
Lecture Notes in Computer Science 6029
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Peter Müller (Ed.)

Advanced Lectures
on Software Engineering

LASER Summer School 2007/2008

13

Volume Editor

Peter Müller
ETH Zurich
ETH Zentrum, RZ F2, 8092 Zurich, Switzerland
E-mail: peter.mueller@inf.ethz.ch

Library of Congress Control Number: 2010926406

CR Subject Classification (1998): D.2, F.3, D.3, K.6, C.2, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-13009-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13009-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Only five years after its inception, the LASER Summer School on Software
Engineering has established itself among the premier training schools for PhD
students and professionals from the industry. Each year, the summer school
focuses on an important software engineering topic. This book contains selected
lecture notes from the LASER Summer Schools 2007 and 2008, both of which
focused on correctness—Applied Software Verification in 2007 and Concurrency
and Correctness in 2008.

From the 2007 summer school on Applied Software Verification, this volume
contains contributions by Tony Hoare on the verification of fine-grain concur-
rency and transactions, by Benjamin Morandi, Sebastian Bauer, and Bertrand
Meyer on the SCOOP model for concurrent object-oriented programming, by
Rustan Leino and Peter Müller on the Spec# programming and verification
system, and by Natarajan Shankar on verification in the Prototype Verification
System PVS. From the 2008 summer school on Concurrency and Correctness,
the volume includes lecture notes by Tryggve Fossum on multi-core chip design.

I would like to thank the lecturers and their co-authors, who devoted much
time to contributing to this volume. I am grateful to Marieke Huisman, Ling
Liu, Rosemary Monahan, Matthew Parkinson, Sarvani Vakkalanka, and Hagen
Völzer for their valuable feedback on drafts of the papers and to Marlies Weissert
for her assistance in preparing the proceedings. Last but not least, I would like
to thank Bertrand Meyer and his team for making the LASER Summer School
such an enjoyable experience.

February 2010 Peter Müller

Table of Contents

Fine-Grain Concurrency . 1
Tony Hoare

Compensable Transactions . 21
Tony Hoare

SCOOP – A Contract-Based Concurrent Object-Oriented Programming
Model . 41

Benjamin Morandi, Sebastian S. Bauer, and Bertrand Meyer

Using the Spec# Language, Methodology, and Tools to Write Bug-Free
Programs . 91

K. Rustan M. Leino and Peter Müller

Fixpoints and Search in PVS . 140
Natarajan Shankar

Multi Core Design for Chip Level Multiprocessing . 162
Tryggve Fossum

Author Index . 189

P. Müller (Ed.): LASER Summer School 2007/2008, LNCS 6029, pp. 1–20, 2010.
© IOS Press 2010

Fine-Grain Concurrency

Tony Hoare

Microsoft Research, Cambridge

Abstract. I have been interested in concurrent programming since about 1963,
when its associated problems contributed to the failure of the largest software
project that I have managed. When I moved to an academic career in 1968, I
hoped that I could find a solution to the problems by my research. Quite quickly
I decided to concentrate on coarse-grained concurrency, which does not allow
concurrent processes to share main memory. The only interaction between
processes is confined to explicit input and output commands. This simplifica-
tion led eventually to the exploration of the theory of Communicating Sequen-
tial Processes.

Since joining Microsoft Research in 1999, I have plucked up courage at last
to look at fine-grain concurrency, involving threads which interleave their ac-
cess to main memory at the fine granularity of single instruction execution. By
combining the merits of a number of different theories of concurrency, one can
paint a relatively simple picture of a theory for the correct design of concurrent
systems. Indeed, pictures area great help in conveying the basic understanding.
This paper presents some on-going directions of research that I have been pur-
suing with colleagues in Cambridge – both at Microsoft Research and in the
University Computing Laboratory.

1 Introduction

Intel has announced that in future each standard computer chip will contain a hundred
or more processors (cores), operating concurrently on the same shared memory. The
speed of the individual processors will never be significantly faster than they are to-
day. Continued increase in performance of hardware will therefore depend on the skill
of programmers in exploiting the concurrency of this multi-core architecture. In
addition, programmers will have to avoid increased risks of race conditions, non-
determinism, deadlocks and livelocks. And they will have to avoid the usual over-
heads that concurrency libraries often impose on them today. History shows that these
are challenges that programmers have found difficult to meet. Can good research,
leading to good theory, and backed up by good programming tools, help us to dis-
charge our new responsibility to maintain the validity of Moore’s law?

To meet this challenge, there are a great many theories to choose from. They in-
clude automata theory, Petri nets, process algebra (many varieties), separation logic,
critical regions and rely/guarantee conditions. The practicing programmer might well
be disillusioned by the wide choice, and resolve to avoid theory completely, at least
until the theorists have got their act together. This paper aims at just such a synthesis.

2 T. Hoare

I have amalgamated ideas from all these well-known and well-researched and well-
tested theories. I have applied them to the design of a structured calculus for low-
overhead fine-grain concurrent programming. My theory of correctness is equally
well-known: it is based on flowcharts and Floyd assertions. They provide a contrac-
tual basis for the compositional design and verification of concurrent algorithms and
systems.

The ideas that I describe are intended to be an aid to effective thinking about con-
currency, and to reliable planning of its exploitation. But it is possible to imagine a
future in which the ideas can be more directly exploited. My intention is that a small
collection of primitive operations will be simple enough for direct implementation in
hardware, reducing the familiar overheads of concurrency to the irreducible mini-
mum. Furthermore, the correctness of the designs may be certified by future pro-
gramming tools capable of verifying the assertions that specify correctness. And
finally, the pictures that I draw may help in education of programmers to exploit con-
currency with confidence, and so enable all users of computers to benefit from future
increases in hardware performance. But I leave to you the judgement whether this is a
likely outcome.

2 Sequential Processes, Modeled by Flowcharts

I will start with a review of the concept of a flowchart. It is a graph consisting of
boxes connected by arrows. Each box contains basic actions and tests from the pro-
gram. On its perimeter, the box offers a number of entry and exit ports. Each arrow
connects an exit port of the box at its tail to an entry port of the box at its head.

Execution of the program is modelled by a control token that passes along the
arrows and through the boxes of the flowchart. As it passes through each box, it
executes the actions and tests inside the box. In a sequential program there is only
one token, so entry of a token into a box strictly alternates with exit from the
box. Furthermore, there is no risk of two token passing down the same arrow at the
same time. We will preserve an analogue of this property when we introduce
concurrency.

The example in Figure 1 shows the familiar features of a flowchart. The first box
on the left has two exits and one entry; it is the purpose of the test within the box to
determine which exit is taken by the token on each occasion of entry. The two ar-
rows on the right of the picture fan in to the same head. After the token has passed
through a fan-in, it is no longer known which of the two incoming arrows it has
traversed.

As shown in Figure 2, the execution control token starts at a designated arrow of
the flowchart, usually drawn at the top left corner of the diagram. We regard the token
as carrying the current state of the computer. This includes the names and current
values of all the internal variables of the program, as well as the state of parts of the
real world that are directly connected to the computer. In this simple example, we
assume the initial state on entry of the token ascribes the value 9 to x.

 Fine-Grain Concurrency 3

 Fig. 1. A flowchart Fig. 2. A flowchart with token – 1

As shown in Figure 3, execution of the test in the first box causes the token to exit
on the lower port, without changing the value of x. In Figure 4, execution of the code
in the next box increases the value of x by 1.

 Fig. 3. A flowchart with token – 2 Fig. 4. A flowchart with token – 3

In this sequence of diagrams, I have taken a snapshot of the passage of the token
along each arrow. There is actually no storage of tokens on arrows, and conceptually,
the emergence of a token from the port at the tail of an arrow occurs at the same time
as entry of the token into the port at the head of the arrow.

The previous figures showed an example of a conditional command, selecting be-
tween the execution of a then clause and an else clause. Figure 5 shows the general
structure of a conditional command. It is general in the sense that the boxes are
empty, and can be filled in any way you like. Notice that all the boxes now have one
entry and two exits. The exit at the bottom of each of each box stands for the throw of
an exception, implemented perhaps by a forward jump.

Fig. 5. Conditional flowcharts

Figure 6 shows another useful generalisation of the concept of a flowchart, the
structured flowchart: we allow any box to contain not only primitive commands of a
program but also complete flowcharts. The pattern of containment must be properly
nested, so the perimeters of different boxes do not intersect. Wherever an arrow
crosses the perimeter between the interior and the outside of a containing box, it cre-
ates an entry or exit port, which is visible from the outside. Connections and internal
boxes enclosed within the perimeter are regarded as externally invisible. Thus from
the outside, the entire containing box can be regarded as a single command. The sole
purpose of structuring is to permit flowcharts to be composed in a structured and
modular fashion. The containing boxes are entirely ignored in execution.

4 T. Hoare

Fig. 6. A structured flowchart

For convenience of verbal description, we will give conventional names to the en-
tries and exits of each box as shown in Figure 7. The names are suggestive of the
purpose of each port. In our simple calculus there will always be a start entry for ini-
tial entry of the token, a finish exit for normal termination, and a throw exit for excep-
tional termination. The names are regarded as local to the box. In pictures we will
usually omit the names of the ports, and rely on the position of the arrow on the pe-
rimeter of the box to identify it.

Fig. 7. Port names

The ports of the enclosing boxes also have names. In fact, we generally use the
same names for the enclosing box as well as the enclosed boxes. This is allowed,
because port names inside boxes are treated as strictly local. The re-use of names
emphasises the structural similarity of the enclosing box to the enclosed boxes. For
example, in Figure 8, the enclosing box has the same structure and port names as each
of the enclosed boxes. In fact, the whole purpose of the calculus that we develop is to
preserve the same structure for all boxes, both large and small.

Fig. 8. Structured naming

The notion of correctness of a flowchart is provided by Floyd assertions, placed on
the entries and exits of the boxes. An assertion is a boolean condition that is expected
to be true whenever a token passes through the port that it labels. An assertion on an
entry port is a precondition of the box, and must be made true by the environment
before the token arrives at that entry. The assertion on an exit port is a post-condition

 Fine-Grain Concurrency 5

of the box, and the program in the box must make it true before sending the token out
on that exit. That is the criterion of correctness of the box; and the proof of correct-
ness is the responsibility of the designer of the program inside the box.

Figure 9 shows our familiar example of a flowchart, with assertions on some of the
arrows. The starting precondition is that x is an odd number. After the first test has
succeeded, its postcondition states that x is still odd and furthermore it is less than 10.
After adding 1 to x, it is less than 11, and 1 more than an odd number. The postcondi-
tion of the other branch is obviously that x is 0. On both branches of the conditional,
the postcondition on the extreme right of the flowchart states that x is even, and less
than 11.

Fig. 9. Flowchart with assertions

Let us examine the principles that have been used in this informal reasoning. The
criterion of correctness for an arrow is very simple: the assertion at the tail of the
arrow must logically imply the assertion at the head. And that is enough. As Floyd
pointed out, a complete flowchart is correct if all its boxes and all its arrows are cor-
rect. This means that the total task of correctness proof of a complete system is modu-
lar, and can be discharged one arrow and one box at a time.

There is a great advantage in Floyd’s method of formalising program correctness.
The same flowchart is used both for an operational semantics, determining the path of
the token when executed, and for an axiomatic semantics, determining the flow of
implication in a correctness proof. There is no need to prove the consistency of the
two presentations of semantics.

Fig. 10. Arrow. The arrow is correct if P ⇒ R.

We allow any number of arrows to be composed into arbitrary meshes. But we are
not interested in the details of the internal construction of the mesh. We are only in-
terested whether any given arrow tail on the extreme left has a connection path of
arrows leading to a given arrow head on the extreme right. We ignore the details of
the path that makes the connection. Two meshes are regarded as equal if they make
all the same connections. So the mesh consisting of a fan-in followed by a fan-out is
the same as a fully connected mesh, as shown in Figure 11. Wherever the mesh shows
a connection, the assertion at the tail on the left must imply the assertion at the head
on the right. The proof obligation can be abbreviated to a single implication, using
disjunction of the antecedents and conjunction of the consequents.

6 T. Hoare

Fig. 11. Equal meshes. The mesh is correct if P v Q ⇒ R & S.

We will now proceed to give a definition of a little calculus of fine-grain concur-
rent programs. We start with some of the simplest possible boxes and flowcharts. The
first example in Figure 12 is the simple skip action which does nothing. A token that
enters at the start passes unchanged to the finish. The throw exit remains unconnected,
with the result that it is never activated.

Fig. 12. Skip action. The box is correct if P ⇒ R.

The proof obligation for skip follows directly from the correctness condition of the
single arrow that it contains. The false postcondition on the throw exit indicates that
this exit will never be taken. Since false implies anything, an exit labelled by false
may be correctly connected to any entry whatsoever.

The purpose of a throw is to deal with a situation in which successful completion is
known to be impossible or inappropriate. The throw is usually invoked conditionally.
Its definition is very similar to that of the skip, and so is its correctness condition. A
flowchart for the throw action is shown in Figure 13.

Fig. 13. Throw action

The operators of our calculus show how smaller flowcharts can be connected to
make larger flowcharts. Our first operator is sequential composition. We adopt the
convention that the two operands of a composite flowchart are drawn as boxes inside
an enclosing box that describes the whole of the composed transaction. The behaviour
of the operator is determined solely by the internal connections between the ports of
all three boxes. It is essential in a compositional calculus that the definition does not
depend on the contents of its operand boxes. This rule is guaranteed if the internal
boxes contain nothing, as shown in Figure 14.

 Fine-Grain Concurrency 7

Fig. 14. Sequential composition

To assist in proof of correctness, there should in principle be assertions on each of
the arrows. However, the permitted patterns for these assertions are completely de-
termined by the correctness principle for the arrows of a flowchart, so there is no need
to mention them explicitly.

Sequential composition has many interesting and useful mathematical properties.
For example, it is an associative operator. All the binary operators defined in the rest
of this presentation will also be associative. Informal proofs of these and similar alge-
braic properties are quite simple. Just draw the flowcharts for each side of the equa-
tion, and then remove the boxes that indicate the bracketing. The two flowcharts will
then be found to be identical. They therefore have identical executions and identical
assertions, and identical correctness conditions.

Figure 15 shows the sequential composition of three transactions, with the gray
box indicating that the brackets are placed to the left.

Fig. 15. Asssociativity proof (left association)

And Figure 16 shows the same three processes with bracketing to the right. You
can see that the flowcharts remain the same, even when the enclosing gray box
moves. The apparent movement of the throw arrow is obviously not significant, ac-
cording to our definition of equality of meshes of arrows.

Fig. 16. Asssociativity proof (right association)

In conventional flow-charts, it is prohibited for an arrow to fan out. Thus the thick
arrow in Figure 17 would not be allowed. But we will allow fan-out, and use it to

8 T. Hoare

introduce nondeterminism into our flowchart. When the token reaches a fan-out, it is
not determined which choice it will make. This fact is exploited in the definition of a
structured operator for nondeterministic choice between two operands. Whichever
choice is made by the token on entry to the enclosing gray box, the subsequent behav-
iour of the program is wholly determined by the selected internal box. The other one
will never even be started. The programmer must be prepared for both choices, and
both must be correct. Non-determinism can only be used if the programmer genuinely
does not care which choice is made. This is why non-determinism is not a useful op-
erator for explicit use by programmers. We define it here merely as an aid to reasoning
about the non-determinism that is inevitably introduced by fine-grain concurrency.

Fig. 17. Non-determinism

Note that non-determinism is associative, but it has no unit. It is symmetric: the
order in which the operands are written does not matter. It is idempotent: a choice
between two identical boxes is the same as no choice at all. Finally, sequential com-
position, and most other forms of composition distribute, through nondeterminism.
The proof of this uses Floyd’s principle, that two flowcharts which have identical
correctness conditions have the same meaning.

3 Concurrent Processes, Modeled by Petri Nets

We now extend our notation for flowcharts to introduce concurrency. This is done by
one of the basic primitives of a Petri net, the transition. As shown in Figure 18, a
transition is drawn usually as a thick vertical bar, and it acts as a barrier to tokens
passing through. It has entry ports on one side (usually on the left) and exit ports on
the other. The transition transmits tokens only when there are tokens ready to pass on
every one of its entry ports. These tokens are then replaced by tokens emerging simul-
taneously from every one of the exit ports. Note that transitions in themselves do not
store tokens: the firing of a transition is an atomic event. We will later introduce Petri
net places as primitive devices to perform the storage function.

Fig. 18. Petri net transition

 Fine-Grain Concurrency 9

As shown in Figure 19, if there is only one entry arrow, the transition is geometri-
cally like a fan-out, since it contains two (or more) exit arrows. It is used to transmit
a token simultaneously to a number of concurrent threads. It is therefore called a
fork.

The other simple case of a transition is a join, as shown in Figure 20. It has only
one exit port, and two or more entries. It requires tokens on all its inputs to pass
through it simultaneously, and merges them into a single token. It thereby reduces the
degree of concurrency in the system.

 Fig. 19. Petri net fork Fig. 20. Petri net join

The simple cases of forks and joins are sufficient to reconstruct all the more
complicated forms of a Petri net transition. This is done by connecting a number of
transitions into a mesh, possibly together with other arrows fanning in and fanning
out. A mesh with transitions is capable of absorbing a complete set of tokens on
some subset of its entry arrows, delivering tokens simultaneously to some subset of
its exit arrows. These two subsets are said to be connected by the mesh. In the
case of a mesh without transitions, the connection is made between singleton sub-
sets. Two general meshes are regarded as equal if they make exactly the same con-
nections between subsets. So the mesh shown in Figure 21 is equal to the mesh
shown in Figure 22. If there were places between the transitions, the equivalence
would not hold.

Fig. 21. Petri net mesh – 1 Fig. 22. Petri net mesh – 2

An inappropriate mixture of transitions with fan-in and fan-out of arrows can lead
to unfortunate effects. Figure 23 shows an example corner case. A token at the top left
of the mesh can never move through the transition. This is because the fan-out deliv-
ers a token at only one of its two heads, whereas the transition requires a token at both
of them. As a result, the whole mesh has exactly the same effect as a mesh which
actually makes only one connection. We will design our calculus of concurrency to
ensure that such corner cases will never arise.

10 T. Hoare

Fig. 23. A corner case

In the design of fine-grain concurrent programs, it is essential to keep account of
the ownership of resources by the threads which update them. We will therefore re-
gard each token as carrying with it a claim to the ownership (i.e., the write permis-
sions and read permissions) for just a part of the state of the computer; though for
simplicity, we will largely ignore read permissions. Obviously, we will allow a box to
access and update only the resources carried by the token that has entered the box.
The addition of ownership claims to the tokens helps us to use Petri nets for their
initial purpose, the modelling of data flow as well as control flow through the system.

In Figure 24, the ownership of variables x and y is indicated by writing these
names on the token which carries the variables. Figure 25 is the state after firing the
transition. The resources claimed by the token are split into two or more disjoint parts
(possibly sharing read-only variables); these parts are carried by the separate tokens
emerging from the fork.

 Fig. 24. Token split: before Fig. 25. Token split: after

In Figure 24 and Figure 25, token at entry carries whole state: {x y}; at the exits,
each sub-token carries a disjoint part of the state.

The Petri net join is entirely symmetric to the fork. Just as the fork splits the own-
ership claims of the incoming token, the join merges the claims into a single token. In
Figure 26 and Figure 27, each sub-token carries part of the state at entry; at exit, the
token carries whole state again.

 Fig. 26. Token merge: before Fig. 27. Token merge: after

 Fine-Grain Concurrency 11

What happens if the incoming tokens make incompatible claims on the same re-
source? Fortunately, in our structured calculus this cannot happen. The only way of
generating tokens with different ownership claims is by the fork, which can only
generate tokens with disjoint ownership claims. As a result, the claims of each distinct
token in the entire system are disjoint with the claims of all the others. The join transi-
tion shown above preserves this disjointness property. So no resource is ever shared
between two distinct tokens.

We allow the assertion on an arrow of a Petri net to describe the ownership claims
of the token that passes along the arrow. For simplicity, we will just assume that any
variable mentioned in the assertion is part of this claim. In reasoning with these asser-
tions, it is convenient to use a recently introduced extension of classical logic, known
as separation logic; it deals with assertions that make ownership claims.

Separation logic introduces a new associative operator, the separated conjunction
of two predicates, usually denoted by a star (P Q). This asserts that both the predi-
cates are true, and furthermore, that their ownership claims are disjoint, in the sense
that there is no variable in common between the assertions. The ownership claim of
the separated conjunction is the union of the claims of its two operands.

In a program that uses only declared variables without aliasing, the disjointness
of the claims can be checked by a compiler, and separation logic is not necessary.
The great strength of separation logic is that it deals equally well with pointers to
objects in the heap. It allows any form of aliasing, and deals with the consequences
by formal proof. However, our example will not illustrate this power of separation
logic.

The axiom of assignment in separation logic is designed to prevent race conditions
in a fine-grain concurrent program. It enforces the rule that the precondition and the
postcondition must have the same claim; furthermore, the claim must include a write
permission for the variable assigned, and a read permission for every variable read in
the expression that delivers the assigned value. In the displayed axiom of assignment
(Figure 28) we have exploited the common convention that a proposition implicitly
claims all variables that it mentions. So the precondition and postcondition claim x
and y. Because of disjointness, R must not claim x or y. For simplicity, we have failed
to distinguish read and write permissions.

Fig. 28. Axiom of assignment

Separated conjunction is used to express the correctness condition for Petri net
transitions. The assertion at the entry of a must imply the separated conjunction of all
the assertions at the exits. In Figure 29, the disjointness of P and Q represents the fact
that the outgoing tokens will have disjoint claims.

12 T. Hoare

Fig. 29. Correctness condition of fork: P Q ⇒ R

As mentioned before, the join is a mirror image of the fork. Accordingly, the cor-
rectness condition for a join is the mirror image of the correctness condition for a fork.

Fig. 30. Correctness condition for join: P Q ⇒ R

There is a problem here. What happens if P Q is false, even though both P and
Q are both true? This would mean that the execution of the program has to make
falsity true when it fires. But no implementation can do that – it is a logical impossi-
bility. Fortunately, the rule of assignment ensures that P and Q must be consistent
with each other. The details of the consistency proof of separation logic are beyond
the scope of this paper.

The first example of the use of transitions in our calculus is the definition of the
kind of structured (fork/join) concurrency introduced by Dijkstra. In Figure 31,
the fork on the left ensures that both the threads labelled T and U will start together.
The join on the right ensures that they will finish together. In between these transi-
tions, each of the threads has its own token, and can therefore execute concurrently
with the other. By definition of the fork and join, the tokens have disjoint claims.
Since a thread can only mention variables owned by its token, the rule of assignment
excludes the possibility of race conditions. It also excludes the possibility of any in-
teraction whatsoever between the two threads.

In Figure 31, I have not allowed any possibility of a throw. The omission will be
rectified shortly.

Fig. 31. Concurrent composition. There is no connection between T and U.

 Fine-Grain Concurrency 13

Figure 32 is a simple example of a concurrent program. The precondition says that
x and y have the same parity. One thread adds 2 to x, and the other multiplies y by 7.
Both these operations preserve parity. So the same precondition still holds as a post-
condition. Although this is obvious, the proof requires a construction, as shown in
Figure 33. The construction introduces an abstract or ghost variable z to stand for the
parity of x and y. A ghost variable may appear only in assertions, so it remains con-
stant throughout its scope. For the same reason, a ghost variable can be validly shared
among threads (though it may not be either read or written). When it has served its
purpose, the ghost variable may be eliminated by existential quantification in both the
precondition and the postcondition.

Fig. 32. A concurrent composition example. x ≈ y means (x - y) mod 2 = 0 (their difference is
even).

Fig. 33. Ghost variable z

Proof: x ≈ y ⇒ x + 2 ≈ y × 7
 x ≈ y ≈ z ⇒ (x + 2 ≈ z) (y × 7 ≈ z)

We now return to the example of the structured concurrency operator and remove the
restriction on throws. In Figure 34, the throw exits of T and U are connected through
a new join transition to the throw exit of the composition. As a result, the concurrent
combination throws just when both the operands throw. This still leaves an unfortu-
nate situation when one of the operands attempts to throw, whereas the other one
finishes normally. In an implementation, this would manifest itself as a deadlock.

Fig. 34. Concurrency with throw. To avoid deadlock, T and U must agree on their exits.

14 T. Hoare

A solution is to adopt an even more complicated definition of concurrent composi-
tion. It ensures that a throw will occur when either of the operands throws, even if the
other one finishes. As shown in Figure 35, this is achieved by additional joins to cover
the two cases when the threads disagree on their choice of exit port.

Fig. 35. Deadlock avoided. Disagreement on exit leads to throw.

In Figure 36, note the four encircled fan-outs in the arrows at the exits of the operands
T and U . Each of these introduces non-determinism. However, it is non-determinism of
the external kind that is studied in process algebras like CCS and CSP. It is called exter-
nal, because the choice between the alternatives is made at the head of the arrow rather
than at the tail. On reaching the fan-out, the token will choose a branch leading to a tran-
sition that is ready to fire, and not to a transition that cannot fire. In Figure 36, we have
ensured that at most one of the alternative transitions can be ready to fire. Thus the dia-
gram is in fact still completely deterministic, in spite of the four fan-outs.

Fig. 36. Fan-out gives external non-determinism

The calculus that we have described so far is not capable of exploiting fully the
power of multi-core architecture. The reason is that the same rules that prohibit race
conditions also prohibit any form of communication or co-operation among the
threads. To relax this restriction, it is necessary to establish some method of internal
communication from one thread to another. For the purpose of exploiting multi-core
architecture, the highest bandwidth, the minimum overhead and the lowest latency are
simultaneously achieved by use of the resources of the shared memory for communi-
cation. Communication takes place when one thread updates a variable that is later
read by another.

Of course, race conditions must still be avoided. This is done by the mechanism
of a critical region, which enables the programmer to define a suitable level of
granularity for the interleaving of operations on the shared resource by all the shar-
ing threads. A critical region starts by acquiring the shared resource and ends by

 Fine-Grain Concurrency 15

releasing it, through new entry ports introduced into our calculus for this purpose.
Inside a critical region, a thread may freely update the shared resource together
with the variables that it owns permanently. Race conditions are still avoided,
because the implementation ensures that at any time at most one thread can be in
possession of the critical region. A simple implementation technique like an exclu-
sion semaphore can ensure this.

In our Petri net model, a shared resource is represented by a token which carries
ownership of the resource. In order to access and update the shared resource, a thread
must acquire this token, which is done by means of a standard join between the con-
trol token and a token carrying ownership of the resource. After updating the shared
state within the critical region, the thread must release the token, by means of a stan-
dard fork. The standard rules of ownership are exactly appropriate for checking criti-
cal regions defined in this way, since the token that travels through the region will
carry with it the ownership of both the local variables of the thread and the variables
of the shared resource. These can therefore be freely updated together within the
critical region.

Fig. 37. Critical region. R is the resource invariant.

Note that the body of the critical region has no acquire or release ports. This inten-
tionally prohibits the nesting of critical regions. Furthermore, I have disallowed
throws from within a critical region. To allow throws, the definition of a critical re-
gion requires an additional fork transition to ensure that the resource token is released
before the throw exit. This means that the programmer must restore the resource
invariant before the throw.

Fig. 38. Critical region with throw

16 T. Hoare

Addition of new ports into a calculus requires extension of the definition of all the
previously defined operators. In the case of the new acquire and release ports, the
resource is equally accessible to all the operands, and the standard extension rule is to
just connect each new entry port of the enclosing block for the operator by a fan-out to
the like-named new entry ports of both the operands; and connect every new exit port
of each operand via a fan-in to the like-named port on the enclosing block. Figure 39
shows only the new ports and additional arrows that are to be added to every operator
defined so far. It ensures that the new ports can be used at any time by either of the
operands.

Fig. 39. New ports

A shared resource is introduced by exactly the same operator which introduces
multiple threads. The token that owns the resource is created by the fork on the left of
Figure 40. It then resides at a place (denoted by a circle) specially designated for it
within the Petri net. The resource token is acquired by its users one at a time through
the acquire entry at the beginning of each critical region, and it is released after use
through the release exit at the end of each critical region. It then returns to its desig-
nated place. If more than one user is simultaneously ready to acquire the resource
token, the choice between them is arbitrary; it has to be made by the semaphore
mechanism that implements exclusion. This is the way that shared memory introduces
don’t-care non-determinism into a concurrent program.

The assertion R in this diagram stands for the resource invariant. As shown in Fig-
ure 39, it may be assumed true at the beginning of every critical region, and must be
proved true at the end. It thus serves the same role as a guarantee condition in the
rely/guarantee method of proving concurrent programs.

Fig. 40. Resource declaration. Petri net place: stores a token.

 Fine-Grain Concurrency 17

Figure 41 caters for the possibility of a throw, in the usual way.

Fig. 41. Resource declaration with throw

Figure 42 is an extremely simple example of concurrency with critical regions.
Two threads share a variable x. One of them assigns to it the value 2, and the other
one assigns the value 7. Because the variable is shared, this has to be done in a critical
region Each thread is nothing but a single critical region. As a result, the two critical
regions are executed in arbitrary order, and the final value of x will be either 2 or 7.
The easiest proof is operational: just prove the postcondition separately for each of the
two interleavings. But in general, the number of interleavings is astronomical. So we
want to ask whether our assertional proof system capable of proving this directly in a
more abstract way?

Fig. 42. Example – 1

The answer seems to be yes, but only with the help of a ghost variable t, introduced
to record the termination of one of the threads. The variable obviously starts false. By
conditioning the resource invariant on t, its truth is assured at the beginning. Both
critical regions leave the resource invariant R true. And one of them sets t true. Thus
at the end, both t and R are true. Thus Q is also true at the end.

But the question arises, who owns t? It has to be joint ownership by the resource
and the first thread. Such jointly owned variables can be updated only in a critical
region, and only by the thread that half-owns it. The resource owns the other half.
When the resource and the thread have come together in the critical region, full own-
ership enables the variable to be updated. This is adequate protection against race
conditions. Fractional ownership is a mechanism also used for read-only variables in
recent versions of separation logic.

18 T. Hoare

Fig. 43. Example – 2. Q = x ε {2, 7} and R = t ⇒ Q.

4 Other Features of a Calculus

Recursion is the most important feature of any programming calculus, because it
allows the execution of a program to be longer than the program itself. Iteration is of
course an especially efficient special case of recursion. Fortunately, Dana Scott
showed how to introduce recursion into flowcharts a long time ago. Just give a name
X to a box, and use the same name as the content of one or more of the interior boxes.
This effectively defines an infinite net, with a copy of the whole box inserted into the
inner box. For this reason, the pattern of entry and exit ports of the recursive call must
be the same as that of the outer named box. That is a constraint that is easily enforced
by use of a calculus like one we have described.

Fig. 44. Scott recursion

A variable can be represented by a place pre-loaded with a token that owns the
variable. This token joins the main control token on entry to the block, which can use
the variable as required. It is forked off again on exit from the block, so that it is never
seen from the outside. A place is needed at the finish to store the token after use. Let
us use the same place as stored the token at the beginning.

The assertions on the arrow leading from and to the place should just be the propo-
sition true, which is always true. This means that nothing is known of the value of the
variable immediately after declaration. It also means that its value on termination is
irrelevant. This permits an implementation to delay allocation of storage to the vari-
able until the block is entered, and to recover the storage or exit.

 Fine-Grain Concurrency 19

Fig. 45. Variable declaration – 1

Figure 46 extends the diagram to show what happens on a throw. The variable still
needs to be retained inside the box after an exception.

The Petri net fork is a direct implementation of an output from one thread of a sys-
tem to another. It simply transfers ownership of the message (together with its value)
to the inputting process. It does not copy the value. It does not allocate any buffer.
Overhead is therefore held to a minimum. If buffers are desired, they can be modelled
as a sequence of Petri net places.

Just as output was a fork, input is a join at the other end of an arrow between two
threads. Note that the output is synchronised with the inputting process. In a sympa-
thetic architecture (like that of the transputer), the operations of input and output can
be built into the instruction set of the computer, thereby avoiding software overhead
altogether.

Fig. 46. Variable declaration – 2

The introduction of arbitrary arrows communicating ownership among threads can
easily lead to deadlock. Absence of deadlock can be proved by the methods of process
algebra, and we will not treat it here. Fortunately, the use of non-nested critical re-
gions is a disciplined form of communication which is not subject to deadlock. A
simple hierarchy of regions can extend the guarantee to nested regions.

 Fig. 47. Output Fig. 48. Input

20 T. Hoare

5 Conclusion

The main conclusions that may be drawn from this study are:

1. Flow-charts are an excellent pictorial way of defining the operational semantics
of program components with multiple entry and exit points. Of course, they are
not recommended for actual presentation of non-trivial programs.

2. Floyd assertions are an excellent way of defining and proving correctness of
flowcharts. Consistency with an operational semantics for flowcharts is imme-
diate.

3. Petri nets with transitions extend these benefits to fine-grain concurrent pro-
grams. The tokens are envisaged as carrying ownership of system resources, and
permissions for their use.

4. Separation logic provides appropriate concepts for annotating the transitions of a
Petri net. The axiom of assignment provides proof of absence of race conditions.

5. Critical regions (possibly conditional) provide a relatively safe way of using
shared memory for communication and co-operation among threads.

6. Although they are not treated in this paper, rely/guarantee conditions provide a
useful abstraction for the interleaving of critical regions.

7. Pictures are an excellent medium for defining the operators of a calculus. They
are readily understood by programmers who are unfamiliar with programming
language semantics (some of them even have an aversion to syntax).

Of course, there is abundant evidence, accumulated over many years, of the value of
each of these ideas used separately. The only novel suggestion of this presentation is
that their combined use may be of yet further value in meeting the new challenges of
multi-core architecture.

Acknowledgment. Thanks to Robert Floyd, Carl Adam Petri, Cliff Jones, Simon
Peyton Jones, Tim Harris, Viktor Vafeiadis, Matthew Parkinson, Wolfgang Reisig
and Steve Schneider. Even though there are no references, it is a pleasure to express
my thanks to those who have inspired this work, or helped its progress.

Reprinted from Communicating Process Architectures 2007, Tony Hoare, Fine-grain
concurrency, pp. 1-19, Copyright (2007), with permission from IOS Press.

P. Müller (Ed.): LASER Summer School 2007/2008, LNCS 6029, pp. 21–40, 2010.
© IOS Press 2010

Compensable Transactions

Tony Hoare

Microsoft Research, Cambridge, England

Summary. The concept of a compensable transaction has been embodied in
modern business workflow languages like BPEL. This article uses the concept
of a box-structured Petri net to formalise the definition of a compensable trans-
action. The standard definitions of structured program connectives are extended
to construct longer-running transactions out of shorter fine-grain ones. Floyd-
type assertions on the arcs of the net specify the intended properties of the
transaction and of its component programs. The correctness of the whole trans-
action can therefore be proved by local reasoning.

1 Introduction

A compensable transaction can be formed from a pair of programs: one that performs
an action and another that performs a compensation for that action if and when re-
quired. The forward action is a conventional atomic transaction: it may fail before
completion, but before failure it guarantees to restore (an acceptable approximation
of) the initial state before the transaction, and of the relevant parts of the real world. A
compensable transaction has an additional property: after successful completion of the
forward action, a failure of the next following transaction may trigger a call of the
compensation, which will undo the effects of the forward action, as far as possible.
Thus the longer transaction (this one together with the next one) is atomic, in the
sense that it never stops half way through, and that its failure is adequately equivalent
to doing nothing. In the (hopefully rare) case that a transaction can neither succeed
nor restore its initial conditions, an explicit exception must be thrown.

The availability of a suitable compensation gives freedom to the forward action to
exercise an effect on the real world, in the expectation that the compensation can
effectively undo it later, if necessary. For example, a compensation may issue apolo-
gies, cancel reservations, make penalty payments, etc. Thus compensable transactions
do not have to be independent (in the sense of ACID); and their durability is obvi-
ously conditional on the non-occurrence of the compensation, which undoes them.
Because all our transactions are compensable, in this article we will often omit the
qualification.

We will define a number of ways of composing transactions into larger structures,
which are also compensable transactions. Transaction declarations can even be
nested. This enables the concept of a transaction to be re-used at many levels of
granularity, ranging perhaps from a few microseconds to several months -- twelve
orders of magnitude. Of course, transactions will only be useful if failure is rare, and
the longer transactions must have much rarer failures.

22 T. Hoare

The main composition method for a long-running transaction is sequential compo-
sition of an ordered sequence of shorter transactions. Any action of the sequence may
fail, and this triggers the compensations of the previously completed transactions,
executed in the reverse order of finishing. A sequential transaction succeeds only if
and when all its component transactions have succeeded.

In the second mode of composition, the transactions in a sequence are treated as al-
ternatives: they are tried one after another until the first one succeeds. Failure of any
action of the sequence triggers the forward action of the next transaction in the se-
quence. The sequence fails only if and when all its component transactions have
failed.

In some cases (hopefully even rarer than failure), a transaction reaches a state in
which it can neither succeed nor fail back to an acceptable approximation of its origi-
nal starting state. The only recourse is to throw an exception. A catch clause is pro-
vided to field the exception, and attempt to rectify the situation.

The last composition method defined in this article introduces concurrent execution
both of the forward actions and of the backward actions. Completion depends on
completion of all the concurrent components. They can all succeed, or they can all
fail; any other combination leads to a throw.

2 The Petri Box Model of Execution

A compensable transaction is a program fragment with several entry points and sev-
eral exits. It is therefore conveniently modelled as a conventional program flowchart,
or more generally as a Petri net. A flowchart for an ordinary sequential program is a
directed graph: its nodes contain programmed actions (assignments, tests, input, out-
put, ... as in your favourite language), and its arrows allow passage of a single control
token from the node at its tail to the node at its head. We imagine that the token car-
ries with it a value consisting of the entire state of the computer, together with the
state of that part of the world with which the computer interacts. The value of the
token is updated by execution of the program held at each node that it passes through.
For a sequential program, there is always exactly one token in the whole net, so there
is never any possibility that two tokens may arrive at an action before it is complete.

In section 6, we introduce concurrency by means of a Petri net transition, which
splits the token into separate tokens, one for each component thread. It may be re-
garded as carrying that part of the machine resources which is owned by the thread,
and communication channels with those parts of the real world for which it is respon-
sible. The split token is merged again by another transition when all the threads are
complete. The restriction to a single token therefore applies within each thread.

A structured flowchart is one in which some of its parts are enclosed in boxes. The
fragment of a flowchart inside a box is called a block. The perimeter of a box repre-
sents an abstraction of the block that it contains. Arrows crossing the perimeter are
either entries or exits from the box. We require the boxes to be either disjoint or prop-
erly nested within each other. That is why we call it a structured flowchart, though we
relax the common restriction that each box has only one entry and one exit arrow. The
boxes are used only as a conceptual aid in planning and programming a transaction,

 Compensable Transactions 23

and in defining a calculus for proving their correctness. In the actual execution of the
transaction, they are completely ignored.

We will give conventional names to the entry points and exit points of the arrows
crossing the perimeter of the box. The names will be used to specify how blocks are
composed into larger blocks by connecting the exits of one box to the entries of an-
other, and enclosing the result in yet another box. This clearly preserves the disjoint-
ness constraint for a box-structured net.

One of the arrows entering the box will be designated as the start arrow. That is
where the token first enters the box. The execution of the block is modelled by the
movement of the token along the internal arrows between the nodes of the graph that
are inside the box. The token then can leave the box by one of its exit points, gener-
ally chosen by the program inside the box. The token can then re-enter the box again
through one of the other entry points that it is ready to accept it. The pattern of enter-
ing and leaving the block may be repeated many times.

In our formal definition of a compensable transaction, we will include a behav-
ioural constraint, specifying more or less precisely the order in which entry and exit
points can be activated. The behavioural constraint will often be expressed as a regu-
lar expression, whose language defines all permissible sequences of entry and exit
events which may be observed and sequentially recorded.

We will introduce non-determinism into our flowchart by means of the Petri net
place. A place is drawn as a small circle (Figure 2.1) with no associated action. It may
have many incoming arrows and many outgoing arrows. The place is entered by a
token arriving along any one of its entries. The next action (known as a firing) of the
place is to emit the token just once, along any one of its exit arrows. The token arriv-
ing at the exit of the place may have originated at any one of its entries. The strict
alternation of entries and exits of a place may be formally described by the regular
expression

 (l + m + n) ; (r + s + t)

where l, m, n name the entries of the place, and r, s, t name the exits.
Technical note: in general, a Petri net place is capable of storing a token. In our re-

stricted calculus this capability is exploited only once (in section 6). In fact, we may
regard a token as passing instantaneously (as a single event) through any sequence of
consecutive states. Of course, a regular expression cannot model this simultaneity.

If the place has only a single exit arrow, it acts as a normal fan-in, and has the same
function as in a conventional flowchart. If there are many exits, the place acts as a
fan-out. The choice of exit arrow on each occasion of entry is usually determined by
the current readiness of the block at the head of the exit arrow to accept entry of the
token. But if more than one block is ready, the choice is non-deterministic, in the
usual sense of don’t-care or demonic non-determinism. It is the programmer’s respon-
sibility to ensure that all choices are correct; and the implementation may choose any
alternative according to any criterion whatsoever, because it is known that correctness
will not be affected. For example, efficiency and responsiveness are among the more
desirable of the permissible criteria.

We follow Floyd’s suggestion that the arrows in a flowchart should be annotated
with assertions. Assertions are descriptions of the state of the world (including the

24 T. Hoare

state of the machine), and the programmer intends that they should be true of the
world value carried by the control token, whenever it passes along the annotated ar-
row. An assertion on an arrow which enters a box serves as a precondition for the
block, and it is the responsibility of the surrounding flowchart to make it true before
transmitting the token to that entry. An assertion on an exit arrow from the box serves
as a postcondition, and it is the responsibility of the block itself to make it true before
transmitting the token through that exit.

The correctness of the composed flowchart may be determined locally in the usual
way, by considering the assertions on each arrow and on each place. For an arrow
which connects a single exit point to a single entry (usually on another box), the exit
assertion of the box at the tail of the arrow must logically imply the entry assertion of
the box at its head. For a place, the rule is a natural extension of this. A place is cor-
rect if the assertion on each one of its entry arrows logically implies every one of the
assertions at the heads of its exit arrows. In other words, the verification condition for
a place is that the disjunction of all the tail assertions implies the conjunction of all
the head assertions (see Figure 2.1, where the upper case letters stand for the arrows
annotated by the corresponding lower case letter). Thus overall correctness of the
entire flowchart can be proved in a modular fashion, just one arrow or place or action
at a time.

Fig. 2.1. A Petri net place

The intention of drawing a box of a structured flowchart is that the details of the
flowchart inside the box should be irrelevant to the rest of the flowchart that lies out-
side the box. From the outside, you only need to know three items: (1) the names of
the entry and exit points; these are used to specify how the box is connected into its
environment (2) the assertions on the arrows that enter and leave the box; and (3) the
constraints that govern the order of entry and exit events, by which the token enters
and leaves the box along the arrows that cross the perimeter. If two boxes have the
same assertions and the same set of behaviours, we define them to be semantically
equivalent.

 Compensable Transactions 25

This rule of equivalence may be applied to just a single place. As a result, any
complete collection of linked Petri net places, in which all the entries are connected to
all the exits, can be replaced by a single place, -- one that has all the same entries and
the exits, but the internal arrows are eliminated. Figure 2.2 therefore has the same
semantics as Figure 2.1.

Fig. 2.2. The same place as Figure 2.1

3 Definition of a Transaction

A compensable transaction is a special kind of box in a Petri net. It is defined as a box
whose names, behaviour and assertions satisfy a given set of constraints. The first
constraint is a naming constraint.

A transaction box has two entry points named start and failback (which triggers a
compensation), and three exit points named finish, fail and throw. The intended func-
tion of each of these points is indicated by its name, and will be more precisely
described by the other constraints. When a transaction is represented as a box, we
introduce the convention that these entries and exits should be distributed around the
perimeter as shown in Figure 3.1. As a result, our diagrams will usually omit
the names, since the identity of each arrow is indicated by its relative position on the
perimeter of the box.

A more significant part of the formal definition of a transaction is a behavioural
constraint, constraining the order in which the token is allowed to enter and exit the
block at each entry and exit point. The constraint is conveniently defined by a regular
expression:

 start ; (finish ; failback)* ; (fail + throw + finish)

26 T. Hoare

This expression stipulates that the first activation of the transaction is triggered by
entry of the token at the start point. The last de-activation of the transaction is when
the token leaves at any one of the three exit points. In between these two events, the
transaction may engage in any number of intermediate exits and entries. On each
iteration, it finishes successfully, but is later required to compensate by a failback
entry, triggered by failure of the following sequentially composed transaction. The
number of occurrences of finish followed by failback is not limited, and may even be
zero. Typical complete behaviours of a transaction are:

 start, finish
 start, finish, failback, fail
 start, finish, failback, finish
 start, finish, failback, finish, failback, throw

The final constraint in the definition of a transaction governs the assertions on its
entry and exit points. This constraint expresses the primary and most essential prop-
erty of a transaction: that if it fails, it has already returned the world to a state that is
sufficiently close to the original initial state.

Sufficient closeness might be defined in many ways, but we give the weakest rea-
sonable definition. Our simple requirement is that on failure the world has been re-
turned to a state which again satisfies the initial precondition of the transaction. More
precisely, the assertion on the fail exit, must be the same original precondition that
labels the start entry point. Similarly, on failback the transaction may assume that the
postcondition that it previously established on finishing is again valid. These standard
assertional constraints are indicated by the annotations in Figure 3.1. There is no con-
straint on the assertion E labelling the throw exit.

Many of the constructions of our calculus of transactions can be applied to transac-
tions which satisfy weaker or stronger assertional constraints than the standard de-
scribed above. For example, a transaction may be exactly compensable if on failure it
returns to exactly the original state (where obviously the state of the world must be
defined to exclude such observations as the real time clock). A weaker constraint is
that the postcondition of failure is merely implied by the precondition. Finally, there
is the possibility that the transaction has no assertional constraint at all. We will not
further consider these variations.

In drawing diagrams with many boxes, the assertions on the arrows will often be
omitted. It is assumed that in concrete examples they will be restored in any way that
satisfies the intended assertional constraint, and also satisfies the local correctness
criterion for assertions, which apply to all arrows and all places.

That concludes our semantic definition of the concept of a transaction. The flow-
chart gives an operational semantics, describing how the transactions are executed.
The assertions give an axiomatic semantics, describing how the transactions are speci-
fied and proved correct. The interpretation of a flowchart makes it fairly obvious that
the operational and the axiomatic definitions are in close accord.

 Compensable Transactions 27

Fig. 3.1. Entry and exit names

4 A Calculus of Transactions

In this section we will define a small calculus for design and implementation of trans-
actions. They are built up by applying the operators that we define to smaller by
building them from smaller component transactions. The ultimate components are
ordinary fragments of sequential program. Our semantic definitions will mainly use
the pictorial representation shown in Figure 3.1. But for the sake of completeness,
here is a more conventional syntax.

