � bits each. We give an information-
theoretic lower bound on the communication and design a multi-query CPIR
protocol that matches this lower bound (up to a constant factor). Our focus

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 107–123, 2010.
c© International Association for Cryptologic Research 2010

108 J. Groth, A. Kiayias, and H. Lipmaa

in this paper is on the theory of multi-query CPIR giving an asymptotically
communication-optimal multi-query CPIR protocol under a reasonable crypto-
graphic assumption; we leave the tasks of optimizing the computational overhead
and the constant factor gap between the upper and lower bounds on the com-
munication as open problems.

oblivious transfer (OT) or symmetric CPIR (SCPIR) protocol. A two-message
SCPIR protocol is usually required to be secure in the sense of semisimulatability,
first defined by Naor and Pinkas [12].

1.1 Background

Private Information Retrieval was introduced in [3]. Kushilevitz and Ostro-
vsky [9] showed that it is possible to do CPIR with sublinear communication.
Cachin, Micali and Stadler [2] gave the first CPIR-protocol for retrieving one bit
out a database where the communication complexity is polylogarithmic in the
database size. The communication-wise best single-query CPIR protocols up-to-
date are by Gentry and Ramzan [6] and Lipmaa [10] that allow the retrieval of
an �-bit record from the database.

Turning to our problem, there are three trivial solutions to m-query CPIR:
One option is parallel repetition of a single-query CPIR. In the case of repeating
Gentry and Ramzan’s CPIR [6] this would result in a communication of Θ(m ·
logn+m · �+m · k), where k is a security parameter specifying the length of an
RSA-modulus. As we will see this is not optimal.

Another option is to use a single-query CPIR protocol to fetch one m�-bit ele-
ment from an

(
n
m

)
-element database. As our lower bound shows, this solution has

asymptotically optimal communication Θ(m · log2(n/m) +m · �+ k) when com-
bined with Gentry and Ramzan’s CPIR, but unfortunately increases the server’s
computation to Ω(

(
n
m

)
), which for many choices of n and m is superpolynomial

in the security parameter.
A third option is to transmit the entire database to the client and is inefficient

in terms of communication.
Ishai, Kushilevitz, Ostrovsky and Sahai [7] proposed batch-codes for encoding

a database over many separate blocks such that a client can extract m records
by querying only a smaller number of records from each block. Our solution uses
a related strategy and part of this paper consists of encoding the database in
separate blocks that can be queried by separate smaller CPIR protocols. The
batch-codes by Ishai, Kushilevitz, Ostrovsky and Sahai, however, do not apply
directly to our problem. One reason is that their batch-codes are optimized with
respect to keeping the total number of records in all the blocks low in order to
keep the computational complexity low, whereas our solution actually uses an
encoding where the total number of records in all the blocks becomes quite large.
Another difference between the works is that they only consider the case where
the database and the blocks use the same alphabet, for instance �-bit strings,
while we in some instances will encode the database into blocks of records from
a different alphabet.

Multi-query CPIR with Constant Communication Rate 109

1.2 Our Contribution

We design a computationally efficient two-message multi-query CPIR protocol
with Θ(m� + m · log2(n/m) + k) bits of communication, where k is a security
parameter specifying the size of an RSA modulus. Server computation is dom-
inated by Θ(n�) group operations, where in both cases the constant in big-Θ
is reasonably small. The client’s privacy is based on a variant of the Φ-hiding
assumption [2,6]. In our construction, we use a multi-query CPIR variant of
Gentry and Ramzan’s single-query CPIR [6] that works for a restricted set of
parameters (m,n, �). We present a reduction demonstrating that any multi-query
CPIR protocol that works for a restricted set of parameters can be used as a
building block to construct a communication-optimal CPIR protocol for any set
of parameters.

We also prove that any perfectly correct multi-query (non-private) informa-
tion retrieval protocol has an information theoretical lower bound of Ω(m ·
log2(n/m) +m�) bits of communication. Thus, our proposed multi-query CPIR
has optimal communication complexity up to a constant factor.

1.3 Challenges and Techniques

Known techniques suffice for communication-optimal CPIR in the extreme cases,
where the number of queries is very small or very large. If m = Ω(n) the server
can send the entire database to the client in the clear, giving a communication
complexity of n� = O(m�+m log(n/m)) bits. If m = O(1) we can invoke Gentry
and Ramzan’s single-query CPIR m times in parallel to get a communication
complexity of O(� + k) = O(m� + m log(n/m) + k) bits. We are interested in
finding a communication-efficient CPIR protocol for the case where m is in
between the two extremes. Indeed, if m = o(n), then downloading the entire
database at a cost of n� bits would be sub-optimal and when m = ω(1) simply
repeating Gentry and Ramzan’s protocol has an additive overhead of Ω(mk)
bits, which would make it a sub-optimal choice.

A first step towards resolving this issue is Gentry and Ramzan’s observation [6]
that while they focused on the single-query case, it is also possible to get a
restricted multi-query CPIR protocol with their techniques. We will use such a
restricted multi-query CPIR scheme as a building block in our construction. The
restricted protocol is only communication-optimal for certain choices of (m,n, �)
though. It encodes the queries as hidden prime-powers, however, when n grows,
the size of these primes grows as well. When � = Ω(log n) or m = O(nε) for
a constant ε > 0 this turns out not to be a problem, but when � is small and
m = ω(nε) the increase of the prime size causes a loss of bandwidth of up to a
factor logn.

To eliminate the up to a factor logn overhead in the communication complex-
ity we will encode the database in such a way that it can be split into smaller
pieces that can be processed by the restricted multi-query CPIR protocol. One
part of this encoding consists of dividing the database into smaller blocks that
will be treated separately. With smaller blocks, we need smaller primes in the

110 J. Groth, A. Kiayias, and H. Lipmaa

Gentry-Ramzan CPIR to specify a particular index of a record and this improves
the communication complexity. To spread the queries evenly on the blocks, we
first let the client choose a random permutation of the database. To preserve
the sublinear communication complexity, the client does this by sending the
server a seed for a pseudorandom number generator from which the longer full
permutation can be generated.

Another part of our encoding is best explained by an example. Suppose we
have a database of 4 one-bit records and the client wants retrieve two records.
We can encode the database as a 6-record database containing 2-bit elements
for each possible pair of queries (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) the client
could have. This encoding increases the size of the database and the size of the
records, but reduces the number of queries the client needs to make. When the
client’s encoding of queries as primes permits the extraction of many bits at
a time, then this encoding improves bandwidth since fewer queries are needed.
Batch-codes [7] address a related encoding problem, however, as explained in
the section on related work neither of their batch-codes suffice for minimizing
communication in our scheme.

With respect to the lower bound on communication, the challenge is that
we must consider all possible multi-query CPIR protocols. Most known CPIR
protocols consist of encoding the queries in a single message that is sent to the
server, which information-theoretically leads to a lower bound of log2(

(
n
m

)
) =

Ω(m · log(m/n)). Furthermore, obviously m �-bit strings cannot be communi-
cated using less than m� bits. For these protocols it is therefore straightforward
to get a lower bound ofΩ(m·log2(n/m)+m�) bits. However, the lower bound also
needs to cover the case of multi-query CPIR protocols that work in a different
way and may use more rounds. This makes proving the lower bound non-trivial;
we do not know of prior work giving such a lower bound even in the single-query
case.

1.4 Roadmap

In Sect. 2, we present the necessary preliminaries. In Sect. 3, we prove a lower
bound for the communication complexity of multi-query CPIR (even when pri-
vacy is not required). In Sect. 4, we construct a basic restricted multi-query
CPIR protocol based on Gentry and Ramzan’s work [6]. In Sect. 5, we design a
new multi-query CPIR protocol for any parameter values.

2 Preliminaries

Notation. All our algorithms take as input a security parameter k. In the
following we say a function f is negligible if f(k) = k−ω(1). We write f(k) ≈ g(k)
if |f(k)−g(k)| is negligible. We write (outC , outD)← 〈C(x), D(y)〉 if C on input
x and D on input y output respectively outC and outD after interacting with
each other.

Multi-query CPIR. Consider a database with records x1, . . . , xn ∈ {0, 1}�.
Informally, a multi-query CPIR protocol is a protocol that allows a client to

Multi-query CPIR with Constant Communication Rate 111

extract m different records xi1 , . . . , xim from the database, without revealing
which records it extracted. Formally, a multi-query CPIR protocol consists of
two interactive polynomial time Turing machines C and D that we call respec-
tively the client and the server. Both parties get as input a security parameter
k written in unary and additional parameters m,n, �. The server takes as an
input n elements x1, . . . , xn ∈ {0, 1}�. The client takes as an input a set of
m different indexes i1, . . . , in ∈ {1, . . . , n}. (Note that since we are interested in
minimal communication in the case of fixed m, we can assume that all m indexes
are different.) The client and server interact, and in the end the client outputs
y1, . . . , ym ∈ {0, 1}� or a special failure symbol ⊥. (C,D) is a multi-query CPIR
protocol if it satisfies the standard correctness and privacy properties as defined
below. Intuitively, correctness means that in the case of an honest client and an
honest server, the client always retrieves correct elements xi1 , . . . , xim . Privacy is
defined in the sense of indistinguishability: given two input tuples i0, i1 chosen
by a malicious server, the server should not be able to guess which of the two
tuples the client actually uses.

Definition 1 (Perfect correctness). A multi-query CPIR protocol (C,D) has
perfect correctness if for any k, any m,n, � = poly(k) and any i = (i1, . . . , in)
and x = (x1, . . . , xn) with ij ∈ {1, . . . , n} and xj ∈ {0, 1}�, we have that if
(outC , outD)← 〈C(1k,m, n, �, i), D(1k,m, n, �,x)〉, then outC = (xi1 , . . . , xim).

Definition 2 (Computational privacy). A multi-query CPIR protocol has
computational privacy if for all non-uniform polynomial time adversaries A we
have

Pr

[
b← {0, 1}, (m,n, �, i0, i1, state)← A(1k),

(outC , outA)← 〈C(1k,m, n, �, ib),A(state)〉 : outA = b

]
≈ 1

2
,

where m,n, � = poly(k) and ij = (ij1, . . . , i
j
m) with 1 ≤ ij1 < . . . < ijm ≤ n.

3 Lower Bound on (m, n, �)-CPIR Communication

Let the database contain n records of size �. An (m,n, �) information retrieval
is a two-party protocol between a client and a server that enables the client
to receive any m out of the n records. In this section we will establish a lower
bound for any perfectly correct (m,n, �) information retrieval protocol, private
or not. If the protocol consists of the user indicating the desired indices and the
server sending the elements of those indices a straightforward lower bound of
log2

(
n
m

)
+m� bits applies. Establishing that the same lower bound applies also

in the general case requires more work. We show that Ω(m · log(n/m)+m · �) is
in fact the lower bound for any perfectly correct information retrieval protocol.
The lower bound is information theoretical and holds even when the client and
server are computationally unbounded. The lower bound assumes the protocol
to have perfect correctness, so any choice of fixed random tapes also gives a
perfectly correct protocol, which means it suffices to prove the lower bound for

112 J. Groth, A. Kiayias, and H. Lipmaa

any fixed pair of random tapes. We will therefore in the following without loss
of generality assume that the client and server are deterministic.

Denote by X the set of all subsets of n elements of size m and by Y the
set of all n-tuples over the alphabet Σ = {0, 1}�. The output of any (m,n, �)
information retrieval protocol belongs to the set Z ofm-tuples overΣ. We denote
by f : X × Y → Z the output of the information retrieval.

Any protocol computing f can be represented by a binary tree (cf. [8]) so that
each internal node v is labeled by a function cv : X → {0, 1} or sv : Y → {0, 1}.
The root of the tree is the initial node of the protocol and an execution involves
following a path from root to leaf according to the functions of the nodes. Note
that the program of the client is determined by all the cv(·) functions where the
program of the server is determined by all the sv(·) functions. For the purpose
of obtaining the most general lower bound we make no assumptions on the
complexity of these functions. Finally, each leaf holds a value z ∈ Z = {0, 1}�m

which is the output of the client.
For any such protocol we define the equivalence relation between two inputs

(x1, y1) ∼ (x2, y2) if they lead the protocol to the same output leaf. For each leaf
λ there is a different equivalence class Rλ, and the set of all equivalence classes
of ∼ is thus parameterized by the set of all leaves. It holds that for any λ, the
set Rλ is a combinatorial rectangle: (x1, y1) ∈ Rλ, (x2, y2) ∈ Rλ implies that
(x1, y2), (x2, y1) ∈ Rλ. This follows from the fact that the leaves define unique
paths from the root and in each node the path the protocol takes only depends
on one of the two inputs. A fooling set Fz for some z ∈ Z, on the other hand,
is a subset of X × Y for which it holds that for any (x1, y1), (x2, y2) ∈ Fz with
f(x1, y1) = f(x2, y2) = z we have that either f(x1, y2) �= z, or f(x2, y1) �= z.
Fooling sets are useful for lower bounds as they can only be covered by as many f -
monochromatic rectangles as their cardinality (a rectangleR is f -monochromatic
iff ∃z : (x, y) ∈ R ⇒ f(x, y) = z). The number of monochromatic rectangles in
turn yields a lower bound on the number of leaves in any protocol tree which
then implies a lower bound on the tree’s height (which is equal to the total
communication) [8]. In a nutshell, the number of leaves in the protocol tree for
any protocol computing the function f must be at least

∑
z∈Z |Fz| where Fz is

a fooling set for the output value z ∈ Z.

Lemma 1. Fix n,m, �. Let z = (z1, . . . , zm) be such that {z1, . . . , zm} � {0, 1}�.
Define L(z) := lexmin

(
{0, 1}� \ {zj}m

j=1
)
, where the function lexmin(A) denotes

the lexicographically smallest element of the set of strings A. The set

Fz =
{
(I, y1, . . . , yn) | I = {i1, . . . , im} ⊆ {1, . . . , n}, yij = zj , yi′ = L(z)

}
is a fooling set of size

(
n
m

)
, where the indexes have the ranges j = 1, . . . ,m, i′ ∈

{1, . . . , n} \ {i1, . . . , im}, and 1 ≤ i1 < · · · < im ≤ n.

Proof. It is obvious that |Fz | =
(

n
m

)
and that any input (x, y) ∈ Fz

satisfies that f(x, y) = z. We next show that Fz is a fooling set. Let
(I; y1, . . . , yn), (I ′; y′1, . . . , y

′
n) ∈ Fz . Observe that it should be I �= I ′, thus

Multi-query CPIR with Constant Communication Rate 113

there is at least one location in I that is not in I ′. Without loss of general-
ity, say i1 ∈ I \ I ′. It follows that f(I; y′1, . . . , y

′
n) = (z′1, . . . , z

′
m) �= z since

z′1 = L(z) �= z1. ��

Observe that if 2� > m then trivially {z1, . . . , zm} � {0, 1}� for any possible
output tuple z ∈ Z = {0, 1}�m, i.e., there would be 2�m possible outputs for
which the lemma above applies. On the other hand, when 2� ≤ m the number of
possible outputs for which the lemma applies is at least (2� − 1)m. This follows
from the fact that there are at least that many m tuples that ommit a specific
�-bitstring. While this lower bound can be made more tight it will be sufficient
for our communication complexity argument.

Theorem 1. Consider parameters n,m, � with n ≥ m. The communication
complexity of any protocol solving the (m,n, �) information retrieval problem
is Ω(m · log2(n/m) +m · �).

Proof. Consider first the case � > 1. There are at least (2�−1)m possible outputs
of the information retrieval protocol for which the corresponding fooling set
has cardinality

(
n
m

)
according to lemma 1. It follows that the communication

complexity is lower-bounded by⌈
log2

((
n

m

)
· (2� − 1)m

)⌉
≥
⌈
log2

(
n

m

)
+m · log2(2

� − 1)
⌉

≥
⌈
log2

(
n

m

)⌉
+m(�− 1) .

In order to obtain the asymptotic bound, we use the fact
(
tm
m

)
≥ tm for any

t,m ≥ 1 and by setting t = n/m we obtain the statement of the theorem. Next,
consider the case � = 1 and 2m < n. In this case, there are 2 choices where the
fooling set has cardinality

(
n
m

)
. It follows that the communication complexity

would be at least log2
(

n
m

)
= Ω(m · log(n/m)). Finally in case � = 1 and 2m ≥ n

trivially the communication is at least m bits, from which the statement of the
theorem follows. ��

4 Restricted Multi-query CPIR

In Sect. 5, we will construct a multi-query CPIR with communication complexity
O(m�+m · log(n/m)+ k), where k is a security parameter. As a building block,
it will use a multi-query CPIR protocol (C,D) with communication complexity
k. Since communication is bounded by k, such a CPIR cannot handle all choices
of (m,n, �). What we will need from the building block is that it can be used
whenever

m ≤ αk

�+ log2 n
, (1)

for some constant 0 < α < 1.

114 J. Groth, A. Kiayias, and H. Lipmaa

In this section, we provide a construction of such a building block—that we
call a restricted multi-query CPIR—based on the previous single-query CPIR
of Gentry and Ramzan [6] and their observation that it can be extended to
the multi-query setting. The security of the restricted multi-query CPIR re-
lies on the Φ-hiding assumption by Cachin, Micali and Stadler [2]. It is a 2-
message multi-query CPIR protocol, so we will describe it by three algorithms
(Query,Response,Extract) that generate respectively the client’s query, the
server’s response, and finally allow the client to extract the records from the
response.

In the following, Π will be a deterministic polynomial-time algorithm that
takes n as input and generates n (small) prime numbers.K will be a probabilistic
polynomial time key generator that takes as input the security parameter k and
an integer π < 22αk with factors in the list generated by Π , where α is a constant
parameter. On such an input it generates a triple (G, g, q), such that G is a group
with efficiently computable operations, q is a positive integer, and g is an element
of this group with ord(g) = πq. We require that the description of G and group
elements are at most k/3 bits each and that K satisfies the following assumption:

Definition 3 (Decision Subgroup Assumption). There exists some α ∈
(0, 1) such that for all probabilistic polynomial-time A,

Pr

[
b← {0, 1}, (1n, π0, π1, state)← A(1k), (G, g, q) ← K(1k, πb) :

A(G, g, state) = b

]
≈ 1

2
,

where the adversary outputs positive integers π0, π1 < 22αk with factors in Π(n).

As an example, we may choose N = PQ as a k/3-bit RSA modulus, where
P = 2πr+ 1 and Q = 2st+ 1 and r, s, and t are large random positive integers,
and select g as a random element of Z∗

N that satisfies ord(g) = πq for some q
with gcd(π, q) = 1. When Π generates a set p1, . . . , pn where 2n < p1 < · · · < pn

it is shown by Gentry and Ramzan [6] that the assumption above reduces to a
variant of the Φ-hiding assumption1:

Pr

[
b← {0, 1}, (1n, π0, π1, state)← A(1k), N ← RSAK(1k, πb) :

A(N, state) = b

]
≈ 1

2
,

where A outputs π0 and π1 as described above, and RSAK outputs a k/3-bit
RSA-modulus N . To avoid factorization attacks due to Coppersmith when a
large factor of φ(N) is known, in this instantiation, the parameter α should
be appropriately selected. Specifically, due to the fact that when a factor
of φ(N) that is larger than N1/4 is known then it is possible to factor N
(Coppersmith [5,4], cf. [1] and the related discussion in [6]) we need to choose

α ≤ 1/25 .

1 Strictly speaking Gentry and Ramzan only show this for π being a prime power,
however, their proof carries over without change to the more general case where π
can be a composite number.

Multi-query CPIR with Constant Communication Rate 115

Indeed, with this choice we have that π < 22k/25 which is smaller than
2(k/3−1)/4 ≤ N1/4 as long as k ≥ 75.

Given (Π,K), we can construct a 2-message (m,n, �)-CPIR following the pro-
tocol of Gentry and Ramzan. This restricted (m,n, �)-CPIR protocol works for
choices of the parameters that satisfy Eq. (1):

Query: Let p1, . . . , pn be the primes generated by Π . Let π1, . . . , πn be
the smallest prime powers of p1, . . . , pn that are larger than 2�, i.e.,
πi = p

��/ log2 pi�
i . Let i1, . . . , im be different indexes of the elements the

client wants to extract from the database. Define π =
∏m

j=1 πij and run
(G, g, q) ← K(1k, π). Send (G, g) to the server, and store q for later use.

Response: Given a database of �-bit elements x1, . . . , xn, use the Chinese
remainder theorem to compute x′ so x′ ≡ xi mod πi for 1 ≤ i ≤ n and
send c = gx′

to the client.
Extract: For each 1 ≤ j ≤ m, compute cj = cqπ/πij and gj = gqπ/πij , and

find xij so that cj = g
xij

j . Output (xi1 , . . . , xim).

Observe that the extraction step requires solving m instances of the discrete
logarithm problem within the cyclic groups 〈gj〉 for j = 1, . . . ,m, where the
order of each such subgroup is πij . Given that πij is a power of the prime pij ,
the extraction requires O(m

√
pn(�/ log2 p1)) steps using Giant-Step Baby-Step

techniques when the user computes the xi-s as is done in the Pohlig-Hellman al-
gorithm [13]. The server’s computation consists of one Θ(�n)-bit exponentiation
as in [6].

Now that we have given the protocol, let us explain the constraints on the
parameters. By definition we have 1 ≤ m,n, � = kO(1) but we need more limiting
constraints since we use only k bits of communication. Since πi are chosen as
the smallest prime powers of pi that are larger than 2� we have πi < 2�pn =
2�+log2 pn . This means π < 2m(�+log2 pn) so we have π < 22αk whenever

m ≤ 2αk
�+ log2 pn

.

Using the constraints in the example given by Gentry and Ramzan based on
RSA moduli, we may use Π that generates the first n primes larger than 2n. We
can use the following crude bound on the primes 2n < p1 < · · · < pn < 2n2 for
n ≥ 2. For n ≥ 2 we therefore can use the restricted multi-query CPIR protocol
whenever Eq. (1) holds.

We observe that when n = 1 we do not need any security assumption, since
the client only has one choice of index to query and therefore privacy is not a con-
cern. We also remark that if the key generation algorithm has negligible failure
probability, we still have computational privacy if the client reveals the indices
i1, . . . , im on key generation failure. This means we can get perfect correctness
in the CPIR. In conclusion, we have the following theorem:

Theorem 2. If the decision subgroup assumption (definition 3) holds for a
constant 0 < α < 1, there exists a 2-message multi-query CPIR with perfect

116 J. Groth, A. Kiayias, and H. Lipmaa

correctness, computational privacy and k bits of communication for parameters
(m,n, �) satisfying Eq. (1).

Proof. Follows from discussion above. ��

Discussion. Recall that by Eq. (1), k = Ω(m log2 n+m�), thus the restricted
protocol has communication Ω(m log2 n + m�). It may seem that we achieve
no gain over the m-times parallel repetition of Gentry-Ramzan’s CPIR protocol
that has communication Θ(m log2 n+m�+mk) for some security parameter k.
However, the gain is actually quite significant, especially when k ! logn.

For example, consider the case � = 1. Then, m-times repetition of the Gentry-
Ramzan protocol gives us a multi-query protocol with communication m ·k. Now
suppose that m =

√
k and n = k2/3. The number of bits used in the transcript

is k3/2. On the other hand, when we use the restricted multi-query protocol,√
k ≤ αk

1+log2 k and thus we get a protocol with communication k. Thus for large
values of m the protocol of this section outperforms the m-times repetition of
Gentry-Ramzan’s single-query CPIR protocol.

5 Communication-Optimal Perfectly Correct Multi-query
CPIR

Our optimal communication reduction of arbitrary multi-query CPIR to the
restricted multi-query CPIR will use the restricted CPIR protocol from [6] de-
scribed above and a pseudorandom number generator PRG. Our transforma-
tion operates in four different modes depending on the choice of the parameters
(m,n, �). We examine these modes of operation in the following four subsections.
The most challenging case is the one that m is relatively large but not as large
as to enable the trivial protocol that sends the whole database to be a good
solution. We start with the easier cases first.

5.1 Multi-query (m, n, �)-CPIR for Constant n/m

When n = O(m) it is asymptotically communication-optimal to send the entire
database to the client. For concreteness, we fix the implicit constant in the big-O
notation to be 9 and send the entire database to the client whenever n ≤ 9m.
It is obvious this is a 1-message multi-query CPIR protocol that has perfect
correctness and privacy, and optimal communication of n� ≤ 9m� = O(m�) bits.
In this case, the server does not do any computation except what is needed for
the transmission of the database.

5.2 Multi-query (m, n, �)-CPIR for Small m

We will now give a simple extension of the restricted multi-query CPIR that is
communication-optimal when m ≤ k2/3 and n > 9m. We do this by chopping the
�-bit records into smaller pieces of size e. This gives us "�/e# databases containing
e-bit strings. We run the restricted multi-query CPIR protocol (C,D) to extract

Multi-query CPIR with Constant Communication Rate 117

m records in each of these databases. In order to do this we have to select the
parameter e suitably so that the parameter restriction for the restricted CPIR
is satisfied.

1. Define e = min(�, �αk/m− log2 n�).
2. The server splits (x1, . . . , xn) into "�/e# databases {(xh,1, . . . , xh,n)}��/e�

h=1 ,
where all xh,i are e-bit strings and xi is the concatenation of
x1,i, . . . , x��/e�,i.

3. The client and server run "�/e# restricted multi-query CPIR pro-
tocols in parallel for h ∈ {1, . . . , "�/e#}: (xh,i1 , . . . , xh,im) ←
〈C(1k,m, n, e, i1, . . . , im), D(1k,m, n, e, xh,1, . . . , xh,n)〉.

4. The client computes xi1 , . . . , xim by concatenating the restricted multi-
query CPIR outputs {(xh,i1 , . . . , xh,im)}��/e�

h=1 for each index.
5. The client outputs (xi1 , . . . , xim).

The above protocol runs in the same number of rounds as the restricted multi-
query CPIR protocol. If � ≤ �αk/m − log2 n� we just need one copy of the
restricted protocol, so we get a communication complexity of k bits. If � >
�αk/m− log2 n� we get a communication complexity of

"�/(�αk/m− log2 n�)# · k <
(�

αk/2m
+ 1

)
k =

2m�
α

+ k = O(k +m�) ,

provided

�αk
m
− log2 n� ≥

αk

2m
.

The latter condition holds for large enough k, because m ≤ k2/3 and log2 n =
O(log2 k) implies

k ≥ 2m(1 + log2 n)
α

asymptotically, which in turn implies

αk

m
− log2 n− 1 ≥ αk

2m
.

Note that one can further optimize this protocol, since for each h the client’s
uses the same indices and therefore may choose to use the same initial query
every time.

Lemma 2. The multi-query (m,n, �)-CPIR protocol described above for m ≤
k2/3 is correct and private under the assumption that the underlying restricted
CPIR protocol satisfies these properties. Moreover, if the restricted CPIR protocol
has perfect correctness the CPIR protocol above has perfect correctness as well.

Proof. By the choice of e we guarantee that

m ≤ αk

e+ log2 n

118 J. Groth, A. Kiayias, and H. Lipmaa

as required by Eq. (1). A hybrid argument shows that (perfect) correctness fol-
lows from the (perfect) correctness of the restricted multi-query CPIR protocol.
Another hybrid argument shows that if an adversary has advantage ε in break-
ing the privacy of the CPIR protocol, then we can break the restricted CPIR
protocol with probability

ε

"�/e# >
ε

(�+ 1)

where the last inequality holds for values of

k ≥ 2m(1 + log2 n)
α

.

5.3 Multi-query (m, n, �)-CPIR for Large Values of m and
� ≤ log2(n/m)

We will now consider the case, where 9m < n ∧ k2/3 < m ∧ � ≤ log2(n/m). Let
b, d ∈ N be two parameters to be specified below. We split the database into⌈

n
bd

⌉
blocks of size bd, and on each of these blocks we will use the restricted

multi-query CPIR protocol. Note that if it happens that the clients’ queries are
evenly distributed then we only need to extract an average of mbd

n records from
each of these blocks.

To ensure the uniformity of its queries, the client will choose a seed s ←
{0, 1}k for a pseudorandom number generator. From this pseudorandomness
seed, the client and the server can generate a pseudorandom permutation of
the n elements. From now on we can therefore assume that the client’s indices
i1, . . . , im are randomly distributed. Still, we cannot expect that each block has
exactly mbd

n records that need to be extracted. We will therefore choose a = bm/n
and extract 2ad records from each block. We will choose b, d such that ad is large
enough to give us negligible probability that the pseudorandom permutation
places more than 2ad records in any single block.

Recall that the restricted multi-query CPIR lets us extract 2ad records from
each block provided that, following Eq. (1),

2ad ≤ αk

�+ log2(bd)
.

When � is small, for instance when � = 1, this means that we need k bits to
extract

2ad ≤ αk

�+ log2(bd)
<

αk

log2(bd)

database bits, giving us a non-constant communication rate.
We will get around this problem by using an encoding of the block that

gives a more efficient utilization of the bandwidth. The encoding divides each
block of size bd into d segments of b records. We then encode each segment by
enumerating all possible combinations of a elements that can be drawn from
this segment. This gives us a segment of

(
b
a

)
strings of length a�. On average we

Multi-query CPIR with Constant Communication Rate 119

desire to extract two (a�)-bit records from each of the d segments. In reality, the
2ad records we need to extract from the block are pseudorandomly distributed
on the d segments, but by extracting 3d (a�)-bit strings from the d segments,
we are guaranteed to cover any distribution of 2ad records in the block. This is
an immediate corollary of the following simple counting lemma:

Lemma 3. Let a, b, d ∈ N and let S1, . . . , Sd be disjoint sets with |Si| = b. For
any A ⊆ ∪d

i=1Si with |A| = 2ad, there exists a family of sets G1, . . . , Gt such that
(i) for each Gj there is some Si with Gj ⊆ Si, (ii) |Gj | = a, (iii) A ⊆ ∪t

j=1Gj

and (iv) t ≤ 3d.

Proof. Let A1, . . . , Ad be the partition of A across S1, . . . , Sd with |Ai| = ai

and
∑d

i=1 ai = 2ad. Each Ai can be covered by "ai

a # subsets of size a from Si.
It follows that we can cover A with a number of sets that equals

∑d
i=1"ai

a # ≤
d+ (

∑d
i=1 ai)/a = 3d.

In conclusion, on each block we use the restricted multi-query CPIR to extract
3d out of d ·

(
b
a

)
possible (a�)-bit strings. According to Eq. (1), we can use the

restricted multi-query CPIR protocol to do this if we choose b, d such that

3d ≤ αk

a�+ log2(d
(

b
a

)
)

. (2)

Let us now give the constraints we have on the choices of b, d and give a possible
choice of variables that gives us optimal communication complexity:

– We want ad = mb/n · d to be so large that there is negligible probability of
more than 2ad records falling into the same block.

– We need Eq. (2) in order to use the restricted multi-query CPIR protocol.
– Finally, we want d ·

(
b
a

)
to be polynomial in k so that the encoded database

contains kO(1) elements and hence it is processed in polynomial time in k.

We first use a Chernoff-bound on the probability that for any given bd block
there will be more than 2ad records that we want to extract. For a fixed bd
block, the probability of more than 2ad indices needing extraction is smaller
than the probability of more than 2ad indices ending up in the same block if
we allow repetition. The latter probability is Pr[X > 2ad] where X is a random
variable with X =

∑bd
i=1Xi and X1, . . . , Xbd are independent Bernoulli trials

with probability p = m/n. By using a Chernoff bound we get

Pr[X > 2ad] < e−ad/3 . (3)

For the latter condition to hold, we choose a = " log k
log(n/m)# and b = a"n/m#

giving(
b

a

)
≤ (e

b

a
)a ≤ (e" n

m
#)

log k
log(n/m)+1 < elog k+1 · 2log(n/m)·(log k

log(n/m)+1) = kO(1).

120 J. Groth, A. Kiayias, and H. Lipmaa

When including d = kO(1) we will therefore have ad = kO(1) so the server will
run in polynomial time. We observe for future use that at the same time

(
b

a

)
≥ (

b

a
)a ≥ " n

m
#

log k
log(n/m) ≥ max(k,

n

m
) ≥ k.

As we will see the above constraints on the parameters will be sufficient to get an
optimal communication complexity. Note that in order to get perfect correctness,
the client can check whether indeed all blocks need extraction of at most 2ad
records. In the unlikely case this is not the case, the client can send the indices
that it wants to extract in the clear. This latter protocol is obviously not private,
but is only invoked with negligible probability. We have the following protocol
construction:

1. Set a = " log k
log(n/m)# and b = a"n/m# and d = "min(m

a ,
αk/4

a�+2 log (b
a)

)#.
2. The client generates a seed s ← {0, 1}k for the pseudorandom generator

and checks that ψ = PRG(s) is a permutation of the indices so at most
2ad records need to be extracted from each block of size bd.

3. In the unlikely event ψ does place more than 2ad records to be extracted in
the same block, the client sends i1, . . . , im in clear to the server (encoded so
it uses approximately log

(
n
m

)
bits of communication). The server responds

with (xi1 , . . . , xim), which the client outputs and halts.
4. The client sends s to the server and the server permutes the indices ac-

cording to ψ = PRG(s).
5. The server divides the database into blocks of bd consecutive records and

encodes each block as a database consisting of d
(

b
a

)
records of length a�

such that each segment of
(

b
a

)
records contains all possible choices of a �-bit

records from the corresponding segment of b records in the block.
6. The client and the server run the restrict multi-query CPIR protocol (C,D)

on the "n/bd# encoded blocks of d
(

b
a

)
records to get 3d (a�)-bit strings. This

corresponds to extracting the up to 2ad records from each of the original
blocks.

7. The client decodes the output and reverses the permutation of the indices
to get the output (xi1 , . . . , xim).

First, the bound on the error probability given in Eq. 3 is neg-
ligible as it is bounded by e−ad/3 and it holds that ad = a ·
"min(m/a, (αk/4)/(a�+ 2 log

(
b
a

)
))# > k2/3 since m > k2/3 and � ≤ log(n/m)

and log
(

b
a

)
= log(kO(1)).

Regarding communication complexity, let us first compute it when

m

a
>

αk/4
a�+ 2 log

(
b
a

)

Multi-query CPIR with Constant Communication Rate 121

so d = "(αk/4)/(a�+ 2 log
(

b
a

)
)#. We send the pseudorandom seed of length k

and run the CPIR protocol "n/bd# times for a total communication of

("n/bd#+ 1) k <
nk

bd
+ 2k ≤ nk/(b · αk/4

a�+ 2 log2
(

b
a

)) + 2k

=
4n
αb
· (a�+ 2 log2

(
b

a

)
) + 2k ≤ 20

α
· na
b
· log2

n

m
+ 2k

≤40
α
·m log2

n

m
+ 2k ,

where we have used that a� + 2 log
(

b
a

)
≤ a log(n/m) + 2 log((eb/a)a) ≤

a log(n/m) + 2a log(e"n/m#) ≤ 5a log(n/m).
Next, we look at the case d = "m/a#. We have a communication complexity

of

("n/bd#+ 1) k <
nk

bd
+ 2k ≤ nka

bm
+ 2k ≤ 4k.

Also, in the rare cases where the client ends up sending the indices in the clear
we have a communication complexity of log

(
n
m

)
+m · � = O(m · log2(n/m) + k).

Lemma 4. The CPIR protocol for n > 9m,m > k2/3, � ≤ log2(n/m) is correct
and private. It has perfect correctness if the restricted multi-query CPIR protocol
has perfect correctness.

Proof. The protocol is perfectly correct because the restricted CPIR protocol
is correct. We just need to verify that the restricted protocol can actually be
applied, i.e., for sufficiently large k we have

3d ≤ αk

a�+ log2 d ·
(

b
a

) .
To see this holds, observe d ≤ k because

α/4 +
a�+ 2 log2

(
b
a

)
k

≤ 1

which follows from α/4 < 1 and a�+2 log2
(

b
a

)
= O(log2 k) (for sufficiently large

k). From the choice of d in the protocol we now get

d ≤
⌈ αk/4
a�+ 2 log

(
b
a

)⌉ ≤ ⌈ αk/4
a�+ log2 d ·

(
b
a

)⌉ < αk/3
a�+ log2 d ·

(
b
a

)
where the second inequality follows from d ≤ k ≤

(
b
a

)
(for sufficiently large choice

of k.)
With the choice of parameters we are guaranteed that the restricted multi-

query CPIR of communication complexity k bits can be used on each block of size
bd. An adversary with a probability of ε of breaking the privacy of the protocol

122 J. Groth, A. Kiayias, and H. Lipmaa

can therefore be converted into an adversary that breaks the restricted multi-
query CPIR with probability ε

�n/bd� except for the negligible probability that the
privacy breach is due to a bad pseudorandom seed. Similarly, a hybrid argument
shows that the multi-query protocol is correct. When the pseudorandom seed
is bad, we step down to a non-private but perfectly correct CPIR. Therefore, if
the restricted multi-query CPIR has perfect correctness, then we have perfect
correctness of our CPIR. ��

5.4 Multi-query CPIR for � > log2(n/m)

The final case is where 9m < n ∧ k2/3 < m ∧ � > log2(n/m). We split each
database record into �′ := "�/"log2(n/m)## records of length "log2(n/m)# bits
each. We now need to extract �′ ·m out of �′ · n records of length "log2(n/m)#.
Using the previous construction, we get a multi-query CPIR protocol that can
do this with communication complexity O

(
�′m · log2

(
�′n
�′m

)
+ k

)
= O(m�+ k).

5.5 Summary: Communication-Optimal Multi-query CPIR

Combining the four protocols, we get a communication-optimal multi-query
CPIR:

1. If n ≤ 9m send the entire database to the client
2. Else if m ≤ k2/3 use the CPIR protocol from Section 5.2 with communica-

tion complexity O(m�+ k)
3. Else if � ≤ log2(n/m) use the CPIR protocol from Section 5.3 with com-

munication complexity O(m · log2(n/m) + k)
4. Else if � > log2(n/m) use the CPIR protocol from Section 5.4 with com-

munication complexity O(m�+ k)

For sufficiently large k this protocol works for all choices of (m,n, �). The
communication complexity is O(m� +m · log2(n/m) + k), which is optimal up
to a constant for perfectly correct CPIR. As a corollary to the lemmas in this
section, we get the following:

Theorem 3. The CPIR protocol given above is correct and private. It has perfect
correctness if the restricted multi-query CPIR protocol has perfect correctness.

Acknowledgments. Several reviewers have offered helpful comments on this
paper. We would like in particular to thank an anonymous reviewer from ICALP
2009 for a long and insightful review.

The first author was supported by Engineering and Physical Sciences Research
Council grant number EP/G013829/1. The second author performed the work
at the University of Connecticut, Department of Computer Science and Engi-
neering, partly supported by NSF grants 0447808,0831304,0831306. The third
author was supported by Estonian Science Foundation grant #8058 and the
European Union through the European Regional Development Fund.

Multi-query CPIR with Constant Communication Rate 123

References

1. Blömer, J., May, A.: A Tool Kit for Finding Small Roots of Bivariate Polynomi-
als over the Integers. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 251–267. Springer, Heidelberg (2005)

2. Cachin, C., Micali, S., Stadler, M.: Computational Private Information Retrieval
with Polylogarithmic Communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

3. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval.
In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, October 23–25, pp. 41–50. IEEE, Los Alamitos (1995)

4. Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known. In: Maurer [11], pp. 178–189

5. Coppersmith, D.: Finding a Small Root of a Univariate Modular Equation. In:
Maurer [11], pp. 155–165

6. Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with
Constant Communication Rate. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815.
Springer, Heidelberg (2005)

7. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their applica-
tions. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on the Theory
of Computing, Chicago, IL, USA, June 13–16, pp. 262–271. ACM Press, New York
(2004)

8. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

9. Kushilevitz, E., Ostrovsky, R.: Replication is Not Needed: Single Database,
Computationally-Private Information Retrieval. In: 38th Annual Symposium on
Foundations of Computer Science, Miami Beach, Florida, October 20–22, pp. 364–
373. IEEE Computer Society, Los Alamitos (1997)

10. Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication.
In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650,
pp. 314–328. Springer, Heidelberg (2005)

11. Maurer, U. (ed.): EUROCRYPT 1996. LNCS, vol. 1070. Springer, Heidelberg
(1996)

12. Naor, M., Pinkas, B.: Oblivious Transfer and Polynomial Evaluation. In: Proceed-
ings of the Thirty-First Annual ACM Symposium on the Theory of Computing,
Atlanta, Georgia, USA, May 1–4, pp. 245–254. ACM Press, New York (1999)

13. Pohlig, S., Hellman, M.: An Improved Algorithm for Computing Logarithms over
GF(p) and Its Cryptographic Significance. IEEE Transactions on Information The-
ory 24, 106–110 (1978)

Further Observations on Optimistic Fair
Exchange Protocols in the Multi-user Setting

Xinyi Huang1, Yi Mu2, Willy Susilo2, Wei Wu2, and Yang Xiang3

1 School of Information Systems,
Singapore Management University, Singapore

xyhuang@smu.edu.sg
2 Centre for Computer and Information Security Research,

School of Computer Science and Software Engineering,
University of Wollongong, Australia
{ymu,wsusilo,ww986}@uow.edu.au

3 School of Information Technology, Deakin University, Australia
yxiang2@gmail.com

Abstract. Recent research has shown that the single-user security of
optimistic fair exchange cannot guarantee the multi-user security. This
paper investigates the conditions under which the security of optimistic
fair exchange in the single-user setting is preserved in the multi-user
setting. We first introduce and define a property called “Strong
Resolution-Ambiguity”. Then we prove that in the certified-key model,
an optimistic fair exchange protocol is secure in the multi-user setting if
it is secure in the single-user setting and has the property of strong
resolution-ambiguity. Finally we provide a new construction of opti-
mistic fair exchange with strong resolution-ambiguity. The new protocol
is setup-free, stand-alone and multi-user secure without random oracles.

1 Introduction

In a fair exchange protocol, two parties can exchange their items in a fair way so
that no one can gain any advantage in the process. A simple way to realize fair
exchange is to introduce an online trusted third party who acts as a mediator:
earth party sends the item to the trusted third party, who upon verifying the
correctness of both items, forwards each item to the other party. A drawback of
this approach is that the trusted third party is always involved in the exchange
even if both parties are honest and no fault occurs. In practice, the trusted
third party could become a bottleneck of the system and is vulnerable to the
denial-of-service attack.

Optimistic Fair Exchange (also known as off-line fair exchange) was intro-
duced by Asokan et al. [1]. An optimistic fair exchange protocol also needs a
third party called “arbitrator”, who is not required to be online all the time.
Instead, the arbitrator only gets invoked when something goes wrong (e.g., one
party attempts to cheat or other faults occur). An optimistic fair exchange proto-
col involves three participants, namely the signer, the verifier and the arbitrator.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 124–141, 2010.
c© International Association for Cryptologic Research 2010

Further Observations on OFE Protocols in the Multi-user Setting 125

The signer (say, Alice) first issues a verifiable “partial signature” σ′ to the verifier
(say, Bob). Bob verifies the validity of σ′ and fulfills his obligation if σ′ is valid.
After that, Alice sends Bob a “full signature” σ to complete the transaction.
Thus, if no problem occurs, the arbitrator does not participate in the exchange.
However, if Bob does not receive the full signature σ from Alice, Bob can send
σ′ (and the proof of fulfilling his obligation) to the arbitrator, who will convert
σ′ to σ for Bob.

An optimistic fair exchange protocol can be setup-driven or setup-free [23].
An optimistic fair exchange protocol is called setup-driven if an initial-key-setup
procedure between a signer and the arbitrator is involved. On the other hand,
an optimistic fair exchange protocol is called setup-free if the signer does not
need to contact the arbitrator, except that the signer can obtain and verify the
arbitrator’s public key certificate and vice versa. As shown in [10], setup-free is
more desirable for the realization of optimistic fair exchange in the multi-user
setting. Another notion of optimistic fair exchange is stand-alone [23], which
requires that the full signature be an ordinary signature.

1.1 Previous Work

As one of the fundamental problems in secure electronic transactions and digi-
tal rights management, fair exchange has been studied intensively since its in-
troduction. It is known that optimistic fair exchange can be constructed (in a
generic way) using “two signatures” construction [11], verifiably encrypted signa-
ture [2,3,8,9,15,20,18], the sequential two-party multisignature (first introduced
by Park et al. [17], and then broken and repaired by Dodis and Reyzin [11]),
the OR-proof [10], and conventional signature and ring signature [14]. In the
following, we only review some results which are most relevant to this paper.

Optimistic Fair Exchange in the Single-user Setting
There are three parties involved in an optimistic fair exchange protocol, which
are signer(s), verifier(s) and arbitrator(s). Most work about optimistic fair ex-
change was considered only in the single-user setting, namely there is only one
signer. The first formal security model of optimistic fair exchange was proposed
in [2,3]. Dodis and Reyzin [11] defined a more generalized and unified model
for non-interactive optimistic fair exchange, by introducing a new cryptographic
primitive called verifiably committed signature. In [11], the security of a verifiably
committed signature scheme (equivalently, an optimistic fair exchange protocol)
in the single-user setting consists of three aspects: security against the signer,
security against the verifier and security against the arbitrator. While the arbi-
trator is not fully trusted, it is still assumed to be semi-trusted in the sense that
the arbitrator will not collude with the signer or the verifier. In the remainder
of this paper, an optimistic fair exchange protocol is single-user secure (or, se-
cure in the single-user setting) means that it is secure in the single-user setting
defined in [11]. Notice that their definition does not include all security notions
of optimistic fair exchange (e.g., abuse-free [12], non-repudiation [16,21], timely-
termination [2,3] and signer-ambiguity [13]), but it does not affect the point we

126 X. Huang et al.

want to make in this paper. Dodis and Reyzin [11] proposed a stand-alone but
setup-driven verifiably committed signature scheme from Gap Diffie-Hellman
problem. Constructions of stand-alone and setup-free verifiably committed sig-
nature were proposed in [22,23].

Optimistic Fair Exchange in the Multi-user Setting
Recently the security of non-interactive optimistic fair exchange in the multi-
user setting was independently studied in [10] and [24]. Optimistic fair exchange
in the multi-user setting refers to the scenario where there are two or more
signers in the system, but items are still exchanged between two parties. This
is different from the multi-party exchange which considers the exchange among
three or more parties.

In [10], Dodis, Lee and Yum pointed out that the single-user security of opti-
mistic fair exchange cannot guarantee the multi-user security. They presented a
simple counterexample which is secure in the single-user setting but is insecure
in a multi-user setting. (In the counterexample, a dishonest verifier in the multi-
user setting can obtain a full signature without fulfilling the obligation.) Dodis,
Lee and Yum defined the multi-user security model of optimistic fair exchange
and provided a generic setup-free construction of optimistic fair exchange se-
cure in the multi-user setting [10]. The security of their construction relies on
one-way functions in the random oracle model and trapdoor one-way permu-
tations in the standard model. The analysis in [10] shows that two well-known
techniques of optimistic fair exchange (namely, constructions based on verifiably
encrypted signatures and sequential two-party signatures) remain secure in the
multi-user setting if the underlying primitives satisfy some security notions. In-
dependently, Zhu, Susilo and Mu [24] also demonstrated a verifiably committed
signature scheme which is secure in the model defined in [11] but is insecure in
the multi-user setting. They defined the security notions of verifiably commit-
ted signature in the multi-user setting and proposed a concrete construction of
multi-user secure stand-alone and setup-free verifiably committed signature [24].
The non-interactive version of their scheme uses the Fiat-Shamir technique and
requires a hash function, which is viewed as the random oracle in security anal-
ysis. Due to [10], multi-user secure stand-alone and setup-free optimistic fair
exchange protocols without random oracles can be constructed from verifiably
encrypted signature schemes without random oracles [15,20,18].

Certified-Key Model and Chosen-Key Model
Most optimistic fair exchange protocols are considered in the certified-key model
where the user must prove the knowledge of the private key at the key regis-
tration phase. Therefore, the adversary is only allowed to make queries about
certified public keys. Huang et al. [14,13] considered the multi-user security of
optimistic fair exchange in the chosen-key model, where the adversary can make
queries about public keys arbitrarily without requiring to show its knowledge of
the corresponding private keys. Optimistic fair exchange protocols secure in the
certified-key model may not be secure in the chosen-key model [14].

Huang et al. [14] proposed another generic construction for optimistic fair ex-
change. Their construction can lead to efficient setup-free optimistic fair exchange

Further Observations on OFE Protocols in the Multi-user Setting 127

protocols secure in the standard model and the chosen-key model. Very recently,
the first efficient ambiguous optimistic fair exchange protocol was proposed in [13].
The new protocol is proven secure in the multi-user setting and chosen-key model
without relying on the random oracle assumption. Without any doubt, it is more
desirable if cryptographic protocols can be proven secure in the chosen-key model.
However, in this paper, the security of optimistic fair exchange is considered in the
certified-key model (as defined in [10]), since certified-key model is reasonable and
has been widely used in the research of public key cryptography. In the remain-
der of this paper, when we say an optimistic fair exchange protocol is multi-user
secure (or, secure in the multi-user setting), it refers that the protocol is secure in
the multi-user setting defined in [10] (which is in the certified-key model).

1.2 Motivation

The research on optimistic fair exchange has shown that:

– The single-user security of optimistic fair exchange does not guarantee the
multi-user security [10,24].

– Not all single-user secure optimistic fair exchange protocols are insecure in
the multi-user setting [10]. Several single-user secure protocols can be proven
secure in the multi-user setting [10].

However, it remains unknown under which conditions single-user secure opti-
mistic fair exchange protocols will be secure in the multi-user setting? We believe
the investigation of this question not only will provide a further understanding
on the security of optimistic fair exchange in the multi-user setting, but also can
introduce new constructions of multi-user secure optimistic fair exchange.

1.3 Our Contributions

This paper focuses on both theory investigations and new construction of opti-
mistic fair exchange in the multi-user setting.

1. In Section 3, we introduce and define a new property of optimistic fair ex-
change, which we call Strong Resolution-Ambiguity. Briefly speaking, an opti-
mistic fair exchange protocol has the property of strong resolution-ambiguity
if one can transform a partial signature σ′ into a full signature σ using signer’s
private key or arbitrator’s private key, and given such a pair (σ′, σ), it is in-
feasible to tell which key is used in the conversion. While there are some
optimistic fair exchange protocols satisfying strong resolution-ambiguity, it
is the first time this notion is addressed and formally defined.

2. For an optimistic fair exchange protocol with strong resolution-ambiguity,
we prove that its security in the single-user setting is preserved in the multi-
user setting. More precisely, we show that: (1) the security against the signer
and the security against the verifier in the single-user setting are preserved
in the multi-user setting for optimistic fair exchange protocols with strong

128 X. Huang et al.

resolution-ambiguity, and (2) the security against the arbitrator in the single-
user setting is preserved in the multi-user setting (for optimistic fair exchange
protocols either with or without strong resolution-ambiguity).

While strong resolution-ambiguity is not a necessary property for (multi-
user secure) optimistic fair exchange protocols, our result provides a new
approach for the security analysis of optimistic fair exchange protocols in
the multi-user setting: One only needs to analyze the security in the single-
user setting (rather than the more complex multi-user setting) for optimistic
fair exchange protocols with strong resolution-ambiguity.

3. In Section 4, we provide a new construction of optimistic fair exchange with
strong resolution-ambiguity. Our construction is a variant of the optimistic
fair exchange protocol from the verifiably encrypted signature scheme pro-
posed in [15]. The protocol in [15] has several desirable properties, e.g.,
setup-free, stand-alone and multi-user secure without random oracles un-
der computational Diffie-Hellman assumption. Our protocol retains all these
properties and is more efficient in generating, transmitting and verifying
partial signatures. This however is achieved at the cost of larger key size.

2 Definitions of Optimistic Fair Exchange in the
Multi-user Setting

This section reviews the syntax and security definitions of optimistic fair ex-
change in the multi-user setting [10].

2.1 Syntax of Optimistic Fair Exchange

A setup-free non-interactive optimistic fair exchange protocol involves three
parties: the signer, the verifier and the arbitrator. It is defined by the follow-
ing efficient algorithms. An algorithm is called efficient if it is a probabilistic
polynomial-time Turing machine.

– SetupTTP. The arbitrator setup algorithm takes as input a parameter Param,
and gives as output a secret arbitration key ASK and a public partial verifi-
cation key APK.

– SetupUser. The user setup algorithm takes as input Param and (optionally)
APK, and gives as output a private signing key SK and a public verification
key PK.

– Sig and Ver. These are similar to signing and verification algorithms in an
ordinary digital signature scheme.
• The signing algorithm Sig, run by a signer Ui, takes as input (m, SKUi ,

APK) and gives as output a signature σUi on the message m. In
fair exchange protocols, signatures generated by Sig are called as full
signatures.

• The verification algorithm Ver, run by a verifier, takes as input (m,σUi ,
PKUi ,APK) and returns valid or invalid. A signature σUi is said to be a
valid full signature of m under PKUi if Ver(m,σUi ,PKUi ,APK) = valid.

Further Observations on OFE Protocols in the Multi-user Setting 129

– PSig and PVer. These are partial signing and verification algorithms, where
PSig together with Res (which will be defined soon) are functionally equiv-
alent to Sig.

• The partial signing algorithm PSig, run by a signer Ui, takes as input
(m, SKUi ,APK) and gives as output a signature σ′

Ui
on m. To distinguish

from those produced by Sig, signatures generated by PSig are called as
partial signatures.

• The partial verification algorithm PVer, run by a verifier, takes as input
(m,σ′

Ui
,PKUi ,APK) and returns valid or invalid. A signature σ′

Ui
is

said to be a valid partial signature ofm under PKUi if PVer(m,σ′
Ui
,PKUi ,

APK) = valid.

– Res. The resolution algorithm Res takes as input a valid partial signature σ′
Ui

of m under PKUi and the secret arbitration key ASK, and gives as output a
signature σUi . This algorithm is run by the arbitrator for a party Uj, who
does not receive the full signature from Ui, but possesses a valid partial
signature of Ui and a proof that he/she has fulfilled the obligation to Ui.

Correctness. If each signature is generated according to the protocol specifica-
tion, then it should pass the corresponding verification algorithms. Namely,

1. Ver(m, Sig(m, SKUi ,APK),PKUi ,APK) = valid.
2. PVer(m,PSig(m, SKUi ,APK),PKUi ,APK) = valid.
3. Ver(m,Res(m,PSig(m, SKUi ,APK),ASK,PKUi),PKUi ,APK) = valid.

Resolution-Ambiguity [10,11,14,16,24]. Any “resolved signature” Res(m,PSig
(m, SKUi ,APK),ASK,PKUi) is (at least computationally) indistinguishable from
the “actual signature” Sig(m, SKUi ,APK).

Security of Optimistic Fair Exchange. Intuitively, the fairness of an ex-
change requires that two parties exchange their items in a fair way so that either
each party obtains the other’s item or neither party does. This requirement con-
sists of the security against signer(s), the security against verifier(s) and the
security against the arbitrator, which will be defined by the game between the
adversary and the challenger. During the game, the challenger will maintain three
initially empty lists: (1) PK-List contains the public keys of created users; (2)
PartialSign-List contains the partial signing queries made by the adversary;
and (3) Resolve-List contains the resolution queries made by the adversary.

The definitions in the following sections are inspired by those in [10], with
modifications which we believe can demonstrate the difference between the
single-user security and the multi-user security of optimistic fair exchange.

2.2 Security against Signer(s)

In an optimistic fair exchange protocol, the signer should not be able to generate
a valid partial signature which cannot be converted into a valid full signature by
the arbitrator. This property is defined by the following game.

130 X. Huang et al.

– Setup. The challenger generates the parameter Param and the arbitrator’s
key pair (APK,ASK) by running SetupTTP. The adversary A is given Param
and APK.

– Queries. Proceeding adaptively, A can make following queries.
Creating-User-Queries. A can create a user Ui by making a creating-user
query (Ui,PKUi). In order to convince the challenger to accept PKUi (i.e.,
add PKUi to the PK-List), A must prove its knowledge of the legitimate
private key SKUi . This can be realized by requiring the adversary to hand
over the private key as suggested in [15], or generate a proof of knowledge [4]
of the private key1.
Resolution-Queries. For a resolution-query (m,σ′,PK) satisfying PVer(m,σ′,
PK,APK) = valid, the challenger first browses PK-List. If PK /∈ PK-
List, an error symbol “%” will be returned to the adversary. Otherwise, the
challenger adds (m,PK) to the Resolve-List (if the pair (m,PK) is not there)
and responds with an output of Res(m,σ′,ASK,PK).

– Output. Eventually, A outputs a triple (mf , σ
′
f ,PK∗) and wins the game if

PK∗ ∈ PK-List, PVer(mf , σ
′
f ,PK∗,APK) = valid, and Ver(mf ,Res(mf , σ

′
f ,

ASK,PK∗),PK∗,APK) = invalid.

Let Adv OFEA be the probability that A wins in the above game, taken over
the coin tosses made by A and the challenger. An adversary A is said to
(t, qCU , qR, ε)-break the security against signer(s) if in time t, A makes at most
qCU Creating-User-Queries, qR Resolution-Queries and Adv OFEA is at least ε.

Definition 1 (Security against Signer(s)). An optimistic fair exchange pro-
tocol is (t, qCU , qR, ε)-secure against signer(s) if no adversary (t, qCU , qR, ε)-
breaks it.

By setting qCU = 1, we can define the security against the signer in the single-user
setting, namely an optimistic fair exchange protocol is (t, qR, ε)-secure against the
signer in the single-user setting if no adversary (t, 1, qR, ε)-breaks it.

2.3 Security against Verifier(s)

Briefly speaking, the security against verifier(s) requires that the verifier should
not be able to generate a valid partial signature of a new message or generate a
valid full signature without the assistance from the signer or the arbitrator.

The first requirement is ensured by the security against the arbitrator, namely
even the arbitrator (knowing more than the verifier) cannot succeed in that
attack. This will be defined shortly in Section 2.4. The second requirement is
defined as below.

– Setup. The challenger generates the parameter Param and the arbitrator’s
key pair (APK,ASK) by running SetupTTP. The challenger also generates a
key pair (PK∗, SK∗) by running SetupUser, and adds PK∗ to PK-List. The
adversary B is given Param, APK and PK∗.

1 We will use the latter approach in the proof.

Further Observations on OFE Protocols in the Multi-user Setting 131

– Queries. Proceeding adaptively, B can make all queries defined in
Section 2.2 and Partial-Signing-Queries defined as follows.
Partial-Signing-Queries. For a partial-signing query (m,PK∗), the challenger
responds with an output of PSig(m, SK∗,APK). After that, (m,PK∗) is added
to the PartialSign-List. (B is allowed to make Partial-Signing-Queries only
about PK∗ as other public keys are created by B.)

– Output. Eventually, B outputs a pair (mf , σf) and wins the game if (mf ,
PK∗) /∈ Resolve-List and Ver(mf , σf ,PK∗,APK) = valid.

Let Adv OFEB be the probability that B wins in the above game, taken over the
coin tosses made by B and the challenger. An adversary B is said to (t, qCU , qPS ,
qR, ε)-break the security against verifier(s) if in time t, B makes at most qCU

Creating-User-Queries, qPS Partial-Signing-Queries, qR Resolution-Queries and
Adv OFEB is at least ε.

Definition 2 (Security against Verifier(s)). An optimistic fair exchange
protocol is (t, qCU , qPS , qR, ε)-secure against verifier(s) if no adversary (t, qCU ,
qPS , qR, ε)-breaks it.

Similarly, we can obtain the definition of the security against the verifier
in the single-user setting, namely an optimistic fair exchange protocol is
(t, qPS , qR, ε)-secure against the verifier in the single-user setting if no adver-
sary (t, 0, qPS , qR, ε)-breaks it.

2.4 Security against the Arbitrator

In this section, we will define the security against the arbitrator and prove that
the security against the arbitrator in the single-user setting is preserved in the
multi-user setting.

The security against the arbitrator requires that the arbitrator, without the
partial signature on a message m, should not be able to produce a valid full
signature on m2. This notion is defined as follows.

– Setup. The challenger generates the parameter Param, which is given to the
adversary C.

– Output-I. C generates the arbitrator’s public key APK and sends it to the
challenger. (C is required to prove the knowledge of the legitimate private
key ASK.) In response, the challenger generates a key pair (PK∗, SK∗) by
running SetupUser and adds PK∗ to PK-List. The adversary C is given PK∗.

– Queries. Proceeding adaptively, C can make Creating-User-Queries (defined
in Section 2.2) and Partial-Signing-Queries (defined in Section 2.3).

– Output-II. Eventually, C outputs a pair (mf , σf) and wins the game if
(mf ,PK∗) /∈ PartialSign-List and Ver(mf , σf ,PK∗,APK) = valid.

2 As almost all previous work about optimistic fair exchange, we assume that signer-
arbitrator collusion or verifier-arbitrator collusion will not occur. Please refer to [3,11]
for discussions of those attacks.

132 X. Huang et al.

Let Adv OFEC be the probability that C wins in the above game, taken over
the coin tosses made by C and the challenger. An adversary C is said to
(t, qCU , qPS , ε)-break the security against the arbitrator if in time t, C makes at
most qCU Creating-User-Queries, qPS Partial-Signing-Queries and Adv OFEC is
at least ε.

Remark 1. In the game, the adversary must first generate the arbitrator’s public
key APK before obtaining PK∗ or making other queries. This reflects the defini-
tion of optimistic fair exchange as APK could be an input of algorithms SetupUser

and PSig. For concrete protocols where these algorithms do not require APK as
the input, the adversary can obtain PK∗ and/or make partial-signing-queries of
PK∗ before generating APK.

Definition 3 (Security against the Arbitrator). An optimistic fair ex-
change protocol is (t, qCU , qPS , ε)-secure against the arbitrator in the multi-user
setting if no adversary (t, qCU , qPS , ε)-breaks it.

We can obtain the definition of the security against the arbitrator in the single-
user setting, namely an optimistic fair exchange protocol is (t, qPS , ε)-secure
against the arbitrator in the single-user setting if no adversary (t, 0, qPS , ε)-
breaks it. The following theorem shows that the security against the arbitrator
in the single-user setting is preserved in the multi-user setting.

Theorem 1. An optimistic fair exchange protocol is (t, qCU , qPS , ε)-secure
against the arbitrator in the multi-user setting if it is (t + t1qCU , qPS , ε)-secure
against the arbitrator in the single-user setting. Here, t1 denotes the time unit
to respond to one creating-user query.

Proof. We denote by CS the adversary in the single-user setting and CM in the
multi-user setting. We will show how to convert a successful CM to a successful
CS . At the beginning, CS obtains Param from its challenger in the single-user
setting.

– Setup. Param is given to CM .
– Output-I. Let APK be the arbitrator’s public key created by CM in the

multi-user setting. APK will be sent to CS ’s challenger in the single-user
setting. CS will make use of CM to generate a proof of knowledge, namely CS

will act as a relay in the proof by forwarding all messages from its challenger
to CM (or, from CM to its challenger). At the end of this phase, CS will be
given a public key PK∗, which will be forwarded to CM as its challenging
public key in the multi-user setting.

– Queries. We show how CS can correctly answer CM ’s queries.
Creating-User-Queries. For a creating-user query (Ui,PKUi), CS will add
PKUi to PK-List if CM can generate a proof of knowledge of the legitimate
private key.
Partial-Signing-Queries. For a partial-signing query (m,PK∗), CS forwards
it to its own challenger and sends the response to CM .

Further Observations on OFE Protocols in the Multi-user Setting 133

– Output-II. Eventually, CM will output a pair (mf , σf). CS will set (mf , σf)
as its own output in the single-user setting.

CS will win the game in the single-user setting if CM wins the game in the
multi-user setting. It follows that the success probability of CS will be ε if CM

can (t, qCU , qPS , ε)-break the security against the arbitrator in the multi-user
setting.

It remains to show the time consumption in the proof. CS ’s running time is
the same as CM ’s running time plus the time it takes to answer creating-user-
queries, which we assume each query takes time at most t1. Therefore, the total
time consumption is t+ t1qCU .

We have shown that for an optimistic fair exchange protocol, if there is an
adversary (t, qCU , qPS , ε)-breaks the security against the arbitrator in the multi-
user setting, then there is an adversary (t + t1qCU , qPS , ε)-breaks the security
against the arbitrator in the single-user setting. This completes the proof of
Theorem 1. �
Section 3 will investigate the conditions under which the security against the
signer and the security against the verifier in the single-user setting will remain
in the multi-user setting.

3 Strong Resolution-Ambiguity

This section investigates a new property of optimistic fair exchange, which
we call “Strong Resolution-Ambiguity”. We will give the definition of strong
resolution-ambiguity and prove that for optimistic fair exchange protocols with
that property, the security against the signer and the security against the verifier
in the single-user setting are preserved in the multi-user setting. Before giving
the formal definition, we first review a generic construction of optimistic fair
exchange [11].

Optimistic Fair Exchange from Sequential Two-Party Multisignature
A multisignature scheme allows any subgroup of users to jointly sign a document
such that a verifier is convinced that each user of the subgroup participated in
the signing. To construct an optimistic fair exchange protocol, one can use a
simple type of multisignature, which is called sequential two-party multisigna-
ture. In this construction, the signer first generates two key pairs (pk, sk) and
(APK,ASK), where (pk,APK,ASK) are sent to the arbitrator through a secured
channel. The signer’s private key SK is the pair (sk,ASK) and the arbitrator’s
private key is ASK. The partial signature σ′ of a message m is an ordinary signa-
ture generated using sk, and the full signature σ is the multisignature generated
using σ′ and ASK. Given a valid partial signature, both the arbitrator and the
signer can convert it to a full signature using ASK. (Recall that ASK is the ar-
bitrator’s private key and part of the signer’s private key.) It is thus virtually
infeasible to tell who (the signer or the arbitrator) converted the partial sig-
nature to the full signature. This is the essential requirement of optimistic fair
exchange with strong resolution-ambiguity, which is formally defined as follows.

134 X. Huang et al.

3.1 Definition of Strong Resolution-Ambiguity

We first introduce a probabilistic polynomial-time algorithm Convert which al-
lows the signer to convert a partial signature to a full one. The definition of
Convert is given as below.

– Convert. This algorithm takes as input the signer’s private key SKUi , (option-
ally) arbitrator’s public key APK, a messagem and its valid partial signature
σ′. The output is the signer’s full signature σ on m.

In a trivial case, each optimistic fair exchange protocol has an algorithm
Convert = Sig. (In this case the full signature generated by Convert could be
totally independent of the partial signature.) Our interest here is to investigate
non-trivial Convert and compare it with the resolution algorithm Res. Recall
that, with the knowledge of ASK, one can also convert a partial signature to a
full one using Res. This makes the following question interesting: Given a valid
partial signature σ′, what are the differences between full signatures produced by
Convert and those produced by Res? The answer to this question inspires the
definition of strong resolution-ambiguity.

To formally define the strong resolution-ambiguity, we assume the arbitrator’s
key pair satisfies an NP-relation RTTP, and users’ key pairs satisfy another NP-
relation RU. An NP-relation R is a subset of {0, 1}∗ × {0, 1}∗ for which there
exists a polynomial f such that |y| ≤ f(|x|) for all (x, y) ∈ R, and there exists a
polynomial-time algorithm for deciding membership in R.

In an optimistic fair exchange protocol defined in Section 2, let (APK,ASK)
be any pair in RTTP, and let (PKUi , SKUi) be any pair in RU. For any pair (m,σ′)
satisfying PVer(m,σ′,PKUi ,APK) = valid, we define

D
(m,σ′)
Convert: probability distribution of full signatures produced by Convert(m,σ′,
SKUi ,APK).

D
(m,σ′)
Res : probability distribution of full signatures produced by Res(m,σ′,PKUi ,
ASK).

Definition 4 (Strong Resolution-Ambiguity). An optimistic fair exchange
protocol is said to satisfy strong resolution-ambiguity if there exists an algorithm
Convert as defined above such that D

(m,σ′)
Convert is identical to D

(m,σ′)
Res .

Strong Resolution-Ambiguity and Resolution-Ambiguity: A Brief
Comparison
An optimistic fair exchange protocol with strong resolution-ambiguity will sat-
isfy resolution-ambiguity if Sig is defined as (PSig + Convert), namely the signer
first generates a partial signature and then converts it to a full one using Convert.
In this case, actual signatures (generated by Sig) are indistinguishable from re-
solved signatures (generated by Res). However, resolution-ambiguity cannot en-
sure strong resolution-ambiguity which requires that one can use the signer’s
private key to convert a partial signature to a full one and the conversion is
indistinguishable from that using the arbitrator’s private key.

Further Observations on OFE Protocols in the Multi-user Setting 135

3.2 Optimistic Fair Exchange Protocols with/without Strong
Resolution-Ambiguity

It is evident that the generic construction of optimistic fair exchange from se-
quential two-party multisignature [11] (reviewed at the beginning of Section 3)
has the strong resolution-ambiguity property by defining Convert = Res. Be-
low are some other concrete examples of optimistic fair exchange with/without
strong resolution-ambiguity.

Optimistic Fair Exchange from Verifiably Encrypted Signatures
Let OFE-VES be optimistic fair exchange protocols constructed from verifiably
encrypted signatures. If the algorithm Sig is deterministic (e.g., the verifiably
encrypted signature scheme in [8]), then OFE-VES will have the strong resolution-
ambiguity property. For any valid partial signature of m, there is only one out-
put of the algorithm Res, namely the unique full signature of m. By defining
Convert = Sig, D

(m,σ′)
Convert and D

(m,σ′)
Res will be identical and the protocols satisfy

strong resolution-ambiguity. OFE-VES with probabilistic Sig algorithms could
also have the strong resolution-ambiguity property. One example is the opti-
mistic fair exchange protocol from the verifiably encrypted signature scheme
proposed in [15]. In [15], the Sig algorithm is the signing algorithm in Waters
signature [19], and the partial signature σ′ is the encryption of the full signa-
ture σ using APK. After extracting σ from σ′, the arbitrator will randomize σ
such that the output of Res is a full signature uniformly distributed in the full
signature space. This makes the distribution of full signatures produced by Res
the same as that of full signatures generated by Convert = Sig.

A Concrete Instance of the Generic Construction in [14]
The generic construction of optimistic fair exchange in [14] is based on a con-
ventional signature scheme and a ring signature scheme, both of which can be
constructed efficiently without random oracles. In the protocol, the signer and
the arbitrator first generate their own key pairs. The full signature of a message
m is a pair (s1, s2), where s1 is the signer’s conventional signature on the message
m, and s2 is a ring-signature on m and s1. Either the signer or the arbitrator is
able to generate s2. This construction will satisfy strong resolution-ambiguity if
the distribution of ring signatures generated by the signer is the same as that of
ring signatures generated by the arbitrator (e.g., 2-User ring signature scheme
without random oracles [5]).

A Concrete Protocol without Strong Resolution-Ambiguity
One example of optimistic fair exchange protocols without strong resolution-
ambiguity is the single-user secure but multi-user insecure optimistic fair
exchange protocol proposed in [10]. In this protocol, the full signature of a mes-
sage m is σ = (r, δ), where δ is the signer’s conventional signature on “m‖y”,
y = f(r), and f is a trapdoor one-way permutation. The partial signature is
defined as σ′ = (y, δ). To convert (y, δ) to a full signature, the arbitrator uses
his/her private key f−1 to compute r = f−1(y) and obtain the full signature
(r, δ). Given a message m and its full signature (r, δ), it is hard to tell if (r, δ)
is produced by Sig directly, or first generated by PSig and then by Res. Thus,

136 X. Huang et al.

as shown in [10], the property “resolution-ambiguity” is satisfied. On the other
hand, this protocol does not have strong resolution-ambiguity as f is a trap-
door one-way permutation. Suppose, otherwise, there is an algorithm Convert
such that for a partial signature σ′, the outputs of Convert(m,σ′, SKUi , f) have
the same probability distribution as those of Res(m,σ′,PKUi , f

−1). Note that
for σ′ = (y, δ), Res will output a pair (r, δ) such that y = f(r). It follows that
Convert(m,σ′, SKUi , f) must also output (r, δ) satisfying y = f(r) if the protocol
has strong resolution-ambiguity. This breaks the one-wayness of f , namely given
y, there is an efficient algorithm Convert which can find r such that f(r) = y
without the trapdoor f−1.

Notice that given a partial signature σ′, the signer can generate a full signature
σ such that σ is indistinguishable from the one converted by the arbitrator. To do
that, the signer needs to maintain a list {(r, y) : y = f(r)} when he/she produces
the partial signature σ′ = (y, δ). Later on, for a partial signature (y, δ), the signer
can search the list and find the matching pair (r, y). In this case, the signer can
generate a full signature (r, δ) which is indistinguishable from the one converted
by the resolution algorithm Res. However, this approach does not satisfy the
definition of Convert since it requires an additional input r. (Recall that the
inputs of Convert are only SKUi , (m,σ′) and APK.)

3.3 Security of Optimistic Fair Exchange Protocols with Strong
Resolution-Ambiguity

Theorem 1 has shown that the security against the arbitrator in the single-user
setting is preserved in the multi-user setting. This section considers the other
two security notions, and we will prove that:

1. For optimistic fair exchange protocols with strong resolution-ambiguity, the
security against the signer in the single-user setting remains in the multi-user
setting (Theorem 2).

2. For optimistic fair exchange protocols with strong resolution-ambiguity, the
security against the verifier in the single-user setting remains in the multi-
user setting (Theorem 3).

Theorem 2. An optimistic fair exchange protocol with strong resolution am-
biguity is (t, qCU , qR, ε)-secure against signers in the multi-user setting, if it is
(t+ t1qCU + t2qR, qR, ε/qCU)-secure against the singer in the single-user setting.
Here, t1 is the time unit depends on the validity of the proof of knowledge and
t2 is the time unit depends on the algorithm Convert in the protocol.

Proof. We denote by AS the adversary in the single-user setting and AM in
the multi-user setting. In the proof, we use the standard method by showing
that for an optimistic fair exchange protocol with strong resolution-ambiguity, a
successful AM can be converted into a successful AS . We first give a high-level
description of the proof.
AS will act as the challenger of AM in the proof and answer all queries from

the latter. AS will set the challenging public key PK∗ of AM as its own challeng-
ing public key, and set AM ’s output as its own output. The most difficult part in

Further Observations on OFE Protocols in the Multi-user Setting 137

the proof is how AS can correctly answer resolution queries from AM . For reso-
lution queries related to PK∗, AS can use its own challenger to generate correct
responses. However, this is not feasible for resolution queries about other public
keys (since AS ’s challenger only responds to queries about PK∗). Fortunately,
such queries can be correctly answered by AS if the optimistic fair exchange
protocol has strong resolution-ambiguity. For a resolution query (m,σ′,PKUi),
AS can convert σ′ to a full signature σ using the algorithm Convert and the
private key SKUi . Due to Def. 4, this perfectly simulates the real game between
AM and the challenger in the multi-user setting. The private key SKUi can be
extracted by AS due to the validity of the proof of knowledge required in the
creating-user phase.

The details of the proof appear in the full version of this paper. �

Theorem 3. An optimistic fair exchange protocol with strong resolution ambi-
guity is (t, qCU , qPS , qR, ε)-secure against verifiers in the multi-user setting, if it
is (t+ t1qCU + t2qR, qPS , qR, ε)-secure against the verifier in the single-user set-
ting. Here, t1 is the time unit depends on the validity of the proof of knowledge
and t2 is the time unit depends on the algorithm Convert in the protocol.

Proof. The details of the proof appear in the full version of this paper.

Remark 2. Our analysis only shows that strong resolution-ambiguity is a suffi-
cient condition for single-user secure optimistic fair exchange protocols remaining
secure in the multi-user setting. It is not a necessary property for (multi-user
secure) optimistic fair exchange protocols.

4 A New Optimistic Fair Exchange Protocol with Strong
Resolution-Ambiguity

A new optimistic fair exchange protocol with strong resolution-ambiguity is pro-
posed in this section. The protocol is based on Waters signature [19] from bilinear
mappings. Definitions of bilinear mappings and computational Diffie-Hellman
assumption can be found in [19].

4.1 The Proposed Protocol

Let (G,GT) be bilinear groups of prime order p and let g be a generator of G. e
denotes the bilinear mapping G×G → GT . Let n be the bit-string length of the
message to be signed. For an element m in {0, 1}n, let M⊆ {1, 2, · · · , n} be the
set of all i for which the ith bit mi is 1. The parameter Param is (G,GT , p, g, e, n).

– SetupTTP. Given Param, the arbitrator chooses a random number w ∈ ZZp

and calculates W = gw. The arbitrator’s public key APK is W , and the
private key ASK is w.

– SetupUser. Given Param, this algorithm outputs a private signing key SKUi =
(xUi , yUi) and a public verification key PKUi = (XUi , YUi ,vUi), where

138 X. Huang et al.

1. xUi and yUi are randomly chosen in ZZp;
2. XUi = e(g, g)xUi and YUi = gyUi ; and
3. vUi is a vector consisting of n+ 1 elements V0, V1, V2, · · · , Vn. All these

elements are randomly selected in G.
– Sig. Given a message m, the signer Ui uses the private key xUi to generate

a Waters signature σ = (σ1, σ2), where σ1 = gxUi · (V0
∏

i∈M Vi)r, σ2 = gr

and r is a random number in ZZp.
– Ver. Given a message-signature pair (m,σ) and Ui’s public key PKUi =

(XUi , YUi ,vUi), this algorithm outputs valid if e(σ1, g) = XUi ·
e(V0

∏
i∈M Vi, σ2). Otherwise, this algorithm outputs invalid.

– PSig. Given a message m and the arbitrator’s public key W , the signer Ui

first runs Sig to obtain a full signature (σ1, σ2). After that, Ui calculates
σ′

1 = σ1 ·W yUi and σ′
2 = σ2. The partial signature σ′ is (σ′

1, σ
′
2).

– PVer. Given a pair (m,σ′), Ui’s public key PKUi and arbitrator’s public key
APK (which is W), one parses σ′ as (σ′

1, σ
′
2). This algorithm outputs valid if

e(σ′
1, g) = XUi ·e(YUi ,W)·e(V0

∏
i∈M Vi, σ

′
2). Otherwise, it outputs invalid.

– Res. Given a valid partial signature σ′ of the message m under a public
key PKUi = (XUi , YUi ,vUi), the arbitrator first parses σ′ as (σ′

1, σ
′
2). After

that, the arbitrator uses the private key w to calculate σ1 = σ′
1 · (YUi)−w

and σ2 = σ′
2. The arbitrator then chooses a random number r′ ∈ ZZp and

calculates σR
1 = σ1 · (V0

∏
i∈M Vi)r′

and σR
2 = σ2 · gr′

. The output of the
algorithm Res is (σR

1 , σ
R
2).

Analysis of Our Protocol. It is evident that our protocol is setup-free and
stand-alone. We show that it also satisfies strong resolution-ambiguity.

One can find an algorithm Convert, which is the same as Sig, such that given
any partial signature σ′, the outputs of Convert are indistinguishable from those
produced by Res, both of which are uniformly distributed in the valid signa-
ture space of Waters signature. Thus, the proposed protocol also satisfies strong
resolution-ambiguity.

The following theorem shows that the protocol is secure in the multi-user
setting.

Theorem 4. The proposed protocol is multi-user secure under computational
Diffie-Hellman assumption.

Proof. The details of the proof appear in the full version of this paper. �

4.2 Comparison to Previous Protocols

Table. 1 compares the known optimistic fair exchange protocols which have the
same properties as the newly proposed one (namely, non-interactive, setup-free,
stand-alone and multi-user secure without random oracles). The comparison is
made from the following aspects: (1) underlying complexity assumption, (2)
partial signature size and full signature size, and (3) the computational cost
of signing and verifying partial signatures and full signatures. We consider the
cost of signing and verifying partial signatures since the signer must generate

Further Observations on OFE Protocols in the Multi-user Setting 139

Table 1. Multi-user Secure Stand-Alone and Setup-Free Optimistic Fair Exchange
Protocols without Random Oracles

Our Protocol [15] [20] [18]
Complexity Assumption CDH CDH CT-CDH SDH

Full Signature Waters [19] Waters [19] Waters [19] BB [7]
Signature SizePSig 2|G| 3|G| 2|G| 2|G| + |ZZp|
Signing CostPSig CW+ 1ExpG CW+ 2ExpG CW CBB+2ExpG

Verification CostPVer 2BM+1BM 3BM 2BM+1BM 2BM+4BM

Notations.
CDH: Computational Diffie-Hellman assumption.
CT-CDH: Chosen-target computational Diffie-Hellman assumption [6].
SDH: Strong Diffie-Hellman assumption.
|G|: bit length of an element in G, |ZZp|: bit length of an element in ZZp.
CW: Computational cost of generating one Waters signature [19].
CBB: Computational cost of generating one BB signature [7].
ExpG: Exponentiation in G, ExpG: Pre-computable exponentiation in G.
BM : Bilinear mapping, BM: Pre-computable bilinear mapping.

a partial signature in each exchange, which will be verified by the verifier and
could also be checked again by the arbitrator. Therefore, the efficiency of signing
and verifying partial signatures is at least as important as that of full signatures.
In Table. 1, the most efficient one is the protocol constructed from the verifi-
ably encrypted signature scheme in [18], whose security assumption is strong
Diffie-Hellman assumption (SDH). The other three protocols are all based on
Waters signature, but the security of the protocol in [20] can only be reduced to
a stronger assumption: chosen-target computational Diffie-Hellman assumption
(CT-CDH). Our protocol and the one proposed in [15] are designed in a similar
manner. When compared with [15], our protocol has a shorter partial signa-
ture size and is more efficient in signing and verifying partial signatures. This is
achieved at the cost of larger key size (one more pair (yUi , YUi) in ZZp ×G).

5 Conclusion

This paper shows several new results about optimistic fair exchange in the multi-
user setting. We formally defined the Strong Resolution-Ambiguity in optimistic
fair exchange and demonstrated several concrete optimistic fair exchange proto-
cols with that property. In the certified-key model, we prove that for optimistic
fair exchange protocols with strong resolution-ambiguity, the security in the
single-user setting can guarantee the security in the multi-user setting. In addi-
tion to theoretical investigations, a new construction of optimistic fair exchange
with strong resolution-ambiguity was proposed. The new protocol is setup-
free, stand-alone, and provably secure in the multi-user setting without random
oracles.

140 X. Huang et al.

References

1. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange.
In: Proceedings of the 4th ACM conference on Computer and Communications
Security, pp. 7–17. ACM Press, New York (1997)

2. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures
(Extended abstract). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 591–606. Springer, Heidelberg (1998)

3. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
IEEE Journal on Selected Areas in Communication 18(4), 593–610 (2000)

4. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

5. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

6. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the Gap-Diffie-Hellman-Group signature scheme. In: Desmedt, Y.G. (ed.)
PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

7. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

8. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

9. Camenisch, J., Damg̊ard, I.: Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer,
Heidelberg (2000)

10. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user setting. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer,
Heidelberg (2007)

11. Dodis, Y., Reyzin, L.: Breaking and repairing optimistic fair exchange from
PODC 2003. In: Proceedings of the 3rd ACM Workshop on Digital Rights Man-
agement, pp. 47–54. ACM, New York (2003)

12. Garay, J.A., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer,
Heidelberg (1999)

13. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Ambiguous optimistic fair exchange.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 74–89. Springer,
Heidelberg (2008)

14. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Optimistic fair exchange secure in the
multi-user setting and chosen-key model without random oracles. In: Malkin, T.G.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 106–120. Springer, Heidelberg (2008)

15. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

16. Markowitch, O., Kremer, S.: An optimistic non-repudiation protocol with trans-
parent trusted third party. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS,
vol. 2200, pp. 363–378. Springer, Heidelberg (2001)

Further Observations on OFE Protocols in the Multi-user Setting 141

17. Park, J.M., Chong, E.K.P., Siegel, H.J.: Constructing fair-exchange protocols for
E-commerce via distributed computation of RSA signatures. In: Proceedings of
the twenty-second annual symposium on Principles of distributed computing,
pp. 172–181. ACM, New York (2003)

18. Rückert, M., Schröder, D.: Security of verifiably encrypted signatures and a con-
struction without random oracles. In: Shacham, H. (ed.) Pairing 2009. LNCS,
vol. 5671, pp. 17–34. Springer, Heidelberg (2009)

19. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

20. Zhang, J., Mao, J.: A novel verifiably encrypted signature scheme without random
oracle. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp. 65–78.
Springer, Heidelberg (2007)

21. Zhou, J., Gollmann, D.: A fair non-repudiation protocol. In: Proceedings of the
1996 IEEE Symposium on Security and Privacy, Washington DC, pp. 55–61. IEEE,
Los Alamitos (1996)

22. Zhu, H., Bao, F.: More on stand-alone and setup-free verifiably committed sig-
natures. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058,
pp. 148–158. Springer, Heidelberg (2006)

23. Zhu, H., Bao, F.: Stand-alone and setup-free verifiably committed signatures. In:
Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 159–173. Springer,
Heidelberg (2006)

24. Zhu, H., Susilo, W., Mu, Y.: Multi-party stand-alone and setup-free verifiably com-
mitted signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 134–149. Springer, Heidelberg (2007)

Secure Network Coding over the Integers�

Rosario Gennaro1, Jonathan Katz2,��, Hugo Krawczyk1, and Tal Rabin1

1 IBM T.J. Watson Research Center, Hawthorne, NY
{rosario,talr}@us.ibm.com, hugo@ee.technion.ac.il

2 Department of Computer Science, University of Maryland
jkatz@cs.umd.edu

Abstract. Network coding offers the potential to increase throughput
and improve robustness without any centralized control. Unfortunately,
network coding is highly susceptible to “pollution attacks” in which mali-
cious nodes modify packets improperly so as to prevent message recovery
at the recipient(s); such attacks cannot be prevented using standard end-
to-end cryptographic authentication because network coding mandates
that intermediate nodes modify data packets in transit.

Specialized “network coding signatures” addressing this problem have
been developed in recent years using homomorphic hashing and homo-
morphic signatures. We contribute to this area in several ways:

– We show the first homomorphic signature scheme based on the RSA
assumption (in the random oracle model).

– We give a homomorphic hashing scheme that is more efficient than
existing schemes, and which leads to network coding signatures based
on the hardness of factoring (in the standard model).

– We describe variants of existing schemes that reduce the communi-
cation overhead for moderate-size networks, and improve computa-
tional efficiency (in some cases quite dramatically – e.g., we achieve
a 20-fold speedup in signature generation at intermediate nodes).

Underlying our techniques is a modified approach to random linear net-
work coding where instead of working in a vector space over a field, we
work in a module over the integers (with small coefficients).

1 Introduction

Network coding [2,18] offers an alternative, decentralized approach to traditional
multicast routing. We consider a network setting where a source node has a file
that it wants to distribute to a set of target nodes. The source partitions the file
into m packets which it transmits to its neighboring nodes. Further transmission
happens through intermediate nodes who receive packets via incoming links and
produce modified packets sent over outgoing links. These outgoing packets are
� This work was supported by the US Army Research Laboratory and the UK Ministry

of Defence under agreement number W911NF-06-3-0001.
�� Work done while visiting IBM, and supported also by NSF CAREER

award #0447075, NSF grant #0627306, and the US DoD/ARO MURI program.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 142–160, 2010.
c© International Association for Cryptologic Research 2010

Secure Network Coding over the Integers 143

computed as linear combinations of incoming packets, where packets are viewed
as vectors in a vector space over some field. (See further discussion in Section 2.1.)
We focus on the case of random linear network coding [10,13], where scalars are
chosen by each intermediate node at random from the underlying field. This
strategy induces a fully decentralized solution to the routing problem since nodes
do not need to coordinate their actions.

Target nodes reconstruct the original file sent by the source using the packets
they receive. This can be done if the intermediate nodes augment each vector they
send with m additional coding coordinates that encode the linear combination
that resulted in that vector. A target that receives a set of augmented vectors
for which the coding coordinates induce a full rank matrix can recover the file
sent by the source via simple matrix inversion. (See Section 2.1.) A fundamental
question is: what is the decoding probability at the targets; i.e., what is the
probability with which a target is able to reconstruct the original file? The
network coding literature shows that small-size fields (e.g., F28) provide good
decoding probability for sufficiently connected networks.

Although network coding can increase throughput and reliability relative to
alternative techniques, it is susceptible to pollution attacks in which malicious
nodes inject invalid packets that prevent reconstruction of the file at the targets.
(An invalid packet is any packet that is not in the linear span of the original
augmented vectors sent by the source.) Due to the way vectors are propagated
and combined in the network, a single invalid packet injected by an attacker can
invalidate many more packets further downstream. This constitutes a serious
denial of service attack which can be mounted effortlessly.

Two naive solutions to this problem are easily seen to be inapplicable. Having
the source sign the file prevents a target node from reconstructing an incorrect
file, but does not enable the target to efficiently reconstruct the correct file in
the first place. (Moreover, it does not provide any way for intermediate nodes to
drop invalid packets they receive.) Having the source sign each augmented vector
it sends (using a standard signature scheme) is also of no help, since interme-
diate nodes are supposed to modify vectors in transit. Prior work has shown,
however, that dedicated network coding signatures can be used to address pollu-
tion attacks. Such signatures have been based on two primitives: homomorphic
hash functions [17,21] or homomorphic signatures [16,7,6]. In both cases, homo-
morphic properties ensure that the signature (or hashing) operation on a linear
combination of vectors results in a corresponding homomorphic combination of
signatures (or hash values). See Section 2.2 for further details.

Constructions of homomorphic hash functions are well known, and can be
implemented over any prime-order group where the discrete logarithm problem
is hard. Building homomorphic signatures is more challenging. So far the only
known construction is based on bilinear groups [6] and involves costly pairing
operations. In particular, network coding signatures based on homomorphic sig-
natures are computationally more expensive than those built from homomorphic
hashing. However, the latter are less communication-efficient since they require
each packet transmitted to be sent along with some “authentication data” whose

144 R. Gennaro et al.

length is proportional to m (the number of file vectors). One drawback of both
approaches is that they replace the small fields used in “standard” network cod-
ing with very large fields appropriate for cryptography. For example, instead of
using vectors over an 8-bit field as in traditional network coding, the crypto-
graphic approaches use vectors over a 160-bit field instead. This increases both
the communication and computational overhead.

Our Contributions. We present new and improved network coding signatures.
First, we show the first homomorphic signature scheme based on the RSA as-
sumption in the random oracle model.1 In particular, it offers more efficient
processing at the intermediate nodes as compared to the scheme of [6] that is
based on bilinear groups and pairings. The bandwidth overhead is also lower for
networks of moderate size (e.g., where the maximum path length between source
and target nodes is 20–30 hops).

We also present a new homomorphic hashing scheme which is quite efficient.
Treating each information vector v as a single (large) integer, we define our hash
function simply as HN (v) = 2v mod N for a composite N . This hash function
is homomorphic over the integers and can be proven collision resistant based on
the hardness of factoring. This constructions leads to a network coding signature
scheme based on the factoring assumption and without random oracles.

A core technique we use for both the above constructions is to apply network
coding in a module over the integers rather than in a vector space over a field as
is traditionally done. By working over the integers we enable the homomorphic
properties of the above two schemes (where the group order is unknown), and
furthermore can work with small coefficients (that need not be cryptographically
large). This has the immediate effect of improving the computation at interme-
diate nodes, and it also reduces the total bandwidth overhead for networks with
moderate-length paths between source and targets.

We must analyze how this change from working over a field to working over the
integers affects the decoding probability. We show that if the integer coefficients
are taken from a set Q = {0, . . . , q−1} for prime q, then the decoding probability
is at least as good as working over the field Fq; thus we conclude that using 8-bit
coefficients is good enough for most applications.

The ability to perform with network coding with small integer coefficients
allows us also to improve the performance of existing schemes. We show that by
choosing coefficients from a small set Q as above (but still performing computa-
tions modulo the large prime p as required by prior schemes) we can significantly
improve performance: e.g., we obtain roughly a 20-fold improvement in signa-
ture generation time at intermediate nodes and a reduction in the communication
overhead as well.

1 Yu et al. [20] recently proposed an RSA-based homomorphic signature scheme, but
their scheme is essentially flawed (e.g., no signature, even one produced by an honest
source, ever passes verification). The problem is that Yu et al. incorrectly assume
(cf. equations (11) and (12) in Section III-B of [20]) that for integers A, b, d, a prime
e, and RSA composite N , it holds that (Ab mod e)d mod N = (A mod e)bd mod N .

Secure Network Coding over the Integers 145

Organization. Section 2 reviews network coding and existing network coding
signature schemes. In Section 3, we discuss network coding over the integers and
show how this translates into performance improvements for existing network
coding signature schemes. We present our RSA-based homomorphic signature
scheme in Section 4, and our factoring-based homomorphic hashing scheme in
Section 5.

2 Background

2.1 Network Coding

We present a high-level description of linear network coding (the only type with
which we are concerned in this work); for further details see [12]. In this setting,
we have a network with a distinguished node S, called the source, and a subset
of nodes known as targets. The objective is for S to transmit a file F̄ to all the
target nodes, where F̄ is represented as a matrix containing the m (row) vectors
v̄(1), . . . , v̄(m) ∈ Fn over some finite field F.

The source first creates m augmented vectors w̄(1), . . . , w̄(m) defined as

w̄(i) = (

m︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0 ‖ v̄(i)) ∈ Fm+n ;

i.e., each original vector v̄(i) of the file is pre-pended with the vector of length
m containing a single ‘1’ in the ith position. These augmented vectors are sent
by the source to its neighboring nodes.

Each (well-behaved) intermediate node I in the network processes packets
(i.e., incoming vectors) as follows. Upon receiving packets w(1), . . . , w(�) ∈ Fm+n

on its � incoming communication edges, I computes a packet w for each of its
outgoing links as a linear combination of the packets that it received. That is,
each outgoing packet w transmitted by I takes the form w =

∑�
i=1 αiw

(i), where
αi ∈ F. We say a vector w transmitted in the network (in the scenario above) is
valid if it lies in the linear span of the original augmented vectors w̄(1), . . . , w̄(m).
It is easy to see that if all nodes follow the protocol honestly, then every packet
transmitted in the network is valid.

Different strategies for choosing the coefficients αi yield different variants of
network coding. When the {αi} are chosen randomly and independently by each
intermediate node, for each of its outgoing communication links, the resulting
scheme is referred to as random linear network coding [8,10,13]. When analyzing
efficiency, we assume random linear network coding is used; our constructions,
however, ensure security regardless of how the coefficients are chosen.

To recover the original file, a target node must receive m (valid) vectors
{w(i) = (u(i)‖v(i))}m

i=1 for which u(1), . . . , u(m) are linearly independent. If we
define a matrix U whose rows are the vectors u(1), . . . , u(m) and a matrix V
whose rows are the vectors v(1), . . . , v(m), the original file can be recovered as

F̄ = U−1V. (1)

146 R. Gennaro et al.

Assuming the coefficients are chosen randomly and independently by the in-
termediate nodes, the decoding probability — i.e., the probability with which a
given target node will be able to recover the file (or, equivalently, the probability
with which a given target node will receive m linearly independent vectors, in
the sense required above) — is determined by the network topology and the
size of the field F. To minimize the communication overhead (due to the first
m coordinates of every transmitted vector), it is desirable to keep |F| as small
as possible; on the other hand, choosing |F| too small would reduce the decod-
ing probability too much. For typical networks encountered in practice, taking
|F| ≈ 256 has been shown to give a decoding probability of better than 99%.

2.2 Network Coding Signatures

We have already discussed the problem of pollution attacks, and why standard
cryptographic mechanisms are incapable of preventing them. Early efforts to
deal with pollution attacks focused on information-theoretic solutions [11,14,15]
that use error-correction techniques to ensure that targets can reconstruct the
file as long as the ratio of valid to invalid vectors they receive is sufficiently high.
Unfortunately, these techniques (inherently) impose limitations on the number
of nodes the adversary can corrupt, the number of packets that can be modified,
and/or the number of links on which the adversary can eavesdrop. Researchers
have more recently turned to cryptographic approaches that place no restrictions
on the adversary (other than assuming that the adversary is computationally
bounded) [17,7,21,6]. These approaches give network coding signature schemes
that allow anyone holding the public key2 of the source to determine whether
a given vector is valid. This allows target nodes to reject invalid vectors before
reconstructing the file; it also allows intermediate nodes to filter out invalid vec-
tors when generating their outgoing messages. For formal definitions of network
coding signatures and their security requirements, see [6].

Two classes of network coding signature schemes are known: those based on
homomorphic hashing, and those using homomorphic signatures. We describe
these now at a high level.

Schemes based on homomorphic hashing [17,21,6]. A homomorphic hash
function H is a collision-resistant hash function with the property that for any
vectors a, b and scalars α, β it holds that H(αa + βb) = H(a)αH(b)β. Collision
resistance implies (via standard arguments) that if one knows vectors a, b, c for
which H(c) = H(a)αH(b)β then it must be the case that c = αa+ βb.

A concrete example [17] of a homomorphic hash function is given by what we
call the exponential homomorphic hash (EHH) scheme. Let G be a cyclic group
of order p, and let the public key contain random generators g1, . . . , gn ∈ G.
Define a function H on vectors v = (v1, . . . , vn) ∈ Zn

p as

H(v) =
∏n

j=1 g
vj

j . (2)

2 A symmetric-key analogue is also possible [9,1], but this allows only a (single) target
to verify validity of vectors.

Secure Network Coding over the Integers 147

The homomorphic property is easily verified, and collision resistance is implied
by the discrete logarithm assumption in G.

Homomorphic hash functions can be used for network coding as follows. For
each original vector v̄(i), the source S computes hi = H(v̄(i)); it then signs
(h1, . . . , hm) (together with a unique file identifier fid) using a standard signa-
ture scheme. The {hi} and their signature are then appended to every packet
sent in the network.3 A node can determine whether a vector w = (u ‖ v) is
valid by checking the signature on the {hi} (and the fid), and then verifying
whether

∏m
i=1 h

ui

i
?= H(v). In particular, for the EHH scheme hi = H(v̄(i)) and

verification takes the form:
m∏

i=1

hui

i
?= H(v) def=

n∏
j=1

g
vj

j . (3)

The resulting network coding signature scheme can be proven secure without
random oracles based on the discrete logarithm assumption [17,6].

When using homomorphic hashing, the only change in the processing done by
intermediate nodes is to verify the hash and forward the authentication informa-
tion. However, the linear network coding operations performed by intermediate
nodes are now done over the (large) field F = Zp.

Homomorphic signature schemes [16,7,6]. Here, the full signature (and
not just the hash) is homomorphic. Namely, the signature scheme has the prop-
erty that for any vectors a, b and scalars α, β, it holds that Sign(αa + βb) =
Sign(a)αSign(b)β . The security property, roughly speaking, is that given the sig-
natures of vectors w̄(1), . . . , w̄(m) it is only feasible to generate signatures on
vectors in the linear span of w̄(1), . . . , w̄(m). The application to network coding
is immediate: The source S signs each augmented vector w̄(i) and transmits each
w̄(i) together with its signature Sign(w̄(i)). An intermediate node I that receives
a set of incoming vectors with their corresponding signatures will (i) verify the
signatures (discarding any vector whose signature is invalid) and (ii) compute
(using the homomorphic property) a valid signature on each outgoing vector
that it generates. Thus, in addition to the normal network coding processing,
intermediate nodes must now generate a signature on each outgoing packet. On
the other hand, the per-packet communication overhead due to the signature is
now constant rather than linear in m as in the case of homomorphic hashing.

A concrete example of a homomorphic signature scheme (the BFKW scheme)
was given by Boneh et al. [6]; the scheme can be proven secure based on the CDH
assumption in the random oracle model. We provide a description here for future
reference. To begin, the source S establishes a public key as follows:

1. Generate G = (G,GT , p, e) where G,GT are groups of prime order p, and
ê : G×G → Gt is a bilinear map. Choose random g1, . . . , gn, h ∈ G.

2. Choose s← Zp, and set f := hs.
3. Let H : {0, 1}∗ × Z→G be a hash function, modeled as a random oracle.
4. Output the public key PK = (G, H, g1, . . . , gn, h, f) and the private key s.

3 In some settings, there may be alternate ways to distribute the {hi} authentically.

148 R. Gennaro et al.

To sign a vector w = (u ‖ v) ∈ Zm+n
p associated with the file identifier fid, the

source S computes the signature

σ :=

⎛⎝ m∏
i=1

H(fid, i)ui

n∏
j=1

g
vj

j

⎞⎠s

.

(Note that the above can be viewed as applying a cryptographic operation [that
depends on the secret key] to a homomorphic hash of w.) An intermediate node
who knows PK can verify validity of a vector w = (u ‖ v) with associated
signature σ by checking whether

e (σ, h) ?= e

⎛⎝ m∏
i=1

H(fid, i)ui

n∏
j=1

g
vj

j , f

⎞⎠ . (4)

Upon receiving vectors w(1), . . . , w(�) with valid signatures σ1, . . . , σ�, an inter-
mediate node can generate a valid signature on any linear combination w =∑

i αiw
(i) by computing σ :=

∏�
i=1 σ

αi

i .

3 Network Coding over the Integers

In this section we describe the idea of implementing network coding over the
integers rather than over a finite field. This approach is essential for the crypto-
graphic schemes we propose in the following sections, and also results in efficiency
improvements for existing schemes as we describe here.

Let us first motivate this departure from traditional network coding. Exam-
ining the signature schemes described in the previous section, one can see that
they result in significant performance penalties relative to basic (insecure) net-
work coding, in terms of both communication and computation. The increase
in communication is due to the fact that instead of working over a small (e.g.,
8-bit) field as in basic network coding, the cryptographic schemes work modulo
a 160-bit prime p. Each file vector is thus augmented by 160-bit coordinates,
rather than 8-bit coordinates as in basic network coding — a 20-fold increase
in the communication overhead. This also impacts computation; for example,
the time required to verify signatures when using the EHH scheme (cf. Eq. (3))
is proportional to the bit-length of the exponents (i.e., the coefficients {ui}).
A similar effect can be observed in the time required to compute signatures at
intermediate nodes when using the BFKW scheme (cf. Eq. (4)).

To alleviate these performance costs, our approach will be to choose small
integer coefficients as opposed to 160-bit scalars as in previous schemes. In more
detail: We now view the file F̄ transmitted by the source S as a sequence of
vectors v̄(1), . . . , v̄(m) with integer coordinates. (At this point we do not specify
the dimension of these vectors or the range of the coordinates – these details
will depend on the specific cryptographic scheme used). These vectors are aug-
mented with unit vectors ū(1), . . . , ū(m) as described in Section 2.1. Intermediate

Secure Network Coding over the Integers 149

nodes will again compute outgoing packets as random linear combinations of in-
coming vectors, except that now these combinations are taken over the integers
and the coefficients αi are chosen uniformly from Q = {0, . . . , q − 1} for some
small prime q (e.g., q = 257). (A hybrid approach using small integer coefficients
but with linear combinations performed modulo a large prime is studied in Sec-
tion 3.1. In no case are the computations done modulo q.) We stress that the
coordinates of the file vectors v̄(1), . . . , v̄(m) need not lie in Q.

Recall from Section 2.1 that the usefulness of random linear network coding
depends on the decoding probability, namely, the probability with which a re-
cipient can correctly reconstruct the file transmitted by the source. Technically,
this is the probability that the recipient collects m vectors whose u-portions
form an invertible matrix U (see Eq. (1)). For the setting described above, where
operations are performed over the integers, we must re-analyze the decoding
probability since existing bounds hold only when network coding is performed
over a finite field. Fortunately, we show that working over the integers can only
improve the decoding probability in a sense we make formal now.

Lemma 1. Fix q prime. For any network, the decoding probability when net-
work coding is performed over the integers with intermediate nodes choosing
coefficients uniformly from Q = {0, . . . , q−1}, is at least the decoding probability
when network coding is performed modulo q (with intermediate nodes choosing
coefficients uniformly from Q).

Proof. Fix a sequence of coefficients αi ∈ Q chosen by the intermediate nodes
during a run of the network coding protocol when operations are performed
modulo q. Assume these coefficients lead to successful recovery of the file in this
case. This means that the target receives m vectors such that the u-portions
of these vectors give a matrix U with det(U) �= 0 (computed modulo q). Note
that det(U) mod q is unchanged if no modular reductions are performed in the
network, but instead all modular reductions are ‘delayed’ and performed only by
the target. But if U is an integer matrix, det(U) �= 0 mod q implies det(U) �= 0
over the integers; thus, successful recovery would occur for these same coefficients
if all operations were performed over the integers. ��

The lemma implies that in order to get a good decoding probability when work-
ing over the integers, it suffices to choose q such that the decoding probability
when working modulo q is sufficiently good. This puts us back in the setting
of standard network coding, where the required size of the underlying field is
well-studied. Appropriate choice of q depends on the network topology, required
fault tolerance, etc., but in most practical applications an 8-bit q suffices.

In fact, we expect that working over the integers with coefficients chosen from
Q = {0, . . . , q − 1} will induce a decoding probability that is noticeably better
than working over a field of size q. If so, one could further save in bandwidth and
computation by reducing the size of q. Another variant to investigate is choosing
coefficients from the set {−q/2, . . . , q/2}.
Coordinate growth. When we work over the integers without any modular
reduction, the size of the coordinates of the vectors transmitted in the network

150 R. Gennaro et al.

increases with each traversed hop. Specifically, each hop through some node
increases the maximal coordinate of some vector in the network by a factor of at
most min{mq, �q}, where � is the in-degree of that node. (Note that even if � > m,
the incoming vectors contain a set of at most m linearly independent vectors.)
So, after L hops the first m coordinates each have magnitude at most (mq)L

(since the initial m coordinates in the augmented vectors sent by the source are
0/1-valued), while the remaining coordinates have magnitude at most M(mq)L,
where M is the maximal size of coordinates in the original file vectors v̄(i). As
we will see, by working over the integers we obtain bandwidth improvements (in
typical networks) in spite of this coordinate growth.

We remark also that an attacker can generate large valid packets by choosing
large coefficients, thus countering some of the bandwidth gains achieved by hav-
ing honest nodes use small coefficients. (Note, however, that nodes may be able
to reject suspiciously large packets; e.g., those that deviate significantly from
the average packet size received at the node or packets whose coefficients exceed
an upper bound derived from the distance between the node and the source.)
Network coding signatures cannot and do not prevent all forms of denial of ser-
vice; their purpose is to prevent pollution attacks that are easy for an attacker
to carry out yet have devastating effect.

3.1 Improvements to Existing Schemes

We consider here a “hybrid” variant where intermediate nodes choose small
integer coefficients but operations are performed modulo a large prime p. This
approach will allow us to significantly improve the performance of the schemes
described in Section 2.2, while keeping their security guarantees intact.

In the schemes described in Section 2.2, network coding is done modulo a large
prime p. That is, the original vectors v̄(1), . . . , v̄(m) transmitted by the source are
in Zn

p ; the coefficients for the linear combinations are chosen at random from Zp;
and the linear combinations are performed modulo p. Here we suggest to keep
these schemes unchanged except that the random coefficients chosen by each
intermediate node will be taken from the set Q = {0, ..., q − 1} for some small
prime q (we stress that linear combinations are still computed modulo p).

We first analyze the effect of this change on the decoding probability, showing
that the decoding probability remains high as long as (1) p is a random k-bit
prime, and (2) m and the maximal path length L from the source to the target
are negligible relative to 2k (the latter is the case in our applications where k is
typically 160 or larger).

Lemma 2. Fix q prime. For any network, the decoding probability of the “hy-
brid” scheme described above (where intermediate coefficients are chosen at ran-
dom from Q = {0, . . . , q− 1} and the linear combinations are performed modulo
a random k-bit prime p) is at least the decoding probability when network coding
is performed modulo q (with intermediate nodes choosing coefficients uniformly
from Q), up to an O((Lm logmq)/2k) additive term.

Secure Network Coding over the Integers 151

Proof. As in the case of Lemma 1, we may assume that all linear combina-
tions in the network are performed over the integers, and all modular reductions
are performed only at the end by the target node. Fix some set of coefficients,
chosen by all intermediate nodes, for which reconstruction of the file (when op-
erations are performed mod q) succeeds. Letting U∗ denote the integer matrix
computed at the target, this means that det(U∗) �= 0 mod q which, in turn, im-
plies det(U∗) �= 0 (over the integers). We now show that except with probability
O(Lm logmq/2k) over choice of p, it also holds that det(U∗) �= 0 mod p.

Let d denote the bit-length of det(U∗). The number of primes of length k
dividing det(U∗) is at most d/k, and the number of primes of length k is O(2k/k).
Thus the probability that p divides det(U∗) is at most O(d/2k). It remains to
bound d = O(log | det(U∗)|).

The matrix U∗ is composed of the u-portion of vectors received by the target.
As seen before, the u-coordinates of such vectors have magnitude at most (mq)L,
where L is the maximal path length from the source to the target. So U∗ is
an m × m matrix with each entry having magnitude at most (mq)L. Thus,
det(U∗) ≤ m!(mq)Lm ≤ (mq)m(L+1) and d = O(Lm logmq). ��

We proceed to examine how using small integer coefficients can improve the
performance of the network coding signature schemes discussed in Section 2.2.

Saving bandwidth. In the two schemes reviewed in Section 2.2, all vectors
transmitted in the network are pre-pended with a u-portion consisting of m
coordinates each 160 bits in length. (For simplicity, we assume here that p is a
160-bit prime.) Using our approach, all vectors are pre-pended with a u-portion
consisting ofm integer coordinates each of whose length is at most 160 bits (since
we are still performing reduction modulo p). On average, however, the length of
these coordinates can be much smaller.4 For example, assume the maximum path
length is 16 hops and u-coordinates increase by at most 10 bits per hop (this is the
case, e.g., if � = 4 and q = 253). After the first hop the u-coordinates are at most
10-bits long; after the second hop they are at most 20-bits long, etc. Thus, in the
worst-case we use (on average over all hops) 80 bits per coordinate which reduces
the bandwidth of the u-components by a factor of two as compared to the case
when intermediate nodes choose coefficients from Zp. Better improvements are
obtained when average path lengths are shorter; even when average path lengths
are longer, our approach can never perform worse than the basic approach.

Saving computation. Reducing the bit-length of the u-coordinates yields com-
putational savings as well, due to the use of shorter exponents during verification
(cf. Eqs. (3) and (4)). A major improvement is also obtained in the computation
required by intermediate nodes in generating the signatures of their outgoing
vectors when using the BFKW scheme, exactly due to the use of small coef-
ficients. This gives a 20-fold improvement for this operation, regardless of the
average path length in the network. See also the following remark.

4 Note that the coordinates of the v-portion of the vectors are not affected by the use
of small coefficients; in both cases these are always 160-bit values.

152 R. Gennaro et al.

Remark 1. Signature verification can be done on an opportunistic basis by in-
termediate nodes (e.g., for a random subset of vectors). In contrast, signature
computation must be done by all intermediate nodes for each outgoing packet.

4 An RSA-Based Network Coding Signature Scheme

In this section we present an RSA-based network coding signature scheme that
enjoys a proof of security in the random oracle model under the RSA assump-
tion, and relies on the ability to perform random linear network coding over
the integers as described in Section 3. The scheme is similar to the BFKW
scheme and adapts ideas from [3,4] in the same way the BFKW scheme bor-
rows from [19]. We construct a homomorphic signature scheme by applying a
multiplicatively homomorphic signature to a homomorphic hash of the vector
being signed. The homomorphic hash we use is similar to the EHH scheme ex-
cept that we work modulo an RSA composite rather than modulo a prime. We
take as our multiplicatively homomorphic signature the “textbook RSA” scheme
where a signature on x is just xd mod N . The resulting scheme is presented in
Section 4.1.

In order to use the resulting scheme for network coding, it is essential that the
linear operations being performed by the nodes “work” relative to an unknown
modulus (that arises in our case because φ(N) is unknown). To achieve this, we
have intermediate nodes perform network coding over the integers. We describe
this in detail in Section 4.2.

4.1 An RSA-Based Homomorphic Signature Scheme

We start by defining an RSA-based homomorphic signature scheme denoted Bsig.

• Public and secret keys: Let N be a product of two safe primes; in particular,
the subgroup of quadratic residues QRN is cyclic and random elements of QRN

are generators of this subgroup with overwhelming probability. The public key is
(N, e, g1, . . . , gn) and the secret key is d, where ed = 1 mod φ(N) and g1, . . . , gn

are random generators of QRN .

• Signature generation: The signature on v = (v1, . . . , vn) ∈ Zn is given by

Bsig(v) =

(
n∏

i=1

gvi

i

)d

mod N. (5)

Verification is done in the obvious way. It is easy to see that this scheme is
homomorphic: for any v, v′ ∈ Zn and α, β ∈ Z, we have Bsig(αv + βv′) =
(Bsig(v))α · (Bsig(v′))β .

4.2 An RSA-Based Network Coding Signature Scheme

Here we describe how the above scheme Bsig can be extended to give a network
coding signature scheme Nsig. We first review the underlying network coding

Secure Network Coding over the Integers 153

being performed, focusing on details not already covered in Section 3. The file
held by the source S is a sequence of vectors v̄(1), . . . , v̄(m), where each v̄(i) ∈ Zn

for some value n. Note that once the size of the file and the numberm of vectors is
fixed, a lower bound |v| on the bit-length of each of the vectors v̄(i) is determined,
and n can take on any value between 1 and |v|. As we will see, smaller values
of n reduce communication while larger values of n reduce computation (very
often n = 1 will provide the most practical trade-off).

As usual, before sending the v̄(i) vectors to the network, the source pre-pends
them with unit vectors ū(i) thus producing w̄(1), . . . , w̄(m) ∈ Zm+n. Everything
else is carried out as already described in Section 3: in particular, intermedi-
ate nodes generate random linear combinations (over the integers) of incoming
packets, using coefficients chosen uniformly from Q = {0, ..., q − 1} for prime q.

Let L be an upper bound on the path length from the source to any target.
(Looking ahead, the Nsig scheme defined below may reject packets that traverse
more than L hops.) Given L we define a bound B = (mq)L which represents the
largest possible value of a u-coordinate in any (honestly generated) vector; cf.
Section 3. If M denotes an upper bound on the magnitude of the coordinates of
the initial vectors v̄(1), . . . , v̄(m), then the maximal magnitude of any coordinate
in an honestly generated vector is B∗ = BM .

We now introduce our scheme Nsig.

• Parameters: m,n,M,B, and B∗.

• Public and secret keys: The public key (N, e, g1, . . . , gn) and the secret key d
are as in Bsig, except that e is chosen to be prime with e > mB∗ (for efficiency
reasons e can be chosen to have low Hamming weight). In addition, the scheme
uses a public hash function H : {0, 1}∗ → QRN that will be modeled as a
random oracle.

• Signature generation by source S: On input a file given by m vectors
v̄(1), . . . , v̄(m) ∈ Zn, the source S generates the augmented vectors w̄(i) =
ū(i) ‖ v̄(i) ∈ Zm+n in the usual way. S chooses random fid ∈ {0, 1}k, and
computes hi = H(i, fid) for i = 1, . . . ,m. The signature on each vector
w = (u1, . . . , um, v1, . . . , vn) is:

Nsig(w) =

⎛⎝ m∏
i=1

hui

i

n∏
j=1

g
vj

j

⎞⎠d

mod N. (6)

S transmits each w̄(i) along with its signature and fid.

• Signature verification: Given w = u ‖ v = (u1, . . . , um, v1, . . . , vn) ∈ Zm+n,
a file identifier fid, and a signature σ, verification is done as follows. Reject
immediately if any of the u-coordinates is negative or larger than B, or any of the
v-coordinates is negative or larger than B∗. Otherwise, compute hi = H(i, fid)
for i = 1, . . . ,m and accept the signature if and only if

σe ?=
m∏

i=1

hui

i

n∏
j=1

g
vj

j mod N. (7)

154 R. Gennaro et al.

(An optimized batch verification procedure for testing multiple incoming vectors
is presented at the end of this subsection.)

• Signature combination at intermediate nodes. Upon receiving w(1), . . . , w(�)

associated with the same fid and with valid signatures σ1, . . . , σ�, an intermediate
node proceeds as follows. It first discards any w(i) having a u-coordinate larger
than B/mq or a v-coordinates larger than B∗/mq.5 For simplicity we continue to
denote the non-discarded vectors by w(1), . . . , w(�). The intermediate node then
chooses random coefficients α1, . . . , α� ∈ Q, sets w =

∑�
i=1 αiw

(i), and computes
the signature on w as:

σ =
�∏

i=1

σαi

i mod N. (8)

We prove security of this scheme in the following subsection. First, we compare
the performance of our scheme to the original BFKW scheme and the variant
BFKW scheme (using small integer coefficients) described in Section 3.1.

Bandwidth. The lengths of the coordinates of the vectors w transmitted in
the network increase by at most s = log(mq) bits for each traversed hop. Thus,
after t hops each u-coordinate has bit-length at most ts. If s = 10, for example,
then it will take 32 hops before the total communication overhead due to the
u-coordinates exceeds that of the original BFKW scheme (where u-coordinates
are always of size 160 bits). For most networks, where maximum path-lengths
are expected to be much less than 32 hops, Nsig therefore incurs lower overhead.
Comparing Nsig to the variant BFKW scheme described earlier in this work,
we see that the two schemes have the same overhead until coordinates reach
160 bits; after that the variant BFKW scheme performs better (since in Nsig
coordinates keep growing while in BFKW they do not). This, however, does not
take into account the fact that in Nsig the v-coordinates also increase while in
BFKW they do not. Fortunately, we can choose n to be small (e.g., n = 1), thus
making this overhead insignificant (see more below regarding the choice of n).

Computation. The most critical operation is signature generation at interme-
diate nodes (see Remark 1 in Section 3.1). In Nsig this operation is extremely
efficient since the exponents αi in Eq. (8) are small (say, 8 bits each). Thus, we
can expect this operation to be roughly 20 times faster in Nsig than in the orig-
inal BFKW scheme. (The variant BFKW scheme is expected to perform about
as well as Nsig.) Verification is more expensive. Looking at Eq. (7), we see that
verification in Nsig requires an exponentiation using (|v| + (m + n) logB)-bit
exponents and a (logm+ logB + |v|/n)-bit exponent (i.e., the bit-length of e).
Since the impact of n is more significant with regard to bandwidth than com-
putation, in most cases it makes sense to choose n = 1. The resulting cost of
verification is still better than that of the original BFKW scheme due to the
pairing operation and the cost of hashing onto the bilinear groups in the latter.
The cost of a hashing operation in this case is equivalent to a full exponentiation
5 These bounds are more restrictive than those required by signature verification, and

are intended to ensure that signature verification will succeed at the next hop.

Secure Network Coding over the Integers 155

and it is needed for computing each of the m values hi = H(fid, i) (and also to
compute the generators g1, . . . , gn in the case that one implements BFKW with
fixed-size public key). In contrast, in the case of Nsig the computational cost of
the hashing operations is negligible. Moreover, if one uses n = 1 the resultant
public key has a single generator while in BFKW one needs |v|/160 of them (e.g.,
for a 4 Kbyte |v|, BFKW requires 200 generators). The cost of computation can
be further improved by resorting to a batch verification of incoming vectors as
described next.

Batch verification. The most expensive operation in the Nsig scheme is the
verification of incoming signatures. Here we show that instead of verifying each
incoming signature it suffices to verify just one outgoing signature. The probabil-
ity that the verification of this outgoing vector succeeds but one of the incoming
vectors was invalid is at most 1/q. This is fine in most cases since even if a node
forwards an invalid vector this will be caught with high probability by subse-
quent nodes (i.e., the probability that t consecutive honest nodes do not discover
a forgery is at most 1/qt). To achieve this optimization we modify the actions
of intermediate nodes as follows.

Upon receiving w(1), . . . , w(�) associated with the same fid and with alleged
signatures σ1, . . . , σ�, intermediate node I discards any vector that has too large
coordinates as described above. Then, I generates one outgoing vector as usual,
i.e., chooses random coefficients α1, . . . , α� ∈ Q and sets w =

∑�
i=1 αiw

(i). It
then sets σ =

∏�
i=1 σ

αi

i mod N and verifies (using Eq. (7)) that Nsig(w) equals
σ or −σ. If this verification succeeds, then no further verifications are needed.
That is, I outputs w on one of its outgoing edges and proceeds to compute other
outgoing vectors as in the case that all incoming vectors and their signatures
were valid (with the usual random linear combinations and using Eq. (8) to
generate outgoing signatures but without additional verifications). In this way,
the number of signature verifications at any intermediate node is 1 regardless
of the number of incoming or outgoing vectors. (Note: If the above verification
of outgoing w fails, I may decide to discard its incoming vectors or test each
one separately to find the valid ones – the important point is that under normal
operation, i.e., without adversarial activity, a single verification suffices).

A proof of correctness of the above batch verification technique follows [5] and
is presented in the full version.

4.3 Proof of Security

We now prove security of Nsig relative to the definition given in [6]

Theorem 1. Under the RSA assumption, Nsig is a secure network coding sig-
nature scheme when the hash function H is modeled as a random oracle.

Proof. Given a forger F attacking Nsig, we build an algorithm S that solves the
RSA problem. Here S stands for simulator and also for source since S will be
simulating the actions of the source being attacked by F .

156 R. Gennaro et al.

Algorithm S receives input N, e, C where N, e are distributed as in an Nsig
public key and C ∈R QRN . Its goal is to output C1/e mod N . (Note that if S
computes C1/e mod N for C ∈R QRN with non-negligible probability, this con-
tradicts the standard RSA assumption where C is chosen uniformly from Z∗

N .)
Algorithm S begins by choosing i0 ∈R {1, . . . , n} and then setting gi0 := C. For
i �= i0, algorithm S chooses ri ∈R QRN and sets gi := re

i mod N . Then S calls
F on the public key (N, e, g1, . . . , gn).
F chooses a file, represented as a set of vectors v̄(1), . . . , v̄(m), and requests

a signature on it. In response, algorithm S chooses σ1, . . . , σm ∈R QRN and
fid ∈ {0, 1}k, and then sets (using the programmability of the random oracle H)

hi
def= H(i, fid) := σe

i

n∏
j=1

g
−v̄

(i)
j

j mod N. (9)

(If fid was used previously to sign another file, S aborts. This occurs with negligi-
ble probability and we ignore it from here on.) Finally, S gives to F the signature
σi on the augmented vector w̄(i) = ū(i) ‖ v̄(i) (for i = 1, . . . ,m), along with fid.
It is easy to see that signatures are distributed exactly in the real experiment.

Say F outputs a forgery, i.e., a file id fid∗, a vector w∗ /∈ span{w̄(1), . . . , w̄(m)}
(where {w̄(1), . . . , w̄(m)} is the unique set of augmented vectors signed using
fid∗), and a valid signature σ∗ = Nsig(w∗) on w∗. We show how S can use this
to solve its given RSA instance.

Denote w∗ = u∗ ‖ v∗ = (u∗1, . . . , u
∗
m, v

∗
1 , . . . , v

∗
n), and define the vector

z∗ = w∗ −
m∑

i=1

u∗i w̄
(i). (10)

Note z = (0, . . . , 0, z1, . . . , zn); that is, its first m coordinates are all zero. More-
over, since w∗ /∈ span{w̄(1), . . . , w̄(m)} at least one of the values zi is non-zero.
With probability at least 1/n we thus have zi0 �= 0, and we assume this to be
the case from now on.

By definition of z∗ and the homomorphic property of Nsig we have:

Nsig(z∗) = Nsig(w∗ −
m∑

i=1

u∗i w̄
(i))

= Nsig(w∗)
m∏

i=1

Nsig(w̄(i))−u∗
i = σ∗

m∏
i=1

σ
−u∗

i

i mod N. (11)

On the other hand, we can also represent Nsig(z∗) as

Nsig(z∗) =

(
m∏

i=1

h0
i

n∏
i=1

gzi

i

)1/e

= (Czi0)1/e
∏
i�=i0

(gzi

i)1/e = (Czi0)1/e
∏
i�=i0

rzi

i mod N. (12)

Secure Network Coding over the Integers 157

Combining Eqs. (11) and (12) we get that

(Czi0)1/e = σ∗
m∏

i=1

σ
−u∗

i
i

∏
i�=i0

r−zi

i mod N,

from which S can compute a value x such that xe = Czi0 mod N . Using a
standard trick, S can then compute C1/e mod N provided that gcd(zi0 , e) = 1.
But this is the case since e > mBM is prime and

−mBM ≤ v∗i0 −
∑m

i=1 u
∗
i w̄

(i)
i0

= zi0 = v∗i0 −
∑m

i=1 u
∗
i w̄

(i)
i0

≤ MB.

(Since w∗ passes verification we have 0 ≤ u∗i ≤ B and 0 ≤ v∗i ≤ MB; it always
holds that 0 ≤ w̄

(i)
j ≤M .) ��

Remark 2. The above proof uses the fact that e is larger than the coordinates of
valid vectors. Indeed, if coordinates larger than e are allowed then given a valid
vector w = u||v with signature σ an attacker can output the forged signature
σ′ = σ · g1 on the vector w′ = u||v′ with v′ = v + (e, 0, . . . , 0).

5 Homomorphic Hashing Modulo a Composite

Network coding signatures based on homomorphic hashing can offer significant
computational advantages relative to constructions based on homomorphic sig-
nature schemes since, when using the former, a node that chooses not to verify an
incoming vector (cf. Remark 1) need not perform any cryptographic operations.
On the other hand, constructions based on homomorphic hashing consume more
bandwidth since nodes now need to obtain the (authenticated) hash values of
the original file vectors. If delivery of the hash values to nodes can be done in
some out-of-band fashion, however, this drawback is mitigated.

Here we introduce a homomorphic hashing scheme, denoted HN , that is similar
to the EHH scheme described in Section 2.2 but where operations are performed
modulo a composite N . This results in the homomorphic properties holding over
a group of unknown order; hence this scheme can only be applied when the un-
derlying network coding is done over the integers. HN has better computational
efficiency than the EHH scheme (over prime-order groups) from Section 2.2; al-
though HN produces larger hash values, it requires a smaller public key than the
EHH scheme.

In this section we once again assume linear network coding being performed
over the integers as described in Section 3. Namely, the file to be transmitted
is represented by vectors v̄(1), . . . , v̄(m) ∈ Zn, and intermediate nodes choose
coefficients uniformly from a set Q = {0, . . . , q−1} (for some small prime q) and
compute all linear combinations without any modular reduction.

Let N be the product of two safe primes so that the group QRN of quadratic
residues modulo N is cyclic, and let g1, . . . , gn be generators of QRN . For v =
(v1, . . . , vn) ∈ Zn, define

HN (v) =
n∏

j=1

g
vj

j mod N.

158 R. Gennaro et al.

This is a homomorphic hash function that is collision resistant if factoring N
is hard (proof omitted). Thus, HN can serve as a basis for a network coding
signature scheme as discussed in Section 2.2. In particular, a node receiving a
vector w = (u1, . . . , um, v1, . . . , vn) can verify it by checking whether

m∏
i=1

hui

i
?= HN(v) def=

n∏
j=1

g
vj

j mod N. (13)

where hi = HN(v̄(i)), i = 1, . . . ,m. Below we show a batch verification optimiza-
tion that allows an intermediate vector to verify all of its incoming vectors with
a single application of Eq. (13).

Bandwidth considerations for this scheme, which uses integer coefficients that
grow over time, are similar to those of the RSA-based scheme from Section 4. An
additional benefit of HN is that there is no need to determine an a priori bound
on these coefficients. As in the case of the RSA-based scheme from Section 4,
one way to limit the effect of coordinate growth on the total communication is
to set n = 1. As we now discuss, this not only reduces bandwidth overhead but
also improves computational performance significantly.

Fix n = 1 so that each block of information v̄(i) is a single (long) integer.
ChoosingN appropriately6, we can take 2 as a generator ofQRN , thus obtaining:

HN(v) = 2v mod N.

This achieves the most salient advantage of the HN scheme: fast exponentiation.
Another advantage of this homomorphic hash is that it considerably improves the
size of the public parameters relative to the EHH scheme. To see this, observe
that in the EHH scheme the total length of the set of generators g1, . . . , gn

included in the public parameters is (at least) n log p which is (at least) as large
as each information vector v̄(i). Moreover, the number of generators is usually
very large; e.g., for vectors v̄(i) of size 4KB and 160-bit p the EHH scheme
needs 200 random generators.7 In the case of HN , on the other hand, only one
generator is needed and furthermore this generator can be fixed to 2; the public
parameters need only include N .

Batch verification. The use of HN for network coding can be further optimized
by using batch verification at intermediate nodes similarly to the procedure
described in Section 4.2 for the Nsig signature. Specifically, instead of verifying
each incoming vector using Eq. (13), an intermediate node can just generate one
outgoing vector as usual (i.e., as a random linear combination over {0, . . . , q−1}
of the incoming vectors) and then apply Eq. (13) to the resultant vector. It can
be shown that the probability that this single verification passes but one of the

6 Choose N = p1p2 p1 = 2p′
1 + 1, p2 = 2p′

2 + 1, and p1, p2, p
′
1, p

′
2 all prime; p′

1, p
′
2 =

3 mod 8; and p1, p2 = 7 mod 8.
7 The size of the public parameters can be reduced by using a hash function to compute

the generators “on the fly.” Besides necessitating the use of the random oracle model,
this also introduces additional computational overhead.

Secure Network Coding over the Integers 159

incoming vectors was invalid (not in the span of w̄(1), . . . , w̄(m)) is at most 1/q.
The probability that t consecutive nodes will be foiled to accept invalid vectors is
at most 1/qt. Thus a single verification per intermediate node suffices regardless
of the number of incoming or outgoing vectors.

In all, we have shown that the homomorphic hashing scheme HN leads to a
computationally efficient network coding signature scheme whose security can be
proven based on the factoring assumption in the standard model (and assuming
the security of the signature scheme used to sign the hash values h1, . . . , hn).

Acknowledgments. Research was sponsored by US Army Research laboratory
and the UK Ministry of Defence and was accomplished under Agreement Num-
ber W911NF-06-3-0001. The views and conclusions contained herein are those
of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the US Army Research Laboratory, the US Gov-
ernment, the UK Ministry of Defence, or the UK Government. The US and UK
Governments are authorized to reproduce and distribute reprints of this work
for Government purposes, notwithstanding any copyright notation hereon.

References

1. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network
coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536. Springer, Heidelberg (2009)

2. Ahlswede, R., Cai, N., Li, S., Yeung, R.: Network information flow. IEEE Trans-
actions on Information Theory 46(4), 1204–1216 (2000)

3. Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J.,
Song, D.X.: Provable data possession at untrusted stores. In: ACM Conference on
Computer and Communications Security, pp. 598–609 (2007)

4. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic iden-
tification protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 319–333. Springer, Heidelberg (2009)

5. Bellare, M., Garay, J., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

6. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009)

7. Charles, D., Jain, K., Lauter, K.: Signatures for network coding. In: 40th Annual
Conference on Information Sciences and Systems, CISS 2006 (2006); To appear in
International Journal of Information and Coding Theory

8. Chou, P.A., Wu, Y., Jain, K.: Practical network coding. In: 41st Allerton Confer-
ence on Communication, Control, and Computing (2003)

9. Gkantsidis, C., Rodriguez, P.: Cooperative security for network coding file distri-
bution. In: Proc. of IEEE INFOCOM 2006, pp. 1–13 (2006)

10. Ho, T., Koetter, R., Médard, M., Karger, D., Effros, M.: The benefits of coding
over routing in a randomized setting. In: Proc. of International Symposium on
Information Theory, ISIT (2003)

160 R. Gennaro et al.

11. Ho, T., Leong, B., Koetter, R., Médard, M., Effros, M., Karger, D.: Byzantine
modification detection in multicast networks using randomized network coding.
In: Proc. Intl. Symposium on Information Theory (ISIT), pp. 144–152 (2004)

12. Ho, T., Lun, D.: Network Coding: An Introduction. Cambridge University Press,
Cambridge (2008)

13. Ho, T., Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A
random linear network coding approach to multicast. IEEE Trans. Inform. The-
ory 52(10), 4413–4430 (2006)

14. Jaggi, S.: Design and Analysis of Network Codes. PhD thesis, California Institute
of Technology (2006)

15. Jaggi, S., Langberg, M., Katti, S., Ho, T., Katabi, D., Médard, M., Effros, M.:
Resilient network coding in the presence of Byzantine adversaries. IEEE Trans. on
Information Theory 54(6), 2596–2603 (2008)

16. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer,
Heidelberg (2002)

17. Krohn, M., Freedman, M., Mazieres, D.: On the-fly verification of rateless erasure
codes for efficient content distribution. In: Proc. IEEE Symposium on Security &
Privacy, pp. 226–240 (2004)

18. Li, S.-Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Trans. Inform.
Theory 49(2), 371–381 (2003)

19. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

20. Yu, Z., Wei, Y., Ramkumar, B., Guan, Y.: An efficient signature-based scheme for
securing network coding against pollution attacks. In: INFOCOM (2008)

21. Zhao, F., Kalker, T., Médard, M., Han, K.: Signatures for content distribution with
network coding. In: Proc. Intl. Symp. on Information Theory ISIT (2007)

Preventing Pollution Attacks in Multi-source
Network Coding

Shweta Agrawal1,�, Dan Boneh2,��,
Xavier Boyen3,� � �, and David Mandell Freeman2,†

1 University of Texas at Austin, USA
shweta.a@gmail.com

2 Stanford University, USA
{dabo,dfreeman}@cs.stanford.edu

3 Université de Liège, Belgium
xb@boyen.org

Abstract. Network coding is a method for achieving channel capacity in
networks. The key idea is to allow network routers to linearly mix packets
as they traverse the network so that recipients receive linear combinations
of packets. Network coded systems are vulnerable to pollution attacks
where a single malicious node floods the network with bad packets and
prevents the receiver from decoding correctly. Cryptographic defenses
to these problems are based on homomorphic signatures and MACs.
These proposals, however, cannot handle mixing of packets from multiple
sources, which is needed to achieve the full benefits of network coding.
In this paper we address integrity of multi-source mixing. We propose a
security model for this setting and provide a generic construction.

1 Introduction

Network coding [3,16] is an elegant technique that replaces the traditional “store
and forward” paradigm of network routing by a method that allows routers to
transform the received data before re-transmission. It has been established that
for certain classes of networks, random linear coding is sufficient to improve
throughput [11]. In addition, linear network codes offer robustness and adapt-
ability and have many practical applications (in wireless and sensor networks,
for example) [10]. Due to these advantages, network coding has become very
popular.

On the other hand, networks using network coding are exposed to problems
that traditional networks do not face. A particularly important instance of this
is the pollution problem: if some routers in the network are malicious and for-
ward invalid combinations of received packets, then these invalid packets get

� Supported by DARPA IAMANET.
�� Supported by DARPA IAMANET and NSF.

� � � Work done in part at Stanford, with support from DARPA IAMANET and NSF.
† Work done in part at CWI and Univ. Leiden. Supported by an NSF International

Research Fellowship and the NSF Office of Multidisciplinary Activities.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 161–176, 2010.
c© International Association for Cryptologic Research 2010

162 S. Agrawal et al.

mixed with valid packets downstream and quickly pollute the whole network. In
addition, the receiver who obtains multiple packets has no way of ascertaining
which of these are valid and should be used for decoding. Indeed, using even
one invalid packet during the decoding process causes all the messages to be de-
coded wrongly. For a detailed discussion of pollution attacks, we refer the reader
to [4,19,12].

To prevent the network from being flooded with invalid packets, it is desirable
to have “hop-by-hop containment.” This means that even if a bad packet gets
injected into the network, it is detected and discarded at the very next hop. Thus,
it can be dropped before it is combined with any other packets, preventing its
pollution from spreading.

Hop-by-hop containment cannot be achieved by standard signatures or MACs.
As pointed out in [1], signing the message packets does not help since recipients
do not have the original message packets and therefore cannot verify the signa-
ture. Nor does signing the entire message prior to transmission work, because
it forces the recipient to decode exponentially many subsets of received pack-
ets to find a decoded message with a consistent signature. Thus, new integrity
mechanisms are needed to mitigate pollution attacks.

Previous Work. Security of network coding has been considered from both
the information-theoretic and cryptographic perspectives. In the former, the ad-
versary is modelled as having control over a limited number of links in the
network. Such approaches, though useful for wireline networks, have limited
application in wireless networks. For a detailed discussion of these techniques,
see e.g. [6,9,13,14]. Cryptographic techniques have also been proposed, e.g. in
[7,17,19,4]. These authors construct digital signatures for signing a linear sub-
space. If V is a subspace and σ its signature, then there is a verification algorithm
which accepts the pair (v, σ) for all v ∈ V , but it is difficult to construct a vector
y �∈ V for which the pair (y, σ) verifies. An alternative approach is to use a MAC
(instead of a signature) for integrity of a linear subspace; see [1,18].

