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Preface

This book contains the papers of the 12th Advances in Computer Games Con-
ference (ACG 2009) held in Pamplona, Spain. The conference took place during
May 11–13, 2009 in conjunction with the 13th Computer Olympiad and the 16th

World Computer Chess Championship.
The Advances in Computer Games conference series is a major international

forum for researchers and developers interested in all aspects of artificial intel-
ligence and computer game playing. The Pamplona conference was definitively
characterized by fresh ideas for a large variety of games.

The Program Committee (PC) received 41 submissions. Each paper was ini-
tially sent to at least three referees. If conflicting views on a paper were reported,
it was sent to an additional referee. Out of the 41 submissions, one was with-
drawn before the final decisions were made. With the help of many referees (see
after the preface), the PC accepted 20 papers for presentation at the conference
and publication in these proceedings.

The above-mentioned set of 20 papers covers a wide range of computer games.
The papers deal with many different research topics. We mention: Monte-Carlo
Tree Search, Bayesian Modeling, Selective Search, the Use of Brute Force, Con-
flict Resolution, Solving Games, Optimization, Concept Discovery, Incongruity
Theory, and Data Assurance.

The 17 games that are discussed are: Arimaa, Breakthrough, Chess, Chinese
Chess, Go, Havannah, Hex, Kakuro, k -in-a-Row, Kriegspiel, LOA, 3 x n AB
Games, Poker, Roshambo, Settlers of Catan, Sum of Switches, and Video Games.

We hope that the readers will enjoy the research efforts performed by the
authors. Below we provide a brief characterization of the 20 contributions, in
the order in which they are published in the book.

“Adding Expert Knowledge and Exploration in Monte-Carlo Tree Search,” by
Guillaume Chaslot, Christophe Fiter, Jeap-Baptiste Hoock, Arpad Rimmel, and
Oliver Teytaud, presents a new exploration term, which is important in the trade-
off between exploitation and exploration. Although the new term improves the
Monte-Carlo Tree Search considerably, experiments show that some important
situations (semeais, nakade) are still not solved. Therefore, the authors offer
three other important improvements. The contributions is a joy to read and
provides ample insights into the underlying ideas of the Go program Mogo.

“A Lock-Free Multithreaded Monte-Carlo Tree Search Algorithm” is authored
by Markus Enzenberger and Martin Müller. The contribution focuses on efficient
parallelization. The ideas on a lock-free multithreaded Monte-Carlo Tree Search
aim at taking advantages of the memory model of the AI-32 and Intel-64 CPU
architectures. The algorithm is applied in the Fuego Go program and has im-
proved the scalability considerably.
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“Monte-Carlo Tree Search in Settlers of Catan,” by Ostván Szita, Guillaume
Chaslot, and Pieter Spronck, describes a successful application of MCTS in
multi-player strategic decision making. The authors use the non-deterministic
board game Settlers of Catan for their experiments. They show that providing a
game-playing algorithm with (limited) domain knowledge can improve the play-
ing strength substantially. Two techniques that are discussed and tested are:
(1) using non-uniform sampling in the Monte-Carlo simulation phase and (2)
modifying the statistics stored in the game tree.

“Evaluation Function-Based Monte-Carlo LOA” is written by Mark H.M. Wi-
nands and Yngvi Björnsson. The paper investigates how to use a positional evalua-
tion function in a Monte-Carlo simulation-based LOA program (ML-LOA). Four
different simulations strategies are designed: (1) Evaluation Cutt-Off, (2) Cor-
rective, (3) Greedy, and (4) Mixed. Experimental results reveal that the Mixed
strategy is the best among them. This strategy draws the moves randomly based
on their transition probabilities in the first part of a simulation, but selects them
based on their evaluation score in the second part of a simulation.

“Monte-Carlo Kakuro” by Tristan Cazenave is a one-person game that con-
sists in filling a grid with integers that sum up to predefined values. Kakuro
can be modeled as a constraint satisfaction problem. The idea is to investi-
gate whether Monte-Carlo methods can improve the traditional search methods.
Therefore, the author compares (1) Forward Checking, (2) Iterative Sampling
and (3)Nested Monte-Carlo Search. The best results are produced by Nested
Monte-Carlo search at level 2.

“A Study of UCT and Its Enhancements in an Artificial Game” is authored
by David Tom and Martin Müller. The authors focus on a simple abstract game
called the Sum of Switches (SOS). In this framework, a series of experiments
with UCT and RAVE are performed. By enhancing the algorithm and fine-tuning
the parameters, the algorithmic design is able to play significantly stronger with-
out requiring more samples.

“Creating an Upper-Confidence Tree Program for Havannah, ” by F. Teytaud
and O. Teytaud, presents another proof of the general applicability of MCTS by
testing the techniques on the Havannah game. The authors investigate Bern-
stein’s formula, the success role of UCT, the efficiency of RAVE, and progressive
widening. The outcome is quite positive in all four subdomains.

“Randomized Parallel Proof-Number Search,” by Jahn Takeshi Saito, Mark
H.M. Winands, and H.Jaap van den Herik, describes a new technique for par-
allelizing Proof Number Search (PNS) on multi-core systems with shared mem-
ory. The parallelization is based on randomizing the move selection of multiple
threats, which operate on the same search tree. Experiments show that RP-PNS
scales well. Four directions for future research are given.

“Hex, Braids, the Crossing Rule and XH-Search,” written by Philip Hen-
derson, Broderik Arneson, and Ryan B. Hayward, proposes XH-search, a Hex
connection finding algorithm. XH-search extends Anshelevich’s H-search by in-
corporating a new crossing rule to find braids, connections built from overlapping
subconnections. XH-search is efficient and easily implemented.
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“Performance and Prediction: Bayesian Modelling of Fallible Choice in Chess”
is a contribution by Guy Haworth, Ken Regan, and Giuseppe Di Fatta. The
authors focus on the human factor as is evidently expressed in games, such as
Roshambo and Poker. They investigate (1) assessing the skill of a player, and
(2) predicting the behavior of a player. For these two tasks they use Bayesian
inferences. The techniques so developed enable the authors to address hot topics,
such as the stability of the rating scale, the comparison of players of different
eras, and controversial incidents possibly involving fraud. The last issue, for
instance, discusses clandestine use of computer advice during competitions.

“Plans, Patterns and Move Categories Guiding a Highly Selective Search”
written by Gerhard Trippen. New ideas for an Arimaa-playing program Rat
are presented. Rat starts with a positional evaluation of the current position. A
directed position graph based on pattern matching decides which plan of a given
set of plans should be followed. The plan then dictates what types of moves
can be chosen. Leaf nodes are evaluated only by a straightforward material
evaluation. The highly selective search looks, on average, at only five moves out
of 5,000 to over 40,000 possible moves in a middle game position.

“6-Man Chess and Zugzwangs” by Eiko Bleicher and Guy Haworth. They
review zugzwang positions where having the move is a disadvantage. An out-
come of the review is the observation that the definition of zugzwang should be
revisited, if only because the presence of en passent capture moves gives rise to
three, new, asymmetric types of zugzwang. With these three new types, the total
number of types is now six. Moreover, there are no other types.

“Solving Kriegspiel Endings with Brute Force: The Case of KR vs K” is a
contribution by Paolo Ciancarini and Gian Piero Favini. The paper proposes
the solution of the KRK endgame in Kriegspiel. Using brute force and a suit-
able data representation, one can achieve perfect play, with perfection meaning
fastest checkmate in the worst case and without making any assumptions on the
opponent. The longest forced mate in KRK is 41. The KRK tablebase occupies
about 80 megabytes of hard disk space. On average, the program has to examine
25,000 metapositions to find the compatible candidate with the shortest route
to mate.

“Conflict Resolution of Chinese Chess Endgame Knowledge Base,” written by
Bon-Nian Chen, Pangfang Liu, Shun-Chin Hsu, and Tsan-sheng Hsu, proposes
an autonomic strategy to construct a large set of endgame heuristics, which
help to construct an endgame database. A conflict resolution strategy eliminates
the conflicts among the constructed heuristic databases. The set of databases is
called endgame knowledge base. The authors experimentally establish that the
correctness of the constructed endgame knowledge base so obtained is sufficiently
high for practical use.

“On Drawn k-in-a-Row Games,” by Sheng-Hao Chiang, I-Chen Wu, and Ping-
Hung Lin, continues the research on a generalized family of k -in-a-row games.
The paper simplifies the family to Connect (k, p). Two players alternately place
p stones on empty squares of an infinite board in each turn. The player who
first obtains k connective stones of the own color horizontally, vertically, or
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diagonally wins the game. A Connect(k, p) game is drawn if both players have
no winning strategy. Given p, the authors derive the value kdraw(p), such that
Connect(kdraw(p), p) is drawn, as follows. (1) kdraw (2)=11. (2) For all p ≥ 3,
kdraw(p)= 3p + 3d + 8, where d is a logarithmic function of p. So, the ratio
kdraw(p)/p is approximate to 3 for sufficiently large p. To their knowledge, the
kdraw(p) are currently the smallest for all 2 ≤ p < 1000, except for p=3.

“Optimal Analyses for 3 × n AB Games in the Worst Case,” is written by Li-
Te Huang and Shun-Shii Lin. The paper observes that by the complex behavior
of deductive genes, tree-search approaches are often adopted to find optimal
strategies. In the paper, a generalized version of deductive games, called 3 ×
n AB games, is introduced. Here, traditional tree-search approaches are not
appropriate for solving this problem. Therefore a new method is developed called
structural reduction. A worthwhile formula for calculating the optimal numbers
of guesses required for arbitrary values of n is derived and proven to be final.

Automated Discovery of Search-Extension Features is a contribution by Pálmi
Skowronski, Yngvi Björnsson, and Mark H.M. Winands. The authors focus on se-
lective search extentions. Usually, it is a manual trial-and-error task. Automating
the task potentially enables the discovery of both more complex and more effec-
tive move categories. The introduction of Gradual Focus leads to more refined
new move categories. Empirical data are presented for the game Breakthrough,
showing that Gradual Focus looks at a number of combinations that is two or-
ders of magnitude fewer than a brute-force method, while preserving adequate
precision and recall.

“Deriving Concepts and Strategies from Chess Tablebases,” by Matej Guid,
Martin Možina, Aleksander Sadikov, and Ivan Bratko, is an actual AI chal-
lenge. A positive outcome on the human understandability of the concepts and
strategies would be a milestone. The authors focus on the well-known KBNK
endgame. They develop an approach that combines specialized minimax search
with argument-based machine learning (ABML). In the opinion of chess coaches
who commented on the derived strategy, the tutorial presentation of this strategy
is appropriate for teaching chess students to play this ending.

“Incongruity-Based Adaptive Game Balancing” is a contribution by Giel van
Lankveld, Pieter Spronck, Jaap van den Herik, and Matthias Rauterberg. The
authors focus on the entertainment value of a game for players of different skill
levels. They investigate a way of automatically adopting a game’s balance. The
idea of adopting the balance is based on the theory of incongruity. The theory
is tested for three difficult settings. Owing to the implementation of this theory
it can be avoided that a game becomes boring or frustrating.

“Data Assurance in Opaque Computations,” by Joe Hurd and Guy Haworth,
examines the correctness of endgame data for multiple perspectives. The issue of
defining a data model for a chess endgame and the systems engineering responses
to that issue are described. A structured survey has been carried out of the
intrinsic challenges and complexity of creating endgame data by reviewing (1)
the past pattern of errors, (2) errors crept in during work in progress, (3) errors
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surfacing in publications, and (4) errors occurring after the data were generated.
Three learning points are given.

This book would not have been produced without the help of many persons.
In particular, we would like to mention the authors and the referees for their
help. Moreover, the organizers of the three events in Pamplona (see the begin-
ning of this preface) have contributed substantially by bringing the researchers
together. Without much emphasis, we recognize the work by the committees as
essential for this publication. Finally, the editors happily recognize the generous
sponsors Gobierno de Navarra, Ayuntamiento de Pamplona Iruñeko Udala, Cen-
tro Europeo de Empresas e Innovación Navarra, ChessBase, Diario de Navarra,
Federación Navarra de Ajedrez, Fundetec, ICGA, Navarmedia, Respuesta Digi-
tal, TiCC (Tilburg University), and Universidad Pública de Navarra.

January 2010 Jaap van den Herik
Pieter Spronck
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Adding Expert Knowledge and Exploration in
Monte-Carlo Tree Search

Guillaume Chaslot1, Christophe Fiter2, Jean-Baptiste Hoock2,
Arpad Rimmel2, and Olivier Teytaud2

1 Games and AI Group, MICC, Faculty of Humanities and Sciences,
Universiteit Maastricht, Maastricht, The Netherlands

2 TAO (Inria), LRI, UMR 8623 (CNRS - Univ. Paris-Sud),
bat 490 Univ. Paris-Sud 91405 Orsay, France

teytaud@lri.fr

Abstract. We present a new exploration term, more efficient than clas-
sical UCT-like exploration terms. It combines efficiently expert rules,
patterns extracted from datasets, All-Moves-As-First values, and classi-
cal online values. As this improved bandit formula does not solve several
important situations (semeais, nakade) in computer Go, we present three
other important improvements which are central in the recent progress
of our program MoGo.

– We show an expert-based improvement of Monte-Carlo simulations
for nakade situations; we also emphasize some limitations of this
modification.

– We show a technique which preserves diversity in the Monte-Carlo
simulation, which greatly improves the results in 19x19.

– Whereas the UCB-based exploration term is not efficient in MoGo,
we show a new exploration term which is highly efficient in MoGo.

MoGo recently won a game with handicap 7 against a 9Dan Pro player,
Zhou JunXun, winner of the LG Cup 2007, and a game with handicap
6 against a 1Dan pro player, Li-Chen Chien.1

1 Introduction

Monte-Carlo Tree Search (MCTS [1,2,3]) is a recent tool for difficult planning
tasks. Impressive results have already been produced in the case of the game of
Go [2,4].

MCTS consists in building a tree, in which nodes are situations of the consid-
ered environment and the branches are actions that can be taken by an agent.
The main point in MCTS is that the tree is highly unbalanced, with a strong
bias in favor of important parts of the tree. The focus is on the parts of the tree
in which the expected gain is the highest. For estimating which situation should
be further analyzed, several algorithms have been proposed. We mention three
1 A preliminary version of this work was presented at the EWRL workshop, without

proceedings.

J. van den Herik and P. Spronck (Eds.): ACG 2009, LNCS 6048, pp. 1–13, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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of them. UCT[3] (Upper Confidence bounds applied to Trees) focuses on the
proportion of winning simulation plus an uncertainty measure. AMAF [5,6,4]
(All Moves As First, also termed RAVE for Rapid Action-Value Estimates in
the MCTS context) focuses on a compromise between UCT and heuristic infor-
mation extracted from the simulations. BAST[7] (Bandit Algorithm for Search
in Tree) uses UCB-like bounds modified through the overall number of nodes in
the tree. Other related algorithms have been proposed as in [1], essentially using
a decreasing impact of a heuristic (pattern-dependent) bias as the number of
simulations increases. In all these cases, the idea is to bias random simulations
with the help of statistics.

In the context of the game of Go
2, the nodes are equipped with one Go

board configuration, and with statistics, typically the number of won and lost
games in the simulations started from this node (the RAVE computations require
some more complex statistics). MCTS uses these statistics in order to expand
iteratively the tree in the regions where the expected reward is maximal. After
each simulation from the current position (the root) until the end of the game,
the win and loss statistics are updated in every node visited by the simulation,
and a new node corresponding to the first new situation of the simulation is
created. The scheme is described in Algorithm 1.

Algorithm 1. Overview of Monte-Carlo Tree Search
Initialize the tree T to only one node, equipped with the current situation.
while There is time left do

Simulate one game g from the root of the tree to a final position, choosing moves
as follows:
Bandit part: for a situation in T , choose the move with maximal score.
MC part: for a situation out of T , choose the move according to Algorithm 2.
Update the win/loss statistics in all situations of T visited by g.
Add in T the first situation of g which is not yet in T .

end while
Return the move simulated most often from the root of T .

The reader is referred to [1,2,3,4,8] for a detailed presentation of MCTS
techniques and various scores. We will propose our current bandit formula in
section 2. (Section 3 contains our new ideas and Section 4 our conclusions).

The function used for taking decisions out of the tree (i.e., the so-called Monte-
Carlo part, MC) is defined in Algorithm 2. An atari occurs when a string (a group
of stones) can be captured in one move. Some Go knowledge has been added
in this part in the form of 3 × 3 expert designed patterns in order to play more
meaningful games.

However, some bottlenecks appear in MCTS. In spite of the many improve-
ments in the bandit formula, there are still situations which are poorly handled
by MCTS. For instance, MCTS uses a bandit formula for moves early in the
2 Definitions of the different Go terms used in this article can be found on the web

site http://senseis.xmp.net/

http://senseis.xmp.net/
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Algorithm 2. Algorithm for choosing a move in MC simulations, for the Go

if the last move is an atari, then
Save the stones which are in atari if possible (this is checked by liberty count).

else
if there is an empty location among the 8 locations around the last move which
matches a pattern then

Sequential move: play randomly uniformly in one of these locations.
else

if there is a move which captures stones then
Capture move: capture stones.

else
if there is a legal move then

Legal move: play randomly a legal move
else

Return pass.
end if

end if
end if

end if

tree, but cannot establish the long-term effects which involve the behavior of
the simulations far from the root. The situations which are to be clarified at the
very end should therefore be included in the Monte-Carlo part and not in the
Bandit part. Hence, we propose three improvements in the MC part.

1. Diversity preservation (see Section 3.1).
2. Nakade refinements (see Section 3.2).
3. Elements around the Semeai (see Section 3.3).

2 Combining Offline, Transient, Online Learnings and
Expert Knowledge, with an Exploration Term

In this section we present how we combine online learning (bandit module), tran-
sient learning (RAVE values), expert knowledge (detailed below), and offline
pattern-information. RAVE values are presented in [4]. We point out that this
combination is far from being straightforward: due to the subtle equilibrium be-
tween online learning (i.e., naive success rates of moves), transient learning (RAVE
values), and offline values, the first experiments were highly negative. It was only
after careful tuning of parameters3 that the experiments became conclusive.

The score for a decision d (i.e., a legal move) is as follows.

score(d) = α p̂(d)︸︷︷︸
Online

+β ̂̂p(move)︸ ︷︷ ︸
Transient

+(γ +
C

log(2 + n(d))
) H(d)︸ ︷︷ ︸

Offline

(1)

3 We used both manual tuning and cross-entropy methods. Parallelization was highly
helpful for this.
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Here the coefficients α, β, γ and C are empirically tuned coefficients depending
on n(d) (number of simulations of the decision d) and n (number of simulations
of the current board). Below we provide the formulas for α, β, γ.

β =
#{rave sims}

#{rave sims} + #{sims} + c1#{sims}#{rave sims} (2)

γ =
c2

#{rave sims} (3)

α = 1 − β − γ (4)

In (2) and (3), #{rave sims} is the number of Rave-simulations, #{sims} is
the number of simulations; C, c1, and c2 are empirically tuned. For the sake of
completeness, we precise that C, c1, and c2 depend on the board size. Moreover,
they are not the same in the root of the tree during the beginning of the thinking
time, in the root of the tree during the end of the thinking time, and in other
nodes. Also, formula (1) is computed most often by an approximated (faster)
formula, and only sometimes by the complete formula - it was empirically found
that the constants should not be the same in both cases. We admit that all
these local engineering improvements make the formula quite unclear. Our take-
home message is mainly that MoGo has good results with α + β + γ = 1,
γ � c2/#{rave sims} and with the logarithmic formula C/ log(2 + n(d)) for
progressive unpruning. These rules imply that the most important part is:

– initially, the offline learning,
– later, the transient learning (RAVE values),
– and that eventually, only the “real” statistics matter.

The offline part, H(d) is the sum of two terms: patterns, as in [1,9,10], and rules,
which are detailed below:

– capture moves (in particular, a string contiguous to a new string in atari)
– extension (in particular out of a ladder)
– avoid self-atari
– atari defense (in particular when there is a ko)
– distance to border (optimum distance = 3 in 19x19 Go)
– short distance to previous moves
– short distance to the move before the previous move
– locations which have probability nearly 1/3 of being of one’s color at the end

of the game are preferred.

The following rules are used in our 19x19 implementation, and they improve the
results.

– Territory line (i.e., line number 3)
– Line of death (i.e., first line)
– Peep-connect (i.e., connect two strings when the opponent threatens to cut)
– Hane (a move which “reaches around” one or more of the opponent’s stones)
– Threat
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– Connect
– Wall
– Bad Kogeima(same pattern as a knight’s move in chess)
– Empty triangle (three stones making a triangle without any surrounding

opponent’s stone)

Patterns and rules are used both (i) as an initial number of RAVE simulations,
and (ii) as an additive term in H . The additive term (ii) is proportional to the
number of AMAF-simulations.

The shapes that constitute the rules are illustrated in Figure 1. A naive hand
tuning of parameters is performed, only for the simulations added in the AMAF
statistics. They provide a 63.9±0.5 % winning rate against the version without
these improvements. We are optimistic on the fact that tuning the parameters
will in general strongly improve the results. Since the early developments of
MoGo, some “cut” bonuses are included (i.e., advantages for playing at locations
which match “cut” patterns, i.e., patterns for which a location prevents the
opponent from connecting two groups).

Threat Line of Peep Hane Connect
death connect

Wall Bad Empty Empty Line of
Kogeima triangle triangle influence

Line of Kogeima Kosumi Kata Bad Tobi
defeat

Fig. 1. Fifteen shapes that require exact matches are required for applying the
bonus/malus rule. In all cases, the shapes are presented for the black player: the feature
applies for a black move at one of the crosses. The reverse pattern applies for White.
Threat is not an exact shape to be matched but just an example. In general, Black has
a bonus for simulating one of the liberties of an enemy string with exactly two liberties,
i.e., to generate an atari.
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Following [9], we built a model for evaluating the probability that a move is
played, conditionally to the fact that it matches some pattern. When a node
is created, the pattern matching is called, and the probability it proposes is
used as explained later (Eq. 1). The pattern matching is computationnally
expensive and we had to tune the parameters in order to achieve positive results.

The following parameters had to be modified, when this model was included in
H :

– time scales for the convergence of the weight of online statistics to 1 (see
Eq. 1) are increased;

– the number of simulations of a move at a given node before the subsequent
nodes is created is increased (because the computational cost of a creation
is higher);

– the optimal coefficients of expert rules are modified;
– importantly, the results were greatly improved by adding the constant C (see

Eq. 1). This is the last line of Table 1.

Results are presented in Table 1.

Table 1. Effect of adding patterns extracted from professional games in MoGo. The
first tuning of parameters is the tuning of α, β, and γ as functions of n(d) (see Eq. 1) and
of coefficients of expert rules. A second tuning consists in tuning constant C in Eq. 1.

Tested version Against Conditions of games Success rate
MoGo + patterns MoGo without patterns 3000 sims/move 56 % ± 1%
MoGo + patterns MoGo without patterns 2s/move 50.9 % ± 1.5 %

MoGo + patterns + MoGo + patterns 1s/move 55.2 % ± 0.8 %
tuning of coefficients
MoGo + patterns + MoGo + patterns + 1s/move 61.72 % ± 3.1 %
tuning of coefficients tuning of

+ adding and tuning C coefficients

3 Improving Monte-Carlo Simulations

There exists no easy criterion to evaluate the effect of a modification of the
Monte-Carlo simulator on the global MCTS algorithm in the case of Go (or more
generally two-player games). Many people have tried to improve the MC engine
by increasing its level (the strength of the Monte-Carlo simulator as a stand-
alone player), but it is shown clearly in [11,4,12] that this is not a good criterion:
an MC engine MC1 which plays significantly better than another MC2 can lead
to less good results than MC2 as a module in MCTS. Some MC engines have
been learnt on datasets [10], still the results may strongly improve by changing
the constants manually. In that sense, designing and calibrating an MC engine
remains an open challenge: one has to experiment a modification intensively in
order to validate it.
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Various shapes are defined in [11,12,13,14]. Moreover, [12] uses patterns and
expertise as explained in Algorithm 2. Below, we present three new improve-
ments, two of them rely on an increased diversity when the computational power
increases; in both cases, the improvement is negative or negligible for small com-
putational power and becomes highly significant when the computational power
increases. The third improvement deals with the semeai.

3.1 Fill the Board: Random Perturbations of the Monte-Carlo
Simulations

The principle of the first improvement is to play first on locations of the board
where there is large empty space. The idea is to increase the number of locations
at which Monte-Carlo simulations can find pattern-matching in order to diversify
the Monte-Carlo simulations.

As trying every position on the board would take too much time, the follow-
ing procedure is used instead. A location on the board is chosen randomly; if the
8 surrounding positions are empty, the move is played, else the following N − 1
positions on the board are tested; N is a parameter of the algorithm. This modi-
fication introduces more diversity in the simulations: it is due to the fact that the
Monte-Carlo player uses a large number of patterns. When patterns match, one of
them is played. So the simulations have only a few ways of playing when solely a
small number of patterns match; in particular at the beginning of the game, when
there are just a few stones on the goban. As this modification is played before the
patterns, it leads to more diversified simulations (Figure 2 (left)). The detailed
algorithm is presented in Algorithm 3, experiments in Figure 2 (right).

9x9 board 19x19 board
Nb of playouts Success rate Nb of playouts Success rate

per move per move
or time/move or time /move

10 000 52.9 % ± 0.5% 10000 49.3 ± 1.2 %
5s/move, 54.3 % ± 1.2 % 5s/move, 77.0 % ± 3.3 %
8 cores 8 cores
100 000 55.2 % ± 1.4 % 100 000 73.7 % ± 2.9%
200 000 55.0 % ± 1.1 % 200 000 78.4 % ± 2.9 %

Fig. 2. Left: diversity loss when the “fillboard” option was not applied: the white
stone is the last move, and the black player, starting a Monte-Carlo simulation, can
only play at one of the locations marked by triangles. Right: results associated to the
“fillboard” modification. As the modification leads to a computational overhead, results
are better for a fixed number of simulations per move; however, the improvement is
clearly significant. The computational overhead is reduced when a multi-core machine
is used: the concurrency for memory access is reduced when more expensive simulations
are used, and therefore the difference between expensive and cheap simulations decays
as the number of cores increases. This element also shows the easier parallelization of
heavier playouts.
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Algorithm 3. Algorithm for choosing a move in MC simulations, including the
“fill board” improvement. We also experimented with a constraint of 4, 12 and
22 empty locations instead of 8, but results were disappointing.

if the last move is an atari, then
Save the stones which are in atari if possible.

else
“Fill board” part.
for i ∈ {1, 2, 3, 4, . . . , N} do

Randomly draw a location x on the goban.
IF x is an empty location and the eight locations around x are empty, play x
(exit).

end for
End of “fill board” part.
Sequential move, if any (see above).
Capture move, if any (see above).
Random legal move, if any (see above).

end if

3.2 The “Nakade” Problem

A known weakness of MoGo, as well as many MCTS programs, is that nakade
is not correctly handled. We will use the term nakade to design a situation in
which a surrounded group has a single large internal, enclosed space in which the
player would not be able to establish two eyes if the opponent plays correctly.

The group is therefore dead, but the baseline Monte-Carlo simulator (Algo-
rithm 2) sometimes estimates that it lives with a high probability, i.e., the MC
simulation does not necessarily lead to the death of this group. Therefore, the
tree will not grow in the direction of moves preventing difficult situations with
nakade — MoGo just considers that this is not a dangerous situation.

This will lead to a false estimate of the probability of winning. As a conse-
quence, the MC part (i.e., the module choosing moves for situations which are
not in the tree) must be modified so that the winning probability reflects the
effect of a nakade .

Interestingly, as most MC tools have the same weakness, and also as MoGo

is mainly developed by self-play, the weakness concerning the nakade almost
never appeared before humans found the weakness (see post from D. Fotland
called “UCT and solving life and death” on the computer-Go mailing list). It
would be theoretically possible to encode in MC simulations a large set of known
nakade behaviors, but this approach has two weaknesses: (i) it is expensive and
MC simulations must be very fast and (ii) abruptly changing the MC engine
very often leads to unexpected disappointing effects. Therefore we designed the
following modification: if a contiguous set of exactly 3 free locations is surrounded
by opponent’s stones, then we play at the center (the vital point) of this “hole”.
The new algorithm is presented in Algorithm 4.

We validate the approach by two different experiments: (i) known positions
in which old MoGo does not choose the right move (Figure 3) and (ii) games
confronting the new MoGo vs the old MoGo (Table 2).
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Algorithm 4. New MC simulator, reducing the nakade problem
if the last move is an atari, then

Save the stones which are in atari if possible.
else

Beginning of the nakade modification
for x in one of the 4 empty locations around the last move do

if x is in a hole of 3 contiguous locations surrounded by enemy stones or the
sides of the goban then

Play the center of this hole (exit).
end if

end for
End of the nakade modification
“Fill board” part (see above).
Sequential move, if any (see above).
Capture move, if any (see above).
Random legal move, if any (see above).

end if

We also show that our modification is not sufficient for all cases: in the game
presented in Fig. 3 (e), MoGo lost by a poor evaluation of a nakade situation,
which is not covered by our modification.

Table 2. Experimental validation of the nakade modification: modified MoGo versus
baseline MoGo. Seemingly, the higher the number of simulations (which is directly
related to the level), the higher the impact.

Number of simulations Success Number of simulations Success
per move rate per move rate

9x9 board 19x19 board
10000 52.8 % ± 0.5%
100000 55.6 % ± 0.6 % 100 000 53.2 % ± 1.1%
300000 56.2 % ± 0.9 %

5s/move, 8 cores 55.8 % ± 1.4 %
15s/move, 8 cores 60.5 % ± 1.9 %
45s/move, 8 cores 66.2 % ± 1.4 %

3.3 Approach Moves

Correctly handling life and death situation is a key point in improving the MC
engine . Reducing the probability of simulations in which a group which should
clearly live dies (or vice versa) improves the overall performance of the algorithm.
For example, in Fig. 4, black should play in B before playing in A for killing A.
This is an approach move. We implemented it as presented in algorithm 5. This
modification provides a success rate of

– 52.68 % (± 0.33 %) in 9x9 with 20,000 simulations per move;
– 54.69 % (± 2.27%) in 19x19 with 50,000 simulations per move.
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(a)

(b)

(c)

(d)

(e)

Fig. 3. In Figure (a) (a real game played and lost by MoGo), MoGo (White) without
specific modification for the nakade chooses H4; Black plays J4 and the group F1 is
dead (MoGo loses). The right move is J4; this move is chosen by MoGo after the
modification presented in this section. Examples (b), (c), and (d) are other similar
examples in which MoGo (as Black) evaluates the situation poorly and does not realize
that his group is dead. The modification solves the problem. (e) An example of a more
complicated nakade, which is not solved by MoGo - we have no generic tool for solving
the nakade.

Fig. 4. Left: Example of situation which is poorly estimated without approach moves.
Black should play B before playing A for killing the white group and live. Right:
situation which is not handled by the “approach moves” modification.
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Algorithm 5. New MC simulator, implementing approach moves. Random is a
random variable uniform on [0, 1].

if the last move is an atari, then
Save the stones which are in atari if possible.

else
Nakade modification (see above).
“Fill board” part (see above).
if there is an empty location among the 8 locations around the last move which
matches a pattern then

Randomly and uniformly select one of these locations.
if this move is a self-atari and can be replaced by a a connection with another
group and random < 0.5 then

Play this connection (exit).
else

Play the select location (exit).
end if

else
Capture move, if any (see above).
Random legal move, if any (see above).

end if
end if

We can see in Fig. 4 that some semeai situations are handled by this modification:
MoGo now clearly sees that Black, playing first, can kill in Fig. 4. However, this
does not solve more complicated semeais as, e.g., Fig. 4 (e).

4 Conclusions

The number of ideas that the MCTS framework offers is overwhelming. In our
search for improvements we faced many negative results. However, there were
positive results too. Below we condense our results to four conclusions.

First, for computers as well as for humans, all time scales of learning are
important.We mention (1) offline knowledge (strategic rules and patterns) as in
[2,1]; (2) online information (i.e., analysis of a sequence by mental simulations)
[4]; and (3) transient information (extrapolation as a guide for exploration).

Second, reducing diversity has been a good idea in Monte-Carlo; [12] has
shown that introducing several patterns and rules greatly improve the efficiency
of Monte-Carlo Tree-Search. However, plenty of experiments with the aim of
increasing the level of the Monte-Carlo simulator as a stand-alone player have
given negative results - diversity and playing strength are too conflicting objec-
tives. It is even not clear for us that the goal may be assumed to be a compromise
between these two criteria. We can only clearly claim that increasing the diver-
sity becomes increasingly more important as the computational power increases,
as shown in Section 3.

Third, approach moves are an important feature. It makes MoGo more
reasonable in some difficult situations in corners. We believe that strong
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improvements can arise as generalizations of this idea, for solving the promi-
nent semeai case.

Fourth, guiding and controlling the exploration by a UCT term√
log

nbSims of father nodes
nbSims of child node

as in UCB is important, in particular when scores are naive empirical success
rates. However, the optimal constant in the exploration term becomes 0 when
learning is improved (at least in MoGo, and the constant is very small in several
UCT-like programs also). In MoGo, the constant in front of the exploration term
was not null before the introduction of RAVE values in [4]; it is now 0. A new
term has provided a prevailing important improvement as an exploration term:
the constant C in Eq. 1.
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Abstract. With the recent success of Monte-Carlo tree search algorithms in Go
and other games, and the increasing number of cores in standard CPUs, the ef-
ficient parallelization of the search has become an important issue. We present
a new lock-free parallel algorithm for Monte-Carlo tree search which takes ad-
vantage of the memory model of the IA-32 and Intel-64 CPU architectures and
intentionally ignores rare faulty updates of node values. We show that this algo-
rithm significantly improves the scalability of the FUEGO Go program.

1 Introduction

Three topics are essential for this contribution. They are discussed below: Monte-Carlo
Tree Search (in 1.1), Parallel MCTS (in 1.2), and the FUEGO Go program (in 1.3).

1.1 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) has proved to be a successful search method in two-
player board games for which it is difficult to create a good heuristic evaluation func-
tion. In the game of Go, it was first used by the programs CRAZY STONE [1] and
MOGO [2], and has led to programs that for the first time have reached human master
level, especially on smaller board sizes.

In MCTS, a search tree is stored in memory and expanded incrementally. Each sim-
ulated game starts with an in-tree phase, in which moves are selected following a se-
quence of nodes from the root node and choosing a child in each node based on the
current value of the child and potentially additional exploration bonuses. After a node
with no children is reached, it is expanded, and the game is finished using a playout
phase in which moves are generated by a more or less randomized move generation
policy. After the playout, there is an update phase, in which the values of the nodes
used in the game are updated by the game result, such that they store the average re-
sult of all games in which the move was chosen. The simulation process is repeated
until a resource limit is exceeded, for example the number of simulations, time used, or
memory.

1.2 Parallel Monte-Carlo Tree Search

MCTS has the additional advantage that it is easier to parallelize than traditional pro-
grams based on alpha-beta search [3,4,5,6,7]. The most common methods have been
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c© Springer-Verlag Berlin Heidelberg 2010



A Lock-Free Multithreaded Monte-Carlo Tree Search Algorithm 15

classified by Chaslot et al. [5] as leaf parallelization, root parallelization, and tree par-
allelization. On shared memory systems, tree parallelization is the natural method that
takes full advantage of the available bandwidth for communicating game results. In this
method, several threads run simulations in parallel and share a common tree in memory.
Usually, a global mutex is used for protecting access and modification of the tree during
the in-tree and the update phase, whereas the playout phase proceeds independently in
each thread and does not require locking. How well tree parallelization scales with the
number of threads depends, among other things, on the ratio of the time spent in the
unlocked playout phase to the total time for a game.

Chaslot et al. [5] have shown that in their Go program MANGO, tree parallelization
only scales well up to four threads. Their experiments were done in 9 × 9 Go, in which
the playout phase is shorter and the in-tree phase longer than in 19 × 19 Go. They also
tried a more fine-grained locking algorithm, which reduced the overhead of the global
mutex at the price of increasing the node size in the tree by adding a local mutex to each
node. The problem here is that, due to the selectivity of MCTS, usually a large number
of nodes are shared in the in-tree move sequences of the different threads; at least one
node, the root node, is always shared. Therefore using local mutexes is not necessarily
an improvement. However, they showed that the addition of a virtual loss improved the
scaling of tree parallelization in MANGO.

In messages to the Computer Go mailing list [8], Coulom reports strong results with
a lock-free transposition table in CRAZY STONE. Another possible approach, also im-
plemented in CRAZY STONE, uses spinlocks [8], which are a form of busy waiting.
Spinlocks avoid the overhead of other locking approaches. For a relatively small num-
ber of threads, the speed of spinlocks might be comparable to the lock-free approach
presented here. However, an extra variable per node is needed to hold the spinlock.

1.3 The FUEGO Go Program

FUEGO is an open-source Go program developed by the Computer Go group at the
University of Alberta [9]. On the Bayes-Elo ranking of the Computer Go Server [10]
from January 15 2009 (16:03 UCT for 19 × 19; 18:19 UCT for 9 × 9), it is ranked as
the 3rd-strongest program ever on 9 × 9 with a rating of 2664 Elo. On 19 × 19 it is
the 2nd-strongest program ever with a rating of 2290 Elo. The program is written in
C++ and separated into different libraries. The MCTS implementation is in the game-
independent SmartGame library and is also used by external projects for other games,
such as MOHEX, a Hex program by the Games Group at the University of Alberta [11].

The main Go player in FUEGO uses full-board MCTS with a number of common
enhancements to the basic MCTS algorithm. Move generation in the playout phase
is similar to the one originally used by MOGO; it uses patterns, liberty and locality
heuristics. In the in-tree phase, children are selected based on the Rapid Action Value
Estimation (RAVE) heuristic [2], which combines the current value of a move with
the average value of this move in the subtree of the corresponding node. When a node
is expanded, the values and counts of new children are initialized based on a static
heuristic evaluation. Parallel search is supported using tree parallelization.
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2 Lock-Free Multithreaded MCTS

The basic idea of FUEGO’s lock-free multithreaded MCTS algorithm is to share a tree
between multiple threads without using any locks. Because of specific requirements on
the memory model of the hardware platform, this lock-free mode is an optional feature
of the base MCTS class in FUEGO and needs to be enabled explicitly.

2.1 Modifying the Tree Structure

The first change to make the lock-free search work is in the handling of concurrent
changes to the structure of the tree. FUEGO never deletes nodes during a search; new
nodes are created in a pre-allocated memory array. In the lock-free algorithm, each
thread has its own memory array for creating new nodes. Only after the nodes are fully
created and initialized, are they linked to the parent node. This can cause some memory
overhead, because if several threads expand the same node only the children created by
the last thread will be used in future simulations. It can also happen that some of the
children that are lost already received value updates; these updates will be lost.

The child information of a node consists of two variables: a pointer to the first child in
the array, and the number of children. To avoid that another thread sees an inconsistent
state of these variables, all threads assume that the number of children is valid if the
pointer to the first child is not null. Linking a parent to a new set of children requires
first writing the number of children, then the pointer to the first child. The compiler is
prevented from reordering the writes by declaring these variables using the C++ type
qualifier volatile.

2.2 Updating Values

The move and RAVE values are stored in the nodes as counts and mean values. The
mean values are updated using an incremental algorithm. Updating them without pro-
tection by a mutex can cause updates of the mean to be lost with or without increment
of the count, as well as updates of the mean occurring without increment of the count.
It could also happen that one thread reads the count and meanwhile they are written by
another thread, and the first thread sees an erroneous state that exists only temporarily.
In practice, these faulty updates occur with a low probability and will have only a small
effect on the counts and mean values. They are intentionally ignored.

The only problematic case is if a count is zero, because the mean value is undefined if
the count is zero, and this case has a special meaning at several places in the search. For
example, the computation of the values for the selection of children in the in-tree phase
distinguishes three cases: if the move count and RAVE count is non-zero, the value
will be computed as a weighted linear combination of both mean values, if the move
count is zero, only the RAVE mean is used, and if both counts are zero, a configurable
constant value, the first play urgency, is used. To avoid this problem, all threads assume
that a mean value is only valid if the corresponding count is non-zero. Updating a value
requires first writing the new mean value, then the new count. Again, volatile is used to
protect the order of writes.
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2.3 Platform Requirements

There are some requirements on the memory model of the platform to make the lock-
free search algorithm work. Writes of the basic types size t, int, float, and pointer must
be atomic. Writes by one thread must be seen by other threads in the same order. The IA-
32 and Intel-64 CPU architectures, which are used in most modern standard computers,
guarantee these assumptions. They also synchronize CPU caches after writes [12].

3 Experiments

The experiments compare how well locked and lock-free searches scale with the num-
ber of threads in FUEGO in 9 × 9 and 19 × 19 Go. The comparison is against the ideal
case represented by running the singlethreaded program n times longer.

3.1 Setup

The version of FUEGO was 0.3, which was released on 17 December 2008. The hard-
ware was an Intel Xeon E5420 2.5 GHz dual quadcore system with 8 GB main memory
and a 64-bit version of the GNU/Linux operating system. On this hardware, FUEGO

achieves about 11,400 simulations per second per core if a search is started on an empty
9 × 9 board. About 53 percent of the simulation time is spent in the playout phase. On
19×19, the program achieves 2750 simulations on an empty board and spends about 69
percent of the simulation time in playouts. The maximum tree size was set to 20,000,000
nodes. Although FUEGO implements the virtual loss enhancement [5] as an option, it is
disabled by default and was not used in the experiment.