<transaction> ::= <composed transaction> | <primitive transaction>
<primitive transaction> ::= succeed | fail | throw |
 <transaction declaration>
<transaction declaration> ::= [<forward action> comp compensation>]
<forward action> ::= <ordinary program>
<compensation> ::= <ordinary program>
<composed transaction> ::= <sequential composition>
 | <alternative composition> | <exception block> |
 <non-deterministic choice>
<sequential composition>::= <transaction> ; <transaction>
<alternative composition> ::= <transaction> else <transaction>
<exception block> ::= <transaction> catch < transaction>
<non-deterministic choice> ::= <transaction> or < transaction>

The shortest primitive transactions are those that do nothing. There are three ways of
doing nothing: by succeeding, by failing, or by throwing. Definitions for these trans-
actions are given diagrammatically in Figure 4.1, where the small unconnected arrows
will never be activated. The leftmost example does nothing but succeed, and this can
obviously be compensated by doing nothing again. The other two examples do noth-
ing but fail or throw. These will never be called upon to compensate.

28 T. Hoare

Fig. 4.1. Primitive Transactions

Longer running transactions are constructed by composing smaller ones in se-
quence, or as alternatives, or as a non-deterministic choice, or by try/catch clauses. In
all cases, the result of the composition of compensable transactions will also be a
compensable transaction. The semantics of each construction will be explained dia-
grammatically as a box that encloses the boxes representing the components. Some of
the exit arrows of each component box will be connected to some of the entry arrows
of the other component box, and thereby become internal arrows that can be ignored
from outside. Entries and exits on the surrounding box are connected to remaining
exits and entries of the component boxes, often ones that share the same name. Where
necessary, places may be introduced to deal with fan-in and fan-out.

The basic primitive fine-grained transaction is declared by specifying two sections
of normal sequential code (Figure 4.2). The first of them T performs the required
action as control passes from the start on the left to the finish on the right. The second
section of code U specifies how the action should be compensated as control passes
back from the failback on the right to the fail on the left. Either the action or the com-
pensation can throw, on detecting that neither progress nor compensation is possible.
The fan-in of the throw arrow indicates that it is not known from the outside which of
the two components has actually performed the throw. This fan-in of throws is com-
mon to most of the operators defined below, and will sometimes be omitted from the
diagrams

The first definition of the constructions for non-primitive transactions will be se-
quential composition, which is shown in Figure 4.3. The outer block denoting the
whole composition starts with the start of the first component block T. The finish of
this block triggers the start of the second component block U. The finish of the sec-
ond block finishes the whole sequential composition. A similar story can be told of
the backward-going failure path, which performs the two compensations in the re-
verse order to the forward operations. This is what makes the composed transaction
compensable in the same way as its components are. Furthermore, the sequential
composition will satisfy the behavioural constraint for transactions, simply because its
components do so.

 Compensable Transactions 29

There should be assertions on each of the arrows. However, the permitted patterns
for these assertions are completely determined by the correctness principle for flow-
charts, so there is no need to mention them explicitly.

Fig. 4.2. Transaction Declaration: [T comp U]

Fig. 4.3. Sequential Composition: T ; U

This definition of sequential composition is associative and has succeed as its unit.
A simple proof of associativity is obtained by drawing the diagram for a sequential
composition with three components, and adding an extra box, either around the two
left operands or around the two right operands. It is easy to see that this represents the
two different bracketings of the associative law. The flowchart itself remains the same
in both cases.

The definition of sequential composition states that failure of any component
transaction of the sequence will propagate inexorably to the left, until everything that
has ever been done since the beginning of time has been undone. This is not always

30 T. Hoare

desirable. The else operator shown in Figure 4.4 gives a way of halting the stream of
failures and compensations. It reverses again the direction of travel of the token, and
tries a different way of achieving the same eventual goal.

At most one of these alternatives will actually take effect. The first of them is tried
first. If it fails (having compensated of course), the second one is started. If this now
succeeds, control is passed to the following transaction, so that it too may try again.
As a result, the finish exit of the whole composition may be activated twice, or even
more often if either of the alternatives itself finishes many times.

Note the fan-in at the finish exit: from the outside it is impossible to distinguish
which alternative has succeeded on each occasion. Note also the fan-out of the
failback arrow. In spite of this fan-out, the else construction is deterministic. When
failback occurs, control may pass to the failback of either of the alternatives. The
selection of destination will always be determined by the behavioural constraint on
the component boxes. As a result, control will pass to the alternative that has most
recently finished, which is obviously the right one to perform the appropriate
compensation.

Fig. 4.4. Alternative Composition: T else U

In the uncertain world in which computers operate, especially in the vicinity of
people, it is quite possible that a transaction that has failed once may succeed when it
is simply tried again. But clearly the programmer should control how often to repeat
the attempt. For example, suppose it is known that the transaction U is strictly
compensable. Then the transaction

succeed else succeed else succeed; U

merely causes U to be repeated up to three times – that is, up to three times more
often than this transaction itself is repeated by its own predecessors.

 Compensable Transactions 31

The else operator is associative with unit fail . The proof is no more difficult than
that for sequential composition.

Because of its deterministic order of execution, the else command is asymmetric.
Sometimes the programmer does not care which choice is made, and it is acceptable to
delegate the choice to the implementation. For this reason, we introduce an or con-
structor, which is symmetric but non-deterministic. Its pictorial definition is very regu-
lar, but too cluttered to be worth drawing explicitly. Each entry of the outer box fans
out to the like-named entry of both inner boxes. Each exit from the outer box fans in
from the like-named exits of the two inner boxes. The non-determinism is introduced
by the fan-out of the start arrow, which leads to two entries that are both ready to ac-
cept the token. After the start, the behavioural constraint ensures that the rejected alter-
native will never obtain the token. Note that the fail arrow of the whole box fans in
from the fail arrows of both its operands. This shows that the whole box may fail if
either of its two operands fails. In this respect, non-determinism differs from (and is
worse than) the else construction, which guarantees to recover from any single failure.

There is yet a third form of choice between alternatives, which plays the role of the
external choice in a process algebra. It is denoted by [] in CSP or + in CCS. Exter-
nal choice is slightly more deterministic than or, and a bit less deterministic than else.
Like or it is symmetric. Like else it recovers from any single failure. It is defined
by means of an else , where the order of trying the operands is non-deterministic.

T [] U = (T else U) or (U else T)

A picture of this operator would have to contain two copies of each of the operands; it
is not worth drawing. A conventional equational definition is to be preferred.

This construction T [] U

– fails if both U and T fail
– does U if T fails
– does T if U fails
– chooses non-deterministically if neither fails
– may throw if either T or U can do so.

A catch is similar to an else in providing an alternative way of achieving the same
goal. The difference is that the first operand does not necessarily restore its initial
state, and that the second operand is triggered by a throw exit instead of a fail exit
from the first operand. A throw is appropriate when the first operand has been unable
either to restore the initial state or to finish successfully. The catching clause is in-
tended to behave like the first operand should have done: either to complete the com-
pensation and fail, or to succeed in the normal way, or else to throw again to some yet
more distant catch. Note that the catching clause does not satisfy the assertional con-
straint for a compensable transaction, because the assertion at its start is not the same
as the assertion at its fail exit.

5 Nested Transactions

We have described in the previous section how a primitive transaction can be declared
by specifying a forward action together with its compensation. In the elementary case,

32 T. Hoare

both of these are ordinary sequential programs. In this section we will also allow the
forward action to be itself a long-running transaction (which we call the child transac-
tion), nested inside a larger parent transaction declaration, as shown in Figure 5.1. As
before, the compensation U of the parent transaction is an ordinary sequential pro-
gram, and is triggered from the failback entry of the parent transaction. As a result,
the failback entry of the child transaction T is never activated. As a result, when the
parent transaction is complete, an implementation can discard the accumulated child
compensations, and recover the stack frames and other declared resources of the child
transactions.

Nested transactions can be useful as follows. When a long sequence of transactions
all succeed, they build up a long sequence of compensations to be executed (in re-
verse order) in the event of subsequent failure. However, at a certain stage there may
be some much better way of achieving the compensation, as it were in a single big
step right back to the beginning, rather than in the sequence of small steps accumu-
lated by the child transactions. The new single-step compensation is declared as the
compensation for the parent transaction. An example can be taken from a word
processing program, where each child transaction deals with a single keystroke, and
undoes it when required to compensate. However, when the parent document is com-
plete, any subsequent failure will be compensated by restoring the previous version of
the whole document.

Fig. 5.1. Nested Transaction Declaration

When the child transactions have all finished, their failback entries will never sub-
sequently be activated, because (when necessary) the parent compensation is called
instead. As a result, at the finish of the parent transaction an implementation can sim-
ply discard the accumulated child compensations, and recover the stack frames that
they occupied.

In addition to stack frames, there may be other resources which need to be released
by the child transactions on completion of the parent transaction. In the case of

 Compensable Transactions 33

failure, the compensation can do this. But if all the child transactions succeed, we
need another mechanism. To provide this requires a significant extension to our defi-
nition of a transaction. We add to every transaction (the child transactions as well as
the parent) a new entry point called finally, placed between the start and the fail, and
a new exit point called complete, placed between the finish and the failback. The
nestable transaction declaration therefore takes a third operand, a completion action; it
is entered by the finally entry and exited by the complete exit.

When transactions (parents or children) are composed sequentially, their comple-
tions are also composed sequentially, like their compensations, by connecting the
complete exit of the left operand to the finally entry of the right operand. So the con-
necting arrows between completions go from left to right, and the completions are
executed in the same order as the forward actions, rather than in the reverse order.

Fig. 5.2. Nesting with Completion [T finally V comp U]

In Figure 5.2, the child transaction is denoted T , the parent compensation is U ,
and the parent completion is V. The child transaction also has a finally entry and a
complete exit, and a completion action, which is not shown explicitly in the diagram.
In the case that the child is not a transaction, an ordinary sequential program can be
artificially made into a transaction by adding a completion action that does nothing. In
that case, the definition of a nested transaction becomes equivalent to that of an
un-nested one.

When the whole child transaction has finished, the completions accumulated by the
child transactions are triggered. That is indicated in Figure 5.2 by the transverse arrow
from the finally exit of the child transactions T to the new finally entry of the child
transactions themselves. It executes the completion actions of all the children, in the
same order as the execution of forward actions of the children.

34 T. Hoare

Another benefit of the introduction of completion actions is to implement the
lazy update design pattern. Each child makes a generally accessible note of the
update that it is responsible for performing, but lazily does not perform the update
until all the child transactions of the same parent have successfully finished. On
seeing the note, the forward action of each subsequent child takes account of the
notes left by all previously executed children, and behaves as if the updates
postponed by all previous children had already occurred. But on completion of the
parent transaction, the real updates are actually performed by the completion code
provided by each component child transaction. As a result, the rest of the world will
never know how lazy the transaction has been. The completion codes will be
executed in the same sequence as the forward actions of the children. Compensa-
tions for lazy transactions tend to be rather simple, since all that is required is to
throw away the notes on the actions that should have been performed but have not
yet been.

Introduction of the new finally entry and complete exit for completion actions re-
quires an extension to the definition of the behavioural constraint on transactions.
Note that a completion is not allowed to fail, though it may still throw.

 start ; X

where X = fail + throw + (finish ; (finally ; (complete + throw)
 + failback ; X))

The definition of sequential composition and other operators needs to be adapted to
accommodate the addition of new entry and exit points for the completion actions.
The adaptations are fairly obvious, and we leave them to the interested reader.

The nesting of transactions may seem unpleasantly complex, but the concept of
nesting is essential to deal with the wide range of granularity at which the concept of
atomicity can be applied. Many kinds of transaction will last a few microseconds,
whereas others may last a few months.

6 Concurrency

The Petri net place has provided a mechanism for fan-in and fan-out of the arrows of
a flowchart. Each activation (firing) of the place involves the entry of a single token
along a single one of the entry arrow, and the exit of the same token along any one of
its exit arrows. As a result, a place always maintains the number of tokens in the net –
in our treatment so far, there has only been just one token.

Introduction and elimination of tokens from the net is the purpose of the other
primitive element of a Petri net, the transition. This too provides a form of fan-in and
fan-out, but its behavioural rule is conjunctive rather than disjunctive, universal rather
than existential. Each firing of a transition requires the entry of a token on all of its
entry arrows, and the emission of a token on all of its exit arrows. The notation used
for transitions is shown in Figure 6.1.

 Compensable Transactions 35

Fig. 6.1. Petri net transition

If there is only one entry to a transition, it acts as a fan-out: its firing will increase
the number of tokens travelling simultaneously in the network. This could certainly
lead to confusion if one of the tokens ever meets another at the same place. By allow-
ing only limited and well-structured forms of composition, our calculus will confine
each token to a disjoint region of the net, and ensure that tokens meet only at the entry
to a transition, which is what is intended. Often, such a meeting place is a fan-in; it
has only one exit, so that it reduces the number of tokens in the system.

It is possible to think of all the entry and exit events for a transition as occurring
simultaneously. However, in representing this simultaneous behaviour as a regular
expression, it is common to use a total ordering of events, in which any causal event
occurs before its effect. Furthermore, arbitrary interleaving is commonly used to re-
cord sequentially events that occur simultaneously. The regular expression (P || Q)
will stand for the set of all interleavings of a string from P with a string from Q . Thus
the behavioural constraint on a transition in Figure 6.1 is that the arrival in any order
of a token on all of the entry arrows will trigger the emission of a token on each and
every one of the exit arrows, again in any order.

The correctness of a transition obviously requires that all the assertions on all the
exit arrows must be valid at the time of firing. In this respect, the transition is like a
place. It differs from a place in the precondition that all the assertions on the entry
arrows may be assumed to be true when the transition fires. Thus the correctness
condition on a transition is that the conjunction of all the entry assertions must logi-
cally imply the conjunction of all the exit assertions. In general, there is a possibility
that the conjunction will be inconsistent; but we will design our calculus carefully to
avoid this risk.

The semantics of the Petri net transition is given in terms of its correctness condi-
tion and its behaviour. Thus it satisfies the same equivalence criterion as the place:
any acyclic network of pure transitions (in which every external exit is reachable from
every external entry) is equivalent to a single transition with exactly the same external
entry and exit arrows, but omitting the internal arrows.

36 T. Hoare

Fig. 6.2. Parallel composition: T || U

We will explain the concept of well-structured concurrency first in the context of
ordinary programs, which have only a single entry and a single exit arrow. Concurrent
composition of two such programs is made to satisfy the same constraint, as shown in
Figure 6.2. This shows how two sections of code T and U will start simultaneously
and proceed concurrently until they have both finished. Only then does the concurrent
combination finish.

It is evident from the diagram (and from the structured property of boxes) that the
only meeting point of the two tokens generated by the fan-out transition on the left
will be at the final fan-in transition on the right, where they are merged. The diagram
can easily be adapted to deal with three or more threads. But this is not necessary,
because the rules of equivalence for transitions ensure that concurrent composition is
both an associative and a commutative operator.

The proof of correctness of concurrent threads should be modular in the same way
as proof of correctness of all the other forms of composition. In order to make this
possible, some disjointness constraints must be placed on the actions of the individual
threads. The simplest constraint is that no thread can access any variable updated by
some other concurrent thread. This same constraint must also be applied to the asser-
tions used to prove correctness of each thread. The token which travels within a
thread can be regarded as carrying the variables and owned by that thread, together
with their values.

In simple cases, the constraint on disjointness can be enforced by a compile-time
check on the global variables accessed by a thread. But in general, the use of indirect
addressing (for example, in an object-oriented program) will make it necessary to
prove disjointness by including some notion of ownership into the assertion language.
Separation logic provides an elegant and flexible means of expressing disjointness of
ownership, and establishing it by means of proof. However, we will not pursue this
issue further here.

The disjointness constraint is effective in ensuring consistency of the final
assertions of the threads when they all terminate together. It also avoids race condi-
tions at run time, and so prevents any form of unwanted interference between the
activities of the threads. However, it also rules out any form of beneficial interaction
or cooperation between them. In particular, it rules out any sharing of internal storage

 Compensable Transactions 37

or communication channels. A safe relaxation of this restriction is provided by atomic
regions (or critical sections). This is defined as a section of code inside a thread,
which is allowed to access and update a shared resource. The implementation must
guarantee (for example by an exclusion semaphore) that only one thread at a time can
be executing inside an atomic region, so race conditions are still avoided. The overall
effect of multiple threads updating the shared resource includes an arbitrary interleav-
ing of the execution of their complete atomic regions.

The Petri net formalisation of an atomic region models a shared resource as a to-
ken, which may be regarded as carrying the current state and value of the resource. At
the beginning of an atomic region, a thread acquires ownership of this token in order
to access and update the shared resource; and at the end of the region the shared
resource is released. Of course, execution of the region also requires the normal
sequential token of the thread that contains it.

An atomic region is defined (Figure 6.3) as a sort of inverse of concurrent compo-
sition, with a fan-in at the beginning and a fan-out at the end. For simplicity, we
assume that there is only a single shared resource, consisting of everything except the
private resources of the currently active individual threads. In most practical applica-
tions, many separate resources will need to be declared, but we shall not deal with that
complexity here.

Fig. 6.3. Atomic Region: atomic[T]

The definition of an atomic region requires the introduction of another entry and
another exit into the standard repertoire. The entry carries the suggestive name ac-
quire, and the exit is called release. The new entries and exits require extension of the
behavioural constraint, by inserting (acquire;release)* between every entry and the
next following exit. The definition of all the operators of our calculus must also be
extended: but this is very simple, because in each diagram defining an operator, all
the acquire entries are connected via a fan-out place, and all the release exits are
connected via a fan-in place.

The declaration of a sharable resource is shown in Figure 6.4. The token that
represents a resource is created by means of a transition fan-out. The block T con-
tains all the multiple threads that are going to share the resource. When all of them
have finished, the token is therefore merged again. The assertion R is known as

38 T. Hoare

the resource invariant: it must be true at the beginning of T and at the end of every
atomic region within T. Conversely, R may be assumed true at the end of the whole
block T, and at the beginning of every atomic region within it. Note that in this
diagram the place is expected to store the token between successive executions of
the atomic regions.

Fig. 6.4. Resource Declaration: resource R in T

The explicit statement of a resource invariant permits a very necessary relaxation
of the restriction that the assertions used within the threads of T may not refer to the
values of the variables of the shared resource, for fear that they are subject to concur-
rent update by concurrent threads. The relaxed restriction states that all of the asser-
tions private to a thread (initial, internal or final) may mention the values of the
shared resource, but only in a way that is tolerant of interference. This means that the
local assertions of each thread must also be an invariant of every atomic region that
may be invoked by the other threads.

A direct application of this proof rule would require proof of each thread to
know all the internal assertions in every other thread -- a serious violation of the
principal of locality of proof. A stronger but more modular condition is that each
thread must prove locally that all its assertions are invariant of any section of
code X that leaves R invariant. The details of the formalisation will not be
elaborated here.

The definition of concurrent composition given in Figure 6.2 applies to fragments
of ordinary program with a single entry and a single exit. Our final task is to apply the
same idea to compensable transactions, with many more entries and exits. The basic
definition of concurrency of transactions introduces a transition to fan out each entry
of the concurrent block to the two (or more) like-named entries of the components;
and similarly, it introduces a transition to fan in the like-named exits of the compo-
nents to relevant exit of the whole composition (Figure 6.5). This means that the com-
pensations of concurrent transactions will also be executed concurrently in the same
way as their forward actions.

 Compensable Transactions 39

Fig. 6.5. [T || U] as a transaction

This scheme works well, provided that both components agree on which exit to ac-
tivate on each occasion -- either they both finish, or they both fail, or they both throw.
The availability of a shared resource enables them to negotiate an agreement as re-
quired. However, if they fail to do so, the result is deadlock, and no further action is
possible. It may be a good idea to complicate the definition of concurrency of transac-
tions to avoid this unfortunate possibility automatically, by doing something sensible
in each case. Four additional transitions are needed to implement the necessary logic.

(1) if one component T finishes and U fails, these two exits are fanned in by a
transition, whose exit leads to the failback of the successful T .

(2) Similarly, if U finishes and T fails, the failback of U is invoked.
(3) In the case that T performs a throw but U does not, the whole construction

must throw. This involves connecting U’s finish and fail exits via a place to
a transition that joins it with the throw exit of T .

(4) A similar treatment deals with the case that U performs a throw.

7 Conclusion

This paper gives a simple account using Petri nets of long-running transactions with
compensations. The account is also quite formal, in the sense that the nets for any
transaction composed solely by the principles described can actually be drawn, pro-
grammed and executed by computer. The assertions on the arrows give guidance on
how to design correctness into a system of transactions from the earliest stage. The
correctness principle for places and transitions serves as an axiomatic semantics, and
shows how to prove the correctness of a complete flowchart in a modular way, by

40 T. Hoare

proving the correctness of each component and each connecting arrow separately.
Thus we have given a unified treatment of both an operational and an axiomatic se-
mantics for compensable, composable and nestable transactions. Simple cases of
concurrency can also be treated, but more work, both theoretical and experimental, is
needed to deal with more general cases.

The more surprising ideas in this article are (1) use of the precondition of a transac-
tion as the criterion of adequacy of an approximation to the initial state that the
compensation should reach (there are many more complicated ways of doing this);
and (2) the suggestion of separation logic as an appropriate language for annotating
the transitions of a concurrent Petri net.

The deficiencies of this article are numerous and obvious. There are no transition
rules, no deductive systems, no algebraic axioms, no denotational semantic functions,
no proofs and no references. There is far more work still to be done by anyone
sufficiently interested in the subject.

Acknowledgements. The ideas and presentation of this paper have been greatly
improved by the helpful comments of:

Michael Butler, Ernie Cohen, Tim Harris, Niels Lohmann, Jay Misra, Eliot Moss,
Matthew Parkinson, Simon Peyton Jones, Viktor Vafeiadis.

Reprinted from Software System Reliability and Security, Tony Hoare, Compensable
transactions, pp. 116-134, Copyright (2007), with permission from IOS Press.

SCOOP – A Contract-Based Concurrent
Object-Oriented Programming Model

Benjamin Morandi1, Sebastian S. Bauer2, and Bertrand Meyer1

1 Chair of Software Engineering, Swiss Federal Institute of Technology Zurich,
Switzerland

firstname.lastname@inf.ethz.ch

http://se.inf.ethz.ch/
2 Institut für Informatik, Ludwig-Maximilians-Universität München, Germany

sebastian.bauer@pst.ifi.lmu.de

http://www.pst.ifi.lmu.de/

Abstract. SCOOP is a concurrent object-oriented programming model
based on contracts. The model introduces processors as a new concept
and it generalizes existing object-oriented concepts for the concurrent
context. Simplicity is the main objective of SCOOP. The model guaran-
tees the absence of data races in any execution of a SCOOP program.
This article is a technical description of SCOOP as defined by Nienal-
towski [11] and Meyer [7,9,10].

1 Introduction

In a semaphore based concurrent programming model it is the responsibility of
developers to ensure proper synchronization between threads. With respect to
safety, no undesirable interference between threads must occur. In general, this
is a global property of a program that requires global analysis. With respect to
liveness, every thread should progress eventually. Again, this is a global prop-
erty. Another issue comes from the limited reusability of classes. A class whose
instances should be accessed by multiple threads must be annotated with correct
synchronization code. In general, a class that is not annotated accordingly can
only be used sequentially.

SCOOP stands for Simple Concurrent Object-Oriented Programming. This
name captures what SCOOP is all about – a simple object-oriented program-
ming model for concurrency. SCOOP is simple because it introduces only few new
concepts on top of an object-oriented programming model. This makes SCOOP
simple to understand. SCOOP is simple because it helps to avoid common cor-
rectness and liveness issues due to improper synchronization. SCOOP is also
simple because a class does not need to be annotated with synchronization code
before it can be used in a concurrent program. This fosters reusability. SCOOP is
simple because it supports sequential reasoning on concurrent programs. There
are many reasons why SCOOP is simple and the following sections will explain
in more details where the simplicity is coming from. The risk of simplicity is

P. Müller (Ed.): LASER Summer School 2007/2008, LNCS 6029, pp. 41–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://se.inf.ethz.ch/
http://www.pst.ifi.lmu.de/

42 B. Morandi, S.S. Bauer, and B. Meyer

the loss of expressiveness on account of too many restrictions. SCOOP preserves
object-oriented expressivity because it generalizes existing object-oriented con-
cepts in the concurrent context. Sequential programs are treated as a subset of
a concurrent programs. As presented here, SCOOP builds on Eiffel [4]; how-
ever, it is possible to extend other object-oriented programming models with
SCOOP. The key requirements of such an programming model are the presence
of contracts and a static type system.

SCOOP has gone through several iterations of refinement. The initial model
was proposed by Meyer [7,9,10]. Nienaltowski worked on consistency and us-
ability of the model. The following sections provide a concise description of the
SCOOP model as presented by Nienaltowski in his PhD dissertation [11]. The
next section shows an introductory example to give a brief overview on SCOOP.
The remaining sections cover the details. Sections 3, 5 and 6 describe the essence
of the computational model. Sections 4, 8, 9, and 10 define the type system. Sec-
tion 7 describes the impact of SCOOP on contracts and sections 11, 12, and 13
discuss advanced object-oriented mechanisms. We conclude with section 14 on
limitations and future work.

2 Example

This section introduces an implementation of a producer-consumer scenario writ-
ten in SCOOP. The concepts introduced in this example will be explained in
depth in the following sections.

A producer-consumer application consists of a number of producers and a
number of consumers. Both producers and consumers have access to a shared
fixed-size buffer. Producers store elements in the buffer and consumers retrieve
elements from the buffer. A producer must not be allowed to add elements to
the buffer if it is full. A consumer must not be allowed to remove elements from
an empty buffer. The access to the buffer must be restricted to one actor at a
time.

Listing 1.1. producer class

1 class PRODUCER[G]

3 inherit
PROCESS

5
create

7 make

9 feature {NONE} −− Initialization
make (a buffer: separate BOUNDED QUEUE[G])

11 −− Create a producer with ’a buffer’.
do

SCOOP 43

13 buffer := a buffer
ensure

15 buffer = a buffer
end

17
feature −− Basic operations

19 step
−− Produce an element and store it in ’buffer’.

21 local
l element: G

23 do
l element := ...

25 store (buffer, l element)
end

27
feature {NONE} −− Implementation

29 buffer: separate BOUNDED QUEUE[G]
−− The buffer.

31
store (a buffer: separate BOUNDED QUEUE[G]; a element: G)

33 −− Store ’a element’ in ’a buffer’.
require

35 a buffer is not full: not a buffer.is full
do

37 a buffer.put (a element)
ensure

39 a element is added: a buffer.count = old a buffer.count + 1
end

41 end

Listing 1.2. consumer class

1 class CONSUMER[G]

3 inherit
PROCESS

5
create

7 make

9 feature {NONE} −− Initialization
make (a buffer: separate BOUNDED QUEUE[G])

11 −− Create a consumer with ’a buffer’.
do

44 B. Morandi, S.S. Bauer, and B. Meyer

13 buffer := a buffer
ensure

15 buffer = a buffer
end

17
feature −− Basic operations

19 step
−− Consume an element from ’buffer’.

21 local
l element: G

23 do
retrieve (buffer)

25 l element := last element
...

27 end

29 feature {NONE} −− Implementation
buffer: separate BOUNDED QUEUE[G]

31 −− The buffer.

33 retrieve (a buffer: separate BOUNDED QUEUE[G])
−− Retrieve an element from ’a buffer’ and store it in ’

last element’.
35 require

a buffer is not empty: not a buffer.is empty
37 do

last element := a buffer.item
39 a buffer.remove

ensure
41 last element is set: last element = old a buffer.item

a buffer is decreased: a buffer.count = old a buffer.count − 1
43 end

45 last element: G
end

Producers and consumers repeatedly perform a sequence of actions. Produc-
ers store elements into the buffer and consumers retrieve elements from the
buffer. Producers and consumers can therefore be modeled as processes. Both of
the classes inherit from a class PROCESS, which is not shown here. The class
PROCESS offers a deferred feature step, which gets called over and over again
as soon as the feature live is called. Therefore the main activities of producers
and consumers are enclosed by their respective implementations of step.

Both producers and consumers operate on a shared buffer attached to buffer.
The type separate BOUNDED QUEUE[G] of these two features is of interest.

SCOOP 45

The class type BOUNDED QUEUE[G] specifies the nature of the buffer: It is a
bounded queue with elements of a type G. The keyword separate is a SCOOP
specific addition to the type system. In SCOOP every object is associated to a
processor that is responsible for the sequential execution of instructions on that
object. One object can only be associated to one processor, but one processor
can be responsible for multiple objects. The separate keyword defines that the
object attached to the entity of such a type can potentially be handled by a
different processor than the processor of the current object. In the absence of
this keyword the object must be handled by same processor as the current object.
If two objects are on different processors then the two processors can execute
features on these objects in parallel. In this example, we want to achieve this for
the buffer. Features on the buffer should be executed in parallel to the features
on producers and consumers. Thus the buffer needs to be on its own processor.
This is reflected in the type of the buffer.

The problem description asks for mutual exclusion on the buffer. In SCOOP
locks are granted on the granularity level of processors. Locking a processor
means exclusive access to all the objects handled by the processor. Prior to its
execution, every feature automatically requests the locks on all the processors
of the attached formal arguments. The feature cannot be executed until all the
requested locks got granted. In the producer and consumer classes it is therefore
necessary to enclose the calls to the buffer in features taking the buffer as an
attached formal argument in order to satisfy the exclusivity requirement. For
this purpose, the producer class has a feature store that takes the buffer and
the element as formal arguments. A call to store gets delayed until the producer
acquired the lock on the buffer. Note that the lock on the element is already
given because the missing separate keyword in the type of the element implies
that the element and the producer are on the same processor. Next to the locks
there is another constraint that must be satisfied before store can be executed.
The feature has a precondition asking for the buffer not to be full, as specified.
As the buffer is shared among different producers and consumers, the respon-
sibility to satisfy the precondition is also shared among the different producers
and consumers. The precondition therefore turns into a wait condition as store
needs to wait for the precondition to be satisfied. In summary, store can only
be executed when the precondition is satisfied and the necessary locks are ac-
quired. A similar argument is true for the feature retrieve of the consumer. In
the next section, we start with an elaboration on the computational model of
SCOOP.

3 Processors, Objects, and the Scheduler

Processors and objects are the basic computational units in SCOOP. A processor
is an autonomous thread of control capable of executing features on objects.
Every processor is responsible for a set of objects. In this context, a processor is
called the handler of the associated objects. Every object is assigned to exactly
one processor that is the authority of feature executions on this object. If a

46 B. Morandi, S.S. Bauer, and B. Meyer

processor q wants to call a feature on a target handled by a different processor p
then q needs to send a feature request to processor p. This is where the request
queue of processor p comes into place. The request queue keeps track of features
to be executed on behalf of other processors. Processor q can add a request to this
queue and processor p will execute the request as soon as it executed all previous
requests in the request queue. Processor p uses its call stack is used to execute
the feature request at the beginning of the request queue. Before processor q can
add a request, it must have a lock on processor p’s request queue. Otherwise
another processor could intervene. Once processor q is done with the request
queue of processor p it can add an unlock operation to the end of the request
queue. This will make sure that the request queue lock of p will be released after
all the previous feature requests have been executed. Similarly, processor p must
have a lock on its call stack to add features to it. To simplify this, every processor
starts with a lock on its own call stack. Section 5 on the semantics of feature calls
and feature applications will explain the interaction between processors in more
details. In conclusion, a processor and its object form a sequential system. The
overall concurrent system can be seen as a collection of interacting sequential
systems. A sequential system can be seen as a particular case of a concurrent
system with only one processor.

Definition 1 (Processor). A processor is an autonomous thread of control
capable of supporting the sequential execution of instructions on one or more
objects. Every processor has the following elements:

– Handled objects: It keeps track of the handled objects.
– Request queue: It keeps track of features to be executed on objects handled by

the processor. Requests in the request queue are serviced in the order of their
arrival.

– Call stack: It is used for the application of features.
– Locks: It contains all the locks held by the processor, as defined in

definition 2.

Definition 2 (Processor locks). For every processor there exists a lock on the
request queue and a lock on the call stack. A lock on the request queue grants
permission to add a feature request to the end of the request queue. A lock on the
call stack grants permission to add a feature request to the top of the call stack.
Initially every processor has a lock on its own call stack and its request queue is
not locked.

Definition 3 (Processor loop). A processor loops through the following
sequence of actions:

1. Idle wait: If both the call stack and the request queue are empty then wait
for new requests to be enqueued.

2. Request scheduling: If the call stack is empty but the request queue is not
empty then dequeue an item and push it onto the call stack.

3. Request processing: If there is an item on the call stack then pop the item
from the call stack and process it.

SCOOP 47

– If the item is a feature request then apply the feature.
– If the items is an unlock operation then unlock the request queue of the

processor.

In the standard case, every processor keeps the lock on its own call stack. A
processor needs this lock to dequeue items from the request queue and put them
on the call stack, as described in definition 3. Normally, only the request queue
is used for the communication between different processors. Section 5 will show
how this can be different. In the following we will introduce an abstraction under
the assumption that every processor keeps its call stack lock. In this abstraction
we call the request queue lock on a processor p simply the lock on p. As long as
the call stack lock on a processor p is in possession of p, a request queue lock
on p in possession of a processor q means that processor p will be executing
new feature requests in the request queue exclusively on behalf of q. This means
that a request queue lock grants exclusive access to all the objects handled by
p. Transferring this insight to our abstractions, a lock on processor p denotes
exclusive access to the objects handled by p. We used the abstraction in the
beginning of the article, as it is easier to begin with. In the remaining sections
we will not make use of this abstraction anymore.

As stated earlier, there is only one processor that can execute features on a
particular object. As a consequence, any execution of a SCOOP program is free
ob low-level data races that occur when multiple processors access an attribute of
an object at the same time and there is at least one write access. Proposition 1
expresses this fact.

Proposition 1. A SCOOP system is free of low-level data races.

As mentioned, a request queue can only be accessed by a processor that is in
possession of the corresponding request queue lock. The execution of a feature
requires access to request queues of other processors. Therefore it is necessary
to obtain request queue locks prior to the execution of a feature so that these
request queues can be accessed during the execution. There might be more than
one processor whose current feature request requires a particular lock. This is
where the scheduler comes into place. The scheduler is the arbiter for feature
requests. More details on this will be given in section 5. The model permits a
number of possible scheduling algorithms. Scheduling algorithms differ in their
level of fairness and their performance. In this article we do not focus on a
particular instance. More information on particular scheduling algorithms can
be found in Nienaltowski’s dissertation [11].

Definition 4 (Scheduler). The scheduler is responsible for scheduling feature
applications.

Processors bring a new dimension to feature calls because feature calls can either
happen within one processor or from one processor to another. Thus feature calls
can be separate or non-separate depending on the location of the client and the
target object.

48 B. Morandi, S.S. Bauer, and B. Meyer

Definition 5 (Separateness). Objects that are handled by different processors
are separate from each other. All the objects on the same processor are non-
separate from each other. A feature call is separate if and only if the target
and the client objects are separate. A references to a separate object is called a
separate reference.

4 Types

4.1 Definition

In SCOOP two objects are either separate or non-separate with respect to each
other. The separateness depends on the location of the two objects. Throughout
the following sections, the relative location of one object to another object will
be of importance. Thus there needs to be a way of computing this information.
SCOOP uses a refinement of the Eiffel type system to keep track of the relative
locations. The Eiffel type system is based on detachable tags and classes. The
detachable tag defines whether an entity is allowed to be void or not. In SCOOP
the detachable tag has an additional meaning. Section 5 will show that only
objects attached to attached entities will be locked. In order to argue about sep-
arateness the type system must accommodate the locality of objects in addition
to the existing type components. The following definitions refine the definitions
in section 8.11 of the Eiffel ECMA standard [4].

Definition 6 (Type). A type is represented as a triple T = (d, p, C) with the
following components:

– The component d is the detachable tag as described by definition 7.
– The component p is the processor tag as described by definition 8.
– The component C is the class type.

A type is always relative to the instance of the class where the type is declared.
An actual generic parameter is always relative to the instance of the class where
the corresponding formal generic parameter is declared.

Definition 7 (Detachable tag). The detachable tag d captures detachability
and selective locking.

– An entity can be of attached type, formally written as d = !. Entities of an
attached type are statically guaranteed to be non-void. Only request queues
of processors handling arguments of attachable type get locked.

– An entity can be of detachable type, formally written as d = ?. Entities of
detachable type can be void. Request queues of processors handling arguments
of detachable type do not get locked.

Definition 8 (Processor tag). The processor tag p captures the locality of
objects accessed by an entity of type T .

SCOOP 49

– The processor tag p can be separate, formally written as p = �. The object
attached to the entity of type T is potentially handled by a different processor
than the current processor.

– The processor tag p can be explicit, formally written as p = α. The object
attached to the entity of type T is handled by the processor specified by α.
Definition 9 shows how a processor can be specified explicitly.

– The processor tag p can be non-separate, formally written as p = •. The
object attached to the entity of type T is handled by the current processor.

– The processor tag p can denote no processor, formally written as p = ⊥. It
is used to type the void reference.

Note the difference between a separate type and a separate object. A separate
object is on a different processor. An entity of a separate type stores a potentially
separate object.

Definition 9 (Explicit processor specification). A processor can be speci-
fied explicitly either in an unqualified or a qualified way. An unqualified explicit
processor specification is based on a processor attribute p. The processor attribute
p must have the type (!, •,PROCESSOR) and it must be declared in the same class
as the explicit processor specification or in one of the ancestors. The processor de-
noted by this explicit processor specification is the processor stored in p. A qualified
explicit processor specification relies on an entity e occurring in the same class as
the explicit processor specification or in one of the ancestors. The entity e must be
a non-writable entity of attached type and the type of e must not have a qualified
explicit processor tag. The processor denoted by this explicit processor specification
is the same processor as the one of the object referenced by e.

Explicit processor tags support precise reasoning about object locality. Entities
declared with the same processor tag represent objects handled by the same
processor. The type system takes advantage of this information to support safe
attachments and safe feature calls. A qualified explicit processor specification
can only be defined on a non-writable entity of attached type to facilitate static
type checking. Possibly void or writable entities would require an analysis of the
runtime behavior. This would make static type checking unfeasible. The type of
the entity e must not have a qualified explicit processor tag itself. This restriction
prevents dependency cycles among processor tags.

4.2 Syntax

SCOOP extends the Eiffel type syntax to incorporate the enhanced type
definition.

Definition 10 (Type syntax)

t ype �
[d e t a c h a b l e t a g]

50 B. Morandi, S.S. Bauer, and B. Meyer

[separate] [e x p l i c i t p r o c e s s o r s p e c i f i c a t i o n]
c lass name [a c t u a l g e n e r i c s]

d e t a c h a b l e t a g �
attached | detachable

e x p l i c i t p r o c e s s o r s p e c i f i c a t i o n �
q u a l i f i e d e x p l i c i t p r o c e s s o r s p e c i f i c a t i o n |
u n q u a l i f i e d e x p l i c i t p r o c e s s o r s p e c i f i c a t i o n

q u a l i f i e d e x p l i c i t p r o c e s s o r s p e c i f i c a t i o n �
”<” en t i t y name ”.” hand l e r ”>”

u n q u a l i f i e d e x p l i c i t p r o c e s s o r s p e c i f i c a t i o n �
”<” en t i t y name ”>”

The absence of both the attached and detachable keyword implies an at-
tached type.

The SCOOP syntax change is minimal and ensures backward compatibility to
plain Eiffel programs. Definition 10 anticipates a change in the syntax of the
detachable tag which is not yet part of the Eiffel ECMA standard [4].

Example 1 (Type syntax). Listing 1.3 shows a couple of attributes along with
their types. The comments attached to the attributes explain what is meant by
the syntax.

Listing 1.3. type syntax example

a: BOOK −− (!, •,BOOK)
2 b: separate BOOK −− (!,�,BOOK)
c: separate <p> BOOK −− (!, p,BOOK)

4 d: attached BOOK −− (!, •,BOOK)
e: attached separate BOOK −− (!,�,BOOK)

6 f : attached separate <a.handler> BOOK −− (!, a.handler ,BOOK)
g: detachable BOOK −− (?, •,BOOK)

8 h: detachable separate BOOK −− (?,�,BOOK)
i : detachable separate <p> BOOK −− (?, p,BOOK)

10
p: PROCESSOR

4.3 Explicit and Implicit Types

Every entity has an explicit type. It is the type as written in the code. Thanks to
the qualified explicit processor specifications, every attached and non-writable

SCOOP 51

entity also has an implicit type. This is stated in definition 11. Current is one of
these attached and non-writable entities and consequently it has an implicit type.
The explicit type of Current is shown in definition 12. Definition 13 justifies
the processor tag ⊥. It is used to define the type of the void reference. Hereby,
the standard Eiffel class NONE is used as the class type, because it is at the
bottom of the class hierarchy.

Definition 11 (Implicit type). An attached non-writable entity e of type
(!, p, C) also has an implicit type (!, e.handler , C).

Definition 12 (Explicit type of the current object). In the context of a
class C, the current object has the type (!, •, C).

Definition 13 (Explicit type of the void reference). The void reference
has the type (?,⊥,NONE).

4.4 Expanded Types

Every object is either of reference type or of expanded type. Instances of classes
annotated with the keyword expanded are objects of expanded type. Other
objects are of reference type. The difference between the two categories affects
the semantics of attachment. An attachment of an object of a reference type
to an entity stores the reference to the object in the entity. An attachment
of an object of expanded type copies the object and attaches it to the entity.
Section 7.4 of the Eiffel ECMA standard [4] explains this in more details. Due
to the copy semantics, an expanded object is never attached to more than one
entity and thus expanded objects do not get aliased. One can think of expanded
objects to be part of the object to which they are attached. Thus expanded
objects are defined to be non-separate. Furthermore, an entity of expanded type
never contains the void reference. Thus an expanded type is always an attached
type. This leads to the validity definition 14 for expanded types. Syntactically
this rule prohibits the use of separate annotations and the question mark as the
detachable tag.

Definition 14 (Expanded type validity). A type T based on an expanded
class E is valid if an only if it is attached and non-separate, i.e. T = (!, •, E).

4.5 Formal Generic Parameters

Formal generic parameters are type parameters for generic classes. A generic
derivation must be used to get a type from a generic class. In a generic deriva-
tion each formal generic parameter must be substituted by a type, which is the
actual generic parameter. Optionally, every formal generic parameter can have a
constraint on the actual generic parameter used in the generic derivation. Such a
constraint allows the generic class to make assumptions on a formal generic pa-
rameter. An implicit generic constraint is used if no explicit constraint is given.
In the presence of the new type system the implicit constraint as described in

52 B. Morandi, S.S. Bauer, and B. Meyer

section 8.12.7 of the Eiffel ECMA standard [4] must be generalized. For compat-
ibility with the existing rule the implicit constraint must be attached and have
the class type ANY. The class ANY is the root class in the Eiffel class hierarchy.
An implicit type should be as general as possible. The separate processor tag is
most general and thus definition 15 makes use of it.

Definition 15 (Implicit formal generic parameter constraint). The con-
straint of a formal generic parameter is the explicit constraint if present. Other-
wise the implicit constraint is (!,�,ANY).

4.6 Soundness

SCOOP extends the Eiffel type system with information about object locality.
This information can be used to determine whether an object is separate or
non-separate. To be sound, the type system must ensure that this information
is accurate at all times for all entities. In conjunction with the justifications of
the rules and mechanisms, the following sections provide arguments on why the
type system is sound. One component of soundness is the absence of traitors
as defined in definition 16. However, the absence of traitors does not imply full
soundness. Soundness must also be guaranteed for types with explicit processor
specifications.

Definition 16 (Traitor). A traitor is an entity declared as non-separate but
pointing to a separate object.

We defer a full soundness proof to later work as described in section 14.

5 Feature Call and Feature Application

A processor p can call features on objects that are either handled by p or by
another processor q. A non-separate call is executed by p itself. For a separate
call, processor p needs to ask processor q to execute the feature. In this section
we will take a closer look at the steps involved in a feature call and in the
subsequent execution, which we call the feature application. As we will see, a
separate call can be asynchronous, but a non-separate call is always synchronous.
Every feature call happens in the context of a feature application. For this reason
we will start with the description of the feature application and then describe
the feature call. In the end we will present an example to illustrate once again
how the two concepts work together. In terms of contracts, this section only
describes the runtime aspects of contracts. A more detailed picture will be given
in section 7. The definitions presented in this section generalize the definitions
in section 8.23 of the Eiffel ECMA standard [4].

5.1 Feature Application

We start in a situation where a processor p wants to apply a feature request f
on a target x. The execution of f will require a number of request queue locks.

SCOOP 53

Furthermore, the precondition of f must be satisfied before f can be executed.
These two prerequisites are established in the synchronization step. This step
involves the scheduler. Processor p will wait until the scheduler gives the green
light and then execute f . After the execution, the postcondition must be checked.
If f is a query then the result must be returned. Finally the obtained request
queue locks must be released. Definition 17 captures these steps.

Definition 17 (Feature application). The application of feature f on target
x, requested by a client processor pc, results in the following sequence of actions
performed by the supplier processor px:

1. Synchronization: Involve the scheduler to wait until the following synchro-
nization conditions are satisfied atomically:
– All the request queues of processors that handle arguments of an attached

type in f are locked on behalf of px.
– The precondition of f holds.

2. Execution
– If f is a routine then run its body.
– If f is an attribute then evaluate it.

3. Postcondition evaluation: Every query in the postcondition must be evaluated
by its target handler. The result must be combined by px if it is involved in
the postcondition. Otherwise any involved processor may be used.

4. Result returning: If f is a query then return the result to pc. Results of
expanded type need to be imported by the client handler pc.

5. Lock releasing: Add an unlock operation to the end of each request queue that
has been locked in the synchronization step.

Synchronization. Before a feature can be applied there are some synchroniza-
tion constraints to be fulfilled. First, the supplier processor must have atomically
acquired all the required request queue locks. The formal argument list of f in-
dicates which request queues must be locked. If a formal argument is declared
as attached then the corresponding request queue gets locked. If a formal ar-
gument is declared as detachable then the corresponding request queue does
not get locked. Note that the feature call rule in definition 22 will show that
px could already have some locks through a chain of lock passing operations.
It is not necessary to reacquire these locks. The selective locking mechanism
has advantages over an eager locking mechanism where all the request queues
get locked. The likelihood of deadlocks is decreased thanks to fewer locks. Se-
lective locking supports a precise specification of resources needed by a routine
and it makes it possible to pass an argument without locking the correspond-
ing request queue. There is a reason why the detachable tag is used to encode
selective locking. Assuming a formal argument would be detached then it is
not clear how locking should be defined on a detached formal argument. Thus
it makes sense to restrict locking to attached formal arguments. This leads to the

54 B. Morandi, S.S. Bauer, and B. Meyer

generalized semantics of the detachable tag. As a second synchronization con-
straint, the precondition of f must hold. Note that if f is a routine that was
called in qualified way and not as a creation procedure then the invariant is part
of the precondition, as described in section 8.9.26 of the Eiffel ECMA standard
[4]. A violated precondition clause can either cause an exception or it can lead to
waiting. Section 7 will show that only unsatisfied controlled precondition clauses
cause an exception.