While the signature and MAC schemes in [7,17,19,4,1] are elegant, they are
quite limited: they only allow routers to combine vectors from a single sender.
(Furthermore, the constructions of [7,17,19] require a new public key to be
generated for each file, thus hurting efficiency.) Traditional network coding as-
sumes a network where many senders simultaneously send messages and network
routers linearly combine vectors from multiple senders. This setting is essential
in showing that network coding can improve the efficiency of 802.11 wireless
networks [15].

Our Contribution. Our goal is to construct a signature mechanism that pro-
vides integrity when network routers combine packets from many sources. This
problem is considerably harder than the single source problem. First, defining
security is more difficult. It is necessary to model “insider” attacks where the
attacker controls network routers as well as some senders. The attacker’s goal is
to generate valid signatures on mixed packets; after decoding these packets the
recipient believes that an honest sender sent a message M∗ that was never sent
by the honest sender.

Preventing Pollution Attacks in Multi-source Network Coding 163

More precisely, if there are s senders in the network, we allow the attacker to
control s − 1 of them. Furthermore, the attacker can mount a chosen message
attack on the single honest sender. The attacker’s goal is to generate a mixed
packet with a valid signature that after decoding corresponds to an existential
forgery on the single honest sender.

In Section 3 we show that a natural generalization of the single-sender security
model in [4] to the multi-sender setting results in a model that cannot be satisfied.
We do this by constructing a generic attack against an abstract multi-source
network coding signature scheme. In Section 4 we present a security model that
captures the constraints of the multi-sender problem. Our model retains the
desirable properties of the single-source model, such as hop-by-hop containment
of forged packets, and is achievable.

In Section 5 we present a construction satisfying our security model. We give
a generic construction from a new primitive called a vector hash, which captures
the properties of homomorphic hashing that are necessary to produce secure
signatures. In the full version of this paper [2] we show how to instantiate the
construction based on the discrete logarithm assumption. We also prove a lower
bound that shows that our model necessitates a relatively space-inefficient con-
struction; our discrete log scheme (asymptotically) achieves this lower bound.

2 Network Coding

We refer the reader to [16] for a detailed introduction to network coding. Here we
present a brief overview for completeness; this description describes the operation
of a network coding system and is independent of any security model. We model
a network as a directed graph consisting of a set of vertices (or nodes) V and a
set of edges E. We assume the graph is connected. A node that only transmits
data is called a source node. We start with the basic model, in which one source
wishes to transmit one file F through the network. The source interprets the
data in F as a set of m vectors v̂1, . . . , v̂m in an n-dimensional vector space over
a finite field Fp. (The prime p and the dimensions n and m are fixed parameters
in the system.) We sometimes refer to individual vectors as blocks or packets.
The source then appends a unit vector of length m to the vectors v̂i to create
m augmented vectors v1, . . . ,vm given by

vi = (—v̂i—,

m︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0) ∈ Fn+m
p .

The augmented vectors comprise the data to be transmitted through the net-
work. We call the first n entries of the vector vi the data component and the last
m entries the augmentation component.

The “coding” part of network coding works as follows: an intermediate node in
the network receives some set of vectors w1, . . . ,w�, chooses � random elements
βi ∈ Fp, and transmits the vector y =

∑�
i=1 βiwi along its outgoing edges. The

key property of the augmentation is that the augmentation component contains
exactly the linear combination coefficients used to construct y. That is, we know

164 S. Agrawal et al.

that y =
∑m

i=1 yn+ivi even though the intermediate node may never see the
vi. This property allows any node that receives a set of m linearly independent
vectors y1, . . . ,ym to recover the original vi. Specifically, if we let D be m × n
matrix whose ith row consists of the data component of yi, and A be the m×m
matrix whose ith row consists of the augmentation component of yi, then the
rows of A−1D are exactly the initial vectors v̂i.

Since network coding consists of linearly combining vectors, the subspace
spanned by the (augmented) vectors of a file remains invariant under network
operations. Hence we can equivalently consider a file to be represented by the
subspace spanned by the vectors that comprise it.

Notation. We use n to denote the dimension of the data space and m to denote
the dimension of a vector subspace that represents a single file. The number of
files in the system is denoted by f . For v ∈ Fn+�

p , we will use v̂ to denote the
data component of v, i.e., the first n coordinates of v, and βv to denote the
augmentation component of v, i.e., the remaining � coordinates. When we use
a vector space V as input to or output of an algorithm we assume that V is
described by an explicit basis {v1, . . . ,v�}. Such a basis is properly augmented
if for i = 1, . . . , �, the augmentation component βvi

is the unit vector ei with a
1 in the ith place.

We will refer to the augmented vectors that the source wishes to transmit as
primitive vectors. Here, “primitive” alludes to the fact that these vectors have
not been mixed with any other; their augmentation components are unit vectors.
Aggregate vectors, on the other hand, refer to vectors that have been formed as
a result of linearly combining primitive or other aggregate vectors.

2.1 Multiple Sources, Multiple Files

In general networks may have multiple sources, each of which can transmit mul-
tiple files into the network. We now describe this situation, assuming that all
nodes in the network are honest. In principle the network coding setup is the
same as in the single-source situation described above, but there is some more
bookkeeping to do. This bookkeeping is implicit in previous work that considers
multiple sources (e.g. [16]); here we give an explicit description that we will use
in our discussion of security. The complication arises from the fact that the inter-
mediate nodes wish to combine vectors from files produced by different sources,
but each source knows nothing of what the other sources are doing.

In the single source case, each file is associated with a file identifier id. The
identifier allows the receiver to group together packets that belong to the same
file. This prevents, for example, delayed honest packets from a previous file
transmission from being decoded along with the current file’s vectors. Hence
each vector (primitive or aggregate) that traverses the system carries with it the
identifier of the file it belongs to.

In the multi-source case, the file identifier id plays an even more crucial role
— it allows the intermediate nodes to combine vectors arising from different
files. In this scenario, an aggregate vector may be associated with multiple files,

Preventing Pollution Attacks in Multi-source Network Coding 165

and the identifier attached to an aggregate vector v must carry with it the
identifiers of all of the files whose vectors went into making v. Upon receiving
two vectors, where each vector contains a (probably different) list of identifiers
id, an intermediate node will need to “merge” the lists of identifiers to a common
list and adjust the two vectors’ augmentation components so that they can be
linearly combined.

For example, suppose a node receives two vectors v1,v2 ∈ Fn+m
p with identi-

fiers id1 and id2, respectively. Splitting vi into its data and augmentation compo-
nents, we write vi = (v̂i,ai). If id1 = id2 then the vectors come from the same file
and the situation is analogous to the single source case and no additional adjust-
ment is needed. However, if id1 �= id2 then the vectors came from different files
and we must introduce additional augmentation before we can linearly combine
the vectors. In this case we define v′

1 = (v̂1, a1,0) and v′
2 = (v̂2,0, a2) ∈ Fn+2m

p ,
where 0 denotes a length-m zero vector. Thus when we compute a linear combi-
nation v = av′

1 + bv′
2, the data components are mixed together but the augmen-

tation coefficients remain separate. We can then use the identifier id = (id1, id2)
to indicate which set of augmentation coefficients correspond to which file.

More generally, we define an algorithm Merge that merges the lists of identi-
fiers contained in aggregate vectors and adjusts the vectors’ augmentations. This
algorithm is intrinsic to the multiple-source setting: the algorithm does not itself
linearly combine vectors, but rather it prepares aggregate vectors (coming from
different sources, made up of different files) to be mixed together. If v ∈ Fn+mf

p

is an aggregate vector, we continue to call the first n entries of v the data com-
ponent; we call the rest of v the augmentation component, and we divide the
augmentation component into f augmentation blocks of length m. (Here and in
the remainder of the paper we assume for simplicity the dimension m is the same
for each file and is publicly known; the generalization to variable dimension is
straightforward.)

Algorithm 1. (Merge)
Input: lists of identifiers id1, id2 of lengths f1, f2, respectively, with no repeated
entries, and vectors wi ∈ Fn+mfi

p for i = 1, 2.
Output: vectors w′

1,w
′
2 ∈ Fn+mf ′

p and a list of identifiers id
′
of length f ′.

1. Let id
′
be the list whose entries are the union of the elements of id1 and id2,

ordered in some pre-determined way (e.g. lexicographically). Let f ′ be the
length of id

′
.

2. For i in 1, 2, define w′
i ∈ Fn+mf ′

p by setting the data component of w′
i

equal to the data component of wi, and for j in 1, . . . , f ′, setting the jth
augmentation block of w′

i as follows:
– If the jth element of id

′
is the kth element of idi, the jth augmentation

block of w′
i is equal to the kth augmentation block of wi.

– If the jth element of id
′
is not an element of idi, the jth augmentation

block of w′
i is 0.

3. Output the list id
′
and the vectors w′

1,w
′
2.

166 S. Agrawal et al.

The intermediate node can now compute a random linear combination y of the
w′

1 and w′
2 and use the list id

′
as the identifier component of the signature on

y. (In the example above we executed this algorithm on two vectors each with
an identifier list of length fi = 1.)

We also define an algorithm called MergeSpaces that uses the Merge algorithm
to combine two files described as vector spaces.

Algorithm 2. (MergeSpaces)
Input: disjoint lists of identifiers id1, id2 and two vector spaces V =
span(v1, . . . ,vk) ⊂ Fn+k

p and W = span(w1, . . . ,w�) ⊂ Fn+�
p .

Output: a subspace Z ⊂ Fn+k+�
p and an identifier id

′
.

1. Let B be the set of nonzero vectors produced by

Merge(id1, id2,v1,0), . . . ,Merge(id1, id2,vk,0),

Merge(id1, id2,0,w1), . . . ,Merge(id1, id2,0,w�).

2. Let id
′
be the identifier output by any of the calls to Merge in Step (1).

3. Output Z = span(B) and id
′
.

By applying MergeSpaces repeatedly using concatenated lists of identifiers, the
algorithm generalizes to take any number of vector spaces and identifiers as
input. The decoding operation works as before: given a set of vectors whose
(merged) augmentation components form a full-rank matrix, we can recover the
original data vectors by inverting this matrix.

3 Signatures and File Identifiers

For single sources, a network coding signature scheme consists of three algorithms,
Setup, Sign, and Verify, whose functionality correspond to the usual notions for
a signature scheme. In this setting, the Sign algorithm produces signatures on a
vector space, and the Verify algorithm checks whether the signature is valid on
a given vector. In addition, both Sign and Verify take as additional input a file
identifier id, which binds a signature to a file. Informally, the correctness condition
is that if σ is a signature on a vector space V with identifier id, then for all v ∈ V ,
Verify(id,v, σ) outputs “accept.” (For formal definitions, see [4, Section 3.1].)

For multiple sources, we need to add an additional algorithm Combine that
will be used by intermediate routers to produce signatures on vectors that are
linear combinations of vectors from different files. More precisely, Combine takes
as input two tuples (vi, idi, σi, ai) for i = 1, 2, where vi are vectors, idi are
(lists of) identifiers, σi are signatures, and ai are network coding coefficients.
The algorithm outputs a signature σ′. The correctness condition is that if σi

is a valid signature on vi with identifier idi for i = 1, 2, then σ′ is a valid
signature on a1v′

1 + a2v′
2 with identifier id

′
, where v′

1,v
′
2, id

′
are output by

Merge(id1, id2,v1,v2).

Preventing Pollution Attacks in Multi-source Network Coding 167

In the single-source setting, the Sign algorithm takes id as input. Thus, a
vector v carries a pair (id, σ) where id is the file identifier chosen arbitrarily, and
σ is generated by Sign. In the multi-source case however, allowing senders to pick
file identifiers gives them the ability to frame other users in the system, so that
receiver Bob can be made to believe that user Alice sent him a packet which, in
fact, Alice did not. In most network coded systems with multiple senders, such as
BitTorrent [8], insider attacks form the real threat, so this attack has significant
practical implications. Fortunately, this attack can be thwarted by enforcing
that the file identifiers be cryptographically verifiable. In the subsequent sections,
we will formalize these notions. We first describe the attack, and then use the
intuition gained from the attack to construct a framework that can circumvent it.

3.1 Generic Attack (For Arbitrary File Identifiers)

Here we construct an attack against an abstract multi-source network coding
signature scheme that consists of the algorithms Setup, Sign, Combine, Verify
discussed above. We make no assumptions about these algorithms beyond their
functionality. We show that it is impossible to achieve hop-by-hop containment
if the identifier id is chosen arbitrarily by the sender and is given as input to the
Sign algorithm. We construct a generic attack in which an intermediate node is
fooled into accepting invalid packets as valid. As mentioned before, the attack is
an “insider” attack where one of the senders is malicious. The malicious sender
can assign two different vector spaces the same id and sign both using his secret
key. An intermediate node has no hope of ever detecting this, since two packets
constructed using these two vector spaces are both individually valid, but they
are not pairwise valid, and can cause the receiver to incorrectly decode an honest
user’s message. We make this formal below.

We explain the attack with subspace dimension m = 1; the attack easily
generalizes to arbitrary m. In our system, the honest sender is Alice, the receiver
is Bob, and the malicious user is Mallet.

Honest User Alice. Alice wishes to send a file described as a single nonzero
vector v̂1 ∈ Fn

p . She sets v1 = (v̂1, 1), chooses a file identifier idα and uses
her secret key skα to create a signature τ1 on the one-dimensional subspace
V1 ⊂ Fn+1

p spanned by v1, with identifier idα. Then she transmits the packet
P1 = (v1, idα, τ1).

Malicious User Mallet. Mallet receives P1 and does the following:
1. Generate a key pair (skμ, pkμ).
2. Pick two vectors v̂2, v̂3 ∈ Fn

p such that the set {v̂1, v̂2, v̂3} are linearly
independent. Let V2, V3 be the subspaces of Fn+1

p spanned by v2 = (v̂2, 1)
and v3 = (v̂3, 1), respectively.

3. Choose an identifier idμ �= idα, and use the key skμ to compute signatures
τ2, τ3 on subspaces V2, V3 with identifier idμ. Create the packets P2 =
(v2, idμ, τ2), P3 = (v3, idμ, τ3).

4. Run Merge on (v1,v2) and (idα, idμ) to obtain id = (idα, idμ) and vectors
v′

1 = (v̂1, 1, 0), v′
2 = (v̂2, 0, 1).

168 S. Agrawal et al.

5. Run Combine
(
(v1, idα, τ1, 1), (v2, idμ, τ2, 1)

)
to produce a signature τ4 on

the vector v4 = v′
1 + v′

2 = (v̂1 + v̂2, 1, 1) ∈ Fn+2
p . Let P4 = (v4, id, τ4).

6. Send P3 and P4 to Bob.

Receiver Bob. Bob receives P3 and P4, each of which pass the verification
test (by the correctness of Sign and Combine). Bob then tries to decode the
received data to recover Alice’s file.

The identifier id = (idα, idμ) indicates that v∗ = v4 − (v̂3, 0, 1) is a primi-
tive vector sent by Alice, since the augmentation component of v∗ is (1, 0).
However, the data part of v∗ is v̂1 + v̂2 − v̂3, which cannot be in the sub-
space spanned by v̂1 since {v̂1, v̂2, v̂3} are linearly independent. Thus v∗ is
an invalid vector accepted by Bob.

In the above attack, Mallet was able to frame Alice by secretly reusing idμ for
two different vector spaces. Note that this attack is more insidious than simply
inserting data with identifier idα, which would have the same effect of corrupt-
ing Alice’s data. We see from this attack that arbitrary file identifiers provide
a malicious insider too much power. It is thus necessary to tie the identifiers
cryptographically to the files they represent, in a way that is verifiable at every
node in the network. In particular, the Sign algorithm should output both an
identifier id and a signature σ. To verify the identifier we use an algorithm IdTest
that takes as input a public key pk, a vector y, and a list of identifiers id, and
outputs “accept” if y is in the subspace V identified by id. To avoid the above
attack, the following tasks must be infeasible for Mallet:

1. Given a public key pkα, find an identifier idα and a vector y such that
IdTest(pkα,y, idα) outputs “accept.” (This is a type of “collision-resistance”
property.)

2. Given a vector space V , a public key pkα, and (idα, σ) := Sign(skα, V)
(where skα is the secret key corresponding to pkα), find a y �∈ V such that
IdTest(pkα,y, idα) outputs “accept.” (This property is unique to the network
coding scenario.)

If Mallet can succeed at either task, then Bob is convinced that the vector y
belongs to a file sent by Alice, when in fact it does not. (Indeed, in the first case
Alice didn’t even send a file!)

These two tasks are quite familiar: they are analogous to the two ways of break-
ing a single-source network coding signature scheme [4, Section 3.1]. This analysis
leads to our key observation: the file identifier produced by Sign must itself
be a vector space signature. It follows that all the security properties of the
system are carried in the identifier id, so we can set the “signature” part σ equal
to id or eliminate σ entirely. We formalize these ideas in the following section.

Remark 3. One can show that allowing the use of arbitrary file identifiers not
only makes hop-by-hop containment impossible, but also forces the receiver to
solve the clique problem for proper decoding. Specifically, there is a formal re-
duction from the clique problem to decoding in multi-source network coding;
details are in the full paper [2].

Preventing Pollution Attacks in Multi-source Network Coding 169

4 Network Coding Signatures

We formally define the multi-source network coding signature scheme. Here the
Sign algorithm generates an element σ that is used both as a signature and a
file identifier. The Verify algorithm implements the functionality of the IdTest
algorithm in the previous section and allows every node to validate the identi-
fier/signature of an incoming packet. Since signatures and identifiers play the
same role, the Combine algorithm provides the same functionality as the Merge
algorithm of Section 2, while also keeping track of the public keys involved. Note
that in contrast to traditional signatures, the Verify algorithm does not take as
input the original message (i.e., vector space).

Definition 4. A multi-source network coding signature scheme is a tuple of
five PPT algorithms, Setup,KeyGen, Sign,Combine,Verify, with the following
properties:

Setup(1λ, n,m): On input the unary representation of a security parameter 1λ, a
data space dimension n, and a subspace dimension m, outputs a description
of system parameters params. This description includes the prime p used to
define the field over which vector spaces are defined, as well as n and m.

KeyGen(params): Outputs a randomly generated user key pair (sk, pk).

Sign(params, sk, V): On input a secret key sk and a subspace V ⊂ Fn+m
p , outputs

a signature σ.

Combine
(
params, (v1,σ1, pk1, a1), (v2,σ2, pk2, a2)

)
: Takes as input two vectors

v1 ∈ Fn+mf1
p and v2 ∈ Fn+mf2

p , two lists of signatures σ1,σ2, two lists of
public keys pk1, pk2, and two coefficients a1, a2 ∈ Fp. The algorithm outputs
a list of signatures σ and a list of public keys pk.

Verify
(
params, pk,v,σ): On input a list of public keys pk, a vector v ∈ Fn+mf

p ,
and a list of signatures σ, outputs % (accept) or ⊥ (reject).

Correctness. We require that for any set of system parameters determined by
Setup(1λ, n,m), the following hold:

1. For primitive signatures: Consider a key pair (sk, pk) ← KeyGen(params)
and a vector space V ⊂ Fn+m

p . Let σ be the output of Sign(params, sk, V).
Let pk = {pk} and σ = {σ}. Then for all v ∈ V , we require that
Verify(params, pk,v,σ) = %.

2. Recursively, for combined signatures: Consider two lists of public keys
pk1, pk2, two vectors v1,v2, two lists of signatures σ1,σ2 such that

Verify(params, pk1,v1,σ1) = Verify(params, pk2,v2,σ2) = %.

Let v′
1,v

′
2,σ

′ be the output of Merge(v1,v2,σ1,σ2). For any a1, a2 ∈ Fp,
we require that if σ, pk is the output of the Combine algorithm on inputs
(v1,σ1, pk1, a1), (v2,σ2, pk2, a2), then:

170 S. Agrawal et al.

(a) σ′ = σ,
(b) For j in 1, . . . , f = |σ|, if the jth element of σ is the kth element of σi

for i ∈ {1, 2}, then the jth element of pk is the kth element of pki.
(c) Verify

(
params, pk

′
, a1v′

1 + a2v′
2,σ) = %.

In the second correctness condition, (a) tells us that identifiers and signature
play the same role, while (b) requires that the list of public keys produced by
Combine corresponds (in a natural way) to the list of identifiers produced by
Merge.

4.1 Security

The security game captures the fact that if the system is secure, even an attacker
who controls all sources but one and is given a chosen message oracle for the
honest source cannot create an existential forgery on the honest source. The game
between a challenger and an adversary A with respect to a signature scheme S
proceeds as follows.

Init. The challenger runs Setup(1λ, n,m) to obtain system parameters params
and runs KeyGen(params) to obtain sk∗ and pk∗. It sends pk∗ and params to
A. It keeps sk∗ to itself.

Signature queries. A adaptively requests signatures for vector spaces
V1, . . . , V� ⊂ Fn+m

p . The challenger responds by computing Sign(params,
sk∗, Vi) for i = 1, . . . , � and sends the resulting signatures to A.

Forgery attempt. A eventually outputs a 4-tuple (pk
†
,v†,σ†,W †), where pk

†

is a list of f (not necessarily distinct) public keys pk
†

= (pk1, . . . , pkf) that
contains the challenge public key pk∗, v† is a nonzero vector in Fn+mf

p , σ†

is list of f signatures, and W † = span{w1, . . . ,wt} ⊂ Fn+t
p for some t.

Adjudication. Let σ† = (σ1, . . . , σf) be the list of (distinct) identifiers output
by A, where, w.l.o.g. we assume the first k components σ1, . . . , σk are
returned as the signatures for the chosen message queries V1, . . . , Vk, k ≤ �.
Let σw be the last f − k elements of σ†. Let V ∗ be the vector space output
by MergeSpaces(V1, . . . , Vk,W

†, σ1, . . . , σk,σw).

The forger wins the game if Verify(params, pk
†
,v†,σ†) = % and at least one

of the following two conditions holds:
1. There exists i in 1, . . . , f such that the ith component of pk† is equal to

pk∗, but σi is not any of the signatures obtained in response to chosen
message queries.

2. For i = 1, . . . , t, we have Verify(params, pkw,wi,σw) = %, but v† �∈ V ∗.

Definition 5. The advantage NC-Adv[A,S] of A is defined to be the proba-
bility that A wins the security game. A multi-source network coding scheme S
is secure if for all probabilistic, polynomial-time adversaries A the advantage
NC-Adv[A,S] is negligible in the security parameter λ.

Preventing Pollution Attacks in Multi-source Network Coding 171

In the security game, the attacker requests signatures for files V1, . . . , Vk and
creates his own file W †. Intuitively, W † corresponds to the vector space (the set
of files) whose data the adversary mixes with the honest user’s data in order
to frame the honest user. Winning condition (1) implies that the attacker can
create a valid fake signature for one of the files that he requests signatures for,
i.e., for a file signed with sk∗. Winning condition (2) implies that the attacker
can produce a fake file W † whose basis vectors pass the verification test, and a
vector v† that passes the verification test but lives outside the subspace V ∗ that
is the span of network coding combinations of the files he requested and created.
A receiver that decodes the basis vectors of W † together with the vector v† will
be fooled into accepting a vector from the user with public key pk∗ that this
user never sent.

Implied properties. The security model implies that even given the secret key
sk, no PPT adversary can construct distinct vector spaces V1, V2 ∈ Fn+m

p such
that Sign(params, sk, V1) = Sign(params, sk, V2). Note, however, that this is no
ordinary collision resistance property. During signature verification the vector
space V is not available and therefore the Verify algorithm must validate the
signature given only y ∈ V .

This collision resistance property is crucial during decoding. The decoder
collects all incoming packets with a specific identifier into a full rank matrix
and runs the decoding procedure. Collision resistance ensures that all packets
with the same signature belong to the same vector space.

To see that this collision resistance property follows from our definition, it is
not difficult to give a generic attack that works on any scheme for which this
property is not satisfied. The attack, in fact, is essentially the same as the attack
presented in Section 3.1.

The vector space W †. Recall that the forgery attempt by the adversary con-
sists of the 4-tuple (pk

†
,v†,σ†,W †) where pk

†
is a vector of public keys con-

taining the challenge public key pk∗. The other public keys in the vector pk
†

are
invented by the adversary and it is therefore possible that the adversary knows
the corresponding private keys.

The vector v† and the signature σ† are the adversary’s existential forgery.
Suppose that (v†,σ†) verify as a valid vector-signature pair with respect to
pk

†
. We require the adversary to output the vector space W † to prove that he is

capable of exploiting v† to fool a recipient to incorrectly accept a vector from the
single honest sender. To fool the recipient, the attacker can generate valid vector-
signature pairs for all basis vectors of W † using the secret keys at his disposal.
Since all these vectors have valid signatures, a recipient might try to decode
the basis of W † along with the vector v†. If v† �∈ V ∗, after decoding this set of
vectors (i.e. after subtracting from v† the projection of v† ontoW †), the recipient
obtains a vector u that he believes came from the honest sender, but which the
honest sender never sent since u is not in MergeSpaces(V1, . . . , Vk, σ1, . . . , σk).

Hence, if the attacker is capable of producing a forgery for which condition
(2) of adjudication holds, then an adversary can fool a recipient by sending it

172 S. Agrawal et al.

a sequence of properly signed vectors. We would like to require that for a se-
cure signature scheme it should be impossible to produce a valid forgery where
v† �∈ V ∗. Unfortunately, this strong requirement appears to be unsatisfiable.
We therefore weaken it to require that v† �∈ V ∗ only when there is a possi-
bility that the vectors in W † will be jointly decoded with v†, namely when
Verify(params, pkw,wi,σw) = % for all basis vectors wi of W †. This is an ac-
ceptable weakening of the security requirement since the decoder will never group
together vectors with different identifiers. In Section 5 we show that the resulting
definition is satisfiable.

We note that requiring the adversary to output W † is analogous to the secu-
rity model of aggregate signatures [5] where the attacker outputs an aggregate
signature from s public keys, where s− 1 of them are invented by the attacker.
Moreover, the attacker must output the list of s− 1 messages that went into the
aggregate forgery, for each of the public keys the attacker invented. Our vector
space W † plays the same role as the s− 1 messages in the aggregate forgery.

5 Construction of a Multi-source Signature Scheme

In this section, we construct an explicit multi-source network coding signature
scheme satisfying Definition 4. In order to give a generic construction, we first
define an auxiliary primitive called vector hash. This primitive captures the prop-
erties of the homomorphic hashes used by Krohn et al. [17] that are necessary
for secure signatures.

5.1 Vector Hashes

A vector hash consists of three algorithms, Setup,Hash,Test, with the following
properties:

HashSetup(1λ, n): Input: unary representation of a security parameter λ and
dimension of the data space n. Output: public parameters pp.

Hash(pp,v): Input: public parameters pp and a vector v ∈ Fn
p . Output: hash h

of the vector v. We require that this algorithm be deterministic.
Test(pp,y, β,h): Input: Public parameters pp, a vector y ∈ Fn

p , a vector of
coefficients β ∈ Fm

p and a vector of m hash values h. Output: % (true) or ⊥
(false).

Let h be a set of hashes of a basis v1, . . . ,vm of a vector space V . Intuitively,
we want the Test algorithm to tell us whether y was constructed correctly from
the basis, i.e., whether y =

∑
βivi. This means that Test should output %

whenever y is constructed correctly, and it should be difficult for an adversary
to find a vector y �∈ V and a β such that Test outputs %. We now formalize
these correctness and security conditions.

Preventing Pollution Attacks in Multi-source Network Coding 173

Correctness. For correctness, we require the following for all public parameters
pp ← HashSetup(1λ):

1. For all v ∈ Fn
p , if h← Hash(pp,v) then we have Test(pp,v, 1, h) = %.

2. Let v ∈ Fn
p , let β ∈ F�

p for some �, and let h be a list of hashes of length
�. Fix i ∈ {0, . . . , �}, let β

′ ∈ F�+1
p be the vector β with a zero inserted

between the ith and (i + 1)th place, and let h′ be the vector h with any
hash value inserted between the ith and (i + 1)th place. We require that if
Test(pp,v, β,h) = %, then Test(pp,v, β

′
,h′) = %.

3. Let v1,v2 ∈ Fn
p , let β1, β2 ∈ F�

p for some �, let h be a list of hashes of length
�. Let a, b ∈ Fp, let y = av1 + bv2, and β = aβ1 + bβ2. We require that if
Test(pp,vi, βi,h) = % for i = 1, 2 then Test(pp,y, β,h) = %.

Security. Let VH = (HashSetup,Hash,Test) be a vector hash. Let A be a PPT
algorithm that takes as input public parameters pp ← HashSetup(1λ, n) and
outputs a vector v∗ ∈ Fn

p , an m-dimensional vector space V ⊂ Fn
p (for some

m) represented as basis vectors v1, . . . ,vm, an m-tuple of coefficients β, and a
vector of hashes h = (h1, . . . , hm).

Definition 6. With notation as above, we say that A breaks the vector hash
scheme VH if v∗ �∈ V , Test(pp,v∗, β,h) = %, and Test(pp, v̂i, ei, hi) = % for
i = 1, . . . ,m. (Recall that v̂i is the data component of vi.) We define the ad-
vantage Hash-Adv[A,VH] of A to be the probability that A breaks VH. We
say that a vector hash VH is secure if for all PPT algorithms A the advantage
Hash-Adv[A,VH] is negligible in the security parameter λ.

In the full paper [2] we give an example vector hash using a finite cyclic group
G of order p. This vector hash is secure if the discrete logarithm problem is
infeasible in G.

5.2 The Construction

For this construction, we use as a black box a vector hash as defined in
Section 5.1.

Signature Scheme NS. Let VH = (HashSetuph,Hashh,Testh) be a vector
hash and let S = (Setups,KeyGens, Signs,Verifys) be a signature scheme for sign-
ing messages in {0, 1}∗. Our network coding signature scheme is as follows:

Setup(1λ, n,m): Run HashSetuph(1λ, n) to obtain hash parameters and
Setups(1

λ) to obtain signature parameters. Let params contain m, n, and
the outputs of these algorithms.

KeyGen(params): Run KeyGens to obtain public key pk and the private key sk.
Output (pk, sk).

174 S. Agrawal et al.

Sign(params, sk, {v1, . . . ,vm}): For i = 1, . . . ,m, set hi := Hashh(params, v̂i).
Set h = (h1, . . . , hm), η := Signs(sk,h), and σ :=

(
h, η

)
. Output σ.

Combine
(
params, (v1,σ1, pk1, a1), (v2,σ2, pk2, a2)

)
:

1. Let σ′,v′
1,v

′
2 := Merge(σ1,σ2,v1,v2).

2. To create a list pk
′
, do:

For j in 1, . . . , k = |σ|, if the jth element of σ is the kth element of σi

for i ∈ {1, 2}, then the jth element of pk
′
is the kth element of pki.

3. Output σ′ and pk
′
.

Verify(params, pk,y,σ): Interpret σ as a list of f signatures where each σi =
(hi, ηi). Write H = (h1, . . . ,hf). Do the following:
1. For i in 1, . . . , f , compute Verifys(pki,hi, ηi).
2. Compute Testh(params, ŷ, βy,H). (Recall βy is the augmentation com-

ponent of y.)
If all steps output %, output %; else output ⊥.

The only difference between the Combine algorithm in our signature scheme and
the Merge algorithm of Section 2.1 is that the Combine algorithm also keeps
track of the public keys associated with the signatures.

Instead of sending a separate hash signature ηi in each σi, we can aggregate
these signatures together for space efficiency. In the full paper [2] we describe an
instantiation of the system where a signature on f files is of length (fm+1) log2 p
bits. We also prove a lower bound showing that for large values of f and m this
length is optimal.

Correctness. We verify the correctness conditions of Definition 4.

1. For primitive signatures: Consider a key pair (sk, pk) ← KeyGen(params)
and a vector space V ⊂ Fn+m

p described by a properly augmented basis
v1, . . . ,vm. Let σ be the output of Sign(params, sk, V = {v1, . . . ,vm}). In-
terpret the signature σ as σ = (h, η).

For primitive signatures, there is only one file f = 1. We examine each
step of Verify in turn:
1. Since η = Signs(sk,h), we have Verifys(pk,h, η) = % by correctness of S.
2. Since hi = Hashh(params, v̂i), and βvi is the unit vector ei since we are

using a properly augmented basis, correctness conditions (1) and (3) of
VH imply that Testh(params, v̂i, βvi ,h) = %.

It follows that every basis vector vi passes the signature verification test,
i.e., Verify(params, pk,vi, σ) = % .

2. Recursively, for combined signatures: Consider two lists of public keys
pk1, pk2, two augmented vectors v1,v2, two lists of signatures σ1,σ2 such
that

Verify(params, pk1,v1,σ1) = Verify(params, pk2,v2,σ2) = %. (5.1)

Let v′
1,v

′
2,σ

′ be the output of Merge(v1,v2,σ1,σ2) and f = |σ|. Let Hi be
the list of all the hash elements in σi for i = 1, 2. Let a1, a2 ∈ Fp be network

Preventing Pollution Attacks in Multi-source Network Coding 175

combination coefficients, and let y = a1v′
1 + a2v′

2. Let σ, pk be the output
of the Combine algorithm on inputs (v1,σ1, pk1, a1), (v2,σ2, pk2, a2).

Conditions (a) and (b) are now immediate. For (c), we note that in our
scheme, σ′

j = (hj , ηj) for j = 1, . . . , f . Let H = (h1, . . . ,hf). We examine
each step of the Verify algorithm:
1. By the assumption (5.1) and the way we have set up the correspondence

between indices of pk and σ, we have Verifys(pkj ,hj , ηj) = % for j in
1, . . . , f .

2. By assumption (5.1) we know that Testh(params, v̂i, βvi
,Hi) = % for

i = 1, 2. By correctness property (2) of VH, for i = 1, 2 we have
Testh(params, v̂′

i, βv′
i
,H) = %. Then, by correctness property (3) of VH,

we have Testh(params, ŷ, βy,H) = %.
Thus, we have that Verify

(
params, pk

′
,y,σ) = %.

We have the following security theorem; the proof is in the full paper [2].

Theorem 7. The network coding signature scheme NS is secure assuming that
VH is a secure vector hash, and assuming S is a secure signature scheme.

References

1. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network
coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536. Springer, Heidelberg (2009)

2. Agrawal, S., Boneh, D., Boyen, X., Freeman, D.M.: Preventing pollution attacks
in multi-source network coding. Cryptology ePrint Archive (2010), Full version of
this paper, available at http://eprint.iacr.org

3. Ahlswede, R., Cai, N., Li, S., Yeung, R.: Network information flow. IEEE Trans-
actions on Information Theory 46(4), 1204–1216 (2000)

4. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) Public Key Cryptog-
raphy – PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009)

5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

6. Cai, N., Yeung, R.: Secure network coding. In: Proceedings of the 2002 IEEE
International Symposium on Information Theory (2002)

7. Charles, D., Jain, K., Lauter, K.: Signatures for network coding. In: 40th Annual
Conference on Information Sciences and Systems, CISS 2006 (2006)

8. Cohen, B.: Incentives build robustness in BitTorrent (2003),
http://www.bittorrent.org/bittorrentecon.pdf

9. Feldman, J., Malkin, T., Stein, C., Servedio, R.: On the capacity of secure network
coding. In: Proc. 42nd Annual Allerton Conference on Communication, Control,
and Computing (2004)

10. Fragouli, C., Le Boudec, J.-Y., Widmer, J.: Network coding: an instant primer.
SIGCOMM Comput. Commun. Rev. 36(1), 63–68 (2006)

11. Fragouli, C., Soljanin, E.: Network Coding Fundamentals. Now Publishers Inc.,
Hanover (2007)

http://eprint.iacr.org
http://www.bittorrent.org/bittorrentecon.pdf

176 S. Agrawal et al.

12. Han, K., Ho, T., Koetter, R., Médard, M., Zhao, F.: On network coding for security.
In: Military Communications Conference, Milcom (2007)

13. Ho, T., Leong, B., Koetter, R., Médard, M., Effros, M., Karger, D.: Byzantine
modification detection in multicast networks using randomized network coding.
In: Proceedings of the 2004 IEEE International Symposium on Information Theory
ISIT (June 2004)

14. Jaggi, S., Langberg, M., Katti, S., Ho, T., Katabi, D., Médard, M., Effros, M.:
Resilient network coding in the presence of Byzantine adversaries. IEEE Trans. on
Information Theory 54(6), 2596–2603 (2008)

15. Katti, S., Rahul, H., Hu, W., Katabi, D., Médard, M., Crowcroft, J.: XORs in the
air: practical wireless network coding. IEEE/ACM Trans. Netw. 16(3), 497–510
(2008)

16. Koetter, R., Médard, M.: An algebraic approach to network coding. IEEE/ACM
Transactions on Networking, 782–795 (2003)

17. Krohn, M., Freedman, M., Mazieres, D.: On the-fly verification of rateless erasure
codes for efficient content distribution. In: Proc. of IEEE Symposium on Security
and Privacy, pp. 226–240 (2004)

18. Li, Y., Yao, H., Chen, M., Jaggi, S., Rosen, A.: Ripple authentication for network
coding. To appear in IEEE INFOCOM (2010),
http://home.ie.cuhk.edu.hk/~mhchen/papers/ripple.infocom10.pdf

19. Zhao, F., Kalker, T., Médard, M., Han, K.: Signatures for content distribution with
network coding. In: Proc. Intl. Symp. Info. Theory ISIT (2007)

http://home.ie.cuhk.edu.hk/~mhchen/papers/ripple.infocom10.pdf

Groth–Sahai Proofs Revisited

Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi

Dept. Computer Science,
University of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB,
United Kingdom

{ghadafi,nigel,bogdan}@cs.bris.ac.uk

Abstract. Since their introduction in 2008, the non-interactive zero-
knowledge (NIZK) and non-interactive witness indistinguishable (NIWI)
proofs designed by Groth and Sahai have been used in numerous appli-
cations. In this paper, we offer two contributions to the study of these
proof systems. First, we identify and correct some errors, present in the
oringal online manuscript, that occur in two of the three instantiations
of the Groth-Sahai NIWI proofs for which the equation checked by the
verifier is not valid for honest executions of the protocol. In particular,
implementations of these proofs would not work correctly. We explain
why, perhaps surprisingly, the NIZK proofs that are built from these
NIWI proofs do not suffer from a similar problem. Secondly, we study
the efficiency of existing instantiations and note that only one of the
three instantiations has the potential of being practical. We therefore
propose a natural extension of an existing assumption from symmetric
pairings to asymmetric ones which in turn enables Groth-Sahai proofs
based on new classes of efficient pairings.

1 Introduction

Background. Interactive proofs allow a prover who possesses some witness ω
to convince a verifier that a certain statement x ∈ L is true, where L is some lan-
guage and ω is a witness that attests to this fact. A particularly fascinating class
of interactive proofs are those where the interaction does not reveal information
about the witness, even if the verifier behaves maliciously. Two popular flavors
of witness privacy are witness-indistinguishability [14], when it is unfeasible for
an adversary to decide which of the possible witnesses is used by the prover, and
zero-knowledge[19,20], when it is possible to simulate the interaction between
the prover and the verifier without access to a witness. The two notions share
many commonalities, but are also different in important respects and suitable
for different applications. For example, WI proofs can be executed in parallel
while preserving the privacy of the witness, while ZK proofs may fail in this
scenario.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 177–192, 2010.
c© International Association for Cryptologic Research 2010

178 E. Ghadafi, N.P. Smart, and B. Warinschi

A variant of zero-knowledge proofs useful in multiple application scenarios
are the non-interactive ones [6] (NIZK). In such proofs the interaction between
the prover and the verifier is minimal: the prover simply sends the verifier a
single message after which the latter verifies correctness of the proof without any
further interaction with the prover. It is not difficult to see that NIZK proofs
are impossible in the plain model [18], so some additional setup assumptions
are required. Originally, such proofs were constructed in a setting where parties
share a common random string (CRS) [15]. Later, non-interactive protocols were
also constructed by eliminating interaction through the use of random oracles [5].

Unsurprisingly, both zero-knowledge and witness-indistinguishable proofs have
found countless applications in cryptography. The power and versatility of such
proofs is based on general results that show how to construct zero-knowledge proof
systems for any language in NP [21]. For example, with zero-knowledge proofs, a
party can prove that he/she is following a certain protocol, without revealing any
information about its internal state, and thus can be used to compile protocols
secure for honest-but-curious adversaries into protocols secure against arbitrary
adversaries. Witness indistinguishable proofs can be used, for instance, in the Yao
garbled-circuit protocol, to show that public commitments are commitments to
elements in {0, 1}. The usability of proofs is tightly tied to the class of languages
to which they apply, and to the efficiency of the associated proof systems. Clearly,
these two requirements are contradictory. Indeed, the approach of [21] is quite
general, but the combination of general NP-reductions to problems along with ZK
protocols leads to highly impractical protocols even for the simplest languages.

A crucial step towards more efficient non-interactive zero-knowledge proofs
was the breakthrough work of Groth and Sahai [25]. The authors show how
to give NIWI and NIZK proofs for a large class of languages, without going
through the use of a general NP reduction. Numerous cryptographic results
use GS proofs to obtain efficient implementations for various primitives, see
the related work section for a very partial list of such works. In this paper,
we contribute to the understanding of these proofs in two different ways. We
extend the range of implementations to new, potentially more efficient settings
and we fix an inconspicuous flaw that affects an important part of the original
online manuscript [26]. To explain our contributions, we recall some details of
the settings used by [25].

In the original (conference) version of the Groth–Sahai paper [25], the authors
give a general, abstract framework for the construction of NIWI/NIZK proofs
based on cryptographic pairings. We note that none of the errors we identify
occur in [25]. Proofs and details for three different instantiations are given in
the e-print archive version of the paper [26]. The first instantiation uses pairings
over groups of large composite order; the other two use pairings over prime order
groups. The cryptographic assumptions on which the results rely are: the sub-
group decisional problem [8] in the first case, the decisional linear assumption
(DLIN) [7], and the symmetric external Diffie–Hellman assumption (SXDH) [1],
for the remaining two instantiations, respectively. To obtain the later instantia-
tions the authors essentially use a general procedure [16] of converting protocols

Groth–Sahai Proofs Revisited 179

from the subgroup decision setting for composite order pairing groups, into pro-
tocols for the DLIN and SXDH assumptions in prime order pairing groups.

Efficient implementations based on a new assumption. From a practical
perspective, pairings for groups of composite order are likely to have little practi-
cal impact, due to their inherent inefficiency. The same holds true for symmetric
pairings, i.e. Type-1 pairings in the vocabulary of [17], which are the pairings
used in the second instantiation. Therefore, the only practical instantiation pro-
posed in [26] remains the one based on SXDH in Type-3 curves. In this paper,
we propose new GS proofs which can be used with the most efficient curves for
pairing based cryptography. Our proposals are based on a natural extension of
the DLIN assumption from the symmetric setting to the asymmetric one. We
thus give DLIN-based GS proofs that work for all of the asymmetric pairing
types. In particular, our proofs are the first GS proofs that work for Type-2
pairings.

We wish to warn readers against judging the efficiency of the proof systems
based on Type-1 curves versus those based on Type-2 and Type-3 solely based
on the number of group elements needed. The efficiency of the former curves is
only illusory since the key sizes for these curves grow faster, and the benefits are
immediately lost. Also, we note that the relative merits of the SXDH assumption
versus the DLIN assumption are a matter of debate in pairing based cryptogra-
phy; some people prefer the DLIN assumption as it applies to both symmetric
and asymmetric settings, although the latter is never formally stated and we
need to formalise the underlying hard problem in this paper. On the other hand
the SXDH assumption only applies to Type 3 pairings, which produce the most
efficient pairings known. The SXDH assumption also usually results in cleaner
and simpler protocol, with Groth–Sahai proofs being no exception. In addition
the SXDH assumption is more closely related to a long standing natural number
theoretic problem, i.e. decisional Diffie–Hellman, than the DLIN assumption.

Fixing the inconspicuous flaw. The construction of Groth–Sahai NIZK
proofs in [25,26] is done in two stages. First, the authors show how to construct
NIWI proofs, and then following a trick they turn these proofs into full zero-
knowledge ones. Unfortunately, the NIWI proofs based on DLIN and SXDH
presented in [26] are actually invalid: the verification equation is not always
satisfied when the execution is between honest provers and verifiers. As such,
these proofs do not apply for many rather simple but quite useful statements. The
details are somewhat technical and we explain this point later in the paper. These
errors were introduced during the translation from the construction based on the
subgroup decisional problem to the DLIN and SXDH settings [27]. Interestingly,
this problem does not affect the construction of NIZK proofs out of NIWI proofs,
since in this case the verification equation is always satisfied! Again, we elaborate
on this point later in the paper.

We believe that the reason why this error had not been discovered so far is two-
fold. On the one hand, as explained above, GS NIZK proofs are actually correct.
On the other hand, when used in applications, GS (NIWI) proofs are usually

180 E. Ghadafi, N.P. Smart, and B. Warinschi

treated in a black-box way: the actual proofs are never spelled out, and the
associated equations are never verified. Clearly, the problem would immediately
show up in an implementation. We fix these problems by giving the correct
versions of the proofs.

Finally, we note that in an effort to encourage further study of the Groth-
Sahai proofs we depart from the notation in the original paper and use some
notation that we believe is more expressive and easier to follow.

Related work. Despite their recent introduction, Groth–Sahai proofs have
been widely used. Since Groth–Sahai proofs apply to bilinear groups, they are
mainly used to design cryptographic primitives that do not rely on the random
oracle assumption. The proofs are used to prove a knowledge of some secret
witnesses or as a proof of membership. The scenarios in which the Groth–Sahai
proofs are used in the literature include: proving the possession of some sig-
nature without actually revealing the signature, proving that two ciphertexts
encrypt the same message, etc. For instance, they were used by Camenisch et al.
[10] to build an encryption scheme that is KDM-CCA2 secure. Also, the NIWI
and NIZK proofs were used by Belenkiy et al.[2,3] to design p-signatures and
anonymous credentials. Groth and Lu[24] used the NIZK proofs to prove the
correctness of a shuffle. Huang et al. [28] used Groth–Sahai NIWI and NIZK
proofs to construct optimistic fair exchange protocol. In [31], Phong et al. used
the NIZK proofs to construct undeniable signatures. Belenkiy et al. in[4] have ex-
tensively used both the NIWI and NIZK proofs to construct many cryptographic
primitives such as p-signatures, verifiable random functions and compact e-cash
system. Groth–Sahai proofs have also been used to construct group-signatures
[23,30]. In [13,22] the proofs are used to design universally composable oblivious
transfer protocols. The first of these is particularly interesting from our perspec-
tive; in [13] the authors use a NIWI proof to prove that set of linear equations
holds. When this protocol is instantiated with the DLIN or SXDH protocols
from [26] one would not obtain a proof which verifies. This is an example of an
instance where the verification equations of the GS NIWI proofs are not valid.

Many of the previous applications of Groth–Sahai proofs for prime order
groups, are assumed to be in the (inefficient) symmetric pairing setting, as they
wish to use protocols based on the DLIN assumption; or they are in the asym-
metric setting and need to make a DLIN assumption related to their scheme and
then an additional SXDH assumption to apply Groth–Sahai proofs. By extend-
ing the DLIN setting to both Type-2 and Type-3 pairings we hope to simplify
future applications of Groth–Sahai proofs, in addition by providing a mechanism
for implementing Groth–Sahai proofs in the Type-2 setting other applications
may open up.

2 Bilinear Groups

Bilinear groups are a set of three groups G1,G2 and GT of prime order q along
with a bilinear map (deterministic function) t̂ which takes as input an element
in G1 and an element in G2 and outputs an element in GT . We shall write G1

Groth–Sahai Proofs Revisited 181

and G2 additively, and GT multiplicatively, and write G1 = 〈P1〉,G2 = 〈P2〉, for
two explicitly given generators P1 and P2.

The function t̂ must have the following three properties:

1. Bilinearity: ∀Q1 ∈ G1 , Q2 ∈ G2 x, y ∈ Z, we have

t̂([x]Q1, [y]Q2) = t̂(Q1, Q2)xy.

2. Non-Degeneracy: The value t̂(P1, P2) generates GT .
3. The function t̂ is efficiently computable.

In [17], pairings were categorized into three Types:

– Type-1: This is the symmetric pairing setting in which G1 = G2.
– Type-2: Here we have G1 �= G2, but there is an efficiently computable

isomorphism ψ : G2 −→ G1 where ψ(P2) = P1.
– Type-3: Again G1 �= G2, but now there is no known efficiently computable

isomorphism.

In the Type-1 setting the decision Diffie–Hellman problem is easy in G1, and
hence in G2. In the Type-2 setting the decision Diffie–Hellman problem is easy
in G2, but believed to be hard in G1. In the Type-3 setting the decision Diffie–
Hellman problem is believed to be hard in both G1 and G2. This last belief is
often formalised as the symmetric external Diffie–Hellman assumption:

Definition 1. Symmetric External Diffie-Hellman (SXDH) Assump-
tion: In Type-3 pairings the Decisional Diffie-Hellman (DDH) problem is hard
in both groups G1 and G2.

As a note on naming, the “external” part relates to the fact we are talking
about DDH in G1 and G2, as opposed to the pairing based BDDH problem.
The “symmetric” part is related to the fact that we are talking about DDH
being hard in both G1 and G2. It is perhaps unfortunate terminology that this
symmetry only applies in the asymmetric pairing setting!

As the SXDH problem only applies to Type-3 pairings, it is common to make
the following assumption for Type-1 pairings, as a natural strengthening of the
normal DDH assumption, which no longer applies in Type-1 pairings:

Definition 2. Decisional Linear Problem (DLIN) Assumption: ForType-
1 pairings with G1 = G2 = G and P = P1 = P2, given the tuple ([a]P, [b]P, [ra]P ,
[sb]P, [t]P) where a, b, r, s, t ∈ Fq are unknowns, it is hard to tell whether t = r + s
or t is random.

To extend this definition to the Type-2 or Type-3 setting one could insist that
DLIN is hard in either G1 or G2, however we will require that it is hard in both
G1 and G2. We call this latter notion, in following the naming of the SXDH
assumption, as the symmetric DLIN (SDLIN) assumption.

Definition 3. Symmetric Decisional Linear Problem (SDLIN)
Assumption: SDLIN is said to hold if DLIN is hard in both G1 and G2.

182 E. Ghadafi, N.P. Smart, and B. Warinschi

This is a stronger form of a version of the asymmetric DLIN problem considered
in other works such as [22], where a single problem with some variable instances
in G1 and some in G2 is considered.

We end this section by noting that in [9], Boneh et al. showed that the exis-
tence of the isomorphism in the Type-2 setting can affect the security of some
cryptographic primitives. On the other hand, Chatterjee and Menezes [11] show
that a protocol which is secure in Type-2 setting can almost always be transfered
to one which is secure in Type-3 setting.

3 Groth–Sahai Proofs

In [25,26] Groth and Sahai presented a way to construct efficient non-interactive
witness-indistinguishable and zero-knowledge proofs for a wide variety of state-
ments in the common reference string model. In this section, we recap on their
notation, and point out the problems with their presentation.

The NIZK proof systems allow the same methodology to be applied to four
distinct types of equations, or three distinct types in the case of Type-1 pair-
ings. In this section the four different types are presented in one go using the
abstraction of Groth-Sahai. Later we present the specialisations to the different
settings.

Let q be the order of G1, G2 and GT as above. We first create Fq-vector spaces
A1,A2, AT , B1, B2 and BT . In [26] these are Zn-modules and not Fq-vector spaces
since n may be composite, in our situations we always have n = q, a prime. We
assume these vector spaces are equiped with bilinear maps f : A1 × A2 → AT

and F : B1 ×B2 → BT . In addition, there are inclusion and projection maps for
each pair, i.e. we have maps ι1 : A1 → B1, ι2 : A2 → B2, ιT : AT → BT , and
p1 : B1 → A1, p2 : B2 → A2, pT : BT → AT . Note, that the ι maps are required
to be computable, but that the p maps will not be computable in general. The
maps are extended to vectors of elements in a componentwise fashion.

All these maps need to satisfy the following commutative properties:

∀x ∈ A1, ∀y ∈ A2 :F (ι1(x), ι2(y)) = ιT (f(x, y)),
∀X ∈ B1, ∀Y ∈ B2 :f(p1(X), p2(Y)) = pT (F (X ,Y)).

The essential problem in the DLIN and SXDH settings from [26] is that the
specific values of these maps, for three of the four equation types, do not result
in the first of these commutative properties holding. In particular the given
presentation of ιT is incorrect. This leads to the resulting verification of the
NIWI proofs being invalid.

The CRS we use in our proofs is a set of m̂1 and m̂2 elements of B1 and
B2, which we will denote by U (1)

1 , . . . ,U (m̂1)
1 ∈ B1 and U (1)

2 , . . . ,U (m̂2)
2 ∈ B2. To

commit to an element x ∈ Ai one picks r = (r1, . . . , rm̂i) ∈ Fm̂i
q and computes

commi(x) = ιi(x) +
m̂i∑
j=1

[rj]U (j)
i

= ιi(x) + r · Ui.

Groth–Sahai Proofs Revisited 183

Now suppose we wish to produce a NIWI proof for the equation,

a⊗ y + x⊗ b + x⊗ Γy = t, (1)

where we use the shorthand x ⊗ y for f(x, y), with an obvious extension to
vectors. In the above equation; x ∈ An

1 , y ∈ Am
2 are the secret witnesses, with

a ∈ Am
1 , b ∈ An

2 , Γ ∈Matn×m(Fq), and t ∈ AT the known constants.
We commit to x and y using the random values given by R ∈ Matn×m̂1(Fq)

and S ∈Matm×m̂2(Fq) via

c = ι1(x) +R U1 and d = ι2(y) + S U2.

The NIWI proof is then given by the following two vector values; one picks
T ∈Matm̂2×m̂1(Fq) uniformly at random and computes

π = RTι2(b) +RTΓι2(y) +RTΓS U2 − TTU2 ∈ Bm̂1
2 ,

θ = STι1(a) + STΓTι1(x) + T U1 ∈ Bm̂2
1 .

Verification of the proof (π, θ) is performed by checking whether

ι1(a) • d+ c • ι2(b) + c • Γd = ιT (t) + U1 • π + θ • U2

holds. Here we use X • Y as a shorthand for F (X ,Y), again with an obvious
extension for vectors.
Notes. There are four possible instantiations of the equations:

– A1 = G1, A2 = G2, f(P,Q) = t̂(P,Q): This case is called pairing product
equations.

– A1 = G1, A2 = Fq, f(P, y) = [y]P : This case is called multi-scalar multipli-
cation in G1.

– A1 = Fq, A2 = G2, f(x,Q) = [x]Q: This case is called multi-scalar multipli-
cation in G2.

– A1 = Fq, A2 = Fq, f(x, y) = x · y: This case is called quadratic equation
in Fq.

In the DLIN and SXDH cases, the formulaes for ιT for the last three types of
equations are given incorrectly in [26]. ¿From examining the above methods for
NIWI proofs, we see that the NIWI proofs would not verify, unless the value t
was the trivial element.

We note that in the simpler, yet very common, setting of having Γ = 0 and
either a = 0 or b = 0 in equation (1), the proofs can be simplified further by
setting the random matrix T to be zero.

The CRS, and hence the commitment scheme used to commit to elements in
A1 and A2, comes in two flavours: either we have a binding key, or a hiding key.

– Binding key: This setting requires that for i = 1 and i = 2, pi(ιi(x)) = x

and pi(U (j)
i) = 0 for all j. Hence we have pi(commi(x)) = x which gives

us a perfectly binding, computationally hiding commitment scheme. When
used in the proof, this results in perfectly-sound proofs with computational
witness indistinguishablity.

184 E. Ghadafi, N.P. Smart, and B. Warinschi

– Hiding key: This setting requires that {U (1)
i , . . . ,U (m̂i)

i }, i.e. the set of
commitment keys, generate the entire space Bi, and hence we have ιi(Ai) ⊆
〈U (1)

i , . . . ,U (m̂i)
i 〉. Therefore, if the randomness vector, r, is uniformly chosen,

the commitment scheme is computationally binding and perfectly hiding.
If this setting is used, the resulting proofs are computationally sound and
perfectly witness-indistinguishable.

The security of the whole system is ensured as long as the adversary is unable
to distinguish between a hiding and a binding key. The security proofs can be
found in [26]. When producing a real system, one relies on a trusted third party
to produce a binding key, however when producing a simulated proof etc. one
relies on a hiding key, which essentially provides a trapdoor for the simulator in
the CRS model.

For the DLIN assumption in the Type-1 setting in [26], a method is given to
make the map F symmetric, in the sense that F (X ,Y) = F (Y,X). We shall see
when F is instantiated below, that such a symmetry is not possible for Type-2
and Type-3 pairings. When F is symmetric the associated proofs can be made
much simpler, we leave the reader to consult [26] for details.

To convert the above method for NIWI proofs into a method for NIZK proofs,
we first reorganize the above equation as

a⊗ y + (−1⊗ t) + x⊗ b+ x⊗ Γy =

⎧⎨⎩0 If AT = Fq,
O If AT = G1 or G2,
1 If AT = GT .

The vector of commitments c is extended to include a commitment to the el-
ement one, this is done to deal with the extra term in the left hand side of
the above equation. Then the above NIWI method is applied. This results in
the NIZK proofs in the pairing product equation subcase only applying when
either t = 1 in equation (1), or one knows P1, . . . , Pn and Q1, . . . , Qn such that
t = t̂(P1, Q1) · · · t̂(Pn, Qn), since only then can the above transform be applied.
This is the only restriction in the method for obtaining NIZK proofs.

In all cases, to obtain NIZK proofs we apply the method for NIWI proofs in
the case where the equation is homogeneous, i.e. has a trivial right hand side.
This latter point is crucial in understanding why the NIZK proofs from [26] work
but the NIWI proofs do not. Hence, even though ιT was presented incorrectly
in [26], since the method to produce NIZK proofs will result in a trivial value of
ιT , the method for NIZK is sound.

4 Equations for ι and p

From the last section, it is seen that the whole system depends on the choice
of the ι and p maps, plus the CRS. The maps must be chosen so that they
have the required commutativity property over f and F . In this section, we give
such maps and the relevant CRS for the SXDH and SDLIN examples in the
asymmetric pairing setting.

Groth–Sahai Proofs Revisited 185

We present the data in the following way, for each setting we first present
the hiding and binding CRS, along with the map F and the groups Bi and BT .
Then we present the maps ιi and pi for the cases Ai = Fq and Ai = Gi. At this
point we overload the symbols ιi and pi, with the precise maps being obtained
by type-checking. This helps simplify our notation somewhat.

Once the maps are defined we can proceed to produce the commitment schemes,
and the NIWI and NIZK proofs. Then for the four types of equation being proved,
we present the maps ιT and pT , which result in the maps being commutative. With
these maps one can then verify the resulting NIWI proofs. Again we overload ιT
and pT , with the precise map being determined by type checking.

4.1 SXDH-Based Proofs

Setup. We set B1 = G2
1, B2 = G2

2 and BT = G4
T , all with operations performed

componentwise. We let

F :
{

B1 × B2 −→ BT

(X1, Y1), (X2, Y2)
−→
(
t̂(X1, X2), t̂(X1, Y2), t̂(Y1, X2), t̂(Y1, Y2)

)
Since the underlying pairing t̂ is bilinear, it follows that the map F is also bilinear.
To generate the CRS, the trusted party generates, for i = 1, 2, ai, ti ∈ F∗

q at
random and defines

Qi = [ai]Pi, Ui = [ti]Pi, Vi = [ti]Qi.

We now set

U (1)
i = (Pi, Qi) ∈ Bi,

U (2)
i =

{
[ti]U (1)

i = (Ui, Vi) Binding Case
[ti]U (1)

i − (O, Pi) = (Ui, Vi − Pi) Hiding Case
∈ Bi.

The CRS is then the set {U1,U2} where U1 = {U (1)
1 ,U (2)

1 }, and U2 = {U (1)
2 ,U (2)

2 }.
Under the SXDH assumption one cannot tell a binding key from a hiding key.
To aid what follows, we first set Wi = U (2)

i + (O, Pi) = (Wi,1,Wi,2) ∈ Bi.

ιi, pi and commi. We now define the maps ιi : Ai → Bi, pi : Bi → Ai and the
commitment scheme commi. There are two cases we need to consider; Ai = Fq

and Ai = Gi.
Ai = Fq: We define, in this case, the maps via

ιi :
{

Fq −→ Bi

x
−→ [x]Wi
pi :

{
Bi −→ Fq

X = ([c1]Pi, [c2]Pi)
−→ c2 − aic1

Note, that computing pi requires one to solve discrete logarithms. This is not an
issue since we at no point will compute pi, we simply need to know it exists and
it has the correct properties.

186 E. Ghadafi, N.P. Smart, and B. Warinschi

The commitment scheme commi is obtained as before, except we select m̂i = 1,
as opposed to m̂i = 2, this simplifies the equations somewhat. Hence we have

commi :
{

Fq × Fq −→ Bi

(x, r)
−→ ιi(x) + [r]U (1)
i

Ai = Gi: In this case we define

ιi :
{

Gi −→ Bi

X
−→ (O, X) pi :
{

Bi −→ Gi

X = (C1, C2)
−→ C2 − [ai]C1

The commitment scheme commi is obtained as in our main discussion, i.e. with
m̂i = 2. Hence we have

commi :
{

Gi × Fq × Fq −→ Bi

(X, r1, r2)
−→ ιi(X) + [r1]U (1)
i + [r2]U (2)

i

ιT and pT . Here we have four cases, depending on which of the four types of
equation we are dealing with
Pairing Product Equations.

ιT :
{

GT −→ BT

ζ
−→ (1, 1, 1, ζ) pT :
{

BT −→ GT

(ζ1,1, ζ1,2, ζ2,1, ζ2,2)
−→ ζ2,2ζ
−a1
1,2 (ζ2,1ζ

−a1
1,1)−a2

Multi-Scalar Multiplication in G1 and G2.
In both of these cases we have

pT :
{

BT −→ Gi

(ζs1 , ζs2 , ζs3 , ζs4)
−→ [s4 − a1s2 − a2s3 + a1a2s1]Pi

where ζ = t̂(P1, P2). For multi-scalar multiplication in G1 the map ιT is defined
by

ιT :
{

G1 −→ BT

X
−→ (1, 1, t̂(X,W2,1), t̂(X,W2,2))
Whilst for multi-scalar multiplication in G2 the map ιT is defined by

ιT :
{

G2 −→ BT

X
−→ (1, t̂(W1,1, X), 1, t̂(W1,2, X)).

Note, these are different definitions from those given in [26]. The above definitions
produce the required commutative properties.
Quadratic Equations in Fq.
In this case we have

pT :
{

BT −→ Fq

(ζs1 , ζs2 , ζs3 , ζs4)
−→ s4 − a1s2 − a2s3 + a1a2s1

where ζ = t̂(P1, P2). The function ιT is given by

ιT (z) :
{

Fq −→ BT

z
−→ F (W1,W2)z .

Again this is different from the map given in [26].

Groth–Sahai Proofs Revisited 187

4.2 SDLIN-Based Proofs

We now perform a similar analysis when we wish to base security on the SDLIN
problem. Recall in [26] this situation is only described for the Type-1 pairing
situation. What we describe below can be used in both the Type-2 and Type-3
situations. In addition by specialising it to the Type-1 situation, and applying
the optimization of [26], to produce a symmetric version of F (X ,Y), one obtains
more efficient NIZK proofs for Type-1 pairings as well.

Setup. We set B1 = G3
1, B2 = G3

2 and BT = G9
T , all with operations performed

componentwise. We let

F :

⎧⎪⎪⎨⎪⎪⎩
B1 × B2 −→ BT

(X1, Y1, Z1), (X2, Y2, Z2)
−→

⎛⎝ t̂(X1, X2) t̂(X1, Y2) t̂(X1, Z2)
t̂(Y1, X2) t̂(Y1, Y2) t̂(Y1, Z2)
t̂(Z1, X2) t̂(Z1, Y2) t̂(Z1, Z2)

⎞⎠
Since the underlying pairing t̂ is bilinear, it follows that the map F is also bilinear.
To generate the CRS the trusted party generates, for i = 1, 2 ai, ri, si, ti ∈ F∗

q at
random and defines

Ui = [ai]Pi, Vi = [ti]Pi.

We now set

U (1)
i = (Ui,O, Pi) ∈ Bi,

U (2)
i = (O, Vi, Pi) ∈ Bi,

U (3)
i =

⎧⎪⎪⎨⎪⎪⎩
[ri]U (1)

i + [si]U (2)
i

= ([ri]Ui, [si]Vi, [ri + si]Pi) Binding Case
[ri]U (1)

i + [si]U (2)
i − (O,O, Pi)

= ([ri]Ui, [si]Vi, [ri + si − 1]Pi) Hiding Case

The CRS is then the set {U1,U2} where U1 = {U (1)
1 ,U (2)

1 ,U (3)
1 }, and U2 =

{U (1)
2 ,U (2)

2 ,U (3)
2 }. Under the SDLIN assumption one cannot tell a binding key

from a hiding key. To aid notation in what follows, we first set Wi = U (3)
i +

(O,O, Pi) = (Wi,1,Wi,2,Wi,3) ∈ Bi.

ιi, pi and commi. We now define the maps ιi : Ai → Bi, pi : Bi → Ai and the
commitment scheme commi. There are two cases; Ai = Fq and Ai = Gi.
Ai = Fq: We define the maps via

ιi :
{

Fq −→ Bi

x
−→ [x]Wi
pi :

{
Bi −→ Fq

X = ([c1]Pi, [c2]Pi, [c3]Pi)
−→ c3 − 1
ai
c1 − 1

ti
c2

The commitment scheme commi is obtained as before, except we select m̂i = 2,
as opposed to m̂i = 3, this again simplifies the equations. Hence we have

commi :
{

Fq × Fq × Fq −→ Bi

(x, r1, r2)
−→ ιi(x) + [r1]U (1)
i + [r2]U (2)

i

188 E. Ghadafi, N.P. Smart, and B. Warinschi

Ai = Gi: We define

ιi :
{

Gi −→ Bi

X
−→ (O,O, X) pi :
{

Bi −→ Gi

X = (C1, C2, C3)
−→ C3 − [1
ai

]C1 − [1
ti

]C2

The commitment scheme commi is obtained as in our main discussion, i.e. with
m̂i = 3. Hence we have

commi :
{

Gi × Fq × Fq × Fq −→ Bi

(X, r1, r2, r3)
−→ ιi(X) + [r1]U (1)
i + [r2]U (2)

i + [r3]U (3)
i

ιT and pT . Here we have four cases, depending on which of the four types of
equation we are dealing with
Pairing Product Equations.

ιT :

⎧⎪⎪⎨⎪⎪⎩
GT −→ BT

ζ
−→

⎛⎝1 1 1
1 1 1
1 1 ζ

⎞⎠ pT :

⎧⎪⎪⎨⎪⎪⎩
BT −→ GT⎛⎝ ζ1,1 ζ1,2 ζ1,3

ζ2,1 ζ2,2 ζ2,3
ζ3,1 ζ3,2 ζ3,3

⎞⎠
−→ γ
−1/a2
1 γ

−1/t2
2 γ3

where γi = ζ
−1/a1
1,i ζ

−1/t1
2,i ζ3,i.

Multi-Scalar Multiplication in G1 and G2.
In both of these cases we have

pT :

⎧⎪⎪⎨⎪⎪⎩
BT −→ Gi⎛⎝ ζs1,1 ζs1,2 ζs1,3

ζs2,1 ζs2,2 ζs2,3

ζs3,1 ζs3,2 ζs3,3

⎞⎠
−→ [s3 − 1
a2
s1 − 1

t2
s2]Pi

where ζ = t̂(P1, P2) and

si = s3,i −
1
a1
s1,i −

1
t1
s2,i.

For multi-scalar multiplication in G1 the map ιT is defined by

ιT :

⎧⎪⎪⎨⎪⎪⎩
G1 −→ BT

X
−→

⎛⎝ 1 1 1
1 1 1

t̂(X,W2,1) t̂(X,W2,2) t̂(X,W2,3)

⎞⎠
Whilst for multi-scalar multiplication in G2 the map ιT is defined by

ιT :

⎧⎪⎪⎨⎪⎪⎩
G2 −→ BT

X
−→

⎛⎝1 1 t̂(W1,1, X)
1 1 t̂(W1,2, X)
1 1 t̂(W1,3, X)

⎞⎠
When specialised to the symmetric case these are different definitions of ιT to
those given in [26]. The above definitions produce the required commutative
properties.

Groth–Sahai Proofs Revisited 189

Quadratic Equations in Fq.
In this case we have

pT :

⎧⎪⎪⎨⎪⎪⎩
BT −→ Fq⎛⎝ ζs1,1 ζs1,2 ζs1,3

ζs2,1 ζs2,2 ζs2,3

ζs3,1 ζs3,2 ζs3,3

⎞⎠
−→ s3 − 1
a2
s1 − 1

t2
s2

where again we have ζ = t̂(P1, P2) and

si = s3,i −
1
a1
s1,i −

1
t1
s2,i.

The function ιT is given by

ιT (z) :
{

Fq −→ BT

z
−→ F (W1,W2)z .

Again this is different from the mapping given in [26].

4.3 Combining SXDH and SDLIN

We end this section by noting an extension which was pointed out to us by J.
Groth [27]. If one wanted to work in Type-2 pairings and one wanted a more
efficient instantiation one could implement a system using DDH in G1 and DLIN
in G2. We do not expand on the details of this construction, but remark that
this would imply that elements in B1 would consist of two elements in G1 and
elements in B2 would consist of three elements in G2, with BT consisting of six
elements in GT . This added efficiency is at the expense of having to assume DDH
in G1, which defeats the benefit which some people (although not the current
authors) see behind the DLIN assumption based constructions in pairing based
cryptography; namely that a single protocol description can apply in all main
three pairing types.

5 Performance Comparison

In this section we compare the relative commitment sizes of the different instan-
tiations, the resulting proof sizes can be deduced from these and show a similar
relative comparison. ¿From the size of the elements in the groups B1 and B2 one
can also easily estimate the relative computational performance figures, as group
operations are essentially a quadratic function of the bit length. Before proceed-
ing we also note that Groth–Sahai proofs will usually be used in the context of
another protocol or scheme which is likely to dictate the exact pairing type one
is using, hence the following comparison is only for illustrative purposes.

To provide concrete numbers we assume a security level equivalent to 128-
bits of symmetric key security. Using “standard” comparisons of different key
sizes this equates to a minimum size of GT of 3072-bits and a minimum size of

190 E. Ghadafi, N.P. Smart, and B. Warinschi

elements in G1 of 256-bits. We let k denote the pairing embedding degree. For
Type-1 pairings the value of k is bounded by two for elliptic curves defined over
fields of large prime characteristic and by six for curves which are defined over
fields of characteristic three. For Type-2 and Type-3 curves the “optimal” value
of k at this security level is k = 12. A crucial observation is that for Type-3
curves we have the ability to compress the elements in G2 by a factor of six at
this security level by using BN curves.

We summarize the commitment sizes (in bits), i.e. the size of elements in B1
and B2, as well as the proof sizes (also in bits), in Table 1. From the table it would
appear that using the SDLIN setting as introduced in this paper gives no advan-
tage. However, this overlooks the fact that the point of Groth–Sahai proofs is to
use them in other protocols and schemes. These protocols and schemes may re-
quire one to work in the Type-2 setting, or to base ones security on the SDLIN as-
sumption. Thus in these situations it makes more sense to use Groth–Sahai proofs
suited to the particular protocol. In addition some researchers prefer the SDLIN
setting to the SXDH setting as they prefer not to use the “special” pairing setting
of Type-3, where there is no computable isomorphism from G2 to G1.

For the Type-1 setting we give two figures to represent the case of large prime
characteristic and characteristic three. Note in all cases the size of a proof is
equal to m̂1 elements of B2 and m̂2 elements of B1, except in the case of Type-1
pairings where due to the symmetric nature of the map F (X ,Y) one can simplify
this to max(m̂1, m̂2) elements of B1 = B2.

Table 1. Summary of the different instantiations

Pairing
Type 1 2 3 3
Hard

Problems DLIN SDLIN SDLIN SXDH
|G1| 1536/512 256 256 256
|G2| 1536/512 3072 512 512
|B1| 3 · |G1| = 4608/1536 3 · |G1| = 768 3 · |G1| = 768 2 · |G1| = 512
|B2| 3 · |G2| = 4608/1536 3 · |G2| = 9216 3 · |G2| = 1536 2 · |G2| = 1024

Pairing Product Equations
(m̂1, m̂2) (3,3) (3,3) (3,3) (2,2)

Size 13824/4608 29952 6912 3072
Multi-scalar multiplication in G1

(m̂1, m̂2) (3,2) (3,2) (3,2) (2,1)
Size 13824/4608 29184 6144 2560

Multi-scalar multiplication in G2

(m̂1, m̂2) (2,3) (2,3) (2,3) (1,2)
Size 13824/4608 20736 5376 2048

Quadratic Equations in Fq

(m̂1, m̂2) (2,2) (2,2) (2,2) (1,1)
Size 9216/3072 19968 4608 1536

Groth–Sahai Proofs Revisited 191

6 Summary

We have extended the Groth–Sahai techniques to pairings in the Type-2 setting,
and to using the DLIN assumption in the Type-3 setting. This required us to in-
troduce a minor extension to the DLIN hardness assumption. In doing so we cor-
rected a number of mistakes in the formulae presented in [26]. Using our formulae
all valid NIWI proofs in both the DLIN and SXDH settings will now verify.

Acknowledgements. The authors work was partially funded by the EU FP7
projects CACE and eCrypt-2. The work of the second author was supported by a
Royal Society Wolfson Merit Award. The authors would like to thank Jens Groth
and Amit Sahai for useful feedback on an earlier version of this manuscript.

References

1. Ateniese, G., Camenisch, J., de Medeiros, B., Hohenberger, S.: Practical group
signatures without random oracles. Cryptology ePrint Archive, Report 2005/385
(2005)

2. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

3. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and nonin-
teractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008)

4. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact E-Cash and
simulatable VRFs revisited. In: Shacham, H. (ed.) Pairing 2009. LNCS, vol. 5671,
pp. 114–131. Springer, Heidelberg (2009)

5. Bellare, M., Rogaway, P.: Random oracles are practical: A Paradigm for Designing
Efficient Protocols. In: Computer and Communications Security – CCS 1993, pp.
62–73. ACM, New York (1993)

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-
tions. In: Symposium on Theory of Computing – STOC 1988, pp. 103–112. ACM,
New York (1988)

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

8. Boneh, D., Goh, E., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kil-
ian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer,
Heidelberg (2001)

10. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In:
Joux, A. (ed.) EUROCRYPT 2009, vol. 5479, pp. 351–368. Springer, Heidelberg
(2009)

11. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric pair-
ings – The role of Ψ revisited. Cryptology ePrint Archive, Report 2009/480 (2009)

12. Damg̊ard, I.: Non-interactive circuit based proofs and non-interactive proofs of
knowledge with preprocessing. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 341–355. Springer, Heidelberg (1993)

192 E. Ghadafi, N.P. Smart, and B. Warinschi

13. Damg̊ard, I., Nielsen, J.B., Orlandi, C.: Essentially optimal universally composable
oblivious transfer. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461,
pp. 318–335. Springer, Heidelberg (2009)

14. Feige, U., Shamir, A.: Witness indistinguishable and witness hidding protocols. In:
Symposium on Theory of Computing, pp. 416–426. ACM, New York (1990)

15. Feige, U., Lapidot, D., Shamir, A.: Non-interactive zero-knowledge proofs based
on a single random string. In: Foundations of Computer Science – FOCS 1990,
pp. 308–317. ACM, New York (1990)

16. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. Cryptology ePrint Archive, Report 2009/540 (2009)

17. Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156, 3113–3121 (2008)

18. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. Journal of Cryptology 7, 1–32 (1994)

19. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: Symposium on Theory of Computing –
STOC 1985, pp. 291–304. ACM, New York (1985)

20. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18, 186–208 (1989)

21. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their valid-
ity. Journal of the ACM 38(3), 690–728 (1991)

22. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer,
Heidelberg (2008)

23. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007)

24. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer,
Heidelberg (2007)

25. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

26. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups (full
version), http://www.brics.dk/~jg/WImoduleFull.pdf

27. Groth, J., Sahai, A.: Private Communication (December 2009)
28. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Ambiguous optimistic fair exchange.

In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 74–89. Springer,
Heidelberg (2008)

29. Kilian, J., Petrank, E.: An efficient non-interactive proof system for NP with gen-
eral assumptions. Journal of Cryptology 11, 1–27 (1998)

30. Liang, X., Cao, Z., Shao, J., Lin, H.: Short group signature without random oracles.
In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 69–82.
Springer, Heidelberg (2007)

31. Phong, L.T., Kurosawa, K., Ogata, W.: New DLOG-based convertible undeni-
able signature schemes in the standard model. Cryptology ePrint Archive, Report
2009/394

32. De Santis, A., Di Crescenzo, G., Persiano, G.: Randomness-optimal charac-
terization of two NP proof systems. In: Rolim, J.D.P., Vadhan, S.P. (eds.)
RANDOM 2002. LNCS, vol. 2483, pp. 179–193. Springer, Heidelberg (2002)

http://www.brics.dk/~jg/WImoduleFull.pdf

Constant-Round Concurrent Non-Malleable
Statistically Binding Commitments and

Decommitments

Zhenfu Cao1, Ivan Visconti2,�, and Zongyang Zhang1

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, P.R. China

{zfcao,zongyangzhang}@sjtu.edu.cn
2 Dipartimento di Informatica ed Applicazioni,

University of Salerno, Italy
visconti@dia.unisa.it

Abstract. When commitment schemes are used in complex environ-
ments, e.g., the Internet, the issue of malleability appears, i.e., a concur-
rent man-in-the-middle adversary might generate commitments to values
related to ones committed to by honest players. In the plain model, the
current best solution towards resolving this problem in a constant num-
ber of rounds is the work of Ostrovsky, Persiano and Visconti (TCC’ 09).
They constructed a constant-round commitment scheme that is concur-
rent non-malleable with respect to both commitment and decommitment.
However, the scheme is only computationally binding. For application
scenarios where the security of receivers is of a great concern, computa-
tional binding may not suffice.

In this work, we follow the line of their work and give a construction
of statistically binding commitment scheme which is concurrent non-
malleable with respect to both commitment and decommitment. Our
work can be seen as a complement of the work of Ostrovsky et al. in
the plain model. Our construction relies on the existence of a family of
pairs of claw-free permutations and only needs a constant number of
communication rounds in the plain model. Our proof of security uses
non-black-box techniques and satisfies the (most powerful) simulation-
based definitions of non-malleability.

Keywords: commitment schemes, statistically binding,non-malleability.

1 Introduction

A commitment scheme is a two-phase interactive protocol between two parties,
the committer, who holds a value, and the receiver. It enables the committer
to commit itself a value while keeping it secret from the receiver. Two basic
properties of a commitment scheme are the hiding property (the receiver can
not learn the committed value before the decommitment phase) and the binding
� Work done while Ivan Visconti was visiting UCLA, USA.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 193–208, 2010.
c© International Association for Cryptologic Research 2010

194 Z. Cao, I. Visconti, and Z. Zhang

property (the committer is bounded to one value after the commitment phase). In
the literature, two fundamental types of commitment schemes, statistical hiding
and statistical binding, are considered.

It is well known that the basic properties of commitment schemes can not pre-
vent “malleability” attacks mounted by a probabilistic polynomial-time (PPT)
man-in-the-middle (MIM) adversary who has full control of the communication
channel between the committer and the receiver. The concept of non-malleability
was first introduced by Dolev et al. [1] to capture security concerns in such set-
tings. Loosely speaking, a commitment scheme is non-malleable if one can not
transform the commitment of a value into a commitment of a related value. This
kind of non-malleability is called non-malleability with respect to commitment
(NMc for short) [1]. This definition is based on the independence of the commit-
ted messages played by the MIM adversary with respect to the ones played by
the committer. The notion of non-malleability used by Di Crescenzo et al. [2] is
called non-malleability with respect to decommitment or opening (NMd for short),
i.e., the adversary can not construct a commitment from a given one, such that
after having seen the opening of the original commitment, the adversary is able
to correctly open his commitment with a related value. This definition requires
that the success probability of a MIM adversary is maintained by a stand-alone
simulator. Subsequent NMc definitions are modified in a similar way [3,4,5,6,7,8].
Simulation-based definitions are much more useful when a commitment scheme
is used as a building block in a larger protocol since the existence of a simulator
heavily simplifies the task of proving the security of the larger protocol.

Intuitively, it seems that NMc is stronger than NMd. However, this depends
on the subtleties of the definitions. Indeed this does not necessarily always hold
at least with respect to non-malleability definitions in [2,1,3]. In a journal version
of [3], the authors [9] presented a stringent definition of non-malleability w.r.t
commitment in order to imply the notion of non-malleability w.r.t opening.

Several previous results focused on designing statistically hiding commitment
schemes which are NMd. Based on number-theoretic assumptions, NMd com-
mitment schemes were designed in [10,3] assuming the existence of a common
reference string (CRS) that is shared by the two players before the protocol
execution. Thus, their schemes do not work in the plain model (i.e., without
setup assumptions). Recently, Pass and Rosen [4,5] presented a slightly different
definition of NMd.1 They then constructed a commitment scheme under their
NMd definition based on a family of collision-resistant hash functions in the plain
model. Their scheme is round-efficient and needs only constant-round communi-
cation. More recently, based on the work of [11,12], Zhang et al. [13] presented
a non-malleable commitment scheme under the weakest assumption, i.e., the
existence of one-way functions.

1 More precisely, the NMd definitions in [2,10] do not take into account possible a
priori information the adversary might have about the commitment received in the
left interaction, while the definitions in [3,4,5] do. The definitions in [2,10,3] do not
provide the stand-alone simulator the value committed in the left interaction after
the commitment phase is finished, while the definitions in [4,5] do.

Concurrent NM Statistically Binding Commitments and Decommitments 195

Before the work of [8], it was commonly believed that NMd (compared with
NMc) is the only notion that makes sense in a computationally binding commit-
ment scheme [1]. However, Ostrovsky et al. [8] argued that by slightly relaxing the
NMc definition,2 NMc can also be achieved for computationally binding commit-
ment schemes. They considered concurrent MIM attacks where the adversary can
simultaneously participate in any polynomial number of executions as a receiver
and as a committer. Based on the work of [6,7], and using some techniques al-
ready introduced in [14,15] they gave a computationally hiding and computation-
ally binding commitment scheme which is both concurrent NMc and concurrent
NMd. In a full version of [8], they [16] further gave a construction of a constant-
round statistically hiding commitment scheme which is concurrent NMd and that
actually consists of a simplified protocol with respect to the one presented in [8].
The above schemes assume the existence of a family of pairs of claw-free permu-
tations, require constant number of communication rounds only and assume that
commitment phase and decommitment phase do not overlap in time.

For statistically binding commitment schemes, the first NMc one was de-
signed by Dolev et al. [1] assuming the existence of one-way functions. However,
the scheme requires O(log n) rounds, where n is the security parameter. In the
CRS model, Di Crescenzo et al. [10] constructed very efficient NMc commitment
schemes based on any public-key cryptosystem that is non-malleable under cho-
sen plaintext attacks in addition to any shared-key cryptosystem that enjoys
indistinguishability under plaintext oracle CCA-post attack. In the plain model,
Pass and Rosen [4,5] first constructed a constant-round NMc commitment scheme
assuming the existence of collision resistant hash functions. Pass and Rosen [6,7]
then showed the NMc scheme of [4,5] is actually a concurrent NMc one under a
stronger simulation-based definition.3 The security proofs of [4,5,6,7] requires a
non-black-box use of the code of the adversary and moreover the one of [6,7] as-
sumes that commitment phase and decommitment phase do not overlap in time.
Lin et al. [12] reconsidered the scheme of [1] and presented a concurrent NMc
commitment scheme using only black-box techniques. Their scheme requires a
polynomial number of communication rounds and is based on the minimal as-
sumption, i.e., existence of one-way functions. In addition to the above results
focusing on NMc, the only one that explicitly claimed NMd commitment schemes
was designed in [9] (see Sec. 3) in the CRS model.

Before the clarification of [8], another folklore belief about a statistically bind-
ing commitment scheme is that if it is NMc then it is NMd. However, at least

2 The values committed to by the adversary in a MIM execution are uniquely defined
for all algorithms in the NMc definition [1,3], but only for PPT algorithms in the
relaxed definition. More recently, the NMc definition formulated in [9] can also be
applied to computationally binding commitment scheme.

3 The NMd definition in [6,7] is stronger than that in [2]. The former is a
indistinguishability-based definition, i.e., there exists a PPT stand-alone simulator
that commits to a value which is computationally indistinguishable from the value
committed to by the MIM adversary. The latter is a relation-based definition, i.e., the
stand-alone simulator is less likely to commit to a value satisfying any polynomial-
time computable relation than the value committed to by the MIM adversary.

196 Z. Cao, I. Visconti, and Z. Zhang

this can not be deduced just from the simulation-based definitions in [4,5,6,7]
in the plain model.4 The main problem is that the success probability of the
stand-alone simulator is required to be only negligible close to the success prob-
ability of the MIM adversary [8]. Recall in the NMc proof [4,5,6,7], a stand-alone
simulator will internally simulate the left interaction for the MIM adversary by
committing to a bogus value 0n. It seems that this simulator can not handle the
NMd proof, because after receiving a committed value m, the simulator is stuck
to open the bogus commitment to m.

Therefore, achieving simultaneously concurrent NMc and NMd in a constant
number of rounds and under the simulation-based notions, the work of [8] achieves
the strongest security for commitment schemes in the plain model. However, the
scheme is only computationally binding. When the security of receivers is of a great
concern in some application scenarios, it may not be sufficient. Thus, there remains
an open problem as to whether or not constant-round statistically binding com-
mitment scheme that is both concurrent NMc and concurrent NMd exists in the
plain model, under the stronger simulation-based definition [6,5,6,7,8].

1.1 Our Contribution

We solve the above problem by presenting a round-efficient protocol for con-
current non-malleable statistically binding commitment scheme. We show the
following theorem.

Theorem 1. Suppose that there exists a family of pairs of claw-free permu-
tations. Then there exists a constant-round statistically binding commitment
scheme that is both concurrent NMc and concurrent NMd.

On a high level view, the commitment phase of our scheme is almost identical
with that in [8]. The technique used in this phase is also the same. More pre-
cisely, in addition to the technique used by [4,5,6,7], the two-witness technique of
Feige [17] is also employed. Our contribution lies in the modification of the open
phase in order to simultaneously achieve concurrent NMd and statistical bind-
ing property. We borrow the idea of [18] in designing concurrent zero-knowledge
proofs, i.e., we let the committer guess the private values committed to by the
receiver in the commitment phase, and then use a witness-indistinguishable proof
system to prove a carefully designed statement. In this way, the scheme is guar-
anteed to prevent any unbounded adversary from opening the commitment in
two different ways.

Our work can be viewed as a complement of the work of [8]. Both of the work
resolve the non-malleability issues against concurrent man-in-the-middle attacks
and achieve the same-level of security in the plain model. The main difference
between the two results lies in that the work of [8] focuses mainly on computa-
tionally binding commitment schemes, whereas our work considers statistically
binding ones. Compared with the work of [6,7], our work also achieves both con-
current NMc and concurrent NMd, whereas they only achieve concurrent NMc.

4 There is no problem in the CRS model. The reader is refereed to [8] for more details.

Concurrent NM Statistically Binding Commitments and Decommitments 197

We emphasize here that our scheme inherits the limitation from [6,7,8], i.e., the
non-malleability proof heavily relies on the assumption that commitment phase
and the decommitment phase do not overlap in time.

2 Preliminaries

We assume the reader is familiar with witness-indistinguishable protocols, zero-
knowledge protocols and commitment schemes. For more details, the reader is
refereed to [19] for references.

2.1 Concurrent Non-Malleable Commitments and Decommitments

Next, we formulate the definitions of concurrent NMc and concurrent NMd. As
stated in [6,7] we formalize the notion of non-malleability by a comparison be-
tween a man-in-the-middle execution and a simulated execution. Let 〈C,R〉 be
a commitment scheme. Let n ∈ N be a security parameter.

The man-in-the-middle execution. In the MIM execution, the adversary A is
simultaneously participating in m(n) = poly(n) left and m(n) right interactions
(WLOG, the number of commitments is the same in the left and right execu-
tion). In the ith left interaction, A interacts with the committer C to receive
a commitment to a value vi. In the ith right interaction, A interacts with the
receiver R and tries to commit to a value ṽi of its choice. After the execution
of the commitments in all interactions, A executes the decommitments with
C and the decommitments with R. Prior to the interaction, the value vector
V = (v1, . . . , vm) is given to C as local inputs. A also receives an auxiliary input
z, which might contain a priori information about V.

Let the random variable mimA
com(V, z) denote the values ṽ1, . . . , ṽm to which

the adversary has committed in the right interactions. If the ith right commit-
ment fails, or its transcript (commitment phase) equals to the transcript of any
left interaction, the value ṽi is set to ⊥.

Similarly, we let the random variable mimA
open(V, z) denote the values ṽ1, . . . , ṽm

to which the adversary has opened in the right interactions. If the ith right
commitment or decommitment fails, or its transcript (both commitment phase
and decommitment phase) equals to the transcript of any left interaction, the
value ṽi is set to ⊥.

The simulated execution. In the simulated execution, a simulator S directly in-
teracts with an honest receiver R in m(n) interactions. As in the MIM execution,
the value vector V = (v1, . . . , vm) is chosen prior to the interaction, and S re-
ceives some a prior information about V as part of its auxiliary input z. S first
executes the commitment phases with R. Once all the commitment phases have
been completed, S receives the value vector V and attempts to decommit to
values ṽ1, . . . , ṽm.

Let the random variable simS
com(V, z) denote the values ṽ1, . . . , ṽm committed

to by S. The value ṽi is set to ⊥ if S fails in the ith commitment phase. Let the

198 Z. Cao, I. Visconti, and Z. Zhang

random variable simS
open(V, z) denote the values ṽ1, . . . , ṽm opened by S. The

value ṽi is set to ⊥ if S fails in the ith commitment phase or decommitment
phase.

Definition 1 (Concurrent Non-Malleable Commitment w.r.t Commit-
ment [6,7]). A commitment scheme 〈C,R〉 is said to be concurrent non-malleable
with respect to commitment if for every PPT man-in-the-middle adversaryA that
participates in at most m(n) left and m(n) right interactions, there exists a PPT
simulator S such that the following two ensembles are computationally indistin-
guishable:

– {mimA
com(V, z)}V=(v1,...,vm)∈{0,1}n∗m,z∈{0,1}∗

– {simS
com(V, z)}V=(v1,...,vm)∈{0,1}n∗m,z∈{0,1}∗

Definition 2 (Concurrent Non-Malleable Commitment w.r.t Decom-
mitment). A commitment scheme 〈C,R〉 is said to be concurrent non-malleable
with respect to decommitment if for every PPT man-in-the-middle adversary A
that participates in at most m(n) left and m(n) right interactions, there exists
an expected PPT simulator S such that the following two ensembles are compu-
tationally indistinguishable:

– {mimA
open(V, z)}V=(v1,...,vm)∈{0,1}n∗m,z∈{0,1}∗

– {simS
open(V, z)}V=(v1,...,vm)∈{0,1}n∗m,z∈{0,1}∗

A commitment scheme that is non-malleable according to Definition 2 is lib-
eral non-malleable rather than strict non-malleable [1,3]. Note we follow [4,5,8]
in that non-malleability is guaranteed only if the commitment phase and the
decommitment phase do not overlap in time.

Strong signature schemes. A signature scheme SS = (Sgen, Ssig, Sver) is said
to be strongly unforgeable under adaptive chosen-message attack if no efficient
adversary, with access to signature oracle with respect to the verification key VK,
can output a valid message/signature pair (m,σ) with non-negligible probability.
Here “valid” means that Sver(VK,m, σ) = 1 and (m,σ) does not correspond to
any message/signature pair that was output by the signature oracle. A strong
signature scheme is a signature scheme that is strongly unforgeable.

3 Constant-Round Statistically Binding Concurrent NMc
and Concurrent NMd

In this section, we present a constant-round statistically binding commitment
scheme that is concurrent NMc and concurrent NMd. Denote by SBCom the
statistically binding commitment scheme from any one-way function [20]. De-
note by SHCom the statistically hiding commitment scheme from any collec-
tion of claw-free permutation with an efficiently-recognizable index set [21].
Denote by {〈Ptag,Vtag〉}tag the constant-round tag-based perfect non-malleable

Concurrent NM Statistically Binding Commitments and Decommitments 199

zero-knowledge argument of knowledge (NMZKAOK) for NP [4,5]. Denote by
〈swiP , swiV〉 the constant-round statistically witness-indistinguishable argument
of knowledge (WIAOK) for NP [22,23].5 Let 〈cwiP , cwiV〉 be a constant-round
computationally witness-indistinguishable proof of knowledge (WIPOK) for NP.
Let SS = (Sgen, Ssig, Sver) be a strong signature scheme. The commitment
scheme is shown in Fig. 1. Note that all the tools used above can be achieved
assuming the existence of a family of pairs of claw-free permutations.

Our commitment scheme is a statistically binding variant of the one in [8].
The commitment phase is almost identical with that of the commitment scheme
in [8] with the following exception: in Stage 2, the receiver R uses a statistically
hiding commitment scheme SHCom instead of a statistically binding one. It also
invokes the statistical WIAOK 〈swiP , swiV〉 instead of a computational WIPOK.
Roughly, in Stage 1, the committer generates a commitment c to v and proves
knowledge of opening of c. In Stage 2, the receiver generates two commitments
c0, c1 to two secretes v0, v1 respectively and proves knowledge of either secret. In
Stage 3, the committer generates a signature to the transcripts up to now and
the receiver then verifies the correctness of the signature.

The decommitment phase is more involved and needs more careful design. The
main difficulty lies in simultaneously achieving concurrent NMd and statistical
binding properties. We are inspired by the work of [18] on concurrent zero-
knowledge proofs. We modify the scheme in [8] by letting the committer guess
the private values committed to in the commitment phase and then use a WIPOK
to prove a carefully designed OR statements. The construction employs the two-
witness technique by Feige [17] and the well known FLS-technique [24]. Roughly,
in Stage 1′, the committer first generates a commitment c′ to a dummy value
0n. After receiving c′, the receiver then opens the values v0, v1 committed to in
the commitment phase and proves knowledge of opening of either commitment
c0 or c1. In Stage 2′, the committer sends the committed value v and runs a
computational WIPOK to prove the statements that either c is a commitment
to v, or c′ is a commitment to v0 or v1. In Stage 3′, the committer proves that
c is a commitment to v, or it knows opening of cb∗ to vb∗ for some b∗ ∈ {0, 1}.
In Stage 4′, the committer generates a signature to the transcripts up to now
and the receiver then verifies the correctness of the signature. Note that the
FLS-technique is used both in Stage 2′ and Stage 3′.

Theorem 2. Suppose that SBCom is a statistically binding commitment scheme,
SHCom is a statistically hiding commitment scheme and SS = (Sgen, Ssig, Sver)
is a strong signature scheme. Suppose that {〈Ptag,Vtag〉}tag is an one-many con-
current perfect NMZKAOK for NP, 〈swiP , swiV〉 is a statistical WIAOK for NP
and 〈cwiP , cwiV〉 is a computational WIPOK for NP. Then 〈C,R〉 is a statistically
binding commitment scheme that is both concurrent NMc and concurrent NMd.

5 Blum’s basic protocol for Hamiltonicity [22] is only computational zero-knowledge
with soundness error 1

2
. Moreover, the protocol includes three rounds of interac-

tion. By running the basic protocol polynomial times in parallel, we get a computa-
tional WIPOK for Hamiltonicity. If the prover uses a statistically hiding commitment
scheme [21] in the first round, then we get a statistical WIAOK for Hamiltonicity.

200 Z. Cao, I. Visconti, and Z. Zhang

Protocol 〈C,R〉
Security Parameter: 1n

String to be committed: v ∈ {0, 1}n
Commitment Phase:

Stage 1:
C → R : Let (pk, sk) ← Sgen(1n). Pick uniformly r ∈ {0, 1}n and compute

c ← SBCom(v; r). Send pk, c.
C ⇔ R : C uses witness (v, r) and proves using 〈Ppk,Vpk〉 (with tag pk) the

statement that there exist values v, r ∈ {0, 1}n such that c = SBCom(v; r).
R : Abort if the above proof fails.

Stage 2:
R → C : Pick uniformly v0, r0, v1, r1 ∈ {0, 1}n and compute c0 =

SHCom(v0; r0), c1 = SHCom(v1; r1). Send c0, c1.
R → C : Pick a random bit b ∈ {0, 1}. R uses witness (vb, rb) and proves

using 〈swiP, swiV〉 that there exist values v∗, r∗ ∈ {0, 1}n such that c0 =
SHCom(v∗; r∗) or c1 = SHCom(v∗; r∗).

C : Abort if the above proof fails.
Stage 3:

C → R : Let tr0 be the transcript of the above interaction. Compute σ0 ←
Ssig(sk, tr0) and send σ0.

R : Verify that Sver(pk, tr0, σ0) = 1.
Decommitment Phase:

Stage 1′:
C → R : Pick uniformly r′ ∈ {0, 1}n. Compute c′ = SBCom(0n; r′) and send

c′.
R → C : Send v0, v1.
R ⇔ C : R uses witness rb and proves using 〈swiP, swiV〉 (with tag pk)

the statement that there exists a value r∗ ∈ {0, 1}n such that c0 =
SHCom(v0; r

∗) or c1 = SHCom(v1; r
∗).

C : Abort if the above proof fails.
Stage 2′:

C → R : Send v.
C ⇔ R : C uses witness r and proves using 〈cwiP, cwiV〉 the OR of the fol-

lowing statements
1. ∃ r ∈ {0, 1}n s.t c = SBCom(v; r),
2. ∃ b∗ ∈ {0, 1}, r∗ ∈ {0, 1}n s.t c′ = SBCom(vb∗ ; r

∗).
R: Abort if the above proof fails.

Stage 3′:
C ⇔ R : C uses witness r and proves using 〈Ppk,Vpk〉 (with tag pk) the state-

ment that either there exists r ∈ {0, 1}n such that c = SBCom(v; r), or
there exist b∗ ∈ {0, 1}, r∗ ∈ {0, 1}n such that cb∗ = SHCom(vb∗ ; r

∗).
R : Abort if the above proof fails.

Stage 4′:
C → R : Let tr1 be the transcript of the above interaction. Compute σ1 ←

Ssig(sk, tr1) and send σ1.
R : Verify that Sver(pk, tr1, σ1) = 1.

Fig. 1. Concurrent non-malleable statistically binding commitment scheme 〈C, R〉

Concurrent NM Statistically Binding Commitments and Decommitments 201

Proof. We need to prove the scheme satisfies the following three properties: com-
putational hiding, statistical binding, and concurrent NMc and concurrent NMd.

Computational hiding. Intuitively, the hiding property follows from the hiding
property of SBCom and perfect zero-knowledge property of 〈Ptag,Vtag〉. Suppose,
on the contrary, there exists an adversary R∗ that violates the hiding property of
〈C,R〉. Then we design an efficient adversary R′ that breaks the hiding property
of SBCom. R′ proceeds as follows. On input a challenge com (i.e., a commitment
to m0 or m1) from the committer of SBCom, R′ internally incorporates R∗ and
forwards the external commitment com to R∗ in Stage 1. All other executions are
emulated by R′ by following the honest committer strategy except that R′ runs
the simulator for 〈Ptag,Vtag〉 in Stage 1. Finally, R′ outputs whateverR∗ outputs.
From the perfect zero-knowledge property of 〈Ptag,Vtag〉, if R∗ distinguishes the
commitment made using 〈C,R〉, then R′ distinguishes the commitment made
using SBCom.

Statistical binding. The proof of binding property is more subtle. We show that
any malicious adversary C∗ can not violate the binding property of 〈C,R〉. In-
tuitively, if C∗ can open the commitment in two different ways, then due to
the soundness property of 〈cwiP , cwiV〉 and the statistical binding property of
SBCom, C∗ must use a fake witness in the execution of 〈cwiP , cwiV〉 in Stage
2′, i.e., it knows the witness to the statement that c′ is a commitment to v0 or
v1. Note that the only place that C∗ might learn v0 or v1 before Stage 1′ is in
Stage 2 of the commitment phase. Since both the commitments c0, c1 are sta-
tistically hiding and 〈swiP , swiV〉 is statistical WI, C∗ learns v0 or v1 only with
negligible probability in Stage 2. Thus, C∗ makes a commitment c′ to the value
v0 or v1 only with negligible probability in Stage 1′. Moreover, C∗ commits using
SBCom. So the second statement proved in Stage 2′ is a false statement (even
to an unbounded machine). According to the property of 〈cwiP , cwiV〉, even
an unbounded C∗ can not successfully execute the proof with non-negligible
probability in Stage 2′. This reaches a contradiction.

More in details, assume for contradiction that there exists some adversary
(not necessarily PPT) A that is able to violate the binding property of 〈C,R〉.
We show how to construct an algorithm (not necessarily PPT) A′ that violates
the binding property of SBCom or the hiding property of SHCom or the WI prop-
erty of 〈swiP , swiV〉. A′ interacts with A and follows honest receiver strategy.
Once the decommitment phase is finished, A′ runs the extractor of 〈cwiP , cwiV〉
in Stage 2′. According to the property of the extractor of 〈cwiP , cwiV〉, with
overwhelming probability, A′ gets a witness w. Then it must be the case that
(1) w = r s.t c = SBCom(v; r). (2) w = r∗ s.t c′ = SBCom(vb; r∗). (3) w = r∗ s.t
c′ = SBCom(v1−b; r∗).

We now show however that case 1 happens with negligible probability only. As-
sume by contradiction, that it can happen with non-negligible probability. Then
we can design an algorithm B that breaks the binding property of SBCom. B
proceeds exactly as A′. B then succeeds extracting r such that c = SBCom(v; r).
Next, we let B keep rewinding A to the beginning of the decommitment phase

202 Z. Cao, I. Visconti, and Z. Zhang

until case 1 happens again. B again extracts a witness and we denote by r∗ the ex-
tracted witness. Let v∗ be the opened value byA. Now we get c = SBCom(v∗; r∗).
According to the assumption of A, v �= v∗ with non-negligible probability. Now
we find a commitment c that can be opened in two different ways. Thus, we
break the binding property of SBCom.

Next we show case 2 happens with negligible probability. Suppose on the con-
trary, with some non-negligible probability it happens that c′ = SBCom(vb; r∗).
We can design an algorithm B that breaks the WI property of 〈swiP , swiV〉. B
then internally executes all the interactions with A and proceeds exactly as A′

with the only exception that the proof of 〈swiP , swiV〉 in Stage 2 is generated by
relaying all the messages with an external prover (B submits opening informa-
tion of c0 and c1 to the external prover. The external prover then proves using
a witness for cb∗ for some b∗ ∈ {0, 1}). We emphasize here that B generates the
proof of Stage 2′ itself. Then B successfully simulates the interactions with A in
the decommitment, and B runs the extractor of 〈cwiP , cwiV〉. By looking at the
extracted witness, B will guess the witness used by the external prover.

Finally, we show case 3 happens with negligible probability. Suppose on the
contrary, with non-negligible probability it happens that c′ = SBCom(v1−b; r∗).
We then design an algorithm B that breaks the hiding property of SHCom. On
input a challenge commitment c∗ (to value v̂0, v̂1), B has to decide which value
corresponds to c∗. B proceeds exactly as A′ with the following two exceptions.
The first exception lies in the handling of interaction in Stage 2 of the commit-
ment. Here B first picks a random bit b ∈ {0, 1}, a random string vb ∈ {0, 1}n

and a uniform random string rb ∈ {0, 1}n. B then computes cb = SHCom(vb; rb)
and sets c1−b = c∗. Next B continues the execution of Stage 2 of commitment
by following the honest prover strategy of 〈swiP , swiV〉 using (vb, rb) as witness.
The second exception lies in the handling of interaction in Stage 1′ of decommit-
ment. Here B randomly chooses a bit b∗ ∈ {0, 1}, sends vb, v1−b = v̂b∗ to A and
then uses witness rb to complete the proof 〈swiP , swiV〉. Finally, if the witness
r∗ extracted satisfies c′ = SBCom(v1−b; r∗), B then outputs v1−b; otherwise, B
outputs v̂b′ for randomly chosen b′ ∈ {0, 1}. Therefore the probability that B
breaks the hiding property of SHCom is also non-negligible.

Concurrent non-malleability. We need to show that the scheme is concurrent NMc
and concurrent NMd. The proof of concurrent NMc is almost identical with that
of the proof in [8]. Note NMc only concerns the commitment phase and as we dis-
cussed previously, the commitment phase of our scheme only deviates from that
of [8] when R sends commitments and plays the WIAOK in Stage 2. Indeed, in our
scheme we use statistical versions of these tools while the protocol of [8] only needs
the computational versions. The proof however goes through precisely as the one
of [8]. We omit the details here and defer the proof in the full version.

Next, we show it is concurrent NMd. We show that for every PPT man-in-the-
middle adversary A that participates in m(n) left commitments and m(n) right
commitments, there exists an expected PPT simulator S such that for every
PPT distinguisher D and every negligible function μ, for every value vector
V = (v1, . . . , vm) where vi ∈ {0, 1}n and every z ∈ {0, 1}∗, it holds that

Concurrent NM Statistically Binding Commitments and Decommitments 203∣∣Pr[D(mimA
open(V, z)) = 1]− Pr[D(simS

open(V, z)) = 1]
∣∣ ≤ μ(n). (1)

Denote by Adec the state of A after the commitment phase, i.e., Adec contains
A’s description along with its configuration at that time just before the decom-
mitment phase starts.

We proceed by giving the description of the simulator S. S on input z and
security parameter 1n interacts with external honest receivers and runs the ad-
versaryA internally. During the commitment phases, on a high level, S internally
incorporates A and emulates the commitment phases of all left interactions for
adversary A by honestly committing to 0n, while internally emulating the right
interactions as honest receivers. After all the commitment phases end, S invokes
the extractors for all the proofs provided by A in the left and right commitments
to extract all the corresponding witnesses. More precisely, for each right commit-
ment, S runs the extractor of 〈Ptag,Vtag〉 and we denote by (ṽi, r̃i) the witness
extracted in the ith right commitment. For each left commitment, S runs the
extractor of 〈swiP , swiV〉 to get witness (vbi,i, rbi,i) (bi ∈ {0, 1}). Next, S plays
the commitment phases with external receivers. S follows the honest committer
strategy and commits to ṽi in the ith commitment phase.

Once all the commitment phases are finished, S receives a value vector V =
(v1, . . . , vm) and has to perform the decommitment phases internally with Adec.
S follows the honest receiver strategy in all right decommitments. The simulation
of the ith left decommitment is as follows. In Stage 1′, S acts identically as an
honest committer with the exception that S commits to vbi,i instead of 0n (using
randomness r∗bi,i

). In Stage 2′, S follows the honest committer strategy with the
exception that it uses the “fake” witness r∗bi,i

to open the commitment to vi. In
Stage 3′, S uses the fake witness rbi,i to complete the proof. S follows the honest
committer strategy in Stage 4′. Finally, for each i, if Adec has successfully com-
pleted the ith right decommitment, then S completes the decommitment phase of
the external execution with honest receivers by opening the commitment to ṽi.

Running time of S. From the construction of S, we know that S performs
at most 2m extraction procedures in the commitment phases. Note that the
running time of the extractions in both 〈Ptag,Vtag〉 and 〈swiP , swiV〉 are all
expected PPT. Since the extractions are executed sequentially, the running time
of all extractions is also expected PPT. Furthermore, the MIM adversary A is a
PPT algorithm and therefore invoking a copy of A also requires PPT. Thus, S
runs in expected PPT in the commitment phases. In the decommitment phases,
since S runs in a straight-line manner and no rewinding is involved, the running
time of S is strict PPT. Finally, we conclude that the overall running time of S
is expected PPT.

Next, we prove that the distribution of the messages opened by A when in-
teracting with honest committers and honest receivers is indistinguishable from
the distribution of the messages opened by A when interacting with S.

Indistinguishability of the simulation. We first consider the case when there
is only one left commitment and m(n) right commitments. Towards of showing

204 Z. Cao, I. Visconti, and Z. Zhang

Equation (1) (note V contains only a value v), we define a sequence of hybrid
experiments {HYBi(v, z)}1≤i≤7 that receive v and z as auxiliary inputs. The
output of each experiment is the output of a PPT distinguisher D on input
a value v and a vector of values Ṽ whose ith element is defined as follows. If
the ith right decommitment completes successfully and its transcript is different
from the left interaction, then ṽi is the value opened in the ith right interaction.
Otherwise, ṽi is set to ⊥. Let pi = Pr[HYBi(v, z) = 1].

HYB1(v, z) proceeds exactly as S except that in Stage 1 of the left commitment
phase, it runs the simulator of 〈Ptag,Vtag〉. Since the simulation is perfect we
conclude that p1 = Pr[D(simS

open(v, z)) = 1].
HYB2(v, z) proceeds exactly as HYB1 except that in the left commitment

phase, instead of feeding A a commitment to 0n in Stage 1, HYB2 feeds A
a commitment to v using SBCom. Since both HYB1 and HYB2 are efficiently
computable, that |p1 − p2| is negligible follows directly from the computational
hiding property of SBCom.

HYB3(v, z) proceeds exactly as HYB2 except that it runs the simulator of
〈Ptag,Vtag〉 in Stage 3′ of the left decommitment. It follows from the perfect
zero-knowledge property of 〈Ptag,Vtag〉 that p3 = p2.

HYB4(v, z) differs from HYB3 in that it uses the real witness (i.e., decommit-
ment of c) to complete the proof in Stage 2′ of the left decommitment. It follows
from the computational WI property of 〈cwiP , cwiV〉 that |p4− p3| is negligible.

HYB5(v, z) differs from HYB4 in that it commits to 0n in Stage 1′ of the left
decommitment. It follows from the computational hiding property of SBCom
that |p5 − p4| is negligible.

HYB6(v, z) proceeds exactly as HYB5 except that it uses the real witness (i.e.,
decommitment of c) to complete the proof in Stage 3′ of the left decommitment.
It follows from the perfect zero-knowledge property of 〈Ptag,Vtag〉 that p6 = p5.

HYB7(v, z) proceeds exactly as HYB6 except that it does not need to run
the extractor of 〈swiP , swiV〉 in Stage 2 of left commitment phase. Since the
extraction fails with negligible probability we have that |p7 − p6| is negligible.

Note that HYB7 differs from the real game in that it runs the simulator-
extractor of 〈Ptag,Vtag〉 in Stage 1 of the commitment phase. Following the
description of HYB7 we know that it opens to external receivers the values it
extracts from A at the end of the commitment phase in the simulated game.
Moreover, in the real game the adversary A can not open its commitments in a
different way (cf. Claim 1). Thus, A opens to external receivers the values it com-
mits to in the commitment phase. It follows from the simulation-extractability
property of 〈Ptag,Vtag〉 that the simulation is perfect and the extraction fails
with negligible probability in each right commitment where the tag is different
from that in the left decommitment (when tags are the same, the security of
signature scheme is violated). Therefore, except with negligible probability, we
have that HYB7 opens to external receivers the same values opened by A in the
real game, i.e., we have that

∣∣p7 − Pr[D(mimA
open(v, z)) = 1]

∣∣ is negligible.
Finally we conclude Equation (1). This completes the proof of Theorem 2.

Concurrent NM Statistically Binding Commitments and Decommitments 205

Claim 1. In the real game A can not open in a different way.

Proof. Assume that, with some probability p, there exists i ∈ [m] such that
the value ṽ′ opened in the ith right decommitment is different from the value ṽ
committed in the ith right commitment.6 We denote by c0, c1 the commitments
made by R in Stage 2 of the ith right commitment. Denote by b the bit such that
R uses the decommitment information corresponding to the commitment cb to
complete the proof of 〈swiP , swiV〉 in Stage 2 and Stage 1′ of ith right interaction.
If A successfully completes the ith right decommitment, then we consider the
following experiment B. B on inputs i, v and z interacts with A and works
as follows. We let B commit to v in the left commitment phase. Furthermore,
B follows the honest committer strategy in the left interaction and the honest
receiver strategy in all right interactions, except in Stage 1′ of ith decommitment
B sends vb and a randomly chosen v∗1−b (With overwhelming probability v∗1−b will
be different from the v1−b chosen in the commitment phase. This is important
for the proof of Case 3 below.). Once the ith right decommitment is over, B
runs the extractor of 〈Ptag,Vtag〉 in Stage 3′. Note that the views of A in a real
execution and an execution of B are identical. So the probability that A opens
in a different way in the execution of B is also p. According to the property of
the extractor of 〈Ptag,Vtag〉, with probability p′ = p−ε(n) where ε is a negligible
function, B gets a witness w̃, and one of the following three cases must happen:

1. w̃ = r̃ s.t c̃ = SBCom(ṽ′; r̃).(c̃ is the commitment generated by A in the ith

right commitment.)
2. w̃ = r∗ s.t cb = SHCom(vb; r∗). (vb, v

∗
1−b are the values opened by B in Stage

1′ of ith right decommitment.)
3. w̃ = r∗ s.t c1−b = SHCom(v∗1−b; r

∗).

Let p′ = p1 + p2 + p3, where pi is the probability that Case i happens (for
i = 1, 2, 3). By the statistical binding property of SBCom, we have that ṽ′

must correspond to ṽ and thus in this case A does not open in a different way,
therefore p1 must be negligible. Recall in the ith right commitment, B already
generates commitments c0 and c1 to two different values v0 and v1 respectively
and B uses knowledge of a decommitment of vb for a random bit b in both
〈swiP , swiV〉 of Stage 2 and 〈swiP , swiV〉 of Stage 1′. By the statistical hiding
property of SHCom and statistical WI property of 〈swiP , swiV〉, we have that p2
is essentially identical to p3, and therefore both p2 and p3 roughly correspond
to p′/2− ε(n) where ε is a negligible function.

We can now conclude the proof showing that p3 must be negligible, and thus
summing up p is negligible as well, therefore A can not open in a different way
with non-negligible probability. Indeed, notice that when Case 3 happens, we
have that A committed to some value v∗1−b in c1−b without having never used
any opening of c1−b in the two executions of 〈swiP , swiV〉. Now in addition to the
opening in the commitment phase (note B generates the commitment itself), we
6 The committed value is the one uniquely specified by the statistically binding com-

mitment scheme SBCom.

206 Z. Cao, I. Visconti, and Z. Zhang

get two openings for SHCom. Therefore being SHCom computationally binding,
this happens with negligible probability.

Extending to many-many concurrent NMd. Next, we present the proof sketch for
the many-many concurrent case. We show that the two ensembles {mimA

open(V, z)}
and {simS

open(V, z)} are computationally indistinguishable. Suppose, for contra-
diction, this is not the case. That is, there exists a PPT distinguisher D and a
polynomial p(n) such that for infinitely many n ∈ N, there exists a value vec-
tor V = (v1, . . . , vm), z ∈ {0, 1}∗ such that D distinguishes mimA

open(V, z) and
simS

open(V, z) with probability at least 1
p(n) . For a generic n for which this hap-

pens. We design a sequence of hybrid experiments {HYBi(V, z)}0≤i≤m where
HYBi(V, z) is defined as follows. HYBi proceeds as S except that it emulates
the ith left commitment phase by committing to vi, if j ≤ i, and 0n other-
wise. Moreover, it emulates the ith left decommitment by using a legal wit-
ness to vi, if j ≤ i, and a false witness otherwise. It directly follows that
simHYBm

open (V, z) = mimA
open(V, z) and simHYB0

open (V, z) = simS
open(V, z). By a stan-

dard hybrid argument there exists an i ∈ [m] such that∣∣∣Pr[D(simHYBi−1
open (V, z)) = 1]− Pr[D(simHYBi

open (V, z)) = 1]
∣∣∣ > 1

m · p(n)
(2)

Note that the only difference between experiment HYBi−1(V, z) and HYBi(V, z)
is that in the former A receives a commitment to vi and its corresponding de-
commitment generated using a valid witness in the ith interaction, whereas in
the latter it receives a commitment to 0n and its corresponding decommitment
generated using a false witness.

Then we design an efficient MIM adversary Ã that breaks the one-many con-
current non-malleability of 〈C,R〉. Ã on auxiliary inputs z′ = (n, i,V, z) proceeds
as follows. Ã internally incorporates A(z) and emulates the left and right inter-
actions for A. Ã relays the messages in all right interactions between A and
external receivers. In the ith left interaction, Ã relays either messages between
an external committer and A, or messages between the simulator of the one-
many concurrent case and A. For j ∈ [m] and j �= i, Ã internally emulates the
ith left commitment phase for A by committing to vi, if j ≤ i, and 0n other-
wise. Moreover, Ã emulates the ith left decommitment for A by using a valid
witness, if j ≤ i, and a false witness otherwise. By construction, it follows that
simS

open(V, z) = simHYBi−1
open (z′) and mimA

open(V, z) = simHYBi
open (z′).

Therefore, Ã breaks the one-many concurrent non-malleability of 〈C,R〉.

4 Concluding Remarks

Our result on top of previous work shows that there exist constant-round com-
mitment schemes that are secure also against very powerful adversaries, as long
as there is a barrier in time between commitment and decommitment phase.
An interesting open question concerns the possibility of achieving commitment

Concurrent NM Statistically Binding Commitments and Decommitments 207

schemes that remain secure even without such a barrier. The question is inter-
esting even without requiring a constant round complexity.7

Acknowledgments. We thank the anonymous reviewers for their helpful sug-
gestions. The work of the first and third authors are supported in part by
the National Natural Science Foundation of China under grant No.60773086,
No.60972034 and No.60970110. The work of the second author has been sup-
ported in part by the European Commission through the EU ICT program
under Contract ICT-2007-216646 ECRYPT II, and in part by a research grant
received from Provincia di Salerno.

References

1. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Com-
put. 30(2), 391–437 (2000)

2. Crescenzo, G.D., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable com-
mitment. In: STOC 1998: Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pp. 141–150. ACM, New York (1998)

3. Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. In: Bellare,
M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 413–431. Springer, Heidelberg (2000)

4. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 533–542. ACM,
New York (2005)

5. Pass, R., Rosen, A.: New and improved constructions of nonmalleable crypto-
graphic protocols. SIAM J. Comput. 38(2), 702–752 (2008)

6. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS,
pp. 563–572. IEEE Computer Society, Los Alamitos (2005)

7. Pass, R., Rosen, A.: Concurrent nonmalleable commitments. SIAM J. Com-
put. 37(6), 1891–1925 (2008)

8. Ostrovsky, R., Persiano, G., Visconti, I.: Simulation-based concurrent non-
malleable commitments and decommitments. In: Reingold, O. (ed.) Theory of
Cryptography. LNCS, vol. 5444, pp. 91–108. Springer, Heidelberg (2009)

9. Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. J. Cryp-
tology 22(4), 530–571 (2009)

10. Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive
non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 40–59. Springer, Heidelberg (2001)

11. Haitner, I., Reingold, O.: Statistically-hiding commitment from any one-way func-
tion. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 1–10. ACM, New York (2007)

12. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 571–588. Springer, Heidelberg (2008)

13. Zhang, Z., Cao, Z., Ding, N., Ma, R.: Non-malleable statistically hiding commit-
ment from any one-way function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 303–318. Springer, Heidelberg (2009)

7 Indeed, in this case one could also use the concurrent non-malleable zero knowledge
argument of [25], and the one of [26] when some efficiency is also required.

208 Z. Cao, I. Visconti, and Z. Zhang

14. Ostrovsky, R., Persiano, G., Visconti, I.: Concurrent non-malleable witness in-
distinguishability and its applications. Electronic Colloquium on Computational
Complexity (ECCC) 13(95) (2006)

15. Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent non-malleable
zero knowledge in the bare public-key model. In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
II. LNCS, vol. 5126, pp. 548–559. Springer, Heidelberg (2008)

16. Ostrovsky, R., Persiano, G., Visconti, I.: Concurrent non-malleable commitments
and decommitments. Full version, unpublished manuscript (2009)

17. Feige, U.: Alternative Models for Zero Knowledge Interactive Proofs. PhD thesis,
The Weizmann Institute of Science, Rehovot, Israel (1990)

18. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer,
Heidelberg (1999)

19. Goldreich, O.: Foundations of Cryptography Volume II Basic Applications.
Cambridge University Press, Cambridge (2004)

20. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158
(1991)

21. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptology 9(3), 167–190 (1996)

22. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians, pp. 1444–1451 (1986)

23. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC, pp. 416–426. ACM, New York (1990)

24. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

25. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: FOCS, pp. 345–354. IEEE Computer Society, Los Alamitos (2006)

26. Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transformations for
concurrent non-malleable zero knowledge. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010)

Faster Squaring in the Cyclotomic Subgroup of
Sixth Degree Extensions

Robert Granger and Michael Scott�

Claude Shannon Institute
School of Computing, Dublin City University

Glasnevin, Dublin 9, Ireland
{rgranger,mike}@computing.dcu.ie

Abstract. This paper describes an extremely efficient squaring opera-
tion in the so-called ‘cyclotomic subgroup’ of F×

q6 , for q ≡ 1 mod 6. Our
result arises from considering the Weil restriction of scalars of this group
from Fq6 to Fq2 , and provides efficiency improvements for both pairing-
based and torus-based cryptographic protocols. In particular we argue
that such fields are ideally suited for the latter when the field charac-
teristic satisfies p ≡ 1 (mod 6), and since torus-based techniques can be
applied to the former, we present a compelling argument for the adop-
tion of a single approach to efficient field arithmetic for pairing-based
cryptography.

Keywords: Pairing-based cryptography, torus-based cryptography,
finite field arithmetic.

1 Introduction

Pairing-based cryptography has provoked a wealth of research activity since
the first cryptographically constructive application of pairings was proposed by
Joux in 2000 [21]. Since then, numerous further applications of pairings have
been proposed and their place in the modern cryptographers’ toolkit is now
well established. As a result, much research activity has focused on algorithmic,
arithmetic and implementation issues in the computation of pairings themselves,
in order to ensure the viability of such systems [3,12,2,18].

In practise, pairings are typically instantiated using an elliptic or a hyperel-
liptic curve over a finite field, via the Weil or Tate pairing (see [6]) - or a variant
of the latter such as the ate [18], or R-ate pairing [25]. These pairings map pairs
of points on such curves to elements of a subgroup of the multiplicative group
of an extension field, which is contained in the so-called cyclotomic subgroup.

Properties of the cyclotomic subgroup can be exploited to obtain faster arith-
metic or more compact representations than are possible for general elements of
the extension field. Cryptosystems such as LUC [33] and XTR [26], and the ob-
servations of Stam and Lenstra [34] and Granger, Page and Stam [16], all exploit
� Research supported by the Claude Shannon Institute, Science Foundation Ireland

Grant No. 06/MI/006.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 209–223, 2010.
c© International Association for Cryptologic Research 2010

210 R. Granger and M. Scott

membership of this subgroup to achieve fast exponentiation. Many pairing-based
protocols require exponentiation in the cyclotomic subgroup, as does the ‘hard’
part of the final exponentiation of a pairing computation, and so these ideas can
naturally be applied in this context [31,17].

Currently there is a huge range of parametrisation options and algorithmic
choices to be made when implementing pairings, and in order to facilitate a
simple and unified approach to the construction of extension fields used in pair-
ings, in 2005 Koblitz and Menezes introduced the concept of Pairing-Friendly
Fields (PFFs) [24]. These are extension fields Fpk with p ≡ 1 (mod 12) and
k = 2a3b, with a ≥ 1 and b ≥ 0. Such specialisation enables algorithms and
implementations to be highly optimised. Indeed for ordinary elliptic curves the
2008 IEEE ‘Draft Standard for Identity-based Public-key Cryptography using
Pairings’ (P1636.3/D1) deals exclusively with fields of this form [19].

In 2006 Granger, Page and Smart proposed a method for fast squaring in
the cyclotomic subgroup of PFFs [15]. However even for degree six extensions
the method was almost 50% slower than the Stam-Lenstra result [34]; the latter
however does not permit the use of the highly efficient sextic twists available to
the former, and so is not practical in this context. Both of these methods rely
on taking the Weil restriction of scalars of the equation that defines membership
of the cyclotomic subgroup, in order to obtain a variety over Fp. The defining
equations of this variety are then exploited to improve squaring efficiency. Rather
than descend to the base field Fp, in this paper we show that descending to only
a cubic subfield enables one to square with the same efficiency as Stam-Lenstra
for degree six extensions, and for between 60% and 75% the cost of the next best
method for the cryptographically interesting extension degrees 12, 18 and 24.

In tandem with the results of [5] which show that PFFs are not always the
most efficient field constructions for pairing-based cryptography, we present a
compelling argument for the adoption of a single approach to efficient field arith-
metic for pairing-based cryptography, based on the use of fields of the form F×

q6 ,
for q ≡ 1 mod 6. While these fields intersect with those listed in [19] - lending
strong support to their possible standardisation - since these recommendations
can be improved upon and since in the latest draft of this standard the recom-
mended security parameters section is empty [20], we believe that our proposed
fields should now be given serious consideration for inclusion.

The sequel is organised as follows. In §2 we describe our field construction and
in §3 present our fast squaring formulae. Then in §4 we compare our approach
with previous results, and in §5 and §6 apply our result to pairing-based and
torus-based cryptography respectively. We conclude in §7.

2 Pairing, Towering and Squaring-Friendly Fields

Pairing-friendly fields were introduced to allow the easy construction of, and ef-
ficient arithmetic within extension fields relevant to pairing-based cryptography
(PBC), and are very closely related to Optimal Extension Fields [1]. In particular
we have the following result from [24]:

Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions 211

Theorem 1. Let Fpk be a PFF, and let β be an element of Fp that is neither a
square nor a cube in Fp. Then the polynomial Xk − β is irreducible over Fp.

Observe that for ‘small’ β, reduction modulo Xk − β can be implemented very
efficiently. Observe also that the form of the extension degree is important for
applications. When 6 | k the presence of sextic twists for elliptic curves with
discriminant D = 3 allows for very efficient pairing computation, while for 4 | k
one can use the slightly less efficient quartic twists. Such extensions also permit
the use of compression methods based on taking traces [33,26], or utilising the
rationality of algebraic tori [30]. Furthermore Fpk may be constructed as a se-
quence of Kummer extensions, by successively adjoining the square or cube root
of β, then the square or cube root of that, as appropriate, until the full extension
is reached.

As shown in [5], the condition p ≡ 1 (mod 12) is somewhat spurious in that
PFFs do not always yield the most efficient extension towers, and does not allow
for families of pairing-friendly curves that have since been discovered [22]. For
the Barreto-Naehrig curves for example [4], which have embedding degree twelve,
p ≡ 3 mod 4 is preferred since one can use the highly efficient quadratic subfield
Fp2 = Fp[x]/(x2 + 1). To allow for the inclusion of such fields, Benger and Scott
introduced the following concept [5]:

Definition 1. A Towering-Friendly Field (TFF) is a field of the form Fqm for
which all prime divisors of m also divide q − 1.

As with PFFs, TFFs allow a given tower of field extensions to be constructed via
successive root extractions, but importantly stipulate less exclusive congruency
conditions on the base field cardinality. For example, as above for BN-curves with
p ≡ 3 (mod 4), the extension Fp12 is not a PFF, whereas the degree six extension
of Fp2 is towering-friendly, since p2−1 ≡ 0 (mod 6), cf. §5.2. This definition thus
captures those considerations relevant to pairing-based cryptography (PBC). We
refer the reader to [5] for details of the construction of efficient TFFs.

All of the fields for PBC that follow shall be TFFs of special extension degree
k = 2a3b, with a, b ≥ 1, i.e., with 6 | k. Should it not cause confusion, we also
refer to any field of the form Fq6 for which q ≡ 1 mod 6 as a Squaring-Friendly
Field (SFF), a name whose aptness will become clear in §3. Thus all SFFs are
TFFs and all TFFs used for PBC in this paper are SFFs.

3 New Fast Squaring in the Cyclotomic Subgroup

In this section we derive efficient squaring formulae for elements of the cyclotomic
subgroup of TFFs, when the extension degree is of the form k = 2a3b, with
a, b ≥ 1, i.e., for SFFs. This is the subgroup of F×

pk of order Φk(p), where Φk is
the k-th cyclotomic polynomial, which for 6 | k is always of the form:

Φ2a3b(x) = x2·2a−13b−1
− x2a−13b−1

+ 1.

212 R. Granger and M. Scott

We denote the cyclotomic subgroup by GΦk(p), the membership of which can be
defined as follows:

GΦk(p) = {α ∈ Fpk | αΦk(p) = 1}. (1)

The condition on α in (1) defines a variety V over Fpk . For d | k let Fpd ⊂ Fpk .
We write ResF

pk /F
pd
V for the Weil restriction of scalars of V from Fpk to Fpd .

Then ResF
pk /F

pd
V is a variety defined over Fpd for which we have a morphism

η : ResF
pk /F

pd
V → V

defined over Fpk that induces an isomorphism

η : (ResF
pk/F

pd
V)(Fpd)→ V (Fpk).

We refer the reader to Section 1.3 of [37] for more on the restriction of scalars.
While not stated explicitly, all prior results for fast squaring in GΦk(p) exploit

the form of the Weil restriction of this variety to a subfield. Stam and Lenstra
restrict GΦ6(p) from Fp6 to Fp and GΦ2(p) from Fp2 to Fp [34], and similarly
Granger et al. restrict GΦk(p) from Fpk to Fp [15].

Observe that Φ2a3b(x) = Φ6(x2a−13b−1
) and so we have the following simplifi-

cation:
GΦk(p) = GΦ6(pk/6).

We therefore need only consider GΦ6(q) where q = pk/6. Observe also that Φ6(q) |
Φ2(q3) and so

GΦ6(q) ⊂ GΦ2(q3).

Hence one can alternatively employ the simplest non-trivial restriction of GΦ6(q),
or rather of GΦ2(q3), from Fq6 to Fq3 , as in [34]. This reduces the cost of squar-
ing in GΦ2(q3), and hence in GΦ6(q), from two Fq3-multiplications to two Fq3 -
squarings, as we shall see in §3.1.

Our simple idea is to use the next non-trivial Weil restriction of GΦ6(q), which
is from Fq6 to Fq2 . This rather fortuitously provides the fastest squaring for-
mulae yet discovered for the cyclotomic subgroups of SFFs, making an even
greater efficiency gain than the Stam-Lenstra formulae for GΦ2(q3) (cf. Table 1),
while providing a systematic and more general framework than the more ad-hoc
method of [34]. Restrictions to other subfields for higher extension degrees of
interest do not seem to yield better results, however we leave this as an open
problem.

3.1 Fast Squaring in ResFq2/Fq
GΦ2(q)

Let Fq2 = Fq[x]/(x2 − i) with i a quadratic non-residue in Fq, and consider the
square of a generic element α = a+ bx:

α2 =(a+xb)2 =a2+2abx+b2x2 = a2+ib2+2abx = (a+ib)(a+b)−ab(1+i)+2abx.

This operation can be performed at the cost of two Fq-multiplications, and a
few additions.

Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions 213

If however α ∈ GΦ2(q), we have αq+1 = 1, or αq · α = 1. Observe that:

αq = (a+ xb)q = a+ bxq = a+ bx2(q−1)/2 · x = a+ bi(q−1)/2 · x = a− bx,

since i is a quadratic non-residue. Hence the variety defined by the cyclotomic
subgroup membership equation (1) is (a + xb)(a − xb) = 1, or a2 − x2b2 = 1,
or a2 − ib2 = 1. Note that this results in just one equation over Fq, rather than
two. Substituting from this equation into the squaring formula, one obtains

α2 = (a+ xb)2 = 2a2 − 1 + [(a+ b)2 − a2 − (a2 − 1)/i]x,

where now the main cost of computing this is just two Fq-squarings. Observe
that if i is ‘small’ (for example if i = −1 for p ≡ 3 (mod 4) when Fq = Fp), then
the above simplifies considerably.

3.2 Fast Squaring in ResFq6/Fq2GΦ6(q)

Let Fq6 = Fq[z]/(z6 − i), with i ∈ Fq a sextic non-residue. The standard repre-
sentation for a general element of this extension is

α = α0 + α1z + α2z
2 + α3z

3 + α4z
4 + α5z

5.

However, in order to make the subfield structure explicit, we write elements of
Fq6 in two possible ways, each of which will be convenient depending on the
context: firstly as a compositum of Fq2 and Fq3 , and secondly as cubic extension
of a quadratic extension.

Fq6 as a compositum. Let

α = (a0 + a1y) + (b0 + b1y)x+ (c0 + c1y)x2 = a+ bx+ cx2, (2)

where Fq2 = Fq[y]/(y2 − i) with y = z3, and Fq3 = Fq[x]/(x3 − i) with x = z2.
Note that a, b, c ∈ Fq2 . One can therefore regard this extension as the composi-
tum of the stated degree two and degree three extensions of Fq:

Fq6 = Fq(z) = Fq3(y) = Fq2(x),

with the isomorphisms as given above. Viewing α in the latter form its square
is simply:

α2 = (a+ bx+ cx2)2 = a2 + 2abx+ (2ac+ b2)x2 + 2bcx3 + c2x4

= (a2 + 2ibc) + (2ab+ ic2)x+ (2ac+ b2)x2 = A+Bx+ Cx2 (3)

As before we use the characterising equation (1) for membership of GΦ6(q), which
in this case is αq2−q+1 = 1. To Weil restrict to Fq2 , we first calculate how the
Frobenius automorphism acts on our chosen basis. Firstly, since i is a quadratic
non-residue, we have

yq = y2(q−1)/2 · y = i(q−1)/2 · y = −y.

214 R. Granger and M. Scott

Hence aq = (a0 + a1y)q = a0 − a1y, which for simplicity we write as ā, and
similarly for bq and cq. Furthermore, since i is a cubic non-residue we have

xq = x3(q−1)/3 · x = i(q−1)/3 · x = ωx,

where ω is a primitive cube root of unity in Fq. Applying the Frobenius again
gives xq2

= ω2x. Note that the above computations necessitate q ≡ 1 (mod 6),
which is satisfied thanks to the definition of SFFs.

The cyclotomic subgroup membership equation, rewritten as αq2 · α = αq is
therefore:

(a+ bω2x+ cω4x2)(a+ bx+ cx2) = ā+ b̄ωx+ c̄ω2x2,

which upon expanding, reducing modulo x3− i, and modulo Φ3(ω) = ω2 +ω+1,
becomes

(a2 − ā− bci) + ω(ic2 − b̄− ab)x+ ω2(b2 − c̄− ac)x2 = 0. (4)

This equation defines the variety ResFq6/Fq2GΦ6(q), as each Fq2 coefficient of xi

equals zero. Solving for bc, ab, ac, one obtains:

bc = (a2 − ā)/i
ab = ic2 − b̄
ac = b2 − c̄

Substituting these into the original squaring formula (3) then gives

A = a2 + 2ibc = a2 + 2i(a2 − ā)/i = 3a2 − 2ā,
B = ic2 + 2ab = ic2 + 2(ic2 − b̄) = 3ic2 − 2b̄,
C = b2 + 2ac = b2 + 2(b2 − c̄) = 3b2 − 2c̄.

Fq6 as a cubic over a quadratic extension. As before let Fq6 = Fq[z]/(z6−i),
with i ∈ Fq a sextic non-residue. Let the tower of extensions be given explicitly
by Fq2 = Fq[y]/(y2 − i), and Fq6 = Fq2 [x]/(x3 −

√
i), with elements represented

in the basis:

α = (a0 + a1y) + (b0 + b1y)x+ (c0 + c1y)x2 = a+ bx+ cx2,

which is superficially the same as equation (2), but where now the isomorphism
is given by y = z3, x = z. The squaring formula is identical to (3) with i←

√
i.

With this representation one can see that the Frobenius automorphism acts
on x as multiplication by a sixth root of unity in Fq, which we shall also call ω.
Noting that q ≡ 1 (mod 6) observe that:

xq = xq−1 · x = x3(q−1)/3 · x =
√
i
(q−1)/3

· x = i(q−1)/6 · x.

Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions 215

Since i is a sextic non-residue in Fq, we have that ω = i(q−1)/6 is a primitive
sixth root of unity in Fq. Hence xq = ωx, and similarly xq2

= (ωx)q = ω2x.
This simplifies the cyclotomic subgroup membership equation (1) to:

(a+ bω2x+ cω4x2)(a+ bx+ cx2) = ā+ b̄ωx+ c̄ω2x2,

which upon expanding, reducing modulo x3−
√
i, and modulo Φ6(ω) = ω2−ω+1,

becomes

(a2 − ā− bc
√
i)− ω(

√
ic2 + b̄− ab)x+ ω2(b2 − c̄− ac)x2 = 0. (5)

Solving for bc, ab, ac, one obtains:

bc = (a2 − ā)/
√
i

ab =
√
ic2 + b̄

ac = b2 − c̄

Substituting these into the revised squaring formula gives

A = a2 + 2
√
ibc = a2 + 2

√
i(a2 − ā)/

√
i = 3a2 − 2ā

B =
√
ic2 + 2ab =

√
ic2 + 2(

√
ic2 + b̄) = 3

√
ic2 + 2b̄

C = b2 + 2ac = b2 + 2(b2 − c̄) = 3b2 − 2c̄

3.3 Observations

Both sets of formulae for these degree six extensions are remarkably simple,
requiring just three Fq2 -squarings to square an element of GΦ6(q), which is anal-
ogous to the result in §3.1 that requires two Fq-squarings to square an element
of GΦ2(q). Combining the result from §3.1 for squaring a generic element of Fq2 ,
means that for SFFs squaring in GΦ6(q) requires only six Fq-multiplications,
which matches the result of Stam and Lenstra.

Strictly speaking, the formulae require knowledge of the action of the Frobe-
nius on elements of Fq2 , which although as simple as it is, does entail Weil
restriction of equations (4) and (5) to Fq. However, if one ignores the arithmetic
of Fq2 and restricts directly to Fq as in [15], then the above formulae are obscured
and indeed were missed by Granger et al. So it is in the sense that the formulae
were discovered in this way that we mean the restriction is to Fq2 only.

Observe also that for the extension tower, one needs to multiply by
√
i ∈ Fq2 ,

whereas for the compositum one has i ∈ Fq. The cost of the former is however
not much more than the latter since the basis for Fq2/Fq is {1,

√
i} and so

multiplication by
√
i of a value in Fq2 involves just a component swap and a

multiplication by i.

4 Comparison with Prior Work

In this section we compare the efficiency of the squaring formulae derived in §3
with the most efficient results in the literature.

216 R. Granger and M. Scott

4.1 Operation Counts

Let m and s be the time required to perform an Fq-multiplication and an Fq-
squaring respectively. Since the cost of computing a squaring using our formulae
or others reduces to computing squarings in a subfield, we use the notation Sd

and Md to denote the time required to compute the square of one or the product
of two generic elements of Fqd . In our estimates we do not include the time for
modular additions and subtractions since although not negligible, are not the
dominant operations. This assumes that multiplication by the elements i, j used
in §3.1 and §3.2 can be effected with very few modular shifts and additions when
needed, see [5] for justification of this assumption.

We focus on TFFs with extension degrees 6, 12, 18 and 24 over Fq, which are
the main extension degrees of interest in PBC. However one can easily extrapo-
late cost estimates for any field whose extension degree is of the form k = 2a3b.
To estimate the cost of a multiplication in Fqk , we use the function ν(k)m where
ν(k) = 3a6b. The 3 and 6 in this estimate arise from the use of Karatsuba-Ofman
multiplication [23] for each quadratic and each cubic extension respectively. Our
cost function differs from that in [24] and [15], which is 3a5b, because these as-
sume that the Toom-Cook multiplication [36] of two degree three polynomials
is more efficient than Karatsuba-Ofman multiplication, however this is not usu-
ally the case [9]. Hence the cost of an Fqk multiplication for the given extension
degrees is 18m, 54m, 108m, 162m respectively.

The cost of squaring a generic element of Fqk is more complicated, since there
are several squaring techniques and one needs to determine which is faster for
a given application. Using the observation in [34], one can deduce that Sk =
2Mk/2 = 2 · 3a−16b. In addition, the results due to Chung and Hasan [8] give
three alternative formulae for squaring using the final degree three polynomial
at a cost of 3Mk/3 + 2Sk/3, 2Mk/3 + 3Sk/3 and Mk/3 + 4Sk/3. For simplicity we
use the second of the Chung-Hasan formulae, which incidentally for the above
extension degrees requires exactly the same number of Fq-multiplications as
when using [34].

Table 1 contains counts of the number of Fq-multiplications and Fq-squarings
that are required to perform a squaring in Fqk and GΦk(q), via the methods
arising from Weil restriction to the quadratic, cubic and Fq subfields respectively.

As is clear from the table, with the present result we have reduced the squaring
cost for generic elements in each of these fields by a factor of two for every

Table 1. Operation counts for squaring in various Weil restrictions of GΦk(q) for 6 | k

k Fqk ResF
qk /F

qk/2 GΦ2(qk/2) ResF
qk /F

qk/3 GΦ6(qk/6) ResF
qk /FqGΦ6(qk/6)

(Stam-Lenstra [34]) (Present result) (Granger et al. [15])
6 12m 2S3 = 4m + 6s 3S2 = 6m 3m + 6s
12 36m 2S6 = 24m 3S4 = 18m 18m + 12s
18 72m 2S9 = 24m + 30s 3S6 = 36m
24 108m 2S12 = 72m 3S8 = 54m 84m + 24s

Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions 217

degree, which greatly improves the speed of an exponentiation. If we assume for
the moment also that m ≈ s, then our squaring takes approximately 2/3-rds
the time of the Stam-Lenstra result in the third column. In comparison with the
final column, one sees that we beat this comprehensively; indeed for k = 24 the
result from [15] is worse than when using ResF

qk /F
qk/2

GΦ2(qk/2), and is barely
better than Karatsuba-Ofman. Hence restricting to the cubic subfield is clearly
the most efficient for fields of this form.

Remark 1. Note that we have not included the Stam-Lenstra squaring cost for
k = 6 because this requires q ≡ 2 or 5 (mod 9) whereas the use of the sextic twist
requiresD = 3 and hence p ≡ q ≡ 1 (mod 3), thus making them less desirable for
pairings. An open problem posed in [15] asked for a generalisation of the Stam-
Lenstra result to cyclotomic fields of degree different from six, for pairings. We
have shown that our formula for squaring in the cyclotomic subgroup of F×

q6 when
q ≡ 1 (mod 6) matches the extremely efficient degree six squaring of [34] (while
also permitting the use of sextic twists), and extends efficiently to higher degree
extensions. Hence in the sense that we have provided an efficient tailor-made
solution for pairings, we believe we have answered this question affirmatively.

4.2 Applicability of Method to Higher Powerings

As we have shown, all of the techniques to date for producing faster arithmetic
in the cyclotomic subgroup result from an application of the Weil restriction of
scalars of the equation defining membership of this group. A natural question to
ask is whether this will work for extensions of any other degree? The answer is
that it does, but that it appears very unlikely to provide a faster alternative to
squaring.

Let δ(k) be the degree of the equation αΦk(q) = 1, once expanded and the
linear Frobenius operation has been incorporated. If δ = 2, then the variety
resulting from the Weil restriction down to any intermediate subfield may help
with squaring. If δ > 2 then the resulting equations may help when raising
an element of the cyclotomic subgroup to the δ-th power [34]. However this is
unlikely to be faster than sequential squaring for an exponentiation, even when
squaring is slow. For example, for GΦ3(q), one finds that δ = 3 and the resulting
equations aid cubing. However the ratio of the cost of a cubing to a squaring
is > log2 3, and thus it better to square than cube during an exponentiation in
this case.

Complementary to this is the fact that δ ≤ 2 only for extensions of degree
k = 2a3b for a ≥ 1, b ≥ 0. Hence pairings with embedding degrees of this form
are ideally suited to exploit our, and the Stam-Lenstra fast squaring technique.

5 Application to Pairing-Based Cryptography

In this section we apply our squaring formula to extension field arithmetic re-
quired in the final exponentiation of a pairing computation, and post-pairing
exponentations, for two concrete examples. We here assume that Fq = Fp.

218 R. Granger and M. Scott

The use of our formulae is possible because for any pairing, the codomain
is a subgroup of GΦk(p) ⊂ F×

pk where k is the embedding degree of the curve.
For instance, the Tate pairing on an elliptic curve has the following form: for r
coprime to p we have

er : E(Fp)[r] × E(Fpk)/rE(Fpk)→ F×
pk/(F×

pk)r.

In order to obtain a unique coset representative the output is usually powered
by (pk − 1)/r. Since

(pk − 1)/r = (pk − 1)/Φk(p) · Φk(p)/r,

the first term (pk − 1)/Φk(p) can be computed easily using the Frobenius and
a few multiplications and a division, while the remaining ‘hard’ part must be
computed as a proper exponentiation. Since for any element α ∈ F×

pk , we have

α(pk−1)/Φk(p) ∈ GΦk(p), fast arithmetic for this group can be used.

5.1 MNT Curves

MNT curves were discovered in 2001 by Miyaji et al. and consist of three families
of ordinary elliptic curves with embedding degrees 3, 4 and 6 [28]. For efficiency
reasons, of most interest are the latter, for which the parametrisation of the base
field, group cardinality and trace of Frobenius are given by:

p(x) = x2 + 1
r(x) = x2 − x+ 1
t(x) = x+ 1

Using the method of Scott et al. [32] the final exponentiation reduces to the pow-
ering of an element of Gp2−p+1 by x. The maximum twist available has degree
two and so for efficiency one would like to use Fp3 arithmetic with a quadratic
extension of this field to give Fp6 . This implies that one should use the com-
posite construction of §3.2. One can alternatively use a quadratic extension of a
cubic extension for the Miller loop computation, and then switch to the isomor-
phic tower construction of §3.2 for the final exponentiation. This isomorphism is
just a permutation of basis elements, and so switching between representations,
even during the Miller loop, is viable, and therefore permits the use of the fast
multiplication results of [9].

The one condition that must be satisfied in order for our method to apply
is that p ≡ 1 (mod 6) which requires x ≡ 0 (mod 6), which eliminates 2/3-rds
of potential MNT curves. While this is restrictive, the benefits of ensuring this
condition are clear.

5.2 BN Curves

The Barreto-Naehrig family of pairing-friendly curves were reported in 2005
and have embedding degree 12 [4]. The parametrisation of the base field, group
cardinality and trace of Frobenius are given by:

Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions 219

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1
r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1
t(x) = 6x2 + 1

Note that for odd x, Fp12 is not pairing-friendly. However, choosing p ≡ 3
(mod 4) enables the use of the initial extension Fp2 = Fp[x]/(x2 + 1) which
permits highly efficient arithmetic. Since BN curves possess a sextic twist, such
efficient subfield arithmetic is very desirable. With this choice of extension, Fq6

is towering-friendly with Fq = Fp2 since p2 ≡ 1 (mod 6) for all primes p > 3,
and is also squaring-friendly.

Again the efficient final exponentiation of Scott et al. [32] can be applied
to reduce the final powering to essentially just three exponentiations by x. In
practise, it is recommended that x should be chosen to have as low a Hamming
weight as possible, to minimise the resulting cost of the Miller loop [10]. Hence
for the final exponentiation, the entries in Table 1 imply that this cost will
be ≈ 75% the cost of the previous fastest. Indeed using our squaring method
with the degree six extension of Fp2 given by the tower in §3.2 - i.e., a tower
having extensions of Fp of degrees 1 − 2 − 4 − 12 - a simple estimate of the
cost of performing the final powering with Scott et al.’s method for a 256-bit
prime, i.e., at AES 128-bit security, is 4856 Fp-multiplications. In contrast using
the tower extension with degrees 1 − 2 − 6 − 12 and using the Stam-Lenstra
result of §3.1 for the final extension, this figure is 5971 Fp-multiplications, so
our method should be approximately 20% faster in practise. Furthermore by
excluding p ≡ 3 (mod 4), the arithmetic for PFFs would be even slower for both
towers.

With regard to post-pairing exponentiation, one is free to use the method
of [13] which uses a clever application of the GLV decomposition [14]. For BN
curves one obtains a four-dimensional decomposition and hence uses quadruple
exponentiation to achieve this speed-up. Since there will be more multiplications
than for the final powering the impact of our squaring formulae on the cost of
exponentiation will be less pronounced, but still significant.

Another factor to consider for post-pairing exponentiations is that the trace-
based methods of LUC [33], XTR [26,35] and XTR over extension fields [27], are
known to be faster than [34] and [16] for a single exponentiation. However we
expect the Galbrith-Scott method to be superior since the resulting exponents in
the quadruple exponentiation are one quarter the size, and for the trace-based
methods efficient algorithms appear to be known only for single and double
exponentiation [13], ruling out their application in this context. The same rea-
soning applies to schemes that require a product of pairings each with individual
post-pairing exponentiation, such as [7].

The trace methods are also ruled out of Scott et al.’s final-powering method
since many multiplications are required, whereas the trace methods only per-
mit exponentiation. Hence, barring any improvements in trace-based multi-
exponentiation algorithms, we expect our formulae to feature in the most efficient
way to implement pairings, their products and exponentiation.

220 R. Granger and M. Scott

6 Application to Torus-Based Cryptography

Our central result may also be applied to torus-based cryptography (TBC),
which is based on the mathematics of algebraic tori, which were introduced to
cryptography by Rubin and Silverberg in 2003 [30]. While for degree six exten-
sions of prime fields, our squaring formulae only match the fastest implementa-
tion of CEILIDH [16] - which uses [34] - for nearly all sixth degree extensions of
non-prime fields our squaring method is the most efficient known.

The implementation of T30(Fp) = GΦ30(p) by van Dijk et al. used the Stam-
Lenstra result for p ≡ 2 or 5 (mod 9) [11]. This condition implies that q = pk ≡ 2
or 5 (mod 9) whenever k = 5m. Hence the family of fields of extension degree
6 · 5m over Fq for q ≡ 2 or 5 (mod 9) matches our squaring efficiency for the
cyclotomic subgroup. On the other hand, the condition q ≡ 1 (mod 6) for SFFs
is far less restrictive and in fact can be said to apply to 3/4’s of all finite fields.

With regard to compression of torus elements, which is the central function
of torus-based cryptography, let p ≡ 1 (mod 6) and let the field construction for
Fq6 be the compositum given in §3.2. We reorder the basis as so:

α = (a0 + a1x+ a2x
2) + (b0 + b1x+ b2x

2)y = a+ by.

Assuming α ∈ Gq2−q+1, then as in [17] and explicitly in [29], a straightforward
analysis of condition (1) yields that such elements - excepting the identity - can
be represented by two elements of Fq. To compress, one writes α �= 1 as

α = a+ by =
c− y
c+ y

,

where c = −(a+ 1)/b for b �= 0 and c = 0 if b = 0. Condition (1) now becomes(
c− y
c+ y

)q2−q+1

= 1,

and leads to the equation 3c20+i−3ic1c2 = 0, where c = c0+c1x+c2x2. Therefore
there is redundancy between the ci’s. One can eliminate c2 for instance which
can be recovered from c0 and c1. The decompression map is just the inverse of
this:

ψ : A2(Fq) → T6(Fq) \ {1} : (c0, c1)
→
3ic0c1 + 3ic21x+ (3c20 + i)x2 − 3ic1y
3ic0c1 + 3ic21x+ (3c20 + i)x2 + 3ic1y

,

with the condition c1 �= 0, which therefore represents all q2 − q non-identity
elements in Gq2−q+1.

Since this compression method works for all fields for which p ≡ 1 (mod 6),
achieves the maximum known compression for any algebraic torus, and has the
fastest squaring available, we propose that such fields should be considered ideal
candidates TBC.

Furthermore, as stated in [13], TBC parameters can be easily generated
from pairing-friendly elliptic curves. The multi-exponentiation techniques stated

Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions 221

in §5.2 that one acquires from PBC when TBC parameters are generated in this
way mean that exponentiation in T6(Fq) should be extremely efficient, and in-
deed faster than all other known methods.

Therefore while it could be argued that the main application of TBC is to
PBC - in terms of offering faster arithmetic and compression mechanisms for
systems that may be used in practise - here TBC really benefits from PBC, thus
demonstrating a neat symbiosis between the two application areas.

7 Conclusion

We have presented a method to perform squaring extremely efficiently in the
cyclotomic subgroup of F×

q6 , for q ≡ 1 (mod 6). We have shown how to apply
this result to fields of interest in pairing-based cryptography to obtain the fastest
final- and post-pairing exponentiation algorithms, and also detailed why these
fields are ideally suited for torus-based cryptography, when p ≡ 1 (mod 6).

Since these fields include those listed in the IEEE’s P1363.3/D1 draft standard
for identity-based public-key cryptography, which use pairings over ordinary el-
liptic curves that permit the fastest pairing via a maximal twist, our result
strongly supports their standardisation, but also demonstrates that the more
general squaring-friendly fields introduced here warrant serious consideration
for inclusion.

We leave it as an open problem to find similarly efficient squaring formulae
for the remaining case q ≡ −1 mod 6.

Acknowledgements

The authors would like to thank Martijn Stam for answering some questions.

References

1. Bailey, D.V., Paar, C.: Optimal Extension Fields for Fast Arithmetic in Public-Key
Algorithms. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 472–485.
Springer, Heidelberg (1998)

2. Barreto, P., Galbraith, S.D., ÓhÉigeartaigh, C., Scott., M.: Efficient Pairing
Computation on Supersingular Abelian Varieties. Designs, Codes and Cryptog-
raphy 42(3), 239–271 (2007)

3. Barreto, P., Kim, H., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-Based
Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368.
Springer, Heidelberg (2002)

4. Barreto, P., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Pre-
neel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

5. Benger, N., Scott, M.: Constructing Tower Extensions for the implementation of
Pairing-Based Cryptography (Preprint)

6. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curves in Cryptography.
Cambridge University Press, Cambridge (2005)

222 R. Granger and M. Scott

7. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

8. Chung, J., Hasan, M.A.: Asymmetric Squaring Formulae. In: IEEE Symposium on
Computer Arithmetic, pp. 113–122 (2007)

9. Devegili, A.J., ÓhÉigeartaigh, C., Scott, M., Dahab, R.: Multiplication and Squar-
ing on Pairing-Friendly Fields, http://eprint.iacr.org/2006/471

10. Devegili, A.J., Scott, M., Dahab, R.: Implementing Cryptographic Pairings over
Barreto-Naehrig Curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T.
(eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007)

11. van Dijk, M., Granger, R., Page, D., Rubin, K., Silverberg, A., Stam, M.,
Woodruff, D.: Practical cryptography in high dimensional tori. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 234–250. Springer, Heidelberg (2005)

12. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In:
Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer,
Heidelberg (2002)

13. Galbraith, S.D., Scott, M.: Exponentiation in Pairing-Friendly Groups Using Ho-
momorphisms. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 211–224. Springer, Heidelberg (2008)

14. Gallant, R., Lambert, J., Vanstone, S.: Faster Point Multiplication on Elliptic
Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

15. Granger, R., Page, D., Smart, N.P.: High Security Pairing-Based Cryptography
Revisited. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076,
pp. 480–494. Springer, Heidelberg (2006)

16. Granger, R., Page, D., Stam, M.: A Comparison of CEILIDH and XTR. In: Buell,
D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 235–249. Springer, Heidelberg (2004)

17. Granger, R., Page, D., Stam, M.: On Small Characteristic Algebraic Tori in Pairing-
based Cryptography. LMS Journal of Computation and Mathematics 9, 64–85
(2006)

18. Hess, F., Vercauteren, F., Smart, N.P.: The Eta Pairing Revisited. IEEE Transac-
tions on Information Theory 52(10), 4595–4602 (2006)

19. IEEE Draft Standard for Identity-based Public-key Cryptography using Pairings,
P1636.3/D1 (2008),
http://grouper.ieee.org/groups/1363/IBC/material/

P1363.3-D1-200805.pdf

20. IEEE Draft Standard for identity-based cryptographic techniques using pairings,
P1363.3/D3 (2009),
http://grouper.ieee.org/groups/1363/IBC/index.html

21. Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

22. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng Pairing-
Friendly Elliptic Curves Using Elements in the Cyclotomic Field. In: Galbraith,
S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer,
Heidelberg (2008)

23. Karatsuba, A., Ofman, Y.: Multiplication of Many-Digital Numbers by Automatic
Computers. Soviet Physics Doklady 7, 595–596 (1963)

24. Koblitz, N., Menezes, A.J.: Pairing-Based Cryptography at High Security Levels.
In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

http://eprint.iacr.org/2006/471
http://grouper.ieee.org/groups/1363/IBC/material/P1363.3-D1-200805.pdf
http://grouper.ieee.org/groups/1363/IBC/material/P1363.3-D1-200805.pdf
http://grouper.ieee.org/groups/1363/IBC/index.html

Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions 223

25. Lee, E., Lee, H.S., Park, C.M.: Efficient and Generalized Pairing Computation
on Abelian Varieties. IEEE Transactions on Information Theory 55(4), 1793–1803
(2009)

26. Lenstra, A.K., Verheul, E.: The XTR Public Key System. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 1–19. Springer, Heidelberg (2000)

27. Lim, S., Kim, S., Yie, I., Kim, J., Lee, H.: XTR extended to GF(p6m). In: Vaude-
nay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 301–312. Springer,
Heidelberg (2001)

28. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Trans. Fundamentals E84-A (5), 1234–1243 (2001)

29. Naehrig, M., Barreto, P.S.L.M., Schwabe, P.: On Compressible Pairings and their
Computation. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023,
pp. 371–388. Springer, Heidelberg (2008)

30. Rubin, K., Silverberg, A.: Torus-Based Cryptography. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 349–365. Springer, Heidelberg (2003)

31. Scott, M., Barreto, P.: Compressed Pairings. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)

32. Scott, M., Benger, N., Charlemagne, M., Perez, L.J.D., Kachisa, E.J.: On the Final
Exponentiation for Calculating Pairings on Ordinary Elliptic Curves. In: Shacham,
H. (ed.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer, Heidelberg (2009)

33. Smith, P., Skinner, C.: A public-key cryptosystem and a digital signature system
based on the Lucas function analogue to discrete logarithms. In: Safavi-Naini, R.,
Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 357–364. Springer,
Heidelberg (1995)

34. Stam, M., Lenstra, A.K.: Efficient Subgroup Exponentiation in Quadratic and
Sixth Degree Extensions. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.)
CHES 2002. LNCS, vol. 2523, pp. 318–332. Springer, Heidelberg (2003)

35. Stam, M., Lenstra, A.K.: Speeding Up XTR. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 125–143. Springer, Heidelberg (2001)

36. Toom, A.L.: The Complexity of a Scheme of Functional Elements realizing the
Multiplication of Integers. Soviet Mathematics 4(3), 714–716 (1963)

37. Weil, A.: Adeles and algebraic groups. Progress in Mathematics, vol. 23.
Birkhäuser, Boston (1982)

Faster Pairing Computations on Curves
with High-Degree Twists�

Craig Costello1, Tanja Lange2, and Michael Naehrig2

1 Information Security Institute
Queensland University of Technology, GPO Box 2434, Brisbane QLD 4001, Australia

craig.costello@qut.edu.au
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org, michael@cryptojedi.org

Abstract. Research on efficient pairing implementation has focussed on
reducing the loop length and on using high-degree twists. Existence of
twists of degree larger than 2 is a very restrictive criterion but luckily
constructions for pairing-friendly elliptic curves with such twists exist.
In fact, Freeman, Scott and Teske showed in their overview paper that
often the best known methods of constructing pairing-friendly elliptic
curves over fields of large prime characteristic produce curves that admit
twists of degree 3, 4 or 6.

A few papers have presented explicit formulas for the doubling and
the addition step in Miller’s algorithm, but the optimizations were all
done for the Tate pairing with degree-2 twists, so the main usage of the
high-degree twists remained incompatible with more efficient formulas.

In this paper we present efficient formulas for curves with twists of
degree 2, 3, 4 or 6. These formulas are significantly faster than their pre-
decessors. We show how these faster formulas can be applied to Tate
and ate pairing variants, thereby speeding up all practical suggestions
for efficient pairing implementations over fields of large characteristic.

Keywords: Pairings, Miller functions, explicit formulas, Tate pairing,
ate pairing, twists, Weierstrass curves.

1 Introduction

Many new protocols are based on pairings and so the construction of pairing-
friendly curves and the efficiency of pairing computation has become a field of
active research. The first wave of this research exhausted many tricks that can be
applied inside a Miller iteration, resulting in significant computational speed ups
[4,6,7,34]. The second wave of improvements focussed on constructing pairing-
friendly elliptic curves [5,11,37,16,8,22,9,17,28], and this research is extended
� This work has been supported in part by a Queensland Government Smart State PhD

Scholarship and in part by the European Commission through the ICT Programme
under Contract ICT–2007–216646 ECRYPT II. Part of this work was done while
the second author visited QUT.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 224–242, 2010.
c© International Association for Cryptologic Research 2010

Faster Pairing Computations on Curves with High-Degree Twists 225

and collected in [18]. The third and more recent wave of research has focussed
on reducing the loop length of Miller’s algorithm [35,26,3,32] to be as short as
possible [42,25]. Along the way, there have been several other clever optimizations
that give faster pairings in certain scenarios, including compressed pairings [36],
single coordinate pairings [21], efficient methods of hashing to pairing-friendly
groups [38], and techniques that achieve a faster final exponentiation [24,39].

After the introduction of projective coordinates for pairing computations in
[12], very little was heard about low level optimizations. This started to become
more interesting lately for alternative curve shapes such as Edwards curves,
studied in [14,27,2], and curves of the form y2 = x3 + c2, studied in [13].

All of these improvements are presented in the context of the Tate pairing
on curves with even embedding degrees and using only quadratic twists, since
the nature of the Tate pairing allows for a relatively simple exposition and im-
proves efficiency through denominator elimination. At the same time, curves
with larger degree twists give much more efficient pairings and choosing spe-
cial curve shapes was risking this larger benefit. On top of that, Galbraith [20]
studied the group orders of curves and their twists and showed that for Edwards
curves only quadratic twists could be used, in the sense that the only twist which
preserves the existence of a point of order 4 is a quadratic twist. This deterred
further research on ate pairings and other variants for special curves. In this
paper we show that it is possible to compute a small power of the ate pairing
entirely on the twisted curve; so the curve can be chosen so that the twist of
the curve admits a particular shape. We show the fields of definition for the re-
spective coordinates. This provides a framework for converting Tate-like pairing
computation formulas and operation counts to their ate-like analogues.

For BN curves [8], Akane, Nogami, and Morikawa showed in [1] that the ate
pairing itself can be computed on the twisted curve. Our result covers more
general curves but computes the ate pairing only up to a power. Furthermore,
the idea of using twists in order to cover curves of special shapes is new. In the
context of Weierstrass curves, our result gives an easy way of computing the cost
of evaluating the Miller function.

For all practically useful embedding degrees, the best methods of constructing
pairing-friendly curves mostly produce elliptic curves of the form y2 = x3 +
ax+ b with a = 0 or b = 0 (see [18]). In this paper we consider these two cases
separately to give specialized pairing formulas in both scenarios. In particular, we
achieve the fastest known formulas for computing pairings on general curves with
b = 0 in weight-(1, 2) coordinates. In addition, the point doubling formulas we
derive for curves of this form are currently the fastest published point doubling
formulas [10] across all forms of elliptic curves. For pairings on general curves
with a = 0, we use standard projective coordinates. The doubling step on these
curves is two field multiplications faster than the previous record for such curves.
Furthermore, we also consider the case of computing pairings on curves with
odd embedding degrees that employ cubic twists, where we present formulas
which are significantly faster than their predecessors. Lastly, we also suggest an
improvement to the formulas presented in [13]. Note that for ate pairings, speed

226 C. Costello, T. Lange, and M. Naehrig

ups in the doubling and addition step save computations in fields whose sizes
grow proportionately to the embedding degree. This means that applying these
faster formulas to the ate pairing variants will give relative speed ups which are
consistent across all embedding degrees and savings which do not suffer as the
extension field arithmetic becomes more complex.

The rest of this paper is organized as follows. Section 2 provides a brief back-
ground on pairings. In Section 3, we present a modified method of computing
the ate pairing where all operations involve points only on the twisted curve.
This theoretical result is a key ingredient for efficient computation of the ate
pairing and has applications outside the scope of this paper, e.g. for Edwards
curves. We then show how Tate pairing formulas and operation counts can be
easily modified to this method of computing the ate pairing. In Sections 4 and
5, we present faster formulas for pairing computations that employ quadratic,
quartic or sextic twists. In Section 6, we present faster formulas for pairings on
curves with odd embedding degrees divisible by 3. We compare our results with
the state-of-the-art pairing formulas in Section 7.

2 Background on Pairings

Let p > 3 be a prime, and let E be an elliptic curve over Fq, char(Fq) = p,
with short Weierstrass equation E : y2 = x3 + ax + b and point at infinity O.
Let r �= p be a prime divisor of n = #E(Fq) = q + 1 − t and let k > 1 be the
embedding degree of E with respect to r, i. e. k is minimal with r | qk − 1. For
the r-torsion subgroup, we have E[r] ⊆ E(Fqk). Let μr ⊆ F∗

qk be the group of
r-th roots of unity. For m ∈ Z and P ∈ E[r], let fm,P be a function with divisor
div(fm,P) = m(P)− ([m]P)− (m− 1)(O). The reduced Tate pairing is defined
as

τr : E(Fqk)[r]× E(Fqk)/[r]E(Fqk)→ μr, (P,Q)
→ fr,P (Q)
qk−1

r .

In practice one restricts the arguments to groups of prime order r. If r2 � n, the
most common choice is to take the groups

G1 = E[r] ∩ ker(φq − [1]) = E(Fq)[r], G2 = E[r] ∩ ker(φq − [q]) ⊆ E(Fqk),

where φq is the q-power Frobenius endomorphism on E. The groups G1 and G2
are the eigenspaces of φq on E[r] and we have E[r] = G1 ⊕ G2. From now on,
we consider er, the reduced Tate pairing restricted to G1 ×G2, i. e.

er : G1 ×G2 → μr, (P,Q)
→ fr,P (Q)
qk−1

r .

Let T = t− 1. Restricting the Tate pairing to G2 ×G1 leads to the ate pairing
[26]

aT : G2 ×G1 → μr, (Q,P)
→ fT,Q(P)
qk−1

r .

Note that the parameter r is changed to T . The group G2 consists of points
defined over Fqk . Often G2 can be represented by a subgroup G′

2 of a curve

Faster Pairing Computations on Curves with High-Degree Twists 227

isomorphic to E over Fqk . Let d | k; an elliptic curve E′ over Fqk/d is called a twist
of degree d of E/Fqk/d if there is an isomorphism ψ : E′ → E defined over Fqk ,
and this is the smallest extension of Fqk/d over which ψ is defined. Depending
on the j-invariant j(E) of E, there exist twists of degree at most 6. Pairing-
friendly curves with twists of degree higher than 2 arise from constructions with
j-invariants j(E) = 0 and j(E) = 1728.

A twist of E is given by E′: y2 = x3 + aω4x + bω6 for some ω ∈ Fqk . The
isomorphism between E′ and E is Ψ : E′ → E : (x′, y′) → (x′/ω2, y′/ω3) with
inverse Ψ−1 : E → E′ : (x, y) → (ω2x, ω3y). Depending on j(E) and ω, we obtain
the possible degrees of a twist E′ as summarized in Table 1. The isomorphism
Ψ induces a group isomorphism G′

2 → G2, where G′
2 = E′(Fqk/d)[r]. Thus,

points in G2 can be represented by their image under Ψ−1. In what follows,
we write P ′ for the point on the twist E′ corresponding to a point P ∈ E, i. e.
P ′ = Ψ−1(P) and P = Ψ(P ′). The last two columns in Table 1 show the subfields
of Fqk in which the coordinates of the specific points are contained. For example
(Fqk/2 ,Fqk) means that the x-coordinate is in Fqk/2 and the y-coordinate is in
Fqk . The last column illustrates that the coordinates of P ′ lie in the same fields
as the coordinates of Q. The importance of this becomes evident in Section 3.
Since the points in G′

2 are defined over a smaller field than those in G2, curve
arithmetic is more efficient in G′

2.

Table 1. The nature of the twist isomorphisms for twists of degree d

d j(E) fields of definition Q′ = (xQ′ , yQ′) Q = Ψ(Q′)
a, b for powers of ω P = (xP , yP) P ′ = Ψ−1(P)

2 �∈ {0, 1728} ω2, ω4, ω6 ∈ Fqk/2 (Fqk/2 , Fqk/2) (Fqk/2 , Fqk)
a �= 0, b �= 0 ω3 ∈ Fqk \ Fqk/2 (Fq, Fq) (Fqk/2 , Fqk)

3 0 ω6, ω3 ∈ Fqk/3 (Fqk/3 , Fqk/3) (Fqk , Fqk/3)
a = 0, b �= 0 ω2 ∈ Fqk \ Fqk/3 (Fq, Fq) (Fqk , Fqk/3)

4 1728 ω4 ∈ Fqk/4 , ω2 ∈ Fqk/2 (Fqk/4 , Fqk/4) (Fqk/2 , Fqk)
a �= 0, b = 0 ω3 ∈ Fqk \ Fqk/2 (Fq, Fq) (Fqk/2 , Fqk)

6 0 ω6 ∈ Fqk/6 , ω3 ∈ Fqk/3 (Fqk/6 , Fqk/6) (Fqk/2 , Fqk/3)
a = 0, b �= 0 ω2 ∈ Fqk/2 (Fq, Fq) (Fqk/2 , Fqk/3)

Assume that E has a twist of degree d and that d | k. Let e = k/d, Te = T e

mod r. The twisted ate pairing is defined as

ηTe : G1 ×G2 → μr, (P,Q)
→ fTe,P (Q)
qk−1

r .

The reduced Tate and the twisted ate pairing are both defined on G1 × G2,
while the ate pairing is defined on G2 × G1. We aim to simultaneously treat
both concepts of pairings by respectively fixing R and S as the first and second
arguments of either pairing. For both variants, we thus write fm,R(S)(q

k−1)/r,
where m,R, S are chosen according to the desired pairing. Miller’s algorithm is

228 C. Costello, T. Lange, and M. Naehrig

used to compute the pairing as follows: Let m = (ml−1, . . . ,m1,m0)2 be the
binary representation of m, initialize U = R, f = 1 and compute

1. for i = l − 2 to 0 do
(a) f ← f2 · fDBL(U)(S), U ← [2]U , //doubling step (DBL)
(b) if mi = 1 then f ← f · fADD(U,R)(S), //addition step (ADD)

U ← U +R.
2. f ← f (qk−1)/r.

The function fDBL(U) is defined as fDBL(U) = lDBL(U)/vDBL(U), where lDBL(U) is
the function of the line tangent to E at the point U and vDBL(U) is the function
of the vertical line through [2]U . Analogously, the function fADD(U,R) is defined
as fADD(U,R) = lADD(U,R)/vADD(U,R), where lADD(U,R) is the function of the line
through the points U and R and vADD(U,R) is the function of the vertical line
through U+R. If one of the inputs to the addition is given in affine representation
we speak of a “mixed addition” and use the abbreviation mADD.

Step 1 in the above algorithm is called the Miller loop; it computes the function
value fm,R(S) up to r-th powers. Step 2, the final exponentiation, determines
the final pairing value.

The number of iterations of the Miller loop is equal to l − 1, where l is the
bitlength of m. Therefore, reducing the bitlength of m reduces the number of
iterations in the Miller loop which reduces the cost of the pairing computation.
Several papers have proposed methods for loop shortening [30,32,43,42,25]. For
example, for the twisted ate pairing one can replace Te by any of its powers
modulo r and choose the smallest of those. A good choice for the ate pairing
is to use the R-ate pairing [30], which often achieves an optimal loop length of
log(r)/ϕ(k), yielding an optimal pairing [42].

3 Computing the Ate Pairing Entirely on the Twisted
Curve

Several authors have presented new formulas that achieve faster iterations of the
Miller loop on certain curves [12,14,27,2,13]. The operation counts presented in
these papers are given in the context of Tate pairing computations on curves
with even embedding degrees, where all elliptic curve operations occur in the
base field Fq and the functions in the Miller loop are evaluated at a point which
has one coordinate in Fqk/2 and one in the full extension field Fqk . This allows
for a relatively simple exposition. However, the ate pairing reverses the roles
of the points involved and employs twisted curves. This means that some of
the optimizations can not be applied in the same fashion. The purpose of this
section is to tidy up this discussion and to show how operation counts for the
Tate pairing can be easily modified to give the analogous ate pairing count.

The usual practice when computing the ate pairing aT (Q,P) of the points
P ∈ E(Fq) and Q ∈ E(Fqk) is to map the point Q to the twisted curve using the
isomorphism Ψ−1, so that the point operations (doubling/addition) in the Miller
loop can be performed more efficiently using the pointQ′ = Ψ−1(Q) ∈ E′(Fqk/d),

Faster Pairing Computations on Curves with High-Degree Twists 229

whose coordinates are defined over the smaller field Fqk/d . When it is time to
compute the Miller line, Q′ is “untwisted” back to the full extension field via
Q = Ψ(Q′). Operation counts for the Tate pairing do not carry over directly
to the ate pairing. In particular, for the Tate pairing it is the y-coordinate of
the second argument that is in the full extension field Fqk , whereas one of the
coordinates of the first argument in the ate pairing is in Fqk . This means that
all optimizations that were based on eliminating subfield elements have to be
revised.

Furthermore, pairings on special curves such as Edwards curves and the curves
in [13] pose conditions on cofactors of the group order. Galbraith [20] pointed
out to us that for twists of degree larger than 2, E and E′ can not both simulta-
neously be in Edwards form. His arguments also apply to the curves in [13] with
sextic twists. So far this meant that the formulas used for the point operations
and the formulas derived for the Miller functions must be treated separately
which usually results in a greater overall operation count.

We show that a small (≤ 6) power of the ate pairing can be computed entirely
on the twisted curve, rendering the above concerns obsolete. Our pairing can
make use of loop shortening techniques just like the ate pairing, but only requires
one curve (the twisted curve) to have particular properties. Furthermore, Table 1
shows that most coordinates of the twisted points P ′ and Q′ are defined over
subfields. Note that the computation of a small power of pairings for efficiency
reasons has been addressed in previous work, see for example [15].

Theorem 1. Let E/Fq : y2 = x3+ax+b and let E′/Fqk/d : y2 = x3+aω4x+bω6,
a degree-d twist of E. Let Ψ be the associated twist isomorphism Ψ : E′ → E :
(x′, y′) → (x′/ω2, y′/ω3). Let P ∈ G1, Q ∈ G2, and let Q′ = Ψ−1(Q) and
P ′ = Ψ−1(P). Let aT (Q,P) be the ate pairing of Q and P . Then

aT (Q,P)gcd(d,6) = aT (Q′, P ′)gcd(d,6),

where aT (Q′, P ′) = fT,Q′(P ′)(q
k−1)/r uses the same loop parameter as aT (Q,P)

on E, but takes the two twisted points Q′ and P ′ as inputs, instead of Q and P .

Proof. Since all factors of the Miller values that lie in a proper subfield of Fqk

vanish under the final exponentiation, it suffices to show that the Miller function
updates at each iteration are equal, up to a constant defined over any proper
subfield of Fqk . The computation of aT (Q,P) is composed of addition and dou-
bling steps. Consider the gradients of the lines at either the addition or doubing
stage of the Miller loop respectively. We have

y′2 − y′1
x′2 − x′1

=
ω3(y2 − y1)
ω2(x2 − x1)

=ω
y2 − y1
x2 − x1

and
3x′21 + aω4

2y′1
=
ω4(3x2

1 + a)
2ω3y1

=ω
3x2

1 + a

2y1

for addition and doubling. We write the update to the Miller function at the
doubling step, fDBL(U ′)(P ′), as

(lDBL(U ′)(P ′))/(vDBL(U ′)(P ′)) = (yU ′ − yP ′ − λ′(xU ′ − xP ′))/(xP ′ − x[2]U ′)

= (ω3yU − ω3yP − ωλ(ω2xU − ω2xP))/(ω2xP − ω2x[2]U) = ω · fDBL(U)(P),

230 C. Costello, T. Lange, and M. Naehrig

where λ and λ′ are the gradients determined before. We also have fADD(U ′,Q′)(P ′) =
ω ·fADD(U,Q)(P). For twists of degree d = 2 and d = 4, observe that ω2 = ωgcd(d,6)

is in a subfield of Fqk and thus vanishes in the final exponentiation. Similarly,
for d = 3 and d = 6, ω3 and ω6 are both in subfields of Fqk so that introducing a
factor of 3 and 6 respectively to the exponent of aT (Q′, P ′) will give an identical
result to the computation of the same power of aT (Q,P). ��

Corollary 2. If aT (Q,P) is bilinear and non-degenerate, then so is aT (Q′, P ′).

Remark 3. Note that for d = 6 both ω2 and ω3 are in proper subfields of
Fqk . Thus their contributions to the denominator and numerator vanish in
the final exponentiation, so there is no need to introduce a factor of 6 to the
final exponent. That is, for sextic twists it is actually always the case that
aT (Q,P) = aT (Q′, P ′). If denominator elimination is used for d = 6, the values
differ by ω3 which lies in a subfield. For k = 12 and BN curves this case was con-
sidered by Akane, Nogami, and Morikawa [1] who showed that up to constants
from subfields aT (Q,P) = aT (Q′, P ′).

For the other cases either ω2 or ω3 lie in a proper subfield Fqe of Fqk . If 4
or 9 divides

∏
d|k Φd(q)/(qe − 1), respectively, we obtain ω(qk−1)/r = 1 and thus

automatically aT (Q,P) = aT (Q′, P ′). However, in general these conditions are
not satisfied, and the extra power of 2 or 3 is needed to obtain the same result.

Computing the ate pairing as aT (Q′, P ′) and using twists as in Table 1 implies
(for d < 6) that the only coordinate that lies in the full extension field Fqk

belongs to the second argument; for d = 6 all coordinates are defined over
subfields. In this sense, the field operations encountered in computing the ate
pairing aT (Q′, P ′) on E′ mimic the field operations encountered in computing
the Tate pairing er(P,Q) on E. Thus, point operation and line computation
formulas that work in the Tate pairing can directly be applied to the ate pairing.

Inversions in Fqk are prohibitively expensive and so we will show for all curve
types a way to eliminate denominators. Therefore, at the doubling or addition
stage of a Miller iteration the update function is given by a polynomial f =∑

i,j Li,j · xi
Sy

j
S, where the Li,j are functions solely of the intermediate point U

(doubling) or of the intermediate point U and the base point R (addition). In the
Tate pairing computation of er(P,Q), the Li,j are functions of some multiple of
the point P ∈ E(Fq) and therefore all calculations required to compute the Li,j

are performed in the base field Fq. Similarly, in the modified definition of the
ate pairing computation of aT (Q′, P ′), the Li,j are functions of some multiple
of the point Q′ ∈ E′(Fqe) and therefore all calculations required to compute the
Li,j in this case are performed in the subfield Fqe . Thus, if the computations of
the Li,j in an iteration of the Tate pairing require mm1 + ss1, where m1 and s1
denote multiplication and squaring in Fq, then the equivalent computations in
an iteration of the ate pairing will require mme + sse, where me and se denote
multiplication and squaring in Fqe ; a multiplication by the curve constant a
costs da.

For even embedding degrees (admitting quadratic, sextic or quartic twists)
the function update always simplifies to f = L1,0x + L0,1y + L0,0, so that we

Faster Pairing Computations on Curves with High-Degree Twists 231

have two extra multiplications required here (L1,0 by x and L0,1 by y). In the
Tate pairing as well as in the ate pairing each of these multiplications costs
e = k/d base field multiplications if field extensions are represented in a suitable
way. If k is odd and divisible by three and if the curve admits a cubic twist,
the function update requires more terms. For comparison, let there be hADD
non-zero terms (excluding L0,0) in the addition step and hDBL in the doubling
step, each of which costs e = k/3 base field multiplications. We summarize the
situation for different twists in Table 2.

Table 2. Converting operation counts for single addition and doubling steps in the
Tate pairing er(P, Q) and ate pairing aT (Q′, P ′)

k even DBL ADD/ mADD
Tate: er(P, Q) m1m1 + s1s1 + 2em1 + mk + sk m2m1 + s2s1 + 2em1 + mk

Ate: aT (Q′, P ′) m1me + s1se + 2em1 + mk + sk m2me + s2se + 2em1 + mk

k odd, 3 | k DBL ADD/ mADD
Tate: er(P, Q) m1m1 + s1s1 + hDBLem1 + mk + sk m2m1 + s2s1 + hADDem1 + mk

Ate: aT (Q′, P ′) m1me + s1se + hDBLem1 + mk + sk m2me + s2se + hADDem1 + mk

In what follows, whenever we omit the subscripts from the operation costs
and write m and s, we mean m1, s1 for Tate pairing computation and me, se

for ate pairing computation.

Remark 4. Note that by Theorem 1 the computation of aT (Q′, P ′)gcd(d,6) can
be done entirely on the twisted curve. This means that Edwards curves can be
employed in the ate setting if we choose the original curve such that the twisted
curve can be written in Edwards form.

All curves we consider in the following are defined over the prime field Fp. We
therefore restrict to the case q = p from now on.

4 Pairings on y2 = x3 + ax with Even Embedding
Degrees

The only curves which admit quartic twists over Fp are of the form E : y2 =
x3 + ax. In this section we assume that the embedding degree k is even and so
by Table 1 we can use that the x-coordinates of Q (used in the Tate pairing) and
of P ′ (used in our modified ate pairing) are defined over a subfield of Fpk . Using
the naming convention introduced in Section 2, xS is defined over a subfield of
Fpk while yS is minimally defined over Fpk .

Curves of the form E : y2 = x3 + ax have not received much attention, even
for simple elliptic curve arithmetic, e.g. no special formulas were reported in the
EFD [10] before our paper. We present new formulas for addition and doubling
in a new coordinate system, which we call “weight-(1, 2) coordinates”. The point
(X : Y : Z) corresponds to the affine point (x, y), where x = X/Z and y = Y/Z2.

232 C. Costello, T. Lange, and M. Naehrig

The projective curve equation for these weights is Y 2 = X3Z + aXZ3. Lopez
and Dahab studied such coordinates in the context of elliptic curves over binary
fields but these weights have not been used in the context of curves over odd-
characteristic fields.

It is quite remarkable that our doubling formulas are faster than any doubling
formulas reported for elliptic curves in the EFD.

We extend the explicit formulas for curve operations to compute the doubling
and the addition step on these curves. The resulting pairing computations are
also significantly faster than their predecessors.

Doubling formulas. For this curve shape the affine doubling formulas to com-
pute (x3, y3) = [2]U = [2](x1, y1) simplify to x3 = λ2−2x1, y3 = λ(x1−x3)−y1,
where λ = (3x2

1 + a)/(2y1). In weight-(1, 2) coordinates the doubling formulas
to compute (X3 : Y3 : Z3) = [2](X1 : Y1 : Z1) become

X3 = (X2
1 − aZ2

1)2, Y3 = 2Y1(X2
1 − aZ2

1)((X2
1 + aZ2

1)2 + 4aZ2
1X

2
1), Z3 = 4Y 2

1 .

The point doubling needs 1m + 6s + 1da using the following sequence of
operations.

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = aC, X3 = (A−D)2, (1)

E = 2(A+D)2 −X3, F = ((A−D + Y1)2 −B −X3), Y3 = E · F, Z3 = 4B.

These formulas are now the fastest doubling formulas reported in the EFD [10].
They are faster by 1 s-m tradeoff. than the previous champion, “dbl-20090311-
hwcd” due to Hisil, Wong, Carter, and Dawson. Those formulas are optimized for
“Doubling-oriented XXYZZR coordinates for Jacobi quartics” and need 2m +
5s + 1da, where a is some curve constant.

Line computation for doubling. In the doubling step of the pairing computa-
tion we need to compute [2]U and to compute the line function at U and evaluate
it at S = (xS , yS). The affine formula for the computation of fDBL(U)(S) is given

as λ(X1/Z1−xS)+yS−Y1/Z2
1

xS−(λ2−2X1/Z1) = − 2Y1(−(3X2
1Z1+aZ3

1)·xS+(2Y1Z1)·yS+X3
1−aZ2

1X1)
−(4Y 2

1 Z1)·xS+9X4
1Z1+6aX2

1Z3
1+a2Z5

1−8X1Y 2
1

. Since
any element except for yS is in a proper subfield of Fpk , we can omit computing
the entire denominator and also the multiplication by −Y1. We leave the factor
of 2 to obtain an s-m tradeoff. The simplified line function is

f ′
DBL(U)(S) = −2(3X2

1Z1 + aZ3
1) · xS + (4Y1Z1) · yS + 2(X3

1 − aZ2
1X1).

We write f ′
DBL(U)(S) as f ′

DBL(U)(S) = L1,0 · xS + L0,1 · yS + L0,0 and compute
L1,0, L0,1 and L0,0 as

L1,0 =−2Z1·(3·A+D), L0,1=2((Y1+Z1)2−B−C), L0,0=(X1+A−D)2−X3−A,

using the values computed in (1) at an additional cost of 1m + 2s, so that the
total operation count for point doubling with line computation is 2(k/d)m1 +
2m + 8s + 1da.

Faster Pairing Computations on Curves with High-Degree Twists 233

Addition and mixed addition. In affine coordinates, the sum (x3, y3) =
U +R = (x1, y1) + (x2, y2) is given by x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1,
where λ = (y1 − y2)/(x1 − x2). In weight-(1, 2) coordinates this becomes (X3 :
Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2)

X3 = (Y1Z
2
2 − Y2Z

2
1)2 − (X1Z2 +X2Z1)T,

Y3 = ((Y1Z
2
2 − Y2Z

2
1)(X1Z2T −X3)− Y1Z

2
2TU)UZ1Z2,

Z3 = (UZ1Z2)2,

where T = (X1Z2 −X2Z1)2Z1Z2 and U = (X1Z2 −X2Z1). This addition can
be computed in 10m + 7s using

A = Z2
1 , B = Z2

2 , C = (Z1 + Z2)2 − A−B, D = X1 · Z2, E = X2 · Z1,

F = Y1 · B, G = Y2 · A, H = (D − E), I = 2(F −G), II = I2, J = C ·H,
K = 4J ·H, X3 = 2II − (D + E) ·K, Z3 = J2,

Y3 = ((J + I)2 − Z3 − II) · (D ·K −X3)− F ·K2, Z3 = 2Z3.

For mixed addition, i.e. Z2 = 1, the number of operations reduces to 8m + 5s
omitting computation of B,C,D and F .

Line computation for addition and mixed addition. For affine points U,R,
and S the line function is given by fADD(U,R)(S) = λ(x2−xS)+yS−y2

xS−(λ2−x1−x2)
. Again, we

can omit the denominator because it is entirely defined over a subfield of Fpk .
In weight-(1, 2) coordinates the modified line function becomes f ′

ADD(U,R)(S) =
I · X2Z2 − I · xSZ

2
2 + J · ySZ

2
2 − J · Y2. The values X2Z2, xSZ

2
2 , and ySZ

2
2

do not change during the computation and can thus be precomputed. For the
Tate pairing the cost of one addition step (computation of addition and line
function) therefore is (2k/d)m1 + 12m + 7s. If d = 2 it is possible to save
1m by computing I · (X2Z2 − xSZ

2
2). When computing the ate pairing, the

multiplications in I ·X2Z2− I ·xSZ
2
2 +J · ySZ

2
2 − J ·Y2 cost 1m each, given the

shape of xS and yS. The cost of one addition step (computation of addition and
line function) in the ate pairing therefore is 14m + 7s.

For mixed additions (Z2 = 1) this simplifies to f ′
mADD(U,R)(S) = I ·X2 − I ·

xS + J · yS − J · Y2, costing (2k/d)m1 + 10m+ 5s for both the ate and the Tate
pairing for a complete mixed addition step. For d = 2 again 1m can be saved in
the Tate pairing.

If R is reused several times in the Tate pairing it might be worthwhile to
precompute 1/Y2 for longterm usage. At the beginning of a pairing computation
X̃2 = X2/Y2, x̃S = xS/Y2 and ỹS = yS/Y2 are computed. Since Y2 lies in Fp, so
f ′
mADD(U,R)(S) can be replaced by

f ′
mADD(U,R)(S)/Y2 = I · X̃2 − I · x̃S + J · ỹS − J

without changing the pairing value. Note also that Table 1 shows that x̃S and ỹS

are defined over the same fields as xS and yS are. In this case a mixed addition
step costs only (2k/d)m1 + 9m + 5s.

234 C. Costello, T. Lange, and M. Naehrig

If instead S is reused several times in the ate pairing, similar savings are
possible. It is useful to precompute 1/y′S and update the function by

f̄mADD(U,R)(S)/ȳS = I · X̄2 − I · x̄S + Jω3 − J · Ȳ2,

where X̄2 = X2/ȳS, x̄S = xS/ȳS and Ȳ2 = Y2/ȳS, and yS = ȳSω
3 with ȳS ∈ Fp.

In this case a mixed addition step costs only (2k/d)m1 + 9m + 5s.
Note that these savings are compatible with the saving for d = 2.
Depending on the representation of Fpk over Fpk/2 and Fpk/d it is possible to

save operations in the other cases.

5 Pairings on y2 = x3 + b with Even Embedding Degrees

The only curves which can have sextic twists over Fp are of the form E : y2 =
x3 + b. In this section we assume that the embedding degree k is even and
so by Table 1 we can use that the x-coordinate of Q (in er(P,Q)) and of P ′

(in aT (Q′, P ′)) is defined over a subfield of Fpk . Using the naming convention
introduced in Section 2, xS is defined over a subfield of Fpk while yS might be
defined over Fpk . Note that if d = 6, yS is also defined over a proper subfield,
namely Fpk/3 . For these curves we obtained the best results in standard projective
coordinates where the curve equation y2 = x3 + b becomes Y 2Z = X3 + bZ3.

When b is a square in Fp, the curve E always has a point of order 3, otherwise
such a point never exists in E(Fp). The former case was extensively studied in
[13] in the context of the Tate pairing. The addition formulas are independent
of the nature of the curve constant b and can therefore also be used for non-
square b. We slightly improve these addition formulas in the second half of this
section and use these formulas for all curves with a = 0. The first part of this
section focuses on achieving faster operation counts at the Miller doubling stage
on general curves of the form E : y2 = x3 + b, where we make no assumptions
about the nature of the curve constant b (and consequently the order of E).

Point doubling and line computation. The affine doubling formulas differ
from those in Section 4 in the definition of λ. We have λ = 3x2

1/2y1. In projective
coordinates and after eliminating powers of X3

1 via the curve equation, we obtain
(X3 : Y3 : Z3) = [2](X1 : Y1 : Z1) as

X3 = 2X1Y1(Y 2
1 − 9bZ2

1), Y3 = Y 4
1 + 18bY 2

1 Z
2
1 − 27b2Z4

1 , Z3 = 8Y 3
1 Z1.

We homogenize the affine doubling line using x1 = X1/Z1 and y1 = Y1/Z1 and
get

f ′
DBL(U)(S) = 3X2

1 · xS − 2Y1Z1 · yS + 3bZ2
1 − Y 2

1 .

We write f ′
DBL(U)(S) = L1,0 · xS + L0,1 · yS + L0,0 and compute L1,0, L0,1, L0,0

and the point (X3 : Y3 : Z3) using the following sequence of operations.

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = 3bC, E = (X1 + Y1)2 −A−B,

F = (Y1 + Z1)2 −B − C, G = 3D, X3 = E · (B −G),
Y3 = (B +G)2 − 12D2, Z3 = 4B · F, L1,0 = 3A, L0,1 = −F, L0,0 = D −B.

Faster Pairing Computations on Curves with High-Degree Twists 235

The total count for the above sequence of operations is 2m+7s+1db in addition
to the multiplications by xS and yS. Note that doubling outside the context of
pairings would omit the computation of A and would obtain E = 2X1Y1, needing
a total of 3m + 5s + 1db. As doubling formulas they are not competitive with
those in the EFD but they are almost the fastest for the doubling step in pairings,
second only to y2 = x3 + c2 in [13].

Addition, mixed addition and line computation. For the addition of points
on y2 = x3 + b, we adopt the formulas obtained in [13] for curves of the form
y2 = x3 + c2. These addition and line computation formulas are independent of
b being a square. The cost for an addition is 12m + 2s The addition line in [13]
can be written as f ′

ADD(U,R)(S) = (Y1Z2 − Y2Z1) ·X2 − (Y1Z2 − Y2Z1) · xSZ2 +
(X1Z2−X2Z1) ·ySZ2− (X1Z2−X2Z1) ·Y2. Note that the coefficients appear as
subexpressions in the mixed addition of U and R, so computing f ′

ADD(U,R)(S)
as above costs an extra (2k/d)m1 + 2m for the Tate pairing and an extra 4m
the ate pairing.

If R = (X2 : Y2 : 1), the addition U +R becomes a mixed addition and costs
9m+2s. Computing the addition and the line as f ′

mADD(U,R)(S) = (Y1−Y2Z1) ·
X2 − (Y1 − Y2Z1) · xS + (X1 − X2Z1) · yS − (X1 − X2Z1) · Y2 costs an extra
(2k/d)m1 + 2m for both the Tate and the ate pairing.

If R or S is fixed in the mixed addition, similar comments to Section 4 apply,
reducing the extra costs to only (2k/d)m1 + m.

6 Fast Formulas for Pairing Computations with Cubic
Twists

For an odd embedding degree k, the only possible non-trivial twists are cubic
twists and these only exist for curves of the form y2 = x3 + b, requiring also that
3|k. Table 1 shows that in this scenario the point S = (xS , yS) has xS defined
over the full extension field Fpk and yS defined over a subfield. The formulas
obtained in most publications including the previous sections use denominator
elimination based on xS being in a subfield.

In this section we present fast formulas for addition and doubling steps for
y2 = x3 + b and optimize them using the fact that yS, yU and xU are in a proper
subfield of Fpk , while xS is not. Our results are significantly faster than other
studies of this case, but nevertheless the cases with even embedding degree offer
more advantages. For curves of the form y2 = x3 + b, Lin et al. [31] observed
that 1/vDBL(U)(S) can be written as

1
vDBL(U)(S)

=
1

xS − x[2]U
=

x2
S + xSx[2]U + x2

[2]U

(yS − y[2]U)(yS + y[2]U)
.

Since (yS−y[2]U)(yS +y[2]U) lies in a subfield, the line function can be multiplied
by x2

S + xSx[2]U + x2
[2]U , instead of dividing it by vDBL(U)(S). Analogously, the

addition step becomes f ′
ADD(U,R)(S) = lADD(U,R)(S) · (x2

S + xSxU+R + x2
U+R).

236 C. Costello, T. Lange, and M. Naehrig

Point doubling and line computation. In projective coordinates xU =
X1/Z1 and yU = Y1/Z1, we replace X3

1 = Y 2
1 Z1 − bZ3

1 and factor f ′
DBL(U)(S) to

see that f ′
DBL(U)(S) equals

α·
(
X1Z1(Y 2

1 − 9bZ2
1) · xS + (4Y 2

1 Z
2
1) · x2

S − (6X2
1Y1Z1) · yS +X2

1 (Y 2
1 + 9bZ2

1)
)
,

where α = (18bY 2
1 Z

2
1 − 27b2Z4

1 + Y 4
1 + 8Y 3

1 Z1 · yS)/(32Y 5
1 Z

3
1) ∈ Fpk/3 does not

contain xS and can be discarded. The values for X1 and Z1 are defined over sub-
fields of Fpk and we obtain more efficient formulas by computing f ′′

DBL(U)(S) =
f ′
DBL(U)(S)X1/(Z1α) as

f ′′
DBL(U)(S) = X2

1 (Y 2
1 −9bZ2

1) ·xS +4X1Y
2
1 Z1 ·x2

S −6X3
1Y1 ·yS +(Y 2

1 −bZ2
1)(Y 2

1 +9bZ2
1).

For cubic twists, the term x2
S ∈ Fpk appears in the simplified doubling line

function so we write f ′′
DBL(U)(S) = L1,0 · xS + L2,0 · x2

S + L0,1 · yS + L0,0 . We
compute (X3 : Y3 : Z3) = [2](X1 : Y1 : Z1) and the necessary Li,j coefficients
using 6m + 7s + 1db in addition to the multiplications by xS , x

2
S , and yS.

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = bC, E = 3D, F = (X1 + Y1)2 −A−B,

G = (Y1 + Z1)2 −B − C, H = 3E, X3 = F · (B −H),
Y3 = (B +H)2 − 3(2E)2, Z3 = 4B ·G, L1,0 = A · (B −H), L2,0 = F ·G,

L0,1 = −3A · F, L0,0 = (B −D) · (B +H).

Note that the formulas in [33] require 8m+9s+1db in addition to the multiplica-
tions by xS , x

2
S , yS, y2

S , xSyS, and x2
SyS, i.e. they need 6 multiplications costing

k/3 base field multiplications each while we only need 3 such multiplications.
This means that the overall saving is 2m + 2s + km1.

Addition and line computation. For additions we break with the conven-
tional wisdom that the line function should be given in terms of the base point.
For even embedding degrees where denominator elimination does not require
further adjustment, that approach is suitable and particularly helps if the base
point is given in affine coordinates. For the curves in this section we show that
building the line function on the resulting point (X3 : Y3 : Z3) gives better
operation counts in spite of Z3 not being equal to 1.

The default line function is given by
(

(y1−y2)
(x1−x2)

· (x1 − xS) + yS − y1
)
/(x3 −

xS). Using the above denominator elimination technique this gets transformed
to (

(y2 − y1)
(x2 − x1)

· (x1 − xS) + yS − y1
)
·
(
x2

3 + x3xS + x2
S

)
/(y2

3 − y2
S).

This approach leads to a polynomial of the form L2,0 · x2
S + L1,0 · xS + L1,1 ·

xSyS + L2,1 · x2
SyS + L0,2 · yS + L0,1 · yS + L0,0 which requires (6k/3)m1 after

the computation of the coefficients Li,j .
In the representation(

(y1 − y2)
(x1 − x2)

· (x3 − xS) + yS + y3

)
·
(
x2

3 + x3xS + x2
S

)
/(y2

3 − y2
S)

Faster Pairing Computations on Curves with High-Degree Twists 237

using the coordinates x3, y3 instead of x1, y1, it becomes obvious that the factor
(x3 − xS)(x2

3 + x3xS + x2
S) = y2

3 − y2
S appears in the left term of the numerator

and that thus the whole numerator is divisible by the subfield element yS + y3.
(Note the sign change on y3 because the line goes through (x3,−y3) by the
geometric addition law on E.) This means that the line function is of the form
L2,0 ·x2

S+L1,0 ·xS+L0,1·yS+L0,0, requiring only (3k/3)m1 after the computation
of the coefficients Li,j.

We obtain in projective coordinates that f ′
ADD(U,R)(S) equals

(Y1Z2 − Y2Z1)Z3(Y3 − ySZ3) + (X2
3 +X3Z3xS + Z2

3x
2
S)(X1Z2 −X2Z1)

(Y3 − ySZ3)(X1Z2 −X2Z1)Z3
.

The denominator can be discarded. To compute the numerator more efficiently
we observe that Z3 = Z1Z2(X1Z2 −X2Z1)3 so that we can divide by (X1Z2 −
X2Z1); furthermore we scale the function by 2 to allow an s-m tradeoff. This
gives

f ′′
ADD(U,R)(S)=2Z2

3x
2
S + 2X3Z3xS−2Z1Z2(X1Z2 −X2Z1)2(Y1Z2−Y2Z1)Z3yS

+ 2X2
3 + 2Z1Z2(X1Z2 −X2Z1)2(Y1Z2 − Y2Z1)Y3.

We compute the addition and line computation using the following sequence
of operations.

A = X1 · Z2, B = Y1 · Z2, C = Z1 · Z2, D = Z1 ·X2 −A, E = B − Z1 · Y2,

F = D2, G = E2, H = −D · F, I = F ·A, J = H + C ·G− 2I,
K = C · F · E; X3 = −D · J, Y3 = E · (I − J)− (H · B), Z3 = C ·H,
L = X2

3 , M = Z2
3 , N = (X3 + Z3)2 − L−M, L2,0 = 2M, L1,0 = N,

L0,0 = 2(L+K · Y3), L0,1 = −2K · Z3.

The explicit formulas for computing (X3 : Y3 : Z3) are the same as in the
EFD [10]; they use 12m + 2s and use the intermediate variables A, . . . , J ; the
values K, . . . , N are used in the computation of the line function. The total
operation count for the above sequence of operations is 16m + 5s in addition to
the multiplications by x2

S , xS , and yS . Mixed addition is cheaper saving one m
in each of A,B, and C and needing only 13m + 5s.

In the pairing computation each addition is followed by a doubling. Thus
L = X2

3 and M = Z2
3 should be cached and used in the doubling computation.

This reuse reduces the effective costs of the addition step by 2s and similarly for
the mixed-addition step. Accordingly we report 16m + 3s and 13m + 3s in the
comparison in Section 7.

7 Comparisons

This section compares the speed of our pairing formulas with the literature in
the following categories:

238 C. Costello, T. Lange, and M. Naehrig

– (i) Curves of the form y2 = x3 + ax have twists of degree d = 2 and 4. We
compare operation counts with the results given by Ionica and Joux [27] and
Arène et al. [2]; note that those papers cover general Weierstrass curves but
we are not aware of any other study covering this case.

– (ii) Curves of the form y2 = x3 +c2 have a point of order 3 and admit twists
of degrees d = 2 and 6. These curves were studied in detail very recently by
Costello et al. in [13] and we only found faster mixed addition formulas than
those originally proposed.

– (iii) Curves of the form y2 = x3 + b do not necessarily have a point of order
3. We study operation counts for twists of degree 2 and 6. These curves cover
in particular BN curves [8]. We compare our new formulas with those given
for the same curve shape in [2].

– (iv) Curves of the form y2 = x3 + b also have twists of degree 3. This case
requires very different optimizations and has not been studied much in the
literature. The first paper studying pairing computation on curves admitting
cubic twists [31] did not pay close attention to the operation count itself, so
we compare our formulas with the results presented by El Mrabet et al. in
[33], although that paper did not present addition formulas.

The above papers for even d give km1 for evaluating the line function. This
can almost always be done in (2k/d)m1, so we adjust their results accordingly.
In the general addition case, Table 3 only gives counts for the Tate pairing. For
d = 2 it is possible to save 1m in each ADD and each mADD. For the ate pairing
in this case the costs are different and the operation counts should be modified
by −(2k/d)m1 + 2m.

For mixed additions we use our improved precomputations, assuming that
one of the input points is fixed.

Table 3. Comparisons of our pairing formulas with the previous fastest formulas

Curve Best DBL Prev. DBL
Curve order Coord. ADD best ADD
Twist deg. mADD Coord. mADD

y2 = x3 + ax Sec. 4 (2k/d)m1 + 2m + 8s + 1da [27], (2k/d)m1 + 1m + 11s + 1da

- W(1,2) (2k/d)m1 + 12m + 7s [2] (2k/d)m1 + 10m + 6s
d = 2, 4 (2k/d)m1 + 9m + 5s J (2k/d)m1 + 7m + 6s

y2 = x3 + c2 Sec. 5 (2k/d)m1 + 3m + 5s [13] (2k/d)m1 + 3m + 5s
3 | #E & [13] (2k/d)m1 + 14m + 2s + 1dc P (2k/d)m1 + 14m + 2s + 1dc

d = 2, 6 P (2k/d)m1 + 10m + 2s + 1dc (2k/d)m1 + 11m + 2s + 1dc

y2 = x3 + b Sec. 5 (2k/d)m1 + 2m + 7s + 1db [2] (2k/d)m1 + 3m + 8s
3 � #E & [13] (2k/d)m1 + 14m + 2s J (2k/d)m1 + 10m + 6s
d = 2, 6 P (2k/d)m1 + 10m + 2s (2k/d)m1 + 7m + 6s

y2 = x3 + b Sec. 6 km1 + 6m + 7s + 1db [33] 2km1 + 8m + 9s + 1db

- P km1 + 16m + 3s P ADD/mADD
d = 3 km1 + 13m + 3s not reported

Faster Pairing Computations on Curves with High-Degree Twists 239

We point out that all new doublings are faster than the previous ones. In
(i) and (iii) this comes at the expense of somewhat slower additions. In the
Miller loop, doublings are significantly more frequent than additions so that this
disadvantage is amply mitigated by the faster doublings. Note that the doublings
save entire field operations, and do not just present s–m tradeoffs.

In Table 4 we determine the operation counts for both the Tate and ate
pairings in a typical iteration of Miller’s algorithm, based on the fastest operation
counts summarized in Table 3. In optimized pairing implementations, the loop
parameter is chosen to have a low Hamming weight so that only few additions
are encountered throughout the loop. Thus, the operation counts presented in
Table 4 are for the doubling stage of Miller’s algorithm. The column titled Tate
gives the equivalent number of total base field operations (multiplications and
squarings in Fp) for a Miller iteration, based on the fact that the first argument is
R ∈ E(Fp) and the second argument is S ∈ E(Fpk); for the fields of the individual
coordinates see Table 1. The column titled ate gives the equivalent number of
base field operations for an iteration where the first argument is R ∈ E′(Fpe) and
the second argument is S ∈ E′(Fpk). If s = 2i3j, then we can quantify the cost
of a multiplication in the field Fps as 3i5j multiplications in Fp using Karatsuba
and/or Toom-Cook multiplication, and we do the same for squarings, cf. [29] for
details. To compare across operations we follow the EFD [10] and report two sets
of numbers: the first ones are assuming that 1s = 1m and the second ones are
assuming that 1s = 0.8m. In the second case, we assume that squarings in Fpk

do not make use of special properties of the field extension. Thus we approximate
the ratio of squaring to multiplication costs to be 0.8 as well. In both cases we
assume multiplications by curve constants to be virtually free.

We use the optimal methods of curve construction for each embedding degree,
which were originally presented in [18], to determine which categories ((i)-(iv))
E and E′ belong to. We note that constructions 6.11-6.14 in [18] are due to [28].

Table 4. Comparison of optimal ate pairing and twisted ate pairing

k Const. ϕ(k) ρ d E E′ mopt : Te : r Tate : ate Tate : ate amopt vs. ηTe

[18] (log) s = m s = 0.8m
4 6.4 2 2.000 4 (i) (i) 1 : 1 : 2 30 : 30 26.6 : 26.6 Even
6 6.6 2 2.000 6 (ii) (iii) 1 : 1 : 2 40 : 41 36 : 36.6 ηTe (1.02)
8 6.10 4 1.500 4 (i) (i) 3 : 3 : 4 68 : 88 61 : 77.8 ηTe (1.3)
9 6.6 6 1.333 3 (iv) (iv) 1 : 3 : 6 72 : 124 65.6 : 112 amopt (1.7)
12 6.8 4 1.000 6 (iii) (iii) 1 : 2 : 4 103 : 121 92.6 : 107.8 amopt (1.7)
16 6.11 8 1.250 4 (i) (i) 1 : 4 : 8 180 : 260 162.2 : 229.4 amopt (2.8)
18 6.12 6 1.333 6 (iii) (ii) 1 : 3 : 6 165 : 196 148.6 : 176 amopt (2.5)
24 6.6 8 1.250 6 (ii) (iii) 1 : 4 : 8 286 : 359 258 : 319.4 amopt (3.2)
27 6.6 18 1.111 3 (iv) (iv) 1 : 9 : 18 290 : 602 263.6 : 542 amopt (4.4)
32 6.13 16 1.125 4 (i) (i) 1 : 8 : 16 512 : 772 461.8 : 680.2 amopt (5.3)
36 6.14 12 1.167 6 (iii) (iii) 1 : 6 : 12 471 : 597 424.6 : 531 amopt (4.7)
48 6.6 16 1.125 6 (ii) (iii) 1 : 8 : 16 834 : 1069 752 : 950.2 amopt (6.2)

240 C. Costello, T. Lange, and M. Naehrig

The construction of BN curves for k = 12 was given in [8] and construction 6.10
for k = 8 curves is due to [41]. For each embedding degree, we also present the
loop length ratios mopt : Te : r, where mopt is the loop parameter of the optimal
ate pairing, Te is the loop parameter of the twisted ate pairing and r is the loop
parameter of the standard Tate pairing. For all construction methods shown in
Table 4 there is an optimal ate pairing achieving the minimal loop length in
Miller’s algorithm. For the twisted ate pairing we used the shortest loop length
found by considering the powers of (t − 1)e mod r. In the last column, we
compare the optimal ate pairing and twisted ate pairing and present a factor
that approximates how many times faster the computation of the Miller loop is
under the faster pairing option.

References

1. Akane, M., Nogami, Y., Morikawa, Y.: Fast ate pairing computation of embed-
ding degree 12 using subfield-twisted elliptic curve. IEICE Transactions 92-A(2),
508–516 (2009)

2. Arene, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster pairing computation.
Cryptology ePrint Archive, Report 2009/155 (2009), http://eprint.iacr.org/

3. Barreto, P.S.L.M., Galbraith, S.D., O’hEigeartaigh, C., Scott, M.: Efficient pairing
computation on supersingular abelian varieties. Des. Codes Cryptography 42(3),
239–271 (2007)

4. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for
pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 354–368. Springer, Heidelberg (2002)

5. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003)

6. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups.
In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25.
Springer, Heidelberg (2004)

7. Barreto, P.S.L.M., Lynn, B., Scott, M.: Efficient implementation of pairing-based
cryptosystems. J. Cryptology 17(4), 321–334 (2004)

8. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

9. Benits Jr., W.D., Galbraith, S.D.: Constructing pairing-friendly elliptic curves us-
ing Gröbner basis reduction. In: Galbraith [19], pp. 336–345

10. Bernstein, D.J., Lange, T.: Explicit-formulas database,
http://www.hyperelliptic.org/EFD

11. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Des.
Codes Cryptography 37(1), 133–141 (2005)

12. Chatterjee, S., Sarkar, P., Barua, R.: Efficient computation of Tate pairing in
projective coordinate over general characteristic fields. In: Park, C.-s., Chee, S.
(eds.) ICISC 2004. LNCS, vol. 3506, pp. 168–181. Springer, Heidelberg (2005)

13. Costello, C., Hisil, H., Boyd, C., Nieto, J.M.G., Wong, K.K.-H.: Faster pairings on
special Weierstrass curves. In: Shacham, Waters [40], pp. 89–101

14. Das, M.P.L., Sarkar, P.: Pairing computation on twisted Edwards form elliptic
curves. In: Galbraith, Paterson (eds.) [23], pp. 192–210

http://eprint.iacr.org/
http://www.hyperelliptic.org/EFD

Faster Pairing Computations on Curves with High-Degree Twists 241

15. Eisenträger, K., Lauter, K., Montgomery, P.L.: Improved Weil and Tate pair-
ings for elliptic and hyperelliptic curves. In: Buell, D.A. (ed.) ANTS 2004. LNCS,
vol. 3076, pp. 169–183. Springer, Heidelberg (2004)

16. Freeman, D.: Constructing pairing-friendly elliptic curves with embedding de-
gree 10. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076,
pp. 452–465. Springer, Heidelberg (2006)

17. Freeman, D.: A generalized Brezing-Weng algorithm for constructing pairing-
friendly ordinary abelian varieties. In: Galbraith, Paterson [23], pp. 146–163

18. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptology 23(2), 224–280 (2010)

19. Galbraith, S.D. (ed.): Cryptography and Coding 2007. LNCS, vol. 4887. Springer,
Heidelberg (2007)

20. Galbraith, S.D.: Twists of Edwards curves. unpublished manuscript (2009)
21. Galbraith, S.D., Lin, X.: Computing pairings using x-coordinates only. Des. Codes

Cryptography 50(3), 305–324 (2009)
22. Galbraith, S.D., McKee, J.F., Valença, P.C.: Ordinary abelian varieties having

small embedding degree. Finite Fields and their Applications 13, 800–814 (2007)
23. Galbraith, S.D., Paterson, K.G. (eds.): Pairing 2008. LNCS, vol. 5209. Springer,

Heidelberg (2008)
24. Galbraith, S.D., Scott, M.: Exponentiation in pairing-friendly groups using homo-

morphisms. In: Galbraith, Paterson [23], pp. 211–224
25. Hess, F.: Pairing lattices. In: Galbraith, Paterson [23], pp. 18–38
26. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transac-

tions on Information Theory 52(10), 4595–4602 (2006)
27. Ionica, S., Joux, A.: Another approach to pairing computation in Edwards coordi-

nates. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS,
vol. 5365, pp. 400–413. Springer, Heidelberg (2008),
http://eprint.iacr.org/2008/292

28. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In: Galbraith,
Paterson [23], pp. 126–135

29. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

30. Lee, E., Lee, H.-S., Park, C.-M.: Efficient and generalized pairing computa-
tion on abelian varieties. Cryptology ePrint Archive, Report 2008/040 (2008),
http://eprint.iacr.org/2008/040

31. Lin, X., Zhao, C., Zhang, F., Wang, Y.: Computing the ate pairing on elliptic curves
with embedding degree k = 9. IEICE Transactions 91-A(9), 2387–2393 (2008)

32. Matsuda, S., Kanayama, N., Hess, F., Okamoto, E.: Optimised versions of the ate
and twisted ate pairings. In: Galbraith [19], pp. 302–312

33. Mrabet, N.E., Guillermin, N., Ionica, S.: A study of pairing computation for elliptic
curves with embedding degree 15. Cryptology ePrint Archive, Report 2009/370
(2009), http://eprint.iacr.org/

34. Scott, M.: Computing the Tate pairing. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 293–304. Springer, Heidelberg (2005)

35. Scott, M.: Faster pairings using an elliptic curve with an efficient endomorphism.
In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005.
LNCS, vol. 3797, pp. 258–269. Springer, Heidelberg (2005)

36. Scott, M., Barreto, P.S.L.M.: Compressed pairings. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)

http://eprint.iacr.org/2008/292
http://eprint.iacr.org/2008/040
http://eprint.iacr.org/

242 C. Costello, T. Lange, and M. Naehrig

37. Scott, M., Barreto, P.S.L.M.: Generating more MNT elliptic curves. Des. Codes
Cryptography 38(2), 209–217 (2006)

38. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.: Fast
hashing to G2 on pairing-friendly curves. In: Shacham, Waters [40], pp. 102–113

39. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.:
On the final exponentiation for calculating pairings on ordinary elliptic curves. In:
Shacham, Waters [40], pp. 78–88

40. Shacham, H., Waters, B. (eds.): Pairing 2009. LNCS, vol. 5671. Springer,
Heidelberg (2009)

41. Tanaka, S., Nakamula, K.: Constructing pairing-friendly elliptic curves using fac-
torization of cyclotomic polynomials. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 136–145. Springer, Heidelberg (2008)

42. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information The-
ory 56(1), 455–461 (2010)

43. Zhao, C.-A., Zhang, F., Huang, J.: A note on the ate pairing. International Journal
of Information Security 7(6), 379–382 (2008)

Efficient Arithmetic on Hessian Curves

Reza R. Farashahi1,2 and Marc Joye3

1 Macquarie University, Department of Computing
Sydney, NSW 2109, Australia
reza@science.mq.edu.au

2 Isfahan University of Technology, Department of Mathematical Sciences
P.O. Box 85145 Isfahan, Iran

3 Technicolor, Security Competence Center
1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France

marc.joye@technicolor.com

http://www.thlab.net/~joyem/

Abstract. This paper considers a generalized form for Hessian curves.
The family of generalized Hessian curves covers more isomorphism classes
of elliptic curves. Over a finite field Fq, it is shown to be equivalent to
the family of elliptic curves with a torsion subgroup isomorphic to Z/3Z.

This paper provides efficient unified addition formulas for general-
ized Hessian curves. The formulas even feature completeness for suitably
chosen parameters.

This paper also presents extremely fast addition formulas for gener-
alized binary Hessian curves. The fastest projective addition formulas
require 9M + 3S, where M is the cost of a field multiplication and S is
the cost of a field squaring. Moreover, very fast differential addition and
doubling formulas are provided that need only 5M + 4S when the curve
is chosen with small curve parameters.

Keywords: Elliptic curves, Hessian curves, cryptography.

1 Introduction

An elliptic curve E over a field F can be given by the Weierstraß equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 ,

where the coefficients a1, a2, a3, a4, a6 ∈ F. Koblitz [26] and Miller [30] were the
first to show that the group of rational points on an elliptic curve E over a
finite field Fq can be used for the discrete logarithm problem in a public-key
cryptosystem.

There are many other ways to represent elliptic curves such as Legendre equa-
tion, cubic equations, quartic equations and intersection of two quadratic surfaces
[2,32,35]. Several forms of elliptic curves over finite fields with several coordinate
systems have been studied to improve the efficiency and the speed of the arithmetic
on the group law (mainly addition and doubling formulas) [2,4].

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 243–260, 2010.
c© International Association for Cryptologic Research 2010

http://www.thlab.net/~joyem/

244 R.R. Farashahi and M. Joye

Some unified addition formulas that also work for the point doubling have
been presented for several forms of elliptic curves, see e.g. [23,27,8,11,10,5].
Overviews can be found in [2,9]. Moreover, complete addition formulas that
work for all pairs of inputs have been presented for Edwards curves over odd
characteristic fields [5], and for binary Edwards curves [6].

A Hessian curve over a field F is defined by a symmetric cubic equation

X3 + Y 3 + Z3 = dXY Z ,

where d ∈ F and d3 �= 27. The use of Hessian curves in cryptography has
been studied in [13,23,33,21,22]. The Hessian addition formulas, the so-called
Sylvester formulas, can also be used for point doubling after a permutation of
input coordinates, providing a weak form of unification. Moreover, the same
formulas can be used to double, add, and subtract points, which makes Hessian
curves interesting against side-channel attacks [23].

In this paper, we consider the family of curves, referred to as generalized
Hessian curves, over a field F defined by the equation

X3 + Y 3 + cZ3 = dXY Z ,

where c, d ∈ F, c �= 0 and d3 �= 27c. Clearly, this family covers more isomorphism
classes of elliptic curves than Hessian curves. Notice that the Sylvester addition
formulas work for the family of generalized Hessian. But these formulas are
not unified. From the Sylvester formulas and after suitable transformation of
inputs coordinates, we present fast and efficient unified addition formulas for
generalized Hessian curves.

Nevertheless, the unified formulas for Hessian curves are not complete. In
other words, there are some exceptional cases where the formulas fail to give the
output. We study the exceptional cases of the addition formulas for generalized
Hessian curves. We observe that the unified formulas are complete for many
generalized Hessian curves, i.e., the addition formulas work for all pairs of inputs.
In particular, the group of F-rational points on a generalized Hessian curve has
complete addition formulas if and only if c is not a cube in F. Also, the unified
formulas are valid for all input points in rational subgroups H of generalized
Hessian curves over finite fields Fq whenever gcd(#H, 3) = 1.

For generalized binary Hessian curves, the unified addition formulas are the
fastest known addition formulas on binary elliptic curves; for example 9M + 3S
for extended projective addition, 8M + 3S for extended mixed affine-projective
addition, and 5M+4S for mixed addition and doubling, when curves are chosen
with small parameters. As usual, we use M to denote a field multiplication and
S to denote a field squaring. Furthermore, the addition formulas are complete
for generalized Hessian curves over F2n when c is not a cube in F2n . The mixed
differential addition and doubling formulas are also complete.

Note. In [7], Bernstein, Kohel, and Lange define the twisted Hessian form. The
twisted form is similar to the above form up to the order of the coordinates.
Both forms present advantages. The neutral element on the twisted form is a

Efficient Arithmetic on Hessian Curves 245

finite point. In affine coordinates, the generalized form is fully symmetric and
features a simpler inverse. See also [12, Exerc. 6.2].

2 Generalized Hessian Curves

A Hessian curve over a field F is given by the cubic equation

Hd : x3 + y3 + 1 = dxy ,

for some d ∈ F with d3 �= 27 [19]. This section considers the family of general-
ized Hessian curves which cover more isomorphism classes of elliptic curves than
Hessian curves. As will be shown, this family provides efficient unified addi-
tion formulas. Moreover, the unified formulas are complete for some generalized
Hessian curves, i.e., the addition formulas work for all pairs of inputs.

2.1 Definition

Definition 1. Let c, d be elements of F such that c �= 0 and d3 �= 27c. The
generalized Hessian curve Hc,d over F is defined by the equation

Hc,d : x3 + y3 + c = dxy .

Clearly, a Hessian curve Hd is a generalized Hessian curve Hc,d with c = 1.
Moreover, the generalized Hessian curve Hc,d over F, via the map (x, y)
→ (x̃, ỹ)
defined by

x̃ = x/ζ and ỹ = y/ζ (1)

with ζ3 = c, is isomorphic over F to the Hessian curve H d
ζ

: x̃3 + ỹ3 + 1 = d
ζ x̃ỹ.

Therefore, for the j-invariant of Hc,d, we have

j(Hc,d) = j(H d
ζ
) =

1
c

(
d(d3 + 63c)
d3 − 33c

)3

. (2)

We see that the curve Hc,d over F is isomorphic to the curve H d
ζ

over F if ζ ∈ F.
In other words, a generalized Hessian curve over F is isomorphic over F to a
Hessian curve if and only if c is a cube in F.

It is easy to adapt the addition and doubling formulas for generalized Hes-
sian curves (see e.g. [12, Formulary], a.k.a. Sylvester formulas). The sum of two
(different) points (x1, y1), (x2, y2) on Hc,d is the point (x3, y3) given by

x3 =
y1

2x2 − y22x1

x2y2 − x1y1
and y3 =

x1
2y2 − x2

2y1
x2y2 − x1y1

. (3)

The doubling of the point (x1, y1) on Hc,d is the point (x3, y3) given by

x3 =
y1(c− x1

3)
x1

3 − y13 and y3 =
x1(c− y13)
x1

3 − y13 . (4)

Furthermore, the inverse of the point (x1, y1) on Hc,d is the point (y1, x1).

246 R.R. Farashahi and M. Joye

The projective closure of the curve Hc,d is

Hc,d : X3 + Y 3 + cZ3 = dXY Z .

It has the points (1 : −ω : 0) with ω3 = 1 at infinity. The neutral element
of the group of F-rational points of Hc,d is the point at infinity (1 : −1 : 0)
that we denote by O. For the point P = (X1 : Y1 : Z1) on Hc,d, we have
−P = (Y1 : X1 : Z1).

Point addition. Using the addition formulas (3), whenever defined, the sum of
the points (X1 : Y1 : Z1), (X2 : Y2 : Z2) on Hc,d is the point (X3 : Y3 : Z3) with

X3 = X2Z2Y1
2 −X1Z1Y2

2, Y3 = Y2Z2X1
2 − Y1Z1X2

2,

Z3 = X2Y2Z1
2 −X1Y1Z2

2 . (5)

The cost of point addition algorithms in [13,23,33] is 12M. Moreover, these
addition formulas can be performed in a parallel way, see [33]. In particular, one
can perform the addition formulas (5) in a parallel environment using 3, 4 or 6
processors with the cost of 4M, 3M or 2M, respectively. To gain speedup, one
can use the extended coordinates (X : Y : Z : X2 : Y 2 : Z2 : 2XY : 2XZ :
2Y Z). The addition algorithm in [22] uses this modified system of coordinates
for the Hessian curves over the field F of characteristic p > 3. This algorithm
requires 6M + 6S.

Point doubling. The doubling of the point (X1 : Y1 : Z1) on Hc,d is the point
(X3 : Y3 : Z3) given by

X3 = Y1(cZ1
3 −X1

3), Y3 = X1(Y1
3 − cZ1

3), Z3 = Z1(X1
3 − Y1

3) . (6)

From the doubling algorithm in [13], we have the following algorithm that needs
6M + 3S + 1D, where D is the cost of a multiplication by the constant c:

A = X1
2, B = Y1

2, C = Z1
2, D = X1A, E = Y1B, F = cZ1C,

X3 = Y1(F −D), Y3 = X1(E − F), Z3 = Z1(D − E) . (7)

Moreover, the cost of the following doubling algorithm for curves Hc,d over a
field F of characteristic p �= 2 is 7M + 1S + 1D:

A = X1Y1, B = (X1 + Y1)2 − 2A, C = (X1 + Y1)(B −A),
D = (X1 − Y1)(B +A), E = 3C − 2dAZ1,

X3 = Y1(E +D), Y3 = X1(D − E), Z3 = −2Z1D . (8)

Also, one can perform the doubling formulas (6) with a cost of 3M + 3C + 1D,
where C denotes a field cubing. Furthermore, for Hessian curves H1,d over the
field F of characteristic p �= 2, the doubling algorithms in [21,22] use the extended
coordinates which require 3M + 6S.

Efficient Arithmetic on Hessian Curves 247

2.2 Universality of the Model

We study the correspondence between generalized Hessian curves and elliptic
curves having a torsion subgroup isomorphic to Z/3Z. In particular, we show
that every elliptic curve over a finite field with a torsion subgroup isomorphic to
Z/3Z has an isomorphic generalized Hessian model.

Theorem 1. Let E be an elliptic curve over a field F. If the group E(F) has
a point of order 3 then E is isomorphic over F to a generalized Hessian curve.
Moreover, if F has an element ω with ω2 + ω + 1 = 0, then the group E(F) has
a point of order 3 if and only if E is isomorphic over F to a generalized Hessian
curve.

Proof. We note that the elliptic curve E over F has a point of order 3 if and only
if it has a Weierstraß model Ea1,a3 : y2z + a1xyz + a3yz

2 = x3 (see e.g. [25]).
Let ω ∈ F with ω2 + ω + 1 = 0. Let p be the characteristic of F.

1. If p �= 3, the elliptic curve Ea1,a3 via the map (x, y, z)
→ (X,Y, Z) given by

X = ωa1x+ (ω − 1)y + (2ω + 1)a3z,

Y = −(ω + 1)a1x− (ω + 2)y − (2ω + 1)a3z, Z = x

is isomorphic over F(ω) to the generalized Hessian curve Hc,d with c =
a1

3 − 27a3 and d = 3a1. On the other hand, the generalized Hessian curve
Hc,d is isomorphic over F(ω) to the Weierstraß curve Ea1,a3 with a1 = d/3,
a3 = (d3 − 27c)/36.

2. If p = 3, the elliptic curve Ea1,a3 via the map (x, y, z)
→ (X,Y, Z) given by

X = −a3
2z, Y = a3(a1x+ y + a3z), Z = −y

is isomorphic over F to the generalized Hessian curve Hc,d with c = a3
3 and

d = a1
3. Conversely, every generalized Hessian curve Hc,d is isomorphic over

F to the Weierstraß curve Ea1,a3 with a1 = 3
√
d, a3 = 3

√
c. ��

Remark 1. Consider the elliptic curve Ea1,a3 defined in the proof of Theorem 1.
If p �= 3 and a1

3− 27a3 is a cube in F, we let c = 1 and d = 3(a1 + 2δ)/(a1− δ),
where δ3 = a1

3 − 27a3. Then, the map (x, y, z)
→ (X,Y, Z) given by

X = (2a1 + δ)x+ 3y + 3a3z, Y = −(a1 − δ)x− 3y, Z = −(a1 − δ)x− 3a3z

is an isomorphism over F between Ea1,a3 and Hc,d.

Theorem 2. Let E be an elliptic curve over a finite field Fq. Then, the group
E(Fq) has a point of order 3 if and only if E is isomorphic over Fq to a gener-
alized Hessian curve.

Proof. If q ≡ 0, 1 (mod 3) then the theorem is a direct consequence of Theorem 1.
Next, we assume that q ≡ 2 (mod 3). So, every element of Fq is a cube. If

the elliptic curve E has an Fq-rational point of order 3 then Remark 1 provides
an isomorphism between E and a generalized Hessian curve. Moreover, every
generalized Hessian curve Hc,d over Fq has the point (−ζ : 0 : 1) of order 3,
where ζ3 = c (see Section 4). ��

248 R.R. Farashahi and M. Joye

3 Unified Addition Formulas

Let Hc,d be a generalized Hessian curve over F. We recall that the addition
formulas (5) do not work to double a point. Hereafter, we give some unified ad-
dition formulas for Hc,d where the doubling formulas can be derived directly from
the addition formulas. The unified addition formulas make generalized Hessian
curves interesting against side-channel attacks [2,9].

Let P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) be two points of Hc,d(F).
Let also T = (−ζ : 0 : 1) ∈ Hc,d(F) with ζ3 = c. Letting Q1 = P1 + T and
Q2 = P2 − T , we have Q1 = (ζY1 : ζ2Z1 : X1) and Q2 = (ζ2Z2 : ζX2 : Y2).
Clearly, P1+P2 = Q1+Q2. To compute P1+P2, we use the addition formulas (5)
with inputs Q1 and Q2. Doing so, we see that the sum of the points (X1 : Y1 : Z1)
and (X2 : Y2 : Z2) on Hc,d is the point (X3 : Y3 : Z3) given by

X3 = cY2Z2Z1
2 −X1Y1X2

2, Y3 = X2Y2Y1
2 − cX1Z1Z2

2,

Z3 = X2Z2X1
2 − Y1Z1Y2

2 . (9)

These formulas work for doubling, i.e., they are unified addition formulas. We
note that, by the swapping the order of the points in the addition formulas (9),
one can obtain the following unified formulas:

X3 = cY1Z1Z2
2 −X2Y2X1

2, Y3 = X1Y1Y2
2 − cX2Z2Z1

2,

Z3 = X1Z1X2
2 − Y2Z2Y1

2 . (10)

The next algorithm evaluates the addition formulas (9) with 12M + 1D, where
1D denotes the multiplication by constant c, which may be chosen small:

A = X1X2, B = Y1Y2, C = cZ1Z2, D = X1Z2, E = Y1X2, F = Z1Y2,

X3 = CF −AE, Y3 = BE − CD, Z3 = AD −BF . (11)

It turns out that a mixed addition requires 10M + 1D by setting Z2 = 1.
Moreover, the addition formulas (9) can be performed in a parallel way, similarly
to the algorithm proposed for the addition formulas (5) in [33].

When F is of characteristic p �= 2, one can use the modified system of coor-
dinates presented in [22, §2.4]. Applying it to addition formulas (9), the sum of
two points on Hc,d represented by (X1 : Y1 : Z1 : A1 : B1 : C1 : D1 : E1 : F1)
and (X2 : Y2 : Z2 : A2 : B2 : C2 : D2 : E2 : F2) with

A1 = X1
2, B1 = Y1

2, C1 = Z1
2, D1 = 2X1Y1, E1 = 2X1Z1, F1 = 2Y1Z1,

A2 = X2
2, B2 = Y2

2, C2 = Z2
2, D2 = 2X2Y2, E2 = 2X2Z2, F2 = 2Y2Z2,

is the point represented by (X3 : Y3 : Z3 : A3 : B3 : C3 : D3 : E3 : F3) given by

X3 = cC1F2 −D1A2, Y3 = B1D2 − cE1C2, Z3 = A1E2 − F1B2,

A3 = X3
2, B3 = Y3

2, C3 = Z3
2, D3 = (X3 + Y3)2 −A3 −B3, (12)

E3 = (X3 + Z3)2 −A3 − C3, F3 = (Y3 + Z3)2 −B3 − C3 .

Efficient Arithmetic on Hessian Curves 249

This algorithm requires 6M + 6S + 2D, where 2D represent the two multiplica-
tions by constant c, which can be chosen small. Furthermore, the mixed addition
formulas can be obtained by setting Z2 = 1 which need 5M + 6S + 2D.

4 Complete Addition Formulas

Again, we let Hc,d denote a generalized Hessian curve over F. In this section, we
study the exceptional cases of the addition formulas (5), (9) and (10). In par-
ticular, we show that addition formulas (9), (10) work for all pairs of F-rational
points on Hc,d whenever c is not a cube in F.

We consider the set of F-rational points at infinity on Hc,d, denoted by ∞,

∞ =
{
(1 : −ω : 0) | ω ∈ F, ω3 = 1

}
.

We note that∞ is a subgroup of the group of F-rational points on Hc,d. Further,
∞ is a subgroup of the 3-torsion group Hc,d[3], where

Hc,d[3] =
{
P | P ∈ Hc,d(F), 3P = O

}
.

Let T1, T2 be the set of F-rational points P = (X : Y : Z) of Hc,d[3] with Y = 0,
X = 0, respectively. Namely,

T1 =
{
(−ζ : 0 : 1) | ζ ∈ F, ζ3 = c

}
and T2 = {−P | P ∈ T1} .

Clearly, Hc,d[3] is partitioned into ∞∪ T1 ∪ T2.

The following proposition describes the exceptional cases of the addition for-
mulas (5).

Proposition 1. The addition formulas (5) work for all pairs of points P1, P2
on Hc,d if and only if P1 − P2 is not a point at infinity.

Proof. Let P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) be points in Hc,d(F).
First, assume that the addition formulas (5) do not work for the inputs P1,

P2, i.e., we have X3 = Y3 = Z3 = 0, where X3 = X2Z2Y1
2 − X1Z1Y2

2, Y3 =
Y2Z2X1

2 − Y1Z1X2
2 and Z3 = X2Y2Z1

2 −X1Y1Z2
2. We distinguish two cases

to show that P1 − P2 ∈ ∞.

1. If Z1 = 0 then Z3 = −X1Y1Z2
2. We see that X1Y1 �= 0, since P1 ∈ Hc,d.

So, Z2 = 0. That means P1, P2 are in ∞. Therefore, P1 − P2 is a point at
infinity.

2. Assume now that Z1 �= 0 and Z2 �= 0. We write P1 = (x1 : y1 : 1) and
P2 = (x2 : y2 : 1), where xi = Xi/Zi and yi = Yi/Zi (i = 1, 2). From
X3 = Y3 = Z3 = 0, we have x2y1

2 = x1y2
2, y2x1

2 = y1x2
2 and x1y1 = x2y2.

So, y1y2(x1
3−x2

3) = 0 and x1x2(y13−y23) = 0. Moreover, from the equation
of Hc,d, we have x1

3 + y1
3 = x2

3 + y2
3.

If x1x2 �= 0 then y1
3 = y2

3. Next, we assume that x1x2 = 0. If x1 = 0
then y1 �= 0. From X3 = 0, we remark that x2 = 0. Then, x1 = x2 = 0

250 R.R. Farashahi and M. Joye

implies that y13 = y2
3. Therefore, in all cases, we obtain y1

3 = y2
3 and

x1
3 = x2

3. So, we can write y2 = ω1y1 and x2 = ω2x1, where ω1, ω2 are third
roots of unity. The condition x1y1 = x2y2 becomes (ω1ω2 − 1)x1y1 = 0. If
x1y1 �= 0 then ω2 = ω1

−1 and thus P1 − P2 = (1 : −ω1 : 0). If x1 = 0 then
x2 = 0 and P1 − P2 = (1 : −ω1 : 0). Finally, if y1 = 0 then y2 = 0 and
P1 − P2 = (ω2 : −1 : 0). Summing up, we always have P1 − P2 ∈ ∞.

Now, we study the other direction. We assume that P1−P2 ∈ ∞ where P1, P2 ∈
Hc,d(F). Then P1 = P2 + (1 : −ω : 0) = (ωX2 : ω−1Y2 : Z2), where ω is a third
root of unity. It is easily seen that the addition formulas (5) do not work for
such P1, P2. ��

We note that the addition formulas (5) work for all distinct pairs of F-rational
inputs if the curve Hc,d over F has only one F-rational point at infinity, i.e., if F
has only one third root of unity. This happens for Hessian curves Hc,d over Fq

with q �≡ 1 (mod 3) and, in particular, for binary curves Hc,d over F2n with odd
integers n.

Proposition 2. The addition formulas (9) work for all pairs of points P1, P2
on Hc,d if and only if P1 − P2 �∈ T1.

Proof. Let P1, P2 be points on Hc,d. Let T1 be a point of T1. Let Q1 = P1 + T1
and Q2 = P2−T1. We note that the output of formulas (9) for the pair of points
P1, P2 is equal to the output of formulas (5) for the pair of points Q1, Q2. From
Proposition 1, we see that the formulas (9) do not work for the pair of points
P1, P2 if and only if Q1 −Q2 ∈ ∞. This is equivalent to P1 − P2 ∈ T1. ��

Similarly, the addition formulas (10) work for all pairs of points P1, P2 on Hc,d

with P1 − P2 /∈ T2. Since the sets T1 and T2 are disjoint, if the addition formu-
las (9) fail to compute the sum of two points, then the addition formulas (10)
work to compute this sum. Clearly, this is true for the other way round. In other
words, if the addition formulas (9) do not work for the pair of inputs P1, P2,
then they work for the pair of inputs P2, P1.

Corollary 1. The doubling formulas (6) for the generalized Hessian curve Hc,d

work for all inputs.

Proof. The doubling formulas (6) can be obtained from the addition formulas (9)
by letting P2 = P1. Then, from Proposition 2, we see that these doubling for-
mulas work for all points on Hc,d. ��

Corollary 2. Assume H is a subgroup of Hc,d(F) which is disjoint from T1.
Then, the addition formulas (9) and (10) work for all pairs of points in H.

Proof. Clearly, H and T2 are disjoint as well. Then, Proposition 2 concludes the
proof. ��

Here, we express the family of complete generalized Hessian curves. By a complete
curve, we mean a curve with complete addition formulas, i.e., a curve over a field
F with addition formulas that are valid for every pair of F-rational points.

Efficient Arithmetic on Hessian Curves 251

Theorem 3. Let c, d be elements of F such that d3 �= 27c. Let Hc,d be the
generalized Hessian curve over F with the addition formulas (9). Then, Hc,d is
complete over F if and only if c is not a cube in F.

Proof. By definition of T1, we see that the set of F-rational points of T1 is empty
if and only if c is not a cube in F. By Proposition 2, the addition formulas (9)
work for all pairs of F-rational points if and only if the set of F-rational points
of T1 is empty, which completes the proof. ��

Below, we give two examples of generalized Hessian curves over finite fields with
complete addition formulas.

Example 1. Let c, d be elements of the finite field Fq with q ≡ 1 (mod 3) such
that d3 �= 27c and c is not a cube in Fq. Then, the generalized Hessian curve
Hc,d over Fq is complete with the addition formulas (9) or (10).

Example 2. Let c, d be elements of Fq such that c �= 0 and d3 �= 27c. Let H be
a subgroup of Hc,d(Fq) with gcd(#H, 3) = 1. Then, H is complete over Fq with
the addition formulas (9) or (10).

5 Explicit Formulas in Characteristic 2

In this section, we present fast and efficient addition, doubling, tripling and
differential addition formulas for generalized binary Hessian curves over a field
F of characteristic p = 2.

5.1 Addition

We recall that the cost of point addition algorithms in [13,33] for the addition
formulas (5) is 12M. Also, the addition algorithm (11) requires 12M + 1D.
One may choose the constant c small to reduce the cost of this algorithm to
12M. Further, the addition algorithm (11) is unified. Furthermore, it features
completeness for generalized binary Hessian curve Hc,d over F2n , where n is even
and c is not a cube in F2n .

Moreover, one can use the extended coordinates (X : Y : Z : X2 : Y 2 : Z2 :
XY : XZ : Y Z). Here, the sum of two points on Hc,d represented by (X1 : Y1 :
Z1 : A1 : B1 : C1 : D1 : E1 : F1) and (X2 : Y2 : Z2 : A2 : B2 : C2 : D2 : E2 : F2)
where

A1 = X1
2, B1 = Y1

2, C1 = Z1
2, D1 = X1Y1, E1 = X1Z1, F1 = Y1Z1,

A2 = X2
2, B2 = Y2

2, C2 = Z2
2, D2 = X2Y2, E2 = X2Z2, F2 = Y2Z2

is the point represented by (X3 : Y3 : Z3 : A3 : B3 : C3 : D3 : E3 : F3) given by

X3 = cC1F2 +D1A2, Y3 = B1D2 + cE1C2, Z3 = A1E2 + F1B2,
A3 = X3

2, B3 = Y3
2, C3 = Z3

2, D3 = X3Y3, E3 = X3Z3, F3 = Y3Z3 .
(13)

252 R.R. Farashahi and M. Joye

This algorithm requires 9M + 3S + 2D, where the two D are multiplication by
the constant c. We note that the algorithm (13) is obtained from the addition
formulas (9), so it is unified and works for point doublings as well. Moreover, it
works for all pairs of inputs on a complete curve (cf. Theorem 3). Furthermore,
the mixed addition formulas need 8M+3S+2D by setting Z2 = 1. If c is small,
then one can obtain the addition algorithm in a parallel environment using 3, 4
or 6 processors which needs 3M + 1S, 3M or 2M, respectively.

Table 1 lists the complexities of addition formulas for different shapes of binary
elliptic curves and different coordinate systems. As Table 1 shows, the generalized
Hessian curves provide the fastest addition formulas for binary elliptic curves.
Moreover, our formulas for Hessian curves are unified. They are even complete
for many generalized Hessian curves. We note that all addition formulas for
short Weierstraß curve are not even unified. But, binary Edwards curves provide
unified and even complete formulas.

Table 1. Cost of addition formulas for different families of binary elliptic curves

Projective Mixed
Curve shape Representation addition addition

Short Weierstraß Projective [4] 14M + 1S + 1D 11M + 1S + 1D
y2 + xy = x3 + a2x

2 + a6 Jacobian [4] 14M + 5S + 1D 10M + 3S + 1D
Lopez-Dahab [1,4,20] 13M + 4S 8M + 5S + 1D
Extended Lopez-Dahab
with a2 = 0 [1,4,20] 14M + 3S 9M + 4S + 1D
with a2 = 1 [1,4,20,24] 13M + 3S 8M + 4S

Binary Edwards Projective [6] 18M + 2S + 7D 13M + 3S + 3D
d1(x + y) + d2(x2 + y2) Projective
= xy + xy(x + y) + x2y2 with d1 = d2 [6] 16M + 1S + 4D 13M + 3S + 3D
Hessian Projective [13,23,33] 12M 10M
x3 + y3 + 1 = dxy Projective, formulas (11) 12M 10M

Extended, formulas (13) 9M + 3S 8M + 3S
Generalized Hessian Projective [12] 12M 10M
x3 + y3 + c = dxy Projective, formulas (11) 12M + 1D 10M + 1D

Extended, formulas (13) 9M + 3S + 2D 8M + 3S + 2D

5.2 Doubling

We recall that the doubling algorithm (7) needs 6M + 3S + 1D to perform the
doubling formulas (6). Furthermore, from the doubling formulas (6), we see that
the doubling of the point (X1 : Y1 : Z1) on Hc,d is the point (X3 : Y3 : Z3) with

X3 = Y1
4 + dX1Y1

2Z1, Y3 = X1
4 + dX1

2Y1Z1, Z3 = cZ1
4 + dX1Y1Z1

2 . (14)

The following algorithm performs the doubling formulas (14) which requires
5M + 6S + 2D:

A = X1
2, B = Y1

2, C = Z1
2, D = X1Y1, G = DZ1, H = dG,

X3 = B2 + Y1H, Y3 = A2 +X1H, Z3 = cC2 + Z1H .

Efficient Arithmetic on Hessian Curves 253

Moreover, the doubling of the point (X1 : Y1 : Z1) on a binary curve Hc,d,
using the representation (X1 : Y1 : Z1 : A1 : B1 : C1 : D1 : E1 : F1), where
A1 = X1

2, B1 = Y1
2, C1 = Z1

2, D1 = X1Y1, E1 = X1Z1, F1 = Y1Z1, is the
point represented by (X3 : Y3 : Z3 : A3 : B3 : C3 : D3 : E3 : F3) given by

X3 = B1(B1 + dE1), Y3 = A1(A1 + dF1), Z3 = (A1 +B1 +D1)(E1 + F1),

A3 = X3
2, B3 = Y3

2, C3 = Z3
2, D3 = X3Y3, E3 = X3Z3, F3 = Y3Z3 .

The cost of above doubling algorithm is 6M + 3S + 2D. We also note that, the
coordinates D3, E3 and F3 can be given by

D3 = D1
4 + cdE1

2F1
2, E3 = cF1

4 + dD1
2E1

2, F3 = cE1
4 + dD1

2F1
2 .

The following doubling algorithm needs less field multiplications:

G = A1
2, H = B1

2, I = C1
2, J = D1E1, K = D1F1, L = E1F1,

X3 = H + dK, Y3 = G+ dJ, Z3 = cI + dL, A3 = X3
2, B3 = Y3

2, C3 = Z3
2,

R = D1
2 +

√
cdL, S =

√
cF1

2 +
√
dJ, T =

√
cE1

2 +
√
dK,

D3 = R2, E3 = S2, F3 = T 2 .

Above doubling algorithm needs 3M+12S+9D. This algorithm requires 3M+
12S + 6D if c is small and 3M + 12S + 4D if d is small.

Our doubling formulas slightly improve the current speed of doublings on
Hessian curves. Moreover, the doubling formulas for generalized Hessian curves
are faster than doubling formulas using projective coordinates in short Weier-
straß form, see [2]. But, they are slower than various doubling formulas using
Jacobian [2], Lopez-Dahab representations of short Weierstraß form [2,29,24,6]
and projective representation of binary Edwards [6].

We note that the only complete doubling formulas are presented by binary
Edwards [6] and generalized binary Hessian curves (see Corollary 1).

5.3 Tripling

Here, we present fast tripling formulas for generalized binary Hessian curves.
The tripling formulas can be used in double based number systems, DBNS; see
e.g., [14,3,15]. For a point (X1 : Y1 : Z1) on Hc,d, we have 3(X1 : Y1 : Z1) =
(X3 : Y3 : Z3) with

X3 = d(Y1
3(Z1

3 +X1
3)(X1

3 + Y1
3) +X1

3(Y1
3 + Z1

3)(Y1
3 + Z1

3)) ,

Y3 = d(X1
3(Y1

3 + Z1
3)(X1

3 + Y1
3) + Y1

3(Z1
3 +X1

3)(Z1
3 +X1

3)) ,

Z3 = (X1
3 + Y1

3 + Z1
3)((Y1

3 + Z1
3)(Z1

3 +X1
3) + (X1

3 + Y1
3)2) .

For generalized binary Hessian curves, we suggest the following formulas. If d �=
0, let e = d−1. The following algorithm computes (X3 : Y3 : Z3) and requires
7M + 6S + 3D (and 7M + 6S + 2D if either c or e is small),

254 R.R. Farashahi and M. Joye

A = X1
3, B = Y1

3, C = cZ1
3, E = A2, F = B2, G = C2,

H = (A+ C)(F +G), I = (B + C)(E +G), J = (A+B)(E + F),

K = (A+B + C)(E + F +G), L = H + I + (1 + ce3)K,
X3 = H + J + L, Y3 = I + J + L, Z3 = eL .

5.4 Differential Addition

We now devise differential addition formulas on binary Hessian curves using
w-coordinates, where for a point (x, y) on the binary curve Hc,d, w(x, y) is defined
by a symmetric function in terms of the coordinates x, y.

The w-coordinates for differential addition require computing w(P +Q) given
w(P), w(Q) and w(P−Q); and the w-coordinates for differential doubling require
computing w(2P) given w(P). We recall, [31,6], that using w-coordinate differen-
tial addition and doubling formulas, one can recursively compute w((2m+ 1)P)
and w(2mP) given w(mP) and w((m + 1)P).

Let (x2, y2) be a point on Hc,d and let (x4, y4) = 2(x2, y2). Write ui = xi + yi

and vi = xiyi for i = 2, 4. From doubling formulas (4), we obtain

u4 =
u2

4 + cd

du2
2 + c

and v4 =
v2

4 + cdv2
2

d2v22 + c2
. (15)

Assume that (x1, y1), (x2, y2), (x3, y3), (x5, y5) are affine points on Hc,d satisfying
(x1, y1) = (x3, y3)− (x2, y2) and (x5, y5) = (x2, y2) + (x3, y3). Write ui = xi + yi

and vi = xiyi for i = 1, 2, 3, 5. Using the addition formulas (3), we obtain

u1 + u5 =
u2

2u3
2 + du2u3(u2 + u3) + d2u2u3

d(u2
2 + u3

2) + u2u3(u2 + u3 + d) + c
,

u1u5 =
du2

2u3
2 + c(u2

2 + u3
2 + d2)

d(u2
2 + u3

2) + u2u3(u2 + u3 + d) + c
.

Furthermore, we have

v1 + v5 =
(c+ dv2)(c+ dv3)

(v2 + v3)2
,

v1v5 =
v2

2v3
2 + cdv2v3 + c2(v2 + v3)

(v2 + v3)2
.

(16)

Using above affine formulas one can obtain fast projective and mixed differential
addition and doubling formulas. In order to speed up these formulas, we consider
the following w-coordinates. We write wi = c + dvi for i = 1, 2, . . . , 5. In other
words, wi = xi

3 + yi
3. Here, d �= 0. From (15), we have

w4 =
w2

4 + c3(d3 + c)
d3w2

2 .

Using the formulas (16), we obtain

w1 + w5 =
d3w2w3

(w2 + w3)2
and w1w5 =

w2
2w3

2 + c3(d3 + c)
(w2 + w3)2

.

Efficient Arithmetic on Hessian Curves 255

To have projective formulas, we assume that wi are given by the fractions Wi/Zi

for i = 1, 2, 3. The following explicit formulas give the output w5 defined by
W5/Z5:

A = W2Z3, B = W3Z2, C = AB, U = d3C, V = (A+B)2,
Z5 = Z1V, W5 = Z1U +W1V .

(17)

These formulas require 6M+1S+1D. Furthermore, the cost of mixed differential
addition with w-coordinates is 4M + 1S + 1D by setting Z1 = 1.

Moreover, we write w4 by the fraction W4/Z4. Then, the explicit doubling
formulas

A = W2
2, B = Z2

2, C = A+
√
c3(d3 + c)B, D = d3B,

W4 = C2, Z4 = AD
(18)

use 1M + 3S + 2D. If c = 1, i.e., Hc,d is a Hessian curve, then the explicit
doubling formulas use 1M + 3S + 1D:

A = W2
2, B = Z2

2, C = A+B, D = (1/
√
d3)C,

W4 = (B +D)2, Z4 = AB .
(19)

As a result, the total cost of projective w-coordinate differential addition and
doubling is 7M + 4S + 3D. Also, the mixed w-coordinate differential addition
and doubling formulas use 5M + 4S + 3D. For Hessian curves H1,d, the total
costs of projective and mixed w-coordinate differential addition and doubling are
7M + 4S + 2D and 5M + 4S + 2D, respectively. Furthermore, if the parameter
d of the curve Hc,d is chosen small then the total costs of projective and mixed
w-coordinate differential addition and doubling reduces to 7M + 4S + 1D and
5M + 4S + 1D, respectively. Moreover, from Proposition 1, we can see that the
mixed w-coordinate addition and doubling formulas are complete.

Table 2. Cost of differential addition and doubling for families of binary elliptic curves

Projective Mixed
Curve shape Representation differential differential

addition+doubling addition+doubling
Short Weierstraß XZ(x=X/Z)[28] 7M + 5S + 1D 5M + 5S + 1D
y2+ xy = x3+ a2x

2+a6 XZ(x=X/Z)[18] 6M + 5S + 1D 5M + 5S + 1D
XZ(x=X/Z)[34, §3.1] 7M + 4S + 1D 5M + 4S + 1D
XZ(x=X/Z)[34, §3.2] 6M + 5S + 2D 5M + 5S + 2D

Binary Edwards
d1(x + y) + d2(x2 + y2) WZ(x + y = W/Z) [6] 8M + 4S + 4D 6M + 4S + 4D
= xy + xy(x + y)+x2y2 WZ with d1 = d2 [6] 7M + 4S + 2D 5M + 4S + 2D
Hessian WZ(1 + dxy = W/Z)
x3 + y3 + 1 = dxy formulas (17), (19) 7M + 4S + 2D 5M + 4S + 2D
Generalized Hessian WZ(c + dxy = W/Z)
x3 + y3 + c = dxy formulas (17), (18) 7M + 4S + 3D 5M + 4S + 3D

WZ with small d
formulas (17), (18) 7M + 4S + 1D 5M + 4S + 1D

256 R.R. Farashahi and M. Joye

Table 2 shows the cost of differential addition and doubling for different co-
ordinate systems on binary elliptic curves. From Table 2, we see that our w-
coordinate representations for generalized Hessian curves are competitive with
other representations for binary elliptic curves.

6 Conclusion

In this paper, the family of generalized Hessian curves has been presented. This
family covers more isomorphism classes of elliptic curves than Hessian curves.
For every elliptic curve E over a finite field Fq, the group E(Fq) has a point of
order 3 if and only if E is isomorphic over Fq to a generalized Hessian curve.

Unified addition formulas have been presented for generalized Hessian curves
Hc,d over a field F, see formulas (9), (10). In particular, these formulas are unified
for Hessian curves H1,d. Further, the formulas are complete if c is not a cube
in F.

The cost of projective formulas using algorithm (11) is 12M + 1D. Also, the
mixed addition formulas require 10M+1D. For generalized Hessian curves Hc,d

over F with characteristic p �= 2, the projective addition formulas (12) using
extended coordinates has a cost of 6M + 6S + 2D. The mixed formulas require
5M + 5S + 2D.

When p = 2, the generalized binary Hessian curves provide very fast and
efficient addition formulas. Projective formulas (11) require 12M + 1D and the
mixed addition formulas need 10M + 1D. Moreover, using the extended coor-
dinates, formulas (13) perform a projective addition using 9M + 3S + 2D and
a mixed addition using 8M + 3S + 2D. Several doubling and tripling formulas
have been presented for generalized Hessian curves which improve the previous
doubling and tripling formulas on Hessian curves. Also, very competitive differ-
ential addition and doubling formulas have been presented for generalized binary
Hessian curves.

References

1. Al-Daoud, E., Mahmod, R., Rushdan, M., Kiliçman, A.: A new addition formula
for elliptic curves over GF(2n). IEEE Trans. Computers 51(8), 972–975 (2002)

2. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press,
Boca Raton (2005)

3. Avanzi, R.M., Dimitrov, V.S., Doche, C., Sica, F.: Extending scalar multiplica-
tion using double bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 130–144. Springer, Heidelberg (2006)

4. Bernstein, D.J., Lange, T.: Explicit-formulas database,
http://www.hyperelliptic.org/EFD/

5. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

http://www.hyperelliptic.org/EFD/

Efficient Arithmetic on Hessian Curves 257

6. Bernstein, D.J., Lange, T., Farashahi, R.R.: Binary Edwards curves. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 244–265. Springer, Heidelberg
(2008)

7. Bersntein, D.J., Kohel, D., Lange, T.: Twisted Hessian curves,
http://www.hyperelliptic.org/EFD/g1p/auto-twistedhessian.html

8. Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis.
In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643,
pp. 34–42. Springer, Heidelberg (2003)

9. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography.
Cambridge University Press, Cambridge (2005)

10. Brier, É., Déchène, I., Joye, M.: Unified point addition formulæ for elliptic
curve cryptosystems. In: Embedded Cryptographic Hardware: Methodologies &
Architectures, pp. 247–256. Nova Science Publishers (2004)

11. Brier, É., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer,
Heidelberg (2002)

12. Cassels, J.W.S.: Lectures on Elliptic Curves. Cambridge University Press,
Cambridge (1991)

13. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition
in formal groups and new primality and factorization tests. Advances in Applied
Mathematics 7(4), 385–434 (1986)

14. Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point
multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

15. Doche, C., Imbert, L.: Extended double-base number system with applications to
elliptic curve cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)

16. Farashahi, R.R.: On the number of distinct Legendre, Jacobi and Hessian curves
(Preprint)

17. Farashahi, R.R., Shparlinski, I.E.: On the number of distinct elliptic curves in some
families. Designs, Codes and Cryptography 54(1), 83–99 (2010)

18. Gaudry, P., Lubicz, D.: The arithmetic of characteristic 2 Kummer surfaces. Finite
Fields and Applications 15, 246–260 (2009)

19. Hesse, O.: Über die Elimination der Variabeln aus drei algebraischen Gleichungen
vom zweiten Grade mit zwei Variabeln. Journal für die reine und angewandte
Mathematik 10, 68–96 (1844)

20. Higuchi, A., Takagi, N.: A fast addition algorithm for elliptic curve arithmetic in
GF(2n) using projective coordinates. Inf. Process. Lett. 76(3), 101–103 (2000)

21. Hisil, H., Carter, G., Dawson, E.: New formulæ for efficient elliptic curve arith-
metic. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS,
vol. 4859, pp. 138–151. Springer, Heidelberg (2007)

22. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Faster group operations on ellip-
tic curves. In: Brankovic, L., Susilo, W. (eds.) Australasian Information Security
Conference (AISC 2009). Conferences in Research and Practice in Information
Technology (CRPIT), vol. 98, pp. 7–19 (2009)

23. Joye, M., Quisquater, J.-J.: Hessian elliptic curves and side-channel attacks.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 402–410. Springer, Heidelberg (2001)

24. Kim, K.H., Kim, S.I.: A new method for speeding up arithmetic on elliptic curves
over binary fields. Cryptology ePrint Archive, Report 2007/181 (2007)

http://www.hyperelliptic.org/EFD/g1p/auto-twistedhessian.html

258 R.R. Farashahi and M. Joye

25. Knapp, A.: Elliptic Curves. Princeton University Press, Princeton (1992)
26. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),

203–209 (1987)
27. Liardet, P.-Y., Smart, N.P.: Preventing SPA/DPA in ECC systems using the Jacobi

form. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 391–401. Springer, Heidelberg (2001)

28. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2n) without
precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

29. López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF(2n).
In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212. Springer,
Heidelberg (1999)

30. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

31. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

32. Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, Heidelberg (1986)
33. Smart, N.P.: The Hessian form of an elliptic curve. In: Koç, Ç.K., Naccache, D.,

Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 118–125. Springer, Heidelberg
(2001)

34. Stam, M.: On Montgomery-like representationsfor elliptic curves over GF(2n). In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 240–253. Springer, Heidelberg
(2002)

35. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography. CRC Press,
Boca Raton (2005)

A On the Number of Distinct Generalized Hessian
Curves

A.1 The Number of Distinct j-Invariants

We recall from [16] that the number of distinct Hessian curves over the finite field
Fq, up to isomorphism over Fq, is q − 1, �(q + 11)/12� and �q/2� if q ≡ 0, 1, 2
(mod 3), respectively. Using the similar method described in [16,17], we give
explicit formulas for the number of distinct generalized Hessian curves over the
finite field Fq up to isomorphism over Fq.

From Equation (2), the j-invariant of Hc,d is j(Hc,d) = 1
c

(
d(d3+216c)

d3−27c

)3
. We

use JH to denote the set of distinct j-invariants of the family of generalized
Hessian curves over Fq and we let JH(q) = #JH. For c in Fq, with c �= 0, we let

JHc =
{
j | j = j(Hc,d), d ∈ Fq, d

3 �= 27c
}

.

Clearly, JH =
⋃

c∈F∗
q
JHc .

Lemma 1. Let c1, c2 ∈ F∗
q and let c = c1/c2. If c is a cube in Fq, then JHc1

=
JHc2

. If c is not a cube in Fq, then we have JHc1
∩ JHc2

= {0}.

Efficient Arithmetic on Hessian Curves 259

Proof. Suppose c = ζ3 is a cube in Fq. For all d ∈ Fq with d3 �= 27c, we have
j(Hc1,d) = j(Hc2,d/ζ) and similarly j(Hc2,d) = j(Hc1,ζd). Therefore, JHc1

= JHc2
.

Now, suppose that c is not a cube in Fq. Let j ∈ JHc1
∩ JHc2

. Then, j =
1
c1

(
d1(d1

3+216c1)
d1

3−27c1

)3
= 1

c2

(
d2(d2

3+216c2)
d2

3−27c2

)3
for some d1, d2 ∈ Fq. If j �= 0, we see

that c = c1/c2 is a cube in Fq, a contradiction. So, JHc1
∩ JHc2

= {0}. ��

Lemma 2. For q ≡ 1 (mod 3), if c is not a cube in Fq, we have #JHc =
(q + 2)/3.

Proof. For d ∈ Fq with d3 �= 27c, we let j(Hc,d) = 1
c (F (d))3 where F (U) =

U(U3+216c)
U3−27c . We consider the bivariate rational function F (U)−F (V). We obtain

F (U)− F (V) =
U − V
U3 − 27c

3∏
i=1

(
U − 3ζi(V + 6ζi)

V − 3ζi

)
,

where, ζ1, ζ2, ζ3 are three cubic roots of c in Fq. For all u, v ∈ Fq with u3 �= 27c,
v3 �= 27c, we see that F (u) = F (v) if and only if u = v. Hence, F is injective over
Fq and we have F (Fq) = Fq. Now, consider the map κ : F∗

q → F∗
q by κ(x) = 1

cx
3.

This map is 3 : 1, if q ≡ 1 (mod 3). So, #JHc = (q − 1)/3 + 1. ��

Theorem 4. For any prime power q, for the number JH(q) of distinct values of
the j-invariant of the family of generalized Hessian curves over the finite field
Fq, we have

JH(q) =

⎧⎪⎨⎪⎩
q − 1, if q ≡ 0 (mod 3)
�(3q + 1)/4� , if q ≡ 1 (mod 3)
�q/2� , if q ≡ 2 (mod 3)

.

Proof. If q �≡ 1 (mod 3), every element of Fq is a cube in Fq. Next, Lemma 1
implies that, for all c ∈ F∗

q , we have JHc = JH1 . Therefore, JH = JH1 . Then,
from [16, Theorem 14], we have

JH(q) =

{
q − 1, if q ≡ 0 (mod 3)
�q/2� , if q ≡ 2 (mod 3)

.

For q ≡ 1 (mod 3), we fix a value c ∈ Fq that is not a cube in Fq. Following
Lemma 1, we write JH = JHc ∪ JHc2

∪ JH1 , where JHc ∩ JHc2
= JHc ∩ JH1 =

JHc2
∩ JH1 = {0}. By Lemma 2, we have #JHc = #JHc2

= (q+ 2)/3. Moreover,
from [16, Theorem 14], we have

#JH1 =

⎧⎪⎨⎪⎩
(q + 11)/12, if q ≡ 1 (mod 12)
(q + 8)/12, if q ≡ 4 (mod 12)
(q + 5)/12, if q ≡ 7 (mod 12)

.

Therefore, we have

260 R.R. Farashahi and M. Joye

JH(q) =

⎧⎪⎨⎪⎩
(3q + 1)/4, if q ≡ 1 (mod 12)
3q/4, if q ≡ 4 (mod 12)
(3q − 1)/4, if q ≡ 7 (mod 12)

,

which completes the proof. ��

A.2 The Number of Fq-Isomorphism Classes

We recall from [16] that the number of Fq-isomorphism classes of Hessian curves
over Fq is �(q + 11)/12� if q ≡ 1 (mod 3) and q − 1 if q �≡ 1 (mod 3). The
following theorem gives explicit formulas for the number of distinct generalized
Hessian curves, up to Fq-isomorphism, over the finite field Fq.

Theorem 5. For any prime power q, the number of Fq-isomorphism classes of
the family of generalized Hessian curves over the finite field Fq is{

�(3(q + 3)/4� , if q ≡ 1 (mod 3)
q − 1, if q ≡ 0, 2 (mod 3)

.

Proof. We use IH(q) to denote the number of Fq-isomorphism classes of the
family of generalized Hessian curves over Fq.

If q ≡ 0, 2 (mod 3), then every generalized Hessian curve is Fq-isomorphic to
a Hessian curve via the map given by Equations (1). So, IH(q) equals the number
of Fq-isomorphism classes of the family of Hessian curves over Fq. Then, from
[16, Theorem 15], we have IH(q) = q − 1 if q �≡ 1 (mod 3).

Now, suppose that q ≡ 1 (mod 3). For a ∈ Fq, let iH(a) be the set of
Fq-isomorphism classes of generalized Hessian curves Hc,d with j(Hc,d) = a.
So, #iH(a) is the number of distinct generalized Hessian curves with j-invariant
a that are twists of each other. Clearly, #iH(a) = 0, if a �∈ JH. We note that,
for all elliptic curve E over Fq, we have #E(Fq) + #Et(Fq) = 2q + 2, where
Et is the nontrivial quadratic twist of E. We also recall that the order of the
group of Fq-rational points of a generalized Hessian curve is divisible by 3 (see
Theorem 2). Since q ≡ 1 (mod 3), if the isomorphism class of Hc,d is in iH(a)
then the isomorphism class of the nontrivial quadratic twist of Hc,d is not in
iH(a). So, #iH(a) = 1 if a ∈ JH and a �= 0, 1728. Moreover, one can show that
#iH(a) = 3 if a = 0 and #iH(a) = 1 if a = 1728, a �= 0 and a ∈ JH. Therefore,
we have

IH(q) =
∑
a∈Fq

iH(a) =
∑

a∈JH

iH(a) = 2 +
∑

a∈JH

1 = 2 + JH(q) .

From the proof of Theorem 4, we have

IH(q) =

⎧⎪⎨⎪⎩
(3q + 9)/4, if q ≡ 1 (mod 12)
(3q + 8)/4, if q ≡ 4 (mod 12)
(3q + 7)/4, if q ≡ 7 (mod 12)

,

which completes the proof. ��

CCA Proxy Re-Encryption without Bilinear Maps
in the Standard Model

Toshihide Matsuda1, Ryo Nishimaki2, and Keisuke Tanaka1

1 Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,W8-55,
2-12-1 Ookayama Meguro-ku, Tokyo 152-8552, Japan

{matsuda5,keisuke}@is.titech.ac.jp
2 NTT Laboratories, 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585, Japan

nishimaki.ryo@lab.ntt.co.jp

Abstract. Proxy re-encryption (PRE) is a cryptographic application proposed by
Blaze, Bleumer, and Strauss. It is an encryption system with a special property in
which the semi-honest third party, the proxy, can re-encrypt ciphertexts for Alice
into other ciphertexts for Bob without using Alice’s secret key. We can classify
PRE into bidirectional and unidirectional schemes. Canetti and Hohenberger for-
malized the semantic security under chosen ciphertext attack for PRE, the PRE-
CCA security. Several schemes satisfy the PRE-CCA security as a bidirectional
or unidirectional scheme. However, some PRE schemes need a bilinear map in the
standard model, and the other PRE schemes are PRE-CCA secure in the random
oracle model before our work. In this paper, we construct a bidirectional PRE-
CCA proxy re-encryption without bilinear maps in the standard model. We study
lossy trapdoor functions (LTDFs) based on the decisional Diffie-Hellman (DDH)
assumption proposed by Peikert and Waters. We define a new variant of LTDFs,
re-applicable LTDFs, which are specialized LTDFs for PRE, and use them for
our scheme.

1 Introduction

1.1 Background

Proxy re-encryption (PRE) is a cryptographic application proposed by Blaze, Bleumer,
and Strauss [4]. It is an encryption system with a special property in which the semi-
honest third party, the proxy, can re-encrypt ciphertexts for Alice into other ciphertexts
for Bob without using Alice’s secret key. In the other words, if the proxy has a re-
encryption key rkA↔B from Alice to Bob, the proxy can translate a ciphertext CA under
Alice’s public key pkA into another ciphertext CB under Bob’s public key pkB. This
translation requires only rkA↔B and keeps the message m secret for the proxy. There are
many PRE cryptographic applications, such as email-forwarding, secure file systems,
DRM, and secure mailing lists [2,4,11,21].

Ivan and Dodis classified PRE into two types, bidirectional and unidirectional [10].
The former means that, if the proxy has the re-encryption key rkA↔B, the proxy cannot
only re-encrypt ciphertexts from Alice to Bob, but also in the opposite direction. That
is, we can assume that the re-encryption key rkA↔B from Alice to Bob is identical to

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 261–278, 2010.
c© International Association for Cryptologic Research 2010

262 T. Matsuda, R. Nishimaki, and K. Tanaka

rkB↔A from Bob to Alice. On the other hand, the latter means that, the re-encryption
key rkA→B from Alice to Bob never helps re-encryption of the opposite direction. They
also considered the notions of single-hop and multi-hop. The former means that a re-
encrypted ciphertext cannot be further re-encrypted. In contrast, the later means that a
ciphertext can be re-encrypted from Alice to Bob to Carol and so on. We discuss only
bidirectional schemes in this paper.

The PRE-CCA Security. The security notion of indistinguishability against chosen
cipher text attacks (IND-CCA) on encryption systems was proposed by Naor and
Yung [15]. Many IND-CCA secure encryption systems have been proposed.

Canetti and Hohenberger applied the notion of IND-CCA to PRE for the bidirec-
tional scheme [6]. They formalized the security notion as the (bidirectional) PRE-CCA
security. They also investigated simulation-based security definitions that guarantee
universally composable security. They constructed a bidirectional and multi-hop PRE-
CCA scheme based on the decisional bilinear Diffie-Hellman (DBDH) assumption,
which requires bilinear maps. Later, some research groups proposed bidirectional
or unidirectional PRE-CCA schemes with bilinear maps or in the random oracle
model [7,12,20,22].

1.2 Our Contribution

We construct a bidirectional and multi-hop PRE-CCA scheme without bilinear maps in
the standard model. All previous PRE-CCA secure schemes in the standard model use
bilinear maps. Our scheme is constructed in three steps.

First, we define a new cryptographic primitive, re-applicable lossy trapdoor func-
tions (re-applicable LTDFs), which are specialized lossy trapdoor functions for PRE.
They consist of nine algorithms and a set of tags, (ParGen, LossyGen, LossyEval,
LossyInv, ReIndex, ReEval, PrivReEval, Trans, FakeKey) and T . Second, we con-
struct a bidirectional PRE-CCA scheme by using re-applicable LTDFs. We modify the
original Peikert and Waters encryption scheme on several points. Third, we construct
re-applicable LTDFs based on the decisional Diffie-Hellman (DDH) assumption.

Our Techniques. As stated above, we modify the original Peikert and Waters encryp-
tion scheme on several points for PRE. Our PRE scheme uses an index of all-but-one
functions as the public parameter. The original scheme uses this index as a part of a
public key. Our scheme generates a signature of a part of a ciphertext (c2, c3) in the
encryption scheme. The original scheme generates a signature of all the main parts of
a ciphertext (c1, c2, c3) in the encryption process. The most different point is that our
scheme re-encrypts c1 from pkA to pkB by using rkA↔B.

We modify LTDFs proposed by Peikert and Waters on one point for construction of
re-applicable LTDFs. It is that an injective index is not Encpk(I), but Encpk(τI), where τ
is a tag and I is the identity matrix. This modification is a technical change that satisfies
the definition of re-applicable LTDFs.

The Peikert and Waters Encryption. Peikert and Waters proposed LTDFs and con-
structed an IND-CCA public-key encryption by using LTDFs [17]. We briefly review
their encryption scheme. Let fs and fs′ be functions with a domain {0, 1}n, where fs is

CCA Proxy Re-Encryption without Bilinear Maps in the Standard Model 263

an injective function with a trapdoor td, and fs′ is a lossy function of which the size of
a range is 2n−k at most. LTDFs have the following property: Given f , the distinguisher
cannot distinguish whether f is fs or fs′ . They constructed them as fs(x) = xEncpk(I)
and fs′(x) = xEncpk(0) where I and 0 is the identity and the zero matrix, and Enc is a
homomorphic matrix encryption. From the homomorphism of Enc, we obtain fs(x) =
xEncpk(I) = Encpk(xI) = Encpk(x) and fs′ (x) = xEncpk(0) = Encpk(x0) = Encpk(0).
We can reconstruct x from fs(x) with a secret key sk. On the other hand, we never ob-
tain x from fs′ (x) information-theoretically. They also proposed all-but-one trapdoor
functions which have similar property to LTDFs. Let gs′,b∗ be a function with a domain
B×{0, 1}n, where B is a finite set and b∗ ∈ B. For every b � b∗, gs′,b∗ (b, ·) is an invertible
function with a trapdoor td. On the other hand, gs′,b∗ (b∗, ·) is a lossy function.

Peikert and Waters constructed their IND-CCA encryption scheme by using fs and
gs′,b∗ as follows. The encryption algorithm randomly chooses x ∈ {0, 1}n and selects a
key pair of a one-time signature (vk, skσ). Then, it computes a ciphertext as

C = (vk, c1, c2, c3, σ) = (vk, fs(x), gs′,b∗ (vk, x), h(x) ⊕ m,SigSign(skσ, c1, c2, c3)),

where h is a pair-wise independent hash and SigSign is a signing algorithm in a signa-
ture scheme. They proved that this scheme satisfied the IND-CCA security.

Observation of the Peikert and Waters Encryption: Free Part for Signature. The above
encryption algorithm must sign all (c1, c2, c3) and make the signature σ. The signa-
ture σ and vk guarantees that (c1, c2, c3) is signed with the signing key skσ. That is,
(c1, c2, c3) is fixed by σ and vk. For this fixed (c1, c2, c3), the Peikert and Waters encryp-
tion achieves the IND-CCA security.