The self-play experiments were performed against a fixed opponent, the single
threaded version set to 1 sec per move. Three series of runs measured the percentage
of wins against the standard version using a single-threaded version with n times more
time per move, as well as locked and lock-free multi threaded versions with 1 sec per
move and n threads. A total of 1000 games with Chinese rules and alternating player
colors were played for each data point. The opening book was disabled. The games
were played using the gogui-twogtp program included in the GoGui distribution [13].
GNU Go version 3.6 [14] was used as a referee for determining the result of a game.

3.2 Results

The results of the experiment are shown in Fig. 1. The error bars in the figure correspond
to one standard error.

The version using a global mutex does not scale beyond two threads on 9 × 9 and
three on 19×19. On 9×9, this is even less than what was reported by Chaslot et al. for
their program MANGO, which still showed an improvement in playing strength with up
to four threads.

The lock-free version scales up to seven threads on both board sizes. The playing
strength with eight threads is slightly less than with seven, although one cannot say with
high confidence whether this is a real effect given the statistical error of the experiment.
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Fig. 1. Self-play performance of locked and lock-free multithreading in comparison to a single-
threaded search (1 s per move)
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4 Conclusion and Future Work

A lock-free multithreaded algorithm for MCTS can significantly improve the scaling of
MCTS in 9 × 9 and 19 × 19 Go. Future experiments should investigate scaling with
more than eight cores, and applications to other games.

Modifications of the algorithm are possible that allow it to be used on more CPU
architectures. If an architecture does not guarantee that writes by one thread are seen by
other threads in the same order and caches are synchronized after writes, then it might
still be better to use explicit memory barriers at the places with write order dependencies
than to use a global mutex for the whole in-tree and update phases.
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Abstract. Games are considered important benchmark opportunities
for artificial intelligence research. Modern strategic board games can
typically be played by three or more people, which makes them suit-
able test beds for investigating multi-player strategic decision making.
Monte-Carlo Tree Search (MCTS) is a recently published family of algo-
rithms that achieved successful results with classical, two-player, perfect-
information games such as Go. In this paper we apply MCTS to the
multi-player, non-deterministic board game Settlers of Catan. We imple-
mented an agent that is able to play against computer-controlled and
human players. We show that MCTS can be adapted successfully to
multi-agent environments, and present two approaches of providing the
agent with a limited amount of domain knowledge. Our results show
that the agent has a considerable playing strength when compared to
game implementation with existing heuristics. So, we may conclude that
MCTS is a suitable tool for achieving a strong Settlers of Catan player.

1 Motivation

General consensus states that a learning agent must be situated in an experience-
rich, complex environment for the emergence of intelligence [1,2]. In this re-
spect, games (including the diverse set of board games, card games, and modern
computer games) are considered to be ideal test environments for AI research
[3,4,5,6]. This is especially true when we take into account the role of games in
human societies: it is generally believed that games are tools both for children
and adults for understanding the world and for developing their intelligence [7,8].

Most games are abstract environments, intended to be interesting and chal-
lenging for human intelligence. Abstraction makes games easier to analyze than
real-life environments, and usually provides a well-defined measure of perfor-
mance. Nevertheless, in most cases, the complexity is high enough to make
them appealing to human intelligence. Games are good indicators and often-
used benchmarks of AI performance: Chess, Checkers, Backgammon, Poker, and
Go all define important cornerstones of the development of artificial intelligence
[9,10].

Modern strategic board games (sometimes called “eurogames”) are increasing
in popularity since their (re)birth in the 1990s. The game Settlers of Catan can
be considered an archetypical member of the genre. Strategic board games are of
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particular interest to AI researchers because they provide a direct link between
classic (two-player, perfect information) board games and video games. On the
one hand, state variables of most modern board games are discrete, and decision
making is turn-based. On the other hand, the gameplay in modern board games
often incorporates elements of randomness, hidden information, multiple players,
and a variable initial setup, which make it hard to use classical techniques such
as alpha-beta pruning [11] or opening books.

Several computer implementations of Settlers of Catan exist, which typically
feature a hand-designed, rule-based AI. The strength of these AIs varies, but
an experienced player can defeat them easily. Few research papers are available
on autonomous learning in Settlers of Catan [12], and according to the results
reported therein, they are far from reaching human-level play yet. In this paper,
we investigate whether it is possible to use one of the AI tools of classical board
games, namely Monte-Carlo Tree Search, effectively for implementing game-
playing agents for games such as Settlers of Catan.

2 The Game: Settlers of Catan

Settlers of Catan, designed by Klaus Teuber, was first published in 1995. The
game achieved a huge success: it received the “Game of the Year” award of
the German game critics, and it was the first “eurogame” to become widely
popular outside Germany, selling more than 11 million copies, inspiring numerous
extensions, successors, and computer game versions.

2.1 Game Rules

In Settlers of Catan, the players take the role of settlers inhabiting an island.
They collect resources by suitable positioning of their settlements. They use
these resources to build new settlements, cities, roads, and developments. The
goal of the game is to be the first player who gains at least 10 victory points.
Detailed descriptions of the rules can be easily found on the internet. Below, we
summarize the rules (omitting many details).

Game board and resources. The game board representing the island is ran-
domly assembled from 19 hexagonal tiles forming a large hexagon (Figure 1
displays an example game board in our SmartSettlers program). Each tile rep-
resents a field that provides one of the five types of resources : wood, clay, sheep,
wheat or ore. There is also one desert which does not produce anything. Each
non-desert tile has a production number. Several of the sea tiles surrounding the
island contain a port. There is a robber on the island, initially residing in the
desert. During the game, the players can build settlements and cities on the
vertices of the hexagons, and roads on the edges. Settlements can be placed on
any free vertex that respects the distance rule: no settlement may be located
on a vertex that is connected to another settlement or city by exactly one edge.
Players start the game with two settlements and two roads already built.

Production. Each player’s turn starts by the rolling of two dice, which deter-
mines production. Any field that bears a production number equal to the sum
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Fig. 1. A game state of Settlers of Catan represented in our program SmartSettlers

of the dice, produces resources in that turn. Any player (i.e., not only the player
whose turn it is) who has a settlement adjacent to a producing field, receives one
of the corresponding resources. For any adjacent city, he receives two. On a dice
roll of 7, nothing is produced but the robber is activated. Any player who has
more than seven resource cards must discard half of them. After that, the cur-
rent player moves the robber to a new field. The field with the robber is blocked,
i.e., it does not produce anything, even if its number is rolled. Furthermore, the
current player can draw a random resource from one of his1 opponents who has
a field adjacent to the robber’s field.

Buildings, roads, and developments. After the production phase, a player
can take zero or more actions. He can use these actions to construct new buildings
and roads. A new road costs 1 wood and 1 clay, and must be connected to
the player’s existing road network. A new settlement costs 1 wood, 1 clay, 1
sheep, and 1 wheat, and it must be placed in a way that it is connected to the
player’s road network, respecting the distance rule. Players may upgrade their
settlements to cities for 3 ore and 2 wheat. Players can also purchase a random
development card for 1 sheep, 1 wheat, and 1 ore. Cards can give three kinds of
bonuses. (1) Some cards give 1 victory point. (2) Some cards are Knight cards,
which can be used to activate the robber immediately. (3) The third group of

1 For brevity, we use ’he’ and ’his’ whenever ’he or she’ and ’his or her’ are meant.
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cards gives miscellaneous rewards such as free resources or free roads. In his
turn, a player may use at most one development card.

Trading. The current player is allowed to trade resources with his opponents, as
long as all involved in the trade agree. Players may also “trade with the bank”:
which means that they exchange four resources of one kind for one of a different
kind. If they have built a settlement or city connecting to a port, they can trade
with the bank at a better ratio, depending on the kind of port.

Victory points and trophies. Next to the development cards that provide 1
victory point, a player gains victory points for settlements, cities, and trophies.
Each settlement is worth 1 victory point, and each city 2 victory points. The
first player to use three Knight cards obtains the trophy “Largest army”. Subse-
quently, if another player uses more Knight cards, he becomes the trophy holder.
Similarly, the player who is first to build a chain of five or more connected roads,
obtains the trophy “Longest road”, and owns it until someone builds a longer
chain. Both trophies are worth 2 victory points. The game ends as soon as a
player reaches at least 10 victory points. That player wins the game.

2.2 Rule Changes

From the rules it follows that Settlers of Catan has a variable initial setup, non-
deterministic elements (the dice rolls), elements of imperfect information (buying
of development cards, and a lack of knowledge of cards stolen), and more than
two players. For an easier implementation of the game, we changed the rules to
remove the elements of imperfect information. In our opinion, this change does
not alter gameplay in a significant way: knowing the opponents’ development
cards does not significantly alter the strategy to be followed, and information on
the few cards stolen is usually quickly revealed anyway. We also chose to not let
our game-playing agent initiate trades with or accept trades from other players
(although it may trade with the bank). Note that the other players may trade
between themselves, which handicaps our agent slightly. While we believe that
these changes do not alter the game significantly, it is our intention to upgrade
our implementation to conform completely to the rules of Settlers of Catan in
future work.

2.3 Previous Computer Implementations

There are about ten computer implementations of Settlers of Catan available.
We mention two of the strongest ones. The first is Castle Hill Studios’ version of
the game, currently part of Microsoft’s MSN Games. The game features strong
AI players who use trading extensively. The second is Robert S. Thomas’ JSet-
tlers, which is an open-source Java version of the game, also having AI players.
The latter is the basis of many Settlers of Catan game servers on the Internet.
The JSettlers architecture is described in detail by Thomas [13]. Pfeiffer [12]
also used the JSettlers environment to implement a learning agent. His agent
uses hand-coded high-level heuristics with low-level model trees constructed by
reinforcement learning.



Monte-Carlo Tree Search in Settlers of Catan 25

3 Implementation

We implemented the Settlers of Catan game in a Java software module named
SmartSettlers. JSettlers was used for providing a graphical user interface (GUI)
and the baseline AI. Because of the Internet-based architecture of JSettlers,
gameplay is fairly slow: a single four-player game takes about 10 minutes on an
average PC. The learning algorithm that is investigated in our project requires
thousands of simulated games before making a single step, so the JSettlers en-
vironment in itself is clearly inadequate for that purpose. Therefore, we imple-
mented SmartSettlers as a standalone Java software module. It was designed for
fast gameplay, move generation, and evaluation. For optimum speed, game data
was divided into two parts: information that is constant throughout a game was
stored in a static object, while game-state dependent information was stored
in unstructured arrays of integers. The latter structure enabled quick accessing
and copying of information. On an average PC, SmartSettlers is able to play
around 300 games per second with randomly generated moves. JSettlers handles
the SmartSettlers AI as a separate thread, querying it for decisions through a
translation interface. In addition, SmartSettlers is able to run as a stand-alone
program for investigating the self-play of the SmartSettlers AI. The goal of the
current research is to create a strong AI agent for Settlers of Catan.

4 Monte-Carlo Tree Search

In recent years, several Monte-Carlo based techniques emerged in the field of
computer games. They have already been applied successfully to many games,
including Poker [14] and Scrabble [15]. Monte-Carlo Tree Search (MCTS)
[16], a Monte-Carlo simulation based technique that was first established in
2006, is implemented in top-rated Go programs [17,18,19]. The algorithm is a
best-first search technique which uses stochastic simulations. MCTS can be ap-
plied to any two-player, deterministic, perfect information game of finite length
(but its extension to multiple players and non-deterministic games is straightfor-
ward). Its basis is the simulation of games where both the AI-controlled player
and its opponents play random moves. From a single random game (where ev-
ery player selects his actions randomly), very little can be learned. But from
simulating a multitude of random games, a suitable strategy can be inferred. In
subsection 4.1 we discuss the effect of a starting position, or otherwise stated the
effect of the seating order Studies of MCTS in Go have shown that inclusion of
domain knowledge can improve the performance significantly [17,20]. There are
at least two possible ways to include domain knowledge: (1) using non-uniform
sampling in the Monte-Carlo simulation phase and (2) modifying the statistics
stored in the game tree. The approaches are discussed in Subsection 4.2 and 4.3,
respectively. For a detailed description of MCTS we refer the reader to one of
the previously mentioned sources.
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4.1 Effect of Starting Position

Reviews of Settlers of Catan suggest that the seating order of players has a
significant effect on their final rankings (although opinions differ which seat gives
the best strategic position). We conducted two preliminary sets of experiments
to confirm this effect. We recorded the games of four identical agents playing
random moves. In our first set of experiments, all agents made random (but legal)
moves, while for the second set, the agents used MCTS with 1000 simulated
games per move. The score distributions for different seating orders are shown
in the Figures 2 and 3. In both cases, 400 games were played.

The results show that the effect of the seating order is present and is sta-
tistically significant. It is surprising, however, that the actual effect can differ
for different strategies, despite the fact that both tested strategies are rather
weak. For random agents, the starting player has a distinct advantage, while for
MCTS agents player 1 is worst off, and players 2 and 3 have an advantage. A
possible explanation is that, for purely random players, the first player has an
advantage because in general he can play one extra move in comparison to the
other players. Conversely, when players follow some kind of strategy, it seems
that being second or third in the seating order gives a strategic advantage. This
effect is probably related to the placement of initial settlements, and it would
be interesting to study the seating-order effect for stronger MCTS players that
play 10,000 or more simulated games per move.

The two preliminary experiments showed that the seating order effect can
introduce an unknown bias to the performances of agents. In order to eliminate
this bias, the seating order was randomized for all subsequent experiments where
different agents were compared.
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Fig. 2. The effect of seating order on the score distribution of random agents. Agents
select a random legal move each turn.
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Fig. 3. The effect of seating order on the score distribution of SmartSettlers agents.
Agents play 1000 simulated games per each real move.

4.2 Domain Knowledge in Monte-Carlo Simulations

If all legal actions are selected with equal probability, then the strategy played is
often weak, and the quality of a Monte-Carlo simulation suffers as a result. We
can use heuristic knowledge to give larger weights to actions that look promising.
However, we must be careful if the selection strategy is too deterministic, then
the exploration of the search space becomes too selective, and the quality of
the Monte-Carlo simulation suffers. Hence, a balance between exploration and
exploitation must be found in the simulation strategy.

We set the following weights for actions:

– the basic weight of each action is +1
– building a city or a settlement: +10,000; building a city or a settlement

is always a good move: it gives +1 point, and also increases the resource
income; all possible city/settlement-building possibilities are given the same
weight; it is left to the MC simulation to differentiate between them;

– building a road: define the road-to-settlement ratio as

R :=
No. of player’s roads

No. of player’s settlements + cities

and the weight of a road-building move as 10/10R. If there are relatively few
roads, then road building should have a high weight; conversely, if there are
many roads, then road building is less favourable than ending the turn;

– playing a knight card: +100 if the robber is blocking one of the player’s own
fields, otherwise +1;

– playing a development card: +10.
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Probabilities of choosing an action in the Monte-Carlo simulation were propor-
tional to their weights. The settings seem reasonable according to our experience
with the game and with expert advice on Monte-Carlo simulations. However, the
actual performance of our agent dropped significantly when using the modified
probabilities instead of uniform sampling. A possible explanation is that with
the given weights, the agents are too eager to build settlements and cities, while
there may be a strategic advantage in giving preference to extending the roads
network to reach a better strategic position. Identifying the precise reasons for
the observed performance drop and working out a better set of weights (possibly
in an automated process) is part of our future work.

4.3 Domain Knowledge in MCTS

Recent work [21] showed that domain knowledge can be easily injected into the
tree-search aspects of MCTS, too. We can give “virtual wins” to preferred actions
(and we could also give “virtual losses” to non-preferred ones). We added a quite
limited amount of domain knowledge: all settlement-building actions receive 20
virtual wins, and all city-building actions receive 10. Other actions do not receive
any virtual wins. This means that for each time a settlement-building action is
added to the search tree, its counters for the number of visits and the number
of wins are both initialized to 20.

Note that virtual wins are not propagated back to parent nodes, as that would
seriously distort selection. For example, consider a situation where the player has
two options: he can either build a settlement in one of 5 possible places (giving
+20 virtual wins) or buy a development card first (giving no virtual wins), and
build a settlement afterwards (giving +20 virtual wins for any of the 5 possible
placements). If virtual wins are backpropagated, then the card-buying action
obtains a huge +100 bonus. As an effect, the potential to build a settlement will
be rated higher than the actual building of that settlement. This is an effect that
should be avoided.

The small addition of virtual wins increased the playing strength of our agent
considerably, so subsequent tests were run with this modification. Further opti-
mization of distributing virtual wins should be possible, and is part of our plans
for future work.

5 Playing Strength

We tested the playing strength of SmartSettlers against the JSettlers AIs (5.1)
and against humans (5.2).

5.1 Testing MCTS against JSettlers

Against the baseline heuristics of JSettlers we tested three different AIs: the ran-
dom player, MCTS with N = 1000 simulated games per move, and MCTS with
N = 10000. In all experiments, three JSettlers agents were playing against one
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other AI. For each experiment, 100 games were played. Following our prelimi-
nary investigations, we assume that no biasing terms are present, so results for
the three JSettlers agents are interchangeable. Therefore we obtain three times
as many data points for the JSettlers agents than for the other AIs. The winning
percentages presented below correspond to a single JSettlers agent. This means
that a player that is equal in strength to JSettlers wins 25% of the time. The
results are shown in Figure 4.

From Figure 4 (a) and (b) we may conclude that, as expected, the random
player is very weak: it does not win a single game, and in fact, in most games
it does not even score a point (besides the points it receives for its initial settle-
ments). From Figure 4 (c) and (d) we may conclude that MCTS with 1000 simu-
lated games is roughly as strong as JSettlers: it wins 27% of the games, and the
score distribution is also similar. Finally, from Figure 4 (e) and (f) we may con-
clude that MCTS with 10000 simulated games is convincingly better than JSet-
tlers: it wins 49% of all games, and reaches good scores even when it does not win.

5.2 Testing MCTS against Humans

To test how SmartSettlers performs against humans, the first author, who is an
accomplished Settlers of Catan player, played a few dozen games against a combi-
nation of two JSettlers’ agents and one SmartSettlers agent. While the number of
games played is not sufficient for drawing statistically relevant conclusions, these
games do provide some information about the playing strength and style of our
agent. Qualitatively speaking, we assess that the SmartSettlers agent makes jus-
tifiable moves that often coincide with moves that a human would play. Still, we
found that an expert human player can confidently beat the SmartSettlers agent.

For an analysis of the possible reasons for the human supremacy over Smart-
Settlers, we examined different strategies for Settlers of Catan. There are two
major “pure” winning strategies (in practice, human players often follow a com-
bination of these two): the “ore-and-wheat” strategy and the “wood-and-clay”
strategy. The former focuses on building cities and buying development cards,
Knight cards (receiving +2 points for the largest army), and 1-point cards. The
latter strategy focuses on building settlements and an extensive road network
(which may lead to receiving +2 points for the longest road). Our SmartSet-
tlers agent seems to prefer the “ore-and-wheat” strategy, together with building
as many roads as possible, but not building as many settlements as an expert
human player would.

The source of this behavior is probably that MCTS does not look forward in
the game tree to a sufficient depth. Building a settlement requires four different
resources. Collecting these often requires 3 to 4 rounds of waiting, trading, and
luck. In the meantime, the agent can spend some of the resources to buy a
road to obtain a marginal advantage. While this may be much less preferable in
the long run (for example, obtaining 2 victory points for the longest road is a
huge advantage in the short run, but it does not help increasing the production
rates), the agent may not see this, as it does not analyze properly the game
tree at that depth. Increasing the number of simulated games per turn would
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(a) Random player
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(c) MCTS-1000 player
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(d) JSettlers player
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(e) MCTS-10000 player
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Fig. 4. Three sets of score distributions. Top: (a) Random player vs. (b) JSettlers.
The random player won 0% of the time. Middle: (c) MCTS player (N = 1000) vs.
(d) JSettlers. The MCTS-1000 player won 27% of the time. Bottom: (e) MCTS player
(N = 10, 000) vs. (f) JSettlers. The MCTS-10,000 player won 49% of the time.

probably alleviate this weakness, but at the cost of a significant speed decrease.
An alternative approach we wish to pursue is to improve the move-selection
heuristics for the Monte-Carlo simulations.

6 Future Work

Our plans for future work can be grouped into two categories. First, we plan to
update our software so that it complies fully with the original rules of Settlers
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of Catan. To this end, we need to implement trading (which should be straight-
forward) and the handling of hidden information. The latter requires the imple-
mentation of a plain inference routine (keeping track of the possible values of the
unknown cards) and an extension of MCTS to the case where the current state
has uncertainty.

Second, we believe that the playing strength of our agent can be improved
considerably by injecting domain knowledge in a proper way. There are at least
two opportunities to place domain knowledge: by modifying the heuristic action-
selection procedure inside the MCTS tree (by adding virtual wins to encourage
favorable actions), and by modifying the move-selection probabilities in Monte-
Carlo move selection. In both cases, it is possible to extract the necessary domain
knowledge from a large database of played games.

7 Conclusions

In this paper we described an agent that learns to play Settlers of Catan. For
move selection, the agent applies Monte-Carlo Tree Search, augmented with a
limited amount of domain knowledge. The playing strength of our agent is no-
table: it convincingly defeats the hand-coded AI of JSettlers, and is a reasonably
strong opponent for humans.

So far, applications of MCTS have been mainly constrained to Go. The suc-
cess of our Settlers of Catan agent indicates that MCTS may be a viable approach
for other multi-player games with complex rules.
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16. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

17. Chaslot, G., Saito, J., Bouzy, B., Uiterwijk, J., van den Herik, H.: Monte-carlo
strategies for computer go. In: Proceedings of the 18th BeNeLux Conference on
Artificial Intelligence, pp. 83–90 (2006)

18. Chaslot, G., Winands, M., van den Herik, H., Uiterwijk, J., Bouzy, B.: Progressive
strategies for monte-carlo tree search. New Mathematics and Natural Computa-
tion 4(3), 343 (2008)

19. Gelly, S., Wang, Y.: Exploration exploitation in go: UCT for monte-carlo go. In:
NIPS-2006: On-line trading of Exploration and Exploitation Workshop (2006)

20. Bouzy, B., Chaslot, G.: Monte-Carlo go reinforcement learning experiments. In:
IEEE 2006 Symposium on Computational Intelligence in Games, pp. 187–194
(2006)

21. Chatriot, L., Gelly, S., Jean-Baptiste, H., Perez, J., Rimmel, A., Teytaud, O.:
Including expert knowledge in bandit-based monte-carlo planning, with application
to computer-go. In: Girgin, S., Loth, M., Munos, R., Preux, P., Ryabko, D. (eds.)
EWRL 2008. LNCS (LNAI), vol. 5323. Springer, Heidelberg (2008)



Evaluation Function Based Monte-Carlo LOA

Mark H.M. Winands1 and Yngvi Björnsson2

1 Games and AI Group, Department of Knowledge Engineering,
Faculty of Humanities and Sciences,

Maastricht University, Maastricht, The Netherlands
m.winands@maastrichtuniversity.nl

2 School of Computer Science, Reykjav́ık University, Reykjav́ık, Iceland
yngvi@ru.is

Abstract. Recently, Monte-Carlo Tree Search (MCTS) has advanced
the field of computer Go substantially. Also in the game of Lines of
Action (LOA), which has been dominated so far by αβ, MCTS is making
an inroad. In this paper we investigate how to use a positional evaluation
function in a Monte-Carlo simulation-based LOA program (MC-LOA).
Four different simulation strategies are designed, called Evaluation Cut-
Off, Corrective, Greedy, and Mixed. They use an evaluation function in
several ways. Experimental results reveal that the Mixed strategy is the
best among them. This strategy draws the moves randomly based on
their transition probabilities in the first part of a simulation, but selects
them based on their evaluation score in the second part of a simulation.
Using this simulation strategy the MC-LOA program plays at the same
level as the αβ program MIA, the best LOA-playing entity in the world.

1 Introduction

The αβ search algorithm has for decades been the standard technique used
by game programs for playing two-person zero-sum games, such as chess and
checkers (and many others). Over the years, many search enhancements have
been proposed to further improve its effectiveness. However, for some games this
approach has been less successful, either because of a large branching factor
preventing a deep look-a-head, or because of complications in constructing an
effective evaluation function.

In recent years a new paradigm for game-tree search has emerged, the so-called
Monte-Carlo Tree Search (MCTS) [9,12]. In the context of game playing, Monte-
Carlo simulations were first used as a mechanism for dynamically evaluating the
merits of leaf nodes of a traditional αβ-based search [1,3,4], but under the new
paradigm MCTS has evolved into a full-fledged best-first search procedure that
replaces traditional αβ-based search altogether. MCTS has in the past couple of
years substantially advanced the state-of-the-art in several game domains where
αβ-based search has had difficulties. In particular we mention computer Go,
but other domains include General Game Playing [10], Phantom Go [5], and
Amazons [13]. These are, however, all examples of game domains where either a
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large branching factor or a complex static state evaluation do restrain αβ search
in one way or another.

In this paper we introduce an improved MCTS variant that performs at
the same level as a world-class αβ-based player in the game Lines of Action
(LOA) [14]. This is an important milestone for MCTS, because up until now the
traditional game-tree search approach has generally been considered to be bet-
ter suited for LOA, which features both a moderate branching factor and good
state evaluators (the best LOA programs use highly sophisticated evaluation
functions). The previously best game-playing programs for this game, MIA [16],
Bing, YL [2], and Mona [2], are all αβ based. Recent work on using a spe-
cial MCTS-solver variant in the world-class LOA program MIA did improve the
program’s tactical ability, although it still lacked the overall robustness to play
against its αβ-based counterpart on a close to equal footing [18]. In this work
our MCTS-solver variant enriched with a positional evaluation function, is able
to hold its own. Moreover, the solver is easily parallelizable and when allowed
to use more than one processor it does handily outperform the best αβ-based
LOA programs.

The article is organized as follows. Section 2 explains briefly the rules of LOA.
In Sect. 3 we discuss the application of MCTS in the game of LOA. In Sect. 4
we present several play-out strategies for MC-LOA. We test them in Sect. 5.
Finally, Sect. 6 gives conclusions and an outlook on future research.

2 Lines of Action

Lines of Action (LOA) is a two-person zero-sum connection game with perfect
information. It is played on an 8 × 8 board by two sides, Black and White. Each
side has twelve pieces at its disposal. The black pieces are placed along the top
and bottom rows of the board, while the white pieces are placed in the left- and
right-most files of the board (see Fig. 1a). The players alternately move a piece,
starting with Black. A piece moves in a straight line, exactly as many squares as
there are pieces of either color anywhere along the line of movement (see Fig. 1b).
A player may jump over its own pieces, but not over the opponent’s. The rule is
that opponent’s pieces are captured (and removed from the board) by landing
on them. The goal of the players is to be the first to create a configuration on
the board in which all own pieces are connected in one unit (e.g., see Fig. 1c).
The connections within the unit may be either orthogonal or diagonal. In the
case of simultaneous connection, the game is drawn.

3 Monte-Carlo LOA

In this section we discuss how we applied MCTS in LOA. First, we briefly sketch
MCTS and its variant MCTS-Solver in Subsect. 3.1. Next, we explain MCTS
(-Solver) in detail in Subsect. 3.2. Finally, we explain how we parallelized the
search in Subsect. 3.3.
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Fig. 1. (a) The initial position. (b) Example of possible moves. (c) A terminal position.

3.1 MCTS and MCTS-Solver

Monte-Carlo Tree Search (MCTS) [9,12] is a best-first search method that does
not require a positional evaluation function. It is based on a randomized ex-
ploration of the search space. Using the results of previous explorations, the
algorithm gradually builds up a game tree in memory, and successively becomes
better at accurately estimating the values of the most promising moves.

MCTS consists of four strategic steps, repeated as long as there is deliberation
time left. The steps are as follows. (1) In the selection step the tree is traversed
from the root node until we reach a node E, where we select a position that is
not added to the tree yet. (2) Next, during the play-out step moves are played in
self-play until the end of the game is reached. The result R of this “simulated”
game is +1 in case of a win for Black (the first player in LOA), 0 in case of a
draw, and −1 in case of a win for White. (3) Subsequently, in the expansion step
children of E are added to the tree. (4) Finally, R is propagated back along the
path from E to the root node in the backpropagation step. When time is up, the
move played by the program is the child of the root with the highest value.

MCTS is unable to prove the game-theoretic value. However, in the long run
MCTS equipped with the UCT formula [12] converges to the game-theoretic
value. For a fixed termination game such as Go, MCTS is able to find the optimal
move relatively fast in endgame positions [20]. But in a sudden-death game such
as LOA, where the main line towards the winning position is narrow, MCTS may
often lead to an erroneous outcome because the nodes’ values in the tree do not
converge fast enough to their game-theoretical value. We use therefore a newly
proposed variant called Monte-Carlo Tree Search Solver (MCTS-Solver) [18] in
our MC-LOA program. The MCTS-Solver is able to prove the game-theoretical
value of a position. The backpropagation and selection mechanisms have been
modified for this variant.

3.2 The Four Strategic Steps

The four strategic steps of MCTS-Solver are discussed in detail below. We will
demonstrate how each of these steps is used in our MC-LOA program.
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Selection. Selection picks a child to be searched based on previously gained
information. It controls the balance between exploitation and exploration. On
the one hand, the task often consists of selecting the move that leads to the best
results so far (exploitation). On the other hand, the less promising moves still
must be tried, due to the uncertainty of the evaluation (exploration).

We use the UCT (Upper Confidence Bounds applied to Trees) strategy [12],
enhanced with Progressive Bias (PB [7]). UCT is easy to implement and used
in many Monte-Carlo Go programs. PB is a technique to embed the domain-
knowledge bias into the UCT formula. UCT with PB works as follows. Let I be
the set of nodes immediately reachable from the current node p. The selection
strategy selects the child k of the node p that satisfies Formula 1:

k ∈ argmaxi∈I

(
vi +

√
C × ln np

ni
+

W × Pmc

ni + 1

)
, (1)

where vi is the value of the node i, ni is the visit count of i, and np is the visit
count of p. C is a coefficient, which must be tuned experimentally. W×Pmc

ni+1 is
the PB part of the formula. W is a constant, which must be set manually (here
W = 10). Pmc is the transition probability of a move category mc [15].

For each move category (e.g., capture, blocking) the probability that a move
belonging to that category will be played is determined. The probability is called
the transition probability. This statistic is obtained off-line from game records of
matches played by expert players. The transition probability for a move category
c is calculated as follows:

Pmc =
nplayed(mc)

navailable(mc)
, (2)

where nplayed(mc) is the number of game positions in which a move belonging to
category mc was played, and navailable(mc) is the number of positions in which
moves belonging to category mc were available.

The move categories of our MC-LOA program are similar to the ones used in
the Realization-Probability Search of the program MIA [17]. They are applied
in the following way. First, we classify moves as captures or non-captures. Next,
moves are further sub-classified based on the origin and destination squares. The
board is divided into five different regions: the corners, the 8×8 outer rim (except
corners), the 6 × 6 inner rim, the 4 × 4 inner rim, and the central 2 × 2 board.
Finally, moves are further classified based on the number of squares traveled
away from or towards the center-of-mass.

This selection strategy is applied only at nodes with a visit count higher than
a certain threshold T (here 5) [9]. If the node has been visited fewer times than
this threshold, the next move is selected according to the simulation strategy
discussed in the next strategic step.

For all the children of a current leaf node we check whether they lead to a
direct win for the player to move. If there is such a move, we stop searching at
this node and set the node’s value. This check at the leaf node must be performed
because otherwise it could take many simulations before the child leading to a
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mate-in-one is selected and the node is proven. Experiments conducted in the
past revealed that this check improved both the playing and solving strength of
the engine.

Play-out. The play-out step begins when we enter a position that is not yet a
part of the tree. Moves are selected in self-play until the end of the game. This
task might consist of playing plain random moves or – better – pseudo-random
moves chosen according to a simulation strategy. It is well-known that the use of
an adequate simulation strategy improves the level of play significantly [10,11].
The main idea is to play interesting moves according to heuristic knowledge. We
describe the simulation strategies in detail in the next section.

Expansion. Expansion is the strategic task that decides whether nodes will be
added to the tree. Here, we apply a simple rule: one node is added per simulated
game [9]. The added leaf node L corresponds to the first position encountered
during the traversal that was not already stored.

Backpropagation. Backpropagation is the procedure that propagates the re-
sult of a simulated game k back from the leaf node L, through the previously tra-
versed node, all the way up to the root. The result is scored positively (Rk = +1)
if the game is won, and negatively (Rk = −1) if the game is lost. Draws lead to
a result Rk = 0. A backpropagation strategy is applied to the value vL of a node.
Here, it is computed by taking the average of the results of all simulated games
made through this node [9], i.e., vL = (

∑
k Rk)/nL.

In addition to backpropagating the values {1,0,−1}, MCTS-Solver also prop-
agates the game-theoretical values ∞ or −∞. The search assigns ∞ or −∞ to
a won or lost terminal position for the player to move in the tree, respectively.
Propagating the values back in the tree is performed similar to negamax. If the
selected move (child) of a node returns ∞, the node is a win. To prove that a
node is a win, it suffices to prove that one child of that node is a win. Because of
negamax, the value of the node will be set to −∞. In the case that the selected
child of a node returns −∞, all its siblings have to be checked. If their values are
also −∞, the node is a loss. To prove that a node is a loss, we must prove that
all its children lead to a loss. Because of negamax, the node’s value will be set
to ∞. In the case that one or more siblings of the node have a different value,
we cannot prove the loss. Therefore, we will propagate −1, the result for a lost
game, instead of −∞, the game-theoretical value of a position. The node will be
updated according to the backpropagation strategy as described previously.

3.3 Parallelization

The parallel version of our MC-LOA program uses the so-called “single-run” par-
allelization [6], also called root parallelization [8]. It consists of building multiple
MCTS trees in parallel, with one thread per tree. These threads do not share
information with each other. When the available time is up, all the root children
of the separate MCTS trees are merged with their corresponding clones. For each
group of clones, the scores of all games played are added. Based on this grand
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total, the best move is selected. This parallelization method only requires a min-
imal amount of communication between threads, so the parallelization is easy,
even on a cluster. For a small number of threads, root parallelization performs
remarkably well in comparison to other parallelization methods [6,8].

4 Simulation Strategies

In both the selection and the play-out steps move categories together with their
associated transition probabilities are used to bias the move selection. In this
section we introduce four simulation strategies for further biasing and enhancing
the simulation roll-outs. They are Evaluation Cut-Off, Corrective, Greedy, and
Mixed, and are discussed in detail in Subsect. 4.1 to 4.4, respectively.

4.1 Evaluation Cut-Off

The Evaluation Cut-Off strategy stops a simulated game before a terminal state
is reached if, according to a heuristic knowledge, the game is judged to be effec-
tively over. In general, once a LOA position becomes quite lopsided, an evalua-
tion function can return a quite trustworthy score, more so than even elaborate
simulation strategies. The game can thus be safely terminated both earlier and
with a more accurate score than if continuing the simulation (which might, e.g.,
fail to deliver the win).

We use the MIA 4.5 evaluation function [19] for this purpose. When the
evaluation function gives a value that exceeds a certain threshold (e.g., 700
points), the game is scored as a win. Conversely, if the evaluation function gives
a value that is below a certain threshold (e.g., −700 points), the game is scored
as a loss. For efficiency reasons the evaluation function is called only every 3
plies, starting at the second ply (thus at 2, 5, 8, 11 etc.). This strategy is applied
solely in the play-out phase. We remark that a similar strategy was already
described by Winands et al. in [18]. The Amazons program InvaderMC [13]
also terminates simulations early based on an evaluation score. The difference is
that in InvaderMC the simulation stops after a fixed length (and subsequently
is scored based on the value of the evaluation function), whereas in our approach
the simulation may terminate at any time.

4.2 Corrective

One known disadvantage of simulation strategies is that they may draw and
play a move which immediately ruins a perfectly healthy position. Embedding
domain knowledge, e.g., by the use of Progressive Bias, somewhat alleviates the
disadvantage.

In the Corrective strategy we use the evaluation function to bias the move
selection towards minimizing the risk of choosing an obviously bad move. This
is done in the following way. First, we evaluate the position for which we are
choosing a move. Next, we generate the moves and scan them to obtain their
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correctiveStrategy(board){

defaultValue = evaluate(board);

moveList = generateMoves();

scoreSum = 0;

foreach(Move m in moveList){

value = evaluate(board, m);

if (value > bound)

return m;

else if (value <= defaultValue)

m.score = Epsilon;

else

m.score = m.getMoveCategoryWeight(board);

scoreSum += m.score;

}

scoreSum = scoreSum*random();

foreach(Move m in moveList){

scoreSum -= m.score;

if(scoreSum <= 0)

return m;

}

}

Fig. 2. Pseudo code for the Corrective strategy

weights. If the move leads to a successor which has a lower evaluation score than
its parent, we set the weight of a move to a preset minimum value (close to zero).
If a move leads to a win, it will be immediately played. The pseudo code for this
strategy is given in Fig. 2.

4.3 Greedy

In the Greedy strategy the evaluation function is more directly applied for se-
lecting moves: the move leading to the position with the highest evaluation score
is selected. However, because evaluating every move is time consuming, we eval-
uate only moves that have a good potential for being the best. For this strategy
it means that only the k -best moves according to their transition probabilities
are fully evaluated. As in the Evaluation Cut-Off strategy, when a move leads
to a position with an evaluation over a preset threshold, the play-out is stopped
and scored as a win. Finally, the remaining moves — which are not heuristically
evaluated — are checked for a mate. The pseudo code for the Greedy strategy
is given in Fig. 3.

4.4 Mixed

A potential weakness of the Greedy strategy is that despite a small random factor
in the evaluation function, it is too deterministic. The Mixed strategy combines
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Greedy(Board b){

moveList = generateMoves();

assignAndSort(moveList);

counter = 0;

foreach(Move m in moveList){

if(counter < k){

value = evaluate(board, m);

if(value > bound){

return m;

}

if(value > max){

best = m;

max = value;

}

}

else {

if(evaluateWin(board, m)) {

return m;

}

}

counter++;

}

return best;

}

Fig. 3. Pseudo code for the Greedy strategy

the Corrective strategy and the Greedy strategy. The Corrective strategy is used
in the selection step, i.e., at tree nodes where a simulation strategy is needed
(i.e., n < T ), as well as in the first position entered in the play-out step. For the
remainder of the play-out the Greedy strategy is applied.

5 Experiments

In this section we evaluate the performance of the four aforementioned simula-
tion strategies by letting them play against themselves and the LOA program
MIA. First, we briefly explain MIA in Subsect. 5.1. Next, several settings of the
Evaluation Cut-Off strategy are tested in Subsect. 5.2. Subsequently, in order
to test the quality of the four simulation strategies, we match them in a round-
robin tournament in Subsect. 5.3. Finally, in Subsect. 5.4 we evaluate the playing
strength of a MC-based LOA program, using the best settings found in previous
subsections, against the αβ-based program MIA.

In the following experiments each match data point represents the result of
1,000 games, with both colors played equally. A standardized set of 100 three-
ply starting positions [2] was used, with a small random factor in the evaluation
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function preventing games from being repeated. The thinking time was set to 1
second per move. All experiments were performed on an AMD Opteron 2.2 GHz
computer.

5.1 MIA

MIA is a world-class LOA program, which won the LOA tournament at the
eighth (2003), ninth (2004), and eleventh (2006) Computer Olympiad. It is con-
sidered the best LOA-playing entity in the world. All our experiments were
performed using the latest and strongest version of the program, MIA 4.5.1

MIA performs an αβ depth-first iterative-deepening search in the Enhanced-
Realization-Probability-Search framework [17]. The program uses state-of-the-
art αβ enhancements [16].

5.2 Parameter Tuning

In the first series of experiments we tested different cut-off bounds for the Eval-
uation Cut-Off strategy. For each setting, a program using the Cut-Off strategy
played a match against three other programs. The results are given in Table 1.
The No-Bound strategy produces moves in the same way as the Evaluation
Cut-Off strategy, but always plays simulations out to the end. As we see, such
a play-out strategy loses the majority of its games against every setting of the
Evaluation Cut-Off strategy: the higher the bound the more the No-Bound strat-
egy loses. Of interest is the relatively good performance of even a bound value
of 0, meaning practically that every simulation is cut-off and scored after 2-ply.
Nonetheless, under this setting Evaluation Cut-Off still wins most of its games
against the No-Bound strategy. The early termination allows more simulations
to be performed in the same amount of time, e.g., using a cut-off value of 700
results in over twice as many simulations.