Locking before executing ensures that processor px can access the locked re-
quest queues without interference caused by other processors. Thus processor px

can make separate calls without interference as long as all calls are on objects
handled by the corresponding processors. There is the assumption that each call
stack lock of the argument processors is either in possession of its own processor
or in possession of px. We will see later why this assumption is always given as
we take a look at lock passing. Non-separate calls can also be executed without
interference. As we will see, a non-separate call is handled over the call stack of
px and does not involve the request queue of px. A new feature request is simply
added to the top of the call stack. No other processor can interfere in this pro-
cess. In conclusion, there are a number of safe targets which we call controlled.
For safety reasons we only allow these targets in feature calls. Definitions 18 and
19 capture this restriction in terms of the type system.

Definition 18 (Controlled expression). An expression exp of type Texp =
(d, p, C) is controlled if and only if exp is attached, i.e. d = !, and exp satisfies
at least one of the following conditions:

– The expression exp is non separate, i.e. p = •.
– The expression exp appears in a routine r that has an attached formal argu-

ment farg with the same handler as exp, i.e. p = farg .handler .

The second condition of definition 18 is satisfied if and only if at least one of the
following conditions is true:

– The expression exp appears as an attached formal argument of r.
– The expression exp has a qualified explicit processor specification farg .handler

and farg is an attached formal argument of r.
– The expression exp has an unqualified explicit processor specification p, and

some attached formal argument of r has p as its unqualified explicit processor
specification.

Definition 19 (Valid target). Call exp.f(a) appearing in class C is valid if
and only if the following conditions hold:

– The expression exp is controlled.
– The expression exp’s base class has a feature f exported to C, and the actual

arguments a conform in number and type to the formal arguments of f .

SCOOP 55

Definitions 18 and 19 apply to invariants, preconditions, postconditions and the
routine bodies of a class. In case of an invariant, there is no enclosing routine.
Thus an invariant can only contain non-separate calls. As a further consequence
of definition 19. calls on void targets are prohibited. The call validity rule in
definition 19 replaces the validity rule in section 8.23.9 of the Eiffel ECMA
standard [4]. With this approach some safe feature calls are rejected. Such a
situation can occur if there is a feature call on a uncontrolled separate expression
to which a non-separate object is attached. In section 11 we will refer to this
object as a false traitor.

Example 2 (Valid targets). Listing 1.4 shows a feature print book. This feature
makes a copy of the book and notifies the author of the book.

Listing 1.4. printer class

class PRINTER feature
2 print book (a book: separate BOOK)

−− Print ’a book’.
4 do

a book.copy
6 a book.author.notify

end
8 end

10 class BOOK feature
author: AUTHOR −− The author of this book.

12 initial price: INTEGER −− The price as initially recommended.
is clean: BOOLEAN −− Is this book clean?

14
copy

16 −− Copy this book.
do

18 ...
ensure

20 this book is not clean: not is clean
end

22
clean

24 −− Clean this book.
require

26 this book is not clean: not is clean
do

28 ...
ensure

30 this book is clean: is clean
end

32 end

56 B. Morandi, S.S. Bauer, and B. Meyer

The author is accessible through a non-separate attribute in the book class.
Therefore the author and its book are on the same processor. In this example
we want to see whether the two calls a book.print and a book.author.notify are
valid according to definition 19. For this, we have to apply definition 18 to the
two expressions a book and a book.author. The expression a book is an attached
formal argument and therefore it is controlled. The explicit type of a book is
(!,�,BOOK). Judging from this, a book is attached. In addition, a book is non-
writable because it is a formal argument. We can therefore use definition 11 to
derive the implicit type (!, a book .handler ,BOOK). We will now use this implicit
type to derive the type of the expression a book.author. We noted that the author
and the book must be on the same processor. This means that we can use the
book’s processor tag for the author. The result type combiner in definition 27
will state this more clearly. With the implicit type of a book the type of the
expression a book.author becomes (!, a book .handler ,AUTHOR). In conclusion
the expression a book.author has a qualified explicit processor tag that is related
to the attached formal argument a book. Therefore the expression is controlled.
We can conclude that all targets are valid.

We already argued that any execution of a SCOOP program is free of low-level
data races. Next to low-level data races there are high-level data races. They
occur if multiple processors access a set of objects in a non-atomic way, i.e. in an
interleaved manner, and there is at least one write access. As a consequence of
the synchronization step in the feature application rule in definition 17 and the
valid call rule in definition 19, a SCOOP system is free of high-level data races
by design as stated by proposition 2.

Proposition 2. A SCOOP system is free of high-level data races.

Postcondition evaluation. The postcondition of the feature must be executed
and checked. Note that if f is a routine that was called in qualified way or if f
was called as a creation procedure then the invariant is part of this postcondi-
tion, as described in section 8.9.26 of the Eiffel ECMA standard [4]. There is one
obvious way to evaluate the postcondition. Every processor that handles one or
more targets in the postcondition evaluates its share of the postcondition while
processor px is waiting for the results to come back. Once all the results have
been gathered, processor px can determine whether the postcondition holds or
not. However, this approach introduces sequentiality because px must wait for
the query evaluations to finish. It turns out that px does not need to wait if none
of its objects is used as a target in the postcondition. Any involved processor
will do.

In any case, processor px gets the guarantee that the postcondition will be
satisfied eventually. More precisely, it will be satisfied when the execution of the
features called within f terminated. The last set of feature requests on any post-
condition target will be the ones coming from the postcondition evaluation. Thus

SCOOP 57

the postcondition gets evaluated at the right time just after all the feature called
within f have terminated. Further feature request on the postcondition targets,
issued after the execution of f , will only be applied after the postcondition has
been evaluated. The postcondition might not hold right after the execution of f ;
but it will will hold when it becomes relevant, just before other feature request
can be issued on the postcondition targets.

A postcondition evaluation can result in a violated postcondition. Such a state
will trigger an exception in the supplier processor.

Result returning. We consider a situation where f returns an expanded ob-
ject. The copy semantics of expanded objects could mislead to return a shallow
copy from px to pc. This is not a good idea. If the result object on px has an
attached non-separate entity then the copied object on pc has a non-separate
entity to which a separate object on px is attached. We would have introduced a
traitor. We introduce the import operation as defined in definition 20 to return
an expanded object without this issue.

Definition 20 (Import operation). The import operation executed by a pro-
cessor p and applied to an object o on a different processor q involves the following
sequence of actions:

1. Make a copy of o called o′.
2. Make a copy of all the non-copied objects that are reachable from o through

non-separate references.
3. For every non-separate once function f of every copied object the following

actions must be done:
(a) If f is fresh on p and non-fresh on q then f must be marked as non-fresh

on p and the value of f on q must be used as the value of f on p.
(b) If f is fresh on p and fresh on q then f remains fresh on p.
(c) If f is non-fresh on p then f remains non-fresh on p and the result of f

on p remains the same.
4. For every once procedure f of every copied object the following actions must

be done:
(a) If f is fresh on p and non-fresh on q then f must be marked as non-fresh

on p.
(b) If f is non-fresh on p then f remains non-fresh on p.

5. Rewire the copied object structure in such a way that it mirrors the original
object structure. Separate entities do not need to be altered in the copied
object structure as they can still point to the original separate objects.

6. Put the copied object structure on p.

Objects reachable through separate references do not need to be copied as their
entities are already equipped with the right type with respect to p. Once func-
tions with a non-separate result type complicate the import operation a bit. As
it will be formulated later in definition 37, such a function f must be evaluated

58 B. Morandi, S.S. Bauer, and B. Meyer

at most once on a given processor p and all the objects on p with f must share
the result. We need to be careful in a situation where we import an object with
a function f that has already been evaluated on processor q and on processor
p. We cannot have two different values for the same once function on the same
processor. Definition 20 takes care of issues of this kind. Similarly, it takes care
of once procedures; they have a once per processor semantics as well. The termi-
nology on freshness has been taken from section 8.23.20 of the ECMA standard
[4]. A once routine is called fresh on a particular processor if and only if it has
never been executed on any object handled by this processor. Otherwise the once
routine is called non-fresh.

Example 3 (Import operation). Figure 1 shows the objects o, a, b and c forming
an object structure. The objects o and a are on the same processor. The objects
b and c are on separate processors. The result of the import operation applied
to the object o by a processor p different than the handler of o is shown in the
lower half of figure 1. Objects o results in a copied object o′ on p. Because object
a is non-separate with respect to o, processor p receives a copied object a′ as
well. The objects b and c do not need to be copied. They can be shared by both
object structures as they were separate.

Fig. 1. Import operation example object diagram

The import operation computes the non-separate version of an object structure.
It potentially results in a copied object structure that contains both copied and
original objects. This can be an issue in case one of the copied objects has an
invariant over the identities of objects as example 4 shows.

Example 4 (Invariant violation as a result of the import operation). Imagine
two objects x and y on one processor and another object z on another processor.
Object x has a separate reference a to z and a non-separate reference b to y.

SCOOP 59

Object z has a separate reference c to y. Object x has an invariant with a query
a.c = b. An import operation on x executed by a third processor will result in
two new objects x′ and y′ on the third processor. The reference a of object x′ will
point to the original z. The reference b of object x′ will point to the new object
y′. Now object x′ is inconsistent, because a.c and b identify different objects,
namely y and y′.

The deep import operation is a variant of the import operation that does not mix
the copied and the original objects. The drawback of the deep import operation
is the increased overhead.

Definition 21 (Deep import operation). The deep import operation exe-
cuted by a processor p and applied to an object o on a different processor involves
the following sequence of actions:

1. Make a copy of o called o′.
2. Make a copy ons′ of all the non-copied objects that are reachable from o

through non-separate references.
3. Make a copy os′ of all the non-copied objects that are reachable from o through

separate references.
4. For every non-separate once function f of every copied object the following

actions must be done:
(a) If f is fresh on p and non-fresh on q then f must be marked as non-fresh

on p and the value of f on q must be used as the value of f on p.
(b) If f is fresh on p and fresh on q then f remains fresh on p.
(c) If f is non-fresh on p then f remains non-fresh on p and the result of f

on p remains the same.
5. For every once procedure f of every copied object the following actions must

be done:
(a) If f is fresh on p and non-fresh on q then f must be marked as non-fresh

on p.
(b) If f is non-fresh on p then f remains non-fresh on p.

6. Rewire the copied object structure in such a way that it mirrors the original
object structure.

7. Put the copied object o′ and the non-separate copied object structure ons′ on
p.

8. Put each copied object in the separate copied object structure os′ on the pro-
cessor of the respective original object.

Example 5 (Deep import operation). Figure 2 shows the objects o, a, b and c
forming an object structure. The objects o and a are on the same processor.
The objects b and c are on separate processors. The result of the deep import
operation applied on the object o by a processor p different than the handler of
o is shown on the lower half of the figure. All the objects involved in the object
structure got copied.

60 B. Morandi, S.S. Bauer, and B. Meyer

Fig. 2. Deep import operation example object diagram

Lock releasing. After the execution of f , processor px does not require the
request queue locks anymore. At this point the request queue locks might still
contain feature requests from px. However, there are no more new feature re-
quest because the execution of f is over. Therefore px can release the locks. For
this, processor px does not wait until all the features requests triggered in the
execution of f finished. Instead, it appends an unlock operation to each locked
request queue. As a result, different request queues may become unlocked at
different times after they are done with all the feature requests. Next to an in-
crease in parallelism, asynchronous unlocking permits safe realization of certain
synchronization scenarios that would lead to deadlocks otherwise.

5.2 Feature Call

So far we studied the context in which a feature call can occur. A feature call
results in the generation of feature request by the client processor on a potentially
different supplier processor. The feature request gets executed eventually by the
supplier processor. Note the change of roles. A supplier processor becomes a
client processor when the supplier processor makes a call.

The calling processor has a number of locks to ensure exclusive access. The
client processor might be in possession of some locks that are necessary in the
synchronization step of the resulting feature request on the supplier processor.
In such a situation, the client processor can temporarily pass its locks to the
supplier processor. This step is called lock passing and it happens right after
argument passing. Once these two steps completed, the client processor can
place its feature request. If the called feature is a query then the client processor
must wait for the result. Before the feature call can be completed, the client
processor must revoke the passed locks. Definition 22 explains these steps in
more details.

Definition 22 (Feature call). A feature call x.f(a) results in the following
sequence of actions performed by the client processor pc:

SCOOP 61

1. Argument passing:
– Attach the actual arguments a to the formal arguments of f .
– Arguments of expanded type need to be imported by the supplier processor

px.
2. Lock passing:

– Full lock passing: If any controlled actual argument of a reference type
gets attached to an attached formal argument of f then pass all the cur-
rently held request queue locks and call stack locks to px.

– Call stack locks passing: In case there are no such arguments and there
is a separate callback, i.e. px already had a request queue lock on pc at
the moment of the call then pass the call stack locks to px.

3. Feature request: Ask px to apply f to x.
– Schedule f for an immediate execution by px using the call stack of px

and wait until it terminates, if any of the following conditions hold:
• The feature call is non-separate, i.e. pc = px.
• The feature call is a separate callback.

– Otherwise, schedule f to execute after the previous calls on px using the
request queue of px.

4. Wait by necessity: If f is a query then wait for its result.
5. Lock revocation: If lock passing happened then wait for f to terminate and

revoke the locks.

Lock passing, feature request, and lock revocation. Deadlock avoidance
is the motivation behind lock passing. Without lock passing, it is very easy to
get into a deadlock. Suppose that processor px needs a particular lock in the
application of feature f . If this lock is in possession of processor pc then px

cannot proceed until pc releases this lock. If f happens to be a query then pc has
to wait for the result of f while pc is holding on to the lock. According to the
conditions given by Coffman et al [3] a deadlock occurred. If the client processor
pc could temporarily pass on the lock to px then px would be able to apply the
requested feature, return the result, and let pc continue. We call this solution
full lock passing.

Full lock passing includes passing the request queue locks and the call stack
locks. It happens if any controlled actual argument of a reference type gets
attached to an attached formal argument of f . An attached formal argument
means that the request queue will be locked in the synchronization step of f ’s
application. A controlled actual argument means that pc has a request queue lock
on the handler of the actual argument. In short, pc has a lock required by px.
Full lock passing is only relevant for arguments of a reference type. Arguments
of expanded type will be copied using the import operation during argument
passing.

If full lock passing happens then pc passes all its locks to px and not only
the locks that triggered the lock passing mechanism. This generous behavior
eliminates more potential deadlocks compared to a solution where only a subset

62 B. Morandi, S.S. Bauer, and B. Meyer

of the locks gets passed. As soon as at least one lock gets passed, processor
pc cannot proceed until it can revoke the locks after the feature f terminated.
Otherwise the atomicity guarantees expressed by proposition 2 could be violated
due to two processor who could potentially be working on the same set of objects.
As pc has to wait in any case that involves lock passing, it does not hurt to pass
all the locks and not just a subset.

A feature call results in a feature request. The client processor pc generates a
feature request to be handled by the supplier processor px. The feature request
could either go to the end of the request queue or on top of the call stack of
processor px. If the two processors are the same then the call is non-separate
and f must be applied immediately. This is the sequential case. The request
queue is irrelevant for this and only the call stack is involved. There is another,
more special case, where feature f must be applied immediately. A separate
callback occurs when the supplier processor px already held a lock on the client
processor pc at the moment of the feature call to f . This can happen in the
following situation: We assume px initiated a chain of feature calls involving
full lock passing. At the end of this chain processor pc executes the feature
call x.f(a). Processor px is responsible for the application of this call. At this
point processor px is waiting until its feature call terminates to revoke the locks.
We assume the feature call f involves lock passing as well. In this situation pc

will wait for the feature call f to terminate. If the feature call f gets added
to the end of the request queue of px then the system ends up in a deadlock.
Processor pc would be waiting for processor px to finish the feature application
x.f(a). But processor px would never get to this point because it would still
be waiting for its locks to come back. Immediate execution is the way out of
this. The feature f must be applied immediately using the call stack of px. At
the moment of a separate callback the processor pc is in possession of the call
stack lock on px, because px passed its locks. However, px will require this lock
during its own execution. Therefore pc must temporarily pass back its call stack
locks to px and wait for the locks to return. Again, it does not hurt to pass
back all call stack locks instead of just one. In the remaining case the call is a
normal separate call. The feature request gets added to the end of the request
queue of processor px. The processor loop described in definition 3 will put the
feature request on top of the call stack as soon as all previous feature requests
terminated.

Note that it is not possible to lock a request queue of a processor p that is
not in possession of its own call stack lock. We assume p is not in possession
of its own call stack lock. This is only possible if p passed its locks in a feature
call. This means that p is currently applying a feature and waiting for the locks
to return. While p is applying a feature, its request queue is locked. Therefore
it is not possible to lock the request queue of p. If a processor q has a request
queue lock on p then there are two options. Processor q could have acquired the
request queue lock in the synchronization step and therefore p is in possession

SCOOP 63

of its call stack lock. The request queue lock on p could also have been passed to
q. This means that some processor must have acquired the request queue lock
on p. The only way how p could have lost its call stack lock is a chain of lock
passing operation where processor p is involved. In this case p would have passed
on its call stack lock to processor q.

Wait by necessity. Next to lock passing, there is another situation where pc

has to wait for px to finish its feature application of f . If f is a query then the
subsequent statements after the call to f potentially depend on the result of the
query. Thus processor pc needs to wait for the query to terminate before it can
proceed. This scheme is called wait by necessity.

5.3 Lock Revocation

After the feature f terminated, the locks of px and pc must be restored to the
state before lock passing happened.

Valid assumptions after a feature call. Processor pc can be assured that
every future feature call on a target mentioned in the postcondition of f will be
applied after all the feature requests resulting from the application of f . This
includes the feature requests resulting from a postcondition evaluation. This is
ensured by the synchronization step in the application of f .

Example 6 (Feature calls and feature applications). Consider the feature sell book
in listing 1.5.

Listing 1.5. seller class

class SELLER feature
2 sell book (a book: separate BOOK; a buyer: separate BUYER; a valuer:

separate VALUER)
−− Sell ’a book’ to ’a buyer’ after asking ’a valuer’ for the price.

4 local
l estimated price: INTEGER

6 do
a book.clean

8 l estimated price := a valuer.estimate (a book)
a buyer.buy (a book, l estimated price)

10 end
end

12
class VALUER feature

14 estimate (a book: separate BOOK): INTEGER
−− The estimated price of ’a book’.

16 do
Result := f (a book.initial price)

64 B. Morandi, S.S. Bauer, and B. Meyer

18 end
end

We use the following notation to describe a processor p with a request queue rq,
request queue locks rql, and call stack locks csl: p :: rq, rql, csl. We start from
a point where the request queue of the current processor pc contains the feature
sell book.

pc :: (Current.sell book (a book, a buyer, a valuer)), (), (pc)
pbook :: (), (), (pbook)
pvaluer :: (), (), (pvaluer)

As a first step, pc removes the feature sell book from its request queue and puts
it on its call stack as described in definition 3. Next pc starts with the feature
application according to definition 17. As there is no precondition, processor pc

asks the scheduler to get the request queue locks on the handlers pbook , pbuyer ,
and pvaluer . We assume that each of these handlers are different from each other.
Eventually these locks are available and pc can execute the body of sell book.
Note that sell book is now on the call stack and not in the request queue anymore.

pc :: (), (pbook , pbuyer , pvaluer), (pc)
pbook :: (), (), (pbook)
pvaluer :: (), (), (pvaluer)

The body has three feature calls. Their semantics is described in definition 22.
The treatment of a book.clean is easy. There are no arguments to be passed. The
feature request step results in the following situation:

pc :: (), (pbook , pbuyer , pvaluer), (pc)
pbook :: (a book.clean), (), (pbook)
pvaluer :: (), (), (pvaluer)

The remaining two steps of a feature call do not apply here. The treatment of
a valuer.estimate (a book) is more complex as it involves lock passing. According
to definition 18 the expression a book is controlled in the feature sell book. The
expression is used as an actual argument of reference type in the call. The cor-
responding formal argument is attached. We just encountered a situation where
the caller has a request queue lock which is necessary in the execution of the
supplier. Lock passing and the addition of a feature request result in the follow-
ing situation:

pc :: (), (), ()
pbook :: (a book.clean), (), (pbook)
pvaluer :: (a valuer.estimate (a book)), (pbook , pbuyer , pvaluer), (pvaluer , pc)

SCOOP 65

Note that the call stack lock of pc gets passed to give pvaluer a chance to handle
a separate callback. In the current example we do not make use of this. At this
point processor pc has to wait until the locks can be revoked. While pc is waiting,
processors pbook and pvaluer proceed in parallel. They can dequeue a feature from
the beginning of their request queues, put it on their call stacks, and apply the
features.

pc :: (), (), ()
pbook :: (), (), (pbook)
pvaluer :: (), (pbook , pbuyer , pvaluer), (pvaluer , pc)

At this point pc can retrieve the result, revoke the locks and do the assign-
ment.

pc :: (), (pbook , pbuyer , pvaluer), (pc)
pbook :: (), (), (pbook)
pvaluer :: (), (), (pvaluer)

The last instruction a buyer.buy (a book, l estimated price) triggers another pass-
ing of locks. Here, processor pc will have to wait due to the passed locks, even
though the instruction itself does not impose wait by necessity. Last but not least,
pc will add unlock operations to the end of the request queues of pbook , pbuyer , and
pvaluer .

6 Object Creation

Constructing objects is more complicated in SCOOP than in Eiffel because an
object needs to be created on a processor. Definition 23 refines the definitions
in section 8.20 of the Eiffel ECMA standard [4].

Definition 23 (Object creation). A creation call x.cp(a) on the target x of
type (d, p, C) and with the creation procedure cp results in the following sequence
of actions performed by the client processor pc:

1. Processor creation
– If x is separate, i.e. p = �, then create a new processor px.
– If x has an explicit processor specification, i.e. p = α, then

• if the processor denoted by p already exists then take px = pp.
• if the processor denoted by p does not exist yet then create a new

processor px.
– If x is non-separate, i.e. p = •, then take px = pc.

2. Locking: If px �= pc and pc does not have a request queue lock on px yet then
lock the request queue of px.

3. Object creation: Ask px to create a fresh instance of C using the creation
procedure cp. Attach the newly created object to x.

66 B. Morandi, S.S. Bauer, and B. Meyer

4. Lock releasing: Add an unlock operation to the request queue of px if a lock
has been obtained earlier.

The type of an entity specifies the locality of the attached object. When an entity
is used as the target of a creation routine then the new object must be handled
by a compatible processor. In some cases such a processor might already exist
in other cases a compatible processor must be created. If p = • then the new
object must be created on the current processor. If p = � then any processor
could be taken. To exploit parallelism, a new processor gets created. An explicit
processor specification specifies a particular processor. If the explicit processor
specification is qualified then the specified processor exist already because there
is an attached entity whose object is handled by this processor. For an unqualified
explicit processor specification it might be necessary to create a new processor
if this did not happen already.

After the new object got created there needs to be a call to the creation
routine. This call is handled like a feature call as described in definition 22. If
the call to the creation routine is separate and pc does not have the request
queue lock on px then it is necessary to acquire a request queue lock on px

before the call. The lock must be released after the call. The new object gets
attached to the entity x as soon as the object is created but without waiting for
the creation procedure to be applied. This means that x points to a potentially
inconsistent object until the creation procedure terminates. However, this is not
harmful because new feature requests will be added after the feature request for
the creation routine.

Example 7 (Object creation). Feature initialize in listing 1.6 shows four creation
instructions for four different books. In this example we will go through this list
and explain what will happen at runtime.

Listing 1.6. book collection class

class BOOK COLLECTION feature
2 hamlet: HAMLET −− Hamlet.

robinson: separate ROBINSON −− Robinson.
4 cinderella: separate <p> CINDERELLA − Cinderella.

tarzan: separate <p> TARZAN −− Tarzan.
6

p: PROCESSOR
8

initialize
10 −− Initialize this book collection.

do
12 create hamlet

create robinson
14 create cinderella

create tarzan
16 end

SCOOP 67

end
18

class HAMLET inherit BOOK end
20 class ROBINSON inherit BOOK end

class CINDERELLA inherit BOOK end
22 class TARZAN inherit BOOK end

The first instruction creates a book and stores it in hamlet. The type of this
entity is non-separate. Thus Hamlet will be created on the current processor.
The second instruction creates the book called Robinson. The type of the entity
is separate and thus a new processor must be created and used as the handler
of the new book. The third instruction creates another classic called Cinderella.
The type separate <p> CINDERELLA has an unqualified explicit processor
specification. We assume that the specified processor has not been created before.
Under this assumption, the processor must be created and used as the handler
of the new book. In the last instruction the book called Tarzan gets created. The
type of the target separate <p> TARZAN has an unqualified explicit processor
specification that specifies the same processor as the entity cinderella. Based on
the previous instruction it is clear that this processor already exists. Thus there
is no need to create a new processor. The books Cinderella and Tarzan are
handled by the same processor.

7 Contracts

Design by Contract [8] introduces a new paradigm in object-oriented program-
ming. The use of contracts imposes a crucial reduction of complexities in object-
oriented development, in particular when it comes to correctness reasoning. By
enriching class interfaces with contracts each class implementation can be veri-
fied and proven correct separately. Contracts typically consist of preconditions
and postconditions for features and invariants on a class level. These contracts
result in mutual obligations of clients and suppliers. In the context of classes
enriched with contracts, the principle called separation of concerns gains in im-
portance because the client can rely on the interface of the supplier without the
need to know its implementation details. Eiffel supports contracts in the form of
assertions being checked at runtime. Sections 7.5 and 8.9 from the Eiffel standard
[4] provide more details on contracts in Eiffel.

Unfortunately the traditional interpretation of contracts breaks down in the
context of concurrency. In concurrent programs a client calling a feature of
a class generally cannot establish the precondition of the feature any more.
The reason is that in general feature calls are asynchronous and the point in
time of the feature call and the moment of the actual execution of the fea-
ture body do not coincide, as it is the case in a sequential program. Thus
the objects involved in the precondition may be changed in between by fea-
ture calls from other clients. This results in the situation where the precon-
dition that was satisfied at the moment of the call is violated at the moment

68 B. Morandi, S.S. Bauer, and B. Meyer

of execution. Similarly, postconditions cannot be interpreted as full guarantees
any more.

SCOOP introduces a new approach to a uniform and clear semantics of con-
tracts in a concurrent context. Thus SCOOP generalizes the principles of Design
by Contract, and additionally fosters the use of modular proof techniques. The
advantage of the proposed semantics of contracts is that it applies equally well
in concurrent and sequential contexts. Following the idea of Eiffel, contracts in
SCOOP are formulated as assertions directly written into the code and evalu-
ated during runtime. If an assertion is evaluated and it is not satisfied, then an
exception is raised. For preconditions this rule must be carefully revisited due to
the observation made above that it may happen that a caller (from a different
handler than the target object’s handler) cannot be held responsible for estab-
lishing the whole assertion of the feature. These considerations result in a refined
rule saying that a violated precondition clause that is not under the control of
the caller does not lead to an exception - instead the feature call is queued for a
later application. Similarly, the semantics of postconditions are adapted to the
concurrent context.

7.1 Controlled and Uncontrolled Assertion Clauses

Following the new generalized semantics of contracts proposed by [11], the han-
dling of a feature call strongly depends on the controllability of the involved
assertion clauses. The notion of controlled and uncontrolled assertion clauses
introduced in the following essentially captures the idea of controlled expres-
sions (definition 18): An assertion clause is called controlled with respect to
the current context if all involved objects are under the control and cannot be
modified by other processors. Otherwise the assertion clause is called uncon-
trolled.

Definition 24 (Controlled assertion clause). For a client performing the
call x.f(a) in the context of a routine r, a precondition clause or a postcondi-
tion clause of f is controlled if and only if, after the substitution of the actual
arguments a for the formal arguments, it only involves calls on entities that are
controlled in the context of r. Otherwise, it is uncontrolled.

Example 8 (Controlled and uncontrolled precondition clauses). We illustrate the
difference between controlled and uncontrolled precondition clauses by the
example shown in listing 1.7.

Listing 1.7. cleaner class

class CLEANER feature
2 manual: BOOK −− The cleaning manual.

4 clean (a book: separate BOOK)
−− Clean ’a book’.

6 require

SCOOP 69

a book is not clean: not a book.is clean
8 do

a book.clean
10 end

end
12

class CLEAN BOOK COLLECTION inherit BOOK COLLECTION
feature

14 clean all (a cleaner: separate CLEANER; a extra book: separate BOOK
)
−− Clean all available books.

16 require
...

18 do
−− Clean all books in the collection.

20 a cleaner.clean (robinson) −− a book is not clean uncontrolled
a cleaner.clean (hamlet) −− a book is not clean controlled

22 ...
−− Clean additional books.

24 a cleaner.clean (a extra book) −− a book is not clean controlled
a cleaner.clean (a cleaner.manual) −− a book is not clean controlled

26 end
end

We consider a client calling the feature clean all. In the body of clean all, the
precondition a book is not clean of the feature call a cleaner.clean (robinson) is
uncontrolled since robinson is not controlled in the context of clean all; robinson
is declared as a potentially separate object whose processor’s request queue is
not locked in clean all. On the other hand, a book is not clean is controlled in
the three remaining calls to clean because the targets of the call to is clean in the
precondition are controlled in clean all. The expression hamlet is non-separate
hence controlled. The expression a extra book is separate but it is a formal ar-
gument of clean all. Therefore it also controlled. Finally, a cleaner.manual is
separate in the context of clean all, but it is non-separate from a cleaner and
a cleaner is controlled hence a cleaner.manual is controlled too.

Remark 1. The notion of an assertion clause originates in section 8.9 of the Eiffel
ECMA standard [4].

7.2 Semantics of Contracts

In the following we will precisely describe how contracts given by invariants,
preconditions and postconditions are interpreted during runtime of a SCOOP
program.

Semantics of preconditions. In concurrent programs the usual correctness
semantics of preconditions does not fit anymore because in general the client

70 B. Morandi, S.S. Bauer, and B. Meyer

cannot guarantee that the precondition will hold at the moment of the feature
application. This inconsistency in the standard interpretation of preconditions
in the concurrent context is called separate precondition paradox in [11]. This
suggests the wait semantics for preconditions involving separate clauses. If the
precondition is violated only due to violated uncontrolled precondition clauses,
the feature application has to be delayed until the precondition clauses holds.
On the other hand, a violated controlled precondition clause has to be blamed
on the client because no other processor than the client’s processor could have
accessed the objects occurring in a controlled precondition clause. For such a
case an exception needs to be raised in the client. Asynchronous Exceptions
raise some problems; this is discussed in section 14.

Example 9 (Precondition semantics). We consider class READING LIST in list-
ing 1.8. It used a bounded buffer to maintain books to be read.

Listing 1.8. reading list class

class READING LIST inherit BOOK COLLECTION feature
2 bestsellers: separate BUFFER[separate BOOK] −− The bestsellers.

favorites: BUFFER[separate BOOK] −− The favorites.
4

store (a book list: separate BUFFER[separate BOOK]; a book: BOOK)
6 −− Store ’a book’ in ’a book list’.

require
8 a book list is not full: not a book list.is full

a book is clean: a book.is clean
10 do

a book list.put (a book)
12 ensure

a book list is not empty: not a book list.is empty
14 end

16 get (a book list: separate BUFFER[separate BOOK]): separate BOOK
−− Remove a book from ’a book list’.

18 require
a book list is not empty: not a book list.is empty

20 do
Result := a book list.get

22 end

24 add hamlet to all (a extra book list: separate BUFFER[separate BOOK])
−− Add Hamlet to all book lists including ’a extra book list’.

26 require
...

28 do
store (a extra book list, hamlet)

30 store (bestsellers, hamlet)

SCOOP 71

store (favorites, hamlet)
32 end

end

The feature store has as formal arguments a book list and a book; when ap-
plied it puts the book into the book list. The precondition of that feature requires
that the book list is not full and moreover, that the book is clean. The latter
is always a correctness condition since waiting is meaningless if the book is not
clean. However, the semantics of the former precondition depends on the local-
ity of the actual arguments. This is illustrated by the feature add hamlet to all,
where there are three feature calls to store. For the first call the precondition
a book list is not full is a correctness condition since a extra book list is con-
trolled and hence the precondition clause is controlled. For the second call the
precondition is a waiting condition since bestsellers is uncontrolled. Finally, for
the third call the precondition is a correctness condition since favorites is a non-
separate attribute of the class and hence a book list is not full is controlled as
well.

Definition 25 (Precondition semantics). A precondition expresses the nec-
essary requirements for a correct application of the feature. The execution of the
feature’s body is delayed until the uncontrolled precondition clauses are satisfied.
A violated controlled precondition clause immediately marks the precondition as
violated.

The generalized semantics proposed in [11,12] comprises both interpretations of
precondition clauses. As seen in the example, they can be correctness conditions
or wait conditions. Correctness conditions only apply to those clauses that are
controlled by the client: the client can ensure that the precondition clause hold
at the moment of the feature application. The uncontrolled precondition clauses
cannot be established by the client, i.e., the client cannot take the responsibility
for satisfying them at the moment of the feature application. For this reason
wait semantics are applied in this case. Note that waiting always happens at the
supplier side. Wait conditions can be used to synchronize processors with each
other. A supplier processor only proceeds when the wait condition is established.

Semantics of postconditions. Similar to the previously mentioned separate
precondition paradox, we can constitute a separate postcondition paradox for
postconditions. On return from a separate call, the client cannot be sure that
the postcondition still holds. After the termination of the call and before re-
turning from the call another object may have modified the state of an object
occurring in an uncontrolled postcondition clause. However, the client knows
that the postcondition was fulfilled on termination of the call. Thus after re-
turning from the call the client can only assume the controlled postcondition
clauses since no other client can invalidate these. The interpretation of postcon-
ditions is symmetric to the treatment of preconditions. Controlled postcondition
clauses are a guarantee given to the client and an obligation on the supplier.

72 B. Morandi, S.S. Bauer, and B. Meyer

In order to avoid blocking semantics of postconditions and to increase
parallelism, postconditions are evaluated individually and asynchronously by
the object’s handler. This means that the client can continue its own activ-
ity after returning from a feature call without waiting for the evaluation of a
postcondition. The client gets the guarantee that the postcondition will hold
eventually.

Example 10 (Postcondition semantics). Listing 1.9 shows a testable version of
class READING LIST.

Listing 1.9. reading list test class

class TESTABLE READING LIST inherit READING LIST feature
2 test (a extra book list: separate BUFFER[separate BOOK])

−− Run a test on all book lists including ’a extra book list’.
4 require

...
6 local

l book: separate BOOK
8 do

store (a extra book list, hamlet)
10 store (bestsellers, hamlet)

store (favorites, hamlet)
12

l book := get (a extra book list)
14 l book := get (bestsellers)

l book := get (favorites)
16 end

end

The feature call store (a extra book list, hamlet) in feature test has a controlled
postcondition. The postcondition involves an asynchronous call to the separate
entity a extra book list. However, the postcondition can be assumed immediately,
because it will hold eventually. The second (again asynchronous) call store (
bestsellers, hamlet) ensures the uncontrolled postcondition. The caller gets the
guarantee that the postcondition holds after termination but the postcondition
cannot be assumed at a later point in time since the current processor does
not have a request queue lock on bestsellers. For the call get (a extra book list),
the precondition is controlled, hence it is a correctness condition and it holds
since the postcondition of store (a extra book list, hamlet) can be assumed. For
the second call get (bestsellers), the precondition is uncontrolled, hence it is a
waiting condition. The postcondition of store (bestsellers, hamlet) can be as-
sumed to hold on termination of that feature, but not at the time of the call
get (bestsellers).

SCOOP 73

Definition 26 (Postcondition semantics). A postcondition describes the re-
sult of a feature’s application. Postconditions are evaluated asynchronously; wait
by necessity (i.e. the need to wait for a result of the feature application) does not
apply. Postcondition clauses that do not involve calls on objects handled by the
same processors are evaluated independently.

A violation of a postcondition clause raises an exception in the processor that
has evaluated this clause.

Semantics of invariants. Invariants express class level consistency conditions
on objects that must be satisfied in every observable state (see sections 7.5 and
8.9.16 of the ECMA standard [4]). This means that invariants must be satisfied
before and after every generally or selectively exported routine that is not used
as a creation procedure. In case of a routine used as a creation procedure the
invariant must be satisfied after the execution. On the evaluation side invariants
get evaluated on both start and termination of a qualified call to a routine
that is not used as a creation procedure. It is also evaluated after every call
to a creation procedure (see 8.9.26 of the ECMA standard [4]). Invariants are
allowed to have non-separate calls only - separate calls are prohibited. This is a
direct consequence of the target validity rule 19. Therefore they can be evaluated
without the acquisition of further locks. Note that a feature used in an invariant
can have separate formal arguments.

Semantics of loop assertions and check instructions. There are further
types of assertions namely loop variants, loop invariants, and check instructions.
Similar to the semantics of postconditions they are evaluated asynchronously,
hence wait by necessity does not apply here. Because the assertions cannot be
split up in individual clauses (see remark above) the assertion is evaluated at
once. Formal reasoning is again not affected since they can (like postconditions)
be assumed immediately. Notice that all such assertions are controlled since all
call targets must be controlled. If a loop assertion or a check fails, an exception
is raised in the supplier.

7.3 Proof Rule

The new generalized semantics of contracts in a concurrent context suggest the
following mutual obligations between clients and suppliers. The supplier may
assume all the controlled and uncontrolled precondition clauses and must en-
sure - after the execution of the routine’s body - all controlled and uncontrolled
postcondition clauses. These obligations are exactly the same as in a sequen-
tial context, thus from the contract point of view, the same implementation is
suitable for both sequential and concurrent contexts. However, in the concur-
rent context the obligations and the guarantees of the client differ. The client
must establish all controlled precondition clauses. The uncontrolled precondi-
tion clauses will possibly delay the execution of the feature due to the wait
semantics, but nevertheless they will hold when the execution of the feature’s

74 B. Morandi, S.S. Bauer, and B. Meyer

body takes place. Conversely, the client can only assume the controlled post-
condition clauses, because - even though the supplier must establish all post-
condition clauses - in the meantime uncontrolled objects involved in an un-
controlled postcondition clause may have changed. Hence the client has fewer
obligations but it gets fewer guarantees. This is expressed in the following proof
rule.

{INV ∧ Prer}bodyr{INV ∧ Post r}
{Prectr

r [a/f]}x.r(a){Postctrr [a/f]} (1)

Prectr
r [a/f] denotes the controlled clauses of the precondition of the routine

r with the formal arguments f substituted simultaneously by a, similarly for
Postctr

r [a/f]. With this proof rule we can prove partial correctness of routines.
Given that under the assumption INV ∧ Prer the executing of bodyr results
in a state where INV ∧ Postr holds, we can deduce that in a given context
the call x.r(a) in a state where Prectr

r [a/f] is satisfied leads to a state where
Postctrr [a/f] holds. This proof rule is parametrized by the context. The re-
sulting precondition and postcondition clauses depend on the context, which
is expressed in the conclusion by adding ctr to the precondition and
postcondition.

With the new proof rule we cannot prove total correctness, what we can prove
however is partial correctness. Uncontrolled preconditions and postconditions
can lead to deadlocks and infinite waiting on non-satisfied preconditions. In
its current state the programming model of SCOOP cannot rule out deadlocks
completely. However, the likelihood of a deadlock is decreased significantly by in-
troducing selective locking and lock passing. See the outlook section 14 for future
work and work that has been done to improve that fact. As pointed out in [11],
a fully modular proof system for SCOOP would require much more expressive
contracts.

The new proof rule looks very similar to the sequential Hoare rule [6]. The
difference between the Hoare rule and the new proof rule resides in the con-
clusion. The new proof rule limits the assertion clauses to controlled assertion
clauses. There is however a case where the Hoare rule becomes a special case
of the new proof rule. In a sequential program every assertion clause that in-
volves only attached entities is controlled. Therefore if all assertion clauses only
involve attached entities then every assertion clause becomes controlled, i.e.
Prer[a/f] = Prectr

r [a/f] and Postr[a/f] = Postctrr [a/f].

8 Type Combiners

An entity e declared as non-separate is seen as such by the current object o.
However, separate clients of o should see e as separate because from their point
of view the object attached to e is handled by a different processor. Following
this thought, there is a need to determine how a particular type is perceived from

SCOOP 75

the point of view of an object different than the current object. Type combiners
are the answer to this question.

8.1 Result Type Combiner

The result type combiner shown in definition 27 determines the type Te of a
query call x.f based on the type Ttarget of x and the type Tresult of f . The
result type combiner gives the result type of a query from the perspective of the
client. The type Tresult is relative to the target x and the result type combiner
determines how this type should be seen by the client.

Definition 27 (Result type combiner). ∗ : Type × Type �→ Type

(d1, p1, C1) ∗ (d2, p2, C2) =

⎧
⎨

⎩

(!, •, C2) if isExpanded(C2)
(d2, p1, C2) if ¬isExpanded(C2) ∧ p2 = •
(d2,�, C2) otherwise

The result type combiner is a function of two arguments. The first argument is
the type of the target Ttarget and the second argument is the type of the result
Tresult .

The first case handles the situation where the result class type is expanded.
Results of expanded types are passed back to the client using the import opera-
tion described in definition 20. Doing so the result becomes non-separate from the
perspective of the client. Thus the result type combiner yields non-separateness
as the combined type. The result stays expanded and thus the combined type
must be attached. The remaining cases handle the situations where the class of
the return type is not expanded.

If the result type is non-separate with respect to the target, i.e. p2 = •,
then we conclude that the result must be handled by the same processor as the
target. Therefore the combined type has the processor tag of the target type.
This situation is handled by the second case.

If the result type is separate with respect to the target, i.e. p2 = �, then
the result can be considered separate from the point of view of the client. This
works because p = � means potentially separate. Thus the combined type can
be separate as well. This is reflected in case number three.

If the result type explicitly denotes a processor, i.e. p2 = α, then one could
think that the processor tag of the combined type must be p2 because it is an
exact specification of a processor. This is not true. The explicit processor tag p2
only makes sense in the context of class C2 for the target x. A processor tag is
not a global identification. However, the client can conclude that the result will
be potentially separate. This is shown in the third case.

Example 11 (Basic usage of the result type combiner). In combination with
genericity the result type combiner can get complicated. Consider listing 1.10.

76 B. Morandi, S.S. Bauer, and B. Meyer

Listing 1.10. simple library class

class LIST[G −> separate ANY] feature
2 last: G

−− The last element of the list.
4

put (a element: G)
6 −− Add ’a element’ to the list.

do
8 ...

end
10 end

12 class SIMPLE LIBRARY feature
books: LIST[separate BOOK] −− The books.

14 end

The class SIMPLE LIBRARY declares a feature books of type LIST[separate
BOOK]. The actual generic parameter separate BOOK is relative to the ob-

ject attached to books. The result type combiner determines the type of books.last
from the perspective of the library. The type of the target books is
(!, •,LIST [(!,�,BOOK)]). The result type of last is (!,�,BOOK). As a result
one gets (!, •,LIST [(!,�,BOOK)]) ∗ (!,�,BOOK) = (!,�,BOOK).

Example 12 (Iterative usage of the result type combiner). The result type com-
biner can be applied iteratively to multi-dot expressions. Consider listing 1.11.

Listing 1.11. stacked library class

class STACK[G] feature
2 top: G −− The top element.
end

4
class STACKED LIBRARY feature

6 books: LIST[STACK[separate BOOK]] −− The books.
end

The class STACKED LIBRARY defines a feature books of type LIST[STACK
[separate BOOK]]. In this example we will determine the combined type of
books.last.top from the perspective of an instance of STACKED LIBRARY. The
result type combiner must be applied from left to right because the targets are
determined from left to right. The target type of books together with the result
type of last result in the first combined type. This first combined type is the
target type for the call to top. This target type and the result type of top result
in the final combined type.

SCOOP 77

(!, •,LIST [B]) ∗
B

︷ ︸︸ ︷
(!, •,STACK [A]) ∗

A
︷ ︸︸ ︷
(!,�,BOOK) =

(!, •,STACK [A]) ∗
A

︷ ︸︸ ︷
(!,�,BOOK) = (!,�,BOOK)

8.2 Argument Type Combiner

The argument type combiner determines the admissible type Tactual of an actual
argument a in a call x.f(a). It is based on the target type Ttarget and the type
Tformal of the formal argument. In other words the argument type combiner
determines how the client perceives the type of an argument.

Definition 28 (Argument type combiner). ⊗ : Type × Type �→ Type

(d1, p1, C1)⊗(d2, p2, C2) =

⎧
⎪⎪⎨

⎪⎪⎩

(!, •, C2) if isExpanded(C2)
(d2, p1, C2) if ¬isExpanded(C2) ∧ p1 �= � ∧ p2 = •
(d2,�, C2) if ¬isExpanded(C2) ∧ p2 = �
(d2,⊥, C2) otherwise

The argument type combiner is a function of two arguments. The first argument
Ttarget is the type of the target and the second argument Tformal is the type of
the formal argument.

The first case handles formal arguments of expanded type. Actual arguments
of expanded types are passed to the supplier using the import operation de-
scribed in definition 20. Doing so, the actual argument becomes non-separate
from the perspective of the supplier. The client can assume the argument is non-
separate. Therefore the argument type combiner yields non-separateness as the
combined type. The actual argument is expanded and thus the combined type
needs to be attached. The remaining cases handle the situations where the class
of the actual argument type is not expanded.

If the formal argument type is non-separate with respect to the target, i.e.
p2 = •, then we know that the actual argument must be handled by the same
processor as the target. This processor is specified by the target type. If the
target type is separate, i.e. p1 = �, then there is no chance of knowing which
processor it is. In the remaining cases we know with certainty which processor to
use for the actual argument: when the target type explicitly denotes a processor,
i.e. p1 = α, when the target type is non-separate, i.e. p1 = •, or when p1 = ⊥.
The situation where p1 = ⊥ cannot occur because this processor tag is only used
to type the void reference. In conclusion, we can only know which processor is
expected if p1 �= �. If this condition is satisfied then the combined type can have
the processor tag of the target type. This scenario is described in the second case.

If the formal argument type is separate relative to the target, i.e. p2 = �
then the client can provide an actual argument on any processor. Therefore the
actual argument can be considered as potentially separate from the perspective
of the client. This scenario is handled by the third case.

78 B. Morandi, S.S. Bauer, and B. Meyer

If the formal argument type explicitly names a processor, i.e. p2 = α, then one
could think that the processor tag of the combined type must be the processor
tag of the formal argument type because we can exactly determine the processor
of the actual argument. This is not true. The processor tag is not a global
identification. It only makes sense in the context of class C2 for the target x. In
this situation we know that f is expecting an actual argument on a particular
processor, but we do not know which one. Therefore this situation is illegal. This
is indicated in the forth case where the processor tag of the combined type is
set to ⊥. The forth case also handles the situation where the formal argument
is non-separate with respect to the target, i.e. p2 = • but the target type is
separate, i.e. p1 = �. As explained earlier this situation is illegal as well.