However, we find that it is not necessary to sign all (c1, c2, c3) in order to achieve the
IND-CCA security. Moreover, we find that it does not need to sign c1. The reason is as
follows. If (c1, c2, c3) is fixed by σ and vk, randomness x and a message m also are fixed
because of the injectivity of fs and gs′,b∗ . That is, we can consider σ as a signature of x
and m as well as (c1, c2, c3). In addition, if x and m are determined, (c1, c2, c3) is deter-
mined. We understand that it is necessary to sign x and m, not (c1, c2, c3). We replace
a signature of (c1, c2, c3) with a signature of (c2, c3). A pair of x and m is fixed simi-
larly to the case of (c1, c2, c3) because of the injectivity of gs′,b∗ . That is, the signature
of (c2, c3) performs tasks of a signature of (c1, c2, c3). We do not need the signature of
c1 to achieve the IND-CCA security. This free c1 is very important in constructing our
proposed scheme, which satisfies the bidirectional PRE-CCA security.

Remarks on Our Scheme. We discuss two points of our scheme: 1. Comparison of
efficiency and 2. Construction based on other assumptions.

Our scheme uses an index of re-applicable LTDFs as a public key. We represent this
key as an n × n matrix, which has n2 group elements. The public parameter contains
n × n matrix as well as public keys since all-but-one trapdoor functions are based on
the DDH assumption. One ciphertext and one re-encryption key have O(n) group ele-
ments. However, in most of the previous schemes, they consist of a constant number of
group elements. For example, one public key is one group element, and one ciphertext
consists of five group elements, a verification key, and a signature in the Canetti and
Hohenberger’s bidirectional scheme, which satisfies the PRE-CCA security as well as

264 T. Matsuda, R. Nishimaki, and K. Tanaka

ours [6]. Time complexity as well as space complexity are larger than others. Therefore,
future work is to construct more efficient schemes.

LTDFs are constructed from various assumptions. Therefore, one may think that
we can construct PRE-CCA secure schemes from other assumptions. However, we do
not know how to construct PRE-CCA secure schemes from other assumptions now.
Factoring, quadratic residue, RSA, or Paillier-based LTDFs do not clearly satisfy the
definition of re-applicable lossy trapdoor functions. One might think that decision linear
or lattice-based LTDFs work in our proposal, but this is not clear. In other words, they
do not guarantee several properties of re-applicable LTDFs. However, we might be able
to use LTDFs based on them with other techniques for PRE.

1.3 Related Work

We review previous work on PRE and LTDFs.

Proxy Re-Encryptions. Mambo and Okamoto first proposed the concept of proxy en-
cryption, which delegates the ability of decryption through an interaction [13]. Based on
their concept, Blaze, Bleumer, and Strauss proposed the notion of proxy cryptography.
PRE is one concept in proxy cryptography [4]. Their construction is nearly similar to the
ElGamal encryption and satisfies the CPA security. A re-encryption key is made from
the division of secret keys in the scheme. Later, Ivan and Dodis point out that Blaze
et.al.’s scheme is bidirectional and multi-hop. Ateniese, Fu, Green, and Hohenberger
proposed the first unidirectional scheme, which was single-hop and satisfied the CPA
security with a bilinear map [2]. Deng, Weng, Liu, and Chen constructed a bidirectional
and single-hop PRE scheme without a bilinear map in the random oracle model [7].
Libert and Vergnaud discussed the unidirectional PRE-CCA security and constructed
an unidirectional and single-hop PRE-RCCA1 scheme with a bilinear map [12]. Shao
and Cao proposed an unidirectional and single-hop PRE-CCA scheme in the random
oracle model [20]2. Weng, Chow, Yang, and Deng improved Shao and Cao’s scheme,
and their scheme also is in the random oracle model [22]. We put this previous work in
chronological order in Figure 1. ROM stands for the random oracle model.

Hohenberger, Rothblum, shelat, and Vaikuntanathan argued the existence of obfus-
cators with PRE and practically constructed an obfuscator as a PRE scheme [9]. Their
scheme is CPA-secure.

Recently, Ateniese, Benson, and Hohenberger introduced an additional property on
PRE, which is key-privacy (or anonymous) [1]. It is desirable to have this property, if
the proxy can freely re-encrypt ciphertexts. Our scheme does not have the key-private
property. They constructed a key-private scheme with bilinear maps in the standard
model, which satisfies the PRE-CPA security, not CCA.

1 This security notion is truly weaker than the CCA security and stronger than the CPA security.
An adversary can use a decryption oracle in a restricted way. If he sends messages (m0,m1) to
the challenger and obtains a challenge c, the adversary cannot query ciphertexts of challenge
messages m0 and m1 to the decryption oracle.

2 Two research groups posed questions on the security model of this paper and published their
discussions on ePrint Archive [22,23]. However, they do not effect our results and we do not
mention this in this paper.

CCA Proxy Re-Encryption without Bilinear Maps in the Standard Model 265

Authors Direction Hop Assumption Security Bilinear Map ROM
Blaze et.al. [4] ↔ multi DDH on Gp PRE-CPA no no

Ateniese et.al. [2] → single eDBDH PRE-CPA yes no
Canetti and Hohenberger [6] ↔ multi DBDH PRE-CCA yes no

Libert and Vergnaud [12] → single 3-wDBDHI PRE-RCCA yes no
Deng et.al. [7] ↔ single mCDH on Gp PRE-CCA no yes

Shao and Cao [20] → single DDH on ZN2 PRE-CCA no yes
Weng et.al. [22] → single CDH on Gp PRE-CCA no yes

This paper ↔ multi DDH on Gp PRE-CCA no no

Fig. 1. Comparison of our work with previous work

Lossy Trapdoor Functions. We review previous work related to LTDFs. Peikert and
Waters proposed notions of LTDFs [17]. They showed cryptographic applications based
on LTDFs, such as a (ordinary) trapdoor function, a collision-resistant hash function,
an oblivious transfer, and an IND-CCA encryption scheme. They also showed the con-
structions of LTDFs based on the DDH assumption and the LWE assumption. They
mentioned that the Paillier encryption realized LTDFs by the similar methodology to
the construction based on the DDH assumption. Later, Rosen and Segev noted that the
Damgård-Jurik encryption scheme simply satisfied the definition of LTDFs because of
its number-theoretic property [18]. The Damgård-Jurik encryption scheme is considered
as a generalized Paillier encryption. In addition to [18], Freedman, Goldreich, Kiltz,
Rosen, and Segev proposed more constructions of LTDFs [8]. They are based on the d-
Linear assumption and the QR assumption. Mol and Yilek showed that slightly LTDFs
are sufficient for constructing a IND-CCA secure public-key encryption scheme [14].
Slightly LTDFs lost a (1 − ω(log n)) fraction of all its input bits.

Other applications of LTDFs have been proposed. Rosen and Segev proposed a new
primitive, a one-way function under correlated products [19]. They showed the con-
struction of a one-way function under correlated products from LTDFs and the IND-
CCA secure encryption by using this primitive. Boldyreva, Fehr, and O’Neill applied
LTDFs to the construction of deterministic encryption [5]. They constructed a CCA-
secure deterministic encryption scheme in the standard model, where the CCA security
meant the sense of the semantic security on a message, not indistinguishability of mes-
sages. Bellare, Hofheinz, and Yilek formalized a new security notion of encryption,
selective opening attack, which meant that it kept secret even if an adversary selectively
obtained messages and randomness of ciphertexts [3]. They used LTDFs for the above
purpose. Nishimaki, Fujisaki, and Tanaka used all-but-one trapdoor functions for the
universally composable commitment scheme [16]. They first proposed a non-interactive
string-commitment scheme, which is universally composable.

Organization

In Section 2, we show preliminaries to describe our scheme. In Section 3, we define re-
applicable LTDFs. In Section 4, we review the definition of bidirectional PRE schemes,
propose our scheme, and describe a sketch of a proof of it. In Section 5, we construct
re-applicable LTDFs based on the DDH assumption.

266 T. Matsuda, R. Nishimaki, and K. Tanaka

2 Preliminaries

In this section, we show preliminaries to describe our scheme.

2.1 Notation

Let S be a finite set. s ∈R S denotes that the element s is chosen from S uniformly at
random. For probabilistic algorithm A, y ← A(x) denotes that A outputs y on input x
with uniform randomness. If A runs in time polynomial in the security parameter, then
A is a probabilistic polynomial-time (PPT) algorithm. We say that function f : N →
[0, 1] is negligible in λ ∈ N if for every constant c ∈ N there exists kc ∈ N such that
f (λ) < λ−c for any λ > kc. We say that function g : N → [0, 1] is overwhelming in
λ ∈ N if function f (λ) = 1 − g(λ) is negligible in λ ∈ N. Let Xλ and Yλ denote random
variables over a finite set Zλ ⊂ {0, 1}λ, where λ ∈ N is the security parameter. We say
that Xλ and Yλ are (computationally) indistinguishable if, for every distinguisher D,
| Pr[D(Xλ) = 1] − Pr[D(Yλ) = 1]| is negligible in λ ∈ N. We say that Xλ and Yλ are
statistically indistinguishable if

∑
z∈Zλ | Pr[Xλ = z] − Pr[Yλ = z] is negligible in λ ∈ N.

2.2 DDH Assumption

We review the DDH assumption. Let G be an algorithm that takes as input a security
parameter λ and outputs a tuple (p,G, g), where p is a prime with 2λ−1 ≤ p < 2λ, G is a
cyclic group of prime order p, and g is a generator of G.

Assumption 1 (The Decisional Diffie-Hellman Assumption). For any PPT adversary
A, the advantage AdvA(k) is negligible in the security parameter k.

AdvA(k) = | Pr[A((p,G, g), ga, gb, gab) = 1] − Pr[A((p,G, g), ga, gb, gc) = 1]|

The probability is over the random choices of (p,G, g)← G(λ) , the random choices of
a, b, c ∈ Zp and the random coin of A.

2.3 All-But-One Trapdoor Functions

We review all-but-one trapdoor functions to describe our scheme. All-but-one trapdoor
functions are made from the DDH assumption[17].

Definition 1 (All-but-one trapdoor functions). A collection of (n, k)-all-but-one trap-
door functions is a tuple of PPT algorithms (Gabo,Fabo,F−1

abo) and sequence of branch
sets B = {Bλ} such that:

All-but-one property: Given a lossy branch b∗ ∈ Bλ, the algorithm Gabo(1λ, b∗) out-
puts a pair (s, td). For every b ∈ Bλ\{b∗}, the algorithm Fabo(s, b, ·) computes an
injective function fs,b(·) over {0, 1}n, and F−1

abo(td, b, ·) computes f −1
s,b (·). For the

lossy branch b∗, Fabo(s, b∗, ·) computes a lossy function fs,b∗ (·) over {0, 1}n, where
| fs,b∗({0, 1}n)| ≤ 2n−k.

Indistinguishability: For every b∗1 and b∗2 ∈ Bλ, the first output s0 of Gabo(1λ, b∗0) and
the first output s1 of Gabo(1λ, b∗1) are computationally indistinguishable.

CCA Proxy Re-Encryption without Bilinear Maps in the Standard Model 267

3 Re-applicable Lossy Trapdoor Functions

In this section, we propose a new primitive, re-applicable LTDFs, which is an ex-
tension of LTDFs. Peikert and Waters proposed LTDFs and all-but-one functions in
STOC’08 [17].

For our purpose, we transform LTDFs in several points. First, we add one algorithm,
the parameter-generation algorithm ParGen. This algorithm generates public parame-
ters which is common to every algorithm and applied in every evaluation. We introduce
ParGen since PRE schemes are used in the multi-user setting, not single-user setting. In
addition, the validity checks of ciphertexts require that each ciphertext of the ElGamal
encryption in an index of LTDFs has common randomness for every user.

Second, we modify LTDFs so that the function-generation algorithm receives a tag
in a set of tags T , not injective or lossy commands. For every tag τ, except one special
lossy tag τlos, the function-generation algorithm outputs an index that represents an in-
jective function. On the other hand, the function-generation algorithm given τlos outputs
an index that represents a lossy function.

Third, we define five new algorithms ReIndex,ReEval,PrivReEval,Trans, and
FakeKey. ReIndex, ReEval, PrivReEval, and Trans are deterministic, and FakeKey
is probabilistic. We apply ReIndex for generating re-encryption keys, ReEval for eval-
uation of re-encryption, and PrivReEval for a validity check of ciphertexts. The algo-
rithms Trans and FakeKey are only used in the proof. The algorithm Trans guarantees
the transitivity between re-encryption keys. In other word, we can make a re-encryption
key rk j↔k from rki↔ j and rki↔k. The algorithm FakeKey generates a pair of public and
re-encryption keys (pk j, rki↔ j) from another public key pki. Moreover, even if pki rep-
resents a lossy function, FakeKey always outputs pk j, which represents an injective
function. This property is necessary for the last modification in our proof. We introduce
T to provide this property.

We call this new primitive, a collection of re-applicable LTDFs. They are specialized
LTDFs for PRE. If we unify ParGen and LossyGen, ignore the other new algorithms,
and define T = {τinj, τlos}, we can consider this new primitive as (ordinary) LTDFs
proposed by Peikert and Waters.

Definition 2 (Re-applicable LTDFs with respect to function indices). Let (ParGen,
LossyGen, LossyEval, LossyInv, ReIndex, ReEval, PrivReEval, Trans, FakeKey) be
a tuple of PPT algorithms, and T be a set of tags that contains one lossy element τlos.
The algorithm ParGen(1λ) outputs a public parameter par. The other algorithms apply
the parameter par to their computations. Hereafter, we omit the input of the public
parameter par for the algorithms.

A collection of re-applicable (n, k)-lossy trapdoor functions with respect to function
indices is a tuple of the PPT algorithms (ParGen, LossyGen, LossyEval, LossyInv,
ReIndex, ReEval, PrivReEval, Trans, FakeKey) such that:

Injectivity; For every public parameter par ← ParGen(1λ) and every tag τ ∈
T\{τlos}, LossyGen(τ) outputs a pair of a function index and its trapdoor
(s, td), LossyEval(s, ·) computes an injective function fs,τ(·) over {0, 1}n, and
LossyInv(td, τ, ·) computes f −1

s,τ (·).

268 T. Matsuda, R. Nishimaki, and K. Tanaka

(We represent the function fs,τ, not fs, in order to clarify a tag τ. If we do not need
to clarify a tag, we represent a function as fs,�)

Lossiness: For every public parameter par ← ParGen(1λ), the algorithm
LossyGen(τlos) outputs (s,⊥) and LossyEval(s, ·) computes a function fs,τlos (·) over
{0, 1}n, where | fs,τlos ({0, 1}n)| ≤ 2n−k.

Indistinguishability between injective and lossy indices: Let Xλ denote the distribu-
tion of (par, sinj, τ), and let Yλ denote the distribution of (par, slos, τ

′), where par is
a public parameter from ParGen(1λ), τ and τ′ are random elements in T , and the
function indices sinj and slos are the first element outputs from LossyGen(τ) and
LossyGen(τlos). Then, {Xλ} and {Yλ} are computationally indistinguishable.

Re-applying with respect to function indices: Let τi and τ j be any tags with τi � τlos

and τ j � τlos. The algorithm ReIndex(tdi, td j) outputs si↔ j, where tdi and td j are the
second elements of LossyGen(τi) and LossyGen(τ j). Then, for every x ∈ {0, 1}n,
x = LossyInv(td j, τi,ReEval(si↔ j, LossyEval(si, x))). We remark that LossyInv
takes τi as one of the inputs, not τ j.

Generating proper outputs: Let c be an output from ReEval(si↔ j, LossyEval(si, x)),
where si↔ j and si have the same meaning as that in the above paragraph. Then,
PrivReEval(x, τi, τ j, s j) outputs the same c, where x, τi, τ j, and s j have the same
meaning as that in the above paragraph. That is, ReEval(si↔ j, LossyEval(si, ·))
and PrivReEval(·, τi, τ j, s j) are equivalent as a function (i.e. Any output of
ReEval(si↔ j, LossyEval(si, ·)) is independent of si.).

Transitivity: Let (si, tdi), (s j, td j) and (sk, tdk) be outputs from LossyGen(τi),
LossyGen(τ j), and LossyGen(τk), and let si↔ j and si↔k be outputs from
ReIndex(tdi, td j) and ReIndex(tdi, tdk), respectively. Then, Trans(si↔ j, si↔k) out-
puts s j↔k which is the same output from ReIndex(td j, tdk).

Statistical indistinguishability of the fake key: The algorithm FakeKey(si, τi) out-
puts (s′j, s

′
i↔ j, τ

′
j), where si is the first element of an output from LossyGen(τi).

Let Xλ denote the distribution of (par, si, s j, si↔ j, τi, τ j), and let Yλ denote the
distribution of (par, si, s′j, s

′
i↔ j, τi, τ

′
j), where each par, s j, si↔ j, and τ j has the

same meaning as that in the above paragraph. Then, {Xλ} and {Yλ} are statistically
indistinguishable.

Generation of injective functions from lossy functions: Let s be the first element of
an output from FakeKey(slos, τ), where τ is a tag and slos is the first element of
an output from LossyGen(τlos). Then, for every τ, LossyEval(s, ·) represents an
injective function fs,� with overwhelming probability, where a random variable is
the randomness of FakeKey(slos, τ). (We do not require other properties of index s
if fs,� is injective. The function fs,� cannot have any trapdoor information.)

4 Bidirectional and Multi-Hop PRE-CCA Scheme

In this section, we first review the definition of a bidirectional PRE scheme. Then, we
describe our scheme and show a sketch of the proof.

A bidirectional PRE scheme consists of six algorithms Π = (Setup, KeyGen, Enc,
Dec, ReKeyGen, and ReEnc) as follows. PP← Setup(1λ): Given a security parameter
1λ, the setup algorithm outputs a public parameter PP. This algorithm is executed by

CCA Proxy Re-Encryption without Bilinear Maps in the Standard Model 269

a trusted third party. (pk, sk) ← KeyGen(PP): Given a public parameter PP, the key
generation algorithm outputs a public key pk and a secret key sk. C ← Enc(PP, pk,m):
Given a public key pk and a message m ∈ M, the encryption algorithm outputs a
ciphertext C, where M is a message space. rki↔ j ← ReKeyGen(PP, ski, sk j): Given
a pair of secret keys ski, sk j, where i � j, this algorithm outputs a re-encryption key
rki↔ j. We call rki↔ j the re-encryption key between i and j. C j ← ReEnc(PP, rki↔ j,Ci):
Given a re-encryption key rki↔ j between i and j and a ciphertext Ci for i, this algorithm
outputs another ciphertext C j for j or the error symbol ⊥. m ← Dec(PP, sk,C): Given
a public key sk and a ciphertext C, the decryption algorithm outputs a message m or the
error symbol ⊥.

If the following two conditions holds, we say that the PRE scheme Π satisfies cor-
rectness. For every PP which is output from Setup(1λ), every (pk, sk) which is output
from KeyGen(PP) and every message m ∈ M, the probability Pr[C ← Enc(PP, pk,m) :
Dec(PP, sk,C) = m] is overwhelming. For every natural number n ∈ N, every PP
which is output from Setup(1λ), every (pk1, sk1) . . . (pkn, skn) which are outputs from
KeyGen(PP), every message m ∈ M, and every rk1↔2 . . . rkn−1↔n which are out-
puts from ReKeyGen(rki, rki+1) for each i ∈ [1, n − 1], the probability Pr[C1 ←
Enc(PP, pk1,m) : Dec(PP, skn,ReEnc(PP, rkn−1↔n, . . .ReEnc(PP, rk1↔2,C1) . . .)) =
m] is overwhelming.

4.1 Bidirectional and Multi-Hop PRE-CCA Security

We prove that our scheme satisfies the PRE-CCA security in the full version of this
paper. This security notion was proposed by Canetti and Hohenberger [6].

Definition 3 (Bidirectional and Multi-Hop PRE-CCA Security). Let λ be the secu-
rity parameter, A be an oracle TM, representing the adversary, and ΓU and ΓC be date
structures. Date structures ΓU and ΓC are first initialized as empty in the game. The
game consists of an execution of A with the following oracles, which can be invoked
multiple times in any order, subject to the constraint below:

Setup Oracle: This oracle can be queried first in the game only once. This oracle
makes a public parameter as PP← Setup(1λ). A is given PP.

Uncorrupted key generation: This oracle generates a new key pair (pk, sk) ←
KeyGen(PP) and adds pk in ΓU , where PP is generated from the setup oracle.
A is given pk.

Corrupted key generation: This oracle generates a new key pair (pk, sk) ←
KeyGen(PP) and adds pk in ΓC , where PP is generated from the setup oracle.
A is given (pk, sk).

Challenge oracle: This oracle can be queried only once. On input (pk∗,m0,m1), the
oracle chooses a bit b ← {0, 1} and returns C∗ = Enc(PP, pk∗,mb). We call pk∗

the challenge key and C∗ the challenge ciphertext. (We require the challenge key
pk∗ ∈ ΓU for A to win.)

Re-encryption key generation: On input (pki, pk j) from the adversary, this oracle re-
turn the re-encryption key rki↔ j = ReKeyGen(ski, sk j), where ski and sk j are the
secret keys that correspond to pki and pk j, respectively.

270 T. Matsuda, R. Nishimaki, and K. Tanaka

We require that pki and pk j are in ΓC , or alternatively both are in ΓU . We do not
allow for re-encryption key generation queries between a corrupted key and an
uncorrupted key.

Re-encryption oracle: On input (pki, pk j,Ci), if pk j ∈ ΓC and (pki,Ci) is a deriva-
tive of (pk∗,C∗), then return a special symbol ⊥, which is not in the do-
main of messages or ciphertext. Else, return the re-encrypted ciphertext C j =

ReEnc(ReKeyGen(ski, sk j),C j). Derivatives of (pk∗,C∗) are defined inductively
as follows.

– (pk∗,C∗) is a derivative of itself.
– If (pk,C) is a derivative of (pk∗,C∗), and (pk′,C′) is a derivative of (pk,C),

then (pk′,C′) is a derivative of (pk∗,C∗).
– If A has queried the re-encryption oracle on input (pk, pk′,C) and obtained

response C′, then (pk′,C′) is a derivative of (pk,C).
– If A has queried the re-encryption key generation oracle on input (pk, pk′) or

(pk′, pk), and C′ = ReEnc(ReKeyGen(sk, sk′),C), then (pk′,C′) is a deriva-
tive of (pk,C), where sk and sk′ are the secret keys that correspond to pk and
pk′, respectively.

Decryption oracle: On input (pk,C), if the pair (pk,C) is a derivative of the challenge
key and ciphertext (pk∗,C∗), or pk is not in ΓU ∪ ΓC , then return a special symbol
⊥ which is not in the domain of messages. Else, return Dec(sk,C), where sk is the
secret key that corresponds to pk.

Decision oracle: This oracle can be queried at the end of the game. On input b′: If
b′ = b and the challenge key pk∗ ∈ ΓU , then output 1. Else, output 0:

We describe the output of the decision oracle in the above game as Exptbid-PRE-CCA
Π,A (λ) =

b for an adversary A and a scheme Π . We define the advantage of adversary A as

Advbid-PRE-CCA
Π,A (λ)

def
=

∣∣∣∣∣Pr[Exptbid-PRE-CCA
Π,A (λ) = 1] − 1

2

∣∣∣∣∣ ,

where the probability is over the random choices of A and oracles. We say that the
scheme Π is secure under the bidirectional PRE-CCA attack, if, for every adversary A,
Advbid-PRE-CCA

Π,A (λ) is negligible in the security parameter λ.

4.2 Description of Our Scheme

We next describe our scheme. Let λ be the security parameter, and let n, k, k′, k′′ and
v be parameters depending on λ. Let (SigGen,SigSign,SigVer) be a strongly unforge-
able one-time signature scheme where verification keys are in {0, 1}v. Let (ParGen,
LossyGen, LossyEval, LossyInv, ReIndex, ReEval, PrivReEval, Trans, FakeKey) be
a collection of re-applicable (n, k)-LTDFs and T be a set of tags. Let (Gabo,Fabo,F−1

abo)
be a collection of (n, k′)-ABO trapdoor functions with branches Bλ = {0, 1}v, which
contains the set of signature verification keys. Let H be a family of pairwise indepen-
dent hash functions from {0, 1}n to {0, 1}k′′ . We require that the above parameters are
(k + k′) − (k′′ + n) ≥ δ = δ1 + δ2 for some δ1 = ω(log λ) and δ2 = ω(log λ). Our
cryptosystem has message space {0, 1}k′′ .

CCA Proxy Re-Encryption without Bilinear Maps in the Standard Model 271

The algorithm Setup generates a public parameter PP = (sabo, par, h), and the al-
gorithm KeyGen makes a pair of keys (pk, sk) = ((srltdf , τ), (tdrltdf , srltdf , τ)). Except a
tag τ, we can consider that both Setup and KeyGen are the same algorithm as the key
generation algorithm in the Peikert and Waters encryption. The algorithm Enc is also
the same algorithm as the encryption algorithm in the Peikert and Waters encryption,
except that c1 is not signed for the re-encryption. The algorithm ReKeyGen makes a re-
encryption key, and the ReEnc re-encrypts a ciphertext into another ciphertext. These
algorithms only use ReIndex and ReEval in re-applicable LTDFs. The algorithm Dec
is the same algorithm as the decryption algorithm in the Peikert and Waters encryption,
expect that, if a ciphertext is re-encrypted, it applies PrivReEval for the validity check
of ciphertexts.

Setup(1λ): Setup(1λ) first generates an index of all-but-one trapdoor functions with
lossy branch 0v: (sabo, tdabo) ← Gabo(1λ, 0v). Then, it generates a public parameter
of re-applicable LTDFs: par ← ParGen(1λ). Finally, it chooses a hash function
h← H . It outputs a public parameter as PP = (sabo, par, h).

(The algorithm Setup erases the trapdoor tdabo because the following algorithms
do not use tdabo.)

KeyGen(PP): KeyGen takes PP = (sabo, par, h) as input. It chooses a tag τ ∈
T\{τlos} and generates an injective index of re-applicable LTDFs: (srltdf , tdrltdf) ←
LossyGen(τ). A public key consists of the injective function index and the tag,
and a secret key consisting of the trapdoor of srltdf and the tag: pk = (srltdf , τ), and
sk = (tdrltdf , srltdf , τ).

Enc(PP, pk,m): Enc takes (PP, pk,m) as input, where PP = (sabo, par, h) is a tuple of
public parameters, pk = (srltdf , τ) is a public key, and m ∈ {0, 1}
 is a message. It
chooses x ∈ {0, 1}n uniformly at random. It generates a key-pair for the one-time
signature scheme: (vk, skσ)← SigGen(1λ), then computes

c1 = LossyEval(srltdf , x), c2 = Fabo(sabo, vk, x), and c3 = h(x) ⊕ m.

Finally, it signs a tuple (c2, c3, τ) as σ ← SigSign(skσ, (c2, c3, τ)). Then, a cipher-
text C is output as C = (vk, c1, c2, c3, τ, σ).

ReKeyGen(PP, ski, sk j) : ReKeyGen takes as input (PP, ski, sk j), where (ski, sk j) =
((tdi, si, τi), (td j, s j, τ j)). It computes si↔ j ← ReIndex(tdi, td j), then outputs a re-
encryption key as rki↔ j = si↔ j.

ReEnc(PP, rki↔ j,Ci) : ReEnc takes (rki↔ j,Ci) as input, where rki↔ j = si↔ j is a re-
encryption key and Ci = (vk, c1,i, c2, c3, τ, σ) is a ciphertext. It computes c1, j ←
ReEval(si↔ j, c1,i). It then outputs C j = (vk, c1, j, c2, c3, τ, σ) as a new ciphertext for
the user with sk j.

Dec(PP, sk,C) : Dec takes (PP, sk,C) as input, where PP = (sabo, par, h) is a tuple of
public parameters, sk = (tdrltdf , srltdf , τ) is a secret key, and C = (vk, c1, c2, c3, τ

′, σ)
is a ciphertext. It first checks SigVer(vk, (c2, c3, τ

′), σ) = 1; if not, it outputs ⊥.
It then compute x = LossyInv(tdrltdf , τ

′, c1). If τ = τ′ then it checks c1 =

LossyEval(srltdf , x), otherwise, it checks PrivReEval(x, τ′, τ, srltdf) = c1; if not, it
outputs ⊥. It also checks c2 = Fabo(sabo, vk, x); if not, it outputs ⊥. Finally, it out-
puts m = c3 ⊕ h(x). (We note that, if C was not re-encrypted, then τ = τ′. On the
other hand, if C was re-encrypted, τ � τ′.)

272 T. Matsuda, R. Nishimaki, and K. Tanaka

4.3 Security of Our Scheme

In this section, we claim the following theorem and describe a sketch of the proof. We
give the detail proof in the full version of this paper.

Theorem 1. The above proposed scheme satisfies the PRE-CCA security.

We now show modifications of games from Game0 to Game10 to prove Theorem 1.
Game0 is identical to the PRE-CCA game. In Game10, no adversary can win with
meaningful probability. Every modification from Gamei to Gamei+1 is perfect, statisti-
cally or computationally indistinguishable for each i ∈ [0, n−1]. Therefore, we conclude
that no adversary also can win with meaningful probability in Game0.

In every game, let C∗ = (vk∗, c∗1, c
∗
2, c
∗
3, τ
∗, σ∗) and pk∗ = (s∗rltdf , τ

∗) be the challenge
ciphertext and the challenge public key, respectively.

Game0: This game is identical to the PRE-CCA game.
Game1: Let x∗ denote a random input applied to making the challenge ciphertext. (i.e.

c∗1 = LossyEval(s∗rltdf , x
∗), c∗2 = Fabo(sabo, vk∗, x∗), c∗3 = h(x∗) ⊕ mb.)

Then, we modify the decryption oracle as follows: The decryption oracle is
given a decryption query (pk,C) = ((s, τ), (vk, c1, c2, c3, τ

′, σ)), where pk is limited
to an output by the corrupted or the uncorrupted oracles. If (pk,C) is a deriva-
tive of (pk∗,C∗), then it outputs ⊥. Else if the decryption query satisfies that
(vk, c2, c3, τ

′, σ) = (vk∗, c∗2, c
∗
3, τ
∗, σ∗) and PrivReEval(x∗, τ′, τ, s) = c1, then it out-

puts m ← c3 ⊕ h(x∗). Otherwise, it outputs Dec(sk,C) in the ordinary decryption
processes.

This modification does not affect any success probability of an adversary. From
the injectivity of PrivReEval(·, τ′, τ, s), if PrivReEval(x∗, τ′, τ, s) = c1, then we ob-
tain LossyInv(td, τ′, c1) = x∗. In fact, the probability that the above queries satisfy
PrivReEval(x∗, τ′, τ, s) = c1 is negligible. We discuss this fact in the modification be-
tween Game9 and Game10. However, this check is necessary for the following modifi-
cations.

Game2: We add the following check to the decryption oracle after checking
a derivative: The decryption oracle is given a decryption query (pk,C) =
((s, τ), (vk, c1, c2, c3, τ

′, σ)). The decryption oracle always outputs ⊥, if vk = vk∗

and (c2, c3, τ
′, σ) � (c∗2, c

∗
3, τ
∗, σ∗).

This modification is negligible for the success probability of an adversary from the
strongly existential unforgeability of the signature scheme.

Game3: Let vk∗ be the verification key used by the challenge oracle. We modify the
setup oracle on a lossy branch as follows: We replace generates (sabo, tdabo) ←
Gabo(1λ, 0v) with (sabo, tdabo) ← Gabo(1λ, vk∗). The lossy branch is changed the
verification key vk∗ from a zero-padding 0v.

This modification is negligible for the success probability of an adversary from the
computational indistinguishability of all-but-one trapdoor functions.

CCA Proxy Re-Encryption without Bilinear Maps in the Standard Model 273

Game4: Let (sabo, tdabo) be an index of all-but-one trapdoor functions and its trap-
door. We modify the decryption oracle as follows: The decryption oracle uses
the trapdoor tdabo to decrypt ciphertext, when it receives a ciphertext C =

(vk, c1, c2, c3, τ
′, σ). That is, in the case of (vk, c2, c3, τ

′, σ) � (vk∗c∗2, c
∗
3, τ
∗, σ∗) and

vk � vk∗, we replace x ← LossyInv(tdrltdf , τ
′, c1) with x ← F−1

abo(tdabo, vk, c2), and
proceed with the decryption processes (In the other cases, the decryption oracle
executes the operations defined in Game1 and Game2.).

This modification does not affect any success probability of an adversary because of the
injectivity of LossyEval(s, ·), Fabo(sabo, vk, ·), and PrivReEval(·, τ′, τ, s). In this modifi-
cation, Fabo(sabo, vk, ·) is an injective function since vk is not the lossy branch vk∗.

In the following games, the challenger manages uncorrupted re-encryption keys to
apply the table. That is, in the first of this game, the challenger makes an empty table,
which memorizes uncorrupted re-encryption keys. We set that a pair of keys (pk1, sk1)
is the first output by the uncorrupted oracle. At n-th query, the uncorrupted oracle out-
puts a pair of keys (pkn, skn) and makes the re-encryption keys rk1↔n,· · · ,rkn−1↔n and
rkn↔1,· · · ,rkn↔n−1. The challenger adds re-encryption keys to the table.

Game5: We modify the re-encryption oracle as follows: The re-encryption oracle takes
as query (pka, pkb,Ca) = ((sa, τa), (sb, τb), (vk, c1,a, c2, c3, τ

′
a, σ)) in the game.

If pka is corrupted, then it evaluates x ← LossyInv(tda, τ
′
a, c1,a). Then, it makes

c1,b = PrivReEval(x, τa, τb, sb). If pkb is uncorrupted, it searches rka↔b in the re-
encryption keys table and evaluates c1,b ← ReEnc(rka↔b, c1,a). Then, it outputs
Cb = (vk, c1,b, c2, c3, τ

′
a, σ) as a re-encrypted ciphertext for pkb.

This modification does not affect any success probability of an adversary because of the
equivalence between PrivReEval(·, τa, τb, sb) and ReEnc(rka↔b, LossyEval(sa., ·)).

Game6: We modify the re-encryption key generation oracle as follows: Given a pair
(pka, pkb), it searches the re-encryption keys rka↔b from the table. Then, it outputs
this re-encryption key rka↔b.

This modification does not affect any success probability of an adversary.

Game7: We define the number qA,unc as the maximum number of times that an adver-
sary A queries the uncorrupted oracle in the game. We modify the challenge oracle
as follows.

First, the challenger chooses a random number r ∈ {1, . . . , qA,unc}. If the chal-
lenge oracle receives the challenge key pk∗ � pkr, the challenger outputs a random
bit b and aborts this game, where pkr is the r-th public key output by the uncor-
rupted oracle. Otherwise, it proceeds with this game.

This modification reduces the success probability of an adversary to 1/qA,unc fraction.
However, this is not an important reduction since qA,unc is polynomial of the security
parameter λ.

Game8: We modify the uncorrupted key generation oracle as follows.
First, it executes the following preprocessing. It choose a random number r ∈

{1, . . . , qA,unc} and generates a pair of keys (pkr, skr) ← KeyGen(PP). We describe

274 T. Matsuda, R. Nishimaki, and K. Tanaka

pkr = (sr , τr) and skr = (tdr, sr, τr). Then, for every i ∈ {1, . . . , qA,unc}\{r}, it uses
the fake key generation algorithm to generate a public key and the re-encryption
key: it computes (si, sr↔i, τi)← FakeKey(sr, τr) and sets pk = (si, τi), rkr↔i. Then,
it computes that rki↔ j = si↔ j ← Trans(sr↔i, sr↔ j) for every i, j ∈ {1, . . . , qA,unc}
and i � j. It adds every above-mentioned re-encryption key {rki↔ j}i, j∈{1,...,qA,unc},i� j to
the re-encryption keys table.

At j ∈ {1, . . . , qA,unc} times query for the uncorrupted oracle, it outputs the public
key pk j = s j generated by the above preprocessing. The re-encryption key oracle
and the re-encryption oracle execute their processes with the preprocessed table.
The challenge oracle applies the above number r to the check pk∗ = pkr.

This modification is negligible for the success probability of an adversary from the
statistical indistinguishability of the fake key algorithm.

Game9: We modify the above preprocessing as follows: We replace the first key gen-
eration pkr = sr ← LossyGen(τr) with pkr = sr ← LossyGen(τlos), where τlos is
a lossy tag.

This modification is negligible for the success probability of an adversary from the
computational indistinguishability of LTDFs.

Game10: We modify the decryption oracle as follows: The decryption oracle always
outputs ⊥, when it receives the query C = (vk∗, c1, c∗2, c

∗
3, σ

∗) and pk = srltdf .

This modification is negligible for the success probability of an adversary from the fact
that the average-case min-entropy of x∗ is high, and every public key pk = s, except
a challenge key, represents an injective function fs,�. That is, adversary never compute
c1 such that f −1

s,�(c1) = x∗ information-theoretically. This fact implies that Game10 is
statistically close to Game9. Due to this modification, we attach tags to re-applicable
LTDFs.

From the above sketch, we transform the PRE-CCA game (i.e. Game0) into the last
game (i.e. Game10). In the last game, Game10, we conclude that any adversary does not
detect which message is encrypted. The reason is, h(x∗) is statistically close to U
 since
x∗ has high average-case min-entropy and h(·) can extracts a random string from x∗.

5 Realization of Re-applicable LTDFs Based on DDH Assumption

In this section, we describe the realization of re-applicable LTDFs from the DDH as-
sumption. We modify the construction proposed by Peikert and Waters.

We now describe LTDFs based on the DDH assumption. We modify the construction
as the proposed by Peikert and Waters on two points. One is a division of one function
generation algorithm into two algorithms. The other is a change on an encrypting matrix
in the injective function generator. Peikert and Waters proposed the function-generation
algorithm which creates a function index as a ciphertext of a matrix. This ciphertext
is encrypted with the ElGamal encryption on matrices. When generating an injective-
function index, it encrypts the matrix I = (gδi, j)i, j on Gn×n, where δi, j is the Kronecker
delta. When generating a lossy-function index, it encrypts the matrix 0 = (e)i, j on Gn×n,

CCA Proxy Re-Encryption without Bilinear Maps in the Standard Model 275

where e is the identity in G (i.e. e = g0). We also do the same for generating a lossy-
function index, but we do another procedure for generating an injective-function index.
We define a set of tags T as a group G and a special element τlos as the identity e ∈ G.
We use a matrix M = (τδi, j)i, j on Gn×n, where τ is any element in G. When generating
a injective-function index, we set τ with τ � τlos. When generating a lossy-function
index, we set τ = τlos.

– Generation of a public parameter. A parameter generator ParGen first executes G,
and G outputs a tuple (p,G, g). It next selects random numbers r1, . . . , rn ∈R Zp,
then makes a public parameter C1 as

C1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c1
...

cn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gr1

...
grn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

– Generation of function indices. A function generator LossyGen takes as input C1

and a tag τ, where C1 is the public parameter and τ is an element in G. (We note
that if τ = e, it means execution of the lossy mode, otherwise, execution of the
injective mode.) It first selects random elements z1, z2, . . . , zn ∈R Zp, then computes
a function index as

C2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c1,1 · · · c1,n
...
. . .
...

cn,1 · · · cn,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cz1
1 · τ · · · czn

1
...
. . .

...
cz1

n · · · czn
n · τ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
{

ci, j = c
z j

i · τ if i = j,
ci, j = c

z j

i otherwise.

The function index consists of (C1,C2). A trapdoor consists of the random elements
z = (z1, . . . , zn).

– Evaluation algorithm. An evaluation algorithm LossyEval takes as input
(C1,C2, x), where (C1,C2) is a function index, and x = (x1, . . . , xn) ∈ {0, 1}n is
an n-bit input interpreted as a vector.

It evaluates the linear product of x and C1 : That is, y1 = xC1 =
∏n

i=1(ci)xi .Next,
it evaluates the product of x and C2: That is, y2 = xC2 = (

∏n
i=1 cxi

i,1,· · · ,
∏n

i=1 cxi
i,n)=

((
∏n

i=1 cz1 xi
i)τx1 ,· · · ,(

∏n
i=1 czn xi

i)τxn). Finally, it outputs (y1, y2).
– Inversion algorithm. An inversion algorithm LossyInv takes as input (td, τ, (y1, y2)),

where trapdoor information td consists of z = (z1, . . . , zn), τ, which is an element
in G\{e}, and y2 = (y2,1, · · · , y2,n) ∈ G1×n . It computes that w = (y2,1 · y−z1

1 , y2,2 ·
y−z2

1 , · · · , y2,n · y−zn

1). Then, if j-th element of w is the identity element of G, then it
sets x j = 0, else if j-th element of w is τ then it sets x j = 1; otherwise, it output ⊥.
Finally, it outputs x = (x1, x2, . . . , xn).

We can show that the above four algorithms satisfy injectivity, (n, n − log p)-lossiness,
and indistinguishability based on the DDH assumption. These proofs are nearly similar
to the proof of Peikert and Waters [17]; therefore, we omit them in this paper.

Next, we show that the above algorithms satisfy the definition of re-applicable
LTDFs.

276 T. Matsuda, R. Nishimaki, and K. Tanaka

Re-applying with respect to function indices: Let τi and τ j be tags different from τlos

in T . Let (si, tdi) and (s j, td j) be outputs from LossyGen(τi) and LossyGen(τ j).
We now define an algorithm ReIndex, which takes tdi and td j as inputs and outputs
si↔ j = td j − tdi = (z′1 − z1, z′2 − z2, . . . , z′n − zn) = (z1,i↔ j, . . . , zn,i↔ j).

We next define an algorithm ReEval. The algorithm ReEval takes as in-
put (si↔ j, (y1, y2)), where (y1, y2) = (y1, (y2,1, y2,2, · · · , y2,n)) is an output from
LossyEval(si, x). It computes that y′2 = (y′2,1, y

′
2,2, . . . , y

′
2,n) = (y2,1 · y

z1,i↔ j

1 , y2,2 ·
y

z2,i↔ j

1 , · · · , y2,n · y
zn,i↔ j

1). Then, it outputs (y1, y′2).

For the above elements, we can describe that (y1, y2) = (g
∑n

i=1 xiri , (gz1
∑n

i=1 xiri ·
τx1

i , · · · , g
zn
∑n

i=1 xiri ·τxn
i)) and (y1, y′2) = (g

∑n
i=1 xiri , (gz′1

∑n
i=1 xiri ·τx1

i , · · · , g
z′n
∑n

i=1 xiri ·τxn
i)).

Therefore, we have w′ = (τx1
i , · · · , τ

xn
i) in the algorithm LossyInv(td j, τi, (y1, y′2)).

That is, we obtain that x = LossyInv(td j, τi, (y1, y′2)).
Generating proper outputs: Let τi, τ j, (si, tdi), (s j, td j), si↔ j x, and (y1, y′2) be defined

similarly to the above paragraph. We call (y1, y′2) a proper output for x, τi, τ j, and
s j, if they satisfy (y1, y′2) = ReEval(si↔ j, LossyEval(si, x)) for some si made from
a tag τi and si← j. We can uniquely describe a proper (y1, y′2) as (g

∑n
i=1 xiri , (gz′1

∑n
i=1 xiri ·

τx1
i , · · · , g

z′n
∑n

i=1 xiri · τxn
i)) from the above algorithms, where td j = (z′1, · · · , z

′
n).

We define a new algorithm PrivReEval, which takes x, τi, τ j, and s j as input,
where x = (x1, · · · , xn) is n-bits input. It computes (ŷ1, ŷ2) ← LossyEval(s j, x).
It makes ŷ′2 from ŷ2 in the following process: for each i ∈ [1, n], if xi = 1 then
ŷ′2,i ← ŷ2,iτ

−1
j τi, else ŷ2,i ← ŷ2,i, where ŷ2,i and ŷ′2,i are the i-th elements of ŷ2

and ŷ′2. Finally it outputs (ŷ1, ŷ′2). The algorithm PrivReEval(x, τi, τ j, s j) always
computes a proper output for x, τi, τ j, and s j. The reason is that, from an out-
put (ŷ1, ŷ2) = (g

∑n
i=1 xiri , (gz′1

∑n
i=1 xiri · τx1

j , · · · , g
z′n
∑n

i=1 xiri · τxn
j)), we verify (y1, ŷ′2) =

(g
∑n

i=1 xiri , (gz′1
∑n

i=1 xiri · τx1
i , · · · , g

z′n
∑n

i=1 xiri · τxn
i)) that τ j is replaced with τi. This

means that PrivReEval(·, τi, τ j, s j) is equivalent to ReEval(si↔ j, LossyEval(si, ·))
as a function.

Transitivity: We define an algorithm Trans, which takes si↔ j, si↔k and outputs si↔k −
si↔ j = (tdk − tdi)− (td j − tdi) = tdk − td j = s j↔k. That is, Trans(si↔ j, si↔k)→ s j↔k.

Statistical indistinguishability of the fake key: Now, we define an algorithm
FakeKey, which takes a function index si and a tag τi and makes a fake index s j, a
fake re-key si↔ j, and a fake tag τ j. The fake key generator FakeKey takes as input
si = (C1,C2) and τi ∈ G, where (C1,C2) is a function index. It then selects a random
element t ∈ G. It next chooses a random number si↔ j = (z1,i↔ j, . . . , zn,i↔ j) ∈R Z

n
p,

and makes a new matrix C′2 as follows.

C′2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c1,1 · c

z1,i↔ j

1 · t · · · c1,n · c
zn,i↔ j

1
...

. . .
...

cn,1 · c
z1,i↔ j
n · · · cn,n · c

zn,i↔ j
n · t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
{

c′k,
 = ck,
 · c
zl,i↔ j

k · t if k =
,
c′k,
 = ck,
 · c

zl,i↔ j

k otherwise,

where ck is the k entry of C1, and ck,l is the (k, l) entry of C2. Finally, it output
s j = (C1,C′2), si↔ j = (z1,i↔ j, . . . , zn,i↔ j), and τ j = τi · t.

From the abode description, outputs of FakeKey(si, τi) and the proper index have
the same distribution. The reason is that, when si and τi is made from the proper

CCA Proxy Re-Encryption without Bilinear Maps in the Standard Model 277

way, we can describe C′2 by

C′2=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
gr1(z1+z1,i↔ j) · τi · t · · · gr1(zn+zn,i↔ j)

...
. . .

...
grn(z1+z1,i↔ j) · · · grn(zn+zn,i↔ j) · τi · t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠=
{

c′k,
 = grk(z
+z
,i↔ j) · τi · t if k =
,
c′k,
 = grk(z
+z
,i↔ j) otherwise,

where (z1, · · · , zn) is the trapdoor of si. This means that, conditioned on
t � (τi)−1, the distribution of {τi, τ j, (si, td j), (s j, td j), si↔ j} is identical to
{τi, τ j, LossyGen(τi), LossyGen(τ j),ReIndex(tdi, td j)}. That is, distributions be-
tween them are statistically indistinguishable since the probability of t = (τi)−1

is 1/p.
Generation of injective functions from lossy functions: Next, we consider FakeKey

which si = (C1,C2) is output from LossyGen(τlos). In this case, we can describe
C′2 as

C′2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
gr1(z1+z1,i↔ j) · t · · · gr1(zn+zn,i↔ j)

...
. . .

...
grn(z1+z1,i↔ j) · · · grn(zn+zn,i↔ j) · ·t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where (z1, · · · , zn) are logarithms between C1 and C2. Then, assuming that t � e,
LossyEval(s j, ·) represents an injective function fs j ,t. This probability is 1 − 1/p
which is overwhelming in the security parameter λ.

References

1. Ateniese, G., Benson, K., Hohenberger, S.: Key-Private Proxy Re-encryption. In: Fischlin,
M. (ed.) RSA Conference 2009. LNCS, vol. 5473, pp. 279–294. Springer, Heidelberg (2009)

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-Encryption Schemes
with Applications to Secure Distributed Storage. In: Network and Distributed System Secu-
rity Symposium, NDSS. The Internet Society (2005)

3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and Impossibility Results for Encryption and
Commitment Secure under Selective Opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

4. Blaze, M., Bleumer, G., Strauss, M.: Divertible Protocols and Atomic Proxy Cryptogra-
phy. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer,
Heidelberg (1998)

5. Boldyreva, A., Fehr, S., O’Neill, A.: On Notions of Security for Deterministic Encryption,
and Efficient Constructions without Random Oracles. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

6. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In: Ning, P.,
di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer and Communi-
cations Security, Alexandria, Virginia, USA, Octorber 2007, pp. 185–194. ACM, New York
(2007)

7. Deng, R.H., Weng, J., Liu, S., Chen, K.: Chosen-Ciphertext Secure Proxy Re-encryption
without Pairings. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS,
vol. 5339, pp. 1–17. Springer, Heidelberg (2008)

8. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More Constructions of Lossy
and Correlation-Secure Trapdoor Functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010)

278 T. Matsuda, R. Nishimaki, and K. Tanaka

9. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely Obfuscating Re-
encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252. Springer,
Heidelberg (2007)

10. Ivan, A., Dodis, Y.: Proxy Cryptography Revisited. In: NDSS, The Internet Society (2003)
11. Khurana, H., Heo, J., Pant, M.: From Proxy Encryption Primitives to a Deployable Secure-

Mailing-List Solution. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307,
pp. 260–281. Springer, Heidelberg (2006)

12. Libert, B., Vergnaud, D.: Unidirectional Chosen-Ciphertext Secure Proxy Re-encryption. In:
Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer, Heidelberg (2008)

13. Mambo, M., Okamoto, E.: Proxy Cryptosystems: Delegation of the Power to Decrypt Ci-
phertexts. IEICE transactions on fundamentals of electronics, Communications and computer
sciences 80(1), 54–63 (1997)

14. Mol, P., Yilek, S.: Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions. In:
PKC (2010)

15. Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen Cipher-
text Attacks. In: STOC, New Orleans, Louisiana, USA, May 1990, pp. 427–437. ACM,
New York (1990)

16. Nishimaki, R., Fujisaki, E., Tanaka, K.: Efficient Non-interactive Universally Compos-
able String-Commitment Schemes. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS,
vol. 5848, pp. 3–18. Springer, Heidelberg (2009)

17. Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. In: Ladner, R.E.,
Dwork, C. (eds.) STOC, Victoria, British Columbia, Canada, May 2008, pp. 187–196. ACM,
New York (2008)

18. Rosen, A., Segev, G.: Efficient Lossy Trapdoor Functions based on the Composite Residuos-
ity Assumption. Cryptology ePrint Archive, Report 2008/134 (2008),
http://eprint.iacr.org/

19. Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products. In: Reingold, O.
(ed.) Theory of Cryptography. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)

20. Shao, J., Cao, Z.: CCA-Secure Proxy Re-encryption without Pairings. In: Jarecki, S., Tsudik,
G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 357–376. Springer, Heidelberg (2009)

21. Taban, G., Cárdenas, A.A., Gligor, V.D.: Towards a secure and interoperable DRM archi-
tecture. In: Yung, M., Kurosawa, K., Safavi-Naini, R. (eds.) Digital Rights Management
Workshop, pp. 69–78. ACM, New York (2006)

22. Weng, J., Chow, S.S., Yang, Y., Deng, R.H.: Efficient Unidirectional Proxy Re-Encryption.
Cryptology ePrint Archive, Report 2009/189 (2009), http://eprint.iacr.org/

23. Zhang, X., Chen, M.-R., Li, X.: Comments on Shao-Cao’s Unidirectional Proxy Re-
Encryption Scheme from PKC 2009. Cryptology ePrint Archive, Report 2009/344 (2009),
http://eprint.iacr.org

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org

More Constructions of Lossy and
Correlation-Secure Trapdoor Functions

David Mandell Freeman1, Oded Goldreich2, Eike Kiltz3,
Alon Rosen4, and Gil Segev2

1 Stanford University, USA
dfreeman@cs.stanford.edu

2 Weizmann Institute of Science, Rehovot 76100, Israel
{oded.goldreich,gil.segev}@weizmann.ac.il

3 CWI, Netherlands
kiltz@cwi.nl

4 Efi Arazi School of Computer Science, Herzliya Interdisciplinary Center (IDC),
Herzliya 46150, Israel
alon.rosen@idc.ac.il

Abstract. We propose new and improved instantiations of lossy trap-
door functions (Peikert and Waters, STOC ’08), and correlation-secure
trapdoor functions (Rosen and Segev, TCC ’09). Our constructions widen
the set of number-theoretic assumptions upon which these primitives can
be based, and are summarized as follows:

– Lossy trapdoor functions based on the quadratic residuosity assump-
tion. Our construction relies on modular squaring, and whereas
previous such constructions were based on seemingly stronger as-
sumptions, we present the first construction that is based solely on
the quadratic residuosity assumption.

– Lossy trapdoor functions based on the composite residuosity assump-
tion. Our construction guarantees essentially any required amount
of lossiness, where at the same time the functions are more efficient
than the matrix-based approach of Peikert and Waters.

– Lossy trapdoor functions based on the d-Linear assumption. Our
construction both simplifies the DDH-based construction of Peikert
and Waters, and admits a generalization to the whole family of d-
Linear assumptions without any loss of efficiency.

– Correlation-secure trapdoor functions related to the hardness of syn-
drome decoding.

Keywords: Public-key encryption, lossy trapdoor functions, correlation-
secure trapdoor functions.

1 Introduction

In this paper, we describe new constructions of lossy trapdoor functions and
correlation-secure trapdoor functions. These primitives are strengthened variants
of the classical notion of trapdoor functions, and were introduced with the main

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 279–295, 2010.
c© International Association for Cryptologic Research 2010

280 D.M. Freeman et al.

goal of enabling simple and black-box constructions of public-key encryption
schemes that are secure against chosen-ciphertext attacks. At a high level, they
are defined as follows:

Lossy trapdoor functions [25]: A collection of lossy trapdoor functions con-
sists of two families of functions. Functions in one family are injective and
can be efficiently inverted using a trapdoor. Functions in the other family
are “lossy,” which means that the size of their image is significantly smaller
than the size of their domain. The only computational requirement is that a
description of a randomly chosen function from the family of injective func-
tions is computationally indistinguishable from a description of a randomly
chosen function from the family of lossy functions.

Correlation-secure trapdoor functions [26]: The classical notion of a one-
way function asks for a function that is efficiently computable but is hard
to invert given the image of a uniformly chosen input. Correlation security
generalizes the one-wayness requirement by considering k-wise products of
functions and any specified input distribution, not necessarily the uniform
distribution. Given a collection of functions F and a distribution C over k-
tuples of inputs, we say that F is secure under C-correlated inputs if the
function (f1(x1), . . . , fk(xk)) is one-way, where f1, . . . , fk are independently
chosen from F and (x1, . . . , xk) are sampled from C.

Lossy trapdoor functions were introduced by Peikert and Waters [25], who
showed that they imply fundamental cryptographic primitives, such as trap-
door functions, collision-resistant hash functions, oblivious transfer, and CCA-
secure public-key encryption. In addition, lossy trapdoor functions have already
found various other applications, including deterministic public-key encryption
[3], OAEP-based public-key encryption [17], “hedged” public-key encryption for
protecting against bad randomness [1], security against selective opening at-
tacks [2], and efficient non-interactive string commitments [22].

The notion of correlation security was introduced by Rosen and Segev [26],
who showed that any collection of injective trapdoor functions that is one-way
under a natural input distribution can be used to construct a CCA-secure public-
key encryption scheme.1 They showed that any collection of lossy trapdoor func-
tions that are sufficiently lossy is in fact also correlation-secure. This result was
recently refined by Mol and Yilek [19] who showed that even lossiness of any
polynomial fraction of a single bit suffices.

These applications motivate us to investigate new constructions of lossy and
correlation-secure functions. Such constructions would enable us to widen the
basis upon which one can achieve the above cryptographic tasks in a simple and
modular way.

1 Any distribution where (x1, . . . , xk) are (1 − ε)k-wise independent, for a constant
ε < 1, can be used in their framework. In particular, this includes the case where x1

is uniformly distributed and x1 = · · · = xk.

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 281

1.1 Our Contributions

We propose new and improved constructions of lossy and correlation-secure trap-
door functions based on well-established number-theoretic assumptions (some of
which were previously not known to imply either of the primitives). By directly
applying the results of [25,26,19], we obtain new CCA-secure public-key encryp-
tion schemes based on these assumptions. Concretely, we present the following
constructions:

1. Lossy trapdoor permutations based on the quadratic residuosity assumption.
Our construction relies on Rabin’s modular squaring function and is based
solely on the quadratic residuosity assumption. More precisely, the function
is defined as f(x) = x2 · δr,s(x) mod N , where N = PQ is an RSA modulus
and δr,s(·) is a function indexed by two public elements r, s ∈ ZN serving
two independent purposes. First, it extends the modular squaring function
to a permutation over ZN . Second, f(x) loses the information about the sign
of x if and only if s is a quadratic residue. Therefore, under the quadratic
residuosity assumption f has one bit of lossiness. We note that although a
function with only one bit of lossiness (or, more generally, with only a non-
negligible amount of lossiness) is not necessarily a (strong) one-way function,
it nevertheless can be used as a building block for constructing even a CCA-
secure public-key encryption scheme (see [19,26]).

2. Lossy trapdoor functions based on the composite residuosity assumption. Our
construction is based on the Damg̊ard-Jurik encryption scheme [8] with ad-
ditional insights by Damg̊ard and Nielsen [9,10]. The Damg̊ard-Jurik scheme
is based on computations in the group ZNs+1 , where N = PQ is an RSA
modulus and s ≥ 1 is an integer (it contains Paillier’s encryption scheme [23]
as a special case by setting s = 1). At a high level, each function is described
by a pair (pk, c), where pk is a public key for the encryption scheme, and c is
either an encryption of 1 (injective mode) or an encryption of 0 (lossy mode).
By using the homomorphic properties of the encryption scheme, given such
a ciphertext c and an element x, it is possible to compute either an encryp-
tion of x in the injective mode, or an encryption of 0 in the lossy mode. We
note that this construction was concurrently and independently proposed by
Boldyreva et al. [3]. We also give an “all-but-one” version of the construction.

3. Lossy trapdoor functions based on the d-Linear assumption. Our construction
both simplifies and generalizes the DDH-based construction of Peikert and
Waters [25, Section 5]. (Recall that DDH is the 1-Linear assumption.) Let
G be a finite group of order p and choose an n× n matrix M over Fp that
has either rank d (lossy mode) or rank n (injective mode). We “encrypt”
M = (aij) as the matrix gM = (gaij) ∈ Gn×n, where g is a generator of G.
If !x is a binary vector of length n, then given gM we can efficiently evaluate
the function fM (!x) = gM�x ∈ Gn. If M has rank n, then given M we can
efficiently invert fM on the image of {0, 1}n. On the other hand, if M has
rank d and p < 2n/d, then f is lossy. The d-Linear assumption implies that
the lossy and injective modes cannot be efficiently distinguished. We also give
an “all-but-one” version of the function fM based on the DDH assumption.

282 D.M. Freeman et al.

4. Correlation-secure trapdoor functions based on the hardness of syndrome
decoding. Our construction is based on Niederreiter’s coding-based encryp-
tion system [21] which itself is the dual of the McEliece encryption sys-
tem [18]. Our trapdoor function is defined as f(x) = Hx, where H is a
binary (n − k) × n matrix (of a certain distribution that allows for embed-
ding a trapdoor) and x is bit string of small Hamming weight. We show that
the function’s correlation security is directly implied by a result of Fischer
and Stern [12] about the pseudorandomness of the function f . Interestingly,
the related McEliece trapdoor function (which can be viewed as the dual
of the Niederreiter function) is not correlation-secure.2 It is however pos-
sible to extend the framework of correlation security in a natural way to
obtain a direct construction of a CCA-secure encryption scheme from the
McEliece trapdoor function. This was recently demonstrated by Dowsley et
al [11] (who proposed the first coding-based encryption scheme that is CCA-
secure in the standard model) and, for the related lattice case, independently
by Peikert [24] and Goldwasser and Vaikuntanathan [14]. Our contribution
is to show that the Niederreiter function admits a simple construction of
correlation-secure trapdoor functions based on the same security assump-
tions as [11].3 The resulting CCA-secure encryption scheme is as efficient as
the one from [11].

1.2 Related Work

Most of the known constructions and applications of lossy and correlation-secure
trapdoor functions are already mentioned above; here we include a few more.
Besides their construction based on DDH, Peikert and Waters [25] also present
a construction of lossy trapdoor functions based on the worst-case hardness of
lattice problems. The construction does not enjoy the same amount of lossiness as
their DDH-based one, but it still suffices for their construction of a CCA-secure
public-key encryption scheme. The worst-case hardness of lattice problems is also
used by Peikert [24] and by Goldwasser and Vaikuntanathan [14] to construct
a CCA-secure encryption scheme using a natural generalization of correlation-
secure trapdoor functions.

Kiltz et al. [17] show that the RSA trapdoor permutation is lossy under the Φ-
Hiding assumption of Cachin et al. [6]. (Concretely, it has log2(e) bits of lossiness,
where e is the public RSA exponent.) Furthermore, they propose multi-prime
hardness assumptions under which RSA has greater lossiness.

In concurrent and independent work, Mol and Yilek [19] propose a lossy trap-
door function based on the modular squaring function. Though this construction
2 The McEliece trapdoor function is defined as f ′

H(x, e) := Hx ⊕ e, where H is a
binary k × n matrix, x is a k-bit string and e is a error vector of small Hamming
weight. Given H1, H2 and two evaluations y1 = H1x ⊕ e and y2 = H2x ⊕ e one can
reconstruct the unique x by solving (H1 ⊕ H2)x = y1 ⊕ y2 for x.

3 We remark that our construction of a correlation-secure trapdoor function from
coding theory does not carry over to the lattice case since the “dual” of the one-way
function used in [24,14] is not injective.

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 283

is related to ours, its security is based on the stronger assumption that a ran-
dom two-prime RSA modulus is indistinguishable from a random three-prime
RSA modulus. In another concurrent and independent work, Hemenway and
Ostrovsky [15] generalize the framework of Peikert and Waters [25] to rely on
any homomorphic hash proof system, a natural generalization of hash proof sys-
tems introduced by Cramer and Shoup [7]. Hemenway and Ostrovsky then show
that homomorphic hash proof systems can be constructed based on either the
quadratic residuosity assumption or the composite residuosity assumption. Their
approach is significantly different than ours, and the resulting constructions seem
incomparable when considering the trade-off between efficiency and lossiness.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we review the
definitions of lossy and correlation-secure trapdoor functions. In Sections 3, 4,
and 5 we present our constructions that are based on the quadratic residuosity
assumption, the d-Linear assumption, and the hardness of syndrome decoding,
respectively. Due to space constraints, the construction based on the composite
residuosity assumption is only given in the full version [13].

2 Preliminaries

2.1 Lossy Trapdoor Functions

A collection of lossy trapdoor functions consists of two families of functions. Func-
tions in one family are injective and can be efficiently inverted using a trapdoor.
Functions in the other family are “lossy,” which means that the size of their im-
age is significantly smaller than the size of their domain. The only computational
requirement is that a description of a randomly chosen function from the family
of injective functions is computationally indistinguishable from a description of
a randomly chosen function from the family of lossy functions.

Definition 2.1 (Lossy trapdoor functions). A collection of (n, �)-lossy trap-
door functions is a 4-tuple of probabilistic polynomial-time algorithms (G0,G1,F,
F−1) such that:

1. Sampling a lossy function: G0(1n) outputs a function index σ ∈ {0, 1}∗.
2. Sampling an injective function: G1(1n) outputs a pair (σ, τ) ∈ {0, 1}∗×
{0, 1}∗. (Here σ is a function index and τ is a trapdoor.)

3. Evaluation of lossy functions: For every function index σ produced by
G0, the algorithm F(σ, ·) computes a function fσ : {0, 1}n
→ {0, 1}∗, whose
image is of size at most 2n−�.

4. Evaluation of injective functions: For every pair (σ, τ) produced by G1,
the algorithm F(σ, ·) computes an injective function fσ : {0, 1}n
→ {0, 1}∗.

5. Inversion of injective functions: For every pair (σ, τ) produced by G1 and
every x ∈ {0, 1}n, we have F−1(τ,F(σ, x)) = x.

284 D.M. Freeman et al.

6. Security: The two ensembles {σ : σ ← G0(1n)}n∈N and {σ : (σ, τ) ←
G1(1n)}n∈N are computationally indistinguishable.

Note that � can be a function of n. Note also that we do not specify the output
of F−1 on inputs not in the image of fσ.

A collection of all-but-one lossy trapdoor functions is a more general primitive.
Such a collection is associated with a set B, whose members are referred to as
branches. (If B = {0, 1} then we obtain the previous notion of lossy trapdoor
functions.) The sampling algorithm of the collection receives an additional pa-
rameter b∗ ∈ B, and outputs a description of a function f(·, ·) together with a
trapdoor τ and a set of lossy branches β. The function f has the property that
for any branch b �∈ β the function f(b, ·) is injective (and can be inverted using
τ), and the function f(b∗, ·) is lossy. Moreover, the description of f hides (in a
computational sense) the set of lossy branches β.

Our definition is slightly more general than that of Peikert and Waters [25,
Section 3.2], which allows only one lossy branch (i.e., β = {b∗}). We allow pos-
sibly many lossy branches (other than b∗), and require that given a description
of a function and b∗ it is computationally infeasible to find another lossy branch.
The proof of security of the Peikert-Waters CCA-secure public-key encryption
scheme [25, Section 4.3] can easily be adapted to our more general context.
(We are currently not aware of other applications of all-but-one lossy trapdoor
functions).

Definition 2.2 (All-but-one lossy trapdoor functions). A collection of
(n, �)-all-but-one lossy trapdoor functions is a 4-tuple of probabilistic polynomial-
time algorithms (B,G,F,F−1) such that:

1. Sampling a branch: B(1n) outputs a value b ∈ {0, 1}∗.
2. Sampling a function: For every value b produced by B(1n), the algorithm

G(1n, b) outputs a triple (σ, τ, β) ∈ {0, 1}∗× {0, 1}∗× {0, 1}∗ consisting of a
function index σ, a trapdoor τ , and a set of lossy branches β with b∗ ∈ β.

3. Evaluation of lossy functions: For every value b∗ produced by B(1n) and
for every (σ, τ, β) produced by G(1n, b∗), the algorithm F(σ, b∗, ·) computes a
function fσ,b∗ : {0, 1}n
→ {0, 1}∗, whose image is of size at most 2n−�.

4. Evaluation of injective functions: For any b∗ and b produced by B(1n)
and for every (σ, τ, β) produced by G(1n, b∗), if b �∈ β, then the algorithm
F(σ, b, ·) computes an injective function fσ,b : {0, 1}n → {0, 1}∗.

5. Inversion of injective functions: For any b∗ and b produced by B(1n) and
for every (σ, τ, β) produced by G(1n, b∗), if b �∈ β then we have

F−1(τ, b,F(σ, b, x)) = x.

6. Security: For any two sequences {(b∗n, bn)}n∈N
such that b∗n and bn are

distinct values in the image of B(1n), the two ensembles {σ : (σ, τ, β) ←
G(1n, b∗n)}n∈N and {σ : (σ, τ, β) ← G(1n, bn)}n∈N are computationally indis-
tinguishable.

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 285

7. Hiding lossy branches: Any probabilistic polynomial-time algorithm A
that receives as input (σ, b∗), where b∗ ← B(1n) and (σ, τ, β) ← G(1n, b∗),
has only a negligible probability of outputting an element b ∈ β \ {b∗} (where
the probability is taken over the randomness of B, G, and A).

2.2 Correlation-Secure Trapdoor Functions

A collection of efficiently computable functions is a pair of algorithms F = (G,F),
where G is a key-generation algorithm used for sampling a description of a func-
tion, and F is an evaluation algorithm used for evaluating a function on a given
input. The following definition formalizes the notion of a k-wise product, which
is a collection Fk consisting of all k-tuples of functions from F .

Definition 2.3 (k-wise product). Let F = (G,F) be a collection of efficiently
computable functions. For any integer k, we define the k-wise product Fk =
(Gk,Fk) as follows:

– The key-generation algorithm Gk on input 1n invokes k independent in-
stances of G(1n) and outputs (σ1, . . . , σk). That is, a function is sampled
from Fk by independently sampling k functions from F .

– The evaluation algorithm Fk on input (σ1, . . . , σk, x1, . . . , xk) invokes F to
evaluate each function σi on xi. I.e., Fk(σ1, . . . , σk, x1, . . . , xk) = (F(σ1, x1),
. . . ,F(σk, xk)).

A one-way function is a function that is efficiently computable but is hard to
invert given the image of a uniformly chosen input. This notion extends natu-
rally to one-wayness under any specified input distribution, not necessarily the
uniform distribution. Specifically, we say that a function is one-way with respect
to an input distribution I if it is efficiently computable but hard to invert given
the image of a random input sampled according to I.

In the context of k-wise products, a straightforward argument shows that for
any collection F which is one-way with respect to some input distribution I, the
k-wise product Fk is one-way with respect to the input distribution that samples
k independent inputs from I. The following definition formalizes the notion of
one-wayness under correlated inputs, where the inputs for Fk may be correlated.

Definition 2.4 (One-wayness under correlated inputs). Let F = (G,F)
be a collection of efficiently computable functions with domain {Dn}n∈N, and let
C be a distribution where C(1n) is distributed over Dk

n = Dn×· · ·×Dn for some
integer k = k(n). We say that F is one-way under C-correlated inputs if Fk is
one-way with respect to the input distribution C.

For the special case that distribution C is the uniform k-repetition distribution
(i.e., C samples a uniformly random input x ∈ Dn and outputs k copies of
x), we say that F is one-way under k-correlated inputs. Rosen and Segev [26,
Theorem 3.3] show that a collection of (n, �)-lossy trapdoor functions can be
used to construct a collection F that is one-way under k-correlated inputs for
any k < n−ω(log n)

n−� .

286 D.M. Freeman et al.

3 A Construction Based on the Quadratic Residuosity
Assumption

Our construction is based on the modular squaring function x
→ x2 mod N ,
where N = PQ for prime numbers P ≡ Q ≡ 3 mod 4 (i.e., Blum integers).
This is a 4-to-1 mapping on Z∗

N , and the construction is obtained by embedding
additional information in the output that reduces the number of preimages to
either 2 (these are the lossy functions) or 1 (these are the injective functions)
in a computationally indistinguishable manner. Although this results in one bit
of lossiness when the functions are defined over Z∗

N , all lossy trapdoor functions
in a collection are required to share the same domain (i.e., the domain should
depend only on the security parameter). We overcome this difficulty with a
simple domain extension, which results in lossiness of log2(4/3) bits.

For any odd positive integer N , we denote by JSN : Z → {−1, 0, 1} the Jacobi
symbol mod N . We define functions h, j : Z → {0, 1} as follows:

h(x) =
{

1, if x > N/2
0, if x ≤ N/2

j(x) =
{

1, if JSN (x) = −1
0, if JSN (x) = 0 or 1

We define h and j on ZN by representing elements of ZN as integers between 0
and N − 1.

Fact 3.1 Let N = PQ where P ≡ Q ≡ 3 mod 4, and let y ∈ Z∗
N be a

quadratic residue. Denote by {±x0,±x1} the distinct solutions of the equation
x2 = y mod N . Then, JSP (−1) = JSQ(−1) = −1 and therefore

1. JSN (x0) = JSN (−x0) and JSN (x1) = JSN (−x1).
2. JSN (x0) = −JSN (x1).

In particular, the four square roots of y take all four values of (h(x), j(x)).

The construction. We define a 4-tuple F = (G0,G1,F,F
−1) (recall Definition

2.1) as follows:

1. Sampling a lossy function: On input 1n the algorithm G0 chooses an n-
bit modulus N = PQ, where P ≡ Q ≡ 3 mod 4 are n/2-bit prime numbers.
Then it chooses random r ∈ Z∗

N such that JSN (r) = −1, and a random
s ∈ Z∗

N such that JSN(s) = 1 and s is a quadratic residue. The function
index is σ = (N, r, s).

2. Sampling an injective function: On input 1n the algorithm G1 chooses
an n-bit modulus N = PQ, where P ≡ Q ≡ 3 mod 4 are n/2-bit prime
numbers. Then it chooses random r ∈ Z∗

N such that JSN(r) = −1, and a
random s ∈ Z∗

N such that JSN (s) = 1 and s is a quadratic non-residue. The
function index is σ = (N, r, s), and the trapdoor is τ = (P,Q).

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 287

3. Evaluation: Given a function index σ = (N, r, s) and x ∈ {0, 1}n, the
algorithm F interprets x as an integer in the set {1, . . . , 2n} and outputs

fN,r,s(x) =
{
x2 · rj(x) · sh(x) mod N, if 1 ≤ x < N
x, if N ≤ x ≤ 2n

4. Inversion: Given a description of an injective function σ = (N, r, s) together
with its trapdoor τ = (P,Q) and y = fN,r,s(x), the algorithm F−1 retrieves
x as follows. If N ≤ y ≤ 2n, then the algorithm outputs y. Otherwise,
(a) Find j(x) by computing JSN (fN,r,s(x)) (note that JSN (fN,r,s(x)) =

JSN (x)). Let y′ = yr−j(x).
(b) Find h(x) by checking whether y′ is a quadratic residue mod N (note

that h(x) = 1 if and only if y′ is not a quadratic residue). Let y′′ =
y′s−h(x).

(c) Find all square roots of y′′ in ZN , and output the one that agrees with
both j(x) and h(x). (We use Fact 3.1 if y′′ ∈ Z∗

N , and note that if
1 < gcd(y′′, N) < N , then y′′ has two square roots that are negatives of
each other.)

We now prove that the above construction is indeed lossy based on the quadratic
residuosity assumption. Let JN = {x ∈ Z∗

N : JSN (x) = 1}, and let QN be the
subgroup of squares in Z∗

N . Then the quadratic residuosity assumption states
that the two distributions obtained by sampling uniformly at random from QN

and from JN \ QN are computationally indistinguishable.

Theorem 3.2. Under the quadratic residuosity assumption, F is a collection of
(n, log2(4/3))-lossy trapdoor functions.

Proof. First, it follows from the correctness of the inversion algorithm that G1
outputs permutations on the set {1, . . . , 2n}. Next, we claim that G0 outputs
functions that are 2-to-1 on the set {1, . . . , N −1}. Suppose y ∈ QN . Since s is a
quadratic residue, Fact 3.1 implies that for each (η, ι) ∈ {0, 1}2 there is an xη,ι

satisfying
x2

η,ι = ys−η, h(xη,ι) = η, j(xη,ι) = ι.

Then for each η ∈ {0, 1} we have fN,r,s(xη,0) = y and fN,r,s(xη,1) = ry. Thus
each element in the setQN∪rQN has at least two preimages in Z∗

N , and since this
set has cardinality half that of Z∗

N we deduce that fN,r,s is 2-to-1 on Z∗
N . A similar

argument shows that every square in the group XP = {x ∈ ZN : gcd(x,N) = P}
has two preimages in XP , and the same for XQ. Since {1, . . . , N − 1} = Z∗

N ∪
XP ∪XQ, the function fN,r,s is 2-to-1 on this whole set.

Since N is an n-bit modulus (i.e., 2n−1 < N < 2n), the lossy functions are 2-to-
1 on at least half of their domain, which implies that their image is of size at most
3/4 · 2n = 2n−log2(4/3). In addition, descriptions of lossy functions and injective
functions differ only in the element s, which is a random element of the subgroup
of Z∗

N with Jacobi symbol 1 that is a quadratic residue in the lossy case and a
quadratic non-residue in the injective case. Therefore, the quadratic residuosity
assumption implies that lossy functions are computationally indistinguishable
from injective functions. ��

288 D.M. Freeman et al.

4 A Construction Based on the d-Linear Assumption

The d-Linear assumption [16,27] is a generalization of the decision Diffie-Hellman
assumption that may hold even in groups with an efficiently computable d-linear
map. The 1-Linear assumption is DDH, while the 2-Linear assumption is also
known as the Decision Linear assumption [4]. The assumption is as follows:

Definition 4.1. Let d ≥ 1 be an integer, and let G be a finite cyclic group of
order q. We say the d-Linear assumption holds in G if the distributions

{(g1, . . . , gd, g
r1
1 , . . . , g

rd

d , h, hr1+···+rd) : g1, . . . , gd, h
R← G, r1, . . . , rd

R← Zq} ,
{(g1, . . . , gd, g

r1
1 , . . . , g

rd

d , h, hs) : g1, . . . , gd, h
R← G, r1, . . . , rd, s

R← Zq}

are computationally indistinguishable.

For any d ≥ 1, the d-linear assumption implies the (d+1)-linear assumption [16,
Lemma 3].

Peikert and Waters [25, Section 5] give lossy and all-but-one lossy trapdoor
functions based on the DDH assumption. In the Peikert-Waters construction, the
function index is an ElGamal encryption of an n × n matrix M which is either
the zero matrix (lossy mode) or the identity matrix (injective mode) using a
finite cyclic group G of order p. The DDH assumption in G implies that these
two encryptions cannot be distinguished. The construction can be generalized to
d-linear assumptions using generalized ElGamal encryption, but such schemes
are less efficient since ElGamal based on the d-Linear assumption produces d+1
group elements per ciphertext (see e.g. [27]).

Our construction is based on the following basic observation from linear alge-
bra: if M is an n × n matrix over a finite field Fp and !x is a length-n column
vector, then the map fM : !x
→ M!x has image of size pRk(M). If we restrict
the domain to only binary vectors (i.e., those with entries in {0, 1}), then the
function fM is injective when Rk(M) = n, and its inverse can be computed by
f−1

M : !y
→ M−1!y. If on the other hand we have Rk(M) < n/ log2(p), then fM

is not injective even when the domain is restricted to binary vectors, since the
image is contained in a subgroup of size less than 2n.

By performing the above linear algebra “in the exponent” of a group of order
p, we can create lossy trapdoor functions based on DDH and the related d-Linear
assumptions. In particular, for any n the size of the function index is the same
for all d.

We will use the following notation: we let Fp denote a field of p elements and
Rkd(Fn×n

p) the set of n× n matrices over Fp of rank d. If we have a group G of
order p, an element g ∈ G, and a vector !x = (x1, . . . , xn) ∈ Fn

p , then we define
g�x to be the column vector (gx1 , . . . , gxn) ∈ Gn. If M = (aij) is an n× n matrix
over Fp, we denote by gM the n × n matrix over G given by (gaij). Given a
matrix M = (aij) ∈ Fn×n

p and a column vector g = (g1, . . . , gn) ∈ Gn, we define
gM by

gM =
(∏n

j=1 g
a1j

j , . . . ,
∏n

j=1 g
anj

j

)
.

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 289

Similarly, given a matrix S=(gij)∈Gn×n and a column vector !x=(x1, . . . , xn)∈
Fn

p , we define S�x by

S�x =
(∏n

j=1 g
xj

1j , . . . ,
∏n

j=1 g
xj

nj

)
.

With these definitions, we have (gM)�x = (g�x)M = g(M�x).

The construction. For any positive integer d and any real number ε ∈ (0, 1),
we define a 4-tuple F = (G0,G1,F,F

−1) (recall Definition 2.1) as follows:

1. Sampling a lossy function: On input 1n, the algorithm G0 chooses at
random a "εn/d#-bit prime p, a group G of order p, and a generator g of G.
Then it chooses a matrix M R← Rkd(Fn×n

p) and computes S = gM ∈ Gn×n.
The function index is σ = S.

2. Sampling an injective function: On input 1n, the algorithm G1 chooses
at random a "εn/d#-bit prime p, a group G of order p, and a generator g of G.
Then it chooses a matrix M R← Rkn(Fn×n

p) and computes S = gM ∈ Gn×n.
The function index is σ = S, and the trapdoor is τ = (g,M).

3. Evaluation: Given a function index S and x ∈ {0, 1}n, we interpret x as a
binary column vector !x = (x1, . . . , xn) ∈ Fn

2 . The algorithm F computes the
function fS(x) = S�x.

4. Inversion: Given a function index S, a trapdoor τ = (g,M), and a vector
g ∈ Gn, we define F−1(τ,g) as follows:
(a) Compute h = (h1, . . . , hn)← gM−1

.
(b) Let xi = logg(hi) for i = 1, . . . , n.
(c) Output !x = (x1, . . . , xn).

Theorem 4.1. Suppose εn > d. If the d-Linear assumption holds for G, then
the above family is a collection of (n, (1− ε)n)-lossy trapdoor functions.

Proof. We first note that in the lossy case, when M is of rank d, the image
of fS is contained in a subgroup of Gn of size pd < 2εn. The condition εn > d
guarantees p ≥ 3, so when M is of rank n the function fS is in fact injective. It
is straightforward to verify that the inversion algorithm performs correctly for
injective functions. Finally, by [20, Lemma A.1], the d-Linear assumption implies
that the matrix S when M is of rank n is computationally indistinguishable from
the matrix S when M is of rank d. ��

Note that the system’s security scales with the bit size of p, i.e., as εn/d. In
addition, note that the discrete logarithms in the inversion step can be performed
efficiently when !x is a binary vector. (Here we take advantage of the fact that
the output of F−1 is unspecified on inputs not in the image of F .)

We now describe the extension of the system to all-but-one lossy trapdoor
functions, in the case where the parameter d in the above construction is equal
to 1. Let In denote the n×n identity matrix. For any real number ε ∈ (0, 1), we
define a 4-tuple F = (G0,G1,F,F

−1) (recall Definition 2.2) as follows:

290 D.M. Freeman et al.

1. Sampling a branch: On input 1n, the algorithm B outputs a uniformly
distributed b ∈ {1, . . . , 2εn�}.

2. Sampling a function: On input 1n and a lossy branch b∗, the algorithm G
chooses at random a "εn#-bit prime p, a group G of order p, and a generator
g of G. Then it chooses a matrix A R← Rk1(Fn×n

p) Let M = A− b∗In ∈ Fn×n
p

and S = gM ∈ Gn×n. The function index is σ = S, the trapdoor is τ =
(g,M), and the set of lossy branches is β = {b∗, b∗ − Tr(A)}.

3. Evaluation: Given a function index S, a branch b, and an input x ∈ {0, 1}n,
we interpret x as a binary column vector !x = (x1, . . . , xn). The algorithm F
computes the function fS,b(!x) = S�x ∗ gb�x, where ∗ indicates the component-
wise product of elements of Gn.

4. Inversion: Given a function index S, a trapdoor τ = (g,M), a branch b,
and a vector g ∈ Gn, we define F−1(τ, b,g) as follows:
(a) If M + bIn is not invertible, output ⊥.
(b) Compute h = (h1, . . . , hn)← g(M+bIn)−1

.
(c) Let xi = logg(hi) for i = 1, . . . , n.
(d) Output !x = (x1, . . . , xn).

Theorem 4.2. Suppose εn > 1. If the DDH assumption holds for G, then the
above family is a collection of (n, (1− ε)n)-all-but-one lossy trapdoor functions.

Proof. We first observe that if A is the rank 1 matrix computed by G(1n, b∗),
then

fS,b(!x) = g(A−(b∗−b)In)�x. (4.1)

We now verify each property of Definition 2.2. Properties (1) and (2) are imme-
diate. To verify property (3), note that (4.1) implies that fS,b∗(!x) = gA�x. Since
A has rank 1, the image of fS,b∗ is contained in a subgroup of Gn of size p < 2εn.

To check property (4), we observe that the condition εn > 1 guarantees p ≥ 3,
so when A− (b∗ − b)In is invertible the function fS,b is injective. The condition
A−(b∗−b)In being not invertible is equivalent to (b∗−b) being an eigenvalue of A.
Since A has rank 1, its eigenvalues are 0 and Tr(A). Thus (b∗−b) is an eigenvalue
of A if and only if b ∈ β, and fS,b is injective for all b �∈ β. It is straightforward
to verify that the inversion algorithm performs correctly whenever b �∈ β, so
property (5) holds.

Properties (6) and (7) follow from the DDH assumption for G. We show
property (6) by constructing a sequence of games:

Game0: This is the real security game. The adversary is given b0, b1, and gA−bωIn

for ω R← {0, 1} and A
R← Rk1(Fn×n

p), and outputs a bit ω′. The adversary
wins if ω′ = ω.

Game1: The same as Game0, except the challenge is gA′−bωIn for some full rank
matrix A′ R← Rkn(Fn×n

p).
Game2: The same as Game1, except the challenge is gU−bωIn for some uniform

matrix U R← Fn×n
p .

Game3: The same as Game2, except the challenge is gU .

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 291

Since the Game3 challenge is independent of ω, the advantage of any adversary
playing Game3 is zero. We now show that if the DDH assumption holds for G,
then for i = 0, 1, 2, no polynomial-time adversary A can distinguish Gamei from
Gamei+1 with non-negligible advantage.

i = 0: Any algorithm that distinguishes Game0 from Game1 can be used to distin-
guish the distributions {gA : A R← Rk1(Fn×n

p)} and {gA′
: A′ R← Rkn(Fn×n

p)}.
By [5, Lemma 1], any algorithm that distinguishes these distributions can
solve the DDH problem in G.

i = 1: Since the proportion of full-rank matrices to all matrices in Fn×n
p is (p−

1)/p, even an unbounded adversary can distinguish Game1 from Game2 with
probability at most 1/p.

i = 2: Since the matrix U is uniform in Fn×n
p , the matrix U−bωIn is also uniform

in Fn×n
p , so Game2 and Game3 are identical.

We conclude that for any b0, b1, no polynomial-time adversary can win Game0
with non-negligible advantage.

Finally, to demonstrate property (7) we show that any adversary A that pro-
duces an element of β given S and b∗ can be used to compute discrete logarithms
in G, contradicting the DDH assumption. Choose a matrix A R← Rk1(Fn×n

p), and
let A′(X) be the n × n matrix over Fp[X] that is the matrix A with the first
row multiplied by X . For any value X = t �= 0, the matrix A′(t) is uniformly
distributed in Rk1(Fn×n

p).
Let (g, gt) be a discrete logarithm challenge for G. For any b∗ we compute

the matrix S = gA′(t)−b∗In and give (S, b∗) to the adversary A. If the adversary
outputs b ∈ β with b �= b∗, then we can compute Tr(A′(t)) since this is the only
nonzero eigenvalue of A′(t). If aii is the ith diagonal entry of A, this gives us
an equation

a11t+ a22 + · · ·+ ann = λ. (4.2)

Since a11 = 0 with probability 1/p, we can solve for t with all but negligible
probability. ��

If we choose any integer d ≥ 1 and repeat the above construction with p a
"εn/d#-bit prime and A a rank d matrix, then we expect to obtain an all-but-
one lossy trapdoor function under the d-Linear assumption. Indeed, the proofs
of properties (1)–(6) carry through in a straightforward way. However, the above
proof of property (7) does not seem to generalize. In particular, the generalization
of (4.2) is the equation det(A′(t)−λIn) = 0, which can be written as ut+ v = 0
for some (known) u, v ∈ Fp. When d = 1 the element u = a11 is independent
of λ, so we can conclude that it is nonzero with high probability; however when
d ≥ 2 this is not the case. We thus leave as an open problem the completion of
the proof for d ≥ 2.

5 Correlated Input Security from Syndrome Decoding

Our construction is based on Niederreiter’s coding-based encryption system [21]
which itself is the dual of the McEliece encryption system [18].

292 D.M. Freeman et al.

Let 0 < ρ = ρ(n) < 1 and 0 < δ = δ(n) < 1/2 be two functions in the
security parameter n. We set the domain Dn,δ to be the set of all n-bit strings
with Hamming weight δn. Note that Dn is efficiently samplable (see e.g. [12]).
The Niederreiter trapdoor function F = (G,F,F−1) is defined as follows.

– Key generation: On input 1n the algorithm G chooses at random a non-
singular binary ρn×ρn matrix S, a (n, n−ρn, δn)-linear binary Goppa code
capable of correcting up to δn errors (given by its ρn×n binary parity check
matrix G), and a n×n permutation matrix P . It sets H := SGP , which is a
binary ρn×n matrix. The description of the function is σ = H , the trapdoor
is τ = (S,G, P).

– Evaluation: Given a description H of a function and x ∈ {0, 1}n with
Hamming weight δn, the algorithm F computes the function fH(x) = Hx ∈
{0, 1}ρn.

– Inversion: Given the trapdoor (S,G, P) and y = Hx, the algorithm F−1

computes S−1y = GPx, applies a syndrome decoding algorithm for G to
recover ŷ = Px, and computes x = P−1ŷ.

The Niederreiter trapdoor function can be proved one-way under the indistin-
guishability and syndrome decoding assumptions which are indexed by the pa-
rameters 0 < ρ < 1 and 0 < δ < 1/2.

Indistinguishability assumption. The binary ρn × n matrix H output by
G(1n) is computationally indistinguishable from a uniform matrix of the
same dimensions.

Syndrome decoding assumption. The collection of functions which is de-
fined as fU (x) := Ux for a uniform ρn × n binary matrix U is one-way on
domain Dn,δ.

Choosing the weight δ to be close to the Gilbert-Warshamov bound is commonly
believed to give hard instances for the syndrome decoding problem. The Gilbert-
Warshamov bound for a (n, k, δn) linear code with δ < 1/2 is given by the
equation k/n ≤ 1 − H2(δ), where H2(δ) := −δ log2 δ − (1 − δ) log2(1 − δ). It
is therefore assumed that the syndrome decoding assumption holds for all 0 <
δ < 1/2 satisfying H2(δ) < ρ [12]. Note that one-wayness also implies that the
cardinality of Dn,δ is super-polynomial in n.

The following theorem was proved in [12].

Theorem 5.1 ([12]). If the syndrome decoding assumption holds for ρ̃ and δ
then the ensembles {(M,Mx) : M R← {0, 1}ρ̃n×n; x R← Dn,δ)}n∈N and {(M, y) :
M

R← {0, 1}ρ̃n×n; y R← {0, 1}ρ̃n}n∈N are computationally indistinguishable.

This theorem implies that the Niederreiter trapdoor function is one-way under
k-correlated inputs.

Theorem 5.2. Suppose ρ, δ, and k are chosen such that ρ̃ := ρk < 1, and the
indistinguishability and the syndrome decoding assumptions hold for parameters
ρ̃ and δ. Then the Niederreiter trapdoor function is one-way under k-correlated
inputs.

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 293

Proof. Fix a probabilistic polynomial-time adversary A that plays the security
game for one-wayness under k-correlated inputs. Define

ε = Pr[A(H1, . . . , Hk, H1(x), . . . , Hk(x)) = x],

where Hi
R← G(1n) and x R← Dn,δ. We now exchange all the matrices Hi for uni-

form matrices Ui of the same dimension. By the indistinguishability assumption
and a hybrid argument, we have that∣∣∣Pr[A(H1, . . . , Hk, H1(x), . . . , Hk(x)) = x]

− Pr[A(U1, . . . , Uk, U1(x), . . . , Uk(x)) = x]
∣∣∣ ∈ negl(n).

For ρ̃ := ρk, define the ρ̃n × n matrix U by concatenating the columns of the
matrices Ui. Then the distributions (U1, . . . , Uk, U1(x), . . . , Uk(x)) and (U,Ux)
are identical. Since H2(δ) ≤ ρ/k = ρ̃ we can apply Theorem 5.1 to obtain

|Pr[A(U,Ux) = x]− Pr[A(M,uρ̃n) = x]| ∈ negl(n),

where uρ̃n is a uniform bit-string in {0, 1}ρ̃n. Observing that Pr[A(U, uρ̃n) =
x] = 1/|Dn,δ| ∈ negl(n) (since the Niederreiter function is assumed to be one-
way) implies that ε is negligible. ��

We remark that the above proof implies that the Niederreiter trapdoor function
has linearly many hard-core bits, which greatly improves efficiency of the CCA-
secure encryption scheme obtained by using the construction from [26].

Acknowledgements. We thank Ivan Damg̊ard and Chris Peikert for useful
discussions. David Mandell Freeman’s research was conducted at CWI and Uni-
versiteit Leiden, Netherlands, and supported by a National Science Foundation
International Research Fellowship, with additional support from the Office of
Multidisciplinary Activities in the NSF Directorate for Mathematical and Physi-
cal Sciences. Oded Goldreich is partially supported by the Israel Science Founda-
tion (grant No. 1041/08). Eike Kiltz is supported by the research program Sen-
tinels. Sentinels is being financed by Technology Foundation STW, the Nether-
lands Organization for Scientific Research (NWO), and the Dutch Ministry of
Economic Affairs. Alon Rosen is partially supported by the Israel Science Foun-
dation (grant No. 334/08). Gil Segev is supported by the Adams Fellowship
Program of the Israel Academy of Sciences and Humanities.

References

1. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H.,
Yilek, S.: Hedged public-key encryption: How to protect against bad randomness.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer,
Heidelberg (2009)

294 D.M. Freeman et al.

2. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for en-
cryption and commitment secure under selective opening. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

3. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

5. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 108–125. Springer, Heidelberg (2008)

6. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

7. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

8. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001); Full version (with additional
co-author Nielsen, J. B.), available at
www.daimi.au.dk/~ivan/GenPaillier_finaljour.ps

9. Damg̊ard, I., Nielsen, J.B.: Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)

10. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

11. Dowsley, R., Müller-Quade, J., Nascimento, A.C.A.: A CCA2 secure public key
encryption scheme based on the McEliece assumptions in the standard model. In:
Fischlin, M. (ed.) RSA Conference 2009. LNCS, vol. 5473, pp. 240–251. Springer,
Heidelberg (2009)

12. Fischer, J.-B., Stern, J.: An efficient pseudo-random generator provably as secure as
syndrome decoding. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 245–255. Springer, Heidelberg (1996)

13. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. Cryptology ePrint Archive, Re-
port 2009/590 (2009), http://eprint.iacr.org/2009/590

14. Goldwasser, S., Vaikuntanathan, V.: New constructions of correlation-secure trap-
door functions and CCA-secure encryption schemes. Manuscript (2008)

15. Hemenway, B., Ostrovsky, R.: Lossy trapdoor functions from smooth homomorphic
hash proof systems. Electronic Colloquium on Computational Complexity, Report
TR09-127 (2009)

16. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

17. Kiltz, E., O’Neill, A., Smith, A.: Lossiness of RSA and the instantiability of OAEP.
Manuscript (2009)

18. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Prog. Rep., Jet Prop. Lab., 114–116 (January 1978)

www.daimi.au.dk/~ivan/GenPaillier_finaljour.ps
http://eprint.iacr.org/2009/590

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 295

19. Mol, P., Yilek, S.: Chosen-ciphertext security from slightly lossy trapdoor functions.
In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 296–311.
Springer, Heidelberg (2010), http://eprint.iacr.org/2009/524

20. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009),
Full version http://eprint.iacr.org/2009/105.

21. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory [Problemy Upravlenija i Teorii Informa-
cii] 15, 159–166 (1986)

22. Nishimaki, R., Fujisaki, E., Tanaka, K.: Efficient non-interactive universally com-
posable string-commitment schemes. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec
2009. LNCS, vol. 5848, pp. 3–18. Springer, Heidelberg (2009)

23. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer,
Heidelberg (1999)

24. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: 41st ACM Symposium on Theory of Computing, pp. 333–342 (2009)

25. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: 40th
ACM Symposium on Theory of Computing, pp. 187–196 (2008), Full version
http://eprint.iacr.org/2007/279

26. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Rein-
gold, O. (ed.) Theory of Cryptography. LNCS, vol. 5444, pp. 419–436. Springer,
Heidelberg (2009)

27. Shacham, H.: A Cramer-Shoup encryption scheme from the Linear assumption
and from progressively weaker Linear variants. Cryptology ePrint Archive, Report
2007/074 (2007), http://eprint.iacr.org/2007/074

http://eprint.iacr.org/2009/524
http://eprint.iacr.org/2009/105
http://eprint.iacr.org/2007/279
http://eprint.iacr.org/2007/074

Chosen-Ciphertext Security from
Slightly Lossy Trapdoor Functions

Petros Mol and Scott Yilek

Department of Computer Science & Engineering
University of California, San Diego

{pmol,syilek}@cs.ucsd.edu

Abstract. Lossy Trapdoor Functions (LTDFs), introduced by Peikert
and Waters (STOC 2008) have been useful for building many crypto-
graphic primitives. In particular, by using an LTDF that loses a (1 −
1/ω(log n)) fraction of all its input bits, it is possible to achieve CCA
security using the LTDF as a black-box. Unfortunately, not all candidate
LTDFs achieve such a high level of lossiness. In this paper we drastically
lower the lossiness required to achieve CCA security, showing that an
LTDF that loses only a noticeable fraction of a single bit can be used
in a black-box way to build CCA-secure PKE. To show our result, we
build on the recent result of Rosen and Segev (TCC 2009) that showed
how to achieve CCA security from functions whose products are one-
way on particular types of correlated inputs. Lastly, we give an example
construction of a slightly lossy TDF based on the assumption that it is
hard to distinguish the product of two primes from the product of three
primes.

1 Introduction

Lossy Trapdoor Functions (LTDFs), recently introduced by Peikert and Wa-
ters [15], have proven to be a useful tool both for giving new constructions of
traditional cryptographic primitives and also for constructing new primitives.
Specifically, Peikert and Waters used LTDFs to construct one-way injective
trapdoor functions, collision-resistant hash functions, CPA and CCA-secure
encryption1, and more. More recently, LTDFs were used to construct deter-
ministic PKE schemes secure in the standard model [3], as well as PKE schemes
secure under selective-opening attack [1].

Informally, an LTDF is an injective trapdoor function with a function de-
scription g that is (computationally) indistinguishable from the description ĝ
of another function that statistically loses information about its input. In other
words, the function ĝ is non-injective, with some images having potentially many
preimages. We say an LTDF g (computationally) loses � bits if the effective range
size of the indistinguishable function ĝ is at most a 1/2�-fraction of its domain

1 By CCA-secure we mean CCA2-secure. See [8] for a good overview of all the ways
currently used to achieve CCA security.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 296–311, 2010.
c© International Association for Cryptologic Research 2010

Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions 297

size. LTDFs allow a useful and simple proof technique: in the honest execution
of a protocol we use the injective function to get the correct functionality, while
in the proof the “challenge” given to an adversary will use the lossy function.
One can then do a statistical argument to complete the proof.

Using LTDFs and this proof technique, Peikert and Waters show that an
LTDF f with input size a polynomial n(λ) (where λ is the security parameter)
that loses ω(logλ) bits is one-way. This is easy to see since if an inverter is given
ĝ(x), where ĝ is the indistinguishable lossy function, then there are on average
2ω(log λ) possible preimages; thus the adversary has only a negligible probabil-
ity of outputting the correct one. Applying known results, these one-way TDFs
immediately give CPA secure encryption using generic hardcore predicates [7].
Additionally, Peikert and Waters go on to show that LTDFs admit simple hard-
core functions, resulting in efficient multi-bit encryption schemes.

To achieve CCA security from LTDFs, Peikert and Waters then show that any
LTDF with enough lossiness can be used to construct an all-but-one trapdoor
function (ABO), which can then be used to achieve CCA security. “Enough”
lossiness turns out to be almost all of the input bits, which can be difficult to
achieve. Peikert and Waters get enough lossiness from a DDH-based construc-
tion, however their lattice-based construction only loses a constant fraction of
the input bits which turns out to be insufficient for the general construction.
Thus, to get CCA security from lattice-based assumptions, they need to give a
direct construction of an ABO.

Since the original paper, more constructions of LTDFs have been proposed.
Rosen and Segev [20] and Boldyreva, Fehr, and O’Neill [3] both gave a construc-
tion based on the decisional composite residuosity (DCR) assumption, while
Kiltz, O’Neill, and Smith [9] show that the RSA trapdoor permutation is lossy
under the phi-hiding assumption of [4]. While the DCR-based LTDF has enough
lossiness to construct ABOs and achieve CCA security, RSA only loses a con-
stant fraction (less than one-half) of the input bits and thus cannot be used to
construct an ABO using the general construction.

Correlated Products. Rosen and Segev [21] recently generalized the ABO
technique for achieving CCA security by giving a sufficient, strictly computa-
tional assumption on the underlying TDFs. They called their notion one-wayness
under correlated products. It is well known that for a polynomially-bounded w,
sampling w functions independently from a family of one-way functions and
applying them to independent uniform inputs still results in a one-way func-
tion, and even amplifies the one-wayness. Rosen and Segev investigated the case
when the inputs are not necessarily independent and uniform, but are instead
correlated in some way. They went on to show how to get CCA security from
a function family that is one-way with respect to specific distributions Cw of w
correlated inputs. Specifically, the distributions they use have the property that
given any d < w of the inputs the entire input vector can be reconstructed. (We
call such distributions (d, w)-subset reconstructible; see Section 3 for details.)
The simplest such distribution happens when d = 1, which Rosen and Segev call

298 P. Mol and S. Yilek

the w-repetition distribution. In this case, independently sampled functions are
each applied to the same input2.

Of course, this notion is useful only if there exist TDFs that are one-way
under such correlations. Rosen and Segev show that LTDFs with enough lossiness
satisfy the requirements. The amount of lossiness they require turns out to be
approximately the same amount needed by Peikert and Waters to go from an
LTDF to an ABO. This amount, as we said, is more than any constant fraction
of the input bits, ruling out numerous LTDFs.

Our Results. We extend the results of [15] and [21] and show that only a
noticeable fraction of a single bit of lossiness is sufficient for building IND-CCA
secure encryption. Our results lower the required lossiness from a (1−1/ω(logλ))-
fraction of all the input bits to just a 1/ poly fraction of one bit. This solves
an open problem from (the most recent version [14] of) [15] and additionally
further confirms the usefulness of the correlated product formalization of Rosen
and Segev. Our result also immediately implies that the LTDF construction
based on the RSA function from [9] as well as the lattice-based construction
from [15] can now be used in a black-box way to achieve CCA security.

To achieve our result, we first prove a straightforward theorem bounding the
amount of lossiness required of an LTDF in order to argue that its w-wise product
is one-way with respect to a correlated input distribution Cw with min-entropy μ.
We then show that if we instantiate the error-correcting code in the Rosen-Segev
construction with Reed-Solomon codes and carefully choose the parameters, then
we can use a correlated input distribution Cw with enough min-entropy μ that
we only need an LTDF that loses about two bits. Since it is easy to amplify the
quantity of lossiness (not the rate), we can get an LTDF that loses two bits from
any LTDF that loses only a noticeable fraction of a bit.

Since we have significantly lowered the amount of lossiness needed for CCA
security, we hope that it will be possible to achieve CCA security via LTDFs
from a wider variety of assumptions. Towards this goal, we give an example of
how to build a slightly lossy TDF using an assumption from which it is not
clear how to build an LTDF with significantly more lossiness. Our LTDF is
based on modular squaring and it loses a constant fraction of one bit under the
assumption that it is hard to distinguish the product of two primes from the
product of three primes [2]. Our results described above immediately give us
CCA security from this assumption3. Interestingly, Freeman, Goldreich, Kiltz,
Rosen, and Segev [6] independently describe an LTDF that loses one bit under
the quadratic residuosity assumption. Our result allows them to achieve CCA
security from this slightly lossy TDF in a black-box way.

A Closer Look. To see why slightly lossy TDFs are sufficient for building
a variety of cryptographic primitives, let us first focus on building CPA-secure

2 Rosen and Segev focused on the w-repetition case in the proceedings version of their
paper [21]. See their full version [19] for details on the more general case.

3 It should be noted that this assumption is clearly stronger than other assumptions
from which we already know how to achieve CCA security (e.g., factoring [8]).

Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions 299

encryption. For simplicity, say that we have a family F of LTDFs with domain
{0, 1}n that (computationally) loses 1 bit. Now consider a new family of LTDFs
which is simply the w-wise product of F for w = poly(λ), where λ is the security
parameter. This means that to sample a function from the product family we
independently sample w functions from F ; the domain of the product family is
{0, 1}nw. It is easy to see that such a family computationally loses w = poly(λ)
bits and, applying the results of [15], is thus one-way. Applying generic hardcore
predicates, this immediately gives us a CPA-secure encryption scheme.

The Rosen-Segev encryption scheme is similar, but one important difference
is the input distribution to the function chosen from the product family is no
longer uniform over {0, 1}nw, but instead correlated (recall that it is what we
call (d, w)-subset reconstructible). This helps provide the ability to answer de-
cryption queries in the proof. Rosen and Segev focused on the case d = 1, which
means each of the w functions that make up the product function is applied to
the same input. If such functions are not very lossy, too much information about
the input will leak. We show that by choosing an appropriate error-correcting
code in the RS construction and by carefully setting the parameters, we can
instead set d large relative to w and thus get enough entropy in the input distri-
bution to argue one-wayness and achieve CCA security when using only slightly
lossy TDFs in the w-wise product function.

Open Directions. An interesting open question is whether we can achieve
CCA-security based on other hardness assumptions. For example, is it possible
to construct slightly lossy trapdoor functions from hardness assumptions from
which we don’t already know how to achieve CCA security? Another interesting
question is whether LTDFs with small amount of lossiness are sufficient for
constructing other primitives such as collision resistant hash functions. Lastly,
another challenging direction is developing techniques for amplifying the lossiness
rate, i.e., increase the lossiness to input-size ratio.

2 Preliminaries

Notation. Throughout the paper, λ denotes a security parameter. For a ran-
dom variable X , we let x←$X denote choosing a value uniformly at random
according to (the distribution of) X and assigning it to x. We say a function
μ(·) is negligible if μ(λ) ∈ λ−ω(1) and is noticeable if μ(λ) ∈ λ−O(1). We let
negl(λ) denote an arbitrary negligible function, poly(λ) a polynomially bounded
function and 1

poly(λ) denote an arbitrary noticeable function.

Probability Background. Let X,Y be two (discrete) random variables dis-
tributed over a countable set V according to DX and DY respectively. The sta-
tistical distance between X and Y (or between DX and DY) is defined as

Δ(X,Y) =
1
2

∑
v∈V

|Pr [X = v]− Pr [Y = v] |

For two random variable ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N indexed by
a (security) parameter λ, we say that X and Y are statistically indistinguishable

300 P. Mol and S. Yilek

(denoted X s≈ Y) ifΔ(Xλ, Yλ) = negl(λ). Likewise, X and Y are computationally
indistinguishable (denoted X c≈ Y) if

|Pr [A(Xλ) = 1]− Pr [A(Yλ) = 1] | = negl(λ)

for any PPT algorithm A (where the probability is taken over the randomness
of A and the random variables Xλ, Yλ).

For a random variable X taking values in a domain X , we define its min-
entropy as

H∞(X) = − log(max
x∈X

Pr [X = x]).

where maxx∈X Pr [X = x] = 2−H∞(X) denotes the predictability of the random
variable X.

Another useful notion of entropy is the average min-entropy (defined in [5])
of a random variable X (given Y) which is defined as follows:

H̃∞(X |Y) = − log
(

E
y←Y

[
2−H∞(X | Y =y)])

The average min-entropy expresses the average maximum probability of pre-
dicting X given Y. The following lemma gives a useful bound on the remaining
entropy of a random variable X conditioned on the values of side information.

Lemma 1 ([5], Lemma 2.2b). Let X,Y, Z be random variables such that Y
takes at most 2k values. Then

H̃∞(X | (Y, Z)) ≥ H̃∞((X,Y) | Z)− k ≥ H̃∞(X |Z)− k.
In particular, if X is independent of Z then H̃∞(X | (Y, Z)) ≥ H∞(X)− k.

Trapdoor Functions. A collection of injective trapdoor functions is a tuple
of PT algorithms F = (G,F, F−1) such that (probabilistic) algorithm G outputs
a pair (s, t) consisting of function index s and a corresponding trapdoor t. Deter-
ministic algorithm F , on input a function index s and x ∈ {0, 1}n outputs fs(x).
Algorithm F−1, given the trapdoor t, computes the inverse function f−1

s (·). Con-
sider a collection of injective trapdoor functions F with domain {0, 1}n(λ) and
let X(1λ) be a distribution over {0, 1}n(λ). We say F is one-way with respect to
X if for all PPT adversaries A and every polynomial p(·) it follows that for all
sufficiently large λ

Pr
[
A(1λ, s, F (s, x)) = F−1(t, F (s, x))

]
<

1
p(λ)

,

where (s, t)←$ G(1λ) and x←$X(1λ).
We say that F is (n(λ), �(λ))-lossy if there exists a PPT algorithm Ĝ that, on

input security parameter 1λ, outputs ŝ and t̂ such that

– The first outputs of G and Ĝ are computationally indistinguishable.
– For any (ŝ, t̂) outputted by Ĝ, the map F (ŝ, ·) has image size at most 2n−�.

We call � the lossiness.

We will sometimes call a TDF that is lossy a lossy trapdoor function (LTDF).

Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions 301

Public-Key Encryption. A public-key encryption scheme is a triple AE =
(K, E ,D) of PPT algorithms. The key generation algorithm K, on input the
security parameter 1λ, outputs a pair of keys (pk, sk). The encryption algorithm
E gets as input the public key pk and a message m ∈M (for some message space
M) and outputs a ciphertext c. The decryption algorithm D on input the secret
key sk and a ciphertext c, outputs a message m or ⊥ (failure). It is required
that Pr [D(sk, E(pk,m)) �= m] = negl(λ), where the probability is taken over
the randomness of K, E and D.

The strong notion of security for a public key cryptosystem AE = (K, E ,D)
we consider in this paper is indistinguishability of ciphertexts under a chosen
ciphertext attack (IND-CCA) [13,17]. We define IND-CCA security as a game
between and adversary A and an environment as follows. The environment runs
K(1n) to get a keypair (pk, sk) and flips a bit b. It gives pk to A. A outputs a
pair of messages m0,m1 ∈ M with |m0| = |m0|. The environment returns the
challenge ciphertext c←$ E(pk,mb) to A. Additionally, throughout the entire
game the adversary also has access to a decryption oracle Dec that, on input c,
outputs D(sk, c). The one restriction we place on the adversary is that it may
not query the challenge ciphertext to the decryption oracle, as this would lead
to a trivial win. At the end of the game the adversary A returns a guess bit b′.
We define the IND-CCA advantage of an adversary A as

Advind-cca
A,AE (λ) = 2 · Pr [Awins]− 1 .

We say that AE is CCA-secure if Advind-cca
A,AE (λ) is negligible in λ for all PPT

adversaries A.

Error Correcting Codes. We use error correcting codes for the construction
of the CCA secure scheme. 4 In this section we review some basic definitions and
facts from coding theory. We focus only on the material that is required for the
security proof of our CCA construction. The reader is referred to [10] for a
detailed treatment of the subject.

Let Σ be a set of symbols (alphabet) with |Σ| = q. For two strings x,y ∈ Σw,
the Hamming distance dH(x,y) is defined as the number of coordinates where
x differs from y. Consider now an encoding map ECC : Σk → Σw. A code C is
simply the image of such a map (that is C ⊆ Σw), with |C| = qk. The minimum
distance of a code C is defined as

d(C) = min
x,y∈C
x �=y

{dh(x,y)}

We use [w, k, d]q to denote a code C with block length w (C ⊆ Σw), message
length k = logq |C|, minimum distance d(C) = d and alphabet size |Σ| = q.

For the CCA construction we need a code whose words are as “far apart”
as possible. In particular, for a fixed k, we need a code which maximizes d/w
under the restriction that w is polynomial in k. By the Singleton bound [23],

4 For the purposes of the construction, we only need an appropriate encoding scheme
and not a full -fledged error correcting scheme, in the sense that the ability to decode
is unnecessary for the construction.

302 P. Mol and S. Yilek

d ≤ w − k + 1 for any code and alphabet size which immediately gives an
upper bound 1 − k−1

w for d/w. Codes that meet the Singleton bound are called
Maximum Distance Separable (MDS) codes.

Reed-Solomon Codes. Reed-Solomon codes (introduced in [18]) are an example
of MDS codes. We describe a (simplified) construction of a family of asymptotic
Reed-Solomon codes. Let RSq

w,k denote a Reed-Solomon code (or more precisely
a family of RS codes) with message length k, block length w and alphabet size
|Σ| = q (with q ≥ w). The construction works as follows:

• Generation: Pick a field Fq (for convenience we use Zq as the underlying field
where q is the smallest prime such that q ≥ w). Pick also w distinct elements
α1, ..., αw ∈ Zq (evaluation points).

• Encoding: Let m = (m0, ...,mk−1) ∈ Σk be a message and let m(x) =∑k−1
j=0 mjx

j be the corresponding polynomial. The encoding of the message
is defined as

ECC(m) = 〈m(α1), ...,m(αw)〉 ∈ Zq

where the evaluation takes place over Zq.

Lemma 2. The Reed-Solomon code RSq
w,k has minimum distance d = w−k+1.

Also both the code length and the time complexity of the encoding are polynomial
in w.

3 Products and Correlated Inputs

In this section we define w-wise products, prove the lossiness amplification lemma
that we use throughout the paper, and finally present the types of correlated
input distributions we are interested in for our CCA result.

3.1 Products and Lossiness Amplification

We first define the w-wise product of a collection of functions

Definition 1 (w-wise product, Definition 3.1 in [21]). Let F = (G,F) be
a collection of efficiently computable functions. For any integer w, we define the
w-wise product Fw = (Gw, Fw) as follows:

– The generation algorithm Gw on input 1λ invokes G(1λ) for w times inde-
pendently and outputs (s1, . . . , sw). That is, a function is sampled from Fw

by independently sampling w functions from F .
– The evaluation algorithm Fw on input (s1, . . . , sw, x1, . . . , xw) invokes F

to evaluate each function si on xi. That is, Fw(s1, . . . , sw, x1, . . . , xw) =
(F (s1, x1), . . . , F (sw, xw)).

Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions 303

We will use the following lemma throughout the rest of the paper. It states that
w-wise products (for w = poly(λ)) amplify the absolute amount of lossiness5.

Lemma 3 (Lossiness Amplification). Let λ be a security parameter. For any
family of TDFs F = (G,F, F−1) with message space n(λ), if F is (n(λ), �(λ))-
lossy, then the w(·)-wise product family Fw (defined above) built from F is (n(λ)·
w(λ), �(λ) · w(λ))-lossy for all w = poly(λ).

Proof. First, if there exists an efficient lossy key generation algorithm Ĝ that out-
puts indistinguishable function indices from G, then by a standard hybrid argu-
ment it follows that Ĝw, which runs Ĝ independently w times to get (s1, t1), . . . ,
(sw, tw) and outputs (s, t) where s = (s1, . . . , sw) and t = (t1, . . . , tw), outputs
indistinguishable keys from Gw.

Second, since for each si outputted by Ĝ the map F (si, ·) has range size at
most 2n−�, it follows that for each s outputted by Ĝw, map Fw(s, ·) has range
size at most (2n−�)w = 2nw−�w. ��

An immediate implication of Lemma 3 is that (n, 1
poly(λ))-LTDFs imply injective

trapdoor one-way functions and CPA-secure encryptions (the proofs of these
statements are rather straightforward and hence omitted). We simply state this
observation as a corollary for completeness.

Corollary 1. Let p(·) be a polynomial. Then (n, 1
p(λ))-LTDFs imply injective

trapdoor one-way functions and CPA-secure encryption schemes.

3.2 Subset Reconstructible Distributions

While it is well-known that if F is one-way with respect to the uniform distri-
bution on {0, 1}n, then the product Fw is one-way with respect to the uniform
distribution over {0, 1}nw, we will be interested in the security of products when
the inputs are correlated and not necessarily uniform. We will be interested in
input distributions that are what we call (d, w)-subset reconstructible.

Definition 2 ((d, w)- Subset Reconstructible Distribution (SRD)). Let
d, w ∈ N such that d ≤ w, S be a domain and D a distribution with support
Supp(D) ⊆ Sw. We say that D is (d, w)- Subset Reconstructible (and denote
SRDd,w) if, each w-tuple (x1, ..., xw) ∈ Supp(D) is fully and uniquely recon-
structible from any subset {xi1 , ..., xid

} of d distinct elements of the tuple.

It is easy to see that the special case where d = 1 and S = {0, 1}n gives the
uniform w-repetition distribution used in the simplified construction of the CCA
secure cryptosystems in [21]. For our CCA-construction, we need to choose a
value for d smaller than w (this is necessary for almost perfect simulation of

5 We use the term “absolute amount of lossiness” to explicitly distinguish it from “rate
of lossiness” defined as k

n
for a (n, k)-LTDF. Amplifying the rate of lossiness seems

to be a much harder problem than amplifying the absolute amount of lossiness.

304 P. Mol and S. Yilek

the decryption oracle) but as close to w as possible in order to minimize the
required lossiness of the TDF (the closer to 1 the value d

w is, the less lossiness
we need for the CCA construction). We note that the SRD notion is similar to
other well-known notions in coding theory and cryptography; we compare and
contrast in [11].

Sampling via Polynomial Interpolation. We use polynomial interpolation
as a way to sample efficiently from SRDd,w for any value of d and w. The
construction is identical to the one used by Shamir [22] for a (d, w)-threshold
secret sharing scheme. On input a prime Q (with logQ = O(poly(λ))) and
integers d, w, the sampling algorithm picks independently d values p0, ..., pd−1
uniformly at random from ZQ (these correspond to the d coefficients of a (d−1)-
degree polynomial p ∈ ZQ[x]). The algorithm then simply outputs (x1, ..., xw) =
(p(1), ..., p(w)) where evaluation takes place in ZQ and xi’s are represented by
binary strings of length at most logQ. 6 The following lemma (proved in [11])
states that the output distribution of polynomial interpolation sampling is a
(d, w)- subset reconstructible distribution with sufficient entropy.

Lemma 4. Let w = poly(λ). Then the above algorithm is a poly(λ)-sampling
algorithm for SRDd,w. Also the min-entropy of the distribution SRDd,w is d ·
logQ.

4 CCA Security from Functions with Small Lossiness

In this section we prove our main result: lossy TDFs that lose a noticeable frac-
tion of a bit imply CCA-secure encryption. We start by describing the encryption
scheme of Rosen and Segev [21] that shows that CCA security is implied by the
security (one-wayness) of trapdoor injective functions under certain correlated
products. We then show that (n, 2)-lossy TDFs imply injective trapdoor func-
tions that are secure under these correlated products. We complete the proof
by observing that (n, 2)-lossy TDFs can be constructed in a black-box way from
LTDFs that lose a 1

poly(λ) fraction of a single bit (this is clear by a straightforward
lossiness amplification argument).

For ease of presentation, we describe a single-bit encryption scheme. Due to
a recent result [12], this directly implies the existence of multi-bit CCA-secure
schemes. We mention however that one can get a multi-bit encryption scheme
directly by simply replacing the hardcore predicate h with a universal hash
function, as in the PKE schemes of [15].

4.1 The Rosen-Segev Construction

We recall the cryptosystem from [21]. Let F = (G,F, F−1) be a collection of
injective trapdoor functions, Cw be an input distribution such that any x =
(x1, . . . , xw) outputted by Cw(1λ) can be reconstructed given any size d < w

6 Any (fixed and public) distinct values a1, ..., aw ∈ Zq instead of 1, ..., w would work
just fine.

Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions 305

subset of x. Let also h : {0, 1}∗ → {0, 1} be a predicate, ECC : Σk → Σw

be the PT encoding function for an error-correcting code with distance d and
Π = (Kg, Sign,Ver) be a one-time signature scheme whose verification keys are
elements from Σk. The RS encryption scheme works as follows:

Key Generation: On input security parameter 1λ, for each σ ∈ Σ and each
1 ≤ i ≤ w, run (sσ

i , t
σ
i)←$G(1λ), the key generation for the injective trapdoor

function family. Return the pair (pk, sk) where

pk = ({sσ
1}σ∈Σ , . . . , {sσ

w}σ∈Σ)
sk = ({tσ1}σ∈Σ , . . . , {tσw}σ∈Σ)

Encryption: On input public key pk and one-bit message m, run Kg(1λ)
to generate (VK , SK) and sample (x1, . . . , xw) from Cw(1λ). Apply the error
correcting code to VK to get ECC(VK) = (σ1, . . . , σw). Then output

c = (VK , y1, . . . , yw, c1, c2) ,

where VK is as above and

yi = F (sσi

i , xi), 1 ≤ i ≤ w

c1 = m⊕ h(sσ1
1 , . . . , sσw

w , x1, . . . , xw)
c2 = Sign(SK , (y1, . . . , yw, c1)) .

Decryption: On input secret key sk and ciphertext (VK , y1, . . . , yw, c1, c2)
check if Ver(VK , (y1, . . . , yw, c1), c2) equals 1. If not output ⊥. Otherwise, com-
pute ECC(VK) = (σ1, . . . , σw) and pick d distinct indices i1, ..., id. Use the trap-
doors tσi1

i1
, ..., t

σid

id
to compute

xi1 = F−1(tσi1
i1
, yi1), . . . , xid

= F−1(t
σid

id
, yid

) .

Use these xi’s to reconstruct the entire vector x1, . . . , xw. If yj = F (sσj

j , xj) for
all 1 ≤ j ≤ w output c1 ⊕ h(sσ1

1 , . . . , sσw
w , x1, . . . , xw) and otherwise output ⊥.

Rosen and Segev proved the following theorem:

Theorem 1 (Theorem 5.1 in [19]). If Π is a one-time strongly unforgeable
signature scheme, F is secure under a Cw-correlated product, and h is a hardcore
predicate for Fw with respect to Cw, then the above PKE scheme is IND-CCA
secure.

4.2 Our Result

In this section we establish the following result

Theorem 2 (Main Theorem). CCA-secure schemes can be constructed in a
black-box way from LTDFs that lose 1

poly(λ) bits.

The proof proceeds in two steps. In the first step (Lemma 5), we show that lossy
TDFs give rise to families of injective trapdoor functions that are secure under

306 P. Mol and S. Yilek

correlated product distributions with sufficiently large entropy. Moreover, the
more entropy the underlying distribution has, the less lossiness is needed from
our LTDFs. In the second and final step (Lemma 6), we show that, by choosing an
appropriate error correcting code and a correlated input distribution with high
entropy in the Rosen-Segev scheme, we can achieve one-wayness under correlated
products (and hence CCA-security) starting from lossy TDFs with minimal lossi-
ness requirements. More specifically, using the uniform SRDd,w (which has high
entropy, see Lemma 4) as our underlying distribution and Reed-Solomon codes
for ECC, we show that (n, 2)-lossy TDFs suffice for CCA-secure encryption. We
then derive Theorem 2 by observing that (n, 2)-lossy TDFs can be constructed
by (n′, 1

poly(λ))-lossy functions (where n = poly(n′)) (see Lemma 3).

Lemma 5. Let F = (G,F, F−1) be a collection of (n, �)-lossy trapdoor functions
and let Fw = (Gw, Fw) be its w-wise product for w = poly(λ). Let Cw be an
input distribution with min-entropy μ. Then Fw is secure under a Cw-correlated
product as long as

� ≥ n− μ

w
+
ω(logλ)

w
.

Proof. The proof is similar with a proof from [15]. Assume for the contrary that
there exists an inverter I that succeeds at inverting Fw with probability 1/p(λ)
for some polynomial p. We will build an adversaryA that can distinguish between
the lossy keys and real keys. Because of a standard hybrid argument, it suffices
to show that there exists an adversaryA that can distinguish with non-negligible
probability the case where it is given w = poly(λ) lossy keys (generated with
Ĝ) from the case where it is given w = poly(λ) real keys (generated with G).
Adversary A, on input keys s = (s1, . . . , sw), samples x = (x1, . . . , xw) from
Cw(1λ) and runs the inverter I(1λ, s, Fw(s,x)). If the s are real keys generated
from G, then I will output x with probability 1

p(λ) . If, however, s come from Ĝ,

then the probability of success for I is at most 2−H̃∞(x | (s,Fw(s,x))).
To bound this probability, we use Lemma 1 to see that

H̃∞(x | (s, Fw(s,x))) ≥ H∞(x |s)− w(n− �) . (1)

Since the choice of the functions is independent from the choices of x, the first
term on the right of the above equation is simply H∞(x) and thus μ. Combining
with (1), we get that

H̃∞(x | (s, Fw(s,x))) ≥ μ− w(n − �) ≥ ω(logλ)

where in the last inequality we used the bound for �. It follows that the prob-
ability I succeeds in the case when A is given lossy keys is upper bounded by
2−ω(log λ) = negl(λ). Therefore, for that choice of � the inverter has negligible
success probability and thus A can distinguish between keys from G and keys
from Ĝ which gives us our contradiction. ��

Lemma 6. CCA-secure schemes can be constructed in a black-box way from
(n, 2)-lossy TDFs.

Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions 307

Proof. Let n = poly(λ). Let also ECC ∈ RSq
w,k be a Reed-Solomon code with

k = nε (for some constant ε with 0 < ε < 1) , w = nc for some constant c > 1+ε,
q the smallest prime such that q ≥ w and distance d = w−k+1. Let also Cw be
the distribution SRDd,w sampled via polynomial interpolation (see Section 3.2)
for some prime Q such that n − 1 ≤ logQ ≤ n. Let finally F = (G,F, F−1)
be a collection of (n, 2)-lossy trapdoor functions and Fw = (Gw, Fw) be its
w-wise product. By construction (Lemma 4, Section 3.2) Cw has min-entropy
μ = H∞(Cw) = d · logQ and can be sampled in time poly(w) = poly(λ). In
addition, by properties of the Reed-Solomon codes we have

d

w
=
w − k + 1

w
≥ 1− k

w
= 1− 1

nc−ε

and hence
μ

w
=
d

w
logQ ≥ (n− 1) ·

(
1− 1

nc−ε

)
= n− 1− 1

nc−ε−1 +
1

nc−ε

Therefore, we have that

n− μ

w
+
ω(logλ)

w
≤ n−

(
n− 1− 1

nc−ε−1 +
1

nc−ε

)
+
ω(logλ)

w

= 1 +
1

nc−ε−1 −
1

nc−ε
+
ω(logλ)
nc

< 2

for some ω(logλ)- function. Applying Lemma 5, we get that F is secure under
the aforementioned Cw-correlated product. Let h be a hardcore predicate for the
w-wise product Fw (with respect to Cw). Applying the Rosen-Segev construction
along with Theorem 1 from Section 4.1, we conclude that (n, 2)-lossy TDFs imply
CCA-security (in a black-box sense). ��

5 An Explicit Construction of a Slightly Lossy TDF

The Idea. In this section we construct an LTDF that loses 1/4 bits. At a
high level, our construction works as follows: the basic component is a trapdoor
function g (with trapdoor t) that statistically loses � bits (� ≥ 0 and � = 0
corresponds to an injective trapdoor function). Let also ĝ be a deterministic
function such that ĝ

c≈ g (under some computational assumption CA) and ĝ loses
�̂ bits (that is |Img(Dom(ĝ))| ≤ Dom(ĝ)

2�̂
) for some �̂ > �. Consider now a function

h such that ‖h(x)‖ = � (where ‖ · ‖ denotes bitsize) and (g(x), h(x)) uniquely
determines the preimage x (which can be efficiently recovered given the trapdoor
t) for all inputs x. The descriptions of the injective trapdoor function and the
lossy function are s = (g, h) and ŝ = (ĝ, h) respectively. It is not hard to see that
ŝ corresponds to an (�̂−�)-lossy function. Indeed |Img(ŝ)| ≤ |Img(Dom(ĝ))|·2� ≤
Dom(ĝ)
2�̂−�

. Finally the indistinguishability of ĝ and g implies that s
c≈ ŝ.

Below we give an example on how to instantiate our technique using as a core
trapdoor function the squaring over a composite modulus N. We believe that

308 P. Mol and S. Yilek

our technique might serve as a paradigm for the construction of LTDFs from
other hardness assumptions in the future.

Hardness assumption. Consider the following two distributions (where n =
poly(λ)).

2Primesn = {N = pq
∣∣ ‖N‖ = n; p, q distinct primes; p ≡ q ≡ 3 (mod 4)}

3Primesn = {N = pqr
∣∣ ‖N‖ = n; p, q, r distinct primes; pqr ≡ 1 (mod 4)}

where ‖N‖ denotes the bitsize of N and ‖N‖ = n implies that the most signifi-
cant bit of N is 1.

Assumption 1 (2v3Primes). For anyPPTalgorithmD andanypolynomial p(·)∣∣Pr [D(2Primesn) = 1]− Pr [D(3Primesn) = 1]
∣∣ ≤ 1

p(n)
where the probability is taken over the randomness of sampling N and the inter-
nal randomness of D.

This assumption (in a slightly different form) was introduced in [2] under the
name 2OR3A.

The Construction. For our function g we use squaring modulo the product
N of two large (balanced) primes p and q. This function was the basis for the
Rabin cryptosystem [16]. We define a family of injective trapdoor functions F =
(G,F, F−1) as follows:

G(1λ): N ← pq, with p ≡ q ≡ 3 (mod 4) and pq has bitsize n + 1. That is,
N ←$ 2Primesn+1. Return (s, t) where s = N and t = (p, q).

Ĝ(1λ): N ← pqr with pqr ≡ 1 (mod 4)7 and pqr has bitsize n + 1. That is,
N ←$ 3Primesn+1. Return (s,⊥) where s = N.

F (s, x): Parse s as N. On input x ∈ {0, 1}n compute y = x2 mod N. Define
PN (x) = 1 if x > N/2 and PN (x) = 0 otherwise and QN(x) = 1 if JN (x) = 1
and QN(x) = 0 otherwise where JN (x) is the Jacobi symbol of x modulo N.
Return (y,PN(x),QN (x)).

F−1(t, y′): Parse t as (p, q) and y′ as (y, b1, b2). Compute the square roots
x1, ..., xk of y using p and q. Compute also PN (xi) and QN (xi) for all i ∈ [k]
and output the (unique) xi such that PN(xi) = b1 and QN (xi) = b2.

Note that even though the modulus N has bitsize n + 1 (that is N > 2n) the
domain of the functions is {0, 1}n.

Theorem 3. F as given above is a family of (n, 1
4)-lossy trapdoor functions

under the 2v3Primes assumption.

7 The requirement pqr ≡ 1 (mod 4) is essential since otherwise there exists a trivial
algorithm that distinguishes between Ns sampled according to G and those sampled
according to Ĝ.

Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions 309

Proof. We prove the properties one by one:

Injectivity/Trapdoor: First, F (s, x) is efficiently computable (JN (x) can be effi-
ciently computed even if the factorization of N is unknown). Let now s = N (N
being a Blum integer) and y′ = F (s, x) = (y, b1, b2).

If y ∈ Z∗
N then it has 4 square roots modulo N which can be recovered using

the trapdoor (p, q) (by first recovering the pairs of square roots modulo p and
q separately and then combining them using the Chinese Remainder Theorem).
Let ±x,±z be the 4 square roots of y. Since PN (x) = −PN(−x) ∀x, only one of
x,−x and one of z,−z is consistent with b1. Assume wlog that x, z are consistent
with b1. Also since x �= ±z, JN (z) = −JN (x) 8 and hence only one of x, z is
consistent with b2.

If gcd(y,N) > 1 (wlog gcd(y,N) = p), then y has exactly 2 square roots
(preimages) x and −x (which can be recovered using the CRT) out of which,
only one is consistent with b1.

This means that for all (n + 1)-bit Blum Integers N and all x ∈ {0, 1}n

the triple (x2 mod N,PN(x),QN (x)) uniquely determines x, which, given (p, q),
can be efficiently recovered. This concludes that F (defined over {0, 1}n) is a
collection of injective trapdoor functions.

Lossiness: Let (ŝ = N,⊥)← Ĝ(1λ). Consider the sets

S1 =
{
x ∈ {0, 1}n

∣∣∣∣ x ∈ Z∗
N and x <

N

2

}
S2 =

{
x ∈ {0, 1}n

∣∣ gcd(x,N) > 1 and x <
N

2

}
S3 =

{
x ∈ {0, 1}n

∣∣ x ≥ N

2

}

which form a partition of {0, 1}n. Squaring modulo N = pqr is an 8-to-1 function
over Z∗

N which means that y takes at most φ(N)
8 values. Also for all x ∈ S1,

PN (x) = 0 by definition. Hence (x2 mod N,PN(x),QN (x)) for x ∈ S1 takes at
most φ(N)

8 · 2 values, that is

|Img(S1)| ≤
φ(N)

4
(2)

Also, |S2| = N−φ(N)
2 (there are N − φ(N) elements that are not coprime with

N and exactly half of them are smaller than N/2). Finally, |S3| ≤ 2n − N
2 . We

then have that

|Img(S2)| ≤ |S2| ≤
N − φ(N)

2
and |Img(S3)| ≤ |S3| ≤ 2n − N

2
. (3)

8 It is easy to prove that if N is a Blum integer and x, z ∈ Z∗
N such that x �= ±z and

x2 ≡ z2 ≡ y (mod N), then JN (x) = −JN (z).

310 P. Mol and S. Yilek

Combining equations (2) and (3) we get

|Img({0, 1}n)| ≤
3∑

i=1

|Img(Si)| ≤
φ(N)

4
+
N − φ(N)

2
+ 2n − N

2

= 2n − φ(N)
4

≤ 2n − 2n

5
=

4
5
2n ≤ 2n2−

1
4

where in the penultimate inequality we used the fact that (for balanced primes
p, q, r) φ(N) = N − O(N

2
3) and hence φ(N)

4 > N
5 > 2n

5 . Therefore the image of
{0, 1}n when N is a product of 3 primes is at most 2n

2
1
4

which implies that in this

case F (ŝ, ·) loses (at least) 1
4 -bits.

Indistinguishability: The fact that s
c≈ ŝ (where (s, ·) ← G(1λ) and (ŝ, ·) ←

Ĝ(1λ)) follows directly from the 2v3Primes assumption. ��

Acknowledgements

We would like to thank Mihir Bellare, Russell Impagliazzo, Eike Kiltz, Daniele
Micciancio, Chris Peikert, Gil Segev, and Brent Waters for useful discussions.
Scott Yilek is supported by NSF grants CNS–0831536 and CNS–0627779. Petros
Mol is supported by NSF grants CNS–0716790 and CCF–0634909.

References

1. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for en-
cryption and commitment secure under selective opening. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

2. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: STOC, pp. 103–112. ACM, New York (1988)

3. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

4. Cachin, C., Micali, S., Stadler, M.: Computationally Private Information Retrieval
with Polylogarithmic Communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

5. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data. SIAM J. Comput. 38(1),
97–139 (2008); Cachin, C., Camenisch, J.L. (eds.): EUROCRYPT 2004. LNCS,
vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

6. Freeman, D., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: Number-theoretic
constructions of lossy and correlation-secure trapdoor functions. In: PKC 2010.
Springer, Heidelberg (to appear, 2010)

7. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Proceedings of the 21st Annual ACM Symposium on Theory of Computing –
STOC 1989, pp. 25–32. ACM, New York (1989)

Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions 311

8. Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Fac-
toring. In: Joux, A. (ed.) EUROCRYPT 2009, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009)

9. Kiltz, E., O’Neill, A., Smith, A.: Lossiness of RSA and the Chosen-Ciphertext
Security of OAEP without Random Oracles (2009) (manuscript)

10. Macwilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North-Holland,
Amsterdam (January 1983)

11. Mol, P., Yilek, S.: Chosen-Ciphertext Security from Slightly Lossy Trapdoor Func-
tions. Cryptology ePrint Archive, Report 2009/524 (2009),
http://eprint.iacr.org/

12. Myers, S., Shelat, A.: Bit Encryption Is Complete. In: FOCS, pp. 607–616. IEEE
Computer Society, Los Alamitos (2009)

13. Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In: STOC, pp. 427–437. ACM, New York (1990)

14. Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications (October
5, 2009), Latest Version availbale at http://www.cc.gatech.edu/~cpeikert/

15. Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. In:
STOC 2008, pp. 187–196. ACM, New York (2008)

16. Rabin, M.O.: Digitalized Signatures and Public-Key Functions as Intractable as
Factorization. Technical report, Massachusetts Institute of Technology (1979)

17. Rackoff, C., Simon, D.R.: Non-interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1991)

18. Reed, I.S., Solomon, G.: Polynomial Codes Over Certain Finite Fields. SIAM J.
Comput. 8(2), 300–304 (1960)

19. Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products. IACR
ePrint Archive, Report 2008/116

20. Rosen, A., Segev, G.: Efficient lossy trapdoor functions based on the composite
residuosity assumption. IACR ePrint Archive, Report 2008/134

21. Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg
(2009)

22. Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)
23. Singleton, R.C.: Maximum Distance q-nary Codes. IEEE Transactions on Infor-

mation Theory 10, 116–118 (1964)

http://eprint.iacr.org/
http://www.cc.gatech.edu/~cpeikert/

Efficient Set Operations in the Presence of
Malicious Adversaries

Carmit Hazay1,� and Kobbi Nissim2,��

1 Dept. of Computer Science and Applied Mathematics,
Weizmann Institute and Interdisciplinary Center (IDC) Herzliya

carmit.hazay@weizmann.ac.il
2 Dept. of Computer Science, Ben-Gurion University and Microsoft AI,

Israel
kobbi@cs.bgu.ac.il

Abstract. We revisit the problem of constructing efficient secure two-
party protocols for set-intersection and set-union, focusing on the model
of malicious parties. Our main results are constant-round protocols that
exhibit linear communication and a linear number of exponentiations
with simulation based security. In the heart of these constructions is a
technique based on a combination of a perfectly hiding commitment and
an oblivious pseudorandom function evaluation protocol. Our protocols
readily transform into protocols that are UC-secure.