Tuning the bound parameter against a similar (weaker) MC-LOA program
may lead to a suboptimal value. Therefore we also played the program against
two MIA versions. The first used the MIA III evaluator and the second the MIA
4.5 evaluator. Both versions used the latest search engine. We see in Table 1 that
the best bound parameter is somewhere around 600–700. The value of 700 for
the bound parameter will be used for the remaining experiments. Moreover, the
relative good performance of the 0 setting is again remarkable. What is different
from the runs against the No-Bound strategy is that the performance starts to
deteriorate when the bound exceeds 1000. Next, the Evaluation Cut-Off strategy
significantly improves the way how well simulations do against an αβ program.
For example, whereas the two versions of MIA win 99% of their games against
the No-Bound strategy, MIA III and MIA 4.5 only win 22% and 72% of the
games against the best settings of the Evaluation Cut-Off strategy. For a proper
comparison, the average length and the speed of the play-outs are given in the
last two rows of Table 1, respectively.
1 The program can be found at: http://www.personeel.unimaas.nl/m-winands/loa/
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Table 1. 1000-game match results

Bound 0 100 200 400 600 700 800 1000 1200 1400 No-Bound
No-Bound 150.5 149.0 155.5 118.0 112.0 99.0 86.5 57.0 47.0 22.0 X
MIA III 246.0 246.0 227.5 231.5 218.0 253.5 247.5 335.0 398.0 510.5 998
MIA 4.5 794.0 795.0 776.0 768.5 720.0 717.0 754.0 781.0 834.5 868.0 999

Avg. Game Len. 2 2.67 3.56 5.85 8.45 9.83 11.17 13.94 16.65 19.18 53.7
Games per Sec. 10074 9242 8422 6618 5260 4659 4211 3507 2995 2611 2060

5.3 Round-Robin Experiments

In the second series of experiments we quantify the performance of the four sim-
ulation strategies in a round-robin tournament. The results are given in Table 2.
Surprisingly, the heavily evaluation-function based Greedy strategy was the weak-
est of the four. The Corrective strategy was better than the Evaluation Cut-Off
and Greedy strategy. But, the Mixed strategy, a combination of Corrective and
Greedy, outperformed the other ones. The latter result shows that the evaluation
function can be directly used for selecting moves as done by Greedy, but not at
the start of a simulation. The first moves should be highly randomized.

Table 2. Tournament results

Strategy Evaluation Cut-Off Corrective Greedy Mixed
Evaluation Cut-Off - 442.5 598.0 325.5
Corrective 557.5 - 674.0 362.0
Greedy 402.9 326.0 - 167.0
Mixed 674.5 638.0 833.0 -

5.4 MC-LOA vs. MIA

Finally, in the third series of experiments we matched the MC-LOA program
using the Mixed strategy against the αβ-based program MIA. The thinking
time was set to 5 seconds per move.

The results are given in Table 3. We see from row two that the regular MC-LOA
program played almost as well as MIA, receiving a 46% winning score. One nice
benefit of MCTS is that it can be parallelized quite easily compared to αβ search.
We tested a two- and four-threaded MC-LOA program against (a single-threaded)
MIA and they won 56% and 60%, respectively. We do not have a parallel version of
MIA, however, we ran an experiment where the two-threaded MC-LOA program
competed against MIA. Here MIA was given 50% more time (simulating a search
efficiency increase of 50% if MIA were to be given two processors). A 1,000 game
match resulted in a 52% winning percentage for MC-LOA.

It is beyond the scope of paper to investigate to what extent MCTS scales
better than αβ. To give an indication, experiments revealed that for 1 second per
move MC-LOA won 42% of the games, whereas for 5 seconds per move MC-LOA
already won 46% of the games.
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Table 3. 1,000-game match results

Score Win % Winning ratio
1 × MC-LOA vs. MIA 4.5 458.0 - 542.0 46% 0.85
2 × MC-LOA vs. MIA 4.5 563.5 - 436.5 56% 1.29
4 × MC-LOA vs. MIA 4.5 602.5 - 397.5 60% 1.52

6 Conclusion and Future Research

In this paper we investigated how to use a positional evaluation function to
enhance a simulation-based LOA program. Four different simulation strategies
were designed, called Evaluation-Cut Off, Corrective, Greedy, and Mixed.

Our experimental results showed that the Mixed strategy of playing greedily
in the play-out phase, but exploring more in the earlier selection phase, although
in a way such that it avoids moves that immediately deteriorate the position,
works the best. Experiments also showed that applying an evaluation function
to stop simulations when a game is judged to be effectively over, resulted in a
significant increase in both the number of simulations and playing strength.

Collectively, these enhancements resulted in our simulation-based MC-LOA
program to play at a comparable level as the world-class αβ-based program
MIA. Moreover, equipped with a simple root parallelization the MC-LOA pro-
gram outperformed MIA both when using two and four threads. Based on the
greatly improved playing strength that we witnessed in the MC-LOA program
when adding the enhancements proposed above, we believe that it is only a mat-
ter of time until simulation-based programs will significantly outperform αβ-
based programs in the game LOA. This is an important milestone for MCTS,
because up until now the traditional game-tree search approach has generally
been considered to be better suited for the game LOA.

As a future research we plan to continue work on enhancing the simulation
strategies both by tuning the various parameters involved and by combining the
strategies in more elaborate ways.
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Abstract. Kakuro consists in filling a grid with integers that sum up to pre-
defined values. Sums are predefined for each row and column and all integers
have to be different in the same row or column. Kakuro can be modeled as a
constraint satisfaction problem. Monte-Carlo methods can improve on traditional
search methods for Kakuro. We show that a Nested Monte-Carlo Search at level
2 gives good results. This is the first time a nested search of level 2 gives good
results for a Constraint Satisfaction problem.

1 Introduction

Kakuro, also known as Cross Sums is a popular NP-complete puzzle [5]. It consists of
a predefined grid containing open cells. the left edge and the upper edge of the grid
contain a column and a row of cells with a predefined number. Each open cell has to be
filled with an integer between 1 and 9. All cells in the same row and all cells in the same
column have to contain different integers. The sum of the integers of a row has to match
the predefined number, as well as the sum of the integers of a column. Table 1 gives an
example of a 5x5 Kakuro problem. The sum of the integers of the first row has to be 18,
the sum of the integers of the last column has to be 24. Moreover, it is possible that a
predefined number of holes is given in advance. Section 2 details the search algorithms
used for Kakuro. In Section 3 we present experimental results. Section 4 contains our
conclusion.

Table 2 gives a solution to the problem of table 1.

Table 1. A 5x5 Kakuro puzzle

24 25 20 26 24
18
26
28
26
21

J. van den Herik and P. Spronck (Eds.): ACG 2009, LNCS 6048, pp. 45–54, 2010.
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Table 2. A solution to the previous Kakuro puzzle

24 25 20 26 24
18 1 7 5 3 2
26 4 5 3 8 6
28 5 6 7 2 8
26 8 4 1 6 7
21 6 3 4 7 1

2 Search Algorithms

The search algorithms we have tested are (1) Forward Checking, (2) Iterative Sampling,
(3) Meta Monte-Carlo search, and (4) Nested Monte-Carlo Search. They are presented
below. We complete the section by some remarks on choosing a variable (2.5) and
choosing a value (2.6).

2.1 Forward Checking

The Forward Checking algorithm consists in reducing the set of possible values of the
free variables after each assignment of a value to a given variable. It reduces the domains
of the free variables that appear in the same constraints as the assigned variable.

In Kakuro, each time a value is assigned to a variable, the value is removed from the
domain of the free variables that are either in the same row or in the same column as
the assigned variable.

Moreover, the sum Srow of all the assigned variables in a row is computed, then the
maximum possible value Maxval for any variable in the row is computed by subtract-
ing Srow from the goal sum of the row. All values that are greater than Maxval are
removed from the domains of the free variables of the row. If all the variables of the
row have been assigned the sum is compared to the target sum and if it is different, the
assignment is declared inconsistent.

A similar domain reduction and consistency check is performed for the free variables
in the column of the assigned variable.

Much more elaborate consistency checks could be performed and would improve all
the algorithms presented in this paper. However, our point in this paper is not about
elaborate consistency checks but rather about the interest of nested search.

A Forward Checking search is a depth-first search that chooses a variable at each
node, tries all the values in the domain of this variable and recursively calls itself until
a domain is empty or a solution is found.

The pseudo code for Forward Checking is as follows:

1 bool ForwardChecking ()
2 if no free variable then
3 return true
4 choose a free variable var
5 for all values in the domain of var
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6 assign value to var
7 update the domains of the free variables
8 if no domain is empty or inconsistent then
9 if (ForwardChecking ()) then
10 return true
11 return false

2.2 Iterative Sampling

Iterative Sampling uses Forward Checking to update the possible values of the free
variables. A sample consists in choosing a variable, assigning a possible value to it,
updating the domains of the other free variables, and looping until a solution is found
or a variable with an empty domain is found. Iterative sampling performs samples until
a solution is found or the allocated time for the search is elapsed.

The sample function that we give returns the number of free variables that are left
when a variable has an empty domain because this value is used as the score of a sample
by other algorithms.

The pseudo code for sampling is as follows:

1 int sample ()
2 while true
3 choose a free variable var
4 choose a value in the domain of var
5 assign value to var
6 update the domains of the free variables
7 if a domain is empty or inconsistent then
8 return 1 + number of free variables
9 if no free variable then
10 return 0

The Iterative Sampling algorithm consists in repeatedly calling sample.

1 bool iterativeSampling ()
2 while time left
3 if sample () equals 0 then
4 return true
5 return false

2.3 Meta Monte-Carlo Search

Rollouts were successfully used by Tesauro and Galperin to improve their Backgam-
mon program [6]. They consist in playing games according to an algorithm that chooses
the moves to play. The scores of the games are then used to choose a move instead of
directly using the base algorithm. A related algorithm that has multiple levels is Re-
flexive Monte-Carlo search [2] which has been used to find long sequences at Morpion
Solitaire. Reflexive Monte-Carlo search consists in (1) playing random playouts at the
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base level, and then (2) playing a few games at the lower level of a search in order to
find the best move at the current level of the search. At Morpion Solitaire, games at the
meta level give better results than games at the lower level.

A Meta Monte-Carlo Search (1) tries all possible assignments of the variable, (2)
plays a sample after each assignment, and (3) chooses the value that has the best sample
score. The algorithm memorizes the best sample so as to follow it in subsequent moves
if no better sample has been found.

The pseudo code of Meta Monte-Carlo Search is as follows:

1 int metaMonteCarlo ()
2 best score = number of free variables
3 while true
4 choose a free variable var
5 for all values in the domain of var
6 assign value to var
7 update the domains of the free variables
8 if a domain is empty or inconsistent then
9 score = 1 + number of free variables
10 else
11 score = sample ()
12 if score < best score then
13 best score = score
14 best sequence = {{var,value},sample sequence}
15 var = pop variable of the best sequence
16 value = pop value of the best sequence
17 assign value to var
18 update the domains of the free variables
19 if a domain is empty or inconsistent then
20 return 1 + number of free variables
21 if no free variable or best score equals 0 then
22 return 0

At line 14, when a sample has found a new best sequence, it is memorized. A sequence
consists of an ordered list of variables and values that have been chosen during the
sample. It is analogous to a sequence of moves in a game.

The algorithm can be used with any maximum allocated time, repeatedly calling it
until a solution is found or the time is elapsed, as for Iterative Sampling.

1 bool iterativeMetaMonteCarlo ()
2 while time left
3 if metaMonteCarlo () equals 0 then
4 return true
5 return false
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2.4 Nested Monte-Carlo Search

Nested Monte-Carlo Search [3] pushes further the meta Monte-Carlo approach, using
multiple meta-levels of nested Monte-Carlo searches. This approach is similar to pre-
vious approaches that attempt to improve an heuristic of a solitaire card game with
nested calls [7,1]. These algorithms use a base heuristic which is improved with nested
calls, whereas Nested Monte-Carlo Search uses random moves at the base level instead.
Nested Monte-Carlo Search is an algorithm that uses no domain specific knowledge and
which is widely applicable. However adding domain specific knowledge will probably
improve it. For example, at Kakuro pruning more values using stronger consistency
checks would certainly improve both the Forward Checking algorithm and the Nested
Monte-Carlo search algorithm.

The application of Nested Monte-Carlo Search to Constraint Satisfaction is as
follows.

1 int nested (level)
2 best score = number of free variables
3 while true
4 choose a free variable var
5 for all values in the domain of var
6 assign value to var
7 update the domains of the free variables
8 if a domain is empty or inconsistent then
9 score = 1 + number of free variables
10 else if level is 1
11 score = sample ()
12 else
13 score = nested (level - 1)
14 if score < best score then
15 best score = score
16 best sequence = {{var,value},level-1 sequence}
17 var = pop variable of the best sequence
18 value = pop value of the best sequence
19 assign value to var
20 update the domains of the free variables
21 if a domain is empty or inconsistent then
22 return 1 + number of free variables
23 if no free variable or best score equals 0 then
24 return 0

Meta Monte-Carlo search is a special case of Nested Monte-Carlo Search at level 1.
It is important to memorize the best sequence of moves in Nested Monte-Carlo

Search. This is done at line 16 of the nested function. At that line, if the search of
the underlying level has found a new best sequence, the sequence is copied as the best
sequence of the current level.

Nested Monte-Carlo Search parallelizes very well, for the Morpion Solitaire disjoint
version, speedups of 56 for 64 processors were obtained [4].
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The algorithm can be used with any allocated time, repeatedly calling it at a given
level.

2.5 Choosing a Variable

When choosing a variable, the usual principle is to choose the variable that will enable
to find that there is no solution under the node as fast as possible. A common, general
and efficient heuristic is to choose the variable that has the smallest domain size. This
is the heuristic we have used for all the algorithms presented in this paper.

2.6 Choosing a Value

When choosing a value, the usual principle is to choose the value that has the most
chances of finding a solution because if there is no solution, all values have to be tried in
order to prove that there is no solution. In this paper we choose values at random among
possible values of a variable. However, Nested Monte-Carlo Search mainly consists in
obtaining much information about the interestingness of all values before choosing one,
so it can also be considered as an algorithm that carefully selects values to be tried.

3 Experimental Results

In this section we explain how problems have been generated. We then give the results
of running the algorithm on various problems. We also evaluate the influence of the
number of possible values on problem hardness.

3.1 Problem Generation

In order to generate a problem, a search is used to generate a complete grid of a given
size with the constraint that all values are different in the same column or row. Then the
sum of each row and each column is computed. Then values are randomly removed until
the desired percentage of holes is reached. For each percentage of holes, 100 problems
have been generated.

3.2 Comparison of Algorithms

The four algorithms that were tested are Forward Checking, Iterative Sampling, Nested
Monte-Carlo Search at level 1 and level 2.

In order to estimate the problem difficulties, these four algorithms were tested on all
percentages of holes of 10x10 grids with values ranging from 1 to 11. Figure 1 gives
the number of problems solved for each percentage and each algorithm using a timeout
of 10 seconds per problem. Figure 2 gives the total time used by each algorithm for
the same problems. From these figures it is clear that (1) Nested Monte-Carlo search at
level 2 easily solves almost all the problems in less than 10 seconds, and (2) Forward
Checking and Iterative Sampling solve almost no problem within 10 seconds when the
problems have more than 80% of free variables.



Monte-Carlo Kakuro 51

Fig. 1. Number of solved problems for different percentage of holes and different algorithms with
a timeout of 10 seconds per problem, 10x10 grids, values ranging from 1 to 11

Fig. 2. Time spent for all problems for different percentage of holes and different algorithms with
a timeout of 10 seconds per problem, 10x10 grids, values ranging from 1 to 11
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Table 3. Comparison of different algorithms for empty 6x6 grids, values ranging from 1 to 7,
timeout of 1,000 seconds

Algorithm Problems solved Total time
Nested Level 2 100 out of 100 0.91 s.
Nested Level 1 100 out of 100 1.42 s.

Iterative Sampling 100 out of 100 424.21 s.
Forward Checking 98 out of 100 9,433.98 s.

Table 4. Comparison of different algorithms for empty 8x8 grids, values ranging from 1 to 9,
timeout of 1,000 seconds

Algorithm Problems solved Total time
Nested Level 2 100 out of 100 17.85 s.
Nested Level 1 100 out of 100 78.30 s.

Iterative Sampling 10 out of 100 94,605.16 s.
Forward Checking 8 out of 100 92,131.18 s.

We can see that the problem difficulty increases with the number of holes, the most
difficult problems being the empty grids problems. This is different from a closely re-
lated problem, the quasi group completion problem. This problem also consists in filling
a grid with different values on each row and each column, but there is no constraints on
the sum of the values and there are as many values as the size of the column or the row.
The quasi group completion problem is easy for low and high percentages of holes and
hard for intermediate percentages. In our experiments, Iterative Sampling very easily
solves all quasi group completion problems, with any percentage of holes, up to size
10x10. Kakuro is harder to solve than quasi group completion for the same problem
size, and the problems hardness does not have the same repartition.

Moreover Nested Monte-Carlo Search at level 2 is better than Nested Monte-Carlo
Search at level 1 which is better than Forward Checking which is in turn better than
Iterative Sampling.

We now compare algorithms giving them more time (1,000 seconds per problem) on
empty 6x6 grids (36 free variables) since empty grids are the most difficult problems.
Possible values range from 1 to 7. Table 3 gives the number of problems solved and
the time to solve them for the different algorithms. We see that Nested Monte-Carlo
Search is still the best algorithm, however Iterative Sampling becomes much better
than Forward Checking on 6x6 empty grids.

In order to test more difficult problems we repeated the experiment for empty 8x8
grids with values ranging from 1 to 9. The results are given in table 4. Nested Monte-
Carlo Search at level 2 is still the best algorithm while Iterative Sampling and Forward
Checking perform badly. We can observe that most of the time of the Forward Checking
algorithm is spent on problems that are not solved (92 problems for 92,000 seconds)
while Iterative Sampling solves two more problems but takes more time.
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Table 5. Solving empty 8x8 grids with different numbers of possible values, timeout of 1,000
seconds

Algorithm Problems solved Possible Values Total time
Nested Level 2 100 out of 100 [1,9] 17.85 s.
Nested Level 2 100 out of 100 [1,10] 1,939.51 s.
Nested Level 2 100 out of 100 [1,11] 1,166.13 s.
Nested Level 2 100 out of 100 [1,12] 1,214.29 s.
Nested Level 2 99 out of 100 [1,13] 1,688.51 s.
Nested Level 2 100 out of 100 [1,14] 629.47 s.
Nested Level 2 100 out of 100 [1,15] 672.90 s.
Nested Level 2 100 out of 100 [1,16] 603.38 s.
Nested Level 2 100 out of 100 [1,17] 429.26 s.
Nested Level 2 100 out of 100 [1,18] 579.99 s.

3.3 Influence of the Number of Values

The next experiment consists in estimating the evolution of the difficulty of Kakuro
problems with the number of possible values. We solved 100 empty 8x8 grids with
Nested Monte-Carlo Search level 2 for 9 to 18 possible values. The results are given in
table 5. We see that the difficulty starts to increase with the number of possible values
and then decreases when enough values are possible.

4 Conclusion

We have compared Forward Checking, Iterative Sampling, and Nested Monte-Carlo
Search on Kakuro problems. Nested Monte-Carlo search at level 2 gives the best results.
We have also shown the difficulty of Kakuro problems given their number of holes and
number of possible values.

Future work include testing the algorithms with stronger consistency checks and
comparing them on other problems.
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Abstract. Monte-Carlo tree search, especially the UCT algorithm and its en-
hancements, have become extremely popular. Because of the importance of this
family of algorithms, a deeper understanding of when and how the different
enhancements work is desirable. To avoid the hard to analyze intricacies of
tournament-level programs in complex games, this work focuses on a simple
abstract game, which is designed to be ideal for history-based heuristics such
as RAVE. Experiments show the influence of game complexity and of enhance-
ments on the performance of Monte-Carlo Tree Search.

1 Introduction

Monte Carlo Tree Search (MCTS), especially in form of the UCT algorithm [1], has
become an immensely popular approach for game-playing programs [2]. MCTS has
been especially successful in environments for which a good evaluation function is
hard to build, such as Go [3] and General Game-Playing [4]. MCTS-based programs
are also on par with the best traditional programs in Hex and Amazons [5].

Part of the success of MCTS is due to its enhancements. Methods inspired by Scha-
effer’s history heuristic [6] include All-Moves-As-First (AMAF) [7] and Rapid Action
Value Estimation (RAVE) [8]. Whereas the value of a move is typically based on simu-
lations where the move is the first one played, these heuristics use all simulations where
the move is played at any point in the game; this produces a low variance estimate that
is fast to learn [8]. Methods such as progressive pruning [9] focus MCTS on stronger-
looking candidate branches.

While the game-independent algorithms above can be used with minor variations
across different games, typical tournament-level programs contain a large number of
game-specific enhancements as well, such as opening books and specialized playout
policies. Further examples are patterns [3,10] and tactical subgoal solvers in Go, and
virtual connections in Hex.

While practical applications abound, up to this point there has been relatively little
detailed analysis of the core MCTS algorithm and its enhancements. Gaining a deeper
understanding of their behaviour and performance is difficult in the context of com-
plicated programs for complex games. Rigorous testing, evaluation and interpretation
of the results is necessary but difficult to do in such environments. A simpler, well-
controlled environment seems necessary.
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1.1 Research Questions

Since MCTS is a relatively new approach, there is a large number of open research
questions, both in theory and in practice. For example,

– How does the performance of an algorithm vary with the complexity and type of
game that is played?

– What are the conditions on a game under which a specific enhancement works?
How much does it improve MCTS in the best case?

– How should a general framework for Monte-Carlo Tree Search be designed, and
how can it then be adapted to a specific game?

Some of these questions are addressed in practice by the FUEGO system [11], an open-
source library for games which includes the MCTS engine used for the experiments in
this paper. One way to study questions about MCTS in more precision than is possible
for real games is to use highly simplified, abstract games for which a complete mathe-
matical analysis is available. Ideally, such games should allow deeper study of the core
algorithms while avoiding layers of game-specific complexity in the analysis.

In this paper, a simple artificial game, called Sum of Switches (SOS), is used for an
experimental study of MCTS algorithms, in particular, as a close to ideal scenario for
the RAVE heuristic. Section 2 introduces and motivates the SOS game model, and dis-
cusses related work on analysis of MCTS. Section 3 briefly summarizes relevant parts
of the FUEGO framework used in the experiments. Section 4 describes our experiments.
Sections 5 and 6 conclude with a discussion of our results and ideas for future work.

2 The Sum of Switches Game

Sum of Switches (SOS) is a number picking game played by two players. The game has
one parameter n. In SOS(n) players alternate turns picking one of n possible moves.
Each move can only be picked once. The moves have values {0, . . . , n − 1}, but the
values are hidden from the players. The only feedback for the players is whether they
win or lose the overall game. After n moves, the game is over. Let s1 be the sum of all
first player’s picks, s1 = p1,1 + . . . + p1,n/2, and s2 the sum of second player’s picks,
s2 = p2,1 + . . . + p2,n/2. Scoring is similar to the game of Go. The komi k is set to the
perfect play outcome, k = (n − 1) − (n − 2) + . . . = �n/2�. The first player wins iff
s1 − s2 ≥ k.

The optimal strategy for both players would be to simply choose the largest remain-
ing number at each step. However, since both the move values and the final scoring sys-
tem are unknown to the players, good moves must be discovered through exploration,
by repeated play of the same game.

SOS can be viewed as a generalized multi-armed bandit game. In classical multi-arm
bandit problems, each game consists of picking a single arm i out of n possible arms,
which leads to an immediate reward Xi, a random variable. The player uses exploration
to find the arm with best expected reward, and exploits that arm by playing it. In SOS,
one episode consists of playing all arms once. The reward Xi for choosing arm i is
constant, but is not directly shown to the player. Only the success of all choices relative
to the opponents choices is revealed at the end of the episode.
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2.1 Related Work and Motivation for SOS

The original UCT paper [1] contains an experiment showing the performance of UCT
on the artificial P-game tree model [12]. Each edge representing a move is associated
with a random number from a specified range. The value of a leaf node is the sum of the
edge values along the path from the root. The value of edges corresponding to opponent
moves is negated.

In the SOS model, the value of a move is independent of when and by which player
it is chosen. This should represent a best-case scenario for history-based heuristics such
as RAVE.

The RAVE heuristic is a frequently used enhancement for MCTS. In contrast to basic
Monte-Carlo tree search, it collects statistics over all moves played in a simulation. In
a game such as SOS, that extra information should be of high quality since moves have
the same value independent of when they are played.

In the original work on RAVE [8], Gelly and Silver analyze its performance in the
context of computer Go. The weights for the RAVE heuristic were chosen empirically to
work well in Go. Empirically, RAVE is shown to have very strong overall performance
in Go. However, it causes occasional blunders by introducing a strong bias against the
correct move. For example, if a move is very good right now, but very bad if played at
any time later in a simulation, RAVE updates would be misleading. Such misleading
biases do not exist in the case of SOS.

3 The FUEGO Framework and Its MCTS Implementation

The experiments with SOS use the FUEGO framework [11], which includes the com-
puter Go program with the same name. One component of the FUEGO framework is the
game-independent SmartGame library: a set of tools to handle game play, file storage,
and game tree search as well as other utility functions. The SmartGame library includes
a generic MCTS engine with support for UCT, RAVE, and using prior knowledge. The
UCT and RAVE engines are used in the SOS experiments with no modifications. No
experiments on utilizing prior knowledge are presented in this paper.

The UCT engine uses the basic UCT formula, with user-defined parameters con-
trolling the UCT behaviour. The parameter c is defined by the user to determine the
influence of the UCB bound value; this parameter is usually optimized by hand, but for
the purposes of SOS, we chose to keep it at the default value of 0.7.

When RAVE is active, the value of the estimate for a move is determined by a linear
combination of the mean value and RAVE value of the move. The weighting function
used here is a little different from the one originally proposed in [8], but has been found
to work as well as the original formula in FUEGO. The unnormalized weighting of the
RAVE estimator is determined by the formula:

Wj =
βjwfwi

wf + wiβj

the RaveCount βj represents the number of rave updates of move j. wi and wf stand
for RaveWeightInitial and RaveWeightFinal; these parameters determine the influence
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of RAVE relative to the mean value. They are manually set by the user. wi describes
the initial slope of the weighting function and wf describes its asymptotic bound. As
the number of simulations increases, the weight of the RAVE value diminishes relative
to the mean value. This formula is designed to lower the mean squared error of the
weighted sum; it is optimal when the weight of each estimator is proportional to the
inverse of its mean squared error. In practice, the values of RaveWeightInitial is usually
kept at the default value of 1.0, and a suitable RaveWeightFinal is found experimentally.
RaveWeightInitial is kept at 1.0 as we do not make any assumptions about the accuracy
of early RAVE and UCT estimates. The weight Wj is used in the UCT formula in the
following manner [11]:

MoveValue(j ) =
Tj(α)

Tj(α) + Wj
X̄j +

Wj

Tj(α) + Wj
Ȳj + c

√
log α

Tj(α) + 1

α represents the number of times the parent node was visited. X̄j denotes the average
reward and Ȳj the RAVE value of move j. The c term is a constant bias term set by the
user and Tj(α) is the MoveCount, the number of times move j has been played at the
parent node. Adding 1 to Tj(α) in the bias term avoids a division by 0 in case move
j has a RAVE value but Tj(α) = 0. In MCTS, the game tree is grown incrementally.
In the SmartGame library unexpanded nodes are assigned a FirstPlayUrgency value.
Large values cause the program to prioritize exploration whereas small values encour-
age exploitation. The default value of 10000 is used in the experiments, which gives
high priority to unexpanded nodes [1].

4 Experiments

The experiments investigate the properties of MCTS with UCT and RAVE. Results are
shown for (1) varying the size of the game and the number of simulations used in the
search, (2) the influence of RAVE, (3) training on optimal play vs. “good” play, and
(4) the effect of misleading RAVE updates. This paper reports our findings thus far,
and will hopefully lead to further experiments with MCTS enhancements and improved
algorithms. The experiments were performed on 2 GHz i686 computers with 1GB of
memory running Linux 2.6.25.14-108.fc9.i686 Fedora release 9 (Sulphur). The FUEGO

version used in these experiments was FUEGO release 0.2.

4.1 Game Size and Simulation Limits

The complexity of the SOS game is determined solely by its size. SOS(n) produces a
game tree of size n! since transpositions and tree pruning are not present in this model.
For example, the complete SOS(10) game tree contains 3628800 leaf nodes. The larger
the game is, the more difficult it is for a game-playing program to solve. The perfor-
mance of the game-playing program is mainly determined by a single parameter s: the
number of simulations it is allowed to perform before playing a move. To establish a
baseline for the performance of UCT in SOS, experiments varying n and s were per-
formed.
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Fig. 1. Plain UCT without enhancements in SOS(n)

Each data point in Figure 1 represents how often the optimal first move was cho-
sen in 1000 trials. For n < 10 the program quickly converges to optimal play. In the
range 10 ≤ n ≤ 50, convergence becomes progressively slower. The convergence rates
seem similar to those in [1] for games with a comparable number of leaf nodes. For fur-
ther experiments, SOS(10) was chosen as a compromise between game difficulty and
runtime until convergence.

4.2 RAVE

Figure 2 shows experiments with RAVE. Even low values of RaveWeightFinal such as
16 give noticeable improvements. Large values of RaveWeightFinal show diminishing
returns, with 512 producing similar results to 32768 or higher values.

As stated previously, this game is designed as a kind of best-case for RAVE: the
relative value between moves is consistent at all stages of the game. In fact, in SOS
it is possible and beneficial to base the UCT search exclusively on the RAVE value
and ignore the mean value. Figure 2 includes this RAVE-only data as well. Of course,
this method would not work in other games where the value of a move depends on the
timing when it is played.

4.3 Score Bonus

Score Bonus is an enhancement that differentiates between strong and weak wins and
losses. If game results are simply recorded as a 0 or 1, the program does not receive
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Fig. 2. UCT+RAVE, varying RaveWeightFinal in SOS(10)

any feedback on how close it was to winning or losing. With score bonus, a high win
that probably contained many high-scoring moves gets a slightly better evaluation than
a close win.

In SOS with score bonus, losses are evaluated in a range from 0 to γ and wins from
1− γ to 1, for a parameter γ. A minimal win is awarded 1− γ, and a maximal possible
win a score of 1. All other game outcomes are scaled linearly in this interval. The values
assigned for losses are analogous.

Results for γ = 0.1, γ = 0.05, and γ = 0.02 are shown in Figure 3. Score bonus
fails to improve gameplay in SOS. However, it is used in the FUEGO Go program. Un-
published large-scale experiments by Markus Enzenberger showed that small positive
values of γ improve the playing strength slightly but significantly for 9×9. Best results
were achieved for γ = 0.02.

4.4 False Updates

While RAVE works very well in SOS and Go, it is not reliable in all games. Since
RAVE updates the value of all moves in a winning sequence and ignores temporal
information, it can lead the search astray. In situations where specific moves are only
helpful at a given time, RAVE can weaken game-play instead of improving it. Suppose
that in a game, a certain last move will always lead to a win, but is useless at all other
times. The high RAVE value that this move is likely to earn early in simulations is likely
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Fig. 3. Graph of Score Bonus results on SOS(10). The RAVE experiments were performed with
the RAVE-only settings.

to cause the game-playing program to waste a lot of time exploring paths related to this
winning move at higher points in the tree. It is potentially possible for such a situation
to result in very poor value estimates when the simulation limit is reached and thus poor
play will result.

Experiments involving random false updates can simulate the effect of misleading
RAVE values. With a probability of μ, the Rave update for all moves in the current sim-
ulation uses the inverse evaluation InverseEval = 1 − Eval . RaveWeightFinal was
set to a high value in this set of experiments so as to pronounce the effect of the ex-
periment; additionally, this setup also reflects scenarios where little is known about the
game, but RAVE is expected to be a strong estimator. The results of these experiments
are summarized in Figure 4.

Even with the influence of the mean value as a steadying force, the performance of
a program with RAVE influence deteriorates as the value of μ increases. The decay is
gradual until μ is about 0.5, where performance drops significantly. RAVE still outper-
forms plain UCT when the false update rate is between 0 and 0.3. Up to an error rate
of 0.5, the error can be interpreted as noise that slows down convergence; error rates
above 0.5 have an antagonistic effect upon the RAVE heuristic. Even with μ = 0.6 the
performance still improves with the number of simulations. These results suggest that
with unbiased noise as provided by false updates above, RAVE is a robust heuristic that
is resilient against a reasonable level of error.
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Fig. 4. Effect of False Updates on RAVE with RaveWeightFinal = 32768. Experiments per-
formed in SOS(10).

It would be interesting to study a biased version of false updates, that selectively
distorts the updates related to specific moves. This may be a model that is closer to
what is seen in Go, and present more problems for the search.

Since RAVE-only works well in SOS, it is interesting to see the effect of false updates
here. The results in Figure 5 show a similar trend while the error rate is low. The μ = 0
data corresponds to Figure 2, where RAVE-only is better than UCT+RAVE. However, at
μ = 0.2 RAVE-only is already slightly worse, and at μ = 0.4, RAVE-only is far worse
than the UCT+RAVE version shown in Figure 4. At μ = 0.5 the algorithm behaviour
becomes random.

5 Analysis

The experiments studied UCT and two common enhancements, RAVE and Score
Bonus. Score Bonus did not produce favourable results in SOS, but had a positive effect
in Go. This discrepancy needs further study.

The RAVE experiments show significantly better performance than plain UCT, even
with distorted RAVE updates. The experiments suggest that the RAVE heuristic is ro-
bust against unbiased noise and performs well even with a fair level of error. However,
the RAVE experiments also suggest that performance can be significantly improved
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Fig. 5. Effect of False Updates in RAVE-only on SOS(10)

if we understand a little about the environment we are applying RAVE in. In games
where the value of moves do not change, RAVE provides a much stronger estimate than
the mean value. The false update experiments also suggest that if RAVE updates are
strongly misleading, RAVE can be very detrimental, and thus, it needs to be weakened
or eliminated from the estimate to improve program performance.

6 Conclusion and Future Work

The Sum of Switches game provides a simple, well-controlled environment where be-
haviour is easily measured. In this framework, a series of experiments with UCT and
RAVE were performed. Although current trends promote parallelization as a means to
increase simulations completed and program performance, the fact remains that game
trees are often exponentially growing in size, meaning that simulations have to be in-
creased by large quantities in order to produce small gains in performance. However,
the RAVE experiments also suggest that by enhancing our algorithm and fine-tuning the
parameters, significantly stronger play can be achieved without requiring more samples.
Future work includes further investigation of RAVE in hostile environments as well as
exploration on how to moderate the influence of RAVE to adapt to the environment it
is in. The goal is to adapt automatically a complex UCT-based algorithm to a particular
game situation.
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1. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer,
Heidelberg (2006)

2. van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.): CG 2008. LNCS, vol. 5131.
Springer, Heidelberg (2008)

3. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with Patterns in Monte-
Carlo Go, Technical Report RR-6062 (2006)

4. Finnsson, H., Björnsson, Y.: Simulation-Based Approach to General Game Playing. In: Fox,
D., Gomes, C.P. (eds.) AAAI, pp. 259–264. AAAI Press, Menlo Park (2008)

5. Lorentz, R.J.: Amazons Discover Monte-Carlo. In: [2], pp. 13–24
6. Schaeffer, J.: The History Heuristic and Alpha-Beta Search Enhancements in Practice. IEEE

Trans. Pattern Anal. Mach. Intell. 11(11), 1203–1212 (1989)
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Abstract. Monte-Carlo Tree Search and Upper Confidence Bounds pro-
vided huge improvements in computer-Go. In this paper, we test the gen-
erality of the approach by experimenting on the game, Havannah, which
is known for being especially difficult for computers. We show that the
same results hold, with slight differences related to the absence of clearly
known patterns for the game of Havannah, in spite of the fact that Ha-
vannah is more related to connection games like Hex than to territory
games like Go.

1 Introduction

This introduction is based on [1]. Havannah is a 2-players board game (black vs
white) invented by Christian Freeling [1,2]. It is played on an hexagonal board
of hexagonal locations, with variable size (10 hexes per side usually for strong
players).

White starts, after which moves alternate. The rules are straightforward.

– Each player places one stone on one empty cell. If there is no empty cell and
if no player has won yet, the game is a draw (very rare cases).

– A player wins if he realizes:

• a ring, i.e., a loop around one or more cells (empty or not, occupied by
black or white stones);

• a bridge, i.e., a continuous string of stones from one of the six corner
cells to another of the six corner cells;

• a fork, i.e., a connection between three edges of the board (corner points
are not edges).

These figures are presented in Fig. 1 for a visual clarification.
Although computers can play some abstract strategy games better than any

human, the best Havannah playing software plays weakly compared to human ex-
perts. In 2002, Freeling offered a prize of 1000 euros, available through 2012, for
any computer program that could beat him in even one game of a ten-game match.

Havannah is somewhat related to Go and Hex. It is fully observable and in-
volves connections; also, rings are somewhat related to the concept of an eye or
a capture in the game of Go. Go has been now for a while a main target for AI

J. van den Herik and P. Spronck (Eds.): ACG 2009, LNCS 6048, pp. 65–74, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Three finished games: a ring (a loop, by black), a bridge (linking two corners,
by white) and a fork (linking three edges, by black)

in games (after the chess period), as it is a well-known game, and important in
many Asian countries. However, it is no longer true that computers are only at
the level of a novice. Since MCTS/UCT (Monte-Carlo Tree Search, Upper Con-
fidence Trees) approaches have been defined [3,4,5], several improvements have
appeared like First-Play Urgency [6], Rave-values [7,8], patterns and progressive
widening [9,10], better than UCB-like (Upper Confidence Bounds) exploration
terms [11], large-scale parallelization [12,13,14,15], automatic building of huge
opening books [16]. Thanks to all these improvements, MoGo has already won
games against a professional player in 9x9 (Amsterdam, 2007; Paris, 2008; Tai-
wan 2009), and recently won with handicap 6 against a professional player,
Li-Chen Chien (Tainan, 2009), and with handicap 7 against a top professional
player, Zhou Junxun, winner of the LG-Cup 2007 (Tainan, 2009). So, it may not
be a surprise that a new game emerged. The following features make Havannah

quite difficult for computers, perhaps yet more difficult than the game of Go.

– few local patterns are known for Havannah;
– no natural evaluation function;
– no pruning rule for reducing the number of reasonable moves;
– large action space (271 for the first move with board size 10).

The advantage of Havannah, similar as in Go (except in pathological cases for
the game of Go) is that simulations have a bounded length: the size of the board.

The goal of this paper is to investigate the generality of the MCTS/UCT
approach by testing it in Havannah.

By way of notation, x± y means a result with average x, and 95% confidence
interval [x − y, x + y] (i.e., y is two standard deviations).

2 UCT

Upper Confidence Trees are the most straightforward choice when implementing
a Monte-Carlo Tree Search. The basic principle is as follows. As long as there
is time before playing, the algorithm performs random simulations from a UCT
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tree leaf. These simulations (playouts) are complete possible games, from the
root of the tree until the game is over, played by a random player playing both
black and white. In its most simple version, the random player, which is used
when in a situation s which is not in the tree, just plays randomly and uniformly
among legal moves in s; we did not implement anything more sophisticated, as
we are more interested in algorithms than in heuristic tricks. When the random
player is in a situation s already in the UCT tree, then its choices depend on
the statistics: number of wins and number of losses in previous games, for each
legal move in s. The detailed formula used for choosing a move depending on
statistics is termed a bandit formula, discussed below. After each simulation,
the first situation of the simulated game that was not yet in memory is archived
in memory, and all statistics of numbers of wins and numbers of defeats are
updated in each situation in memory which was traversed by the simulation.

Bandit Formula

The most classical bandit formula is UCB (Upper Confidence Bounds [17,18]);
Monte-Carlo Tree Search based on UCB is termed UCT. The idea is to compute
a exploration/exploitation score for each legal move in a situation s for choos-
ing which of these moves must be simulated. Then, the move with maximal
exploration/exploitation score is chosen. The exploration/exploitation score of
a move d is typically the sum of the empirical success rate score(d) of the move
d, and of an exploration term which is strong for less explored moves. UCB uses
Hoeffding’s bound for defining the exploration term:

explorationHoeffding =
√

log(2/δ)/n, (1)

where n is the number of simulations for move d. δ is usually chosen linear as a
function of the number m of simulations of the situation s: δ is linear in m. In
our implementation, with a uniform random player, the formula was empirically
set to:

explorationHoeffding =
√

0.25 log(2 + m)/n. (2)

[19,20] have shown the efficiency of using Bernstein’s bound instead of Hoeffd-
ing’s bound, in some settings. The exploration term is then:

explorationBernstein =
√

score(d)(1 − score(d))2 log(3/δ)/n + 3 log(3/δ)/n
(3)

This term is smaller for moves with small variance (score(d) small or large).
After the empirical tuning of Hoeffding’s equation 2, we tested Bernstein’s

formula as follows (with p = score(d) for short)

explorationBernstein =
√

4Kp(1 − p) log(2 + m)/n + 3
√

2K log(2 + m)/n. (4)

Within the “2+”, which is here for avoiding special cases for 0, this is Bernstein’s
formula for δ linear as a function of m.

We tested several values of K. The first value 0.250 corresponds to Hoeffding’s
bound except that the second term is added. The results are given in Table 1
Experiments are performed with 1000 simulations per move, with size 5. We
tried to experiment values below 0.01 for K but with poor results.
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Table 1. Results of testing the K values

K Score against Hoeffding’s formula 2
0.250 0.503 ± 0.011
0.100 0.578 ± 0.010
0.030 0.646 ± 0.005
0.010 0.652 ± 0.006
0.001 0.582 ± 0.012
0.000 0.439 ± 0.015

Scaling of UCT

Usually, UCT provides increasingly better results when the number of simu-
lations per move is growing. Typically, the winning rate with 2z simulations
against UCT with z simulations is roughly 63% in the game of Go (see, e.g.,
[12]). In the case of Havannah, with a uniform random player (i.e., the random
player plays uniformly among legal moves) and the bandit formula as in Eq. 2,
we obtain the results given in Table 2 for the UCT tuned as above (K = 0.25).
These experiments are performed on a board of size 8.

Table 2. Results for UCT

Number of simulations of both player Success rate
250 vs 125 0.75 ± 0.02
500 vs 250 0.84 ± 0.02
1000 vs 500 0.72 ± 0.03
2000 vs 1000 0.75 ± 0.02
4000 vs 2000 0.74 ± 0.05

3 Guiding Exploration

UCT-like algorithms are quite strong for balancing exploration and exploita-
tion. As against it, they provide no information for unexplored moves, and on
how to choose among these moves; and little information for loosely explored
moves. Various tricks have been to overcome this handicap. We mention three of
them: First Play Urgency, Progressive widening, Rapid Action Value Estimates
(RAVE). The last two one discussed below.