9 Type Conformance

In this section we will refine the existing type conformance rules described in
sections 8.14.6 and 8.14.8 of the Eiffel ECMA standard [4] for the new type
system to ensure soundness. We define the conformance of one type to another
type over the conformance of the type components. Definition 29 states this
more clearly. We use the symbol
 for class type conformance and we use the
symbol � for type conformance. The typing environment Γ contains the class
hierarchy of the program enriched with ANY and NONE along with the type
declaration for all features, local variables, and formal arguments as defined by
Nienaltowski [11].

Definition 29 (Type conformance)

Γ � E1
 E2
Γ � ∀j ∈ {1, . . . , m}, (dt, pt, Ct) = relatedActualGenericParameter (bj) : (
(dt, pt, Ct) � (dbj , pbj , Cbj)∧
((dt = dbj = ?) ∨ (dt = dbj ∧ pt = pbj ∧ Ct = Cbj))

)
Γ � E1[a1, . . . , an]
 E2[b1, . . . , bm = (dbm , pbm , Cbm)]

(2)

The related actual generic parameter of an actual generic parameter bj is the
actual generic parameter ai whose formal generic parameter is used in the in-
heritance declaration of E1 as an actual generic parameter for the formal generic
parameter of bj, provided such an ai exists. Otherwise it is the actual generic
parameter for the formal generic parameter of bj as defined in the inheritance
declaration of E1 or one of its ancestors.

Γ � C1
 C2
Γ � isExpanded(C2) → (C1 = C2)

Γ � (d, p, C1) � (d, p, C2)
(3)

Γ � (d, p, C1) � (d, p, C2)
Γ � (d, p1, C1) � (d,�, C2)

Γ � (d, p, C1) � (d, p, C2)
Γ � (d,⊥, C1) � (d, p2, C2)

(4)

SCOOP 79

Γ � (d, p1, C1) � (d, p2, C2)
Γ � (!, p1, C1) � (?, p2, C2)

(5)

Example 13 (Related actual generic parameters). Listing 1.12 shows a class
ARRAY. This class inherits from class INDEXABLE.

Listing 1.12. array and indexable classes

class ARRAY[F] inherit INDEXABLE[INTEGER, F] ... end
2
class INDEXABLE[G, H] ... end

We use E1 to identify the type ARRAY[separate BOOK] and we use E2
to identify the type INDEXABLE[INTEGER, separate BOOK]. We use a1 for
the single actual generic parameter in E1 and we use b1 and b2 to denote the
first and the second actual generic parameters in E2. The goal of this example
is to find the related actual generic parameters of b1 and b2. The formal generic
parameter of a1 is F. In the inheritance declaration of class ARRAY the formal
generic parameter F is used as an actual generic parameter for the formal generic
parameter H of class INDEXABLE. As b2 belongs to H, a1 is the related actual
generic parameter of b2. For b1 there are no more actual generic parameter in E1
that could serve as the related actual generic parameter. However, class ARRAY
uses (!, •, INTEGER) as the actual generic parameter for the formal generic

parameter G of class INDEXABLE. As b1 belongs to G, (!, •, INTEGER) is the
related actual generic parameter of b1.

Equations 2 and 3 deal with class type conformance. Equation 2 deals with
generically derived class types and equation 3 handles class types that are not
generically derived. In principle, equation 2 is the covariant Eiffel rule with a
restriction that prevents traitors as a special form of cat calls. Such a cat call is
shown in example 14. To prevent catcalls, the definition requires equality between
two related actual generic parameters. This requirement can only be ignored if
the actual generic parameter in the sub type is detachable. This implies that
the corresponding formal generic parameter has a detachable constraint. As a
consequence, every feature that has a formal argument of a type equal to such
a detachable formal generic parameter must ensure that the formal argument
is non-void prior to a safe call. The object test is a mechanism to test whether
an expression is non-void. In addition, an object test ensures that the attached
object has a certain dynamic type. Note that the dynamic type includes the
processor tag. In conclusion, a detachable actual generic parameter implies the
necessity of a check of the processor tag. A detachable actual generic parameter
in the sub type implies a detachable actual generic parameter in the super type
because the sub type must conform to the super type. More information on
object tests can be taken from the Eiffel ECMA standard [4]. Equation 3 shows
that expanded classes cannot serve as ancestors and thus a class type conforms
to an expanded class type only if the two class types are actually the same.

80 B. Morandi, S.S. Bauer, and B. Meyer

The processor tag conformance rule in equation 4 states that every processor
tag conforms to the � processor tag. Furthermore it defines that the ⊥ processor
tag conforms to every other processor tag. As a result, processor tags can be
arranged in a lattice with the � processor tag on the top and the ⊥ processor
tag at the bottom. Every other processor tag is in the middle, conforming to the
top element. The bottom element conforms directly to the middle elements and
indirectly to the top element. The � processor tag denotes a potentially separate
processor. An object on any processor can be attached to an entity of such a
type. Therefore the explicit processor tag and the non-separate processor tag
conform to the � processor tag. The ⊥ processor tag symbolizes no processor
and it is used to type the void reference. A void reference can be assigned to any
writable entity of detachable type, regardless of the processor tag of the entity.
As a consequence, the ⊥ processor tag conforms to any other processor tag. Note
that the explicit processor tag does not conform to the non-separate processor
tag, even though one can denote the current processor with the explicit processor
tag.

An entity of detachable type potentially has an object attached to it. Equation
5 states that the ! detachable tag conforms to the ? detachable tag. The reverse
argument is not true. An entity of attached type cannot store a void reference.
Note that this definition is compatible with the self-initialization rule for generic
parameters as described in section 8.12.6 of the Eiffel ECMA standard [4].

Example 14 (Traitor cat calls). In listing 1.13 the class ILLEGAL LIBRARY
declares an attribute books of type LIST[separate BOOK].

Listing 1.13. illegal library class

class ILLEGAL LIBRARY feature
2 initialize

−− Initialize this library.
4 do

create {LIST[BOOK]} books
6 books.put (create {separate BOOK})

end
8

books: LIST[separate BOOK] −− The books.
10 end

The type of the formal argument in books.put is separate BOOK. Therefore
the feature books.put can be called with create {separate BOOK} as an ac-
tual argument. If equation 2 would permit covariant actual generic parameters
without restrictions then it would be possible to attach an object of type LIST[
BOOK] to the entity books. However, a call to the feature books.put would then
result in a traitor, because the object stored in books expects a non-separate
formal argument whereas the call provides a separate actual argument. For this

SCOOP 81

reason definition 29 does not allow the attachment of an object of type LIST[
BOOK] to an entity of type LIST[separate BOOK].

Definition 29 implies that there must be a root type in the type system. Any
object can be attached to an entity of this type. In the Eiffel type system, the
class ANY is at the top of the type hierarchy. Thus ANY is suitable as the class
type component of the root type. To be most general, the root type must be
detachable and separate.

Definition 30 (Root type). The root type is (?,�,ANY).

Example 15 (Valid and invalid subtypes). Listing 1.14 shows a number of enti-
ties. In this example we will explore whether these entities can be assigned to
each other.

Listing 1.14. entities to demonstrate valid and invalid subtypes

a: HAMLET
2 b: detachable separate BOOK
c: separate <p> BOOK

4 d: separate <q> BOOK
e: ARRAY[detachable HAMLET]

6 f: ARRAY[HAMLET]
g: INDEXABLE[INTEGER, detachable separate BOOK]

8
p: PROCESSOR

10 q: PROCESSOR

We will start with the entities a and b. We will use definition 29 to determine
whether (!, •,HAMLET) conforms to (?,�,BOOK). We omit premises that do
not apply and we omit premises that are satisfied trivially.

Γ � HAMLET
 BOOK
Γ � (d, p,HAMLET) � (d, p,BOOK)
Γ � (d, •,HAMLET) � (d,�,BOOK)
Γ � (!, •,HAMLET) � (?,�,BOOK)

We read the derivation bottom-up. In the first step we use the detachable tag
conformance rule from equation 5. In the second step we use the processor tag
conformance rule from equation 4. The class type conformance rule from equa-
tion 3 leads us to the last premise, which can be derived from the typing en-
vironment. The details on the typing environments can be taken from section
6.11.4 in Nienaltowski’s dissertation [11]. The derivation shows that a can be
assigned to b. In a similar way, one can derive that c and d can be assigned to
b. It is however not possible to do any other assignments among a, b, c, and
d. In particular, c cannot be assigned to d because the types specify different
processors.

82 B. Morandi, S.S. Bauer, and B. Meyer

So far we only looked at types that are not generically derived. In a next step
we will take a look at generically derived types to see whether e can be assigned
to g. We use the class type conformance rule for generically derived class types
from equation 2.

Γ � ARRAY
 INDEXABLE

Γ � HAMLET
BOOK
Γ � (d, p,HAMLET)�(d, p,BOOK)
Γ � (?, •,HAMLET)�(?,�,BOOK)

Γ �ARRAY [(?, •,HAMLET)]
INDEXABLE [(!, •, INTEGER), (?,�,BOOK)]

We do not show the premise (!, •, INTEGER) � (!, •, INTEGER), because it is
satisfied trivially. In the same spirit we do not show the premise (dt = dbj =
?)∨ (dt = dbj ∧ pt = pbj ∧Ct = Cbj). The derivation shows that indeed e can be
assigned to g. The entity f cannot be assigned to g. This is due to the attached
actual generic parameter of f , which is not compatible with the detachable
generic parameter in g.

10 Feature Redeclaration

A child class inherits features from a parent class. An inherited feature can either
be reused, undefined, or redeclared. In a redeclaration, the child class provides
a new implementation. The redeclaration can have a weaker precondition and it
can have a stronger postcondition. Any feature redeclaration must ensure that
the redeclared version of the feature can be called whenever the parent feature
can be called. In particular, the contracts and the signatures must be compatible.
Sections 8.10.26, 8.14.4, and 8.14.5 of the Eiffel ECMA standard [4] define rules
to take care of this for Eiffel. In this section we will refine these rules for SCOOP.
Definition 31 defines valid result type redeclarations and definition 32 does the
same for formal arguments.

Definition 31 (Valid result type redeclaration). The result type of a fea-
ture can be redeclared from T1 to T2 if and only if T2 conforms to T1, i.e. T2 � T1.

Just like in Eiffel, the result type can be redeclared covariantly. For all three
components of a SCOOP type it is always possible to return something more
specific than what the client of a feature expects.

Definition 32 (Valid formal argument redeclaration). The type of a for-
mal argument x can be redeclared from T1 = (d1, p1, C1) to T2 = (d2, p2, C2) if
and only if all of the following conditions are true:

– If T1 is detachable then T2 is detachable, i.e. d1 = ? → d2 = ?. T2 can only
be detachable if x is not a target in the inherited postcondition.

– Types T2 and T1 have identical processor tags, i.e. p2 = p1, or T2 is separate,
i.e. p2 = �.

SCOOP 83

– Class type C2 conforms to C1, i.e. C2
 C1. If C2 and C1 are not the same
then T2 is detachable, i.e. C2 �= C1 → d2 = ?.

In Eiffel, formal arguments can be redeclared in a covariant way. However, if the
class type changes then the redeclared formal argument must be detachable. A
detachable formal argument can contain the void reference. This forces the rede-
clared feature to use an object test to ensure that the formal argument is non-void.
Next to the non-void check the object test ensures that the formal argument has
a certain dynamic type. Therefore the redeclared feature is required to check the
dynamic type of the formal argument. This makes it possible for the redeclared
feature to receive an actual argument whose type is a super type of the redeclared
formal argument type, as it is possible in a covariant redeclaration. Definition 32
goes along this line for the class type. A class type of a formal argument can be
redeclared covariantly as long as the redeclared formal argument becomes detach-
able. The processor tag of a formal argument can be redeclared contravariantly.
The covariant redeclaration is not allowed for processor tags because it would lead
to traitors. If the processor tag of a formal argument can be redeclared covariantly
then it would be possible to redeclare a separate formal argument to non-separate.
The contravariant redeclaration is not a problem because the redeclared feature
can always use a more general processor tag.

Detachable tags encode selective locking. Assuming a formal argument could
be redeclared covariantly from detachable to attached then the application of the
redeclared feature would lock the request queue of the formal argument. How-
ever, the parent feature specifies a non-locking formal argument. The redeclared
feature could not be called whenever the parent feature is called. On the other
hand a formal argument can be redeclared contravariantly from attached to de-
tachable because this would alleviate the locking requirements. Furthermore it is
always safe to assume a detachable formal argument when the actual argument
is non-void.

A redeclaration of a formal argument from attached to detachable imposes a
risk on the validity of the inherited postcondition. Assuming a parent feature has
a postcondition clause that contains a query on a formal argument. According
to the valid target rule in definition 19 this formal argument must be attached.
A redeclaration of the formal argument from attached to detachable renders
the inherited postcondition clause invalid. An invalid postcondition clause is
equivalent to a weaker postcondition and thus this situation is not acceptable.
Therefore a formal argument can only be redeclared from attached to detachable
if the formal argument is not a target in the inherited postcondition clause.

There is a similar issue for inherited precondition clauses. A redeclaration of
a formal argument from attached to detachable renders the precondition clause
invalid. An invalid precondition clause is equivalent to a weaker precondition.
This situation is accepted because this is only a problem for the redeclaring
feature and not for the client of the feature. The redeclared feature can assume
a weaker precondition as it ignores the invalid precondition clause. As a conse-
quence, such a precondition clause can be assumed to hold vacuously. This is
expressed in definition 33.

84 B. Morandi, S.S. Bauer, and B. Meyer

Definition 33 (Inherited precondition rule). Inherited precondition clauses
with calls on a detachable formal argument hold vacuously.

Example 16 (Valid feature redeclaration). Listing 1.15 shows a valid redeclara-
tion of the feature cheaper alternative.

Listing 1.15. finder class

class LOCAL FINDER feature
2 cheaper alternative (a book: BOOK): BOOK

−− A cheaper alternative to ’a book’.
4 do

...
6 ensure

Result.initial price < a book.initial price
8 end
end

10
class WORLDWIDE FINDER

12
inherit LOCAL FINDER

14 redefine
cheaper alternative

16 end

18 feature
cheaper alternative (a book: separate BOOK): BOOK

20 −− A cheaper alternative to ’a book’.
do

22 ...
end

24 end

The formal argument gets redeclared from FT1 = (!, •,BOOK) to FT2 =
(!,�,BOOK). This is valid according to definition 32. Note that FT2 cannot
be detachable because the formal argument is a target in the inherited postcon-
dition. A detachable type would make the inherited postcondition invalid. The
processor tag changes from non-separate to separate. It is allowed to accept a
non-separate object in a separate entity.

11 False Traitors

At runtime a non-separate object can get attached to a separate entity. The type
system permits this. The downside of such an action is a loss of information in
the type system. We know that the entity points to a non-separate object, but
the type system cannot make this assumption. For example it is not possible

SCOOP 85

to assign the separate entity to a non-separate entity. The type system would
complain about a traitor, even though the attached object is in fact non-separate.
We call such an object a false traitor.

Definition 34 (False traitor). A false traitor is a non-separate object acces-
sible through to a separate expression.

This is not a SCOOP specific problem. The same issue occurs when an object
gets attached to an entity whose static type is a proper parent of the object’s
dynamic type. The solution is the same as in Eiffel. An object test can be used
to ensure that the dynamic type of the expression is non-separate.

12 Agents

Agent objects wrap feature calls. An agent can be passed around and the wrap-
per feature can be called at a later time. When the agent gets created any of
the actual arguments can be predefined. An agent call must only provide the
remaining actual arguments. These remaining actual arguments are called open
and the predefined ones are called closed. Similarly, it is possible to have an open
or a closed target. An open target specifies the type of the future target instead
of the target itself. In this section we will discuss the location of a new agent.
We consider two options. The agent could be handled by the current processor
or the agent could be handled by the processor of the target.

The creation of a new agent on the current processor causes problems. Such
an agent would be non-separate from the current object. Therefore the agent
would always be a valid target on the current processor. If the agent encapsu-
lates a feature call on a separate target then the current processor could call
the encapsulated feature on the separate object without having acquired a re-
quest queue lock. The agent would be a non-separate object that encapsulates
a separate object and we would have a traitor situation.

If the new agent is handled by the same processor as the target then this
problem does not occur. This way, the agent represents its target properly in
terms of location. Agent calls can be freely mixed with other feature calls. A lock
on the request queue of the handler of encapsulated target is ensured through
a lock on the request queue of the handler of the agent. There is however a
price for this scheme with respect to open targets. At construction time, the
handler of the agent must be known and it must be equal to the handler of
the future target. If the target type is non-separate then this is not a problem
because the exact processor is know. If the target type has an explicit processor
specification then the exact processor is known at creation time. However, the
explicit processor specification is only valid in the context where the agent gets
created. If the agent gets called in a different context then the exact processor
of the target is unknown at call time. If the target type is separate then there is
no way of knowing the exact handler when the agent gets created. In conclusion,
the type of an open target must be non-separate. As a further restriction, the
open target type must be attached because it is not possible to invoke a method
on a non existing target. Definition 35 captures these requirements.

86 B. Morandi, S.S. Bauer, and B. Meyer

Definition 35 (Agent creation). A new agent is handled by the same proces-
sor as its target. An open target agent must have an attached and non-separate
type.

The type of an agent must show that the agent is on the same processor as the
target. Definition 36 redefines section 8.27.17 of the Eiffel ECMA standard [4].

Definition 36 (Agent expression type). Consider an agent expression with
target type Tx = (!, p, X) and feature f . Let i1, . . . , im be the open argument
positions and let T1, . . . , Tm be the types of f ’s formal arguments at positions
i1, . . . , im (taking Ti1 to be Tx if the target is open, e.g. i1 = 0). The agent
expression has the following type:

– The type is (!, p,PROCEDURE [(!, •, X), (!, •,TUPLE [T1, . . . , Tm])]) if f is
a procedure.

– The type is (!, p,FUNCTION [(!, •, X), (!, •,TUPLE [T1, . . . , Tm]), TR]) if f is
a function of result type TR other than (!, •,BOOLEAN).

– The type is (!, p,PREDICATE [(!, •, X), (!, •,TUPLE [T1, . . . , Tm])]) if f is a
function of result type (!, •,BOOLEAN).

Example 17 (Agents). Listing 1.16 shows a class representing book traders.

Listing 1.16. trader class

class TRADER feature
2 option: separate PROCEDURE[SELLER, TUPLE[separate BUYER]]

4 prepare option (a seller: separate SELLER; a book: separate BOOK;
a valuer: separate VALUER)

do
6 option := agent a seller.sell book (a book, ?, a valuer)

end
8 end

The feature prepare option creates an option to sell a particular book through
a particular seller using a particular valuer at a later time. Profit can be gen-
erated if a book has been bought at a low price through the estimate of one
valuer and if the book can be sold later at a higher price through the estimate
of another valuer. In this example the option is represented by an agent for the
feature sell book with the seller as the target. The book and the valuer are closed
arguments. The buyer is left as an open argument. The open argument is indi-
cated with the question mark. The type of the agent is the type of the attribute
option. The agent has the same processor tag as the target.

13 Once Routines

A once routine gets executed at most once in a specified context. In Eiffel, a
once routine either has a once per object, a once per thread, or a once per

SCOOP 87

system semantics. If the once routine is a once function then the result gets
shared within the specified context. Sections 8.23.20, 8.23.21, and 8.23.22 of the
Eiffel ECMA standard [4] describe this in more details. In SCOOP, processors
replace the notion of threads. In this section we will refine the existing Eiffel
rules. Instead of the original options we consider a once per system or a once
per processor semantics.

The result of a once function with a separate result type is supposed to be
shared by different processors. Otherwise it makes no sense to declare the result
as separate. Therefore such a function must have the once per system semantics.
Once functions with a non-separate result type on the other hand must have a
once per processor semantics. Otherwise there would be one object for multiple
non-separate once functions on multiple processors. Clearly, the object can only
be non-separate with respect to one processor. For all other processors the object
would be a traitor. Once procedures do not come with these complications as they
do not have a result. We assign a once per processor semantics to once procedures
to give each processor the chance to make a fresh call to the procedure.

Definition 37 (Once routines semantics). A once routine either has a once
per system or a once per processor semantics.

– Once functions with a separate result type have the once per system seman-
tics.

– Once functions with a non-separate result type have the once per processor
semantics.

– Once procedures have the once per processor semantics.

Example 18 (Once functions). Listing 1.17 shows a class representing phone di-
rectories of a country.

Listing 1.17. phone directory class

class PHONE DIRECTORY feature
2 national directory: separate BOOK

once
4 ...

end
6

local directory: BOOK
8 once

...
10 end

end

The country is divided into several states. Each state has a set of phone
numbers. In addition there are some national phone numbers that are valid in
every state. The phone directory takes this into account with two once func-
tions: national directory is a book containing all the national numbers and

88 B. Morandi, S.S. Bauer, and B. Meyer

local directory is a book with the local numbers. We imagine that each state
is handled by a different processor and that the phone directory is on yet an-
other processor. The feature national directory is a separate once function. It has
a once per system semantics. This takes into account that there is one directory
for the whole nation. The feature local directory is a non-separate once function
and thus it has a once per processor semantics. This reflects the fact that there
is one local directory per state.

14 Limitations and Future Work

At the beginning of this article we emphasized SCOOP’s simplicity in comparison
to semaphore based concurrent programming models. There are some threats
to the validity of this claim. Our claim is not supported by any systematic
study. Furthermore there has been progress on other concurrent programming
models that make it easier to write correct and reusable concurrent programs.
In particular there exist powerful concurrency libraries that can be used by
developers, e.g. the concurrency libraries of Java (see e.g. [5]). A full support
of our claim requires a study that compares SCOOP to the state-of-the art of
concurrent programming models.

We do not claim that SCOOP programs run faster than other concurrent
programs. However, performance is a key objective in any concurrent program.
Performance of SCOOP programs is negatively affected if a centralized schedul-
ing algorithm is used. A decentralized scheduling algorithm solves this issue
and makes the system scalable. Performance can also be negatively influenced
if the program under execution applies locking too coarsely. The differentiation
between read- and write locks could improve the situation together with other re-
finements of the model. One refinement concerns wait by necessity. The SCOOP
model can be optimized by only waiting when the result of the query is about to
be accessed. As long as the result is not being accessed, it does not need to be
available. A profiler for SCOOP specific metrics could help to find bottlenecks
in SCOOP programs.

Currently SCOOP does not solve the asynchronous exception problem. Con-
sider a situation where the execution of a procedure on a separate object results
in an exception. It is possible that the client processor left the context of the
feature call. In such a case the client processor is no longer able to handle the
exception. The problem is tackled by Arslan and Meyer [1] as well as Brooke and
Paige [2]. Arslan and Meyer define the guilty processor as the one who called the
feature that triggered the exception. In their approach the target processor is
considered busy by non-guilty processors. Only the guilty processor can resolve
the situation by handling the exception as soon as the guilty processor locks
the request queue of the busy processor once again. Brooke and Paige propose
another mechanism to handle asynchronous exceptions. Their approach includes
the notion of failed or dead objects.

Deadlocks are still an open problem in SCOOP. The selective locking mech-
anism is a useful technique to reduce the potential for deadlocks. However, this

SCOOP 89

is not a method for ensure absence of deadlocks. It is necessary to conduct a
comprehensive study on how deadlocks can occur in SCOOP programs. Such
a study would facilitate an approach to avoid deadlocks in SCOOP programs.
One approach in this direction is presented by Ostroff et al. [13]. They describe
a virtual machine for SCOOP. The goal is to use model-checking and theorem
proving methods to check global temporal logic properties of SCOOP programs.

The operational semantics used by Ostroff et al. may be extended to cover
more of SCOOP. A complete definition could serve as a precise description of
the model. At the moment SCOOP’s complexity and the intrinsic details are
hidden behind informal descriptions. The formalization could be the basis for
formal proofs of properties promised by the model as well as for formal proofs
of SCOOP programs. Interesting properties of the model include the absence of
data races and the soundness of the type system.

Even though SCOOP naturally embraces distribution right from its start there
are still open issues to be solved. In particular, it is unclear how distributed
scheduling or mapping of processors to resources should be devised and imple-
mented. Furthermore there is a fixed association of one object to a particular
processor. It unclear whether this processor must be constant over time. Object
migration would be especially beneficial for distribution because the latency of
separate feature calls becomes significant in distributed programs.

The execution of a concurrent program can be different from one execution
to the other. Hence, some bugs only show in some scheduling scenarios. This
makes testing of concurrent applications very cumbersome. By design, SCOOP
already rules out a number of scheduling related bugs such as high-level and
low-level data races. Other potential bugs remain. It would be interesting to
extend a testing framework to make scheduling a factor in test cases. Along the
same line, it would be interesting to develop a debugger for SCOOP programs.

It would be interesting to have a design tool where one can graphically spec-
ify the dynamic and the static view of a SCOOP program. The dynamic view
includes processors, the objects, and the interactions. The dynamic view uses
concepts introduced in the static view. The static view shows the classes and ex-
isting SCOOP components. The graphical design is linked to the SCOOP code.
Hence the designer can produce a SCOOP program out of the diagrams.

As part of the ETH Verification Environment (EVE) there is an implemen-
tation of SCOOP in progress. The implementation is available on our project
website http://scoop.origo.ethz.ch.

References

1. Arslan, V., Meyer, B.: Asynchronous exceptions in concurrent object-oriented pro-
gramming. In: Symposium on Concurrency, Real-Time and Distribution in Eiffel-
like Languages Proceedings, pp. 62–70 (2006)

2. Brooke, P.J., Paige, R.F.: Exceptions in concurrent eiffel. Journal of Object Tech-
nology 6(10) (2007)

3. Coffman, E.G., Elphick, M.J., Shoshani, A.: System deadlocks. ACM Computing
Surveys 3(2), 67–78 (1971)

90 B. Morandi, S.S. Bauer, and B. Meyer

4. ECMA. Ecma-367 eiffel: Analysis, design and programming language 2nd edition.
Technical report, ECMA International (2006)

5. Goetz, B., Bloch, J., Bowbeer, J., Lea, D., Holmes, D., Peierls, T.: Java Concur-
rency in Practice. Addison-Wesley, Reading (2006)

6. Hoare, C.A.R.: Procedures and parameters: An axiomatic approach. In: Sympo-
sium on Semantics of Algorithmic Languages, pp. 102–116 (1971)

7. Meyer, B.: Sequential and concurrent object-oriented programming. In: Technology
of Object-Oriented Languages and Systems, pp. 17–28 (1990)

8. Meyer, B.: Applying design by contract. IEEE Computer 25(10), 40–51 (1992)
9. Meyer, B.: Systematic concurrent object-oriented programming. Communications

of the ACM 36(9), 56–80 (1993)
10. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall, Engle-

wood Cliffs (1997)
11. Nienaltowski, P.: Practical framework for contract-based concurrent object-

oriented programming. PhD thesis, Swiss Federal Institute of Technology Zurich
(2007)

12. Nienaltowski, P., Meyer, B.: Contracts for concurrency. In: First International Sym-
posium on Concurrency, Real-Time and Distribution in Eiffel-like Languages, pp.
27–49 (2006)

13. Ostroff, J.S., Torshizi, F.A., Huang, H.F., Schoeller, B.: Beyond contracts for con-
currency. Formal Aspects of Computing 21(4), 319–346 (2008)

Using the Spec# Language, Methodology, and Tools
to Write Bug-Free Programs

K. Rustan M. Leino0 and Peter Müller1

0 Microsoft Research, Redmond, WA, USA
leino@microsoft.com

1 ETH Zurich, Switzerland
peter.mueller@inf.ethz.ch

Abstract. Spec# is a programming system for the development of correct pro-
grams. It consists of a programming language, a verification methodology, and
tools. The Spec# language extends C# with contracts, which allow programmers
to document their design decisions in the code. The verification methodology
provides rules and guidelines for how to use the Spec# features to express and
check properties of interesting implementations. Finally, the tool support consists
of a compiler that emits run-time checks for many contracts and a static program
verifier that attempts to prove automatically that an implementation satisfies its
specification. These lecture notes teach the use of the Spec# system, focusing on
specification and static verification.

0 Introduction: What Is Spec#

The Spec# programming system was built as a research effort to gain experience in
programming with specifications, focusing on how one can specify object-oriented pro-
grams and how the specifications can be enforced dynamically and statically [2]. These
lecture notes give a tutorial account of how to write and specify programs in Spec#. The
aim here is for the specifications to be detailed enough that programs can be verified
statically, using the Spec# static program verifier. The verifier checks that programs sat-
isfy their specifications and that they do not lead to run-time errors. It assumes sequen-
tial execution; that is, it does not check for concurrency errors such as data races and
deadlocks, and it might miss errors caused by insufficient synchronization of threads.

The verifier is run like the compiler—in fact, it can be turned on to run at “design
time”, in the background as the programmer types in the program [0]. Akin to the way
a compiler performs separate compilation, the Spec# program verifier performs modu-
lar verification, which means that it can be applied to pieces of a program separately.
A programmer interacts with the program verifier only by supplying program text and
specifications and by receiving error messages, analogously to how a programmer in-
teracts with the compiler. The goal of this tutorial is to provide the user with an under-
standing of the concepts that underlie the Spec# specifications, which will also help in
deciphering the error messages.

The specifications of a program must describe the steady state of data structures
and must account for the changes that such data structures undergo. This can be done
in various ways. The way Spec# does this is to impose a programming discipline, a

P. Müller (Ed.): LASER Summer School 2007/2008, LNCS 6029, pp. 91–139, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

92 K.R.M. Leino and P. Müller

methodology, that guides how specifications and programs are written. This methodol-
ogy is closely tied to the specification constructs provided by the language, for example
the invariant declaration. Through our experience, we have found that programming
problems that fit the methodology can be specified and verified with ease; however, we
have also found that it is too easy to fall outside the boundaries of what the methodology
permits. For this reason, it is much easier to verify programs when they are designed
with specification in mind from the start.

In the literature, the methodology used by Spec# has been called the Boogie method-
ology, since the Spec# programs are verified using a tool called Boogie. In retrospect,
this is a bit confusing, because the Boogie language and tool are also used in applica-
tions that are unrelated to Spec#. To reduce confusion in this tutorial, we will use the
words Spec# methodology and program verifier.

It is specifically not a goal of this tutorial to justify the Spec# methodology, only
to explain how it is used. Also, this tutorial is not a reference manual; it is more of
a cookbook for how to handle common situations. We conclude many sections in this
tutorial with notes on advanced features that we cannot describe in detail here and with
suggestions for further reading. These notes are marked with a “steep ascent” sign. We
focus on static verification of programs, but occasionally add remarks that pertain to
the dynamic checks that the Spec# compiler emits. Finally, we have done our best to
explain what Spec# is today, which in many small ways differs from what is described
in research papers that we and our colleagues have written; for example, the research
papers use many variations of syntax, describe solutions to specification problems that
have not been implemented in the Spec# programming system, spend many words and
theorems justifying the soundness of the approach, sometimes show specifications in
full detail whereas Spec# uses a host of defaults, and do not mention additional features
and automation that is available in Spec#.

Installing and Using Spec#. The Spec# binaries (and sources) and installation in-
structions are available from http://specsharp.codeplex.com/. We recommend us-
ing Z3 [5] as the theorem prover for the Spec# program verifier; it can be installed from
http://research.microsoft.com/projects/z3/ . The Spec# installation requires Vi-
sual Studio. Once installed, Spec# can be used within Visual Studio or from the
command line.

All examples presented in this tutorial are available online [11]. They compile and
verify with the latest Spec# version (v1.0.21125), which requires Visual Studio .NET
2008. To try an example File.ssc from the command line, first compile the program
to a library:

ssc /t:library /debug /nn File.ssc

and then run the program verifier

SscBoogie File.dll

The compiler option /debug produces a file File.pdb with debug information, which
is needed by the program verifier. The /nn switch makes non-null types the default (see
Section 1.0) and is used for all examples in this tutorial. Rather than running the verifier

http://specsharp.codeplex.com/
http://research.microsoft.com/projects/z3/

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 93

separately, it is also possible to invoke it from the compiler by adding the /verify
switch (which in some cases has the side effect of giving more detailed source locations
in error messages). The /help option of the compiler and the verifier displays a list of
all available options.

To run the examples inside Visual Studio, create a new Spec# project (from File
→ New → Project) and edit its project properties (by right-clicking on the name
of the project in the Solution Explorer and then choosing Properties) as follows. In
the section “Configuration Properties”, set “ReferenceTypesAreNonNullByDefault”,
“RunProgramVerifier”, and “RunProgramVerifierWhileEditing” to true. The compiler’s
parser and type checker and the program verifier will now run automatically in the back-
ground while you are editing your code. The compiler and verifier show any errors they
detect using red or green squigglies at the location of each error. Hoving with the mouse
over such a squiggly displays the error message. All error messages are also shown in
the Error List (whose pane is made visible by View → Error List). To compile your
program into executable code, build the project (using Build → Build Solution).

1 Basics

In this section, we go through a number of small examples that illustrate the syntax
of some familiar specification constructs, as well as the use of some less familiar con-
structs. It also serves as an incomplete summary of features that Spec# adds to its basis,
C#. We assume a basic familiarity with C-like syntax, like that found in Spec#, C#, Java,
or C++. We also assume a basic familiarity with object-oriented concepts (for example,
classes, instances, fields) and how these are represented in Java-like languages.

1.0 Non-null Types

One of the most frequent errors in object-oriented programs is to dereference the null
reference. To eradicate this error, Spec#’s type system distinguishes between non-null
types and possibly-null types. In this tutorial, we assume non-null types to be the default.
In this mode, the type string is the type of all proper string objects, whereas the type
string? includes the string objects plus null.

The class NonNull in Fig. 0 declares three string fields, two with a non-null type
and one with a possibly-null type. On entry to a constructor, fields have zero-equivalent
values, in particular, fields of reference type initially hold the null reference. Each con-
structor of a class is responsible for initializing non-null fields with non-null values.0

If the class does not explicitly declare a constructor, a default constructor is implicitly
added by the compiler. In that case, non-null fields have to be initialized using a field
initializer in the declaration of the field. The constructor of class NonNull initializes
aString through a field initializer and anotherString through an assignment inside
the constructor body. It leaves maybeAString un-initialized.

0 There are actually two kinds of constructors in the language, those that, explicitly or implicitly,
call a constructor of the superclass and those that instead call another constructor of the same
class (using this(...)). Here and throughout, we only discuss the first kind of constructor; in
several ways, the other kind operates more like a method than a constructor.

94 K.R.M. Leino and P. Müller

class NonNull {
string aString = "Hello";
string anotherString;

string? maybeAString;

public NonNull() {

anotherString = "World";
}

public int GetCharCount() {
return aString.Length + maybeAString.Length; // type error

}

}

Fig. 0. An example using non-null and possibly-null types. The body of GetCharCount does not
type check because it dereferences a possibly-null reference, maybeAString.

The Spec# type checker does not allow possibly-null references to be dereferenced.
For instance, without further information, it flags the call maybeAString.Length in
Fig. 0 as a type error. There are several ways to make this code type check. First, we
could guard the call by a conditional statement (if) or expression. For instance, we
could write the second summand as

(maybeAString != null ? maybeAString.Length : 0)

Second, we could add a specification (for instance, an inline assertion, see below) that
expresses that maybeAString holds a non-null value. Third, we could convey the infor-
mation to the type checker through a type cast. For example, we could have written

((string)maybeAString).Length

which casts maybeAString from the possibly-null type string? to the non-null type
string. Here, since the type of the target is string, the dereference is permitted. The
correctness of the cast is checked by the program verifier.1

A synonym for the non-null type string is string!.2 The type cast can therefore
also be expressed as (string!). In cases where the programmer only intends to cast
the nullity aspect of the type, Spec# allows the cast to be written simply as (!). Thus,
the call could also have been written as ((!)maybeAString).Length.

1 As for other type casts, the compiler emits a run-time check for the cast. For this type cast, the
run-time check will include a comparison with null.

2 If the compiler is run in the mode where class names by default stand for the corresponding
possibly-null type, then one routinely uses string! to denote the non-null type. Also, regard-
less of the compiler mode used, both inflections ? and ! are useful in the implementations of
generic classes: if T is a type parameter constrained to be a reference type, then the naked name
T stands for the actual type parameter (which might be a possibly-null type or a non-null type),
T? stands for the possibly-null version of the type, and T! stands for the non-null version of
the type.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 95

1.1 Method Contracts

One of the basic units of specification in Spec# is the method. Each method can include
a precondition, which describes the circumstances under which the method is allowed
to be invoked, and a postcondition, which describes the circumstances under which
the method is allowed to return. Consequently, an implementation of the method can
assume the precondition to hold on entry, and a caller of the method can assume the
postcondition to hold upon return. This agreement between callers and implementations
is often known as a method contract [16].

int ISqrt(int x)

requires 0 <= x;
ensures result*result <= x && x < (result+1)*(result+1);

{

int r = 0;
while ((r+1)*(r+1) <= x)
invariant r*r <= x;

{
r++;

}

return r;
}

Fig. 1. A Spec# program that computes the positive integer square root of a given number. To try
this example in Spec#, include this method in a class declaration like “class Example { ... }”.

Consider the method ISqrt in Fig. 1, which computes the integer square root of a
given integer x. It is possible to implement the method only if x is non-negative, so
the method uses a requires clause to declare an appropriate precondition. The method
also uses an ensures clause to declare a postcondition. This postcondition uses the
keyword result, which refers to the value returned by the method.3 The program ver-
ifier enforces preconditions at call sites and postconditions at all normal (that is, non-
exceptional) exit points.4 Note that a non-terminating method execution does not reach
an exit point and, therefore, trivially satisfies its postcondition. The Spec# verifier does
not check for termination.

Syntactically, a method can use any number of requires and ensures clauses, in any
order. The effective precondition is the conjunction of the requires clauses and the

3 Like value in C# (and Spec#), result is a context-sensitive keyword. In particular, result is
reserved only in postconditions; elsewhere, result is just an ordinary identifier.

4 Pre- and postconditions are also enforced dynamically by compiler-emitted checks. Through
these dynamic checks, a Spec# programmer benefits from contracts even if the program verifier
is never applied. If an entire program is successfully verified by the program verifier, then the
dynamic checks are guaranteed never to fail and could therefore, in principle, be removed.
With one exception—the assume statement, which we explain in Section 1.2—the dynamic
checks form a subset of the checks performed by the program verifier.

96 K.R.M. Leino and P. Müller

effective postcondition is the conjunction of the ensures clauses. Other specification
constructs in Spec# can be used cumulatively in a similar way. As Fig. 1 suggests,
method contracts are declared between the method type signature and the method body;
if the method has no body, as for abstract methods and interface methods, the contract
follows the semicolon that for such methods ends the method type signature.

class Counter {
int x;

public void Inc()
ensures old(x) < x;

{
x = 2*x; // error

}

}

Fig. 2. A simple class with an instance field that is modified by a method. The method implemen-
tation fails to establish the postcondition in the case that x was initially less than or equal to zero;
thus, the program verifier reports an “unsatisfied postcondition” error.

A postcondition is a two-state predicate: it relates the method’s pre-state (the state on
entry to the method) and the method’s post-state (the state on exit from the method). To
refer to the pre-state, one uses the old construct: old(E) refers to the value of expression
E on entry to the method.5 For example, consider the Counter class in Fig. 2. The
postcondition of method Inc uses old to say that the final value of x is to be strictly
greater than its initial value.6 Regardless of old, an in-parameter mentioned in a method
contract always refers to the value of the parameter on entry (in other words, the fact that
the language allows in-parameters to be used as local variables inside the method body
has no effect on the meaning of the contract), and an out parameter always refers to the
value of the parameter on exit; ref parameters, which are treated as copy-in copy-out,
are sensitive to the use of old.

The Counter example in Fig. 2 also shows that contracts operate at a level of ab-
straction that is not available directly in the code: the contract promises that x will be

5 The old construct can be mentioned only in postconditions, not in, for example, inline asser-
tions or loop invariants, see below. When those specifications need to refer to the pre-state
value of an expression, one has to save it in an auxiliary local variable and use that variable in
the specification.

6 As a matter of consistent style, we prefer the operators < and <= over > and >=. This lets in-
equalities be read (by a human) from left to right, as if they were placed in order along a
number line. For example, 0 <= x && x < N “shows” x to lie between 0 and less than N; com-
pare this to the form x >= 0 && x < N, which does not give the same visual queue. A common
mistake is to write the negation of this condition as 0 < x || x >= N. If all inequalities are
turned the same way, the correct negation, x < 0 || N <= x, shows x as lying “left” of 0 or
“right” of N. Though we use and advocate this style, it has no effect on the operation of the
program verifier.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 97

incremented, but does not let callers know by how much; the method body is thus free to
make the amount of increment a private implementation decision. Note that the imple-
mentation in Fig. 2 does not live up to the postcondition; this could be fixed by adding
a precondition such as 0 < x.

With one major exception, expressions that are given as part of contracts (like the
condition given in a requires clause) are like any other expressions of the language.
For example, they must type check and be of an appropriate type (bool in the case
of requires). The major exception is that expressions in contracts are restricted to
be side-effect free (pure). For example, the declaration requires x++ is not allowed.
The reason for this restriction is that contracts are supposed to describe the behavior
of the program, not to change it. In particular, whether run-time contract checking is
enabled (during testing) or disabled (in production code to increase performance) must
not influence the behavior of the program.

1.2 Inline Assertions

While method contracts indicate conditions that are expected to hold on method bound-
aries, the assert statement can be used in code to indicate a condition that is expected
to hold at that program point. Unlike a method contract, which spells out a contract
between a caller and an implementation, the assert statement only provides a form
of redundancy in the code—after all, the asserted condition is supposed to be a log-
ical consequence of the surrounding code. This redundancy can be useful, because it
gives a programmer a way to check his understanding of the code. In particular, the
program verifier will attempt to prove that the assert does indeed always hold. We shall
see several uses for this familiar statement throughout this tutorial.

For example, adding the statement

assert r <= x;

anywhere between the declaration of r and the return statement in Fig. 1 will cause
the program verifier to check that r is bounded by x.

Sometimes a programmer expects a condition to hold somewhere in the code, but
the condition cannot be proved as a logical consequence of the surrounding code and
specifications. For example, it may be that the condition follows from a pattern of calls
to methods that have not been given strong enough formal specifications. In such cases,
using an assert would cause the program verifier to issue a complaint. More appropri-
ate in such a case is to use an assume statement, which (like the assert) generates a
run-time check but (unlike the assert) is taken on faith by the program verifier. There
are good uses of assume, but one needs to be aware that it trades static checking for
dynamic checking. Hence, by writing down a condition that does not hold—an ex-
treme example would be assume false—the program verifier will be satisfied and the
incorrect assumption will not be revealed until the condition fails at run-time. Good
engineering will pay special attention to assume statements during testing and manual
code inspections.

The compiler and type checker also pay some attention to assert and assume
statements. For example, the type checker considers inline assertions for its non-null

98 K.R.M. Leino and P. Müller

analysis. For instance, the type error in method GetCharCount (Fig. 0) can be prevented
by adding assume maybeAString != null before the return statement.

1.3 Loop Invariants

A loop may prescribe an infinite number of different iteration sequences. Clearly, it is
not feasible to reason about every one of these individually. Instead, the loop’s iterations
are reasoned about collectively via a loop invariant. The loop invariant describes the set
of states that the program may be in at the beginning of any loop iteration.

The program verifier treats loops as if the only thing known at the beginning of
an iteration is that the loop invariant holds. This means that loop invariants must be
sufficiently strong to rule out unreachable states that otherwise would cause the program
verifier to generate an error message. For example, the condition r <= x holds on every
loop iteration in Fig. 1, but this loop invariant by itself would not be strong enough to
prove that the method establishes its postcondition. The program verifier enforces the
loop invariant by checking that it holds on entry to the loop (that is, before the first
iteration) and that it holds at every back edge of the loop, that is, at every program point
where control flow branches back to the beginning of a new iteration.

The loop in method ISqrt in Fig. 1 is a bit of a special case and coincides with
the form of the simple loops usually employed in teaching material. What’s special
is that the loop has only one exit point, namely the one controlled by the loop guard,
which is checked at the beginning of each loop iteration. In this special case, one can
conclude that the loop invariant and the negation of the loop guard hold immediately
after the loop. (In the case of ISqrt, this condition is exactly what is needed to prove the
method postcondition. In many other cases, this condition is stronger than needed for
the proof obligations that follow the loop, in the same way that an inductive hypothesis
in mathematics is usually stronger than the theorem proved.) In the general case of a
loop with multiple exits, one cannot conclude that the loop invariant holds immediately
following the loop, but it is still true that the loop invariant holds at the beginning of
every iteration, including at the beginning of the last iteration, the (partial) iteration in
which control flow exits the loop.

For example, consider the method in Fig. 3, which performs a linear search, back-
wards. Note that the loop invariant 0 <= n holds at the beginning of every loop iteration,
but it does not always hold after the loop, and ditto for the loop invariant with a quanti-
fier. The program verifier explores all possible ways through the loop body to determine
what may be assumed to hold after the loop.

Speaking of quantifiers, the example shows both an existential quantifier (exists)
and a universal quantifier (forall). Each bound variable in a quantifier must be given a
range with an in clause. Here, the range is a half-open integer range; for example, the
range (0: a.Length) designates the integers from 0 to, but not including, a.Length.
The program verifier currently supports only integer ranges in quantifiers, as well as
ranges over array elements that can be converted into quantifiers over integer ranges.
For example, the postcondition can equivalently be written as

ensures result == exists{int x in a; x == key};

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 99

bool LinearSearch(int[] a, int key)
ensures result == exists{int i in (0: a.Length); a[i] == key};

{

int n = a.Length;
do
invariant 0 <= n && n <= a.Length;

invariant forall{int i in (n: a.Length); a[i] != key};
{
n--;

if (n < 0) {
break;

}

} while (a[n] != key);
return 0 <= n;

}

Fig. 3. A linear search that goes through the given array backwards. The example illustrates a
loop with multiple exit points. In addition, the example illustrates the use of several invariant
declarations, which are equivalent to conjoining the conditions into just one invariant decla-
ration, and the use of quantifier expressions. Note that the interval (x: y) is half open, that is,
i in (x: y) says that i satisfies x <= i && i < y.

Quantified expressions are not confined to use in contracts, but can also be used in code.
For example, one could implement the linear-search method with a single line:

return exists{int x in a; x == key};

However, the program verifier currently does not understand quantifiers in code, so it
complains that it cannot prove the postcondition for this single-line implementation.7

Not all loop invariants need to be supplied explicitly. The program verifier con-
tributes to the loop invariant in two ways beyond what is declared. First, it performs
a simple interval analysis, which amounts to that inequality relations between a vari-
able and a constant often do not need to be supplied explicitly. For example, for a basic
loop like

s = 0;
for (int i = 0; i < a.Length; i++) {
s += a[i];

}

the program verifier infers the loop invariant 0 <= i; together with the loop guard
i < a.Length, the program verifier thus automatically verifies that this loop body

7 As an implementation detail, the program verifier does not work directly on the source code,
but on the bytecode emitted by the compiler. For contracts, the compiler also spills out some
meta-data that helps the program verifier. But to the program verifier, a quantifier in code just
looks like the loop that the compiler emits for it, and that loop does not have a loop invariant
that would permit verification.