Keywords: Secure two-party computation, Simulation based security,
Set intersection, Set union, Oblivious pseudorandom function evaluation.

1 Introduction

Secure function evaluation (SFE) allows two distrusting parties to jointly com-
pute a function of their respective inputs as if the computation is executed in
an ideal setting where the parties send inputs to a trusted party that performs
the computation and returns its result. Starting with the work of [37,20,6,4],
it is by now well known that (in various settings, and considering semi-honest
and malicious adversaries) any polynomial-time computation can be generically
compiled into a secure function evaluation protocol with polynomial complexity.
However, more often than not, the resulting protocols are inefficient for practical
uses and hence attention was given to constructing efficient protocols for specific
functions. This approach that proved quite successful for the semi-honest setting
(see, e.g., [26,13,28,1,17,25,5,30,24,27]), while the malicious setting remained, at
large, elusive (a notable exception is [1]).

We focus on the secure computation of basic set operations (intersection and
union) where the parties P1, P2, holding input sets X,Y , respectively, wish to
compute X ∩ Y or X ∪ Y . These problems have been widely looked at by re-
searchers in the last few years, and our main goal is to come up with protocols
� Research supported by an Eshkol scholarship.

�� Research partly supported by the Israel Science Foundation (grant No. 860/06).

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 312–331, 2010.
c© International Association for Cryptologic Research 2010

Efficient Set Operations in the Presence of Malicious Adversaries 313

for set-intersection and set-union that are secure in the malicious setting and
are of better complexity to those known.

We begin by briefly surveying the current constructions of two-party secure
computation for set intersection and union that are most relevant to our work:

– Freedman, Nissim and Pinkas studied set intersection in [17]. They represent
a set by a polynomial that zeros exactly on the set elements. Their construc-
tion for the semi-honest setting utilizes oblivious polynomial evaluation and
a balanced allocation scheme and exhibits linear communication (counting
field elements) and (almost) linear computation (counting modular exponen-
tiations). See Section 3.

They also present variants of the above protocol, for the cases where one of
the parties is malicious and the other is semi-honest. For efficiency, generic
zero-knowledge proofs of adherence to the protocol are avoided. The protocol
for malicious P1 (denoted client in [17]) and semi-honest P2 (server) utilizes a
cut-and-choose strategy and hence communication is inflated by a statistical
security parameter. The protocol for malicious P2 and semi-honest P1 is in
the random oracle model. A protocol that is secure in the fully malicious
setup, that combines both techniques, is sketched in Section 3.1.

– Kissner and Song [25] used polynomials to represent multi-sets. Letting the
roots of QX(·) and QY (·) coincide with elements of the multi-sets X and Y ,
they observed that if r(·), s(·) are polynomials chosen at random then the
roots of r(·) · QX(·) + s(·) · QY (·) coincide with high probability with the
multi-set X∩Y . This beautiful observation yields a set-intersection protocol
for the semi-honest case, where the parties use an additively homomorphic
encryption scheme (the Paillier scheme is suggested in [25]) to perform the
polynomial multiplication, introducing quadratic computation costs in the
set sizes. For the security of the protocol, it is crucial that no party should be
able to decrypt on her own. Hence, the secret key should be shared and joint
decryption should be deployed. Assuming a trusted setup for the encryption
scheme, the communication costs for the two-party case are as in the protocol
for semi-honest parties of [17].

For malicious parties [25] introduced generic zero-knowledge proofs for
proving adherence to the prescribed protocol (e.g., zero-knowledge proofs
of knowledge for the multiplication of the encrypted Qx(·) with a randomly
selected r(·)). While this change seems to be of dire consequences to the pro-
tocol efficiency, the analysis in [25] ignores its effects. Furthermore, the costs
of setting the shared key for the Paillier scheme are ignored in the analysis.
To the best of our knowledge, there are currently no efficient techniques for
generating the shared Paillier keys, which do not incorporate an external
trusted dealer (the latter schemes include [14,15] referenced in [25]).

In addition to that, Kissner and Song presented a protocol for the threshold
set-union problem, where only the elements that appear in the combined
inputs more than t times are learnt by the parties. Their protocol employs the
same technique of polynomial multiplication and thus introduces quadratic
computation costs as above.

314 C. Hazay and K. Nissim

– Hazay and Lindell [21] revisited secure set intersection, with the aim of
achieving efficient protocols in presence of a more realistic adversarial be-
havior than in the benign semi-honest model, and under standard crypto-
graphic assumptions. Two protocols were presented, one achieves security
in the presence of malicious adversaries with one-sided simulatability, the
other is secure in the presence of covert adversaries [2]. The main tool used
in these protocols is a secure implementation of oblivious pseudorandom
function evaluation.

Having P1, P2 hold sets of sizes mX ,mY respectively, both protocols in [21]
are constant round, and incur the communication of O(mX ·p(n)+mY) group
elements and the computation of O(mX · p(n) +mY) modular exponentia-
tions, where set elements are taken from {0, 1}p(n).

We note that the protocols in [21] can be made secure in the malicious
setup, e.g., by introducing a secure key selection step for the oblivious prf

and by adding zero-knowledge proofs of knowledge to show correctness at
each step. Namely, for proving that the same prf key is indeed used by party
P1 in each iteration and to enable extraction of its input (as a pseudoran-
dom function is not necessarily invertible). While this would preserve the
complexity of these protocols asymptotically (in mX ,mY), the introduction
of such proofs would probably make them inefficient for practical use since
there is no effieicnt known way to construct them.

– Recently, Jarecki, and Liu [23] presented a very efficient protocol for comput-
ing a pseudorandom function with a committed key (informally, this means
that the same key is used in all invocations), and showed that it yields an
efficient set-intersection protocol. The main restriction of this construction
is that the input domain size of the pseudorandom function should be poly-
nomial in the security parameter (curiously, the proof of security for the
set-intersection protocol makes use of the ability to exhaustively search over
the input domain, so removing the restriction on the input domain of the
pseudorandom function does not immediately yield a set-intersection proto-
col for a super-polynomial domain).

– Finally, Dachman-Soled et al. [11] present a protocol for set-intersection in
the presence of malicious adversaries without restricting the domain. Their
construction uses polynomial evaluation but takes a different approach than
ours by incorporating a secret sharing of the inputs to the polynomials.
They avoid generic zero-knowledge by utilizing the fact that Shamir’s secret
sharing implies Reed Solomon code. Their protocol incurs communication
of O(mk2 log2 n + kn) group elements and computation of O(mnk logn +
mk2 log2 n).

1.1 Our Contributions

Our main contributions are efficient set-intersection and set-union protocols that
are secure in the setup of malicious parties. Our constructions are in the standard
model, and are based on standard cryptographic assumptions (in particular, no

Efficient Set Operations in the Presence of Malicious Adversaries 315

random oracle or a trusted setup). We begin by briefly describing the construc-
tion of Freedman et al. [17] for semi-honest parties that serves as our starting
point.

Secure Set Intersection with Semi-Honest Parties. The main tool used in the
construction of [17] is oblivious polynomial evaluation. The basic protocol works
as follows:

1. Party P1 chooses encryption/decryption keys (pk, sk)← G(1n) for a homo-
morphic encryption scheme (G,E,D) and sends pk to P2.

2. P1 computes the coefficients of a polynomial Q(·) of degree mX , with roots
set to the mX elements of X , and sends the encrypted coefficients to P2.

3. For each element y ∈ Y (in random order), party P2 chooses a random value
r (taken from an appropriate set depending on the encryption scheme), and
uses the homomorphic properties of the encryption scheme to compute an
encryption of r ·Q(y) + y. P2 sends the encrypted values to P1.

4. Upon receiving these encrypted values, P1 extracts X∩Y by decrypting each
value and then checking if the result is in X . Note that if y ∈ X ∩Y then by
the construction of the polynomial Q(·) we get that r ·Q(y)+y = r ·0+y = y.
Otherwise, r ·Q(y) + y is a random value that reveals no information about
y and (with high probability) is not in X .

Note that the communication complexity of this simple scheme is linear in mX +
mY , as mX +1 encrypted values are sent from P1 to P2 (these are the encrypted
coefficients of Q(·)), and mY encrypted values are sent from P2 to P1 (i.e., Q(y)
for every y ∈ Y). However, the work performed by P2 is high, as each of the mY

oblivious polynomial evaluations includes performing O(mX) exponentiations,
totaling in O(mX ·mY) exponentiations.

To save on computational work, Freedman et al. introduced a balanced al-
location scheme into the protocol. Loosely speaking, they used the balanced
allocation scheme of [3] with B = mX

log log mX
bins, each of size M = O(mX/B +

log logB) = O(log logmX). Party P1 now uses the balanced allocation scheme
to hash every x ∈ X into one of the B bins resulting (with high probability)
with each bin’s load being at most M . Instead of a single polynomial of degree
mX party P1 now constructs a degree-M polynomial for each of the B bins,
i.e., polynomials Q1(·), . . . , QB(·) such that the roots of Qi(·) are the elements
put in bin i. As some of the bins contain less than M elements, P1 pads each
polynomial with zero coefficients up to degree M . Upon receiving the encrypted
polynomials, party P2 obliviously evaluates the encryption of r0 · Qh0(y)(y) + y
and r1 · Qh1(y)(y) + y for each of the two bins h0(y), h1(y) in which y can be
allocated, enabling P1 to extract X ∩ Y as above.

Neglecting constant factors, the communication complexity is not affected
as P1 now sends BM = O(mX) encrypted values and P2 replies with 2mY

encrypted values. There is, however, a dramatic reduction in the work performed
by P2 as each of the oblivious polynomial evaluations amounts now to performing
just O(M) exponentiations, and P2 performs O(mY ·M) = O(mY · log logmX)
exponentiations overall.

316 C. Hazay and K. Nissim

Our main goal is to come up with protocols that exhibit low asymptotic com-
munication and computation costs in the presence of malicious behavior. Noting
that asymptotic complexity does not reveal everything about a protocol’s effi-
ciency or practicality, we avoid using generic zero-knowledge proofs of adherence
to the prescribed protocols, even when they involve relatively short statements,
and costly set up commutations that make the efficient only for very large inputs.
Our contributions are realized as follows,

Preventing the Players from Deviating from the Protocol: We inherit the obliv-
ious polynomial evaluation and balanced allocation techniques used in [17]. On
top of these we introduce an efficient zero-knowledge proof that P1 uses to show
that her encrypted polynomials were correctly produced (unlike in [17], our proof
does not use a cut-and-choose strategy), and a technique preventing player P2
from deviating meaningfully from the protocol. This technique combines a per-
fectly hiding commitment scheme with an oblivious pseudorandom function eval-
uation protocol.

Eliminating the Random Oracle: In some sense, our construction replaces the
random oracle used in [17] in the case of a malicious sender with a prf, but this
‘replacement’ is only in a very weak sense: In our construction P2 holds the key
for the pseudorandom function, and hence the function does not look random to
P2, nor does P2 does not need to invoke the oblivious pseudorandom evaluation
protocol to compute it. The consequence is that, unlike with the simulator for
the protocol in the random oracle model that can easily monitor all invocations
of the oracle, our simulator cannot extract P2’s input to the pseudorandom
function.

We note that the protocols of [21] also use an oblivious pseudorandom function
evaluation primitive, where the player analogous to P2 knows the key for the
function. Their usage of this primitive is, however, very unlike in our protocols.
In the protocols of [21] the pseudorandom function is evaluated on the set of
elements that P2 holds, using the same prf key for all evaluations. Whereas
in our protocols it is evaluated on a random payload using (possibly) different
keys. A payload sy is a random element that is chosen independently for each
element y ∈ Y with the aim to fix the randomness used by P2. Meaning that
the randomness for the oblivious polynomial evaluation of y is determined by
the prf evaluation of sy. Furthermore, the protocols in [21] are designed for the
covert adversary model and for the one-sided simulatability model, and hence a
technique enabling full simulation of P2 is not needed, whereas our constructions
allow simulation of both parties.

Choosing the Underlying Encryption Scheme: Our protocols make extensive use
of a homomorphic encryption scheme, and would remain secure (with only small
modifications) under a variety of choices. We chose to work with the El Gamal
scheme (that is multiplicatively homomorphic) although it may seem that the
more natural choice is the Paillier scheme [32], that is additively homomorphic
(indeed, our initial constructions were based on the Paillier scheme).

Efficient Set Operations in the Presence of Malicious Adversaries 317

Using the Paillier scheme, a subtle problem emerges (this was overlooked, e.g.,
in [17]). Recall that for the Paillier scheme pk = N, sk = φ(N). Now, if P1 knows
sk when she constructs her polynomials, then she may construct a polynomial
Q(·) such that Q(y) �∈ Z∗

N for some specific ‘target’ value y. This would allow
her to learn about P2’s input beyond the intended protocol output. A possible
solution is that P1, P2 would first engage in a protocol to jointly generate pk and
shares of sk, whereas P1 would learn sk only after committing to her polynomials.
This, however, introduces high key setup costs, and the result is a protocol that
exhibits low asymptotic costs, but, because of its high setup costs, its efficiency
is gained only for very large inputs.

Efficiency: Our protocols for set intersection and set union π∩, π∪ are constant
round, work in the standard model and do not require a trusted setup. The
underlying encryption scheme is El Gamal where the keys are selected by party
P1. Both protocols do not employ any generic zero-knowledge proof.

Assuming the protocols of [16,21] (that require p(n) oblivious transfers for
realizing the oblivious pseudorandom function evaluation), we get that for sets
X,Y ⊂ {0, 1}p(n) of mX ,mY elements respectively, the costs of π∩, π∪ are of
sending O(mX +mY · p(n)) group elements, and the computation of O(mX +
mY ·(log logmX +p(n))) modular exponentiations. Note that this is significantly
better than O(mX ·mY).

A significant improvement can be achieved by using a more efficient pseu-
dorandom function evaluation instead of using the function of [29] which re-
quires a single oblivious transfer for every input bit. This is due to the fact
that our protocol uses oblivious pseudorandom function evaluation as a black
box. Furthermore, for set intersection, another significant improvement can be
achieved if the size of the intersection mX∩Y is allowed to be leaked (to P2).
The resulting protocol is of sending O(mX + mX∩Y · p(n)) and computing
O(mX + mY · log logmX + mX∩Y · p(n)). When mX∩Y) mY we get a pro-
tocol that is more efficient than that of [21]. This type of improvement does not
apply for [21] as well since the parties apply the prf directly on the input set Y
and thus cannot deduce mX∩Y before that.

UC Security: Our protocols readily transform into the UC framework as all our
simulators are straight-line in an hybrid model with access to some specific zero-
knowledge proofs. We show how to modify our set intersection protocol to one
that is secure in the UC framework (in the common reference string model).

For lack of space, we focus only on the protocol for secure set intersection in
the malicious model, and omit the more standard details of the construction,
and its proof of security. The missing details and proofs can be found in the full
version of this paper [22].

2 Preliminaries

Throughout the paper, we denote the security parameter by n, and, although
not explicitly specified, input lengths are always assumed to be bounded by some

318 C. Hazay and K. Nissim

polynomial in n. A probabilistic machine is said to run in polynomial-time (ppt)
if it runs in time that is polynomial in the security parameter n alone. A function
μ(n) is negligible (in n) if for every polynomial p(·) there exists a value N such
that μ(n) < 1

p(n) for all n > N ; i.e., μ(n) = n−ω(1).

2.1 Secure Two-Party Computation – Definitions

We use standard definitions of security for two party commputation in the mali-
cious model, which we now briefly review. The reader is referred to [18, Chapter
7] for more details and motivating discussion.

We prove the security of our protocols in the setting of malicious adversaries,
that may arbitrarily deviate from the specified protocol. Security is analyzed by
comparing what an adversary can do in a real protocol execution to what it can
do in an ideal scenario. In the ideal scenario, the computation involves an incor-
ruptible trusted third party to whom the parties send their inputs. The trusted
party computes the functionality on the inputs and returns to each party its
respective output. Informally, the protocol is secure if any adversary interacting
in the real protocol (i.e., where no trusted third party exists) can do no more
harm than what it could do in the ideal scenario. We consider the static setting
where the adversary is only able to corrupt a party at the outset of the protocol.
There are technical issues that arise, such as that it may be impossible to achieve
fairness or guaranteed output delivery. E.g., it is possible for the an adversarial
party to prevent an honest party from receiving outputs.

2.2 The El Gamal Encryption Scheme

The El Gamal encryption scheme operates on a cyclic group G of prime order q.
We will work in the group Z∗

q′ where q′ = 2q + 1 is prime, and set G to be the
subgroup of Zq′ of quadratic residues modulo q′ (note that membership in G can
be easily checked). Let g denote a random generator in G, then the public and
secret keys are 〈G, q, g, h〉 and 〈G, q, g, x〉 where x←R Zq and h = gx. A message
m ∈ G is encrypted by choosing y ←R Zq and the ciphertext is 〈gy, hy ·m〉. A
ciphertext c = 〈α, β〉 is decrypted as m = β/αx. We use the property that given
y = logg α one can reconstruct m = β/hy and hence a party encrypting m can
prove knowledge of m by proving knowledge of y.

The semantic security of the El Gamal scheme follows from the hardness of
decisional Diffie-Hellman (ddh) in G. The El Gamal scheme is homomorphic
relative to multiplication. I.e., if 〈α1, β1〉 encrypts m1 and 〈α2, β2〉 encrypts m2
then 〈α1 · α2, β1 · β2〉 encrypts m1m2. We additionally consider a modified ver-
sion of El Gamal where the encryption is performed by choosing y ←R Zq and
computing 〈gy, hy · gm〉. Decryption of a ciphertext c = 〈a, b〉 is performed by
computing gm = b · a−x. The fact that m cannot be efficiently recovered is not
problematic for the way El Gamal is incorporated in our protocols. Moreover,
this variant of El Gamal is additively homomorphic and can be used to perform
oblivious linear computations (e.g., polynomial evaluation) in the exponent.

Efficient Set Operations in the Presence of Malicious Adversaries 319

2.3 Perfectly Hiding Commitment

We use a perfectly-hiding commitment scheme (com, dec) with a zero-knowledge
proof of knowledge πCOM for the relation

RCOM =
{(
c, (r,m)

) ∣∣ c = com(m; r)
}
,

where com(m; r) denotes the commitment to a message m using random coins
r. We instantiate com(·; ·) with Pedersen’s commitment scheme [33], using the
same underlying group G used for the El Gamal scheme. I.e., let q′ = 2q + 1
where q′, q are primes and let g, h be generators of the subgroup G of quadratic
residues modulo q′. A commitment to m is then defined as com(m; r) = gmhr

where r ←R Zq−1. The scheme is perfectly hiding as for every m, r,m′ there
exists a single r′ such that gmhr = gm′

hr′
. The scheme is binding assuming

hardness of computing logg h. However, given logg h, it is possible to decommit
any commitment c into any message m ∈ Zq. We instantiate πCOM with the
proof of knowledge from [31] (this proof is not a zero-knowledge proof, yet can
be modified using standard techniques [19]).

2.4 Zero-Knowledge Proofs

Our protocols employ zero-knowledge proofs of knowledge for the following re-
lations (in the following, G is a group of prime order):

Type Protocol Relation/Language Reference
ZKPK πDL RDL = {((G, g, h), x) | h = gx} [35]
ZKPK πDDH RDDH = {((G, g, g1, g2, g3), x) | g1 = gx ∧ g3 = gx

2}} [7]

ZK πNZ LNZ =
{

(G, g, h, 〈α, β〉) | ∃ (m �= 0, r) s.t.
α = gr ∧ β = hrgm

}
Sec. 2.4

Zero-Knowledge Proof for LNZ. We use standard techniques for construct-
ing a zero-knowledge proof for the language of encryptions 〈α, β〉 of non-zero
exponents of g:

LNZ = {(G, g, h, 〈α, β〉) | ∃ (m �= 0, r) s.t. α = gr ∧ β = hrgm} .

The construction is based on a zero-knowledge protocol πMULT for the language

LMULT =
{

(G, g, h, c1, c2, c3) |
∃ m,m′ ∈ Zq s.t. c1, c2, c3 are
encryptions of gm, gm′

, gmm′
resp.

}
.

πMULT is a modification of a protocol by Damg̊ard and M. Jurik [9] designed for
the Paillier encryption scheme.

2.5 Balanced Allocation

We employ a scheme for randomly mapping elements into bins, as suggested
in [17]. We use the balanced allocation scheme of [3] where elements are inserted

320 C. Hazay and K. Nissim

into B bins as follows. Let h0, h1 : {0, 1}p(n) → [B] be two randomly chosen
hash functions mapping elements from {0, 1}p(n) into bins 1, . . . , B. An element
x ∈ {0, 1}p(n) is inserted into the less occupied bin from {h0(x), h1(x)}, where
ties are broken arbitrarily. If m elements are inserted, then except with negligible
probability over the choice of the hash functions h0, h1, the maximum number
of elements allocated to any single bin is at most M = O(m/B + log logB).
Setting B = m

log log m we get that M = O(log logm).1 In the protocol we devi-
ate insignificantly from the description above, and let P1 choose seeds for two
pseudorandom functions, that are used as the hash functions h0, h1.

2.6 Oblivious prf Evaluation

We use a protocol πPRF that obliviously evaluates a pseudorandom function in
the presence of a malicious adversary. Let IPRF be the indexing algorithm for a
pseudorandom function ensemble, and let k ←R IPRF(1n) be a sampled key. The
functionality FPRF is defined as

(k, x)
→ (λ, FPRF(k, x)). (1)

The prf may be instantiated with the Naor-Reingold pseudorandom function
[29] with the protocol presented in [16] (and proven in [21]). The function is
defined as

FPRF((a0, . . . , an), x) = ga0
∏n

i=1 a
x[i]
i ,

where G is a group of prime order q, g is a generator of G, ai ∈ Zq and x =
(x[1], . . . , x[n]) ∈ {0, 1}n. The protocol involves executing an oblivious transfer
for every bit of the input x. Combining this with the fact that n oblivious
transfers runs require 11n + 29 exponentiations using the protocol in [34] (the
analysis in [34] includes the cost for generating a common reference string), one
gets a constant-round protocol that securely computes FPRF in the presence of
malicious players using a constant number of exponentiations for every bit of
the input x.

3 Secure Set Intersection

We now consider the functionality of set intersection, where each party’s input
consists of a set, and the size of the other party’s input set. If the set sizes
match, then the functionality outputs the intersection of these input sets to P1.
Otherwise P1 is given ⊥. More formally:

Definition 1. Let X and Y be subsets of a predetermined domain (w.l.o.g., we
assume X,Y ⊂ {0, 1}p(n) for some polynomial p() such that 2p(n) is

1 A constant factor improvement is achieved using the Always Go Left scheme in [36]
where h0 : {0, 1}p(n) → [1, . . . , B

2
], h1 : {0, 1}p(n) → [b

2
+ 1, . . . , B]. An element x is

inserted into the less occupied bin from {h0(x), h1(x)}; in case of a tie x is inserted
into h0(x).

Efficient Set Operations in the Presence of Malicious Adversaries 321

super-polynomial in n, and that the set elements can be represented as elements
of some finite group), the functionality F∩ is:

((X,mY), (Y,mX))
→
{

(X ∩ Y, λ) if |X |=mX , |Y |=mY and X,Y ⊆{0, 1}p(n)

(⊥, λ) otherwise

In the rest of this section we present in detail our construction for a protocol
realizingF∩ in the presence of malicious adversaries. For completeness we include
a description of the protocol by Freedman et al. for semi-honest parties:

Protocol 1. (set-intersection protocol secure in the presence of semi-honest
parties):

– Inputs: The input of P1 is mY and a set X ⊆ {0, 1}p(n) containing mX

items; the input of P2 is mX and a set Y ⊆ {0, 1}p(n) containing mY items.
– Auxiliary inputs: A security parameter 1n.
– The protocol:

1. Key setup: P1 chooses the secret and public keys (sk, pk) for the un-
derlying homomorphic encryption scheme (e.g., Paillier or El Gamal).
She sends pk to P2.

2. Setting the balanced allocation scheme: P1 computes the parame-
ters B,M for the scheme and chooses the seeds for two (pseudo-)random
hash functions h0, h1 : {0, 1}p(n) → [B]. She sends B,M, h0, h1 to P2.

3. Creating polynomials for the set X: For every x ∈ X, P1 maps x
into the less occupied bin from {h0(x), h1(x)} (ties broken arbitrarily).
Let Bi denote the set of elements mapped into bin i and let Qi(x)

def=∑M
j=0Qi,j · xj denote a polynomial with the set of roots Bi. P1 encrypts

the coefficients of the polynomials and sends the encrypted coefficients to
P2.

4. Substituting in the polynomials: Let y1, . . . , ymY be a random order-
ing of the elements of set Y . P2 does the following for allα ∈{1, . . . ,mY }:
(a) He sets ĥ0 = h0(yα), ĥ1 = h1(yα).
(b) He chooses two random elements in the underlying group of the ho-

momorphic encryption scheme r0, r1. He then uses the homomor-
phic properties of the encryption scheme to compute an encryption
of r0 ·Qĥ0

(yα)+ yα and r1 ·Qĥ1
(yα)+ yα. Both encrypted values are

sent to P1.
5. Computing the intersection: P1 decrypts each received value. If the

decrypted value is in X then P1 records as part of her local output.

Note that, since the parties are semi-honest, P1 outputs X ∩ Y with probability
negligibly close to 1: (i) For elements yα ∈ X ∩ Y we get that Qh0(yα)(yα) = 0
or Qh1(yα)(yα) = 0, hence one of the corresponding encrypted values is yα itself,
and P1 would record it in its local output. (ii) For yα �∈ X ∩ Y we get that
Qh0(yα)(yα) �= 0 and Qh1(yα)(yα) �= 0 and hence corresponding encrypted values
are two random values r0 +y and r1 +y that fall within X with only a negligible
probability.

322 C. Hazay and K. Nissim

Efficiency. The protocol runs in a constant number of rounds. The commu-
nication costs are of sending the encrypted polynomials (BM values) and the
encrypted r0 · Qĥ0

(yα) + yα and r1 · Qĥ1
(yα) + yα (2mY values). Using the El

Gamal or Paillier encryption schemes, the computation costs are of encrypting
the polynomials (O(BM) exponentiations) and of obliviously computing the en-
cryptions of r0 ·Qĥ0

(yα)+ yα and r1 ·Qĥ1
(yα)+ yα (O(MmY) exponentiations).

Overall, we get that the overall communication costs are of sending O(mX +mY)
encryptions, and the computation costs are of performing O(mX +mY log logn)
modular exponentiations.

3.1 Constructing a Protocol for Malicious Parties

We note a couple of issues that need to be addressed in transforming the above
protocol for semi-honest parties to a protocol for malicious parties:

1. It is easy for P1 to construct the B polynomials such that it would learn
about elements that are not in the intersection X∩Y . For instance, if Qi(·) is
identically zero then P1 learns all elements {y ∈ Y : h0(y) = i or h1(y) = i}.
Similarly, if the sum of degrees of Q1, . . . , QB exceeds mX then P1 may learn
about more than mX elements in P2’s input.

To resolve these problems we introduce a zero-knowledge protocol for
verifying that Qi �≡ 0 for all i ∈ {1, . . . , B}, and

∑
i∈{1,...,B} deg(Qi) = mX .

2. While party P2 is supposed to send mY pairs of encryptions resulting from
substituting a value y (known to P2) in the (encrypted) polynomials Qh0(y)
and Qh1(y) it may deviate from his prescribed computation. Thus, P2’s in-
put to the protocol may be ill defined. A solution suggested in [17] solves
this problem partially, as it deals with the case where each element y is sub-
stituted in a single polynomial. This solution avoids the standard usage of
zero-knowledge proofs by P2 that it indeed followed the protocol. Instead, it
enables party P1 to redo the entire computation supposedly carried out by
P2 on y and verify that its outcome is consistent with the messages received
from P2 (this is where the construction uses a random oracle).

We remove the dependency on the random oracle and present a solution
to the case where y is substituted in two polynomials.

3.2 Checking the Polynomials

Our set-intersection protocol utilizes a zero-knowledge proof of knowledge for
the relation2

RPOLY =
{(
{qi,j}i,j ,mX , pk

)
,
(
{Qi,j , ri,j}i,j

)∣∣∣∀i, j qi,j = Epk(Qi,j ; ri,j) ∧∑
i deg(Qi(·)) = mX ∧
∀i, Qi(·) �≡ 0

}
where i ∈ {1, . . . , B}, j ∈ {0, . . . ,M}.
2 We will use the convention that the degree of a polynomial Qi(·) can be chosen to be

any integer j′ such that Qi,j = 0 for all j ≥ j′, hence equality with mX can always
be achieved.

Efficient Set Operations in the Presence of Malicious Adversaries 323

3.3 Secure Set-Intersection in the Presence of Malicious Adversaries

We now get to the main contribution of this work – a protocol that securely
computes F∩ in the presence of malicious adversaries, in the standard model;
see Figure 1. The main ingredient is a subtle combination of an oblivious pseudo-
random function evaluation protocol and a perfectly hiding commitment scheme.
Somewhat counter intuitively, the oblivious prf need not be committed (in a
sense that the same key is being reused) – the proof of security shows that al-
though party P2 that controls the key may change it between invocations, this
does not get him any advantage.

The oblivious prf is used to save on using a (generic) zero-knowledge protocol
for party P2’s adherence to the protocol. Recall that in the protocol of Freedman
et al. P1 learns for every y ∈ Y two values: r0 ·Qh0(y)(y)+y and r1 ·Qh1(y)(y)+y
where r0, r1 are randomly distributed. If y �∈ X then both values are random,
and reveal no information about y. If, y ∈ X then one of these values equals
y. In our protocol, the ‘payload’ y of this computation is replaced by a secret s
(meaning, P1 learns two values: r0 · Qh0(y)(y) + s and r1 · Qh1(y)(y) + s). The
result of the polynomial evaluation step is, hence, that if y �∈ X then P1 learns
no information about s, and if y ∈ X then P1 learns s.

The crux of our construction is that the strings r0, r1 (as well as other) are not
really random. These are pseudorandom strings that are directly derived from
FPRF(k, s). What we get, is that if y �∈ X then P1 learns nothing about s or y.
If, on the other hand, y ∈ X then P1 learns s, and furthermore after P1 invokes
the oblivious prf protocol, she can recover y and check that the computations
P2 performed based on the other ‘random’ strings were performed correctly.

A complication arises as P2 (who selects the key k for the prf) computes
FPRF(k, s) by himself, and hence it is impossible for the simulator to extract
s from this computation. We thus provide the simulator with an alternative
means of extracting s (and also the corresponding y value) by having P2 commit
to both. To guarantee independence of inputs (i.e., that P1 would not be able to
choose his inputs depending on P2’s commitment or vise versa), this commitment
is perfectly hiding and is performed before P1 sends the encrypted polynomials
representing her input set X .

We continue with a formal description of the protocol.

Protocol 2. (π∩ – secure set-intersection):

– Inputs: The input of P1 is mY and a set X ⊆ {0, 1}p(n) containing mX

items; the input of P2 is mX and a set Y ⊆ {0, 1}p(n) containing mY items
(hence, both parties know mX and mY).

– Auxiliary inputs: A security parameter 1n, a prime q′ such that q′ = 2q+1
for a prime q. The group G is the subgroup of quadratic residues modulo q′

and g is a generator of G.
– Convention: Both parties check every received ciphertext for validity (i.e,

that it is in G), and abort otherwise.

324 C. Hazay and K. Nissim

P1(X,my) P2(Y = {yα}α∈{1...mY },mX)

For all α ∈ {1 . . .mY } :

� comα = hyαgsα
sα ←R Zq

← ZKPOK πcom ←

encrypted Q1(·), . . . , QB(·)�
Q1(·) . . . QB(·) −→ πPOLY

←− encrypted Q1(·), . . . , QB(·)
−→ output

If output = 0, abort

Otherwise :
k ← IPRF(1

n) and
For all α ∈ {1 . . .mY } :
r0‖r1‖r̂0‖r̂1 = FPRF(k, sα)
q0 = r0 ·Qh0(yα)(yα),
q1 = r1 ·Qh1(yα)(yα).

�

e0α = Epk

(
(sα)

2 · gq0); r̂0
)

e1α = Epk

(
(sα)

2 · gq1); r̂1
)

For all α ∈ {1 . . .mY } :
z0α = Dsk(e

0
α)

z1α = Dsk(e
1
α)

Check if ∃ x ∈ X and
root ρ of z0α, z

1
α s.t.

comα = hx · gρ

ρ −→
FPRF(k, ρ) ←− πPRF

←− k

r′0‖r′1‖r̂′0‖r̂′1 = FPRF(k, ρ)

Check if e0α, e
1
α,

consistent with x

Fig. 1. A high-level diagram of π∩

– The protocol:
1. Key setup for the encryption and commitment schemes: P1

chooses t, t′ ←R Zq, sets h = gt, h′ = gt′ and sends h, h′ to P2. The
key for the Pedersen commitment scheme is h. The public and private
keys for the El Gamal scheme are pk = h′ and sk = t′. P1 proves knowl-
edge of logg h and logg h

′ using the zero-knowledge proof of knowledge
for RDL.

Efficient Set Operations in the Presence of Malicious Adversaries 325

2. Setting the balanced allocation scheme: P1 computes the parame-
ters B,M for the scheme and chooses the seeds for two (pseudo-)random
hash functions h0, h1 : {0, 1}p(n) → [B]. She sends B,M, h0, h1 to P2 that
checks that the parameters B,M were computed correctly, and aborts oth-
erwise.

3. P2 commits to his input set: Let y1, . . . , ymY be a random ordering of
the elements of set Y . For all α ∈ {1, . . . ,mY }, P2 chooses sα ←R Zq and
sends comα = com(yα; sα) = hyαgsα to P1. P2 then proves the knowledge
of yα and sα by invoking the zero-knowledge proof of knowledge for RCOM.

4. P1 Creates the polynomials representing her input set: For every
x ∈ X, P1 maps x into the less occupied bin from {h0(x), h1(x)} (ties
broken arbitrarily). Let Bi denote the set of elements mapped into bin
i. P1 constructs a polynomial Qi(x)

def=
∑M

j=0Qi,j · xj of degree at most
M whose set of roots is Bi.3 P1 encrypts the polynomials’ coefficients,
setting qi,j = Epk(gQi,j ; ri,j), and sends the encrypted coefficients to P2.

5. Checking the polynomials: P1 and P2 engage in a zero-knowledge ex-
ecution πPOLY for which P1 proves that the sets {qi,j}i∈{1,...,B},j∈{0,...,M}
were computed correctly, using its witness
{Qi,j, ri,j}i∈{1,...,B},j∈{0,...,M}. If the outcome is not 1 then P2 aborts.

6. Evaluating the polynomials: P2 chooses k ← IPRF(1n). Then, P2
performs the following for all α ∈ {1, . . . ,mY }:
(a) P2 computes FPRF(k, sα) and parses the result to obtain pseudoran-

dom strings r0, r1, r̂0, r̂1 of appropriate lengths for their usage below
(i.e., r0‖r1‖r̂0‖r̂1 = FPRF(k, sα)).

(b) He sets ĥ0 = h0(yα) and ĥ1 = h1(yα).
(c) He uses the homomorphic properties of the encryption scheme

to evaluate e0α = Epk(((sα)2 mod q′) · gr0·Qĥ0
(yα); r̂0) and e1α =

Epk(((sα)2 mod q′)·gr1·Qĥ1
(yα); r̂1) (where r̂0, r̂1 denote here the ran-

domness used in the re-encryptions). Then he sends e0α, e
1
α to P1.

7. Computing the intersection: For each α ∈ {1, . . . ,mY }:
(a) P1 computes z0

α = Dsk(e0α) and z1
α = Dsk(e1α). For each of the (up to

four) roots ρ of z0
α, z

1
α (roots are computed modulo q′ = 2q+1 and the

result is considered only if it falls within Zq), she checks if comα/g
ρ

coincides with hxα for some xα ∈ X (this can be done efficiently by
creating a hash table for set {hx : x ∈ X}), and if this is the case
sets ŝα to the corresponding root and marks α.

(b) P1 and P2 engage in an execution of the protocol for FPRF. If α is
marked, then P1 enters ŝα as input, and otherwise she enters a zero.
P2 enters k as input. Let r′0‖r′1‖r̂′0‖r̂′1 denote P1’s output from this
execution.

3 If Bi = ∅ then P1 sets Qi(x) = 1. Otherwise, if |Bi| < M then P1 sets the M +1−|Bi|
highest-degree coefficients of Qi(·) to zero.

326 C. Hazay and K. Nissim

(c) If α is marked, then P1 checks that e0α =Epk((ŝα)2·gr′
0·Qh0(xα)(xα); r̂′0),

and e1α = Epk((ŝα)2 · gr′
1·Qh1(xα)(xα); r̂′1) result from applying the ho-

momorphic operations on the encrypted polynomials and randomness
r′0, r

′
1. If all checks succeed P1 records xα as part of her output.

A word of explanation is needed for the computation done in Step 6. A natural
choice for the payload is sα itself. However, sα ∈ Zq whereas the message space
of the El Gamal encryption is G. Noting that Zq ⊂ Z∗

q′ (neglecting 0 ∈ Zq), and
that by squaring an element of Zq′ we get an element of G, we get that treating
sα as an element of Z∗

q′ and computing (sα)2 mod q′ we get an element of G.
In this mapping, (up to) two elements of Zq share an image in G, and hence in
Step 7a we need to recover and check both pre-images.

Before getting into the proof of security, we observe that if both parties are hon-
est, then P1 outputsX ∩ Y with probability negligibly close to one. In this case, if
for an element yα ∈ Y is holds that yα ∈ X then one of Qh0(yα)(yα), Qh1(yα)(yα)
is zero, and otherwise none ofQh0(yα)(yα), Qh1(yα)(yα) is zero. We get:

1. If yα ∈ X ∩ Y then one of e0α, e
1
α encrypts (sα)2 mod q′. Hence, there exists

a root ρ of z0
α, z

1
α such that comα/g

ρ coincides with hxα for some xα ∈ X ,
resulting in P1 marking α. Furthermore, as r0, r1, r̂0, r̂1 are derived from
FPRF(k, sα), the check done by P1 in Step 7 succeeds and P1 records yα in
her output.

2. If yα �∈ X ∩ Y then none of e0α, e
1
α encrypts (sα)2 mod q′ and (except for

a negligible probability) comα/g
ρ coincides with hxα for no root ρ of z0

α, z
1
α

and xα ∈ X . Hence, P1 does not mark α, and yα is not considered in Step 7,
and not included in P1’s output.

Theorem 1. Assume that πDL, πPRF and πPOLY are as described above, that
(G,E,D) is the El Gamal encryption scheme, and that com is a perfectly-hiding
commitment scheme. Then π∩ (Protocol 2) securely computes F∩ in the presence
of malicious adversaries.

Efficiency. We first note that the protocol is constant round (as all its zero-
knowledge proofs and subprotocols are constant round). The costs of using cur-
rent implementations of FPRF on inputs of length p(n) is that of p(n) oblivious
transfer invocations [21], and hence of O(p(n)) modular exponentiations. We get
that the overall communication costs are of sending O(mX +mY p(n)) group el-
ements, and the computation costs are of performing O(mX +mY (log logmX +
p(n))) modular exponentiations.

Optimizations. Notefirst that if the functionality is changed to allowP2 learn the
size of the intersectionmX∩Y , then, in Step 7b, it is possible to avoid invoking πPRF

when α is not marked. This yields a protocol where O(mX +mX∩Y · p(n)) group
elements are sent, andO(mX +mY · log logmX +mX∩Y ·p(n)) exponentiation are
computed. When mX∩Y) mY , this protocol is significantly more efficient than
those suggested in [21] for weaker adversarial models. Furthermore, an improved
scheme for oblivious pseudorandom function evaluation with overall complexity
which is independent of the input length yields a better efficiency as well.

Efficient Set Operations in the Presence of Malicious Adversaries 327

3.4 A Very Efficient Heuristic Construction

Note that we can now modify protocol π∩ to get a protocol in the random oracle
model πRO

∩ by performing the following two changes: (1) the computation of
FPRF(k, sα) performed by P2 in Step 6a of π∩ is replaced with an invocation of
the random oracle, i.e., P2 computes H(sα); and (ii) the execution of the secure
protocol for evaluating FPRF by P1 and P2 in Step 7 of π∩ is replaced with an
invocation of the random oracle by P1, i.e., no communication is needed, and
instead of providing s′ to the protocol for FPRF, P1 computes H(s′).

A typical proof of security in the random oracle model relies on the simulator’s
ability to record the inputs on which the random oracle is invoked, and the
recorded information is used by the simulator for malicious P2 while recovering
his input. In other words, the proof of security relies on the property of the
random oracle that the only way to learn any information about H(s) is to
apply H on a well defined input s. Should πRO

∩ be implemented such that the
invocations of the random oracle are replaced by a concrete computation of some
function, it seems that this proof of security would collapse, even if very strong
hardness assumptions are made with respect to this implementation.

Nevertheless, the situation in protocol π∩ is very different. Note, in particular,
that the simulator for malicious P2 cannot monitor P2’s input to FPRF (nor is this
notion of inputs to the function well defined). Instead, the simulator extracts s
from the zero-knowledge proof of knowledge for the commitment on P2’s inputs
in Step 3 of π∩. This is inherited by the modified protocol πRO

∩ . Hence, should
the random oracle calls in πRO∩ be replaced with some primitive Gen, the proof of
security may still hold with small modifications, given the hardness assumption
on Gen (intuitively, some functions of the outcome of Gen(s) and s should look
random). πRO∩ can hence be viewed as an intermediate step between the protocol
in [17] that utilizes a random oracle to cope with malicious parties, and the
protocol suggested in the current paper. If the primitive Gen is realized efficiently
(e.g., if its computation incurs a constant number of exponentiations), we get
an extremely efficient protocol for F∩, where the communication costs are of
sending O(mX + mY) group elements, and the number of exponentiations is
O(mX +mY log logmX).

For the sake of completeness we include a formal description of protocol πGen
∩ ,

that is identical to protocol π∩ except for the replacing every invocation of
FPRF(k, ·) by a computation of Gen(·). Note that unlike in an invocation of
FPRF(k, ·), no communication is needed for computing Gen(·).

Protocol 3. (πGen
∩ – secure set-intersection with a “generator”):

– Inputs: The input of P1 is mY and a set X ⊆ {0, 1}p(n) containing mX

items; the input of P2 is mX and a set Y ⊆ {0, 1}p(n) containing mY items
(hence, both parties know mX and mY).

– Auxiliary inputs: A security parameter 1n, a prime q′ such that q′ = 2q+1
for a prime q. The group G is the subgroup of quadratic residues modulo q′

and g is a generator of G.

328 C. Hazay and K. Nissim

– Convention: Both parties check every received ciphertext for validity (i.e,
that it is in G), and abort otherwise.

– The protocol:

1. Key setup for the encryption and commitment schemes: P1
chooses t, t′ ←R Zq, sets h = gt, h′ = gt′ and sends h, h′ to P2. The
key for the Pedersen commitment scheme is h. The public and private
keys for the El Gamal scheme are pk = h′ and sk = t′. P1 proves knowl-
edge of logg h and logg h

′ using the zero-knowledge proof of knowledge
for RDL.

2. Setting the balanced allocation scheme: P1 computes the parame-
ters B,M for the scheme and chooses the seeds for two (pseudo-)random
hash functions h0, h1 : {0, 1}p(n) → [B]. She sends B,M, h0, h1 to P2 that
checks that the parameters B,M were computed correctly, and aborts oth-
erwise.

3. P2 commits to his input set: Let y1, . . . , ymY be a random ordering of
the elements of set Y . For all α ∈ {1, . . . ,mY }, P2 chooses sα ←R Zq and
sends comα = com(yα; sα) = hyαgsα to P1. P2 then proves the knowledge
of yα and sα by invoking the zero-knowledge proof of knowledge for RCOM.

4. P1 Creates the polynomials representing her input set: For every
x ∈ X, P1 maps x into the less occupied bin from {h0(x), h1(x)} (ties
broken arbitrarily). Let Bi denote the set of elements mapped into bin
i. P1 constructs a polynomial Qi(x)

def=
∑M

j=0Qi,j · xj of degree at most
M whose set of roots is Bi.4 P1 encrypts the polynomials’ coefficients,
setting qi,j = Epk(gQi,j ; ri,j), and sends the encrypted coefficients to P2.

5. Checking the polynomials: P1 and P2 engage in a zero-knowledge ex-
ecution πPOLY for which P1 proves that the sets {qi,j}i∈{1,...,B},j∈{0,...,M}
were computed correctly, using its witness {Qi,j , ri,j}i∈{1,...,B},j∈{0,...,M}.
If the outcome is not 1 then P2 aborts.

6. Evaluating the polynomials: For all α ∈ {1, . . . ,mY } P2 performs
the following :
(a) He sets ĥ0 = h0(yα) and ĥ1 = h1(yα).
(b) He parses Gen(sα) to obtain pseudorandom strings r1, r2, r̂0, r̂1 of ap-

propriate lengths for their usage below (i.e., r1‖r2‖r̂0‖r̂1 = Gen(sα)).
He uses the homomorphic properties of the encryption scheme

to evaluate e0α = Epk(((sα)2 mod q′) · gr0·Qĥ0
(yα); r̂0) and e1α =

Epk(((sα)2 mod q′)·gr1·Qĥ1
(yα); r̂1) (where r̂0, r̂1 denote here the ran-

domness used in the re-encryptions). Then he sends e0α, e1α to P1.
7. Computing the intersection: For each α ∈ {1, . . . ,mY }:

(a) P1 computes z0
α = Dsk(e0α) and z1

α = Dsk(e1α). For each of the (up to
four) roots ρ of z0

α, z
1
α (roots are computed modulo q′ = 2q+1 and the

4 If Bi = ∅ then P1 sets Qi(x) = 1. Otherwise, if |Bi| < M then P1 sets the M +1−|Bi|
highest-degree coefficients of Qi(·) to zero.

Efficient Set Operations in the Presence of Malicious Adversaries 329

result is considered only if it falls within Zq), she checks if comα/g
ρ

coincides with hxα for some xα ∈ X (this can be done efficiently by
creating a hash table for set {hx : x ∈ X}), and if this is the case
sets ŝα to the corresponding root and marks α.

(b) If α is marked, then P1 parses Gen(ŝα) to obtain r′0, r
′
1, r̂

′
0, r̂

′
1.

(c) P1 checks that e0α=Epk((ŝα)2·gr′
0·Qh0(xα)(xα); r̂′0), and e1α =Epk((ŝα)2·

gr′
1·Qh1(xα)(xα); r̂′1) result from applying the homomorphic operations

on the encrypted polynomials and randomness r′0, r
′
1. If all checks

succeed P1 records xα as part of her output.

References

1. Aggarwal, G., Mishra, N., Pinkas, B.: Secure Computation of the kth-Ranked Ele-
ment. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 40–55. Springer, Heidelberg (2004)

2. Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Proto-
cols for Realistic Adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 137–156. Springer, Heidelberg (2007)

3. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced Allocations. SIAM Jour-
nal on Computing 29(1), 180–200 (1999)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non cryp-
tographic fault tolerant distributed computations. In: 20th STOC, pp. 1–10 (1988)

5. Boneh, D., Goh, E., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

6. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: 20th STOC, pp. 11–19 (1988)

7. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

8. Damg̊ard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000)

9. Damg̊ard, I., Jurik, M.: A Generalisation, a Simplification and Some Applications
of Paillier’s Probabilistic Public-Key System. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

10. Damg̊ard, I., Nielsen, J.B.: Perfect Hiding and Perfect Binding Universally Com-
posable Commitment Schemes with Constant Expansion Factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 3–42. Springer, Heidelberg (2002)

11. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Private
Set Intersection. In: Ghilardi, S. (ed.) ANCS 2009. LNCS, vol. 5479, pp. 125–142.
Springer, Heidelberg (2009)

12. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 10–18. Springer, Heidelberg (1984)

13. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.: Se-
cure multiparty computation of approximations. ACM Transactions on Algorithms
(TALG) 2(3), 435–472 (2006)

330 C. Hazay and K. Nissim

14. Fouque, P., Pointcheval, D.: Threshold cryptosystems secure against chosen-
ciphertext attacks. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976,
pp. 573–584. Springer, Heidelberg (2000)

15. Fouque, P., Poupard, G., Stern, J.: Sharing decryption in the context of voting of
lotteries. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–104.
Springer, Heidelberg (2009)

16. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Obliv-
ious Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378,
pp. 303–324. Springer, Heidelberg (2005)

17. Freedman, M., Nissim, K., Pinkas, B.: Efficient Private Matching and Set-
Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

18. Goldreich, O.: Foundations of Cryptography: Volume 2 – Basic Applications.
Cambridge University Press, Cambridge (2004)

19. Goldreich, O., Kahan, A.: How To Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology 9(3), 167–190 (1996)

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: 19th
STOC, pp. 218–229 (1987)

21. Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Match-
ing with Security Against Malicious and Covert Adversaries. In: Canetti, R. (ed.)
TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

22. Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Ad-
versaries. Cryptology ePrint Archive, Report 2009/594 (2009),
http://eprint.iacr.org/

23. Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications
to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

24. Kiltz, E., Mohassel, P., Weinreb, E., Franklin, M.K.: Secure Linear Algebra Using
Linearly Recurrent Sequences. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 291–310. Springer, Heidelberg (2007)

25. Kissner, L., Song, D.X.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005); See
technical report CMU-CS-05-113 for the full version

26. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. Journal of Cryptol-
ogy 15(3), 177–206 (2002)

27. Mohassel, P., Weinreb, E.: Efficient Secure Linear Algebra in the Presence of Covert
or Computationally Unbounded Adversaries. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 481–496. Springer, Heidelberg (2008)

28. Naor, M., Nissim, K.: Communication preserving protocols for secure function
evaluation. In: 33th STOC, pp. 590–599 (2001)

29. Naor, M., Reingold, O.: Number-Theoretic Constructions of Ecient Pseudo-
Random Functions. In: 38th FOCS, pp. 231–262 (1997)

30. Nissim, K., Weinreb, E.: Communication Efficient Secure Linear Algebra. In: 4th
TCC, pp. 522–541 (2006)

31. Okamoto, T.: Provably Secure and Practical Identification Schemes and Cor-
responding Signature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 31–53. Springer, Heidelberg (1993)

32. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

http://eprint.iacr.org/

Efficient Set Operations in the Presence of Malicious Adversaries 331

33. Pedersen, T.P.: Non-Interactive and Information-Theoretical Secure Verifiable Se-
cret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

34. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Com-
posable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

35. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

36. Vocking, B.: How Asymmetry Helps Load Balancing. Journal of the ACM 50(4),
568–589 (2003)

37. Yao, A.C.: Protocols for secure computations. In: 23rd FOCS, pp. 160–164 (1982)

Text Search Protocols
with Simulation Based Security

Rosario Gennaro1, Carmit Hazay2, and Jeffrey S. Sorensen1

1 IBM T.J. Watson Research Center, Hawthorne, New York, USA
{rosario,sorenj}@us.ibm.com

2 Dept. of Computer Science and Applied Mathematics,
Weizmann Institute and IDC, Israel
carmit.hazay@weizmann.ac.il

Abstract. This paper presents an efficient protocol for securely com-
puting the fundamental problem of pattern matching. This problem is
defined in the two-party setting, where party P1 holds a pattern and
party P2 holds a text. The goal of P1 is to learn where the pattern
appears in the text, without revealing it to P2 or learning anything else
about P2’s text. Our protocol is the first to address this problem with full
security in the face of malicious adversaries. The construction is based
on a novel protocol for secure oblivious automata evaluation which is of
independent interest. In this problem party P1 holds an automaton and
party P2 holds an input string, and they need to decide if the automaton
accepts the input, without learning anything else.

1 Introduction

Secure two-party computation is defined as the joint computation of some func-
tion over private inputs using a communications protocol, satisying at least pri-
vacy (no other information is revealed beyond the output of the function) and
correctness (the correct output is computed). Today’s standard definition (cf.
[1] following [2,3,4]) formalizes security by comparing the execution of such a
protocol to an “ideal execution” where a trusted third party helps the parties
compute the function. Specifically, in the ideal world the parties just send their
inputs over perfectly secure communication lines to a trusted party, who then
computes the function honestly and sends the output to the designated party.
Informally, the real protocol is defined to be secure if all adversarial attacks on
a real protocol can also be carried out in the ideal world. In the ideal world,
the adversary can do almost nothing, and this guarantees that the same is also
true in the real world. This definition of security is often called simulation-based
because security is demonstrated by showing that a real protocol execution can
be “simulated” in the ideal world.

Secure two-party computation has been extensively studied, and it is known
that any efficient two-party functionality can be securely computed [5,6,7]. How-
ever, these are just feasibility results that demonstrate secure computation is
possible, in principle, though not necessarily in practice. One reason is that the

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 332–350, 2010.
c© International Association for Cryptologic Research 2010

Text Search Protocols with Simulation Based Security 333

results mentioned above are generic, i.e. they do not exploit any structural prop-
erties of the specific function being computed. A long series of research efforts
has been focused on finding efficient protocols for specific functions: constructing
such protocols is crucial if secure computation is ever to be used in practice.

Our Contribution. In this paper we focus on the following problems:

– Secure Pattern Matching. We look at the basic problem of pattern matching.
In this problem, one party holds a text T and the other party holds a pattern
p, but |T | and |p| are mutually known. The aim is for the party holding the
pattern to learn all the locations of the pattern in the text (and there may
be many) while the other party learns nothing about the pattern.

– Oblivious Automata Evaluation. To solve the above problem we consider the
approach of [8] which reduces the pattern matching problem to the com-
position of a pattern-specific automaton Γ with the text T . We develop a
protocol for securely computing the evaluation of Γ on T .

The problem of pattern matching has been widely studied for decades due to its
numerous applications. Yet, the problem of pattern matching in a secure setting
has not received similar attention. Our starting point is an extremely efficient
protocol that computes this function in the “honest-but-curious” setting.1 This
solution can be extended for one-sided simulation, or security even with cor-
ruption of the party with the pattern. This first protocol is independent of out
protocol for the malicious setting, and is comparable to the one-sided simulat-
able protocol of [9]. However, while both protocols reach the same asymptotic
complexity our protocol is much more practical since the concrete constants that
are involved are much smaller ([9] requires |p| oblivious transfers). Moreover, our
protocol can be easily extended to address related problems such as approximate
text search or text search with wildcards. The malicious setting introduces many
subtleties beyond those considered in the previous settings and requires the use
of a different technique. This includes the introduction of novel sub-protocols
such as, for example, a protocol to prove that a correct pattern-specific automa-
ton was constructed. We note that our protocols are the first efficient ones in
the literature to achieve full simulatability for these problems with malicious
adversaries. Security is based on the El Gamal encryption scheme [10,11] and
thus requires a relatively small security parameter (although any additively ho-
momorphic threshold encryption with secure two-party distributed protocols to
generate shared keys and perform decryptions would work).

Motivation. Consider a hospital holding a DNA database of all the participants
in a research study, and a researcher wanting to determine the frequency of the
occurrence of a specific gene. This is a classical pattern matching application,
which is however complicated by privacy considerations. The hospital may be

1 In this setting, an adversary follows the protocol specification but may try to examine
the messages it receives to learn more than it should.

334 R. Gennaro, C. Hazay, and J.S. Sorensen

forbidden from releasing the DNA records to a third party. Likewise, the re-
searcher may not want to reveal what specific gene she is looking for, nor trust
the hospital to perform the search correctly.

It would seem that basic honest-but-curious solutions (already present in the
literature, see below) would work here. However, the parties may be motivated
to produce invalid results, so a proof of accurate output might be as important
as the output itself. Moreover, there is also a need to make sure that the data
on which the protocol is run is valid. For example, a rogue hospital could sell
“fake” DNA databases for research purposes. Perhaps some trusted certification
authorities might one day pre-certify a database as being valid for certain ap-
plications. Then, the security properties of our protocol could guarantee that
only valid data is used in the pattern matching protocol. (The first step of our
protocol is for the hospital to publish an encryption of the data, this could be
replaced by publication of encrypted data that was certified as correct.)

Related work. The problem of secure pattern matching was studied by Hazay
and Lindell in [9] who used oblivious pseudorandom function (PRF) evaluation
to evaluate every block of size m bits. However, their protocol achieves only a
weaker notion of security called one-sided simulatability which guarantees pri-
vacy in all cases and requires that one of the two parties is never corrupted
to guarantee correctness. It is tempting to think that a protocol for computing
oblivious PRF evaluation with a committed key (where it is guaranteed that the
same key is used for all PRF evaluations) for malicious adversaries [12] suffices
for malicious security. Unfortunately, this is not the case since the inputs for the
PRF must be consistent and it is not clear how to enforce this. Namely, for every
i, the last m−1 bits of the ith block are supposed to be the first m−1 bits of the
following block. The idea to use oblivious automata evaluation to achieve secure
pattern matching originates in [13]. Their protocols, however, are only secure in
the honest-but-curious setting. We improve their results to tolerate a malicious
adversary.

The efficiency of our protocol. When presenting a two-party protocol for the
secure computation of a specific function, one has to make sure that the re-
sulting protocol is indeed more efficient than the known “generic” solutions for
secure two-party computation of any function. We compare our protocols to the
two most efficient generic two-party protocols secure against malicious adver-
saries, both based on the circuit garbling-technique by Yao [5]. Recall that Yao’s
protocol (which is secure against semi-honest players) uses a Boolean circuit to
compute the fuction, and its computational complexity is linear in the size of
the circuit.

– One result, in [14], to make Yao resistant to malicious adversaries uses a
binary cut-and-choose strategy. This requires running s copies of Yao’s pro-
tocol, where s is a statistical security parameter that must be large enough
so that 2 ∗ 2

−s
17 is sufficiently small. This requires O(s|C|+ s2m) symmetric-

key encryptions, and this communications overhead, as shown by [15], is a
major obstacle.

Text Search Protocols with Simulation Based Security 335

– The other general result from [16] uses a special form of encryption for gar-
bling and performs efficient zero-knowledge (ZK) proofs over that encryption
scheme. The protocol requires a common reference string (CRS) which con-
sists of a strong RSA modulus. To the best of our knowledge, there are
currently no efficient techniques for generating a shared strong RSA modu-
lus without incorporating external help. Furthermore, their protocol requires
approximately 720 RSA exponentiations per gate where these operations are
computed modulo 2048 due to the use of Paillier’s encryption scheme. This
means that the bandwidth of [16] is relatively high as well.

2 Tools and Definitions

Throughout the paper, we denote the security parameter by n. Although not
explicitly specified, input lengths are always assumed to be bounded by some
polynomial in n. A probabilistic machine is said to run in polynomial-time (ppt)
if it runs in time that is polynomial in the security parameter n alone.

A function μ(·) is negligible in n (or simply negligible) if for every polyno-
mial p(·) there exists a value N such that μ(n) < 1

p(n) for all n > N ; i.e.,
μ(n) = n−ω(1). Let X = {X(n)}n∈N,a∈{0,1}∗ and Y = {Y (n)}n∈N,a∈{0,1}∗ be
distribution ensembles. We say that X and Y are computationally indistinguish-
able, denoted X

c≡ Y , if for every polynomial non-uniform distinguisher D there
exists a negligible μ(·) such that∣∣∣Pr[D(X(n, a)) = 1]− Pr[D(Y (n, a)) = 1]

∣∣∣ < μ(n)

for every n ∈ N and a ∈ {0, 1}∗.
Due to space considerations we defer the formal definitions for two-party

secure computations in the presence of malicious adversaries and one-sided sim-
ulation security to the extended version of this paper.

Zero-knowledge proofs. Our protocols use the several standard zero-knowledge
proofs, as summarized in Table 1. We also employ the following additional zero-
knowledge proofs.

1. A zero-knowledge proof of knowledge πENC for the following relation: Let
Ci = [ci,1, ..., ci,m] for i ∈ {0, 1} and C′ = [c′1, ..., c

′
m] be three vectors of

m ciphertexts each. We want to prove that C′ is the “re-encryption” of the

Table 1. Zero knowledge proofs referenced by our protocols

Protocol Relation/Language Reference

πDL RDL = {((G, g, h), x) | h = gx} [17]
πDDH RDDH = {((G, g, g1, g2, g3), x) | g1 = gx ∧ g3 = gx

2}} [18]
πNZ LNZ = {(G, g, h, 〈α, β〉) | ∃ (m �= 0, r) s.t. α = gr, β = hrgm} [19]

336 R. Gennaro, C. Hazay, and J.S. Sorensen

same messages encrypted in either C0 or C1, or, in other words, that there
exists an index i ∈ {0, 1} such that for all j, c′j was obtained by multiplying
ci,j by a random encryption of 0. More formally,

RENC ={
(G, g,m,C0, C1, C

′), (i, {rj}j)
∣∣ s.t. for all j : c′j = ci,j ·G Epk(0; rj)

}
.

This involves the parties computing the sets c0 =
{∏

(c0,j ·G (1/c′j))
r0,j
}Q

j=1

and c1 =
{∏

(c1,j ·G (1/c′j))
r1,j
}Q

j=1
, where the sets {r0,j}j and {r1,j}j are

public randomness. The prover then proves that either 〈pk, c0〉 or 〈pk, c1〉 is
a Diffie-Hellman tuple.

2. Let C = {ci,j}j,i and C′ = {c′i,j}j,i be two sets of encryptions, where
j ∈ {1, . . . , |Q|} and i ∈ {0, 1}. Then we consider a zero-knowledge proof
of knowledge πPERM for proving that C and C′ correspond to the same de-
cryption vector up to some random permutation. Meaning that,

RPERM =
{(
pk, C,C′

)
,
(
π, {rj,i}j,i

)∣∣∀ i, {cj,i = c′π(j),i · Epk(0; rj,i)}j

}
where π is a random one-to-one mapping over the elements {1, . . . , |Q|}.
Basically we prove that C′ is obtained from C by randomizing all the ci-
phertexts and permuting the indices (i.e., the columns). We require that the
same permutation is applied for both vectors. The problem in which a single
a vector of ciphertexts is randomized and permuted is defined by

R1
PERM =

{(
(c1, . . . , cQ), (c̃1, . . . , c̃Q), pk

)
,(

π, (r1, . . . , rQ)
)∣∣∀ i, c̃j = cπ(j) ·Epk(0; rj)

}
.

and has been widely studied. The state-of-the-art protocol is in [20]. We
use a simpler, though slightly less efficient (but still good for our purposes)
protocol, from [21], which is an efficient zero-knowledge proof π1

PERM for
R1

PERM with linear computation and communication complexity and constant
number of rounds. We use this slightly less efficient protocol because its proof
proof applies to the case where the same permutation is applied to multiple
vectors of ciphertexts.

3 Secure Text Search Protocols

Text search involves scanning a text sequentially, looking for instances of a par-
ticular pattern. Efficient text search requires analysis of the pattern string to
enable O(�) scanning that skips over regions of text whenever possible matches
are provably not possible, as in KMP [8] which we employ here.

Pattern matching is defined as follows: given a binary string T of length � and
a binary pattern p of length m, find all the locations in the text where pattern
p appears in the text. Stated differently, for every i = 1, . . . , � −m + 1, let Ti

Text Search Protocols with Simulation Based Security 337

be the substring of length m that begins at the ith position in T . Then, the
basic problem of pattern matching is to return the set {i | Ti = p}. Formally, we
consider the functionality FPM defined by

(p, (T,m))
→
{

({i | Ti = p}, λ) if |p| = m
({i | Ti = p1 . . . pm}, λ) otherwise

Note that P2, who holds the text, learns nothing about the pattern held by P1,
and the only thing that P1 learns about the text held by P2 is the locations
where its pattern appears. Our starting point is an extremely efficient protocol
that computes FPM in the “honest-but-curious” setting, where the adversary
follows the protocol specification but tries to gain useful information about the
honest party’s input.

3.1 “Honest-But-Curious” Secure Text Search

The protocol shown in Fig. 1 uses homomorphic encryption to ensure the privacy
of the two parties’ inputs. Informally, party P1 computes a matrix Φ of size
2 × m that includes an encryption of zero in position (i, j) if pj = i or an
encryption of one otherwise. Given Φ, party P2 creates a new encryption ek

for every text location k that corresponds to the product of the encryptions at
locations (tk+j−1, j) for all j ∈ {1, . . . ,m}. Since ek is the Hamming distance
between p and Tk, iff p matches Tk, ek will be a random encryption of zero. We
remark that even though we consider here the problem of exact matching, this
solution can be easily applied to the problem of text search with mismatches, or
for larger alphabets.

Formally,

Protocol 1. πSIMPLE

– Inputs: The input of P1 is a binary search string p = p1, . . . , pm and P2 a
binary text string T = t1, . . . , t�

P1(p) P2(T)

For all i ∈ {0, 1},
j ∈ {1, . . . , m} :
Φ(i, j) = Epk(0) for i = pj

Φ(1 − i, j) = Epk(1)
Φ �

For all k ∈ {1, . . . , �} :
e′k =

∏m−1
j=0 [Φ (tk+j , j)]r

� e′k

output {k | Dsk(e′k) = 0}

Fig. 1. Text search in the honest-but-curious setting

338 R. Gennaro, C. Hazay, and J.S. Sorensen

– Conventions: The parties jointly agree on a group G of prime order q
and a generator g for the El Gamal encryption. Party P1 generates a key
pair (pk, sk) ← G and publishes pk. Finally, unless written differently, j ∈
{1, . . . ,m} and i ∈ {0, 1}.

– The protocol:

1. Encryption of pattern. Party P1 builds a 2×m matrix of ciphertexts
Φ defined by,

Φ(i, j) =
{
Epk(0; r) pj = i
Epk(1; r) otherwise

where each r is a uniformly chosen random value of appropriate length.
The matrix Φ is sent to party P2.

2. Scanning of text. For each offset k ∈ {1, . . . , �−m+ 1}, P2 computes

ek =
m∏

j=1

Φ (tk+j−1, j)

Then for each offset k, it holds that Tk matches pattern p if and only if
ek = Epk(0).

3. Masking of terms. Due to the fact that the decryption of ek reveals
the number of matched elements at text location k, party P2 masks
this result through scalar multiplication. In particular, P2 sends the set
{e′k = (ek)rk}k where rk is a random string chosen independently for
each k.

4. Obtaining result. P1 uses sk to decrypt the values of e′k and obtains

{k | Dsk(e′k) = 0}

Clearly, if both parties are honest then P1 outputs a correct set of indexes with
overwhelming probability (an error may occur with negligible probability if (ek)r

is an encryption of zero even though ek is not), as the parties execute a naive
solution for FPM. Then we state the following,

Theorem 1. Assume that (G,E,D) is the semantically secure El Gamal en-
cryption scheme. Then protocol πSIMPLE securely computes FPM in the presence
of honest-but-curious adversaries.

The proof is straightforward via a reduction to the security of (G,E,D) and is
therefore omitted.

Furthermore, if party P1 proves that it computed matrix Φ correctly, we
can also guarantee full simulation with respect to a corrupted P1. This can
be achieved by having P1 prove, for every j, Φ(0, j), Φ(1, j) is a permuted pair
of the encryptions Epk(0), Epk(1), using πPERM. Constructing a simulator for the
case of a corrupted P2 is more challenging since the protocol does not guarantee
that P2 computes {e′k}k relative to a well defined bit string p. In particular, it
may compute every encryption e′k using a different length m string. Thus, only

Text Search Protocols with Simulation Based Security 339

privacy is guaranteed for this case. Let π′
SIMPLE denote the modified version of

πSIMPLE with the additional zero-knowledge proof of knowledge πPERM of P1. We
conclude with the following claim,

Theorem 2. Assume that (G,E,D) is the semantically secure El Gamal en-
cryption scheme. Then protocol π′

SIMPLE securely computes FPM with one-sided
simulation.

The proof sketch is in the extended version of this paper.

Efficiency. We first note that the protocol π′
SIMPLE is constant round. The overall

communication costs are of sending O(m+ �) group elements, and the computa-
tion costs are of performing O(m+ �) modular exponentiations, as P1 sends the
table Φ and P2 replies with a collection of � encryptions. The additional cost of
πPERM is linear in the length of the pattern.

The fact that this protocol does not seem to be naturally extendable for the
malicious setting has led us to search for the techniques presented in the next
section.

3.2 Secure Text Search in the Presence of Malicious Adversaries

We consider a secure version of the KMP algorithm [8], that searches for occur-
rences of a pattern p within a text T by employing the observation that when a
mismatch occurs, the pattern itself embodies sufficient information to determine
where the next match could begin, thus bypassing re-examination of previously
matched characters. More formally, P1, whose input is a pattern p, constructs an
automaton Γp as follows: We denote by p〈i〉 the length-i prefix p1, . . . , pi of p. P1
first constructs a table Υ with m entries where its ith entry denotes the largest
prefix of p that matches a suffix of p〈i−1〉. This table (as in Fig. 2) maintains
the appropriate partial match state if a mismatch occurs in the ith bit of p. The
algorithm indicates for each bit of the text, every input that reaches the final
state, or one bit for each text location.

Fail Γ (qi, j)
State Prefix Υ (qi) State j = 0 j = 1

q1 q1 q1 q2
q2 1 q1 Γ (q1, 0) q3
q3 11 1 q2 q4 Γ(q2 , 1)
q4 110 q1 q5 Γ(q1 , 1)
q5 1100 q1 q6 Γ(q1 , 1)
q6 11000 q1 Γ (q1, 0) q7
q7 110001 1 q2 Γ (q2, 0) q8
q8 1100011 11 q3 q9 Γ(q3 , 1)
q9 11000110 110 q4 q10 Γ(q4 , 1)

q10 110001100 1100 q5 Γ (q5, 0) q11
q11 1100011001 1 q2 Γ (q2, 0) Γ(q2 , 1)

Fig. 2. Construction of determinized KMP automaton for pattern 1100011001

340 R. Gennaro, C. Hazay, and J.S. Sorensen

We remark that Υ can be easily constructed in time O(m2) by comparing
p against itself at every alignment. P1 constructs its automaton Γp based on
Υ . It first sets |Q| = |p| + 1 and constructs the transition table Δ as follows.
For all i ∈ {1, . . . ,m}, Δ(qi−1 × pi) → qi and Δ(qi−1 × (1 − pi)) → Υ (i) where
Υ (i) denotes the ith entry in Υ (we denote the labels of the states in Q by the
sequential integers starting from 1 to m + 1. This way, if there is no matching
prefix in the ith entry, the automaton goes back to the initial state q1). P1
concludes the construction by setting F = qm.

In the next section we show a general protocol evalue to perform a secure and
oblivious evaluation of P1’s automaton on P2’s text. The protocol works for any
automaton (not just a KMP one) and therefore may be of independent interest.
After showing the automata evaluation protocol, we also show how to prove in
zero-knowledge that the automaton P1 constructs is a correct KMP automaton.

3.3 Secure Oblivious Automata Evaluation

In this section we present a secure protocol for oblivious automata evaluation in
the presence of malicious adversaries. In this functionality P1 inputs a description
of an automaton Γ , and P2 inputs a string t. The result of the protocol is that
P1 receives Γ (t), while P2 learns nothing. Formally, we define this problem via
the functionality

FAUTO : (Γ = (Q,Σ,Δ, q1, F), t)
→
{

(accept, λ) if Γ (t) ∈ F
(no − accept, λ) otherwise

where λ is the empty string (denoting that P2 does not receive an output) and
Γ (t) denotes the final state in the evaluation of Γ on t. For a binary inpuy, the
transition table contains |Q| rows and two columns. Furthermore, we assume that
the names of the states are the integers {1, . . . , |Q|}. For simplicity, we assume
that |Q| and |F | are public. This is due to the fact that this information is public
anyway when reducing the problem of pattern matching into oblivious polynomial
evaluation. For the sake of generality we note making |F | private again can be
easily dealt by having P1 send a vector of encryptions for which the ith encryption
is a zero encryption only if qi /∈ F . Otherwise, it is an encryption of qi (this can be
verified using a simple zero-knowledge proof). The final verification can be done
by checking membership in this set using techniques from below.

Recall that our starting point is the protocol from [13]. Their idea is to have
the parties share the current machine state, such that by the end of the kth
iteration the party with the automaton knows a random string rk whereas the
party with the text learns qk + rk. The parties complete each iteration by run-
ning an oblivious transfer in which the next state is now shared between them.
The honest-but-curious setting significantly simplifies their construction. Un-
fortunately, we cannot see any natural way to extend their technique into the
malicious case (even using oblivious transfers resilient to malicious attacks).

A high level description. We begin by briefly motivating our construction; see
Fig. 3 as well. Loosely speaking, at the beginning of the protocol P1 and P2 jointly

Text Search Protocols with Simulation Based Security 341

P1(Q, {0, 1}, Δ, q1, F) P2(t1 . . . , t�)
1n −→

(pk, sk1) ←− πKEY
←− 1n

−→ (pk, sk2){
cj,i = Epk(Δ(j, i))

}
j,i�

{Epk(f)}f∈F �

→ ZKPOK of Δ, F →

for ξ ∈ {1, . . . , �}
let cξ−1 = Epk(Δ(1, (t1, . . . , tξ−1)))
∧ C = {cξ−1/j}j ∧ C′ = {cj,tξ}j

∧ π is a permutation

� π(C), π(C′)

choose
permutation π′ π′(π(C)), π′(π(C′)) �

↔ masking permuted C ↔

↔ threshold decryption
of masked vector

↔ find index of next state

�cξ = Epk(Δ(1, t1, . . . , tξ))

← ZK of validity ←
end for

verify c� is an
accepting state

Fig. 3. A high-level diagram of πAUTO

generate a public-key (G,E,D) for the threshold El Gamal encryption scheme
(denoted by the sub-protocol πKEY). Next, party P1 encrypts its transition table
Δ and the set of accepting states F , and sends it to P2. This allows P2 to
find the encryption of the next state c1 = Δ(1, t1), by selecting it from the
encrypted matrix. P2 re-randomizes this encryption and shows it to P1. The
protocol continues in this fashion for the whole text with � iterations.2

2 Unfortunately, these iterations are not independent. Each requires an encryption of
the current state, and thus cannot be performed in parallel. We show in Sect. 4 how
to minimize the number of rounds into O(|Q|) when performing a secure text search,
which is typically quite small.

342 R. Gennaro, C. Hazay, and J.S. Sorensen

At the beginning of each iteration, the parties know a randomized encryption
of the current state, and their goal is to find an encryption of the next state. At
iteration i, P2 selects from the matrix the entire encrypted column of all possible
|Q| next states for its input ti (only knowing an encryption of the current state).
Then, using the homomorphic properties of El Gamal , the parties obliviously
select the correct next state: Let cξ−1 denote an encryption of Δ(1, t1, . . . , tξ−1).
The parties compute first the set C = {cξ−1/cj,ε}j, where {cj,ε}j correspond to
encryptions of the labels in Q; see below for more details. Only one ciphertext
in this set will be an encryption of 0, it indicates the position corresponding to
the current state. The protocol concludes by the parties jointly checking if the
encrypted state that is produced within the final iteration is in the encrypted
list of accepting states.

There are several technical challenges in constructing such a secure protocol.
In particular the identification of the next encrypted state without leaking addi-
tional information requires a couple of rounds of interaction between the parties in
which they mask and permute the ciphertext vector containing all possible states,
in order to “destroy any link” between their input and the next encrypted state.
Moreover, in order to protect against malicious behavior, zero-knowledge proofs
are included at each step to make sure parties behave according to the protocol
specifications. We are now ready to present a formal description of our protocol.

For a final remark we denote that due to technicalities that arise in the security
proof, our protocol employs an unnatural masking technique, where instead of
multiplying or adding a random value to each encryption, it uses both. The
reason for this becomes clear in the proof.

Protocol 2. πAUTO

– Inputs: The input of P1 is a description of an automaton Γ = (Q, {0, 1}, Δ,
q1, F), and the input of P2 is a binary string t = t1, . . . , t�.

– Auxiliary Inputs: |Q| and |F | for P2, � for P1, and the security parameter
1n for both.

– Conventions: We assume that the parties jointly agree on a group G of
prime order q and a generator g for the threshold El Gamal encryption
scheme. Both parties check every received ciphertext for validity, and abort
if an invalid ciphertext is received.

The transition table Δ is defined as Δ(j, i) which denotes the state that
follows state j if the input letter is i. We augment this table by adding a
column to Δ labeled by ε: we define Δ(j, ε) = j (the reader can think of it
as the “label” of the jth row of the transition table).

Since we are assuming a binary alphabet, unless written differently,
j ∈ {1, . . . , |Q|} and i ∈ {ε, 0, 1}. Finally we assume that the initial state is
labeled 1.

– The protocol:
1. El Gamal key setup:

(a) Party P1 chooses a random value r1 ←R Zq and sends party P2 the
value g1 = gr1 . It proves knowledge of r1 using πDL.

Text Search Protocols with Simulation Based Security 343

(b) Party P2 chooses a random value r2 ←R Zq and sends party P1 the
value g2 = gr2 . It proves knowledge of r2 using πDL. The parties set
pk = 〈G, q, g, h = g1 · g2〉 (i.e., the secret key is (r1 + r2) mod q).

2. Encrypting P1 transition table and accepting states:

(a) P1 encrypts its (augmented) transition table Δ under pk component-
wise; ΔE =

{
cj,i = Epk(Δ(j, i))

}
j,i

. Notice that cj,ε is an encryption
of the state j. P1 also sends the list of encrypted accepting states
denoted by E(F) = {Epk(f)}f∈F .

(b) For every encryption 〈c1, c2〉 ∈ ΔE ∪ E(F), P1 proves the knowledge
of logg c1 using πDL.

(c) Proving the validity of the encrypted transition matrix. P1 proves that
ΔE is a set of encryptions for values from the set {1, . . . , |Q|}. It first
sorts the encryptions according to their encrypted values, denoted by
c1, . . . , c3·|Q|. P1 multiplies every encryption in this set with a ran-
dom encryption of 0, sends it to P2 and proves: firstly, that this vec-
tor is a permutation of ΔE , using πPERM, further that c̄i = ci/ci−1 ∈
{Epk(0), Epk(1)} by proving that either (pk, c̄i) or (pk, c̄i/Epk(1)) is
a Diffie-Hellman tuple, and, finally, that

∏
i c̄i = Epk(|Q|). P1 also

decrypts c3·|Q|, which is always an encryption of |Q|.
3. First iteration:

(a) P2 chooses the encryption of the next state c1,t1 = Epk(Δ(1, t1)). It
then defines c1 = c1,t1 ·GEpk(0), i.e. a random encryption of the next
state and sends it to P1.

(b) P2 proves that Dsk(c1) ∈ {Dsk(c1,0), Dsk(c1,1)} using the zero-
knowledge proof πENC for m = 1.

4. Iterations {2, . . . , �}: for every ξ ∈ {2, . . . , �}, let cξ−1 denotes the en-
cryption of Δ(1, (t1, . . . , tξ−1)); the parties continue as follows:

(a) Subtracting the current state from the state labels in Δ:
The parties compute the vector of encryptions C = {cξ−1/cj,ε} for
all j. Note that only one ciphertext will denote an encryption of 0,
and that indicates the position corresponding to the current state.

(b) P2 permutes C and column tξ:

• P2 computes C′ = {cj,tξ
·G Epk(0)} for all j (note that C′ corre-

sponds to column tξ in the transition matrix – i.e. the encryptions
of all the possible next states given input bit tξ) and sends C′ to
P1. It also proves that C′ were computed correctly using πENC.

• P2 chooses a random permutation π over {1, . . . , |Q|} and sends
P1 a randomized version of {π(C), π(C′)} That is, the ciphertexts
are permuted and randomized by multiplication with Epk(0).
The parties engage in zero-knowledge proof πPERM where P2
proves that it computed this step correctly.

344 R. Gennaro, C. Hazay, and J.S. Sorensen

(c) P1 permutes π(C) and column tξ: Let C2
π, C

′2
π denote the per-

muted columns that P2 sent. If P1 is accepts the proof πPERM it con-
tinues similarly by permuting and randomizing C2

π, C
′2
π using a new

random permutation π′. P1 proves its computations using πPERM.
(d) Multiplicative masking: Let C1

π, C
′1
π denote the permuted

columns from the previous step. C1
π corresponds to the permuted ε

column from the transition matrix, which contains the labels of the
states minus the label of the current state. The parties take turns in
masking C1

π as follows: for every 〈cj,a, cj,b〉 ∈ C1
π , P2 chooses x←R Zq

and computes c′j=〈cxj,a, cxj,b〉. It then proves that (G, cj,a, cxj,a, cj,b, c
x
j,b)

is a Diffie-Hellman tuple using πDDH. (Encryptions of zero will be un-
affected by this step, while non-zero values will be mapped to random
values.) P1 repeats this step and masks the result. Let C̃1, C̃2 be the
resulting masked columns for P1 and P2 respectively.

(e) Additive masking: C̃1 corresponds to the permuted ε column from
the transition matrix, which has by now been masked by both par-
ties. P2 chooses |Q| random values μP2

1 , . . . , μP2
|Q| and encrypts them;

γP2
i = Epk(μP2

i). P2 also computes c̄P2
i = (c̃i ·G γP2

i) ·G Epk(0) for
every c̃i ∈ C̃2, and proves in zero-knowledge that the masking is
correct by proving that for every i〈 c̄i,a

c̃i,a · γi,a
,

c̄i,b
c̃i,b · γi,b

〉
is an encryption of zero, using πDDH. The ciphertext c̃i that denotes
an encryption of zero is now mapped to the ciphertext c̄i that con-
tains an encryption of μi. The others are mapped to random values.
Let C2 = [c̄1, . . . , c̄|Q|] denote this masked vector. P1 performs this
step as well to obtain C1.

(f) Decrypting column ε: The parties decrypt it using their shared
knowledge of sk. In particular, for every c̄j ∈ C in which c̄j =
〈c̄j,a, c̄j,b〉, P1 computes c′j = c̄r1

j,a and proves that (G, g, gr1, c′j , c̄j,a) is
a Diffie-Hellman tuple. Next P2 computes c′′j = c̄r2

j,a and proves that
(G, g, gr2, c′′j , c̄j,a) is a Diffie-Hellman tuple. The parties decrypt c̄j
by computing Dsk(c̄j) = c̄j,b/(c′j · c′′j). Each party Pi sends its addi-
tive shares; μPi

1 , . . . , μ
Pi

|Q|, and proves their correctness via πDDH. The

parties chooses the index j for which there existsDsk(c̄j) = μP1
j +μP2

j

(with high probability there will be only one such index).
5. Checking the output: After the �th iteration c� contains the encryp-

tion of Δ(1, t). To check if this is an accepting state without revealing
any other information (in particular which state it is) the parties do the
following:
(a) They compute the ciphertext vector CF ={c�/c}c∈E(F). Notice that

Δ(1, t) is accepting if and only if one of these ciphertexts is an en-
cryption of 0.

Text Search Protocols with Simulation Based Security 345

(b) P2 masks the ciphertexts as in Steps 4d and 4e. Let C′
F be the

resulting vector.
(c) P2 randomizes and permutes C′

F . It also proves correctness using
πPERM. Let C′′

F be the resulting vector.
(d) The parties decrypt all the ciphertexts in C′′

F with the result going
only to P1; for every ciphertext c = 〈ca, cb〉 ∈ C′′

F , the party P2 sends
c′a = cr2

a and proves that (G, g, gr2, ca, c
′
a) is a Diffie-Hellman tuple.

This information allows P1 to decrypt the ciphertexts, and P1 accepts
if one of the decryptions equals one of the additive mask of P2.

Before turning to the security proof we show that if both parties are honest then
P1 outputs Γ (t) with probability negligibly close to 1. This is because with each
iteration ξ the parties agree upon the correct encrypted state cξ with probability
close to 1. We continue with the following claim,

Theorem 3. Assume that πDL, πDDH, πENC and πPERM are as described above
and that (G,E,D) is the semantically secure El Gamal encryption scheme. Then
πAUTO securely computes FAUTO in the presence of malicious adversaries.

Intuitively it should be clear that the automaton and the text remain secret,
if the encryption scheme is secure. However, a formal proof of Theorem 3 is
actually quite involved. Consider, for example, the case in which P1 is corrupted
and we need to simulate P2. The simulator is going to choose a random input
and run P2’s code on it. Then, to prove that this view is indistinguishable, we
need a reduction to the encryption scheme. A straightforward reduction does not
work for the following reason: in order for the simulator to finish the execution
correctly it must “know” the current state, at every iteration i; but when we do
a reduction to El Gamal we need to plug in a ciphertext for the current state for
which we do not know a decryption, and this prevents us from going forward to
iteration i + 1. A non-trivial solution to this problem is to prove that the real
and simulated views are indistinguishable via a sequence of hybrid games, in
which indistinguishable changes are introduced to the way the simulator works,
but still allowing it to finish the simulated execution.

As for the case that P2 is corrupted, the proof is rather simple mainly because
P2 does not receive an output. Specifically, the simulator extracts P2’s input in
every iteration using the extractor for πENC.
Efficiency. We present an analysis of our protocol and compare its efficiency to
the generic protocols of [14,16] for secure two-party computation in the presence
of malicious adversaries. We introduced the efficency of the generic protocols in
Sec. 1. A circuit that computes FAUTO would require O(�Q logQ) gates. While
there exists a sequential circuit of size O(�Q) that computes a Q-state automaton
over a binary input of size �, the generic protocol applies only to combinatorial
circuits. So, our protocol improves the computational complexity over the generic
solution by a factor of n logQ or logQ operations compared to [14] and [16]
respectively.3 In comparison to [14,16], we have the following:

3 Although not presented here, our protocol generalizes to strings over a larger alphabet,
and this provides another log Σ factor improvement where Σ is the size of the alphabet.

346 R. Gennaro, C. Hazay, and J.S. Sorensen

1. Rounds of Communication: Our protocol runs O(�) rounds where � is the
length of the text, compared to the constant round complexity of [14,16].
This is due to the fact that the parties cannot initiate a new iteration before
completing the previous one. By applying known techniques, the round com-
plexity can be reduced to O(m) (i.e., the length of the pattern) by breaking
the text into blocks of size 2m; see Sect. 4 for more details. We note that
the length of the pattern is typically very small, usually up to a constant.
An additional improvement can be achieved if some leakage is allowed. In
particular, since the number of rounds are determined by the length of the
pattern, the pattern can be broken into smaller blocks and the output com-
bined out of these results. This means that additional information about the
text is released, as it is then possible to identify appearances in the text that
correspond to substrings of the input pattern.

2. Asymmetric computations: The overall number of exponentiations in proto-
col πVALIDAUTO, including the zero-knowledge proofs is O(m · �). As for [14],
the number of such computations depends on the number of oblivious trans-
fer executions, which is bounded by max(4�, 8s) where and the number of
commitments 2�s(s+1), where s must be large enough so that 2∗2

−s
17 is suf-

ficiently small. Finally, [16] requires O(|C|) such operations. However, after
carefully examining these costs, it seems that the parties compute approx-
imately 720 RSA exponentiations per gate, where the number of gates is
O(m · �), which is clearly not practical. Furthermore, the protocol of [16]
also requires a security parameter, usually of size of at least 1024, due to the
strong RSA assumption. Consequently, all the public-key operations are per-
formed over groups modulus this value (or higher, such as N2). In contrast,
our protocol uses the El Gamal encryption scheme which can be implemented
over elliptic curve group, typically, using only 160 bit keys.

3. Symmetric operations: [14], due to the use of a symmetric encryption scheme,
also requires O(s|C|+ s2 · n) such symmetric computations.

4. Bandwidth: In our protocol, the parties send each other O(m ·�) encryptions.
The bandwidth of the protocol in [16] is similar (again, with relatively high
constants), whereas in [14], the bandwidth is dominated by the O(s|C|+s2n)
symmetric-key encryptions. In [15], it is shown that communication is the
main bottleneck when implementing the malicious protocol of [14].

In order to conclude the comparison, we note that implementing a circuit that
solves the basic pattern matching problem may be significantly harder than
implementing our protocol.

3.4 A Zero-Knowledge Proof of Knowledge for a KMP Automaton

Space does not permit a full treatment of our protocol for πVALIDAUTO, but we
we include a description of the protocol here:

Text Search Protocols with Simulation Based Security 347

Protocol 3. πVALIDAUTO

– Auxiliary input for the prover: A collection {Qi,j, ri,j}i,j of Q sets,
each set is of size 2, such that ci,j = Epk(Qi,j ; ri,j) for all i ∈ {0, 1} and
j ∈ {1, . . . , |Q|}.

– Auxiliary inputs for both: A prime p such that p − 1 = 2q for a prime
q, the description of a group G of order q for which the DDH assumption
holds, and a generator g of G.

– The protocol:
1. For every ci,j = 〈αi,j , βi,j〉, the prover P proves the knowledge of logg αi,j

using πDL.
2. For every row Δj = {cj,0, cj,1}|Q|

j=1 in the transition matrix P
proves the following:
(a) It first randomly permutes cj,0 and cj,1 and employs πPERM to prove

its computations.
(b) It proves that there exists b ∈ {0, 1} in which cj,b = Epk(j + 1) by

proving that (pk, cj,b/Epk(j + 1)) is a Diffie-Hellman tuple.
(c) P proves the correctness of cj,1−b in two steps: (i) It first proves

that it corresponds to a valid prefix of p〈j−1〉, (ii) then it proves the
maximality of this prefix (p〈r〉 denotes the rth length prefix p1, . . . , pr

of p).
i. Let |Q|− 1 = m, then the verifier V chooses m random elements
uα ←R Zq and sends {uα}α to P . Next, both parties use the
homomorphic properties of the encryption scheme to compute an
encryption vα′,α′′ = Epk(

∑α′′

k=α′ uk·pk) for all α′, α′′ ∈ {1, . . . ,m}
with α′ < α′′.

ii. Proving the existence of a prefix that matches a suffix of
p〈j−1〉: For all 1 ≤ k ≤ j − 1 the parties compute an encryption
v′k = (vj−k,j−1

/
v1,k) · (cj,1−b/k).

P then proves that there exists k for which v′k is a Diffie-
Hellman tuple.

iii. Proving that p〈Dsk(ci,b)〉 corresponds to the longest suffix
of p〈j−1〉:

Next P proves that there does not exist an index Dsk(ci,1−b) <
k ≤ j − 1 in which vj−k,j−1

/
v1,k = 0 yet cj,1−b/k �= 0, as this

would imply that p〈k〉 is a larger suffix of p〈j−1〉 that matches
however, Dsk(cj,1−b) �= k.
• Therefore, for every 1 ≤ k ≤ j−2 and for every 2 ≤ k′ ≤ j−1

the parties compute an encryption ek,k′ = v′k ·(vj−k′,j−1
/
v1,k′)

for which P then proves that ek,k′ is not an encryption of zero
using πNZ.

3. If all the proofs are successfully completed, V outputs 1. Otherwise it
outputs 0.

We refer the reader to the extended version of this paper for a detailed definition
and proof.

348 R. Gennaro, C. Hazay, and J.S. Sorensen

4 Text Search Protocol with Simulation Based Security

In this section we present our complete and main construction for securely eval-
uating the pattern matching functionality FPM defined by

(p, (T,m))
→
{

({i | Ti = p}, λ) if |p| = m
({i | Ti = p1 . . . pm}, λ) otherwise

Recall that our construction is presented in the malicious setting with full sim-
ulatability and is modular in the sub-protocols πAUTO and πVALIDAUTO. Having
described the sub-protocols incorporated in the our scheme we are now ready
to describe it formally. Our protocol is comprised out of two main phases: first
the parties first engage in an execution of πVALIDAUTO for which P1 proves that it
indeed sent a valid KMP automaton, followed by an execution of πAUTO which
in an evaluation of Γ on P2’s private input.

In order to reduce the round complexity of the protocol, long texts are parti-
tioned into 2m pieces and are handled separately so that the KMP algorithm is
employed on each block independently (thus all these executions can be run in
parallel). That is, let T = t1, . . . , t� then the text is partitioned into the blocks
(t1, . . . , t2m),(tm, . . . , t3m),(t2m, . . . , t4m) and so on, such that every two consec-
utive blocks overlap in m bits. This ensures that all the matches will be found.
Therefore, the total number of blocks is �/m.

Protocol 4. πPM

– Inputs: The input of P1 is a binary pattern p = p1, . . . , pm, and the input
of P2 is a binary string T = t1, . . . , t�.

– Auxiliary Inputs: the security parameter 1n, and the input sizes � and m.

– The protocol:
1. P1 constructs its automaton Γ = (Q,Σ,Δ, q1, F) according to the KMP

specifications based on its input p and sends P2 encryptions of the tran-
sition matrix Δ and the accepting states F , denoted by EΔ and EF .

2. The parties engage in an execution of the zero-knowledge proof
πVALIDAUTO where P1 proves that Γ was constructed correctly. That is,
P1 proves that the set EΔ corresponds to a valid KMP automaton and a
well defined input pattern of length m. If P2’s output from this execution
is 1 the parties continue to the next step. Otherwise P2 aborts.

3. P2 sends an encryption of T to P1 and the parties partition T into
�/m blocks of length 2m in which every two consecutive blocks overlap
in m bits.

4. The parties engage in �/m parallel executions of πAUTO on these blocks.4

For every 1 ≤ i ≤ �/m, let {outputij}m+1
j=1 denotes the set of P1’s outputs

from the ith execution. Then P1 returns {j | outputij = ‘‘accept′′}.
4 The parties run a slightly modified version of πAUTO where they carry out Step 5 for

verifying acceptance m + 1 times, as each block contains potentially m + 1 matches.
This step can be executed in parallel for all block locations.

Text Search Protocols with Simulation Based Security 349

Theorem 4. Assume that πAUTO and πVALIDAUTO are as described above and
that (G,E,D) is the semantically secure El Gamal encryption scheme. Then
πPM securely computes FPM in the presence of malicious adversaries.

The security proof for πPM is a combination of the proofs described for for πAUTO

and πVALIDAUTO and is therefore omitted here.

Efficiency. Since the costs are dominated by the costs of πAUTO, we refer the
reader to the detailed analysis presented in Sect. 3.3. The overall costs are
amount to O(m · �+m2) = O(m · �) since in most cases m << �.

5 Conclusion

Our protocols for oblivious automata evaluation and pattern matching operate
in the standard model and require no CRS nor apply a cut-and-choose strategy.
Having P1, P2 hold strings of lengths �,m for the text and the pattern respec-
tively, both protocols incur communication and computation costs of O(� · m)
which is even asymptotically better then the general construction for the oblivi-
ous automata evaluation that requires a circuit with O(� ·m logm) gates. Table 2
summarizes and compares the computational and communications costs of each
of these schemes.

Table 2. Summary of results

Round Communication Asymmetric Symmetric
Complexity Complexity Computations Computations

Lindell- constant O(s|C| + s2m) times max(4m, 8s) O(s|C| + s2 · m)
Pinkas [14] 128/256 bits OT’s
Jarecki- constant O(� · m) times 720 exp. None
Shmatikov [16] 2048 bits per gate
Our O(m) O(� · m) times O(� · m) None
Protocol 160 bits

References

1. Canetti, R.: Security and composition of multi-party cryptographic protocols. Jour-
nal of Cryptology 13, 2000 (1998)

2. Goldwasser, S., Levin, L.A.: Fair computation of general functions in presence of
immoral majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 77–93. Springer, Heidelberg (1991)

3. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)

4. Micali, S., Rogaway, P.: Secure computation (abstract). In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)

5. Yao, A.C.C.: How to generate and exchange secrets. In: SFCS 1986: Proceedings
of the 27th Annual Symposium on Foundations of Computer Science, Washington,
DC, USA, pp. 162–167. IEEE Computer Society, Los Alamitos (1986)

350 R. Gennaro, C. Hazay, and J.S. Sorensen

6. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In:
STOC 1987: Proceedings of the nineteenth annual ACM symposium on Theory
of computing, pp. 218–229. ACM, New York (1987)

7. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, New York (2004)

8. Knuth Jr., D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

9. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern match-
ing with security against malicious and covert adversaries. In: Canetti, R. (ed.)
TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

10. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22(6), 644–654 (1976)

11. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

12. Jarecki, S., Xiaomin, L.: Efficient oblivious pseudorandom function with applica-
tions to adaptive ot and secure computation of set intersection. In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

13. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error
resilient dna searching through oblivious automata. In: CCS 2007: Proceedings of
the 14th ACM conference on Computer and communications security, pp. 519–528.
ACM, New York (2007)

14. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

15. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party com-
putation is practical. In: ASIACRYPT 2009, Tokyo, Japan. LNCS, pp. 250–267.
Springer, Heidelberg (2009)

16. Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on commit-
ted inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114.
Springer, Heidelberg (2007)

17. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

18. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

19. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adver-
saries (2010)

20. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer,
Heidelberg (2008)

21. Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer, Heidelberg (2007)

Solving a 676-Bit Discrete Logarithm Problem
in GF(36n)

Takuya Hayashi1,�, Naoyuki Shinohara2, Lihua Wang2, Shin’ichiro Matsuo2,
Masaaki Shirase3, and Tsuyoshi Takagi1,�

1 Graduate School of Mathematics, Kyushu University,
744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan

2 Information Security Research Center, National Institute of Information and
Communications Technology,

4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-9795, Japan
3 School of Systems Information Science, Future University Hakodate,

116-2, Kamedanakano-cho, Hakodate, Hokkaido, 041-0806, Japan

Abstract. Pairings on elliptic curves over finite fields are crucial for con-
structing various cryptographic schemes. The ηT pairing on supersingular
curves over GF(3n) is particularly popular since it is efficiently imple-
mentable. Taking into account the Menezes-Okamoto-Vanstone (MOV)
attack, the discrete logarithm problem (DLP) in GF(36n) becomes a con-
cern for the security of cryptosystems using ηT pairings in this case. In
2006, Joux and Lercier proposed a new variant of the function field sieve
in the medium prime case, named JL06-FFS. We have, however, not yet
found any practical implementations on JL06-FFS over GF(36n). There-
fore, we first fulfill such an implementation and we successfully set a new
record for solving the DLP in GF(36n), the DLP in GF(36·71) of 676-
bit size. In addition, we also compare JL06-FFS and an earlier version,
named JL02-FFS, with practical experiments. Our results confirm that
the former is several times faster than the latter under certain conditions.

Keywords: function field sieve, discrete logarithm problem, pairing-
based cryptosystems.

1 Introduction

Based on pairings, many novel cryptographic protocols have been successively
constructed, such as identity-based encryptions [8], forward-secure cryptosys-
tems, proxy cryptosystems, keyword searchable PKEs [7]. As a result, two re-
quirements arose: efficient pairing computation and security parameter selection.

The ηT pairing [5] on supersingular curves over GF(3n) has been efficiently
implemented both in software and hardware [6,13,14]1. Along with the increase
in computation speed on the ηT pairing, one may ask whether cryptosystems

� This work was done when authors belonged to Future University Hakodate.
1 Here, n is a prime number such as n = 97, 163 and 193 [25].

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 351–367, 2010.
c© International Association for Cryptologic Research 2010

352 T. Hayashi et al.

based on the ηT pairing are still secure. It is well known that a discrete loga-
rithm problem (DLP) on supersingular curves over GF(q) can be converted to
a DLP in GF(qm) (where q is a prime power and m is not larger than 6) [24].
Therefore, the DLP in GF(36n) is one of the most important problems in analyz-
ing the cryptosystems constructed with the ηT pairing on supersingular curves
over GF(3n).

The function field sieve (FFS) is the most efficient algorithm for solving the
DLP in finite fields of small characteristic. The complexity of the FFS for solving
the DLP in GF(36n) is L36n [1/3, c] with constant c, where

L36n [1/3, c] = exp((c+ o(1))(log 36n)1/3(log log 36n)2/3).

Here o(1) stands for a function that converges to zero as n approaches infinity.
The first FFS was proposed by Adleman [1] in 1994. Five years later, Adle-

man and Huang proposed an improved FFS (AH-FFS) with c = (32/9)1/3 [2].
In 2002, Joux and Lercier proposed a practical improvement of the FFS (JL02-
FFS) [16]. Since a definition polynomial of the function field in JL02-FFS can
select more flexibly, JL02-FFS is more practical than AH-FFS, though its asymp-
totic complexity is the same as that of AH-FFS. Furthermore, by using JL02-
FFS, Joux and Lercier succeeded in solving the DLP in GF(2613). This refreshed
the record for solving the DLP in finite fields of characteristic two with regard to
bit size [15]. In 2006, Joux and Lercier proposed another new variant of the FFS
(JL06-FFS) [18]. JL06-FFS has the same asymptotic complexity with JL02-FFS
for solving the DLP in GF(36n), where n is a prime number2. This work im-
plied that JL06-FFS might be efficient for solving the DLP in extension fields of
GF(36) of degree n. However, to our knowledge, there have been no practical ex-
periments. Note that JL02-FFS can also be applied to extension fields of GF(36)
of degree n, but [12] showed no advantage using GF(36) as the base field.

Our contributions. We have first conducted experiments on JL06-FFS in
GF(36n). In JL06-FFS, GF(36n) is constructed as extension fields of GF(36)
of degree n, and thus the Galois action can be dealt for reducing required re-
lations. By our implementation, we succeeded in solving the DLP in GF(36·71)
of 676-bit size with about 33 days computation, which is the new record for
solving the DLP in GF(36n). Our work contributes to the selecting of security
parameters. Additionally, we compared JL06-FFS [18] with JL02-FFS [16], and
according to the experimental results, we confirmed that JL06-FFS is several
times faster than JL02-FFS with n = 19, 61.

The rest of the paper is organized as follows. In Section 2, we briefly review the
FFS algorithm. In Section 3, we compare JL02-FFS with JL06-FFS according
to the polynomial selection method and experimental results. In Section 4, we
describe our implementation on how to solve the DLP in GF(36·71) in detail,
which is based on JL06-FFS. Concluding remarks are made in Section 5.

2 When n is a composite number, this variant may have complexity L36n [1/3, 31/3]
for solving the DLP in GF(36n) (When JL06-FFS has complexity Lqm [1/3, 31/3], we
call it JL06-FFS-2). We do not deal with this case in this paper.

Solving a 676-Bit Discrete Logarithm Problem in GF(36n) 353

2 Outline of Function Field Sieve

In this section, we describe an overview of the FFS [1], which consists of four
steps: polynomial selection, collection of relations, linear algebra, and individual
logarithm. We particularly deal with the FFS for solving the DLP in extension
fields of GF(36) of degree n and describe the four steps below. For more details,
refer to related work as [1,12,16,18].

Throughout this paper, let γ be a generator of the multiplicative group of
GF(36n) and α ∈ 〈γ〉, then we try to find the smallest positive integer logγ α

such that γlogγ α = α, which is called the discrete logarithm.

1. Polynomial selection: Select f ∈ GF(36)[x] such that f is a monic irreducible
polynomial of degree n, then GF(36n) ∼= GF(36)[x]/(f). Next, find a poly-
nomial H(x, y) ∈ GF(36)[x, y] satisfying the eight conditions proposed by
Adleman [1]. Then there is a surjective homomorphism

Φ :
{

GF(36)[x, y]/(H)→ GF(36n) ∼= GF(36)[x]/(f)
y
→ m,

where m is in GF(36)[x] such that H(x, m) ≡ 0 (mod f). Here we select the
smoothness bound B and define a rational factorbase BR and an algebraic
factorbase BA as follows:

BR = {p ∈ GF(36)[x] | deg(p) ≤ B, p is irreducible},
BA = {〈p, y − t〉 ∈ Div(GF(36)[x, y]/(H)) | p ∈ BR, t ≡ m (mod p)},

where Div(GF(36)[x, y]/(H)) is the divisor group of GF(36)[x, y]/(H) and
〈p, y − t〉 is a divisor generated by p and y − t.

2. Collection of relations: For r, s ∈ GF(36)[x] of degree not larger than B, find
at least (#BR + #BA) relatively prime pairs (r, s) such that

rm + s =
∏

pi∈BR

pai

i

〈ry + s〉 =
∑

〈pj,tj〉∈BA

bj〈pj , y − tj〉. (1)

Such a pair (r, s) is called a double smooth pair. For each (r, s), compute

rm+ s, (2)

(−r)dH(x, −s/r). (3)

Polynomial (3) is said to be B-smooth if it is factorized into irreducible
polynomials of degree not larger than B, and then we have

(−r)dH(x, −s/r) =
∏

〈pj ,tj〉∈BA

p
bj

j , (4)

354 T. Hayashi et al.

where tj is uniquely determined by r, s and pj . Then the bj in Equation (4)
is exactly the same as the one in Equation (1). When both Polynomials (2)
and (3) are B-smooth, a pair (r, s) is a double smooth pair. Eventually, we
obtain the following relation:∑

pi∈BR

ai logγ pi ≡
∑

〈pj ,tj〉∈BA

bj logγ κj (mod (36n − 1)/(36 − 1)), (5)

where
κj = Φ(λj)1/h, 〈λj〉 = h〈pj y − tj〉, (6)

for the class number h of the quotient field of GF(36)(x)[y]/(H).
3. Linear algebra: For the number R of relations, construct an R×(#BR+#BA)

matrix M from the relations in Equation (5) and (#BR +#BA) dimensional
column vector v as follows:

M =

⎛⎜⎜⎝
a
(1)
1 . . . a

(1)
#BR

−b(1)1 . . . −b(1)#BA

...
...

...
...

a
(R)
1 . . . a

(R)
#BR

−b(R)
1 . . . −b(R)

#BA

⎞⎟⎟⎠ , v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

logγ p1
...

logγ p#BR

logγ κ1
...

logγ κ#BA

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then we solve the linear equation

Mv ≡ 0 (mod (36n − 1)/(36 − 1)). (7)

4. Individual logarithm: Find integers ei, fj such that

logγ α ≡
∑

pi∈BR

ei logγ pi +
∑

〈pj ,tj〉∈BA

fj logγ κj (mod (36n − 1)/(36 − 1)),

then compute the discrete logarithm logγ α. This is done using the special-q
descent method [16,18,19].

3 Comparison of Polynomial Selection on JL02-FFS and
JL06-FFS

The two most efficient variants of the FFS for solving the DLP in GF(36n) are
JL02-FFS and JL06-FFS. Although they have the same asymptotic complexity,
there is a considerable difference between them in the fixed extension degree for
practical use. The time complexities of JL02-FFS and JL06-FFS depend on the
size of each sieving area, which is the number of pairs (r, s), and each size is
explained in the following subsections. Note that our comparison is done merely
by the size of the sieving area, and the detailed analysis should incorporate the
non-integer smoothness bound estimated by Granger [11].

Solving a 676-Bit Discrete Logarithm Problem in GF(36n) 355

3.1 Polynomial Selection of JL02-FFS and Its Sieving Area

At first we describe an outline of the polynomial selection of JL02-FFS, after that
we estimate the size of the sieving area. In order to distinguish from previous
section, we set the subindex “02” after the symbols.

Let H02(x, y) of degree d02 in y be formed as Cab curves [23]:

H02(x, y) = ha,0y
a + h0,bx

b +
∑

ib+ja<ab

hi,jy
ixj (hi,j ∈ GF(3), ha,0, h0,b �= 0).

Randomly choose polynomials u1, u2 ∈ GF(3)[x] of degree at most �6n/d02�,
and try to find an irreducible polynomial f02 = ud02

2 H02(x, −u1/u2) ∈ GF(3)[x]
of degree 6n such that gcd(u2, f02) = 1, then u2 is invertible modulo f02. Then,
there is a surjective homomorphism

Φ02 :
{

GF(3)[x, y]/(H02)→ GF(36n) ∼= GF(3)[x]/(f02)
y
→ −u1/u2,

where H02(x, y) holds H02(x, −u1/u2) ≡ 0 (mod f02). In this polynomial se-
lection, we need to modify Polynomial (2) to su2 − ru1. Note that r and s are
chosen in GF(3)[x] of degree not larger than B02 in JL02-FFS, the size of the
sieving area in the collection of relation step is

3B02+1 · 3B02+1. (8)

From heuristic analysis in [16], JL02-FFS becomes optimized when we choose
the smoothness bound B02 as

B02 = "(4/9)1/3(6n)1/3 log3(6n)2/3�. (9)

and the extension degree d02 of H02(x, y) as d02 = "
√

6n/(B02 + 1)�. For exam-
ple, for n = 97, 163, 193, we have (n, B02) = (97, 21), (163, 26), (193, 28).

3.2 Polynomial Selection of JL06-FFS and Its Sieving Area

Next we describe an outline of the polynomial selection of JL06-FFS and estimate
the size of the sieving area of JL06-FFS.

For each extension degree n of GF(36), we choose the smallest smoothness
bound B06 in JL06-FFS satisfying the following condition,

(B06 + 1) log(36) ≥
√
n/B06 log(n/B06) (10)

For example, for n = 97, 163, 193, we have (n, B06) = (97, 3), (163, 4), (193, 4).
Next, we choose positive integers d and d′ such that d ≈

√
n/B06 and d′ ≈√

nB06, where dd′ ≥ n. After that, we randomly generate g(y) ∈ GF(36)[y]
of degree d and set H(x, y) = g(y) + x. Finally, we try to find an irreducible
polynomial f in GF(36)[x] of degree n, which divides H(x, m), where m ∈
GF(36)[x] of degree d′ is chosen randomly. In this polynomial selection, each of

356 T. Hayashi et al.

the leading coefficients of Polynomials (2) and (3) depends on r, so we avoid
obtaining duplicate relations by fixing the leading coefficient of r as a monic
polynomial. Therefore, the size of the sieving area in the collection of relations
step is at most

(36)B06+1 · (36)B06 . (11)

3.3 Comparison of Sieving Area

We compare JL06-FFS with JL02-FFS with respect to the size of the sieving area
in the collection of relations step in three classes of extension degree n: exper-
imental class as {19, 31, 47, 61}, medium-security class as {97, 163, 193}, and
high-security class as {239, 313, 353, 509}. Table 1 lists the smoothness bound
and size of the sieving area in each variant. For each n, we obtain the smoothness
bound B02 in Equation (9) and B06 in Equation (10), and estimate the size of
the sieving area by Form (8) in JL02-FFS and by Form (11) in JL06-FFS.

Table 1. Parameters and sieving area

n

Polynomial selection
in JL02-FFS

Polynomial selection
in JL06-FFS

6n B02
Size of

sieving area
n B06

Size of
sieving area

Experimental
class

19 114 10 3.1 × 1010 19 1 3.9 × 108

31 186 12 2.5 × 1012 31 2 2.1 × 1014

47 282 15 1.9 × 1015 47 2 2.1 × 1014

61 366 17 1.5 × 1017 61 2 2.1 × 1014

Medium-
security

class

97 582 21 9.8 × 1020 97 3 1.1 × 1020

163 978 26 5.8 × 1025 163 4 5.8 × 1025

193 1158 28 4.7 × 1027 193 4 5.8 × 1025

High-security
class

239 1434 30 3.8 × 1029 239 4 5.8 × 1025

313 1878 34 2.5 × 1033 313 5 3.1 × 1031

353 2118 36 2.0 × 1035 353 5 3.1 × 1031

509 3054 42 1.1 × 1041 509 6 1.6 × 1037

Figure 1 shows the size of the required sieving area over GF(36n). The sieving
area in JL06-FFS is much smaller than that in JL02-FFS when n �= 31, 163.
Moreover, the differences between the sieving areas in JL06-FFS and in JL02-
FFS increase along with the increase in n. The computational cost in the col-
lection of relations step is closely related to the size of the sieving area, so the
collection of relations step in JL06-FFS might be several times faster than that
in JL02-FFS.

We have conducted experiments on the collection of relations step in JL02-
FFS and JL06-FFS to confirm the difference between their computational costs
of that step. Parameters in JL02-FFS and JL06-FFS are listed in Table 2. The
curves that we used in our experiments are superelliptic ones, but not Cab curves

Solving a 676-Bit Discrete Logarithm Problem in GF(36n) 357

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 1e+35

 1e+40

 1e+45

 19 31 47 61 97 163 193 239 313 353 509

si
ze

 o
f s

ie
vi

ng
 a

re
a

n

JL06-FFS
JL02-FFS

Fig. 1. Size of sieving area over GF(36n) in JL02-FFS and JL06-FFS

Table 2. Parameters in our experiments

n
Bit size of
GF(36n)

Experiments with
JL02-FFS

Experiments with
JL06-FFS

6n B02 H02(x, y) n B06 H(x, y)

19 181 114 10 y4 + x 19 1 y5 + x
31 295 186 12 y4 + x 31 2 y4 + x
47 447 282 15 y4 + x 47 2 y5 + x
61 581 366 17 y5 + x 61 2 y6 + x

as [12]. Note that we have only experimented with the experimental class as
n ∈ {19, 31, 47, 61}, not with medium and high-security classes.

In our experiments, we used 96 cores, each of which had the same performance
about Intel 2.83GHz Xeon. We implemented the lattice sieve [26] in JL02-FFS as
[12,15,16]. On the other hand, we implemented the polynomial sieve [10] in JL06-
FFS, since we fixed r as a monic poynomial in the collection of relations step
and so the lattice sieve might not be efficient. The details of our implementation
in JL06-FFS are described in Section 4.

Figure 2 shows the time complexity of JL02-FFS and JL06-FFS to com-
pute the entire sieving area in the collection of relations step in GF(36n) with
n = 19, 31, 47, 61, respectively. Note that we estimated the time when the com-
putation lasts over one hour.

358 T. Hayashi et al.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 19 31 47 61

tim
e

(d
ay

)

n

JL06-FFS
JL02-FFS

Fig. 2. Estimated time taken to compute entire sieving area in the collection of relations
step over GF(36n) in JL02-FFS and JL06-FFS

When n = 19, 61, our implementation on JL06-FFS is faster than that on
JL02-FFS, and we confirm that JL06-FFS is more efficient than JL02-FFS for
solving the DLP in GF(36n). In particular, when n = 61, our implementation
of JL06-FFS takes about 66 days for the collection of relations step, but our
implementation of JL02-FFS takes about 165 days for the same step. Therefore,
the former is 2.5 times faster than the latter. Accordingly, we expect that JL06-
FFS will be efficient for solving the DLP in GF(36n) for larger n.

4 Solving the DLP in GF(36·71)

In this section, we report that the DLP in GF(36·71) of 676-bit size is solved by
improving JL06-FFS. In our implementation, we deal with four practical improve-
ments, polynomial sieve, free relation, Galois action, and parallel Lanczos method.

Particularly, by using the polynomial H(x, y) = y6 + x, we only need to find
about 1/8 of the originally required relations in the collection of relations step.
Furthermore, via the Galois action, the size of the matrix given by the relations
is also decreased to 1/6 of the original. To the best of our knowledge, the 676-bit
size is currently the record for solving the DLP in GF(36n).

4.1 Collection of Relations

In the collection of relations step, we collect many double smooth pairs (r, s). The
simple idea for collecting them is factoring Polynomials (2) and (3) for all pairs

Solving a 676-Bit Discrete Logarithm Problem in GF(36n) 359

(r, s). This is not practical since we have to factor them about (36)B × (36)B+1

times. In order to reduce the number of factorings, we use a sieving method.
The idea of sieving is merely factoring Polynomials (2) and (3) of the pair (r, s),
which has a high probability of becoming a double smooth pair. Such a pair is
called a candidate.

The polynomial sieve [10] and the lattice sieve [26] are well-known sieving
algorithms. Although the lattice sieve has been implemented in some experiments
of the FFS [12,15,16], we implemented the polynomial sieve since r is fixed as a
monic polynomial by the polynomial sieve in JL06-FFS, whereas neither r nor
s is able to be fixed by the lattice sieve.

Polynomial Sieve. We describe the polynomial sieve in Polynomial (2), namely,
rm+s. Notice that we can also sieve in Polynomial (3) with the same procedure.
Moreover, we discuss the case where s is fixed and omit the details when r is
fixed. By fixed s, we can lead r such that rm + s is divisible by p ∈ BR or its
power, where the degree of p is not larger than B. Additionally, (rm + s) + kp
with k ∈ GF(36)[x] is also divisible by p. Hence, we can obtain all r of degree
less than or equal to B such that rm+ s is divisible by p. After computing such
all r for each p, we can obtain the pair (r, s) such that rm + s is divisible by
some p. If the summation of the degree of all p, which divide rm + s, reaches
deg(rm+ s), then rm+ s has a high probability of becoming B-smooth and the
pair (r, s) becomes a candidate.

In this procedure, the most time-consuming work is to compute r + kp for
all k ∈ GF(36)[x] whose degree is not larger than B. In characteristic two, Gor-
don and McCurley proposed a method using binary gray codes [10] to compute
these r + kp. Using ternary gray codes, we can also compute them efficiently in
characteristic three.

In the polynomial sieve, we sieve with all powers of p whose degree is not
larger than B. Since B is very small, such as 1 or 2 in our experiments, the
power of p is only p2 when deg(p) = 1. Such polynomials are exceptional since
there are 36 monic irreducible polynomials of degree 1 in GF(36)[x]. In this way,
we can obtain only candidates each of which generates a relation in Equation (5)
(except that r and s are not relatively prime). Thus, we only check the greatest
common divisor of r and s, but not the smoothness of Polynomials (2) and (3)
using the B-smooth test [10].

Free Relation. By considering how a divisor 〈p〉 where p ∈ BR is factorized
into divisors in GF(36)[x, y]/(H), namely, obtaining the following congruent
expression that

H(x, y) ≡
d∏

i=1

(y − ti) (mod p),

where d is the degree of H(x, y) on y, we can obtain a relation virtually for free,
without the sieving procedure. We call such a relation a free relation.

The number of free relations depends on the degree d of H(x, y) on y and the
characteristic of the field treated in the FFS. In fact, there are about #BA/d free

360 T. Hayashi et al.

relations in many cases and, furthermore, they increase when the characteristic
is small. For example, in the case of GF(36n) and H(x, y) = y6 + x, there are
about #BA/2 free relations since y6 +x is generally factored as (y− t1)3(y− t2)3
modulo p.

4.2 Linear Algebra

In the linear algebra step, we solve the linear equation depending on the relations.
Specifically, we construct a matrix from the relations and reduce it to a much
smaller one using the Galois action. After that, we solve the reduced linear
equation modulo (36n − 1)/(36 − 1), by applying the parallel Lanczos method
described as [3]. In this section, we describe the Galois action and our ideas
about parallel computation of the matrix operation.

Galois Action. Here, we consider to reduce unknowns of linear equations, using
the Galois action which was presented in [18].

Let M ′ be the matrix given by the relations, whose row M ′
(i) means the i-th

relation and j-th column M ′(j) corresponds to the factorbase pj . In order to use
the Galois action, we choose the polynomial f ∈ GF(36)[x] satisfying that all
coefficients of f are in GF(3) and deg(f) = n, then we construct GF(36n) as
GF(36)[x]/(f). Let φ be the Frobenius power such that φ(ξ) = ξ3

n

. As φ fixes
the element x in GF(3)[x]/(f), we also have φ(x) = x in GF(36)[x]/(f) by the
assumption of f . However, for an element c ∈ GF(36)\GF(3), φ does not fix c
in GF(36)[x]/(f) by the above assumption that n is coprime to 6. The monic
irreducible polynomial pj ∈ BR of degree not larger than B, and we assume that
B = 1 for convenience. In fact, pj = x + cj where cj ∈ GF(36) since B = 1, so
we have

φ(pj) = φ(x + cj) = x+ φ(cj)

in GF(36)[x]/(f). If cj is not in GF(3), cj �= φ(cj) in GF(36)[x]/(f). This fact
implies that there are ordinarily many unknowns of linear equations, which can
be rewritten by the other one via the Galois action. Clearly, for such pj, there
exists pj′ satisfying that

logγ pj′ = logγ φ(pj) = 3n logγ pj (12)

where pj �= pj′ . Therefore, we can remove the j′-th column M ′(j′) and set the j-
th column M ′(j) as M ′(j) +3nM ′(j′). Then we denote the new matrix M∗ as the
reduced M ′. Notice that this technique is also used for the algebraic factorbase.
Consequently, the number of unknowns is about 1/6 of the original; thus, the
number of relations is reduced to about 1/6. In our implementation, we do not re-
duce the factorbase in the sieving phase (the computation is the same as the case
without the Galois action). After sieving, we compress obtained relations using
rewritable elements of the factorbase via the Galois action as Equation (12), and
so the factorbase is reduced to about 1/6. Using this procedure, we almost do
not lose the probability of obtaining the relation. Hence, this technique enables
us to perform computations for the collection of relations step about 6 times as
fast as before, and the linear algebra step can be also done about 62 times faster.

Solving a 676-Bit Discrete Logarithm Problem in GF(36n) 361

Parallel Lanczos method. The reduced matrix M∗ is reconstructed to opti-
mize first, then we apply the parallel Lanczos method to it. Before explaining
the reconstruction, we begin with the explanation of the parallel computation.
Assume that there are four nodes written as N1,1, N1,2, N2,1, N2,2 and each node
has 4 or 8 cores. As the Figure 3, we partition the reconstructed matrix M into
four matrices Mi,j, and each Mi,j is allotted to node Ni,j respectively. The given
vector v is also partitioned into v1,v2, and vj is given to nodes Ni,j, Ni′,j where
i �= i′. Moreover, Mi,j is partitioned into L matrices A� when Ni,j has L cores.

Mv =
(

M1,1 M1,2

M2,1 M2,2

)(
v1

v2

)
. Mi,jvj := Avj =

⎛⎜⎜⎜⎝
A1

A2

...
AL

⎞⎟⎟⎟⎠ vj .

Fig. 3. Partitioning M into four matrices Mi,j and Mi,j into L matrices A�

We now give the notation of the Lanczos method. The Lanczos method can
operate only a symmetric matrix; however, the given matrix M is usually non-
symmetric. Therefore, we try to solve the linear equation of the form MTMv =
α, where v is an unknown column vector consisting of the logarithms of the
factorbase and α is the given column vector. Note that computing MTM is not
efficient, so we compute the vector u = Mv and MT u. For more details about
this computation is in [22].

After partitioning M , we perform a parallel computation for u := Mv and
w := MT u with Mi,j . Let v1, v2, u1, and u2 be the partitioned vectors such
that v = v1⊕v2 and u = u1⊕u2. From Algorithm 1, we obtain the partitioned
vector wi such that w = wi ⊕wi′ in node Ni,j , where i ∈ {1, 2} and i′ = 3− i.
The symbol j′ also means that j′ = 3− j for j ∈ {1, 2}.

Lines 4, 5, and 6 describe the computation of MTu. Note that in each node
Ni,j , by regarding the column of Mi,j as the row of MT

j,i, we do not have to trade
Mi,j with MT

j,i, namely, we can cut unnecessary operations.

Algorithm 1. (Computation with node Ni,j .)
Input : the partitioned matrix Mi,j and the partitioned vector vj .
Output : the partitioned vector wj such that w1 ⊕ w2 = MT Mv, where j is equal to
1 or 2.
[Step for computation of u := Mv]
1. ui,j := Mi,jvj .
2. Give ui,j to Node Ni,j′ and receive ui,j′ from Ni,j′ .
3. ui := ui,j + ui,j′ .
[Step for computation of w := MT u]
4. wi,j := MT

i,jui.
5. Give wi,j to Node Ni′,j and receive wi′,j from Ni′,j .
6. wj := wi,j + wi′,j .

362 T. Hayashi et al.

We have discussed the parallel computations among nodes, and now we move
on to the parallel computations among cores in one node. Here, A� denotes the
partitioned matrix of Mi,j such that Mi,j = ⊕L

�=1A�. From Algorithm 2, we can
easily obtain A�vj , and then we set the new vector ui,j = (A1vj , . . . , ALvj)T ,
where L is the number of cores in the same node. Similarly, we can easily obtain
AT

� ui and compute wi,j =
∑L

�=1A
T
� ui by using Algorithm 3.

Algorithm 2. (Parallel computation of Mi,jvj among L cores in the same node.)
Input : the partitioned matrix A := Mi,j whose size is s × t and the partitioned
t-vector vj .
Output : the partitioned vector ui,j such that ui,j = Avj .
1. Compute b� := A�vj for � = 1 to � = L in parallel.
2. ui,j = ⊕L

�=1b�.

Algorithm 3. (Parallel computation of MT
i,jui among L cores in the same node.)

Input : the partitioned matrix A := Mi,j whose size is s × t and the partitioned
s-vector ui.
Output : the partitioned vector wi,j such that wi,j = AT ui.
1. Compute c� := AT

� ui for � = 1 to � = L in parallel.
2. wi,j =

∑L
�=1 c�.

From the parallel computations of Mi,jvj and so on, we obtain the vector
MTMv from Algorithm 1 and 2. Therefore, we need to reconstruct M so that
each node has the balanced calculation amount of computing Mi,jvj and so
on. It is clear that the calculation amount depends on the number of non-zero
elements in the allotted matrix, and the distribution of non-zero elements in M
is not uniformity. In fact, the number of non-zero elements in a column of M
is not balanced, but that in a row is balanced. Thus, we reconstruct the new
matrix M so that the number of non-zero elements in M1,1 and M2,1 is almost
equal to that in M1,2 and M2,2 by sorting columns of M∗ defined in the section
of the Galois action. We perform a similar strategy as above for the parallel
computation among cores in the same node, namely, A is partitioned into 4 or
8 smaller matrices A� so that each A� has almost the same number of non-zero
elements.

4.3 Computation Results

In this section, we describe our computation results of the 676-bit DLP in
GF(36·71), which contains a multiplicative subgroup whose order is a 112-bit
prime. We construct GF(36) as GF(3)[z]/(z6 + 2z + 2) and define a mapping
ψ : Z → GF(36)[x], such that ψ−1 : z
→ 3, x
→ 36, in order to represent the
element in GF(36)[x].

In the polynomial selection step, we set H(x, y) = y6 + x in order to use the
Galois action. Moreover, we select m ∈ GF(36)[x] such that all its coefficients
are in GF(3) to construct f whose coefficients are also in GF(3). By an easy
computation, we obtain proper m and f as follows,

Solving a 676-Bit Discrete Logarithm Problem in GF(36n) 363

m = ψ (0x456bc 60e76c11 1e679735 c929fc55)
f = ψ (0x9 2d3e5daf 5ac01130 4e6909f7 09cc8833 baa757d3

17dc6f99 9c8b98b5 ab8baa01 d68ec151 aec39e2e ed081c79

d851066b 3ffb2a4f a3e19c1e cef46675 0918a26d 9c7cacd4

8d74ccfe 2c1d3b79 e81e6138 ab06aef4).

Then, GF(36n) is constructed as GF(36)[x]/(f). When we set the smoothness
bound B = 2, there are 266,085 elements in the rational factorbase and 265,721
elements in the algebraic factorbase, so we need to collect at least 531,806 rela-
tions. However, the size of the sieving area when B = 2 is too small to collect
enough relations.

We settle this problem by using the Galois action, since we can considerably
reduce the number of required elements in the factorbase described in Section 4.2.
In fact, we need only 88,674 relations, and so this number is about 1/6 the
number of the originally required relations.

Moreover, we deal with free relations which are obtained without sieving. If
we choose H(x, y) as y6 + x, then it is fortunately factored as (y− t1)3(y− t2)3
(mod p) for most of elements p in the factorbase, and so there are 132,860 (≈
#BA/2) free relations. Even if we delete many duplicates which are produced
by using the Galois action, 22,155 free relations remain. Thus, we only have to
find at least 66,519 relations in the collection of relations step, and this number
is about 1/8 that of the originally required relations.

In the collection of relations step, we use the polynomial sieve described in
Section 4.1 and compute relations using five nodes, each consisting of Intel Quad-
Core Xeon E5440 (2.83 GHz) × 2 CPUs with 16-GB RAM, one node consisting
of Intel Quad-Core Xeon X5355 (2.66 GHz) × 2 CPUs with 16-GB RAM, and
twelve nodes, each consisting of Intel Quad-Core Xeon L5420 (2.33 GHz) ×
1 CPU with 4-GB RAM, total of 96 cores. In 18 days of computation, after
removing duplicates, we found 66,646 relations. Thus, we obtained a total of
88,801 relations, which are enough to solve the linear equation in Equation (7).

The linear equation constructed from the relations has to be solved modulo
(36·71 − 1)/(36 − 1); however, the Lanczos method may fail when the modulus
has a small prime factor. Therefore, we work modulo the factor Ni of (36·71 −
1)/(36 − 1),

N1 = (32·71 + 371 + 1)/(13 · 5113),
N2 = (32·71 − 371 + 1)/(7 · 210019 · 49682251 · 55126531),
N3 = (371 + 1)/(22 · 853 · 2131 · 82219),
N4 = (371 − 1)/2.

where every prime factor of Ni is larger than 30 bits and Ni is relatively prime
to each other.

We use a cluster with four nodes, each consisting of Intel Quad-Core Xeon
E5440 (2.83 GHz) × 2 CPUs with 16-GB RAM, and three clusters with four
nodes, each consisting of Intel Quad-Core Xeon L5420 (2.33 GHz) × 1 CPU with

364 T. Hayashi et al.

4-GB RAM. With about 12 hours computation, we solve the linear equation
modulo Ni via the parallel Lanczos method with the four nodes described in
Section 4.2 on each cluster. With the Chinese remainder theorem and the Galois
action of φ, we solved discrete logarithms of the elements in the factorbase
modulo N =

∏4
i=1Ni.

In the individual logarithm step, our target of computing the logarithm is the
element

π(x) = ψ(�π × 10202�)
= (z4 + z3 + 2z2 + 1)x70 + · · ·+ (z5 + 2z4 + 2z3 + z2 + 2)

in basis γ = ψ(0x456). We choose the representation of π(x) as a product of
elements of degree at most 7 as follows:

γτπ(x) ≡ z1/z2 (mod f), where
z1 = ψ(0x333)× ψ(0x345)× ψ(0x427)× ψ(0x43b)× ψ(0x4c3)

×ψ(0xd909 66c7e3ec)× ψ(0x293996d cc380672)
×ψ(0x3ff378e 3d4659d0)× ψ(0x6 27d6c281 0a0fc5a2)
×ψ(0x8 f4797e29 a9ec3b4a),

z2 = ψ(0x318)× ψ(0x45 4c6fbfd4)× ψ(0x54 c69e6f97)
×ψ(0x1686d 42782189)× ψ(0x3cf67a5 84055cd8)
×ψ(0x8 f68ab2e2 5d2bc04f)× ψ(0xb cc56922c f651b383),

τ = 0x2 0f822e8c ac48792a e2aea337 c9002b49 bbf1b864

43a6111b 24c5593d e44daf43 e26de26e 1f85f982 1ba485b3

beda74bd f782626d 6cd38bb2 8f829867 5dc04adc f8741c24,

and z1, z2 are 7-smooth. Then, we compute the logarithms of z1 and z2 in basis
γ using the special-q descent technique [16,18]. With about 14 days computation
using five nodes, each consisting of Intel Quad-Core Xeon E5440 (2.83 GHz) ×
2 CPUs with 16-GB RAM, and one node consisting of Intel Quad-Core Xeon
X5355 (2.66 GHz) × 2 CPUs with 16-GB RAM, we compute the logarithms,

logγ z1 ≡ 0x3 fc71c577 10be8e3f e7af0fba e00e711f 0ad6dd50

38fb8f26 c0fadb3b 448cab2f 67671247 285f9e95 dc501717

d9def844 a75f9e58 f04a9bd2 3a5d0fdb 8f8ebb9f fea4deea,

logγ z2 ≡ 0x4 82febaec ae4382e0 e651f577 09df4e7d 99d99d34

03db5d5e 521c4e2b da89ec33 6c9d45d6 2dd1f982 2f198fb2

6c069414 3b0b1544 ece8e4b1 5304872f 6ff261fd 03b271c7.

modulo N , and so we obtain logγ π(x) mod N .
The logarithm in multiplicative subgroups of less than 30 bits are computed

using the Pollard’s ρ method in a minute. Using the Pohlig-Hellman method, we
compute the logarithm logγ π(x):

Solving a 676-Bit Discrete Logarithm Problem in GF(36n) 365

Table 3. Records for solving the DLP in finite fields

Finite Fields GF(p) GF(2n) GF(p3) GF(p30) GF(36n)

Reference [21] [15] [20] [18] This Work
Date Feb. 5, 2007 Sep. 22, 2005 Aug. 23, 2006 Nov. 9, 2005 Dec. 9, 2009

Algorithm NFS� JL02-FFS JLSV06-NFS† JL06-FFS-2‡ JL06-FFS

Collection
of

Relations
Many CPUs¶

4 nodes of
16 Itanium2

(1.3GHz)

16 Alpha
processors
(1.15GHz)

16 Alpha
processors
(1.15GHz)

Xeon
(2.83GHz)
96 cores

Linear
Algebra

12–24 Xeon
(3.2GHz)

4 nodes of
16 Itanium2

(1.3GHz)

16 Alpha
processors
(1.15GHz)

16 Alpha
processors
(1.15GHz)

Xeon
(2.83GHz)
80 cores

Timing 33 days 17 days 19 days 12 hours 33 days
Bit Size 532 613 394 556 676

�NFS: Number Field Sieve [9,17]. †JLSV06-NFS: NFS in the medium prime case [20].
‡See footnote 2 on page 2. ¶There are no detailed descriptions of computational resources in [21].

logγ π(x) = 0x8 78b54797 2fb6ff9b 57add5d5 11f69de6 a3853f98

68d53cc0 5b531076 2872ac6a 320874bf ba6d66d6 8e5e245f

39778f02 31ae791a acbab8c7 5ee6850c 9f5df0e5 f6b8ab0b

95d8bdb1 aea95b1f bad82465 25590f66

and completely solve the DLP in GF(36·71) of 676-bit.

4.4 For Larger Extension Degrees

We have solved the DLP in GF(36n) for n in the experimental class, where the
smoothness bound B (i.e., B06) is less than or equal to 2 (ref. Table 1). Note
that the size of the sieving area increases (36)2-fold if the smoothness bound B
increases by one (see Form (11)). However, we expect that, if we set B = 3, the
DLP in GF(36·97) might be computed for several years by using dozens of our
computational resources through various techniques such as large prime varia-
tion, block sieving and sieving via bucket sort [29,4], and SIMD implementation.

5 Concluding Remarks

In this study, we implemented a new variant of the FFS in GF(36n) (n is a
prime), proposed by Joux and Lercier in 2006 [18], and compared it with the
earlier variant, which was also proposed by Joux and Lercier in 2002 [16] with
practical experiments. In solving the DLP in GF(36n), these two variants of the
FFS have the same asymptotic complexity, but we expected the new variant
to be more efficient than the earlier one in some extension degrees n. From
our experimental results, we confirmed this forecast when the extension degree
n = 19, 61. Moreover, with our implementations, we succeeded in solving the
DLP in GF(36·71) of 676-bit size with about 33 days computation.

366 T. Hayashi et al.

We have experimented with the DLP in GF(36n) required for pairing-based
cryptosystems. The security of pairing-based cryptosystems relies on the diffi-
culty of the DLP in various finite fields, for example, GF(24n) and GF(p12).
Table 3 presents the current records for solving the DLP in various finite fields.
All the DLPs used for pairing-based cryptosystems have not examined yet. It is
an open problem to analyze the hardness of the DLP with practical key sizes in
such finite fields.