3.1 Progressive Widening/Unpruning

In progressive widening [9,10,21], we first rank the legal moves at a situation s
according to some heuristic: the moves are then renamed 1, 2, . . . ,n, with i < j
if move i is preferred to move j by the heuristic. Then, at the mth simulation of a
node, all moves with index larger than f(m) have −∞ score (i.e., are discarded),
with f(m) some non-decreasing mapping from N to N. It was shown in [21]
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that this can work even with random ranking, with f(m) = �Km1/4� for some
constant K. In [9] it was shown that f(m) = �Km1/3.4� for some constant K
performs well in the case of Go, with a pattern-based heuristic. The algorithm
proposed in [10] and now used also in MoGo is a bit different: an exploration
term depending on a pattern-based heuristic and decreasing logarithmically with
the number of simulations of this move is added to the score; for move d in
situation s,

newScore(d, s) = score(d, s) + H(d, s)/ log(2 + m),

where as previously n is the number of simulations including move d at situa-
tion s. In the case of Havannah, we have no such heuristic. We decided to use
heuristic-free progressive widening, as it was shown in [21] that an improvement
can be provided even if no heuristic is available (i.e., the order is arbitrary). This
idea of using progressive widening without heuristic is a bit counter-intuitive.
However, consider the following case. Consider a node of a tree which is ex-
plored 50 times only (this certainly happens for many nodes deep in the tree).
If there are 50 legal moves at this node, then the 50 simulations will be dis-
tributed on the 50 legal moves (one simulation for each legal move), if you use
the standard UCB formula instead of (without) progressive widening. Mean-
while, progressive widening will sample a few moves only, e.g., 4 moves, and
sample much more the best of these 4 moves - this is likely to be better than
taking the average of all moves as an evaluation function. We experimented with
500 simulations per move, size 5, various constants P and Q for the progressive
widening f(m) = Q�mP � (see Table 3). These experiments were performed with
the exploration formula given in Eq. 2. We tested various other parameters for
Q and P , without seeing a significant improvement. Perhaps improvements are
possible by jointly tuning the Hoeffding’s bound and the progressive widening
formula.

Table 3. Results of progressive widening

Q, P Success rate against no prog. widening
1, 0.7 0,496986 ± 0,014942
1, 0.8 0.51 ± 0,0235833
1, 0.9 0.50 ± 0,0145172
4, 0.4 0,500454 ± 0,0134803
4, 0.7 0.49 ± 0,0181818
4, 0.9 0,485101 ± 0,0172619

3.2 Rapid Action Value Estimate

In the case of Go, [7,8] propose to average the score with a permutation-based
statistical estimate. Precisely, the score for a move d in situation s simulated n
times becomes:

newScore(d, s) = (1 − α(n))score(d, s) + α(n)rave(d, s) + exploration
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where

– score(d, s) is the ratio of won simulations among simulations with situation
s and move d in s, rave(d, s) is the proportion of won games among games
containing move d after situation s;

– α(n) → 0 as n → ∞, whereas α(n) is close to 1 for n small, so that the
heuristic rave values are used initially, and eventually they are replaced by
“real” values.

The difference between score(d, s) and rave(d, s) is that the proportion of won
games in rave() is computed among all simulations containing d as move after
situation s and not only all simulations with d as move in situation s. In the
game of Go, RAVE values are a great improvement. However, they involve
complicated implementations due to captures and re-captures. In the case of
Havannah there is no such problem, and we will see that the results are good.
We used the following formula:

α(n) = R/(R + n), exploration = explorationHoeffding =
√

K log(2 + m)/n.

R was empirically set to 50 (on games with size 5 with 1000 simulations per move);
intuitively, R is the number of simulations before the weight of “RAVE” values is
equal to the weight of “greedy” values (see Table 4). All scores are against UCT
with Eq. 2. K = 0 is then the best constant. This was also pointed out in [11] for
the game of Go. We then tested larger numbers of simulations, i.e., 30,000 sim-
ulations per move. Disappointingly but consistently with [11], we had to change
the coefficients in order to obtain positive results, whereas the tuning of UCT is
seemingly more independent of the number of simulations per move (see Table 5).
The first line corresponds to the configuration empirically chosen for 1000 sim-
ulations per move (see Table 4); its results are disappointing, almost equivalent
to UCT, for these experiments with 30,000 simulations per move. The second
line uses the same exploration constant as UCT, but it is seemingly too much.
Then, in the following lines, using a weaker exploration and a small value of R,
we obtain better results. [11] points out that, with big simulation times, K = 0
was better, but an exploration bonus depending on patterns was used instead.

As a conclusion, for large numbers of simulations, RAVE is not as efficient
as for small values (when compared to UCT). Perhaps better tuning could yield
better results. The main weaknesses of RAVE are:

– tuning is required for each new number of simulations;
– the results for largenumbers of simulations are less impressive (yet significant).

Table 4. Results of RAVE (1000 sim.)

size 5 R=50 K=0.25 size 5 1000 simulations/move 47.26% ± 4.0 %
R=50 K=0.05 size 5 1000 simulations/move 60.46% ± 2.9 %
R=50 K=0 size 5 1000 simulations/move 95.33% ± 0.01 %

size 8 R=50 K=0 size 8 1000 simulations/move 100% on 1347 runs
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Table 5. Results of RAVE (30,000 sim.)

R=50 K=0 size 5 30,000 simulations/move 0.53 ± 0.02
R=50 K=0.25 size 5 30,000 simulations/move 0.47 ± 0.04
R=50 K=0.05 size 5 30,000 simulations/move 0.60 ± 0.02
R=50 K=0.02 size 5 30,000 simulations/move 0.60 ± 0.03
R=5 K=0.02 size 5 30,000 simulations/move 0.61 ± 0.06
R=20 K=0.02 size 5 30,000 simulations/move 0.66 ± 0.03

In contrast, the efficiency increases with the size of the action space - this is
promising for the application of RAVE to large action spaces.

4 Games against Havannah-Applet

We tested our program against Havannah-Applet http://dfa.imn.htwk-
leipzig.de/havannah/, recommended by the MindSports association as the

Success rate Success rate
estimated by estimated by

Havannah-Applet our software
62.6% 46.4%
60.8% 47.2%
64.0% 51.2%
56.5% 54.8%
62.5% 65.4%
57.3% 63.7%
71.0% 88.8%
0.5%

Fig. 2. Left: the result of the game played against Havannah-Applet in size 5. Our
program won rather quickly, by a nice multiple constraint: the white opponent must
play W1 (unless black wins by bridge). Then, black can connect to the lower-right edge
with B1. Then, Black has two opportunities for connecting to the right edge, B2a and
B2b; White can only block one and Black then realizes a fork. As seen on the estimated
success rate, Havannah-Applet did not suspect this attack before the very last move.
Right: estimated success rate for each of the opponents.

http://dfa.imn.htwk-
leipzig.de/havannah/
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only publicly available program that plays by the Havannah rules. There are
30 seconds per move, but we restricted our program to running in 8 seconds
per move (first game) and 2.5 seconds per move (second game). In both cases,
our program, based on RAVE, no exploration term, no progressive widening,
was Black (White starts and has therefore the advantage in Havannah). The
first game (played with 8 seconds per move for our program, against 30s for the
opponent) is presented in Fig. 2.

Consistently, the estimated success rate is lower than 50 % at the beginning
(as the opponent, playing first, has the advantage initially). It then increases
regularly until the end. The second game is presented in Fig. 3, with only 7000
simulations (nearly 2 seconds) per move.

Consistently again, the estimated success rate is lower than 50 % at the begin-
ning (as the opponent, playing first, has the advantage initially). It then increases
regularly until the end.

Success rate Success rate
estimated by estimated by

Havannah-Applet our software
62.3% 45.7%
60.3% 48.2%
50.6% 49.9%
43.0% 55.9%
40.4% 52.6%
52.6% 55.4%
40.7% 56.2%
42.0% 63.5%
31.1% 60.0%
42.2% 75.8%
36.8% 68.6%
27.4% 78.1%
3.7%

Fig. 3. Left: the result of the game played against Havannah-Applet in size 5. Our
program was playing black and won by resignation. White has to play W1, otherwise
Black realises a bridge. Then, Black plays B1 and is connected to a second side. Next,
White must play W2 (if Black plays W2 then Black has a fork). Finally, Black can
play B2 and with this move, it is connected to the third side (by B3a or B3b (White
cannot avoid this connection). Right: estimated success rate for each of the opponents.

5 Discussion

In the case of Havannah we could clearly validate the efficiency of some well
known techniques coming from computer-Go, showing the generality of the
MCTS approach. Essentially they are as follows.
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– The efficiency of Bernstein’s formula, in front of Hoeffding’s formula, is clear
(up to 65%).

– The continuous success rate of UCT with 2k simulations per move, against
UCT with k simulations per move, nearly holds in the case of Havannah
(nearly 75%, whereas it is usually around 63% for MCTS in the game of Go

[12]). However, the success rate is higher than in the case of the game of Go

(around 75%).
– The efficiency of the RAVE heuristic is clearly validated. The main strength

is that the efficiency increases with the size, reaching 100 % on 1347 games
in size 8. In contrast, RAVE becomes less efficient, and requires tuning, when
the number of simulations per move increases - however, we still keep 66%
of success rate).

– Progressive widening, in spite of the fact that it was shown in [21] that it
works even without heuristic, was not significant for us. In the case of Go,
progressive widening was shown quite efficient in implementations based on
patterns [9,10].

– Our program could defeat Havannah-Applet easily, whereas it was playing as
Black, and with only 2s per move instead of 30s (running on a single core).
Running more experiments was difficult due to lack of automated interface.

References

1. Wikipedia, Havannah (2009)
2. Schmittberger, R.W.: New Rules for Classic Games. Wiley, Chichester (1992)
3. Chaslot, G., Saito, J.T., Bouzy, B., Uiterwijk, J.W.H.M., van den Herik, H.J.:

Monte-Carlo Strategies for Computer Go. In: Schobbens, P.Y., Vanhoof, W.,
Schwanen, G. (eds.) Proceedings of the 18th BeNeLux Conference on Artificial
Intelligence, Namur, Belgium, pp. 83–91 (2006)

4. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006.
LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

5. Kocsis, L., Szepesvari, C.: Bandit-based monte-carlo planning. In: Fürnkranz,
J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212,
pp. 282–293. Springer, Heidelberg (2006)

6. Wang, Y., Gelly, S.: Modifications of UCT and sequence-like simulations for Monte-
Carlo Go. In: IEEE Symposium on Computational Intelligence and Games, Hon-
olulu, Hawaii, pp. 175–182 (2007)

7. Bruegmann, B.: Monte carlo go (1993) (Unpublished)
8. Gelly, S., Silver, D.: Combining online and offline knowledge in uct. In: ICML 2007:

Proceedings of the 24th international conference on Machine learning, New York,
NY, USA, pp. 273–280. ACM Press, New York (2007)

9. Coulom, R.: Computing elo ratings of move patterns in the game of go. In: Com-
puter Games Workshop, Amsterdam, The Netherlands (2007)

10. Chaslot, G., Winands, M., Uiterwijk, J., van den Herik, H., Bouzy, B.: Progres-
sive strategies for monte-carlo tree search. In: Wang, P. (ed.) Proceedings of the
10th Joint Conference on Information Sciences (JCIS 2007), pp. 655–661. World
Scientific Publishing Co. Pte. Ltd., Singapore (2007)



74 F. Teytaud and O. Teytaud

11. Lee, C.S., Wang, M.H., Chaslot, G., Hoock, J.B., Rimmel, A., Teytaud, O., Tsai,
S.R., Hsu, S.C., Hong, T.P.: The computational intelligence of mogo revealed in
taiwan’s computer go tournaments. IEEE Transactions on Computational Intelli-
gence and AI in Games (2009) (accepted)

12. Gelly, S., Hoock, J.B., Rimmel, A., Teytaud, O., Kalemkarian, Y.: The paralleliza-
tion of monte-carlo planning. In: Proceedings of the International Conference on
Informatics in Control, Automation and Robotics (ICINCO 2008), pp. 198–203
(2008) (to appear)

13. Chaslot, G., Winands, M., van den Herik, H.: Parallel Monte-Carlo Tree Search.
In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS,
vol. 5131. Springer, Heidelberg (2008)

14. Cazenave, T., Jouandeau, N.: On the parallelization of UCT. In: Proceedings of
CGW 2007, pp. 93–101 (2007)

15. Kato, H., Takeuchi, I.: Parallel monte-carlo tree search with simulation servers. In:
13th Game Programming Workshop, GPW 2008 (November 2008)

16. Audouard, P., Chaslot, G., Hoock, J.B., Perez, J., Rimmel, A., Teytaud, O.: Grid
coevolution for adaptive simulations; application to the building of opening books
in the game of go. In: Proceedings of EvoGames (2009)

17. Lai, T., Robbins, H.: Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics 6, 4–22 (1985)

18. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite time analysis of the multiarmed
bandit problem. Machine Learning 47(2/3), 235–256 (2002)

19. Audibert, J.Y., Munos, R., Szepesvari, C.: Use of variance estimation in the multi-
armed bandit problem. In: NIPS 2006 Workshop on On-line Trading of Exploration
and Exploitation (2006)
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Abstract. Proof-Number Search (PNS) is a powerful method for solv-
ing games and game positions. Over the years, the research on PNS has
steadily produced new insights and techniques. With multi-core proces-
sors becoming established in the recent past, the question of parallelizing
PNS has gained new urgency. This article presents a new technique called
Randomized Parallel Proof-Number Search (RP–PNS) for parallelizing
PNS on multi-core systems with shared memory. The parallelization is
based on randomizing the move selection of multiple threads, which oper-
ate on the same search tree. RP–PNS is tested on a set of complex Lines-
of-Action endgame positions. Experiments show that RP–PNS scales
well. Four directions for future research are given.

1 Introduction

Most computer programs for board games successfully employ αβ search. For
some games, however, αβ search displays a weakness in the endgame that can
currently neither be overcome by endgame databases nor by other αβ extensions.
To remedy the deficit, mate searches may be applied. One such alternative to
αβ search is Proof-Number Search (PNS). PNS enjoys popularity as a powerful
method for solving endgame positions and complete games. Since its introduction
by Allis et al. [1] in 1994, PNS has developed into a whole family of search
algorithms (e.g., PN2 [2], PDS [3], and df-pn [4]) with applications to many
games, such as Shogi [5], the one-eye problem in Go [6], Checkers [7], and Lines
of Action [8].

A variety of parallel αβ algorithms have been proposed in the past [9], but so
far not much research has been conducted on parallelizing PNS. With multi-core
processors becoming established as standard equipment, parallelizing PNS has
become an important topic. Pioneering research has been conducted by Kishi-
moto [10], who parallelized the depth-first PNS variant PDS. His algorithm is
called ParaPDS and is designed for distributed memory systems. In this arti-
cle we address the problem of parallelizing PNS and PN2 for shared memory
systems. The parallelization is based on randomizing the move selection of mul-
tiple threads, which operate on the same search tree. This method is called

J. van den Herik and P. Spronck (Eds.): ACG 2009, LNCS 6048, pp. 75–87, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Randomized Parallel Proof-Number Search (RP–PNS). Its PN2 version is called
RP–PN2.

The article is organized as follows. Section 2 describes the PNS algorithm
and two of its variants. Section 3 discusses the options for the parallelization
of PNS in general terms. Section 4 introduces the new parallel PNS, RP–PNS.
Section 5 shows and discusses the results of testing RP–PNS on a set of complex
Lines-of-Action endgame positions. Section 6 provides a conclusion and gives
four directions for future research.

2 Proof-Number Search

This section describes the sequential PNS algorithm (Subsect. 2.1) and two of
its variants, PDS and PN2 (Subsect. 2.2).

2.1 Sequential PNS

PNS is a best-first search for AND/OR trees. The search aims at proving or
disproving a binary goal, i.e., a goal that can be reached by the first player or be
refuted by the second player under optimal play by both sides. Each node N in
the tree contains two numbers called the proof number (pn(N)) and the disproof
number (dn(N)), respectively.

PNS iterates the best-first search cycle consisting of three steps.

1. Selection: starting at the root, a path P consisting of successor nodes is
created until a leaf L is found; a heuristic guides the selection of successors.

2. Expansion: L is expanded and its children’s proof and disproof numbers are
set.

3. Back-up: the new values of the expanded node L are propagated back to the
root.

Informally, the algorithm runs as follows. The selection step finds a leaf L of the
tree. In PNS, L is called the most-proving node, i.e., the node that is expected
to reach a proof (or disproof) with the fewest additional expansions. The most-
proving node is found by heuristically descending a path P in the tree starting at
the root. At every node N , the best successor (bs(N)) is selected and this bs(N)
becomes the new N . This procedure is repeated until a leaf L is reached. The best
successor of N is determined differently in OR and AND nodes. (1) In OR nodes
(when player 1 moves), the bs(N) is the child that requires the fewest number
of additional expansions to prove the goal. pn(N) represents this number. (2) In
AND nodes (when player 2 moves), bs(N) is the child that requires the fewest
additional expansions to disprove the goal. dn(N) represents this number.

More formally we describe the best successor and the successor number as fol-
lows. Given a non-terminal node N , its children are denoted by Ni, i = 1, ..., |N |
where |N | is the number of children of N . If N is an OR node, the Ni are sorted
increasingly by their proof number pn(Ni). If N is an AND node, the Ni are
sorted increasingly by their disproof number dn(Ni). The successor number of
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Rules for AND nodes:

pn(N) =
∑

S∈successor(N)

pn(S)

dn(N) = min
S∈successor(N)

dn(S)

Rules for OR nodes:

pn(N) = min
S∈successor(N)

pn(S)

dn(N) =
∑

S∈successor(N)

dn(S)

Fig. 1. Rules for updating proof and disproof numbers for a node N

N for a child Ni is sn(Ni) = pn(Ni) if N is an OR node and sn(Ni) = dn(Ni) if
N is an AND node. The best successor of N is the child N1. The best successor
number bsn(N) is sn(N1).

The expansion step of the cycle expands L and initializes its children’s proof
and disproof numbers. If a new child directly proves the goal, its proof number
is set to 0 and its disproof number is set to infinity. Correspondingly, if a new
child directly disproves the goal, its disproof number is set to 0 and its proof
number is set to infinity. If the child neither proves nor disproves, the number
of children of the leaf can be used to set these numbers.1

In the back-up step the newly assigned proof and disproof numbers are prop-
agated back to the root changing the proof and disproof number in each node
on the path P . The rules applied for updating proof and disproof numbers are
given in Fig. 1.

After the root has been reached and its values have been updated, the cycle
is complete. The cycle is repeated until the termination criterion is met. The
criterion is satisfied if either the root’s proof number is 0 and the disproof number
is infinity, or vice versa. In the first case, the goal is proved. In the second case
the goal is disproved.

Figure 2 (placed in Sect. 4 where it is also used for explanation) shows a
search tree with proof and disproof numbers. The proof and disproof numbers
of the interior nodes can be calculated from the children’s numbers by applying
the updating rules presented in Fig. 1.

2.2 PDS and PN2

A weakness of PNS is its memory consumption. This problem arises because the
whole tree is stored in memory. There are many variants of PNS that address
the memory problem; two of them are PDS and PN2.

PDS by Nagai [3] solves the memory problem by transforming the best-first
search into a depth-first search. PDS applies multiple-iterative deepening at
every node. PDS can only function successfully by means of a transposition
table to speed up the re-searches.

Like PDS, PN2 [1] reduces memory requirements of PNS by re-searching parts
of the tree. PN2 consists of two levels of PNS. The first level PNS (PN1) calls
1 We remark that other methods for estimating the proof and disproof numbers of

newly expanded leafs have been proposed [11].
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a PNS at the second level (PN2) for an evaluation of the most-proving node of
the PN1-search tree. This PN1 search is bound by a maximum number of nodes
M to be stored in memory. Different ways have been proposed to set this bound
[1,11]. The PN1 search is stopped when the number of nodes stored in memory
exceeds M or the subtree is (dis)proved. After completion of the PN1 search,
the children of the root of the PN1-search tree are preserved, but subtrees are
removed from memory.

3 Parallelization of PNS

This section introduces some basic concepts for describing the behavior of par-
allel search algorithms (Subsect. 3.1), outlines ParaPDS, a parallelization of
PDS (Subsect. 3.2), and explains parallel randomized search (Subsect. 3.3).

3.1 Terminology

Parallelization aims at reducing the time that a sequential algorithm requires for
successful terminating. The speedup is achieved by distributing computations to
multiple threads executed in parallel.

Parallelization gains from dividing computation over multiple resources but
simultaneously this may impose a computational cost. According to Brockington
and Schaeffer [12] three kinds of overhead may occur when parallelizing a search
algorithm: (1) search overhead, resulting from extra search not performed by the
sequential algorithm; (2) synchronization overhead, created at synchronization
points when one thread is idle waiting for another thread; (3) communication
overhead, created by exchanging information between threads.

Search overhead is straightforward and can be measured by the number of
additional nodes searched. Synchronization and communication overhead depend
on the kind of information sharing used. There are two kinds of information
sharing: (i) message passing and (ii) shared memory. Message passing simply
consists of passing information between memory units exclusively accessed by a
particular thread. Under shared memory all threads can access a common part
of memory. With the advent of multi-core CPUs memory sharing has become
common place.

An important property governing the behavior of parallel algorithms is scaling.
It describes the efficiency of parallelization with respect to the number of threads
as a fractional relation t1/tT between the time t1 for terminating successfully
with one thread and the time tT for terminating successfully with T threads.

3.2 ParaPDS and the Master-Servant Design

The only existing parallelization of PNS described in the literature has so far
been ParaPDS by Kishimoto and Kotani [10].2 This pioneering work of paral-
lel PNS achieved a speedup of 3.6 on 16 processors on a distributed memory
2 Conceptually related to PNS is Conspiracy Number Search (CNS) by McAllester

[13]. Lorenz [14] proposes to parallelize a variant of CNS (PCCNS). PCCNS uses a
master-servant model (“Employer-Worker Relationship”, ibid.).
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machine. Therefore, processes are used instead of threads for parallelization.
ParaPDS relies on a master-servant design. One master process is coordinating
the work of several servant processes. The master manages a search tree up to
a fixed depth d. The master traverses through the tree in a depth-first manner
typical for PDS. On reaching depth d it assigns the work of searching further to
an idle servant. The search results of the servant process are backed up by the
master.

The overhead created by ParaPDS is mainly a search overhead. There are
two reasons for this overhead: (1) lack of a shared-memory transposition table,
and (2) the particular master-servant design. Regarding reason (1), ParaPDS is
asynchronous, i.e., no data is passed between the processes except at the initial-
ization and the return of a servant process. ParaPDS thereby avoids message
passing. The algorithm is designed for distributed-memory machines common at
the time ParaPDS was invented (i.e., 1999). Transposition tables are important
to PDS, as this variation of PNS performs iterative deepening. An implication of
using distributed-memory machines is that ParaPDS cannot profit from a shared
transposition table and loses time on re-searching nodes. Regarding reason (2),
the master-servant design can lead to situations in which multiple servant pro-
cesses are idle because the master process is too busy updating the results of
other processes or finding the next candidate to pass to a servant process.

One may speculate that the lack of a shared-memory transposition table in
ParaPDS could nowadays be amended to a certain degree, at the expense of a syn-
chronization overhead, by the availability of shared-memory machines. However,
the second reason for the overhead of the master-servant design still remains.

3.3 Randomized Parallelization

An alternative to the master-servant design of ParaPDS for parallelizing tree-
search is randomized parallelization. Shoham and Toledo [15] proposed the
method for parallelizing any kind of best-first search on AND/OR trees. The
method relies on a heuristic which may seem counterintuitive at first. Instead of
selecting the child with the best heuristic evaluation, a probability distribution
of the children determines which node is selected. Shoham and Toledo call this a
randomization of the move selection. Randomized Parallel Proof-Number Search
(RP–PNS) as proposed in this contribution adheres to the principle of random-
ized parallelization. The specific probability distribution is obviously based on
the selection heuristic.

The master-servant design of ParaPDS and randomized parallelization may
be compared as follows. ParaPDS maintains a privileged master thread; only
the master thread operates on the top level tree; the master thread selects the
subtree in which the servant threads search; it also coordinates the results of the
servant processes; each servant thread maintains a separate transposition table
in memory. In randomized parallelization there is no master thread; each thread
is guided by its own probabilities for selecting the branch to explore; there is
no communication overhead but instead there is synchronization overhead; all
threads can operate on the same tree which is held in shared memory.
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Fig. 2. Example of a PNS tree. Squares represent OR nodes; circles represent AND
nodes. Depicted next to each node are its proof number at the top and its disproof
number at the bottom.

4 RP–PNS

This section introduces RP–PNS. Subsection 4.1 explains the basic functioning
of RP–PNS and describes how it differs from ParaPDS. Subsection 4.2 explains
details of an implementation of RP–PNS.

4.1 Detailed Description of Randomized Parallelization for PNS

There are two kinds of threads in RP–PNS: (1) principal-variation (PV) threads,
and (2) alternative threads. RP–PNS maintains one PV thread; all other threads
operating on the search tree are alternative threads.

The PV thread always applies the same selection strategy as sequential PNS.
It thereby operates on the PV, i.e., the path from root to leaf following the
heuristic for finding the most-proving node. We call this selection strategy PV
selection strategy and a child on the PV, a PV node.

The alternative threads select a node according to a modified selection strat-
egy. Instead of minimizing the successor number, there is a chance that a subop-
timal successor number is accepted. A probability distribution in the heuristic
creates the desired effect: the expanded nodes are always close to the PV since
nodes expanded in alternative threads would likely be on the PV at a later cy-
cle. The alternative threads anticipate a possible future PV. The probability of
a suboptimal node to be selected for an alternative thread depends on the de-
gree by which it deviates from the PV. In the selection step, alternative threads
consider only a subset of all children. The considered children have a successor
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number at most D larger than the best successor number. An alternative thread
selects one of these children by a certain probability.

To account for the move selection more formally, we first introduce further
notation. Similarly, for some positive natural number c, we can count the children
Ni with successor number sn(N) smaller than or equal to some positive integer
c. This count is cnt(N, c) = |{Ni : bsn(Ni) ≤ c, for i = 1, ..., |N |}|.

Let T be the number of threads used. For each thread θt, t = 1, ..., T and node
N there is a probability distribution Pθt,N that assigns a probability p(θt, N, Ni)
to each child Ni of N . This is the probability of node Ni to be selected as
successor node. Equation 1 defines the probability for selecting Ni at N . θ1 is
the PV thread.

p(θt, Ni) =

⎧⎪⎪⎨
⎪⎪⎩

0 : if t = 1 ∧ sn(Ni) > min(N)
cnt(N, min(N))−1 : if t = 1 ∧ sn(Ni) = min(N)

0 : if t 
= 1 ∧ sn(Ni) > min(N) + D
cnt(N, min(N) + D)−1 : if t 
= 1 ∧ sn(Ni) ≤ min(N) + D

(1)
The parameter D in Equation 1 regulates the degree to which the alternative
threads differ from the PV. Setting D = 0 will result in the PV selection strat-
egy.3 Setting D too high results in threads straying too far from the PV.

Figure 2 illustrates the consequences of varying the parameter D. In this
example, the PV is represented by the bold line and reaches leaf B. An alternative
selection with D = 1 is represented by the bold, dotted line. It will select one of
the leafs B, C, D, or E with equal probability. Setting D = 2 will result in also
selecting F. We note that the subtree at A is selected only for D ≥ 8.

In addition to these probabilities, for all alternative threads we assign a second
probability of deviating from the PV. This is done by choosing with a probability
of 2/d randomly from N2 and N3 (determined by trial-and-error) instead of
choosing N1 if so far the thread has not deviated from the PV. This choice
is determined by the depth d of the last PV. The additional randomization is
necessary because it enables sufficient deviation from the PV in case that D is
not large enough to produce any effect.

We remark that RP–PNS differs from the original randomized parallelization
with respect to three points. (1) Shoham and Toledo do not distinguish be-
tween PV and alternative threads. (2) The original randomized parallelization
selects children with a probability proportionate to their best-first value while
RP–PNS uses an equidistribution for the best candidates. (3) The original ran-
domized parallelization does not rely on a second probability. The differences in
point 2 and 3 are based on the desire to produce more deviations from the PV
in order to avoid that too many threads congest the same subtree. The selection
in RP–PNS is similar to Buro’s selection of a move from an opening book [16].

3 More precisely, this is true if there exists exactly one child Ni with sp(Ni) = bsn(N).
If multiple children have the same best successor number, the alternative threads
can deviate from the PV which we assume to be selected deterministically in PNS.
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In RP–PNS multiple threads operate on the same tree. To facilitate the par-
allel access some complications in the implementation require our attention. The
next subsection gives details of the actual implementation of RP–PNS.

4.2 Implementation

As pointed out in the previous subsection, all threads in RP–PNS operate on
the same search tree held in shared memory. In order to prevent errors in the
search tree, RP–PNS has to synchronize the threads. This is achieved in the
implementation by a locking policy. Each tree node has a lock. It guarantees that
only one thread at a time operates on the same node while avoiding deadlocks.
The locking policy consists of two parts: (1) when a thread selects a node, it has
to lock it; (2) when a thread updates a node N it has to lock N and its parent.
The new values for N are computed. After N has been updated, it is released
and the updating continues with the parent.

Each node N maintains a set of flags, one for each thread, to facilitate the
deletion of subtrees. Each flag indicates whether the corresponding thread is in
the subtree below N . A thread can delete the subtree of N only if no other
thread has set its flag in N .

If a transposition table is used to store proof and disproof numbers, each
table entry needs an additional lock. The number of locks for the transposition
table could be reduced by sharing locks for multiple entries. Similar policies have
been used in parallel Monte-Carlo Tree Search [17] (to which the master-servant
design has also been applied [18]).

Synchronization imposes a cost on RP–PNS in terms of memory and time
consumption. The memory consumption increases due to the additional locks
(per node, 16 bytes for a spinlock and flags, cf. [17]) in each node.

The overhead is partially a synchronization overhead and partially a search
overhead. The synchronization overhead occurs whenever a thread has to wait
for another thread due to the locking policy or due to the transposition table
locking. The search overhead is created by any path that would not have been
selected by the sequential PNS and that at the same time does not contribute
to find the proof. The following section describes experiments that also test the
overhead of RP–PNS.

5 Experiment

This section presents experiments and results for RP–PNS. Subsection 5.1 out-
lines the experimental setup, Subsect. 5.2 shows the results obtained, and Sub-
sect. 5.3 discusses the findings.

5.1 Setup

We implemented RP–PNS as described in the previous section and tested it on
complex endgame positions of Lines of Action (LOA)4. We chose LOA because
4 The test set is available at http://www.personeel.unimaas.nl/m-winands/loa/,

“Set of 286 hard positions.”

http://www.personeel.unimaas.nl/m-winands/loa/
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it is an established domain for applying PNS. The test set consisting of 286
problems has been applied before frequently [19,20,8].

The experiment tests two parallelization methods: RP–PNS and RP–PN2 (an
adaptation of RP–PNS for PN2) for 1, 2, 4, and 8 threads. The combination
of an algorithm with a specific number of threads is called a configuration and
denoted by indexing the number of threads, e.g., RP–PNS8 is RP–PNS using
eight threads. We remark that PNS = RP–PNS1 and RP–PN2 = RP–PN2

1.
The implementation of RP–PN2 uses RP–PNS for PN1 and PNS for PN2.

The size of PN2 was limited to Sε/T , where S is the size of the PN1 tree, T is
the number of threads used, and ε is a parameter. In our experiments Sε has
the size 3

√
S4. This limit is a compromise between memory consumption and

speed suitable for the test set. The compromise is faster than using the full S as
suggested by Allis et al. [1]. Using S for the limit slows down RP–PN2 dispro-
portionally when many threads are used because the PN1 tree grows faster in
RP–PN2 than in the sequential PN2. Moreover, the size of PN2 grows rapidly
resulting in slowing down RP–PN2. An advantage of using the above limit com-
pared to Breuker’s method [11] is that the former is robust to varying problem
sizes. The values for the parameters of RP–PNS were set to D = 5 and ε = 0.75
based on trial-and-error.

The experiments were carried out on a Linux server with eight 2.66 GHz Xeon
cores and 8 GB of RAM. The program was implemented in C++.

5.2 Results

Two series of experiments were conducted. The first series tests the efficiency of
RP–PNS; the second tests the efficiency of RP–PN2.

For comparing the efficiency of different configurations, we selected a subset
of the 143 problems for which PNS was able to find a solution in less than 30
seconds. This selection enabled us to acquire the experimental results for the
series of experiments for RP–PN2 in a reasonable time. We call the set of 143
problems the comparison set, S143. PNS required an average of 4.28 million
evaluated nodes for solving a problem of S143 with a standard deviation of 2.9
million nodes.

In the first series of experiments we tested the performance of RP–PNS for solv-
ing the positions of S143. The results regarding time, nodes evaluated, and nodes
in memory for 1, 2, 4, and 8 threads are given in the upper part of Table 1. We
observe that the scaling factor for 2, 4, and 8 threads is 1.6, 2.5, and 3.5, respec-
tively. Based on the results we compute that the search overhead expressed by
the number of nodes evaluated is only ca. 33% for 8 threads. This means that the
synchronization overhead is responsible for the largest part of the total overhead.
Finally, we see that RP–PNS8 uses 50% more memory than PNS.

In the second series of experiments we tested the performance of RP–PN2.
The results regarding time, nodes evaluated, and nodes in memory for 1, 2, 4,
and 8 threads are given in the lower part of Table 1. We observe that the scal-
ing factor for 2, 4, and 8 threads is 1.9, 3.4, and 4.7, respectively. Compared to
RP–PNS the relative scaling factor of RP–PN2 is better for all configurations.
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Table 1. Experimental results for RP–PNS and RP–PN2 on S143. The total time is
the time required for solving all problems. “Nodes in memory” is the sum of all Mi,
where Mi is the maximum number of nodes in memory used for test problem i. Nodes
evaluated is the sum of all nodes evaluated all problems. For RP–PN2, this includes
evaluations in the PN2 tree and possible double evaluations when trees are re-searched.

PNS RP–PNS2 RP–PNS4 RP–PNS8

Total Time (sec.) 1,679 1,072 682 478
Total scaling factor 1 1.6 2.5 3.5
Total nodes evaluated (million) 612 673 745 815
Total nodes in memory (million) 367 423 494 550

PN2 RP–PN2
2 RP–PN2

4 RP–PN2
8

Total Time (sec.) 6,735 3,275 1,966 1,419
Total scaling factor PN2 1 1.9 3.4 4.7
Total scaling factor compared to PNS 0.25 0.52 0.85 1.18
Total nodes evaluated (million) 2,271 2,426 2,534 2,883
Total nodes in memory (million) 68 68 70 73

The search overhead of RP–PN2
8 is 27% which is comparable to the search over-

head of RP–PNS8 (33%, cf. above). At the same time the total overhead of
RP–PN2

8 is smaller. This means that the synchronization overhead is smaller for
RP–PN2

8 than for RP–PNS8. The reason is that more time is spent in the PN2
trees. Therefore, the probability that two threads simultaneously try to lock the
same node of the PN1 tree is reduced. Finally, we remark that in absolute terms,
RP–PN2

8 is slightly faster than PNS.
Despite the fact that RP–PN2 has a better scaling factor than RP–PNS, RP–

PNS is still faster than RP–PN2 when the same number of threads is used.
However, RP–PN2 consumes less memory than RP–PNS.

5.3 Discussion

It would be interesting to compare the results of the experiments presented in
Subsect. 5.2 to the performance of ParaPDS. However, the direct comparison
between the results obtained for ParaPDS and RP–PNS is not feasible because
of at least three difficulties.

First, the games tested are different (ParaPDS was tested on Othello, whereas
RP–PNS is tested on LOA).

Second, the type of hardware is different. As described in Sect. 3, ParaPDS is
designed for distributed memory whereas and RP–PNS is designed for shared
memory.

Third, ParaPDS is a depth-first search variant of PNS whereas RP–PNS is
not. ParaPDS is slowed down because of the transposition tables in distributed
memory.

ParaPDS and RP–PN2 both re-search in order to save memory. When com-
paring the experimental results for these two algorithms they appear to scale up
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in the same order of magnitude on a superficial glance. On closer inspection, a
direct comparison of the numbers would be unfair. ParaPDS and RP–PN2 par-
allelize different sequential algorithms. Furthermore, RP–PN2 parallelizes trans-
position tables while our implementation of RP–PNS does not. Moreover, it can
be expected that sequential PN2 profits more from transposition tables than
RP–PN2 because the parallel version would suffer from additional communica-
tion and synchronization overhead.

In RP–PN2 the size of the PN2 tree determines how much the algorithm trades
speed for memory. If the PN2 is too large, the penalty for searching an unim-
portant subtree will be too large as well. In our implementation, we chose rather
small PN2 trees because the randomization is imprecise. Moreover, the PN2
trees are bigger when less threads are used. This explains why RP–PN2 (with a
scaling factor of 4.7) scales better than RP–PNS (with a scaling factor of 3.5). A
second factor contributing to the better scaling is the reduced synchronization
overhead compared to RP–PNS. This effect is produced by the smaller relative
number of waiting threads.

We may speculate that RP–PNS and RP–PN2 could greatly profit from a
more precise criterion for branching from the PV. To that end, it is desirable
to find a quick algorithm for finding the k -best nodes in a proof-number tree.
Thereby, the true best variations could be investigated.

6 Conclusion and Future Research

In this paper, we introduced a new parallel Proof-Number Search for shared
memory, called RP–PNS. The parallelization is achieved by threads that se-
lect moves close to the principal variation based on a probability distribution.
Furthermore, we adapted RP–PNS for PN2, resulting in an algorithm we call
RP–PN2.

The scaling factor for RP–PN2 (4.7) is even better than that of RP–PNS (3.5)
but this is mainly because the size of the PN2 tree depends on the number
of threads used. Based on these results we may conclude that RP–PNS and
RP–PN2 are viable for parallelizing PNS and PN2, respectively. Strong compar-
ative conclusions cannot be made for ParaPDS and RP–PNS.

Future research will address the following four directions. (1) A combined
parallelization at PN1 and PN2 trees of RP–PN2 will be tested on a shared-
memory system with more cores. (2) A better distribution for guiding the move
selection, possibly by including more information in the nodes, will be tested to
reduce the search overhead. For instance, the probability of selecting a child Ni

could be set to 1−(bsn(Ni)/
∑

j=1,..,|N | bsn(Nj)). (3) The concept of the k -most
proving nodes of a proof-number tree and an algorithm for finding these nodes
efficiently on a parallelized tree will be investigated. (4) The speedup of reducing
the number of node locks by pooling will be investigated.
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Abstract. We present XH-search, a Hex connection finding algorithm.
XH-search extends Anshelevich’s H-search by incorporating a new cross-
ing rule to find braids, connections built from overlapping subconnections.

1 Introduction

Hex is the connection game invented by Piet Hein [1] and John Nash [2]. The
board is a rhombus of hexagonal cells. On alternating turns, each player places
a stone of her colour on any vacant cell. The winner is the player who connects
her two opposing edges with a path of her stones. Hex has many nice proper-
ties: additional stones of a player’s colour are never disadvantageous, the game
cannot end in a draw, and the first player has a winning strategy [2]. However,
determining the winner of arbitrary positions is PSPACE-complete [3].

For a Hex position, a point is either a vacant cell or a maximal connected set
of same-coloured stones; the latter is a chain. We assume that board edges are
represented by stones, so a chain can include a board edge. In Hex, a common
tactical question is whether a specified pair of points can be connected. For a
Hex position, a subgame with a second-player strategy (respectively first-player
strategy) to connect two points is a virtual connection or VC (resp. virtual semi
connection or SC). For a VC/SC, the two points connected are its endpoints,
while the set of vacant cells used in the connecting strategy is its carrier. For an
SC, the initial move of the strategy is its key. See Fig. 1.

Anshelevich presented H-search [4,5], a hierarchical VC/SC composition al-
gorithm. H-search is the foundation of Hexy, Six, and Wolve, the only gold
medal Hex programs of the Computer Games Olympiad [6,7,8,9,10]. H-search
uses three rules, respectively base/AND/OR.
(1) Each player has an empty carrier VC between each pair of adjacent points.
(2) If a player has VCs α1, α2 with endpoint pairs {p0, p1},{p0, p2} and carriers
C1, C2 such that C1 ∪ {p1} and C2 ∪ {p2} do not intersect, then

(i) if the midpoint p0 is vacant, then combining α1, α2 forms an SC with
endpoints p1, p2, carrier C1 ∪ C2 ∪ {p0}, and key p0,

(ii) if the midpoint p0 is a chain for the player, then combining α1, α2 forms
a VC with endpoints p1, p2 and carrier C1 ∪ C2.
(3) If between endpoints p1, p2 a player has SCs α1, . . . , αk with carriers C1,
. . . , Ck such that C1 ∩ . . . ∩ Ck is empty, then combining the SCs forms a VC
with endpoints p1, p2 and carrier C1 ∪ . . . ∪ Ck.

J. van den Herik and P. Spronck (Eds.): ACG 2009, LNCS 6048, pp. 88–98, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Diagrams of a Black VC (left) and a Black SC (right). Carriers are shaded,
endpoints are dotted, and the SC key is +. In Black’s VC strategy, which connects
the top dotted cell to the bottom dotted group, if White plays 1 then Black plays 2;
then, if White plays 3 then Black plays 4 and then one of {5,6}. In Black’s SC strategy,
which connects the dotted cells, after playing at the key, Black plays to get one of each
of {1,2}, {3,4}, {5,6}.