100 K.R.M. Leino and P. Müller

always accesses the array within its bounds. As another example, the program veri-
fier infers the loop invariant 0 <= r for ISqrt in Fig. 1, though that condition is not
needed to verify the method. The simple interval analysis does not understand values
derived from the heap, for example, so it is not able to infer the loop invariant 0 <= n
in Fig. 3.8 Second, the program verifier infers and limits what the loop modifies. For
instance, it performs a simple syntactic analysis to infer that ISqrt does not modify x.
We will have more to say about modifications in Section 1.4.

Recall that the program verifier does not check that programs terminate. If a pro-
grammer wants help in checking that a loop terminates, it is possible to manually insert
such checks. For example, the program in Fig. 4 computes the value of a variant func-
tion (see, e.g., [15]) at the beginning of the loop body and then checks, just before the
end of the body, that the variant function is bounded and that the iteration has strictly
decreased the variant function. The responsibility for that the manually inserted code
actually does imply termination (for example, that all paths to the next loop iteration
are considered) lies with the user.

The current version of the Spec# program verifier does not check for arithmetic over-
flow. Hence, for example, the error of computing mid in Fig. 4 as:

int mid = (low + high) / 2; // potential overflow

is not checked. Similarly, any overflow in the multiplication in Fig. 2 is not detected.

1.4 Accounting for Modifications

It is important that a caller can tell which variables a method may modify. For illustra-
tion, consider class Rectangle in Fig. 5.

To inform its callers that only X and Y are modified, method MoveToOrigin uses a
postcondition that specifies the values of Dx and Dy to be unchanged. Another way of ac-
complishing this is to use a modifies clause, like in the contract of method Transpose.
If a method’s modifies clause does not explicitly list some field of this, then the
modifies clause implicitly includes this.*, which means that the method is allowed
to modify any field of this. More precisely, unless the method has a modifies clause
that designates a field of this or explicitly lists this.*, this.** (explained in Sec-
tion 3.1), or this.0 (explained below), then the method contracts gets an implicit
modifies this.*. The default this.* is why the previous examples we have shown
do not complain about illegal modifications.

There are subtle differences between using a postcondition to exclude some mod-
ifications (from the default this.*), like MoveToOrigin does, and using a modifies
clause to allow certain modifications, like method Transpose does. The former allows
temporary modifications inside the method body, whereas the latter does not. For in-
stance, the code f++; f-- is considered a side effect that needs to be accounted for in
the modifies clause. Moreover, the former allows fields in superclasses and subclasses

8 The program verifier also implements some more powerful domains for its abstract-
interpretation inference [3], including the polyhedra abstract domain [4]. These can be selected
with the program verifier’s /infer option.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 101

int BinarySearch(int[] a, int key)
requires forall{int i in (0:a.Length), int j in (i:a.Length); a[i]<=a[j]};
ensures -1 <= result && result < a.Length;

ensures 0 <= result ==> a[result] == key;
ensures result == -1 ==> forall{int i in (0: a.Length); a[i] != key};

{
int low = 0;

int high = a.Length;

while (low < high)

invariant 0 <= low && high <= a.Length;
invariant forall{int i in (0: low); a[i] < key};
invariant forall{int i in (high: a.Length); key < a[i]};

{
int variant = high - low; // record value of variant function
int mid = low + (high - low) / 2;

int midVal = a[mid];

if (midVal < key) {

low = mid + 1;
} else if (key < midVal) {

high = mid;

} else {
return mid; // key found

}

assert 0 <= variant; // check boundedness of variant function
assert high - low < variant; // check that variant has decreased

}

return -1; // key not present
}

Fig. 4. A method that performs a binary search in array a. The precondition says the array is
sorted, and the postconditions say that a negative result value indicates the key is not present and
that any other result value is an index into the array where the key can be found. The example
also illustrates a hand-coded termination check, which uses a variant function. Finally, the ex-
ample uses the short-circuit implication operator ==>, which is often useful in specifications, but
may also be used in code. As is suggested by the textual width of the operator, ==> has lower
precedence than && and ||, and the if-and-only-if operator <==> has even lower precedence.

102 K.R.M. Leino and P. Müller

public class Rectangle {

public int X, Y;
public int Dx, Dy;

public void MoveToOrigin()
ensures X == 0 && Y == 0;
ensures Dx == old(Dx) && Dy == old(Dy);

{
X = 0; Y = 0;

}

public void Transpose()
modifies Dx, Dy;
ensures Dx == old(Dy) && Dy == old(Dx);

{
int tmp = Dx; Dx = Dy; Dy = tmp;

}

public void Disturb(Rectangle r)
modifies r.*;

{
X = r.Y; r.X = Y;
Dx = min{Dx, r.Dx};

r.Dy = max{X, Dy + r.Dy, 100};
}

public void CopyPositionTo(Rectangle r)
modifies this.0, r.X, r.Y;

{

r.X = X; r.Y = Y;
}

public Rectangle Clone()
{
Rectangle res = new Rectangle();

res.X = X;
res.Y = Y;
res.Dx = Dx;

res.Dy = Dy;
return res;

}

}

Fig. 5. An example that shows several ways of specifying modifications. Method Disturb, which
performs some arbitrary changes to the rectangles this and r, includes uses of Spec#’s built-in
min and max, here applied to lists of 2 and 3 elements, respectively.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 103

to be modified, whereas the latter does not. We defer further discussion of subclass and
virtual-method issues until Section 1.5.

Method Disturb in Fig. 5 obtains the license to modify fields of parameter r by
including r.* in the modifies clause. In addition, it is allowed modifications of this.*
by default, as usual.

Method CopyPositionTo modifies two fields of its parameter r, but does not modify
any field of this (unless this and r happen to be the same). To specify that behavior,
the method explicitly lists in its modifies clause the special form this.0. By itself,
this.0 does not refer to any field, but has the effect that the default this.* is not
added. So if this and r happen to be the same object, CopyPositionTo may modify
fields of this because it may modify fields of r. If this and r are different, the method
may modify r.*, but not fields of this.

Method Clone illustrates that new objects may be modified without declaring these
modifications in the modifies clause. In other words, a modifies clause constrains
the modification only of those objects that were allocated in the pre-state of the method.
Besides newly allocated objects, there are other objects whose modification is implicitly
permitted. We discuss those in Section 2.0.

Spec# does not feature conditional modifies clauses (like in JML [8]), which would
allow a method to include a modification term only in certain situations. Instead, the
method must include all possible modifications in the modifies clause and then use
ensures clauses to say when certain fields are not modified.

Array elements can also be listed in modifies clauses. In Fig. 6, method Swap af-
fects only elements i and j of the given array. Method Reverse can change any and
all elements of b, but must leave array a unchanged. The figure also shows a method
Caller, which calls the other two methods and demonstrates some of the properties that
the specifications of those methods allow the caller to conclude. Note how the assert
statements let us confirm our understanding of what the program verifier does with the
specifications.

To reason about the behavior of a loop, it is also important to have modifies infor-
mation. In Spec#, loops do not have explicit modifies clauses; instead, they inherit the
modifies clause of the enclosing method. For example, consider the following method:

void ContrivedModifications()
requires 8 <= Dx;
modifies X, Y;

{
Y = 125;
while (X < 27) {

X += Dx;
}
assert 8 <= Dx;
assert Y == 125; // error reported here

}

The method’s modifies clause grants the loop license to modify X and Y, but not
Dx. Therefore, the program verifier knows that 8 <= Dx remains true throughout the

104 K.R.M. Leino and P. Müller

public void Swap(int[] a, int i, int j)

requires 0 <= i && i < a.Length;
requires 0 <= j && j < a.Length;
modifies a[i], a[j];

ensures a[i] == old(a[j]) && a[j] == old(a[i]);
{

int tmp = a[i]; a[i] = a[j]; a[j] = tmp;

}

public void Reverse(int[] a, int[] b)
requires a.Length == b.Length && a != b;

modifies b[*];
ensures forall{int i in (0: a.Length); b[i] == a[a.Length-1-i]};

{

int low = 0;
int high = a.Length;
while (low < high)

invariant high + low == a.Length;
invariant forall{int i in (0: a.Length), i < low || high <= i;

b[i] == a[a.Length-1-i]};

{
high--;
b[low] = a[high];

b[high] = a[low];
low++;

}

}

public void Caller(int[] a)

requires 100 <= a.Length;
{

int[] b = new int[a.Length];
int x = a[57];
int last = a.Length - 1;
Reverse(a, b);

assert x == a[57]; // Reverse leaves a unchanged
assert b[last - 57] == x; // this is where a[57] ends up
Swap(b, 20, 33);

assert b[20] == a[last - 33]; // b[20] and b[33] were swapped
assert b[last - 57] == x; // Swap leaves b[last-57] unchanged

}

Fig. 6. Examples that show the modifies clause syntax for array elements. The quantifier in the
loop invariant of Reverse uses a filter expression, i < low || high <= i. Alternatively, for this
universal quantifier, the filter could have been written as an antecedent of an implication ==> in
the quantifier’s body.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 105

method. Note, however, that no analysis is done to determine that this loop does not
make use of its license to modify Y; hence, the program verifier assumes nothing about
the value of Y after the loop, and an explicit loop invariant about Y is required in order
to prove the last assertion in the example.

1.5 Virtual Methods

Calls to virtual methods are dynamically bound. That is, the method implementation
to be executed is selected at run time based on the type of the receiver object. Which
implementation will be selected is in general not known at compile (verification) time.
Therefore, Spec# verifies a call to a virtual method M against the specification of M in
the static type of the receiver and enforces that all overrides of M in subclasses live up
to that specification [16,14]. This is achieved through specification inheritance [6]: an
overriding method inherits the precondition, postcondition, and modifies clause from
the methods it overrides. It may declare additional postconditions, but not additional
preconditions or modifies clauses because a stronger precondition or a more permissive
modifies clause would come as a surprise to a caller of the superclass method.

Class Cell in Fig. 7 declares a virtual setter method for the val field. The override
in subclass BackupCell is allowed to declare an additional postcondition. It also has
to satisfy the inherited specification. In particular, method BackupCell.Set has to live
up to the implicit modifies clause of Cell.Set. This example shows that for virtual
methods, the default this.* is preferable over a more specific modifies clause such
as this.val because the former allows subclass methods to modify additional fields
declared in subclasses. Class GrowingCell attempts to implement a cell whose value
can never decrease. Since callers of Cell.Set cannot anticipate the extra precondition,
it is rejected by the Spec# compiler.

1.6 Object Invariants

The data associated with an object usually takes on many fewer values than the types of
the fields would allow. For example, the implementation Rectangle in Fig. 5 may keep
the width and height fields Dx and Dy as non-negative integers, even though their types
would also admit negative values. Furthermore, the designer of the class may decide to
set both Dx and Dy to 0 whenever the area of a rectangle is 0. Such properties can be
captured as object invariants. For example, class Rectangle may declare

invariant 0 <= Dx && 0 <= Dy;
invariant Dx == 0 || Dy == 0 ==> Dx == 0 && Dy == 0;

The object invariant is checked to hold at the end of each constructor of the class.
The program verifier also checks that every update to a field maintains the object invari-
ant. For example, with the invariants above, the program verifier checks that any value
assigned to Dx is non-negative. However, it is not always possible to maintain object
invariants with every assignment. For example, if Dx is changed from a positive value
to 0 (or vice versa), then the second invariant above requires Dy to undergo a similar
change; this means that there will be some point in the program when one of Dx and Dy

106 K.R.M. Leino and P. Müller

using Microsoft.Contracts;

public class Cell {

[SpecPublic] protected int val;

public virtual void Set(int v)

ensures val == v;
{ val = v; }

}

public class BackupCell : Cell {
[SpecPublic] protected int backup;

public override void Set(int v)
ensures backup == old(val);

{

backup = val;
val = v;

}

}

public class GrowingCell: Cell {

public override void Set(int v)
requires val <= v; // error

{ base.Set(v); }

}

Fig. 7. An example illustrating specification inheritance. The precondition in GrowingCell.Set
is rejected by the compiler. The custom attribute [SpecPublic] (declared in the
Microsoft.Contracts namespace, which is conveniently included with a using declaration)
allows a non-public field to be mentioned in public specifications. We discuss better ways to
support information hiding in Section 7.

has been updated but the other has not yet been updated accordingly. To allow object
invariants to be broken temporarily, Spec# includes a block statement expose. While an
object is exposed, its invariants need not hold; instead, they are checked at the end of
the expose block.

For example, if a Rectangle method wants to increase both the width and height by
10, it would do the following:

expose (this) {
Dx += 10;
Dy += 10;

}

Without the expose statement, the program verifier would complain with the somewhat
cryptic message “Assignment to field Rectangle.Dx of non-exposed target object may
break invariant: . . . ”. The expose statement is not always needed, however. For exam-
ple, if instead of adding 10 to Dx and Dy, the method were to double each of the fields:

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 107

Dx *= 2;
Dy *= 2;

then no expose is needed, since each statement maintains the class invariants.
To explain what is going on, we say that an object is in one of two states: mutable

or valid. When an object is in the mutable state, its object invariants need not hold and
its fields can freely be updated. When an object is in the valid state, its object invariant
is known to hold. Fields of a valid object are allowed to be updated only if the update
maintains all invariants. An object starts off as mutable and remains mutable until the
end of the constructor. After its construction, expose statements are used to temporarily
change an object from valid to mutable.

We will have much more to say about object invariants in the rest of the tutorial.
While things will get more complicated, the following basic intuitions will remain the
same: object invariants describe the steady state of the data of an object and there are
times when object invariants may be temporarily violated. An additional issue that we
will encounter is that an object invariant can be enforced only if it is known to the
program verifier, so in the modular setting where only some of the program’s classes
are visible, not all expressions are admissible as object invariants and more machinery
is needed to check those object invariants that are admissible.

2 Working with Object Invariants

In this section, we take a deeper look at working with objects and their invariants.

2.0 Aggregate Objects and Ownership

Abstractly, objects provide certain state and functionality, but the implementation is
rarely limited to the fields and methods of a single object. Instead, the fields of the
object reference other objects, often of different classes, and those objects reference
further objects, and so on. In other words, the implementation of a class usually builds
on other classes. We say that the joint functionality provided by these objects combine
into providing one aggregate object, and we say that the sub-objects or sub aggregate
objects are components of the larger aggregate object.

In Spec#, fields that reference a component of the aggregate are declared with the
[Rep] attribute, where “rep” stands for “representation”. This makes it possible for the
program text to distinguish between component references and other object references
that a class may have.

To keep track of which objects are components of which aggregates, Spec# uses
the notion of object ownership. We say that an aggregate object owns its component
objects. For example, for an object b of type Band in Fig. 8, b is the owner of b.gt, as
indicated by the [Rep] attribute.9

9 Ownership describes the structure of objects and is used by the program verifier. However,
no ownership information is kept at run time, so there are no dynamic checks that correspond
to the static checks performed by the program verifier. Consequently, the only way to detect
ownership-related errors is to apply the program verifier; at run time, such errors go undetected.

108 K.R.M. Leino and P. Müller

using Microsoft.Contracts;

class Band {
int gigs;

[Rep] Guitar gt;
Accountant accnt;

public void Play() {
expose (this) {

gigs++;
gt.Strum();

}
}

public Band() {
gt = new Guitar(10); // ...

}

// ...
}

Fig. 8. A simple example that shows a representation field gt, that is, a field that references a
component of the enclosing aggregate object. Notice that the using declaration is needed in order
to use Microsoft.Contracts.Rep unqualified. The example also shows another field, accnt,
which references an object that is not a component of the aggregate. Finally, the example shows
a typical method that operates on the aggregate object by calling methods on its components.

We explained before that an object is either in the mutable state (where its invariants
need not hold) or in the valid state (where its invariants are known to hold), and that
the expose statement is used to temporarily bring a valid object into the mutable state.
To take ownership into account, we subdivide the valid state. If a valid object has no
owner object or its owner is mutable, then we say that the object is consistent. This is
the typical state in which one applies methods to the object, for there is no owner that
currently places any constraints on the object. If the valid object does have an owner
and that owner is in the valid state, then we say the object is committed. Intuitively,
this means that any operation on the object must first consult with the owner. Figure 9
illustrates a typical heap configuration.

An implicit precondition of a method is that the target be consistent. This implies
that all components of the target are committed. Thus, to operate on a component, the
method body must first change the target into the mutable state, which implies that all
of its component change from committed to consistent.

For example, method Play in Fig. 8 wants to invoke the Strum method on this.gt.
Doing so without the expose statement would result in an error:10

10 The line and column numbers in the error messages refer to the files on the tutorial web page
[11], but we abbreviate the file names here.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 109

mutable

consistent

committed

Fig. 9. A typical heap configuration. Objects are denoted by boxes; arrows point to an object’s
owner. Every heap has a thin layer of consistent objects that separate the mutable objects from the
committed. The expose statement temporarily shifts this layer downward by making a consistent
object mutable (and the objects it owns consistent).

Fig8.ssc(14,7): The call to Guitar.Strum() requires target object to be peer
consistent (owner must not be valid)

Most often when the program verifier produces this error, the program is either missing
an expose statement or is trying to operate on an object whose owner is unknown.
Sometimes, the latter is due to a missing [Rep] declaration.

Components of aggregate objects are implementation details that are not relevant to
clients of the aggregate. Therefore, whenever a method may modify the state of an ag-
gregate object, it is also allowed to modify its components, without mentioning those
components in the modifies clause. For instance, since method Play may modify the
state of its receiver (by its default modifies clause this.*), it may implicitly also modify
the state of the Guitar object gt, which is a component of the Band aggregate. So, in
summary, there are three cases in which a method has the permission to modify a field
o.f: when o.f is listed (implicitly or explicitly) in the modifies clause, when o has been
allocated during the execution of the method, and when o is a committed component of an
object that may be modified by the method. To make use of the second option, postcon-
ditions sometimes contain o.IsNew, which expresses that an object o has been allocated
by the method.

2.1 Ownership-Based Invariants

An object invariant of an aggregate is allowed to constrain the state of its components.
For example, the Band class in Fig. 8 may expect its guitarist to be reasonably good:

invariant 7 <= gt.Level;

Or perhaps it wants to relate the guitarist’s participation with the band’s number of gigs:

110 K.R.M. Leino and P. Müller

invariant gigs <= gt.PerformanceCount;

Not all expressions are admissible as object invariants. For example, there are restric-
tions on which subexpressions can be dereferenced. Spec# permits an object invariant
if the program verifier has a way of checking that the invariant holds whenever the ob-
ject is valid. One such way is to use ownership: An ownership-based invariant of an
object may depend on the state of that object and its components. The program verifier
can check ownership-based invariants by enforcing that the components of an aggre-
gate object are changed only while the aggregate is mutable. So, “consulting with the
owner” is done by exposing the aggregate.

The invariants above are admissible ownership-based invariants, because the field
they dereference (gt) is a [Rep] field. If gt were not declared as [Rep], then trying to
include the invariants above in class Band would result in the following error, pointing
to the dereference of gt:

Fig8.ssc(8,18): Expression is not admissible: it is not visibility-based11,
and first access ’gt’ is non-rep thus further field access is not admitted.

Suppose Band includes the invariant about gt.PerformanceCount above, and sup-
pose the Strum method is specified to increment PerformanceCount by 1. Then the
expose statement in Fig. 8 correctly maintains the invariant, even though the update
gigs++ by itself may cause the invariant to be temporarily violated. On the other hand,
if gigs were incremented before the expose statement, then the program verifier would
flag an error, because invariants of valid objects must be maintained with every
assignment.

We have explained that mutable objects are not subject to invariant checking, whereas
each field update of a valid object must maintain the object’s invariants. But because
of the principle that updates of component objects must first consult the owner, field
updates are disallowed on committed objects. For example, if the body of method Play
started with the update

gt.Level++;

then the program verifier would complain:

Fig8.ssc(12,5): Target object of assignment is not allowed to be committed

We mentioned that an implicit precondition of a method is that its target be consistent.
This is important for modular verification: Knowing that the target’s owner is already
exposed allows the body of Guitar.Strum to update PerformanceCount even if it is
not aware of the Band invariant about gt.PerformanceCount. Moreover, it means that
method Play can make any change to the fields of the Band, as long as it maintains the
Band invariant, and it does not need to be concerned about the invariants declared in
classes that may (directly or transitively) own the Band object.

From what we have seen so far, public methods might as well wrap their entire body
inside an expose (this) statement. While that might be a good rule of thumb, it is not

11 We discuss visibility-based invariants at the end of this subsection.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 111

always appropriate. First, one might argue that trying to make expose blocks as small
as possible is a good idea, because that makes it more clear where invariants might be
temporarily violated. Second, changing this to mutable disables certain operations, in
particular those that require this to be consistent. An example of that situation arises if
a public method calls another public method on this.

Spec# also supports so-called visibility-based invariants, which allow the invariant ex-
pression to dereference fields that are not declared with [Rep]. However, there is another
admissibility condition: A visibility-based invariant may dereference a field only if the
declaration of the invariant is visible where the field is declared. This allows the static
verifier to check for every field update that all objects whose visibility-based invariants
depend on that field are exposed. Visibility-based invariants are useful to specify invari-
ants of object structures that are not aggregates. The web site for this tutorial [11] contains
an example of visibility-based invariants. Further details can be found in our research pa-
per on object invariants [9].
In addition to ownership-based and visibility-based invariants, a dereference of a field
f in an invariant is admissible on the grounds that the value of f does not change. For
example, if f is a readonly field or is declared in an [Immutable] class, then any invariant
can depend on f. More generally, the invariant is admissible if the f field belongs to a
frozen object, one whose fields will never change again. Spec# already has a notion of
immutable types, but we omit details here, because we are working on replacing it with
an implementation of the more flexible notion of frozen objects [12].

2.2 Subclasses

A central facility provided by a subclass mechanism is the ability to extend a class with
more state. This has an effect on invariants and ownership, so we now refine the notions
we have introduced earlier.

A class frame is that portion of an object that is declared in one particular class, not
its superclasses or subclasses. For example, an object of type ResettingController,
see Fig. 10, has three class frames: one for ResettingController, one for Controller,
and one for the root of the class hierarchy, object.

Each class frame can contain its own object invariants, which constrain the fields in
that class frame. For example, class Controller declares an invariant that constrains
rate, but the subclass ResettingController does not mention the superclass fields.

We refine the notions of mutable and valid to apply individually to each class frame
of an object. For example, an object of type ResettingController can be in a state that
is valid for class frames ResettingController and object and mutable for class frame
Controller. We say an object is consistent or committed only when all its class frames
are valid. In other words, our terms “consistent” and “committed” apply to the object
as a whole, whereas “mutable” and “valid” apply to each class frame individually.

The expose statement changes one class frame of an object from valid to mutable.
The class frame to be changed is indicated by the static type of the (expression denoting
the) object. For example, in class ResettingController, expose ((Controller)this)
exposes the Controller class frame of the target, whereas the statement expose (this)
exposes the ResettingController class frame of the same object. Omitting the first of
these expose statements leads to the following complaint:

112 K.R.M. Leino and P. Müller

using Microsoft.Contracts;
using System;

public class Controller {
[Rep] protected Sensor s0;
[Rep] protected Sensor s1;

protected bool alarm;
protected int rate;

invariant s0.measurement != s1.measurement ==> alarm;

invariant rate == (alarm ? 10: 2);

public Controller() {

s0 = new Sensor();
s1 = new Sensor();
rate = 2;

}

// ...

}

public class ResettingController : Controller {

DateTime alarmTriggered;
int clearedAlarms;
invariant 0 <= clearedAlarms;

public void CheckAlarm() // call periodically
{

if (alarmTriggered.AddSeconds(5) <= DateTime.UtcNow &&
s0.measurement == s1.measurement) {

expose ((Controller)this) {

alarm = false;
rate = 2;

}

expose (this) { // optional
clearedAlarms++;

}

}
}

}

Fig. 10. An example that shows a superclass and a subclass (we omitted the declaration of class
Sensor). The invariant declared in each class is treated independently of the other. The invariants
of Controller express that an alarm is triggered when the measurements from the two duplicate
sensors are different. When an alarm has been signaled, the sampling rate of the sensor goes up.
Class ResettingController clears an alarm in case the last divergence between the measure-
ments was at least five seconds ago.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 113

Fig10.ssc(32,9): Error: Assignment to field Controller.alarm of non-exposed

target object may break invariant: rate == (alarm ? 10: 2)

Fields of valid class frames can be updated (without an expose statement) provided the
update maintains the invariant; for example, the second expose statement in Fig. 10 is
not needed. As before, however, field updates are not allowed on committed objects.

Once an object has been fully constructed, only one class frame of an object is al-
lowed to be mutable at a time. For example, if one tried to nest the two expose state-
ments in Fig. 10, the program verifier would issue an error:

Fig10.ssc(34,17): Object might not be locally exposable

As a final adjustment to working with subclasses, we refine the notion of ownership: an
owner is an (object, class) pair. As with expose statements, static types and enclosing
contexts are used to indicate the class-component of this pair. For example, for an object
o with a [Rep] field f, the owner of o.f is (o,C), where C is the class that declares f.

In the discussion above, an object invariant constrains the fields declared in the same
class. Sometimes it is necessary to specify object invariants that relate fields from dif-
ferent class frames. For instance, class ResettingController might contain an invariant
that requires alarmTriggered to have some default value whenever alarm is false. An
invariant is allowed to mention a field from a superclass if that field is declared with at-
tribute [Additive]. To update an additive field, one has to expose the object for the class
declaring that field and all of its subclasses, which is done one class at a time with a spe-
cial additive expose statement. This ensures that the class frame with the invariant is
mutable when the field is updated. The tutorial web site contains an example with a addi-
tive fields. Additive fields are the default in many of our papers [1,9,10]. The difference
between additive and non-additive fields is discussed in another publication [13].

2.3 Establishing Object Invariants

Each constructor of a class is responsible for initializing the fields of the class in ac-
cordance with the object invariant. A constructor starts off mutable for the object being
constructed and the enclosing class. Therefore, fields of this declared in that class can
be assigned to without exposing the receiver, as illustrated by the assignments in the
constructor of Controller (Fig. 10). The class frame is changed to valid at the end of
the constructor, which is therefore where the invariant is checked.12

[Rep] attributes on fields can be seen as special object invariants that constrain the
owner of the object stored in the field. Any assignment to a [Rep] field must preserve
that special invariant, even when the class frame containing the field is mutable. In
the Controller example, the [Rep] fields s0 and s1 do not admit the value null, so
the constructor must assign to them. In Spec#, typical constructors produce objects
that are un-owned, so the right-hand sides of the assignments to s0 and s1 are un-
owned Sensor objects. So how is the ownership relation instituted? Any assignment
to a [Rep] field also has the effect of setting the owner of the right-hand side of the

12 If the program verifier has occasion to report an error for the default constructor, the source
location it uses is that of the name of the class.

114 K.R.M. Leino and P. Müller

assignment. Thus, Spec# automatically institutes the ownership relation when a [Rep]
field is being assigned to. Such an assignment requires the right-hand side to have no
owner or to already have the desired owner. That is, the assignment might set an owner
of a previously un-owned object, but it won’t automatically change an existing owner.

Until an object has been initialized for all of its class frames, it is not consistent (it has
mutable class frames) and, thus, cannot be used as receiver or argument to methods that
expect consistent arguments. We discuss how to work with partially-initialized objects
in the following advanced remark.

Non-null types express a special kind of invariant that needs to be established by each
constructor. The virtual machine initially sets all fields of a new object to zero-equivalent
values, in particular, fields of reference types to null. So before the new object has been
fully initialized, it would be unjustified to assume that non-null fields actually contain
non-null values.
Until the initialization of an object is completed, we say that the object is delayed, mean-
ing that it is in a raw state where we can rely neither on the non-nullness of its fields nor
on its object invariants. Moreover, field values of delayed objects are themselves allowed
to be delayed. By default, the this object is delayed inside constructors.
A delayed object is in general not allowed to escape from its constructor. However, some-
times it is useful to call methods on delayed objects or to pass a delayed object as an
argument to a method call. This is permitted if the callee method or its parameter is
marked with the attribute [Delayed]. The consequence of this choice is that the method
is then not allowed to assume fields of non-null types to have non-null values, let alone
assume the object invariant to hold.a

An alternative is to mark the constructor with the attribute [NotDelayed]. This requires
that all non-null fields of the class be initialized before an explicit call of the superclass
(aka base class) constructor, base. A constructor can make a base call to a [NotDelayed]
superclass constructor only if it itself is marked as [NotDelayed]. A consequence of this
design is that after the base call, the this object is fully initialized and no longer delayed.
Therefore, it can be passed to methods without the [Delayed] attribute.
Fähndrich and Xia [7] describe the details of delayed objects. Examples for delayed ob-
jects and explicit base calls can be found on the tutorial web page.

a Any reference-valued parameter of a method, not just the receiver, can be marked with
[Delayed]. However, there is a bug in the current version of the program verifier that
makes the verification of methods with more than one [Delayed] parameter unsound.

3 Owners and Peer Groups

In this section, we explore more dimensions of ownership, especially sets of objects
with the same owner, so-called peers.

3.0 Peers

The ownership model introduced so far allows aggregate objects to maintain invariants
and to assume consistency of their components, for instance, when calling a method
of a component. However, not all interacting objects are in an aggregate-component
relationship. For example, a linked-list node n interacts with its successor node n.next,

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 115

but n.next is usually not thought of as a component of n. Rather, n and n.next have a
more equal relationship, and both nodes may be part of the same enclosing aggregate
object. Therefore, both nodes are more appropriately declared as peers, that is, objects
with the same owner. This is accomplished by the attribute [Peer].

A general guideline is to use [Rep] wherever possible, because it strengthens encap-
sulation and simplifies verification. [Peer] is appropriate when two objects are part of
the same aggregate (that is, the aggregate object has direct access to both objects) or
when the objects are part of a recursive data structure (such as the nodes of a linked
list).

Another guideline is to use [Rep] when the field references an object whose type or
mere existence is an implementation detail of the enclosing class, and to use [Peer]
when the field references an object that can also be accessed by clients of the enclosing
class. For example, in a typical collection-iterator pattern, the iterator has a field that
references the collection. This field is best marked as [Peer], because the collection is
not an implementation detail of the iterator and clients of the iterator may also access
the collection directly.

As another example illustrating the use of peer objects, consider the two classes in
Fig. 11. The Dictionary class makes use of some unspecified number of Node objects,
which by the [Peer] declaration on the next field are all peers. The Dictionary class
maintains a reference to the first and last of the Node objects, and declares the head
and tail fields as [Rep]. Note that, in general, a Dictionary object owns many more
objects than the two that are referenced directly by its fields.

Let us consider how the peer relation is instituted. The situation is analogous to [Rep]
attributes: if pr is a [Peer] field, then assignment o.pr = x automatically institutes a
peer relation between o and x. Essentially, the assignment sets the owner of x to be the
same as the owner of o. But, as for [Rep] fields, Spec# won’t change an owner, so the
operation requires the right-hand side to start off having no owner or already having the
desired owner. Moreover, an assignment to a [Peer] field requires that the target object
not be committed—one is allowed to add peers to an object o only at times when the
invariant of o’s owner need not be maintained. We will illustrate these rules with the
two versions of an Insert method shown in Fig. 11.

The body of method InsertA first records the value of head in local variable h,
and then sets head to a newly allocated Node. Since head is declared with [Rep], the
assignment to this.head also sets the owner of the new Node to this. Then, since next
is a [Peer] field, the assignment head.next = h sets the owner of h to be the same as
the owner of head, which is this; in this case, the owner of h was already this, so the
assignment to the [Peer] field is allowed and has no net effect on the ownership of h.

The expose statement in InsertA is required. First, the class invariant in Dictionary
would be broken by the assignment to head if head were initially null. By using the
expose statement, the code is allowed to temporarily violate the invariant; the assign-
ment to tail restores the invariant. Second, the assignment of a [Peer] field requires
the target object not to be committed; without the expose statement in InsertA, the
program verifier would issue a complaint:

Fig11.ssc(23,7): Target object of assignment is not allowed to be committed

116 K.R.M. Leino and P. Müller

public class Dictionary {

[Rep] Node? head = null;
[Rep] Node? tail = null;
invariant head == null <==> tail == null;

public bool Find(string key, out int val) {
for (Node? n = head; n != null; n = n.next) {

if (n.key == key) { val = n.val; return true; }
}
val = 0; return false;

}

public void InsertA(string key, int val) {

expose (this) {
Node? h = head;
head = new Node(key, val); // new.owner = this;

head.next = h; // h.owner = head.owner;
if (tail == null) {

tail = head; // head.owner = this;

}
}

}

public void InsertB(string key, int val) {
expose (this) {

Node n = new Node(key, val);
if (head != null) {

Owner.AssignSame(n, head); // n.owner = head.owner;

n.next = head; // head.owner = n.owner;
}
head = n; // n.owner = this;

if (tail == null) {
tail = head; // head.owner = this;

}

}
}

}

class Node {
public string key;
public int val;

[Peer] public Node? next;
public Node(string key, int val) { this.key = key; this.val = val; }

}

Fig. 11. An example showing a linked list of key-value pairs. A Dictionary object owns all the
Node objects it reaches from head. The two variations of an Insert method illustrate two different
ways to accomplish the same result. The comments in the code show the automatic and manual
ownership assignments.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 117

Method InsertA first updates head and then sets the next field of the new object. An
alternative would be to first set the next field and then update head, as in:

Node n = new Node(key, val);
n.next = head;
head = n;

But this code fragment poses a problem: when the [Peer] field n.next is assigned to,
Spec# will want to change the owner of the right-hand side, head, to the owner of n,
but since head already has an owner (and it is not the owner of n, for n has no owner at
this point), Spec# would have to do an ownership change, which it won’t do. In cases
like this, when one wants to change the owner of the target object, not of the right-
hand side, one has to resort to a manual ownership assignment. This is illustrated in
method InsertB, which uses the method Microsoft.Contracts.Owner.AssignSame.
While the automatic ownership assignments take care of the case when the right-hand
side is null, the manual ownership assignments do not; hence, the if statement in
InsertB. The remaining automatic ownership assignments in InsertB, see the com-
ments in the figure, have no net effect.

It is worth noting the direction of ownership assignments. Automatic ownership as-
signments always affect the right-hand side of the field assignment. In contrast, the
Owner methods that can be used to manually change ownership change the owner of the
first parameter. For illustration, see the first two comments in method InsertB.

3.1 Peer Consistency

In the Dictionary example above, the peer objects, of type Node, are designed together
with the owner class, Dictionary. This need not always be the case. Sometimes, objects
may naturally occur as related abstractions, but without a specific client context in mind.
For example, a collection object may have a number of iterator objects. The collection
and its iterators are programmed together, but they can be used in any client context,
just like a collection by itself could be.

We show a simple collection and iterator example in Fig. 12. Each iterator holds a
reference to the collection it is iterating over. The iterator does not own the collection—
clients that use collections need the ability to acquire ownership; besides, a collection
may have several iterators, and they cannot all own the collection. Instead, the field
c is declared as [Peer]. Let us first explore why the field is declared [Peer] at all (as
opposed to having no ownership attribute) and then, in the next subsection, explore how
the peers are instituted.

Consider the GetCurrent method of the iterator. To determine if it has gone through
all the elements in the collection, it compares its index, i, with the number of elements
in the collection, Count. Then, it accesses the collection’s array, which requires the
index to be less than the length of that array. The correctness of this operation relies on
the invariant Count <= a.Length, which holds of valid collection objects. But how do
we know the collection to be valid?

One could add a precondition to GetCurrent, using the property IsConsistent,
which is available in all objects and which yields whether an object is consistent:

118 K.R.M. Leino and P. Müller

public class Collection {
[Rep] internal int[] a;
public int Count;

invariant 0 <= Count && Count <= a.Length;

public int Get(int i)

requires 0 <= i && i < Count;
modifies this.0;

{ return a[i]; }

public Iterator GetIterator() {
Iterator iter = new Iterator();

Owner.AssignSame(iter, this);
iter.c = this;
return iter;

}

// ...
}

public class Iterator {
[Peer] internal Collection? c;

int i = 0;
invariant 0 <= i;
public bool MoveNext() {

i++;
return c != null && i < c.Count;

}

public int GetCurrent() {
if (c != null && i < c.Count) return c.a[i];
else return 0;

}
public void RemoveCurrent()
modifies this.**;

{
if (c != null && i < c.Count) {

for (int j = i+1; j < c.Count; j++)

invariant 0 < j && c != null && 0 < c.Count;
{

expose (c) { c.a[j-1] = c.a[j]; }

}
expose (c) { c.Count--; }

}

}
}

Fig. 12. A rudimentary collection and iterator example, illustrating the use of peer objects inde-
pendent of any owning context. The example leaves out many common features of collections
and iterators that are not the focus here. The access mode internal indicates that the field can
be accessed by other classes in the same assembly (which is .NET speak for “module”).

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 119

public int GetCurrent()
requires c != null && c.IsConsistent;

However, such a precondition reveals implementation details (one would have to declare
field c as [SpecPublic], change its access level, or use abstraction mechanisms).

Since it is quite common for objects to rely on the consistency of some of their
peers, Spec# uses another approach. It adds an implicit precondition to every method
that requires all in-bound parameters, including the target parameter, and all their peers
to be consistent. When an object and all its peers are consistent, we say the object (and
each of its peers) is peer consistent. Peer consistency is also an implicit postcondition
of all out-bound parameters and return values.

Requiring peer consistency as the precondition of GetCurrent is more than we need
for the example, but it has the advantage that GetCurrent does not explicitly need to
name the associated collection in its precondition.

To summarize, because of the implicit precondition of peer consistency, all we need
to do to verify method GetCurrent is to declare the field c as [Peer]. The peer consis-
tency of this then implies the (peer) consistency of c, and thus the invariant of c can
be assumed to hold and the array access c.a[i] can be verified to be within bounds.

The peer-consistency precondition makes it very easy to call methods of peer objects.
Suppose the direct array access c.a[i] in method GetCurrent were replaced by a call
c.Get(i). The implicit precondition of Get is that the receiver, c, be peer consistent.
Since the iterator this and its collection c are peers, the peer consistency of this (which
is the implicit precondition of GetCurrent) implies the peer consistency of c. Note that
it is not necessary (nor possible) to enclose a call to c.Get(i) in an expose (this)
statement, whereas if c had been declared a [Rep], it would have been necessary (and
possible) to do so.

The peer-consistency precondition also allows a method to expose peer objects. For
instance, method RemoveCurrent exposes the collection c to remove an element. Its
modifies clause uses the wild-card this.**, which denotes all fields of all peers of
this. A more usable example would add a postcondition to recover information about
the state of the collection and the iterator.

Any time a method invokes a method on some object, say x, it needs to live up to the
precondition of the callee, which includes establishing the peer consistency of x. If x is a
parameter of the enclosing method or has been obtained from a new call or as the return
value of some other method, then x is typically already known to be peer consistent.
When x is obtained from a field of an object, say o.f, then peer consistency typically
follows from the [Rep] or [Peer] attribute on the declaration of field f. Omitting such
an attribute often causes the program verifier to issue a complaint like:

Sec3.1.ssc(12,5): The call to Demo.M() requires target object to be peer

consistent

because it cannot prove x and its peers to be valid. Peer consistency also includes not
being committed. Therefore, if f is a [Rep] field, one needs to expose o before calling
a method on o.f. Otherwise, the verifier reports an error such as:

Sec3.1.ssc(13,5): The call to Demo.M() requires target object to be peer

consistent (owner must not be valid)

120 K.R.M. Leino and P. Müller

Occasionally, it is useful to call methods on a receiver or with arguments that are not peer
consistent. For instance, a method might want to expose its receiver and then, from inside
an expose statement, call an auxiliary method on the receiver (see the tutorial web site
for an example). Spec# provides two ways of avoiding the implicit precondition of peer
consistency.
All implicit specifications can be turned off by marking a method with
[NoDefaultContract]. However, often one would like to turn off implicit specifi-
cations more selectively.
Methods parameters can also be declared with the attribute [Inside]. The implicit pre-
condition for an [Inside] parameter p of static type C says that p is exposed for C, and it
says nothing about the peers of this. To mark this as [Inside], place the attribute on
the method.
A consequence of using [Inside] is that the method cannot assume the object invariant
of the [Inside] receiver or parameter, and the caller of the method cannot assume the
object invariant to hold upon return. Instead, an [Inside] method must write explicit
pre- and postconditions that explain which conditions are to hold on entry and exit.

3.2 Peer Groups

In the previous subsection, we motivated the notion of peer consistency and the use of
that condition as an implicit method precondition. Let us now explore what peers and
peer consistency mean when an object has no owner.

An object always has some (possibly empty) set of peers, regardless of whether or
not the object has an owner. We say that an object always belongs to a peer group.
When an owner is assigned, the entire peer group is assigned that owner, so the peer
relation among the objects of the peer group is preserved. For example, for a [Rep]
field rp, an assignment o.rp = x transfers the entire peer group of x into ownership
by o. For a [Peer] field pr, an assignment a.pr = x merges the entire peer group of
x into the peer group of a. (As we mentioned before, both of these kinds of ownership
assignments require x to be un-owned or to already have the desired owner.) The use
of peer groups and the implicit precondition of peer consistency mean that an object
does not need to reveal to its clients what its peers are, which provides information
hiding.

Peer groups may be enlarged and may be merged, but Spec# does not currently pro-
vide any way to break up a peer group.

The treatment of peer groups and ownership in Spec# also means that the order in
which objects are made peers or assigned owners does not matter. For example, if one
wants to establish a situation where o owns both a and b, one can first merge the peer
groups of a and b and then set object o as the owner of the resulting peer group, or one
can first set o as the owner of a and then merge the peer group of b into that of a. As an
analogy, consider the process of going to dinner with some friends. One can either first
gather a group of friends (analogy: peers) and then decide which restaurant (analogy:
owner) to go to, or one can first decide which restaurant to go to and then find friends
to come along.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 121

4 Arrays

In this section, we explain how Spec# handles arrays, especially how non-null types
and ownership work for array elements.

4.0 Covariant Array Types

C#, and therefore also Spec#, has covariant array types. That means that a variable of
static type T[] can hold an array whose allocated type is U[], where U is any subtype
of T. The property that the elements of an array are indeed of the array’s element type
cannot be ensured by the static type system. Instead, it is enforced dynamically by the
.NET virtual machine and also checked statically by the program verifier.13

For example, without further information, the method

void SetArrayElement(Controller[] a, int i)
requires 0 <= i && i < a.Length;
modifies a[i];

{
a[i] = new Controller(); // possible error

}

will cause the program verifier to complain:

Sec4.0.ssc(6,5): RHS might not be a subtype of the element type of the array
being assigned

This warns about the possibility that a has allocated type, say, ResettingController[],
in which case it is not allowed to assign a Controller object into a.

To prevent this complaint, one has to convince the program verifier that array-element
updates are correct, which usually boils down to showing that the allocated type of the
array equals its static type, say T[]. In some cases, this can be determined without ad-
ditional specifications, in particular if T is a sealed class or if T is a class that is internal
to the assembly (e.g., non-public) and the assembly does not define any subclasses of
T. In other cases, one needs to write a specification that constrains the allocated type of
the array.

For instance, in the example above, the following precondition takes care of the
problem:

requires a.GetType() == typeof(Controller[]);

13 However, Spec# currently ignores co-variance errors that occur when an array with non-null
element type is cast to an array of possibly-null elements. The compiler does not emit the
necessary run-time check, and the verifier also ignores this issue.

122 K.R.M. Leino and P. Müller

The GetType method (which is defined for all references) returns an object (of type
System.Type) that represents the allocated type of a, and the expression typeof(T),
where T denotes a type, returns a System.Type object that represents the type T. GetType
may also be used in object invariants, which is useful when arrays are stored in fields.

4.1 Arrays of Non-null Elements

Array types typically have the form T?[]!, meaning that the array itself is non-null,
whereas the array elements are possibly-null instances of T. Either the ? or the ! can be
omitted, depending on the defaults used by the compiler. Besides this common form,
Spec# supports all other combinations of non-null and possibly-null, in particular, non-
null element types as in T![]!.

Unlike fields of non-null types, whose initialization in the constructors of the class
can be assured by syntactic definite-assignment rules, arrays of non-null elements are
initialized by arbitrary code that follows the new allocation of the arrays. Until that

public void ExampleArrays() {

string[] food = { "black-eyed peas", "red hot chili peppers", "cream" };
WriteAll(food);

string[] series = new string[3];
series[0] = "The prime numbers start with 2, 3, 5, 7, 11, 13, 17";
series[1] = "The Fibonacci numbers start with 0, 1, 1, 2, 3, 5, 8";

series[2] = "The perfect numbers start with 6, 28, 496, 8128";
NonNullType.AssertInitialized(series);
WriteAll(series);

string[] facts = new string[10];
for (int n = 0; n < facts.Length; n++)

invariant n <= facts.Length;
invariant forall{int i in (0: n); facts[i] != null};

{

facts[n] = (n+1) + " ants is more than " + n + " elephants";
}
NonNullType.AssertInitialized(facts);

WriteAll(facts);
}
public void WriteAll(string[] ss)

{
foreach (string s in ss) {
Console.WriteLine(s);

}
}

Fig. 13. The WriteAll method takes a non-null array of non-null strings. Method
ExampleArrays shows several ways of initializing arrays with non-null elements. Method
NonNullType.AssertInitialized is declared in Microsoft.Contracts.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 123

initialization is completed, one cannot rely on the type of the array to accurately reflect
the non-nullness of the array elements. For this reason, the Spec# type checker provides
a special marker, in the form of a method NonNullType.AssertInitialized, which is
used to indicate a program point where the initialization code has completed. The type
checker will not give the array its declared non-null type until that point.

For illustration, Fig. 13 shows the initialization of three arrays. Array food is
initialized in the same statement that allocates it, so the type checker can treat it as
having type string[] immediately. Arrays series and facts are initialized by code
sequences. Thus, before these arrays can be used as having type string[], the code
must call AssertInitialized. At that call site, the program verifier checks that every
array element is non-null.14

If a program tries to use the array element before the array has been given its de-
clared type, the compiler will complain. For example, if the assignment to series[2]
in Fig. 13 is replaced by series[2] = series[1], the following type error results:

Fig13.ssc(13,17): Cannot store delayed value into non(or incompatibly)-
delayed location

despite the fact that the right-hand side of the assignment actually does have a non-null
value at that time.

Also, if the code does not include a call to AssertInitialized for an array of non-
null elements, the type checker complains:

Fig13.ssc(10,14): Variable ’series’, a non-null element array, may not have
been initialized. Did you forget to call NonNullType.AssertInitialized()?

Perhaps confusingly, the source location mentioned in the error message points to where
the array is declared, but this does not mean that AssertInitialized has to be called
there.