References

1. Adleman, L.M.: The function field sieve. In: Huang, M.-D.A., Adleman, L.M. (eds.)
ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994)

2. Adleman, L.M., Huang, M.-D.A.: Function field sieve method for discrete loga-
rithms over finite fields. Inform. and Comput. 151, 5–16 (1999)

3. Aoki, K., Shimoyama, T., Ueda, H.: Experiments on the linear algebra step in the
number field sieve. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007.
LNCS, vol. 4752, pp. 58–73. Springer, Heidelberg (2007)

4. Aoki, K., Ueda, H.: Sieving using bucket sort. In: Lee, P.J. (ed.) ASIACRYPT 2004.
LNCS, vol. 3329, pp. 92–102. Springer, Heidelberg (2004)

5. Barreto, P.S.L.M., Galbraith, S., ÓhÉigeartaigh, C., Scott., M.: Efficient pair-
ing computation on supersingular abelian varieties. Des. Codes Cryptogr. 42(3),
239–271 (2007)

6. Beuchat, J.-L., Brisebarre, N., Detrey, J., Okamoto, E., Shirase, M., Takagi, T.:
Algorithms and arithmetic operators for computing the ηT pairing in characteristic
three. IEEE Trans. Comput. 57(11), 1454–1468 (2008)

7. Boneh, D., Crescenzo, D., Ostrovsky, R., Persiano, G.: Public key encryption with
keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

8. Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

9. Gordon, D.M.: Discrete logarithms in GF(p) using the number field sieve. SIAM
J. Discrete Math. 6(1), 124–138 (1993)

10. Gordon, D.M., McCurley, K.S.: Massively parallel computation of discrete log-
arithms. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 312–323.
Springer, Heidelberg (1993)

11. Granger, R.: Estimates for discrete logarithm computations in finite fields of small
characteristic. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS,
vol. 2898, pp. 190–206. Springer, Heidelberg (2003)

12. Granger, R., Holt, A.J., Page, D., Smart, N.P., Vercauteren, F.: Function field
sieve in characteristic three. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076,
pp. 223–234. Springer, Heidelberg (2004)

13. Granger, R., Page, D., Stam, M.: Hardware and software normal basis arithmetic
for pairing-based cryptography in characteristic three. IEEE Trans. Comput. 54(7),
852–860 (2005)

14. Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings. In:
Identity Based Cryptography, pp. 188–206 (2009)

15. Joux, A., et al.: Discrete logarithms in GF(2607) and GF(2613). Posting to the
Number Theory List (2005),
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0509&L=nmbrthry&

T=0&P=3690

http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0509&L=nmbrthry&T=0&P=3690
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0509&L=nmbrthry&T=0&P=3690

Solving a 676-Bit Discrete Logarithm Problem in GF(36n) 367

16. Joux, A., Lercier, R.: The function field sieve is quite special. In: Fieker, C., Kohel,
D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 431–445. Springer, Heidelberg (2002)

17. Joux, A., Lercier, R.: Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the Gaussian integer method. Math.
Comp. 72(242), 953–967 (2002)

18. Joux, A., Lercier, R.: The function field sieve in the medium prime case. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer,
Heidelberg (2006)

19. Joux, A., Lercier, R., Naccache, D., Thome, E.: Oracle-assisted static Diffie-
Hellman is easier than discrete logarithms. In: Parker, M.G. (ed.) IMACC 2009.
LNCS, vol. 5921, pp. 351–367. Springer, Heidelberg (2009)

20. Joux, A., Lercier, R., Smart, N.P., Vercauteren, F.: The number field sieve in
the medium prime case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 326–344. Springer, Heidelberg (2006)

21. Kleinjung, T., et al.: Discrete logarithms in GF(p) - 160 digits. Posting to the
Number Theory List (2007),
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0702&L=nmbrthry&

T=0&P=194

22. LaMacchia, B.A., Odlyzko, A.M.: Solving large sparse linear systems over finite
fields. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537,
pp. 109–133. Springer, Heidelberg (1991)

23. Matsumoto, R.: Using Cab curves in the function field sieve. IEICE Trans. Funda-
mentals E82-A, 551–552 (1999)

24. Menezes, A.J., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Trans. Inform. Theory 39(5), 1639–1646 (1993)

25. Page, D., Smart, N.P., Vercauteren, F.: A comparison of MNT curves and super-
singular curves. Appl. Algebra Engrg. Comm. Comput. 17(5), 379–392 (2006)

26. Pollard, J.: The lattice sieve. The Development of the Number Field Sieve, 43–49
(1991)

27. Pomerance, C., Smith, J.W.: Reduction of huge, sparse matrices over finite fields
via created catastrophes. Experiment. Math. 1(2), 89–94 (1992)

28. Schirokauer, O.: The special function field sieve. SIAM J. Discrete Math. 16(1),
81–98 (2003)

29. Wambach, G., Wettig, H.: Block sieving algorithms. Technical Report 190, Infor-
matik, Universität zu Köln (1995)

30. Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans.
Inform. Theory 32(1), 54–62 (1986)

http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0702&L=nmbrthry&T=0&P=194
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0702&L=nmbrthry&T=0&P=194

Using Equivalence Classes to Accelerate Solving
the Discrete Logarithm Problem in a Short

Interval

Steven D. Galbraith1,� and Raminder S. Ruprai2

1 Mathematics Department, Auckland University, Auckland, New Zealand
s.galbraith@math.auckland.ac.nz

2 Mathematics Department, Royal Holloway University of London,
Egham, Surrey TW20 0EX, UK

raminder@email.com

Abstract. The Pollard kangaroo method solves the discrete logarithm
problem (DLP) in an interval of size N with heuristic average case ex-
pected running time approximately 2

√
N group operations. It is well-

known that the Pollard rho method can be sped-up by using equivalence
classes (such as orbits of points under an efficiently computed group
homomorphism), but such ideas have not been used for the DLP in an
interval. Indeed, it seems impossible to implement the standard kangaroo
method with equivalence classes.

The main result of the paper is to give an algorithm, building on work
of Gaudry and Schost, to solve the DLP in an interval of size N with
heuristic average case expected running time of close to 1.36

√
N group

operations for groups with fast inversion. In practice the algorithm is not
quite this fast, due to the usual problems with pseudorandom walks such
as fruitless cycles. In addition, we present experimental results.

Keywords: discrete logarithm problem (DLP), elliptic curves, negation
map, efficiently computable group homomorphisms.

1 Introduction

The discrete logarithm problem (DLP) in an interval is the problem: Given g, h
in a groupG andN ∈ Z>0 such that h = gn for some 0 ≤ n ≤ N (where N is less
than the order of g), to compute n. This problem arises naturally in a number
of contexts, for example the DLP with c-bit exponents (c-DLSE) [15,23,21], de-
cryption in the Boneh-Goh-Nissim homomorphic encryption scheme [1], count-
ing points on curves or abelian varieties over finite fields [14], the analysis of
the strong Diffie-Hellman problem [3,17], and side-channel or small subgroup
attacks [16,18].

One can solve the DLP in an interval using the baby-step-giant-step algorithm
in at worst 2

√
N group operations (or, with minor modifications, with average

� This work supported by EPSRC grant EP/D069904/1.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 368–383, 2010.
c© International Association for Cryptologic Research 2010

Using Equivalence Classes to Accelerate Solving the DLP 369

case running time of
√

2N group operations). But this method also requires
O(
√
N) group elements of storage.

Pollard [24] developed the kangaroo algorithm precisely with this application
in mind. Using distinguished points, van Oorschot and Wiener [22] (also see Pol-
lard [26]) achieve a heuristic average case expected complexity of essentially 2

√
N

group operations and low storage. We summarise this algorithm in Appendix A.
Note that this algorithm has success probability of 1, as do all algorithms in this
paper. These algorithms can also be parallelised (or distributed) with a linear
speedup. For comparison, the Pollard rho method [24] has heuristic expected
running time of

√
πr/2 ≈ 1.25

√
r operations if g has order r. All complexity

statements in this paper rely on heuristic assumptions; for steps toward a rigorous
analysis of the kangaroo method please see Montenegro and Tetali [19].

Gaudry and Schost [14] (building on earlier work of Gaudry and Harley [13])
presented a different approach to solve this problem using a birthday paradox
style analysis. Whilst their algorithm is not as fast as that of van Oorschot and
Wiener, it is easily parallelisable and importantly there is no requirement to know
the number of clients or processors before the algorithm begins. Parallelising the
Gaudry-Schost algorithm gives a linear speedup and this also applies to all the
algorithms in this paper. For brevity we state all running times for the serial
case. The average expected running time of their algorithm is 2.08

√
N group

operations on a serial computer (the algorithm of Gaudry and Harley [13] is less
efficient). We present their algorithm and recall the analysis of its complexity in
Section 2.

Gallant, Lambert and Vanstone [11] and Wiener and Zuccherato [29] showed
that the Pollard rho method can be used with equivalence classes (orbits of group
elements under an fast computable group homomorphism) to achieve a constant
speedup in some groups. In particular, for elliptic curves the rho algorithm can
be sped-up by a factor of

√
2 using the equivalence class {u, u−1} where u is

a group element (which is more commonly written as {P,−P} in the case of
elliptic curves). In practice, the running times are not so good, since the algo-
rithms use pseudorandom walks which do not behave exactly like true random
walks (in particular, walks can fall into short cycles and hence never arrive at
a distinguished point; these are called “fruitless cycles” and have been analysed
by Duursma, Gaudry and Morain [6] and Bos, Kleinjung and Lenstra [2]).

It seems to be impossible to combine the standard kangaroo method with
equivalence classes in general (Section 19.6.3 of [5] claims it can be done but
gives no details, and this seems to be an error). Hence, it is necessary to consider
other algorithms. A natural observation is that, for a DLP instance (g, h) in an
interval of even length N , one can set h′ = hg−N/2 and then solve h′ = gn where
−N/2 ≤ n ≤ N/2. If the discrete logarithm of u lies in the interval [−N/2, N/2]
then the equivalence class {u, u−1} does correspond to a pair of group elements
in the region of interest.

Very recently Pollard [25] developed two new variants of the kangaroo method
which require inversion of just one or two group elements. Pollard’s three and
four kangaroo variants have heuristic running times of roughly 1.82

√
N and

370 S.D. Galbraith and R.S. Ruprai

1.71
√
N group operations respectively. More details about these algorithms will

appear in forthcoming joint work.
In Sections 3 and 4 we show how to speed up the Gaudry-Schost method

in groups with fast inversion (such as elliptic curves, tori, LUC and XTR).
Here fast inversion means that computing u−1 for any u in the group is much
faster than a general group operation. We also present a further speedup by
modifying the search region. Our main result is a method to solve the DLP
in an interval in approximately 1.36

√
N group operations. The result uses a

new variant of the birthday paradox which is developed in [10]. The theoretical
analysis of the algorithm assumes it is run using a truly random walk. In practice
one implements the algorithm using a pseudorandom walk which has a number
of undesirable consequences, in particular the existence of fruitless cycles. In
Section 5 we present experimental results which give a better idea of the actual
performance in practice (though it is likely that these figures can be improved).

Our algorithm, as with Gaudry-Schost, requires low storage and can be par-
allelised with linear speedup very easily.

We indicate in Appendix B how to speed up the Gaudry-Schost algorithm for
the multi-dimensional DLP using equivalence classes. A precise analysis of the
algorithms in Appendix B is currently an open problem.

2 The Gaudry-Schost Algorithm

To introduce notation and the central ideas, we recall the Gaudry-Schost algo-
rithm [14]. The basic idea is the same as the kangaroo algorithm of Pollard in
the van Oorschot and Wiener [22] formulation. Let g and h be the DLP instance
we wish to solve, with h = gn for some integer −N/2 ≤ n ≤ N/2. We run a
large number of pseudorandom walks (possibly distributed over a large number
of processors). Half the walks are “tame walks”, which means that every ele-
ment in the walk is of the form ga where the integer a is known. The other half
are “wild walks”, which means that every element is of the form hga where the
integer a is known. As is typical in this subject, we visualise the group in terms
of the ‘exponent space’. More precisely, define the ‘tame set’

T = [−N/2, N/2]

(where by [N1, N2] we mean {a ∈ Z : N1 ≤ a ≤ N2}) and the ‘wild set’

W = n+ T = {n+ a : a ∈ [−N/2, N/2]}.

Although T and W are of the same size, W is a translation of T and of course
we do not know the value of n. A tame walk is a sequence of points ga where
a ∈ T and a wild walk is a sequence of points gb = hga with b ∈W .

Each walk proceeds until a distinguished point is hit. This distinguished point
is then stored on a server, together with the corresponding exponent a and a
flag indicating which sort of walk it was. This data is analogous to the ‘trap’ set
in the standard Pollard kangaroo method [24,26]. When the same distinguished

Using Equivalence Classes to Accelerate Solving the DLP 371

point is visited by two different types of walk we have the “tame-wild collision”
ga1 = hga2 and one solves the DLP. We stress that the algorithm continues until
the DLP is solved. Hence the probability of success is 1.

The main difference between the Gaudry-Schost algorithm and the kangaroo
algorithm is that when a distinguished point is hit, Gaudry and Schost restart
the walk from a random starting point in a certain range, whereas the kangaroos
keep on running. The theoretical analysis is different too: Gaudry and Schost
use a variant of the birthday paradox whereas Pollard and van Oorschot and
Wiener use a different probabilistic argument (see Appendix A).

2.1 Theoretical Analysis

We now recall the precise analysis of the idealised version (i.e., using a truly
random walk, rather than a pseudorandom walk) of the Gaudry-Schost algo-
rithm [14]. Gaudry and Schost use the following variant of the birthday paradox,
which we will call the Tame-Wild birthday paradox.

Theorem 1. When sampling uniformly at random from a set of size R ∈ N,
with replacement, and alternately recording the element selected in 2 different
lists then the expected number of selections that need to be made in total before
we have a coincidence between the lists is

√
πR+O(1).

Proofs of this theorem can be found in Selivanov [28] or in [27] (which derives
it from a result of Nishimura and Sibuya [20]). For simplicity we will omit the
O(1) term from all subsequent running times.

Since tame points lie in T and wild points lie in W a collision between tame
and wild points can only occur in T ∩W . We call such a collision ‘tame-wild’ and
this is analogous to a coincidence between the lists in Theorem 1, so we apply
Theorem 1 in the case R = |T ∩W |.

Fig. 1. Overlap between T and W . The sets T and W are represented by black hori-
zontal bars and the shading between them shows the length of the overlap. The first
case is when n = N/4 and the second case is n = N/2.

372 S.D. Galbraith and R.S. Ruprai

Figure 1 presents T ∩W in two cases. The first case is h = gn for n = N/4
so |T ∩W | = 3N/4 (this is the ‘average case’). The second case is h = gn for
n = N/2 so |T ∩W | = N/2 (which is the ‘worst case’).

Theorem 2. (Gaudry-Schost [14]) Let notation be as above. If elements are
sampled uniformly at random with replacement alternately from T and W and
recorded, the expectation, over all problem instances, of the number of selections
before a tame-wild collision is 2.08

√
N .

Proof. The running time of the Gaudry-Schost algorithm is dependent on the
problem instance h = gn but, by symmetry, we can restrict to the case 0 ≤ n ≤
N/2. We write this as h = gxN where x ∈ [0, 1/2].

Let R = |T ∩W | = N(1 − x). By Theorem 1 we expect to need to sample√
πR elements (half of each type) of T ∩W to find a collision. To select 1

2

√
πR

elements in T ∩W when sampling uniformly from T requires selecting

|T |
|R|

1
2

√
πR = 1

2

√
πN/(1− x).

The same argument applies to W . Hence, the expected running time of the
algorithm is

√
πN/(1− x) group operations. Note that this is the expected value

of the running time, over all choices for the random walk, for a specific problem
instance.

We now average this over all problem instances as

2
∫ 1/2

0
(1− x)−1/2

√
πNdx = 2

√
πN

[
2−

√
2
]

= 2(2−
√

2)
√
πN ≈ 2.08

√
N .

��

This result has been improved to 2.05
√
N by using smaller sets for T and W

in [8].

2.2 Pseudorandom Walks and Practical Considerations

Gaudry and Schost present the result in Theorem 2 but they also consider the
practical implementation of the algorithm. First, to reduce storage, one does
not record every element sampled by the pseudorandom walk but instead uses
distinguished points. If we let θ be the probability that an element of the group
is a distinguished point then walks are of length 1/θ on average and we require
storage of around θ

√
N group elements.

Second, it is necessary to use a pseudorandom walk which performs close
enough to sampling uniformly at random that the Tame-Wild birthday paradox
still applies. Gaudry and Schost, as with the kangaroo method, partition the
group into, say, 32 subsets and use a pseudorandom walk where each step is
a multiplication of the current group element by gai , where ai is a fixed small
positive integer, if the current group element lies in the i-th block of the partition.
Our algorithms will necessarily have random walks which step in a “side-to-side”

Using Equivalence Classes to Accelerate Solving the DLP 373

manner, since the equivalence class representative of a group element could be
its inverse and steps to the right from the inverse of a group element are the
same as steps to the left from the original element. Hence, though we take ai ∈ N
and each step is multiplication by gai , in practice the walks look like the jumps
are of lengths ±ai. We denote by m the mean of the integers |ai| and call it the
mean absolute step size. For the analysis we recall the following result (note that
the mean absolute step size in this walk is 1

2).

Lemma 1. (Cofman, Flajolet, Flatto and Hofri [4]) Let y0, y1, . . . , yk be a sym-
metric random walk that starts at the origin (y0 = 0) and takes steps uniformly
distributed in [−1,+1] then the expected maximum excursion is

E(max {|yi| : 0 ≤ i ≤ k}) =

√
2k
3π

+O(1)

The average ‘distance’ covered by a random walk, from its starting point to when
it hits a distinguished point, is therefore m/

√
θ. To have good random walks it is

essential that this value is sufficiently large so that each walk covers a reasonable
proportion of the tame or wild set. If not, then the walks stay very close to their
starting point and the probability of two walks colliding is small. On the other
hand, when m/

√
θ is large then there is a good chance that the pseudorandom

walks will sometimes travel outside T or W . Steps outside the regions of interest
cannot be included in our probabilistic analysis and so such steps are “wasted”.
To reduce these wasted steps it is necessary to start walks inside a subset of T
and W . More details about how to do this are given in [8].

We therefore state the following heuristic result. The factor 1 + ε takes into
account the failure of a pseudorandom walk to behave exactly like a random
walk, in particular due to effects at the boundaries of the regions.

Heuristic 1. The average expected running time for the Gaudry-Schost algo-
rithm to solve the DLP in an interval of size N is 2.08(1 + ε)

√
N + 1/θ group

operations for some small ε > 0.

We admit that the statement of Heuristic 1 (and Heuristic 2 later) is essentially
vacuous (for example, is ε = 1 “small”?). We would like to be able to replace
ε by o(1). This may be reasonable for Heuristic 1 but it seems unlikely to be
reasonable for Heuristic 2. Certainly we feel it is reasonable to suggest that ε
can be less than 0.1 in both Heuristics 1 and 2.

The standard Gaudry-Schost algorithm is therefore not as fast as the van
Oorschot and Wiener version of the Pollard kangaroo method. Nevertheless,
we will improve upon their approach in groups with fast inversion, to obtain a
method faster than any known method based on kangaroos.

3 Equivalence Classes

Following the work of Gallant, Lambert and Vanstone [11] and Wiener and
Zuccherato [29] it is natural to consider a pseudorandom walk on a set of

374 S.D. Galbraith and R.S. Ruprai

equivalence classes. For the DLP in an interval this only seems to give an im-
provement when the equivalence class is a set of group elements all of whose
discrete logarithms lie in the interval. Groups with fast inversion are good can-
didates for this.

It is necessary to be able to compute a unique representative of the equiv-
alence class so that one can define a deterministic pseudorandom walk on the
equivalence classes. For example consider the group of points on an elliptic curve
E : y2 = x3 + Ax + B over a finite field Fq where q is an odd prime. If we let
P = (xP , yP) ∈ E(Fq) then the inverse of P is simply −P = (xP ,−yP). Now we
need a rule to define a unique representative for each equivalence class {P,−P}.
A simple rule in this case is: treat the y-coordinate of P as an integer 0 ≤ yP < q
and let the unique representative be (xP ,min{yP , q − yP }). The pseudorandom
walk is then defined using the unique equivalence class representative.

If we denote elements of the group by their discrete logarithms and order
those in the interval [−N/2, N/2], then the two elements in an equivalence class
are equidistant from the centre of the interval. A step to the right for one repre-
sentative of the equivalence class corresponds to a step to the left for the other.
Hence, when using equivalence classes there is no way to avoid having side-to-
side walks. This is essentially the reason why the standard kangaroo method
cannot be used with equivalence classes.

An important issue is that there is a danger of small cycles in the walks.
This phenomena was noted by Gallant, Lambert and Vanstone [11] and Wiener
and Zuccherato [29]. This can cause the pseudorandom walks to never reach
a distinguished point. A method to get around this problem is “collapsing the
cycle” which can be found in Gallant, Lambert and Vanstone [11, Section 6]. A
detailed analysis of these issues is given by Bos, Kleinjung and Lenstra [2].

It is natural to try to apply the Gaudry-Schost algorithm on equivalence
classes to solve the DLP in an interval of size N .

3.1 The Gaudry-Schost Algorithm on Equivalence Classes

We only give a short sketch of the method, since our main result is a further
improvement on the basic idea. Recall that we wish to solve h = gn where
−N/2 ≤ n ≤ N/2. We assume that computing h−1 for any h in the group is
much faster than a general group operation.

The natural approach is to perform random walks in sets of equivalence classes
corresponding to the tame and wild sets of the standard Gaudry-Schost method.
In other words, it is natural to make the following definition.

Definition 1. Define the tame and wild sets by

T = {{a,−a} : a ∈ [−N/2, N/2]} ,
W = {{n+ a,−(n+ a)} : a ∈ [−N/2, N/2]} .

Note that |T | = 1 +N/2 ≈ N/2.
As before, our main focus is on T ∩W . When n = 0 we have T = W and

when n is large then T ∩W is only about half the size of T . However, a subtlety

Using Equivalence Classes to Accelerate Solving the DLP 375

which did not arise in the previous case appears: when n > N/4 and a > N/4
there is only one way an equivalence class {n+ a,−(n+ a)} can arise, but when
|n| is small there can be two ways. Specifically, suppose −N/4 < n < 0, then the
equivalence class {n+ a,−(n+ a)} can arise from a and from a′ = −2n− a (for
example, if n = −N/8 then a = N/4 and a′ = 0 are such that {n+a,−(n+a)} =
{n+ a′,−(n+ a′)}). This phenomena means that the Gaudry-Schost algorithm
samples from the wild set in a non-uniform way and this means we cannot apply
Theorem 1 to determine the expected running time of the algorithm. We explain
these issues more precisely in the next section.

We do not give an analysis of the average case expected number of group
operations for this algorithm. In the next section we make a further optimisation
which leads to a better algorithm. A full analysis of the improved algorithm is
then given.

4 The New Algorithm

We now give an algorithm for the discrete logarithm problem in an interval
for groups with efficient inversion. As usual, let N, g and h be given such that
4 | N , h = gn and −N/2 ≤ n ≤ N/2. The basic idea is to run the Gaudry-
Schost algorithm on the set of equivalence classes. A further speedup is given by
defining the wild set W to be, in some sense, smaller than the tame set.

Definition 2. We define the tame and wild sets (as sets of equivalence classes)
by

T = {{a,−a} : a ∈ [−N/2, N/2]} ,
W = {{n+ a,−(n+ a)} : a ∈ [−N/4, N/4]}

where, as always, [N1, N2] = {a ∈ Z : N1 ≤ a ≤ N2}.
The algorithm is then immediate. One samples from T and W using pseudo-
random walks which are well-defined on equivalence classes. When a walk hits
a distinguished point then we store the representative of the equivalence class,
its discrete logarithm (or the discrete logarithm of the group element divided by
h), and the ‘type’ of the walk. When the same equivalence class is reached by
walks of both types then the discrete logarithm problem is solved.

To understand the algorithm it is necessary to consider a ‘fundamental do-
main’ for the sets. In other words, we consider sets which are in one-to-one
correspondence with the set of equivalence classes. A fundamental domain for
T is T̃ = [0, N/2]; it is clear that every pair {a,−a} ∈ T corresponds to
exactly one value a ∈ [0, N/2]. One choice of fundamental domain for W is
{|n| + a | a ∈ [−N/4, N/4]}. However, to visualise T ∩W we really want the
fundamental domain for W to consist only of positive values, and this is not the
case when |n| < N/4. Hence, when |n| < N/4, we note that the set W in in
one-to-one correspondence with the multi-set

W̃ = {|n|+ a : a ∈ [−|n|, N/4]} ∪ {−(|n|+ a) : a ∈ [−N/4,−|n|)}
= [0, |n|+N/4] + [0, N/4− |n|). (1)

376 S.D. Galbraith and R.S. Ruprai

Fig. 2. The set T̃ is pictured at the top of the diagram as a long black box. The sets
W̃ are given for the values n = 0, N/8, N/4 and N/2 where the diagonal lines denote
single density and the cross hatching denotes double density (i.e., repetitions in the
multi-set).

When |n| < N/4, sampling uniformly fromW corresponds to sampling uniformly
from the multi-set W̃ , which in turn corresponds to sampling a ∈ [0, |n|+N/4]
with probability 4/N for 0 ≤ a < N/4−|n| and probability 2/N for N/4−|n| ≤
a ≤ |n| + N/4. We describe this as saying that there is a ‘double density’ of
walks in the wild set.

To determine the complexity of the algorithm we need a generalisation of
Theorem 1. This is a variant of the birthday paradox which applies to coloured
balls and non-uniform probabilities. Such a result is proved in [10].

Theorem 3. Let R ∈ N and 0 ≤ A ≤ R/2. Suppose we have an unlimited
number of balls of two colours, red and blue, and R urns. Suppose we alternately
choose balls of each colour and put them in random urns. Red balls are assigned
uniformly and independently to the urns. Blue balls are assigned to the urns
independently with the following probabilities: urns 1 ≤ u < A are used with
probability 2/R, urns A ≤ u ≤ R−A are used with probability 1/R, and urns R−
A < u ≤ R are used with probability 0. Then the expected number of assignments
that need to be made in total before we have an urn containing two balls of the
same colour is

√
πR+O(R1/4).

We refer to [10] for the proof. However, it is relatively easy to see why the result
should be true: The probability that a red ball and a blue ball fall in the same
urn is

A 1
R

2
R + (R− 2A) 1

R
1
R +A 1

R0 = 1
R

Using Equivalence Classes to Accelerate Solving the DLP 377

which is exactly the same as the probability in the case where both red and
blue balls are distributed uniformly. One significant difference from the standard
Tame-Wild birthday paradox is that there is an increased chance of two or more
blue balls being placed in the same urn (and this has the effect of lowering the
probability of a collision among balls of different colour). Hence, Theorem 3 does
not seem to be an immediate consequence of the results in [20,28].

Theorem 4. If elements are sampled uniformly at random with replacement
alternately from the sets T and W of Definition 2 and recorded, the expecta-
tion, over all problem instances, of the number of selections before a tame-wild
collision is

(5
√

2/4− 1)
√
πN ≈ 1.36

√
N .

Proof. Let h = gxN for −1/2 ≤ x ≤ 1/2. Due to symmetry we only need to
look at the positive half of the interval of exponents. As we have seen, when
0 ≤ x < 1/4 we have W ⊆ T and we are sampling in T ∩W uniformly with the
tame elements and non-uniformly with the wild elements. On the other hand,
when 1/4 ≤ x ≤ 1/2 then T and W are both sampled uniformly, but T ∩W is
now a proper subset of T and W in general. The analysis therefore breaks into
two cases.

In the case 0 ≤ x < 1/4, by Theorem 3 (taking R to be the size of the funde-
mental domain for T , which is N/2), the expected number of group operations
to get a collision is

√
πN/2.

In the case 1/4 ≤ x ≤ 1/2 one sees that |T ∩W | = 3N/4− xN = N(3/4− x)
(here by |T ∩W | we mean the number of equivalence classes in the intersection)
and we are in a very similar situation to the proof of Theorem 2. We need to
sample

√
π|T ∩W | points in T ∩W (half of them tame and half wild). Since

|T | = |W | = N/2 we expect to sample

|T |
|T ∩W |

√
π|T ∩W | = N/2

N(3/4− x)
√
πN(3/4− x) = 1

2

√
πN/(3/4− x)

group elements in total.
We now average over all problem instances to get an average case running

time.

1
2

√
πN/2 + 2

∫ 1/2

1/4

1
2

√
πN/(3/4− x) =

√
πN

(
5
4

√
2− 1

)
. ��

This result suggests the following heuristic statement about the running time of
the algorithm using pseudorandom walks. The value ε takes into account various
undesirable properties of the pseudorandom walk, such as irregular probability
distributions at the boundaries of the regions and detecting and escaping from
fruitless cycles.

Heuristic 2. Our algorithm to solve the DLP in an interval of size N in a
group with fast inversion has everage case expected running time of approximately
1.36(1 + ε)

√
N + 1/θ group operations for some small ε > 0.

378 S.D. Galbraith and R.S. Ruprai

As mentioned earlier, we believe that ε can be taken to be less than 0.1 and our
experimental results suggest this is reasonable.

This is a significant improvement on the standard Gaudry-Schost algorithm
(Heuristic 2) and the Improved Pollard kangaroo method with heuristic running
time 1.71

√
N group operations [9].

5 Experimental Results

We implemented the Improved Gaudry-Schost algorithm using equivalence classes
for solving the DLP in an interval using the software package Magma. The group
used was the group of points on the following elliptic curve

E : y2 = x3 + 40x+ 1 over Fp

where p = 3645540875029913. The group of points has cardinality

#E(Fp) = 3645540854261153> 251.

We picked various interval sizes and ran a number of experiments on those
intervals. Each experiment involved choosing uniformly at random −N/2 ≤ n ≤
N/2 and solving the DLP for Q = [n]P . We counted the number of group
operations performed and averaged this over the total number of trials. Walks
were not permitted to start within a distance m

√
2/3πθ from the edge of any of

the sets (this is roughly half the size of the expected maximum distance travelled
by a walk).

The average number of group operations performed for the different experi-
ments are given in Table 1.

To detect small cycles we stored the previous 30 group elements in the walk
in the case N ≈ 234 (respectively, 30, 45 group elements for N ≈ 240, 248). Each
new step in the walk was compared with the previous 30 (respectively, 35, 45)
group elements visited. If this group element had already been visited then the
walk is in a cycle. We used a deterministic method to jump out of the cycle (using
a jump of distinct length from the other jumps used in the pseudorandom walk)
so that the pseudorandom walk as a whole remained deterministic. The cost of
searching the list of previous group elements is not included in our experimental
results, but our count of group operations does include the “wasted” steps from
being in a cycle.

We terminated walks which ran for 5/θ steps without arriving at a distin-
guished point (the usual recommendation is 20/θ steps; see [22]). This will give
us a slightly worse running time than optimal.

There is plenty of room for improvement in these experimental results. First,
techniques like those in [2] to handle cycles should lead to improved running
times (though note that we cannot use doublings/squarings when working in an
interval). Second, the relationship between the values of m and θ is probably not
optimal. Third, one might get better results by not running the same number of
tame walks as wild walks or by slightly changing the sizes of the tame and wild
regions.

Using Equivalence Classes to Accelerate Solving the DLP 379

Table 1. Average number of group operations performed by our algorithm for different
values of N

of Experiments Improved GS on equivalence classes

Experiment 1 1000 1.49
√

N
N ≈ 234

m = 28

θ = 2−5

Experiment 2 300 1.47
√

N
N ≈ 240

m = 211

θ = 2−5

Experiment 3 50 1.46
√

N
N ≈ 248

m = 214.5

θ = 2−6

6 Conclusion

We have presented the first algorithm to exploit equivalence classes for the dis-
crete logarithm problem in an interval. Our algorithm can be applied in groups
where we have fast inversion such as in the group of points on an elliptic curve.
The average expected running time of our algorithm is close to 1.36

√
N group

operations. Our practical experiments confirm that we can achieve a significant
improvement over previous methods.

Acknowledgements

We thank the anonymous referees of PKC 2010 and ASIACRYPT 2009 for a
number of very helpful comments.

References

1. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

2. Bos, J.W., Kleinjung, T., Lenstra, A.K.: On the use of the negation map in the
Pollard Rho method. (preprint, 2010)

3. Cheon, J.H.: Security Analysis of the Strong Diffie-Hellman Problem. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer,
Heidelberg (2006)

380 S.D. Galbraith and R.S. Ruprai

4. Cofman, E.G., Flajolet, P., Flatto, L., Hofri, M.: The Maximum of a Random Walk
and its Application to Rectangle Packing. Technical report, INRIA (1997)

5. Cohen, H., Frey, G.: Handbook of Elliptic and Hyperelliptic Curve Cryptography.
In: Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton
(2005)

6. Duursma, I.M., Gaudry, P., Morain, F.: Speeding up the discrete log computa-
tion on curves with automorphisms. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.)
ASIACRYPT 1999. LNCS, vol. 1716, pp. 103–121. Springer, Heidelberg (1999)

7. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for Faster Elliptic Curve Cryp-
tography on a Large Class of Curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 518–535. Springer, Heidelberg (2009)

8. Galbraith, S.D., Ruprai, R.S.: An improvement to the Gaudry-Schost algorithm
for multidimensional discrete logarithm problems. In: Parker, M.G. (ed.) IMACC
2009. LNCS, vol. 5921, pp. 368–382. Springer, Heidelberg (2009)

9. Galbraith, S.D., Pollard, J.M., Ruprai, R.S.: Improving kangaroo and Gaudry-
Schost methods for solving the DLP in an interval (in preparation) (2010)

10. Galbraith, S.D., Holmes, M.: A non-uniform birthday problem with applications
to discrete logarithms (in preparation) (2010)

11. Gallant, R., Lambert, R., Vanstone, S.: Improving the Parallelized Pollard Lambda
Search on Binary Anomalous Curves. Mathematics of Computation 69, 1699–1705
(2000)

12. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on El-
liptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

13. Gaudry, P., Harley, R.: Counting Points on Hyperelliptic Curves over Finite
Fields. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 313–332. Springer,
Heidelberg (2000)

14. Gaudry, P., Schost, E.: A low-memory parallel version of Matsuo, Chao and Tsu-
jii’s algorithm. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 208–222.
Springer, Heidelberg (2004)

15. Gennaro, R.: An Improved Pseudo-random Generator Based on Discrete Log.
In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 469–481. Springer,
Heidelberg (2000)

16. Gopalakrishnan, K., Thériault, N., Yao, C.Z.: Solving Discrete Logarithms from
Partial Knowledge of the Key. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 224–237. Springer, Heidelberg (2007)

17. Jao, D., Yoshida, K.: Boneh-Boyen signatures and the Strong Diffie-Hellman prob-
lem. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 1–16.
Springer, Heidelberg (2009)

18. Lim, C.H., Lee, P.J.: A Key Recovery Attack on Discrete Log-based Schemes Us-
ing a Prime Order Subgroup. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 249–263. Springer, Heidelberg (1997)

19. Montenegro, R., Tetali, P.: How long does it take to catch a wild kangaroo? In:
41st ACM Symposium on Theory of Computing (2009)

20. Nishimura, K., Sibuya, M.: Probability to meet in the middle. Journal of Cryptol-
ogy 2, 13–22 (1990)

21. van Oorschot, P.C., Wiener, M.J.: On Diffie-Hellman Key Agreement with Short Ex-
ponents. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 332–343.
Springer, Heidelberg (1996)

22. van Oorschot, P.C., Wiener, M.J.: Parallel collision Search with Cryptanalytic
Applications. Journal of Cryptology 12, 1–28 (1999)

Using Equivalence Classes to Accelerate Solving the DLP 381

23. Patel, S., Sundaram, G.: An Efficient Discrete Log Pseudo Random Generator.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 304–317. Springer,
Heidelberg (1998)

24. Pollard, J.M.: Monte Carlo Methods for Index Computation mod p. Mathematics
of Computation 32(143), 918–924 (1978)

25. Pollard, J.M.: Three kangaroos are better than two! Private Communication (2009)
26. Pollard, J.M.: Kangaroos, Monopoly and Discrete Logarithms. Journal of Cryptol-

ogy 13, 437–447 (2000)
27. Ruprai, R.S.: An improvement to the Gaudry-Schost algorithm for multidimen-

sional discrete logarithm problems and applications. PhD Thesis, Royal Holloway,
University of London (2010)

28. Selivanov, B.I.: On waiting time in the scheme of random allocation of coloured
particles. Discrete Math. Appl. 5(1), 73–82 (1995)

29. Wiener, M.J., Zuccerato, R.J.: Faster Attacks on Elliptic Curve Cryptosystems. In:
Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 190–200. Springer,
Heidelberg (1999)

A Background on the Pollard Kangaroo Method

We first briefly recall the Pollard kangaroo method using distinguished points
as described by van Oorschot and Wiener [22] and Pollard [26]. To fix notation:
We are given g, h and N and asked to find 0 ≤ n ≤ N such that h = gn.

As with the rho method, the kangaroo method relies on a pseudorandom walk,
however steps in the kangaroo walk correspond to known small increments in
the exponent (in other words, kangaroos make small jumps). The tame kangaroo
starts in the middle of the interval (i.e., at gN/2) and jumps towards the right.
The wild kangaroo starts at the group element h and jumps to the right using
the same pseudorandom walk. On a serial computer one alternately jumps the
tame and wild kangaroos. Every now and then a tame or wild kangaroo lands
on a distinguished group element u and stores it in a sorted list, binary tree
or hash table together with its discrete logarithm (if the kangaroo is tame) or
the discrete logarithm of uh−1 (if the kangaroo is wild). Once the same group
element is visited twice by different kangaroos the DLP is solved.

The kangaroo method is not analysed using the birthday paradox but using
the mean step sizem of the pseudorandom walks. Once the rear kangaroo reaches
the starting point of the front kangaroo it is jumping over a region where roughly
one in m group elements have been visited by the front kangaroo. Hence, there
is a roughly 1/m probability at each step that the back kangaroo lands on a
footprint of the front kangaroo. Therefore, the walks collide after an expected
m steps.

One obtains the heuristic average case expected running time of approximately
2
√
N group operations as follows: Choose m =

√
N/2. The rear kangaroo is, on

average, distance N/4 from the front kangaroo. The rear kangaroo therefore per-
forms N/(4m) jumps to reach the starting point of the front kangaroo, followed
by m more steps until the walks collide (and then a small number more steps
until a distinguished point is hit). Since there are two kangaroos in action the
total running time is roughly 2(N/(4m) +m) = 2

√
N group operations.

382 S.D. Galbraith and R.S. Ruprai

B Two-Dimensional Problems

One can consider the multi-dimensional DLP: Given g1, . . . , gd, h and bounds
N1, . . . , Nd, to compute n1, . . . , nd ∈ Z such that h = gn1

1 · · · gnd

d and |ni| ≤ Ni

for 1 ≤ i ≤ d. We call the integer d the dimension. The size of the solution
region is N =

∏d
i=1(2Ni + 1). This problem arises in a number of applications.

For example, Gaudry and Schost [14] use algorithms for the 2-dimensional DLP
in point counting on hyperelliptic curves of genus 2.

The 2-dimensional DLP also arises if one tries to analyse the security of elliptic
curve cryptography using the Gallant-Lambert-Vanstone (GLV) method [12]. In
this method one has an efficiently computable group homomorphism ψ and one
computes nP for P ∈ E(Fq) and n ∈ N as n1P + n2ψ(P) where |n1|, |n2| ≈

√
n.

There is an algorithm to compute the pair (n1, n2) from n, but a natural trick
is to choose (n1, n2) directly. It is tempting to choose |n1| and |n2| to be a
little smaller than

√
n, and the extent to which this can be done without losing

security depends on the difficulty of the 2-dimensional DLP. Gaudry and Schost
do not give a precise figure for the running time of this algorithm but we have
the following heuristic under the usual assumptions (see [8] for further details of
this result and an improvement of the constant from 2.43 to 2.36).

Heuristic 3. The Gaudry and Schost [14] algorithm solves the 2-dimensional
DLP in as above in 2.43(1 + ε)

√
N + 1/θ group operations for small ε > 0.

B.1 Solving Using Equivalence Classes

In groups with efficiently computable inverse (such as the groups of interest to
Gaudry and Schost and the GLV method) one can consider equivalence classes
as we did in the 1-dimensional case. To be precise, let

T = {{(x, y), (−x,−y)} : x, y ∈ Z , −N1 ≤ x ≤ N1,−N2 ≤ y ≤ N2}

be the set of equivalence classes of points in a box of area N = (2N1+1)(2N2+1)
centered at 0. For (n1, n2) such that −Ni ≤ ni ≤ Ni (i ∈ {1, 2}) we consider the
set

W =

⎧⎨⎩{(n1 + u1, n2 + u2), (−(n1 + u1),−(n2 + u2))} :
u1, u2 ∈ Z,

−N1/2 ≤ u1 ≤ N1/2,
−N2/2 ≤ u2 ≤ N2/2

⎫⎬⎭ .

To analyse the algorithm again requires visualising the sets via a ‘fundamental
domain’. Since the map (x, y)
→ (−x,−y) is rotation by 180 degrees, a nat-
ural fundamental domain is the halfplane y ≥ −x. One therefore defines the
fundamental domain T̃ for T to be

T̃ = {(x, y) : −N1 ≤ x ≤ N1,−x ≤ y ≤ N2}.

Note that |T̃ | ≈ 2N1N2. A fundamental domain for W̃ which is contained in T̃ is
easily defined, but note that, as in Section 4, this can be a multi-set and we can

Using Equivalence Classes to Accelerate Solving the DLP 383

again be in the case of non-uniform sampling of W̃ . Indeed, when 0 ≤ n1 < N1/2
and 0 ≤ n2 < N2/2 this is the case and the region which has ‘double density’
has area A = 1

2 (N1 − 2n1)(N2 − 2n2). When n1 ≥ N1/2 or n2 ≥ N2/2 then the
distribution on W̃ is uniform but W̃ is not usually contained in T̃ any more. In
these cases |T̃ ∩ W̃ | varies between N1N2 = 1

2 |T̃ | and 1
4N1N2 = 1

8 |T̃ |.
We considered an algorithm which chooses elements from T and W uniformly

at random, selecting elements with a ratio of 2 : 1 (i.e., twice as many tame
walks as wild walks, since the tame set is at least twice as big as the wild set).

Our rough calculations suggest that the algorithm (when using a truly random
walk) should require fewer than 2.01

√
N group operations. This is a significant

speedup over the algorithm of Gaudry and Schost for the cases of practical inter-
est. It remains an open problem to find optimal parameters for this algorithm,
to analyse its complexity precisely, and to give experimental results which show
how closely one can get to the idealised theoretical analysis.

B.2 Larger Equivalence Classes in the GLV Method

We now assume that N1 = N2 and that the 2-dimensional DLP of interest is
Q = n1P + n2ψ(P) with |n1|, |n2| ≤ N1. Again write N = (2N1 + 1)(2N2 + 1).
Since one knows the logarithm of ψ(P) to the base P it is sufficient to compute
n1 and n2.

Frequently with the GLV method [12] the homomorphism ψ satisfies ψ2 = −1.
This happens, for example, with the standard curve y2 = x3 +Ax over Fp with
ψ(x, y) = (−x, iy). It also holds for the homomorphisms used by Galbraith, Lin
and Scott [7]. In this setting one can consider the equivalence classes

{Q,−Q,ψ(Q),−ψ(Q)}

of size 4. If Q = n1P + n2ψ(P) then these 4 points correspond to the pairs of
exponents

{(n1, n2), (−n1,−n2), (−n2, n1), (n2,−n1)}

and so action by ψ corresponds to rotation by 90 degrees.
It is natural to apply the Gaudry-Schost algorithm on these equivalence

classes. We take the sets T and W analogous to those in Section B.1. Find-
ing a suitable fundamental domain for the symmetry under rotation is not hard
(for example take {(x, y) : 0 ≤ x, 0 ≤ y}). One now finds that some regions of
the wild set can have quadruple density (as well as single and double density).

Again, it remains an open problem to determine the optimal algorithm for
this problem and to estimate its complexity. A very rough calculation suggests
that there is an algorithm for this problem (using a truly random walk) which
requires fewer than 1.11

√
N group operations.

Functional Encryption for Inner Product:
Achieving Constant-Size Ciphertexts with
Adaptive Security or Support for Negation

Nuttapong Attrapadung1 and Benôıt Libert2,�

1 Research Center for Information Security, AIST, Japan
2 Université catholique de Louvain, Crypto Group, Belgium

Abstract. In functional encryption (FE) schemes, ciphertexts and pri-
vate keys are associated with attributes and decryption is possible when-
ever key and ciphertext attributes are suitably related. It is known that
expressive realizations can be obtained from a simple FE flavor called
inner product encryption (IPE), where decryption is allowed whenever
ciphertext and key attributes form orthogonal vectors. In this paper, we
construct (non-anonymous) IPE systems with constant-size ciphertexts
for the zero and non-zero evaluations of inner products. These schemes
respectively imply an adaptively secure identity-based broadcast encryp-
tion scheme and an identity-based revocation mechanism that both fea-
ture short ciphertexts and rely on simple assumptions in prime order
groups. We also introduce the notion of negated spatial encryption, which
subsumes non-zero-mode IPE and can be seen as the revocation analogue
of the spatial encryption primitive of Boneh and Hamburg.

Keywords: Functional encryption, identity-based broadcast encryption,
revocation, efficiency.

1 Introduction

Ordinary encryption schemes usually provide coarse-grained access control since,
given a ciphertext, only the holder of the private key can obtain the plaintext. In
many applications such as distributed file systems, the need for fine-grained and
more complex access control policies frequently arises. To address these concerns,
several kinds of functional public key encryption schemes have been studied.

Functional encryption can be seen as a generalization of identity-based en-
cryption (IBE) [24,8]. In IBE schemes, the receiver’s ability to decrypt is merely
contingent on his knowledge of a private key associated with an identity that
matches a string chosen by the sender. In contrast, functional encryption (FE)
systems make it possible to decrypt using a private key skx corresponding to a
set x of atomic elements, called attributes, that is suitably related – according to
some well-defined relation R – to another attribute set y specified by the sender.
� This author acknowledges the Belgian National Fund for Scientific Research (F.R.S.-

F.N.R.S.) for their support and the BCRYPT Interuniversity Attraction Pole.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 384–402, 2010.
c© International Association for Cryptologic Research 2010

Functional Encryption for Inner Product 385

The goal of this paper is to describe new (pairing-based) functional encryp-
tion constructions providing short ciphertexts (ideally, their length should not
depend on the size of attribute sets) while providing security against adaptive
adversaries or supporting negation (e.g. decryption should be disallowed to hold-
ers of private keys skx for which R(x,y) = 1).

Related Work. The first flavor of functional encryption traces back to the
work of Sahai and Waters [22] that was subsequently extended in [16,21]. Their
concept, called attribute-based encryption (ABE), allows a sender to encrypt data
under a set of attributes ω while an authority generates private keys for access
control policies T . Decryption rights are granted to anyone holding a private key
for a policy T such that T (ω) = 1. Identity-based broadcast encryption (IBBE)
[2,23,13,9] and revocation (IBR) [19] schemes can also be thought of as func-
tional encryption systems where ciphertexts are encrypted for a set of identities
S = {ID1, . . . , IDn}: in IBBE (resp. IBR) systems, decryption requires to hold a
private key skID for which ID ∈ S (resp. ID �∈ S).

The above kinds of functional encryption systems are only payload hiding in
that they keep encrypted messages back from unauthorized parties but cipher-
texts do not hide their underlying attribute set. Predicate encryption schemes
[10,18,26,25] additionally provide anonymity as ciphertexts also conceal the at-
tribute set they are associated with, which enables [7,1] efficient searches over
encrypted data. In [18], Katz, Sahai and Waters devised a predicate encryption
scheme for inner products: a ciphertext encrypted for the attribute vector !Y can
be opened by any key sk �X such that !X · !Y = 0. As shown in [18], inner product
encryption (IPE) suffices to give functional encryption for a number of relations
corresponding to the evaluation of polynomials or CNF/DNF formulae.

Our Contributions. While quite useful, the IPE scheme of [18] strives to
anonymize ciphertexts, which makes it difficult to break through the linear com-
plexity barrier (in the vector length n) in terms of ciphertext size. It indeed
seems very hard to avoid such a dependency as long as anonymity is required:
for instance, anonymous FE constructions [10,17] suffer from the same overhead.
A similar problem appears in the context of broadcast encryption, where the only
known scheme [3] that conceals the receiver set also has O(n)-size ciphertexts.

This paper focuses on applications of IPE schemes, such as identity-based
broadcast encryption and revocation systems, where the anonymity property is
not fundamental. Assuming public ciphertext attributes rather than anonymity
may be useful in other contexts. For instance, suppose that a number of cipher-
texts are stored with varying attributes y on a server and we want to decrypt
only those for which R(x,y) = 1. Anonymous ciphertexts require to decrypt all
of them whereas public attributes y make it possible to test whether R(x,y)
(which is usually faster than decrypting) and only decrypt appropriate ones.

At the expense of sacrificing anonymity, we thus describe IPE schemes where
the ciphertext overhead reduces to O(1) as long as the description of the cipher-
text attribute vector is not considered as being part of the ciphertext, which
is a common assumption in the broadcast encryption/revocation applications.

386 N. Attrapadung and B. Libert

In addition, the number of pairing evaluations to decrypt is also constant, which
significantly improves upon O(n), since pairings calculations still remain costly.

Our first IPE system achieves adaptive security, as opposed to the selective
model, used in [18], where the adversary has to choose the target ciphertext vec-
tor !Y upfront. To acquire adaptive security, we basically utilize the method used
in the Waters’ fully secure IBE [27], albeit we also have to introduce a new trick
called “n-equation technique” so as to deal with the richer structure of IPE. Our
system directly yields the first adaptively secure identity-based broadcast encryp-
tion scheme with constant-size ciphertexts in the standard model. Previous IBBE
withO(1)-size ciphertexts were either only selective-ID secure [2,13,9,23] or in the
random oracle model [15]. Among IBBE systems featuring compact ciphertexts
(including selective-ID secure ones), ours is also the first one relying on simple as-
sumptions (i.e., no q-type assumption) in prime order groups.

It is worth mentioning that techniques developed by Lewko and Waters [20]
can be applied to the construction of Boneh and Hamburg [9] to give fully se-
cure IBBE with short ciphertexts in composite order groups. However, it was
not previously known how to obtain such a scheme in prime order groups (at
least without relying on the absence of computable isomorphism in asymmet-
ric pairing configurations). Indeed, despite recent progress [14], there is still no
black-box way to translate pairing-based cryptosystems from composite to prime
order groups. In particular, Freeman’s framework [14] does not apply to [20].

Our second contribution is an IPE system for non-zero inner products: cipher-
texts encrypted for vector !Y can only be decrypted using sk �X if !X · !Y �= 0, which
– without retaining anonymity – solves a question left open by Katz, Sahai and
Waters [18][Section 5.4]. The scheme implies the first identity-based revocation
(IBR) mechanism [19] with O(1)-size ciphertexts. Like the schemes of Lewko,
Sahai and Waters [19], its security is analyzed in a non-adaptive model where
the adversary has to choose which users to corrupt at the outset of the game1. In
comparison with [19] where ciphertexts grow linearly with the number of revoked
users and public/private keys have constant size, our basic IBR construction per-
forms in the dual way since key sizes depend on the maximal number of revoked
users. Depending on the application, one may prefer one scheme over the other
one. We actually show how to generalize both implementations and obtain a
tradeoff between ciphertext and key sizes (and without assuming a maximal
number of revoked users): the second scheme of [19] and ours can be seen as
lying at opposite extremities of the spectrum.

On a theoretical side, our non-zero IPE realization turns out to be a particular
case of a more general primitive, that we call negated spatial encryption, which
we define as a negated mode for the spatial encryption primitive of Boneh and
Hamburg [9]. Namely, keys correspond to subspaces and can decrypt ciphertexts
encrypted under points that lie outside the subspace. This generalized primitive
turns out to be non-trivial to implement and we had to use a fully generalized

1 We indeed work in a slightly stronger model, called co-selective-ID, where the adver-
sary chooses which parties to corrupt at the beginning – before seeing the public key
– but is not required to announce the target revoked set until the challenge phase.

Functional Encryption for Inner Product 387

form of our new “n-equation” technique. The proposed scheme is proven secure
under a non-standard assumption defined in [19].

Our Techniques. The core technique of our non-zero IPE scheme will be used
throughout the paper, including in our adaptively secure zero IPE scheme. This
can be viewed analogously to fact that Waters’ fully secure IBE [27] uses the
revocation technique of [19]. Our non-zero IPE also builds on [19]. However, the
fact that non-zero IPE has much richer structure than revocation scheme and
the pursued goal of achieving constant ciphertext size together prevent us from
using their techniques directly. To describe the difficulties that arise, we first
outline the Lewko-Sahai-Waters revocation scheme in its simplified form where
security proof is not provided and where only one user is revoked.

Construction 1. (A simplified revocation scheme)

� Setup: lets (G,GT) be bilinear groups of prime order p and picks g $← G,
α, α1, α2

$← Zp. The public key is
(
g, gα1, gα2 , e(g, g)α

)
. The master key is gα.

� KeyGen: chooses t $← Zp and outputs a private key for an identity ID ∈ Zp as
(K0 = gt, K1 = gα+α1t, K2 = gt(α1ID+α2)).

� Encrypt: encrypts M and specifies a revoked ID′ by choosing s
$← Zp and

computing (E0 = M · e(g, g)αs, E1 = gs(α1ID′+α2), E2 = gs).

� Decrypt: decryption computes e(K2, E2)
1

ID−ID′ e(E1,K0)
− 1

ID−ID′ = e(g, g)α1ts if
ID �= ID′. It then computes e(g, g)αs as e(K1, E2)/e(g, g)α1ts = e(g, g)αs.

The scheme can be explained by viewing a key and a ciphertext as forming a
linear system of 2 equations in the exponent of e(g, g) with variables α1ts, α2ts.

MID,ID′

(
α1ts
α2ts

)
:=
(

ID 1
ID′ 1

)(
α1ts
α2ts

)
=
(

log(e(K2, E2))
log(e(E1,K0))

)
.

Computing e(g, g)α1ts amounts to solve the system, which is possible when
det(MID,ID′) �= 0 (and thus ID �= ID′, as required). In particular, decryption
computes a linear combination (in the exponent) with coefficients from the first
row of M−1

ID,ID′ which is (1
ID−ID′ ,

−1
ID−ID′). In [19], this is called “2-equation tech-

nique”. The scheme is extended to n-dimension, i.e., the revocation of n users
{ID′

1, . . . , ID
′
n}, by utilizing n local independent systems of two equations

MID,ID′
j

(
α1tsj , α2tsj

)�
=
(

log(e(K2, E2,j)), log(e(E1,j ,K0))
)�

for j ∈ [1, n],

that yield 2n ciphertext components (E1,j , E2,j), each one of which corresponds
to a share sj of s such that s =

∑n
1 sj . The decryption at j-th system returns

e(g, g)α1tsi if ID �= ID′
j . Combining these results finally gives e(g, g)α1ts.

We aim at constant-size ciphertexts for non-zero IPE schemes of dimension n.
When trying to use the 2-equation technique with n dimensions, the following
difficulties arise. First, the “decryptability” condition !X · !Y �= 0 cannot be de-
composed as simply as that of the revocation scheme, which is decomposable as
the conjunction of ID �= ID′

j for j ∈ [1, n]. Second, the ciphertext size was O(n).

388 N. Attrapadung and B. Libert

Towards solving these, we introduce a technique called “n-equation tech-
nique”. First, we utilize n secret exponents !α = (α1, . . . , αn)� and let α1 func-
tion as the “master” exponent while α2, . . . , αn serve as the “perturbed” factors.
Intuitively, we will set up a system of n linear equations of the form:

M �X,�Y (α1ts, . . . , αnts)� =
(
log(e(Ki1 , Ej1)), . . . , log(e(Kin , Ejn))

)� (1)

where {Kik
} and {Ejk

} are elements of G defined for a key for !X and a ciphertext
for !Y respectively. At first, this generalized system seems to require linear-size
ciphertexts (Ej1 , . . . , Ejn). A trick to resolve this is to reuse ciphertext elements
throughout the system: we let Ejk

= E2 = gs for k ∈ [1, n− 1]. This effectively
yields a constraint M �X,�Y =

(
Q�

�X
R�)�, where Q �X is a (n − 1) × n matrix

parameterized only by !X and R is a 1 × n matrix. The remaining problem is
then to choose M �X,�Y in such a way that the system has a solution if !X · !Y �= 0
(the decryptability condition). To this end, we define

M �X,�Y :=

⎛⎜⎜⎜⎜⎜⎝
−x2

x1
1

−x3
x1

1
...

. . .
−xn

x1
1

y1 y2 y3 . . . yn

⎞⎟⎟⎟⎟⎟⎠ , (2)

where it holds that det(M �X,�Y) = (−1)n+1 !X · !Y /x1. By translating this concep-
tual view back into algorithms, we obtain a basic non-zero IPE scheme. From
this, we propose two schemes for non-zero IPE: the first one is a special case of
negated spatial encryption scheme in section 5.1, while the second one is proven
secure under simple assumptions and given in section 5.2.
Organization. In the forthcoming sections, the syntax and the applications of
functional encryption are explained in sections 2 and 3. We describe our zero
mode IPE system in section 4. Our negated schemes are detailed in section 5.

2 Definitions

2.1 Syntax and Security Definition for Functional Encryption

Let R : Σk × Σe → {0, 1} be a boolean function where Σk and Σe denote
“key attribute” and “ciphertext attribute” spaces. A functional encryption (FE)
scheme for R consists of the following algorithms.

◦ Setup(1λ, des) → (pk,msk): takes as input a security parameter 1λ and a
scheme description des (which usually describes the dimension n), and outputs
a master public key pk and a master secret key msk.

◦ KeyGen(x,msk)→ skx: takes as input a key attribute x ∈ Σk and the master
key msk. It outputs a private decryption key skx.

Functional Encryption for Inner Product 389

◦ Encrypt(y,M, pk)→ C: takes as input a ciphertext attribute y ∈ Σe, a message
M ∈M, and public key pk. It outputs a ciphertext C.

◦ Decrypt(C,y, skx,x) → M: given a ciphertext C with its attribute y and the
decryption key skx with its attribute x, it outputs a message M or ⊥.

We require the standard correctness of decryption, that is, for all λ, all
(pk,msk)← Setup(1λ), all x ∈ Σk, all skx ← KeyGen(x,msk), and all y ∈ Σe,

◦ If R(x,y) = 1, then Decrypt(Encrypt(y,M, pk), skx) = M.
◦ If R(x,y) = 0, Decrypt(Encrypt(y,M, pk), skx) = ⊥ with probability nearly 1.

Terminology and Variants. We refer to any encryption primitive A that can
be casted as a functional encryption by specifying its corresponding function
RA : ΣA

k ×ΣA
e → {0, 1}. For a FE primitive A, we can define two variants:

◦ Dual Variant, denoted by Dual(A), is defined by setting ΣDual(A)
k := ΣA

e and
Σ

Dual(A)
e := ΣA

k and RA(x,y) = RDual(A)(y,x). In a dual variant, the roles of
key and ciphertext attributes are swapped from those of its original primitive.

◦ Negated Variant, denoted by Neg(A), is defined by using the same domains
as A and setting RNeg(A)(x,y) = 1 ⇔ RA(x,y) = 0. The condition is thus the
opposite of the original primitive.

Security Definition. A FE scheme for a function R : Σk×Σe → {0, 1} is fully
secure if no PPT adversary A has non-negligible advantage in this game.

Setup. The challenger runs Setup(n) and hands the public key pk to A.

Query Phase 1. The challenger answers private key queries for x ∈ Σk by
returning skx ← KeyGen(x,msk).

Challenge. A submits messages M0,M1 and a target ciphertext attribute vector
y� ∈ Σe such that R(x,y�) = 0 for all key attributes x that have been queried
so far. The challenger then flips a bit β $← {0, 1} and computes the challenge
ciphertext C� ← Encrypt(y,Mβ , pk) which is given to A.

Query Phase 2. The adversary is allowed to make further private key queries
x ∈ Σk under the same restriction as above, i.e., R(x,y�) = 0.

Guess. The adversary A outputs a guess β′ ∈ {0, 1} and wins if β′ = β. In the
game, A’s advantage is typically defined as AdvA(λ) = |Pr[β = β′]− 1

2 |.

(Co-)Selective Security. We also consider the notion of selective security
[11,4], where A has to choose the challenge attribute y� before the setup phase,
but can adaptively choose the key queries for x1, . . . ,xq. One can consider its
“dual” notion where A must output the q key queries for attribute vectors
x1, . . . ,xq before the setup phase, but can adaptively choose the target chal-
lenge attribute y�. We refer to this scenario as the co-selective security model,
which is useful in some applications such as revocation. By definition, both no-
tions are incomparable in general and we do not know about their relation yet.

We shall show how one FE primitive can be obtained from another. The
following useful lemma from [9] describes a sufficient criterion for implication.

390 N. Attrapadung and B. Libert

Proposition 1 (Embedding Lemma [9]). Consider encryption primitives
A,B that can be casted as functional encryption for functions RA, RB, respec-
tively. Suppose there exists efficient injective mappings fk : ΣA

k → ΣB
k and

fe : ΣA
e → ΣB

e such that RB(fk(x), fe(y)) = 1 ⇔ RA(x,y) = 1. Let ΠB be a con-
struction for primitive B. We then construct ΠA for primitive A from ΠB by ap-
plying mappings fk, fe to all key attributes and ciphertext attributes, respectively.
More precisely, we use exactly the same setup algorithm and define key genera-
tion and encryption procedures as ΠA.KeyGen(x,msk) := ΠB.KeyGen(fk(x),msk)
and ΠA.Encrypt(y,M, pk) := ΠB.Encrypt(fe(y),M, pk), respectively. Then, if ΠB

is secure, so is ΠA. This holds for adaptive, selective, co-selective security models.
We denote this primitive implication by B

fk,fe−→ A.

We immediately obtain the next corollary stating that the implication applies
to the negated (resp. dual) variant with the same (resp. swapped) mappings.

Corollary 1. B
fk,fe−→ A implies Dual(B)

fe,fk−→ Dual(A) and Neg(B)
fk,fe−→ Neg(A).

2.2 Complexity Assumptions in Bilinear Groups

We consider groups (G,GT) of prime order p with an efficiently computable map
e : G×G→ GT such that e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z
and e(g, h) �= 1GT whenever g, h �= 1G. In these groups, we assume the hardness
of the Decision Bilinear Diffie-Hellman and Decision Linear [5] problems.

Definition 1. The Decision Bilinear Diffie-Hellman Problem (DBDH) in
(G,GT) is, given elements (g, gθ1 , gθ2, gθ3 , η) ∈ G4×GT with θ1, θ2, θ3

$← Zp, to
decide whether η = e(g, g)θ1θ2θ3 or η ∈R GT .

Definition 2. The Decision Linear Problem (DLIN) in G consists in, given
a tuple (g, f, ν, gθ1, fθ2, η) ∈ G6 with θ1, θ2

$← Zp and f, g, ν
$← G, deciding

whether η = νθ1+θ2 or ν ∈R G.

3 Functional Encryption Instances and Their Implications

3.1 Inner Product Encryption and Its Consequences

We underline the power of IPE by showing its implications in this section. Each
primitive is defined by describing the corresponding boolean function R. We
then show how to construct one primitive from another by explicitly describing
attribute mappings. In this way, correctness and security are consequences of the
embedding lemma. Basically, the approach follows exactly the same way as [18].
A new contribution is that we also consider the negated variant of primitives,
which will be useful for non-zero polynomial evaluation and revocation schemes.
The implication for negated variants follows from Corollary 1.

Inner Product. An inner product encryption (IPE) scheme over Zn
p , for some

prime p, is defined as follows. Both attribute domains are Σ IPEn

k = Σ IPEn
e = Zn

p .

Functional Encryption for Inner Product 391

We consider two distinct IPE modes here. The first one is zero-mode IPE where
RZIPEn(!X, !Y) = 1 iff !X · !Y = 0. The other one is its negated primitive, which we
call the non-zero-mode IPE, where RNIPEn(!X, !Y) = 1 iff !X · !Y �= 0.

Polynomial Evaluation. Functional encryption for the zero evaluation of poly-
nomials of degree ≤ n is defined as follows. The ciphertext and key attribute
domains are defined as Σ

ZPoly≤n
e = Zp and Σ

ZPoly≤n

k = {P ∈ Zp[x] | deg(P) ≤ n},
respectively. The relation is defined by RZPoly≤n(P, x) = 1 iff P (x) = 0. The non-
zero evaluation mode can be defined as its negated primitive Neg(ZPoly≤n).

Given an IPE scheme over Zn+1
p , one obtain a functional encryption system

for polynomial evaluation via the following embedding. For the key attribute,
we map the polynomial P [X] = ρ0 + ρ1X + · · · + ρnX

n to !Xp = (ρ0, . . . , ρn).
Regarding ciphertext attributes, each element w ∈ Zp is mapped onto a vector
!Yw = (1, w, w2, . . . , wn). Correctness and security hold since P (w) = 0 whenever
!Xp · !Yw = 0. The non-zero evaluation case can be analogously derived from the
non-zero-mode IPE using the same mappings, due to Corollary 1.

We can also consider other variants such as a scheme that supports multivari-
ate polynomials and a dual variant, where the key attribute corresponds to a
fixed point and the ciphertext attribute corresponds to a polynomial, as in [18].

OR, AND, DNF, CNF Formulae. We now consider a FE scheme for some
boolean formulae that evaluate disjunctions, conjunctions, and their extensions
to disjunctive or conjunctive normal forms. As an example, a functional encryp-
tion scheme for boolean formula ROR≤n : Z≤n

N × ZN → {0, 1} can be defined
by ROR≤n((I1, . . . , Ik), z)
→ 1 (for k ≤ n) iff (z = I1) or · · · or (z = Ik). This
can be obtained from a functional encryption for the zero evaluation of a uni-
variate polynomial of degree smaller than n by generating a private key for
fOR,I1,...,Ik

(z) = (z − I1) · · · (z − Ik), and letting senders encrypting to z.
Other fundamental cases can be considered similarly as in [18] and are shown

below. In [18] only non-negated policies (the first three cases below and their
extensions) were considered. Schemes supporting negated policies (the latter
three cases below and their extensions) are introduced in this paper. The negated
case can be implemented by IPE for non-zero evaluation. One can combine these
cases to obtain DNF, CNF formulae. Below, r $← Zp is chosen by KeyGen.2

Policy Implementation
(z = I1) or (z = I2) fOR,I1,I2(z) = (z − I1)(z − I2) = 0

(z1 = I1) or (z2 = I2) fOR,I1,I2
(z1, z2) = (z1 − I1)(z2 − I2) = 0

(z1 = I1) and (z2 = I2) fAND,I1,I2(z1, z2) = (z1 − I1)r + (z2 − I2) = 0
(z1 �= I1) or (z2 �= I2) fNOR,I1,I2(z1, z2) = (z1 − I1)r + (z2 − I2) �= 0
(z �= I1) and (z �= I2) fNAND,I1,I2(z) = (z − I1)(z − I2) �= 0

(z1 �= I1) and (z2 �= I2) fNAND,I1,I2
(z1, z2) = (z1 − I1)(z2 − I2) �= 0

ID-based Broadcast Encryption and Revocation. Let I be an identity
space. An ID-based broadcast encryption scheme (IBBE) for maximumn receivers
2 As noted in [18], the AND (and NOR) case will not work in the adaptive security

model since the information on r leaks.

392 N. Attrapadung and B. Libert

per ciphertext is a functional encryption for RIBBE≤n : I × 2I → {0, 1} defined
by RIBBE≤n : (ID, S)
→ 1 iff ID ∈ S. An IBBE system can be constructed by a
functional encryption for RDual(OR≤n). To encrypt a message for the receiver set
S = {ID1, . . . , IDk}, one encrypts using the policy (z = ID1) or · · · or (z = IDk).

Likewise, identity-based revocation (IBR) [19] for at most n revocations per
ciphertext can be casted as a negated IBBE, i.e., RIBR≤n : (ID, R)
→ 1 iff ID �∈ R.

3.2 Spatial Encryption

We now recall the concept of spatial encryption [9]. For a n × d matrix M of
which elements are in Zp and a vector !c ∈ Zn

p , we define its corresponding affine
space as Aff(M,!c) = {M !w+!c | !w ∈ Zd

p}. Let Vn ⊆ 2(Zn
p) be the collection of all

affine spaces inside Zn
p . That is, Vn = {Aff(M,!c) | M ∈ Mn×d, c ∈ Zn

p , d ≤ n},
where Mn×d is the set of all n× d matrices in Zp.

A spatial encryption in Zn
p is a functional encryption for a relation RSpatial :

Vn × Zn
p → {0, 1} defined by RSpatial : (V, !y)
→ 1 iff !y ∈ V .

The notion of spatial encryption was motivated by Boneh and Hamburg [9]. It
has many applications as it notably implies broadcast HIBE and multi-authority
schemes. Nevertheless, its connection to inner-product encryption has not been
investigated so far. In section 4.1, we prove that spatial encryption implies inner
product encryption by providing a simple attribute mapping.

As a result of independent interest, we also consider the negated spatial en-
cryption primitive (namely, FE that is defined by RNeg(Spatial) : (V, !y)
→ 1 iff
!y �∈ V) and provide a construction in section 5.1. From this scheme and Corol-
lary 1 together with our implication result of zero-mode IPE from spatial en-
cryption, we then obtain a non-zero-mode IPE construction.

4 Functional Encryption for Zero Inner-Product

4.1 Warm-Up: Selectively Secure Zero IPE from Spatial Encryption

We first show that spatial encryption implies zero IPE. For the key attribute,
we map !X = (x1, . . . , xn)� ∈ Zn

p to an (n − 1)-dimension affine space V �X =

Aff(M �X ,
!0n) = {M �X !w +!0n | !w ∈ Zn−1

p } with the matrix M �X ∈ Z
n×(n−1)
p

M �X =
(
−x2

x1
,−x3

x1
, · · · ,−xn

x1

In−1

)
. (3)

For any !Y = (y1, . . . , yn)� ∈ Zn
p , we then have !X · !Y = 0 ⇔ !Y ∈ V �X since

!X · !Y = 0 ⇔ y1 = y2 · (−x2
x1

) + · · ·+ yn · (−xn

x1
) ⇔ !Y = M �X · (y2, . . . , yn)� ⇔

!Y ∈ V �X . By the embedding lemma, we can therefore conclude its implication.
In [9], Boneh and Hamburg described a selectively secure construction of

spatial encryption that achieves constant-size ciphertexts (by generalizing the
Boneh-Boyen-Goh HIBE [6]). We thus immediately obtain a selectively secure
zero IPE scheme with constant-size ciphertext as shown below.

Functional Encryption for Inner Product 393

We give some notations here. For a vector !a = (a1, . . . , an)� ∈ Zn
p , we write

g�a to denote (ga1 , . . . , gan)�. Given g�a, !z, one can easily compute (g�a)�z := g〈�a,�z〉,
where 〈!a, !z〉 denotes the inner product !a · !z = !a�!z.

Construction 2. (Selectively secure zero IPE)
� Setup(1λ, n): chooses bilinear groups (G,GT) of prime order p > 2λ with
a generator g $← G. It chooses α, α0, . . . , αn

$← Zp. Let !α = (α1, . . . , αn). The
public key is pk =

(
g, gα0, !H = g�α, Z = e(g, g)α

)
. The master key is msk = gα.

� KeyGen(!X,msk, pk) : chooses t $← Zp and parses !X as (x1, . . . , xn) and returns
⊥ if x1 = 0. It outputs the private key as sk �X = (D0, D1,K2, . . . ,Kn) where

D0 = gt, D1 = gα+α0t, {Ki = (g−α1
xi
x1 gαi)t}i=2,...,n.

� Encrypt(!Y , pk): the encryption algorithm first picks s $← Zp. It parses !Y as
(y1, . . . , yn) and computes the ciphertext as

E0 = M · e(g, g)αs, E1 = (gα0g〈�α,�Y 〉)s, E2 = gs.

� Decrypt(C, !Y , sk �X ,
!X, pk) : to decrypt, the algorithm computes the message

blinding factor as e(D1K
y2
2 ···Kyn

n ,E2)
e(E1,D0) = e(g, g)αs.

The selective security of this scheme is a consequence of a result given in [9].

Theorem 1. Construction 2 is selectively secure under the n-Decisional Bilin-
ear Diffie-Hellman Exponent assumption (see [9] for a description of the latter).

4.2 Adaptively Secure Zero IPE under Simple Assumptions

We extend the above selectively secure zero IPE to acquire adaptive security
by applying the Waters’ dual system method [27]. However, we have to use our
“n-equation technique” as opposed to 2-equation technique used for IBE in [27].
The reason is that we have to deal with the difficulties arising from the richer
structure of IPE and the aggregation of ciphertexts into a constant number of
elements, analogously to what we described in section 1.

The scheme basically goes as follows. A ciphertext contains a random tag tagc
in the element E1 while each key contains n−1 tags (tagki for each Ki element)
that are aggregated into tagk =

∑n
i=2 tagkiyi upon decryption of a ciphertext

intended for !Y . The receiver can decrypt if tagk �= tagc (and !X · !Y = 0).

Construction 3. (Adaptively secure zero IPE)
� Setup(1λ, n): chooses bilinear groups (G,GT) of prime order p > 2λ. It then
picks generators g, v, v1, v2

$← G and chooses α, α0, α1, . . . , αn, a1, a2, b
$← Zp.

Let !α = (α1, . . . , αn) and !H = (h1, . . . , hn) = g�α. The public key consists of

pk =

(
g, w = gα0 , Z = e(g, g)α·a1·b, !H = g�α, A1 = ga1 , A2 = ga2 , B = gb,

B1 = gb·a1 , B2 = gb·a2 , τ1 = v · va1
1 , τ2 = v · va2

2 , T1 = τb
1 , T2 = τb

2

)
The master key is defined to be msk = (gα, gαa1 , v, v1, v2).

394 N. Attrapadung and B. Libert

� Keygen(!X,msk, pk): parses !X as (x1, . . . , xn) and returns ⊥ if x1 = 0. Oth-
erwise, it picks r1, r2

$← Zp, z1, z2
$← Zp, tagk2, . . . , tagkn

$← Zp, sets r = r1 + r2
and generates sk �X = (D1, . . . , D7,K2, . . . ,Kn, tagk2, . . . , tagkn) by computing

skcore =
{
Ki =

(
g−α1

xi
x1 · gαi · gα0·tagki

)r1}
i=2,...,n

,

skadapt=

(
D1 =gαa1 · vr, D2 =g−α · vr

1 · gz1 , D3 =B−z1 , D4 =vr
2 · gz2 ,

D5 = B−z2 , D6 = Br2 , D7 = gr1

)
.

� Encrypt(!Y ,M, pk): to encrypt M ∈ GT under !Y = (y1, . . . , yn) ∈ (Zp)n, pick
s1, s2, t, tagc

$← Zp and compute C = (C1, . . . , C7, E0, E1, E2, tagc) where

Ccore =
(
E0 = M · Zs2 , E1 = (gα0·tagc · g〈�α,�Y 〉)t, E2 = gt

)
,

Cadapt =

(
C1 = Bs1+s2 , C2 = Bs1

1 , C3 = As1
1 , C4 = Bs2

2 ,

C5 = As2
2 , C6 = τs1

1 · τs2
2 , C7 = T s1

1 · T s2
2 · w−t

)
.

� Decrypt(C, !Y , sk �X ,
!X, pk): computes tagk = tagk2y2 + · · ·+ tagknyn and then

W1 =
∏5

j=1 e(Cj , Dj) · (
∏7

j=6 e(Cj , Dj))−1 = e(g, g)α·a1·b·s2 · e(g, w)r1t, as well

as W2 =
(

e(Ky2
2 ···Kyn

n ,E2)
e(E1,D7)

) 1
tagk−tagc

= e(g, w)r1t. It finally recovers the plaintext as

M = E0/Z
s2 = E0/e(g, g)α·a1·b·s2 ← E0 ·W2 ·W−1

1 .

The correctness of W2 is shown in appendix A.1, while the rest follows from
[27]. As we can see, ciphertexts have the same size as in the IBE scheme of [27],
no matter how large the vector !Y is. Also, decryption entails a constant number
of pairing evaluations (whereas ciphertexts cost O(n) pairings to decrypt in [18]).

Theorem 2. Construction 3 is adaptively secure under the DLIN and DBDH
assumptions.

Proof. The proof uses the dual system methodology similar to [27], which in-
volves ciphertexts and private keys that can be normal or semi-functional.
◦ Semi-functional ciphertexts are generated by first computing a normal ci-

phertext (C′
0, C

′
1, . . . , C

′
7, E

′
1, E

′
7, tagc′) and then choosing χ

$← Zp before
replacing (C′

4, C
′
5, C

′
6, C

′
7), respectively, by

C4 = C′
4 · gba2χ, C5 = C′

5 · ga2χ, C6 = C′
6 · v

a2χ
2 , C7 = C′

7 · v
a2bχ
2 . (4)

◦ From a normal key (D′
1,. . ., D

′
7,K

′
2,. . .,K

′
n, tagk′2, . . . , tagk′n), semi-functional

keys are obtained by choosing γ $← Zp and replacing (D′
1, D

′
2, D

′
4) by

D1 = D′
1 · g−a1a2γ , D2 = D′

2 · ga2γ , D4 = D′
4 · ga1γ . (5)

The proof proceeds with a game sequence starting from GameReal, which is the
actual attack game. The following games are defined below.

Functional Encryption for Inner Product 395

Game0 is the real attack game but the challenge ciphertext is semi-functional.
Gamek (for 1 ≤ k ≤ q) is identical to Game0 except that the first i private key

generation queries are answered by returning a semi-functional key.
Gameq+1 is as Game q but the challenge ciphertext is a semi-functional encryp-

tion of a random element of GT instead of the actual plaintext.
We prove the indistinguishability between two consecutive games under some
assumptions. The sequence ends in Gameq+1, where the challenge ciphertext is
independent of the challenger’s bit β, hence any adversary has no advantage. ��
The indistinguishability of GameReal and Game0 as well as that of Gameq and
Gameq+1 can be proved exactly in the same way as in [27] and the details are
given in the full version of the paper.

Lemma 1. If DLIN is hard, Game0 is indistinguishable from GameReal.

Lemma 2. For any 1 ≤ k ≤ q, if an adversary A can distinguish Gamek from
Gamek−1, we can build a distinguisher for the DLIN problem.

This lemma is the most non-trivial part in the theorem. The main issue is that,
in order to enable adaptive security, the reduction must be done in such a way
that the simulator B can create semi-functional keys for any vector !X , including
those for which !X · !Y � = 0. However, the crucial point is that we must prevent
B from directly deciding whether the kth queried private key is normal or semi-
functional by generating a semi-functional ciphertext for itself. Indeed, if this
were possible, the reduction from A would not be established.

To resolve this, we use a secret exponent vector !ζ ∈ Zn
p and embed the DLIN

instance so that B can simulate only the key at kth query for !X with tags
(tagk2, . . . , tagkn) and the challenge ciphertext for !Y � with tagc� that obey the
relation: (tagk2, . . . , tagkn, tagc�)� = −M �X,�Y �

!ζ, where M �X,�Y is the n×n matrix
defined in Eq.(2). We thereby conceptually use the n-equation technique here.
A particular consequence is that if we have !X · !Y � = 0 then it holds that

tagk =
n∑

i=2

tagkiy
�
i = ζ1

n∑
i=2

xi

x1
y�

i −
n∑

i=2

ζiy
�
i = ζ1 · (−y�

1)−
n∑

i=2

ζiy
�
i = tagc�,

which is the exact condition that hampers the decryption, thus B cannot test
by itself, as desired. We are now ready to describe the proof of Lemma 2.

Proof. The distinguisher B receives (g, f, ν, gθ1, fθ2 , η) and decides if η = νθ1+θ2 .

Setup. Algorithm B picks α, a1, a2, δv1 , δv2
$← Zp and sets g = g, Z = e(f, g)αa1 ,

A1 = ga1 , A2 = ga2 , B = gb = f, v1 = νa2 · gδv1

B1 = gba1 = fa1 , B2 = gba2 = fa2 , v = ν−a1a2 , v2 = νa1 · gδv2 ,

τ1 = vva1
1 = gδv1a1 , τ2 = vva2

2 = gδv2a2 , τb
1 = f δv1a1 , τb

2 = f δv2a2 .

Next, B chooses δw
$← Zp, !ζ = (ζ1, . . . , ζn) $← Zn

p , !δ = (δ1, . . . , δn) $← Zn
p , then

defines w = gα0 = f · gδw , and hi = gαi = f ζi · gδi for i = 1, . . . , n. Note that, as
in the proof of lemma 2 in [27] , B knows msk = (gα, gαa1 , v, v1, v2).

396 N. Attrapadung and B. Libert

Key Queries. When A makes the jth private key query, B does as follows.

[Case j > k] It generates a normal key, using the master secret key msk.
[Case j < k] It creates a semi-functional key, which it can do using ga1a2 .
[Case j = k] It defines tagk2, . . . , tagkn as tagki = ζ1 · xi

x1
− ζi for i = 2, . . . , n,

which implies that (h−xi/x1
1 ·hi ·wtagki) = g−δ1(xi/x1)+δi+δwtagki , for i = 2, . . . , n.

Using these tags, it generates a normal private key (D′
1, . . . , D

′
7,K

′
2, . . . ,K

′
n)

using random exponents r′1, r
′
2, z

′
1, z

′
2

$← Zp. Then, it sets

D1 = D′
1 · η−a1a2 , D2 = D′

2 · ηa2 · (gθ1)δv1 , D3 = D′
3 · (fθ2)δv1 ,

D4 = D′
4 · ηa1 · (gθ1)δv2 , D5 = D′

5 · (fθ2)δv2 , D6 = D′
6 · fθ2 ,

as well as D7 = D′
7 ·(gθ1) and Ki = K ′

i ·(gθ1)−δ1(xi/x1)+δi+δwtagki for i = 2, . . . , n.
If η = νθ1+θ2 , sk �X = (D1, . . . , D7,K2, . . . ,Kn, tagk2, . . . , tagkn) is easily seen

to form a normal key where r1 = r′1 + θ1, r2 = r′2 + θ2, z1 = z′1 − δv1θ2,
z2 = z′2−δv2θ2 are the underlying random exponents. If η ∈R G, it can be written
η = νθ1+θ2 · gγ for some γ ∈R Zp, so that sk �X is distributed as a semi-functional
key. We note that tagk2, . . . , tagkn are independent and uniformly distributed
since ζ1, . . . , ζn (which are the solutions of a system of n − 1 equations with n
unknowns) are uniformly random and perfectly hidden from A’s view.

Challenge. A outputs M0,M1 ∈ GT along with a vector !Y � = (y�
1 , . . . , y

�
n).

B flips a coin β
$← {0, 1} and computes the tag tagc� = −〈!Y �, !ζ〉 for which B

will be able to prepare the semi-functional ciphertext. To this end, B first com-
putes a normal encryption (C′

0, C
′
1, . . . , C

′
7, E

′
1, E

′
2, tagc�) of Mβ using exponents

s′1, s
′
2, t

′. It then chooses χ $← Zp and computes

C4 = C′
4 · fa2·χ, C5 = C′

5 · ga2·χ, C7 = C′
7 · ν−δw·a1·a2·χ · f δv2 ·a2·χ,

C6 = C′
6 · v

a2·χ
2 , E2 = E′

2 · νa1·a2·χ, E1 = E′
1 · (νδw ·tagc�+〈�Y �,�δ〉)a1·a2·χ.

We claim that (C′
0, C

′
1, C

′
2, C

′
3, C4, C5, C6, C7, E1, E2, tagc�) is a semi-functional

ciphertext with underlying exponents χ, s1 = s′1, s2 = s′2 and t = t′ +
logg(ν)a1a2χ. To prove this, we observe that

C7 = T s1
1 · T s2

2 · w−t · va2bχ
2 = T s1

1 · T s2
2 · w−t′−logg(ν)a1a2χ · (νa1 · gδv2)a2bχ

= T s1
1 · T s2

2 · w−t′ · (f · gδw)− logg(ν)a1a2χ · (νa1 · gδv2)a2bχ

= C′
7 · ν−δwa1a2χ · f δv2a2χ,

where the unknown term in va2bχ
2 is canceled out by w−t. Also,

E1 = E′
1 ·
(
h

y�
1

1 · · ·hy�
n

n · wtagc�)logg(ν)a1a2χ

= E′
1 ·
(
(f ζ1gδ1)y�

1 · · · (f ζngδn)y�
n · (fgδw)−〈�Y �,�ζ〉)logg(ν)a1a2χ

= E′
1 · (ν〈

�Y �,�δ〉+δw·tagc�

)a1a2χ,

Functional Encryption for Inner Product 397

where the unknown f logg(ν) vanishes due to our definition of tagc�. It then re-
mains to show that tagc�, tagk2, . . . , tagkn are still n-wise independent. But this
holds since their relations form a system

M · !ζ :=

⎛⎜⎜⎜⎜⎜⎝
−x2

x1
1

−x3
x1

1
...

. . .
−xn

x1
1

y�
1 y�

2 y
�
3 . . . y�

n

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
ζ1
ζ2
...

ζn

⎞⎟⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎜⎝
tagk2
tagk3

...
tagkn

tagc�

⎞⎟⎟⎟⎟⎟⎠ ,

which has a solution in !ζ whenever det(M) = (−1)n+1 !X · !Y �/x1 �= 0.
Eventually, A outputs a bit β′ and B outputs 0 if β = β′. As in [27], we see

that A is playing Gamek−1 if η = νθ1+θ2 and Gamek otherwise. ��

Lemma 3. If DBDH is hard, Gameq and Gameq+1 are indistinguishable.

5 Functional Encryption for Non-zero Inner-Product

5.1 Negated Spatial Encryption

We begin this section by providing a co-selectively-secure construction of negated
spatial encryption, which is motivated by its implication of non-zero IPE. At a
high-level, our scheme can be viewed as a “negative” analogue of the Boneh-
Hamburg spatial encryption [9], in very much the same way as the Lewko-Sahai-
Waters revocation scheme [19] is a negative analogue of the Boneh-Boyen IBE [4].
The intuition follows exactly from section 1, where we have to use “n-equation
technique”. In spatial encryption, we have to deal with, in general, how we can
set up a system of n equations similarly to Eq.(1). To this end, we confine
the vector subspaces that we can use as follows. Our construction is a FE for
RNeg(Spatial) :Wn ×Zn

p → {0, 1}, where we define a collection Wn ⊆ Vn of vector
subspaces in Zn

p as Wn = {Aff(M,!0) ∈ Vn | rank(M(−1)) = n − 1}, where we
denote M(−1) as the matrix obtained by deleting the first row M1 ∈ Z1×d

p of M .

Construction 4. (Co-selectively secure negated spatial encryption)
� Setup(1λ, n): chooses a bilinear group G of prime order p > 2λ with a random
generator g $← G. It randomly chooses α, α1, . . . , αn

$← Zp. Let !α = (α1, . . . , αn).
The public key is pk =

(
g, g�α, gα1�α, e(g, g)α

)
. The master key is msk = (α, !α).

� KeyGen(V,msk, pk): suppose that V = Aff(M,!0), from a matrixM ∈ (Zp)n×d.
The algorithm picks t $← Zp and outputs skV = (D0, D1, !K) ∈ Gd+2 where

D0 = gt, D1 = gα+tα2
1 , !K = gtM��α.

� Encrypt(!y,M, pk): picks s $← Zp and computes (C0, C1, C2, C3) as

C0 = M · e(g, g)αs, C1 = gsα1〈�y,�α〉, C2 = gs, C3 = gα1s.

398 N. Attrapadung and B. Libert

� Decrypt(C, !y, skV , V, pk): the algorithm first obtains M from V . We also recall
the the notation of M1, which is the vector of the first row of M . It first solves
the system of equations in !w from M(−1) !w = (y2, . . . , yn)�, which it can do since
V ∈ Wn. It computes the message blinding factor e(g, g)αs as

e(D1, C2) ·
(
e(C1, D0)

e(!K �w, C3)

) 1
M1 �w−y1

= e(gα+tα2
1 , gs) ·

(
e(gsα1〈�y,�α〉, gt)
gt �w�M��α, gα1s)

) 1
M1 �w−y1

.

Computability. We claim that the decryption can be computed if y �∈ V .
Indeed, we prove that if y �∈ V then M1 !w − y1 �= 0 (and the above equation is
well-defined). To prove the contrapositive, suppose that M1 !w − y1 = 0. Then,
we must have !y ∈ V since M !w =

[
M1

M(−1)

]
!w =

[
M1 �w

M(−1) �w

]
= !y.

Correctness. We verify that decryption is correct as follows. First, we note
that due to our definition of !w, we have 〈M !w−!y, !α〉 = (M1 !w−y1)α1. Therefore,
the correctness follows from the fact that(

e(gsα1〈�y,�α〉, gt)
e(gt �w�M��α, gα1s)

) 1
M1 �w−y1

=
(

1
e(g, g)tsα1〈M �w−�y,�α〉

) 1
M1 �w−y1

= e(g, g)−stα2
1 .

Theorem 3. Construction 4 is co-selectively secure under the q-Decisional
Multi-Exponent Bilinear Diffie-Hellman assumption (q is the number of key
queries). (The proof is given in the full paper where the assumption [19] is
also recalled).

Implications. For a vector !X ∈ Zn
p , the embedding V �X = Aff(M �X ,

!0n) defined
in Eq.(3) is easily seen to be in the limited domain Wn since (M �X)(−1) is an
identity matrix of size n−1 and hence rank((M �X)(−1)) = n−1. Therefore, from
Corollary 1, the above scheme implies non-zero IPE.

5.2 Non-zero IPE under Simple Assumptions

We prove the co-selective security of our negated spatial encryption scheme under
a non-standard q-type assumption introduced in [19]. Here, we show that the
dual system technique [27] makes it possible to rest on simple assumptions such
as DBDH and DLIN. The scheme is very similar to the zero IPE scheme of
section 4.2 and we only state the differences. The intuition again follows exactly
from section 1 and the security proof uses similar techniques as in [19].

Construction 5. (Co-selectively secure non-zero IPE)
� Setup(1λ, n): outputs pk exactly as in the construction 3 except that we define
w = gα1(= h1) in this scheme, instead of gα0 .

� Keygen(!X,msk, pk): outputs sk �X = (skadapt, skcore) where skadapt is the same as

in the construction 3 (with w = gα1) and skcore = {Ki =
(
g−α1

xi
x1 ·gαi

)r1}i=2,...,n.

� Encrypt(!Y ,M, pk): outputs C = (Cadapt, Ccore) where Cadapt is as in the con-
struction 3 (with w = gα1) and Ccore =

(
E0 = M ·Zs2 , E1 = (g〈�α,�Y 〉)t, E2 = gt

)
.

Functional Encryption for Inner Product 399

� Decrypt(C, !Y , sk �X ,
!X, pk): computes W1 as in the construction 3 and W2 as

W2 =
(

e(Ky2
2 ···Kyn

n ,E2)
e(E1,D7)

)− x1
�X·�Y = e(g, w)r1t. (See appendix A.2).

Theorem 4. Construction 5 is co-selectively secure under the DLIN and DBDH
assumptions. (The proof is deferred to the full version of the paper.)

5.3 A Generalization of the Scheme and Its Application

Extended Ciphertext Attribute Domain. The above scheme for the rela-
tion RNIPEn : Zn

p × Zn
p → {0, 1} can be extended so as to support relations of

the form RNIPE∗
n : Zn

p × (Zn
p)d → {0, 1}, for some d ∈ poly(λ), and defined as

RNIPE∗
n(!X, (!Y1, . . . , !Yd)) = 1 iff for all i = 1, . . . , d: !X · !Yi �= 0.

We construct this extended system by setting up exactly the same public
and private keys (for !X) as in the original scheme. To encrypt to (!Y1, . . . , !Yd),
the scheme generates C0, . . . , C7 as usual with the underlying exponents s1, s2, t.
Then, it chooses t1, . . . , td ∈ Zp so that t = t1+· · ·+td and for i = 1, . . . , d, parses
!Yi = (yi,1, . . . , yi,n) and computes E1,i = (g〈�α,�Yi〉)ti = (hyi,1

1 · · ·hyi,n
n)ti and

E2,i = gti , in such a way that the ciphertext is (C0, . . . , C7, {E1,i, E2,i}i=1,...,d).
Decryption requires to first compute

W2,i =
(
e(Kyi,2

2 · · ·Kyi,n
n , E2,i)

e(E1,i, D7)

)− x1
�X·�Yi

= e(g, w)r1ti ,

for i = 1, . . . , d, from which the receiver obtains W2 = W2,1 · · ·W2,d = e(g, w)r1t.
The rest is then done as usual and we explain in the full version of the paper
how the security proof must be adapted.

Applications. We can obtain an identity-based revocation scheme with param-
eter tradeoff from the aforementioned extension. The instantiation of ID-based
revocation scheme (IBR≤n) from our non-zero inner-product system NIPEn+1
yields a construction with O(1)-size ciphertexts and O(n)-size private keys,
where n denotes the maximal number of revoked users.

From our extended scheme NIPE∗
n+1, we can obtain an ID-based revocation

scheme IBRpoly(λ), without a fixed maximal number of revoked users. To revoke
the set R where |R| = r, we divide it into a disjointed union R = R1∪· · ·∪Rr/n,
where |Ri| = n for all i (we assume that n divides r). We then simply construct
the vector !Yi from the revocation subset Ri for each i ∈ [1, r/n], in the same
way as we use NIPEn+1 to instantiate IBR≤n. We then finally encrypt using the
set of vectors (!Y1, . . . , !Yr/n). The correctness and security properties hold since
RIBR≤n(ID, R) = 1 ⇔ RIBRpoly(λ)(ID, (R1, . . . , Rr/n)) = 1. The construction has
O(r/n)-size ciphertexts and O(n)-size private keys. Interestingly, we note that
the second scheme described by Lewko, Sahai and Waters [19] (which indeed
inspires ours) can be viewed as a special case of our scheme where n = 1.

400 N. Attrapadung and B. Libert

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable Encryption Revisited: Consis-
tency Properties, Relation to Anonymous IBE, and Extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Abdalla, M., Kiltz, E., Neven, G.: Generalized Key Delegation for Hierarchical
Identity-Based Encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 139–154. Springer, Heidelberg (2007)

3. Barth, A., Boneh, D., Waters, B.: Privacy in Encrypted Content Distribution Using
Private Broadcast Encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006.
LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006)

4. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryp-
tion Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity-Based encryption with Con-
stant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

7. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

8. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 586–615. Springer, Heidelberg
(2001)

9. Boneh, D., Hamburg, M.: Generalized Identity Based and Broadcast Encryption
Schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

10. Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted
Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

11. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 254–271. Springer,
Heidelberg (2003)

12. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

13. Delerablée, C.: Identity-Based Broadcast Encryption with Constant Size Ci-
phertexts and Private Keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 200–215. Springer, Heidelberg (2007)

14. Freeman, D.: Converting Pairing-Based Cryptosystems from Composite-Order
Groups to Prime-Order Groups. In: Eurocrypt 2010. LNCS. Springer, Heiidelberg
(to appear, 2010)

15. Gentry, C., Waters, B.: Adaptive Security in Broadcast Encryption Systems
(with Short Ciphertexts). In: Joux, A. (ed.) Eurocrypt 2009. LNCS, vol. 5479,
pp. 171–188. Springer, Heidelberg (2009)

16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 (2006)

Functional Encryption for Inner Product 401

17. Iovino, V., Persiano, G.: Hidden-Vector Encryption with Groups of Prime Order.
In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 75–88.
Springer, Heidelberg (2008)

18. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunc-
tions, Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

19. Lewko, A., Sahai, A., Waters, B.: Revocation Systems with Very Small Private
Keys. In: IEEE Symposium on Security and Privacy, S&P (to appear, 2010)

20. Lewko, A., Waters, B.: New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010)

21. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM CCS 2007, pp. 195–203 (2007)

22. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

23. Sakai, R., Furukawa, J.: Identity-Based Broadcast Encryption. In: Cryptology
ePrint Archive: Report 2007/217 (2007),
http://eprint.iacr.org/2007/217

24. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

25. Shen, E., Shi, E., Waters, B.: Predicate Privacy in Encryption Systems. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

26. Shi, E., Waters, B.: Delegating Capabilities in Predicate Encryption Systems.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560–578. Springer,
Heidelberg (2008)

27. Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE un-
der Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 619–636. Springer, Heidelberg (2009)

A Verifying Correctness in Decryption

A.1 For the Zero IPE Scheme of Section 4.2

W2 =
(
e(
∏n

i=2K
yi

i , E2)
e(E1, D7)

) 1
tagk−tagc

=

⎛⎝e
(∏n

i=2(g
−α1

xi
x1 gαiwtagki)r1yi , gt

)
e
((
g〈�α,�Y 〉 · wtagc

)t
, gr1

)
⎞⎠

1
tagk−tagc

=

⎛⎝e
(
(g−α1

x2y2+···+xnyn
x1 gα2y2+···+αnynwtagk2y2+···+tagknyn)r1 , gt

)
e
((
gα1y1+α2y2+···+αnyn · wtagc

)t
, gr1

)
⎞⎠

1
tagk−tagc

= e
(
g−α1(

x2y2+···xnyn
x1

+y1)w(tagk−tagc), g
) r1t

tagk−tagc

= e
(
g−α1

�X·�Y
x1 w(tagk−tagc), g

) r1t
tagk−tagc

= e(g, w)r1t.

http://eprint.iacr.org/2007/217

402 N. Attrapadung and B. Libert

A.2 For the Non-zero IPE Scheme of Section 5.2

W2 =
(
e(
∏n

i=2K
yi

i , E2)
e(E1, D7)

)− x1
�X·�Y

=

⎛⎝e
(∏n

i=2(g
−α1

xi
x1 gαi)r1yi , gt

)
e
((
gα1y1+···+αnyn

)t
, gr1

)
⎞⎠− x1

�X·�Y

=

⎛⎝e
(
(w− x2y2+···+xnyn

x1 gα2y2+···+αnyn)r1 , gt
)

e
((
wy1 · gα2y2+···+αnyn

)t
, gr1

)
⎞⎠− x1

�X·�Y

= e
(
w

�X·�Y
x1 , g

)r1t· x1
�X·�Y = e(g, w)r1t.

Security of Encryption Schemes
in Weakened Random Oracle Models

(Extended Abstract)

Akinori Kawachi, Akira Numayama, Keisuke Tanaka, and Keita Xagawa

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,
W8-55, 2-12-1 Ookayama Meguro-ku, Tokyo 152-8552, Japan
{kawachi,numayam4,keisuke,xagawa5}@is.titech.ac.jp

Abstract. Liskov proposed several weakened versions of the random oracle
model, called weakened random oracle models (WROMs), to capture the vulner-
ability of ideal compression functions, which are expected to have the standard
security of hash functions, i.e., collision resistance, second-preimage resistance,
and one-wayness properties. The WROMs offer additional oracles to break such
properties of the random oracle. In this paper, we investigate whether public-key
encryption schemes in the random oracle model essentially require the standard se-
curity of hash functions by the WROMs. In particular, we deal with four WROMs
associated with the standard security of hash functions; the standard, collision trac-
table, second-preimage tractable, first-preimage tractable ones (ROM, CT-ROM,
SPT-ROM, and FPT-ROM, respectively), done by Numayama et al. for digital sig-
nature schemes in the WROMs. We obtain the following results: (1) The OAEP is
secure in all the four models. (2) The encryption schemes obtained by the Fujisaki-
Okamoto conversion (FO) are secure in the SPT-ROM . However, some encryption
schemes with FO are insecure in the FPT-ROM. (3) We consider two artificial vari-
ants wFO and dFO of FO for separation of the WROMs in the context of encryption
schemes. The encryption schemes with wFO (dFO, respectively) are secure in the
CT-ROM (ROM, respectively). However, some encryption schemes obtained by
wFO (dFO, respectively) are insecure in the SPT-ROM (CT-ROM, respectively).
These results imply that standard encryption schemes such as the OAEP and FO-
based one do not always require the standard security of hash functions. Moreover,
in order to make our security proofs complete, we construct an efficient sampling
algorithm for the binomial distribution with exponentially large parameters, which
was left open in Numayama et al.’s paper.

Keywords: public-key encryption schemes, weakened random oracle models,
OAEP, Fujisaki-Okamoto conversion.

1 Introduction

Background. In order to design new cryptographic schemes, we often follow the ran-
dom oracle methodology [1]. First, we analyze the security of cryptographic schemes,
by idealizing hash functions as truly random functions called the random oracle. When
it comes to implementations of these schemes, we replace the random oracles by cryp-
tographic hash functions such as MD5 [2] and SHA-1 [3]. This replacement is called
an instantiation of the random oracle.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 403–419, 2010.
c© International Association for Cryptologic Research 2010

404 A. Kawachi et al.

The random oracle methodology causes a trade-off between efficiency and provable
security. The schemes proven secure in the random oracle model (ROM) are in general
more efficient than those proven secure in the standard model. However, the security
proofs in the ROM do not directly guarantee the security in the standard model, i.e.,
an instantiation of the random oracle might make the cryptographic schemes insecure.
Even worse, several recent works [4,5,6] showed that some schemes secure in the ROM
have no secure instantiation.

There are several properties of the ROM to prove the security of cryptographic prop-
erties. In particular, the ROM is expected to satisfy the one-wayness, second-preimage
resistance, and collision resistance properties. We call these properties as the standard
security of hash functions. These properties are indeed critical in many schemes for
their security proofs. For example, the security of the Full-Domain-Hash (FDH) signa-
ture schemes (e.g., [7]), which are secure in the ROM, relies on the collision-resistance
property of the ROM. That is, if we can obtain two distinct messages m,m′ such that
H(m) = H(m′) and the signature σ = Sig(H(m)), then we can obtain a valid forgery
(m′, σ), where H is a hash function and Sig is a signing algorithm. Leurent and Nguyen
also presented the attacks extracting the secret keys on several hash-then-sign type sig-
nature schemes and identity-based encryption schemes if the underlying hash functions
are not collision resistant [8].

Recent progress on the attacks against cryptographic hash functions such as MD5
and SHA-1 raises the question on the assumption that hash functions are collision re-
sistant and one-way (e.g.,[9,10,11]). Therefore, it is significant to investigate whether
the collision resistance property (as well as the one-wayness and second-preimage re-
sistance properties, which are weaker notions than the collision resistance one) of the
ROM is essential to prove the security of the schemes or not. More generally, it is worth
classifying the schemes by the first-preimage, second-preimage, and collision resistance
properties of the ROM that their security essentially requires.

Weak versions of random oracle models. Several works recently highlighted some spe-
cific properties of the ROM for secure cryptographic constructions in the ROM.

Nielsen proposed the non-programmable random oracle model where the random or-
acle is not programmable [12]. In this model, one cannot set the values that the random
oracle answers to some convenient values. It was showed in [12] that a non-interactive
non-committing encryption scheme exists in the ROM (assuming that trapdoor permu-
tations exists), but not in the non-programmable random oracle model.

Unruh proposed a ROM with oracle-dependent auxiliary inputs [13]. In this setting,
adversaries obtain an auxiliary input that contains information with respect to the ran-
dom oracle (e.g. collisions). He showed that the RSA-OAEP encryption scheme [14] is
secure in the ROM even under the presence of oracle-dependent auxiliary inputs.

Liskov proposed several weakened versions of the random oracle model, called
weakened random oracle models (WROMs), which offer additional oracles to break
some properties of the random oracle [15]. These model captures the situation that
adversaries are given an attack algorithm for breaking some specific property of the
functions. For example, the first-preimage tractable random oracle model offers the
random oracle and the first-preimage oracle associated with the random oracle, which
returns a first-preimage of the random oracle to adversaries. This first-preimage oracle

Security of Encryption Schemes in Weakened Random Oracle Models 405

then corresponds to the attack to the first preimage property of a hash function. We
can replace the additional oracle to others such as the second-preimage and collision
ones that correspond to the attack to the properties. Thus, the WROMs can capture vul-
nerability of hash functions even if the parties are allowed to utilize ideal ones as in
the ROM. By using WROMs, Liskov constructed hash functions based on weak ideal
compression functions and proved it is indifferentiable from the random oracle.

Several results already analyzed the security in the WROMs. Hoch and Shamir ap-
plied Liskov’s idea to prove the indifferentiability of another hash construction [16].
Pasini and Vaudenay also applied Liskov’s idea to the security analysis of digital sig-
nature schemes [17]. They considered the security of hash-then-sign type signature
schemes in the first-preimage tractable random oracle model. Numayama, Isshiki, and
Tanaka formalized the WROMs, which allows us to formally analyze the security of the
schemes [18]. By using these models, they classified several digital signature schemes
by the properties of the ROM. Fischlin and Lehmann also proposed a weakened random
oracle model in a similar way to Liskov’s one in the context of secure combiners [19].

Our contributions. In this paper, we investigate whether public-key encryption schemes
constructed in the ROM essentially require the standard security of hash functions by
further extending the direction originated from Liskov. In particular, we consider their se-
curity in the standard, collision tractable, second-preimage tractable, and first-preimage
tractable random oracle models (ROM, CT-ROM, SPT-ROM, and FPT-ROM, respec-
tively for short). Note that they are ordered according to their strengths, i.e., the security
of encryption schemes in the FPT-ROM implies that in the SPT-ROM and such impli-
cations hold between each adjacent two models.

We demonstrate that the security notions in the four WROMs can be strictly separated
in the context of encryption schemes. For the separation, we focus on the security of
the encryption schemes obtained by the Fujisaki-Okamoto conversion (FO) [20], its two
artificial variants (dFO and wFO), and the OAEP [14]. Precisely, we prove the following
four statements:

1. OAEP is IND-CCA2 secure in the FPT-ROM.
2. FO is IND-CCA2 secure in the SPT-ROM, but not IND-CPA secure in the

FPT-ROM.
3. wFO is IND-CCA2 secure in the CT-ROM, but not IND-CCA2 secure in the

SPT-ROM.
4. dFO is IND-CCA2 secure in the ROM, but not IND-CCA2 secure in the CT-ROM.

We summarize the security of four schemes in Table 1.

Table 1. Security of four schemes

scheme/model ROM CT-ROM SPT-ROM FPT-ROM
OAEP secure

FO secure insecure
wFO secure insecure
dFO secure insecure

406 A. Kawachi et al.

This separation suggests that some public-key encryption schemes essentially re-
quire the standard security of hash functions. These notions were also separated in the
context of digital signature schemes in [18]. We stress that the role of the collision and
second-preimage oracles in encryption schemes is not as clear as that in digital signature
schemes. For example, it is easy to see that the collision oracle, breaking the collision
resistance property of the random oracle, directly makes a simple scheme vulnerable,
but not so easy for the case of encryption schemes. Actually, we need to develop new
proof techniques for the (in)security of encryption schemes under additional oracles.

It also suggests that standard encryption schemes such as the OAEP and FO-based
ones do not always require the standard security of hash functions for the random oracle.
We believe that our results do not only give an example of the first application of the
WROMs to encryption schemes, but they are also of independent interest. As far as we
know, our results give the first evidence that the OAEP encryption scheme can be used
in a practical application even without the first-preimage resistance property, i.e., the
one-wayness property. In other words, the OAEP remains secure even if we remove
the first-preimage resistance property. This can also be said on FO-based encryption
schemes on the second-preimage resistance property.

On the security of the OAEP, Kiltz and Pietrzak recently showed that there is no con-
struction for padding-based encryption schemes including the OAEP that has a black-
box reduction from ideal trapdoor permutations to its IND-CCA2 security in [21]. How-
ever, they wrote in the paper that the security proof in the ROM can be still a valid
argument in practice. We believe so is our security proof in the WROMs.

For the security proof, we explicitly show how to sample approximately in polyno-
mial time from binomial distributions with exponentially large parameters, that is, a
polynomial-time sampling algorithm whose output distribution is statistically close to
the binomial distribution. For this algorithm, we arrange and combine sampling algo-
rithms that run over real numbers proposed in the field of statistics [22,23,24,25], and
give a precise analysis for discretization.

It should be noted that on the security proofs of the digital signature schemes in the
WROMs [18], Numayama et al. assumed such an efficient sampling algorithm and thus
gave no explicit construction. They left the construction of the sampling algorithm as
an open problem. By the sampling algorithm we explicitly show, it is no longer neces-
sary to assume the sampling algorithm in their security proofs of the digital signature
schemes [18] as well as those of the public-key encryption scheme in this paper.

The sampling algorithm shown in this paper is adapted for cryptographic use since
the statistical closeness to the original distribution is measured by the total variation
distance, which is standard in cryptography but not usually required in statistics. The
sampling algorithm is useful for other cryptographic tasks as in Numayama et al.’s and
this paper.

Comparisons with other models. As mentioned above, a few models that weaken the
power of the random oracle were already proposed such as the non-programmable
model [12] and the oracle-dependent auxiliary input model [13].

The non-programmable model is not simply comparable with WROMs since the
programmability does not imply the collision resistance and vice versa. The target of
the oracle-dependent auxiliary input model partially overlaps that of the WROMs.

Security of Encryption Schemes in Weakened Random Oracle Models 407

For a simple comparison, we now focus on the security of the OAEP in both
models. Unruh showed a similar result as ours for the OAEP encryption scheme [13]. He
proposed a random oracle model where oracle-dependent auxiliary inputs are allowed.
In his setting, the adversary of some cryptographic protocol obtains an auxiliary input
that contains the information (e.g., collisions) on the random oracle. He showed that
the OAEP encryption scheme [14] is still secure in the random oracle model even in his
model. This result indicates an important fact that the security of the OAEP encryption
scheme does not depend on the collision resistance property since the oracle-dependent
auxiliary input can contain a sufficiently long list of collisions.

Our results also present the security of the OAEP in a weak version of the random
oracle. However, there are at least two differences between Unruh’s result and ours.
First, the random oracle model with the oracle-dependent auxiliary input does not com-
pletely capture the adaptive security of hash functions, and this model still has the
second-preimage resistance and the first-preimage resistance properties. Hence, only
by his result, we cannot say whether these two properties are necessary or not in order
to prove the security of the OAEP encryption scheme. In contrast to Unruh’s result,
our result clearly shows that the two adaptive securities of hash functions such as the
first-preimage resistance and the second-preimage resistance are not necessary to prove
the security of the OAEP encryption scheme.

Second, Unruh constructed the reduction algorithm which breaks the partial-domain
one-wayness of the underlying trapdoor permutation using the adversary which breaks
the IND-CCA2 security of the OAEP encryption scheme. The running time of the re-
duction algorithm is not bounded by any polynomial. Therefore, he use the security
amplification technique for the partial-domain one-wayness. By using this technique,
he can avoid employing a stronger assumption that even quasi-polynomial time adver-
sary cannot break the partial-domain one-wayness, and can prove the security under the
standard partial-domain one-wayness against polynomial-time adversary.

In contrast to Unruh’s result, we construct the polynomial-time reduction algorithm
using the adversary, and hence we do not require the security amplification technique
for the partial-domain one-wayness, which can be considered as a simplification of
Unruh’s proof.

Organization. In Section 2, we describe the details of the WROMs and their properties.
We also discuss the simulation methods that are applicable to these models. In Section 3,
after reviewing the encryption schemes we consider, we show their (in)security in the
WROMs. Many technical details will be omitted from this extended abstract. We will
describe them in the full version [26].

Notation. Before starting technical parts of this paper, we introduce our notation used
in the rest of the paper. For a table T = {(x, y)}, we define T(y) = {(x′, y′) ∈ T | y′ = y}.
For a distribution D, x ← D denotes that x is sampled according to D. The function
D(x) stands for the probability function of the distribution D.

Let s← S denote that s is sampled from the uniform distribution over a finite set S .
#S denotes the number of elements in S . For a probabilistic Turing machineA and its
input x, letA(x) denote the output distribution ofA on input x.

We usually denote by k a security parameter of a cryptographic scheme in this paper.
We also denote by k′ length of plaintexts unless it is specified. k′ is implicitly assumed

408 A. Kawachi et al.

to be polynomially related to the security parameter k, that is, k′ = kΘ(1). We say a
function f (k) is negligible in k if f (k) ≤ 2−ω(log k). For two distributions D1 and D2 over
a finte set S , we denote the statistical distance (the total variation distance) between
them by Δ(D1,D2), defined by 1

2

∑
s∈S |D1(s) − D2(s)|. We say two distributions D1 and

D2 are statistically close if Δ(D1,D2) ≤ 2−ω(log k).

2 The Weakened Random Oracle Models

In this section, we first review the definitions of the WROMs. Next, we present an
important property called weak uniformity of the WROMs, which is useful for security
proofs of encryption schemes. We also discuss the simulation methods of [18] used for
the security proofs in the WROMs.

2.1 Definitions of the Weakened Random Oracle Models

To give formal definitions of the WROMs, we define some notation. Let X and Y be
finite sets. Let H be a hash function chosen randomly from all of the functions from X
to Y. We denote by TH the table {(x,H(x)) | x ∈ X}. We identify the hash function H
with the table TH.

We next define the random oracle and the additional oracles associated with H : X →
Y as follows. (For more details, see [18].)

Random oracle ROH: Given x, return y such that (x, y) ∈ TH .
Collision oracle COH: On the query, first pick one entry (x, y) ∈ TH uniformly at ran-

dom. If there is no other entry (x′, y) ∈ TH , then answer ⊥. Otherwise, pick one
entry (x′, y) ∈ TH satisfying x � x′ uniformly at random and answer (x, x′).

Second-preimage oracle SPOH: Given (x, y), if (x, y) � TH answer ⊥. If there is no
other entry (x′, y) ∈ TH , then answer ⊥. Otherwise, pick one entry (x′, y) ∈ TH

satisfying x � x′ uniformly at random and answer x′.
First-preimage oracle FPOH: Given y, if there is any entry (x, y) ∈ TH then return

such an x uniformly at random. Otherwise return ⊥.

Remark 1. We usually identify the random oracle and the underlying hash function.
However, in this paper as in [18], we explicitly distinguish them by regarding the ran-
dom oracle as an interface to the underlying hash function. This setting helps us to make
the WROMs with an additional oracle well-defined.

The formal definitions of the WROMs are given as follows. The WROMs consist of
three components, a hash function h chosen randomly from all of the functions from
X to Y, the random oracle, and the additional oracle associated with h. The models are
called the CT-ROM, SPT-ROM, and FPT-ROM, if the additional oracle is the collision,
second-preimage, and first-preimage oracle, respectively.

Remark 2. The collision oracle may output ⊥ even if there exists a collision (x, x′)
in the table. This stems from the simulation method of Numayama et al. [18], and
causes no serious problems. Note that the collision oracle outputs ⊥ with probability

Security of Encryption Schemes in Weakened Random Oracle Models 409

(1 − 1/#Y)#X−1. In the case where #X ≥ #Y, we can find a collision with polynomially
many queries since since (1 − 1/#Y)#X−1 ≤ exp(−(#X − 1)/#Y). In the case where
#Y = kO(1) · #X, we can again find a collision with polynomially many queries (1 −
1/#Y)#X−1 ≤ 1−1/kO(1). Finally, in the case where #Y = kω(1) ·#X, the following lemma
shows that there are no collisions with overwhelming probability.

Lemma 1. Let H : X → Y be the hash function, and ny the number of preimages of y
under the function H, that is, ny = #TH(y). Let BAD denote the event that there is some
y such that ny > L. Then for all sufficiently large Y, we have PrH[BAD] < 1

(#Y)2 , where

L = 5 ln #Y
ln ln #Y

#X
#Y if #X ≥ #Y, or L = 5 ln #Y

ln ln #Y otherwise.

The proof is obtained by the standard argument on the balls and bins game by regarding
X and Y as sets of balls and bins, respectively. For the details on the game, see a standard
textbook (e.g., [27]).

2.2 Difference from the Random Oracle Model

We observe an important difference between the ROM and WROMs by considering the
ROM and FPT-ROM. In the both models, the function H, i.e., the table TH is uniformly
distributed.

In the ROM, if one queries some x that has never been queried to the random oracle,
the value of H(x) is uniformly distributed regardless of the past queries. That is, the
knowledge of the past queries does not affect the entries not queried in the table. This
property of the ROM is called uniformity. In contrast to the situation in the ROM, when
it comes to the FPT-ROM, this property is not attained. Recall that the first-preimage
oracle uniformly returns one of the preimages, say x, of queried value y. If the first-
preimage oracle leaks a number of preimages of y, the value of H(x) is not uniformly
distributed for an x not queried yet.

In order to observe this situation, let us consider the following extreme case. Let
y∗ = H(x∗) for some x∗ ∈ X and suppose that y∗ has the unique preimage x∗. Then the
first-preimage oracle always returns the same x∗ on the input y∗, which convinces us that
the number of the preimages of y∗ is exactly 1. This implies that the other x � x∗ does
not take a value y∗ under H. Therefore, the random oracle no longer has the uniformity
in the FPT-ROM. This is a critical difference between the ROM and FPT-ROM since
we often make use of the uniformity in the security proofs of the public-key encryption
schemes.

We prove the following lemma to overcome this barrier in the WROMs, which states
that the WROMs still has weak uniformity instead of the uniformity. The weak unifor-
mity is still useful for the security proofs of the public-key encryption schemes in the
WROMs.

Lemma 2 (Weak Uniformity). In the WROMs, the output distribution of the random
oracle is statistically close to the uniform distribution. More formally, it is stated as
follows. Let H : X → Y be the hash function in the WROMs. Let A be a probabilistic
oracle Turing machine that makes at most q queries to the random oracle ROH and
the additional oracle OH, where OH represents one of the additional oracles COH,
SPOH, andFPOH. VA,H(x) denotes the random variable that represents the hash value

410 A. Kawachi et al.

ROH(x), where x ← AROH ,OH
and the correspondence (x,H(x)) ∈ TH is not answered

by the two oracles.
Then, for anyA, the following holds:

Δ(VA,H(x),UY) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

#Y

(
5q + 1 + 4q2

#Y + 20q ln #Y
ln ln #Y

)
if #X ≥ #Y,

1
#X

(
5q + 1 + 4q2

#X + 20q ln #Y
ln ln #Y

)
if #X < #Y.

Here, the probability is taken over random choices of the hash function H and the
random coin ofA.

2.3 Simulation Methods

In almost all the security proofs in the ROM, the reduction algorithms simulate the
random oracles. When it comes to the security proofs in the WROMs, the reduction
algorithms have to simulate both the random and the additional oracle, which makes
differences of the simulation methods in the WROMs from those in the ROM.

Numayama et al.’s methods. Numayama et al. proposed the simulation methods for
WROMs, but they required an unproven assumption. Let BN,p denote the binomial dis-
tribution with parameters N and p whose probability function is BN,p(x) =

(
N
x

)
px(1 −

p)N−x for x = 0, . . . ,N, where the parameters N and p take values approximately #X
and 1/#Y for a hash function H : X → Y, say, (N, p) = (2128, 2−128). Their simulation
methods required the efficient sampler for BN,p with exponentially large N and small p,
and they assumed its existence.

Assumption 1. There is a probabilistic Turing machine BN such that the output distri-
bution BN(N, p) on inputs N and p is equal to the binomial distribution BN,p and it runs
in polynomial time in log N and log p−1, where N is a positive integer and 0 ≤ p ≤ 1 is
a rational number.

Under this assumption, they constructed the simulation algorithms, RO, CO, SPO, and
FPO, for the security proofs in the WROMs as given in the following proposition.
See [18] for the details of the algorithms.

Proposition 1 (Simulation Method [18]). We can perfectly simulate the random or-
acle, the collision oracle, second-preimage oracle, and first-preimage oracle in the
WROMs under Assumption 1. That is, the output distributions of the random oracle,
collision oracle, second-preimage oracle, and first-preimage oracle in the WROMs are
identical to the output distributions of the algorithms RO, CO, SPO, and FPO, under
Assumption 1.

Removing the assumption. For the security proof in the WROMs of digital signature
schemes in [18] and encryption schemes in this paper, it is sufficient to utilize a weaker
sampling algorithm that generates a distribution not equal but statistically close to the
binomial distribution BN,p. Then, their security proofs can work by just adding negligi-
bly small errors induced by the statistical distance in their analyses.

Security of Encryption Schemes in Weakened Random Oracle Models 411

There are quite many papers (e.g., [25]) on the efficient sampling methods from the
binomial distribution in the field of statistics. However, their basic computation model is
totally different from the model in the cryptography. As far as the authors’ knowledge,
all these results are based on the computation model that directly manipulates real num-
bers without errors. If we translate them to those in the bit computation model used in
the cryptography, we have to bound the statistical distance between the real distribution
and the output distribution generated by the sampling algorithms in the bit computation
model rather than the real-number one. Numayama et al. mentioned that they could
neither find precise analyses of the statistical distance, nor construct the sampling algo-
rithms by themselves in [18]. Therefore, they had to put the above assumption.

In fact, there is an efficient sampling algorithm appropriate for our purpose in the
real-number computation model [25]. We modify the algorithm and rigorously analyze
the error bound in the bit computation model. We can finally obtain the following the-
orem on the sampling algorithm.

Theorem 1. There is a probabilistic Turing machine BN such that, for the output dis-
tribution BN(N, p, ε) on inputs N, p and ε, the statistical distance between BN(N, p, ε)
and BN,p is at most ε and it runs in polynomial time in log N, log p−1 and log ε−1, where
N is a positive integer and 0 ≤ p ≤ 1, 0 < ε ≤ 1 are rational numbers.

Note that the algorithm can control the error parameter ε. This property is useful in
cryptographic applications for the security proofs even if the other parameters N and p
are not sufficiently large. We will put the details of the algorithm and its analysis in the
full version.

As a result, we can remove the above assumption and obtain the following theorem.

Theorem 2 (Simulation Method without Assumption 1). We can statistically simu-
late the random oracle, collision oracle, second-preimage oracle, and first-preimage
oracle in the WROMs. That is, the output distributions of the oracles in the WROMs
are statistically close to the output distributions of the algorithms RO, CO, SPO, and
FPO, respectively.

3 The Encryption Schemes and Their Security in the Weakened
Random Oracle Models

In this section, we examine the security in the WROMs of the public-key encryption
schemes. We particularly discuss separations for notions of ROM, CT-ROM, SPT-ROM,
and FPT-ROM by showing (in)security of public-key encryption schemes obtained by
the Fujisaki-Okamoto conversion (FO) and its two variants (dFO and wFO), and OAEP.

Public-key encryption schemes. We first give notation and notions for public-key en-
cryption schemes briefly. For details, see standard textbooks, e.g., [28].

A public-key encryption scheme PKE = (Gen,Enc,Dec) over a plaintext spaceM
and a random coin space R is defined by the following three algorithms. Let k denote
the security parameter.

Key Generation: On input 1k, the key generation algorithm Gen(1k) produces a pub-
lic/secret key pair (pk, sk).

412 A. Kawachi et al.

Encryption: Given a public key pk, a plaintext m ∈ M, and a random string r ∈ R,
the encryption algorithm Encpk(m; r) outputs a ciphertext c corresponding to the
plaintext m.

Decryption: Given a secret key sk and ciphertext c, the decryption algorithm Decsk(c)
outputs the plaintext m ∈ M or the special symbol ⊥ � M corresponding to the
ciphertext c.

We require the perfect completeness, that is, for every (pk, sk) generated by Gen(1k),
every plaintext m ∈ M, and every random string r ∈ R, it should be satisfied that
Decsk(Encpk(m; r)) = m.

We only consider three standard security notions for public-key encryption schemes,
the one-wayness against chosen-plaintext attack (OW-CPA), the indistinguishability
against chosen-plaintext attack (IND-CPA), and the indistinguishability against adap-
tive chosen-ciphertext attack (IND-CCA2).

For γ = γ(k), we say PKE is γ-uniform if for any key pair (pk, sk) generated by
Gen(1k), any m ∈ M, and c ∈ {0, 1}∗, we have Prr←R[c = Encpk(m; r)] ≤ γ. There
exists a OW-CPA public-key encryption scheme with γ-uniformity (e.g., the ElGamal
encryption scheme).

Brief review for FO. Fujisaki and Okamoto proposed a conversion, called the Fujisaki-
Okamoto (FO) conversion, to obtain highly secure public-key encryption schemes in
the ROM [20]. Since the standard one-time pad satisfies the requirement of the FO
conversion, we fix the one-time pad as the symmetric-key encryption scheme used in
the FO conversion for simplicity.

Let PKE be a OW-CPA secure and γ-uniform public-key encryption scheme over a
plaintext spaceM and a randomness space R. Then the FO conversion converts PKE
to an IND-CCA2 secure one PKE′ = FO(PKE) over a plaintext spaceM′ = {0, 1}k′

and a randomness space R′ = M, where k′ denotes the length of plaintexts, which is
polynomially related to the security parameter k. The encryption procedure of PKE′ is
given as follows: For a plaintext m ∈ M′ = {0, 1}k′ and a random string r ∈ R′ = M,
the ciphertext is

(c1, c2) = (Encpk(r; H(m, r)),G(r) ⊕ m),

where H : {0, 1}k′ × M → R and G : M → {0, 1}k′ are hash functions modeled as the
random oracles. The decryption procedure is given as follows: For a given ciphertext
(c1, c2), decrypt c1 by sk and obtain r. Then, extract m by c2 ⊕ G(r) and verify c1 =

Encpk(r; H(m, r)). If not output⊥. Roughly speaking, H(m, r) ensures that if a ciphertext
(c1, c2) is valid then the encryptor producing (c1, c2) knows corresponding m and r.

3.1 The First Variant dFO

We introduce the first artificial variant dFO and show that dFO is secure in the ROM,
but not secure in general in the CT-ROM.

The variant dFO converts a public-key encryption scheme PKE (with the one-time
pad) to another public-key encryption scheme PKE′ = dFO(PKE) similarly to FO.
The encryption procedure of PKE′ is defined as follows. For a plaintext m ∈ M′ =
{0, 1}k′ and a random string r ∈ R′ =M, the ciphertext of PKE′ is

(c1, c2) = (Encpk(r; H(F(m), r)),G(r)⊕ m),

Security of Encryption Schemes in Weakened Random Oracle Models 413

where F : {0, 1}k′ → P, G :M→ {0, 1}k′ , and H : P ×M → R, for an appropriate set
P, are hash functions modeled as the random oracle.

The idea to weaken the conversion is summarized as follows: Recall that H(m, r) in
the FO conversion can be considered as encryptor’s signature (or a proof of knowledge)
on m and r. To make it vulnerable by a collision, we introduce a new random oracle
F and replace H(m, r) with H(F(m), r). The replacement does not harm the security
in the random oracle model, while it can be exploited by the presence of the collision
oracle COF .

Formally, we have following theorems on the (in)security. We omit the proof of The-
orem 3, which is similar to the original one.

Theorem 3. Assume that PKE is a OW-CPA secure and γ-uniform public-key encryp-
tion scheme for some negligible γ. Then, PKE′ = dFO(PKE) is IND-CCA2 secure in
the ROM if #P = 2ω(log k).

Theorem 4. Let PKE be a public-key encryption scheme. If #P ≤ 2k′ then PKE′ =
dFO(PKE) is not IND-CCA2 secure in the CT-ROM.

Proof. We construct the adversary A = (A1,A2) that breaks the IND-CCA2 security
of PKE′, which exploits the collision oracle COF of F.

The adversary A1, on input pk, first queries to COF . If the answer is ⊥, then the
adversary flips a random fair coin b′, outputs b′, and halts. Otherwise, it obtains a col-
lision (m1,m2) of F and outputs it as a challenge. The adversaryA2 receives the target
ciphertext (c∗1, c

∗
2) = (Encpk(r; H(F(mb), r)),G(r) ⊕ mb) for some r ∈ R′. It queries

(c′1, c
′
2) = (c∗1, c

∗
2 ⊕ m0 ⊕ m1) to the decryption oracle and obtains m1−b, since

c′1 = Encpk(r; H(F(m0), r)) = Encpk(r; H(F(m1), r)),

c′2 = G(r) ⊕ mb ⊕ m0 ⊕ m1 = G(r) ⊕ m1−b.

Hence, the adversary can answer b′ = b correctly.
Finally, we upper-bound the probability that the collision oracle outputs ⊥, which

stems from the definition of the collision oracle. The probability is bounded by (1 −
1/#P)2k′−1 ≤ exp(−(2k′ − 1)/#P) ≤ 1/

√
e. This completes the proof. ��

3.2 The Second Variant wFO

We next introduce the second artificial variant wFO and show that the obtained scheme
by wFO is secure in the CT-ROM, however not generally secure in the SPT-ROM.

The encryption procedure ofPKE′ = wFO(PKE) is given as follows. For a plaintext
m ∈ M′ = {0, 1}k′ and random strings (r, s) ∈ R′ =M×S, the ciphertext of PKE′ is

(c1, c2, c3) = (Encpk(r; H(F(m, s), r)),G(r)⊕ m, s),

where F : {0, 1}k′ × S → P, G :M→ {0, 1}k′ , and H : P ×M → R are hash functions
modeled as the random oracles.

Notice that (H(F(m, s), r), s) is a proof of knowledge on (m, r, s) which resists a colli-
sion on F however is vulnerable by a second-preimage attack against F as in Numayama
et al. [18].

414 A. Kawachi et al.

We can show that the obtained scheme is IND-CCA2 secure in the CT-ROM by using
Lemma 2.

Theorem 5. Suppose thatPKE is a OW-CPA secure and γ-uniform public-key encryp-
tion scheme for some negligible γ. Then, PKE′ = wFO(PKE) is IND-CCA2 secure in
the CT-ROM if #P−1 and #S−1 are negligible in k.

However, its security is broken under the presence of the second-preimage oracle for F.

Theorem 6. Let PKE be a public-key encryption. If #P ≤ 2k′ · #S, then the scheme
PKE′ = wFO(PKE) is not IND-CCA2 secure in the SPT-ROM.

Proof. We construct the adversary A = (A1,A2) that exploits the second-preimage
oracle SPOF associated to F. The adversaryA1 chooses random distinct plaintexts m0

and m1 and queries them to the challenger. The challenger responses

(c∗1, c
∗
2, c
∗
3) = (Encpk(r; H(F(mb, s), r)),G(r) ⊕ mb, s).

Receiving (c∗1, c
∗
2, c
∗
3), the adversary A2 queries (m0, s) to the second-preimage oracle

SPOF . If it receives⊥ from the second-preimage oracle, then it flips a random fair coin
b′, outputs b′, and halts. Otherwise, it obtains (m′, s′) � (m0, s) such that F(m0, s) =
F(m′, s′). So, the adversary queries

(c′1, c
′
2, c
′
3) = (c∗1, c

∗
2 ⊕ m0 ⊕ m′, s′)

to the decryption oracle. Notice that, if (c∗1, c
∗
2, c
∗
3) is the valid ciphertext of m0, then we

have

c′1 = Encpk(r; H(F(m0, s), r)) = Encpk(r; H(F(m′, s′), r)),

c′2 = G(r) ⊕ m0 ⊕ m0 ⊕ m′ = G(r) ⊕ m′,

c′3 = s′,

and (c′1, c
′
2, c
′
3) is a valid ciphertext for m′. On the other hand, if the ciphertext is the

encryption of m1, we have

(c′1, c
′
2, c
′
3) = (Encpk(r; H(F(m1, s), r)),G(r) ⊕ m1 ⊕ m0 ⊕ m′, s′).

Thus, if f = F(m1, s) is equal to F(m1 ⊕ m0 ⊕ m′, s′) the decryption oracle returns
m1 ⊕ m0 ⊕ m′(� m′). Otherwise, the decryption oracle returns ⊥.

Thus, if the answer is m′, then the adversary concludes that (c∗1, c
∗
2, c
∗
3) is the cipher-

text of m0, that is, it outputs b′ = 0. Otherwise, the adversary concludes that it is the
ciphertext of m1, that is, it outputs b′ = 1. Therefore,A can output the correct answer
unlessA receives ⊥ from the second-preimage oracle.

We finally bound the probability that the oracle outputs ⊥. It is bounded by (1 −
1/#P)2k′ ·#S−1 ≤ exp(−(2k′ · #S − 1)/#P) ≤ 1/

√
e as required. This completes the proof.

��

Security of Encryption Schemes in Weakened Random Oracle Models 415

3.3 The Original Fujisaki-Okamoto Conversion

We next show that the obtained scheme by the conversion FO with the one-time pad is
secure in the SPT-ROM, but not secure in the FPT-ROM in some parameter setting.

Let G : M → {0, 1}k′ and H : {0, 1}k′ × M → R be hash functions modeled
as the random oracles. Recall the encryption procedure of PKE′ = FO(PKE). For
a plaintext m ∈ M′ = {0, 1}k′ and a random string r ∈ R′ = M, the ciphertext is
(Encpk(r; H(m, r)),G(r) ⊕ m).

Modifying the existing proofs, we can show the scheme is secure in the SPT-ROM
using Lemma 2.

Theorem 7. Suppose that PKE is OW-CPA secure and γ-uniform for some negligible
γ. Then, PKE′ = FO(PKE) is IND-CCA2 secure in the SPT-ROM.

However, the presence of the first-preimage oracle for G violates the IND-CPA security
of PKE′ in some parameter settings. Note that if m is 0k′ , the second component of the
ciphertext is G(r), which is vulnerable the first-preimage oracle of G.

Theorem 8. Let C = #M/2k′ . Assume that C = kO(1). Then, PKE′ = FO(PKE) is not
IND-CPA secure in the FPT-ROM.

Proof. We prove the theorem by constructing the adversary A = (A1,A2) which ex-
ploits the first-preimage oracle of G, FPOG. The adversary A1, on input pk, queries
m0 = 0k′ and m1 = 1k′ to the challenger. The adversaryA2, on input the target cipher-
text (c∗1, c

∗
2), queries c∗2 to the first-preimage oracle of G. If it obtains r̃, it checks that

c1 = Encpk(r̃; H(0k′ , r̃)). If the check passes, the adversary outputs b′ = 0. Otherwise, it
flips a random fair coin b′, outputs b′, and halts.

It is obvious that if b = 0 and r̃ = r, the adversary answers correctly, that is, it
outputs b′ = b. If b = 1, the preimage of the query G(r) ⊕ 1k′ never equals to r since
G(r) � G(r) ⊕ 1k′ . Hence, the adversary’s check fails if b = 1.

We estimate the probability that the adversary wins. By Lemma 1, with probability
at least 1 − 2−2k′ , there is no preimage of size larger than L, where if C ≥ 1 then
L = 5Ck′ ln 2/(ln k′ + ln ln 2) ≤ 4Ck′/ ln k′ and otherwise L = 5k′ ln 2/(ln k′ + ln ln 2) ≤
4k′/ ln k′ for all sufficiently large k′.

Let Good denote the event that r ← FPOG(G(r)). We then have Pr[Good] ≥ (1 −
2−2k′)/L. Hence, we obtain that

Pr[b′ = b] = Pr[b′ = 0 | b = 0 ∧ Good] Pr[b = 0 ∧ Good]

+ Pr[b′ = 0 | b = 0 ∧ ¬Good] Pr[b = 0 ∧ ¬Good]

+ Pr[b′ = 1 | b = 1] Pr[b = 1]

= 1 · 1
2
· Pr[Good] +

1
2
· 1

2
· (1 − Pr[Good]) +

1
2
· 1

2

=
1
2
+

1
4

Pr[Good] ≥ 1
2
+

1 − 2−2k′

4L
.

and 4L is a polynomial in the security parameter k. This completes the proof. ��

As shown above, the FO conversion is not secure in the FPT-ROM, but there is a way
to modify it so as to maintain the security in the FPT-ROM. Naito, Wang, and Ohta

416 A. Kawachi et al.

Key Generation Encryption Decryption
Input: 1k

1: (fpk, gsk)← F
Output: (fpk, gsk)

Input: m ∈ {0, 1}k−k0−k1 , fpk

1: r ← {0, 1}k0

2: s← (m ‖ 0k1) ⊕G(r)
3: t ← H(s) ⊕ r
4: c← fpk(s ‖ t)

Output: c

Input: c, gsk

1: s ‖ t ← gsk(c)
2: r ← t ⊕ H(s)
3: M ← s ⊕G(r)
5: If M = m ‖ 0k1 set o← m
6: Otherwise set o← ⊥

Output: o

Fig. 1. OAEP

proposed the conversion method that converts a cryptosystem secure in the ROM to
that secure even in the FPT-ROM [29]. In the case of the FO conversion, the public key
is (pk, c), where c← {0, 1}k, and the ciphertext is

(c1, c2) = (Encpk(r; H(c,m, r)),G(c, r)⊕ m),

where the domains of H and G are modified. Intuitively, this change makes the first-
preimage oracles, FPOH and FPOG, useless.

3.4 OAEP

We finally focus on the OAEP and present its IND-CCA2 security in the FPT-ROM. For
the security parameter k, let k0 and k1 be functions in k, where k0 < k − k0. Let F be a
family of partial-domain one-way trapdoor permutations of a domain {0, 1}k−k0×{0, 1}k0 .
(See [30] for the definition of the partial-domain one-wayness.) Furthermore, let G and
H be hash functions such that G : {0, 1}k0 → {0, 1}k−k0 and H : {0, 1}k−k0 → {0, 1}k0 .
Then, the OAEP encryption scheme based on F is described in Fig. 1.