When used in automated Hex players, H-search is usually restricted by lim-
iting the number of SCs used in the OR rule, for otherwise it takes too long.
However, as Anshelevich observed, even unrestricted H-search misses some con-
nections [4,5], including the SC shown in Fig. 2. We call this SC the braid, as its
substrategies are tangled together. It is of interest to extend H-search in a way
that allows for efficient discovery of new connections.

Melis extended Anshelevich’s implementation of H-search by allowing board
edges as AND rule midpoints [11,9]. Rasmussen et al. extended H-search by
triggering a VC search if the OR rule finds an SC set with small carrier inter-
section [12]; this finds more connections but the search time grows exponentially
in the number of cells in the search. Yang described a decomposition notation
for Hex connections, including his hand-crafted centre-opening 9× 9 SC [13,14],
and Noshita introduced union-connections, which are useful in connection veri-
fication but not found by H-search [15,16]; neither of these techniques has been
used in an automated connection discovery algorithm.

In this paper we present XH-search, an easily implemented extension of H-
search. XH-search finds all connections found by H-search, as well as connections
built up from braids. The Crossing Rule, a new Hex connection deduction rule,
allows for an efficient implementation of XH-search.

x

a

b

y

1

2

3

Fig. 2. The braid, an SC not found by H-search. Endpoints are a, b; the key is x or y.
To connect, say after playing at key x, if the opponent blocks at 1 then respond at y
and then claim one of {2, 3}. Notice that within the braid there are VCs between each
of {a, x}, {b, y}, and SCs between each of {x, y}, {x, b}, {a, y}.
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2 Stepping Stones

In order to describe the Crossing Rule we first need to define stepping stones.
Although defined as points that are internal to a connection, we will use them
later as braid endpoints.

Stepping Stone. For a chain X and VC or SC C, X is a stepping stone of C
if following C’s strategy guarantees that C’s endpoints will be connected by a
chain containing X .

For a VC/SC C, SS(C) denotes the set of C’s stepping stones. See Fig. 3.

+

Fig. 3. A VC (left) and SC (middle) with stepping stone. A VC (right) with none.

Lemma 1. Let C be a base rule VC. Then C has no stepping stone: SS(C) = ∅.

Proof. In a base rule VC the two endpoints are neighbours and so already
connected. �

Lemma 2. Let C be a VC computed via the OR rule from SCs C1, . . . , Ck.
Then each chain which is a stepping stone for every Cj is a stepping stone of
C: ∩k

j=1SS(Cj) ⊆ SS(C).

Proof. If a chain X is a stepping stone for every SC Cj then, regardless of which
SC is maintained, there will be a chain connecting C’s endpoints, equal to Cj ’s
endpoints, that contains X . �

Lemma 3. Let C be an SC with key k computed via the AND rule from VCs
C1, C2 with vacant midpoint k. Then any chain which is a stepping stone of C1
or C2 is a stepping stone of C: SS(C1) ∪ SS(C2) ⊆ SS(C).

Proof. The strategy that maintains C first plays at k and then maintains both
C1 and C2. C1 connects k to one endpoint, say p1, of C and C2 connects k to the
other endpoint, say p2. Each chain created by C also follows C1 and so connects
p1 to k and contains each stepping stone s1 of C1; similarly, it follows C2 and so
connects p2 to k and contains each stepping stone s2 of C2. �

Notice in Lemma 3 that k is vacant, so not in a chain, so not in SS(C).

Lemma 4. Let C be a VC or SC computed via the AND rule from connections
C1, C2 with chain midpoint X. Then SS(C1) ∪ SS(C2) ∪ {X} ⊆ SS(C).
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Proof. Following the strategies for C1 and C2 ensures that the union of X with
connecting chains for C1 and C2, each of which connects X to an endpoint of C,
forms a connecting chain for C containing X . Thus X is in SS(C). The inclusion
of SS(C1) and SS(C2) in SS(C) follows as in the proof of Lemma 3. �

For each connection C discovered in XH-search we compute a subset SS∗(C) of
SS(C). SS∗(C) is defined by applying the preceding lemmas, with this exception:
for each VC C computed via the OR rule, SS∗(C) is the empty set. We refer to
this as the SS algorithm.

Lemma 5. Let C be a connection with endpoints p1, p2. Then for any stepping
stone s in SS∗(C) there is a partition S1, S2 of the carrier of C such that S1 is
the carrier of a VC from s to p1, and if C is a VC (resp. SC) then S2 is the
carrier of a VC (resp. SC) from s to p2.

Proof. Argue by induction. If C is a base rule VC then SS∗(C) is empty and
the lemma holds vacuously. Assume next that C is a VC built from connections
of which the stepping stones satisfy the lemma. If C is built by the OR rule,
then SS∗(C) is empty and again the lemma holds vacuously. Assume then that
C is built by the AND rule, say from VCs C1, C2 with midpoint chain p0 and
endpoint pairs {p0, p1}, {p0, p2}. Then SS∗(C) = SS∗(C1) ∪ SS∗(C2) ∪ {p0}. If
s = p0, then partitioning C into C1, C2 satisfies the lemma. Assume next that
s is in SS∗(C1). Then by the induction hypothesis, the carrier of C1 can be
partitioned into A, B with A a VC from s to p1 and B a VC from s to p0. By
the AND rule, taking the union of B and C2 with midpoint p0 yields a VC from
s to p2 that is disjoint from A, and the lemma holds. Similarly, the same holds
if s is in SS∗(C2). Thus, by induction, the lemma holds for VCs. The proof is
similar for SCs. �

It is of interest to know whether Lemma 5 holds if one replaces SS∗(C) with
SS(C). This is the case if the OR rule is restricted to combining two SCs.

1

1

2

2
2

2

21
1

Fig. 4. Illustrating Lemma 5. The VC carrier (left) partitions into S1, S2, where each
Sj is the carrier of a VC to the stepping stone. The SC carrier (right) partitions into
S1, S2, where S1 (resp. S2) is the carrier of a VC (resp. SC) to the stepping stone.

3 The Crossing Rule

Observe in Fig. 2 that if the endpoints a, b of a braid are same-coloured chains
then the braid “untangles” into three disjoint SCs between the internal vacant
cells x, y such that two of these SCs have stepping stones. The following rule
shows that finding two vacant cells with three such SCs is sufficient to conclude
the existence of an SC between particular pairs of the SC’s stepping stones.
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Crossing Rule. Consider a Hex position with pairwise disjoint SCs C1, C2, C3,
each with vacant cell endpoints x, y, and with both S1 = SS∗(C1) \ SS∗(C2)
and S2 = SS∗(C2) \ SS∗(C1) nonempty. Then for any endpoints s1, s2 in S1, S2
there is an SC C of which the carrier is the union of {x, y} with the carriers of
C1, C2, C3, and with key x or y.

SCs found by the Crossing Rule are shown in Fig. 5.

x y

2

3

1

a

b

1 1 1
x 3 y

2 2 2

a

b

1 1 1
x 3 y 2

2 2 2 2
2 2 2 2 2 2

a

b

Fig. 5. Crossing Rule SCs. For j = 1, 2, 3, cells labelled j form carrier Cj of SC between
x, y. SS∗(C1) contains a and not b. SS∗(C2) contains b and not a. Combining these
SCs yields SC between a, b with carrier {x, y} ∪ C1 ∪ C2 ∪ C3 and key x or y.

Proof. By Lemma 5 we can partition C1’s carrier into VC V1 and SC W1, and
partition C2’s carrier into VC V2 and SC W2. Assume first that VCs V1, V2 have a
common endpoint: each connects their respective stepping stone endpoint s1, s2
to the same vacant cell, say x. Then by the AND rule, there exists an SC C−

connecting s1 to s2 with key x and of which the carrier is the union of {x} and
the carriers of V1, V2. C is the same as C−, except with an (unnecessarily) larger
carrier, so C can follow the same strategy as C− and we are done.

Assume next that V1 and V2 have no common endpoint. By relabelling cells if
necessary, assume V1 connects s1 to x and V2 connects s2 to y. Thus W1 connects
s1 to y and W2 connects s2 to x. Notice that the carriers of V1, W1, V2, W2, C3 are
pairwise disjoint by construction. The strategy to maintain SC C is as follows:
play the key x as the first move, and then maintain VCs V1, V2 against any
probes into their carriers. If the opponent’s first probe outside V1, V2 is in W1 or
C3, then playing the key of W2 completes the connection from s1 to x to s2 via
V1, W2. If instead the opponent’s first probe is in W2, then play y next, noting
that y has a VC to s1 via application of the OR rule to two disjoint SCs of which
the carriers are W1 and the series combination of C3, V1 through x. Since y also
has a disjoint VC to s2 (V2), we are done. �

Notice that if the second case of the Crossing Rule’s proof applies then either
x or y can be key. Also, if the first case of the proof applies, then key selection
matters but C is a connection of which the carrier properly contains the carrier
of a connection that can be deduced via H-search. We assume that H-search is
implemented so that a connection is deleted whenever a second connection is
discovered with the same endpoints but with a carrier that is a proper subset
of the first connection’s carrier.1 Thus the first case is not relevant, and we can
1 Such connections are provably useless and are pruned by Hex programs such as Six

and Wolve [11].
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assume that any SC discovered by the Crossing Rule can have either x or y as
its key. Also, the Crossing Rule deduces an SC joining any such s1, s2. Thus we
can compute a single carrier and key, and then add the “same” SC to various
different pair-connection lists. This also holds if C3 has stepping stones. The
Crossing Rule building block SCs do not share any endpoints with the deduced
SC: in some sense, connections deduced by the Crossing Rule are orthogonal to
their subconnections, whereas the connections deduced by the AND/OR rules
are parallel to their subconnections.

The Crossing Rule can be strengthened. A cell is dead if it is not on any min-
imal path connecting either player’s two edges. A set of vacant cells is captured
by a player if she has a second player strategy on that set that leaves every op-
ponent stone in that set dead. For example, the carrier of an edge bridge, shown
in Fig 6, is captured. Filling in a player’s captured set with her stones does not
change the winner of a postion [17,18].

Fig. 6. A black edge bridge (left). Black fill-in does not alter the winner (right).

Strong Crossing Rule. Consider a Hex position with SCs C1, C2, C3, each
with vacant cell endpoints x, y, and with both S1 = SS∗(C1) \ SS∗(C2) and
S2 = SS∗(C2) \ SS∗(C1) nonempty. Further, assume that the player with these
SCs captures a set B by playing at y, and that C1 ∩ C2, C1 ∩ C3, C2 ∩ C3 are
each a subset of B. Then for any endpoints s1, s2 in S1, S2 there is an SC C of
which the carrier is the union of {x, y} and B with the carriers of C1, C2, C3,
and with key y.

Proof. (sketch) The result follows from the Crossing Rule and the fact that filling
in captured sets does not change the winner of a game. �

An SC found by the Strong Crossing Rule is shown in Fig. 7. XH-search applies
the Strong Crossing Rule by checking whether either of the potential keys x or
y forms a bridge with the edge; the carrier of the edge bridge is the captured
set B. When XH-search finds such an SC C, it updates SS∗(C) by applying the
next lemma.

Lemma 6. Let C be an SC computed via the (Strong) Crossing Rule on SCs
C1, C2, C3. Then SS(C) is empty.

Proof. Recalling the proof of the Crossing Rule, there is no common substrategy
among the potential outcomes: any portion of C1, C2, C3 could be omitted from
a winning path. Indeed, even the intersection of any of these SCs cannot be
valid as their strategies were partitioned into disjoint carriers. Thus, in general
we cannot conclude the existence of any stepping stones for an SC deduced from
the (Strong) Crossing Rule. �
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1
1 1

x 1 1
2 3 3 y

2 2 3 23 23

a

b

Fig. 7. An SC found by the Strong Crossing Rule. For j = 1, 2, 3, cells labelled j form
carrier Cj of SC between x, y. Cells labelled both 2,3 form set B and are captured if
Black plays y. SS∗(C1) contains a and not b. SS∗(C2) contains b and not a. Combining
these SCs yields an SC between a, b with carrier {x, y} ∪ B ∪ C1 ∪ C2 ∪ C3 and key y.

Using this lemma in the SS algorithm does not change the validity of Lemma 5,
which holds vacuously for any empty set of stepping stones. Thus the (Strong)
Crossing Rule still holds.

4 Crossing Rule Connections

We now show some Hex connections found by XH-search but not H-search. Our
implementation of XH-search computes stepping stones via the SS algorithm,
with each connection storing all of their stepping stones, and applies the Strong
Crossing Rule with edge bridges as the only captured sets considered. The three
VCs in Fig. 8 are common edge VCs, also known as templates (see King’s web-
page for more templates [19]). In each of these examples H-search fails to find an
SC which does not use the marked cell. These respective three “missing SCs”,
found by XH-search, are those shown in Figs. 5 and 7.

If the Crossing Rule could only find common edge VCs, then adding a library
of VC patterns to check would be an effective alternative. Thus, in Fig. 9 we show
more connections from games played by our Hex programs in which XH-search
proved advantageous.

The Crossing Rule requires both endpoints of the deduced SC to be chains,
and most connections found by XH-search but not H-search are near an edge.
Thus, when using XH-search we ensure that the AND Rule allows edges as
midpoint; this allows edges to be stepping stones.

x y
x y x

y

Fig. 8. Edge VCs found by XH-search but not H-search. Each SC found by H-search
uses the marked cell. The “missing SCs”, which do not use this cell, are in Fig. 5 or 7.
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x
y

x
y

Fig. 9. More edge VCs found by XH-search but not H-search. Each SC found by H-
search uses the marked cell. The two “missing SCs” are each similar to that of Fig. 7.

Fig. 10. XH-search finds neither the SC (left) nor the VC (right)

XH-search is not complete: there are connections, some easily recognizable by
humans, that it cannot find. See Fig. 10. It is of interest to find some efficient
connection recognition algorithm which can find all connections recognizable by
human players.

5 Implementation and Complexity

It is straightforward to implement XH-search by starting with H-search, adding
stepping stone deductions to the AND/OR rules, and adding the (Strong) Cross-
ing Rule. In the following pseudocode, the queue holds endpoint pairs, each of
which has a VC carrier list and an SC carrier list; omitting the crossing rule
computation leaves H-search.

Algorithm XH-search.

initialize VC/SC carrier lists:

for each pair E of endpoints

E.VCList.makeEmpty(); E.SCList.makeEmpty();

initialize queue Q with base VCs:

Q.makeEmpty()

for each pair E of adjacent endpoints

Q.add(E); E.VCList.add(baseVC(E))

while (not Q.isEmpty())

E <- Q.remove()

compute crossing rule on E’s SCs:

for each new SC Z with endpoint pair F found,

Q.add(F); F.SCList.add(Z)

compute OR rule on E’s SCs:

for each new VC Z found
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E.VCList.add(Z)

compute AND rule on E’s VCs with both of E’s endpoints:

for each new VC/SC Z with endpoint pair G found,

Q.add(G); G.(VC/SC)List.add(Z)

end while

end XH-search

Extending H-search by adding stepping stone deductions does not increase
the runtime complexity.

Lemma 7. Let f(n) be the worst-case running time of H-search on a board
with n cells. Then the worst-case running time of H-search with stepping stone
deductions is in O(f(n)). �

Regarding memory requirements, our H-search implementation stores the two
endpoints and carrier for each connection. In order to store stepping stones,
two options are possible: store all stepping stones in the same manner as the
carrier, or store only a single stepping stone per connection. The second solution
is appealing, since a complete set of stepping stones is not required in order
to find new connections, and since many connections have few stepping stones;
however, it forces us to choose which stepping stone to keep if there are several
available. The first solution provides more information, but nearly doubles the
memory per connection; the second increases the memory per connection only
marginally. Since memory is not a bottleneck for our Hex program, we opted for
the first solution.

The running time of XH-search depends not only on the number of points and
the sizes of connection lists, but also on the number of discovered connections as
well as their type (VC or SC). Nonetheless, we can at least analyze the relative
computational efficiency of the different deduction rules in terms of the known
factors.

Aside from the AND rule, OR rule, and Crossing Rule, we also include naive
deduction of missing SCs of the form shown in Fig. 2. This naive deduction would
involve finding four distinct points a, b, x, y such that x, y are vacant, and such
that there exists five pairwise disjoint connections with two VCs joining pairs
a, x and b, y and three SCs joining pairs a, y and b, x and x, y. Since the OR rule’s
complexity is parameterized by the maximum number of SCs it may combine in
parallel, we have included entries for parameter values of both three and four,
which are the common selections for Hex programs. Table 1 summarizes our
analysis, with n representing the number of points and lV , lS representing the
list sizes for VCs and SCs, respectively. We distinguish between these two list
lengths, as the number of SCs usually far exceeds the number of VCs.

We can now clearly see the benefit of using stepping stones: the complex-
ity of the Crossing Rule is roughly the square root of a naive implementation,
and roughly the same order of complexity as the regular deduction rules in
H-search.
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Table 1. Worst-case runtime (within constant factor) of connection deducing rules

Deduction rule running time
AND rule n3l2V
OR-3 rule n2l3S
OR-4 rule n2l4S

crossing rule n2l3S
naive rule n4l2V l3S

6 Experiments

To test the effectiveness of the crossing rule, we played an 11×11 tournament
between Monte Carlo players H (using H-search) and XH (using XH-search).
Each player is a version of MoHex, the UCT Hex player that won silver at the
2008 Computer Games Olympiad in Beijing [7]. Each player uses 100K rollouts to
analyze UCT tree nodes and computes connections with our normal tournament
settings: the AND rule is computed over the edge (so the edge of the board
can be the midpoint of an AND connection) and the OR-rule combines up to 4
SCs. Neither player uses an opening book or endgame solver. The tournament
comprises 4-rounds, with each player opening at each position once as Black and
once as White (with no swap move allowed), for a total of 4×121×2=968 games.

XH defeated H 501 games to 467, 17 games above a breakeven score of 484,
taking on average 1.099 times as long as H per move. The time increase is
roughly in line with the analysis in Table 1: an 11 × 11 board has roughly
n = 100, lV = 10, lS = 25, and finding more connections with the Crossing Rule
increases the number of iterations for all rules.

The crossing rule thus added roughly 12 ELO points in strength in exchange
for 9.9% more computation time on average. While this gain might seem negli-
gible, strength gains measured via all-opening no-swap tournaments are muted
due to the forced inclusion of many very strong and very weak opening moves.
By comparison, each doubling of MoHex’s number of rollouts results in an av-
erage ELO gain of 31.8 (averaged over 7 rollout doublings, from 1s to 128s, when
competing against a 1s version). Thus, per unit time invested, the crossing rule
represents a more significant strength gain than simply increasing the number
of rollouts.

7 Conclusions

XH-search is efficient and easily implemented. Furthermore, it identifies impor-
tant Hex connections that cannot be found with H-search.

In future work we hope to identify further efficient deduction rules, particu-
larly those that identify the most common connection omissions. The captured
sets of the Strong Crossing Rule need not be restricted to edge bridges; it would
be interesting to find other efficient methods that allow for carrier overlap within
connection deduction rules.
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Abstract. Evaluating agents in decision-making applications requires assessing 
their skill and predicting their behaviour. Both are well developed in Poker-like 
situations, but less so in more complex game and model domains. This paper 
addresses both tasks by using Bayesian inference in a benchmark space of ref-
erence agents. The concepts are explained and demonstrated using the game of 
chess but the model applies generically to any domain with quantifiable options 
and fallible choice. Demonstration applications address questions frequently 
asked by the chess community regarding the stability of the rating scale, the 
comparison of players of different eras and/or leagues, and controversial inci-
dents possibly involving fraud. The last include alleged under-performance, 
fabrication of tournament results, and clandestine use of computer advice dur-
ing competition. Beyond the model world of games, the aim is to improve falli-
ble human performance in complex, high-value tasks.  

1   Introduction 

In the evolving world today, decision-making is becoming ever more difficult. Profes-
sionals are increasingly working as parts of man-machine systems, helped or  
supplanted by intelligent, carbon agents. Those responsible for the quality of the deci-
sions therefore have a need to (a) assess the quality of their agents, and (b) predict the 
probabilities of other agents’ choices in ‘zero sum’ situations. These needs are clear in 
real-time financial scenarios – city markets, auctions, casinos - and for effective con-
trol of utility services.  

A method is proposed here for modelling and analysing decision-making in com-
plex but quantifiable domains. The ‘model world’ of chess serves, as it has often done 
in the past, as a demonstration domain. 

Skill in the global chess community has been measured by the FIDE Elo system [1] 
on the basis of past results. However, a good player needs to assess their opponents’ 
skill of the moment, and chooses a move which is worst for the opponent rather than 
best in an absolute chessic sense. The human factor is perhaps more evident in a game 
of Poker or Roshambo.1 Skill assessment is an analysis of the past, but performance 
prediction more dynamically considers the parameters of the current situation. One 
                                                           
1 Roshambo is also known as Rock, Paper, Scissors, a pure exercise in opponent assessment. 
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might consider that the better choices are more likely than worse ones, but that the 
less the apparent skill or rationality of the decision-maker, the more likely the worse 
choices are to be made. 

The proposed modelling method uses a Benchmark Space and a Bayesian Infer-
ence mapping of behaviour into that space. The space is seeded by Reference Agents 
which have or are given defined dimensions of fallibility. Bayes’ method is used to 
profile the decision-maker in terms of fallible agents. Thus, the decision-maker or 
agent analysed is not only positioned relative to other agents and possible threshold 
performance levels but is also rated in an absolute sense. The demonstration applica-
tions in the chess domain address frequently asked questions and some topical issues 
concerning various forms of cheating. One of these, somewhat ironically, is the illicit 
use of computer advice during competition. 

The Bayesian approach was first proposed [2] in the subdomain of chess where 
perfect information about the quality of the moves is known. Extending it to chess 
generally [3, 4, 5] requires resort to fallible benchmarks yielding confident rather than 
certain results. Nevertheless, [5] shows strong correlation between the current FIDE 
Elo rating scale and the new apparent competence rating c.  

Section 2 defines the two concepts of Agent Space and Bayesian Inference Map-
ping, and notes a missed opponent-modelling opportunity. Section 3 extends the prin-
ciple to that part of chess where engines evaluate positions heuristically. Section 4 
reviews the application of the theory in the laboratory and to chess questions of inter-
est. In summarizing, we anticipate the evolution of the approach, its further applica-
tion in chess, and its use in non-game ‘real world’ scenarios. 

2   Absolute Skill in the Chess Endgame 

The Chess Endgame is defined here as that part of chess for which Endgame Tables 
(EGTs) have been computed. An EGT gives the theoretical value and Depth to Goal 
of every legal position for an endgame force, e.g., King & Queen v King & Rook 
(KQKR). The most compact and prevalent EGTs are those of Nalimov [6], providing 
Depth to Mate (DTM) where mate is the end-goal of chess: these are used by many 
chess engines on a simple look-up basis. EGTs for all required 3-, 4-, 5- and 6-man 
endgames are available up to KPPKPP. 

Given this database of perfect information, some questions suggest themselves: (a) 
how difficult are various endgames, (b) how long might a hypothetical fallible agent 
take to win a game, and (c) how well do humans play endgames? 

Although Jansen [7] had addressed the topic of Opponent Fallibility, it was left to 
Haworth [2] to define an agent space SRFEP of Reference Fallible Endgame Players 
(RFEPs) as defined in the next section. 

2.1   The Agent Space SRFEP of Reference Fallible Endgame Players 

Let E be an engine playing an endgame using an EGT: further, let E have a theoretical 
win of depth d0. Let E(c) be a stochastic variant of E with apparent competence c, 
constrained to retain the win2 but choosing its moves by the following algorithm: 

                                                           
2 The extension of the model to drawing/losing moves has been done but is not needed here. 
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• let {mj} be the available winning moves, respectively, to depths {dj}, 
• move-indexing: i < j  ⇒ di ≤ dj, i.e., lower-indexed moves are ‘no worse’, 
• let Prob[E(c) chooses move mj] ∝ Likelihood[mj] ≡ L(j, c) ≡ (1 + dj)

-c. 

The space SRFEP of RFEPs satisfies the following requirements: 

a. centred: E(0) is a zero-skill agent – all moves are equally likely, 
b. ordered: c1 < c2 ⇒ E[d | E(c1) moves] ≥ E[d | E(c1) moves]  
c. complete: E(∞) infallibly chooses a best move: E(-∞) is anti-infallible, 
d. sensitive: if dj+1 = dj+1, as dj→∞, L(j, c)/L(j+1, c)→1 downwards, and 
e. non-exclusive: all moves have a non-zero probability of being chosen.3  

Three factors make SRFEP 1-dimensional, simplifying its use. Because chess engines 
consult the EGT directly, their specific search heuristics, search depths, and evalua-
tions are neither relevant, nor is there a perceived need to generalize to (κ + dj)

-c with 
κ > 0.  

Haworth [2] also modelled the endgame as a Markov Space and move-choice as a 
Markov Process to answer questions ‘a’ and ‘b’ above and to show where the more 
difficult depths of an endgame were.  

2.2   Mapping a Player to the Agent Space SRFEP 

Question ‘c’ was answered by rating a player PL’s play on the basis of an observed 
set of moves M ≡ {Mi}. This was done by mapping PL, given M, to a profile of en-
gines {E(c)} in SFREP. 

Let us assume that the moves Mi, in fact played by PL in the endgame on whatever 
basis, have in fact been played by an engine E ≡ E(c) where c is one of {ck}, e.g., c=0, 
…, 50. Let the initial probability that E ≡ E(ck) be pk,0: for example, the ‘know noth-
ing’ stance would set all pk,0 to the same value. 

Note now that, given that move M1 is chosen from the moves m1j available: 

• Prob[E ≡ E(ck)] = pk,l-1 before move Ml is chosen on the lth turn, 
• qk ≡ Prob[E(ck) chooses move M1] may be calculated as follows … 
• qk ≡ (1 + dl)

-c / Σj (1 + dj)
-c where j ranges over the move-options available,  

• Bayes’ Rule defines the a posteriori probability pk,1 that E ≡ E(ck) given Ml, 
• As k varies across the range of engines Eα, pk,l ∝ (pk,l-1 × qk), 
• pk,l ≡ (pk,l-1 × qk) / Σα(pα,l-1 × qα) where α ranges over the possible engines Eα, 
• after observing all moves Mi, Prob[E ≡ E(ck)] ≡ pk,n ≡ rk. 

On the evidence of M ≡ {Mi}, player PL has been profiled in the agent space: it has 
been associated by a player-agent mapping PA, with {rk E(ck)}, a probability distribu-
tion of agents. In fact, engine PA(PL) may be defined as {rk E(ck)}, an engine which 
behaves like engine E(ck) on each move with probability rk. We also have a metric for 
the absolute competence of PL in the competence rating rPL ≡ Σ rk × ck. 

Given a fallible opponent PL, a player, especially if a computer engine, may model 
PL, predict their behaviour and exploit their apparent weaknesses accordingly [7, 8].  

                                                           
3 The ‘1’ in (1 + dj) ensures a non-zero denominator when d1 = 0. 
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2.3   Adapting to the Opponent: A Missed Opportunity 

In 1978, Ken Thompson armed his chess engine BELLE with a secret weapon, the 
KQKR EGT4. The KQ-side has a tough challenge [9, 10] with a budget of 50 moves 
to capture or mate, and 31 being needed in the worst case. Thompson wagered $100 
that no-one would beat BELLE in the KQKR endgame [11-14] and only GM Walter 
Browne took up the two-game test. Browne failed in the first game but, rising to the 
competitive challenge, and partially informed by BELLE’s KQKR-listings and a plan, 
he returned to recapture the Rook and his $100 just in time on the 50th move. 

Haworth [2] gives details of the moves and progress in depth terms, and analyses 
them as above, as if the choices of some engine in the set {E(0), E(1), … , E(50)}5. 
Had BELLE perceived Browne’s apparent competence cWB, it could have chosen cor-
rectly between DTC-optimal moves four times. In fact, it picked the right move just 
once, missing three opportunities to prolong its defence by the necessary one move. 

3   Absolute Skill in Chess 

Here are some categories of question that have been asked of human play. 

a. Does ‘Elo E’ mean the same today as it did in years past? 
b. How does player PL’s absolute skill vary over their career? 
c. How does player PL’s skill compare with others’ skill? 
d. How do the games of tournament T compare with each other? 
e. Is player PL demonstrating ‘Fidelity to a Computer Agent’ [15] … 

… in the context of PL’s (suspected) clandestine behaviour? 

The answers are necessarily statistical and therefore their expected accuracy and the 
confidence that can be placed in them depends on the amount of data available6 and 
its use. Game results and rating changes say little and conflate the behaviour of the 
two players. The many move-decisions potentially enable a better assessment of 
player performance in the context of consistent chess engine analysis.  

The core idea in [3, 4] is to use chess engines as benchmark agents, assessing hu-
man competence on the evidence of their move-decisions and in the context of the 
engines’ assessment of the options. The engines can rarely see a ‘win in n moves’ as 
in the endgame, and therefore indicate advantage and the consequent likelihood of a 
win, draw or loss in units of a Pawn. Note three complicating factors in comparison 
with the endgame-play rating challenge just discussed: 

1. the engines’ heuristic position evaluations vary from engine to engine, 
2. for one engine, the evaluations usually vary with depth of search, and  
3. deeper evaluations are more accurate but none are definitive.7 

                                                           
4  In fact, computed to Depth to Conversion (DTC), i.e. depth to capture and/or mate. 
5  The c-bounds 0 and 50, and the Δc choice of 1 are such as not to over-influence the results. 
6  A result ac times more accurate is expected to require ac2 more input data. 
7  Evaluations are merely substitutes for unattainable, perfect win/draw/loss information. 
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These specific questions indicate the range of questions now being addressed: 

Re ‘a’: competence of 1971-1981 ‘Elo 2400 players’ v those of 1996-2006? 
Re ‘b’: what is the profile of Victor Korchnoi’s skill over the years? 

 How do the best performances of World Chess Champions compare? 
 Guid and Bratko [16] address this using only apparent ‘move error’ as a metric. 

Re ‘c’: how do the 1948 World Championship games compare with each other? 
Re ‘d’: how did the players perform in a tournament: how do the games compare? 
Re ‘e’: can we focus on and analyse suspect play at the time or later? 

The next two sections are analogous to sections 2.1 and 2.2: they define a space of 
fallible agents and the way player PL is associated by a mapping PA with an agent 
profile E of engines in an agent space. 

3.1   The Agent Space SRFP of Reference Fallible Players 

Chess engines search to increasing depths rather than looking up EGTs, and vary in 
the heuristic position-evaluations they return, the agent space SRFP has in principle 
two dimensions which SRFEP does not: 

1. (discrete) search-depth: evaluations at search-depths dmin, … , dmax, and 
2. (discrete) engine: engines E1, … , En may ‘seed’ the space SRFP.8 

As benchmarks preferably demonstrate high-quality behaviour, these engines should 
have as high an Elo as possible in the various rating schemes for chess engines. The 
first computations reported here use SHREDDER 10 and TOGA II v1.3.1 to a modest 
search depth of 10, although Regan [17] reports that TOGA II v.1.3.1 searching to 
depth 10 won a match9 against CRAFTY 20.14 searching to depth 12. SHREDDER [18] 
is a multiple World Computer Chess Champion. 

 As better engines become available, one would expect the benchmark set of en-
gines to change. For example, FRITZ 5.32 was state-of-the-art circa 1998 [19], but 
today one would prefer, e.g., RYBKA 3 and SHREDDER 11. For architectural (WIN-

DOWS/LINUX and UCI10) and comparability reasons, the computations reported here 
continue with the original choices of SHREDDER 10 and TOGA II v1.3.1. 

For the chess endgame, the non-negative destination depths were converted easily 
into positive likelihoods: the depths simply became positive denominators in the like-
lihood function L: the greater the depth, the less attractive that option for the winner. 
Here, position evaluations may be greater, equal to or less than zero: it seems natural 
to convert these first into positive numbers analogous to depths in the endgame. 
Again, the least attractive, i.e., smallest, evaluations should associate with the largest 
positive numbers. Thus, with w = C(v) > 0 being a conversion function, let 

j1 < j2 ⇒ move mj1 ‘is’ no worse than mj2 ⇒ vj1 ≥ vj2 ⇒ wj1 ≡ C(vj1) ≤ wj2 ≡ C(vj2). 

                                                           
8  To date, these dimensions are ‘null’ in our computations: n = 1 and dmin = dmax = 10.  
9  12.5/20 ⇒ TOGA II v1.3.1 (depth 10) is ~90 ELO better than CRAFTY 20.14 (depth 12). 
10  UCI is the Universal Chess Interface [20]. 
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Note that function C(v) potentially involves further parameters, each a dimension of 
the space SRFP. A caveat is also appropriate here. It is clear that some functions C(v) 
have properties which are unrealistic in chess terms. For example, Haworth [4] sug-
gested the function C1(vj) ≡ 1 + |v1| + |v1 – vj| but when coupled with the likelihood 
function L(j, c) ≡ wj

-c as in Section 2.1, the following unrealistic situation arises. 

• e moves m1/2 are to positions with values v > 0 and v2 = -1, 
• w1 = 1 + v & w2 = 2 + 2v ⇒ L(1, c) = (1 + v)-c & L(2, c) = 2-c

 × L(1, c) 
• ∴∀v, Prob[Engine E(c) chooses the better move m1] ≡ 1/(1 + 2

-c), 
• but in practice, the greater v, the more likely m1 is to be chosen. 

Therefore, Di Fatta et al. [5] used a different C(v): 

• C2(vj) ≡ wj ≡ κ + |v1 – vj| with κ > 0, with L(j, c) = wj
-c for E(c) as before, 

• parameter κ, one more SRFP dimension, has so far been set to 0.1, 
• n.b. L(j, c) depends on v1-vj but not on v1 or other vi, but 
• sensitivity requirement ‘d’ (in §2.1) suggests v1 as a parameter of L,  
• a correlation of (various Elo) players’ apparent errors with v1 is in plan.  

The need to create functions C(v) and L(w) introduces the question of what C(v) and 
L(w) create the best agent-space SFRP, the one which most faithfully models the 
behaviour modelled. This question is considered further in the next section defining 
the association of player PL with a compound agent in SRFP. To summarise, SRFP is 
a space of agents or chess engines Ei(d, c) searching to depth d and ‘dumbed down’ 
by at least one parameter c. 

3.2   Mapping a Player to the Agent Space SRFP 

The following notation is useful for this section: 

• player PL’s moves M ≡ {Mi} from positions {Pi} are available for analysis, 
• from position Pi, moves mij to positions Pij are to be considered,11  
• engine Ek(d) evaluates position Pij as having value vijk at search-depth d,12 
• C(v) maps positions values of any value to R+: v1 > v2 ⇔ w1 < w2, and 
• engine E(d, c) plays move mij with probability ∝ likelihood L(wij, c). 

Let the hypothesis Hkdc be that PL’s moves are played by some engine Ek(d, c) which 
is in a ‘candidate engine’ subspace CS of SRFP. Prior probabilities pkdc are assigned 
to the Hkdc before any moves are analysed. For example, pkdc = constant would repre-
sent the often adopted ‘know nothing’ initial stance but different profiles of priors 
may be used to see what the initial beliefs’ long-term influences are. 

Bayes’ Rule is used to calculate what the posterior probabilities pkdc are (of Hkdc 
being true) after observing one or more moves Mi. Let these posterior probabilities be 
qkdc.

13 The Bayes Rule of Inference is simply stated: 

                                                           
11 All legal moves are considered but engines only evaluate the best MultiPV moves precisely. 
12 To simplify the notation, some suffices will be suppressed on occasion as ‘understood’. 
13 Bayes’ contribution was a belief-modifying formula, obviating the need for heuristics. 
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Ek(d, c) ∈ CS, Freqkdc ≡ Prior Prob[Hkdc is true] × Prob[Mi | Hkdc is true], 

Prob[Mi | Hkdc is true] ∝ Likelihood[Ek(d, c) plays Mi]; SumFreq = ΣCS Freqkdc, 

Posterior Prob[Ek(d, c) | Mi is played] ≡ Freqkdc / SumFreq 

Thus after modifying the initial pkdc to the final posterior probabilities qkdc, Bayes’ 
Rule has identified a composite agent or engine E ≡ 〈qkdc Ek(d, c)〉 which, by defini-
tion, decides at each move to play with probability qkdc as engine Ek(d, c). Thus, again, 
we have a mapping PA : Player → Agent associating players, carbon or silicon, with a 
profile of engines in the agent space SRFA.  

If sk ≡ Σdc wdd×qkdc
14 and rPL ≡ Σk wek×sk, with some engine’s perspectives perhaps 

more weighted than others but with Σk wek ≡ 1, rPL is an absolute rating for PL in the 
context of the benchmark used. It can therefore be used to compare players, carbon 
and silicon, of different playing leagues and different eras.  

However, the competence of PL and PA(PL) are not the same. Errors made by the 
benchmark engines when in fact PL makes the correct decision are seen by the en-
gines as errors made by PL, so PA(PL) will be somewhat less competent than PA. 
This complicates the otherwise trivial matter of putting humans and chess-engines on 
the same scale using games that have already been played15 but Haworth [4] proposes 
a ‘DGPS’ approach, reducing error by identifying errors at reference points, to remov-
ing most of the error contributed by the inevitably fallible benchmark engines.16 

4   SRFA: Computations and Applications 

The first ‘SRFA’ production computations inferred the apparent competence c of seven 
Virtual Elo-e players17 [5]: the results show a correlation between c and FIDE Elos, and 
provide a context in which other inferred c may be assessed. Table 1 summarises the 
input data, the results and the standard deviation of the results which as expected is 
approximately inversely proportional to the square-root of the amount of input data.  

Table 1. The apparent competence c¸mean and stdev, with details of contributing data 

 # Player Elomin Elomax Period Games Pos. c min c max μ c σ c  σ c * Pos½

1 Elo_2100 2090 2110 1994-1998 217 12,751 1.04 1.10 1.0660 .00997 1.126
2 Elo_2200 2190 2210 1971-1998 569 29,611 1.11 1.15 1.1285 .00678 1.167
3 Elo_2300 2290 2310 1971-2005 568 30,070 1.14 1.18 1.1605 .00694 1.203
4 Elo_2400 2390 2410 1971-2006 603 31,077 1.21 1.25 1.2277 .00711 1.253
5 Elo_2500 2490 2510 1995-2006 636 30,168 1.25 1.29 1.2722 .00747 1.297
6 Elo_2600 2590 2610 1995-2006 615 30,084 1.27 1.33 1.2971 .00770 1.336
7 Elo_2700 2690 2710 1991-2006 225 13,796 1.29 1.35 1.3233 .01142 1.341  

                                                           
14 The wdd emphasise an engine’s more accurate evaluations at deeper depths: Σd wdd ≡ 1. 
15  ‘PL & PA(PL)=E(c) are Elo 2600’ & ‘Match E/E(c) ⇒ E 400 Elo better’ ⇒ E has Elo 3000.  
16  Consider engine F, let PA(F) = E(c), and let there be engine matches E-E(c) and E-F. The 

match results will show the Elo difference between E, E(c) and F.  
17 The Virtual Elo-e Player is a composite of many actual Elo e (e = 2100 ± 10 etc) players. 
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The SRFA-computation programme is a continuing experiment: the next section is 
a description of how that experiment has been created and is being managed. 

4.1   The Computational Regime 

The aims of the computation are to: 

• acquire sound input data, and manage it assuredly, correctly and efficiently,18 
• ensure that experimental results could be conveniently reproduced, 
• exploit multiple computer platforms, separating job creation and commissioning, 
• ensure that the engines adopted were of as high a quality as possible. 

Some examples of chess-specific issues that needed to be managed: 

• human players, with a win in hand, play safely rather than optimally: 

- Guid & Bratko [16] reasonably suggest ignoring positions outside [-2, 2], 

• the robustness of statistical results from fallible benchmarks must be tested: 

- there was much criticism of [16] on these grounds, but 
- Guid et al. [21] was only a partially successful response to this criticism. 

Some examples of Bayesian Inference issues to be managed: 

• probabilities need to be held in log-form to postpone underflow, 
• setting priors must be consistent if moves/games are to be compared, 
• care is required in setting/adapting the range/granularity of the hypotheses … 
• otherwise, the prior probabilities will overly affect the posterior probabilities. 

4.2   Applications of ‘SRFA’ Computation 

4.2.1   Recognised Human Achievement 
Procrustes allows room here for only a sample of the insights which are now possible. 
Benchmarks based on reference engines enable comparison of play and players of 
different eras. The Elo scale is thought to have inflated [22] and a comparison of Elo 
2400 play in the periods 1971-1981 and 1996-2006 is in hand. The achievements of 
top players can be profiled, even before the adoption of the Elo scale in 1970:  
Korchnoi’s c and Elo are shown19 in Fig. 1. A comparison of World Champions is 
possible [16] though, given the quality of top-level play, the plan here is to reduce 
benchmark error and base any analysis on search-depths much greater than 10.20  

Keres’ 0-4 World Championship performance against Botvinnik in 1948 has long 
been a matter of speculation, as it is rumoured that he was under pressure not to im-
pede the latter’s progress to the title. Keres’ and opponents’ c per game have been 
computed for the 20 games in which he was involved, see Fig. 2.  