4.2 Ownership of Arrays and Array Elements

Just like nullness, Spec# allows one to specify ownership independently for an array
and its elements.

In Fig. 14, we show a class that uses an array of (possibly-null) Step objects. Method
AddStep of the class queues up drawing steps and method Apply performs the work
associated with these steps.

Ownership of Arrays. The last object invariant dereferences the array: steps[i]. To
make this invariant admissible, the class declares the field steps to be [Rep]. Without
the [Rep] attribute, the compiler’s admissibility checker would report an error:

Fig14.ssc(11,39): Expression is not admissible: first access on array or
binding member must be rep.

14 At run time, AssertInitialized performs a dynamic check that the array elements are not
null. The time needed to do so is proportional to the length of the array, but that is no worse
than the time required to initialize the array in the first place.

124 K.R.M. Leino and P. Müller

using System;

using Microsoft.Contracts;

public class DrawingEngine {

[Rep] [ElementsRep] Step?[] steps = new Step?[100];

invariant 1 <= steps.Length;

int cnt;

invariant 0 <= cnt && cnt <= steps.Length;

invariant forall{int i in (0: cnt); steps[i] != null};

public void AddStep(byte op, int argX, int argY) {

if (cnt == steps.Length) { EnlargeArray(); }

expose (this) {

Step s = new Step(op, argX, argY);

steps[cnt] = s;

cnt++;

}

}

void EnlargeArray()

ensures cnt < steps.Length;

{

expose (this) {

Step?[] more = new Step?[2*steps.Length];

Array.Copy(steps, 0, more, 0, steps.Length);

steps = more;

}

}

public void Apply() {

for (int i = 0; i < cnt; i++) {

Step? s = steps[i];

assert s != null;
expose (this) { s.DoWork(); }

}

cnt = 0;

}

}

class Step {

public byte op;

public int argX, argY;

public Step(byte op, int x, int y) {

this.op = op; argX = x; argY = y;

}

public void DoWork() { /* ... */ }

}

Fig. 14. This example class uses an array of owned Step objects. The call to DoWork in method
Apply requires s to be peer consistent. This information follows from the [ElementsRep] at-
tribute on steps, which says that the array elements are owned by the DrawingEngine object.
Note that we use an assert statement in method Apply to convince the type checker that s is
non-null. The verifier can prove this assertion using the third object invariant, but the type checker
does not consider object invariants.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 125

Note that this invariant constrains the state of the array object, but not of the array
elements. Therefore, this invariant does not require the array elements to be owned by
the DrawingEngine object.

Arrays do not have object invariants. Therefore, they need not be exposed before
an array element is updated. However, since an owning object might have an invariant
that constrains the state of the array, array-element updates, like steps[cnt] = s in
AddStep, require the array not to be committed (that is, require the owner to be mutable).
The enclosing expose statement temporarily changes this from valid to mutable and
thus, since steps is a [Rep] field, changes the array steps from committed to peer
consistent. Without the expose statement, the program verifier would complain:

Fig14.ssc(17,7): Target array of assignment is not allowed to be committed

The expose statement could be wrapped around just the array-element update, but wrap-
ping it as shown in Fig. 14 also works.

Similarly, by its implicit precondition, the call to Array.Copy in EnlargeArray re-
quires its parameters to be peer consistent. The expose statement puts steps into the re-
quired state. As in AddStep, this particular expose statement is shown wrapped around
several statements, not just the call statement that needs it.

Ownership of Array Elements. The call s.DoWork() in method Apply requires the
Step object s to be peer consistent. As we have discussed in Section 3.1, for objects
stored in fields, peer consistency typically follows from ownership attributes on the
fields. Here, s is stored in an array, and we use the [ElementsRep] attribute on the field
steps to express that every non-null element of the array is owned by the enclosing
DrawingEngine object.

Without [ElementsRep] on steps, the program verifier would produce several error
messages for method Apply, complaining about the effects of DoWork and about the lack
of peer consistency at the call to DoWork:

Fig14.ssc(34,23): method invocation may violate the modifies clause of the
enclosing method

Fig14.ssc(34,23): The call to Step.DoWork() requires target object to be
peer consistent
Fig14.ssc(34,23): The call to Step.DoWork() requires target object to be

peer consistent (owner must not be valid)

With the [ElementsRep] attribute, the code exposes this, which makes steps[i] peer
consistent. Moreover, Apply is then allowed to modify the elements of steps because
they are components of the DrawingEngine aggregate.

Spec# also provides an attribute [ElementsPeer], which expresses that the array
elements are peers of the object containing the [ElementsPeer] field.

126 K.R.M. Leino and P. Müller

Spec# requires all elements of an array to have the same owner, even if that owner
is not specified by an [ElementsRep] or [ElementsPeer] attribute. For an array arr,
the call Owner.ElementProxy(arr) yields an artificial object that is a peer of the el-
ements of arr. This artificial object exists even if arr contains all null elements.
The element proxy of a new array is initially un-owned. It is set when the array is
assigned to an [ElementsRep] or [ElementsPeer] field. The element proxy can be
used to query and modify ownership information for arr’s elements. For instance, the
call Owner.AssignSame(Owner.ElementProxy(arr), this) makes the element proxy
of arr—and thus all current and future elements of arr—a peer of this. Like all owner-
ship assignments, this call requires the element proxy to be un-owned or to already have
the desired owner. Analogously to updates of [Rep] or [Peer] fields, assignments to array
elements, like steps[cnt] = s in AddStep, make the right-hand side of the assignment a
peer of the array’s element proxy.

5 Generics Classes

Instead of using arrays, it is often more convenient to use generic collection classes.
In this section, we illustrate how to write clients of generic classes. We do not discuss
how to implement generic classes, because the implementation of generic classes in the
Spec# compiler and verifier still needs improvement.

Figure 15 shows another version of class DrawingEngine from Fig. 14, this time using
the generic class List. The implementation based on List is significantly simpler. One
reason for this is that we can use a list of non-null Step objects, which simplifies the
specifications. The details of dealing with a partially-filled array are hidden inside the
List class.

Ownership for generics is very similar to arrays, with two differences. First, for in-
stances of generics, one can specify the owner individually for each generic type ar-
gument. This is done by passing the number of the type argument to the attributes
[ElementsRep] and [ElementsPeer] (starting with 0, of course). For instance, declar-
ing a field

[ElementsPeer(0)] Dictionary<K,V> dict;

adds implicit checks and assumptions to all operations on dict that values of type K are
peers of this. When the number is omitted, like in the declaration of steps in Fig. 15,
the attribute refers to all type arguments.

Second, there are no automatic owner assignments when objects are passed to oper-
ations of generic classes. For instance, method AddStep has to assign an owner to the
new object s before passing it to List’s Add method. Omitting this assignment leads to
the following complaint from the verifier:

Fig15.ssc(13,7): Error: The call to System. · · ·.List<Step!>.Add(Step! item)
requires item to be a peer of the expected elements of the generic object

6 Capturing Parameters

A standard way to construct an aggregate object is to construct the components inside
the constructor of the aggregate. For example, the constructor of the Band class in Fig. 8

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 127

using System.Collections.Generic;
using Microsoft.Contracts;

public class DrawingEngine {
[Rep] [ElementsRep] List<Step> steps = new List<Step>();

public void AddStep(byte op, int argX, int argY) {
expose (this) {

Step s = new Step(op, argX, argY);

Owner.AssignSame(s, steps);
steps.Add(s);

}

}

public void Apply() {

foreach (Step s in steps) {
expose (this) { s.DoWork(); }

}

steps = new List<Step>();
}

}

Fig. 15. The DrawingEngine from Fig. 14, this time using the generic class List. The Step class
is unchanged. Like for arrays, attribute [ElementsRep] indicates ownership for the elements of
the collection. However, the owner has to be set explicitly before an object is stored in the list.

initializes its gt field to a Guitar object that it allocates. Sometimes, a component
is provided by a client of the aggregate, either during construction or via a method.
This is useful, because it allows the client to customize the component, for example by
allocating it to be of a particular subclass.

6.0 Customizing Rep Fields

Consider again the Band class, this time with a constructor and a method that accept a
Guitar that is to become a component of the Band, see Fig. 16. Since gt is declared as
[Rep], the assignment gt = g will set the owner of g to this, and the operation requires
g to be un-owned. This precondition and license to modify an owner are obtained by
declaring the parameter with [Captured]. Intuitively, the [Captured] attribute says that
the parameter is passed in but does not “come back out”. More precisely, [Captured]
says that the callee has the right to take ownership of the object referenced by the
parameter, and that a caller should not expect to be able to directly use the object after
the call.15

15 Spec# currently does not support an [ElementsCaptured] attribute that would allow a method
to capture the elements of an array or a generic collection.

128 K.R.M. Leino and P. Müller

class Band {
[Rep] Guitar gt;

public Band([Captured] Guitar g)
{
gt = g;

}

public void ReplaceGuitar([Captured] Guitar g)

requires Owner.Different(this, g);
ensures Owner.Is(g, this, typeof(Band));

{

gt = g;
}

// ...
}

Fig. 16. An example that shows how clients can, via either a constructor or a method, supply an
object that is to become a component of the Band aggregate. This allows a client to supply an
appropriate Guitar object. The [Captured] attribute allows the callee to assign ownership to a
parameter. The method Owner.Is yields whether its first argument is owned by the class frame
specified by its second and third argument—here, (this,Band).

The [Captured] attribute affects a method’s (or constructor’s) precondition and
modifies clause16, but it has no effect on the postcondition. So, without further
specification, the caller does not get to find out how the parameter is captured. This
is usually satisfactory when captured into a [Rep] field, since the [Rep] field is usu-
ally an implementation detail of the class. Nevertheless, it is possible to write an ex-
plicit postcondition. For example, a postcondition gt == g will do. Another way to
do it is to use the Owner.Is predicate as shown for method ReplaceGuitar in
Fig. 16.17

Here is a possible client of the Band:

Guitar g = new BumperGuitar();
Band r = new Band(g);
r.Play();
g.Strum(); // error

16 In fact, there is no explicit way of listing an owner “field” in a modifies clause. Even the
modifies clause term p.* does not give the right to modify the owner of p. So, the only way
to obtain the license to modify the owner of a parameter object is to use the [Captured]
attribute.

17 Using Owner.Is in the postcondition of the constructor is more involved because of its actual
parameter this, which may not have been fully constructed yet—a Band subclass constructor
may have more work to do and, thus, the object is delayed (see Section 2.3).

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 129

This client decides to use a particular Guitar subclass, BumperGuitar, for the Band it
constructs. Note that after calling the Band constructor, the caller still has a reference to
the captured object g. However, the caller is not able to invoke a method on g, because
the caller cannot be sure that g is peer consistent (in fact, it will be committed).

Here is another client, somewhat contrived:

Band r = new Band();
Guitar g = new BumperGuitar();
r.ReplaceGuitar(g);
r.Play();
expose (r) {
g.Strum();

}

From the information in ReplaceGuitar’s postcondition, one can conclude that the
expose statement makes g peer consistent. Therefore, this client’s call to g.Strum()
verifies.18

One more thing remains to be explained about the example in Fig. 16, namely the
reason for the precondition of method ReplaceGuitar. Without this precondition, the
program verifier would complain about the assignment in the method:

Fig16.ssc(21,5): when target object is valid, it is not allowed to have the
same owner as RHS, because that would cause a cycle in the ownership relation

Or, if the assignment to gt occurred inside an expose statement, the program verifier
would issue a complaint at the end of that expose statement:

Fig16.ssc(23,5): All of the object’s owned components must be fully valid

The reason for these errors is the following scenario: The [Captured] attribute on pa-
rameter g entails the precondition of g having no owner. But this precondition still
allows g to have peers. Suppose that, on entry to the method, g and this were peers.
Then, the implicit ownership assignment that takes place when assigning to the [Rep]
field this.gt would create the incestuous situation that this owns g and yet this and
g are peers! This is disallowed and is the reason for these errors.

The predicate Owner.Different says that its two arguments are not peers. By using
it in the precondition of ReplaceGuitar, one avoids the errors above.

18 One can draw the same conclusion had the method’s postcondition been gt == g. However, it
is not possible to prove, after the call to r.Play(), that r.gt == g. This is because the implicit
modifies clause of r.Play() is r.*, which allows r.gt to be modified. But the modifies clause
does not permit modifying an owner, which is why one can conclude that g is still owned by r

at the time of the expose.

130 K.R.M. Leino and P. Müller

In addition to Different, the Owner class has a method Same. For static program verifi-
cation, these two predicates are each other’s negation. However, there is an important and
subtle difference in their run-time behavior. In principle, all contracts could be checked
at run time, but to keep the overhead reasonable, Spec# omits certain run-time informa-
tion and run-time checks, for example, ownership information. Consequently, predicates
like Owner.Same, Owner.Different, and Owner.Is cannot be computed at run time. In-
stead, these predicates all return true at run time. As long as these predicates are used
in positive positions (that is, not negated) in contracts, the program verifier will enforce
stronger conditions than are enforced at run time. So, to make a choice between Same and
Different, use the one that you can use in a positive position. It would be good if Spec#
enforced this “positive position rule” for the predicates concerned, but the current version
of Spec# does not implement any such check.

6.1 Customizing Peer Fields

It is also possible to capture parameters into [Peer] fields. Consider the example in
Fig. 17, which shows two constructors that establish a peer relationship between the
object being constructed and the object given as a parameter.

public class Iterator {

[Peer] public Collection Coll;

public Iterator([Captured] Collection c) // captures ’c’

ensures Owner.Same(this, c);
{
Coll = c; // c.owner = this.owner;

}

[Captured]

public Iterator(Collection c, int x) // captures ’this’
ensures Owner.Same(this, c);

{

Owner.AssignSame(this, c); // this.owner = c.owner;
Coll = c; // c.owner = this.owner;

}

// ...
}

Fig. 17. An example that shows two ways of setting up a peer relationship in a constructor. The
first constructor captures the parameter into the peer group of the Iterator being constructed;
the second constructs an Iterator in the same peer group as the parameter. Alternatively, either
postcondition could have been written as (the stronger) ensures Coll == c.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 131

Both constructors take a parameter c and ensure that, upon return, this and c are in
the same peer group. A newly allocated object—that is, this on entry to a constructor—
starts off in a new, un-owned peer group. Like any other method, unless its specification
says otherwise, the constructor is not allowed to change this ownership information for
this, or for any other parameter. Therefore, a new expression typically returns a new
object in a new, un-owned (but not necessarily singleton) peer group.

The first constructor in Fig. 17 declares that it will capture the parameter, c. The
ownership relation (or, rather, the peer-group relation) is instituted automatically when
the [Peer] field Coll is assigned, as we have described in Section 3.0 and as suggested
by the comments in Fig. 17. This solution is not always the best, because it requires
the caller to pass in an un-owned collection c. A caller may be in a situation where the
collection already has an owner and the caller wants to create a new iterator for that
collection.

For these reasons, the second constructor in Fig. 17 shows the more common way to
set up a peer relationship in a constructor. The [Captured] attribute on the construc-
tor, which is to be construed as applying to the implicit this parameter, says that the
instigating new expression may return with the new object being placed in a previously
existing peer group (with or without an assigned owner). Thus “capturing” this instead
of c is usually a good idea, since ownership relations previously known to the caller are
unaffected. Moreover, since the object being constructed starts off with no owner, the
body of the constructor can easily live up to the precondition of the ownership assign-
ment it will effect. However, the automatic ownership assignment that is performed
with peer-field updates goes the wrong direction, so the body needs to use a manual
ownership assignment as shown in Fig. 17.

In the example, each of the two constructors declares a postcondition that tells callers
about the ownership of the new object, namely that it will be a peer of the parameter
c. This kind of postcondition is common when a peer relationship is established, but
uncommon when a parameter is captured into a [Rep] field. The reason is the same as
the reason for choosing between [Rep] and [Peer]: [Rep] denotes something of an im-
plementation detail, promoting information hiding and letting the class write invariants
that dereference the [Rep] field, whereas [Peer] is used when clients have an interest
in the object referenced.

7 Abstraction

When specifying the methods of a class, it is desirable to write the method contract
in terms of entities (fields, methods, or properties) that can be understood by clients
without violating good principles of information hiding. The compiler enforces the fol-
lowing rules: Entities mentioned in the precondition of a method must be accessible
to all callers; this means that they must be at least as accessible as the method itself.
Entities mentioned in the postcondition of a method must be accessible to all imple-
mentations of the method; this means that contracts of virtual methods (which can be
overridden in subclasses) cannot mention private entities and can mention internal en-
tities only if the method or its enclosing class is internal. These rules ensure that callers

132 K.R.M. Leino and P. Müller

public class Counter {
int inc;
int dec;

[Pure][Delayed]
public int GetX()

{ return inc - dec; }

public Counter()

ensures GetX() == 0;
{}

public void Inc()
ensures GetX() == old(GetX()) + 1;

{ inc++; }

public void Dec()
ensures GetX() == old(GetX()) - 1;

{ dec++; }

}

Fig. 18. A simple example that uses pure methods as a form of abstraction. Abstractly, a Counter

is a value that can be retrieved by GetX(). Concretely, the value is represented as the difference
between the number of increment and decrement operations performed. All method contracts are
written in terms of the pure method GetX(), not the private fields inc and dec.

understand the preconditions they are to establish and implementations understand the
postconditions they are to establish.19

But then, what can be used in contracts when most fields of the class are private
implementation details? The solution lies in abstracting over those details. For that
purpose, Spec# provides pure methods, property getters, and model fields, which we
explain in this section.

7.0 Pure Methods

A method that returns a value without changing the program state can provide a form
of abstraction. Such methods are called pure and are declared as such by the attribute
[Pure]. Pure methods are not allowed to have side effects.

The program in Fig. 18 represents a counter that can be incremented and decre-
mented. The current value of the counter is retrieved by the method GetX(), which is
declared as [Pure]. The specifications of the constructor and methods are given in terms

19 Spec# does not enforce similar restrictions on object invariants. So when a client exposes an
object, it might not understand the condition that has to hold at the end of the expose block.
However, since clients typically do not modify inaccessible fields, the program verifier can
nevertheless often prove that the invariant is preserved.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 133

of GetX(), which means that clients are separated from the implementation decision of
storing the counter as the difference between the private fields inc and dec.

The way that the program verifier reasons about a pure method is via the specifi-
cation of the method: if the (implicit and explicit) precondition holds, then the result
will be a value that satisfies the postcondition.20 In the common special case that the
implementation of a pure method consists of a single statement return E, the compiler
implicitly adds a postcondition ensures result == E to the pure method if that would
make a legal postcondition, there is no explicit postcondition, and the method is not vir-
tual.21 In the example, it is this implicit postcondition of GetX() that lets the Counter
constructor and the Inc and Dec methods be verified. Experience shows that this “post-
condition inference” is usually desired. If one does not want the postcondition inference,
the workaround is simply to provide an explicit postcondition, like ensures true, or
to introduce a second statement in the body of the pure method, like:

[Pure] T MyPureMethod() { T t = E; return t; }

The implicit precondition for pure methods is different from the peer-consistency pre-
condition of ordinary methods. To see why, consider the following possible method of
the Band class (cf. Fig. 8):

[Pure]
public int MagicNumber() {
return 3 + gt.StringCount();

}

where gt is a [Rep] field and StringCount is a pure method of the Guitar class. To
compute its result, the implementation of this pure method makes use of values com-
puted by components of the aggregate—here, the number of guitar strings. Such pure
methods are common and of good form. However, if pure methods required peer consis-
tency, then MagicNumber would have to expose this before calling gt.StringCount().
For side-effect-free methods, which can never break any invariants, exposing objects is
unnecessary overhead. So, instead of requiring the receiver and its peers to be consistent
(which implies that the owner is mutable), pure methods only require the receiver and
its peers to be valid (saying nothing about the state of the owner). We call this condition
peer validity. Note that if an object, like a Band object, is peer valid, then so are all its
components, like the object gt.

20 If a contract calls a pure method, then the contract itself must make sure that the pure method
is called only when its precondition holds. In other words, a contract must always be well
defined. However, the current version of the program verifier does not check all contracts to be
defined. It does so for object invariants, but not for pre- and postconditions, for example. This
current omission in the program verifier can sometimes lead to some confusion. In particular,
if a pure method’s precondition is violated in a contract, then the effect will be that the program
verifier does not know anything about the result of the pure method.

21 Since Spec# encourages the use of specifications, it would be natural if the compiler did the
reverse: add an implicit implementation whenever the postcondition of a pure method has the
simple form ensures result == E. However, this is currently not supported by the compiler.

134 K.R.M. Leino and P. Müller

The example in Fig. 18 uses the pure method GetX in the postcondition of the
Counter constructor. Such usage is common but regrettably tricky. We explain it in
the following advanced remark.

Since the constructor is by default delayed (see advanced remark in Section 2.3), the type
checker enforces that any method it calls (on this) is also delayed, including any call
that occurs in the postcondition. Therefore, the example declares GetX to be [Delayed].
A consequence of that declaration is that method GetX cannot rely on the non-null prop-
erties of the receiver or the object invariant, but that does not present any problem in the
example.
If the pure method GetX had to rely on the object invariant, things would get more
complicated. Consider a variation of class Counter that represents a non-negative in-
teger and includes a precondition 0 < GetX() for method Dec. Then, the class could
be proved to maintain the invariant dec <= inc, and one may want to add the post-
condition 0 <= result to the pure method GetX(). To prove such a postcondition,
the method would require the invariant to hold, which is at odds with GetX() being
[Delayed]. Note that it is not an option to require the invariant through a precondition
requires dec <= inc, because this precondition would reveal hidden implementation
details.
To specify this variation of class Counter, it is necessary for the constructor and GetX
both to be non-delayed, which is achieved by removing [Delayed] from GetX and adding
[NotDelayed] to the constructor. Furthermore, the constructor must live up to the implicit
precondition of GetX, which is peer validity. This is a problem, because at the end of the
Counter constructor, this is valid only for Counter and its superclasses—any subclass
constructors have not yet finished, so the object is not yet valid for those class frames. A
simple, but sometimes untenable, way to address that problem is to declare Counter as a
sealed class, which forbids it from having subclasses. The resulting variation of Fig. 18
is available on the tutorial web page.
An alternative to making Counter sealed is to use the [Additive] mechanism mentioned
in an advanced remark in Section 2.2. This mechanism allows us to express that the re-
ceiver of GetX is valid for the class frames Counter and object, but mutable for all other
class frames (if any). This is exactly the case after the body of Counter’s constructor, at
the time the call to GetX in the postcondition is evaluated. See the tutorial web page for
an example.

7.1 Property Getters

In .NET, the usual way to write a GetX() method is to write a property X and to provide
for it a getter. Similarly, a SetX(x) method is usually written as the setter for a prop-
erty X. Properties are a facility that hides the underlying representation—X looks like
a stored value, but its value may be computed in some way rather than being directly
represented. Figure 19 shows the Counter class written in this more common way of
using a property getter.

In common usage patterns, property getters tend to present abstractions to clients,
and the implementations of property getters tend to have no side effects. Therefore,
Spec# makes property getters [Pure] by default. What we said in Section 7.0, for ex-
ample about inferred postconditions and about delayed type correctness and object in-
variants, also applies to property getters. Note in Fig. 19 that, syntactically, the attribute
[Delayed] is placed on the getter itself, not on the enclosing property declaration.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 135

public class Counter {
int inc;
int dec;

public int X {
[Delayed]

get { return inc - dec; }
}

public Counter()
ensures X == 0;

{}

public void Inc()
ensures X == old(X) + 1;

{ inc++; }

public void Dec()
ensures X == old(X) - 1;

{ dec++; }
}

Fig. 19. The Counter class of Fig. 18 written with a property getter X instead of method GetX()

7.2 Purity: The Fine Print

Pure methods (including pure property getters) need to be side-effect free. Conse-
quently, a pure method’s implicit modifies clause is empty and the method must not
use any explicit modifies clause. But the handling of pure methods is more subtle
than simple side-effect freedom. Pure methods must also satisfy the following three
requirements:

– Mathematical Consistency: We reason about pure methods in terms of their speci-
fications. For this reasoning to be sound, the specifications must be mathematically
consistent. In particular, if pure methods are specified recursively, the recursion
must be well founded. Spec# ensures well-foundedness by assigning a recursion
termination level (a natural number) to each pure method. The specification of a
pure method M may call a pure method p.N only if p is a [Rep] field (or a sequence
of [Rep] and [Peer] fields, starting with a [Rep] field) or if p is this and N’s recur-
sion termination level is strictly less than M’s. Consequently, for each such call, the
height of the receiver in the ownership hierarchy decreases or the height remains
constant, but the level decreases, which ensures well-foundedness. For most pure
methods, Spec# infers a recursion termination level automatically; it can also be
specified using the [RecursionTermination(r)] attribute.

– Determinism: Pure methods are usually used as if they had all the properties of
mathematical functions. In particular, pure methods are generally expected to be
deterministic. However, this is not the case when a pure method returns a newly

136 K.R.M. Leino and P. Müller

allocated object. The compiler performs some conservative, syntactic checks to en-
sure that this non-determinism is benevolent. These checks may instruct the user to
apply the attribute [ResultNotNewlyAllocated] to the pure method (in which case
the program verifier checks that the result value is not newly allocated) or apply the
attribute [NoReferenceComparison] to a pure method that may potentially get two
newly allocated references as parameters.

– Dependencies: It is important to know what state changes may interfere with the
value returned by a pure method. This is achieved by specifying the read effect of
each pure method using the [Reads] attribute. Typical values for this attribute are:

• [Reads(ReadsAttribute.Reads.Owned)] (the default for pure instance meth-
ods), which allows the contract and body of the pure method to read the fields
of this and any object that is transitively owned by this

• [Reads(ReadsAttribute.Reads.Nothing)] (the default for static pure meth-
ods), which allows a pure method to depend only on readonly fields.

• [Reads(ReadsAttribute.Reads.Everything)], which allows a pure method
to depend on all objects.

The compiler uses various syntactic rules to enforce that the contracts of pure meth-
ods stay within their allowed read effects. However, neither the compiler nor the
program verifier in the current version of Spec# checks the body of a pure method
against its specified read effects. Hence, any violation of the read effects in the body
goes undetected.

Further details and examples of all three requirements are available online.

7.3 Model Fields

Besides pure methods and property getters, Spec# provides yet another abstraction
mechanism. In contrast to regular fields, a model field cannot be assigned to; the model
fields of an object o get updated automatically at the end of each expose (o) block [10].
The automatic update assigns a value that satisfies a constraint specified for the model
field.

Figure 20 shows another version of the Counter class. The model field X is declared
with a satisfies clause whose constraint holds whenever the object is valid.

A model field is simpler to reason about than a pure method. First, its value changes
only at the end of expose blocks, whereas the value of a pure method may change
whenever a location in the read effect of the pure method is modified. Second, a model
field can be read even for mutable objects, whereas a pure method typically requires its
receiver to be valid. This makes it much easier to use model fields in constructors (note
that the code in Fig. 20 does not require a [Delayed] attribute) and object invariants.

However, model fields are more restrictive than pure methods. First, they have no pa-
rameters. Second, a satisfies clause may depend only on the fields of this and objects
transitively owned by this (like a pure method marked with the attribute
[Reads(ReadsAttribute.Reads.Owned)]). So, a general guideline is to use pure meth-
ods or property getters when model fields are too restrictive; otherwise, model fields are
the better choice.

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 137

public class Counter {
protected int inc;
protected int dec;

model int X {
satisfies X == inc - dec;

}

public Counter()

ensures X == 0;
{}

public void Inc()
ensures X == old(X) + 1;

{
expose (this) { inc++; }

}

public void Dec()

ensures X == old(X) - 1;
{
expose (this) { dec++; }

}
}

Fig. 20. Class Counter of Fig. 18 with a model field X instead of method GetX(). The updates of
inc and dec must be done inside an expose block to ensure that X is being updated accordingly.

A satisfies clause does not have to specify a single value for the model field.
Especially in abstract classes, it is often useful to give a weak satisfies clause and
then declare additional satisfies clauses in subclasses. The value of a model field
o.f satisfies the satisfies clauses of those classes for which o is valid. The program
verifier checks that the satisfies clauses are feasible, that is, that there is a value that
satisfies them. This check fails for the following model field, because there is no odd
number that can be divided by 6:

model int Y {
satisfies Y % 2 == 1 && Y % 6 == 0;

}

Like for pure methods, the verifier applies heuristics to find an appropriate value. When
the heuristics are too weak, it is also possible to convince the verifier of the feasibility
by providing a suitable value using a witness clause in the declaration of a model field:

model int Z {
satisfies Z % 2 == 1 && Z % 5 == 0;
witness 5;

}

138 K.R.M. Leino and P. Müller

8 Conclusions

Learning to use a program verifier requires a different kind of thinking than is applied
in some other programming contexts today. It is harder than making sure that the pro-
gram sometimes works—it forces the programmer to think about all possible inputs,
data-structure configurations, and paths. The programmer does not need to imagine all
cases up front, because the program verifier will do this exhaustively. But the program-
mer constantly needs to face the question “How am I going to convince the program
verifier that this part of my program design is correct?”. This process, by itself, has
side benefits. For example, it can encourage simpler designs and better use of informa-
tion hiding. Also, the specifications that are written while interacting with the verifier
record design decisions that programmers otherwise have to reconstruct manually from
the code. Knowing what is involved in program verification can also improve one’s pro-
gramming practices in other languages, since it raises one’s awareness of correctness
issues and teaches the use of contracts at module interfaces.

Spec# is a state-of-the-art programming system for programming with specifications
and applying program verification. Nevertheless, the system is not nearly as simple to
use as we wish it were. For example, it is impossible to go very far without understand-
ing what it means for an object to be “consistent”. Therefore, learning how to use the
system takes patience, and experience will show how best to handle certain situations.

We hope this Spec# tutorial provides a basis for understanding the many features
of the system and understanding the error messages that the verifier produces. We also
hope that the tutorial and the Spec# system itself will inspire others to improve the state
of the art, in the open-source distribution of Spec# as well as in other programming
systems yet to be designed.

Acknowledgments

We are grateful to Rosemary Monahan and Valentin Wüstholz for the extensive feed-
back on drafts of this tutorial.

References

0. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

1. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-
oriented programs with invariants. Journal of Object Technology 3(6), 27–56 (2004)

2. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Conference Record of the Fourth
Annual ACM Symposium on Principles of Programming Languages, pp. 238–252. ACM,
New York (1977)

Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs 139

4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: Conference Record of the Fifth Annual ACM Symposium on Principles of
Programming Languages, January 1978, pp. 84–96 (1978)

5. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

6. Dhara, K.K., Leavens, G.T.: Forcing behavioral subtyping through specification inheritance.
In: 18th International Conference on Software Engineering, pp. 258–267. IEEE Computer
Society Press, Los Alamitos (1996)

7. Fähndrich, M., Xia, S.: Establishing object invariants with delayed types. In: Gabriel, R.P.,
Bacon, D.F., Lopes, C.V., Steele Jr., G.L. (eds.) Proceedings of the 22nd Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2007, pp. 337–350. ACM, New York (2007)

8. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D.R., Müller, P., Kiniry, J.,
Chalin, P., Zimmerman, D.M.: JML Reference Manual (May 2008),
http://www.jmlspecs.org

9. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M. (ed.)
ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

10. Leino, K.R.M., Müller, P.: A verification methodology for model fields. In: Sestoft, P. (ed.)
ESOP 2006. LNCS, vol. 3924, pp. 115–130. Springer, Heidelberg (2006)

11. Leino, K.R.M., Müller, P.: Spec# tutorial web page (2009),
http://specsharp.codeplex.com/Wiki/View.aspx?title=Tutorial

12. Leino, K.R.M., Müller, P., Wallenburg, A.: Flexible immutability with frozen objects. In:
Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 192–208. Springer,
Heidelberg (2008)

13. Leino, K.R.M., Wallenburg, A.: Class-local object invariants. In: First India Software Engi-
neering Conference (ISEC 2008). ACM, New York (2008)

14. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions on Program-
ming Languages and Systems 16(6), 1811–1841 (1994)

15. Manna, Z., Pnueli, A.: Axiomatic approach to total correctness of programs. Acta Informat-
ica 3(3), 243–263 (1974)

16. Meyer, B.: Object-oriented Software Construction. Series in Computer Science. Prentice-
Hall International, New York (1988)

http://www.jmlspecs.org
http://specsharp.codeplex.com/Wiki/View.aspx?title=Tutorial

Fixpoints and Search in PVS�

Natarajan Shankar

Computer Science Laboratory
SRI International

Menlo Park CA 94025 USA
shankar@csl.sri.com

http://www.csl.sri.com/˜shankar/

Abstract. The Knaster–Tarski theorem asserts the existence of least and great-
est fixpoints for any monotonic function on a complete lattice. More strongly,
it asserts the existence of a complete lattice of such fixpoints. This fundamental
theorem has a fairly straightforward proof. We use a mechanically checked proof
of the Knaster–Tarski theorem to illustrate several features of the Prototype Ver-
ification System (PVS). We specialize the theorem to the power set lattice, and
apply the latter to the verification of a general forward search algorithm and a
generalization of Dijkstra’s shortest path algorithm. We use these examples to ar-
gue that the verification of even simple, widely used algorithms can depend on a
fair amount of background theory, human insight, and sophisticated mechanical
support.

1 Introduction

Software is now a critical component of a range of systems from medical devices to
aircraft flight control. Software defects are embarrassingly commonplace. Most of these
defects are merely annoying, but some software defects can be very costly or even
life-threatening. Formal verification, particularly computer-aided verification, has been
touted as one solution to the problem of software unreliability. However, there is still
a significant gap between the promise of verification technology and the practice of
software engineering. We argue that this gap can be closed, but only with a long-term
investment in the scientific foundations of software. We use the example of a formal
development of fixpoint theory and its application to a widely used search algorithm, to
illustrate this point.

Algorithms for graph search on weighted and unweighted directed graphs are em-
ployed in a number of applications. The general forward search (GFS) algorithm de-
termines if a goal vertex g in a directed graph is reachable from a source vertex s.
The algorithm is presented in Lavalle’s Planning Algorithms [LaV06] without proof.
The mechanized verification of GFS using PVS is presented here mainly to illustrate
the challenge of proving the correctness of even simple, widely used algorithms. This

� This research was supported by NSF Grants CSR-EHCS(CPS)-0834810 and SGER-0823086
and by NASA Cooperative Agreement NNX08AY53A. Insightful feedback from the anony-
mous refereees and from Sam Owre were helpful in revising the paper.

P. Müller (Ed.): LASER Summer School 2007/2008, LNCS 6029, pp. 140–161, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.csl.sri.com/~shankar/

Fixpoints and Search in PVS 141

proof relies on nontrivial invariants and a rich body of mathematical concepts and theo-
rems. The mechanized verification illustrates a number of features of the PVS language
and prover.

The GFS algorithm explores the vertices starting from the source vertex by maintain-
ing two disjoint sets: the live vertices Q and the dead vertices D. Initially, D contains
the source vertex s and Q contains those successors of s that are distinct from s. In
each step, a live vertex v is removed from Q. If vertex v = g, then the search succeeds.
Otherwise, v is added to D, and the non-D successors of v are added to the set of live
vertices to continue the search. In order to demonstrate the correctness of GFS, we have
to show that the search succeeds exactly when vertex g is reachable from s.

Given a source vertex s in a directed graph G, the set R of vertices reachable from s
is the smallest set containing s that contains the target vertices of any edge in G whose
source vertex is in R. Such inductive definitions arise from fixpoint theory as fixpoints
of a monotonic operator on a given ordering. The Knaster–Tarski theorem is the key
result which asserts the existence of such fixpoints. It is fundamental to logic, database
theory, algorithms, program semantics, and program analysis. A lattice L is a partially
ordered set that is closed under the operations of taking the least upper bound (or join)⊔

Y and greatest lower bound (or meet)
�

Y of any subset Y of L. A monotonic
function f on the lattice preserves the order so that f(x) ≤ f(y) whenever x ≤ y. A
fixpoint of a lattice is an element w such that f(w) = w. The Knaster–Tarski theorem
asserts that a monotonic function f on a complete lattice L has a complete lattice F of
fixpoints. In particular, it has a least fixpoint lfp(f) and a greatest fixpoint gfp(f).

Knaster [Kna28] first proved this theorem for the power set lattice which is the power
set of a given set ordered by the subset relation. Tarski [Tar55] generalized the result
to arbitrary complete lattices. Given a complete meet semi-lattice with a greatest lower
bound operator over a subset of lattice elements, it is easy to define the corresponding
least upper bound operator. Therefore a complete meet semi-lattice is really a complete
lattice.

The power-set lattice is a commonly used instance of the abstract theory of lattices.
It consists of all the subsets of a given set ordered by the subset relation. On the power
set lattice, ℘(X), let S be a function from X to ℘(X). We can then define a strongest
post-condition operator post(S) on ℘(X) so that post(S)(Y) =

⋃
y∈Y S(y). We can

define a cumulative version cpost(S)(Y) of the strongest post-condition operator as Y ∪
post(S)(Y), and an indexed version ipost(S, Z)(Y) as Z ∪Y ∪post(S)(Y). Note that
all the operations post(S), cpost(S), and ipost(S, Z) are monotonic. Given some set
Z in ℘(X), the set of elements reachable from Y using S can be computed as the least
fixpoint lfp(ipost(S, Z)). This is the smallest set R such that Z ⊆ R and post(S)(R) ⊆
R. Reachability in a directed graph G = (V, E) can be defined as lfp(ipost(E, {s}))
where s is the source node and Ê is the function defined so that for any subset of vertices
X , Ê(X) = {v′ ∈ V |∃v ∈ V.(v, v′) ∈ E}. We develop background fixpoint theory
starting from lattices in order to verify graph search algorithms. This formalization of
fixpoint theory contains definitions and theorems, such as those concerning fixpoints of
continuous operators, that are not really used in the verification.

Graph reachability can be formalized directly without building on fixpoint theory.
PVS has a notion of inductively defined predicates for just this purpose. However, GFS

142 N. Shankar

is one in a class of algorithms including depth-first search, breadth-first search, Dijk-
stra’s shortest path algorithm, and A* search. A more general treatment based on fix-
point theory can be used to extend the formalization of GFS to these other algorithms
as well. We illustrate this with an abstract treatment of Dijkstra’s algorithm where the
graphs have non-negative weights associated with the edges and the objective is to find
the shortest, i.e., lowest weight, path from a source to a target vertex.

The rest of the paper covers the formalization of fixpoint theory in PVS and the ver-
ification of the GFS and Dijkstra’s algorithms. In Section 2, we briefly introduce PVS.
Section 3 describes the formalization of fixpoint theory in PVS. This formalization is
specialized to the Boolean or power-set lattice in Section 4. The verification of the GFS
algorithm and a generalized version of Dijkstra’s algorithm are outlined in Sections 5
and 6, respectively. Section 7 enumerates some of the lessons learnt from this formal-
ization and lists the related work, while the conclusions are summarized in Section 8.

2 A Brief Overview of PVS

The Prototype Verification System (PVS) is a comprehensive framework for interactive
and automated verification based on higher-order logic [ORSvH95]. PVS is used here
as the medium for formalizing the concepts underlying search algorithms, and we do
exploit several of its features. However, other verification systems such as Coq [BC04],
HOL [GM93], or Isabelle [NPW02] would also function along roughly similar lines.
PVS, as we mentioned, is based on higher-order logic, which admits variables not only
over individuals, as in first-order logic, but also over functions, functions of functions,
and so on. Higher-order logic uses types to avoid paradoxes due to self-application.
Types are built from base types such as the Booleans bool and the real numbers real.
The type [A→B] represents the type of functions with domain type A and range type B.
For example, [A→bool] represents type of predicates over the type A, and we ab-
breviate this as PRED[A] or as set[A]. The type [A1, . . . , An] represents the type
of n-tuples where the i’th element has type Ai for 1 ≤ i ≤ n. In addition, PVS has
predicate subtypes which are of the form {x : T |e} which contains the elements x of
T satisfying e. With this, we can define subtypes for rational numbers, integers, even
numbers, prime numbers, ordering relations, and order-preserving maps. For example,
the subtype of even numbers can be defined as {i : int | EXISTS (j : int)
2*j = i}. With predicate subtypes, typechecking and theorem proving become in-
terdependent since the demonstration that an expression like 6 + 4 is an even number
now requires a proof. The PVS typechecker generates proof obligations corresponding
to predicate subtypes called type correctness conditions (TCCs). PVS also has depen-
dent types such as [x : A→B], where the range type B can depend on the domain
element x. For example, if B is the type multiples(x) containing the integer multiples
of x, then the dependent type [x : int→multiples(x)] contains those functions on the
integers that map each integer x to some multiple of x. The PVS language has other
features like parametric theories and recursive and corecursive datatypes that will be
explained when needed. The PVS language and its type system can be used to em-
bed other methodologies that require the generation of proof obligations, for example,
Hoare logic [Hoa69, HJ00] or the B method [Abr96, Muñ99].

Fixpoints and Search in PVS 143

PVS also has an interactive proof checker that builds on various automated proce-
dures for binary decision diagrams, satisfiability modulo theories, and rewriting. The
proof checker uses a sequent representation for proof goals such that each step either
completes the proof of a subgoal or generates new subgoals. Proof strategies can be
defined to execute complex patterns of proof steps, like induction. Examples of the
language features and the proof checking commands are given below.

3 Fixed Points over Complete Lattices

A complete lattice L over a partial ordering relation ≤ is closed under the operations
of taking the supremum

⊔
(join or least upper bound) and infimum

�
(meet or greatest

lower bound) of a given subset of elements of L. We first present a small PVS theory
that defines the property of being an infimum operator. The theory lowerbound takes
as parameters, the type T and a partial ordering relation <= over this type. The type
(partial order?[T]) corresponds to the set of ordering relations that satisfy the
partial order? predicate.

lowerbound [T: TYPE, <= : (partial_order?[T])]
: THEORY

BEGIN

X : VAR set[T]
x, y, z: VAR T

lowerbound?(X)(x): bool = (FORALL y: X(y) => x <= y)

glb?(X)(x): bool = (lowerbound?(X)(x) AND
(FORALL (y: (lowerbound?(X))): y <= x))

END lowerbound

It suffices to formalize complete lattices in terms of a meet or a join semi-lattice. This
formalization of complete lattices in terms of the meet semi-lattice is developed in the
theory meet semilattice described below. The theory takes as parameters, a type
T, a partial ordering <= on T, and an operator glb that maps subsets of the type T to the
greatest lower bound in T with respect to the ordering <=. The theory lowerbound
is imported within the parameter list of the meet semilattice theory. Note that an
element of the type set[T] is a predicate over type T.

meet_semilattice [T : TYPE, <= : (partial_order?[T]),
(IMPORTING lowerbound[T, <=])
glb : [X: set[T] -> (glb?(X))]]

: THEORY
BEGIN

.

.

.
END meet_semilattice

Within the scope of BEGIN ...END, the theory enumerates a list of lemmas and def-
initions. The first sequence of lemmas record that <= is a partial ordering and that the
glb operator computes a lower bound and the greatest such lower bound. These lem-
mas are are essentially extracted from the type of <= and glb (using the PVS proof
command TYPEPRED), but by proving them, we allow the respective properties to be
directly employed in other proofs.

144 N. Shankar

x, y, z: VAR T

X, Y, Z : VAR set[T]

f, g : VAR [T -> T]

reflexivity: LEMMA
x <= x

antisymmetry: LEMMA
x <= y AND y <= x IMPLIES x = y

transitivity : LEMMA x <= y AND y <= z IMPLIES x <= z

glb_is_lb: LEMMA X(x) IMPLIES glb(X) <= x

glb_is_glb: LEMMA
(FORALL x: X(x) IMPLIES y <= x)

IMPLIES y <= glb(X)

The first couple of definitions capture the notion of a monotone operator on the lattice
and of the fixpoint of an operator.

mono?(f): bool = (FORALL x, y: x <= y IMPLIES f(x) <= f(y))

fixpoint?(f)(x): bool =
(f(x) = x)

Two key theorems then follow from the definition of the least fixpoint lfp as the great-
est lower bound of the set of pre-fixpoints, i.e., the set of elements x such that f(x)
<= x. Then, KT1 asserts that lfp(f) is a fixpoint of a monotone operator f, and KT2
asserts that it is the least such fixpoint.

lfp(f) : T = glb({x | f(x) <= x})

KT1: THEOREM
mono?(f) IMPLIES

lfp(f) = f(lfp(f))

KT2: THEOREM
mono?(f) AND fixpoint?(f)(x) IMPLIES
lfp(f) <= x

The proof of KT1 is interesting. By anti-symmetry, we can reduce it to f(lfp(f))
<= lfp(f) and lfp(f) <= f(lfp(f)). For the first case, we know that
lfp(f) is glb({x | f(x) <= x}), so by glb is glb, it would suffice to show
that f(lfp(f)) is a lower bound of {x | f(x) <= x}. Indeed this is the case
since for any element x, lfp(f) <= x by glb is lb, and hence f(lfp(f)) <=
f(x) by the monotonicity of f, and f(lfp(f)) <= x by transitivity since f(x)
<= x. Once we know f(lfp(f)) <= lfp(f), the other case follows since this
means that f(lfp(f)) is a pre-fixpoint by monotonicity, and lfp(f) is a lower
bound of the set of pre-fixpoints.

The PVS version of this proof shown below has eight steps. In the first step, the
universal quantifiers are replaced by Skolem constants, e.g., the universally quantified
variable f is replaced by the constant f!1. Also, the implication in the goal is flattened
into a sequent. A sequent has the form Γ � Δ for a sequence of antecedent formulas Γ
and a sequence of consequent formulas Δ and asserts the validity of

∧
Γ ⇒ ∨

Δ. With

Fixpoints and Search in PVS 145

flattening, the monotonicity condition becomes the antecedent formula, and the fix-
point equation becomes the consequent formula. Instead of splitting the equality using
anti-symmetry, we introduce a case split on f!1(lfp(f!1)) <= lfp(f!1). This
corresponds to the second case of the informal proof above. The all-purpose grind
command completes the first branch of the proof where the formula is assumed, i.e.,
added as an antecedent. Since the theory meet semilattice (i.e., the part of the
theory that precedes the occurrence of KT1) is given as a :theories parameter to
grind, it rewrites the definitions of lfp and mono? and employs glb is lb and
antisymmetry as rewrite rules. The interaction is more delicate on the other branch
where f!1(lfp(f!1)) <= lfp(f!1) is added as a consequent. First, grind is
applied without instantiation leaving us with the task of demonstrating

f!1(glb({x | f!1(x) <= x})) <= glb({x | f!1(x) <= x}).
By applying glb is glb, we can use transitivity and monotonicity to show that
f!1(glb({x | f!1(x) <= x})) is a lower bound for {x | f!1(x) <= x}.

(""
(skosimp)
(case "f!1(lfp(f!1)) <= lfp(f!1)")
(("1" (grind :theories "meet_semilattice"))
("2"
(grind :theories "meet_semilattice" :if-match nil)
(rewrite "glb_is_glb")
(skosimp*)
(rewrite "transitivity" + :subst ("y" "f!1(x!1)"))
(grind :theories "meet_semilattice"))))

The theorem KT2 is easily proved since lfp(f) is the lower bound of the set of pre-
fixpoints. The PVS proofs of most of the theorems contain interactive steps that roughly
correspond to their informal proofs, and make only modest demands on the automation
available in PVS.