We obtain the following theorem that states the security of the OAEP encryption
scheme in the FPT-ROM.

Theorem 9. Let F be a family of partial-domain one-way trapdoor permutations.
Then, the OAEP encryption scheme based on F is IND-CCA2 secure in the FPT-ROM.

We here only give the sketch of the security proof.

Proof (Sketch). As in the proof of Fujisaki et al. [30], we prove the security by defining
a sequence of games and bounding the advantages of the adversary among the games.
The games are the almost same as the original ones in [30]. However, we need to pay
attention to the following two points. First, as mentioned, we no longer have the unifor-
mity of the ROM because of the first-preimage oracle. Second, the adversary can make
use of the first-preimage oracle. These points make the security proofs difficult.

In order to observe the difference between the security proofs in the FPT-ROM and
ROM, let us consider the following two games. We will describe the sequence of the
games in the full version.

– Game1: The challenger generates a pair of keys (fpk, gsk) by using the key-
generation algorithm. It next produces r+ ← {0, 1}k0 and obtains g+ ← ROG(r+). In
generation of the target ciphertext, the challenger generates the random string r+.
The target ciphertext y∗ is generated as follows:

Security of Encryption Schemes in Weakened Random Oracle Models 417

r∗ ← r+, s∗ ← (mb ‖ 0k1) ⊕ g+, t∗ ← r∗ ⊕ ROH(s∗),

x∗ ← (s∗, t∗), y∗ ← fpk(x∗).

The ciphertext y∗ is given toA. Finally, the adversaryA outputs a bit b′.
– Game2: We modify the above game, by changing the rule for generation of g+. That

is, g+ is not obtained by the query of the random oracle, but obtained by choosing
from {0, 1}k−k0 uniformly at random. Notice that (r+, g+) is not contained in the table
TG.

Let AskG be the event that r+ is queried to ROG. The original proof in the ROM showed
that, if the value r+ is not queried to ROG, the Game1 and Game2 are identical.

On the other hand, in our case in the FPT-ROM, even if the event AskG does not
occur, that is, the value r+ is not queried, we cannot say that Game1 and Game2 are
identical. Notice that the adversary would distinguish the games by querying g+ to
FPOG, which leads to a contradiction to the partial-domain one-wayness in the final
game. The value g+ must have the preimage r+ in Game1 since (r+, g+) is contained
in the table TG. In contrast, the value g+ has no preimages in Game2 with high proba-
bility if k − k0 is much larger than k0 since (r+, g+) is not inserted in the table TG and
⊥ ← FPOG(g+) with high probability. We must take care of this event AskG−. Addi-
tionally, it would distinguish between Game1 and Game2 by querying (m1−b‖0k1)⊕s∗ to
FPOG, which also leads to contradiction to the partial-domain one-wayness in the final
game. This event is denoted by AskG�. Notice that, conditioned on the above events,
AskG, AskG−, and AskG�, do not occur, g+ is almost perfectly uniform in Game1 by
Lemma 2. Hence, we can show two games Game1 and Game2 are statistically close if
the events do not occur.

By carefully applying similar arguments, we can show the IND-CCA2 security for
the OAEP encryption scheme in FPT-ROM. ��

4 Future Work

It should be noted that our WROMs are based on a simplified variant, which Numayama
et al. [18] and Pasini and Vaudenay [17] also adopted, of the original WROMs of
Liskov [15].

The original WROMs consists of the ideal compression function h : {0, 1}k+k′ →
{0, 1}k of fixed input length and the first-preimage oracle. Then, he discussed the secu-
rity of the flexible input-length hash functions Hh : {0, 1}∗ → {0, 1}k employing h as
the component in the context of indifferentiability [31]. A random oracle H is often
instantiated by employing a compression h. (See, e.g., the survey in [8, Section 2].)
Therefore, his work reflects the attacks against the compression function of MD5 and
SHA-1 rather than the construction H.

On the contrary, we (and similarly [18,17]) discussed the monolithic random oracle
H and the additional oracles associated with H. Hence, our model has a gap from such
a realistic instantiation of the random oracle in some sense. We leave filling this gap as
future work.

418 A. Kawachi et al.

Except for the FO conversion, there are several conversion methods in the ROM,
such as REACT [32] and GEM [33]. It would also be interesting as future work to
examine the security of these conversion methods in the WROMs.

Acknowledgements

We thank anonymous reviewers for their helpful comments. This research was sup-
ported in part by NTT Information Sharing Platform Laboratories, JSPS Global COE
program “Computationalism as Foundation for the Sciences,” KAKENHI 18300002,
KAKENHI 19-55201, and the Japan Science and Technology Agency, Strategic
Japanese-French Cooperative Program “Quantum Computer: Theory and Feasibility.”

References

1. Bellare, M., Rogaway, P.: Random oracle are practical: A paradigm for designing efficient
protocols. In: CCS 1993, pp. 62–73. ACM, New York (1993)

2. Rivest, R.L.: The MD5 message-digest algorithm. Internet Request for Comments, RFC 1321
(April 1992)

3. National Institute of Standards and Technology: Secure hash standard. FIPS 180-2 (August
2002)

4. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. Journal of
the ACM 51(4), 557–594 (2004); Preliminary version in STOC 1998 (1998)

5. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: FOCS 2003,
pp. 102–113. IEEE Computer Society, Los Alamitos (2003)

6. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model scheme for
a hybrid-encryption problem. In: Franklin, M.K. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 171–188. Springer, Heidelberg (2004)

7. Bellare, M., Rogaway, P.: The exact security of digital signatures – how to sign with RSA and
Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer,
Heidelberg (1996)

8. Leurent, G., Nguyen, P.Q.: How risky is the random-oracle model? In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 445–464. Springer, Heidelberg (2009),
http://eprint.iacr.org/2008/441

9. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

10. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

11. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more. In: Jacob-
son Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2008. LNCS, vol. 5381, pp. 103–119.
Springer, Heidelberg (2008)

12. Nielsen, J.B.N.: Separating random oracle proofs from complexity theoretic proofs: The
non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 111–126. Springer, Heidelberg (2002)

13. Unruh, D.: Random oracles and auxiliary input. In: [34], pp. 205–223
14. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)

EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

http://eprint.iacr.org/2008/441

Security of Encryption Schemes in Weakened Random Oracle Models 419

15. Liskov, M.: Constructing an ideal hash function from weak ideal compression functions.
In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 358–375. Springer,
Heidelberg (2007)

16. Hoch, J.J., Shamir, A.: On the strength of the concatenated hash combiner when all the
hash functions are weak. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 616–630.
Springer, Heidelberg (2008)

17. Pasini, S., Vaudenay, S.: Hash-and-sign with weak hashing made secure. In: Pieprzyk, J.,
Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 338–354. Springer,
Heidelberg (2007)

18. Numayama, A., Isshiki, T., Tanaka, K.: Security of digital signature schemes in weakened
random oracle models. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 268–287.
Springer, Heidelberg (2008)

19. Fischlin, M., Lehmann, A.: Security-amplifying combiners for collision-resistant hash func-
tions. In: [34], pp. 224–243

20. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption
schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer,
Heidelberg (1999)

21. Kiltz, E., Pietrzak, K.: On the security of padding-based encryption schemes (or: Why we
cannot prove OAEP secure in the standard model). In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 389–406. Springer, Heidelberg (2009)

22. Devroye, L.D.: Non-Uniform Random Variate Generation. Springer, Heidelberg (1986)
23. Ahrens, J.H., Dieter, U.: Computer methods for sampling from Gamma, Beta, Poisson and

Binomial distributions. Computing 12(3), 223–246 (1974)
24. Ahrens, J.H., Dieter, U.: Sampling from Binomial and Poisson distributions: A method with

bounded computation times. Computing 25(3), 193–208 (1980)
25. Relles, D.A.: A simple algorithm for generating Binomial random variables when N is large.

American Statistical Association 67(339), 612–613 (1972)
26. Kawachi, A., Numayama, A., Tanaka, K., Xagawa, K.: Security of encryption schemes in

weakened random oracle models. Cryptology ePrint Archive, Report 2010/122 (2010)
27. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,

Cambridge (1995)
28. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/CRC,

Boca Raton (2007)
29. Naito, Y., Wang, L., Ohta, K.: How to construct cryptosystems and hash functions in weake-

nend random oracle models. Cryptology ePrint Archive, Report 2009/550 (2009)
30. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under the RSA

assumption. Journal of Cryptology 17(2), 81–104 (2004)
31. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reduc-

tions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

32. Okamoto, T., Pointcheval, D.: REACT: Rapid enhanced-security asymmetric cryptosystem
transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–175. Springer,
Heidelberg (2001)

33. Coron, J.S., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen, C.: Gem: A
Generic chosen-ciphertext secure Encryption Method. In: Preneel, B. (ed.) CT-RSA 2002.
LNCS, vol. 2271, pp. 175–184. Springer, Heidelberg (2002)

34. Menezes, A. (ed.): CRYPTO 2007. LNCS, vol. 4622. Springer, Heidelberg (2007)

Fully Homomorphic Encryption with Relatively
Small Key and Ciphertext Sizes

Nigel P. Smart1 and Frederik Vercauteren2

1 Dept. Computer Science,
University of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB,
United Kingdom

nigel@cs.bris.ac.uk
2 COSIC - Electrical Engineering,
Katholieke Universiteit Leuven,

Kasteelpark Arenberg 10,
B-3001 Heverlee,

Belgium
fvercaut@esat.kuleuven.ac.be

Abstract. We present a fully homomorphic encryption scheme which
has both relatively small key and ciphertext size. Our construction fol-
lows that of Gentry by producing a fully homomorphic scheme from
a “somewhat” homomorphic scheme. For the somewhat homomorphic
scheme the public and private keys consist of two large integers (one of
which is shared by both the public and private key) and the ciphertext
consists of one large integer. As such, our scheme has smaller message
expansion and key size than Gentry’s original scheme. In addition, our
proposal allows efficient fully homomorphic encryption over any field of
characteristic two.

1 Introduction

A fully homomorphic public key encryption scheme has been a “holy grail”
of cryptography for a very long time. In the last year this problem has been
solved by Gentry [7,8], by using properties of ideal lattices. Various cryptographic
schemes make use of lattices, sometimes just to argue about their security (such
as NTRU [11]), in other cases lattices are vital to understand the workings of
the scheme algorithms (such as [9]). Gentry’s fully homomorphic scheme falls
into the latter category. In this paper we present a fully homomorphic scheme
which can be described using the elementary theory of algebraic number fields,
and hence we do not require lattices to understand its encryption and decryption
operations. However, our scheme does fall into the category of schemes whose
best known attack is based on lattices.

At a high level our scheme is very simple, and is mainly parametrized by an
integer N (there are other parameters which are less important). The public key

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 420–443, 2010.
c© International Association for Cryptologic Research 2010

Fully Homomorphic Encryption with Relatively Small Key 421

consists of a prime p and an integer α modulo p. The private key consists of
either an integer z (if we are encrypting bits), or an integer polynomial Z(x) of
degree N − 1 (if we are encrypting general binary polynomials of degree N − 1).
To encrypt a message one encodes the message as a binary polynomial, then one
randomizes the message by adding on two times a small random polynomial. To
obtain the ciphertext, the resulting polynomial is evaluated at α modulo p. As
such, the ciphertext is simply an integer modulo p (irrespective of whether we
are encrypting bits or binary polynomials of degree N − 1).

To decrypt in the case where we know the message is a single bit, we mul-
tiply the ciphertext by z and divide by p. We then round this rational number
to the nearest integer value, and subtract the result from the ciphertext. The
plaintext is then recovered by reducing this intermediate result modulo 2. When
we are decrypting a binary polynomial we follow the same procedure, but this
time we multiply by the polynomial Z(x) and divide by p, to obtain a rational
polynomial. Rounding the coefficients of this polynomial to the nearest integer,
subtracting from the original ciphertext, and reducing modulo two will result
again in recovering the plaintext.

2 Preliminaries

2.1 Notation

Given a polynomial g(x) =
∑t

i=0 gix
i ∈ Q[x], we define the 2-norm and∞-norm

as

‖g(x)‖2 =

√√√√ t∑
i=0

g2
i and ‖g(x)‖∞ = max

i=0,...,t
|gi| .

For a positive value r, we define two corresponding types of “ball” centered at
the origin:

B2,N(r) =

{
N−1∑
i=0

aix
i :

N−1∑
i=0

a2
i ≤ r2

}
,

B∞,N(r) =

{
N−1∑
i=0

aix
i : −r ≤ ai ≤ r

}
.

We have the usual inclusions B2,N (r) ⊂ B∞,N(r) and B∞,N (r) ⊂ B2,N(
√
N · r).

We also define the following half-ball

B+
∞,N (r) =

{
N−1∑
i=0

aix
i : 0 ≤ ai ≤ r

}
.

All reductions in this paper modulo an odd integer m are defined to result in
a value in the range [−(m − 1)/2, . . . , (m − 1)/2]. The notation a ← b, means
assign the value on the left to the value on the right. Whereas a←R A where A
is a set, means select a from the set A using a uniform distribution.

422 N.P. Smart and F. Vercauteren

2.2 Ideals in Number Fields

Since the underlying workings of our scheme are based on prime ideals in a
number field, we first recap on some basic properties. See [4] for an introduction
to the elementary computational number theory needed.

Let K be a number field Q(θ) where θ is a root of a monic irreducible poly-
nomial F (x) ∈ Z[x] of degree N . Consider the equation order Z[θ] inside the
ring of integers OK . For our parameter choices we typically have OK = Z[θ],
but this need not be the case in general. Our scheme works with ideals in Z[θ]
that are assumed coprime with the index [OK : Z[θ]], so there is little difference
with working in OK . These ideals can be represented in one of two ways, either
by an N -dimensional Z-basis or as a two element Z[θ]-basis. When presenting
an ideal a as an N -dimensional Z basis we give N elements γ1, . . . , γN ∈ Z[θ],
and every element in a is represented by the Z-module generated by γ1, . . . , γN .
It is common practice to present this basis as an n × n-matrix. The matrix is
then set to be (γi,j), where we set γi =

∑N−1
j=0 γi,jθ

j , i.e. we take a row ori-
ented formulation. Taking the Hermite Normal Form (HNF) of this basis will
produce a lower triangular basis in which the leading diagonal (d1, . . . , dN) sat-
isfies di+1|di. Note that this last property of the HNF of a basis only follows for
matrices corresponding to ideals [5] (who use a different orientation).

However, every such ideal can also be represented by a Z[θ]-basis given by
two elements, 〈δ1, δ2〉. In particular one can always select δ1 to be an integer.
For ideals lying above a rational prime p, it is very easy to write down a two
element representation of an ideal. If we factor F (x) modulo p into irreducible
polynomials

F (x) =
t∏

i=1

Fi(x)ei (mod p)

then, for p not dividing [OK : Z[θ]], the prime ideals dividing pZ[θ] are given by
the two element representation

pi = 〈p, Fi(θ)〉 .

We define the residue degree of pi to be equal to the degree di of the polynomial
Fi(x). Reduction modulo pi produces a homomorphism

ιpi : Z[θ] −→ Fpdi .

We will be particularly interested in prime ideals of residue degree one. These
can be represented as a two element representation by 〈p, θ − α〉 where p is the
norm of the ideal and α is a root of F (x) modulo p. If χ ∈ Z[θ] is given by
χ =

∑N−1
i=0 ciθ

i then the homomorphism ιp simply corresponds to evaluation of
the polynomial χ(θ) in α modulo p.

Given a prime ideal of the form 〈p, θ − α〉, the corresponding HNF repre-
sentation is very simple to construct, and is closely related to the two element
representation, as we shall now show. We need to row reduce the 2N×N matrix

Fully Homomorphic Encryption with Relatively Small Key 423

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
p 0

. . .
0

p
−α 1 0

−α 1

0
.

−α 1
−F0 −F1 −F2 . . . −FN−2 −FN−1 − α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where F (x) =

∑N
i=0 Fix

i. It is not hard to see that the HNF of the above matrix
is then given by

H =

⎛⎜⎜⎜⎜⎜⎝
p 0
−α 1
−α2 1

...
. . .

−αN−1 0 1

⎞⎟⎟⎟⎟⎟⎠ ,

where all the integers in the first column, in rows two and onward, are taken
modulo p.

Recall that an ideal is called principal if it is generated by one element, i.e. we
can write p = 〈γ〉 = γ · Z[θ]. Note that given an HNF or two-element represen-
tation of an ideal, determining whether it is principal, and finding a generator
is considered to be a hard problem for growing N . Indeed the best known algo-
rithms (which are essentially equivalent to finding the class and unit group of a
number field) run in exponential time in the degree of the field. For fixed degree
they run in sub-exponential time in the discriminant [2]. In addition the genera-
tor of a principal ideal output by these algorithms will be very large. Indeed, this
generator will typically be so large that writing it down as a polynomial in θ may
itself take exponential time [14]. Thus finding a small generator of a principal
ideal is possibly an even harder problem. Quantumly finding a generator of a
principal ideal is relatively easy [10], however writing down a small generator is
not known to be easy.

3 Our Somewhat Homomorphic Scheme

In this section we present our somewhat homomorphic scheme and analyze for
which parameter sets decryption works. To simplify the presentation we present
the scheme at this point as one which just encrypts elements in P = {0, 1}.

424 N.P. Smart and F. Vercauteren

3.1 The Scheme

A somewhat homomorphic encryption scheme consists of five algorithms:
{KeyGen, Encrypt, Decrypt,Add,Mult}. We shall describe each in turn; notice
that the most complex phase is that of KeyGen. The scheme is parametrized
by three values (N, η, μ). A typical set of parameters would be (N, 2

√
N ,
√
N).

Later we shall return to discussing the effects of the sizes of these values on the
security level λ and performance of the scheme.
KeyGen():

– Set the plaintext space to be P = {0, 1}.
– Choose a monic irreducible polynomial F (x) ∈ Z[x] of degree N .
– Repeat:

• S(x) ←R B∞,N (η/2).
• G(x) ← 1 + 2 · S(x).
• p← resultant(G(x), F (x)).

– Until p is prime.
– D(x) ← gcd(G(x), F (x)) over Fp[x].
– Let α ∈ Fp denote the unique root of D(x).
– Apply the XGCD-algorithm over Q[x] to obtain Z(x) =

∑N−1
i=0 zix

i ∈ Z[x]
such that

Z(x) ·G(x) = p mod F (x).

– B ← z0 (mod 2p).
– The public key is PK = (p, α), whilst the private key is SK = (p,B).

Encrypt(M,PK):

– Parse PK as (p, α).
– If M �∈ {0, 1} then abort.
– R(x) ←R B∞,N (μ/2).
– C(x) ←M + 2 · R(x).
– c← C(α) (mod p).
– Output c.

Decrypt(c, SK):

– Parse SK as (p,B).
– M ← (c− �c · B/p#) (mod 2).
– Output M .

Add(c1, c2,PK):

– Parse PK as (p, α).
– c3 ← (c1 + c2) (mod p).
– Output c3.

Mult(c1, c2,PK):

– Parse PK as (p, α).
– c3 ← (c1 · c2) (mod p).
– Output c3.

3.2 Analysis

In this section we analyze for which parameter sets our scheme is correct and
also determine how many homomorphic operations can be performed before
decryption will fail.

Fully Homomorphic Encryption with Relatively Small Key 425

KeyGen algorithm. We can see that KeyGen generates an element γ = G(θ)
of prime norm p in the number field K defined by F (x). As such we have con-
structed a small generator of the degree one prime ideal p = γ ·Z[θ]. To find the
two element representation of p, we need to select the correct root α of F (x)
modulo p. Since γ = G(θ) ∈ p, we have that G(α) ≡ 0 mod p, so G(x) and F (x)
have at least one common root modulo p. Furthermore, there will be precisely
one root in common, since otherwise γ would generate two different prime ideals,
which clearly is impossible. This explains the fact that D(x) has degree one; we
are using D(x) to select the precise root of F (x) which corresponds to the ideal
p generated by γ. The two element representation of the ideal p then simply is
p = p · Z[θ] + (θ − α)Z[θ].

Encrypt algorithm. The message M is added to twice a small random polyno-
mial R(x) resulting in a polynomial C(x). The∞-norm of the polynomial R(x) is
controlled by the parameter μ. Encryption then simply equals reduction of C(θ)
modulo p using the public two element representation 〈p, θ − α〉. As explained
before, this simply corresponds to evaluating C(x) in α modulo p. Furthermore,
note that this precisely implies that C(θ)− c ∈ p.

Decrypt algorithm. By definition of encryption, we have that C(θ)−c ∈ p and
p is principal and generated by γ = G(θ). Hence, we can write

C(θ) − c = q(θ) · γ ,

with q(θ) ∈ Z[θ]. It is clear that if we recover the element C(θ), then decryption
will work since C(θ) = M + 2 ·R(θ). Note that γ−1 is precisely given by Z(θ)/p,
where Z was computed in KeyGen. Dividing by γ therefore leads to the following
equality

−c · Z(θ)/p = q(θ)− (C(θ) · Z(θ)) /p .

The above equation shows that if ‖C(θ) ·Z(θ)/p‖∞ < 1/2, then simply rounding
the coefficients of −c · Z(θ)/p will result in the correct quotient q(θ). This will
allow for correct decryption by computing C(θ) = c+ q(θ) · γ. The crucial part
therefore is to obtain a bound on ‖Z(x)‖∞.

Lemma 1. Let F (x), G(x) ∈ Z[x] with F (x) monic, deg(F) = N and deg(G) =
M < N and resultant(F,G) = p, then there exists a polynomial Z(x) ∈ Z[x] with
Z(x) ·G(x) = p mod F (X) and

‖Z(x)‖∞ ≤ ‖G(x)‖N−1
2 · ‖F (x)‖M

2 .

Proof: Over Q[x], we have that gcd(G(x), F (x)) = 1, so there exists poly-
nomials S(x), T (x) ∈ Q[x] with deg(S) < N and deg(T) < M such that
S(x) · G(x) + T (x) · F (x) = 1. It is well known (see for instance Corollary
6.15 of [6]) that the polynomials S and T are given by S =

∑N−1
i=0 six

i and
T =

∑M−1
i=0 tix

i, where the si and ti are the solutions of

426 N.P. Smart and F. Vercauteren

Syl(G,F)T ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

sN−1
...
s0

tM−1
...
t0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

...
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where Syl(G,F) is the Sylvester matrix of G and F . The resultant is precisely
det(Syl(G,F)) = p, so by Cramer’s rule we find an explicit expression for the
coefficients si, namely, the determinant of a submatrix of Syl(G,F)T (remove
one of the columns containing the coefficients of G and the last row) divided by
p. Using Hadamard’s inequality to bound the determinant of such submatrices,
we finally conclude that |zi| ≤ ‖G‖N−1

2 · ‖F‖M
2 . �

In the remainder of the paper we will assume that M = N−1 which will happen
with very high probability.

Define

δ∞ := sup
{
‖g(x) · h(x) mod F (x)‖∞
‖g(x)‖∞ · ‖h(x)‖∞

| deg(g), deg(h) < N

}
.

We then have that

‖g(θ) · h(θ)‖∞ ≤ δ∞ · ‖g‖∞ · ‖h‖∞,

where deg(g), deg(h) < N . Gentry [8, Section 7.4] derives several bounds on the
above quantity but for the 2-norm and it is easy to obtain the equivalent bounds
for the ∞-norm. To illustrate the two extreme cases, i.e. that δ∞ can range from
fully exponential in N to linear in N , we give the following lemma, which also
motivates why we propose to use F (x) = x2n

+ 1 in practice.

Lemma 2. Let F1(x) = xN − a and F2(x) = xN − axN−1 then

δ∞(F1) ≤ |a|N and δ∞(F2) ≤ |a|N−1N .

Proof: Let g =
∑N−1

i=0 gix
i and h =

∑N−1
i=0 hix

i, then

g · h mod F1 =
N−1∑
k=0

⎛⎝ ∑
0≤i≤k

gihk−i + a
∑

k<i<N

gihN+k−i

⎞⎠ xk ,

from which the bound on δ∞(F1) immediately follows. Similarly, write g · h =∑2N−2
k=0 ckx

k, then g · h mod F2 =
∑N−1

k=0 dkx
k with dk = ck for k = 0, . . . , N − 2

and

Fully Homomorphic Encryption with Relatively Small Key 427

dN−1 =
N−1∑
i=0

cN−1+ia
i

Since all ci clearly are smaller than N‖g‖∞‖h‖∞ the bound on δ∞(F2) follows.
�

From this we can conclude that∥∥∥∥C(θ) · Z(θ)
p

∥∥∥∥
∞
≤ δ∞ · ‖C‖∞ · ‖G‖N−1

2 · ‖F‖N−1
2

p
,

so decryption will work as long as

‖C‖∞ <
p

2 · δ∞ · ‖G‖N−1
2 · ‖F‖N−1

2
= rDec.

Note that the expected value of rDec will be roughly ‖G‖2/2δ∞, since the resul-
tant p will be about ‖G‖N

2 · ‖F‖N−1
2 . So for ‖C‖∞ < rDec, we have

C(x) = c+ q(θ) · γ = c− �c · Z(x)/p#γ ,

and since M ≡ C(x) mod 2 and γ ≡ 1 mod 2 we finally obtain the simplified
decryption function

M ≡ c− �c ·B/p# mod 2,

where B is z0. Note, we can take B as z0 modulo 2p as we are only interested
in rounding c · B/p to the nearest integer and then taking the result modulo 2.
Furthermore, Lemma 1 implies that all coefficients of Z(x) typically will be
smaller than p, since p = resultant(F,G) and thus p + ‖G(x)‖N

2 · ‖F (x)‖M
2 . This

means that the reduction modulo 2p in the key generation will have no effect in
most cases. However, it will turn out to be a necessary assumption in assuring
a uniform distribution when we switch to the full homomorphic scheme.

For our KeyGen algorithm we have that each coefficient of G has size approx-
imately η, which implies that we have the estimate

rDec ≈
√
N · η

2 · δ∞
.

For F (x) = xN + 1 we thus obtain the estimate rDec ≈ η/(2 ·
√
N). In the

remainder of the paper we will also sometimes use rEnc instead of μ. Note that
if one wants to compare with Gentry’s scheme, one should take into account
that our bounds are formulated for the ∞-norm, whereas Gentry works with the
2-norm.

Add and Mult algorithms. It is clear that both algorithms are correct. How-
ever, we need to consider how the error values propagate as we apply Add and
Mult. In particular, decryption of c = C(α) will work for a polynomial C(x)
if C(x) ∈ B∞,N(rDec). However, as we apply Add and Mult to a ciphertext
the value of C(x) starts to lie in balls of larger and larger radius. As soon as

428 N.P. Smart and F. Vercauteren

C(x) �∈ B∞,N(rDec), we are no longer guaranteed to be able to decrypt correctly.
This is why our basic scheme is only somewhat homomorphic, since we are only
able to apply Add and Mult a limited number of times.

Let c1 and c2 denote two ciphertexts, corresponding to two randomizations
C1(x) = M1 + N1(x) and C2(x) = M2 + N2(x); where Mi ∈ {0, 1} are the
messages and Ni(x) ∈ B∞,N(ri − 1) is the randomness, i.e. Ci(x) ∈ B∞,N(ri).
We let

C3(x) = M3 +N3(x) = (M1 +N1(x)) + (M2 +N2(x)),
C4(x) = M4 +N4(x) = (M1 +N1(x)) · (M2 +N2(x)),

where M3,M4 ∈ {0, 1}. Then

C3(x) ∈ B∞,N (r1 + r2)

and
C4(x) ∈ B∞,N(δ∞ · r1 · r2).

Initially we start with a ciphertext with C(x) lying in B∞,N(μ+1). After execut-
ing a circuit with multiplicative depth d, we expect the ciphertext to correspond
to a polynomial C′(x) lying in a ball B∞,N (r) with

r ≈ (δ∞ · μ)2
d

.

Thus we can only decrypt the output of such a circuit if r ≤ rDec, i.e.

d log 2 ≤ log log rDec − log log(δ∞ · μ)

≈ log log

(√
N · η

2 · δ∞

)
− log log(δ∞ · μ).

4 Security Analysis

We consider three aspects of security; key recovery, onewayness of the encryption
and semantic security. Whilst semantic security is based on what might at first
appear a non-traditional problem, the other two notions of security are related
to well studied problems in number theory. This is similar to other notions in
cryptography; for example key recovery in ElGamal is related to the DLP prob-
lem, and semantic security to the relatively obscure (for mathematicians) DDH
problem. However, we first show that our scheme is in some sense a specialisation
and optimization of Gentry’s scheme.

Link With Gentry’s Scheme. To discuss the security in more detail, we
first show that our scheme is a specialisation and simplification of the lattice
based scheme of Gentry [7]. The generator γ in our scheme is equivalent to the
private basis of the ideal J in Gentry’s scheme, the public basis is then the two
element representation 〈p, θ − α〉. The ideal I of Gentry’s scheme is simply set

Fully Homomorphic Encryption with Relatively Small Key 429

to the principal ideal 〈2〉. Therefore, we see that KeyGen is a specialised form
of KeyGen for Gentry’s scheme: in particular we use the compact two element
representation 〈p, α〉 of the public basis, instead of the larger HNF representation
as Gentry does.

We now turn to the encryption algorithm. The element C(θ) = M(θ)+2 ·R(θ)
is precisely the value of ψ′ computed in Gentry’s encryption algorithm, with a
value of rEnc (in the 2-norm) equal to

√
N ·μ. Gentry then produces his ciphertext

ψ by reducing ψ′ modulo the ideal J using the HNF basis. It is at this point
that we seem to depart from Gentry’s presentation: we actually compute the
reduction of ψ′ modulo p using the public two element representation. Given
ψ′ as a polynomial in θ, this involves replacing θ by α and reducing the result
modulo p. So given C(x), we produce c by simply computing c = ιp(C(θ)) ∈ Fp.
However, given our earlier discussion on the HNF of the ideal given by 〈p, θ−α〉
we see that the two reduction algorithms are equivalent when we are working in
the equation order Z[θ].

Hence, we conclude that our scheme is a specialisation of Gentry’s scheme. For
the given specialisation our key sizes are much smaller than Gentry’s, whilst our
ciphertexts are the same size. When compared to the full generality of Gentry’s
scheme our ciphertexts are also much smaller than Gentry’s. The link between
the two schemes, and the relative simplicity of our scheme, may help shed light
on parameter choices in Gentry’s original scheme.

Key Recovery. Recall the public key in our scheme consists of a principal
degree one prime ideal in two element representation, whilst the private key
consists of the inverse of a small generator of this principal prime ideal. To see
that the generator γ is small, notice that the polynomial G(x) has an ∞-norm
given roughly by η, whereas the size of p is roughly

√
N

N
ηN ·‖F‖N−1

2 . Recovering
the private key given the public key is therefore an instance of the small principal
ideal problem:

Definition 1 (Small Principal Ideal Problem (SPIP)). Given a principal
ideal a in either two element or HNF representation compute a “small” generator
of the ideal.

This is one of the core problems in computational number theory and has formed
the basis of previous cryptographic proposals, see for example [3]. There are cur-
rently two approaches to the above problem. The first approach is a deterministic
method based on the Baby-Step/Giant-Step method attributed to [1]. This takes
time

NO(N) ·
√

min(A,R) · |Δ|o(1),

where Δ is the discriminant of Z[θ], R is the regulator and A = minN
i=1 log |γ(i)|

is the mimimal logarithmic embedding of γ. Clearly A can itself be bounded by
η, a minor detail which we leave to the reader.

The second approach to this problem is via Buchmann’s sub-exponential al-
gorithm for units and class groups which is described in [2] and [4][Chapter 6].
This method has complexity

430 N.P. Smart and F. Vercauteren

exp
(
O(N logN) ·

√
log(Δ) · log log(Δ)

)
where again Δ is the discriminant of the order Z[θ]. However, this method is
likely to produce a generator of large height, i.e. with large coefficients. Indeed
so large, that writing the obtained generator down as a polynomial in θ may
take exponential time.

In conclusiondetermining the private key givenonly the public key is an instance
of a classical and well studied problem in algorithmic number theory. In particu-
lar there are no efficient solutions for this problem, and the only sub-exponential
method does not find a solution which is equivalent to our private key.

Onewayness of Encryption. In this section we consider the problem of re-
covering a message given a ciphertext element. It is readily seen that this is
equivalent to solving the following problem: Given p and α, c ∈ Fp find xi for
i = 0, . . . , N − 1, such that

N−1∑
i=0

xi · αi = c− k · p,

where |xi| ≤ rEnc, for some integer value of k.
To recast this as a lattice problem, consider the lattice generated by the rows

of the matrix H given earlier. Consider the lattice vector

(k,−x1, . . . ,−xn) ·H = (c− x0,−x1, . . . ,−xn).

This is a lattice vector which is very close (within rEnc in the∞-norm, or
√
N ·rEnc

in the 2-norm) to the non-lattice vector (c, 0, . . . , 0). Hence, determining the
underlying plaintext given the ciphertext is an instance of the closest vector
problem.

However, the underlying lattice is a well-studied lattice in algorithmic number
theory, see for example the applications of LLL described in [12,13,15]. A lattice
generated by a matrix such as H , namely a matrix in Hermite Normal Form in
which all but one diagonal entry is equal to one, is probably the most studied
lattice problem from the computational perspective in number theory. Thus
whilst we are unable to make use of modern worst-case/average-case reductions
for our scheme, the underlying lattice problem is well studied.

However, for later use, we will recap on the analysis Gentry has given for
this problem. Although one should bear in mind that Gentry’s analysis is for a
general lattice arising from the HNF of an ideal and not for the specific one in our
scheme. The best known attack on Gentry’s scheme is one of lattice reduction,
related to the bounded distance decoding problem (BDDP). In particular it is
related to finding short/closest vectors within a multiplicative factor of rDec/rEnc

in a lattice of dimension N . If we set

2ε =
rDec

rEnc
=

√
N · η

2 · δ∞ · μ,

Fully Homomorphic Encryption with Relatively Small Key 431

then it is believed that solving BDDP has difficulty 2N/ε (see [8][Section 7.7]). We
shall refer to the value 2N/ε as the security level of our somewhat homomorphic
scheme.

Semantic Security. Finally we discuss the semantic security of our somewhat
homomorphic encryption scheme. Consider the following distinguishing problem:

Definition 2 (Polynomial Coset Problem (PCP)). The challenger first
selects b ←R {0, 1} and runs KeyGen as above to obtain a value of α and p. If
b = 0 then the challenger performs

– R(x) ←R B∞,N (rEnc).
– r ← R(α) (mod p).

Whilst if b = 1 the challenger performs

– r ←R Fp.

Given (r,PK) the problem is to guess whether b = 0 or b = 1.

We call the problem the Polynomial Coset Problem as it is akin to Gentry’s
Ideal Coset Problem from [7]. The problem basically says one cannot determine
whether r is the evaluation of some small polynomial at α or is a random value
modulo p. Note that the size of the space B∞,N (rEnc) is roughly rEnc

N , whereas
Fp has size ηN . So if rEnc is much smaller than η, we are trying to distinguish
a relatively small space within a larger one. Note, in the case where b = 0
we generate the value R(x) from B∞,N (rEnc) as opposed to B∞,N(rDec), since
we are interested in arguing about semantic security for what are the simplest
ciphertexts to break.

The proof of the following theorem closely follows the proof of Theorem 7
of [7], but we include it here for completeness.

Theorem 1. Suppose there is an algorithm A which breaks the semantic secu-
rity of our somewhat homomorphic scheme with advantage ε. Then there is an
algorithm B, running in about the same time as A, which solves the PCP with
advantage ε/2.

Proof: The algorithm B creates a challenge ciphertext for algorithm A from
its own challenge (r,PK) by setting

c← (Mβ(α) + 2 · r) (mod p),

where M0 and M1 are A’s two challenge messages and β ←R {0, 1}, is B’s choice
of a challenge bit. A sends back a guess β′ for β and B returns β ⊕ β′.

When b = 0 in the PCP problem, it is clear that the challenge ciphertext c
has the correct distribution, so B obtains the same advantage as A, namely ε.
When b = 1, r is uniformly random modulo p and since p is odd, 2r is uniformly
random modulo p and therefore so is c. Hence, the advantage of A is 0, which
implies that B’s overall advantage is ε/2. �

432 N.P. Smart and F. Vercauteren

5 A Fully Homomorphic Scheme

We now proceed to turning the somewhat homomorphic scheme into a fully
homomorphic scheme. Since we have shown that our scheme is a specialisation
of Gentry’s scheme, we only need to recast Gentry’s method for our parameters.
Indeed we can simplify the method somewhat, since our ciphertext is an integer
rather than a vector. We assume that our scheme is secure under key dependent
encryptions, purely to keep the notation simpler; to deal with the more general
case is immediate from our discussion.

At a high level we need to define a new algorithm called Recrypt, which takes
a ciphertext c and re-encrypts it to cnew, whilst at the same time removing some
of the errors in c. Intuitively this takes a “dirty ciphertext” c and “cleans it” to
obtain the ciphertext cnew.

To do this we augment the encryption key with some additional information,
by extending the algorithm KeyGen with the following additional operations,
based on two integer parameters s1 and s2. We make use of the fact that we are
only interested in the coefficients of Z(x) modulo 2p.

– Generate s1 uniformly random integers Bi in [−p, . . . , p] such that there
exists a subset S of s2 elements with∑

j∈S

Bj = B

over the integers.
– Define ski = 1 if i ∈ S and 0 otherwise. Notice that only s2 of the bits {ski}

are set to one.
– Encrypt the bits ski under the somewhat homomorphic scheme to obtain

ci ← Encrypt(ski,PK).
– The public key now consists of

PK = (p, α, s1, s2, {ci, Bi}s1
i=1) .

We can now describe the re-encryption operation.
Recrypt(c,PK): This algorithm takes as input a “dirty” ciphertext c, and then
produces a “cleaner” ciphertext cnew of the same message, but with less “errors”
in its randomization vector. The re-encryption works by performing a homomor-
phic decryption on an encryption of the ciphertexts bits. In the Appendix we
explain the Recrypt algorithm in detail and analyse precisely how complicated
it is for possible real life values.

Note that we have

B =
s1∑

i=1

ski · Bi,

hence we will now require that this additional information in the public key does
not compromise the security of the scheme. Gentry reduces this security issue
to the decisional version of the sparse subset-sum problem (SSSP), and hence

Fully Homomorphic Encryption with Relatively Small Key 433

the same assumption needs to be made in our situation. The SSSP problem is
believed to take at least

√(
s1
s2

)
> (s1/s2)s2/2 steps to solve, assuming we are not

in a low density subset sum, i.e. s1/ log p > 1. If we take s1 to be slightly greater
than log p, then we need to select s2 such that√(

s1
s2

)
> 2N/ε,

so as to ensure that the SSSP difficulty is at least as difficult as the difficulty of
the BDDP underlying the somewhat homomorphic scheme.

6 Extension to Large Message Space

We now show that our scheme provides for a more powerful fully homomorphic
scheme than that of Gentry. In [7] the fully homomorphic property can only
be applied to single bit messages, since the Recrypt algorithm for full size mes-
sages is relatively complicated. We shall show we can obtain fully homomorphic
encryption on N -bit messages and then discuss what this actually means.

First return to our basic scheme. We alter the KeyGen algorithm to output the
whole polynomial Z(x) =

∑N−1
i=0 zix

i modulo 2p as the secret key as opposed to
the single term B. Let the resulting polynomial be denoted B(x) =

∑N−1
i=0 bix

i.
Encryption is now modified to take any message from the space B+

∞,N(2), i.e.
any binary polynomial of degree less than N . Decryption is then performed
coefficient wise, namely each coefficient mi of M is recovered by computing

mi ← (c− �c · bi/p#) (mod 2).

It is easily seen that this modification results in a somewhat homomorphic
scheme with the same multiplicative depth as the original scheme.

We now extend this somewhat homomorphic scheme to a fully homomorphic
scheme. We write each coefficient of B(x) as a different sum, over a different set
of indices Si, ∑

j∈Si

Bi,j = bi.

The secret key is now defined to be ski,j = 1 if j ∈ Si and 0 otherwise. The
Recrypt algorithm is then immediate. We first apply the Recrypt algorithm as
above, coefficient wise, to obtain new “cleaner” encryptions of each bit of the
message, i.e. we obtain

c(i)new = Encrypt(mi,PK).

To obtain the encryption of the entire message we simply compute

cnew = Encrypt(m,PK) =
N−1∑
i=0

c(i)new · αi (mod p).

434 N.P. Smart and F. Vercauteren

Note that recombining the different encryptions causes an extra increase in the
error term with a factor of δ∞. This increase in the error term is due to the
multiplication, by αi, of the error term underlying c(i)new.

Hence, we can obtain fully homomorphic encryption with respect to the alge-
bra F2[x]/(F). To see the power of this we need to examine the algebra F2[x]/(F).
If F (x) splits as

∏t
i=1 fi (mod 2) with fi coprime and deg fi = di then by the

Chinese Remainder Theorem we have

F2[x]/(F) ≡ F2d1 × · · · × F2dt .

By concentrating on a single component of the product on the right we therefore,
by careful choice of F , obtain fully homomorphic encryption in any finite field
of characteristic two of degree less than N . Furthermore, we could also obtain
SIMD style homomorphic encryption in multiple finite fields of characteristic
two at the same time.

7 Implementation Results

We now examine a practical instantiation of our scheme. We take the polynomial
F (x) = x2n

+ 1, which is always irreducible over the integers. In particular our
main parameter N is equal to 2n, and we have δ∞ = N . We take η = 2

√
N

and either μ =
√
N or μ = 2. The case of η = 2

√
N and μ =

√
N are (for

comparison) also the suggested parameter choices made in [7] (albeit in the 2-
norm). The case of μ = 2 is chosen to try to obtain as large a depth for the
somewhat homomorphic scheme as possible.

Recall that if we write η/(2 ·
√
N ·μ) = 2ε, then the security of our somewhat

homomorphic scheme is assumed to be 2N/ε. We then select s1 = log p and s2
to be such that √(

s1
s2

)
> 2N/ε,

which ensures the difficulty of the SSSP is at least 2N/ε. In addition, for our choice
of F (x), the expected multiplicative depth d for our somewhat homomorphic
scheme, is estimated by

d log 2 ≤ log log
(

η

2 ·
√
N

)
− log log(N · μ) .

We present the implications in the following table, for increasing values of n.

μ = 2 μ =
√
N

n log2 p 2N/ε s2 d 2N/ε s2 d
8 4096 225 5 0.3 236 8 0.0
9 11585 231 6 0.8 240 7 0.3
10 32768 241 7 1.2 248 8 0.8
11 92681 254 8 1.7 261 9 1.2
12 262144 273 10 2.1 280 11 1.6
13 741455 2100 12 2.5 2107 13 2.1

Fully Homomorphic Encryption with Relatively Small Key 435

In the Appendix we make a precise estimate for each value of s2 what the
corresponding Recrypt algorithm will produce in terms of the “dirtyness” of
the ciphertext. This allows us to be able to estimate, for each value of s2, the
multiplicative depth d̂ which would be required to obtain a fully homomorphic
scheme. In the following table we present the value of d̂ required. The given
value includes the final and-gate to recombine two Recypted ciphertexts. We
note that we only obtain a fully homomorphic scheme if d̂ ≤ d, so we see that
for practical values of n our scheme cannot be made fully homomorphic, although
asymptotically it can be. In fact, in the Appendix we show that for n ≥ 27 it is
possible to obtain a fully homomorphic scheme. For a given fixed security level
(and not the maximum possible for a given N and our choice of parameters), it
should be possible to obtain a slightly lower n.

s2 6 7 8 9 10 11 12 13
d̂ 7 7 7 8 8 8 8 8

The above estimates are very crude and we refer to the Appendix for a more
detailed analysis.

Despite this problem with obtaining a fully homomorphic scheme, we timed
the various algorithms for the somewhat homomorphic scheme on a desk-top ma-
chine using the NTL library: This was an x86-64 platform, and housed 2.4 GHz
Intel Core2 (6600) processor cores and used the GCC 4.3.2 C compiler. We were
unable to generate keys for the parameter size of N = 212, and smaller values of
N key generation could take many hours. The problem with KeyGen being the
need to compute many resultants and test the resulting number for primality.
This is because the output of the resultant calculation will have log2 p bits, so
not only are we working with huge numbers; we also have little chance that this
number is prime on any one iteration. A more general version of KeyGen would
allow for non-prime, but squarefree resultants. But even in this case obtaining
keys for say n = 15 seems daunting. We thus do not present times for the KeyGen
algorithm. The times (in milli-seconds), and the actual value of d computed for
the specific key, are presented in the following table:

d

n Encrypt Decrypt Mult μ = 2 μ =
√
N

8 4.2 0.2 0.2 1.0 0.0
9 38.8 0.3 0.2 1.5 1.0
10 386.4 0.6 0.4 2.0 1.0
11 3717.2 3.0 1.6 2.5 1.5

We see that in practice our scheme appears to obtain a better depth of decryp-
tion circuit than theory predicts, although still not deep enough to enable fully
homomorphic encryption; at least at practical key sizes.

Acknowledgements. The authors would like to thank the eCrypt NoE funded
by the EU for partially supporting the work in this paper. The first author
was supported by a Royal Society Wolfson Merit Award, whilst the second was

436 N.P. Smart and F. Vercauteren

supported by a post-doctoral fellowship of the Research Foundation - Flanders.
The authors would also like to thank Florian Hess, Steven Galbraith and Joe
Silverman for valuable comments on earlier versions of this paper and Craig
Gentry for detailed explanations of his paper [7].

References

1. Buchmann, J.: Zur Komplexität der Berechungung von Einheiten und Klassen-
zahlen algebraischer Zahlkörper, Habilitationsschrift (1987)

2. Buchmann, J.: A subexponential algorithm for the determination of class groups
and regulators of algebraic number fields. Séminaire de Théorie des Nombres –
Paris 1988-89, 27–41 (1990)

3. Buchmann, J., Maurer, M., Möller, B.: Cryptography based on number fields with
large regulator. Journal de Théorie des Nombres de Bordeaux 12, 293–307 (2000)

4. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer GTM
138 (1993)

5. Ding, J., Lindner, R.: Identifying ideal lattices. IACR eprint 2009/322
6. Von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge Univer-

sity Press, Cambridge (1999)
7. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on

Theory of Computing – STOC 2009, pp. 169–178. ACM, New York (2009)
8. Gentry, C.: A fully homomorphic encryption scheme, (manuscript) (2009)
9. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice

reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997)

10. Hallgren, S.: Fast quantum algorithms for computing the unit group and class
group of a number field. In: Symposium on Theory of Computing – STOC 2005,
pp. 468–474. ACM, New York (2005)

11. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

12. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Ann. 261, 513–534 (1982)

13. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

14. Thiel, C.: On the complexity of some problems in algorithmic algebraic number
theory. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany (1995)

15. de Weger, B.M.M.: Algorithms for Diophantine Equations. PhD thesis, University
of Leiden (1987)

A Analysis of the Recrypt Procedure

In this appendix we explain exactly how Gentry’s re-encryption circuit is im-
plemented in the context of our scheme. We first decrease the size of rDec by a
factor of two to ensure that the floating point number obtained in the decryption
procedure is within 1/4 of an integer, i.e. we know that

c · B/p ∈]x − 1/4, x+ 1/4[,

Fully Homomorphic Encryption with Relatively Small Key 437

for some integer x. Since we are only interested in the result modulo 2, we can
actually compute ⌊

s1∑
i=1

ski(c ·Bi mod 2p)/p

⌉
(mod 2) .

As such we are adding up a subset of s2 values out of s1 floating point values,
all of which lie in the range [0, . . . , 2).

To keep the Recryption method manageable we need to minimize the precision
of the floating point numbers (c · Bi mod 2p)/p that we work with. First note
that if we truncate these values to a fixed precision and make a maximum error
of ≤ 1/2, then we can still recover the correct result since the approximated
sum will be in the interval]x − 3/4, x + 1/4[, and any number in this interval
determines x uniquely. More precisely, if we obtain bits e0, e1 and e2 such that
the sum computed with fixed precision is given by

e0 + 2−1 · e1 + 2−2 · e2 + · · · ,

then the final output is given by

(e0 + e1 + e2 + e1 · e2) (mod 2).

The above equation is derived from examining the four possible cases corre-
sponding to the values of e1 and e2;

e1 e2 Output
0 0 e0
1 0 e0 + 1 (mod 2)
0 1 e0 + 1 (mod 2)
1 1 e0 + 1 (mod 2)

Assume we work with t bits of precision, i.e. each floating point number in
[0, . . . , 2) is represented as

∑t−1
i=0 ei2−i. Then since only s2 numbers are non-

zero, the maximum error in the total sum is given by

s2

∞∑
i=t

2−i = s22−t+1 .

As such we need to choose t such that s2 · 2−t+1 ≤ 1/2 which implies that
t = "log2 s2#+2. We also define s to be the number of bits to represent all integers
up to s2, i.e. s = �log2 s2�+ 1. To get some idea of the practical implications of
these two values in what follows we give the following table:

s2 s t s2 s t
5 3 5 10 4 6
6 3 5 11 4 6
7 3 5 12 4 6
8 4 5 13 4 6
9 4 6 14 4 6

438 N.P. Smart and F. Vercauteren

So we see that the value of s is essentially either 3 or 4, and t is either 5 or 6.

The algorithm re-encryption takes as input a ciphertext c and a public key
PK = (p, α, s1, s2, {ci, Bi}s1

i=1) and consists of the following distinct phases:
1. Write down the first t bits of the s1 floating point numbers (c ·Bi mod 2p)/p

as an s1 × t matrix (bi,j) for i = 1, . . . , s1 and j = 1, . . . , t.
2. Encrypt each of the bits bi,j under the public key PK to obtain an s1 × t

matrix of clean ciphertexts (ci,j).
3. Multiply each row of the matrix by the corresponding encryption ci of ski to

obtain (ci · ci,j) mod p. As such we obtain the encryption of a matrix with
only s2 non-zero rows.

4. Compute the sum of each column as the Hamming weight using symmetric
polynomials and hence reduce the sum of s1 floating point values to the sum
of t floating point values of t bits of precision. More precisely, denote by hi,j

the j-th bit of the Hamming weight of the i-th column for i = 1, . . . , t and
j = 1, . . . , s and form the t× t matrix (Hi,j) with Hi,j = hi,i−j+s whenever
the right hand side is defined and zero otherwise.

5. Merge rows of the matrix H , so as to obtain an s × t matrix H ′ such that
the sum of the rows of H ′ equals the sum of the rows of H .

6. Apply carry-save-adders to progressively reduce the matrix to one with two
rows. Each set of three rows is reduced to two, and then this procedure is
repeated.

7. Perform the final addition, and output the encryption of a single bit.

It is perhaps worth recalling that for our scheme we have s1 ≈ log2 p and s2 is

chosen so that
√(

s1
s2

)
≥ 2τ for our required security level τ , which itself defines

the parameter N . The value p is approximately equal to 2N ·√N , thus s1 is very
large indeed. Ciphertexts are integers modulo p and each valid decryptable ci-
phertext can be considered to lie in ball of a given radius. A “clean” ciphertext
lies in a ball of radius μ + 1 and as we add/multiply ciphertexts this radius
increases, with the ciphertext becoming increasingly “dirtier”. Recall that we
have the following behaviour: Let c1 and c2 denote two ciphertexts, correspond-
ing to two randomizations C1(x) = M1 + N1(x) and C2(x) = M2 + N2(x);
where Mi ∈ {0, 1} are the messages and Ni(x) ∈ B∞,N (ri − 1) is the ran-
domness, i.e. Ci(x) ∈ B∞,N (ri). For a ciphertext c, denote with rad(c) the ra-
dius of the ball containing the corresponding polynomial C(x), i.e. we have
C(x) ∈ B∞,N(rad(c)). Then

rad(c1 + c2) = rad(c1) + rad(c2),
rad(c1 · c2) = δ∞ · rad(c1) · rad(c2).

We will now analyze the growth of the error terms during each of the phases of
the re-encryption. Recall that for our choice of parameters we have μ =

√
N ,

δ∞ = N and s1 = N
√
N . Therefore define ρ =

√
N , then we will compute

explicit expressions for the radii of the ciphertexts as a function of ρ. Recall that
the notation f ∼ g means that limρ→∞ f/g = 1. If A is a matrix of ciphertexts
we let rad(A) denote the matrix obtained by applying rad to each entry in A.

Fully Homomorphic Encryption with Relatively Small Key 439

Stages 1 and 2

The result of the first two stages is that we obtain an s1×t matrix A2 containing
clean ciphertexts ci,j with rad(ci,j) = μ+ 1 := r2 ∼ ρ.

Stage 3

Here we take the clean encryptions of the values of ski and multiply through each
corresponding row to obtain a matrix A3, with (rad(A3))i,j = δ∞ · r22 := r3 ∼ ρ4

for all i, j.

Stage 4

In this stage, we need to compute the encryption of the sum of the (plaintext)
bits ski · bi,j in each of the columns seperately. Note that the sum is simply the
Hamming weight of the column, so it suffices to compute the bits of the Hamming
weight. Furthermore, since only s2 entries in each column are one, the number of
bits in the Hamming weight is bounded by s. We let SymPoli(x1, . . . , xk) denote
the i-th symmetric polynomial on the variables x1, . . . , xk. Then the bits of the
Hamming weight of the bit vector (b1, . . . , bk) is given by

(SymPol2s−1(b1, . . . , bk) (mod 2), . . . , SymPol20(b1, . . . , bk) (mod 2)) .

So for each column of our matrix A3 we need to compute all the symmetric
polynomials up to S = 2s−1. To compute the S symmetric polynomials on
(the encryptions of) s1 bits we proceed in a recursive manner, essentially using
Horner’s Rule to compute the last S+1 coefficients of the product

∏s1
i=1(bi ·x+1).

For each column of A3 we execute the following function to compute the
(encryptions) of the bits of the Hamming weight of the j-th column for j =
1, . . . , t:

– Set (s1, . . . , sS)← (0, . . . , 0).
– For i = 1, . . . , s1 do

• For k = min(i, S), . . . , 3, 2 do
∗ sk ← sk + sk−1 · A3(i, j) (mod p)

• s1 ← s1 +A3(i, j) (mod p).
– Return (s1, . . . , sS).

We can also see by analysing the above algorithm how dirty the ciphertexts will
become. To produce si we need to sum

(
s1
i

)
terms which consist of the multipli-

cation of i of the ciphertexts in A3 together. If c1, . . . , c8 are eight ciphertexts
given by entries in A3 then we have

rad(c1) ∼ ρ4, rad(c1 · c2) ∼ ρ10, rad(c1 · · · c4) ∼ ρ22, rad(c1 · · · c8) ∼ ρ46.

Thus we have

rad(s1) ∼ s1 · ρ4 ∼ ρ7, rad(s2) ∼
(
s1
2

)
· ρ10 ∼ ρ16/2,

rad(s4) ∼
(
s1
4

)
· ρ22 ∼ ρ34/4!, rad(s8) ∼

(
s1
8

)
· ρ46 ∼ ρ70/8!.

440 N.P. Smart and F. Vercauteren

Given the bits hi,j for i = 1, . . . , t and j = 1, . . . , s of the t Hamming weights of
the t columns, the sum of the resulting floating point numbers represented by
the rows of A3 is given by

t∑
i=1

s∑
j=1

2j−ihi,j .

Since we are only interested in the sum modulo 2, we can see that the above
sum modulo 2 corresponds to the sum of the rows of the t × t matrix H with
Hi,j = hi,i−j+s whenever the right hand side is defined and zero otherwise. We
therefore obtain the following matrices H depending on the combination of s
and t.
Case (s, t) = (3, 5):
We find

rad(H) ∼

⎛⎜⎜⎜⎜⎝
ρ7 0 0 0 0

ρ16/2 ρ7 0 0 0
ρ34/4! ρ16/2 ρ7 0 0

0 ρ34/4! ρ16/2 ρ7 0
0 0 ρ34/4! ρ16/2 ρ7

⎞⎟⎟⎟⎟⎠
Case (s, t) = (4, 5):
We find

rad(H) ∼

⎛⎜⎜⎜⎜⎝
ρ7 0 0 0 0

ρ16/2 ρ7 0 0 0
ρ34/4! ρ16/2 ρ7 0 0
ρ70/8! ρ34/4! ρ16/2 ρ7 0

0 ρ70/8! ρ34/4! ρ16/2 ρ7

⎞⎟⎟⎟⎟⎠
Case (s, t) = (4, 6):
We find

rad(H) ∼

⎛⎜⎜⎜⎜⎜⎜⎝
ρ7 0 0 0 0 0

ρ16/2 ρ7 0 0 0 0
ρ34/4! ρ16/2 ρ7 0 0 0
ρ70/8! ρ34/4! ρ16/2 ρ7 0 0

0 ρ70/8! ρ34/4! ρ16/2 ρ7 0
0 0 ρ70/8! ρ34/4! ρ16/2 ρ7

⎞⎟⎟⎟⎟⎟⎟⎠

Stage 5

We now notice that the entries in each column can be permuted around indepen-
dently. It turns out that it makes more sense, due to the way we will add up the
columns in Stage 6, to order the column entries so that the dirtyness increases as
you descend a column. This also allows us to delete rows which consist entirely

Fully Homomorphic Encryption with Relatively Small Key 441

of zeros. We notice that the resulting matrix H ′ will be of size s× t. In the three
examples we do not give the precise permutation of the columns, as this can be
deduced from the implied permutation of the d values.
Case (s, t) = (3, 5):
We find

rad(H ′) ∼

⎛⎝ ρ7 ρ7 ρ7 0 0
ρ16/2 ρ16/2 ρ16/2 ρ7 0
ρ34/4! ρ34/4! ρ34/4! ρ16/2 ρ7

⎞⎠
Case (s, t) = (4, 5):
We find

rad(H ′) ∼

⎛⎜⎜⎝
ρ7 ρ7 0 0 0

ρ16/2 ρ16/2 ρ7 0 0
ρ34/4! ρ34/4! ρ16/2 ρ7 0
ρ70/8! ρ70/8! ρ34/4! ρ16/2 ρ7

⎞⎟⎟⎠
Case (s, t) = (4, 6):
We find

rad(H ′) ∼

⎛⎜⎜⎝
ρ7 ρ7 ρ7 0 0 0

ρ16/2 ρ16/2 ρ16/2 ρ7 0 0
ρ34/4! ρ34/4! ρ34/4! ρ16/2 ρ7 0
ρ70/8! ρ70/8! ρ70/8! ρ34/4! ρ16/2 ρ7

⎞⎟⎟⎠

Stage 6

We now apply a sequence of carry-save-adders to reduce the number of rows
down to two. We first apply a single chain of carry-save-adders to add the bits in
the first three rows of matrix H ′ which produces two rows as output, where the
first row simply contains the exor of the three rows and the second row contains
the sum of all products of two out of three rows. Note, we ignore any overflow
into the bit position corresponding to the binary weight 21 and above. If H ′ has
four rows we then append the fourth row to the result and apply another chain
of carry-save-adders. At the end of this stage we have a matrix A5 of dimension
2× t.

From the above estimates for rad(H ′) we can then derive the following estimates
for rad(A5):
Case (s, t) = (3, 5):
We find

rad(A5) ∼
(
ρ34/4! ρ34/4! ρ34/4! ρ16/2 ρ7

ρ52/48 ρ52/48 ρ25/2 0 0

)
.

Case (s, t) = (4, 5):
We find

rad(A5) ∼
(

ρ70/8! ρ70/8! ρ34/4! ρ16/2 ρ7

ρ106/4! · 8! ρ52/2 · 4! ρ25/2 0 0

)
.

442 N.P. Smart and F. Vercauteren

Case (s, t) = (4, 6):
We find

rad(A5) ∼
(

ρ70/8! ρ70/8! ρ70/8! ρ34/4! ρ16/2 ρ7

ρ124/2 · 4! · 8! ρ106/4! · 8! ρ52/2 · 4! ρ25/2 0 0

)
.

A.1 Stage 7

The final stage is to add the two remaining rows together, and then use the
analysis from earlier. More precisely, as before we write the final output as

e0 + 2−1 · e1 + 2−2 · e2 + · · · ,

where, for i = t− 1, . . . , 0,

ei = (A5)1,i + (A5)2,i + ci+1,

ci = ((A5)1,i + (A5)2,i) · ci+1 + (A5)1,i · (A5)2,i.

where ct = 0. Note that the last two elements on the final row of the above
matrices are equal to zero, so there are no carries to worry about from these
columns. This simplifies the above expressions a little. We then obtain in each
of our cases:

– Case (s, t) = (3, 5):

rad(e0, e1, e2, e3, e4) =
(

ρ115

(2 · 4!)2
,
ρ61

2 · 4!
,
ρ34

4!
,
ρ16

2
, ρ7

)
– Case (s, t) = (4, 5):

rad(e0, e1, e2, e3, e4) =
(

ρ133

(2 · 4! · 8!)
,
ρ70

8!
,
ρ34

4!
,
ρ16

2
, ρ7

)
– Case (s, t) = (4, 6):

rad(e0, e1, e2, e3, e5) =
(

ρ241

2(4! · 8!)2
,

ρ133

(2 · 4! · 8!)
,
ρ70

8!
,
ρ34

4!
,
ρ16

2
, ρ7

)

As discussed earlier we can obtain the result Res of the Recryption procedure
from the values of e0, e1 and e2, by computing the expression (e0+e1+e2+e1 ·e2)
(mod 2). This enables us to determine the value of rad(Res) in our three cases
as follows:

(s, t) (3, 5) (4, 5) (4, 6)

rad(Res)
ρ115

(2 · 4!)2
ρ133

(2 · 4! · 8!)
ρ241

2(4! · 8!)2

Fully Homomorphic Encryption with Relatively Small Key 443

So using the above method we can Recrypt a ciphertext to obtain a new cipher-
text whose dirtyness measure is bounded by the radius in the above table. We
then operate on this ciphertext by applying an addition or a multiplication with
another similar ciphertext so as to produce a new ciphertext which we then apply
the Recrypt procedure to again. For this to work we require that the ciphertext
before Recryption can itself be validly decrypted. This means that we need to
be able to decrypt a ciphertext with dirtyness measure given by δ∞ · rad(Res)2.

In the following table we present the final outcome. For a specific value of
s2 we give the values of (s, t) in the algorithm, then we give the value of rad(c)
which needs to be able to be decrypted to obtain fully homomorphic encryption,
and then the corresponding minimum value of the “depth” of the circuit. We
note that this measure of depth is a very crude estimate since it measures the
number of multiplications in a perfectly balanced circuit consisting solely of
multiplications, whereas our measure rad(c) is much more precise.

s2 (s, t) rad(c) depth

5, 6, 7 (3, 5)
ρ232

(2 · 4!)4
7

8 (4, 5)
ρ268

(2 · 4! · 8!)2
7

9, 10, 11, 12, 13, 14 (4, 6)
ρ484

22(4! · 8!)4
8

Recall that the original rDec is given by 2
√

N/2
√
N and thus equal to 2ρ/2ρ. To

obtain a fully homomorphic encryption scheme we therefore require that

rad(c) <
2ρ

4ρ
,

where the extra factor of 2 comes from the fact that we made rDec smaller by
a factor of 2. It is easy to see that this bound is not attained for the practical
parameter sizes given in Section 7. A complete similar analysis for the case
(s, t) = (5, 7) gives a radius rad(c) of

rad(c) =
ρ880

(8!)2 · (4! · 16!)4

which shows that for ρ ≥ 11680 it is possible to obtain a fully homomorphic
encryption scheme. This corresponds to N ≥ 136422400 or thus n + 27.

Unlinkability of Sanitizable Signatures

Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder

Darmstadt University of Technology, Germany
www.minicrypt.de

Abstract. Sanitizable signatures allow a designated party, called the
sanitizer, to modify parts of signed data such that the immutable parts
can still be verified with respect to the original signer. Ateniese et al. (ES-
ORICS 2005) discuss five security properties for such signature schemes:
unforgeability, immutability, privacy, transparency and accountability.
These notions have been formalized in a recent work by Brzuska et
al. (PKC 2009), discussing also the relationships among the security no-
tions. In addition, they prove a modification of the scheme of Ateniese
et al. to be secure according to these notions.

Here we discuss that a sixth property of sanitizable signature schemes
may be desirable: unlinkability. Basically, this property prevents that one
can link sanitized message-signature pairs of the same document, thus
allowing to deduce combined information about the original document.
We show that this notion implies privacy, the inability to recover the
original data of sanitized parts, but is not implied by any of the other
five notions. We also discuss a scheme based on group signatures meeting
all six security properties.

1 Introduction

For a regular signature scheme any modification of the message makes the sig-
nature for the modified message invalid. In some applications, though, it may
be preferable to support message modifications such that one can still verify the
authenticity of the immutable message part, and that only authorized parties
can make such changes. Signature schemes having this property are called sani-
tizable, as introduced by Ateniese et al. [1]. Related concepts have been discussed
concurrently in [24,23,20].

Ateniese et al. [1] discuss the applicability of sanitizable signatures to anony-
mization of medical data, replacing commercials in authenticated media streams
or updates of reliable routing information. They identified five desirable security
properties for sanitizable signature schemes. Informally, these are:

Unforgeability. Says that no one except for the honest signer and sanitizer
can create valid signatures.

Immutability. Demands that even a malicious sanitizer cannot change message
parts which have not been marked as modifiable by the signer.

Privacy. Prevents an outsider to recover the original data of sanitized message
parts.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 444–461, 2010.
c© International Association for Cryptologic Research 2010

Unlinkability of Sanitizable Signatures 445

Transparency. Covers the indistinguishability of signatures created by the
signer or the sanitizer.

Accountability. Refers to the inability of a malicious signer or sanitizer to
deny authorship.

Brzuska et al. [3] define these five properties with game-based approaches for-
mally and relate them, showing that accountability implies unforgeability and
transparency implies privacy; all other properties are independent. They also
prove a modification of the scheme by Ateniese et al. [1] to be secure according
to these five properties.

Unlinkability. Here we discuss that an additional property may be useful in
some settings. We call this property unlinkability and motivate it by the follow-
ing example (see also Figure 1): Assume that we have signed medical records
and at some point we anonymize the data by redacting the personal information
of the patients like names, addresses etc. At some other time, say for revenues
reasons, we remove the actual medical treatments and leave only the personal
information. Then one should not be able to link these data through the (san-
itized) signatures and therefore reconstruct the full records. However, previous
schemes like the one by Brzuska et al. [3] and, for example, the ones in [21,11,10]
in fact allow such attacks. They are usually based on chameleon hashes which
remain unchanged for the sanitization step and thus allow to identify two sani-
tized signatures derived from the same signature through the hash value. Other
constructions like the one in [23] even come with an explicit document identifier,
allowing to link sanitized messages easily.

Fig. 1. Linkability problem

We hence introduce a formal definition of unlinkability and relate it to the
previously given notions. It turns out that unlinkability is not implied by any of
the other properties, but vice versa implies privacy. The reason is that privacy
prevents an adversary of recovering the original data for sanitized parts, and
violation of this property also enables the adversary to reconstruct and to link
messages easily.

446 C. Brzuska et al.

Construction. We then present a construction of a sanitizable signature scheme
obeying all six properties, including unlinkability. The idea is fundamentally
different from previous approaches which usually rely on chameleon hashes. In
our case the signer first signs the fixed parts with a regular signature scheme. For
the modifiable parts the signer and the sanitizer use a group signature scheme
[13], i.e., a signature scheme which allows to sign anonymously on behalf of the
group but such that a group manager can revoke the identity of the user that
has signed [5]. In our case the group only consists of the signer and sanitizer,
and the signer also incarnates the group manager. If the sanitizer later changes
(some of) the modifiable message parts it can create a new group signature and
replace the signer’s group signature.

The anonymity of the group signature scheme in our context guarantees trans-
parency (the indistinguishability of signatures originating from the signer and
the sanitizer). The possibility to identify a group member by the group manager
(i.e., the signer in our case) supports sanitizer-accountability, i.e., the ability to
provide a proof that the sanitizer has created the signature. Signer-accountability
is provided by the non-frameability of the group signature scheme which prevents
a malicious group manager (i.e., the signer) from falsely accusing the sanitizer
to be the source of a signature. Immutability follows from the unforgeability of
the regular signature scheme for the fixed parts, and unlinkability from the fact
that the sanitizer signs the entire message from scratch (the signature for fixed
message parts remains unchanged).

We remark that the actual construction needs a careful implementation of the
idea above to make the derived sanitizable signature scheme satisfy all desired
security properties. This is in particular true since proposed group signature
schemes in the literature like [5,9,22,14,18,19] come with varying security fea-
tures and set-up assumptions. In this version we thus present a simple but not
necessarily the most practical approach to turn our idea into a secure sanitizable
scheme, e.g., following the definitions in [3] we do not rely on the fact that pub-
lic keys of the signer or sanitizer are registered, although this is most likely in
practice. In the full version we discuss further variations, e.g., multiple sanitiz-
ers, or using a ring signature scheme instead of a group signature scheme, thus
dropping the accountability requirement for the derived sanitizable scheme.

Our solution shows that, in general, sanitizable signatures can be built from
group signatures, thereby providing a new application for the latter primitive.
This relation also immediately gives a feasibility result for sanitizable signatures:
Since the work by Bellare et al. [5] about group signatures proves that one can
derive them from IND-CCA secure encryption, non-interactive zero-knowledge
proofs and digital signatures, all known to exist given trapdoor permutations,
it follows that one can also build secure sanitizable signatures from trapdoor
permutations.

Organization. In Section 2 we introduce the notion of sanitizable signatures and
the security properties given in [1,3]. In Section 3 we discuss the notion of unlinka-
bility and its relationship to the other security properties. In Section 4 we present
our construction of a secure sanitizable scheme based on group signatures.

Unlinkability of Sanitizable Signatures 447

2 Preliminaries

In this section we revisit the notion of sanitizable signatures and the previously
given security properties.

2.1 Sanitizable Signatures

In a sanitizable signature scheme both the signer and the sanitizer hold a key
pair (sksig, pksig), (sksan, pksan) such that the signer can sign messages with its
secret key sksig and “attach” a description of the admissible modifications adm

which are allowed to the sanitizer pksan. The sanitizer can then later change such
a message according to some modification mod and update the signature using
his secret key sksan. In order to settle disputes about the origin of a message-
signature pair the algorithm Proof enables the signer to produce a proof π from
previously signed messages that a signature has been created by the sanitizer.
This proof can then be verified with the help of the Judge algorithm (but which
only needs to decide about the origin in case of a valid message-signature pair
in question; for invalid pairs such decisions are in general impossible).

To model admissible modifications we assume that adm and mod are (descrip-
tions of) efficient deterministic algorithms such that mod maps any message m
to the modified message m′ = mod(m), and adm(mod) ∈ {0, 1} indicates if the
modification is admissible and matches adm, in which case adm(mod) = 1. For
example, for messages m = m[1] . . .m[k] divided into blocks m[i] of equal bit
length t we can let adm contain t and the indices of the modifiable blocks, and
mod then essentially consists of pairs (j,m′[j]) defining the new value for the
j-th block.

For ease of notation we let fixadm be an efficient deterministic algorithm which
is uniquely determined by adm and which maps m to the immutable message
part fixadm(m), e.g., for block-divided messages fixadm(m) is the concatenation
of all blocks not appearing in adm. To exclude trivial examples we demand
that admissible modifications leave the fixed part of a message unchanged, i.e.,
fixadm(m) = fixadm(mod(m)) for allm ∈ {0, 1}∗ and all mod with adm(mod) =
1. Analogously, to avoid choices like fixadm having empty output, we also require
that the fixed part must be “maximal” given adm, i.e., fixadm(m′) �= fixadm(m)
for m′ /∈ {mod(m) | mod with adm(mod) = 1}.

Jumping ahead, we note that for our construction based on group signatures
we make another assumption on adm. This property, denoted modification-
decidability, allows to decide efficiently for given messages m,m∗ and adm

whether m∗ is an admissible modification of m with respect to adm or not.
This property is for example satisfied for the block-based approach. However,
for our definitions of the security properties and their relationships we do not
impose any restriction at this point.

The following definition is taken from [3]:

Definition 1 (Sanitizable Signature Scheme). A sanitizable signature
scheme SanSig consists of seven efficient algorithms (KGensig,KGensan, Sign, Sanit,
Verify,Proof, Judge) such that:

448 C. Brzuska et al.

Key Generation. There are two key generation algorithms, one for the signer
and one for the sanitizer. Both create a pair of keys, a private key and the
corresponding public key:

(pksig, sksig)← KGensig(1n), (pksan, sksan)← KGensan(1n)

Signing. The Sign algorithm takes as input a message m ∈ {0, 1}∗, the secret
key sksig of the signer, the public key pksan of the sanitizer, as well as a
description adm of the admissibly modifiable message parts. It outputs a
signature (or ⊥, indicating an error):

σ ← Sign(m, sksig, pksan,adm).

We assume that adm is recoverable from any signature σ �=⊥.
Sanitizing. Algorithm Sanit takes a message m ∈ {0, 1}∗, a signature σ, the

public key pksig of the signer and the secret key sksan of the sanitizer. It
modifies the message m according to the modification instruction mod and
determines a new signature σ′ for the modified message m′ = mod(m). Then
Sanit outputs m′ and σ′ (or possibly ⊥ in case of an error).

(m′, σ′)← Sanit(m,mod, σ, pksig, sksan)

Verification. The Verify algorithm outputs a bit d ∈ {true, false} verifying
the correctness of a signature σ for a message m with respect to the public
keys pksig and pksan.

d← Verify(m,σ, pksig, pksan)

Proof. The Proof algorithm takes as input the secret signing key sksig, a mes-
sage m and a signature σ as well a set of (polynomially many) additional
message-signature pairs (mi, σi)i=1,2,...,q and the public key pksan. It outputs
a string π ∈ {0, 1}∗:

π ← Proof(sksig,m, σ, (m1, σ1), . . . , (mq, σq), pksan)

Judge. Algorithm Judge takes as input a message m and a valid signature σ, the
public keys of the parties and a proof π. It outputs a decision d ∈ {Sig, San}
indicating whether the message-signature pair has been created by the signer
or the sanitizer:

d← Judge(m,σ, pksig, pksan, π)

For a sanitizable signature scheme the usual correctness properties should hold,
saying that genuinely signed or sanitized messages are accepted and that a gen-
uinely created proof by the signer leads the judge to decide in favor of the signer.
For a formal approach to correctness see [3].

Unlinkability of Sanitizable Signatures 449

2.2 Security of Sanitizable Signatures

Here we recall the security notions for sanitizable signatures given by Brzuska
et al. [3]. We note that, there, they show that signer and sanitizer accountability
together imply unforgeability, and that transparency implies privacy. Hence, in
principle it suffices to show immutability, accountability and transparency. We
therefore omit the formal definitions of unforgeability and privacy here and refer
the reader to the full version of the paper.

Immutability. This property demands informally that a malicious sanitizer can-
not change inadmissible blocks. In the attack model below the malicious sani-
tizer A interacts with the signer to receive signatures σi for messages mi, de-
scriptions admi and keys pksan,i of its choice, before eventually outputting a
valid pair (pk∗san,m

∗, σ∗) such that message m∗ is not a “legitimate” trans-
formation of one of the mi’s under the same key pk∗san = pksan,i. The lat-
ter is formalized by requiring that for each query pk∗san �= pksan,i or m∗ /∈
{mod(mi) | mod with admi(mod) = 1} for the value admi in σi, e.g., that for
block-divided messages m∗ and mi differ in at least one inadmissible block. As
the adversary can query the signer for several sanitizer keys pksan, the security
definition also covers the case where the signer interacts with several sanitizers
simultaneously.

Definition 2 (Immutability). A sanitizable signature scheme SanSig is im-
mutable if for any efficient algorithm A the probability that the following exper-
iment ImmutabilitySanSig

A (n) returns 1 is negligible (as a function of n).

Experiment ImmutabilitySanSig
A (n)

(pksig, sksig)← KGensig(1n)
(pk∗san,m∗, σ∗) ← ASign(·,sksig,·,·),Proof(sksig,...,·)(pksig)

letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q
denote the queries and answers to and from oracle Sign.

return 1 if
Verify(m∗, σ∗, pksig, pk

∗
san) = true and

for all i = 1, 2, . . . , q we have
pk∗san �= pksan,i or
m∗ /∈ {mod(mi) |mod with admi(mod) = 1}

Accountability. Accountability says the origin of a (sanitized) signature should
be undeniable. There are the following two types of accountability: sanitizer-
accountability says that, if a message has not been signed by the signer, then
even a malicious sanitizer should not be able to make the judge accuse the
signer. Signer-accountability says that, if a message and its signature have not
been sanitized, then even a malicious signer should not be able to make the judge
accuse the sanitizer.

In the sanitizer-accountability game let ASanit be an efficient adversary playing
the role of the malicious sanitizer. AdversaryASanit has access to a Sign and Proof
oracle. Her task is to output a valid message-signature pair m∗, σ∗ together with

450 C. Brzuska et al.

a key pk∗san (with (pk∗san,m
∗) being different from pairs (mi, pksani) previously

queried to the Sign oracle) such that the proof produced by the signer via Proof
still leads the judge to decide “Sig”, i.e., that the signature has been created by
the signer.

Definition 3 (Sanitizer-Accountability). One calls a sanitizable signature
scheme SanSig sanitizer-accountable if for any efficient ASanit the probability
that the following experiment San-AccountabilitySanSig

ASanit
(n) returns 1 is negligible

(as a function of n).

Experiment San-AccountabilitySanSig
ASanit

(n)
(pksig, sksig)← KGensig(1n)
(pk∗san,m∗, σ∗) ← ASign(·,sksig,·,·),Proof(sksig,...,·)

Sanit (pksig)
letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q
denote the queries and answers to and from oracle Sign

π ← Proof(sksig,m∗, σ∗, (m1, σ1), . . . , (mq, σq), pk∗san)
return 1 iff

(pk∗san,m
∗) �= (pksan,i,mi) for all i = 1, 2, . . . , q, and

Verify(m∗, σ∗, pksig, pk
∗
san) = true, and

Judge(m∗, σ∗, pksig, pk
∗
san, π) = Sig

In the signer-accountability game a malicious signerASign gets a public sanitizing
key pksan as input. She is allowed to query a sanitizing oracle about tuples
(mi,modi, σi, pksig,i

) receiving answers (m′
i, σ

′
i). Adversary ASign finally outputs

a tuple (pk∗sig,m
∗, σ∗) and is considered to succeed if Judge accuses the sanitizer

for the new key-message pair pk∗sig,m
∗ with a valid signature σ∗.

Definition 4 (Signer-Accountability). A sanitizable signature scheme
SanSig is called signer-accountable if for any efficient ASign the probability that
the following experiment Sig-AccountabilitySanSig

ASign
(n) returns 1 is negligible (as a

function of n):

Experiment Sig-AccountabilitySanSig
ASign

(n)
(pksan, sksan)← KGensan(1n)
(pk∗sig,m

∗, σ∗)← ASanit(·,·,·,·,sksan)
Sign (pksan)

letting (m′
i, σ

′
i) for i = 1, 2, . . . , q

denote the answers from oracle Sanit.
return 1 iff

(pk∗sig,m
∗) �= (pksig,i

,m′
i) for all i = 1, 2, . . . , q, and

Verify(m∗, σ∗, pk∗sig, pksan) = true and
Judge(m∗, σ∗, pk∗sig, pksan, π

∗) = San

Transparency. We define transparency by the following adversarial game. We
consider an adversary A with access to Sign, Sanit and Proof oracles with which
the adversary can create signatures for (sanitized) messages and learn proofs. In
addition, A gets access to a Sanit/Sign box which contains a secret random bit
b ∈ {0, 1} and which, on input a message m, a modification information mod

and a description adm

Unlinkability of Sanitizable Signatures 451

– for b = 0 runs the signer algorithm to create σ ← Sign(m, sksig, pksig,adm),
then runs the sanitizer algorithm and returns the sanitized message m′ with
the new signature σ′, and

– for b = 1 acts as in the case b = 0 but also signs m′ from scratch with the
signing algorithm to create a signature σ′ and returns the pair (m′, σ′).

Adversary A eventually produces an output a, the guess for b. A sanitizable
signature is now said to be transparent if for all efficient algorithms A the prob-
ability for a right guess a = b in the above game is negligibly close to 1

2 . Below
we also define a relaxed version called proof-restricted transparency and discuss
the idea after the definition.

Definition 5 ((Proof-Restricted) Transparency). A sanitizable signature
scheme SanSig is (proof-restricted) transparent if for any efficient algorithm
A the probability that the following experiment TransparencySanSig

A (n) returns 1 is
negligibly close to 1

2 .

Experiment TransparencySanSig
A (n)

(pksig, sksig)← KGensig(1n)
(pksan, sksan)← KGensan(1n)
b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,...,·),Sanit/Sign(·,·,·,sksig,sksan,pksig,pksan,b)

with input (pksig, pksan)
where oracle Sanit/Sign for input mk,modk,admk

first computes σk ← Sign(mk, sksig, pksan,admk),
then computes (m′

k, σ
′
k)← Sanit(mk,modk, σk, pksig, sksan),

then, if b = 1, replaces σ′
k by σ′

k ← Sign(m′
k, sksig, pksan,admk),

and finally returns (m′
k, σ

′
k).

return 1 iff
a = b
(and, in the proof-restricted case, A has not queried
any m′

k output by Sanit/Sign to Proof)

The original definition of Brzuska et al. [3] does not consider the proof-restricted
case. Without this restriction, though, achieving transparency at first seems to
be impossible because the adversary can then always submit the replies of the
Sanit/Sign oracle to the Proof oracle and thereby recover the secret bit b. How-
ever, in their construction the Proof algorithm searches in the list of previously
signed messages and only gives a useful answer if it finds a match, enabling
transparency without this restriction. Yet, any solution (like ours here) where
the Proof algorithm is “history-free” can only achieve the proof-restricted ver-
sion. Note that Proof algorithms forgoing the set of previously signed messages
are preferable from an efficiency point of view, of course.

As for the implications among the security notions [3] we note that proof-
restricted transparency only implies a proof-restricted form of privacy, where the
answer messages of the LoRSanit oracle cannot be submitted to the Proof oracle
either. However, since we show in the next section that unlinkability implies full

452 C. Brzuska et al.

privacy and our construction achieves unlinkability, our scheme is also private
in the non-restricted sense. We note that all the separation results in [3] remain
valid for proof-restricted transparency.

3 Unlinkability

In this section we define unlinkability formally and discuss its relationship to the
other security notions.

3.1 Definition

As explained in the introduction, unlinkability refers to the impossibility to
use the signatures to identify sanitized message-signature pairs originating from
the same source. Technically, we use an indistinguishability-based approach to
define this property, saying that, given a signature for a sanitized message of two
possible sources, the adversary cannot predict the actual original message better
than by guessing. This should even hold if the adversary herself provides the two
source message-signature pairs and modifications of which one is sanitized. The
stipulation here is that the two modifications yield the same sanitized message.
Else, if for example the sanitized messages still contain some unique but distinct
entry, then predicting the source is easy, of course. This, however, is beyond the
scope of signature schemes: the scheme should only prevent that signatures can
be used to link data.

Formally, we use a game-based approach to define unlinkability, similar to the
other security notions in [3]. The adversary is given access to a signing oracle
and a sanitizer oracle (and a proof oracle since this step depends on the signer’s
secret key and may leak valuable information). The adversary is also allowed to
query a left-or-right oracle LoRSanit which is initialized with a secret random
bit b. In each of the multiple queries to LoRSanit the adversary provides a pair
of tuples, each consisting of a message, a modification and a valid signature,
such that the recoverable description of admissible modifications is identical in
both cases (since we assume that adm is recoverable from a signature providing
distinct descriptions adm would allow a trivial attack; so would the case that only
one signature is valid). Depending on the bit b, the adversary gets the sanitized
message-signature pair of either the left or right input pair. The adversary should
eventually predict the bit b significantly better than with the guessing probability
of 1

2 .

Definition 6 (Unlinkability). A sanitizable signature scheme SanSig is un-
linkable if for any efficient algorithm A the probability that the following exper-
iment UnlinkabilitySanSig

A (n) returns 1 is negligibly close to 1
2 .

Experiment UnlinkabilitySanSig
A (n)

(pksig, sksig)← KGensig(1n)
(pksan, sksan)← KGensan(1n)
b← {0, 1}

Unlinkability of Sanitizable Signatures 453

a← ASign(sksig,···),Sanit(sksan,···),Proof(sksig,···),LoRSanit(sksig,sksan,b,···)(pksig, pksan)
where oracle LoRSanit(·, ·, ·, sksig, sksan, b), on input
(mj,0,modj,0, σj,0,mj,1,modj,1, σj,1) with recoverable admj,0 = admj,1
Verify(mj0 , σj,0, pksig, pksan) = true, Verify(mj1 , σj,1, pksig, pksan) = true,
returns (m′

j , σ
′
j) ← Sanit(mj,b,modj,b, σj,b, pksig, sksan),

and where (mj,0,modj,0,admj,0) ≡ (mj,1,modj,1,admj,1),
i.e., are mapped to the same modified message.

return 1 if a = b.

A pictorial description is given in Figure 2. We note that the definition above is
for example robust concerning several sanitization steps in the LoRSanit oracle.
That is, we could allow the adversary in the experiment above to submit ar-
bitrarily long “modification chains” mod

1
j,0, . . . ,mod

m
j,0 and mod

1
j,1, . . . ,mod

m
j,1

such that the two source documents are gradually sanitized with a match in the
resulting documents. Still, predicting b remains hard, as such chains can poten-
tially be simulated by calling the sanitizer oracle for the first m−1 modifications
manually, before entering the final sanitization step into the LoRSanit oracle.

A

pksig, pksan sksig sksan

a

b ← {0, 1}

Sign

Proof

Sanit

LoRSanit

mj , admj , pksan

σj

mj , modj , σj , pksig

m′
j , σ′

j

mj , σj , (m, σ), pksan

πj

mj,0, modj,0, σj,0, admj,0

mj,1, modj,1, σj,1,
=

admj,1

m′
j , σ

′
j

Fig. 2. Unlinkability. A wins if it outputs a = b.

Recall the example of medical records which are sanitized twice, one time
basically removing the personal information and the other time removing the
medical data. Our notion of unlinkability can then be used to show that such
sanitized message-signature pairs do not allow to reconstruct the full data better
than by guessing. Assume for simplicity that we only have two records with
entries (name#0, data#0) and (name#1, data#1). Then we create all four possible

454 C. Brzuska et al.

combinations (name#a, data#b) for a, b ∈ {0, 1} and ask for signatures for them
(with both parts being admissibly changeable). For each a ∈ {0, 1} we then
insert the pairs (name#a, data#0) and (name#a, data#1) twice into the LoRSanit
oracle, one time cutting off the name-part, the other time removing the data-part.
Altogether we make thus four calls to the LoRSanit oracle, and we hand those
four replies to the adversary. Our unlinkability definition says that one cannot
distinguish the two cases (left or right sanitization) better than by guessing, thus
also disallowing to tell which data belong to whose name.

Our definition above is for unlinkability with respect to message-signature
pairs sanitized by the same sanitizer. One can easily extend the above defini-
tion by demanding that the adversary can also determine different sanitizers for
the left and for the right input data. But then both sanitizers must have been
declared to have the permission to sanitize, otherwise one could easily deter-
mine the secret bit of the LoRSanit by picking an invalid sanitizer for one of the
input tuples.

3.2 Relationships of the Security Notions

We first show that unlinkability does not follow from any of the other security re-
quirements. Then we prove that unlinkability implies privacy, and finally discuss
that unlinkability does not imply any of the other properties.

Proposition 1 (Independence of Unlinkability). Assume that there exists
a sanitizable signature scheme (obeying one or more of the properties unforgeabil-
ity, immutability, privacy, (proof-restricted) transparency, signer-accountability
and sanitizer-accountability). Then there exists a sanitizable signature scheme
which is not unlinkable but preserves the other security properties.

The proof follows by simply appending a unique identifier id to each signature.
This does not destroy any of the other security properties but clearly violates
unlinkability. The proof of the following is straightforward as the privacy ex-
periment is essentially the unlinkability experiment with less control for the
adversary:

Proposition 2 (Unlinkability Implies Privacy). Any unlinkable sanitizable
signature scheme is also private.

With the next proposition we show that unlinkability does not imply any of
the other security properties (assuming that we start with a secure sanitizable
signature scheme like the one we construct in the next section):

Proposition 3 (Independence of Other Properties). Assume that there
exists a sanitizable signature scheme which is unforgeable, immutable, private,
(proof-restricted) transparent, signer-accountable, sanitizer-accountable and un-
linkable. Then for any of the properties immutability, transparency, unlinkability,
signer-accountability and sanitizer-accountability, there exists a sanitizable sig-
nature scheme obeying all properties except for the one in question.

Unlinkability of Sanitizable Signatures 455

Proof. The fact that unlinkability does not follow from the other properties has
already been shown in Proposition 1. For the other properties we remark that
the counterexamples in [3] which seperate immutability, transparency, signer-
accountability and sanitizer-accountability from the other properties also pre-
serve unlinkability in each case (and also hold for proof-restricted transparency).

��

4 Constructions Based on Group Signatures

In this section we present our unlinkable sanitizable signature scheme (which also
satisfies the other security properties). As explained in the introduction, the idea
is to use a group signature scheme for the group consisting of the signer and the
sanitizer, such that the signer signs the immutable message part with a regular
signature scheme and the full message with the group signature scheme. The
sanitizer can then update the full message and only sign this second component.
The signer also takes over the role of the group manager in order to provide
accountability.

4.1 Group Signatures

Group signatures, introduced by Chaum and van Heyst [13], allow a set of users
to sign on behalf of the group such that outsiders cannot distinguish between dif-
ferent signers (anonymity) but such that a group manager can trace the signer’s
identity (traceability). We follow the formal framework of Bellare et al. [5] but
add the non-frameability requirement [9] that even the group manager cannot
sign on behalf of the users. Recall that this is necessary for the accountability
in our sanitizable signature scheme, where the signer acts as the group manager
and should not be able to make the judge falsely accuse the sanitizer.

We briefly recall group signature schemes and their security properties. For
comprehensive definitions see the full version of the paper and [5]. A group
signature scheme GS consists of six efficient algorithms GS = (GKGen,UKGen,
GSig,GVf,Open,GJudge) where

– (skuser, pkuser)← UKGen(1n) generates individual user key pairs,
– (gmsk, gpk, cert) ← GKGen(1n,gpkuser) takes the tuple gpkuser of the

users’ public keys and generates a group manager secret key gmsk, a group
public key gpk and an individual certificate certi for each user, where cert
designates the tuple of all certi,

– σ ← GSig(skuser,i, certi, gpk,m) signs a message m given the user’s secret
data skuser,i, certi and the group’s public key gpk,

– (i, π)← Open(gmsk,m, σ,gpkuser , gpk) on input a messagem and signature
σ returns the index i of the alleged signer and a proof π such that

– GJudge(m,σ, i, π, gpk,gpkuser) either confirms the accusation or denies it.

There are three security properties for group signatures [5,9]:

456 C. Brzuska et al.

Anonymity. Means that one cannot tell from a group signature who signed a
message, even if one knows the secret data of the user and can ask the group
manager to reveal the identities for other signatures.

Traceability. Refers to the fact that a malicious user cannot falsely accuse
an honest user to be the signer of a message, even if the malicious user is
allowed to see other signatures generated by this honest user and can call
the group manager.

Non-Frameability. Strengthens traceability in the sense that even if the ma-
licious user colludes with the group manager they cannot frame an honest
user.

Definition 7 (Secure Group Signature). We call a group signature scheme
secure if it is anonymous and non-frameable.

Note that we tailor the group signature definitions to our needs thereby adding
non-frameability, making the scheme syntax setup session free and relaxing the
security model concerning some technical issues which are discussed in the full
version of this paper. As for instantiations we remark that the (generic) construc-
tion by Bellare et al. [5] satisfies our adapted definitions. As for more efficient
group signature schemes, we can implement our sanitizable signature scheme
with other group signature schemes like [22,14,18,19]. Yet, these group signa-
ture schemes need additional set-up assumptions like a trusted party generating
common parameters or interactive registration of users. Our sanitizable signature
scheme then inherits these characteristics (recall that, in practice, registration
of signer and sanitizer keys is for example necessary to provide meaningful ac-
countability).

4.2 Construction

In this section we show that the new security requirement of unlinkability can be
achieved in combination with the five established security properties formalized
in [3]. Recall that we sign the entire message, including the modifiable parts, with
the group signature scheme, and —in order to prevent inadmissible changes—
the signer also signs the fixed part with a regular scheme. This requires some care
because if we take an arbitrary signature scheme then the signature itself may
act as a unique identifier, even for messages with identical fixed parts. Thereby,
unlinkability would be violated.

The solution is to use a secure deterministic signature scheme for the fixed
part (such that the signature is identical for messages with the same fixed part).
Alternatively, one can deploy a rerandomizable signature scheme such that the
sanitizer can rerandomize the signature, excising the link to the input signature.
Below we use the “deterministic solution” for simplicity, and since every secure
signature scheme can be easily turned into a deterministic one via pseudorandom
functions [15].

For a formal definition of strongly unforgeable signature schemes see [17].
We need this unforgeability notion (saying that one cannot even find a new
signature for a previously signed message) to provide unlinkability. Examples of

Unlinkability of Sanitizable Signatures 457

signature schemes achieving this strong notion are [6,12,4,2,8]. Moreover, it is
possible to obtain a strongly unforgeable signature scheme out of any unforgeable
signature scheme applying the transformation of Bellare and Shoup [7]. Applying
the transformation of [15] one can then make such schemes also deterministic.

Recall that the idea behind our scheme is that for each signature the signer
uses a group manager key, creates a certified user key to sign the modifiable
parts, and certifies the sanitizer’s public key as a group member to support
modifications. But since our definition of sanitizable signatures demands state-
free solutions, the signer formally cannot store the group manager key for this
sanitizer and would need to create a new one for each call. We bypass this as
follows: we let the signer for each signing request, including a public key of the
sanitizer pksan, create the group manager’s keys etc. via the corresponding group
signature algorithms, but provide the randomness for these algorithms by apply-
ing a pseudorandom function to pksan (see [16] for a definition of pseudorandom
functions). By this, we end up with (almost) independent keys for different san-
itizers, but use consistent parameters for each sanitizer. For the same reason we
also include the group membership certificate of the sanitizer in the signature,
although it would be given directly to the sanitizer instead. As a side effect, since
the group manager’s public key is tied to the sanitizer in question, we also rely
on group signatures with static joins only.

Construction 1 (Sanitizable Signature Scheme). Let S = (SKGen, SSign,
SVf) be a (regular) signature scheme, let GS = (GKGen,UKGen,GSig,GVf,Open,
GJudge) be a group signature scheme. Let PRF = (KGenprf,PRF) be
pseudorandom function. Define the sanitizable signature scheme SanSig =
(KGensig,KGensan, Sign, Sanit,Verify,Proof, Judge) as follows:

Key Generation. First, algorithm KGensig gets the input 1n and runs
(ssk, spk) ← SKGen(1n) to create a key pair for the signature scheme, and
then also invokes k ← KGenprf(1n) to derive a key for the pseudorandom
function. It outputs (sksig, pksig) = ((ssk, k), spk). Algorithm KGensan(1n)
generates a key pair (sksan, pksan) = (gsksan, gpksan) ← UKGen(1n) of the
group signature scheme.

Signing. Algorithm Sign on input m ∈ {0, 1}∗, sksig = (ssk, k), pksan,adm sets
mfix = fixadm(m) for the algorithm fixadm determined by adm. It runs the
user key generation algorithm (gsksig, gpksig) ← UKGen(1n; PRF(k, 0‖pksan))
for randomness PRF(k, 0‖pksan) and afterwards the group manager algorithm
to compute

(gmsk, gpk, certsig, certsan)← GKGen(1n, (gpksig, pksan); PRF(k, 1‖pksan))

for randomness PRF(k, 1‖pksan). It computes

σfix = SSign(ssk, (mfix,adm, pksan, gpk)) and

σfull = GSig(gsksig, certsig, (m, pksig), gpk)

using the signing algorithms of the regular and of the group signature scheme.
The algorithm finally returns σ = (σfix, σfull,adm, pksan, certsan, gpk).

458 C. Brzuska et al.

Sanitizing. Algorithm Sanit on input a message m, information mod, a sig-
nature σ = (σfix, σfull,adm, pksan, certsan, gpk), keys pksig and sksan first
recovers mfix = fixadm(m). It then checks that mod is admissible according
to adm and that σfix is a valid signature for message (mfix,adm, pksan, gpk)
under key spk. If not, it stops outputting ⊥. Else, it derives the modified
message m′ = mod(m) and computes

σ′
full

= GSig(gsksan, certsan, (m
′, pksig), gpk)

and outputs m′ together with σ′ = (σfix, σ
′
full

,adm, pksan, certsan, gpk).
Verification. Algorithm Verify gets as input a message m ∈ {0, 1}∗, a sig-

nature σ = (σfix, σfull,adm, pksan, certsan, gpk) and public keys pksig = spk
and pksan. It first recovers mfix = fixadm(m). It then checks whether SVf(spk,
(mfix,adm, pksan, gpk), σfix) = 1 and GVf(gpk, (m, pksig), σfull) verifies un-
der the group public key as true, too. If so, it outputs 1, declaring the entire
signature as valid. Otherwise it returns 0, indicating an invalid signature.

Proof. Algorithm Proof gets as input sksig, m and σ = (σfix, σfull,adm, pksan,
certsan, gpk). It parses the key as sksig = (ssk, k) and recomputes

(gmsk, gpk′, cert′sig, cert
′
san) = GKGen(1n, (gpksig, pksan); PRF(k, 1||pksan))

and checks that gpk′ = gpk and cert′san = certsan (and immediately returns ⊥
if not). It next verifies that SVf(spk, (mfix,adm, pksan, gpk), σfix) = 1 and, if
so, computes and outputs (i, π) ← Open(gmsk, (m, pksig), σfull, gpk), where
i ∈ {Sig, San} is the identity returned by the Open algorithm (or, Proof
returns ⊥ if any of the verification steps above fail).

Judge. The judge on input m,σ, pksig, pksan and a proof (i, π) with i ∈
{Sig, San} parses σ as (σfix, σfull,adm, pksan, certsan, gpk). It derives b ←
GJudge((m, pksig), σfull, i, π, gpk) using the judge algorithm of the group sig-
nature scheme. If b = true it outputs i, else it outputs i = Sig.

Completeness of signatures generated by the signer and sanitizer follows easily
from the completeness of the underlying signature schemes and the fact that
fixadm leaves the fixed message parts unchanged for modified messages. There
is a negligible probability that a signature of the signer or the sanitizer also
verifies under the other party’s other key, yielding possibly a wrong answer from
the judge. We ignore this issue here for simplicity.

4.3 Security Proof

We need an additional property of the admissible modifications adm: given
arbitrary messages m,m∗ ∈ {0, 1}∗ (and a security parameter 1n) it should
be efficiently decidable whether m∗ ∈ {mod(m) | mod with adm(mod) = 1} or
not. We call such adm modification-decidable and a sanitizable signature scheme
modification-restricted if it only allows modification-decidable adm. As an exam-
ple consider again block-divided messages where adm describes the block-length
and the indices of changeable blocks. Then it is easy to check whether m∗ has
been changed in admissible blocks only or not.

Unlinkability of Sanitizable Signatures 459

Theorem 2. Let S be a strongly unforgeable deterministic signature scheme
and let GS be a secure group signature scheme. Assume further that PRF is
a pseudorandom function. Then the modification-restricted sanitizable signature
scheme in Construction 1 is unforgeable, immutable, private, proof-restricted
transparent, accountable and unlinkable.

As unlinkability implies privacy, and as moreover, sanitizer-accountability and
signer-accountability imply unforgeability, it suffices to prove these two types of
accountability as well as with unlinkability, immutability and (proof-restricted)
transparency.

For the proof idea note that we can reduce transparency of our sanitizable sig-
natures to anonymity of the underlying group signature scheme. Traceability of
the group signature scheme enables the group manager (i.e., the signer) to pro-
vide a proof that a message has indeed been signed by a certain group member.
Thus, if the sanitizer signs a message, the signer can produce evidence that this
signature originates from the sanitizer. This shows sanitizer-accountability. Vice
versa, the unframeability property of group signature scheme assures that the
group manager (i.e., the signer) cannot falsely accuse a group member of having
signed a message. Therefore, signer-accountability follows from unframeability.

The unforgeability of the underlying regular signature scheme assures im-
mutability: If the sanitizer changed admissible parts of a message, she would be
obliged to forge a signature for the fixed part. Unlinkability holds as the sanitizer
creates a new group signature from scratch when sanitizing. Furthermore, the
signature of the regular signature scheme remains unchanged, and is identical
for different documents with the same fixed part because we use a deterministic
scheme. The formal proof follows these ideas and appears in the full paper.

Acknowledgments

We thank the anonymous reviewers for valuable comments. Marc Fischlin, Anja
Lehmann and Dominique Schröder are supported by the Emmy Noether Pro-
gram Fi 940/2-1 of the German Research Foundation (DFG). This work was
also supported by CASED (www.cased.de).

References

1. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable Signatures. In:
di Vimercati, S.D.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

2. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

3. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schroeder, D., Volk, F.: Security of Sanitizable Signatures Revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)

460 C. Brzuska et al.

4. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. Journal
of Cryptology 17(4), 297–319 (2004)

5. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures:
Formal Definitions, Simplified Requirements, and a Construction Based on Gen-
eral Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 614–629. Springer, Heidelberg (2003)

6. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign
with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 399–416. Springer, Heidelberg (1996)

7. Bellare, M., Shoup, S.: Two-Tier Signatures, Strongly Unforgeable Signatures, and
Fiat-Shamir Without Random Oracles. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

8. Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Com-
putational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

9. Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of Dy-
namic Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153.
Springer, Heidelberg (2005)

10. Canard, S., Jambert, A.: On Extended Sanitizable Signature Schemes. In: Pieprzyk,
J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010)

11. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor Sanitizable Signatures and
Their Application to Content Protection. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276.
Springer, Heidelberg (2008)

12. Coron, J.-S.: On the Exact Security of Full Domain Hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

13. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 241–246. Springer, Heidelberg (1991)

14. Delerablée, C., Pointcheval, D.: Dynamic Fully Anonymous Short Group Signa-
tures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210.
Springer, Heidelberg (2006)

15. Goldreich, O.: Two Remarks Concerning the Goldwasser-Micali-Rivest Signature
Scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110.
Springer, Heidelberg (1987)

16. Goldreich, O.: The Foundations of Cryptography, vol. 1. Cambridge University
Press, Cambridge (2001)

17. Goldreich, O.: The Foundations of Cryptography, vol. 2. Cambridge University
Press, Cambridge (2004)

18. Groth, J.: Simulation-Sound NIZK Proofs for a Practical Language and Constant
Size Group Signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

19. Groth, J.: Fully Anonymous Group Signatures Without Random Oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007)

20. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic Signature
Schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262.
Springer, Heidelberg (2002)

21. Klonowski, M., Lauks, A.: Extended Sanitizable Signatures. In: Rhee, M.S., Lee,
B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)

Unlinkability of Sanitizable Signatures 461

22. Kiayias, A., Yung, M.: Group Signatures with Efficient Concurrent Join. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer,
Heidelberg (2005)

23. Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura,
H.: Digital documents sanitizing problem. Technical Report ISEC2003-20. IEICE
(2003)

24. Steinfeld, R., Bull, L., Zheng, Y.: Content Extraction Signatures. In: Kim, K.-c.
(ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

Confidential Signatures
and Deterministic Signcryption

Alexander W. Dent1, Marc Fischlin2, Mark Manulis2,
Martijn Stam3, and Dominique Schröder2

1 Royal Holloway, University of London, U.K.
2 Darmstadt University of Technology, Germany

3 LACAL, EPFL, Switzerland

Abstract. Encrypt-and-sign, where one encrypts and signs a message
in parallel, is usually not recommended for confidential message trans-
mission as the signature may leak information about the message. This
motivates our investigation of confidential signature schemes, which hide
all information about (high-entropy) input messages. In this work we
provide a formal treatment of confidentiality for such schemes. We give
constructions meeting our notions, both in the random oracle model
and the standard model. As part of this we show that full domain hash
signatures achieve a weaker level of confidentiality than Fiat-Shamir sig-
natures. We then examine the connection of confidential signatures to
signcryption schemes. We give formal security models for deterministic
signcryption schemes for high-entropy and low-entropy messages, and
prove encrypt-and-sign to be secure for confidential signature schemes
and high-entropy messages. Finally, we show that one can derandomize
any signcryption scheme in our model and obtain a secure deterministic
scheme.

1 Introduction

A common mistake amongst novice cryptographers is to assume that digital
signature schemes provide some kind of confidentiality service to the message
being signed. The (faulty) argument in support of this statement is (a) that
all signature schemes are of the “hash-and-sign” variety, which apply a hash
function to a message before applying any kind of keyed operation, and (b) that
a one-way hash function will hide all partial information about a message. Both
facets of this argument are incorrect. However, it does suggest that notions of
confidentiality for signature schemes are an interesting avenue of research.

The question of confidentiality of hash functions in signature schemes was
previously considered by Canetti [7] as “content-concealing signatures”; however
the original treatment only serves to motivate the concept of perfect one-way
hash functions [7,8]. We provide a more formal treatment here. The question
of entropic security has been considered by several other authors. Dodis and
Smith studied entropic secure primitives requiring that no function leaks their
input [12]. Russell and Wang [22] consider the security of symmetric encryption

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 462–479, 2010.
c© International Association for Cryptologic Research 2010

Confidential Signatures and Deterministic Signcryption 463

schemes based on high-entropy messages, and several authors have considered
the security of asymmetric encryption schemes based on high-entropy messages
[3,4,6]. However, we are the first authors to consider the confidentiality of signa-
tures and signcryption schemes in this scenario.

We believe that the concept of confidential signatures is intrinsically interest-
ing and may prove to be useful in the construction of protocols in which two
entities need to check that they are both aware of a particular message which
(a) contains some confidential information, such as a password, and (b) contains
a high entropy component, such as a confidential nonce.

Defining Confidential Signatures. Our first contribution is to define confidential
signatures. Our starting point are high-entropy messages (signatures for mes-
sages with low entropy inevitably leak through the verification algorithm of the
signature scheme). Our definitions are based on previous efforts for determinis-
tic public-key encryption [3], and yield three models for confidential signature
schemes:

– Weak confidentiality means that no information is leaked to a passive adver-
sary, except possibly for information related to the technical details of the
signature scheme.

– Mezzo confidentiality means that no information is leaked to a passive ad-
versary (in possession of the verification key). Note that this is in contrast
to deterministic public-key encryption where information cannot be hidden
in such circumstances [3].

– Strong confidentiality means that no information is leaked to an active ad-
versary (in possession of the verification key).

Our definitions are general enough to cover probabilistic and deterministic sig-
nature schemes, although we need an additional stipulation in the latter case,
preventing the case where the leaked information is the unique signature itself.

Relation to Anonymous Signatures. There are similarities between confidential
signatures and anonymous signatures [16,23]. Anonymous signatures hide the
identity of the signer of a high-entropy message, whereas confidential signatures
hide all the information about the message itself. The relationship between these
two primitives is similar to the relationship between anonymous encryption and
traditional public key encryption.

Constructing Confidential Signatures. We then show how to obtain confidential
signatures. We first introduce the related concept of confidential hash functions,
akin to hiding hash functions [3]. We prove that random oracles are confidential
hash functions, as are perfectly one-way hash functions [7,8] in a weaker form.

We then show that the use of weakly confidential hash functions in full do-
main hash (FDH) signature schemes yields weakly confidential signatures. We
show that FDH signature schemes and Fiat-Shamir signatures are confidential
in the random oracle model. We also show that strongly secure confidential sig-
natures can be obtained in the standard model via the use of a randomness
extractor [19,20] (provided the message entropy lies above some fixed bound).

464 A.W. Dent et al.

Applications to Signcryption. Secure message transmission is usually performed
via the encrypt-then-sign paradigm, where the sender encrypts the message un-
der the receiver’s public encryption key and then signs the ciphertext with his
own signing key. Signcryption schemes, introduced by [24], aim to gain effi-
ciency by combining the two operations. One consequence of previous security
definitions [1,2] is that the encrypt-and-sign approach, where one encrypts the
message and signs the message in parallel, does not provide a secure signcryption
in general as the signature may reveal information about the message.

We introduce security notions for (possibly deterministic) signcryption
schemes with high-entropy messages, along the lines of deterministic public-key
encryption and confidential signatures. In case of signcryption schemes, we can
also give a low-entropy-message version and show that this definition is strictly
stronger than the definitions for high-entropy messages. We show that the par-
allelizable encrypt-and-sign scheme is high-entropy confidential if the underly-
ing encryption scheme is IND-CCA2 and the signature scheme is confidential
(and deterministic). We finally prove that we can derandomize any signcryption
scheme to derive a secure deterministic scheme.

Besides the fact that some of our results require the signcryption scheme to
be deterministic, we also believe that deterministic signcryption schemes may be
intrinsically more secure than many current schemes. The reason is that most of
the current signcryption schemes are based on discrete-logarithm-based digital
signature schemes which are highly sensitive to imperfect randomness [18].

In situations where we have been forced due to size constraints to omit a
theorem’s proof, the proof can be found in the full version of the paper [10].

2 Confidential Signature Schemes

We formalise the notion of a confidential signature in three ways and give con-
structions. These confidentiality notions can be applied to either probabilistic or
deterministic signature schemes.

2.1 Definition of Confidential Signature Schemes

A digital signature scheme is a tuple of efficient algorithms SS = (SS.Setup,
SS.Kg, SS.Sign, SS.Ver). All algorithms (in this article) are probabilistic
polynomial-time (PPT) in the security parameter k (which we assume clear
from the context). The parameter generation algorithm produces a set of pa-
rameters common to all users λss

R← SS.Setup(1k); subsequently the key gen-
eration algorithm produces a public/private key pair (pk , sk) R← SS.Kg(λss).
(Until Section 4.2 we will silently assume that λss allows retrieval of k and
both pk and sk allow retrieval of λss , simplifying notation.) The signing algo-
rithm takes a message m ∈ {0, 1}∗ and the private key, and outputs a signature
σ R← SS.Sign(sk ,m). The verification algorithm takes as input a message, signa-
ture and public key, and outputs either a valid symbol % or an invalid symbol
⊥. This is written SS.Ver(pk ,m, σ). The standard notion for signature security

Confidential Signatures and Deterministic Signcryption 465

ExptwSig−b
A (k):

λss
R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)
(m0, t0) R← A1(λss)
(m1, t1) R← A1(λss)
σ∗ ← SS.Sign(sk , mb)
t′ R← ASS.Sign(sk,·)

2 (pk , σ∗)
If t′ = t0 then output 1
Else return 0

ExptmSig−b
A (k):

λss
R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)
(m0, t0) R← A1(pk)
(m1, t1) R← A1(pk)
σ∗ ← SS.Sign(sk , mb)
t′ R← ASS.Sign(sk,·)

2 (pk , σ∗)
If t′ = t0 then output 1
Else return 0

ExptsSig−b
A (k):

λss
R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)
(m0, t0) R← ASS.Sign(sk,·)

1 (pk)
(m1, t1) R← ASS.Sign(sk,·)

1 (pk)
σ∗ ← SS.Sign(sk , mb)
t′ R← ASS.Sign(sk,·)

2 (pk , σ∗)
If t′ = t0 then output 1
Else return 0

Fig. 1. Notions of confidentiality for (a) weakly confidential signature schemes; (b)
mezzo confidential signature schemes; (c) strongly confidential signature schemes. The
signing algorithm is applied to the message vector m component-wise.

is that of unforgeability under chosen message attacks (see Appendix A.1 for
formal definitions).

We present three confidentiality notions for a digital signature scheme —
see Figure 1. These notions are split depending on the adversary’s capabilities,
which corresponds in a natural way to real-life scenarios where it may be possible
to derive some information about a message from a signature which might be
deemed practically useless, e.g., the value of the hash of the message, but leakage
of which cannot be avoided.

In the weak confidentiality model, the attacker should not be able to determine
any information about the messages apart from that which can be obtained di-
rectly from the signature itself. Mezzo confidentiality models the scenario where
the attacker is able to retrieve public keys of the users, but cannot interact
directly with their communication network and obtain signatures of messages.
In the strong model, an active attacker should not be able to determine any
information about the messages apart from the signature itself.

For x ∈ {w,m, s}, the attacker A’s advantage in the xSig game is defined to
be:

AdvxSig
A (k) = |Pr[ExptxSig−0

A (k) = 1]− Pr[ExptxSig−1
A (k) = 1]| .

A signature scheme is weakly confidential (resp. mezzo confidential/strongly con-
fidential) if all PPT attackersA = (A1,A2) have negligible advantage AdvxSig

A (k)
in the wSig (resp. mSig/sSig) security game, subject to the following restraints:

– Pattern preserving: there exist a length function �(k) and equality functions
,ij ∈ {=, �=} (1 ≤ i, j ≤ �(k)) such that for any admissible input a in the
corresponding game and all possible (m, t) R← A1(a) we have that |m| = �(k)
and mi ,ij mj .

– High entropy: the function π(k) = maxm∈{0,1}∗ Pr[mi = m : (m, t) R←
A1(a)] is negligible, where the probability is over A1’s random tape only
(and i ∈ N and all choices of the other algorithms are fixed). The value
μ(k) = − log2 π(k) is termed the adversary’s min entropy.

466 A.W. Dent et al.

SS.Kg′(λss):
r R← {0, 1}k

(pk , sk) R← SS.Kg(λss)
Return (pk‖r, sk‖r)

SS.Sign′(sk‖r, m):
If m = m′‖r

Return SS.Sign(sk , m)‖m
Else

Return SS.Sign(sk , m)

SS.Ver′(pk‖r, m, σ):
If m = m′‖r

Parse σ as σ′‖m
σ ← σ′

Return SS.Ver(pk , m, σ)

Fig. 2. A signature scheme which is weakly confidential but not mezzo confidential

For deterministic schemes we need the following additional constraint, ruling out
trivial attacks:

– Signature free: A1 does not output a message mi ∈ m where it has queried
the signature oracle on mi. (This security requirement only affects strongly
confidential signature schemes.)

The latter condition prevents an attacker against a deterministic scheme from
“winning” by setting t ← SS.Sign(sk ,m) — i.e., it prevents the attacker from
“winning” the game simply by determining that the message m has the property
that its unique signature is SS.Sign(sk ,m).

The notions of confidentiality are strictly increasing in strength. If SS is a
weakly confidential signature schemes, then Figure 2 depicts a scheme which
is weakly confidential but not mezzo confidential. Similarly, if SS is a mezzo
confidential signature scheme, then Figure 3 shows a scheme which is mezzo
confidential but not strongly confidential.

SS.Kg′(λss):
(pk , sk) R← SS.Kg(λss)
r R← {0, 1}k

σr ← SS.Sign(sk , 0‖r)
Return (pk , sk‖r‖σr)

SS.Sign′(sk‖r‖σr, m):
If m = m′‖r‖σr

Set σ′ ← SS.Sign(sk , 1‖m)
Return σ = (σ′, m)

Else
Set σ ← SS.Sign(sk , 2‖m)
Return σ = (σ′, r, σr)

SS.Ver′(pk , m, σ):
If σ = (σ′, m′)

Parse m′ as m′ = m′′‖r′‖σ′
r

Return � iff
SS.Ver(pk , 1‖m′, σ′) = �, and
m = m′, and
SS.Ver(pk , 0‖r′, σ′

r) = �
If σ = (σ′, r′, σ′

r)
Return � iff

SS.Ver(pk , 2‖m, σ′) = �, and
m �= m′′‖r′‖σ′

r for any m′′ ∈ {0, 1}∗,
and SS.Ver(pk , 0‖r′, σ′

r) = �
Else return ⊥

Fig. 3. A signature scheme which is mezzo confidential but not strongly confidential

3 Confidential Hash Functions and Signature Schemes

3.1 Confidential Hash Functions

We recap the notion of a hiding hash function by Bellare et al. [3], but call such
functions confidential here. For our purposes, a hash function H = (H.Kg, H) is

Confidential Signatures and Deterministic Signcryption 467

ExptwHash-b
A (k):

H
R← H.Kg(1k)

(x0, t0) R← A1(1k)
(x1, t1) R← A1(1k)
h ← H(xb)
t′ R← A2(H, h)
If t′ = t0 then output 1
Else return 0

ExptsHash-b
A (k):

H
R← H.Kg(1k)

(x0, t0) R← A1(H)
(x1, t1) R← A1(H)
h ← H(xb)
t′ R← A2(H, h)
If t′ = t0 then output 1
Else return 0

Fig. 4. Notions of confidentiality for (a) weakly confidential hash functions; (b)
strongly confidential hash functions. The hash function is applied to the data vector x
component-wise.

a PPT pair of algorithms for key generation and hashing, respectively. We will
identify the description output by the key generation algorithm H.Kg with the
hash function H itself. The collision-finding advantage Advcol

A of an attacker A
against a hash function H is defined as

Advcol
H,A(k) = Pr

[
H(x; r) = H(x′; r′)

and (x, r) �= (x′, r′) : (x, x′, r, r′) R← A(H); H R← H.Kg(1k)
]

.

The hash function H is called collision-resistant if all PPT attackers A have
negligible advantage Advcol

H,A(k) (as a function of k). We require that the hash
function is hiding/confidential against an attacker A = (A1,A2) playing one of
the games in Figure 4. For x ∈ {w, s} the attacker’s advantage is defined to be

AdvxHash
H,A (k) = |Pr[ExptxHash-0

A (k) = 1]− Pr[ExptxHash-1
A (k) = 1]| .

A hash function is weakly (resp. strongly) confidential if every PPT attacker
A has negligible advantage in the corresponding game subject to the following
restraints:

– Pattern preserving: there exist a length function �(k) and equality functions
,ij ∈ {=, �=} (1 ≤ i, j ≤ �(k)) such that for all possible (x, t) R← A1(1k) we
have that |x| = �(k) and xi ,ij xj .

– High entropy: the function π(k) = maxx∈{0,1}∗ Pr[xi = x : (x, t) R← A1(a)]
is negligible where the probability is only over A1’s random tape. We define
μ(k) = − log2 π(k) to be the adversary’s minimum entropy.

Note that collision-resistant deterministic hash functions cannot achieve strong
confidentiality because an adversary A1 can set t = H(x) for some message x and
A2 can easily obtain this value from the hash vector h. We also note that for
“unkeyed” hash functions both notions are equivalent and so no unkeyed, deter-
ministic hash function can be considered confidential (unless the hash function
is almost constant).

In the random oracle model, where the adversary is granted oracle access
to the hash function H instead of receiving the description as input, we give

468 A.W. Dent et al.

A1 access to the random oracle in the strong case, but deny A1 access to H
in the weak case. It is easy to see that a random oracle thus achieves weak
confidentiality, whereas the above attack on deterministic functions still applies
in the strong case. However, under the additional constraint that A1 does not
query H about any x in its output x (hash-free adversaries) a random oracle is
also strongly confidential:

Proposition 1 (Confidentiality of Random Oracles). For any adversary
A = (A1,A2) where A1 outputs vectors of length �(k) and with min-entropy
μ(k) = − log π(k), and where A2 makes at most qh(k) queries to the random
oracle, we have

AdvxHash
H,A (k) ≤ 2 · qh(k) · �(k) · π(k)

for x ∈ {w, s} where A is assumed to be hash-free (in the strong case).

As for constructions in the standard model, we note that perfectly one-way func-
tions (POWs) [7,8] provide a partial solution. POWs have been designed to hide
all information about preimages, akin to our confidentiality notion. However, all
known constructions of POWs are only good for fixed (sets of) input distribu-
tions where the distributions can depend only on the security parameter but not
the hash function description. Furthermore, known POWs usually require the
conditional entropy of any xi to be high, given the other xj ’s. In light of this,
any �(k)-valued perfectly one-way function [8] is a weakly confidential hash func-
tion. Hence, we can build such hash functions based, for example, on claw-free
permutations [8] or one-way permutations [8,15].

3.2 Full-Domain Hash Signatures

A full-domain hash (FDH) signature scheme FDH for deterministic hash function
H is a signature scheme in which the signing algorithm computes a signature as
σ = f(H(m)) for some secret function f , and the verification algorithm checks
that g(σ) = H(m) for some public function g. More formally (assuming that
FDH.Setup(1k) outputs λss = 1k and that there exists a PPT algorithm which
generates the functions (f, g)← FDH.Kg′(λss)):

FDH.Kg(λss):
(f, g)← FDH.Kg′(λss)
H← H.Kg(1k)
(pk , sk) = ((g, H), (f, H))
Return (pk , sk)

FDH.Sign(sk , m):
Parse sk as (f, H)
Return σ = f(H(m))

FDH.Ver(pk ,m, σ):
Parse pk as (g, H)
Return � if H(m) = g(σ)
Otherwise return ⊥

Unforgeability of FDH signatures in the ROM has been shown in [5,9].

Proposition 2 (Weak Confidentiality of FDH). TheFDH-signature scheme
FDH for hash function H is weakly confidential if H is weakly confidential. More
precisely, for any adversary A = (A1,A2) against the weak confidentiality of
FDH, where A1 outputs �(k) messages and A2 makes at most qs(k) signature

Confidential Signatures and Deterministic Signcryption 469

queries, there exists an adversary B = (B1,B2) against the weak confidentiality
of the hash function such that

AdvwSig
FDH,A(k) ≤ AdvwHash

H,B (k),

where B1’s running time is identical to the one of A1, and B2’s running time is
the one of A2 plus TimeFDH.Kg(k) + (qs + �(k)) · TimeFDH.Sign(k) +O(k).

The proof actually shows that the signature scheme remains confidential for
an adversarially chosen key pair (f, g), i.e., confidentiality only relies on the
confidentiality of the hash function. Moreover, by Proposition 1, we have that
FDH-signature schemes are weakly confidential in the random oracle model.

Proof. Assume that FDH is not weakly confidential and that there exists an
adversary A = (A1,A2) successfully breaking this property. Then we construct
an adversary B = (B1,B2) against the weak confidentiality of the hash function
as follows. Adversary B1 on input 1k runs A1 on input 1k and outputs this
algorithm’s answer (m, t).

Algorithm B2 receives as input a description H of the confidential hash function
and a vector h of hash values. B2 runs (f, g)← FDH.Kg′(1k), sets pk ← (g, H) and
sk ← (f, H), and computes signatures σ∗ = f(h). It invokes A2 on (1k, pk ,σ∗)
and answers each subsequent signature request for message m by computing
σ = FDH.Sign(sk ,m). When A2 outputs t′ algorithm B2 copies this output and
stops.

It is easy to see that B’s advantage attacking the confidentiality of the hash
function is identical to A’s advantage attacking the confidentiality of the FDH
signature scheme (the fact that A1 preserves pattern and produces high-entropy
messages carries over to B1). ��

No (unforgeable) FDH-signature scheme is mezzo confidential, because a sig-
nature on the message m leaks the value H(m). More formally, an attacker A1
can pick a message m R← {0, 1}k and set t ← H(m). Adversary A2 then receives
σ ← f(H(m)) and can recover t = H(m) by computing g(σ).

3.3 Strongly Confidential Signatures in the ROM

Recall from the previous section that FDH signatures leak the hash value of a
message. To prevent this, we make the hashing process probabilistic and compute
(r, H(r,m)) for randomness r. Then A1 cannot predict the hash values of the
challenge messages due to r (which becomes public only afterwards) and A2
cannot guess the hash values due to the entropy in the message m (even though
r is then known). Our instantiation is shown in Figure 5.

Proposition 3 (Random Oracle Instantiation). If H is a hash function
modeled as a random oracle, then the signature scheme SS′ is strongly confi-
dential. That is, for any attacker A = (A1,A2) against the strong confidentiality
of the signature scheme SS′, where A1 outputs a vector of length �(k) and with

470 A.W. Dent et al.

Suppose SS = (SS.Setup, SS.Kg, SS.Sign, SS.Ver) is a signature scheme. We define a
new signature scheme SS′ as follows (where SS.Setup′ ≡ SS.Setup):

SS.Kg′(λss):
(pk , sk) ← SS.Kg(λss)
H

R← H.Kg(1k)
pk ′ ← (pk , H); sk ′ ← (sk , H)
Return (pk ′, sk ′)

SS.Sign′(sk ′, m):
Parse sk ′ as (sk , H)
r R← {0, 1}k

h ← H(r, m)
σ′ ← SS.Sign(sk , h)
σ ← (σ′, r)
Return σ

SS.Ver′(pk ′, m, σ):
Parse pk ′ as (pk , H)
Parse σ as (σ′, r)
Return SS.Ver(pk , H(r, m), σ′)

Fig. 5. Construction of a strongly confidential signature scheme in the ROM

min-entropy μ(k) = − log π(k), and where A2 asks at most qh oracle queries
(signing queries and direct hash oracle queries), we have

Adv sSig
SS′,A(k) ≤ 2 · qh(k) · �(k) · (2−k + π(k)) .

Clearly, the scheme is also (strongly) unforgeable if the underlying signature
scheme is (strongly) unforgeable.

3.4 Fiat-Shamir Signature Schemes

Our second instantiation is based upon the Fiat-Shamir paradigm [14] that turns
every (three-round) identification scheme into a signature scheme. An identifi-
cation scheme (ID scheme) is defined by a triplet (G,S,R), where G is a key
generation algorithm and the sender S wishes to prove his identity to the re-
ceiver R. More formally: G(1k) is an efficient algorithm that outputs a key
pair (ipk, isk). (S(isk), R(ipk)) are interactive algorithms and it is required that
Pr[(S(isk), R(ipk)) = 1] = 1 (where the probability is taken over the coin tosses
of S,R and G). A canonical ID scheme is a 3-round ID scheme (α;β; γ) in which
α is sent by the sender S, β by the receiver R and consists of R’s random
coins, and γ is sent by the sender. For a sender S with randomness r, we denote
α = S(isk; r) and γ = S(isk, α, β; r). The Fiat-Shamir signature scheme is given
in Figure 6.

In order to prove the confidentiality of this scheme, we need to assume that
the commitment α of the Fiat-Shamir scheme has non-trivial entropy. This can
always be achieved by appending public randomness.

Proposition 4 (Fiat-Shamir Instantiation). If H is a hash function modeled
as a random oracle, then the Fiat-Shamir instantiation SS′′ for non-trivial com-
mitments is strongly confidential. More precisely, for any attacker A = (A1,A2)
against the strong confidentiality of the signature scheme SS′′ where A1 out-
puts a message vector of length �(k) with min-entropy μ(k) = − logπ(k), α has
min-entropy μ′(k) = − log π′(k), and A2 asks at most qh oracle queries (signing
queries and direct hash oracle queries), we have

Adv sSig
SS′′,A(k) ≤ 2 · qh(k) · �(k) · (π(k) + π′(k)).

Confidential Signatures and Deterministic Signcryption 471

Suppose (G, S, R) is a canonical identification scheme and H is a hash function family.
We define the signature scheme SS′′ = (SS.Setup′′, SS.Kg′′, SS.Sign′′, SS.Ver′′) as
follows (where SS.Setup(1λ) returns λss = 1λ):

SS.Kg′′(λss):
(ipk, isk) ← G(λss)
H

R← H.Kg(1k)
pk ′ ← (ipk, H); sk ′ ← (isk, H)
Return (pk ′, sk ′)

SS.Sign′′(sk ′, m):
Parse sk ′ as (isk, H)
r R← {0, 1}k

α ← S(isk; r)
β ← H(α, m)
γ ← S(isk, α, β; r)
σ ← (α, β, γ)
Return σ

SS.Ver′′(pk ′, m, σ):
Parse pk ′ as (ipk, H)
Parse σ as (α, β, γ)
β′ ← H(α, m)
Return 1 iff β = β′

and R(ipk, α, β, γ) = 1

Fig. 6. The Fiat-Shamir paradigm that turns every ID scheme into a signature scheme

3.5 Strongly Confidential Signatures from Randomness Extraction

Our instantiation in the standard model relies on randomness extractors [19,20]
and is depicted in Figure 7. The main idea is to smooth the distribution of the
message via an extractor, and to sign the almost uniform value h.

Recall that a strong (a, b, n, t, ε)-extractor is an efficient algorithm Ext :
{0, 1}a×{0, 1}b → {0, 1}n which takes some random input m ∈ {0, 1}a (sampled
according to some distribution with min-entropy at least t) and some random-
ness r ∈ {0, 1}b. It outputs h ← Ext(m, r) such that the statistical distance
between (r, h) and (r, u) is at most ε for uniform random values r ∈ {0, 1}b and
u ∈ {0, 1}n.

To ensure unforgeability we need to augment the extractor’s extraction prop-
erty by collision-resistance, imposing the requirement that the extractors be
keyed and introducing dependency of the extractor’s parameters a, b, n, t, ε on
the security parameter k. For a survey about very efficient constructions of such
collision-resistant extractors see [11].

In order to use extractors, we need a stronger assumption on the message
distribution: we assume that the adversary A1 now outputs vectors of messages
such that each message in the vector has min-entropy greater than some fixed
bound μ(k) given the other messages. Observe that the collision-resistance re-
quirement on the extractor implies that μ must be super-logarithmic. We say
that the output has conditional min-entropy μ(k).

Proposition 5 (Extractor Instantiation). If Ext is an (a, b, n, t, ε)-extractor
then the extractor instantiation of SS′′′ is strongly confidential. More specifically,
for any attacker A = (A1,A2) against the strong confidentiality of the signature
scheme SS′′′, where A1 outputs a vector of length �(k) with conditional min-
entropy μ(k) ≥ t(k), we have

Adv sSig
SS′′′,A(k) ≤ 2 · �(k) · ε(k).

Note that our construction of the randomness extractor operates on messages
of a fixed length of a(k) input bits, and the signature length depends on this

472 A.W. Dent et al.

Suppose SS = (SS.Setup, SS.Kg, SS.Sign, SS.Ver) is a signature scheme. We define a
new signature scheme SS′′′ as follows (where SS.Setup′′′ ≡ SS.Setup):

SS.Kg′′′(λss):
(pk , sk) ← SS.Kg(λss)
Choose an extractor Ext
pk ′ ← (pk , Ext)
sk ′ ← (sk , Ext)
Return (pk ′, sk ′)

SS.Sign′′′(sk ′, m):
Parse sk ′ as (sk , Ext)
r R← {0, 1}b

h ← Ext(m, r)
σ′ ← SS.Sign(sk , h)
σ ← (σ′, r)
Return σ

SS.Ver′′′(pk ′, m, σ):
Parse pk ′ as (pk , Ext)
Parse σ as (r, σ′)
Set h ← Ext(m, r)
Return SS.Ver(pk , h, σ′)

Fig. 7. Construction of strongly confidential signature scheme based on randomness
extractors

value a(k). To process larger messages we can first hash input messages with
a collision-resistant hash function, before passing it to the extractor. In this
case, some care must be taken to determine a correct bound for the entropy lost
through the hash function computation.

4 Deterministic Signcryption

Signcryption is a public-key primitive which aims to simultaneously provide mes-
sage confidentiality and message integrity. Signcryption was introduced by Zheng
[24] and security models were independently introduced by An, Dodis and Ra-
bin [1] and by Baek, Steinfeld and Zheng [2]. Similar to public-key encryption,
achieving confidentiality in the formal security models requires that signcryp-
tion is a randomised process; however, we may also consider the confidentiality
of deterministic signcryption schemes on high-entropy message spaces. We will
also see that a practical version of confidentiality may even be achieved by a
deterministic signcryption scheme for low entropy message distributions.

4.1 Notions of Confidentiality for Signcryption Schemes

A signcryption scheme is a tuple of PPT algorithms SC = (SC.Setup, SC.Kgs,
SC.Kgr, SC.SignCrypt, SC.UnSignCrypt). The setup algorithm generates public
parameters λsc

R← SC.Setup(1k) common to all algorithms. We will generally
assume that all algorithms take λsc as an implicit input, even if it is not ex-
plicitly stated. The sender key-generation algorithm generates a key pair for
the sender (pkS , skS) R← SC.Kgs(λsc) and the receiver key-generation algorithm
generates a key pair for a receiver (pkR, skR) R← SC.Kgr(λsc). The signcryp-
tion algorithm takes as input a message m ∈ M, the sender’s private key
skS , and the receiver’s public key pkR, and outputs a signcryption ciphertext
C R← SC.SignCrypt(skS , pkR,m). The unsigncryption algorithm takes as input
a ciphertext C ∈ C, the sender’s public key pkS , and the receiver’s private key
skR, and outputs either a message m R← SC.UnSignCrypt(pkS , skR, C) or an
error symbol ⊥.

Confidential Signatures and Deterministic Signcryption 473

It is interesting to consider the basic attack on a deterministic signcryption
scheme. In such an attack, the attacker picks two messages (m0,m1) and receives
a signcryption C∗ of the message mb. The attacker checks whether C∗ is the
signcryption of m0 by requesting the signcryption of m0 from the signcryption
oracle. As in the case of public-key encryption, we may prevent this basic attack
by using a high-entropy message space and so prevent the attacker being able to
determine which message to query to the signcryption oracle. However, unlike the
case of public-key encryption, we may also prevent this attacker by forbidding
the attacker to query the signcryption oracle on m0 and m1. We can therefore
differentiate between the high-entropy case (in which the message distribution
chosen by the attacker has high entropy) and the low-entropy case (in which
the attacker is forbidden from querying the signcryption oracle on a challenge
message).

We give definitions for the high-entropy and low-entropy confidentiality in
Figure 8. In both cases, i.e. for x ∈ {h, l}, the attacker’s advantage is defined as

AdvxSCR
SS,A (k) = |Pr[ExptxSCR−1

A = 1]− Pr[ExptxSCR−0
A = 1]| .

A signcryption scheme is high-entropy confidential if every PPT attacker A has
negligible advantage in the hSCR game subject to the following restrictions:

– Strongly pattern preserving: there exists a length function �(k), message
length functions qi(k), and equality functions ,ij ∈ {=, �=} (1 ≤ i, j ≤ �(k))
such that for all possible (m, t) R← A1(λsc , pk∗

S , pk
∗
R) we have that |m| =

�(k), |mi| = qi(k) and mi ,ij mj .
– High entropy: the function π(k) = maxm∈{0,1}∗ Pr[mi = m : (m, t) R← A1(a)]

is negligible where the probability is only over A1’s random tape. The value
μ(k) = − log π(k) is known as the adversary’s minimum entropy.

– Signature free: A1 does not output a message mi ∈ m where it has queried
the signcryption oracle on the pair (pk∗

R,mi).
– Non-trivial:A2 does not query the unsigncryption oracle on any pair (pk∗

S , C)
where C ∈ C∗.

A signcryption scheme is low-entropy confidential if every PPT attacker A has
negligible advantage in the lSCR game subject to the restrictions that A never
queries the encryption oracle on either (pk∗

R,m0) or (pk∗
R,m1), and A2 never

queries the decryption oracle on (pk∗
S , C

∗).

Proposition 6. Any deterministic signcryption scheme SC which is low-entropy
confidential is also high-entropy confidential. In particular, for any adversary A
against high-entropy confidentiality, making at most qs(k) signcryption queries
and where A1 outputs �(k) messages with min-entropy μ(k) = − logπ(k), there
exists an adversary Ā such that

AdvhSCR
SC,A (k) ≤ �(k) · Adv lSCR

SC,Ā (k) + 4 · qs(k) · �(k) · π(k),

where the running time of Ā equals the time of A plus O(k).

474 A.W. Dent et al.

ExpthSCR−b
A (k):

λsc
R← SC.Setup(1k)

(pk∗
S , sk∗

S) R← SC.Kgs(λsc)
(pk∗

R, sk∗
R) R← SC.Kgr(λsc)

(m0, t0) R← AO
1 (λsc , pk

∗
S , pk∗

R)
(m1, t1) R← AO

1 (λsc , pk
∗
S , pk∗

R)
C∗ ← SC.SignCrypt(λsc , sk

∗
S , pk∗

R, mb)
t′ R← AO

2 (λsc , pk
∗
S , pk∗

R, C∗)
If t′ = t0 then output 1
Else return 0

Expt lSCR−b
A (k):

λsc
R← SC.Setup(1k)

(pk∗
S , sk∗

S) R← SC.Kgs(λsc)
(pk∗

R, sk∗
R) R← SC.Kgr(λsc)

(m0, m1, ω) R← AO
1 (λsc , pk

∗
S , pk∗

R)
C∗ ← SC.SignCrypt(λsc , sk

∗
S , pk∗

R, mb)
b′ R← AO

2 (C∗, ω)
Output b′

Fig. 8. Notions of confidentiality for (a) high-entropy signcryption schemes and (b)
low-entropy signcryption schemes. Note that A1 may pass the state information
ω to A2 in the lSCR game. The attacker’s have access to a signcryption oracle
SC.SignCrypt(sk∗

S , ·, ·) and an unsigncryption oracle SC.UnSignCrypt(·, sk∗
R, ·).