                                                           
18 Over 200,000 positions, their analyses and Bayesian inferences, are held in a datastore. 
19  The trace of Korchnoi’s c is a running average c based on the last 100 games. 
20  Although fallible benchmarks give results with calculable confidence levels [4]. 
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Fig. 1. Korchnoi (1950-): ‘FIDE Elo bars’ and apparent competence c over last 100 games 

Questions are asked not only about chess’ finest but about the best tournaments, 
matches, individual performances and games on record. We look forward to identify-
ing games where both sides played conspicuously well whatever the result. 
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Fig. 2. Left: Keres at the WCC (1948). Right: Some 78 games by D.P.Singh (2005-8). 

4.2.2   Alleged Chess Cyborgs 
Players suspected of receiving computer advice during play include the following: 
Clemens Allwermann in 1998 [19], Diwakar Prasad Singh in 2005-6 [23, 24], Eugene 
Varshavsky at the World Open21 in 2006 [25], and Krzysztof Ejsmont in 2007 [26]. In 
all cases, no physical evidence was found22, the circumstantial evidence was inconclu-
sive and probably inadequate in legal terms, and subsequent discussion of engine simi-
larity lacked precision and statistical rigour. Regan [27] is addressing this lacuna and 

                                                           
21  The CCA now bans general use of mobile/(ear/head)phones and even hearing aids. 
22  Searches were instigated in the cases of Varshavsky and Ejsmont. Two players have been 

expelled from tournaments; Singh’s colleague Umakanth Sharma was banned for 10 years. 
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Table 2 summarises the percentage of Move Matches (MM) with engines’ preferences 
for many of these scenarios. It does not yet show ‘mean error’ [16] but does serve as an 
effective sighting ‘scope’ to target scenarios with ‘SRFA’.  

Table 2. Frequency of player-engine Move Matches23 

Player Date Pos. MM% Player Date Pos. MM%

Ejsmont 2007-07 104 77.6 Azmaiparashvili 1995 465 61.7
Fischer 1970+ 718 67.4 Allwermann 1998-12 285 61.1

D.P.Singh 2006-04 686 64.7 SuperGMs 2005+ 8447 57.5
Varshavsky/1 2006-06 170 64.2 Varshavsky/2 2006-06 44 38.3  
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Fig. 3. Allwermann-Kalinitschew. Left: c- profile. Right: Game value in centipawns. 
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Fig. 4. D.P.Singh. Left: Probability Density Function of apparent competence c in two periods. 
Right: Evolution of apparent competence c based on game data available, 2005-10 to 2008-10. 

                                                           
23 Varshavsky/1-2 reflects the play of this player before and after he delayed a search. 
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Fig. 3 addresses the performance of Allwermann and Kalinitschew in their game at 
the Böblingen tournament. On the left are the c-loci for both players, and on the right 
is the TOGA II v1.2.1 evaluation of the game in Pawns of advantage to White.  

D.P.Singh’s play came under suspicion in the second half of 2006. His apparent 
competence c profiles before and after this period are compared in Fig. 4 (left) with 
the evolution of his c alongside: the constituent games are positioned in a cDPS-cOpponent 
space in Fig. 2. An application proposed here is a real-time dashboard (c plot and 
move series) to deter clandestine activity and to help focus the Tournament Director’s 
forensic resources appropriately. A ‘web community’ implementation is feasible24 and 
would also popularise chess by increasing spectator engagement and understanding. 

5   The View Forward 

This paper has defined and demonstrated a way of mapping decision-making behav-
iour into a benchmark space of agents, enabling skill to be measured in absolute 
terms, and future performance to be predicted. 

The rating approach described here has obvious applications in identifying unex-
pected and possibly unwelcome behaviour. Business transactions are increasingly 
being carried out by/with electronic means and via the internet, facilitating the collec-
tion of evidence on the large scale necessary to reach accurate statistical conclusions. 
Betting markets are increasingly being monitored. The financial sector is likely to be 
subject to increased regulation after the collapse of trust in major institutions. The 
maintenance of national security increasingly seems to require the identification of 
patterns of electronic communication.25 

The intention is that the Bayesian approach adopted here will be developed in sev-
eral dimensions: 

• Bayesian results -v- patterns of nth-preference choice [15], 
• richer computational architecture: datastore, parallelisation, job-control, 
• refined C(v) & L(w) functions giving better SRFP benchmark spaces, 
• comparison of Bayesian results with ‘average error’ results [16], and 
• application of the approach in one or more non-game domains. 

We invite interested readers to join us in using this Bayesian approach to skill as-
sessment, performance prediction, and behaviour positioning. 
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24 Trusted on-web engines send evaluations to an event server which highlights excellent play. 
25 See, e.g., the UK (RIPA) Regulation of Investigatory Powers Act (2000), the USA Patriot 

Act (2001) and European Community Directive 2006/24/EC on Data Retention. 
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Abstract. In this paper we present our ideas for an Arimaa-playing
program (also called a bot) that uses plans and pattern matching to guide
a highly selective search. We restrict move generation to moves in certain
move categories to reduce the number of moves considered by the bot
significantly. Arimaa is a modern board game that can be played with
a standard Chess set. However, the rules of the game are not at all like
those of Chess. Furthermore, Arimaa was designed to be as simple and
intuitive as possible for humans, yet challenging for computers. While all
established Arimaa bots use alpha-beta search with a variety of pruning
techniques and other heuristics ending in an extensive positional leaf
node evaluation, our new bot, Rat, starts with a positional evaluation
of the current position. Based on features found in the current position –
supported by pattern matching using a directed position graph – our bot
Rat decides which of a given set of plans to follow. The plan then dictates
what types of moves can be chosen. This is another major difference from
bots that generate “all” possible moves for a particular position. Rat is
only allowed to generate moves that belong to certain categories. Leaf
nodes are evaluated only by a straightforward material evaluation to
help avoid moves that lose material. This highly selective search looks,
on average, at only 5 moves out of 5,000 to over 40,000 possible moves
in a middle game position.

1 Introduction

Arimaa is a modern board game designed to be difficult for computers [1]. It
was invented by Omar Syed and Aamir Syed, and was motivated by the defeat
of former world Chess champion Garry Kasparov by a Chess-playing computer
developed by IBM called Deep Blue in 1997. Syed and Syed have offered a
prize of USD 10,000 until 2020 to the first person, company or organization to
develop a program that can defeat three selected human players in an official
Arimaa match [2].

Arimaa is a two-player partisan board game, i.e., Gold can only move gold
pieces, and Silver can only move silver pieces. All information about a position
is known to both players at any time. There are no chance moves involved, such
as moves based on randomization generated by dice. The game can be played
with a standard Chess set. Each player has (in descending order of strength) an
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elephant, a camel, two horses, two dogs, two cats and eight rabbits. The letters
representing those pieces in the game notation are e, m, h, d, c and r, for the
silver pieces. For the gold pieces we use capital letters. The game is won by
moving a rabbit to the goal rank, which means to bring it to the opponent’s base
row, but it can also be won by immobilizing all of the opponent’s pieces, or by
capturing all his rabbits. Below we briefly discuss four well-known problems in
Arimaa.

The first problem that makes the game difficult for computers is that a player
is allowed to use up to four steps in a single turn. A step consists of moving
a piece to an adjacent square. It is also possible to push or pull an opponent’s
piece with a stronger piece. For example, in Fig. 1(b) the gold elephant could
move from b3 to b4 pulling the silver horse from b2 to b3. Thus, a push or pull
requires two steps. In a single turn players can move up to four different pieces,
and this generates a huge number of possible moves. There are about 2,000 to
3,000 moves possible in the first turn depending on the way a player chooses
to set up his pieces, and during the middle game the number of possible moves
ranges from about 5,000 to over 40,000 (see also Fig. 1(a)) – compared to an
average of about 30 for Chess.

abcd

6

5

4

3

efgh

7

8

2

1

(a) (b)

Fig. 1. (a) Graph of possible number of unique moves, generated with Brian Haskin’s
(aka Janzert) Game Grapher [3]. The peak moves possible for Silver was on turn 9
with 41939 moves possible. (b) Position on turn 9 for Silver in game #82562.

The 4-step moves make it quite difficult for computer programs to perform a
deep search. Looking ahead only two moves for both players (= four plies) means
to search to a depth of 16 steps. In the Arimaa Computer World Championship
and in the Arimaa Challenge against humans, the time per move is restricted to
two minutes. Simple alpha-beta bots are currently not able to reach this depth
under the tournament settings nor in any reasonable amount of time. Even 12
steps might already be too deep. Only through extensive pruning, a variety of
other heuristics, and quiescence search, are bots able to search deeper to find
better moves.
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To see whether bots perform better if they are given more time or are allowed
to search deeper unrestricted by time, a P3 (= 3 plies = 12 steps) version of
David Fotland’s former Arimaa World Champion bot Bomb was available for a
short while. However, the average move time in most of the games played was
over 30 minutes, and at times the bot needed hours to find a move. Although
it is basically impossible for a human to predict accurately the next 20 steps,
it is still reasonable to look ahead three moves and obtain a good idea of the
resulting position. Also the very simple bot ArimaaScore – which only needs
about 1 second per move when playing at the P2 (= 2 plies) level – needs, on
average, 5 minutes per move when playing at the P3 level.

The non-defined initial setup of the pieces is a second problem for bots. While
Chess programs can resort to a huge opening database, the initial setup of the
16 pieces is not fixed in Arimaa, which makes it very difficult to generate an
opening database.

The third problem is formed by endgames. Endgames of the kind found in
Chess, in which only a few pieces remain, are also very rare in Arimaa. In many
games a great number of pieces are still on the board when a rabbit reaches the
goal.

The fourth problem area for computers are captures. Captures are performed
not by moving onto an opponent’s square like in Chess, or by jumping, as in
Checkers. Instead, if a piece lands on a “trap” square (there are four of them:
c3, f3, c6 and f6 (see Fig. 1(b)), and there are no pieces of the same color on any
of the four squares adjacent to the trap, then the piece is captured and removed
from the board. So, while in Chess a piece might be captured in a single move
by any stronger or weaker piece, in Arimaa often a weaker piece must be pushed
and pulled towards home traps (c3 and f3 for Gold) by a stronger piece, where
it can finally be captured. More details of such a plan will be given in Section 2.

Several research papers presenting bots have been published. David Fotland
presented his World Champion Arimaa Program at the Computers and Games
Conference in 2004 [4]. Haizhi Zhong and Christ-Jan Cox both wrote a Master’s
Thesis on Arimaa several years ago [5,6].

All the bots described above, and other well-established Arimaa bots, use an
iterative deepening alpha-beta search with a variety of pruning techniques and
other heuristics ending in an extensive positional leaf node evaluation. Quies-
cence search and other enhancements add to the strength of those programs.

Upper Confidence bounds applied to Trees (UCT) [7] and related research
(e.g., [8,9]) have shown great success in the domain of the classical board game
Go. Several members of the Arimaa community have discussed the usefulness
of some of these approaches for Arimaa [10]. Jeff Bacher, the programmer of the
current Computer World Champion program Clueless, is one of several people
who also implemented or started to implement an UCT bot. Tomas Kozelek is
also working on a UCT bot for his Master’s Thesis [10]. Currently, it seems the
traditional alpha-beta bots are still more successful. Pure random playouts seem
not to be useful. In games where one player is missing an elephant (the strongest
piece) and another player is missing a rabbit, the higher percentage is won by
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the party with the missing elephant. This contrasts with our intuition that the
player with the elephant should win most of the games.

Our new bot Rat follows an approach different from UCT and from the tra-
ditional alpha-beta search. Rat follows a more human way of thinking by first
analyzing the position, finding suitable plans, and then trying a certain highly
selective number of moves. A tactical search, alpha-beta with some search ex-
tensions, ensures that the moves do not lead to too great a loss of material,
by evaluating the leaf nodes with a straightforward evaluation function consid-
ering only the material of both players. A conceptually similar approach, the
Technology Chess Program, was presented by James Gillogly nearly 40
years ago [11]. Jonathan Schaeffer presented a related approach, Planner, that
determines a long-range strategy based on an assessment of the current posi-
tion, and makes moves in the short-term that are consistent with a long-term
objective [12].

However, the details of our bot Rat are different and the main concepts
are explained in this paper, which is organized as follows. Section 2 introduces
an often-used strategy (especially against Bomb and other bots) known as the
elephant-horse attack (EH attack). Bomb and some other bots, or earlier versions
of them, try to take the horse hostage close to their own trap. However, this often
leads to decentralization of the elephant, and if the bot plays very passively
afterwards, then kidnapping and capturing of several of the bot’s pieces might
be possible. We will call this flash-kidnapping. Section 3 shows how our bot
“thinks”, i.e., how Rat makes a positional evaluation of the current position
and prioritizes plans which result in an ordered list of moves. We also describe
move categories that drastically limit the number of possible moves for any
given position. Section 4 explains the use of directed position graphs for pattern
matching by giving an example graph for the EH attack. Section 5 gives a brief
overview of the general performance of our bot. The paper concludes by ideas
for future research in Section 6.

2 Elephant-Horse Attack, Horse Hostage, and
Flash-Kidnapping

To motivate the idea of using plans, in this section we present a common strategy
against bots before we discuss details of the implementation of our bot in the
next section. One strategy for attacking an opponent’s trap is to advance the
elephant together with a horse on the same wing. We illustrate the strategy
from the view point of Gold. To attack the c6 trap the gold elephant should be
positioned on d6, keeping it close to the center and able to switch quickly to the
other wing if necessary. The gold horse should occupy b6 so that the trap will
be enclosed from both sides. Often Silver’s elephant returns to c5 to protect the
trap, and even more often the elephant might push Gold’s horse to a6 or b7 to
take it hostage. This is exactly the position our bot Rat is waiting for to follow
the flash-kidnapping strategy (explained below). However, before starting this
strategy it is important for Gold to secure its own traps. Gold’s Southeast (f3)
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trap will be guarded by the camel on g3. In this way Silver’s smaller pieces will
not advance on the East wing. Also, the Silver’s camel does not see a target on
this side and rarely starts an attack there. Gold’s Southwest (c3) trap will be
protected by a horse and a dog. (See also Fig. 1(b) with switched colors.)

After creating this horse hostage situation Rat tries to follow a strategy that
we call flash-kidnapping. The whole sequence takes a maximum of 40 steps, i.e.,
10 plies, given the “cooperation” of the opponent. With the great branching
factor of Arimaa – on average there are over 17,000 possible moves in any given
position [2] – it is not expected that a bot will be able to detect such a sequence
without having knowledge of this plan.

Figure 2 (a) shows the initial situation without the East wing. In the first move
Gold pulls a Silver victim closer to her elephant (see Fig. 2 (b)). The intended
capture of this victim lies still 6 plies ahead, so it is basically impossible for
Silver to see. However, many bots try to avoid a situation where a weaker piece
stands next to the opponent’s elephant. If they do not, then in the next move
Gold’s elephant can flip the victim from d7 to d5 by first pulling it and then
pushing it south (see Fig. 2 (c)). The advantage of this flip is that the elephant is
back on d6 building a barrier against other Silver pieces that might want to help
and free the victim, because now the intentions of Gold’s elephant become quite
clear. But the capture still lies four plies ahead, so it remains difficult for Silver
to detect. Thus, the silver elephant might continue to hold the horse hostage.

(a) (b) (c)

(d) (e) (f)
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Fig. 2. Flash-kidnapping takes 10 plies (= 40 steps)
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A double push brings the victim to c4 (see Fig. 2 (d)). Saving the victim with
its elephant is often not desirable for Silver because it leaves the Northwest trap
(c6) too weak. So, in the next move, Gold can capture the victim (see Fig. 2 (e)).
And another move later, Gold’s elephant can return to d6 to repeat the whole
procedure (see Fig. 2 (f)).

3 Plans and Move Categories

Generally, alpha-beta bots generate a huge variety of possible moves in a given
position and search recursively down to a certain depth at which the position will
be evaluated. Our bot Rat imitates a more human approach. Before generating
any moves, a positional evaluation of the current position is performed, which
determines which plans Rat should follow next. Thus, rather than generating all
possible moves in any given position, Rat uses a highly selective search. Before
UCT became very popular in the recent years, many Go programs generated
moves and evaluated them to find good candidate moves [13], because for Go, a
brute-force search approach seemed unpromising. We follow a similar approach.
In the following we will give a detailed explanation of Fig. 3.

3.1 Positional Evaluation and Plans

Algorithm Positional Evaluation and Algorithm Add Plan. The posi-
tional evaluation starts with the location of certain pieces. Trap control is partic-
ularly important for Arimaa. Based on the location of pieces and the number of
pieces on the board Rat also tries to identify the game phase (opening, middle
game, endgame). The priority of the plans is given through the structure of the
evaluation function. This means there is a hard-coded order given through our
implementation. Moves belonging to certain plans will be appended to a singly-
linked list. However, while going through the function and collecting additional
information, flags will be set that lower the priority of plans, and plans might
be added later instead. While this is not done in our actual implementation, the
list of plans could be implemented through a priority queue.

The first plan considered is a 4-step goal search, because if a player’s rabbit
reaches the goal he wins the game. However, this plan will not be added to
the list if rabbits are not close enough to the opponent’s home rank. Next,
captures are considered, but if the opponent has the possibility of capturing a
stronger piece than we can, defenses are tried first. Therefore, we first look at
the opponent’s possible captures to see which pieces or traps must be defended
to avoid captures. Based on the outcome of both our possible captures and the
opponent’s, a decision is made which of the two plans (capture or defense) should
be appended to the list first. After this, plans based on the outcome of the pattern
matching (see Section 4) are added. Currently, only one strategy is considered,
the flash-kidnapping strategy described in the previous section. Here a great
number of additional strategies could be added by generating more directed
position graphs that we use for pattern matching. In the order given below, the



Plans, Patterns, and Move Categories Guiding a Highly Selective Search 117

Algorithm Alpha-Beta Search
Input: plans tried

and usual parameters like position, α, β, . . .
Output: move and score
If depth ≥ 2 and quiet then

score = simple eval; return score;
list of plans Q = Positional Evaluation
in the usual alpha-beta loop

dequeue next plan from Q;
Generate Move (plan) and make it;
recursive call;
compare score to bounds and update;

Algorithm Positional Evaluation
Input: plans tried

and parameters like position, depth, . . .
Output: ordered list of plans, Q
Q += Add Plan(goal, . . .)
Q += Add Plan(capture, . . .)
If depth < 2 then

Q += Add Plan(pattern matching, . . .)
Q += Add Plan(frames, . . .)
continuing with hostages, forks,
camel hunt, retreats, trap defenses,
goal preparations, flips, basic attacks,
clearing of traps, elephant centralization

Algorithm Add Plan
Input: a plan to consider and plans tried

and position, its features, . . .
Output: a plan
If all conditions for plan met

then return plan; else return null;

Algorithm Generate Move
Input: a plan
Output: a move
generate all moves in a move category

corresponding to the plan;
sort the list of moves;
return best move;

Fig. 3. Main functionality of algorithms used to find a move

evaluation function adds the following plans to the priority list: frames, hostages,
forks, hunt the camel, retreats, trap defenses (if not necessary earlier because of
possible captures), goal preparations, flips, basic attacks, clearing of traps, and
finally elephant centralization. This order is mostly fixed although some of the
plans might not be added depending on the current position (see Algorithm Add
Plan) or some flags might switch some of the priorities. Further refinement is
certainly necessary here. However, this sequence of basic ideas will be used in
particular if no other plan can be found through pattern matching. We believe
that the pattern matching module will have the greatest impact on improving
the playing strength of our bot. We have tested this only for the flash-kidnapping
strategy so far.

Algorithm Alpha-Beta Search. Rat performs an alpha-beta search to a
depth of 2 plies. In the first call the function will generate a sorted list of plans for
the player starting with an empty list. Similarly to the Chess program Paradise

presented by David Wilkins [14], Rat considers which plans have been tried (and
possible refuted) earlier in the search. This helps further reduce the branching
factor in the tree search. However, the nature of Arimaa with four steps per
move requires the player to be able to work on different plans within the same
move. For example, the first two steps might be used to defend a home trap
while the next two steps might be used to attack an opponent’s trap. Therefore,
all plans that have not yet been tried in a higher level of the tree are considered
in a recursive call. When a recursive call of the alpha-beta search reaches the
opponent, Rat will use the same positional evaluation function to generate the
opponent’s list of plans. Quiescence search will be performed in case of captures
only. The alpha-beta search has a straightforward leaf evaluation function. It
checks whether a rabbit reached a goal, and it calculates the value of the material
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on the board. Only if plan A leads to higher material gain (or lower material
loss) than a plan that appears earlier in the ordered list, plan A is chosen over
the other plan. The search ends after a certain time limit is reached.

To summarize the generation of plans, we can say that Rat is much more
limited than, for example, Paradise and Jacques Pitrat’s Chess Combination

Program [15] that both use production rules to produce plans. Rat knows only
a certain set of plans embedded in the positional analysis. The order is mostly
fixed although a number of flags and decisions based on features found in the
position can lead to a certain reordering.

3.2 Move Categories

As described above, the plans are assigned different priorities and this yields an
ordered list of plans, which itself translates into an ordered list of move categories
for which actual moves must be generated.

Rat knows only a very limited number of move categories including goals,
rabbit advancements, captures, retreats, kidnappings, attacks, and some trap
protections corresponding to the plans mentioned above. Most of the trap pro-
tections and some of the trap attacks are implemented through patterns. This
means Rat checks whether it can reach a certain local pattern from a given
position. Rat knows a few hundred of these local patterns.

Algorithm Generate Move. When Rat generates moves of a certain cat-
egory, all moves of this type are listed and immediately evaluated. Generally
speaking, the overall resulting position is not evaluated, but rather the location
of the moved pieces. For example, in the category rabbit advancement, the closer
a move brings a rabbit to its goal the higher the score this move will receive.
Often, trap defense should use stronger pieces to prevent the opponent from
surrounding the trap by simply pushing weaker pieces aside, and furthermore,
to avoid exposing weaker pieces to the opponent. For example, a cat or a dog
on the side of a trap could easily become a victim of a horse that pulls it to
the opponent’s half of the board. Captures also include the value of the piece
captured to determine the ranking. Only the top three moves in each category
are considered strong enough, and will therefore be used as possible candidates
in the alpha-beta search. This can also be restricted to the best move.

3.3 Two Other Details of the Implementation

One of the key facts making Arimaa difficult for computers is the use of 4-step
moves. It was mentioned in Section 3 that it might be necessary or useful to
split the four steps to follow two different plans. In particular, a fourth step that
is not necessary to follow a certain plan involving an attack of an opponent’s
trap might be used to help protect a home trap. This fourth step may not be
necessary, but is used as a fill-in step considering that the home trap might be
under attack later in the game. Usually, there are several possibilities for such
a step and this number increases considerably if there are two steps left for the
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trap protection plan. Including these fill-in steps in the regular alpha-beta search
can make the tree much wider than necessary. If the trap is not under attack
and in need of immediate defense we do not add the plan of trap protection into
the alpha-beta search. Instead, we add a quick search after our main line has
been determined and fill in some trap protecting moves afterwards.

A note about time management. The alpha-beta search is only used to confirm
that certain moves that follow a particular plan do not lead to loss of material,
or, e.g., that our bot Rat can indeed win material. The priority of the plans is
solely determined by the positional evaluation. Therefore, if the bot has tried at
least one plan already, i.e., has searched the whole subtree with the opponent’s
responses, and none of them could refute the plan, then Rat will end the search
earlier if that helps accumulate reserve time.

4 Pattern Matching with Directed Position Graphs

Within the positional evaluation of the current position, Rat additionally uses
pattern matching to determine the most promising move ordering. To store the
positions, we use a data structure rather similar to a directed acyclic word graph
(DAWG). A DAWG is a trie, i.e., a prefix tree, that eliminates prefix redundancy
and also suffix redundancy. This data structure is space efficient and the lookup
time is proportional to the length of the search string. We use a directed position
graph (DPG), which is allowed to be cyclic. We further reduce the required space
by eliminating infix redundancy.

When a human player studies an Arimaa position, the exact location of minor
pieces such as dogs, cats, and rabbits is often not considered important if they are
in a quadrant that is currently not under attack or involved in a plan. Those are
the pieces that Mikhael Botvinnik might call Type III or Type IV pieces [16].
Therefore, when trying to match a position we focus on the most important
features first. As an example of how to use DPGs for pattern matching we built
a DPG for the horse hostage setup and the ensuing flash-kidnapping. It consists
of approximately 250 nodes. A simplified version is shown in Fig. 4. The DPG
will be searched using breadth first search (BFS).

First, when playing Gold, the location of Silver’s elephant is matched. Based
on this, we learn whether we actually need to mirror all the following locations,
because although we always refer to the c6 trap, the hostage situation could also
take place at the f6 trap. Next, we try to match the location of Gold’s elephant.
Then we check whether Gold’s horse is held hostage by Silver’s elephant. If
Silver’s elephant stands on b6 (eb6), then possible locations for Gold’s horse are
a6 or b7 (Ha6 or Hb7). Also, Gold’s elephant could stand on d6 or c5 (Ed6 or
Ec5) (see also Fig. 2), and we would still recognize this position as horse hostage.
This means that in our DPG directed edges can lead from eb6 to Ed6 and Ec5,
and then from both of those to both Ha6 and Hb7 (see Fig. 4). Thus, we have
four different combinations that we would identify as horse hostage situation.
This is greatly simplified compared to the actual DPG that Rat is using. Before
starting the flash-kidnapping, the home traps should be sufficiently secured by
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}
Set up home trap protection

Execute flash-kidnapping

Identify horse hostage situation

}
}

eb6

Ec5Ed6

Hb7Ha6

Mg3!Mg3

Hd3!Hd3

Db3!Db3

Ed6

!d7

move M to g3

move H to d3

move D to b3

pull piece to d7

Fig. 4. Simplified DPG for flash-kidnapping strategy: When the BFS reaches a round
node, this move will be added to the move list. Capital letters are used for Gold, small
letters for Silver. Piece types are given using the capitalized bold letter in the words
Elephant, caMel, Horse, Dog, Cat, Rabbit. A ! notation means no piece a of certain
type if the type is specified, otherwise no piece at all.

camel, horse, and dog. So, from the nodes Ha6 and Hb7, edges are leading to a
node Mg3. However, there are also edges leading to a node !Mg3, which indicates
that Gold’s camel is not on g3. A child of this node is then a leaf with a command
to move the camel to g3. Both Mg3 and also !Mg3 lead to Hd3 and also !Hd3,
while the latter has a child commanding a horse to d3. Because we search the
DPG using BFS we can see that it is more important to bring the camel to
g3 than to bring the horse to d3. We continue down with Db3 and !Db3. The
positions of these three pieces form eight possible infixes. The logical sequence of
first recognizing horse hostage, then setting up camel, horse, and dog, and finally
executing the flash-kidnapping suggested that we should match the location of
Gold’s elephant once more to determine which move should be added to the list
of candidates. This also greatly simplifies the task of editing the DPG.

As we use BFS to traverse the DPG, the DPG need not be acyclic. Indeed in
some situations we might prefer the camel to stand on e3 instead of g3. So in
our full DPG we also have nodes Me3 and !Me3. An edge is leading from !Mg3
to !Me3 and vice versa. The camel might not be able to reach g3 in one move
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(or remaining steps thereof) because it is too far West. But it may be able at
least to reach e3, moving it closer to its intended destination.

5 Experimental Results

The Arimaa website [2] allows human players as well as bots to choose from
a huge number of bots to play against. Most participating bots from former
Computer World Championships are available with a wide variety of settings;
restricted in search depth as P1 or P2, or playing with a certain time limit, for
example, Blitz and Fast; or also with the original Computer Championship (CC)
setting (unrestricted search depth, 2 minutes per move). Rat has beaten several
of them. Most of the P1 bots and several of the P2 bots can be beaten regularly.
Rat can also beat generally stronger bots, even if they play in the CC setting, if
these bots take the horse hostage and Rat can use the pattern matching to follow
the flash-kidnapping plan. Currently, no UCT bots are regularly available as they
are still under development or have been considered too weak by their developers
to participate in the Championship. Therefore, our results are restricted to the
common alpha-beta bots. Overall, Rat is still a weak bot and cannot play well
in many situations because the knowledge of how to play or what plan to follow
in these positions is simply missing. We hope that by adding more DPGs, i.e.,
“teaching” more strategies, Rat or any other bot could be transformed into a
stronger bot.

6 Future Work

Bot Rat is the first Arimaa bot that strictly uses move categories. A positional
evaluation of the current position prioritizes plans and leads to the ordering of
move categories and determines which of those can be generated. Rat performs
a highly selective alpha-beta search with only a material evaluation at the leaf
node level. Traditional Arimaa bots generate a huge number of possible moves
– many of which a human would never consider at all – and then evaluate the
leaves with a complex evaluation function. Due to the high branching factor of
Arimaa, even with a great amount of pruning, only a depth of at most 20 steps
in search extensions seems reachable with current computers. Many strategies
require looking much further ahead. However, Arimaa is still a young game and
it is not clear how deep those strategies could be. An interesting idea for future
research might be to extract strategies from existing games automatically with
the help of a computer program.

So far we have implemented only one single strategy to demonstrate our ap-
proach. Many more strategies could be added to create a stronger program.
Knowledge of various strategies can be added using space-efficient directed posi-
tion graphs. A plain text DPG can be edited easily without actually modifying
the source code of the program. While we used a DPG to follow a certain strat-
egy in the middle game, DPGs could also be used in the opening and in the
endgame.
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This exploration delved forty years into the history of chess programming
in the hope that these approaches might lead to more successful Arimaa bots
than the popular alpha-beta searchers. However, further examination is needed
to determine whether this approach or other useful techniques, like UCT for
example, could help go beyond the strength of these.
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Abstract. With 6-man Chess essentially solved, the available 6-man Endgame 
Tables (EGTs) have been scanned for zugzwang positions where, unusually, 
having the move is a disadvantage. Review statistics together with some high-
lights and positions are provided here: the complete information is available on 
the ICGA website. An outcome of the review is the observation that the defini-
tion of zugzwang should be revisited, if only because the presence of en passant 
capture moves gives rise to three new, asymmetric types of zugzwang.  

1   Introduction 

Six-man Chess is essentially solved and the Nalimov [1] Endgame Tables (EGTs) to 
DTM, Depth to Mate, have been widely promulgated for some time [2]1. The corpus 
of perfect information is a challenge to datamine for both helpful guidelines and for 
the pathological positions – the deep, exceptional, bizarre, and amusing positions. 

A zugzwang position is defined here as one where the side to move would prefer 
that it were the other side’s turn to move. They are remarkable in themselves and the 
‘zug’, much sought after by composers, is a running theme in the Study community 
[3-9]. The zug is also the counterexample to the assumption of the Null Move Heuris-
tic that having the move is an advantage. When 5-man chess was solved, the two sets 
of respectively DTM and DTC2 [10] EGTs were searched [11] for zugs3. A later re-
view of Thompson’s 6-man pawnless DTC EGTs also included a zug search [12]. 

The zugzwang search reported here is almost entirely of the highly available Nali-
mov DTM EGTs [2,13]. The search was carried out via the web using Bourzutschky’s 
GTBGEN and the first author’s EGTs and JAVA code. Unpublished FEG DTM EGTs 
[14] for 5-1(p) chess and DTC EGTs for 6-man chess [15-16] exist and Bourzutschky 
has supplied [16] a zug review of 5-1(p) chess from the latter.  

Section 2 considers zugzwang definitions and identifies three new types of zug: 
section 3 covers logistics. Section 4 is a summary of the main findings. Tables 1-5 list 
various illustrative statistics and positions; the full details are available via the ICGA 
website [17] which will host the evolving story of the zugzwang. 

                                                           
1  Essentially because positions with castling rights are not yet included in EGTs. 
2  DTC ≡ Depth to Conversion, i.e., to force-change and/or Mate. 
3  Incidentally providing a partial cross-check of agreement between the two sets of EGTs. 
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2   Definitions of The Zugzwang 

Zugzwang is defined [18] as pressure to take action and a zugzwang position is de-
fined to be one where this pressure is unwelcome – where the first player would rather 
‛pass the position across’.4 However, in [19] a zugzwang position is defined as ‘a 
position in which whoever has the move would obtain a worse result than if it were 
the opponent’s turn to play’. Note that this now involves the 2nd player’s perspective 
and focuses only on the outcome without considering its achievement or likelihood. 
Other authorities refer to zugzwangs as reciprocal or mutual zugzwangs. The words 
whoever, reciprocal, and mutual suggest a symmetry, perhaps assuming incorrectly 
that the 2nd player can always pass back the 1st position to the 1st player. 

Consider the en passant zone EPZ of Chess, i.e., those positions where there is an 
en passant capture option. Let p1 ∈ EPZ: what now are positions p2 and p3? The 
proposal here5 is to clarify this situation by formalising the notions of passing over or 
losing the move as one of playing a null move or nulling. Now the rules of chess de-
fine p2 and p3: the e.p.-capture option in p1 disappears if not played immediately, p2 
does not feature any e.p.-capture option as the 1st player has not moved a Pawn two 
squares, and similarly, p3 is p1 without e.p.-capture option. Positions in EPZ are 
0.62% of those in their endgame and zugs in EPZ comprise 0.22% of the total. 

Let the Level A zugzwang, our focus here, be described in these terms: 

a) positions are valued from 1st player’s perspective: loss (0), draw (1), win (2), 
b) if there is force-symmetry and/or no e.p., 1st player is assumed to be White 

 Black plays first in 11 Table 1 positions (Zs 04-5, 07-9, 12, 22-4, 26-27), 
c) 1st player in position p1 (value v1) nulls to p2 (value v2) iff v2 > v1,6 
d) 2nd player may or may not, cf. Table 1’s Z08-9, null to p3, value v3 ≤ v2, 
e) if p3 ≡ p1, v3 ≡ v1. If p3 ≠ p1, p3 is ‘stalemate’ or v3 ≤ v1.  

Fig. 1 is formatted so that the 1st player nulls ‘to the right’ and the 2nd player nulls to 
the left to increase value to themselves. Clearly, in addition to the three familiar zug 
types A1-3,7 we now have, exclusively in the EPZ, just three more types A4-6:8 

1) type A1 ≡ ‘121’ ≡ ‘draw-win-draw’, q.v. Z01 in Table 1 
2) type A2 ≡ ‘010’ ≡ ‘loss-draw-loss’, q.v. Z02: A1-3 are no net gain for player 1 
3) type A3 ≡ ‘020’ ≡ ‘loss-win-loss’, the full-point zug, q.v. Z03  
4) type A4 ≡ ‘120’ ≡ ‘draw-win-loss’, a net loss for player 1, q.v. Z05-6 
5) type A5 ≡ ‘021’ ≡ ‘loss-win-draw’, a net gain for player 1, q.v. Z07 
6) type A6 ≡ ‘01(1)’ ≡ ‘loss-draw(-draw)’, a net gain for player 19, q.v. Z08-9 

Clearly, type A4-6 zugs are asymmetric. Considered only in terms of the first two 
positions, A4 becomes A1, A5 becomes A3 and A6 becomes A2. 

                                                           
4  Not strictly possible, as in ‛passing the position across', the side to move changes. 
5  Our project log notes that Bourzutschky proposed the Null Move concept on 2005-05-31.  
6  Value is calculated as normally, assuming that the option of a null move is not available. 
7  Types are distinguished by the sequence v1-v2-v3 rather than just by the sequence v1-v2. 
8  Unless position p3 is stalemate, its value v3 ≤ v1 as the 1st player has one less move in p3. 
9  The 2nd player may even prefer to play on rather than stalemate their opponent. 
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A1A4A5A3A6A2 … Zugzwang types

0 1 2

0 0 01 12 2 2

0 1 2 0 1 2 0 1 20 1 2 0 1 2 0 1 2 0 1 2 0 1 2

:1st player to move

:2nd player to move

null 
move

iiiiii

1st player has a loss (0), a 
draw (1) or a win (2):

i⇒ impossible sequence

move in some type of zug
move not in a zug but not losing value
move not in a zug, losing value
impossible move, given p1

null 
move

1

0 1 2

 

Fig. 1. The six types of Level A zugzwang: the familiar types A1-3 and the ‘EPZ types’ A4-6 

Table 1. Some examples of zugzwangs of types A1-610,11 

id Endgame Position p1 p2 p3 x Flag

Z01 KPK 1k6/1P6/2K5/8/8/8/8/8 w A1 121 = +2 = Z
Z02 KBKP 8/8/8/8/8/8/1pK5/kB6 w A2 010 -1 == -1 Z m
Z03 KPKP 8/1pK5/kP6/8/8/8/8/8 w A3 020 -1 +1 -1 Z m
Z04 KPPKP 8/8/8/3k4/2pP4/2K5/1P6/8 b - d3 A2 010 -25 = -15 M
Z05 KBPKPP 8/8/8/1p6/1Pp5/8/4K3/2kB4 b - b3 A4 120 = +21 -20 M u
Z06 KPPKPP 8/1p6/1k6/pP6/K7/P7/8/8 w - a6 A4 120 = +21 -30 M m
Z07 KP(5)KP(4) 8/8/8/2p5/1pP1p3/kP2P3/Pp1P4/1K6 b - c3 A5 021 -0 +1 == Z
Z08 KRPKPP 8/8/8/8/pP6/p7/k1K5/1R6 b - b3 A6 011 -0 = == Z u
Z09 KPPPKP 8/8/8/8/1pP5/kP6/P7/K7 b - c3 A6 011 -0 == == Z u
Z10 KRNKNN 8/8/8/8/2n5/1n6/R1N5/3K1k2 w A2 010 -1 = -1 M
Z11 KRBNKNN 8/8/8/8/2n5/1n6/R1N5/1B1K1k2 w A3 020 -1 +38(+) -1 M
Z12 KBPKNP 2n5/8/8/2B5/1Pp5/k1K5/8/8 b - b3 A2 010 -18 = -18 M i
Z13 KQBKNP 8/1K6/8/2k5/Q1Bn4/8/2p5/8 w A1 121 = +21 = M U
Z14 KQNKBN 8/8/8/8/8/nkb5/1N6/Q1K5 w A1 121 = +35 = M U
Z15 KQNKNN 8/8/8/n1Q5/2n5/8/2kN4/K7 w A1 121 = +35 = M U
Z16 KQRKBB 8/8/6b1/2R5/3K4/4Q3/5b2/5k2 w A1 121 = +26 = M U
Z17 KQRKRB 2r5/R1Q5/b7/8/8/2K5/8/1k6 w A1 121 = +17 = M U
Z18 KQBPKB 1k6/1P6/K7/1Q6/B1b5/8/8/8 w A1 121 = +9 = M U
Z19 KQBPKP 8/8/8/8/8/1p6/1PQ5/kBK5 w A1 121 = +11 = M U
Z20 KRRRKQ 8/8/8/8/8/4q1k1/2R5/1R1K3R w A1 121 = +22 = M U
Z21 KBPKNP 3n4/8/8/5pP1/8/8/8/1kBK4 w - f6 A1 121 = 32 = M
Z22 KBPKNP 8/8/3B2n1/K7/1pP5/k7/8/8 b - c3 A2 010 -32 = -32 M
Z23 KNPKPP 8/8/8/p7/Pp6/3N4/3K4/k7 b - a3 A2 010 -25 = -25 M
Z24 KRPKPP 8/1K6/1p6/2k5/1pP5/8/8/2R5 b - c3 A2 010 -21 = -21 M
Z25 KBPPKP 1BK5/8/k7/Pp6/8/P7/8/8 w -  b6 A1 121 = +17 = M
Z26 KNPPKP 8/8/K7/PNk5/Pp6/8/8/8 b - a3 A2 010 -23 = -23 M
Z27 KPPPKP 8/8/1k6/1P6/KPp5/8/P7/8 b - b3 A2 010 -17 = -17 M

value and DTx

Type
Zug

 
                                                           
10  Values from 1st player’s perspective: + win, = draw, == stalemate, - loss. 
11  Flags: m maxDTx, i inaccessible, s symmetric, u unique of type, U unique in endgame. 



126 E. Bleicher and G. Haworth 

 

3   Enumeration: Endgames and Zugzwang Occurrences 

These notes explain the lexical ordering of men and of endgames, and the principles 
used for counting the occurrences of zugzwangs.  

The men are listed in the strength order K-Q-R-B-N-P. White has at least as many 
men as Black. In m-m endgames, White’s lead men are at least as strong as Black’s.  

No attempt is made to eliminate unreachable positions in EGT statistics: this is 
usual as there is no general algorithm. With this limitation, the count is of FEN-
distinct and functionally unique zugzwangs. Thus, no zugzwang can be physically 
transformed into any other. The following subtleties should be noted. 

a) For force-symmetric zugs z ∉ EPZ, type A1 and A2 zugs are equivalent: 
   the count of A2 zugs is shown in brackets. 

b) Given force symmetry, A3 zugs usually appears in two physical forms: 
    - the two physical versions were identified12 and counted as one here. 

c) When both Kings are on a1-h8 or a8-h1 in pawnless endgames: 
 Nalimov has both physical versions of the position if there are two;  the two physical versions were identified and counted as one here. 

d) When e.p.-capture has been enabled but is actually illegal, q.v. Z12: 
 the position is counted here as different from that without the e.p., 
 1st player would have to realize that the e.p.-option is illusory, 
 FIDE’s recently reworded Article 9.2 now seeks to ignore the e.p. [20-22]. 

e) An example of an unreachable zug: 
 position Z12 also implies the prior 1. b2-b4, impossible on two grounds: 
     before 1. b2-b4, the side not to move, Black, is in (double) check, 
     check from a Pawn on its home square is itself impossible, 
     therefore, the position prior to Z12 is also unreachable. 

We note one small, historical and now resolved hiatus with respect to these results. 
The identification of zugs of types A4-6 was a serendipitous accident13 and was ini-
tially regarded as a bug by GTBGEN’S author Marc Bourzutschky. 