The meet-semilattice can be shown to be a complete lattice. by defining the least
upper bound lub(X) as the greatest lower bound of the set of upper bounds of X. With
this definition, lub is lb and lub is lub are easily verified as being the duals
of glb is gb and glb is glb, respectively. Later, we exploit the duality between
meets and joins by instantiating the meet semilattice theory with its dual.

lub(X): T = glb({y | (FORALL (x: (X)): x <= y)})

lub_is_ub: LEMMA X(x) IMPLIES x <= lub(X)

lub_is_lub: LEMMA (FORALL x: X(x) IMPLIES x <= y)
IMPLIES lub(X) <= y

We introduce some further definitions in the theory meet semilattice. The maxi-
mal element in the lattice is defined as the greatest lower bound of the empty set.

top: T = glb(emptyset[T])

In order to define continuity, we introduce the notion of a descending sequence as one
where each successive element is below its predecessor in the <= ordering. The type
sequence[T] consists of the functions from the natural numbers to T.

146 N. Shankar

i, j, k: VAR nat

A : VAR sequence[T]

descending?(A): bool =
(FORALL i: A(i + 1) <= A(i))

dB, dC: VAR (descending?)

A function f is meet-continuous or infimum-continuous if for any descending sequence
A0, A1, . . . with greatest lower bound A, the infimum-image of f on A, i.e., greatest
lower bound of the sequence f(A0), f(A1), . . ., is f(A). Note that the glb operation
has been overloaded to apply to sets of lattice elements as well as sequences of lattice
elements.

glb(A): T = glb({x | (EXISTS i: x = A(i))})

i_image(f)(A): T = glb(LAMBDA i: f(A(i)))

i_continuous?(f): bool =
(FORALL dC: f(glb(dC)) = i_image(f)(dC))

A fairly lengthy argument (31 interactive steps) is required to show that a meet-
continuous operator on the lattice is also monotonic. For a monotonic operator f , we
define a descending sequence �, f(�), f(f(�)), . . ., as dn seq(f). The descending
property of this sequence is established in the proof obligation generated by the typing
judgement descending dn seq. The PVS typechecker employs the judgement as a
forward-chaining rule when inferring types for expressions. The greatest fixpoint of a
continuous function f is defined as cgfp(f).

monotone_i_continuous: LEMMA
i_continuous?(f) IMPLIES mono?(f)

dn_seq(f)(i): RECURSIVE T =
(IF i = 0 THEN top

ELSE f(dn_seq(f)(i-1))
ENDIF)

MEASURE i

descending_dn_seq: JUDGEMENT dn_seq(f : (mono?)) HAS_TYPE (descending?)

cgfp(f): T = glb(dn_seq(f))

The meet semilattice theory also contains a definition of the dyadic meet oper-
ation, and various theorems about it that are elided from the formal presentation. These
theorems assert that meet is commutative and associative with top as its identity ele-
ment, and that it is the maximal lattice element lying below both its arguments.

meet(x, y): T = glb({z | z = x OR z = y})

Next, we show that the meet semilattice theory contains its dual. This is done
defining a new theory comp lattice with the same parameters and assumptions as
meet semilattice. Within this theory, we import both the meet semilattice
as well as its self-dual meet semilattice[T, >=, lub]. With the latter, we can
prove the dual versions of KT1 and KT2 as KT3 and KT4, respectively.

Fixpoints and Search in PVS 147

comp_lattice[T : TYPE, <= : (partial_order?[T]),
(IMPORTING lowerbound[T, <=])
glb : [X: set[T] -> (glb?(X))]]

: THEORY
BEGIN
IMPORTING meet_semilattice[T, <=, glb] AS MSL %meet semilattice
IMPORTING meet_semilattice[T, >=, lub] AS JSL %join semilattice

END comp_lattice

The operators in the dual lattice JSL are renamed so that gfp(f) is JSL.lfp(f),
ascending?(A) is the same as JSL.descending?(A), and lub(A) is
JSL.glb(A).

gfp(f) : T = JSL.lfp(f)

i, j, k: VAR nat

A : VAR sequence[T]

ascending?(A): bool = JSL.descending?(A)

aB, aC: VAR (ascending?)

lub(A): T = JSL.glb(A)

The duals of KT1 and KT2 are proved as KT3 and KT4. The theory also establishes join-
continuity, given by the predicate u continuous?, as the dual of meet-continuity, but
we omit this part of the theory.

KT3: THEOREM
MSL.mono?(f) IMPLIES
gfp(f) = f(gfp(f))

KT4: THEOREM
MSL.mono?(f) AND MSL.fixpoint?(f)(x) IMPLIES
x <= gfp(f)

So far, we have shown that any meet semilattice is a complete lattice by defining a least
upper bound operator and verifying that a monotone operator on a complete lattice has
a least and greatest fixpoint. It remains to show that the set of fixpoints of a monotonic
function itself forms a complete lattice. This is done by showing that for any monotone
operator f , the set of fixpoints of f admits a greatest lower bound operator. The informal
argument for this claim is quite subtle. For a given complete lattice L, let F be the set
of fixpoints of a monotone operator f . We have to show that for any subset X of F ,
there is an element of l̂ of F that is the greatest lower bound of X . First, let k be the
greatest lower bound of X in L. Let L/k be the set of elements j of L such that j ≤ k.
It can be verified that L/k is a complete lattice. Furthermore, f is closed on L/k: for
any element j of L/k and for all elements x of X , j ≤ x we have f(j) ≤ f(x) = x,
and hence f(j) ≤ k. Any fixpoint of f in L that is in L/k is also a fixpoint of f in L/k,
and vice-versa. By KT3 and KT4, there is a greatest fixpoint for f in L/k. Let l̂ be this
greatest fixpoint. It must clearly be the greatest lower bound of X in F .

The lattice structure of the fixpoints is developed in the theory KnasterTarski.
We import the generic form of the theory comp lattice since we plan to use specific
instances of it. The specific instance comp lattice[T, <=, glb] is imported
separately and abbreviated as MSL since it is referenced frequently.

148 N. Shankar

KnasterTarski[T : TYPE, <= : (partial_order?[T]),
(IMPORTING lowerbound[T, <=])
glb : [X: set[T] -> (glb?(X))]]

: THEORY
BEGIN

IMPORTING comp_lattice

IMPORTING comp_lattice[T, <=, glb] as MSL

END KnasterTarski

First, for any lattice element x, we define the complete lattice formed by taking the
elements y such y<=x. The greatest lower bound operator on this subset of the lattice
is defined using the corresponding operator for the lattice. In this definition, we need a
special case for the empty set since lower(x) is not a complete sublattice of the lat-
tice. The greatest fixpoint operator on the smaller complete lattice is used in the proof.
The theory instance comp lattice[(lower(x)), <=, lower glb(x)] gen-
erates proof obligations that are easily discharged.

lower(x)(y): bool = (y <= x)

lower_glb(x)(Y : set[(lower(x))]): (lower(x)) =
(IF empty?(Y)
THEN x
ELSE glb(Y)

ENDIF)

lower_gfp(x)(f: [(lower(x)) -> (lower(x))]): (lower(x)) =
comp_lattice[(lower(x)), <=, lower_glb(x)].gfp(f)

Next, we need to show that the set of fixpoints of the lattice over T admits
a greatest lower bound operator. For this, we prove a few lemmas. The first
one, lower glb closure, asserts that if X is a set of fixpoints, then the set
lower(glb(X)) is closed under any monotone operation f on the lattice. This
lemma is easily proved by invoking the definitions of mono? and fixpoint? and
the assumptions transitivity and glb is lb.

lower_glb_closure: LEMMA
(FORALL (X: set[(MSL.fixpoint?(f))]):

MSL.mono?(f) =>
(FORALL (w: (lower(glb(X)))): lower(glb(X))(f(w))))

The second lemma lower fixpoint asserts that any fixpoint on the lattice
lower(glb(X)) is also fixpoint on the lattice over T.

lower_fixpoint: LEMMA
(FORALL (X: set[(MSL.fixpoint?(f))]):

MSL.mono?(f) AND
lower(glb(X))(y) AND
meet_semilattice[(lower(glb(X))), <=, lower_glb(glb(X))].fixpoint?

(restrict[T, (lower(glb(X))), T](f))(y)
=> MSL.fixpoint?(f)(y))

The lemma lower fixpoint2 is the converse of lower fixpoint, and both are
proved with a single proof command.

Fixpoints and Search in PVS 149

lower_fixpoint2: LEMMA
(FORALL (X: set[(MSL.fixpoint?(f))]):

MSL.mono?(f) AND
lower(glb(X))(y) AND
MSL.fixpoint?(f)(y)

=> meet_semilattice[(lower(glb(X))), <=, lower_glb(glb(X))].fixpoint?
(restrict[T, (lower(glb(X))), T](f))(y))

Finally, we can prove the main theorem lattice FP asserting that the set of fixpoints
of the operation f admits a greatest lower bound operator: to any set X of fixpoints,
there is a fixpoint y which is its greatest lower bound. The proof here involves a fair bit
of interaction (forty steps), mostly following the informal argument given above.

lattice_FP: THEOREM
MSL.mono?(f) IMPLIES
(FORALL (X: set[(MSL.fixpoint?(f))]):

EXISTS (y: (MSL.fixpoint?(f))):
(FORALL (x: (X)): y <= x) AND
(FORALL (z: (MSL.fixpoint?(f))):

(FORALL (x: (X)): z <= x) => (z <= y)))

In the remainder of the paper, we demonstrate an application of the fixpoint theory in
forward search over a graph.

4 The Boolean Lattice

Many applications of fixpoint theory are based on the power set or Boolean lattice con-
sisting of the subsets of a given set ordered by the subset relation. For graphs, the set
of nodes reachable from a source node can be computed by taking the fixpoint of the
image of edge relation. This lattice is formalized in the theory set lattice. Recall
that the type set[T] over a given parameter type T is just the type of predicates on
T. The Boolean lattice is the imported instance of comp lattice, where the great-
est lower bound operator is

⋂
given by the Intersection function from the PVS

prelude theories.

set_lattice [T: TYPE] : THEORY
BEGIN

x, y, z: VAR T
X, Y, Z: VAR set[T]
U, V, W: VAR set[set[T]]

IMPORTING comp_lattice[set[T], subset?[T], Intersection[T]]

END set_lattice

A transformer P maps an element of T to set[T]. The image or post-condition
post(P)(X) of a set X with respect to a transformer P is the union of P(x) for each
x in X. The cumulative post-condition operator Post(P, X)(Y) is defined to accu-
mulate X and Y in addition to post(P)(Y). The next couple of lemmas demonstrate
that the operator Post(P, X) is monotonic and join-continuous. The latter proof is
quite delicate and nontrivial, and it employs nearly a hundred interaction steps.

150 N. Shankar

P, Q, R: VAR [T -> set[T]]

post(P)(X): set[T] = {y | EXISTS (x:(X)): P(x)(y)}

Post(P, X)(Y): set[T] = union(X, union(Y, post(P)(Y)))

mono_Post: LEMMA MSL.mono?(Post(P, X))

continuous_Post: LEMMA u_continuous?(Post(P, X))

Finally, we define reachability set Reach(P)(X) with respect to a transformer P and
an initial set X as the least fixpoint of the transformer Post(P, X). The lemma
init Reach asserts that the initial set is reachable, and the lemma post Reach
asserts that if x is reachable, then so is P(x).

Reach(P)(X): set[T] = MSL.lfp(Post(P, X))

init_Reach: LEMMA
(FORALL x: X(x) IMPLIES Reach(P)(X)(x))

post_Reach: LEMMA
(FORALL x: Reach(P)(X)(x) IMPLIES subset?(P(x), Reach(P)(X)))

The theory Reach inclusion captures the judgement that if the transformer P re-
turns only subsets of a set X, then the set of states reachable from some subset of
X is also a subset of X. The predicate powerset is defined in the prelude so that
powerset(X)(Y) holds exactly when subset?(Y, X) does. Since the predi-
cate is Curried, the predicate subtype (powerset(X)) contains all of the subsets
of X. The typing in the Reach invariant is quite delicate: P has the type [U
-> (powerset(X))] and not [X -> (powerset(X))]. Otherwise the domain
type will not match the type [T -> set[T]] expected by Reach. The use of U in-
stead of X in the type of P is not significant: a specific P can always be defined to return
the empty set when applied outside X. The proof of this judgement follows easily from
KT2 and mono Post.

Reach_inclusion[U: TYPE, X : set[U]]: THEORY
BEGIN

IMPORTING set_lattice[U]

Reach_invariant: JUDGEMENT
Reach(P : [U -> (powerset(X))])(Y : (powerset(X)))
HAS_TYPE (powerset(X))

END Reach_inclusion

The next section employs the Boolean lattice in formalizing forward graph search.

5 General Forward Search

Thus far, we have defined a parametric theory of meet-semilattices which we instanti-
ated with its dual lattice to derive complete lattices. We have verified the Knaster–Tarski
theorem for complete lattices and instantiated the complete lattice theory for the case
of the Boolean lattice. We have defined the concepts of post-condition and reachability
over the Boolean lattice. We now use these concepts to verify the correctness of a gen-
eral forward search algorithm. The algorithm is adapted from Lavalle’s book Planning

Fixpoints and Search in PVS 151

Algorithms [LaV06] where it is presented without proof. The main invariant is fairly
subtle, but the verification itself is not particularly difficult.

The theory GFSrc (for general forward search) is defined with a nonempty type
parameter U, the set of possible vertices. The second parameter is a select operation
that picks an element from a nonempty set drawn from the type U. In the theory GFSrc,
the type of directed graphs is defined as a dependent record with two fields: the V field
is a finite set of vertices, and the E field is a (necessarily finite) set of edges between the
vertices in V. In PVS. the contents of the fields for a graph G are denoted by G‘V and
G‘E, respectively.

GFSrc [U : TYPE+, select: [X: (nonempty?[U]) -> (X)]]
: THEORY

BEGIN

graph: TYPE = [# V : finite_set[U],
E : set[[(V), (V)]] #]

G : VAR graph

.

.

.
END GFSrc

Next, we establish that an element of the type set[(X)] is a finite set when X is finite.

is_finite_set: LEMMA
(FORALL (X: finite_set[U]), (Y: set[(X)]):

is_finite(Y))

Then, importing the generic version of the set lattice theory, we define the op-
eration of taking the successors image(G)(v) in the graph G of a vertex v in terms
of the image operator in the prelude that computes the image of a relation E with
respect to a set Y as set {x : EXISTS (y: (Y)): E(x, y)}. The operation
graphReach(G)(vs) is defined as the set of vertices that are reachable from an
initial set of vertices vs.

IMPORTING set_lattice

image(G)(v: (G‘V)) : {X : set[(G‘V)] | (FORALL (x:(X)): G‘E(v, x))}
= image(G‘E, singleton[(G‘V)](v))

graphReach(G)(vs: set[(G‘V)]): set[(G‘V)]
= Reach(image(G))(vs)

The general forward search algorithm GFS(G, s, g)(D, Q) is defined to check if
the goal vertex g is reachable from the source vertex s in the graph G. It makes use of
two sets of vertices D and Q. Initially, if s = g, then g is clearly reachable from s. The
set D consists of the dead vertices. It initially contains the source vertex s. The set Q
contains the live vertices and is initialized to contain the successors of the source vertex
s but excluding s itself. In each iteration, we remove a vertex v from Q. If there is
no such vertex, the algorithm terminates with the set D as the set of vertices reachable
from the source vertex. Otherwise, if there is such a vertex v either v = g, and g is
reachable from s, or we place v in D, and add those successors of v that are not already
in D ∪ Q to Q.

152 N. Shankar

The algorithm terminates since the cardinality of D grows with each iteration, and
the total number of vertices is finite.

The correctness argument relies on a pair of invariants on D and Q:

1. All the vertices in Q are reachable from s. This holds initially since Q contains the
successors of s (excludings itself). It is maintained in each iteration where a subset
of the successors of vertex v in Q are added to Q. Since v is reachable from s, these
successor vertices must also be reachable from s.

2. Q and D are disjoint, and the successors of any vertex in D are already in D ∪ Q.
This holds initially since D contains only s and the successors of s excluding s are
contained in Q. It is maintained in each iteration since for each vertex v removed
from Q and added to D, the successors of v excluding those in {v}∪D are added to
Q.

In addition, we require that D contains s but not g. With these invariants, one can show
that algorithm GFS(G, s, g)(D, Q) returns TRUE iff g is reachable from s. This
is because the algorithm terminates either by

1. Finding g in Q, and we know that the vertices in Q are all reachable from s by the
first invariant, or

2. Emptying Q at which point D is closed under the successor operation and hence
over-approximates the set of reachable states. Since D does not contain g, it must
be the case that g is unreachable.

The two invariants on D and Q are captured by the Q invariant predicate.

Q_invariant(G, (s: (G‘V)), (D : set[(G‘V)]))(Q : set[(G‘V)]): bool
= (powerset(graphReach(G)(s))(Q) AND

(FORALL (v: (D)): NOT member(v, Q) AND
subset?(image(G)(v), union(D, Q))))

The main search procedure is defined below as GFS. Note that the type of the result
returned by GFS captures the correctness of the algorithm. The type constraints in the
definition of GFS generate proof obligations corresponding to the satisfaction of the
result type, the preservation of the invariants on D and Q, and the termination. The ter-
mination argument is trivial, but a couple of the other proof obligations involve over
fifteen interactions, mostly to carefully expand definitions, invoke lemmas, and selec-
tively instantiate quantifiers.

GFS(G, (s, g: (G‘V)))((D : set[(G‘V)] | member(s, D) AND NOT member(g, D)),
(Q : set[(G‘V)] | Q_invariant(G, s, D)(Q))):

RECURSIVE {b : bool | b = (Reach(image(G))(s)(g))}
=
(IF empty?(Q)

THEN FALSE
ELSE LET v = select(Q)

IN (IF v = g
THEN TRUE
ELSE (LET P = difference(image(G)(v), union(D, Q))

IN GFS(G, s, g)(add(v, D), union(remove(v, Q), P)))
ENDIF)

ENDIF)
MEASURE card(G‘V) - card(D)

Fixpoints and Search in PVS 153

Finally, the top-level search algorithm is defined as GFSearch below. It invokes GFS
if g is different from s. The correctness of GFSearch is captured in the lemma
GFSearch Reach which asserts that the search procedure succeeds exactly when the
goal vertex g is reachable from the source vertex s. It is trivially proved from the type
associated with GFS(G, s, g)(s, difference(image(G)(s), s)).

GFSrc(G, (s, g: (G‘V))): bool =
(s = g OR
GFS(G, s, g)(s, difference(image(G)(s), s)))

GFSrc_Reach: LEMMA
(FORALL (s, g: (G‘V)):
GFSrc(G, s, g) = Reach(image(G))(s)(g))

6 Generalizing Dijkstra’s Algorithm

The GFS algorithm computes reachability in a directed graph. Dijkstra’s algo-
rithm [Dij59] is a greedy method for finding the shortest path on a weighted directed
graph where the edge weights are non-negative numbers. GFS can be seen as an in-
stantiation of Dijkstra’s algorithm for the case where all the edge weights are zero. We
directly generalize both GFS and Dijkstra’s algorithm to one that operates on a linearly
ordered lattice. The general scheme is that these algorithms perform search by com-
puting a fixpoint as a function mapping from vertices to values over a lattice. In the
case of reachability using general forward search, the lattice consists of two elements: a
bottom element true and a top element false. Initially, only the source vertex is marked
as reachable. Successive iterations extend the set of dead vertices, i.e., ones that have
reached their stable fixpoint values. The frontier set consists of those vertices that are
non-dead successors of dead vertices. The fixpoint maps all the vertices reachable from
the source to true.

For Dijkstra’s algorithm, the fixpoint maps the vertices to the minimal cost of a path
from the source to the vertex. The search starts with an initial map that assigns the
cost 0 to the source vertex, and a maximal cost ∞ to the other vertices. As with GFS,
the algorithm partitions the map between the dead vertices and the live ones. The dead
vertices are those for which the shortest path has already been computed. The live or
frontier vertices are the non-dead successors of the dead vertices, namely those that are
mapped to the cost of the shortest path from the source in which all the intermediate
vertices are dead.

The theory function lattice formalizes the generalization of GFS and Dijk-
stra’s algorithm. The function lattice lifts a lattice over type T to one over the func-
tion type [S→T]. Here we focus on a linearly ordered lattice T. The parameters of
the theory function lattice are the domain type S, the range type T, the lat-
tice ordering <= on T with the associated glb operation, and a selection opera-
tion select which picks an element from a nonempty set drawn from the type S.
The role of the argument f of the select operation will be clarified in the theory
assumptions.

154 N. Shankar

function_lattice [S, T : TYPE, <= : (total_order?[T]),
(IMPORTING lowerbound[T, <=])

glb : [X: set[T] -> (glb?(X))],
select: [X: (nonempty?[S]), f: [S->T] -> (X)]]

: THEORY
BEGIN
.
.
.

END function_lattice

The theory function lattice has an extra type constraint and two assumptions
on the theory parameters. These assumptions are listed within the section ASSUMING
... ENDASSUMING. The added type constraint is that the ordering <= must be a
linear ordering which is captured above by requiring <= to be a total ordering. The
type S is required to be finite as indicated by the theory assumption is finite S
below. The Boolean constant is finite type[S] is defined in the PVS prelude
library to assert the existence of an injection from the type S to some initial segment
of the natural numbers. The select minimal assumption states that select(X,
f) when applied to a nonempty set X must return an element j that is minimal with
respect to f(j) according to <=. In other words, for any i in X, f(select(X,
f)) <= f(i) must hold. Note that when an instance of the theory is imported, the
corresponding instances of the assumptions are generated as proof obligations.

ASSUMING

x, y, z: VAR T

X, Y, Z : VAR set[T]

is_finite_S: ASSUMPTION is_finite_type[S]

select_minimal: ASSUMPTION
(FORALL (X: (nonempty?[S])), (f: [S->T]), (i: (X)):

f(select(X, f)) <= f(i))

ENDASSUMING

The first step is to show that the functions of the type [S→T] form a lattice on a point-
wise ordering. The definition of <=(f, g) captures this ordering by requiring f to be
point-wise below g.

funlat: TYPE = [S -> T]

i, j, k: VAR S

f, g, f1, f2: VAR funlat

IMPORTING comp_lattice[T, <=, glb], meet_semilattice[T, <=, glb] AS msl

<=(f, g): bool = (FORALL i: f(i) <= g(i))

The greatest lower bound of a set of functions F, given by fglb(F) is defined as the
functiong such that g(i) is the greatest lower bound (on the lattice T) of the set {f(i)
| F(f) }. The IMPORTING on comp lattice[funlat, <=, fglb] gen-
erates the proof obligations demonstrating that the function lattice is indeed a
meet-semilattice.

Fixpoints and Search in PVS 155

F, G: VAR set[funlat]

fglb(F)(i): T = glb({a : T | EXISTS (f:(F)): a = f(i)})

IMPORTING comp_lattice[funlat, <=, fglb] AS flat,
meet_semilattice[funlat, <=, fglb] AS fmsl

The restriction of a function to a subset of the domain is used in defining the main
search algorithm. It is defined so that restrict(f, D)(i) is f(i) when D(i)
holds, and top, otherwise. The lemmas restrict union and restrict meet
show that restrict distributes over these operations.

D, Q, D1, D2: VAR set[S]

restrict(f, D)(i): T =
(IF D(i) THEN f(i) ELSE msl.top ENDIF)

restrict_union: LEMMA
restrict(f, union(D1, D2)) = fmsl.meet(restrict(f, D1), restrict(f, D2))

restrict_meet: LEMMA
restrict(fmsl.meet(f1, f2), D) = fmsl.meet(restrict(f1, D), restrict(f2, D))

The generic post operation is a parameter to the algorithm given by the variable P. It
must satisfy several important restrictions. It must be monotonic, distributive with re-
spect to the meet operation, and increasing in the sense that if g is P(restrict(f,
singleton(i))) for some i in S, then f(i) <= g(j). This is a generalization
of the restriction in Dijkstra’s algorithm that the edge weights be non-negative.

P: VAR (fmsl.mono?)

distributive?(P): bool =
(FORALL f1, f2: P(fmsl.meet(f1, f2)) = fmsl.meet(P(f1), P(f2)))

increasing?(P): bool =
(FORALL f, i, j: f(i) <= P(restrict(f, singleton(i)))(j))

There are a few simple lemmas about the meet operation. The first of these asserts that
the meet of two functions to an argument is the meet of individual application of these
functions. The other two lemmas are obvious facts about the meet operation over a
linear ordering.

function_meet: LEMMA
fmsl.meet(f1, f2)(i) = msl.meet(f1(i), f2(i))

meet_linear: LEMMA
msl.meet(x, y) = x OR
msl.meet(x, y) = y

meet_if: LEMMA
msl.meet(x, y) = (IF x <= y THEN x ELSE y ENDIF)

The “state” of the search algorithm consists of the set D of dead elements from S and
the map f from S to T. The main invariant for the search algorithm consists of two
parts. The first invariant D inv?(D) asserts that the entries in the D part of the map
all lie below those in the non-D part of the map. The second invariant Q inv?(D, P,
f) asserts that the post operation P applied to restrict(f, D) is identical to f.
This captures the intuition that the successors of D are already reflected in f.

156 N. Shankar

D_inv?(D: set[S], f): bool =
(FORALL (i: (D), j: (complement(D))): f(i) <= f(j))

Q_inv?(D, P, f): bool = (P(restrict(f, D)) = f)

In each iteration of the search algorithm, the state consisting of the set D and the map f is
extended to D’ by adding an live element j, i.e., where NOT D(j) holds and f(j) is
distinct from top, and merging the successors of j to f. The lemma post restrict
asserts that the application of P to restrict(f, D’) yields a map f’ which can be
decomposed so that f’(i) is just f(i) when D’(i) holds, and the meet of old value
f(i) and value P(restrict(f, singleton(j)))(i) arising from applying
the post operation P to j.

post_restrict: LEMMA
(FORALL (P | distributive?(P) AND increasing?(P)),

D,
(f | D_inv?(D, f) AND Q_inv?(D, P, f)):

(EXISTS i: NOT D(i) AND f(i) /= top)
AND j = select({i | NOT D(i) AND f(i) /= top}, f)

IMPLIES
P(restrict(f, union(singleton[S](j), D)))(i)
= IF union(singleton[S](j), D)(i) THEN f(i)

ELSE msl.meet(f(i), P(restrict(f, singleton(j)))(i))
ENDIF)

The search algorithm latsearch takes three arguments: the post operation P which
must be distributive and increasing, the dead set D, and the map f which must satisfy
the D inv? and Q inv? conditions. The result is required to be a map that is a fixpoint
on the function lattice which agrees with the input map f on the input dead set D.
As already mentioned, the live set consists of the non-D elements i such that f(i)
/= top. If the live set is empty, then the current map f is returned. Otherwise, a
minimal element j is selected and added to D to obtain D1 while updating the map f to
P(restrict(f, D1)).

latsearch((P | distributive?(P) AND increasing?(P)),
D,
(f | D_inv?(D, f) AND Q_inv?(D, P, f))):

RECURSIVE
{g | fmsl.fixpoint?(P)(g) AND restrict(g, D) = restrict(f, D)}

= (IF (EXISTS i: NOT D(i) AND f(i) /= top)
THEN LET D1 = union(singleton[S](select({i | NOT D(i) AND f(i) /= top}, f)),

D),
f1 = P(restrict(f, D1))

IN latsearch(P, D1, f1)
ELSE f

ENDIF)
MEASURE card(fullset[S]) - card(D)

The preservation of the invariant on D and f is generated as a proof obligation. Its proof
is quite difficult and delicate. It is then easy to show that the post-condition on the result
follows from the invariant. The invariants and post-condition do not imply that the result
that is computed is the least fixpoint. Indeed, the result is not the least, but the great-
est fixpoint in the point-wise ordering on the function lattice. For forward search, the
range type T for the function lattice is bool, and the ordering has TRUE <= FALSE.
This way, the greatest fixpoint on the function lattice corresponds to reachability since
as many vertices as possible are marked as unreachable. For Dijkstra’s algorithm, the

Fixpoints and Search in PVS 157

range type T is the disjoint union of the integers with a top element ∞, where the or-
dering is the usual numeric ordering on the integers with ∞ as a maximal element. The
meet operation then corresponds to taking the minimum of two values according to this
ordering. Note that the latsearch algorithm computes the fixpoint, whereas GFS
stops as soon as the goal state is found, but this optimization is a fairly trivial one given
the invariants.

7 Observations

To summarize, we have developed an abstract treatment of fixpoints over complete lat-
tices, instantiated this theory for the Boolean lattice, and exploited this instantiation in
a correctness proof for general forward search. The general forward search algorithm
is itself generalized to cover shortest path algorithms such as Dijkstra’s algorithm on
weighted directed graphs. The point of the proof is primarily pedagogical. There is no
intrinsic difficulty in the informal or the formal development of these ideas. The for-
malization within PVS nicely illustrates the use of some advanced features in the PVS
language such as predicate subtyping, dependent typing, parametric theories, theory as-
sumptions, and typing judgements. We expand on some of the pedagogical themes in
the paragraphs below.

Abstraction plays a crucial role in the formal development. We have tried to formal-
ize the concepts at the highest level of abstraction so that the results, and particularly,
the proofs, can be widely reused. For example, we reused the meet semilattice
theory in formalizing complete lattices. This kind of abstraction is also the hallmark of
good software engineering, but in programming, abstraction can be double-edged. The
overhead of using the abstraction through layers of instantiation might outweigh the
engineering benefits. In a formal development, however, abstraction is essential since
it can be very tedious to repeat the same proofs in all the different instances. However,
there is also an overhead associated with using abstractions. For example, Dijkstra’s
algorithm is relatively easy to prove correct for graphs with numeric edge weights,
whereas the generalized algorithm in Section 6 is quite a delicate exercise. Furthermore,
instantiating the abstract scheme to derive the concrete version of Dijkstra’s algorithm
requires a fair amount of work. One way to avoid the overhead associated with devel-
oping and using the abstraction is to use the abstract patterns and schemes as templates
for synthesizing and proving concrete versions of the algorithm.

The level of automation impedes the wider adoption of this technology. Most of the
proofs in this development were entirely straightforward, but a handful of the proofs
required a serious degree of interaction ranging from twenty to forty steps. Interaction
is of course integral to the success of any formal development: functions have to be
correctly defined, types must be carefully expressed, theories have to be developed, and
suitable lemmas must be stated and proved. Also, an interactive proof checker can be
used both to discover a proof that is initially unknown to the user, or to check a known
proof. In both cases, it is useful to be able to vary the level of interaction to gain a deeper
understanding of some of the formal details. Still, many of the proofs are slightly less
succinct than the informal arguments that we have given. It would be good to close
the gap, particularly through better support for set-theoretic reasoning, quantifier in-
stantiation, and selective definition expansion. One capability that would have helped

158 N. Shankar

considerably with these proofs is possibility of extending the decision procedures with
new theories like lattices.

Our fixpoint approach to path search algorithms yields certificates validating the re-
sults of individual computations. Typically, when a search procedure succeeds, it is
possible to instrument it to generate evidence in the form of a path from s to g in the
graph. The more challenging problem is to provide evidence when the search algorithm
fails. Our generalized correctness argument provides a method for certifying the nega-
tive result as well. The set D can be treated as a set of marked vertices. If one checks that
the successors of each marked vertex are also marked, the source vertex s is marked,
and the goal vertex g is not marked, then g must not be reachable from s. The fixpoint
marking of vertices in D thus serves as evidence that can be easily checked by local
computations on the graph. For example, with Dijkstra’s algorithm, it is not enough
to know the exact path since we also need evidence that this is the shortest path. Sup-
posing the weight of the putative shortest path is w, then a fixpoint mapping f̂ can be
constructed where each vertex in D retains its assignment in f , and all other vertices are
assigned a symbolic value ŵ indicating that the cost to reach these vertices is at least
w. It is easy to check that the resulting f̂ is a fixpoint so that it constitutes evidence
that there is no shorter path from the source to the goal vertex. When the goal vertex
is unreachable, the fixpoint assignment f is itself a certificate of unreachability since it
assigns the maximal value top to this vertex.

There is a fair amount of related literature on the formalization of fixpoints. Ra-
jan, Shankar, and Srivas [RSS95] formalized the mu-calculus by defining least and
greatest fixpoints over the Boolean lattice. Bartels, Dold, von Henke, Pfeifer, and
Rueß [BDvH+96] formalized the fixpoint theory of monotonic and continuous func-
tions over complete partial orders, which is a partial order with a least element in
which every linearly ordered subset has a least upper bound. They then prove the exis-
tence of least and greatest fixpoints for monotonic and continuous functions over com-
plete partial orders. They also prove the validity of fixpoint induction over admissible
predicates. This theory is used to embed the semantics of a small imperative program-
ming language. Agerholm [Age94] similarly develops fixpoint theory as a basis for
embedding the Logic for Computable Function (LCF) [Sco93] using the HOL proof
checker [GM93]. Regensberger [Reg95] has a more sophisticated embedding of fix-
point theory over complete partial orders in Isabelle/HOL [NPW02]. Paulson [Pau95]
establishes the existence of fixpoints over the Boolean lattice using Isabelle/ZF. Rud-
nicki and Trybulec [RT97] have used Mizar to verify the full Knaster–Tarski theorem
over complete lattices including the existence of a complete lattice of fixpoints.

Abstract global search algorithms for scheduling and constraint satisfaction have
been formalized by Pepper and Smith [PS97]. These algorithms involve splitting, back-
tracking, and constraint propagation, and are different from the search algorithms con-
sidered above. General forward search and Dijkstra’s algorithm fall under a class of
greedy algorithms that can be handled by the abstract structure of greedoids [KL81].
The greedoid abstraction, though different from the lattice abstraction used here, is also
interesting as a general schema for a large class of algorithms.

We have adopted a style of formalization that relies heavily on predicate sub-
types and the generation of proof obligations. Some of these ideas go back to earlier

Fixpoints and Search in PVS 159

specification languages like VDM [Jon90], which had a notion of datatype invariants,
and Nuprl [CAB+86] which employed a form of predicate subtyping that required type
correctness to be established as part of a proof. The contract-based methodology of
Eiffel [Mey97] uses pre-condition and post-condition assertions. In PVS [ORSvH95],
contracts are captured by types and theory assumptions.

8 Conclusion

We have seen that fixpoint theory is a foundation for the verification and certification
of a popular and widely used search algorithm. There are many ways to formalize the
concepts underlying fixpoint theory in PVS. For example, the work of Bartels, et al,
use subtyping to capture the concept of partial orders and complete partial orders. We
have also made similar use of subtyping. With subtypes, the type information has to be
made explicit within a proof, but fewer proof obligations are generated since the sub-
type relations can be established by typing judgements that are automatically used by
the type-checker. One alternative to subtypes is to use theory assumptions to explicate
the constraints on <= and glb. Assumptions have the advantage that the properties of
the structure are accessible through named formulas, though it is quite easy to record the
type constraints as lemmas, as we have done with the theory meet semilattice.
Unlike types, proof obligations corresponding to the assumptions are generated when-
ever a theory instance is invoked since these assumptions are not automatically known
to the type-checker.

The larger point is that even seemingly simple algorithms have interesting proofs.
These proofs capture the key insights underlying these algorithms. These proofs can
be used to generalize and extend the algorithms as well as in generating certificates for
validating the results returned by these procedures. Model checking is itself a search
paradigm that is based on the explicit representation and construction of fixpoint sets.
We have argued elsewhere [Sha08] that such fixpoint sets can be used to certify the
results returned by a model checker. In future work, we plan to explore the use of
fixpoints in certifying results from model checkers and other inference procedures.

References

[Abr96] Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press, Cambridge (1996)

[Age94] Agerholm, S.: A HOL basis for reasoning about functional programs. In: BRICS
RS-94-44, Department of Computer Science, University of Aarhus, Denmark
(December 1994),
http://www.daimi.aau.dk/BRICS/RS/94/44/BRICS-RS-94-44/
BRICS-RS-94-44.html

[BC04] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004), http://coq.inria.fr/

[BDvH+96] Bartels, F., Dold, A., von Henke, F.W., Pfeifer, H., Rueß, H.: Formalizing Fixed-
Point Theory in PVS. In: Ulmer Informatik-Berichte 96-10, Universität Ulm,
Fakultät für Informatik (1996)

http://www.daimi.aau.dk/BRICS/RS/94/44/BRICS-RS-94-44/BRICS-RS-94-44.html
http://www.daimi.aau.dk/BRICS/RS/94/44/BRICS-RS-94-44/BRICS-RS-94-44.html
http://coq.inria.fr/

160 N. Shankar

[CAB+86] Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F.,
Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki,
J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development
System. Prentice Hall, Englewood Cliffs (1986),
http://www.cs.cornell.edu/Info/Projects/NuPRL/

[Dij59] Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

[GM93] Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving
Environment for Higher-Order Logic. Cambridge University Press, Cambridge
(1993), http://www.cl.cam.ac.uk/Research/HVG/HOL/

[HJ00] Huisman, M., Jacobs, B.: Java program verfication via a hoare logic with abrupt
termination. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 284–303.
Springer, Heidelberg (2000)

[Hoa69] Hoare, C.A.R.: An axiomatic basis for computer programming. Comm.
ACM 12(10), 576–583 (1969)

[Jon90] Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice
Hall International Series in Computer Science. Prentice Hall, Hemel Hempstead
(1990)

[KL81] Korte, B., Lovász, L.: Mathematical structures underlying greedy algorithms. In:
Gecseg, F. (ed.) FCT 1981. LNCS, vol. 117, pp. 205–209. Springer, Heidelberg
(1981)

[Kna28] Knaster, B.: Un théorèm sur les fonctions d’ensembles. Annals. Soc. Pol. Math. 6,
133–134 (1928)

[LaV06] LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge
(2006)

[Mey97] Meyer, B.: Design by contract: Making object-oriented programs that work. In:
TOOLS, vol. (25), p. 360. IEEE Computer Society, Los Alamitos (1997)

[Muñ99] Muñoz, C.: PBS: Support for the B-method in PVS. Technical Report SRI-CSL-
99-1, Computer Science Laboratory, SRI International, Menlo Park, CA (February
1999)

[NPW02] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002),
http://isabelle.in.tum.de/

[ORSvH95] Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering 21(2), 107–125 (1995), http://pvs.csl.sri.com

[OS01] Owre, S., Shankar, N.: Theory interpretations in PVS. Technical Report SRI-CSL-
01-01, Computer Science Laboratory, SRI International, Menlo Park, CA (April
2001)

[Pau95] Paulson, L.C.: Set theory for verification II: Induction and recursion. Journal of
Automated Reasoning 15(2), 167–215 (1995)

[PS97] Pepper, P., Smith, D.R.: A high-level derivation of global search algorithms (with
constraint propagation). Science of Computer Programming 28(2-3), 247–271
(1997)

[Reg95] Regensburger, F.: HOLCF: Higher order logic of computable functions. In: Schu-
bert, E.T., Alves-Foss, J., Windley, P.J. (eds.) HUG 1995. LNCS, vol. 971, pp.
293–307. Springer, Heidelberg (1995)

[RSS95] Rajan, S., Shankar, N., Srivas, M.K.: An integration of model-checking with auto-
mated proof checking. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 84–97.
Springer, Heidelberg (1995)

http://www.cs.cornell.edu/Info/Projects/NuPRL/
http://www.cl.cam.ac.uk/Research/HVG/HOL/
http://isabelle.in.tum.de/
http://pvs.csl.sri.com

Fixpoints and Search in PVS 161

[RT97] Rudnicki, P., Trybulec, A.: Fixpoints in complete lattices. Formalized Mathemat-
ics 6(1), 109–115 (1997)

[Sco93] Scott, D.S.: A type-theoretical alternative to ISWIM, CUCH, OWHY. Theor. Com-
put. Sci. 121(1, 2), 411–440 (1993); Typed notes circulated in 1969 (1969)

[Sha08] Shankar, N.: Trust and automation in verification tools. In: Cha, S(S.), Choi, J.-Y.,
Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 4–17.
Springer, Heidelberg (2008)

[Tar55] Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific. J. of
Math. 5, 285–309 (1955)

P. Müller (Ed.): LASER Summer School 2007/2008, LNCS 6029, pp. 162–187, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Multi Core Design for Chip Level Multiprocessing

Tryggve Fossum

Intel Corporation

1 CMP Concepts: Introduction and Some Background

Chip level integration continues to be a driving force in the computer industry. It
lowers the cost and increases performance of computer systems, creating a remark-
able rate of improvement in all processors, from handheld devices to supercompu-
ters. Processor chips now (in 2009) contain up to two billion transistors. Gordon
Moore outlined a roadmap for chip level integration in 1965, which has become
known as Moore’s Law. It predicts that the density of transistors in a silicon chip
will double every process generation. It has become the heartbeat of the semicon-
ductor industry. Nine years later, in 1974, Robert Dennard defined more specifical-
ly a scaling methodology for MOSFETs, which the industry has adopted for the
most part. His rules and parameters are listed in Table 1.1. The process scaling
factor is denoted by κ. If we scale all the relevant process parameters by κ = √2 ≈
1.4, the transistor count in a fixed size chip will in fact double every process gen-
eration. Along the way, in order to achieve this, a myriad of complex problems have
to be solved in physics, chemistry, and optics, making the improvements gradual.
It is impressive how well the scenario outlined by Moore and Dennard continues to
play out.

As they get smaller, the transistors switch faster, by the scaling factor, κ. This al-
lows designers to increase the clock frequency of the processors or fit more gates in
each pipeline stage. Note that this speedup happens even as the supply voltage is
reduced by the same scaling factor.

Table 1.1. Robert Dennard’s Scaling Rules for MOSFETs [1]

Scaling factor : κ = √2 ≈ 1.4, 1/ κ ≈ 0.7
Device dimension tox, L, W: 1/κ
Doping Concentration, Na: κ
Voltage, V: 1/ κ
Current, I: 1/ κ
Capacitance, εA/t, 1/ κ
Delay time/circuit, VC/I: 1/ κ
Power dissipation per circuit, VI: 1/ κ²
Power density, VI/A: 1

 Multi Core Design for Chip Level Multiprocessing 163

Computer architects and designers have been busy putting this increasing number
of faster transistors to good use. While the improvements in functionality and perfor-
mance have been many and frequent, there have been some highlights in processor
design. Much of the focus has been on interfacing to memory. As processors get
faster, the relative latency of memory accesses grows.

For example, in the first processor I worked on, the VAX11-780, the processor
cycle time was 200 nanoseconds, and memory access time was 1200 nanoseconds,
so a memory access had a six cycle latency. Today, processors have a cycle time of
250 picoseconds and memory access time is about 100 nanoseconds, making the
access latency 400 cycles. To remedy this, designers incorporate caches in the de-
sign to lower the effective latency and improve system performance. The idea of
Reduced Instruction Set Computers, RISC, architectures is given credit for several
benefits. It contrasts with Complex Instruction Set Computers, CISC. The RISC
concept is based on the observation that most of the work in computers is done by a
small set of operations, and hence it made sense to spend area and power to speed
up those tasks rather than add functions that were rarely used. This phenomenon is
well described in J. Emer and D. Clark’s paper [4]. The initial RISC designs sim-
plified the instruction set and the execution pipeline to the point where the whole
processor could fit on a single chip. Removing the slow and costly cross-chip sig-
nals was a tremendous benefit. A process generation later, when there were enough
transistors for CISC processors to fit on a single chip as well, the RISC performance
advantage was reduced.

Moving the cache onto the chip was a major step forward. Cache accesses are im-
portant for frequently accessed memory data, needing short latency and high band-
width. Which is exactly what integration provides. Initially, there was a drop in cache
capacity due to limited on-die transistor count. Or maybe just the first level cache fit
on the die. Later, the second level cache followed. Now, three levels of cache fit on
the die, with a variety of cache organizations possible. Cache is the architectural gift
that keeps on giving.

Out-of-order execution was another highlight in this history. Executing instruc-
tions out of order offers opportunities for performance increases. If an instruction
cannot issue due to a dependency, later instructions whose dependencies are met, can
be issued early. This utilizes spare issue slots and other hardware resources, and can
in return free up instructions depending on their results to complete earlier than they
would have in a strictly in order design. While this may sound simple, it turned out to
be difficult for designers to deal with all the side effects of out of order execution.
These out of order instructions require a place to store their speculative results, and
recovery mechanisms to ensure correct operation in the event of exceptions, branches
and memory conflicts.

Early single chip processor designs, starting with Intel’s Pentium Pro, had remark-
able success with out-of-order, much to the surprise of many architects who had
started to look for alternatives like VLIW and software speculation. The additional
data structures and control logic needed to support out of order execution, became
much more manageable once everything fit on a single die.

164 T. Fossum

Fig. 1.1. CMP with Ring Interconnect

Today it is practical to fit multiple cores on a single chip. Fig 1.1. shows a simple
example. Multiple processor cores are lined up in the top and bottom rows, with a
distributed cache in the middle two rows. These cores and caches are connected with
a ring interconnect, with a cache section and a core sharing a ring stop. Somehow,
Memory and IO are attached as well.

Multicore is another inflection point in chip level integration. We are in effect inte-
grating the interconnects, a long time challenge for designers. What will be the
impact?

Threads which do not share data may have some benefits from running on cores on
the same die. But the big benefit comes from chip level parallel processing, with
threads running in cores on the same die, sharing data.

Attempts to do this with multi chip designs have had mixed success. The benefits
of overlap in execution, was sometimes lost in communication delay and control
complexity. Parallel processing has to balance computation overlap with communica-
tion delays. Coarse-grained parallelism refers to the case where each thread operates
on data for a long time before synchronizing and communicating with other threads.
Such an application can run well on a number of systems. Fine grained parallelism, on
the other hand, requires frequent communication between threads, and has been diffi-
cult to exploit with multi-chip implementations. Multicore improves communication
between cores by 1-3 orders of magnitude, both in bandwidth and latency. While
busses between chips have bandwidth of multiple Gigabytes per second, on-die net-
works can reach multiple Terabytes per second. Data-sharing between processors in
separate sockets can take hundreds of nanoseconds, while sharing data between cores
on a chip can take a few nanoseconds.

Scaling Example: In 1995, the Alpha processor 21164 (EV5) was implemented in
0.5 micron technology with a die size of 3 cm². It ran at 300 MHz, with a supply vol-
tage of 3.3 Volt, and had a power limit of 50 Watt. It was among the fastest micro
processors at its time. It contained about 9.6 million transistors. Eight process genera-
tions later, using Moore’s Law, and the scaling numbers in table 1.1, the same proces-
sor in today’s leading edge technology of 32 nm, would be 1.2 mm² in area.
Frequency would be about 4.8 GHz, voltage would be 0.2 Volt, and the active power
per core would be 0.2 Watt. We could fit 250 EV5 size cores on a 3 cm² die in the 32

 Multi Core Design for Chip Level Multiprocessing 165

nanometer technology. Such a chip would still retain the original active power of
about 50 Watt.