The proof essentially shows that, since the challenge messages produced by a
high-entropy attacker A1 have min-entropy μ(k), the probability that A2 queries
the signcryption oracle on one of those messages is bounded by 4·qs(k)·�(k)·π(k).
If this does not occur, then a low-entropy attacker can easily run a high-entropy
attacker as a black-box subroutine. The proof holds for deterministic schemes
only. We are not aware if the same is true for probabilistic schemes.

We also have that the low-entropy confidentiality definition is strictly stronger
than the high-entropy confidentiality definition. If SC is a high-entropy confiden-
tial signcryption scheme, then the signcryption scheme SC′ given in Figure 9 is
high-entropy confidential signcryption scheme but not a low-entropy confidential
signcryption scheme.

SC.SignCrypt′(skS , pkR, m):
C ← SC.SignCrypt(skS , pkR, m)
If m = 0k

Return C‖0
Else

Return C‖1

SC.UnSignCrypt′(pkS , skR, C):
Parse C as C′‖c for c ∈ {0, 1}
m ← SC.UnSignCrypt(pkS , skR, C′)
If c = 0 and m �= 0k

Return ⊥
If c = 1 and m = 0k

Return ⊥
Else

Return m

Fig. 9. A signcryption scheme which is high-entropy secure but not low-entropy secure

4.2 The Encrypt-and-Sign Signcryption Scheme

Initially, it may be thought that high-entropy confidentiality may be easily
achieved through the combination of deterministic encryption and confidential
signatures. However, many of the classic composition theorems, such as encrypt-
then-sign, fail to achieve high-entropy security even when instantiated with se-
cure components.

Confidential Signatures and Deterministic Signcryption 475

SC.Setup(1k)
λss ← SS.Setup(1k)
λpke ← PKE.Setup(1k)
λsc ← (λss , λpke)
Return (λsc)

SC.Kgr(λsc)
Parse λsc as (λss , λpke)
(pkR, skR) ← PKE.Kg(λpke)
Return (pkR, skR)

SC.Kgs(λsc)
Parse λsc as (λss , λpke)
(pkS , skS) ← SS.Kg(λss)
Return (pkS , skS)

SC.SignCrypt(λsc , pkR, skS , m)
Parse λsc as (λss , λpke)
c ← PKE.Enc(λpke , pkR, (pkS ||m))
σ ← SS.Sign(λss , skS , (pkR||m))
Return C = (c, σ)

SC.UnSignCrypt(λsc , skR, pkS , C)
Parse λsc as (λss , λpke)
Parse C as (c, σ)
(pk ′

S ||m′) ← PKE.Dec(λpke , skR, c)
If pk ′

S �= pkS , reject
Extract pkR from skR

If SS.Ver(λss , pkS , (pkR||m′), σ) = ⊥, reject
Return m′

Fig. 10. The Encrypt-and-Sign signcryption scheme

However, we can show that the encrypt-and-sign (which is typically inse-
cure as a signcryption scheme) is secure when instantiated with an IND-CCA2
public-key encryption scheme and a strongly confidential signature scheme1. The
construction is given in Figure 10. The scheme can easily be shown to be unforge-
able (in the sense that an attacker cannot obtain a signcryption of any message
which was not previously sent by that sender to that receiver).

Theorem 1. If the signature scheme is deterministic, strongly unforgeable, and
strongly confidential, and the encryption scheme is IND-CCA2 secure, then the
signcryption scheme is confidential in the high-entropy model. In particular, if
there exists an attacker A against the high-entropy security of the signcryption
scheme (asking �(k) challenge messages and making at most qsc(k) signcryption
queries), then there exist attackers Apke , Ass , and Asunf against the IND-CCA2
security of the encryption scheme, against the strong confidentiality of the signa-
ture scheme, and against the strong unforgeability of the signature scheme, such
that

AdvhSCR
E+S,A(k) ≤ �(k) · Advcca2

PKE,Apke
(k) + AdvsSig

SS,Ass
(k) + Advseuf−cma

SS,Asunf
(k) .

where the running times of Apke , Ass , and Asunf equal the one of A plus (qsc(k)+
�(k)) · (TimeSC.SignCrypt(k) + TimeSC.UnSignCrypt(k)) +O(k).

The security of this scheme can be proven in a manner similar to the encryp-
tion/signature composition theorems proven by An et al. [1].

1 Strongly confidential, probabilistic signature schemes are given in Sections 3.3
and 3.4. These can be transformed in a strongly confidential, deterministic signature
schemes using the derandomization techniques discussed in the next section.

476 A.W. Dent et al.

4.3 Derandomization

Goldreich [17] presents a technique to turn any probabilistic signature scheme
into a deterministic one. The idea is to include the secret key κ of a pseudoran-
dom function (PRF.Kg, PRF) in the secret signing key and, when signing a message
m, use the random coins r = PRF(κ;m) in this process. Note that the resulting
scheme now yields the same signature if run twice on the same message. A formal
definition of a PRF can be found in Appendix A.

We show that Goldreich’s idea applies to signcryption schemes as well, taking
advantage of the fact that a signcryption scheme involves a secret signing key in
which we can put the key κ of the pseudorandom function. Nonetheless, whereas
a probabilistic signcryption scheme usually hides the fact that the same message
has been encrypted twice, a derandomized version clearly leaks this information.

For a signcryption scheme SC the derandomized version SCPRF based on a
pseudorandom function PRF works according to Goldreich’s strategy:

SC.SetupPRF(1k):
Return λsc ← SC.Setup(1k)

SC.KgsPRF(λsc):
(skS , pkS)← SC.Kgs(λsc)
κ← PRF.Kg(1k)
skPRF

S ← (skS , κ); pkPRF
S ← pkS

Return (skPRF
S , pkPRF

S)

SC.KgrPRF(λsc):
Return (skR, pkR)← SC.Kgr

SC.SignCryptPRF(skPRF
S , pkR, m):

Parse skPRF
S as (skS , κ)

r ← PRF(κ, (pkR, m))
C ← SC.SignCrypt(skS , pkR, m; r)

(i.e. using randomness r)
Return C

SC.UnSignCryptPRF(skR, pkPRF
S , C):

Return SC.UnSignCrypt(skR, pkS , C)

Proposition 7 (Derandomized Signcryption). Let SC be an unforgeable
and high-entropy (resp. low-entropy) confidential signcryption scheme. Then the
scheme SCPRF is a deterministic, unforgeable signcryption scheme which is high-
entropy (resp. low-entropy) confidential. That is, for x ∈ {l, h} and any adver-
sary A = (A1,A2) against xSCR confidentiality, there exist adversaries D and
B = (B1,B2) such that

AdvxSCR
SCPRF,A(k) ≤ 2 · AdvPRF

D (k) + AdvxSCR
SC,B (k) + 2qsc(k) · �(k) · π(k)

where D’s running time is identical to the time of A, plus TimeSC.Setup(k) +
TimeSC.Kgs(k)+TimeSC.Kgr(k)+(qsc+�(k))·TimeSC.SignCrypt(k)+O(k); the running
time of B equals the time of A plus O(qsc · log qsc).

Acknowledgements. The authors wish to thank the ECRYPT II MAYA work-
ing group on the design and analysis of primitives and protocols for interesting
preliminary discussions on this topic. The work described in this report has in
part been supported by the Commission of the European Communities through
the ICT program under contract ICT-2007-216676 ECRYPT II. The information

Confidential Signatures and Deterministic Signcryption 477

in this document is provided as is, and no warranty is given or implied that the
information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability. Dominique and Marc were supported by the Emmy
Noether grant Fi 940/2-1 of the German Research Foundation (DFG), and by
CASED (www.cased.de).

References

1. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,
Heidelberg (2002)

2. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption.
Journal of Cryptology 20(2), 203–235 (2007)

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

4. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
Definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

5. Bellare, M., Rogaway, P.: The exact security of digital signatures — how to sign
with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 399–416. Springer, Heidelberg (1996)

6. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

7. Canetti, R.: Towards realizing random oracles: Hash functions that hide all
partial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 455–469. Springer, Heidelberg (1997)

8. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions. In: Proc. 30th Symposium on the Theory of Computing – STOC 1998,
pp. 131–140. ACM, New York (1998)

9. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

10. Dent, A.W., Fischlin, M., Manulis, M., Stam, M., Schröder, D.: Confidential signa-
tures and deterministic signcryption (2009), http://eprint.iacr.org/2009/588

11. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness extrac-
tion and key derivation using the CBC, Cascade and HMAC modes. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)

12. Dodis, Y., Smith, A.: Entropic security and the encryption of high entropy mes-
sages. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 556–577. Springer,
Heidelberg (2005)

13. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM Journal on
Computing 30(2), 391–437 (2000)

14. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

15. Fischlin, M.: Pseudorandom function tribe ensembles based on one-way permu-
tations: Improvements and applications. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 429–444. Springer, Heidelberg (1999)

http://eprint.iacr.org/2009/588

478 A.W. Dent et al.

16. Fischlin, M.: Anonymous signatures made easy. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 31–42. Springer, Heidelberg (2007)

17. Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110.
Springer, Heidelberg (1987)

18. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes.
Designs, Codes and Cryptography 23(3), 283–290 (2001)

19. Nisan, N., Ta-Shma, A.: Extracting randomness: A survey and new constructions.
Journal of Computer and System Science 58(1), 148–173 (1999)

20. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer
and System Science 52(1), 43–52 (1996)

21. Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

22. Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 133–148. Springer,
Heidelberg (2002)

23. Yang, G., Wong, D.S., Deng, X., Wang, H.: Anonymous signature schemes. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 347–363. Springer, Heidelberg (2006)

24. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption)
� cost(signature) + cost(encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

A Standard Security Notions

A.1 Signature Schemes

The standard notion for signature security is that of (strong) existential unforge-
ability under chosen message attacks (sEUF-CMA). The strong version is defined
below. Freshness of (m,σ) indicates that σ was never received by A as response
to a signing request on m.

Advseuf−cma
SS,A (k)=Pr

⎡⎢⎣ SS.Ver(λss , pk , m, σ) = �
(m, σ) is fresh :

λss
R← SS.Setup(1k)

(pk , sk) R← SS.Kg(λss)
(m,σ) R← ASS.Sign(λss ,sk,·)(λpke , pk)

⎤⎥⎦ .

The advantage Adveuf−cma
SS,A (k) of the slightly weaker notion (EUF-CMA) is defined

analogously, but this time m only needs to be fresh.

A.2 Public-Key Encryption

A public key encryption scheme is a tuple of algorithms PKE = (PKE.Setup,
PKE.Kg, PKE.Enc, PKE.Dec). First the common parameters for the given security
level k ∈ N are generated by λpke

R← PKE.Setup(1k) after which a user’s pub-
lic/private keys are generated using (pk , sk) R← PKE.Kg(λpke). Given such a key
pair, a message m ∈ {0, 1}∗ is encrypted by c R← PKE.Enc(λpke , pk ,m); a cipher-
text is decrypted by m R← PKE.Dec(λpke , sk , c). For consistency, we require that
for all messages m ∈ {0, 1}∗, we have that PKE.Dec(sk , PKE.Enc(pk ,m)) = m.

Confidential Signatures and Deterministic Signcryption 479

We require a PKE is secure against IND-CCA2 attacks [21,13], for which the
advantage of an adversary A = (A1,A2) is defined as

Advcca2
PKE,A(k) =

∣∣Pr
[
Exptcca2−0

A = 1
]
− Pr

[
Exptcca−1

A = 1
]∣∣ ,

where (for b ∈ {0, 1}):

Exptcca2−b
A

λpke
R← PKE.Setup(1k)

(pk , sk) R← PKE.Kg(λpke)
(m0,m1, ω) R← APKE.Dec(λpke ,sk ,·)

1 (λpke , pk)
c∗ R← PKE.Enc(λpke , pk ,mb)
b′ R← APKE.Dec(λpke ,sk ,·)

2 (c∗, ω)
Output 1 if b′ = b

The adversary A2 is may not query PKE.Dec(sk , ·) with c∗. A PKE scheme
PKE is IND-CCA2 secure if the advantage function Advcca2

PKE,A(k) is a negligible
function for all probabilistic polynomial-time adversaries A = (A1,A2).

A.3 Pseudo-Random Functions

A pseudo-random function is a pair of algorithms PRF = (PRF.Kg, PRF). The key
generation algorithm outputs a key κ R← PRF.Kg(1k). For our purposes, a pseudo-
random function PRF(κ, ·) takes arbitrary bitstrings as inputs and outputs a
bitstring in a given space R. Let F be the set of all functions from f : {0, 1}∗ →
R. The security of a PRF against a PPT attacker A is defined by the following
two games:

ExptPRF−0
A (k):

κ R← PRF.Kg(1k)
Return APRF(κ,·)(1k)

ExptPRF−1
A (k):

f R← F
Return Af(·)(1k)

The attacker’s advantage is defined to be:

AdvPRF
PRF,A(k) = |Pr[ExptPRF−0

A (k) = 1]− Pr[ExptPRF−1
A (k) = 1]|.

Identity-Based Aggregate and Multi-Signature
Schemes Based on RSA

Ali Bagherzandi and Stanis�law Jarecki

Department of Computer Science, University of California, Irvine
{zandi,stasio}@ics.uci.edu

Abstract. We propose new identity-based multi-signature (IBMS) and
aggregate signature (IBAS) schemes, secure under RSA assumption. Our
schemes reduce round complexity of previous RSA-based IBMS scheme
of Bellare and Neven [BN07] from three to two rounds. Surprisingly, this
improvement comes at virtually no cost, as the computational efficiency
and exact security of the new scheme are almost identical to those of
[BN07]. The new scheme is enabled by a technical tool of independent
interest, a class of zero-knowledge proofs of knowledge of preimages of
one-way functions which is straight-line simulatable, enabling concur-
rency and good exact security, and aggregatable, enabling aggregation of
parallel instances of such proofs into short multi/aggregate signatures.

1 Introduction

A multisignature protocol allows a group of players to sign the same message by
generating a short string, called a multisignature, which can be verified against
the set of the public keys of these players. Aggregate signature is a generaliza-
tion of this notion to the case where each player signs a potentially different
message. Such schemes reduce the bandwidth needed to transmit signatures, the
space needed to store them, and the time needed to verify them, from linear
in the number of the cosigners to a constant. Reducing bandwidth is especially
important for low-energy devices, such as RFID chips and sensors, which com-
municate over energy-consuming wireless channels where data transmision con-
sumes several orders of magnitude more energy than arithmetic operations (see
e.g. [BA03]). Standard multi-/aggregate signatures reduce the space taken by
n signatures from O(n) to O(1), but the verifiers still need the public keys of
n signers. Therefore in applications where bandwidth is a bottleneck it can be
useful to consider identity-based multi-/aggregate signatures where verifiers only
need unique identifiers of signers, e.g. 32-bit IP addresses, instead of public keys.

Identity-Based (Multi-/Aggregate) Signatures. Identity-based cryptog-
raphy [Sha84] simplifies public key management by replacing users’ public keys
with their identity e.g. their names, e-mails or IP addresses. In identity-based
scheme a trusted party, a Private Key Generator (PKG), generates a private key
corresponding to each user’s identity, and messages signed using such keys can
be then verified using the signer’s identity and the PKG’s master public key.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 480–498, 2010.
c© International Association for Cryptologic Research 2010

Identity-Based Aggregate and Multi-Signature Schemes Based on RSA 481

In the case of identity-based multi-/aggregate signatures, if all signers have their
private keys issued by the same PKG then the verifier needs only the PKG’s
master public key and the identities of all signers. Note that in many applica-
tions the identities of signers are often present in the protocol messages, e.g. the
usernames or IP addresses in packet headers, in which case an identity-based
multi-/aggregate signature adds only a constant bandwidth overhead over un-
authenticated messages.

Current State of the Art. Standard signatures imply identity-based signa-
tures following the “certification paradigm”, e.g. [GHK06], i.e. by simply at-
taching signer’s public key and certificate to each signature. However, it is not
clear how to apply this idea to convert standard multi-/aggregate signatures,
e.g. [BN06, BCJ08], into identity-based ones, because it is not clear how to ag-
gregate n separate public keys and certificates, even if all certificates are signed
by the same CA. (Standard aggregate signatures can be used to eliminate the
overhead of CA’s signatures on the certificates, but this would not eliminate the
overhead due to the public keys.)

The first efficient IBAS/IBMS schemes designed from scratch are due to
Gentry and Ramzan [GR06]. Their schemes employ a group with a bilinear
map, their security relies, in the Random Oracle Model (ROM), on the hardness
of GapDH problem, the schemes are non-interactive, and both the signing and
verification times take O(1) exponentiations and bilinear map operations. How-
ever, the IBAS scheme of [GR06] requires all cosigners to share a common token
for every set of signatures they want to aggregate, and each cosigner must ensure
that this token has not been previously used in signing a different message, hence
in some applications this scheme will need an extra communication round for the
participants to agree on a fresh common token. In subsequent work, Boldyreva
et. al [BGOY10] (correcting a previous version of this paper) proposed an IBAS
scheme which does not need these unique tokens but it requires sequential com-
munication pattern, and it is based on a more complex bilinear map assumption.
Note that while sequential communication is perfectly suited to some applica-
tions, e.g. secure route discovery [KT05], it introduces unnecessary overhead for
players connected e.g. by a broadcast channel or a tree topology.

Without bilinear maps, Bellare and Neven [BN07] gave an IBMS scheme which
relies on the RSA assumption in ROM. Their scheme also has fast multi-signature
generation and verification, requiring O(1) exponentiations, but it takes three
rounds of interaction. Note that any 3-round IBMS implies a 4-round IBAS
if all cosigners’ messages are broadcast and the IBMS scheme is run on their
concatenation. (Moreover, in the IBMS scheme of [BN07] this broadcast can
be piggybacked on the first protocol round, giving a 3-round IBAS scheme.)
However, such broadcast of all messages to all co-signers imposes bandwidth
usage which might not be otherwise required, and so apart from this generic
transformation it is interesting to consider IBAS schemes which do not require
such broadcast. (As a side remark, we believe that the 3-round IBMS scheme of
[BN07] can be modified to a 3-round IBAS scheme without such broadcast, e.g.
using ideas similar to our IBAS scheme [BJ10].)

482 A. Bagherzandi and S. Jarecki

IBAS/IBMS Underlying Restr- Number Verification Signing Signature
Schemes Problem(1) ictions(2) of Rounds Time(3) Time(3) Length(4)

[GR06]-IBAS GapDH Stateful 1 3P+nM 5M 2|G1| + κ
[BGOY10] GapDH Sequential 1 6P+nM 7M 3|G|
OUR IBAS RSA - 2 nE 2E |Z∗

n| + 2κ + log l

[GR06]-IBMS GapDH - 1 3P 3M 2|G1|
[BN07] RSA - 3 1E 2E |Z∗

n| + κ
OUR IBMS RSA - 2 1E 2E |Z∗

n| + 2κ + log l

Fig. 1. (1) All schemes have been given security proofs only in the ROM model; (2) The
IBAS scheme of [GR06] assumes that the players share a unique and common token
for every instance of the IBAS scheme. This requirement can be avoided at the cost of
an additional round of interaction, while the scheme of [BGOY10] requires sequential
aggregation; (3) Signing time is measured per player. In both signing and verification
costs, P is the cost of one pairing operation, M is the cost of scalar multiplication on
an elliptic curve, and E is the cost of (multi-)exponentiation in Z∗

n (with about 80-bit
exponents); (4) Signature length is measured in bits where κ is the security parameter,
n is an RSA modulus, l is an upper bound on the number of players, G1 and G2 are
two groups of elliptic curve points with an asymmetric bilinear map, G is a group of
elliptic curve points with a symmetric bilinear map, and |A| stands for the bitsize of
representation of elements in group A. Typical values for these parameters are κ = 160,
|G1| = 160, |G| = 512, log l = 20, and |Z∗

n| = 1024 or 2048.

Our Contributions. We propose IBMS and IBAS schemes secure under RSA
assumption in ROM which require only two rounds of communication. This
provides alternatives to IBMS/IBAS schemes based on bilinear maps especially
in applications which intrinsically take two communication rounds, such as au-
thenticated route discovery or aggregation of broadcast acknowledgements. Since
bilinear map operations are still more expensive than RSA exponentiation, our
computational costs are slightly lower in signing and significantly lower in verifi-
cation, compared to e.g. [GR06], although our signatures are longer. A summary
of these comparisons is in Figure 1.

Further Related Work. Gregory Neven introduced two primitives, sequen-
tial aggregate signed data and multi-signed data, corresponding to aggregate sig-
natures and multisignatures respectively, whose goal is to minimize the total
bandwidth consumed by signatures and messages incurred in transmission of au-
thenticated data originated by multiple sources [Nev08]. His constructions use
message recovery techniques to squeeze message bits into a (multi/aggregate)
signature. Comparing his work to ours, we note that (1) his schemes support
only sequential aggregation when signing different messages; (2) bandwidth sav-
ings depend on message sizes (for small messages the bandwidth can be worse
than with standard signatures); (3) these schemes do not address the overhead
due to public keys, which raises an interesting question whether total band-
width due to signatures and messages can be further reduced, perhaps using
message-recovery techniques, with identity-based multi/aggregate signatures. In

Identity-Based Aggregate and Multi-Signature Schemes Based on RSA 483

other related work Herranz and Galindo et. al [Her06, GHK06] show identity-
based signatures which can be aggregated if they originate from the same signer.

Organization/Roadmap. Section 2 contains a technical overview of our con-
structions. In Section 3 we define IBMS schemes. (We relegate a formal de-
scription of IBAS schemes to [BJ10].) In Section 4 we develop our tools, namely
we introduce structured-instance zero-knowledge (ZK) proofs and Σ-equivocable
commitments and we show that Σ-equivocable commitments suffice to compile a
class of Σ-protocols which includes an RSA-based identification protocol, a proof
of knowledge of e-th root, to straight-line simulatable structured-instance ZK. In
Section 5 we show homomorphic Σ-equivocable commitments secure under RSA.
By the results from Section 4 this implies an aggragatable structured-instance ZK
proof of knowledge of e-th root, which leads to an IBMS scheme construction,
described in Section 6, and an IBAS scheme sketched in Section 7.

2 Technical Overview

Our IBAS/IBMS scheme is a multi-prover version of Guillou-Quisquater signa-
ture [GQ88]. The ID-based version of GQ signature is a non-interactive zero-
knowledge (NIZK) proof of knowledge (PK) of e-th root modulo n (in ROM).
Let y = H(ID) be an element in Z∗

n and let x be the e-th root of y, a private
key corresponding to identity ID. (Such private key can be computed the PKG
who knows the factorization of n.) To sign message m, the signer with iden-
tity ID follows the ROM-based NIZK PK of e-th root of y: It computes the
first proof message a = ke for random k in Z∗

n, gets challenge c by querying
(m, a) to a hash function (modeled as random oracle), and computes response
z to this challenge as z = kxc. The signature is (a, z) verified by checking if
ze = ayc for c = H(m, a). Due to homomorphic property of exponentiation one
might hope to obtain an IBAS/IBMS scheme by aggregating such ROM-based
NIZK PK’s of e-th root made by several cosigners. For instance, consider the
two-round protocol built along the lines of the DL-based multisignature scheme
of [MOR01]: In the first round each player broadcasts its first message ai. All
players obtain a common challenge c by querying the hash function on input in-
cluding a =

∏
ai and the message being signed. Finally each player broadcasts

its response zi to this challenge. The multi-signature is (a, z) where z =
∏

zi.
Note that if ze

i = aiy
c
i for each i then (a, z) satisfies the verification equation

ze = a(
∏

yi)c where yi = H(IDi). We believe that an adaptation of the security
proof of [MOR01] would show security of this scheme, but the resulting security
argument would have several limitations: (1) The reduction would be only from
expected-time hardness of RSA problem; (2) It would encounter substantial se-
curity degradation due to extensive use of rewindings; (3) It would therefore not
extend to concurrent executions of multiple instances of this scheme.

To explain how we overcome these limitations we need to first explain why
they appear in the above draft scheme. The simulator for the NIZK PK of e-th
root picks a random challenge c and a random z in Z∗

n, computes prover’s first
message as a = zey−c and defines the hash of (a, m) as c because it controls

484 A. Bagherzandi and S. Jarecki

the hash function H . Note that since the adversary has no information about a,
there is only a negligible chance that it queries H on the same (a, m) before the
simulator attempts to define its value as c, and hence the simulator passes with
overwhelming probability. The fundamental difference between this simulation
and the simulation for aggregated proof in the draft scheme above is that in
the aggregated proof corrupt cosigners can choose their contributions ai on the
basis of ai’s broadcasted by the honest cosigners. Consequently, the simulator
can only guess the resulting a value with probability 1/qh where qh is the number
of hash queries the adversary makes. This gives rise to a simulation procedure
which rewinds the adversary expected qh times in each signature instance, which
causes all the limitations listed above: reduction to expected-time hardness, loose
security reduction, and no argument for security of concurrent protocol instances.

Bellare and Neven [BN07] showed how to overcome all these issues in the
ROM model by adding an extra communication round in which each player
first commits to its ai contribution by broadcasting a hash H(ai). By control-
ling the hash function H the simulator can learn the ai’s committed by the
adversary and then decide on the ai’s published on behalf of the honest players.
This way the simulator passes without rewinding with overwhelming probability,
similarly to the NIZK simulation sketched above. The main technical challenge
we handle in this work is how to achieve such straight-line simulation without
introducing such extra communication round, i.e. with only two rounds of in-
teraction. Our technique is a variant of Damgard’s HVZK-to-ZK compilation
[Dam00] which constructs a straight-line simulatable zero-knowledge proof from
any Σ-protocol using an equivocable commitment scheme, but we introduce an
interesting twist: In Damgard’s scheme a signer commits to its ai value using an
equivocable commitment scheme, and the simulator, on any challenge c can open
this commitments to the value ai = ze

i y
−c
i needed for the proof to verify (where

response zi is chosen at random, to match the response distribution in the real
proof). However, to create an IBMS/IBAS scheme by aggregating such proofs
we need this commitment scheme to be multiplicatively homomorphic, and to
the best of our knowledge no efficient commitment scheme is both equivoca-
ble and multiplicatively homomorphic. Instead, we show a commitment scheme
which is multiplicatively homomorphic over Z∗

n and satisfies a restricted form
of equivocability which we call Σ-equivocability, and which suffices for straight-
line simulation of Σ-protocol compiled as above. For example, Σ-equivocable
commitment for relation R = {(x, y) | y = xe} allows for equivocation of com-
mitments to messages of the form zey−c for any c and z, and this is exactly the
form of message a which the simulator needs in the above proof.

The idea to use commitments with similarly restricted equivocability appeared
before in [BCJ08], where it was used to construct a straight-line simulatable and
aggregatable proof of DL knowledge, and a DL-based multi-signature scheme.
However, the equivocability notion (and the construction) of [BCJ08] gives rise
to only single-instance zero-knowledge proofs. Intuitively, this suffices for secu-
rity of multi-signatures (as opposed to identity-based multi-signatures) because
in multi-signatures the adversary w.l.o.g. corrupts all players except of one, so the

Identity-Based Aggregate and Multi-Signature Schemes Based on RSA 485

simulator needs to embed its challenge problem in just one public key, and needs
to simulate multi-signature protocol on behalf of only that one player. Using
this form of equivocation in security argument for identity-based schemes would
introduce security degradation by factor of qH , the number of hash function
queries, because the simulator would have to guess the single identity into which
to embed its challenge. Here we define a more general notion of Σ-equivocability
which allows for straight-line simulatable “structured instance” zero-knowledge
proofs in the CRS model: In structured-instance zero-knowledge proofs, formal-
ized in this paper, the simulator can simulate on any statement in a class of
related instances, in contrast to a single statement in single-instance ZK and
any instance in (standard) multi-instance ZK. The class of instances which is
particularly useful in showing a security reduction for an IBMS/IBAS scheme
based on Σ-protocol for proving knowledge of preimage of function f(x) = xe

are instances of the form y = ẙf(δ) where ẙ is the simulator’s challenge. In this
way the simulator can embed its challenge into any number of identities, picking
random δ for each identity, and yet straight-line simulate the proofs performed
on behalf of all these entities in parallel. Thus our main technical contribution
is two-fold: First, we formalize the notion of Σ-equivocability and apply it to
a compilation from Σ-protocols to straight-line simulatable structured-instance
ZKPK (Section 4). Secondly, we construct a multiplicatively homomorphic and
Σ-equivocable commitment scheme based on the RSA problem (Section 5). To-
gether, these two parts immediately imply the IBMS and IBAS schemes we
present in this paper (Section 6 and Section 7).

3 Identity-Based Multi-/Aggregate Signature Schemes

We define the notion of identity-based multisignature scheme (IBMS) building on
the definitions givenby [MOR01,BN06,GR06,BN07]. (Due to lack of space, we rel-
egate the extension of our definitions to IBAS schemes to the full version of the pa-
per [BJ10]).Ournotion ismoreflexible than thatof [BN07,MOR01,BN06]because
we do not require the set of participants’ identities as input to the multi-/aggregate
signature protocol. The participating players must be aware of each other in the
protocol execution, but this is needed only to ensure proper communication, and
the participant identities are not required as inputs to the cryptographic proto-
col. The schemes secure in this setting provide flexibility to applications of multi-
/aggregate signatures because sometimes signers might care only about the mes-
sage they are signing and not about the identities of the cosigners. Otherwise the
list of cosigners can always be attached to the message being signed.

Syntax of an IBMS Scheme. We define an identity-based multisignature as
IBMS = (Setup, KeyDer, MSign, Vrfy) where Setup, KeyDer and Vrfy are proba-
bilistic poly-time algorithms, and MSign is a distributed protocol executed by a
set of parties s.t.

– (mpk, msk) ← Setup(1κ), run by a trusted party, on input the security
parameter κ, generates master public key mpk and corresponding master
secret key msk.

486 A. Bagherzandi and S. Jarecki

– skId ← KeyDer(msk, Id), run by a trusted party, on input master secret key
msk and an identity Id ∈ {0, 1}∗ provides a secret key skId to the user with
identity Id.

– MSign is a multisignature protocol run by a group of players who intend
to sign the same message m. Player with identity Id executes this protocol
on public inputs mpk and message m and private input skId which is his
own secret key. The local output of the protocol for every participant is a
multisignature denoted σ.

– {0, 1} ← Vrfy(mpk, m, IdSet, σ) verifies whether σ is a valid multisignature
on message m on behalf of the set of the identities IdSet.

In the random oracle model (ROM), KeyDer, MSign and Vrfy procedures addi-
tionally have access to a random oracle H(·) : {0, 1} → D, where D depends
on the scheme. This set of procedures must satisfy the following completeness
properties: For any integer n, any message m, and any (mpk, msk) output by
Setup(1κ), if for i = 1..n, one obtains skIdi ← KeyDer(msk, Idi) and correctly
follows MSign on input m using secret keys skIdi

, then assuming all messages are
delivered between players, each player outputs the same string σ which satisfies
Vrfy(mpk, m, {Id1, ..., Idn}, σ) = 1.

Security Notion of an IBMS Scheme. We model the security as existential
unforgeability under an adaptive chosen message and adaptive chosen identity
attack: The adversary participates in a game in which it issues a number of
key derivation and signature queries. In a key derivation query, the adversary
corrupts a player by submitting its identity Id to the key derivation oracle and
receiving its secret key skId. In a signature query the adversary specifies the
message m and the identity Id that it wants to interact with; and the signing
oracle performs MSign protocol on message m on behalf of Id. The adversary
wins the game if it eventually outputs a message m, a multisignature σ and a set
of identities IdSet s.t. Vrfy(mpk, m, IdSet, σ) = 1 and there exists an identity
Id s.t., the adversary never queried the key derivation oracle on Id and never
queried the signing oracle on (m, Id). More formally we define the adversarial
advantage of A against IBMS = (Setup, KeyDer, MSign, Vrfy) as a probability
that experiment Expuu−cma

IBMS (A) described in Figure 2 outputs 1 i.e.

Advuu−cma
IBMS (A) = Pr[Expuu−cma

IBMS (A) = 1]

where the probability goes over the random coins of the adversary and all the
randomness used in the experiment. We call an IBMS scheme (t, ε, n, qK , qS)-
secure if Advuu−cma

IBMS (A) ≤ ε for every adversary A that runs in time at most t,
makes at most qK key derivation queries and at most qS signature queries, and
produces a forgery on behalf of at most n parties. In the random oracle model
we extend this notion to (t, ε, n, qK , qS , qH)-security, where A is additionally
restricted to at most qH hash queries and the probability in the experiment
Expuu−cma

IBMS (A) goes also over random choice of a hash function.

Identity-Based Aggregate and Multi-Signature Schemes Based on RSA 487

Experiment Expuu−cma
IBMS (A)

− (mpk, msk) ← Setup(1κ); MIdLst ← ∅; CIdLst ← ∅;
−Run A(mpk), and handle A’s key derivation and signature queries as follows:
−On a key derivation query on identity Id, add Id to CIdLst, run KeyDer on input

(msk, Id) and return skId to A.
−On a signing query on pair (m, Id), add (m, Id) to MIdLst, run MSign protocol

on behalf of identity Id on message m forwarding messages to and from A.
−When A halts, parse its output as (m,IdSet, σ).
− If (Vrfy(mpk,m, IdSet, σ)=1)∧(∃ Id∈IdSet s.t. (Id/∈CIdLst)∧((m, Id) /∈MIdLst))

then return 1, otherwise return 0.

Fig. 2. Chosen Message Attack against an Identity-Based Multisignature Scheme

4 Σ-Equivocable Commitments and Structured-Instance
Zero-Knowledge

Homomorphic Σ-Protocols. Σ-protocol, a notion introduced by Cramer,
Damgard and Schoenmakers [CDS94], is a three-move proof system with spe-
cial honest-verifier zero-knowledge (HVZK) and strong soundness properties. Let
R = {(x, y)} be a relation whose membership can be verified in polynomial time.
We consider a special case where X and Y are algebraic groups (for notational
simplicity we use multiplicative notation for both), and R = {(x, f(x)) |x ∈ X}
where f : X → Y is a homomorphic one-way function. We consider a proof of
knowledge system for relation R which we call homomorphic Σ-protocol (for R):
The prover, on input x ∈ X , sends a = f(k) where k

r← X . The verifier, on input
y ∈ Y , creates a challenge c as a random κ-bit string, and the prover responds
with z = kxc. The verifier accepts iff f(z) = ayc. This is a form of several Σ-
protocols for known homomorphic one-way functions, e.g. Guillou-Quisquater
identification scheme [GQ88] for a power function fe,n(x) = xe mod n and
Schnorr’s scheme [Sch89] for exponentiation fg,p(x) = gx mod p. The special
HVZK property of a Σ-protocol says that there exists an efficient simulator
which on input y computes pair (a, z) for any c with the distribution matching
that of the prover. The special strong soundness says that there exists an effi-
cient extractor which computes witness x s.t. (x, y) ∈ R for any y from any pair
of accepting conversations (a, c, z) and (a, c′, z′) s.t. c �= c′.

Structured-Instance Zero-Knowledge. Multi-instance zero-knowledge (ZK)
(a.k.a. multi-theorem ZK) in common reference string (CRS) model requires a
two-phase probabilistic poly-time simulator s.t. (1) in the first phase, given public
parameters, the simulator outputs the CRS string together with some trapdoor
information; (2) In the second phase, given a statement and the trapdoor, simu-
lator outputs the simulated proof for that statement. In the single-instance ZK,
the simulator knows the statement beforehand and can set the CRS string as a
function of this particular statement. Structured instance zero-knowledge proof

488 A. Bagherzandi and S. Jarecki

for relation R introduced above is an intermediary notion: The simulator is given
a “core statement” ẙ ∈ Y before it sets the CRS string, and then it can simulate
the proof for statement y = ẙ · f(δ) for any δ ∈ X . Here is the formal definition:

Definition 1. Let X and Y be algebraic groups and f : X → Y be a surjective
homomorphic one-way function, all indexed by a public parameter par. Let Π =
(G,P ,V) be a proof system in CRS model for relation R = {(x, y) ∈ X × Y | y =
f(x)} where G is an algorithm that outputs the common reference string. We
say that Π is straight-line ε-structured-instance zero-knowledge if there exist
efficient algorithms S1,S2 s.t. S1 on input par and a core instance ẙ ∈ Y , outputs
the CRS string σ and trapdoor td, while S2 on input td and a “witness-shift”
δ ∈ X outputs a simulated proof π̃ for instance y = ẙf(δ), and for all (̊x, ẙ) ∈
X × Y s.t. f (̊x) = ẙ the following two properties hold:

1. Statistical difference between the following two distributions is at most ε:

{σ | (σ, td)← S1(par, ẙ)}
{σ | σ ← G(par)}

2. ∀ verifier V∗ and ∀δ ∈ X, the following two distributions are identical:

{π̃ | π̃ ← V∗(y, σ)S2(td,δ,σ); (td, σ)← S1(par, ẙ); y ← ẙf(δ)}
{π | π ← V∗(y, σ)P(x,y,σ); σ ← G(par); y ← ẙf(δ); x← x̊δ}

Commitment Schemes. A commitment scheme C in the CRS model consists of
probabilistic poly-time algorithms CSetup, CKG, Com and Open. CSetup on input
the security parameter κ, generates public parameters cpar, which also determine
the commitment message space M. CKG(cpar) generates the commitment key
K , ComK (m) generates the commitment C and the decommitment D on message
m ∈M, and finally OpenK (C, D, m) determines if D is a valid decommitment of
commitment C to message m. A commitment scheme must satisfy that if cpar←
CSetup(1κ), K ← CKG(cpar), and (C, D)← ComK (m), then OpenK (C, D, m) =
1. Below we define statistical hiding and computational binding properties of
commitments because these will be variants of these notions which our scheme
satisfies.

ε-Hiding: For all cpar ← CSetup(1κ), m0, m1 ∈ M, and K ← CKG(cpar), there
is less than ε statistical difference between the distribution of C’s output by
ComK (m0) and the distribution of C’s output by ComK (m1). A commitment
scheme is perfectly hiding if ε = 0.

(t, ε)-Binding: For any algorithm A running in time t and any cpar output by
CSetup(1κ), the probability of OpenK (C, D0, m0) = OpenK (C, D1, m1) = 1 and
m0 �= m1 is less than ε where (C, D0, D1, m0, m1) is outputted by A on input K
and K ← CKG(cpar) and probability is over the coins of CKG and A.

Notation: In this paper we only deal with the commitment schemes in which the
commitment is a deterministic function of the message and the decommitment.

Identity-Based Aggregate and Multi-Signature Schemes Based on RSA 489

Therefore we assume there exist a decommitment space denoted as R and the
Com procedure picks decommitment D

r← R and computes the commitment C
as the deterministic function of m and D.

Σ-Equivocable Commitments. A commitment scheme is equivocable if there
exists an efficient simulator that generates commitment key K , indistinguishable
from real key, together with a trapdoor td. The trapdoor allows simulator to cre-
ate fake commitments indistinguishable from real ones, and later decommit them
to any message. Using equivocable commitments, one can compile a Σ-protocol
to a multi-instance ZK proof system with straight-line simulation [Dam00]. Here
we define a rather restrictive form of equivocability called Σ-equivocability and
we show that it is sufficient for compiling Σ-protocols into structured-instance
ZK proofs with straight-line simulation. It turns out that structured-instance ZK
is sufficient for our application of ZK proofs to multi-/aggregate signatures and
multi-instance ZK is not required. Moreover the straight-line simulatability of
this system allows us to have multi-/aggregate schemes with concurrency, better
exact security and with improved round complexity.

Definition 2. Let X and Y be algebraic groups and let f : X → Y be a ho-
momorphic one-way function, all indexed by a commitment parameter cpar. We
call a commitment scheme ε-Σ-equivocable for f if there exist probabilistic poly-
time algorithms tdCKG, tdCom, and RstEquiv, where (K , td) ← tdCKG(cpar, ẙ),
(C̃, st) ← tdComK (td), and (D̃, z) ← RstEquivK (td, st, c, δ), s.t. for any cpar
output by CSetup and any ẙ ∈ Y the following properties hold:

1. There is at most ε statistical difference between the distribution of K ’s output
by CKG(cpar) and K ’s output by tdCKG(cpar, ẙ).

2. For all (K , td)← tdCKG(cpar, ẙ), δ ∈ X, and c ∈ {0, 1}κ, if (C̃, st) is output
by tdComK (td) and (D̃, z) is output by RstEquivK (td, st, c, δ) then D̃ is dis-
tributed as random decommitment in R and OpenK (C̃, D̃, f(z)(̊yf(δ))−c)=1.

Intuitively definition 2 says that the equivocation procedure, given (̊y, c, δ), can
open a fake commitment to a message of the form a = f(z)(̊yf(δ))−c for some
z. This is useful in straight-line simulation of a proof of knowledge for relation
R = {(x, y) ∈ X × Y | y = f(x)}. For example, let f : QRn → QRn where
f(z) = ze (mod n). Consider the HVZK simulator of the Σ-protocol for prov-
ing knowledge of e-th root: This simulator picks random c and z and computes
prover’s first message a = zey−c. Below we show that Damgard’s compilation
[Dam00] (see Figure 3 below) transforms such Σ-protocol to structured-instance
zero-knowledge using only such Σ-equivocable commitments, because the simu-
lator can output a fake commitment and then open it to what the Σ-protocol
simulator would output as the prover’s first message i.e. a = zey−c. Definition 2
implies that a fake commitment can be opened to a = ze(̊yδe)−c for any δ and
c. Hence the structured-instance zero-knowledge simulator can use this property
to simulate a proof for any instance y = ẙδe where ẙ is set before the simulator
creates the CRS string (see theorem 1).

490 A. Bagherzandi and S. Jarecki

Common Reference String:
Commitment Key K of Σ-Equivocable Commitment Scheme

Prover P (x) s.t. x ∈ X, f(x) = y Verifier V (y) s.t. y ∈ Y

k
r← X, a ← f(k)

(C, D) ← ComK (a) C ��
c�� c

r← {0, 1}κ

z ← kxc
z , D �� acc iff OpenK (C, D, f(z)y−c) = 1

Fig. 3. Straight-line simulatable structured-instance ZKPK of pre-image of f

Homomorphic Commitments. We call a commitment scheme multiplica-
tively homomorphic if there are efficiently computable operations ⊗ and ⊕ s.t. if
OpenK (C1, D1, m1) = 1 and OpenK (C2, D2, m2) = 1, then OpenK (C, D, m) = 1
for C = C1 ⊗ C2, D = D1 ⊕ D2, and m = m1m2. Accordingly, a commitment
scheme is l-restricted multiplicatively homomorphic if the homomorphic oper-
ation can be applied on only l commitment-decommitment pairs generated by
Com procedure. Our construction is l-restricted multiplicatively homomorphic.

Structured-Instance Zero-Knowledge from Homomorphic Σ-Protocol.
Figure 3 shows a construction of a straight-line simulatable structured-instance
zero-knowledge proof of knowledge system, in the CRS model, from homomor-
phic Σ-protocol and Σ-equivocable commitment. This is an identical construc-
tion to Damgard’s compiler from Σ-protocol to ZKPK proof [Dam00]. Below
we show that using only Σ-equivocable commitments the same compilation pro-
duces structured-instance zero-knowledge proof given homomorphic Σ-protocol.
As in [Dam00] the resulting protocol is an argument of knowledge, subject to
the binding property of the commitment scheme.

Theorem 1. Let X and Y be algebraic groups, f : X ← Y a homomorphic
one-way function, C a Σ-equivocable commitment over message space M ⊆ Y .
Then the protocol in figure 3 is a straight-line simulatable structured-instance
zero-knowledge proof of knowledge of pre-image of f in the CRS model.

Proof. The straight-line simulator S = (S1,S2), for structured-instance zero-
knowledge proof acts as follows: In the first phase, given cpar and ẙ ∈ Y , S1
runs tdCKG(cpar, ẙ) to obtain (td,K) and sets the common reference string σ as
K . In the second phase, given td and witness shift δ ∈ X , S2 runs tdComK (td)
to obtain the fake commitment C̃ and state st and sends C̃ to the verifier. Upon
receiving the challenge c from the verifier, S2 runs RstEquivK (td, st, ẙ, δ) to get
the response z and fake commitment D̃. According to Σ-equivocability property
(definition 2) it immediately follows that S satisfies conditions in definition 4.

Identity-Based Aggregate and Multi-Signature Schemes Based on RSA 491

5 Aggregatable Zero-Knowledge Proof of Knowledge of
e-th Root

Safe RSA Assumption. Since our construction relies on two related instances
of RSA cryptosystems which share same RSA modulus n but use two different
public exponents e and e′, it is convenient for us to use the following notation for
RSA instance generation: We call an algorithm KGsRSA a safe RSA generator if
on input security parameter κ and a prime e s.t. 2κ ≤ e ≤ 22κ, KGsRSA generates
a pair (n, d) where (1) n = pq s.t. p = 2p′ + 1, q = 2q′ + 1 and p, q, p′ and q′ are
all prime numbers s.t. |p′| = |q′| and p′, q′ > 22κ and (2) d = e−1mod φ(n). For
later use we define n′ = p′q′. The advantage of an algorithm A in breaking the
RSA(e) problem is defined as

Advow RSA
KGsRSA,A,e(κ) = Pr[xe n≡ y | (n, d) r←KGsRSA(κ, e); y r←Z∗

n; x r←A(n, e, y)] (1)

We say algorithm A, (t, ε)-breaks the RSA(e) problem on security parameter κ
if A runs in time at most t and Advow RSA

KGsRSA,A,e(κ) ≥ ε. We say that the RSA(e)
problem is (t, ε)-hard (for security parameter κ) if no algorithm A, (t, ε)-breaks
it. We note that the requirement that p′, q′ > 22κ is just a lower-bound we
introduce to enable any party to choose “secondary” public exponent e′ s.t.
gcd(e′, φ(n)) = 1 and e′ > le where l is a maximum number of participants in
any single instance of the multi-signature scheme.

5.1 RSA-Based Multiplicatively Homomorphic Σ-Equivocable
Commitment

Let e and e′ be two prime numbers s.t. 2κ ≤ e, e′ ≤ 22κ and e ≤ e′/l for
some integer l and let (n, d) be output by KGsRSA(κ, e). This assures that both
(n, e) and (n, e′) are safe RSA instances. We describe an efficient commitment
scheme, which is computationally binding under the RSA(e′) assumption, has l-
restricted multiplicatively homomorphic property on message spaceM = QRn,
and is Σ-equivocable for f(x) = xe (mod n). Curiously, this commitment is
statistically hiding only for the messages picked from a specific subset of the
message space, but in our application of this commitment scheme to straight
line simulatable ZKPK of e-th root, standard hiding property is not necessary,
and Σ-equivocability property for the above function is sufficient.

– CSetup(κ): Pick prime numbers e and e′ s.t. 2κ ≤ e, e′ ≤ 22κ and e ≤ e′/l.
Run KGsRSA on input (κ, e) to obtain (n, d). Set cpar← (n, e, e′).

– CKG(n, e, e′): Pick h
r← QRn and set K ← (n, e, e′, h). Note that it is easy

to sample random elements in QRn by squaring a random element in Z∗
n.

– ComK (m): Pick r
r← Ze and set C ← hrme′

and D ← r . (Hence the
decommitment space is Ze.)

– OpenK (C, r, m): Accept iff C = hrme′
and 0 ≤ r < e′.

– tdCKG((n, e, e′), ẙ): Pick γ
r← [n], and set h ← (̊y)γe′

, K ← (n, e, e′, h), and
td← (γ, ẙ).

492 A. Bagherzandi and S. Jarecki

– tdComK (td): Pick s
r← Ze and return (C̃, st) where C̃ = (̊y)e′s and st = s.

– RstEquivK (td, st, c, δ): Compute r = (s + c)γ−1 (mod e) and i = (s + c −
γr)/e (over integers) and return (r, z) where z = (̊y)i(δ)c.

Statistical Hiding. This commitment scheme is ε-hiding for the messages
picked from M̃ ⊂ QRn where M̃ = {hi(e′)−1 |i ∈ [εe/2]} and h is determined by
the commitment key. To argue this note that the maximum statistical difference
between the distributions of the commitments to m0, m1 ∈ M̃ happens when
they correspond to i = 0 and i = εe/2 respectively. This way the distributions
of the commitments would be {hr}

r
r←[e] and {hr+εe/2}

r
r←[e] respectively which

has a statistical difference equal to ε.

Computational Binding. This commitment scheme is (t, ε)-binding if RSA(e′)
problem is (t, ε)-hard. Indeed given the challenge (n, e′, h), one can use the at-
tacker on binding to find the e′-th root of h. The reduction runs the binding at-
tacker to obtain (C, r, m, r′, m′) s.t. OpenK (C, r, m) = OpenK (C, r′, m′) = 1 and
m �= m′. Since C = hrme′

= hr′
m′e′

it follows that hr−r′
= (m′/m)e′

. Now since
r, r′ < e′, then gcd(e′, r−r′) = 1 and using extended Euclidian algorithm one can
compute α, β s.t. α(r − r′) + βe′ = 1. Thus h = hα(r−r′)+βe′

= ((m′/m)αhβ)e′

and e′-th root of h can be computed as (m′/m)αhβ .

l-Restricted Multiplicative Homomorphism. This commitment scheme is
multiplicatively homomorphic on QRn in the sense that up to l ≤ �e′/e� mes-
sages can be combined: If {(Ci, ri)}i=1..l are commitment-decommitment pairs
for messages m1, ..., ml ∈ QRn each computed by the commitment procedure,
then r =

∑l
i=1 ri(over integers) is a valid decommitment for commitment C =∏l

i=1 Ci for message m =
∏l

i=1 mi. Note that by setting e′ ≥ e2κ, homomor-
phism can be used on any feasible set of messages.

Σ-Equivocability. This commitment scheme is 2−2κ-Σ-equivocable for func-
tion (family) f(n,e)(x) = xe (mod n). First note that for every (n, e, e′) output
by CSetup and every ẙ ∈ QRn s.t. ẙ is a generator of QRn, the distributions of
keys generated by CKG(n, e, e′) and tdCKG((n, e, e′), ẙ) are at most 2−2κ apart,
because CKG chooses the key h as a random element in QRn while tdCKG picks
h = (̊y)e′γ for e′ s.t. gcd(e′, φ(n)) = 1 and γ chosen at random in [n]. More-
over the statistical difference between [n] and [4n′] is equal to 1− 4n′/n < 22κ.
Secondly, if ẙ is a generator of QRn then for every γ ∈ [n], every δ ∈ QRn

and every c ∈ {0, 1}κ, according to the code of tdCom and RstEquiv, r, z satisfy
s+c = γr+ie and z = (̊y)i(δ)c, therefore for m = ze(̊y(δ)e)−c we have C̃ = hrme′

,
and hence Open(C̃, r, m) = 1. Moreover the distribution of the decommitments
in the equivocation process i.e. {r̃|s r← Ze; r̃ ← (s + c)γ−1 (mod e)} is identical
to uniform distribution over Ze.

Corollary 1. Consider prime number 2κ ≤ e ≤ 22κ and let n be a safe RSA
modulus output by KGsRSA on input e and security parameter κ. Consider com-
pilation shown in figure 3 and let the function (family) f be f(n,e) : QRn → QRn

Identity-Based Aggregate and Multi-Signature Schemes Based on RSA 493

s.t. f(n,e)(x) = xe (mod n) and let the compilation be instantiated with the
commitment scheme described in this section. Then from theorem 1, it imme-
diately follows that the resulting scheme is a straight-line structured-instance
zero-knowledge proof of knowledge of e-th root.

6 Identity-Based Multisignature Scheme Based on RSA

We describe our IBMS scheme based on the RSAassumption. The scheme takes two
communication rounds, requires two double-exponentiations per party for signing
and one triple-exponentiation for verification. The scheme is based on the GQ ID-
based identification protocol [GQ88], which is the Σ-protocol for proving knowl-
edge of e-th root. Each party simply executes the aggregatable zero-knowledge
proof of e-th root of its (hashed) identity string, using the straight-line simulat-
able aggregatable ZKPK of e-th root described in Section 5. Figure 4 contains the
Setup, KeyDer, MSign and Vrfy algorithms for this IBMS scheme.

Note on multi-signature length. In Figure 4 the final multi-signature is a tu-
ple (z, C, D) where z ∈ Z∗

n and (C, D) ∈ Z∗
n×Ze is a commitment-decommitment

pair on message a = ze(̊y)−c. However this commitment can be computed as a
deterministic function of the committed message a and the decommitment D
(see Section 4). Therefore C can be computed given (z, c, D), and hence one can
use (z, c, D) as the final multi-signature, which reduces the multi-signature size
to |Z∗

n|+ |Ze|+ κ < |n|+ 2κ + log l.

Theorem 2. If RSA(e) and RSA(e′) problems are (t′, ε′)-hard, and the IBMS
scheme in figure 4 is instantiated with commitment scheme in section 5, which is
(tB, εB)-binding and εE-Σ-equivocable for function f(n,e)(x) = xe (mod n), then
the resulting IBMS scheme is (t, ε, n, qk, qs, qh)-secure in random oracle model
where

t ≥ 1
2

min(t′, tB)− (3qs + qh)texp

ε ≤ 4qk

√
(ε′ + εB + εE)qh +

(qh

2κ+1

)2
+

qkqh

2κ−1 + εE

and texp is the time of one exponentiation in Z∗
n.

Proof. Let C = (CKG, Com, Open, tdCKG, tdCom, RstEquiv) be a commitment
scheme for public parameters cpar = (n, e, e′) and the message spaceM equal to
QRn. Assume C is l-restricted multiplicatively homomorphic, (tB, εB)-binding
and εE-Σ-equivocable for f(e,n)(x) = xe (mod n). Given a (t, ε, n, qk, qs, qh)-
forger F , consider two simulators B0 and B1 that simulate the role of the honest
player as in the experiment Expuu−cma

IBMS interacting with the forger F . B0 takes
as an input a set {c1, c2, ..., cqh

} where ci’s are in {0, 1}κ and runs Setup proce-
dure to obtain (mpk, msk) and follows the real protocol i.e. answers to forger’s
key derivation queries and signing queries using procedures KeyDer and MSign

494 A. Bagherzandi and S. Jarecki

1. Setup(1κ):

Let l be the maximum number of players in the IBMS scheme. Pick prime numbers
e and e′ s.t. 2κ ≤ e, e′ ≤ 22κ and 2κ+1l < e < e′/l. Run KGsRSA on input (κ, e) to
obtain (n, d). Note that gcd(e′, φ(n)) = 1 because φ(n) = 4p′q′ where p′, q′ > 22κ.
Run CKG(n, e, e′) to obtain the commitment key K . Set mpk = (n, e, e′,K) and
msk = d. Assume H1 : {0, 1}∗ → QRn and H2 : QRn × {0, 1}∗ × QRn → {0, 1}κ

are random oracles that every other algorithm in the protocol has access to them.

2. KeyDer(msk, Id):

The PKG computes xId ← (H1(Id))2d (mod n), sets the private key of the user
with identity Id as skId ← xId and sends it back to him via a secure and
authenticated channel.

3. MSign: Let P be the set of players participating in the protocol. Each player
determines P after the first step of MSign. Player with identity Idi on input
(mpk,m, skIdi), performs the following steps:

3.1 Pick ki
r← QRn, ai ← ke

i ; Set (Ci, Di)
r← ComK (ai) and broadcast (Idi, Ci);

3.2 Upon receiving (Idj , Cj) ∀Pj∈ P , Set IdSet ← {Idj}Pj∈P and C ←⊗
Pj∈P Cj ;

Set c ← H2(C, IdSet, m); Compute zi ← ki(xIdi)
c and broadcast (zi, Di);

3.3 Output multisignature σ = (z, C, D), where z =
∏

Pj∈P
zj and D =

⊕
Pj∈P

Dj .

4. Vrfy(mpk,m, IdSet, σ):

Parse σ as (z, C, D) and mpk as (n, e, e′,K); Set c ← H2(C, IdSet, m);
y ← ∏

Idi∈IdSet H1(Idi)2; If OpenK (C, D, zey−c) = 1 then accept otherwise reject.

Fig. 4. Identity-based multisignature scheme based on RSA

respectively. Additionally, B0 answers the forger’s hash queries and performs an
extra finalization process by following the procedures SimHash and Finalize in
Figure 5. The simulator B1, on the other hand, takes as an input an RSA chal-
lenge (n, e, ẙ) and a set {c1, c2, ..., cqh

} where ci’s are in {0, 1}κ and follows the
Init, SimKeyDer, SimMSign, SimHash and Finalize procedures detailed in Figure
5 to perform the initialization, answering to key derivation, signing and hash
queries and finalization processes, respectively. Intuitively, the simulator B1 uses
Coron’s technique [Cor00] to embed the RSA challenge in the hashes of the ID’s
of the players with some biased probability 1 − ρ hoping that the forgery be
based upon the ID of the player for which the RSA challenge is indeed embed-
ded. This way B1 passes the signing queries on behalf of identity Id just like
real protocol using the procedure MSign if the RSA challenge is not embedded
in the hash of Id and otherwise B1 uses the straight-line structured-instance
zero-knowledge simulator for proof of knowledge of e-th root (see corollary 1) to
simulate the signature protocol on behalf of the identity Id. Both B0 and B1,
after receiving a valid forgery from F , perform a finalization phase in which the
forged multisignature is returned together with the index of the hash responses
upon which they are based. Namely both B0 and B1 return (j, (m, IdSet, σ))
s.t. Vrfy(mpk, m, IdSet, σ) = 1 and there exists at least one uncorrupted Id s.t.

Identity-Based Aggregate and Multi-Signature Schemes Based on RSA 495

(m, Id) is never queried for signing. The simulators B0 and B1 set up empty
tables H1 and H2 to simulate the hash functions H1 and H2 respectively and use
the set {c1, c2, ..., cqh

} to answer to the hash queries to H2 which enables the
utilization of forking lemma (as formulated e.g. in [BN06, BCJ08]).

Now for I ∈ {0, 1} let’s lower-bound accBI the probability that BI generates a
“useful” output i.e. an output other than (0, λ). This happens when BI does not
abort in any of the key derivation queries or finalization procedure. Therefore
accBI ≥ ρqK (1− ρ). This function reaches its maximum when ρ = qK/(qK + 1).
Substituting this value of ρ yields:

accBI ≥
(

qK

qK + 1

)qK
(

1− qK

qK + 1

)
≥ 1

qK

(
qK

qK + 1

)qK+1

≥ 1
4qK

For I ∈ {0, 1}, consider FBI -the forking algorithm associated with BI . The suc-
cess event of FBI denoted by EBI is that the algorithm BI outputs two tuples
(cj , (x, n1, m, IdSet, σ)) and (c̃j , (x̃, ñ1, m̃, ˜IdSet, σ̃)) s.t. cj �= c̃j where j is the
index of the hash responses upon which the forged multisignature is based. Since
the random coins of the algorithm BI and the hash responses of the algorithm
BI previous to jth query are the same in the first and second executions, all
the computations and communications and in particular the queries submit-
ted to the hash function H2 before jth query must be the same, too. Thus
the occurrence of EBI implies IdSet = ˜IdSet, C = C̃ and m = m̃. Note that
IdSet = ˜IdSet also implies y = ỹ. This is because y =

∏
Idi∈IdSet (H1(Idi))

2,
ỹ =

∏
Idi∈ ˜IdSet (H1(Idi))

2 and the values for H1(Idi) for all Idi ∈ IdSet is
fixed before the fork. The success event EBI can be partitioned into two cases
(1) event EBI

1 in which EBI happens and zey−c = z̃eỹ−c̃ (2) event EBI
2 in

which EBI happens and zey−c �= z̃eỹ−c̃. Obviously EBI = EBI
1 ∪EBI

2 and hence
Pr[EBI] ≤ Pr[EBI

1] + Pr[EBI
2]. On the other hand, according to the forking

lemma, EBI can be lower bounded by εBI , the success probability of the simu-
lator BI :

accBI .

(
accBI

qh
− 1

2κ

)
≤ Pr[EBI] ≤ Pr[EBI

1] + Pr[EBI

2] (2)

If ci’s are uniformly distributed in {0, 1}κ then F ’s view in interaction with B0
is identical to the real execution of the protocol. As for B1, since C is εE-Σ-
equivocable, by straight-line structured-instance simulatability of ZKPK of e-th
root, firstly the distributions of the commitment keys in the simulation and in
the real protocol are at most εE apart and secondly the distribution of the tuples
(C1, D1, z1) generated in each signature instance in the interaction between F
and B1 is identical the distributions of the same variables in the real execution.
Thus, since our simulation is straight line, total distance between F ’s view in
interaction with B1 and in real execution is at most εE. This implies in particular
that εB0 = ε, |εB1 − ε| ≤ εE and |Pr[EB0

2]−Pr[EB1
2]| ≤ εE . So ε/4qk ≤ accB0 and

(ε− εE)/4qk ≤ accB0 . Thus equation (2) becomes:

ε− εE

4qk

(
ε− εE

4qkqh
− 1

2κ

)
≤ Pr[EB1

1] + Pr[EB0
2] + εE (3)

496 A. Bagherzandi and S. Jarecki

Init(n, e, ẙ):

Pick prime e′ where el ≤ e′ ≤ 22κ and
run tdCKG((n, e, e′), ẙ) to get (td,K),
set mpk as (n, e, e′,K) and run F on
input mpk;

SimKeyDer(Id):

Query H1 on Id and look up H1[Id] to
get (b, δ, y). If b = 0, return δ other-
wise abort the simulation with failure
outputting (0, λ).

SimMSign(m, Id):

Query H1 on Id and look up H1[Id]
to get (b, δ, y). If (b = 0) then run
MSign(m, Id); otherwise:
−(C̃, st)←tdComK (td);

Send (Id, C̃) to F ;
−Upon receiving (Idj , Cj) for Pj ∈ P ,

IdSet ← {Idj}Pj∈P ; C ←⊗
Pj∈P Cj ;

c ← H2(C, IdSet, m);
(D̃, z̃) ← RstEquivK (td, st, c, δ);
Send (z̃, D̃) to F ;

−z←∏
Pj∈P zj ; D←⊕

Pj∈P Dj ;
Output σ = (z, C, D);

SimHash:

H1(Id): If Id is not previously queried,
pick δ uniformly at random from QRn,
toss a biased coin b so that b = 0 with
probability ρ and b = 1 with probability
1 − ρ. If b = 0, set y ← δe otherwise
set y ← ẙδe. Store (b, δ, y) to H1[Id].
Return H1[Id].

H2(C, IdSet, m): If (C, IdSet, m) is an
ith distinct query of F to H2, then
query H1(Idi) for every Idi ∈ IdSet
and set H2[(C, IdSet, m)] ← ci; Return
H2[(C, IdSet, m)];

Finalize:

Upon receiving a valid forgery
(m,IdSet, σ) from F , parse σ as
(z, C,D) and query H2 on (C, IdSet, m).
Let IdSet0 = {Idi|bi = 0} and
IdSet1 = {Idi|bi = 1}. If IdSet1 = ∅
then abort the simulation with fail-
ure outputting (0, λ). Otherwise set
x ← ∏

Idi∈IdSet(xi), n1 = |IdSet1| and
return (j, (x,n1, m, IdSet, σ)) where j
is the index of c in the hash table H2.

Fig. 5. The procedures SimHash and Finalize that B0 and B1 use and the procedures
Init, SimKeyDer, and SimMSign that B1 uses

The actual reduction algorithm R, runs both FB0 and FB1 . If E1
B1 happens,

then zey−cj = z̃eỹ−c̃j . Substituting y = ỹ = (̊y)2n1x2e where n1 is the number of
players for whom the reduction has embedded the challenge (see figure 5) yields(

(z/z̃)x2(cj−c̃j)
)e

= (̊y)2n1(cj−c̃j) (4)

Now since l2κ+1 < e, therefore gcd(e, n1(cj−c̃j)) = 1 and one can easily compute
the e-th root of ẙ using the extended Euclidean algorithm.

If E2
B0 happens, thenR immediately translates it into an attack against bind-

ing property of commitment scheme C by returning (c, D, D̃, zey−cj , z̃eỹ−c̃j).
To see this note that as argued before, y = ỹ, C = C̃ and since E2

B0 is oc-
curred, thus zey−cj �= z̃eỹ−c̃j and due to validity of the forgeries we have
OpenK (C, D, zey−cj) = OpenK (C, D̃, z̃eỹ−c̃j) = 1. Moreover the commitment
key K is outputted by CKG in the execution of B0. Thus Pr[EB1

1] ≤ ε′ and
Pr[EB0

2] ≤ εB and hence equation (3) becomes

ε− εE

4qk

(
ε− εE

4qkqh
− 1

2κ

)
≤ ε′ + εB + εE (5)

Identity-Based Aggregate and Multi-Signature Schemes Based on RSA 497

The running time tR of the reduction algorithmR is twice the maximum of running
time of the algorithms B0 and B1. But the running time of B0 and B1 is dominated
by the running time of the forgerF plus the time spent by the simulators to answer
the hash, signing and key derivation queries. Thus tR ≤ 2(t+(3qs+qh)texp) where
texp is the time required for exponentiation in Z∗

n. On the other hand sinceR either
answers the RSA challenge or returns an attack against the binding property of the
commitment C, it must be true that min(t′, tB) ≤ tR. Thus:

t ≥ 1
2

min(t′, tB)− (3qs + qh)texp

7 Identity-Based Aggregate Signature Scheme

The construction in the previous section can be easily modified to obtain a 2-
round identity based aggregate signature (IBAS) scheme provably secure under
RSA assumption. For this purpose, one needs to modify the verification algo-
rithm to support the case where different challenges are acquired in step 4.2
of the protocol due to querying H2 on different messages. More precisely, the
resulting IBAS scheme is exactly the same as the scheme described in figure 4
except that its verification algorithm would be as follows: Parse σ as (z, C, D)
and mpk as (n, e, e′,K); Compute R ← ze

∏
Idi∈IdSet (H1(Idi))

2ci where ci is
output of H2 on input (C, IdSet, mi) and check whether OpenK (C, D, R) = 1.

The security proof for this IBAS scheme is similar to the proof given in the
previous section. Namely the reduction runs two simulators; in one simulator the
challenge is embedded in the commitment key and in the other it is embedded in
hashes of IDs. Therefore with high probability, if the forgery happens the reduc-
tion translates it either to either attack the binding property of the commitment
scheme (event E2 in the previous proof) or to find e-th root of the challenge
(event E1 in the previous proof). The security proof of the IBAS scheme is sim-
ilar to the security proof of IBMS scheme described in the previous section. The
most important difference is that in order to find the e-th root of the challenge
we have the following equation instead of equation 4 in the previous proof:

(̊y)2
∑

Idi∈IdSet1
(c̃i−ci) =

(
(z/z̃)

∏
Idi∈IdSet

x
2(c̃i−ci)
i

)e

Therefore to be able to compute e-th root of ẙ, we need gcd(e, 2
∑

Idi∈IdSet1
(c̃i−

ci)) = 1. In particular, the reduction succeeds as long as
∑

Idi∈IdSet1
(c̃i − ci) �=

0 mod e, i.e. unless the challenges in the two branches of the forking algorithm
sum up to the same value mod e, which happens with only negligible probability.

References

[BA03] Barr, K., Asanovic, K.: Energy aware lossless data compression. In: MobiSys
(2003)

[BCJ08] Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the
discrete logarithm assumption and a generalized forking lemma. In: ACM
Conference on Computer and Communications Security, pp. 449–458 (2008)

498 A. Bagherzandi and S. Jarecki

[BGOY10] Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisigna-
tures and identity-based sequential aggregate signatures, with applications
to secure routing. Cryptology ePrint Archive, Report 2007/438, Revised
21/02/2010 (2010)

[BJ10] Bagherzandi, A., Jarecki, S.: Identity-based aggregate and multi-signature
schemes based on RSA (full version) (2010)

[BN06] Bellare, M., Neven, G.: Mult-signatures in the plain public-key model and a
general forking lemma. In: Conference on Computer and Communications
Security, CCS 2006, pp. 390–399 (2006)

[BN07] Bellare, M., Neven, G.: Identity-based multi-signatures from rsa. In: Abe,
M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 145–162. Springer, Heidelberg
(2006)

[CDS94] Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge
and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

[Cor00] Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

[Dam00] Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary
string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807,
pp. 418–430. Springer, Heidelberg (2000)

[GHK06] Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-
based signatures with additional properties. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg
(2006)

[GQ88] Guillou, L.C., Quisquater, J.-J.: A “paradoxical” indentity-based signature
scheme resulting from zero-knowledge. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 216–231. Springer, Heidelberg (1998)

[GR06] Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 257–273. Springer, Heidelberg (2006)

[Her06] Herranz, J.: Deterministic identity-based signatures for partial aggregation.
Comput. J. 49(3), 322–330 (2006)

[KT05] Kim, J., Tsudik, G.: Srdp: Securing route discovery in dsr. In: MobiQuitous,
pp. 247–260 (2005)

[MOR01] Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures. In:
ACM Conference on Computer and Communications Security, CCS 2001
(October 2001)

[Nev08] Neven, G.: Efficient sequential aggregate signed data. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg
(2008)

[Sch89] Schnorr, C.-P.: Efficient identification and signatures for smart cards. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
Heidelberg (1990)

[Sha84] Shamir, A.: Identity-based cryptosystems and signature schemes. In:
Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53.
Springer, Heidelberg (1985)

Lattice Mixing and Vanishing Trapdoors:
A Framework for Fully Secure Short

Signatures and More

Xavier Boyen

Universitas Leodiensis
Institut Montefiore

Liège, Belgium
xb@boyen.org

Abstract. We propose a framework for adaptive security from hard
random lattices in the standard model. Our approach borrows from the
recent Agrawal-Boneh-Boyen families of lattices, which can admit reliable
and punctured trapdoors, respectively used in reality and in simulation.
We extend this idea to make the simulation trapdoors cancel not for a
specific forgery but on a non-negligible subset of the possible challenges.
Conceptually, we build a compactly representable, large family of input-
dependent “mixture” lattices, set up with trapdoors that “vanish” for a
secret subset which we hope the forger will target. Technically, we tweak
the lattice structure to achieve “naturally nice” distributions for arbitrary
choices of subset size. The framework is very general. Here we obtain fully
secure signatures, and also IBE, that are compact, simple, and elegant.

1 Introduction

Lattices are currently enjoying renewed interest in cryptography, owing to a
combination of mathematical elegance, implementation simplicity, provable se-
curity reductions, and, more recently, rather dramatic gains in efficiency that
bring them closer to the familiar discrete-log and factoring-based approaches.
Lattice-based crypto also offers the hope of withstanding quantum computers,
against which both discrete-log and factoring-based approaches are known to be
utterly defenseless. As a few examples of influential lattice-based cryptosystems
and foundations, we mention [5,6,17,18,4,23,22,19], among many others.

Still, by far the biggest barrier to the practical deployment of lattice-based
cryptographic systems remains their space inefficiency, which may exceed by
several orders of magnitude that of the mainstream. This is especially true for
systems based on so-called “hard” random integer lattices, which have essentially
no structure other than being periodic modulo the same modulus q along every
coordinate axis. Hard lattices have the drawback of requiring voluminous repre-
sentations, especially when compared to lattices with additional structure such
as cyclic or ideal lattices. Being devoid of structure, however, hard lattices may
harbor potentially tougher “hard problems” for a safer foundation for crypto.

P.Q. Nguyen and D. Pointcheval (Eds.): PKC 2010, LNCS 6056, pp. 499–517, 2010.
c© International Association for Cryptologic Research 2010

500 X. Boyen

A primary motivation for lattice cryptography being a hedge against the
doomsday of mainstream assumptions, it seems worthwhile to endeavor to build
cryptosystems as efficient and provably secure as we can from hard lattices.

1.1 Related Work

A number of progresses toward efficient lattice-based signatures have recently
been made. We mention the most closely comparable ones to this work.

Lyubashevsky and Micciancio [16] gave an elegant one-time signature on cyclic
lattices, that was then lifted into a many-time signature using a standard tree
construction. The signature was stateful and not truly hash-and-sign.

Gentry et al. [13] were the first to realize identity-based encryption from (hard)
lattices, with a fully secure construction that implied a very efficient signature
as a by-product. Their security proof crucially relied on random oracles.

Cash et al. [11] and Peikert [21] then managed to remove the random oracle
and add a hierarchy, using an elegant but bandwidth-intensive bit-by-bit scheme
(also concurrently proposed by Agrawal and Boyen [3] sans hierarchy), reminis-
cent of Canetti et al. [10]. Additionally, Peikert [21] showed how to make a simpler
signature from the bit-by-bit framework, albeit with an IBE-precluding “salt”,
using the recent prefix signature technique of Hohenberger and Waters [14].

Boneh et al. [9,1] soon thereafter showed how to avoid the bit-by-bit IBE
construction in favor of a compact and efficient all-at-once encoding, creating a
selectively secure scheme reminiscent of Boneh and Boyen [8]. Though it does not
natively give a secure signature (a costly generic conversion would be needed),
we mention it because our framework turns it into a fully secure IBE and more.

Bandwidth Requirements. The following table compares the space efficiency of
those recent signature schemes (in hard lattices, unless indicated otherwise).

SIS Std. |VerKey| |SigKey| |Signature|
strength β model? # in Zq # in Z # in Z

LM’08 [16] ✗ cyclic lattcs ✓ # in Z: Õ(λ)+Õ(�) Õ(�)
GPV’08 [13] Õ(n1.5) ROM n m m2 m

CHK’09 [11] Õ(� n2) ✓ 2 �2+ε n m m2 �2+ε m

P’09 [21] Õ(
√

� n1.5) ✓ 2 � n m m2 � m

This work Õ(� n2.5) ✓ � n m m2 m

Parameter λ is the security level; the message bit-size; q the modulus; and m and n

the lattice and constraint dimensions where λ ≈ n < m = Θ(n log q). Tabulated SIS
strength is the approximation factor β incurred by the security reduction; and |entity|
the # of entries in Z and/or Zq per entity, with up to �log q� ≈ �log β� bits per entry.

We remark that moderate differences of approximation parameter (β) have
limited practical impact compared to variations in the number (#) of entries.
Indeed, β is linked to the modulus of Zq and the norm of entries in Z; and varying

Lattice Mixing and Vanishing Trapdoors 501

their magnitudes by a factor z = �k1 nk2 = poly(q) only affects the information-
theoretic bit sizes by a factor 1 + log z/ log q = Θ(1). By contrast, if we vary the
number of entries by a factor z, the total bit sizes vary by a factor Θ(z). Note that
∀β = poly(n), there is an average-case β-SIS reduction [5] from worst-case SIVP
with approximation factors γ = Õ(β

√
n), widely believed hard ∀γ = poly(n).

The concrete parametric hardness of these assumptions is estimated in [12,20].

1.2 Contribution

In this work, we propose a lattice-based encoding framework that generalizes the
all-at-once encoding of Agrawal et al. [1]. The relationship of this work to the
other one is akin to that linking Waters [24] to Boneh and Boyen [8] in pairing
groups. Our goal is to build compact, practical, and “fully secure” signatures and
identity-based encryption, from hard integer lattices in the standard model.

Here we focus on signatures. Our main construction is a stateless “hash-and-
sign” fully secure signature, i.e., existentially unforgeable under chosen-message
attacks, that is about as short as [13]. Our main result is a standard-model
security reduction for it and related schemes (from the classic average-case SIS
problem, itself reducible from worst-case SIVP and other hard problems [5,23]).

As a bonus, our framework yields a clean “unsalted” construction that extends
effortlessly from signature to identity-based private-key extraction. The two are
indeed closely related, except that certain tricks used to make signatures secure
are incompatible with IBE, such as black-box randomized hashes whose “nonces”
would be inaccessible to a non-interactive encrypting party. Our framework does
not have this problem, and has already been used to make the IBE scheme of [1]
fully secure with little loss of efficiency (see the full version of [1] for details).

1.3 Highlights

Technically, we obtain our compact signature by “mixing” together, in a message-
dependent manner, a number of public-key matrices in order to induce in a
deterministic way a large family of hard lattices. A signature is a short non-zero
vector in the appropriate lattice. For proving adaptive security, we arrange the
lattice melange in such a way that a signing trapdoor, i.e., a short lattice basis,
is always available for every possible input in the real scheme. In the simulation,
faulty trapdoors will be made to vanish through spurious cancellations for a
certain, suitably sized set of “challengeable inputs”, unknown to the adversary.

A crucial and novel feature of our framework is to ensure that the challenge-
able inputs are well spread out over the entire input space, regardless of the
selected size of the challengeable set. This ensures that, regardless of the actions
of the adversary, the simulation will unfold with a significant and more or less
invariant probability of success. This simulation robustness property is unusual
and key to achieving an efficient security reduction.

Earlier schemes, also based on this principle of small but non-negligible chal-
lengeable input sets, generally did not have the luxury of uniform distributions
over custom domains; they had to provision complex mechanisms to compensate

502 X. Boyen

for the non-uniformity of certain events in function of the adversary’s actions.
The Waters [24] scheme, for example, contains such a mechanism, prompted by
the non-existence of distributions of non-negligible equal weights over exponen-
tially sized groups as used in pairing-based cryptography.

With lattices, by contrast, the possibility to work with smaller moduli gives
us an extra handle on the construction of “nice” distributions for a very wide
range of challengeable input set sizes. As a result, we obtain security reductions
that are simpler, tighter, and more efficient.

2 Lattice Notions

Here we gather a number of useful notions and results from the literature.
We denote by ‖A‖ or ‖a‖ the �2-norm of a matrix A or vector a. We denote

by Ã the Gram-Schmidt ordered orthogonalization of A, and its �2-norm by ‖Ã‖.

2.1 Random Integer Lattices

Definition 1. Let a basis B =
[

b1
∣∣ . . .

∣∣ bm

]
∈ Rm×m be an m ×m matrix

with linearly independent columns b1, . . . ,bm ∈ Rm. The lattice Λ generated by
the basis B and its dual Λ∗ are defined as (both are m-dimensional),

Λ = L(B) =
{

y ∈ Rm s.t. ∃s ∈ Zm , y = B s =
m∑

i=1

si bi

}
Λ∗ =

{
z ∈ Rm s.t. ∀y ∈ Λ , zT y = 〈z,y〉 ∈ Z

}
Definition 2. For a positive integer q (later a prime) and a matrix A ∈ Zn×m

q ,
define two m-dimensional full-rank integer lattices:

Λ⊥(A) =
{

e ∈ Zm s.t. A e = 0 (mod q)
}

Λ(A) =
{

y ∈ Zm s.t. ∃s ∈ Zn , AT s = y (mod q)
}

These are dual when properly scaled, as Λ⊥(A) = q Λ(A)∗ and Λ(A) = q Λ⊥(A)∗.

2.2 Bases and Trapdoors

A fundamental result in the geometry of numbers is that every lattice Λ has a
basis; e.g., see [15]. Implicit in its proof, is the well known fact that any full-rank
set SA ⊂ Λ can be converted into a basis TA for Λ with no greater orthogonalized
norm ‖T̃A‖ ≤ ‖S̃A‖.

Fact 3. For a set X = {x1, . . . ,xm} of lattice vectors, let X̃ = {x̃1, . . . , x̃m} be its
Gram-Schmidt ordered orthogonalization. There is a deterministic polynomial-
time algorithm that, on input an arbitrary basis of an m-dimensional lattice
Λ and a full-rank set S = {s1, . . . , sm} ⊂ Λ of lattice vectors, returns a basis
T = {t1, . . . , tm} of Λ such that ‖t̃i‖ ≤ ‖s̃i‖ for all i = 1, . . . , m.

Lattice Mixing and Vanishing Trapdoors 503

Ajtai [6] shows how to sample a uniform matrix A ∈ Zn×m
q with an associ-

ated full-rank set SA ⊂ Λ⊥(A) of low-norm vectors orthogonal to A modulo q.
Tightness was later improved by Alwen and Peikert [7].

Proposition 4 ([7]). For any δ0 > 0, there is a probabilistic polynomial-time
algorithm that, on input a security parameter 1λ, an odd prime q = poly(λ),
and two integers n = Θ(λ) and m ≥ (5 + 3 δ0)n log q, outputs a statistically
(m q−δ0 n/2)-close to uniform matrix A ∈ Zn×m

q and a basis TA ⊂ Λ⊥(A) such
that with overwhelming probability ‖TA‖ ≤ O(n log q) and ‖T̃A‖ ≤ O(

√
n log q).

For the purpose of this paper, we take δ0 = 1/3, assume L = Ω̃(
√

m), and
summarize the foregoing as follows.

Fact 5. There is a probabilistic polynomial-time algorithm that, on input a security
parameter 1λ, an odd prime q = poly(λ), and two integers n = Θ(λ) and m ≥
6 n log q, outputs a matrix A ∈ Zn×m

q statistically close to uniform, and a basis
TA for Λ⊥(A) with overwhelming probability such that ‖T̃A‖ ≤ Θ̃(

√
m) ≤ L.

2.3 Discrete Gaussians

Given a basis for an integer random lattice, we recall how to sample random
lattice points from a discrete Gaussian distribution whose minimum “width” is
function of the norm of the lattice basis. We follow the works of [23,4,19,13].

Definition 6. Let m ∈ Z>0 be a positive integer and Λ ⊂ Rm an m-dimensional
lattice. For any vector c ∈ Rm and any positive parameter σ ∈ R>0, we define:

ρσ,c(x) = exp
(
−π ‖x−c‖2

σ2

)
: a Gaussian-shaped function on Rm with center c

and parameter σ, (For x ∈ R, ρσ,c(x) ∝ N σ√
2π

,0(x), the normal probability

density of variance σ2

2 π and mean 0.)
ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x): the (always converging) discrete integral of ρσ,c over

the lattice Λ,
DΛ,σ,c : the discrete Gaussian distribution over Λ with center c and parameter

σ,
∀y ∈ Λ , DΛ,σ,c(y) = ρσ,c(y)

/
ρσ,c(Λ)

For notational convenience, origin-centered ρσ,0 and DΛ,σ,0 are abbreviated as
ρσ and DΛ,σ.

Gentry et al. [13] show that, given a basis B for a lattice Λ, one can efficiently
sample points in Λ with discrete Gaussian distribution for sufficiently large values
of σ.

Proposition 7 ([13]). There exists a probabilistic polynomial-time algorithm
that, on input an arbitrary basis B of an m-dimensional full-rank lattice Λ =
L(B), a parameter σ ≥ ‖B̃‖ω(

√
log m), and a center c ∈ Rm, outputs a sample

from a distribution that is statistically close to DΛ,σ,c.

For concreteness, we will refer to the algorithm of Proposition 7 as follows:

504 X. Boyen

SampleGaussian(B, σ, c): On input a basis B for a lattice Λ ⊂ Rm, a positive
real parameter σ ≥ ‖B̃‖ω(

√
log m), and a center vector c ∈ Rm, it outputs

a fresh random lattice vector x ∈ Λ drawn from a distribution statistically
close to DΛ,σ,c.

2.4 Smoothing Parameter

We recall the notion of smoothing parameter of a lattice which lower-bounds
the “density” of points on a lattice across all directions, and how this relates to
discrete Gaussian sampling on the lattice.

Micciancio and Regev [19] define the smoothing parameter of a lattice as
follows.

Definition 8 ([19]). For any m-dimensional lattice Λ and any positive real
ε > 0, the smoothing parameter ηε(Λ) is the smallest real η > 0 such that
ρ1/η(Λ∗ \ {0}) ≤ ε.

Micciancio and Regev [19] show that large deviations from lattice points vanish
exponentially.

Proposition 9 ([19]). For any lattice Λ of integer dimension m, any point c,
and any two reals ε ∈ (0, 1) and η ≥ ηε(Λ),

Pr
{

x ∼ DΛ,η,c : ‖x− c‖ >
√

mη
}
≤ 1 + ε

1− ε
2−m

Peikert and Rosen [22] show that the Gaussian function itself vanishes away from
any point.

Proposition 10 ([22]). For any lattice Λ of integer dimension m, any center
c ∈ Rm, any two reals ε ∈ (0, 1) and η ≥ 2 ηε(Λ), and any lattice point x ∈
span(Λ),

DΛ,η,c(x) ≤ 1 + ε

1− ε
2−m

2.5 Statistical Mixing

We recall some useful statistical mixing properties relating to the reduction of
an integer vector modulo a lattice to yield a syndrome.

Ajtai [5] then Regev [23] show that binary combinations of enough vectors
alsmost always span the space.

Proposition 11 ([23]). Let m ≥ 2 n log q. Then for all except at most some q−n

fraction of matrices A ∈ Zn×m
q , the subset sums of the columns of A generate

Zn
q . In other words, for every syndrome u ∈ Zn there exists a binary vector

e ∈ {0, 1}m such that A e = u (mod q).

Gentry et al. [13] show that short Gaussian combinations of any spanning vector
set yields uniformity.

Lattice Mixing and Vanishing Trapdoors 505

Proposition 12 ([13]). Assume the columns of A ∈ Zn×m
q generate Zn

q , and
let ε ∈ (0, 1) and η ≥ ηε(Λ⊥(A)). Then for e ∼ DZm,η the distribution of the
syndrome u = A e mod q is within statistical distance 2 ε of uniform over Zn

q .
Furthermore, fix u ∈ Zn

q and let c ∈ Zm be an arbitrary solution to A c = u
(mod q). Then the conditional distribution of e ∼ DZm,η given A e = u (mod q)
is exactly c +DΛ⊥(A),η,−c.

Gentry et al. [13] then show that for random A the lattice Λ(A) has large minimal
distance in �∞ and thus that Λ⊥(A) has small smoothing parameter.

Proposition 13 ([13]). Let q be a prime and n and m be two integers satisfying
m ≥ 2 n log q. Then, for all but at most some q−n fraction of matrices A ∈
Zn×m

q , it holds that λ∞
1 (Λ(A)) ≥ q/4. Also, for any such A and any ω(

√
log m)

function, there is a negligible function ε(m) such that the smoothing parameter
ηε(Λ⊥(A)) ≤ ω(

√
log m).

Combining the previous propositions, Gentry et al. [13] summarize the results
as follows.

Fact 14. Fix a prime q and two integers n and m satisfying m ≥ 2 n log q. For
all but at most 2 q−n of matrices A ∈ Zn×m

q and for any Gaussian parameter η ≥
ω(
√

log m), on input e ∼ DZm,η the distribution of the syndrome u = A e mod q
is statistically close to uniform over Zn.

2.6 Preimage Sampling

We recall the notion of preimage-samplable functions (PSF) defined in [13],
which is based on the combination of a trapdoor construction for integer lattices
and an efficient discrete Gaussian sampling algorithm.

Let a uniform matrix A ∈ Zn×m
q and a low-norm basis TA for the lattice

Λ⊥(A). Used in the discrete Gaussian sampling algorithm, the short basis TA

can act as a trapdoor for finding small non-zero solutions e ∈ Zm of the equation
AT e = 0 (mod q) or more generally AT e = u (mod q) for any u ∈ Zn

q . This
leads to the notion of preimage-samplable functions [13].

We give the following definition of preimage-samplable function, following [13]:

Definition 15. Let λ, q, n, m, and L be as in Fact 5. Let σ ≥ L ω(
√

log m) be
some Gaussian parameter. A preimage-samplable function family is a collection
of maps fA : DZm,σ → Zn

q from DZm,σ = {e ∈ Zm : ‖e‖ ≤
√

m σ} ⊆ Zm into Zn
q ,

and specified by the following four algorithms:

TrapGen(1λ): On input 1λ, it uses the algorithm of Fact 5 to obtain a pair
(A, TA), where A ∈ Zn×m

q is statistically close to uniform and TA ⊂ λ⊥(A)
is a short basis with ‖T̃‖ ≤ L. The public function parameters are (A, q).
The preimage-sampling trapdoor is the basis TA.

EvalFun(A, q, e): On input function parameters (A, q) and an input point e ∈
DZm,σ, it outputs the image fA(e) = A e mod q in Zn

q . (The output is unde-
fined on large input e ∈ Zm \ DZm,σ.)

506 X. Boyen

SampleDom(1(m), σ): On input the m×m identity matrix 1(m) and a Gaussian
parameter σ, it outputs e ← SampleGaussian(1(m), σ,0), i.e., outputs an
element e ∈ Zm such that e ∼ DZm,σ. The input matrix 1(m) conveys the
dimension m and its columns give a basis for Gaussian sampling in the lattice
Zm. By Proposition 10, with overwhelming probability e ∈ DZm,σ.

SamplePre(A, q, TA, σ,u): On input function parameters A and q and a trap-
door TA, a Gaussian parameter σ as above, and a target image u ∈ Zn

q ,
it samples a preimage e ∈ DZm,σ from the distribution DZm,σ conditioned
on the event that A e = u (mod q). To do this, it solves for an arbitrary
solution c ∈ Zm in the linear system A c = u (mod q); it then samples
d← SampleGaussian(TA, σ,−c) ∼ DΛ⊥(A),σ,−c and outputs e = c+d in Zm.
By Proposition 10, with overwhelming probability e ∈ DZm,σ.

The construction is correct and efficient by Proposition 12; see [13] for details.

2.7 Elementary Delegation

There are several ways to delegate a short basis for Λ⊥(A) into one for Λ⊥([A|B]).
If there is no one-wayness requirement on the delegation process, then Peik-
ert [21] describes a very effective elementary deterministic way to do this.

Proposition 16 ([21]). Take any matrix A ∈ Zn×m1
q such that the columns

of A span the group Zn
q . Let an arbitrary B ∈ Zn×m2

q , and define F = [A|B].
There exists a polynomial-time deterministic algorithm that, given A, B, and an
arbitrary basis TA for Λ⊥(A), outputs a basis TF for Λ⊥(F) while preserving the
Gram-Schmidt norm of the basis (i.e., such that ‖T̃F ‖ = ‖T̃A‖).

2.8 Hardness Assumption

The following lattice problem was first suggested to be hard on average by Aj-
tai [5] and formally defined by Micciancio and Regev [19].

Definition 17. The Small Integer Solution (SIS) problem in L2-norm is: given
an integer q, a matrix A ∈ Zn×m

q , and a real β, find a non-zero integer vector
e ∈ Zm such that A e = 0 (mod q) and ‖e‖2 ≤ β. The average-case (q, n, m, β)-
SIS problem is defined similarly, where A is uniformly random.

This problem was shown to be as hard as certain worst-case lattice problems,
first by Ajtai [5], then by Micciancio and Regev [19], and Gentry et al. [13].

Proposition 18 ([13]). For any poly-bounded m, any β = poly(n) and for any
prime q ≥ β ·ω(

√
n log n), the average-case (q, n, m, β)-SIS problems is as hard as

approximating the Shortest Independent Vector Problem (SIVP), among others,
in the worst case to within certain γ = β · Õ(

√
n) factors.

2.9 More Useful Facts

Lemma 19. Let B0 ∈ Zn×m
q . Let H be a scalar h ∈ Zq or a matrix H ∈ Zn×n

q .
Suppose that H is invertible modulo q (i.e., |H | �= 0 (mod q) when q is prime).
Then, the two preimage-samplable functions (B0)(·) mod q and (H B0)(·) mod q
from Zm into Zn

q admit exactly the same trapdoors TB0 ⊂ Zm.

Lattice Mixing and Vanishing Trapdoors 507

Proof. For all e ∈ Zm we have B0 e = 0 (mod q) if and only if H B0 e = 0
(mod q), hence the two lattices Λ⊥(B0) and Λ⊥(H B0) are the same. Thus, TB0 ⊂
Λ⊥(B0)⇔ TB0 ⊂ Λ⊥(H B0).

3 General Simulation Framework

We now describe the core scheme. At a high level, we achieve short signatures
with full adaptive security by providing a relatively large number of public-
key matrices, which are then “mixed through” together in a message-dependent
manner — as opposed to merely juxtaposed as in the constructions of [3,11,21].
In the simulation, the public-key matrices will hide a trapdoor component that
has a non-negligible probability of vanishing in the mix for certain unpredictable
choices of messages: on those messages the simulator will be unable to answer
signature queries, but will be able instead to exploit an existential forgery.

Our key-mixing technique is at some level reminiscent of Waters’ scheme [24]
in bilinear groups, but with a number of crucial differences. The farther-reaching
difference is that in the lattice setting we can exploit the smaller groups and
their richer structure to create a (much) more efficient “mixing” effect than in
the large cyclic groups of the discrete-log setting. Another difference concerns
randomization, which in a lattice setting tends to be rather more involved than
in discrete-log settings; our approach is based on the method of randomization
by a low-norm matrix from [1], with the small added contribution to show that
it can be done in a way that supports the mixing effect that we need.

3.1 Two-Sided Trapdoors

To facilitate the description of the scheme and its proof, we first construct a
preimage-samplable function of a special form that will be able to sample short
preimages from the same distribution, using either one of two types of trapdoors:
“firm” trapdoors will be used in the real scheme, and will never fail to work;
“fickle” trapdoors will be used in the simulation, and will be fragile by design.

Lattices with dual trapdoors were first introduced in [9,1]. Here, we seek to
let the matrix R, below, be generated as a mixture of certain low-norm matrices.
All the algorithms in this subsection are adapted from § 4 of [1].

Definition 20. Consider an algorithm TwoSideGen(1λ) that outputs two ran-
dom matrices A ∈ Zn×m

q and R ∈ Zm×m, where A is uniform and R has some
distribution R. Let B ∈ Zn×m

q be an independent third matrix. Write AR as
shorthand for (AR mod q) ∈ Zn×m

q , and define,

F =
[
A
∣∣ AR + B

]
∈ Zn×2m

q

We say that the pair (F, q) defines the public parameters of a two-sided function.

The following lemmas show that a two-sided function (F, q) is a preimage-
samplable function given a trapdoor for either A or B, provided that A and
R are drawn from suitable distributions.

508 X. Boyen

Lemma 21. For any parameter η ≥ ω(
√

log m), there exists an efficiently
samplable distribution Rη over Zm×m, such that with overwhelming probabil-
ity R =

∑
i=1 for independent Ri ∼ Rη has norm ‖R‖ ≤

√
mη, and such that

for (A, R) ∼ U
Z

n×m
q
×R and fixed B ∈ Zn×m

q the matrix F = [A|AR+B] ∈ Zn×2m
q

is statistically close to uniform.

Proof. According to Fact 14, it suffices to pick the columns of R independently
wiht ∼ DZm,η.

Lemma 22 (“Firm” trapdoor). Let L and σ be as in Definition 15 and Rη as in
Lemma 21. If [A|B] ∼ U

Z
n×2m
q

and TA ⊂ Λ⊥(A) of norm ‖T̃A‖ ≤ L, then the pair(
F = [A|B], q

)
is a preimage-samplable function in the sense of Definition 15.

Proof. Per Lemma 21, F is statistically close to uniform in Zn×2m
q , thus F has

the right distribution. It remains to show how to perform public and trapdoor
sampling.
SampleDom. To sample short vectors e ∼ DZ2m,σ in the domain of F, one
proceeds exactly as in the GPV scheme, i.e., by executing SampleDom(1(2m), σ)
which does not require any trapdoor.
SamplePre. For preimage sampling, we show how to sample a short preimage
e ∈ Z2m of any u ∈ Zn

q with conditional distribution DZ2m,σ | F e = u (mod q).
Since a random A ∈ Zn×m

q will almost always span all of Zn
q , we can use the

deterministic delegation mechanism of Proposition 16 to obtain a basis TF for
F with short Gram-Schmidt norm ‖T̃F‖ ≤ L. Having such a trapdoor TF for F,
we invoke SamplePre(F, q, TF , σ,u) to obtain a short random preimage e.

Lemma 23 (“Fickle” trapdoor). Let L be as in Definition 15, η as in Lemma 21,
and σ = L′ ω(

√
log m) where L′ = 2 η σ′√m and where σ′ ≥ L

√
� mω(

√
log m).

Fix a matrix B ∈ Zn×m
q with a short basis TB of orthogonalized norm ‖T̃B‖ ≤ L.

For (A, R) such that [A|AR] ∼ U
Z

n×2m
q

and ‖R‖ ≤ η
√

� m, the pair
(
F = [A|AR+

B], q
)

is a preimage-samplable function in the sense of Definition 15.

In this lemma, we allow ‖R‖ ≤ η
√

� m, where the factor
√

� will account for the
fact that in the simulation the matrix R = Rmsg =

∑
i=1±Ri for independent Ri

of norm ‖Ri‖ ≤ η
√

m and coefficients ±1 function of the message msg.

Proof. Per Lemma 21, F is statistically close to uniform in Zn×2m
q , thus F has

the right distribution. We need to show how to perform public and trapdoor
sampling.
SampleDom. Sampling short vectors e ∼ DZ2m,σ is done without any trapdoor
by invoking SampleDom(1(2m), σ), as in the previous lemma.
SamplePre. For preimage sampling, we need to show, given any input u ∈ Zn

q ,
how to sample a short preimage e ∈ Z2m of u with conditional distribution
DZ2m,σ | F e = u (mod q). We do this in three steps:

1. We build a full-rank set SF ⊂ Λ⊥(F) such that ‖S̃F ‖ ≤ 2 η L
√

� m ω(
√

log m).
This is done by independently sampling short vectors ei ∈ Λ⊥(F) until a linearly

Lattice Mixing and Vanishing Trapdoors 509

independent set of 2 m such vectors is found. To sample one short vector e ∈
Λ⊥(F) given the trapdoor TB, we compute d1 ← SampleDom(1(m), (η

√
�−1)σ′)

and d2 ← SamplePre(B, q, TB , σ′,−Ad1), and define,

d =
[
d1
d2

]
∈ Z2m e =

[
d1 − Rd2

d2

]
∈ Z2m

Observe that e is a fixed invertible linear function of d, and that d is discrete
Gaussian by construction. A result of Regev [23] shows that, with overwhelming
probability, at most 4 m2 samples will be needed to get 2 m linearly independent
vectors “d”, and therefore also 2 m linearly independent vectors “e”. For each e,
we have F e = A (d1−Rd2)+(AR+B)d2 = Ad1+Bd2 = Ad1−Ad1 = 0 ∈ Zn

q ,
hence e ∈ Λ⊥(F). We have also ‖e‖ ≤ (η

√
�− 1)σ′√m + η σ′ m

√
� + σ′√m ≤

2 η σ′ m
√

�. Thus by assembling 2 m linearly independent such vectors “e”, we
obtain a full-rank set SF ⊂ Λ⊥(F) of orthogonalized norm ‖S̃F‖ ≤ 2 η σ′ m

√
�.

2. We convert the short set SF into an equally short basis TF , i.e., such that
‖T̃F‖ ≤ ‖S̃F ‖. We can do this efficiently using the algorithm of Fact 3, starting
from an arbitrary basis for Λ⊥(F), itself easy to construct by linear algebra.
3. We use the newly constructed basis TF to sample a short preimage e of
the given target u ∈ Zn

q , using e ← SamplePre(F, q, TF , σ,u). Notice that the
Gaussian parameter σ ≥ ‖T̃F‖ω(

√
log m), so the algorithm SamplePre can be

applied with the stated parameters, and hence e sampled in this manner will
have conditional distribution e ∼ DZ2m,σ | F e = u (mod q).

Remark 24. Agrawal et al. [2] show the sampling overhead is only a factor ≤ 2,
hence in Step 1 we need to sample at most 4 m vectors “e” on expectation.

We also mention that a lower-norm fickle trapdoor may be obtained by using
the Alwen-Peikert delegation method as in Lemma 22 instead of the repeated
sampling as above. We shall present it in the full version.
The point of the two-sided preimage-samplable function is that in the actual
scheme we use the “firm” preimage mechanism with an always-available trapdoor
TA, whereas in the simulation we use the “fickle” preimage mechanism TB for a
matrix B = hmsg B0 that sometimes vanishes.

3.2 Main Signature Scheme

The following is our core construction of a fully secure short signature. It is very
simple and already achieves most of the compactness benefits while illustrating
the framework. In the full version, we show how to squeeze out some additional
factor from the signature size, albeit at the cost of a more complex system.

From now on, a message msg is an �-bit string
(
msg[1], . . . , msg[�]

)
∈ {0, 1}

indexed from 1 to �, augmented with a 0-th dummy extra bit set to msg[0] = 0.
This will let us easily include a constant term of index 0 in various summations.

KeyGen(1λ): On input a security parameter λ in unary, do these steps:
1. Draw an n-by-m matrix A0 ∈ Zn×m

q with a short basis TA0 ⊂ Λ⊥(A0).

510 X. Boyen

– Do so by invoking TrapGen(1λ), resulting in TA0 such that ‖T̃A0‖ ≤ L.
2. Draw � + 1 independent n-by-m-matrices C0, . . . , C ∈ Zn×m

q .
3. Output the signing and verification keys,

SK =
(
TA0

)
∈ Zm×m VK =

(
A0, C0, . . . , C

)
∈ (Zn×m

q)+2

Sign(SK, msg): On input a signing key SK and a message msg ∈ {0} × {0, 1}:
1. Define the n-by-m-matrix Cmsg =

∑
i=0 (−1)msg[i] Ci.

2. Define the message-dependent matrix Fmsg =
[
A0
∣∣ Cmsg

]
∈ Zn×2m

q .
3. Sample a short non-zero random point d ∈ Λ⊥(Fmsg), using SK = TA0 .
– Do so by sampling d ∼ DZ2m,σ | Fmsg d = 0, using Lemma 22.
4. Output the digital signature,

sigmsg =
(
d
)
∈ Z2m

Verify(VK, msg, sigmsg): On input a verification key VK, a message msg, and a
signature sigmsg:
1. Check that the message msg is well formed in {0} × {0, 1}.
2. Check that the signature sigmsg is a small but non-zero vector.
– Do so by verifying that sigmsg = d ∈ Z2m and 0 < ‖d‖ ≤

√
2 m · σ.

3. Check that sigmsg is a point on the “mixed” lattice specified by msg.
– Do so by verifying that

[
A0

∣∣∣ ∑
i=0

(−1)msg[i] Ci

]
d = 0 (mod q)

4. If all the verifications pass, accept the signature; otherwise, reject.

3.3 Security Reduction

It is easy to see by inspection that the signature scheme is consistent with over-
whelming probability.

The next theorem reduces the SIS problem to the existential forgery of our
signature. The proof involves a moderate polynomial SIS parameter β. The ex-
pression of β arises in Lemma 26, but otherwise “passes through” the reduction.
In § 3.4, we revisit the question of the lattice parameters in greater detail.

Theorem 25. For a prime modulus q = q(λ), if there is a probabilistic algorithm
A that outputs an existential signature forgery, with probability ε, in time τ , and
making Q ≤ q/2 adaptive chosen-message queries, then there is a probabilistic
algorithm B that solves the (q, n, m, β)-SIS problem in time τ ′ ≈ τ and with
probability ε′ ≥ ε/(3 q), for some polynomial function β = poly(λ).

Proof. Suppose that there exists such a forger A. We construct a solver B that
simulates an attack environment and uses the forgery to create its solution. The
various operations performed by B are the following.

Lattice Mixing and Vanishing Trapdoors 511

Invocation. B is invoked on a random instance of the (q, n, m, β)-SIS problem,
and is asked to return an admissible solution.
– Supplied: an n-by-m-matrix A0 ∈ Zn×m

q from the uniform distribution.
– Requested: any e0 ∈ Zm such that A0 e0 = 0 (mod q) and 0 �= ‖e0‖ ≤ β.

Setup. B gives to the adversary A a simulated verification key constructed as
follows:
1. Pick a random matrix B0 ∈ Zn×m

q with a short basis TB0 ⊂ Λ⊥(B0).
– Do so by invoking TrapGen(1λ), resulting in TB0 such that ‖T̃B0‖ ≤ L.
2. Pick � + 1 short random square m-by-m-matrices R0, . . . , R ∈ Zm×m.
– Do so by independently sampling the columns of the Ri ∼ DZm,η.
3. Pick � uniformly random scalars h1, . . . , h ∈ Zq and fix h0 = 1 ∈ Zq.
4. Output the verification key VK =

(
A0, C0 = (A0 R0 + h0 B0) mod q,

C1 = (A0 R1 + h1 B0) mod q, . . . , C = (A0 R + h B0) mod q
)
.

Queries. B answers adaptive signature queries from A on any message msg as
follows:
1. Compute the matrix Rmsg =

∑
i=0 (−1)msg[i] Ri.

2. Compute the scalar hmsg =
∑

i=0 (−1)msg[i] hi.
3. If hmsg = 0 (mod q), abort the simulation.
4. Compute the matrix Fmsg =

[
A0
∣∣ A0 Rmsg + hmsg B0

]
∈ Zn×2m

q .
5. Find a short random d ∈ Λ⊥(Fmsg) ⊂ Z2m, using the trapdoor TB0 .
– Do so by sampling d ∼ DZ2m,σ given Fmsg d = 0, using the procedure of

Lemma 23, using TB0 as short basis for Λ⊥(hmsg B0) per Lemma 19.
6. Output the digital signature sigmsg = d ∈ Z2m.

Forgery. B receives from A a forged signature d∗ on a new (unqueried) message
msg∗, and does:
1. Compute the matrix R∗ =

∑
i=0 (−1)msg∗[i] Ri.

2. Compute the scalar h∗ =
∑

i=0 (−1)msg∗[i] hi.
3. If h∗ �= 0 (mod q), abort the simulation.
4. Separate d∗T into

[
d∗

1
T ∣∣ d∗

2
T].

5. Return e0 = d∗
1 + R∗ d∗

2 ∈ Zm as solution to A0 e0 = 0 (mod q).
Lemma 26 shows that the answer e0 will be with small and non-zero with
good probability, and thus a valid (q, n, m, β)-SIS solution for the stated
approximation β. (An instantiation of β is given in § 3.4.)

Outcome. The reduction is valid provided that B can complete the simulation
(without aborting) with a substantial probability that is independent of the
view of A and the choices it makes. The completion probability for B against
an arbitrary strategy for A is quantified in Lemma 27.

It follows from the bounds of Lemmas 26 and 27, under the assumption that
Q ≤ q/2, that if A existentially forges a signature with probability ε, then B
solves the SIS instance with probability,

ε′ ≥ π0
(
1− q−1 Q

)
q−1 ε ≥ π0 ε

/
2 q ≥ ε

/
3 q for π0 ≥ 2/3

With the stated lemmas, this concludes the security reduction.

512 X. Boyen

Lemma 26. Given a valid forgery
[
d∗

1
T | d∗

2
T] from A on some msg∗ such that

hmsg∗ = 0 (mod q), the vector e0 = d∗
1 + Rmsg∗ d∗

2 ∈ Zm is with high probability
π0 = Θ(1) ≥ 2/3 a short non-zero preimage of 0 under A0, namely, e0 ∈ Λ⊥(A0)
and 0 �= ‖e0‖ ≤ β for some polynomial function β = poly(�, n, m) = poly(λ).

Sketch. Let h∗ = hmsg∗ and R∗ = Rmsg∗ . Let C∗ = Cmsg∗ =
∑

i=0 (−1)msg∗[i] Ci.
First, when h∗ = 0, we have C∗ = A0 R∗ + h∗ B0 = A0 R∗, and thus for a valid
signature forgery d∗,

A0 e0 = A0
(
d∗

1 +R∗ d∗
2
)

=
[
A0
∣∣ A0 R∗] [d∗

1
d∗

2

]
=
[
A0
∣∣ C∗]d∗ = 0 (mod q)

Next, we show that e0 is suitably short, which is true since R∗ is a sum of
� + 1 low-norm matrices Ri with coefficients ±1, where the summands are all
short discrete Gaussian by construction of R0, . . . , R. Since the matrices ±Ri

are nearly independent with the same variance V
{
±Ri

}
= V

{
R1
}
, we have,

V
{
R∗} = V

{ ∑
i=0

±Ri

}
≈

∑
i=0

V
{
±Ri

}
=

∑
i=0

V
{
Ri

}
= (� + 1) · V

{
R1
}

Since the ±Ri closely approximate real normal Gaussian variables, so does R∗

and therefore the Gaussian “vanishing tail” inequalities apply. Especially, as they
are almost independent discrete Gaussian with center 0 and parameter η, and
thus E

{
R∗} ≈ E

{
Ri

}
= 0, we have Pr

{
‖ ± Ri‖ >

√
m η

}
= negl(m); and thus,1

Pr
{
‖R∗‖ >

√
� + 1 ·

√
m η

}
≤ Pr

{
‖R1‖ >

√
m η

}
= negl(m)

Hence with overwhelming probability ‖e0‖ ≤ β for β = poly(�, n, m) = poly(λ),
provided we set,1

β =
(
1 +
√

� + 1
√

mη
)√

2 mσ

Finally, it remains to show that e0 = d∗
1 + Rmsg∗ d∗

2 �= 0. Suppose for an easy
case that d∗

2 = 0; then for a valid forgery we must have d∗
1 �= 0 and thus e0 �= 0.

Suppose on the contrary that d∗
2 �= 0. In that case, 0 �= ‖d∗

2‖ <
√

2 mσ � q;
and thus there must be at least one coordinate of d∗

2 that is non-zero modulo q.
W.l.o.g., let this coordinate be the last one in d∗

2, and call it y. Let r∗ be the last
column of R∗, and let ri the last column of Ri for each i. As R∗ =

∑
(−1)msg[i]Ri,

we have r∗ =
∑

(−1)msg[i]ri, where the coefficients ±1 depend on the message
bits. We focus on r1: the last column of the matrix R1 associated with the first
message bit msg[1]. Let v = (−1)msg[1] y r1. The expression of e0 can be rewritten
e0 = y r∗ + e′0 = v + e′′0 , where v depends on r1 and e′′0 does not.

The last step is to observe that the only information about r1 available to A
is contained in the last column of C1 (with “pollution” h1 B0, known in the worst
case). By leftover hash or a simple pigeonhole principle, there are a very large
1 Without using any independence, we can show Pr{‖R∗‖ > (+1) ·√m η} = negl(m),

and accordingly set β =
(
1 + (+ 1)

√
m η

)√
2mσ, which is a factor ≈ √

 worse.

Lattice Mixing and Vanishing Trapdoors 513

(exponential in m − n log q) number of admissible and equally likely vectors r1
that are compatible with the view of A, and in particular more than six of them.
Since A can set the bit msg[1] in one of two ways, it follows that A cannot know
the value of v with probability exceeding one third. At most one such value can
result in a cancellation of e0, for if some v caused all coordinates of e0 to cancel,
then every other v would fail to do so. We deduce that π0 = Pr{e0 �= 0} ≥ 2/3.
(In fact, we have π0 > 1− exp(−Ω(m− n log q))→ 1 as λ→∞.)

Lemma 27. For a prime modulus q = q(λ) and a number of queries Q ≥ 0,
the simulation completes both the Queries and Forgery phases without aborting,
with probability,

1
q

(
1− Q

q

)
≤ Pr

{
completion

}
≤ 1

q

In particular, for Q ≤ q/2, this probability is Pr
{
completion

}
∈
[
q−1/2, q−1

]
regardless of the adversary’s strategy.

Intuitively, we first observe that provided B does not abort, then the simulation
is (almost) perfect in the sense that the view of A has the same distribution as
in an attack against the real scheme (modulo a negligible sampling error owing
to the imperfection of TrapGen). In particular, A’s view remains independent of
B’s choice of h1, . . . , h, simply because those values have no counterpart in an
actual attack environment.

Now, the adversary can always assume that it is facing a simulator instead
of a real challenger, and accordingly attempt to derail the simulation. Since the
necessity to abort, for a given adversarial strategy, hinges entirely on B’s secret
choice of random h1, . . . , h, it suffices to show that these values remain mostly
unlearnable no matter A’s attack strategy.

To show this, we consider a hypothetical unbounded perfect adversary A and
show that, even with perfect Bayesian updating upon each new adaptive query
it makes, such adversary is unable to infer enough information about h1, . . . , h

to affect significantly the success probability of the simulation.

Proof. Consider the �-dimensional space Z
q, which is the domain of the unknown

(h1, . . . , h), and recall that h0 = 1. Denote by Hj the distribution of (h1, . . . , h)
over Z

q as perceived by the adversary after the first j signature queries have
been answered without aborting.

At the start of the attack, since the simulator’s selection of (h1, . . . , h) is a
uniformly random point in Z

q, the adversary’s prior distributionH0 is necessarily
the uniform distribution U(Z

q) over Z
q. For every query message msgj that is

answered without aborting, A can prune from the support of H every point
(h1, . . . , h) that lies on the “incompatible” hyperplane hmsgj

= 0 (mod q).
Denote by Vj the hyperplane thus eliminated after a successful j-th query.

Suppose by induction that Hj−1 = U(W), a uniform distribution over some
support set W ⊆ Z

q. By conditioning Hj−1 on the new evidence gained at the
j-th query, namely that (h1, . . . , h) �∈ Vj , one obtains an updated or posterior

514 X. Boyen

distributionHj = U(W\Vj), which is uniform over the smaller support set given
by W \ Vj . By induction on the number of queries, starting from H0 = U(Z

q),
we deduce that, after the j-th query, Hj = U(Z

q \ ∪
j
i=1Vi).

In particular, after all Q allowed queries have been made, the fully updated
posterior distribution HQ in the view of the adversary is then,

HQ = U
(
Z

q \ ∪
Q
i=1Vi

)
In other words, this shows that, in the event that B was able to answer all the
queries, the unknown vector (h1, . . . , h) remains equally likely to lie anywhere
in all of Z

q outside of the Q query-dependent hyperplanes V1, . . . , VQ. Being the
result of perfect Bayesian updating from all available observations, this distri-
bution captures all the information about (h1, . . . , h) leaked by B to A during
the Queries phase.

To complete the argument, consider the hyperplane V∗ ⊂ Z
q defined by the

scalar equation hmsg∗ = 0 (mod q) corresponding to the forgery message msg∗

chosen by the adversary. By the requirements of what constitutes a valid exis-
tential forgery, we know that msg∗ �= msgj and thus V∗ �= Vj for all j. (Indeed,
the purpose of adding a fixed dummy message bit msg[0] and setting h0 = 1 �= 0
is to ensure that any two distinct messages msgj �= msg∗ ∈ {0, 1} always induce
distinct hyperplaces Vj �= V∗ ⊂ Z

q.)
Since V∗ and Vj are distinct affine subspaces of dimension � − 1 in Z

q, we
have

∣∣V∗ ∩ Vj

∣∣ ≤ q−2 whereas
∣∣V∗∣∣ =

∣∣Vj

∣∣ = q−1 and of course
∣∣Z

q

∣∣ = q.
Consequently, V∗ and Vj have at most a fraction 1/q of their points in common,
and more specifically

∣∣V∗ \ Vj

∣∣ ≥ (1− q−1)
∣∣V∗∣∣ = (1 − q−1) q−1

∣∣Z
q

∣∣ for all j.
Considering the event completion = ∧Q

i=1

{
(h1, . . . , h) ∈ (V∗ \ Vi)

}
and in-

voking the union bound on this conjunction, we thus establish a lower bound,

Pr
{
completion

}
= Pr

{
(h1, . . . , h) ∈ (V∗ \ ∪Q

i=1Vi)
}

≥
(
1− q−1 Q

)
Pr
{
(h1, . . . , h) ∈ V∗} =

(
1− q−1 Q

)
q−1

Conversely, we can trivially establish an upper bound,

Pr
{
completion

}
= Pr

{
(h1, . . . , h) ∈ (V∗ \ ∪Q

i=1Vi)
}

≤ Pr
{
(h1, . . . , h) ∈ V∗} =

∣∣V∗∣∣ /
∣∣Z

q

∣∣ = q−1

In both cases the probability is over the simulator’s initial choice of h1, . . . , h.
We have shown that the probability of completion without aborting is bounded

in the narrow range
[
(1− q−1 Q) q−1, q−1

]
, regardless of the adversary’s actions.

The lemma follows.

3.4 Lattice Parameters

It is not so obvious to see that the various parameters can be instantiated in a way
that satisfies the flurry of constraints and inequalities evoked in § 2 and § 3.3. This
is necessary for us, later, to prove the security of the signature from a polynomial
average-case SIS that reduces to a worst-case lattice hardness assumption.

Lattice Mixing and Vanishing Trapdoors 515

Example 28. To ensure that hard lattices with good short bases can be generated
(i.e., m ≥ 6 n log q), that our flavor of SIS has a worst-case lattice reduction
(i.e., q ≥ β · ω(

√
n log n)), that the two-sided trapdoors can operate smooothly

(i.e., σ sufficiently large), that vectors samples using a trapdoor are difficult SIS
solutions (i.e., β ≥

√
2 �m η σ), etc., in function of a security parameter λ, we

may choose a function ω(
√

log m), a constant δ1 > 0, and a threshold λ0 0;
and ∀λ > λ0 we set:

n = λ

m = n1+δ1

η = ω(
√

log m)

L =
√

m ω(
√

log m)

σ =
√

� m3/2 ω(
√

log m)4

β =
√

2 � m5/2 ω(
√

log m)5

q =
√

2 � m3 ω(
√

log m)6

One must however keep in mind that the security reduction given in Theorem 25
holds only if q ≥ 2 Q, so it may be necessary to increase q and the other param-
eters beyond the baseline values listed above. We avoid this in § 3.5.

3.5 Refined Simulation Framework

In the full version, we give a refined analysis of the scheme that lets us keep
the baseline q even for very large Q. The idea is to replace the random scalars
hi ∈ Zq by block-diagonal matrices Hi ∈ Zn×n

q consisting of a repeated random
submatrix drawn from a full-rank difference group G ⊂ Zk×k

q for a special k|n,
where any difference G1−G2 ∈ G is either zero or an invertible matrix in Zk×k

q .
Visually, a random input k-vector ∈ Zk

q is mapped to a random matrix Hi using
an encoding map μ built from an FRD encoding ϕ, according to this picture,

μ : Zk
q → Zn×n

q : v !→

⎛⎜⎜⎜⎜⎜⎝
ϕ(v) 0

ϕ(v)
. . .

0 ϕ(v)

⎞⎟⎟⎟⎟⎟⎠
Full-rank difference (FRD) families in Zn×n

q were used as a plentiful IBE encod-
ing [1] able to represent as many as possible, up to qn, distinct identities.

Here, FRD families will serve in a very different way, internal to the simulator,
to turn the mixing coefficients hi into uniformly drawn matrices Hi from a do-
main whose size qk is just right in function of the number Q of queries, without
worrying about the modulus q. The benefit is that smaller moduli makes signa-
tures smaller and faster, and security tighter. Remarkably, except for relaxing q,
the actual scheme is unchanged. The theorem below is proven in the full paper.

516 X. Boyen

Theorem 29. If there exists a probabilistic algorithm A that creates an existen-
tial signature forgery, in time τ , with probability ε, making Q adaptive chosen-
message queries, then there exists a probabilistic algorithm B that solves the SIS
problem of Theorem 25 in time τ ′ ≈ τ with probability ε′ ≥ ε/(6 q Q).

Since both theorems apply to the same scheme in our framework, we can pick q
obliviously of Q, and invoke Theorem 25 if Q ≤ q/2 or Theorem 29 if Q q.

Acknowledgments. The author thanks Shweta Agrawal, Dan Boneh, Ronald
Cramer, David Freeman, and anonymous referees for valuable insights.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: EUROCRYPT (2010)

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE (2010) (manuscript)

3. Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard
model (2009) (manuscript), http://www.cs.stanford.edu/~xb/ab09/

4. Aharonov, D., Regev, O.: Lattice problems in NP ∩ coNP. Journal of the
ACM 52(5), 749–765 (2005)

5. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC (1996)

6. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, p. 1.
Springer, Heidelberg (1999)

7. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In:
STACS (2009)

8. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

9. Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model from the
BB-1 framework (2009) (manuscript), http://rump2009.cr.yp.to/

10. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg
(2003)

11. Cash, D., Hofheinz, D., Kiltz, E.: How to delegate a lattice basis. Cryptology ePrint
Archive, Report 2009/351 (2009), http://eprint.iacr.org/

12. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC (2008)

14. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009)

15. Lovász, L.: An Algorthmic Theory of Numbers, Graphs and Convexity. SIAM,
Philadelphia (1986)

16. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008)

http://www.cs.stanford.edu/~xb/ab09/
http://rump2009.cr.yp.to/
http://eprint.iacr.org/

Lattice Mixing and Vanishing Trapdoors 517

17. Micciancio, D., Goldwasser, S.: Complexity of lattice problems: a cryptographic
perspective. Kluwer Series on Engineering and Computer Science (2002)

18. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. In: FOCS (2004)

19. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM Journal of Computing 37(1), 267–302 (2007)

20. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J. (eds.) Post-quantum Cryptography. Springer, Heidelberg (2008)

21. Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). Cryp-
tology ePrint Archive, Report 2009/359 (2009), http://eprint.iacr.org/

22. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006)

23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: STOC (2005)

24. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

http://eprint.iacr.org/

Author Index

Agrawal, Shweta 161
Attrapadung, Nuttapong 384

Bagherzandi, Ali 480
Boneh, Dan 161
Boyen, Xavier 161, 499
Brzuska, Christina 444

Cao, Zhenfu 193
Costello, Craig 224

Dent, Alexander W. 462

Farashahi, Reza R. 243
Faugère, Jean-Charles 35, 70
Fischlin, Marc 444, 462
Freeman, David Mandell 161, 279

Galbraith, Steven D. 368
Gennaro, Rosario 142, 332
Ghadafi, Essam 177
Goldreich, Oded 279
Granger, Robert 209
Groth, Jens 107

Haralambiev, Kristiyan 1
Hayashi, Takuya 351
Hazay, Carmit 312, 332
Herranz, Javier 19
Herrmann, Mathias 53
Huang, Xinyi 124

Jager, Tibor 1
Jarecki, Stanis�law 480
Joye, Marc 243

Katz, Jonathan 142
Kawachi, Akinori 403
Kiayias, Aggelos 107
Kiltz, Eike 1, 279
Krawczyk, Hugo 142

Laguillaumie, Fabien 19
Lange, Tanja 224
Laur, Sven 88
Lehmann, Anja 444
Libert, Benôıt 384
Lipmaa, Helger 88, 107

Manulis, Mark 462
Marinier, Raphaël 70
Matsuda, Toshihide 261
Matsuo, Shin’ichiro 351
May, Alexander 53
Mol, Petros 296
Mu, Yi 124

Naehrig, Michael 224
Nishimaki, Ryo 261
Nissim, Kobbi 312
Numayama, Akira 403

Rabin, Tal 142
Ràfols, Carla 19
Renault, Guénaël 70
Rosen, Alon 279
Ruprai, Raminder S. 368

Schröder, Dominique 444, 462
Scott, Michael 209
Segev, Gil 279
Shinohara, Naoyuki 351
Shirase, Masaaki 351
Shoup, Victor 1
Smart, Nigel P. 177, 420
Sorensen, Jeffrey S. 332
Spaenlehauer, Pierre-Jean 35
Stam, Martijn 462
Susilo, Willy 124

Takagi, Tsuyoshi 351
Tanaka, Keisuke 261, 403

Vercauteren, Frederik 420
Visconti, Ivan 193

Wang, Lihua 351
Warinschi, Bogdan 177
Wu, Wei 124

Xagawa, Keita 403
Xiang, Yang 124

Yilek, Scott 296

Zhang, Zongyang 193

	Title Page
	Preface
	Organization
	Table of Contents
	Encryption I
	Simple and Efficient Public-Key Encryption from Computational Diffie-Hellman in the Standard Model
	Introduction
	Our Contributions

	Preliminaries
	Notation
	Key Encapsulation Mechanisms
	Diffie-Hellman Assumptions
	Hard-Core Functions

	Chosen-Ciphertext Secure Key Encapsulation
	Constrained Chosen-Ciphertext Secure Key Encapsulation
	Reducing the Size of the Public Key
	Bilinear Diffie-Hellman Assumption
	Public-Key Encryption with Public Keys of Size \mathcal{O}(1)
	Public-Key Encryption with Public-Key of Size \mathcal{O}(\sqrt{n})

	References

	Constant Size Ciphertexts in Threshold Attribute-Based Encryption
	Introduction
	Preliminaries
	Attribute-Based Encryption
	The Augmented Multi-sequence of Exponents Diffie-Hellman Problem

	The New ABE Scheme
	Description of the Scheme
	Consistency Checking and Efficiency Considerations
	Security Analysis

	Extensions
	More General Decryption Policies
	Security under Chosen Ciphertext Attacks

	Conclusion
	References

	Cryptanalysis
	Algebraic Cryptanalysis of the PKC'2009 Algebraic Surface Cryptosystem
	Introduction
	Description of the Cryptosystem
	Parameters
	Keys
	Encryption/Decryption
	Security of the System

	Description of the Attack
	Level 1 Attack: Decomposition of Ideals
	Level 2 Attack: Computing in the Field of Fractions \mathbb{F}_p(t)
	Level 3 Attack: Computing in Finite Fields \mathbb{F}_{p^m}

	A Concrete Example
	Complexity Analysis
	Experimental Results
	Conclusion
	References

	Maximizing Small Root Bounds by Linearization and Applications to Small Secret Exponent RSA
	Introduction
	Basics
	Unravelled Linearization and the Boneh-Durfee Attack
	CRT Exponents
	Experiments
	References

	Implicit Factoring with Shared Most Significant and Middle Bits
	Introduction
	Implicit Factoring of Two RSA Moduli with Shared MSBs
	Implicit Factoring of k RSA Moduli with Shared MSBs
	Implicit Factoring with Shared Bits in the Middle
	Experimental Results
	Shared MSBs
	Shared Bits in the Middle
	Efficiency Comparisons

	Conclusion
	References

	Protocols I
	On the Feasibility of Consistent Computations
	Introduction
	Definition of Consistent Computations
	List Commitment Schemes
	Consistent Adaptive Oblivious Transfer
	Consistent Conditional Disclosure of Secrets
	Discussion and Open Problems
	References

	Multi-query Computationally-Private Information Retrieval with Constant Communication Rate
	Introduction
	Background
	Our Contribution
	Challenges and Techniques
	Roadmap

	Preliminaries
	Lower Bound on (m, n, l)-CPIR Communication
	Restricted Multi-query CPIR
	Communication-Optimal Perfectly Correct Multi-query CPIR
	Multi-query (m, n, l)-CPIR for Constant n/m
	Multi-query (m, n, l)-CPIR for Small m
	Multi-query (m, n, l)-CPIR for Large Values of m and $l \leq log_{2}(n/m)$
	Multi-query CPIR for $l > log_{2}(n/m)$
	Summary: Communication-Optimal Multi-query CPIR

	References

	Further Observations on Optimistic Fair Exchange Protocols in the Multi-user Setting
	Introduction
	Previous Work
	Motivation
	Our Contributions

	Definitions of Optimistic Fair Exchange in the Multi-user Setting
	Syntax of Optimistic Fair Exchange
	Security against Signer(s)
	Security against Verifier(s)
	Security against the Arbitrator

	Strong Resolution-Ambiguity
	Definition of Strong Resolution-Ambiguity
	Optimistic Fair Exchange Protocols with/without Strong Resolution-Ambiguity
	Security of Optimistic Fair Exchange Protocols with Strong Resolution-Ambiguity

	A New Optimistic Fair Exchange Protocol with Strong Resolution-Ambiguity
	The Proposed Protocol
	Comparison to Previous Protocols

	Conclusion
	References

	Network Coding
	Secure Network Coding over the Integers
	Introduction
	Background
	Network Coding
	Network Coding Signatures

	Network Coding over the Integers
	Improvements to Existing Schemes

	An RSA-Based Network Coding Signature Scheme
	An RSA-Based Homomorphic Signature Scheme
	An RSA-Based Network Coding Signature Scheme
	Proof of Security

	Homomorphic Hashing Modulo a Composite
	References

	Preventing Pollution Attacks in Multi-source Network Coding
	Introduction
	Network Coding
	Multiple Sources, Multiple Files

	Signatures and File Identifiers
	Generic Attack (For Arbitrary File Identifiers)

	Network Coding Signatures
	Security

	Construction of a Multi-source Signature Scheme
	Vector Hashes
	The Construction

	References

	Tools
	Groth–Sahai Proofs Revisited
	Introduction
	Bilinear Groups
	Groth–Sahai Proofs
	Equations for i and p
	SXDH-Based Proofs
	SDLIN-Based Proofs
	Combining SXDH and SDLIN

	Performance Comparison
	Summary
	References

	Constant-Round Concurrent Non-Malleable Statistically Binding Commitments and Decommitments
	Introduction
	Our Contribution

	Preliminaries
	Concurrent Non-Malleable Commitments and Decommitments

	Constant-Round Statistically Binding Concurrent NMc and Concurrent NMd
	Concluding Remarks
	References

	Elliptic Curves
	Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions
	Introduction
	Pairing, Towering and Squaring-Friendly Fields
	New Fast Squaring in the Cyclotomic Subgroup
	Fast Squaring in $\text{Res}_{\F_{q^2}/\F_{q}} G_{\Phi_2(q)}$
	Fast Squaring in $\text{Res}_{\F_{q^6}/\F_{q^2}} G_{\Phi_6(q)}$
	Observations

	Comparison with Prior Work
	Operation Counts
	Applicability of Method to Higher Powerings

	Application to Pairing-Based Cryptography
	MNT Curves
	BN Curves

	Application to Torus-Based Cryptography
	Conclusion
	References

	Faster Pairing Computations on Curves with High-Degree Twists
	Introduction
	Background on Pairings
	Computing the Ate Pairing Entirely on the Twisted Curve
	Pairings on y^2 = x^3 + ax with Even EmbeddingDegrees
	Pairings on y^2 = x^3 + b with Even Embedding Degrees
	Fast Formulas for Pairing Computations with Cubic Twists
	Comparisons
	References

	Efficient Arithmetic on Hessian Curves
	Introduction
	Generalized Hessian Curves
	Definition
	Universality of the Model

	Unified Addition Formulas
	Complete Addition Formulas
	Explicit Formulas in Characteristic 2
	Addition
	Doubling
	Tripling
	Differential Addition

	Conclusion
	References

	Lossy Trapdoor Functions
	CCA Proxy Re-Encryption without Bilinear Maps in the Standard Model
	Introduction
	Background
	Our Contribution
	Related Work

	Preliminaries
	Notation
	DDH Assumption
	All-But-One Trapdoor Functions

	Re-applicable Lossy Trapdoor Functions
	Bidirectional and Multi-Hop PRE-CCA Scheme
	Bidirectional and Multi-Hop PRE-CCA Security
	Description of Our Scheme
	Security of Our Scheme

	Realization of Re-applicable LTDFs Based on DDH Assumption
	References

	More Constructions of Lossy and Correlation-Secure Trapdoor Functions
	Introduction
	Our Contributions
	Related Work
	Paper Organization

	Preliminaries
	Lossy Trapdoor Functions
	Correlation-Secure Trapdoor Functions

	A Construction Based on the Quadratic Residuosity Assumption
	A Construction Based on the d-Linear Assumption
	Correlated Input Security from Syndrome Decoding
	References

	Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions
	Introduction
	Preliminaries
	Products and Correlated Inputs
	Products and Lossiness Amplification
	Subset Reconstructible Distributions

	CCA Security from Functions with Small Lossiness
	The Rosen-Segev Construction
	Our Result

	An Explicit Construction of a Slightly Lossy TDF
	References

	Protocols II
	Efficient Set Operations in the Presence of Malicious Adversaries
	Introduction
	Our Contributions

	Preliminaries
	Secure Two-Party Computation – Definitions
	The El Gamal Encryption Scheme
	Perfectly Hiding Commitment
	Zero-Knowledge Proofs
	Balanced Allocation
	Oblivious {\sc prf} Evaluation

	Secure Set Intersection
	Constructing a Protocol for Malicious Parties
	Checking the Polynomials
	Secure Set-Intersection in the Presence of Malicious Adversaries
	A Very Efficient Heuristic Construction

	References

	Text Search Protocols with Simulation Based Security
	Introduction
	Tools and Definitions
	Secure Text Search Protocols
	“Honest-But-Curious” Secure Text Search
	Secure Text Search in the Presence of Malicious Adversaries
	Secure Oblivious Automata Evaluation
	A Zero-Knowledge Proof of Knowledge for a KMP Automaton

	Text Search Protocol with Simulation Based Security
	Conclusion
	References

	Discrete Logarithm
	Solving a 676-Bit Discrete Logarithm Problem in GF(3^{6n})
	Introduction
	Outline of Function Field Sieve
	Comparison of Polynomial Selection on JL02-FFS and JL06-FFS
	Polynomial Selection of JL02-FFS and Its Sieving Area
	Polynomial Selection of JL06-FFS and Its Sieving Area
	Comparison of Sieving Area

	Solving the DLP in GF($3^{6.71}$)
	Collection of Relations
	Linear Algebra
	Computation Results
	For Larger Extension Degrees

	Concluding Remarks
	References

	Using Equivalence Classes to Accelerate Solving the Discrete Logarithm Problem in a Short Interval
	Introduction
	The Gaudry-Schost Algorithm
	Theoretical Analysis
	Pseudorandom Walks and Practical Considerations

	Equivalence Classes
	The Gaudry-Schost Algorithm on Equivalence Classes

	The New Algorithm
	Experimental Results
	References

	Encryption II
	Functional Encryption for Inner Product: Achieving Constant-Size Ciphertexts with Adaptive Security or Support for Negation
	Introduction
	Definitions
	Syntax and Security Definition for Functional Encryption
	Complexity Assumptions in Bilinear Groups

	Functional Encryption Instances and Their Implications
	Inner Product Encryption and Its Consequences
	Spatial Encryption

	Functional Encryption for Zero Inner-Product
	Warm-Up: Selectively Secure Zero IPE from Spatial Encryption
	Adaptively Secure Zero IPE under Simple Assumptions

	Functional Encryption for Non-zero Inner-Product
	Negated Spatial Encryption
	Non-zero IPE under Simple Assumptions
	A Generalization of the Scheme and Its Application

	References

	Security of Encryption Schemes in Weakened Random Oracle Models
	Introduction
	The Weakened Random Oracle Models
	Definitions of the Weakened Random Oracle Models
	Difference from the Random Oracle Model
	Simulation Methods

	The Encryption Schemes and Their Security in the Weakened Random Oracle Models
	The First Variant dFO
	The Second Variant wFO
	The Original Fujisaki-Okamoto Conversion
	OAEP

	Future Work
	References

	Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes
	Introduction
	Preliminaries
	Notation
	Ideals in Number Fields

	Our Somewhat Homomorphic Scheme
	The Scheme
	Analysis

	Security Analysis
	A Fully Homomorphic Scheme
	Extension to Large Message Space
	Implementation Results
	References

	Signatures
	Unlinkability of Sanitizable Signatures
	Introduction
	Preliminaries
	Sanitizable Signatures
	Security of Sanitizable Signatures

	Unlinkability
	Definition
	Relationships of the Security Notions

	Constructions Based on Group Signatures
	Group Signatures
	Construction
	Security Proof

	References

	Confidential Signatures and Deterministic Signcryption
	Introduction
	Confidential Signature Schemes
	Definition of Confidential Signature Schemes

	Confidential Hash Functions and Signature Schemes
	Confidential Hash Functions
	Full-Domain Hash Signatures
	Strongly Confidential Signatures in the ROM
	Fiat-Shamir Signature Schemes
	Strongly Confidential Signatures from Randomness Extraction

	Deterministic Signcryption
	Notions of Confidentiality for Signcryption Schemes
	The Encrypt-and-Sign Signcryption Scheme
	Derandomization

	References

	Identity-Based Aggregate and Multi-Signature Schemes Based on RSA
	Introduction
	Technical Overview
	Identity-Based Multi-/Aggregate Signature Schemes
	Σ-Equivocable Commitments and Structured-Instance Zero-Knowledge
	Aggregatable Zero-Knowledge Proof of Knowledge of e-th Root
	RSA-Based Multiplicatively Homomorphic Σ-Equivocable Commitment

	Identity-Based Multisignature Scheme Based on RSA
	Identity-Based Aggregate Signature Scheme
	References

	Lattice Mixing and Vanishing Trapdoors: A Framework for Fully Secure Short Signatures and More
	Introduction
	Related Work
	Contribution
	Highlights

	LatticeNotions
	Random Integer Lattices
	Bases and Trapdoors
	Discrete Gaussians
	Smoothing Parameter
	Statistical Mixing
	Preimage Sampling
	Elementary Delegation
	Hardness Assumption
	More Useful Facts

	General Simulation Framework
	Two-Sided Trapdoors
	Main Signature Scheme
	Security Reduction
	Lattice Parameters
	Refined Simulation Framework

	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