When the ‘last 16’ 3-3p endgames to KPPKPP were published, both by MB con-
verting his FEG EGTs to Nalimov’s format14 [23] and by Nalimov returning a disc to 
Hernandez [24], MB discovered that although he had anticipated a 2-byte format for 
the KQPK(B/R)P EGTs in GTBGEN, Nalimov had in fact discovered that the 1-byte 
format would suffice [25]. MB realigned with Nalimov and removed the ability to 
detect type A4-6 zugs before a GTBGEN was provided that could address these two 
EGTs. MB now advises [16] that no type A4-6 KQPKBP or KQPKRP zug exists. 

Results for Level A zugs have been published as a set of files [17]. Table 2 pro-
vides summary statistics for the six blocks of 6-man zugs, 3-3(p), 4-2(p) and 5-1(p). 
There are 293 5-1p zugs, 261 created by a touring Knight being on the wrong foot.  

Table 3 details the occurrences of e.p. zugs including the new types of zug. Table 4 
lists in lexical order all endgames with A3 zugs, together with an example of their 
                                                           
12  The identification of symmetries and equivalences was done by the first author’s code. 
13  The serendipitous accident has its place of honour in the history of discovery.  
14  After reverse-engineering the unpublished format of the FEG EGT data format. 
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deepest such zug. Table 5 is a miscellany of exemplar positions: an A2 e.p. zug with 
p3’s depth less than p1’s (P03), an A3 e.p. zug (N01), A2 and A3 zugs dezugged by 
the addition of an e.p. opportunity (N02-3) or castling option (P01), zugs unaffected 
(P02) or created (N04-8) by giving castling rights to the 1st or 2nd player, 5-1p zugs 
(P06-13), 7-man zugs (B01-6) and Zugzwang Studies (S01-12) featuring zugs. Elkies 
[26] composed N01-10 and Bourzutschky [15-16] found B01-6. 

Table 2. Level A zugs: summary statistics for each 6-man endgame group15,16 

Item  \ Group 3-3 4-2 5-1 3-3p 4-2p 5-1p Total

01 Endgames 55 80 35 65 95 35 365
02 No zugs 12 50 35 12 29 28 166
03 No A1 zugs 12 50 35 12 30 28 167
04 No A2 zugs 31 (+ 9) 71 — 22 (+ 3) 51 — 175 (+ 12)
05 No A3 zugs 55 80 — 50 67 — 252
06 A unique zug 4 1 0 1 2 0 8
07 One A1 zug 4 1 0 1 4 0 10
08 One A2 zug 1 2 — 1 6 — 10
09 One A3 zug 0 0 — 6 3 — 9
10 A1-A6 zugs 27,597 20,017 0 380,363 478,682 293 906,952
11 A1 zugs 27,470 8,434 0 361,725 373,479 293 771,401
12 A2 zugs 127 11,583 — 15,543 105,069 — 132,322
13 A3 zugs 0 0 — 2,700 133 — 2,833
14 A4 zugs — — — 394 0 — 394
15 A5 zugs — — — 0 0 — 0
16 A6 zugs — — — 1 1 — 2  

Table 3. Statistics for the fourteen endgames with e.p.-zugs 

Endgame wtm btm wtm btm wtm btm wtm btm wtm btm wtm btm wtm btm
KPPKP 35 20 35 0 0 20 0 0 0 0 0 0 0 0

KBPKBP 10 —— 10 —— 0 —— 0 —— 0 —— 0 —— 0 ——
KBPKNP 130 5 130 2 0 3 0 0 0 0 0 0 0 0
KBPKPP 18 18 18 4 0 13 0 0 0 1 0 0 0 0
KNPKNP 156 —— 156 —— 0 —— 0 —— 0 —— 0 —— 0 ——
KNPKPP 250 19 250 17 0 2 0 0 0 0 0 0 0 0
KPPKPP 1,301 —— 869 —— 39 —— 0 —— 393 —— 0 —— 0 ——
KQPKQP 75 —— 72 —— 3 —— 0 —— 0 —— 0 —— 0 ——
KRPKBP 20 7 20 0 0 7 0 0 0 0 0 0 0 0
KRPKNP 27 14 27 0 0 14 0 0 0 0 0 0 0 0
KRPKPP 0 2 0 0 0 1 0 0 0 0 0 0 0 1
KBPPKP 1 0 1 0 0 0 0 0 0 0 0 0 0 0
KNPPKP 0 1 0 0 0 1 0 0 0 0 0 0 0 0
KPPPKP 8 2 8 0 0 1 0 0 0 0 0 0 0 1

Totals 2,031 88 1,596 23 42 62 0 0 393 1 0 0 0 2

 A4  A5  A6e.p.-zugs  A1  A2  A3

 

                                                           
15  (+n) indicates that there are n endgames whose A2 zugs merely mirror their A1 zugs. 
16  The eight zugzwangs which are unique across their endgames are Z12-Z19 in Table 1.  



128 E. Bleicher and G. Haworth 

 

Table 4. The 43 endgames with full-point type A3 zugs: maxDTM examples17,18,19 

Total
id Endgame Position p1 p2 p3 Depth Flag

F01 KBPKNP k7/Bp4n1/1K1P4/8/8/8/8/8 w -25 +16 -25 41
F02 KBPKPP 8/8/8/8/3K1k1p/3P2p1/6B1/8 w -57 +28 -57 85
F03 KNPKNP 8/8/8/8/8/K1k5/P1p5/n1N5 w -13 +24 -13 37 u
F04 KNPKPP 8/8/8/8/4kp1p/3N4/2KP4/8 w -71 +26 -71 97
F05 KPPKPP 8/8/8/8/p4p2/k1P5/2K1P3/8 w -17 +103 -17 120 c.f. '18'
F06 KQNKQP 8/8/8/3N4/8/k2p4/3q4/KQ6 w -14 +6 -14 20 u
F07 KQNKRP QN6/Kpk5/1r6/8/8/8/8/8 w -8 +32 -8 40 u
F08 KQPKQP 8/8/8/1Pq5/8/1K1Q4/5p2/2k5 w -24 +95 -24 119
F09 KQPKRB 2K1k3/2P5/8/8/8/8/1r2b3/4Q3 w -20 +15 -20 35 u
F10 KQPKRP 8/8/8/1Q6/8/1pP5/2k2r2/K7 w -12 +42 -12 54
F11 KRNKNP 8/8/8/8/8/p7/N2k4/RK1n4 w -1 +28 -1 29 u
F12 KRNKPP 8/8/8/2N5/8/7p/k5pR/2K5 w -33 +17 -33 50
F13 KRPKBP 8/8/8/8/8/2p5/2Pk4/1KR1b3 w -15 +30 -15 45
F14 KRPKNP 8/8/8/8/3n4/k7/p1P5/K1R5 w -1 +33 -1 34 u
F15 KRPKPP 8/8/6R1/k1P5/2K5/7p/6p1/8 w -71 +9 -71 80
F16 KBBPKQ 8/8/8/8/1K6/BBP5/8/qk6 w -102 +13 -102 115
F17 KBNPKB K7/P1k5/8/8/8/8/6N1/5B1b w -2 +14 -2 16
F18 KBNPKN BK1n4/NP1k4/8/8/8/8/8/8 w -1 +32 -1 33
F19 KBPPKB K7/P1k5/8/8/8/8/6P1/5B1b w -2 +14 -2 16
F20 KBPPKP 8/8/8/8/3k4/1K1p4/1P3P2/B7 w -18 +16 -18 34
F21 KBPPKQ 3K1kq1/8/4PB2/3P4/8/8/8/8 w -34 +40 -34 74 c.f. '19'
F22 KBPPKR 8/8/8/8/8/2k5/P1P5/rBK5 w -18 +22 -18 40
F23 KNNPKN K1k5/P2N4/4N3/3n4/8/8/8/8 w -1 +19 -1 20
F24 KNPPKN K7/P1kN4/8/3P4/n7/8/8/8 w -2 +20 -2 22
F25 KNPPKP 8/8/8/K7/P1k5/1p6/3P4/4N3 w -20 +23 -20 43
F26 KNPPKQ 1K1k2q1/8/2P5/3N4/8/2P5/8/8 w -20 +45 -20 65
F27 KNPPKR N1k5/2P5/rPK5/8/8/8/8/8 w -22 +12 -22 34
F28 KPPPKN n7/P1k5/K7/PP6/8/8/8/8 w -2 +13 -2 15
F29 KPPPKP 8/8/8/5k2/3K1p2/3P3P/3P4/8 w -20 +19 -20 39
F30 KPPPKQ k7/q1PK4/P7/8/8/2P5/8/8 w -15 +19 -15 34
F31 KPPPKR 1K6/1P1k4/1r6/1P6/2P5/8/8/8 w -21 +36 -21 57
F32 KQNPKN QN6/KP6/8/nk6/8/8/8/8 w -1 +8 -1 9
F33 KQNPKQ 8/8/8/5N2/1q6/8/Q2P4/K1k5 w -3 +35 -3 38
F34 KQPPKQ 8/8/8/1q6/5P2/P7/Q7/K1k5 w -4 +33 -4 37
F35 KRBPKB K7/P1k5/8/8/8/8/6R1/5B1b w -2 +14 -2 16
F36 KRBPKN RK6/B3n3/1Pk5/8/8/8/8/8 w -2 +14 -2 16 u
F37 KRBPKP 8/8/8/8/8/1k6/pP6/BRK5 w -11 +21 -11 32
F38 KRBPKQ 1qk5/8/RBP5/8/8/8/8/1K6 w -41 +13 -41 54 u
F39 KRNPKN 8/8/8/8/n7/P7/K1k5/RN6 w -1 +24 -1 25
F40 KRNPKQ 1K3N2/3R1P2/1kq5/8/8/8/8/8 w -11 +16 -11 27
F41 KRPPKN K7/P1k5/R1P5/8/2n5/8/8/8 w -1 +20 -1 21
F42 KRPPKQ 3R4/q7/k1P5/P7/K7/8/8/8 w -36 +12 -36 48 u
F43 KRPPKR 8/8/8/8/8/rPK5/1RP5/2k5 w -26 +29 -26 55

val / DTM

 

                                                           
17 The depth of a type A3 or A5 zug is defined as the sum of the depths of p1 and p2. 
18 KPPKPP zug F05 is the deepest A3 zug with dtm = 120. 
19 KBPPKQ zug F21 has the maximal DTM-depth ‘shallower side’ loss (here) with dtm = 34. 
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Table 5. More didactic positions including 5-1p zugs and e.p. and/or castling effects20 

DTx
id Endgame Position p1 p2 p3 x Flag

P01 KQNKRR 1KQNk2r/7r/8/8/8/8/8/8 w - - A1 = +54 = Z c
P02 KRRKRB r3kb2/1RK4R/8/8/8/8/8/8 w - - A1 = +7 = Z c
P03 KPPKPP 8/6p1/4k1P1/4Pp2/3K4/8/8/8 w - f6 A2 -24 = -19 M e
P04 KNNKP 7k/8/5NK1/7p/8/8/N7/8 b - - B2 -0 1 -0 Z B2
P05 KPPKPP 8/8/p2k4/6p1/3K2P1/P7/8/8 b - - C = = = Z C
P06 KBPPPK 5kBK/5P1P/7P/8/8/8/8/8 w - - A1 = +2 = Z 5
P07 KBPPPK 7K/5kBP/5P1P/8/8/8/8/8 w - - A1 = +2 = Z 5
P08 KBPPPK 8/B1k5/K7/P7/P7/P7/8/8 w - - A1 = +3 = Z 5
P09 KBPPPK 1k6/8/KP6/BP6/1P6/8/8/8 w - - A1 = +1 = Z 5
P10 KNPPPK 7K/5k1P/4N2P/7P/8/8/8/8 w - - A1 = +2 = Z 5
P11 KPPPPK 5k2/5P2/4K3/7P/7P/7P/8/8 w - - A1 = +2 = Z 5
P12 KQNPPK 4k1KQ/5NPP/8/8/8/8/8/8 w - - A1 = +2 = Z 5
P13 KRPPPK 1k6/1P6/K7/RP6/P7/8/8/8 w - - A1 = +2 = Z 5

N01 KPPPKPPP 8/1p6/8/pP4pK/5kP1/P7/8/8 w - a6 A3 -1 +1 -1 Z e
N02 KPPKP 3K4/8/3k4/8/3Pp3/4P3/8/8 b - - A2 -4 = -4 Z e
N03 KPPKPP 8/8/8/5pK1/4kPp1/8/7P/8 b - - A3 -1 +1 -1 Z e
N04 KQP(6)KRRBP(3) Q1K1k2r/PPP1p2p/b1r1P2P/2p5/2P5/8/8/8 w k - A2 -1 = -1 Z c
N05 KQP(6)KRRBP(5) Q1K1k2r/PPP1p2p/bprpP2P/2p5/2P5/8/8/8 w k - A3 -1 +2 -1 Z c
N06 KQP(8)KRRBP(7) Q1K1k2r/PPP1p2p/bprpP1pP/2p5/2P2pP1/8/5P2/8 b k g3 A3 -2 +2 -2 Z c e
N07 KRBNP(3)KRBP r3k1KR/3p2PB/3P2N1/3P3b/8/8/8/8 w q - A3 -1 ? -1 Z c
N08 KRBNP(4)KRBP(3) r3k1KR/3p2PB/2pP2N1/7b/1pP5/8/1P6/8 b q c3 A3 -? +1 -? Z c e
N09 KPPKP 8/8/8/3k2P1/4pKP1/8/8/8 w - - B1 +84 +25 +84 M B1
N10 KPPKP 8/8/3k4/1K1p4/1P6/1P6/8/8 b - - C = = = Z C

B01 KNNNKNN 7k/8/4N3/4NN2/n2K4/8/8/3n4 w - - A1 = +17 = Z s
B02 KRBBKQB 8/8/8/8/2b2q2/B7/1R3B2/2k1K3 w - - A3 -96 +2 -96 Z u
B03 KRBBKQN 8/5B1q/6R1/3n4/8/8/2KB4/k7 w - - A3 -6 +2 -6 Z
B04 KRRRKRR 8/8/8/8/8/3Rr3/kr6/2KRR3 w - - A1 = +2 = Z U
B05 KBBBBKQ 6B1/1B4qB/5k2/8/3K4/8/6B1/8 w - - A2 -35 = -35 Z s
B06 KBBNNKQ 8/8/8/8/4q3/2k4N/5B2/N1K2B2 w - - A3 -7 +41 -7 Z u

S01 KRKN 8/8/8/2k1K3/8/3R4/4n3/8 w - - [9] #2, ar-Razi (~850)
S05 KQKRP 1rk5/8/8/3Q4/8/1p6/1K6/8 w - - [9] #6
S03 KRKBN k1K5/2n5/8/8/b7/1R6/8/8 w - - [4] #457, [9] #5, Nunn
S05 KRKBN k3b3/n1K5/R7/8/8/8/8/8 w - - [9] #5a
S06 KNNKP 8/8/1p6/1K6/2N5/3N4/8/k7 w - - [9] #9
S07 KNPKP 8/8/8/6Pk/4K3/4N2p/8/8 w - - [9] #7
S08 KNPKN 8/8/8/5KPk/8/8/8/5N1n b - - [9] #7a: A2 zug
S09 KNPKP 8/8/8/8/4k3/7p/P3K1N1/8 w - - [9] #8
S10 KNPKN 8/8/8/8/4k3/8/P3K3/5N1n w - - [9] #8a
S11 KNPKPP 8/8/8/8/5p2/4k1p1/4N1P1/5K2 w - - [39] #5.1, Mandler
S12 KPPKPP 8/5pk1/8/2p1PK2/2P5/8/8/8 w - - [9] #4

Type

 

Positions S01-S12 are from studies where White wins in an essentially unique way. 
They all feature a level A zug in both a try and the mainline solution and are mainly 
taken from Beasley [9]. The appendix can accommodate only a few of the solutions 
so there are plenty of exercises here for the reader. 
                                                           
20 c ≡ zug-significant castling rights given to 1st or 2nd player, B/C ≡ Level B/C zug, e ≡ e.p. 

significant, and 5 ≡ 5-1p zug. 
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Fig. 2. The Zugzwang Study scenario 

4   Commentary: Statistics, Gems, and Studies 

Our EGT search has identified a corpus of over 900,000 zugs which may be reviewed 
in statistical terms, datamined for gems of various sorts, and put in the context of the 
Chess Study, the chess-engine and the game itself. 

In addition to the Level A zug defined above, two further levels of zug are notable, 
q.v. Table 5. At Level B, a B1 (B2) zug is merely inconvenient, requiring the winner 
(loser) to make more (less) moves in some metric before some defined goal. Positions 
P04 (B2), N09 (B1) and S01-S12 feature examples. Note that the number of moves to 
goal may not be affected in all metrics.21 At Level C, zugs do not impact value or 
depth in any metric but the side to move would rather play a null move: Regan [27] 
identified P05 and Elkies [26] identified N10, both draws in which a null move eases 
the task of the defender. The likelihood of a win in a theoretically drawn position can 
be modelled using the concept of a Reference Fallible Player [28-32].  

4.1   The Statistics 

Pawnless zugs are just 5.26% of the total; pawnful zugs account for the vast majority. 
There are more pawnful than pawnless positions but the presence of at least one pawn 
increases the density of zugs by a factor of four. Zugs are also more frequent when 
Knights, parity-bound and unable to lose the move22, are present. 

Type A3 zugs are clearly rarer than A1-2 zugs and have been the focus to date: it 
had been established that no pawnless A3 zug exists with 5 men or less [11]. 

The presence of an en passant feature in a zug has not attracted attention so far, 
perhaps for three reasons. Type A1-3 zugs in EPZ remain zugs of the same type if the 
en passant opportunity is removed. Secondly, e.p. constrains two Pawns to 14 of the 
2,256 positions available and, at 0.22% of the total as in Table 3, e.p. zugs are few 
indeed. Finally, the very few type A4-6 zugs had not been discovered. 

The next challenges are to trawl for zugs in small EGTs for positions with castling 
rights, and in large 7-man EGTs. Under the DTZ50 metric which recognizes the 50-
move Rule, some zugs, q.v. Table 4, lose their status or change type. 

                                                           
21  KNNKP position P04: dtz = dtc = 4m if a null move is available; dtm = 4m regardless. 
22  Alternating as they do between white and black squares. 
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4.2   Datamining for Gems 

The deepest zugs come closest to not being zugs at all: the shallowest zugs feature the 
greatest change of advantage achievable by the null move. Relative depths may vary 
with the depth-metric chosen. 

Rare gems have intrinsic value; zugs may be absolutely or type-unique within their 
endgame and/or have some rare feature. There are only 51 type A2 e.p. zugs in which 
position p3 is shallower than position p1: 20 in KPPKP and 31 in KPPKPP. 

The absence of a pawnless 5-man A3 zug naturally led to a search for one in 6-man 
chess. In response to the so-called Pawnless Trébuchet Challenge [33], Elkies had 
conjectured that position Z10, identified three years earlier [8], might just be one 
such: he did not claim [8] that it was as incorrectly announced by Roycroft [34]. The 
search turned to 6-man endgames [12], [33], [35] but the authors confirmed earlier in 
the work reported here that there were none [29]. Evidence of Elkies’ remarkable 
prescience [36] is that Z10 perhaps comes closest of all 6-man pawnless positions to 
being an A3 zug. This is the only position found in which the 2nd player has to avoid 
the loss by first playing four unique draw-saving moves.23  

With KRBNKNN Z11 derived from KRNKNN Z10 [8], the A3 challenge became 
one of reducing the number of Knights in such a zug. The zugs B06 [29], [37], B03 
[16] and B02 [38] feature two, one and no Knights respectively though B02 leaves a 
residual challenge by requiring obtrusive, i.e., obviously-promoted, force. 

Surprisingly, there are no A3 e.p. zugs in 6-man chess but Elkies recalled an 8-man 
example (N01) derived from an actual game [39]. Other than the 393 A4 KPPKPP 
zugs, there are just three A4-6 zugs: one A4 (Z05), no A5 zugs24 and two A6 zugs 
(Z08-9). The A4 zug is unique in that the value of position p3 is worse than the value 
of position p1, but the 1st player is a net winner in A5-6 zugs: the 2nd player’s perspec-
tive is irrelevant in A6 zugs. Elkies has provided the first known A5 zug (Z07) and 
examples N02-3 of an added e.p. opportunity dezugging a zug. 

Castling rights have not been included in EGTs. However P01 and P02 are the first 
known zugs where added castling rights dezug or not. Elkies [26] provided exemplar 
zugs (N04-8) where the provision of 0-0(-0) castling rights to the 1st or 2nd player 
creates a zug: some also feature a significant e.p. opportunity. 

4.3   Zugzwangs and Studies 

In the Chess Study, White is by convention challenged to draw or win. The appear-
ance of a zugzwang position in a study is notable in itself and, if it is Black to move, 
suggests that White is just one ply from missing its objective. Mandler’s study S11 
[40] requires White to revisit a previous physical position 11 plies later but with 
Black to move: that position is therefore a Level B zug. 

A Zugzwang Study is defined to be one in which the zugzwang not only appears in 
the main line of a study in White’s favour but also appears as the refutation of a plau-
sible sideline try [9]. Fig.2 illustrates the requirements for such a study: a position p 
must appear in its wtm form pw in the try and in its btm form pb in the main line; 
White’s moves should be essentially unique and Black should play its ‛best defence’. 
                                                           
23  1. … Nc5′ 2. Nd4 Ne3+′ 3. Kd2 Kf2′ 4. Ne6 {other moves pressure more} Nxe6′. 
24  And MB [16] reports that KPPPKPP* (assuming only P=Q allowed) has no A5 zugs. 
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Beasley gives some remarkable examples of the genre and his article on the theme, 
from which most of the study positions S01-S12 are taken, is recommended. The 
zugzwang study demonstrates that the aesthetic contribution [41] of a zugzwang posi-
tion to a study must be judged in the context of that study and not in isolation. 

5   Summary 

The authors have searched the available Nalimov DTM EGTs for 6-man chess to 
identify all the Level A zugzwangs. Somewhat accidentally, we have discovered three 
new types of zugzwang to make six types in all: there are no other types. 

Work will turn to zugs in the more recently arrived 6-man ‘DTC’ results [16] 
which will be compared with those of Nalimov25 and Thompson [12], to Level B and 
C zugs, and to an examination of the occurrence of zugs in studies [42-43].  

Complementing this review, the full results, including statistics, highlights and lists 
of all the zugs with their DTM depths, are published on the ICGA website [17]. The 
zugs may be studied using EGT query services on the web [13], [44] and we look 
forward to them being mined for gems by the Chess Studies community and others. 
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Appendix: Some Zugzwang Lines 

The 7-man lines are from Bourzutschky [16,37]. All moves are at least optimal moves 
given the move-selecting strategy nominated, and beyond that, the key is: 

′′′′ ≡ only value-saving move (independent of move-choosing strategy), 
′′ ≡ the only optimal move, given the strategy nominated, e.g., SC-M-, and 
° ≡ only move. 

KPPKP Z04: positions p1 and p3 have different depths to mate. 
p1, btm: {dtm = 25} SM-/SM+ 1. … cxd3′′ 2. Kxd3′′′′ Kc5′′ 3. Kc3′′′′ Kb5′′ 4. Kb3′′′′ 
Ka5 5. Kc4′′ Kb6′′ 6. Kb4′′′′ Kc6 7. Ka5′′ Kb7′′ 8. Kb5′′ Ka7′′ 9. Kc6′′ Ka8′′ 10. b4 
Kb8′′ 11. Kb6′′ Ka8′′ 12. b5 Kb8° 13. Ka6′′ Kc7′′ 14. b6 Kc8′′ 15. Ka7′′′′ 1-0 
p2, wtm: 1. K~ Kxd4 = or 1. b~ cxb3′′′′ = 
p3, btm: {dtm = 15} SM-/SM+ 1. … K(c6/d6/e6) 2. Kxc4′′ {dtc = 7} 1-0 

KBPKPP Z05: an A4, draw-win-loss, zug: 
p1, btm: 1. … cxb3′′′′ 2. Bxb3′′′′ = 
p2, wtm: SM+Z+/SM-Z- 1. Ke1′′ c3′′ 2. Bb3 c2′′ 3. K~ K(b1/d1/d2) 4. Bxc2′′ Kxc2′′′′ 
5. Ke1 K(b3/c3) 6. Kd1 Kxb4′′′′ 0-1 
p3, btm: SM-Z-/SM+Z+ 1. … Kb1′′ 2. Ke3′′ Kc1′′ 3. Be2 Kc2′′ 4. Kd4′′′′ c3′′ 5. Bd3+′′ 
Kd2′′ 6. Be4 c2′′ 7. Bxc2′′′′ Kxc2′′ 8. Kc5′′′′ Kb3 9. Kxb5′′′′ Ka3 10. Kc5 Kb3 11. 
b5′′ 1-0 

KRBNKNN Z11: an A3 zug adaption of Z10 which ‘just failed’ to be A3. 
p1 ≡ p3, wtm: 1. N~ N(x)d3#′′′′; 1. R~ Nxb2#′′′′ 0-1  
p2, btm: {“Black cannot maintain the bind” [8]} 1. … Nc5 2. Nd4 Ne3+ 3. Kc1 Kg1 
4. Bf5 Ng2 5. Nf3+ Kf1′ 6. Bh3 Nd3+′ 7. Kb1 Nb2 8.Kxb2 {dtc = 1m, dtm = 8m}  

KNNNKNN B01: the bK is boxed in but White must avoid a KNNK endgame. 
p2, btm: {dtz = 17} SZ-/SZ+ 1... Ndc3 2. Nd7′′′′ Kh7 3. Nf4′′′′ Kg8 4. Nd6′′′′ Kg7 5. 
Ke5′′′′ Nd1 6. Kf5 Kh6 7. Kf6 Ne3 8. Nf7+′′′′ Kh7° 9. Ng5+′′′′ Kg8 10. Ne4′′′′ Kh7 
11. Ne5 Nb6 12. Kf7′′′′ Nbc4 13. Nf6+′′′′ Kh6 14. Nf3′′′′ Nd6+ 15. Kf8 Nef5 16. 
Ng8+ Kh7° 17. Ng5+ Kh8° 18. Ng6# {10 of White’s 17 moves were unique winning 
moves} 1-0 

KRBBKQN B03: an A3 zug with only one Knight. 
p1, wtm: SZ+/SZ- 1. Be8 Ka2 2. Bf7 Ka3 3. Bc1+ Kb4 4. Bd2+ Kc4 5. Be8 6.Ne7 0-1 
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{1. Bxd5 Qxg6+′′′′ {KBBKQ, dtz = 62) “is however probably best defence” [16]}. 
p2, btm: SM-Z-/SM+Z+ 1. ... Qh3 2. Ra6+′′ Qa3° 3. Rxa3#′′ 1-0 

KRKN S01: 1.Re3'''' Ng1' 2.Kf5' (2.Kf4?? Kd4 pw =) Kd4' 3.Kf4'''' pb 1-0 

KRKBN S03: 1.Rb6'''' Nb5' 2.Ra6+'''' Na7+° 3.Kc7'''' Be8' 4.Ra3''' (4.Ra2?? Ba4'''' pw 
=) Ba4' 5.Ra2' pb 1-0 

KPPKPP S12: 1.Kf4'''' (1.Ke4?? Kg6'' pw) Kg6' 2.Ke4'''' pb Kg5' 3.e6'''' fxe6' 4.Ke5'''' 
Kg4 5.Kxe6'''' 1-0 
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Abstract. Retrograde analysis is a tool for reconstructing a game tree
starting from its leaves; with these techniques one can solve specific sub-
sets of a complex game, achieving optimal play in these situations, for
example a chess endgame. Position values can then be stored in “table-
bases” for instant access, as is the norm in professional chess programs.
While this technique is supposed to be only used in games of perfect
information, this paper shows that retrograde analysis can be applied
to certain Kriegspiel (invisible chess) endgames, such as King and Rook
versus King. Using brute force and a suitable data representation, one
can achieve perfect play, with perfection meaning fastest checkmate in
the worst case and without making any assumptions on the opponent.

1 Introduction

In a zero-sum game of perfect information, Zermelo’s theorem [1] ensures that
there is a perfect strategy allowing either player to obtain a guaranteed minimum
reward. In many games, discovering the perfect strategy seems to be synonymous
with exploring a major portion of the game tree, which is unfeasible under cur-
rent and foreseeable computer technology. Nowadays, it is possible to explore
significant subsets of the game tree in such a way that, if a particular position
is encountered during gameplay, its value has already been computed and the
best strategy is immediately available. Most serious programs for playing chess
include a so-called “endgame tablebase”. Unlike opening books, the same table-
base can freely be used by any number of programs even under tournament
conditions, on the basis that it contains no creative work but simply knowledge
that rests on large amounts of processor time.

Currently, tablebases exist for all six-piece chess endings, with seven-piece
positions in the process of being computed for the next few years. In many cases,
the perfection of tablebase-powered play is unapproachable by even the strongest
evaluation function, or indeed the strongest human player. Positions that most
experts would have considered draws turn out to be mates in 300 or 500 moves
[2], and seemingly hopeless games can be drawn by repetition. Tablebases are
usually obtained through retrograde analysis. Analysis starts from final nodes,
the leaves in the game tree corresponding to checkmates and stalemates, and
then moves backwards in time to find out how those positions were obtained,
until all positions of the desired type have been explored. The concept has been
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widely studied since the 1970s, so there is a large bibliography devoted to chess
tablebases and their creation. We cite, for example, Bellman’s seminal paper [3]
and Stiller’s systematic work on a series of chess endgames in [2].

The aim of this paper is to show that the same concept can be usefully applied
to a game of imperfect information, as well, though it is only limited to finding
situations where a player can force victory with probability 1. We use Kriegspiel
(invisible chess) as an example. The game is identical to chess, except players
can only see their own pieces and need to rely on messages from a referee to
figure out where the opponent is. We give an algorithm for solving Kriegspiel
endings that have so far only been approached with approximated or heuristic
methods, and use it to build a Kriegspiel tablebase for the King and Rook versus
King (KRK) ending.

The paper is structured as follows. In section 2, we describe Kriegspiel and
summarize previous research in the field. Section 3 contains the actual algorithm,
as well as considerations on its correctness, complexity, and optimizations. Sec-
tion 4 is about the actual run of the algorithm and construction of the tablebase.
Finally, conclusions and future perspectives are given in Section 5.

2 Kriegspiel

Kriegspiel is a chess variant invented at the end of the 19th century to make
chess more like the ‘war game’ used by the Prussian army to train its officers. It
is played on three chessboards in different rooms, one for either player and one
for the referee. From the referee’s point of view, a game of Kriegspiel is a game of
chess. The players, however, can only see their own pieces and communicate their
move attempts to the referee, so that there is no direct communication between
them. If a move is illegal, the referee will ask the player to choose a different one.
If it is legal, the referee will instead inform both players as to the consequences
of that move, if any. Kriegspiel is not a standardized game, as there are several
known sub-variants to the game; they differ in how much information the referee
shares with the player with respect to pawn moves and captured pieces. Since our
main concern in this paper is with a pawn-less endgame and a single capturable
piece, the choice of ruleset is irrelevant. It suffices to remember that the referee
will inform the players whenever a check or capture happens, when a move is
illegal, and when the game ends.

The nature of Kriegspiel, being so similar to chess in some ways and yet
completely different in others, caught the attention of some well-known computer
scientists and was known and played at the RAND institute. Several endings
have been studied, though so far always with the aid of heuristics or ad hoc
considerations. For example, [4] deals with KPK using a set of directives and
distinguishes between algorithmically won endings, which can always be won,
and statistically won ones, wherein victory is only achieved with probability
1 − ε, with ε small (arbitrarily small in the absence of the 50 move rule). It is
shown that certain instances of the KPK ending are of the former type, and
some are of the latter. Ferguson studied two less common endings, KBNK in [5]
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(a) (b) (c)

Fig. 1. (a) Highest uncertainty in KRK; (b) useless information: after two plies this
board will be identical to the outcome of the same plies on (a); (c) mate in one

and KBBK in [6]. These can be won algorithmically, provided White can set up
his1 pieces in particular patterns and the black King is confined to certain areas
of the board.

KRK is the most widely studied ending, probably because it is so simple in
chess but not so simple in Kriegspiel, even though it is always won if White can
secure his rook. Magari [7] gave an algorithm for solving KRK starting from a
special position, and was the first to think of the black King as a ‘quantic wave’
whose actual location is not determined until the white pieces have moved. His
definition would anticipate Sakuta’s research in [8], which dealt with invisible
Shogi and introduced the idea of metapositions. Boyce [9] had previously given
his own algorithm for solving KRK, expressed as a series of directives in the
natural language and without any formalization. While Boyce’s conditions are
more general than Magari’s, the problem of reaching the starting position re-
mains. Neither algorithm is shown to be optimal for White. Finally, Bolognesi
and Ciancarini used metapositions, ad hoc evaluation functions, and minimax-
like tree search in [10] to solve KRK in the general case, showing it to perform
better than Boyce’s directives. However, success with this method cannot be
guaranteed without trying out every single case. As a side note, Shapley and
Matros improvised a solution to KRK in Kriegspiel on an infinite board while
attending the ninth Game Theory convention in 1998.

This topic is a subset of the more general problem of checkmating the oppo-
nent in Kriegspiel, either forcing the mate or maximizing one’s chance of doing
so. Aside from Sakuta’s aforementioned work on Shogi, this direction was ex-
plored by Russell and Wolfe in [11], who focused on efficient handling of large
belief states in Kriegspiel. Research by Amir, Nance and Vogel is marginally
related in that they attempt to reconstruct the state of the board in [12]. The
even more general problem of computer Kriegspiel is beyond the scope of this
paper; we refer to such papers as [13] and [14] for two completely different views
on the subject.

1 For brevity, we use ’he’ and ’his’ whenever ’he or she’ and ’his or her’ are meant.
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3 A Retrograde Analysis Algorithm

Let us formalize the problem as follows. S is the set of all possible game states
(in this case, the set of legal chess positions limited to the KRK ending), and
i ∈ I ⊆ P (S) is, at any given time, the information set for the player with the
Rook, who will be assumed to be White from now on, and contains all possible
game states at this point in time. Elements of I will often be called metapositions
in this context and are easily represented by placing a black King on every square
where the King might be; we will follow this convention throughout the paper.
Players may choose moves m ∈ M, the set of pseudolegal moves for the current
information set. Pseudolegal means that the move is legal according to the rules
of chess in at least one state of the current information set i, though it may turn
out to be illegal when tried. More specifically, we can define a referee function
r : (I × M × S) → (I × R × S), where R is a set of referee messages, consisting
of {victory, draw, silent, check, illegal}. A game state appears both
as an input and an output, representing the unknown real state, which only
the referee can access. The referee changes our knowledge of the board and also
returns a message in response to a move. The message set would have to be
expanded to handle additional endings, but it is ample enough to treat KRK, as
only one check type is compatible with any move. Function r obviously depends
on the black King’s strategy.

Since the black King is the only unknown piece, it can readily be seen that
any i ∈ I contains at most 52 elements; an example of this is given in Fig. 1,
(a). While 52 states might not seem like a large amount, in order to provide an
optimal solution to this endgame we need to be able to handle every possible
instance of I optimally. Counting the subsets of the information set in Fig. 1
alone, we obtain 252 − 1 possibilities. Even using mirroring along the two axes
and a diagonal, there are over 400 ways to place the white King and Rook, each
allowing on average 40 to 50 positions for the black King, and as such 240 to 250

instances of I. An approximate calculation leads to about 1016 or 1017 possible
information sets, making the KRK ending in Kriegspiel not that far behind the
whole game of checkers in sheer size. Bolognesi and Ciancarini [10] mention,
among other things, these figures to motivate their decision to use a heuristic,
approximated approach to the problem. Their problem does not fully overlap
with ours, as they try to provide strategies for playing even when victory is not
guaranteed; for example, in KRK, when the Rook does not start near the King
and cannot immediately approach it. However, our algorithm is only concerned
with algorithmically won positions, although it can be extended with heuristics
to treat such a case.

When considering the size of the problem, it is clear that many of these
Kriegspiel information sets are really redundant as they contain no information
that can be exploited by the player in order to speed up the road to victory, at
least in the worst case. Figure 1, (a)-(b) shows an example wherein removing
states from the information set does not make any difference. If this is true for
a majority of I, then only a fraction of the actual state space contributes to
the solution and needs to be explored, making a brute-force approach feasible.
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We would just have to note the largest set for which a given move is optimal;
this move would be optimal for its subsets, as well, except those explicitly listed
in a separate entry. This reasoning makes the trivial assumption that reduc-
ing the number of states, and thus uncertainty, cannot worsen the worst-case
performance of any move; we can simply ignore the additional information.

Roughly speaking, the algorithm proceeds through iterative retrograde anal-
ysis and creates a table of entries of which the elements contain an information
set or metaposition, an optimal move associated with it, and a maximum num-
ber of moves this strategy will take to achieve certain victory. First, we find
all metapositions i1 ∈ I such that checkmate is possible in one move. Figure
1, (c) shows one of the only examples of single-move checkmates in KRK with
more than one king location. These mates are very simple to find; it suffices to
search all piece configurations and the corresponding legal moves for checkmate
positions according to chess rules.

After solving the problem at depth 1 as described above, we look for all
i2 ∈ I such that checkmate is possible in at most two moves no matter what the
referee’s response is; this includes situations always leading to subsets of states
found in the first step. This procedure must be repeated several times at each
depth until no new entries are generated; we need to do this in order to deal
with illegal moves which require analysis of same-depth metapositions. When the
algorithm performs a full run through all the existing positions without adding
anything to the tablebase, the current depth is exhausted and we proceed to the
next depth. We also ignore metapositions that are subsets of previously added
metapositions, since they provide no new information. When the algorithm fails
to generate any new entries for the next depth, execution ends.

The algorithm is summarized in Fig. 2. The basic concept is that, if we know
that, no matter the referee’s response message, we are going to mate the King in
at most n moves, then the present position is won in at most n+1 moves. If the
method by which a new position is constructed is correct, then the correctness
of the whole algorithm is easily proved by induction. One needs to be careful in
how (n+1)-depth entries are constructed from the n-depth (and below) entries,
because the danger of “strategy fusion”, as defined by Frank and Basin [15], is
always around the corner. Strategy fusion can be briefly summarized as the pitfall
of having plans for dealing with each specific case successfully, but not knowing
which of those cases we are in. Within the context of Kriegspiel endings, this
happens if we mistakenly assume that, only because we can solve metapositions
i1, i2 ∈ I in n moves, we can also solve i1 ∪ i2 in n moves. This is not true
even if the optimal strategies for i1 and i2 start with the same move; there is no
guarantee that the same move will also solve i1 ∪ i2 optimally, or that it can be
solved at all. Such a pitfall is showcased in the KPK ending in [4], where victory
cannot be achieved with probability 1 under certain circumstances.

Therefore, the white player needs to know, at any given time, what meta-
position he is in. This is accomplished by the innermost for loop, where all
compatible metaposition entries in the current list (that is, all entries with the
correct placement of white pieces) are assigned to the possible referee messages
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kriegRetrograde(entryList,depth)

begin

added = false;

for each placement of white pieces P do

fill P with black kings

for each pseudolegal move M do

messages = possibleMessages(P,M);

for each assignment A of entries from entryList to messages do

reduceBlackKings(P,A);

if (checkAndAdd(entryList,P,A)) added = true;

od

od

od

if (added) kriegRetrograde(entryList,depth);

else if (entriesWithDepth(depth+1)) kriegRetrograde(entryList,depth+1);

return entryList;

end

Fig. 2. Pseudocode listing for main retrograde function

that may result from the move being examined. In the least optimized case, all
possible combinations might be tested. For example, if move Ka2-b2 can gener-
ate a check, a silent response and an illegal notice, the algorithm will generate
n2

1 · n2 assignments, where n1 is the number of metapositions already in the
database with the white pieces placed just like the current board after Ka2-b2
(squared because there are two messages to consider), and n2 is the number
of metapositions where the white pieces are set up like the current board (for
an illegal outcome). For each assignment of metapositions i1, . . . , ik to messages
m1, . . . , mk, the algorithm determines the largest metaposition such that every
message mj will result in a subset of the corresponding metaposition ij . Since
every possible outcome has already been computed as won, this new metaposi-
tion is also won. Since all assignments are considered, optimal assignments will
also be found, and sub-optimal assignments will be discarded.

Method reduceBlackKings generates new metapositions in a subtractive way,
starting with a full board and taking away black Kings as they are found to
be incompatible with a message-outcome pair; this means that the algorithm
decides what message mj would be generated if the black King were there, and
if the King’s positions after Black’s next move do not entirely lie in ij, that
square has to be cleared. If the resulting metaposition is empty, it is discarded.
If it is a subset of an existing entry, it is also discarded. In contrast, if the new
metaposition is original, it is added to the entry list together with the tested
move and depth information. If a new entry is added, the algorithm will have to
go through an additional pass; illegal moves may generate new mates of depth
n instead of n + 1, which need to be searched again. Most depth levels in KRK
require 3 to 5 passes, after which the next depth is considered.
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Once the algorithm has finished, it returns a full list of metapositions, each
having a best move and a distance to mate in the worst case. This database
is used as follows. The player searches it with a metaposition representing the
current state of the game. All entries that are supersets of it are returned, and
if none exist, it means that it is not possible to force a mate from here. Among
these entries, the player selects the one with the shortest distance to mate; in
the event of a tie, he will pick the one with the lowest number of states (black
Kings). He will then proceed to play the corresponding move.