There are some issues with this design:

1. The 0.2 Volt supply voltage has not been achieved. This is due to various ob-
stacles, both practical and physical limitations. An aggressive supply voltage
at this time is more likely to be 0.5 Volt.

2. At 0.5 Volt, the power per core is about 1.2 Watt, and the total chip power is
300 Watt. This is very high for a single chip, even a big one. 100 Watt (or
maybe much less) would be more acceptable. We could get there by reduc-
ing the core count to 64, running at a slower frequency of 1 GHz, limit activ-
ity level some other way, or a combination of these techniques.

3. Having all these cores on a single die is useless unless there is a way to con-
nect them to each other, and to IO and Memory. We will need an on-die
network. Which will take area and power away from the cores.

4. The need for high bandwidth between these cores and memory needs to be
satisfied. Scaling the external bandwidth will be very expensive and maybe
impossible. So we will need to satisfy some of the bandwidth requirements
with on-die caches. The area and power allocated to this will reduce the core
count further.

These are some of the problems we will look at in this course.

Research Problem: How many cores should optimally be placed on the same die in a
CMP? If power and other resources are limited, the capabilities and performance of
each core will be restricted by the total number of cores, and this needs to be balanced
against the advantages of the cores being on the same die. The answer to this is likely
to depend on the target applications and to evolve over time.

Processor performance in executing a program can be factored as:

Performance = instructions per cycle X cycles per second
Or: Performance = IPC X Frequency

Thus clock frequency is an important contributor to performance, and before proces-
sors became power limited, it was crucial to maximize frequency. Since dynamic
power consumption grows linearly with frequency, it is now necessary to balance
frequency with ways to increase instructions per cycle, IPC. This is especially the
case with CMP, where on one hand parallel processing is an alternative to high speed,
single stream computing, and on the other hand, all the cores share that total available
chip power. This makes it less likely that we will see super-pipelined processors run-
ning at extremely high frequencies in the future, even though it may be theoretically
possible.

There is a joke that the number of people predicting the end of Moore’s Law
doubles every two years. Eventually, they may be right. That will present new chal-
lenges to computer designers and software developers, since there will no longer be

166 T. Fossum

an automatic performance and density improvement due to process developments.
The improvements will have to come from better designs, improved functionality, but
with relative constant underlying materials. Efficient use of available chip resources
will become even more important.

2 On Die Networks

Computer networks have existed for many years. They used to consist of cables be-
tween cabinets, then wires between circuit boards and backplanes, and more recently,
wires between chips on boards. Now, we are looking at ways to best connect proces-
sor cores within a die. Many of the design considerations are similar, but they also
change in important ways.

• Communication pattern. The goal on-die is to provide cores with access to
shared resources, mainly memory. Cores communicate by writing to shared
memory and reading from it. It is the core-cache-memory connections that
are most important.

• Bandwidth. With cables or wires on a circuit board, the bandwidth is typical-
ly limited to 1-20 Gigabytes/per second. On die, one can get several orders
of magnitude improvement, at 1-2 Terabytes/per second.

• Latency. Access to remote memories and caches in a multi socket system can
take hundreds of nanoseconds. On die, it can be less than 10 ns.

• Processor - Cache Communication, Sharing and Coherence. Caches are de-
signed to reduce the effective latency to main memory and to reduce memory
bandwidth requirements. In multi processor systems with shared memory,
the caches usually need to be kept coherent. This is commonly done with
cache snooping or with directories keeping track of what data is stored in a
cache. The coherence function can require multiple chip crossings. With
CMP, it becomes practical for multiple cores to share a single cache, making
cache coherence and data access much faster.

• Memory Access – NUMA effects. NUMA stands for Non-Uniform Memory
Access. This can be due to several factors. A common reason is that a shared
memory is distributed across multiple processor sockets. With CMP, memo-
ry access becomes uniform for the cores on the same chip. This can help
thread scheduling and load balancing, and make code tuning simpler.

• Pipelining. Signaling on cables and across board wires is made more com-
plex by the lack of storage elements. On die, it becomes easier to add storage
latches to make signaling work at high frequencies.

• Floorplan, Wiring, Layout. The considerations for placing components on a
planar chip are quite different from what happens on modules and in back-
planes. But while there are multiple metal layers and lots of wires, the space
is still two dimensional and restricted in several ways. A regular floorplan is
important. Wiring can be massive, but it needs to be regular.

 Multi Core Design for Chip Level Multiprocessing 167

• Power Management. For large CMP chips, power quickly becomes a limita-
tion. This can be due to current limits, power dissipation, or current spikes
due to sudden changes in processing activity.

• Clocking. Clock skew will be smaller within a single die, although as the die
becomes large, having a single clock domain can still be problematic. Some
large die have multiple clock domains, with asynchronous communication
between domains.

• Modularity – Re-use, Standardization, Interoperability. On die, these issues
become surprisingly complex. By necessity, the industry does a decent job of
standardizing interfaces between chips and boards and systems of major
components. Once we get on the same chip, interoperability becomes even
more important, but also harder to achieve. Managing the millions of signals
inside a chip can be complex. The temptation to over-optimize for a particu-
lar situation can be hard to resist.

• Visibility – Test, Debug, Performance Counters. With fewer signals show-
ing up on pins where they can be probed, visibility and analysis come to
depend more on built in mechanisms like on chip logic analyzers and
history buffers.

• Reliability, Fault Tolerance. Historically, chip-level integration has helped
reliability by reducing the overall part count and the number of connectors in
the system. This trend continues with CMP. But with the high transistor
count per chip, there may also be more errors inside a specific die. Just as we
added ECC to recover from memory errors, we will also need to increase the
number of transistors used for error detection and recovery.

• Sub-socket Partitioning, Isolation, Security, Virtualization. These features
remain important for CMP. The opportunities for added functionality grow
with the transistor count. The plethora of resources makes partitioning and
virtualization more desirable. Virtualization can make a single CMP chip ap-
pear as multiple computer systems to the users. It is important to be vigilant
in avoiding security holes and making sure tasks are securely partitioned,
minimizing the chance that actions in one partition affects another in a nega-
tive way. This is another task that will use more transistors in the future.

2.1 Intel’s Polaris Chip, a Design Example

Intel’s Research team developed the Polaris chip as an experimental chip to explore
CMP designs [5]. It addresses important issues of the network interconnect: memo-
ry access, clocking, and power management. There are eighty cores, which together
can execute at a rate of more than one Teraflop. The cores are connected in a Mesh
network (see Fig 2.1.), meaning that each node is connected to adjacent nodes in the
North, East, South, and West directions. In the Polaris design, there is also a vertic-
al direction for connections to stacked memories. Stacked memories is an advanced
packaging technology where Memory chips are stacked vertically, in a very dense
package.

168 T. Fossum

Along with the core in e
interconnects and routes the

Figure 2.2 shows a die ph

Fig. 2.1. Diagr

each node, there is a router which connects the core to
e through traffic.
hoto showing the individual cores on the Polaris chip.

ram of a 3 x 3, 2-Dimensional Mesh Interconnect

Fig. 2.2. Die Photo of Polaris CMP

the

The main purpose of the
die caches and hence to m
go through memory, i.e. on
Thus quick, high bandwidth
Meshes have the potential t
a popular interconnect bet
between cabinets in large sc

Fig. 2.3.

Figure 2.3 shows the ind
sor, there is a router which
ing the compute element to
reserved for future connecti
This represents an interes
reducing latency.

A toroidal mesh, see Fig
effective in minimizing late
path between nodes. Some
fashion to maximize the be
short as well.

Multi Core Design for Chip Level Multiprocessing

e interconnect is to connect the individual cores to the
main memory. Even communication between cores usua
ne core writes to a cache location and another core read
h access from the cores to the collective caches is criti
to minimize the latency and provide high bandwidth, an
tween chips on boards and boards in cabinets, and e
cale systems.

Diagram of individual node in Polaris Chip

dividual node in the Polaris chip. In addition to the proc
directs traffic along the four horizontal directions conne
o neighboring elements. There is also a vertical direct
ions to memory chips stacked on top of the processor ch

sting opportunity for increasing memory bandwidth

g 2.4, where the endpoints wrap around, can be especia
ency and improving bandwidth by providing an alternat
e computer networks organize their system in a circu

enefits of the torus by making the wrap-around connecti

169

on-
ally
s it.
ical.
nd is
even

ces-
ect-
tion
hip.
and

ally
tive
ular
ions

170 T. Fossum

Fig. 2.4. A 3x3, 2-Dimensional Toroidal Mesh Interconnect

On die, the considerations change somewhat. The relative timing of communica-
tion to computation becomes quite different. The distances and propagation delays
between cores are now very short. The time to arbitrate at switch points becomes a
more significant factor. As does the time to store and forward a packet at a switch
point if access through the switch is not granted. If the lanes in the mesh are not wide
relative to the packet size (usually a cache line), there can be a large serialization and
de-serialization (SERDES) effect. While these delays are factors in multi chip designs
as well, the time is often dominated by transmission delays.

Fig. 2.5. CMP with a Ring Interconnect

Keeping these factors in mind, we have researched a ring based on-die multi-core
design. Shown in Fig. 2.5. Ring interconnects have traditionally had problems with
bandwidth and latency when used in large scale systems. Arbitration is simple, and
routing is really easy. But few available paths and long distances create bottlenecks.
This changes once you get on a single die. It becomes practical to have enough wires
to transmit a whole cache line in a single cycle, eliminating SERDES effects. Arbitra-
tion remains simple: Once a message is on the ring, it has the right of way. There is of
course a myriad of issues to be solved, and a ring may not be the right solution for all
on-die interconnects. But in the case of a CMP, with cores accessing caches, we can
make some simplifications to make the ring work well.

 Multi Core Design for Chip Level Multiprocessing 171

In our example, the cores are attached to the ring along the outside of the chip. A
large cache occupies the inside of the ring. It is partitioned into pieces which are dis-
tributed along the ring, each cache piece sharing a ring stop with a core. To access the
cache, the core uses the address to calculate which section of the cache may have the
data. The core sends a request to the correct ring-stop. The cache section then either
services the request, or, in the case of a miss, generates a memory request. Once the
data returns from memory, a copy is sent to the requesting core, as well as stored in
the shared cache for future use by any of the cores.

The effective bandwidth of the ring is the aggregate bandwidth of the ring seg-
ments provided, divided by the average amount used by a message. I.e.

Ring Bandwidth =
Frequency * Width * Number of Ring Stop / Average Ring Distance per Request

Setting the Frequency to 2 GHz, the width to be 512 bits, and a total of 20 ring stops,
the Raw bandwidth equals 2.56 Terabytes/second. If requests are randomly distri-
buted, we can set the average distance to 10 ring stops. The effective available band-
width then becomes 256 GB/sec.

If we want more bandwidth than that, we can add more wires, increase the fre-
quency, or reduce the distance messages have to travel.

As we add more wires, it soon becomes clear that adding another ring to go in the
opposite direction will actually quadruple the available bandwidth. In addition to
doubling the raw bandwidth, it also halves the average distance, since a message can
now choose the ring with the shortest distance. So the average distance becomes one
quarter the number of ring stops. In our example above, the available bandwidth be-
comes 1 TB/second.

The effect of adding a second, counter rotating ring is similar to the benefit of turn-
ing a mesh into a toroidal mesh. There are now two ways of getting from one point to
another, and we can pick the shortest.

Note that in these calculations, the number of stops on a ring does not change its
effective bandwidth since the raw bandwidth and the average distance grows by the
same factor which then cancels out:

Let N be the number of ringstops.
Effective Bandwidth of a Bi-directional Ring =
Raw Bandwidth / Average Occupancy =
N * Raw Bandwidth per segment / (N/4) =
 Raw Bandwidth per segment * 4

For example: If a ring has 256 wires in each direction, and the ring cycles at 3 GHz,
the Raw bandwidth per segment is 192 GBytes per second (96 GBytes per second in
each direction) and the total available ring bandwidth is 768 GBytes per second.

If adding ring-stops lets the ring operate at a higher frequency, it will of course in-
crease bandwidth proportionally. But mostly, one would add ring-stops because there
is a functional unit to connect to, whether it is a core, a cache, a memory controller, or
an IO interface.

172 T. Fossum

So far, we have assumed that the ring traffic is uniformly distributed among the
ring stops. In the case of processor to cache traffic, this assumption is very reasonable.
The average ring distance that a message travels on the ring, depends on the distribu-
tion of data in the various cache segments. If we interleave the cache segments on
cache line boundaries, and hash the addresses, the traffic can be very close to uniform
in distance distribution and the average will be ¼ of the ring-stops in a bi-directional
ring. This is good for general purpose applications, with a fair amount of data sharing.
The small interleave step and the address hash helps avoid hot spots on the ring. It is
also easy to calculate the destination ring stop from the address: just use the address
bits next to the byte-within-cache-line address bits.

If there is little data sharing between threads, it may make sense to interleave the
cache on virtual page boundaries. With page coloring, the OS can then allocate virtual
pages such that the data is filled in the cache next to the requesting core. This scheme
will do very well for average performance, but leaves the design vulnerable to hot
spots when many threads access data residing inside a single page.

In the design we outlined, each piece of memory data can be found at exactly one
cache segment on the ring. An alternative strategy is to have each cache segment be
independent and let memory data be placed in any cache segment, typically in the
segment next to the core which requested the data. This improves latency and ring
performance when the core can fairly predictably hit in the local cache. If it misses,
there has to be a coherence mechanism for finding the data in other caches, typically
through snooping or a global cache directory. Either of these schemes can work well,
depending on the target applications.

Yet another alternative is to mix the two methods by grouping the cores into sub-
groups sharing the caches inside the group, but not the caches outside the group. This
makes most of the ring traffic local, which helps bandwidth, but still requires extra
coherence traffic when a reference misses in the cache. Of course, the ring would be
well suited to carry this coherence traffic. This scheme can work well when the num-
ber of ring stops gets very high and applications are well partitioned.

When choosing between the possible network topologies, we need to keep the ap-
plications in mind. Knowing what kind of traffic we will see lets us simplify the to-
pology, the routing protocol, and the flow control, which is very important, since
worst case scenarios can be very bad. Most networks perform poorly if a single node
is involved in all transactions. The ring design would not do well in a tornado pattern,
where every node just sends requests from the cache unit a few stops to the right.

Research Question: What are the tradeoffs between Ring and Mesh topologies as the
core count on a chip grows? We need to consider scalability of bandwidth, latency,
arbitration, power consumption, regularity of layout. Maybe include error handling.

3 Designing a Core for CMP

Having multiple cores on the die, makes it even more important that the core that is
being replicated, is well optimized. Any inefficiency is likely to be multiplied by the

 Multi Core Design for Chip Level Multiprocessing 173

number of cores. For many years, it was not possible to fit a full sized core on a sin-
gle chip. The history of processor design is highlighted by milestones when important
features were integrated into the processor chip. The Intel 486 CPU integrated the
Floating Point Unit. The Pentium chip executed multiple instructions per cycle and
added branch prediction. The Pentium III added SIMD instructions, called SSE. The
Pentium Pro was the first major processor to execute instructions out of order. Ita-
nium processors added large speculative execution to in order designs. Pentium4
added multi-threading. Pentium M added power management for power efficient
execution. Xeon added 64 bit processing. Core 2 Duo is adding multiple cores per die,
along with multiple levels of on-die cache.

Fitting the important processor features on the die was very important in minimiz-
ing interconnect delays due to chip crossings, and had a big performance impact. With
Multi-core chips, we are integrating the interconnects as well.

Fig. 3.1. Relating Moore’s Law to Performance Growth

Empirically, it has been observed that single stream processor performance is pro-
portional to the square root of the transistor count. It helps relate Moore’s Law to
performance as seen in Fig. 3.1. Considering that the circuit speed improves by the
square root of 2 between process generations, the performance of the next generation
processor, with twice the number of transistors, becomes:

New Performance = √2 √2 √2

* √ = 2 * Old PerformanceP

5/15/2009

Single Stream, Moore’s Law, and CMP

CMP Performance: Performance ~ Transistor Count
As long as there are no Uncore limitations!

Transistor Count

Performance

Interesting Core Design Area:
Slopes are similar

Gap driving us to Multi -core

Single Stream Performance:

Perf ~ √
Historically fairly accurate
Relates Moore ’s Law to Performance

10

174 T. Fossum

Going forward with CMP, it seems plausible that performance can grow almost li-
nearly with transistor count by just adding more cores, rather than increasing the tran-
sistor count per core. The gap between the straight line and the square root curve
drives us toward CMP.

Fig. 3.2. Graphics Rendering Performance scaling with Core count

Fig 3.2 shows that on some applications performance can scale linearly with core
count in a CMP. The graphs show projected performance of a software renderer run-
ning some popular video games on Larrabee, a multi core chip designed for
processing graphics. [3]. One key to the excellent scalability of the Larrabee chip is
good software use of the on-die caches and the available memory bandwidth. By
blocking the data to fit in the caches, the chip does not run out of memory resources
as the core count grows.

The point of the graph where the slopes of the curves in Fig 7 are equal, make for
an interesting core design point. Improving core performance at this point improves
both single stream and throughput performance. In practice, this is not a single point,
since the performance curves will vary with the nature of the applications running on
the core.

What is the optimal core architecture? Different designers have come up with dif-
ferent answers to this over the last sixty years. This diversity in opinion is due to
several factors:

 Multi Core Design for Chip Level Multiprocessing 175

1. The underlying hardware technology changes. The core designed with va-
cuum tubes will be different from the one we design with many millions of
MOSFET transistors. In between, we have had various semiconductor tech-
nologies, including TTL, ECL, and GaAs. These technologies had their
specific set of strengths and weaknesses to be optimized for. Since the tech-
nology continues to evolve, we are unlikely to find agreement on the ideal
core in the near future.

2. Compatibility requirements. More important than theoretical performance
and functionality, is the ability to run existing software. Ideas which require
the world’s software to be re-written have a high hurdle to overcome.

3. What is the best design will vary with the applications. Out of order
processing is good for irregular code which will be hard to schedule by a
compiler due to dynamic effects like branches and cache misses. On the oth-
er hand, compute intensive code like graphics and scientific computing may
be readily scheduled by a compiler and require less dynamic hardware.

4. The interesting design space for a core is enormous. While designers do per-
formance modeling to refine their designs, it is not possible to do it exhaus-
tively, and so we still have to rely somewhat on experience and judgement,
and maybe even taste. Almost like fashion, design styles come and go.

While early computers were quite spartan by necessity, their architecture was often
aimed at functionality rather than simplicity. There was a tendency to add a variety
of hardware constructs to solve specific problems encountered in programming
experiences at the time. It was OK if these designs spanned multiple chips, mod-
ules, and cabinets. The prevailing Complex Instruction Set Computers (CISC)
tended to have a lot of functionality in their instructions. There is a wide choice of
operands: registers, immediate, and memory. Memory operands can be addressed in
a variety of ways, including indexing and indirection. CISC computers were de-
signed to do transcendental functions, decimal string operations, and more in a single
instruction.

By contrast, Reduced Instruction Set Computers (RISC) emphasized common sim-
ple operations, leaving it to software to build more complex functions. RISC designs
were the first to fit full featured processors on a single die due to their simple instruc-
tion set and execution pipeline. This gave them a big performance advantage over
CISC processors. But soon afterwards, CISC processors also fit on a single die, and
the performance gap became smaller.

Some RISC advantages still exist. When single instructions both accesses memory
operands and perform operations, it makes the cache access more time critical and
makes it harder to pipeline the operations. Separating instructions that access memory
from the instructions that operate on data is referred to as a LOAD/STORE architec-
ture, and is a key RISC feature. It gives the compiler an opportunity to schedule other
operations between a LOAD instruction and instructions which use the data. This puts
less pressure on cache access, and the cache can be designed with better functionality,
taking a couple of cycles to complete the operation.

RISC architectures tend to have fixed instruction lengths, i.e. each instruction has
the same length, regardless of the operation it does. Usually, the length is 32 bits. This

176 T. Fossum

can be quite restrictive when you try to fit all the functionality you would like, and the
instruction set designers have to make compromises. The fixed length is quite impor-
tant when decoding instructions, especially when decoding multiple instructions in
parallel as in super scalar designs. With variable length instructions, it is harder to
know where the following instructions begin and end.

On the other hand, CISC instructions tend to have direct access to memory ope-
rands. This reduces the instruction count in a program, both static and dynamic. This
again saves issue slots, and makes more effective use of the instruction cache. The
difference in code density between CISC and RISC versions of a program can be a
factor of 2-3.

CISC architectures often convert the most complex instructions into sequences of
microcode operations. This lets the hardware be optimized for the simpler, higher
frequency operations, and can bridge the gap with RISC.

Another big core design choice is whether the instructions are executed in order or
out of order. Usually, out of order means issuing out of order, but completing instruc-
tions in order. The Tomasulo algorithm [2] uses register renaming to assign temporary
registers to hold early results and make them available for use by later instructions.
Instructions are assigned a free target register at issue time. When the instruction is
committed at “retire” time, the assigned register becomes the architectural state. If the
instruction turns out to be cancelled for some reason, the architectural state is backed
up to previous registers. It is an elegant scheme and works very well.

The out of order mechanism is especially useful in dealing with dynamic effects
which the compiler cannot easily schedule for, such as cache misses and branches,
and procedure calls. Out of order execution makes the branch predictor more effective
by letting instructions on the predicted path be issued early.

Out of order designs work well on programs like those in the SPECint benchmark
suite. These programs have significant run-time effects due to cache misses and
branch mispredicts. These are not easily handled by the compiler. And thus the dy-
namic re-ordering in out of order designs can give a 20-50% performance advantage.
For other, vectorized or streaming programs, where the compiler has scheduled the
code for the processor, in order designs can almost close the performance gap to out
of order.

Very Long Instruction Word computers (VLIW) are in-order designs where the
dependency checking of instructions are done by the compiler. Instructions are
grouped into strings of three to thirty, which are issued together under software con-
trol. It can be a challenge for the compiler to find this many independent instructions
to issue. Often, VLIW architectures include instructions for speculative execution
which can mimic in software the effect of out of order execution. Control Speculation
lets the compiler move operations past branches to help latency and fill in the issue
slots. Data Speculation lets the compiler re-order memory references. This is most
useful for moving loads up past stores in order to get them started early. The chal-
lenge is to detect when the speculation fails and find a way to recover. This may
require hardware support.

 Multi Core Design for Chip Level Multiprocessing 177

Much of core architecture centers on branch operations and cache access. Both of
these features have a dynamic behavior which requires speculation and recovery
from incorrect speculation. Other operations are predictable and are more easily
sped up by allocating additional of resources. For arithmetic, this can include vector
operations, where a single instruction performs the same operation on an array of
data.

A core can be designed to process instructions from multiple programs at the same
time. This is referred to as simultaneous multithreading. These hardware threads of
execution are just programs running in a processor core using shared hardware re-
sources. It is achieved by adding general registers and a few other resources to hold
the multiple process contexts. The rest of the hardware, including arithmetic units, can
be a shared resource and used to execute instructions from either of the threads. Thus
by adding a small amount of hardware, one can significantly increase aggregate per-
formance. Since instructions from different threads tend to be independent of each
other, it is more likely that they can be processed in parallel, even issued in the same
cycle.

Fig. 3.3. Issuing Instructions From Four Threads with Simultaneous Multi Threading

Multithreading can be an effective way of maximizing use of hardware resources
to increase throughput. But since some resources are shared, they can sometimes be
critical, resulting in contention between the threads. Thus the gain in throughput
comes with some loss of single threaded performance. The major source of perfor-
mance loss with multithreading is cache contention. The multiple threads will
increase total cache activity. If the data is not shared between threads, there is less
temporal and spatial locality, and the miss rate will increase. With multithreading,
there is more tolerance for cache misses, since there are other threads to run while
waiting for memory. But one has to be careful to not overwhelm the cache and memo-
ry system by trying to support too many threads.

178 T. Fossum

Fig. 3.4. Performance of Multi Threaded Programs in a Superscalar Alpha Processor

Fig 3.4 Shows the performance of multiple threads in an eight wide superscalar
Alpha design with Simultaneous Multithreading. The aggregate number of instruc-
tions per cycle increases as we go from one to four active threads, but there is a dimi-
nishing return, especially as we go from three to four threads. In fact, for floating
point benchmarks, the performance peaks with three threads due to resource conflicts.
The best speedup is with a mix of integer and floating point applications, since they
are less likely to stress the same resources.

Research Problem: We have looked at various ways of improving processor perfor-
mance/ in a CMP. For applications you are interested in, which techniques will work
best?

4 Memory Access and System Scaling

Memory access has been a challenge for computer designers for a long time. Provid-
ing high memory capacity and bandwidth along with short latency is difficult and
expensive. Multiprocessing puts additional demands on memory bandwidth. Multi-
processing with cache coherence adds coherence traffic and more latency, further
compounding the problem. With process scaling, per chip density increases follow
Moore’s Law, but the external wires, package pins, and connectors which connect
them to the processor chips improve more slowly.

Fig 4.1 shows four processors connected to system bus along with a memory con-
troller and a path to Input and Output (I/O). The memory is controlled centrally and
accessed by the four CPU’s via the system bus. Such systems have been made by
many manufacturers and have worked well. The single system bus can be a
bandwidth and latency problem, but clever designers have made it work. The key to
success has been to have a cache with each of the CPU’s. The cache may have been
integrated or not, but it served to improve the effective memory latency and to reduce
the bus bandwidth requirements. As the processors got faster, the caches got bigger

 Multi Core Design for Chip Level Multiprocessing 179

Fig. 4.1. Traditional Bus based Computer System

Fig. 4.2. Link based Computer System

and more sophisticated. As the cores got faster, the caches needed to get better. Typi-
cally, they had to scale faster than the rest of the core, because they also had to make
up for slower scaling of the memory system.

Figure 4.2 shows a system where memory has been distributed and is co-located
with the individual CPU’s. Thus each CPU has local memory directly attached.
Access to remote memory is via dedicated links. It is often referred to as a Non-
Uniform Access Memory system, NUMA, since there can be a significant latency
difference between local and remote memory. Such a system works best if most
memory references are local, meaning that the Operating System has managed to co-
locate a program and its data to the same socket. This can be difficult to achieve, but
much effort has gone into making it work well for many important applications.
Without good NUMA support in the OS, performance of such systems tend to be
limited by link bandwidth rather than memory bandwidth.

With a link based system, it becomes more beneficial to integrate the memory con-
troller in with the CPU chip (assuming we have the transistors). This eliminates two
chip crossings in the path to and from memory, which reduces latency, especially for
local memory. Similarly, we can integrate the connection to IO devices. So we have a
CPU chip which looks like this:

180 T. Fossum

Fig. 4.3. Integrated CPU chip

Figure 4.3 shows a highly integrated CPU chip as we have seen come to market re-
cently. Memory and IO have been left off for obvious reasons. The next logical step is
to integrate multiple cores on the same die. How does this affect the memory system?

The raw processor performance of the cores grows with the core count. This results
in increased memory traffic. The off-chip bandwidth may not increase proportionally.
The traditional solution is to increase the on-die cache size. Again, the total cache will
have to increase at a higher rate than the raw performance to account for the lesser
scaling in the memory system. Another factor is the impact of multi-core vs. single
core. Caches work well for most single programs because they have good temporal
and data locality. How do they work for multi-core?

On one hand, multi-core processing will bring in multiple data sets into the cache,
corresponding to the multiple threads of execution. This will increase pressure on the
cache. On the other hand, there is potential for sharing between the threads, thus in-
creasing the efficiency of the cache if it is shared. The sharing takes multiple forms:

1. Programs share data.
2. Programs can share instructions.
3. Programs can share the cache as a common resource.

Sharing data efficiently is the goal of many parallel programs. This has the potential
for large performance improvements and in the long term it may be the most interest-
ing aspect of multi-core processors. Data sharing has traditionally been classified as
coarse grained or fine grained, depending on the frequency of communication
between the threads. Coarse grained parallelism is most tractable since it puts less
demand on bandwidth and latency. Fine grained has been difficult in multi socket
systems since the cost of communication can easily outweigh the benefits of parallel
computation. This tradeoff will change with multi-core since the communication
delays decrease by two orders of magnitude.

Communication will still be a challenge in multi-core designs when data is shared
between threads. This makes techniques like Transactional Memory interesting, as
well as fast, efficient lock mechanisms. This is an important area for research. With
Transactional Memory, programs can execute a code segment atomically, assuming
there is no contention for access to shared data. If this assumption is false, the whole
segment is undone, and none of the writes are made visible to the system.

 Multi Core Design for Chip Level Multiprocessing 181

Sharing instructions can be important if the programs running are large, as in
Transaction Processing, the Operating System, and some personal productivity appli-
cations. If the working set of the program gets to be megabytes, it is important to keep
one copy for all the cores rather than one copy per thread.

Even if the running programs have little in common, sharing a large cache is typi-
cally more efficient than splitting that cache into smaller, private caches. This is be-
cause working sets vary in size as programs go through phases, leaving opportunities
for other programs to use spare cache locations.

There will of course be contention for cache space between threads. While caches
seem to be very robust in general, the multiple threads can create interference and
reduce cache hit rate. It is important to detect these cases and incorporate techniques
for dealing with them. An example would be when a thread accesses a large data
structure linearly and in effect sweeps the whole cache with little re-use. A simple
counter can detect this case, and map the sweeping references to a smaller section of
the cache, leaving the thread to thrash against its own data.

Associative caches, where a block of memory data can fit in multiple locations, be-
come even more important with multi-core, since independent code streams are more
likely to map data to the same index. The cache replacement algorithm, i.e. the
process of deciding of which block to replace when a new block is being brought in,
may need to consider the multi-core effect. The traditional LRU algorithm (Least
Recently Used) works well for single stream, single level caches. In multi-core de-
signs with multiple cache levels, the LRU may be less effective since it does not see
all the cache traffic, and the various cores can have very different access patterns in
the lower level caches.

The first level cache is often included in the last level cache for simplicity of de-
sign. Making it non-inclusive may make better use of the total cache space, but at the
expense of some complexity and maybe delays. As the caches get bigger and become
a significant portion of the total die area, it will make more sense to make them
exclusive.

Research Problem: Caches present a window into main memory. It reduces the ef-
fective memory latency and increases available bandwidth. Their existence is normal-
ly invisible to the correct execution of a program, since hardware keeps the caches
coherent with the memory contents. There is a significant amount of hardware which
goes into doing this work, even when it may not really be necessary for correct execu-
tion. If software took over more of the function of keeping caches coherent, hardware
could be simpler, performance would be higher, and power consumption would be
lower. Transactional Memory is a step in this direction, and there are likely many
other ideas to be found.

5 Power Management

We saw in the example in Section 1 how power consumption is likely to present a
fundamental limitation for CMP designs. By Dennard’s rules, power stayed fairly
constant per area if the supply voltage is scaled down by the common scaling factor.
Dynamic power is a direct function of the square of the voltage:

182 T. Fossum

P = constant * V² * C * F

where P is the dynamic power of the chip, V is the supply voltage, C is the switching
capacitance, and F is the frequency.

Since frequency is also a linear function of the voltage, the net effect is that dy-
namic power in a chip scales by the cubic power of the voltage. We see that a small
increase in voltage creates a large increase in power. Conversely, lowering the voltage
by just a little, can save significant amounts of power. Since frequency is proportional
to the voltage, lowering the voltage normally necessitates a drop in frequency. This is
referred to as voltage-frequency scaling. In a CMP, a small drop in frequency can
often free up enough power to enable an increase in the core count. Thus voltage-
frequency scaling has been a very efficient way of controlling power. It is now some-
times done in a single chip by dynamically scaling voltage and frequency to match the
power budget with the activity level of the program. This is quite intriguing. Unfortu-
nately, it may not be a long term strategy, as the voltage approaches the minimum
level needed for transistors to function correctly.

Once we become unable to lower the voltage further, transistors may continue to
shrink, but the power per area will not stay constant as it does in Dennard’s table of
design parameters. Power problems will surface in several areas: Power distribution,
cooling, current limits, sudden voltage swings, etc. Many clever people are busy
pushing back the limits we see in these areas, so we should not despair for the future.
But an important theme in CMP design will be to make the best possible use of the
available power. Given the problems we face with global warming, this is a sound
policy in any case.

One idea is to try to match the power allocated with the activity level of each core.
If we notice that a program has a low average execution rate (IPC), we can conclude
that on average it uses less power. That could free up power for other cores who may
be running programs with more instruction level parallelism. Since we cannot exceed
the power budget, we need to guarantee that the behavior we observe continues. We
can do that by limiting the issue rate of the core with the slow program to something
less than maximum. We can then monitor how good a match the restriction is with the
program as it executes. If it often wants to execute more instructions than we allowed,
we can increase its allocation. If it usually has spare instruction issue slots, we can
restrict it further and free up more of the total power budget.

Programs often have irregular behavior. There may be bursts of high activity even if
the average is low. Cutting off these peaks by limiting issue width, can be a significant
performance loss. If these bursts are short, they won’t cause a power problem. Allocat-
ing a burst budget of extra instruction issue slots can be effective in allowing for the
bursts of higher activity without compromising the overall power consumption. We
found that across a wide range of applications, allocating a burst budget of just ten in-
structions, removed most of the performance impact of restricting instruction issue.
Figure 5.1 shows an S-curve of a number of benchmarks showing the impact on per-
formance by restricting the average issue width to 1.5, 2.0, 2.5, and 3.0, respectively,
but with 10 credits to be used during short bursts of high program activity.

 Multi Core Design for Chip Level Multiprocessing 183

Fig. 5.1. Performance Impact of Restricting Issue Width in a Four wide Superscalar Design

A refinement of the issue limiting technique is to match the type of activity a pro-
gram has with the type of restrictions put on it. Floating point operations consume
more power than integer, multiplication more than addition, etc. If we know what
kind of program is running, we can budget power accordingly.

Many programs spend a lot of time waiting for memory during cache misses,
which can take hundreds of cycles. During this time, the cores can consume very little
power. We can stretch our power budget and have more cores running at the same
time if we can count on a certain cache miss rate. Again, a solution is to enforce the
idling via a technique called core rationing. We notice that on average 30% of the
cores are waiting for memory data, using very little power. We can use this to enable
more cores. To keep from running out of power, we make sure 30% of the cores are
idle even when there are fewer cache misses.

By keeping track of how often cores are forced to wait when there is no cache
miss, and how often more than the expected number of cores are waiting for memory,
we can adjust the formula for idling cores, to optimize performance at the available
power budget.

Running experiments using these techniques, we found that the negative perfor-
mance impact of core rationing is very low, and the potential for power saving is
significant.

There are many other techniques for conserving power in computer chips. Clock
gating and power gating are some of the most important ones. We have mainly fo-
cused on techniques specific to CMP design. The Polaris chip mentioned earlier,
included extensive power and clock control of individual components to match their
current function. For example, cores not currently computing, can have their voltage

Performance Impact of Issue Restriction
10 Credits

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 21 2 2 2 25 2 27 2 2 3 31 3 3 3 35 3 37 3 3 4 41 4 4 4 45 4 47 4 4 50

Sort ed Traces

R
el

at
iv

e
IP

C

1.5 2 2.5 3

184 T. Fossum

lowered just to the point where they can still retain information. This requires mul-
tiple voltage domains, which has a cost, but can be worthwhile as a way to match
power to activity level.

6 Error Handling

System reliability tends to improve significantly with chip level integration, through
the reduction in overall parts count. Silicon chips are usually more robust than me-
chanical packages and connectors. Comparing the reliability of a CMP chip with that
of a multi processing system with one or more chips per core, the CMP chip is likely
to have better reliability. This is a very comforting consequence of Moore’s Law.

But there are still challenges, including some new ones. The reliability per chip
does not automatically improve with chip level integration. The increased number of
circuits, with finer dimensions and lower voltage, makes the chips more susceptible to
soft errors, caused by random effects from cosmic rays of neutron particles. Also,
customers may not be satisfied with a single chip multi processor. Rather, they may
want the CMP to be part of a larger system that can be used to solve even larger prob-
lems. The reliability of very large systems, pushing the limits of software and power,
will continue to be an error handling challenge. CMP makes it possible to design
systems with thousands of cores.

Finally, the job of improving reliability is never done. As computers become an
even bigger part of our everyday life, we will expect more from them in terms of
functionality and performance, and the possible impact from failures will be greater.
This gives chip manufacturers like Intel a great incentive to continue to improve the
reliability of their components.

Besides doing all we can to make the underlying technology reliable, we will also
use a larger portion of the available transistors to actually reduce or eliminate the
impact of failures. This is already a well established strategy in the DRAM business,
where parity and ECC (Error Checking and Correcting Codes) are successfully used
for error detection and recovery. In this case, the added transistors increase the raw
failure rate, by adding error correcting codes which may themselves be subject to
errors. But the added logic is able to use the redundant bits to calculate the original
values and recover from the error.

Similar techniques will be used in the rest of the design. But unlike memory chips,
CMP’s do not consist of only regular structures like RAM arrays. There is a variety of
logic structures which cannot be checked by simple techniques like ECC and parity.

Parity refers to a technique of adding an additional checksum bit to a binary value
by taking the exclusive OR of all the bits in the number. This parity bit is saved along
with the data, and then used to check the number later on. If the parity of the data has
changed, it is a sign that the value has been corrupted. This technique catches all sin-
gle bit failures, in fact, any odd number of bit failures. It does not by itself offer a
recovery mechanism. For that we can use ECC, which adds enough bits to the value
to make it possible to pin point the bit in error and actually correct it. Current ECC
methods will often detect up to two failures, and correct single bit errors. By adding
more bits, this can be extended to both detect and correct more bits.

 Multi Core Design for Chip Level Multiprocessing 185

Parity and ECC are effective techniques for protecting arrays of data and wires
transporting data. Unfortunately, they are not easily propagated through arithmetic
and other complex transformations. Granted, for such computations, the window of
vulnerability is less, since there is only a short window of time when a transient error
can affect a result as it is being computed. The result is usually stored in a set of
latches, where the data may be kept for several cycles. One technique is to make these
latches radiation hardened by adding redundant copies of the data, or making them
more resistant to neutron particles in some other way.

While an error during an arithmetic operation is highly unlikely, if there are thou-
sands of processors in the system, with trillions of such operations per second, the
probability of a neutron particle causing a fault sometime during a year can be non-
negligible. Modulo arithmetic can be used to check arithmetic. Usually, one does the
arithmetic modulo 3, since the value of a binary number modulo 3 can be calculated
quickly and simply. It will also catch all single bit failures and many double bit fail-
ures. The idea is to store the modulo 3 value along with the operands, and do the same
operation on the modulo 3 values as we do on the operands themselves. Then we
compare the mod 3 result with the mod 3 value of the result.

There are several ad hoc techniques which can reduce the probability of a soft error
affecting a computation. Since the likelihood of an error is roughly proportional to the
size of the data structure, compression can be used to reduce the exposure. For exam-
ple, if cache line or a page in memory is all zero, one can represent that fact with a
single bit and use that bit to reproduce zeroes when the data is needed, rather than
expose the data itself to neutron particles.

Main memory and disk storage is usually protected by ECC. If such data is used by
the computation in a read-only fashion, it can be flushed and re-fetched when an error
is detected. If there is no detection mechanism, one can periodically flush and re-fetch
the data to keep errors from becoming visible.

In some applications, the occurrence of an undetected error can be catastrophic.
The most reliable systems have traditionally been based on repeating the computation.
This can be done by having redundant processors each computing the same program
and comparing the results. Having two processors operate in lockstep and comparing
all available signals has been used in some fault tolerant systems. In these systems it
is extremely unlikely that an error goes undetected. In some applications this is im-
portant. The challenge in designing such systems is to limit the chance of false
alarms, i.e. reduce the cases where there is loss of lockstep operation, but no program
visible error has actually occurred. The sources of these false positives can be reco-
verable errors in memory. If a bit flipped and was corrected by ECC, it may still cause
a timing change, which would affect lockstep. Asynchronous interfaces is another
source. A signal may accidentally be clocked in different cycles by two processors,
leading to a cycle-by-cycle miscompare.

With CMP, the opportunities for redundant computation to catch errors grow. Mul-
tiple cores and threads can run the same programs. Data in memory, IO and higher
level caches do not need to be replicated, but instead covered by ECC and a single
copy used by the redundant computations. Before written data is committed, the re-
sults offered by the two operations are checked against each other. Not replicating
memory traffic is especially important when memory bandwidth or cache capacity is
a critical resource for good performance. In a CMP, two cores can run the same

186 T. Fossum

program somewhat independently, using the same data in a shared cache. When they
write data into that cache, the data (and address) is compared, and if identical, the
cores are assumed to be correct and they are allowed to proceed. This scheme will
have fewer false positives than lockstep operation, but they can still occur. One case
could be that one core reads a cache line, which then gets invalidated by a third core
before the second core has read the data.

If the timing of the two cores becomes too disparate, the cache controller which
does the comparison may have problems buffering up intermediate results.

An especially intriguing version of the redundant computing scheme is to use two
threads running simultaneously inside a single processor core. In an in-order design,
they could run back to back, and the checking of a result could be very fast and time-
ly. Running three threads could provide error recovery as well. Comparing the middle
thread with both the first and the third thread, would indicate which of the threads is
in error, and the results produced by other two can be used for recovery. In this
scheme, data is not replicated. For applications where memory access and cache size
is the limiting factor, redundant multi threading can be very effective.

One of the great opportunities with CMP is the flexibility the multiple cores offer for
dynamic reconfiguration to implement important features like reliability, virtualization,
security, as well as performance. New ideas are sure to show up in coming years.

Once a design has extensive error detection and recovery, it is tempting to rely on
this to relax other design constraints, such as timing and power margins. Executing
closer to the edge of what the design can tolerate, can result in higher performance
and lower power. As long as the occasional error is always detected and recovered
from, this can be a good tradeoff. The Razor design developed at the University of
Michigan [6] is an example of such a design. At every critical stage in the pipeline,
there are two sets of latches: one for early clocking and on for late clocking. The early
latches capture the data and passes it onto the next stage, while the late latches capture
the data conservatively and checks it against the early set. If they do not match, an
error has occurred and the computation needs to be redone. A mechanism like this can
relax margins based on manufacturing and environmental factors, and other parame-
ters normally assumed to be worst case.

7 Summary

We have presented some of the motivation for Multi-core designs and how this is
becoming a key feature of CPU’s. Multi-core designs presents challenges for the
designers in architecting a scalable, high performance interconnect and an optimal
processor core. These processors require new inventions in the memory system, with
effective, multi-level caches, and high bandwidth to main memory. If the supply vol-
tage stops scaling downward at some point, it will be even more important to manage
power efficiently. Finally, we looked at how designers will need to use a larger
portion of transistors to guarantee reliable operation of large systems.

Maybe the biggest challenge presented by multi-core designs will be developing
software which takes advantage of the performance opportunities in parallel
processing. Hardware needs to support this with visibility and determinism for debug
and performance tuning, and features like transactional memory to make a difficult
programming task a little easier.

 Multi Core Design for Chip Level Multiprocessing 187

Acknowledgements

These notes are based on work done over several years with many people, too many
to mention here. The novel ideas on the Ring interconnect for CMP were developed
with Steve Felix, George Chrysos, and Matthew Mattina. Thanks to Steve Lang for
reading these notes and giving me suggestions for improving both style and content.

References

1. Dennard, R., Yu, H.-N., et al.: Design of ion-implanted MOSFETs with very small physical
dimensions. IEEE Journal of Solid State Circuits SC-9(5) (October 1974)

2. Tomasulo, R.M.: An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM
Journal of Research and Development 11(1), 25–33 (1967)

3. Seiler, L., Carmean, D., et al.: Data in graph. In: Larrabee: A many-core x86 architecture
for visual computing, SIGGRAPH 2008: ACM SIGGRAPH 2008 Papers. ACM Press, New
York (2008)

4. Emer, J.S., Clark, D.W.: Characterization of Processor Performance in the VAX-11/780. In:
Proceedings of the 11th International Conference on Computer Architecture (May 1984);
Reprinted in Readings in Computer Archictecture (2000)

5. Bautista, J., et al.: Polaris Description, at Intel Resesearch Group
6. Austin, T.M., et al.: Making Typical Silicon matter with Razor. IEEE Computer (2003)

Author Index

Bauer, Sebastian S. 41

Fossum, Tryggve 162

Hoare, Tony 1, 21

Leino, K. Rustan M. 91

Meyer, Bertrand 41
Morandi, Benjamin 41
Müller, Peter 91

Shankar, Natarajan 140

	Title Page
	Preface
	Table of Contents
	Fine-Grain Concurrency
	Introduction
	Sequential Processes, Modeled by Flowcharts
	Concurrent Processes, Modeled by Petri Nets
	Other Features of a Calculus
	Conclusion

	Compensable Transactions
	Introduction
	The Petri Box Model of Execution
	Definition of a Transaction
	A Calculus of Transactions
	Nested Transactions
	Concurrency
	Conclusion

	SCOOP – A Contract-Based Concurrent Object-Oriented Programming Model
	Introduction
	Example
	Processors, Objects, and the Scheduler
	Types
	Definition
	Syntax
	Explicit and Implicit Types
	Expanded Types
	Formal Generic Parameters
	Soundness

	Feature Call and Feature Application
	Feature Application
	Feature Call
	Lock Revocation

	ObjectCreation
	Contracts
	Controlled and Uncontrolled Assertion Clauses
	Semantics of Contracts
	Proof Rule

	Type Combiners
	Result Type Combiner
	Argument Type Combiner

	TypeConformance
	Feature Redeclaration
	False Traitors
	Agents
	Once Routines
	Limitations and Future Work
	References

	Using the Spec# Language, Methodology, and Tools to Write Bug-Free Programs
	Introduction: What Is Spec#
	Basics
	Non-null Types
	Method Contracts
	Inline Assertions
	Loop Invariants
	Accounting for Modifications
	Virtual Methods
	Object Invariants

	Working with Object Invariants
	Aggregate Objects and Ownership
	Ownership-Based Invariants
	Subclasses
	Establishing Object Invariants

	Owners and Peer Groups
	Peers
	Peer Consistency
	Peer Groups

	Arrays
	Covariant Array Types
	Arrays of Non-null Elements
	Ownership of Arrays and Array Elements

	Generics Classes
	Capturing Parameters
	Customizing Rep Fields
	Customizing Peer Fields

	Abstraction
	Pure Methods
	Property Getters
	Purity: The Fine Print
	Model Fields

	Conclusions
	References

	Fixpoints and Search in PVS
	Introduction
	A Brief Overview of PVS
	Fixed Points over Complete Lattices
	The Boolean Lattice
	General Forward Search
	Generalizing Dijkstra’s Algorithm
	Observations
	Conclusion
	References

	Multi Core Design for Chip Level Multiprocessing
	CMP Concepts: Introduction and Some Background
	On Die Networks
	Intel’s Polaris Chip, a Design Example

	Designing a Core for CMP
	Memory Access and System Scaling
	Power Management
	Error Handling
	Summary
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