3.1 Complexity and Optimizations

The computational complexity of a single depth step of the algorithm is O(bpnm),
where b is board size, p is the number of white pieces on the board, n is the
average size of the metaposition list, and m is the number of messages the
referee can output. Estimating n is best done through the actual experiment,
which shows that its increase in KRK is exponential and quite regular until about
depth 30, after which there is a sharp slowdown. The algorithm can become very
slow if there are many possible referee messages. This will be the main problem
to overcome with the KQK ending, since the Queen can check in four different
ways, and most moves can result in three (as opposed to just one in KRK): file,
rank, short diagonal and long diagonal.

The following optimizations are possible and have been implemented.

– Game-ending referee messages are handled implicitly. Black King positions
leading to instant checkmate are automatically added to any new entry, and
stalemate or drawn positions are excluded before anything else takes place.
This means that two referee messages can be taken off the list, leaving only
three in KRK - silent, illegal, and check.

– Not every metaposition assignment is considered, but only those that will
create a metaposition of the desired depth. For example, if we are filling the
database with depth 10 entries, it is useless to try an assigment leading to
depth 9 or less, because it will already have been considered at the appropri-
ate step. In other words, in order to generate a depth 10 entry, we need to
have at least one depth 9 entry assigned to the silent or check messages or
another depth 10 entry linked to the illegal move message. Any assignment
violating this rule is skipped.

– Not every single metaposition in the list is checked. In particular, at the
end of each step, metapositions that are found to be subsets of others are
“dumped” into support files, regardless of their distances to victory; the only
exception is metapositions generated during the last step. This is related to
the above point; when determining depth 10 entries, there will always be at
least one depth 9 or depth 10 metaposition in the assignment, but as for
the others it is irrelevant whether their depth is 8 or 2. One can simply take
the larger one and dump the smaller. As a consequence, the final database
is obtained by merging all the dump files with the collection that remains
after the last iteration of the algorithm.
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– A further optimization to reduce the number of metapositions being consid-
ered is to perform an intersection between each entry and the legal positions
of the black King after the corresponding message. In this way, only the
relevant parts of the metaposition are considered, and duplicates can be
computed only once.

4 Solving KRK

We ran the algorithm described in the previous section in order to ascertain
whether it is computationally feasible for the KRK ending, and if so, whether
existing directives such as Boyce’s and Magari’s can be improved on. Finding a
measure of the complexity for this problem (that is, how many metapositions it
takes to describe KRK completely out of the theoretical 1016) and the longest
forced KRK mate were also goals for this computation. We implemented the
algorithm in the Java programming language and executed it on a single machine.
The algorithm did not feature any peculiar optimizations besides those described
in the previous section, and it ran on a single processor. Its run terminated after
about 12 days of uninterrupted execution.

Using mirroring on the x, y, and diagonal axes, the problem of KRK in
Kriegspiel is described with a tablebase of 1,087,599 metapositions, or about
106 from the hypothetical 1016. KRK in chess is fully described with about
23,000 positions, making the equivalent Kriegspiel problem about 40 to 50 times
as complex. Results may vary to a degree, depending on storage policies for
metapositions that are subsets of other entries; in particular, the tablebase can
be compressed to unify a subset with its superset if they have the same best
move, but doing so loses information on the strict upper bound on the moves
till victory, which has to be recalculated on the fly with more accesses to the
tablebase.

The longest forced mate sequences in Kriegspiel KRK are 41 moves long,
making the 50-move rule irrelevant in this endgame, and there are only two.
One of them is shown in Fig. 3, (a). The other mate in 41 is almost identical,
except that the Rook is on h4 instead of g4; the solution is the same. It is readily
seen that such a position cannot occur during a normal game. The same can be
said for a majority of entries in the tablebase, especially at the later depth levels.
After depth 35, most entries resemble man-made puzzles and problems rather
than situations that a player is likely to encounter. In this particular problem,
the player must maneuver his pieces around the enemy Kings until he safely
brings the Rook next to the King. In the optimal solution, it takes nine moves
to accomplish this: Rf4, Kc2, Rf8, Kd3, Rg8, Rh8, Rh1, Rd1, Kc2.

Boards (b) and (c) represent situations that are much more likely to happen in
a real game. In particular, board (b) is the starting position for Boyce’s algorithm
given in [9], and board (c) is the starting position for Magari’s algorithm, from
[7]. Boyce’s directives are based on trapping the King in a single quadrant of
the board with the rook and then using the King to push back the opponent.
Magari’s method consists of starting from (c) and isolating the King on one side
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(a) (b) (c)

Fig. 3. (a) Longest forced mate in KRK, mate in 41; (b) Boyce’s starting position,
mate in 30; (c) Magari’s starting position, mate in 34

of the board by playing Kd2, Re2, Kd3, Re3, and so on, scanning the board
until a check reveals the location of the enemy king. The tablebase shows that
Boyce’s method is a better approximation of the shortest mate. Boyce’s position
is a mate in 30, four moves shorter than Magari’s position. There are only two
positions completely filled with enemy Kings that can be won faster, in 29 moves,
and both have the Rook in the a1 corner, just like (b); the King is on c2 and
c3, respectively. Thus, Boyce has a good understanding of a convenient starting
position. Moreover, optimal play from (c) does not follow Magari’s algorithm.
Instead, the player immediately runs to the nearest corner, reaching a Boyce-
like position through, for example, Ke2, Kf2, Rg1, Kg3, Rh1 - from here White
mates in 29, as mentioned. A full run of the algorithm still reminds of Boyce’s
directives, though it is noticeably more quirky and difficult to summarize.

5 Conclusions and Future Work

We have established an algorithm that will always win the KRK endgame if
victory can be achieved with probability 1, and instantly provide a strict upper
bound on the number of moves until checkmate. This approach can be extended
to other Kriegspiel endgames such as KQK, KPK, and others. Currently, the
KRK tablebase occupies about 80 megabytes of hard disk space, and a different
structure might be needed in order to deploy it into Kriegspiel-playing programs,
as looking up the best move in a given situation is not as straightforward as in
chess: on average, the program has to examine 25,000 metapositions and find
the compatible candidate with the shortest route to mate. Extension to queen
endgames will also probably require more optimizations, as preliminary tests
have shown an almost tenfold decrease in speed due to the exponential nature
of the search algorithm.

Another area of improvement would involve choosing among equivalent lines of
play (in terms of worst-case performance) by reasoning and making assumptions
on the opponent. This feature could be helpful in shortening mate sequences if
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Black does not play near-optimal moves. It is to be noted that playing almost
like an oracle is not too difficult in this endgame; a King trying to maintain
position by moving back and forth near the center of the chessboard is often
playing the best strategy, or close to the best.
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Abstract. Endgame heuristics are often incorperated as part of the
evaluation function used in Chinese Chess programs. In our program,
Contemplation, we have proposed an automatic strategy to construct
a large set of endgame heuristics. In this paper, we propose a conflict reso-
lution strategy to eliminate the conflicts among the constructed heuristic
databases, which is called endgame knowledge base. In our experiment,
the correctness of the obtained constructed endgame knowledge base is
sufficiently high for practical usage.

1 Introduction

A game of Chinese Chess, like chess, can be divided into three phases: (1) opening
game, (2) middle game, and (3) endgame. The opening game is the first phase of a
game in which almost all pieces are on the board. After about 20 plies, both players
have moved their pieces to important places and the game turns into the middle-
game. After exchanging some pieces, the game goes into the endgame phase.

The most popular technique used to solve the opening-game problem is con-
structing opening databases that store all possible choices from previous games
[1]. In the middle game, people often use a nega-scout algorithm with a good
evaluation function and an appropriate move-ordering scheme to obtain a good
solution [2]. There are also strategies in artificial intelligence that automatically
generate middle-game evaluation functions [3]. In the endgame phase, the per-
formance of today’s Chinese Chess program is still not satisfiable compared to
human experts. People often solve relatively small endgames by using retrograde
algorithms [4].

Endgame databases constructed by retrograde analysis algorithms are perfect
in the sense that the game-theoretical values of all positions matched are avail-
able in the database . However, there are two drawbacks in endgame databases:
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(1) they need too much memory, and (2) practical endgames contain too many
pieces for current retrograde algorithms to handle. Hence, the search algorithm
still needs heuristic information about endgames. The challenge here is: how to
generate effective heuristics for the endgames in question? Although heuristics
are not perfect, they can be applied to practical endgames and are useful in
tournaments.

Our intuition is as follows. Each endgame is assigned with a heuristic, namely
a level of [advantage, disadvantage] according to the material combination of
the two sides. This assigned value reflects the heuristic value that a Chinese
Chess master usually assigns to the endgame, since he1 understands whether the
endgame is advantageous or not without considering the positions of the pieces.
The heuristics of two endgames may be obtained using different methods, such as
from text books or human annotation. These heuristics, though they have a high
level of accuracy, may still contain errors. We have observed that if the material
combinations (a definition is in 2.1) of two endgames differ by a small number of
pieces, then the heuristic values of the two endgames are not independent. For
example, knowing that an endgame usually is advantageous to the Red side, then
the new endgame heuristic value after adding a Red piece cannot be worse than
the original one. In general, assume that an endgame A is related to many other
endgames and further assume that a large portion of the heuristics obtained so
far is correct, then A must be consistent with most of the related endgames. If
this is not the case, then there is a high chance that the heuristic value of A is
incorrect. Using this high level idea, we build an expert system to self-correct a
large set of annotated heuristics.

In our previous work, we have designed a method to generate automatically
a large number of heuristics of material configurations [5]. However, we have
detected some conflicts in our endgame knowledge base. A small number of
conflicts are sufficient to harm our search algorithms. Hence, we propose an ade-
quate conflict reduction algorithm that increases the consistency in the endgame
knowledge base.

In this paper, we will discuss the following important issue relative to the
endgame problems: what is the impact of a piece exchange when transforming the
game from a middle game to an endgame? In Chinese Chess, using solely material
values computed from summing all piece values to choose good exchanges may be
incorrect and that only in some cases. Our solution is to use the many heuristics
of the material combinations, called the endgame knowledge base, to guide our
program when piece exchange is needed.

2 Theoretical Foundations

In this section, we describe the theoretical concepts about lattices as used by
our method and discuss the problems that occur in our automatic generated
endgame knowledge base.
1 For brevity, we use ’he’ and ’his’ whenever ’he or she’ and ’his or her’ are meant.



148 B.-N. Chen et al.

2.1 Using Lattices to Represent the Material Structure

There are seven types of pieces in Chinese Chess: king (K), guard (G), minister
(M), rook (R), knight (N), cannon (C), and pawn (P). A material combination
is defined as the set of pieces in a position, e.g., KCMKRP is a material com-
bination that the red player has the king, a cannon and a minister; the black
player has the king, a rook, and a pawn. To a material combination a score is at-
tached that describes its advantage without position information. Each material
combination has exactly one mirrored material combination such that the red
pieces and the black pieces are swapped. The material structure consists of a set
of material combinations. In our discussion, the material structure represents all
of the material combinations in our endgame knowledge base. Invariable nodes
are those modified or verified by a human expert. They cannot be changed by
our conflict reduction algorithm.

The material-combination structure can be viewed as a lattice. A lattice is a
partially ordered set(poset) in which all non-empty subsets have a join and a
meet, as defined in mathematical order theory. A join is the least upper bound
of an element or a subset; a meet is the greatest lower bound of an element or
a subset. All material combinations in Chinese Chess follow the piece additive
rule that for a material combination, adding pieces to a player cannot make
him be disadvantageous if we only consider the material combination, not the
specific positions. The piece additive rule also claims that removing a piece from
a material combination cannot be better than the original material combination.
By applying the piece additive rule, the material structure can be transformed
into a lattice which is a directed graph. The node in the lattice represents a
material combination. The edge connects two material combinations that differ
only in one piece. We define x → y as two adjacent nodes and the directed edge
represents that the red player is at least as advantageous in x as in y. In lattice,
x → y means that x and y are comparable and the meet of x is y.

2.2 Construction Strategy of Material Structure

In the lattice, the least element is KK. We always expand the material structure
by adding either a red piece or a black piece. The number of possible piece types
on one side is 35 × 6 = 1, 458. Totally, there are 1, 4582 = 2, 125, 764 possible
material combinations in Chinese Chess. An example of material structure is
shown in Fig. 1. A lattice can be divided into several levels. Each level contains
material combinations of the same piece number. In Chinese Chess, there are at
most 32 pieces and at least 2 pieces, two kings, in a position. Hence, there are
totally 31 possible levels in our lattice.

It is not always correct to give a score to the material combinations on each
side. For example, KPPKGG and KPPKMM are generally red-win endgames
when pawns are not yet moved to the palace of the opposite side in the starting
position of these endgames, but KPPKGM is generally a draw endgame. Thus,
we may conclude that KGM is better than KGG and KMM for defense. However,
KNPKGM and KNPKGG are generally red-win endgames but KNPKMM is a
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Fig. 1. An example of lattice structure for some endgames

draw endgame when the pawn stands in the last line of the palace of the opposite
side. The conclusion that KMM is better than KGG and KGM is inconsistent
with the last case.

The score value of a node is in the range of [0 − 9]. The values 0 (win), 1
(most win), 2 (advantage), 3 (slight advantage) represents the score that the
red side is in advantage, 4 represents that any one player has a chance to win,
5 means almost draw, 6 is oppsite to 3, 7 is opposite to 2, 8 is opposite to 1,
and 9 is opposite to 0. In our automatic endgame knowledge base construc-
tion, we first create a basic endgame knowledge base manually. A probablistic
method is used to evaluate the score value of the generated material combina-
tions. By using a systematic generating algorithm, we have constructed a large
endgame knowledge base. The endgame knowledge base is used by a middle-game
search algorithm to find paths to enter advantageous endgames by exchanging
pieces.

Inconsistency is defined as the case that score values of adjacent nodes which
violate the piece additive rule. The two nodes are called inconsistent nodes,
the corresponding edge is called inconsistent edge and the corresponding con-
nected node is called the Inconsistent neighbor. Inconsistent percentage of a node
indicates the number of inconsistent neighbors divided by the number of its
neighbors.

Although most of the score values in our endgame knowledge base are accurate,
only a little conflict is sufficient to let the search algorithm select wrong moves. To
resolve the problem, we propose a conflict reduction algorithm that reduces the
number of inconsistent nodes. When our algorithm cannot progress further, we ask
the help of a Chinese chess expert to do a small amount of modification. Then we
rerun our self-correcting algorithm. After some iterations of modification, we can
obtain a zero-conflict endgame knowledge base. To further increase correctness,
we ask our Chinese chess expert to verify a randomly selected sample to evaluate
the percentage of errors and propose further modifications.



150 B.-N. Chen et al.

Fig. 2. Examples of two adjacent inconsistent nodes. The number in each node is its
score value. The edge with a cross means an inconsistent edge.

3 Basic Conflict Reduction Algorithms

In our automatic-generated endgame knowledge base [5], there are some incon-
sistent material combinations that causes the search algorithm to exchange a
piece incorrectly. For example, consider two adjacent material combinations, as
shown in Fig. 2. To illustrate the concept of conflicts, we can find that the central
node, KCCKNCPGG, has a score value 3, and the leftmost node, KCCKNPGG,
has a score value 6. There is a conflict because the black side is more advan-
tageous when a black cannon is taken. The first material combination has four
inconsistent edges, so the inconsistent percentage is 80%. The second material
combination has only one inconsistent edge, and the inconsistent percentage
is 9.09%. In this example, the first material combination is more likely to be
incorrect and should be modified first.

We need a standard endgame knowledge base that is considered as “correct”
for the conflict reduction algorithm. The algorithm discovers and modifies the
nodes in the automatically generated endgame knowledge base that are incon-
sistent with some nodes in the standard endgame knowledge base.

3.1 Conflict Computation

If there is a conflict in a lattice, there must be some nodes having inconsistent
neighbors. A conflict computation procedure computes the number of inconsis-
tent neighbors of each nodes. When finishing the computation, information that
we actually want to know is (1) the inconsistent number and (2) information of
the inconsistency level. The level of inconsistency is relative to the inconsistent
percentage of the node. We define 10 levels of inconsistency, from level 0, level
1, ... , to level 9. Level 0 represents the inconsistent percentage in (0% − 10%],
level 1 represents (10% − 20%], etc. Information of the number of nodes is in
each inconsistency level. It simplifies the process of reducing conflicts.

Our idea is a greedy method that always modifies a node of the highest incon-
sistency level. We use inconsistent edge checking to find conflicts between nodes.
An inconsistent edge-checking algorithm has two targets: (1) two neighbor nodes,
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and (2) two mirrored material combinations. We implemented the piece additive
rule which is defined in Section 2.1 for the first target. For the second target, a
mirrored material combination pair in our lattice is virtually considered as the
same material combination. An inconsistent edge-checking algorithm can ensure
the consistency of mirrored material combinations.

The algorithm of computing conflicts straightforwardly uses inconsistent edge
checking to summary the inconsistency neighbors for each node. Computing
conflicts of the whole lattice can be performed in O(MN) time, where M is the
maximum number of the neighbors of a node, and N is the number of nodes.

3.2 Conflict Reduction Algorithm

The conflict reduction algorithm, shown in Algorithm 1, finds inconsistent nodes
in our lattice and modifies the score values of some nodes to reduce the number
of inconsistent nodes. It takes four steps to finish the work: (1) conflict compu-
tation, (2) candidate selection, (3) score value selection, and (4) modification.
Our algorithm repeats the four steps until no more candidate can be selected.
The first step, conflict computation, is described in Section 3.1. The next three
steps are described as follows.

procedure ConflictReduction()
do loop

err_num = ConflictComputation();
ResetUpdated(); // set the updated flag as not updated
if(err_num = 0 or no any modification)

break;
do loop

node = CandidateSelection();
if(no valid node)

break;
score = ScoreValueSelection(node);
Modify(node, score); // change score value

end loop
end loop

end procedure

Algorithm 1. Conflict reduction algorithm

The first step, candidate selection, chooses the node with the highest conflict
rank to be modified. Score value selection then tries all possible values and
computes the inconsistent percentage after modification. The value with the
minimum inconsistent percentage is selected. If two scores of a node have the
same minimum inconsistent percentage, we ask the help of our human expert.
A detailed discussion takes place in Section 4.3. During modification, we need
to update simultaneously the mirrored material combinations when modifying a
node to ensure their consistency.
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In our algorithm, an updated flag is used to avoid repeat selection of the
same candidate in one iteration. An invariable flag identifies whether a node
is modified by our 4-Dan expert and should be removed from the candidate
selection procedure.

4 Refinements

In this section, we introduce the diffusing algorithm (4.1) and other enhancing
techniques (4.2). We also discuss the verification issue of a consistent lattice
(4.3).

4.1 Diffusing Algorithm

A diffusing algorithm, as shown in Algorithm 2, is a recursive procedure that
searches the neighbor nodes for nodes with only one consistent possible value,
which is the value that is not inconsistent with any invariable nodes. These nodes
are trivial and should be modified first.

By executing the diffusing algorithm, all nodes with only one possible value
are modified first. In this way our algorithm attempts to reduce more conflicts.

procedure Diffusing(n)
// variable n represents the node to be diffused
// variable nn represents a neighbor node of variable n
if(n is updated before)

return;
for each nn of n do

(count, score) = ComputeRelativePossibleValue(nn, n);
if(count = 1)

Modify(nn, score);
Diffusing(nn);

end if
end for

end procedure

Algorithm 2. Diffusing algorithm

4.2 Ranking and Scoring Strategies

Subsequently, we rank the nodes in the lattice to indicate its degree of errors.
This is called the conflict rank. Our algorithm takes an element with the highest
rank to update its value. In the basic conflict-reduction algorithm, we use an
inconsistent percentage as its conflict rank. Here we define a better conflict rank:

V = Ni × Nn.

In the above formula, V represents conflict rank, Ni represents the number of
inconsistent neighbors, and Nn represents the number of neighbors. Instead of
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dividing by Nn, the new conflict rank is multiplied by Nn to emphasize the
importance of the number of neighbors.

In the step of score-value selection, we use the notion corrected score to mea-
sure the whole level of inconsistency. Our conflict-reduction algorithm always
selects the score value that minimizes the correct score. In our basic method, we
use the number of inconsistent nodes as a correct score. So, we have developed
a new correct score that favors small inconsistency levels as follows:

Vc =
9∑

i=0

2i × Ii.

In the formula, the value Vc means corrected score, Ii represents the information
of inconsistency level i (see Section 3.1).

By using the new corrected scores, nodes with large inconsistent percentages
are usually reduced to smaller percentages. The new corrected score improves
the ability of identifying better score values and thus decreases the probability
of fall into local minimum.

4.3 Final Verification

Now assume that we have obtained a consistent endgame knowledge base. Then,
still, there may be two types of errors in the lattice: (1) an fully isolated subset
of the lattice is incorrect in all its elements; and (2) there are errors in some
nodes that do not influence the consistency.

Checking by random sampling verification is a way to obtain the approxima-
tion of the correctness of the lattice. For this purpose, we select a small number
of nodes with a percentage p in the lattice randomly such that the distance of
any two selected nodes is at least k. The selected material combinations are ver-
ified by a human expert. If n error nodes are reported, the approximated value
of the whole set of error nodes is n/p. The modified data can also be used to
reduce the errors of the whole knowledge base.

5 Experimental Results

In this section, we use the practical endgame knowledge base in Contempla-

tion as our test data (5.1). Then (in 5.2) we present (1) the reduction ability of
the conflict reduction algorithms, (2) the correctness analysis by random sam-
pling verification, and (3) the comparison of the consistent endgame knowledge
base with its original version.

5.1 Experimental Design

Our test data is the endgame knowledge base used by our program, Contempla-

tion. There are three manually constructed endgame knowledge bases: END65,
END60, and END50. The number of nodes in END65, END60, and END50 are
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17,038, 422, and 1,499, respectively. The data to be tested is in our automatic
generated endgame knowledge base, i.e., END64, END59, and END49 defined by
methods as used in [5]. An extended endgame knowledge base is identified by the
number of the original knowledge base decreased by 1, i.e., END64, which is gen-
erated by extending END65, contains the neighbors of the nodes in END65. The
number of nodes in extended knowledge bases END64, END59, and END49 are
47,621, 2,722, and 3,938, respectively. Our practical endgame knowledge base,
ENDALL, combines six endgame knowledge bases, containing 69,595 nodes.

5.2 Results and Discussions

In the first experiment, we tried our methods on four endgame knowledge bases,
viz. END64, END59, END49, and ENDALL. There are two methods which we
would like to be compared: (1) basic conflict reduction algorithm (called BA),
and (2) the algorithm with all refinements (called RA). The results are shown in
Table 1. The number of iterations indicates the iterations needed for convergence.
An iteration means handling all inconsistent nodes once in the lattice. To test
the convergency, we need an extra iteration to ensure that no modifications are
performed in an iteration.

Table 1. Comparison of the reduction ability of the basic algorithm and the refined
algorithm. The ”error after BA” and the ”error after RA” columns show the number
of inconsistent nodes after performing the basic algorithm and the refined algorithm,
respectively.

DB size org error error after BA iterations error after RA iterations
END64 47,621 14,616 9,786 6 970 3
END59 2,722 1,786 1,330 3 166 2
END49 3,938 1,362 438 6 45 3

ENDALL 69,595 16,488 11,108 6 585 4

By using all refinement techniques, we obtain knowledge bases with much less
conflicts in less number of iterations than previously was the case. It reduces
the work of a human expert to verify and modify the endgame knowledge base
considerably.

In the second experiment, we prove the correctness of our endgame knowledge
base. We do so after we performed random sampling verification. We executed
three random sampling experiments. In each experiment, we used an algorithm
described in Section 4.3 to generate 695 different nodes with parameters k = 4,
and p = 1%. After the sampled nodes have been verified and modified, we
performed our conflict reduction algorithm with all refinement techniques on the
ENDALL knowledge base. Here we define the error distance as the difference
between the score value of the consistent endgame knowledge base and the score
value verified by our human expert. Because the score values 4 and 5 represent
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very similar classes of advantage, the error distance between them is set to zero.
In addition, the error distance between any score value and 4 is considered equal
to the error distance between that score value and 5. We recorded the error
distances of the modified data and checked whether it was inverted. An inverted
result is a result that is wrong on the side who has the advantage. For example,
a node that represents that the red side has an advantage and is marked as a
black win is an inverted result. The result of the full experiment is shown in
Table 2.

Table 2. The statistical analysis of the correctness in the zero-conflict endgame knowl-
edge base ENDALL. IR means inverted results. D represents error distance.

ErrNum D ≥ 4 D = 3 D = 2 D = 1 D = 0 IR
Sample1 92 0 2 15 75 0 1
Sample2 127 0 2 9 116 0 1
Sample3 99 0 2 16 80 1 0
Average 106.0 0.0 2.0 13.33 90.33 0.33 0.66

n/P 10600 0 200 1333 9033 33 66
% 15.23 0 0.28 1.91 12.97 0.00 0.00

Confidence 1533 0 200 1333 0 0 66
% 2.20 0 0.28 1.91 0.00 0.00 0.00

The probability of having an error distance of more than one is 2.20%. Note
that a node with a score value 4 or 5 cannot be inverted. Hence, inverted results
only happen when score values are less than 4 or more than 5. In other words,
inverted results happen when the distance is more than or equal to one. They
are also counted when the column of the distance is more than or equal to one.
Although the absolute correctness is 85.77%, which is acceptable, the correctness
with confidence is 97.70% ignoring one level difference. Evaluation of a material
combination as “win” or “win in most cases” is a subjective choice. Even a hu-
man master or grandmaster may have a subjective judgement in many practical
positions. Hence, we assume that a difference of 1 level is tolerable.

In Table 3, we show (1) the statistical comparison of the consistent endgame
knowledge bases after verification and (2) their original versions. Since different
original endgame knowledge bases may contain identical material combinations,
we have filtered them when merging endgame knowledge bases. The score val-
ues of identical material combinations is set as the material combinations that
first appear in the merging process. Hence, some material combinations may be
counted more than once. They may even contain different original score values.
For example, in END65, there are two errors with zero error distance, which
are KNNMKNNG and KNNGKNNM. There are also two errors with zero error
distance in END59, which are KCCGKCC and KCCKCCG. During the merging
operation, they are set as correct score values by chance, and the number of
errors with zero error distance in ENDALL becomes two.
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In total, we have modified 24,486 material combinations in the final consistent
endgame knowledge base. In the original endgame knowledge base, there are
1,652 errors of a distance more than or equal to four, 2,392 errors of a distance
three, 2,286 errors of a distance two, 18,154 errors of a distance one, two errors
between a score value 4 and 5, and 1,064 inverted results.

About 9.10% of the original ENDALL knowledge base contain errors of D ≥ 2;
about 26.09% of them contain errors of D = 1; there are no errors of D = 0;
about 1.53% of them contain inverted results.

Table 3. The statistical comparison of the original endgame knowledge bases and the
final version of the consistent endgame knowledge bases. IR means inverted results. D
represents error distance.

DB size ErrNum D ≥ 4 D = 3 D = 2 D = 1 D = 0 IR
END65 17,038 1,100 6 24 174 894 2 80
END60 422 48 2 6 8 32 0 8
END50 1,499 222 4 16 34 168 0 10
END64 47,621 20,908 1,056 2,042 1,952 15,858 0 708
END59 2,722 1,734 594 390 142 606 2 290
END49 3,938 1,982 60 32 50 1,840 0 50

ENDALL 69,595 24,486 1,652 2,392 2,286 18,154 2 1,064

6 Conclusions and Future Work

A complete mastering of the Chinese Chess endgame problem is a hard problem,
even today. We constructed an endgame knowledge base for our search algorithm
to identify which kinds of endgames are beneficial. In this paper, we propose a
conflict reduction algorithm to resolve the conflicts in our automatically gen-
erated endgame knowledge base. The strategy is effective when handling large
knowledge bases with a relatively small percentage of conflicts. The resulting
endgame knowledge base obtained is checked by a random sampling verification
and received high accuracy. We used this modified knowledge base in our pro-
gram, Contemplation, and found it to improve steadily its strength against
the previous version. Its correctness is sufficiently high for practical usage.

In the future, we will enhance our conflict-reduction algorithm to be more
sensible of advantage. For example, KCCKCPGG and KCCKCGG differ only
by one Pawn and they have score values 5 and 8, respectively. KCCKCRGG
and KCCKCGG differ by a Rook and they also have score values 5 and 8.
The degrees of conflict-free expectation of the two above cases are different.
In practical usage, we see the following. If the two cases are both inconsistent,
then the latter case has a more severe degree of conflict than the former case.
A second example is KRPKGGMM and KRPKGGM that are assigned 0 and
9 respectively when compared with the same material combinations who are
assigned 0 and 1, respectively. Although two cases include a conflict, the first
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score values are more severe because the difference of the score values is quite
obvious.

Combining the two representative examples, we can define a lattice with
weighted edges. The weight is defined as follows:

w = Dm(m1, m2) × Ds(Score(m1), Score(m2))

The variable w represents the weight which indicates the degree of conflict.
Function Dm computes the difference between the two material combinations
m1, and m2; function Ds computes the difference between the two score values
of m1, and m2. The weight value follows the order: rook > cannon = knight >
pawn > guard = minister. The weight of guards and ministers should be ad-
justed dynamically: when the player has cannons, the weight values of guards
and ministers should be bigger than the ones without. A function score retrieves
the score value of a material combination. When a conflict occurs, the node with
a larger weight value first needs to be taken care of.
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Abstract. In 2005, Wu and Huang [9] presented a generalized family of k-in-a-
row games. The current paper simplifies the family to Connect(k, p). Two  
players alternately place p stones on empty squares of an infinite board in each 
turn. The player who first obtains k consecutive stones of his1 own horizontally, 
vertically, diagonally wins. A Connect(k, p) game is drawn if both have no win-
ning strategy. Given p, this paper derives the value kdraw(p), such that Con-
nect(kdraw(p), p) is drawn, as follows. (1) kdraw(2) = 11. (2) For all p ≥ 3, kdraw(p) 
= 3p+3d+8, where d is a logarithmic function of p. So, the ratio kdraw(p)/p is 
approximate to 3 for sufficiently large p. To our knowledge, our kdraw(p) are 
currently the smallest for all 2 ≤ p < 1000, except for p = 3.  

1   Introduction 

A generalized family of k-in-a-row games, called Connect(m, n, k, p, q), were intro-
duced and presented by Wu et al. [9, 10]. Two players, named Black and White, alter-
nately place p stones on empty squares2 of an m×n board in each turn, except for that 
Black plays first and places q stones initially. The player who obtains k consecutive 
stones of his own first wins. Both players tie when the board is filled up without  
one winning. For example, Tic-tac-toe is Connect(3, 3, 3, 1, 1), Go-Moku in the free 
style (a traditional five-in-a-row game) is Connect(15, 15, 5, 1, 1), and Connect6 [10] 
played on the traditional Go board is Connect(19, 19, 6, 2, 1).  

In the past, many researchers were engaged in understanding the theoretical values 
of Connect(m, n, k, p, q) games. Allis et al. [1, 2] solved Go-Moku with Black win-
ning. Van den Herik et al. [6] and Wu et al. [9, 10] also mentioned several solved 
games for k-in-a-row games.  

This paper is interested in drawn Connect(m, n, k, p, q) games, where both players 
have no winning strategy. More specifically, this paper only focuses on Connect(∞, 
∞, k, p, p) games, denoted by Connect(k, p) in this paper. Following strategy-stealing 
arguments raised by Nash (cf. [3]), Wu et al. [10] showed that White has no winning 
strategy. In order to prove whether games are drawn, we only need to show that Black 
has no winning strategy either. Given p, this paper derives the value kdraw(p), such that 

                                                           
1  For brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant. 
2  Practically, stones are placed on empty intersections of Renju or Go boards. In this paper, 

when we say squares, we mean intersections.  
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Connect(kdraw(p), p) is drawn. Since a drawn Connect(k, p) game also implies a drawn 
Connect(k+1, p), the value kdraw(p) should be as small as possible.  

In the past, Zetters [11] derived that Connect(8, 1) is drawn. Pluhar derived tight 
bounds kdraw(p) = p+Ω(log2p) for all p ≥ 1000 (cf. Theorem 1 in [8]). However, the 
requirement of p ≥ 1000 is unrealistic in real games. Thus, it becomes important to 
obtain tight bounds when p < 1000. Recently, Hsieh and Tsai [7] derived that kdraw(p) 
= 4p+7 for all positive p. So, the ratio R = kdraw(p)/p is approximate to 4.  

In this paper, Theorem 1 (below) shows that kdraw(2) = 11, while the result in [7] is 
15. Theorem 2 derives a general bound kdraw(p) = 3p+3d+8 for all p ≥ 3, where d is a 
logarithmic function of p, namely P(d–1) < p ≤ P(d) and P(d) = 6×2d–d–4. When 
compared with [7], our kdraw(p) are smaller for all p ≥ 5, and the same for p = 4. The 
ratio R = kdraw(p)/p = 3+(3d+8)/p is approximated to 3, which is smaller than 4 in [7]. 
The proofs of both Theorem 1 and Theorem 2 are given is Section 2 and Section 3, 
respectively. Some open problems are given in Section 4.  

Theorem 1. As described above, Connect(11, 2) is drawn.                                           ▌ 

Theorem 2. Consider all p ≥ 3. Let P(d–1) < p ≤ P(d), where P(d) = 6×2d–d–4. Then,  
 

Connect(3p+3d+8, p) are drawn.                                                                                   ▌ 

2   Proof of Theorem 1 

Before proving Theorem 1, we define a new game, called a ConnectLine game, as 
defined in Definition 1.  

 

Fig. 1. The game board B2 

Definition 1. On a game board B as in Connect(k, p), a set of vertically, horizontally 
and diagonally straight lines are designated, marked as solid lines as illustrated in Fig. 1. 
Given such a game board B, the game ConnectLine(B, p) is defined as follows.  

1. The game rules are the same as Connect(k, p), except for the following. 
2. Black is allowed to place p' stones on B, where p' ≤ p. In next turn, White is al-

lowed to place p'' stones, where p'' ≤ p'.  
3. Black wins when for some line all the squares of it are occupied by black stones.  

The game ConnectLine(B, p) is drawn if Black has no winning strategy3, that is,  
 

White has some strategy such that Black cannot win in all cases.                                 ▌ 

The game boards described in Definition 1 can be viewed as hypergraphs [3, 5]. All 
squares are vertices, while all solid lines are so-called hyperedges. The goal of Black 
is to win by occupying all vertices of some hyperedge.  

                                                           
3 Based on the strategy-stealing argument, White has no winning strategy.  
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Let B2 denote the game board shown in Fig. 1. Lemma 1 (below) shows that Con-
nectLine(B2, 2) is drawn. From Lemma 1, Theorem 1 is satisfied for the following 
reason.  

    

(a)                                  (b) 

Fig. 2. (a) Partitioning the infinite board into disjoint B2. (b) Covering one complete solid line 
in each segment of 11 consecutive black stones.  

First, carefully partition the infinite board into an infinite number of disjoint B2 
(without overlap and vacancy) as shown in Fig. 2 (a). Then, for White, follow the 
strategy on each B2 as in Lemma 1, such that none of the solid lines are occupied by 
all black stones. From Fig. 2 (b), we observe that all segments of consecutive 11 
squares vertically, horizontally, and diagonally must cover one complete solid line 
among these B2. Since none of these solid lines are occupied by all black stones, none  
 

of these segments contains all 11 black stones. Thus, Connect(11, 2) is drawn.           ▌ 

Lemma 1. As described above, ConnectLine(B2, 2) is drawn.  

1
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(a)                                  (b) 

Fig. 3. (a) White’s first defensive moves in Case 1, and (b) in Case 2.1 

Proof. A program was written to verify that none of the solid lines in B2 are occupied  
 

by all black stones.                                                                                                          ▌ 

In the remainder of this section, we simply give an intuition for the correctness of a 
Lemma 1. The first black move is classified into the following cases.  

1. Black only places one stone in the board as illustrated in Fig. 3 (a).  
2. Black places two stones.  
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2.1. Both are placed on the middle two squares as those marked “1” in Fig. 3 (b).  
2.2. One and only one is placed on either of the two middle squares.  
2.3. Neither of the two stones is placed on the two middle squares.  

In Case 2.1, White replies two stones as shown in Fig. 3 (b); and in all the other cases, 
place one stone on one of the middle two squares. Here, we only illustrate Case 1 in 
Fig. 3 (a) and Case 2.1 in Fig. 3 (b).  

111         

111

 

(a)                                  (b) 

Fig. 4. The active vertical and diagonal lines after White’s first move. (a) Case 1. (b) Case 2.1.  

After the first White move is made, Fig. 4 shows the boards with active vertical 
and diagonal lines only. An active line is a line without any white stones yet. A game 
board is called a tree-based game board (or simply a tree in a hypergraph [3, 5]), if all 
the solid lines form no cycles in the board as illustrated in both cases in Fig. 4. 
Lemma 2 (below) shows that a game is drawn if its game board is tree-based with line 
lengths no more than four and with at most one black stone. Thus, from Lemma 2, the 
two games in Fig. 4 are drawn.  

Lemma 2. Assume that there exists at most one black stone on a tree-based game 
board BT and that all the line lengths in BT are no more than four. Then, Connect-
Line(BT, 2) is drawn.  

Proof. Assume that there exists one black stone on some square s. Let Black’s next 
move place one stone on another square s'. Since the game board is tree-based, we 
find at most one path (a sequence of lines) from s to s’ and then place one stone on 
one of these lines in the path, if any. (Note that if both s and s' are on the same line, 
White simply places on that line.) Thus, BT is broken into two tree-based game boards 
or more, each of which contains at most one black stone. If Black’s next move places 
two stones, simply use two stones to break the game board into three or more as  
, 

above. Thus, this lemma holds by induction.                                                                 ▌ 

However, for Lemma 1, the proof still needs to exclude the case that some horizontal 
line is occupied by all black stones. The proof for this becomes tedious. In practice, 
we wrote a program to prove it by exhaustedly searching all cases. The details are 
omitted in this paper.  

3   Proof of Theorem 2 

In this proof, similar to that of Theorem 1, the infinite board is partitioned into an 
infinite number of disjoint game boards BZ(L) (without overlap and vacancy) as 
shown in Fig. 5 (below). The game board BZ(L) is shown in Fig. 6 (a) (below), where 
all the lengths of solid lines are L and the game board extends infinitely to both sides.  
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Fig. 5. Partitioning the infinite board into disjoint BZ(L) 

… …… …

 

(a) BZ(L) 

… …… …

 

(b) BN(L) 

Fig. 6. Two game boards, BZ(L) and BN(L) 

Similarly, we observe from Fig. 5 that all segments of 3L–1 consecutive squares 
vertically, horizontally, and diagonally must cover one solid line among these BZ(L). 
Assume that the game ConnectLine(BZ(L), p), also denoted by ConnectBZ(L, p) for 
simplicity, is drawn, that is, White has some strategy such that none of the solid lines 
in BZ(L) are occupied by all black stones. Thus, by following this strategy on each 
BZ(L), White prevents Black from occupying any segment of 3L–1 consecutive 
squares completely. Thus, Connect(3L–1, p) is drawn and Corollary 1 is satisfied.  

Corollary 1. As described above, if ConnectBZ(L, p) is drawn, then Connect(3L–1, p)  
 

is drawn.                                                                                                                          ▌ 
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The rest of the proof is outlined as follows. In Subsection 3.1, we show that the game 
board BZ(L) is isomorphic to BN(L) as shown in Fig. 6 (b), in the sense of hypergraph 
isomorphism [3, 5]. Most importantly, from this, Subsection 3.1 shows that Corollary 
2 is satisfied. Similarly, let ConnectBN(L, p) denote the game ConnectLine(BN(L), p). 
In the rest of the subsections, we prove that Lemma 4 (below) holds. Thus, Theorem 2 
is satisfied from Corollary 2 and Lemma 4. For simplicity of discussion, Subsection 
3.2 first proves Lemma 3, simplified from Lemma 4. Subsection 3.3 then completes  
 

the proof of Lemma 4.                                                                                                    ▌ 

Corollary 2. As described above, if ConnectBN(L, p) is drawn, then Connect(3L–1,  
 

p) is drawn.                                                                                                                     ▌ 

Lemma 3. For all p = 5×2d–d–4, where d ≥ 0, ConnectBN(p+d+3, p) are drawn.       ▌ 

Lemma 4. Consider all p ≥ 1. Let P(d–1) < p ≤ P(d), where P(d) = 6×2d–d–4. Then,  
 

ConnectBN(p+d+3, p) are drawn.                                                                                  ▌ 

3.1   Isomorphism  

Both game boards BZ(L) and BN(L) are hypergraph isomorphic [3, 5] by the following 
mapping. Let every L neighboring vertical or horizontal solid lines be grouped into 
one zone in both BZ(L) and BN(L) as shown in Fig. 7 (a) and (b) respectively. In both 
game boards, each square is set to a coordinate (x, y, z), where the square is in the x’th 
column (from left) and in the y’th row (from bottom) in zone z. Let each square at (x, 
y, z) on BZ(L) be mapped into the one at (x, y, z) on BN(L) when z is even, and at (y, x, 
z) on BN(L) when z is odd. Let all solid lines (or hyperedges) on BZ(L) be mapped into 
those on BN(L) accordingly, except for that the i’th horizontal line (from bottom) on 
BZ(L) is mapped to the i’th vertical line (from left).  

(1,1,0)

(2,3,0)

(4,4,0) (4,4,1)

(2,3,1)

(1,1,1) (1,1,2) (1,1,3)(3,1,2)

(1,3,2) (2,3,2)

(2,2,2)

z=0 z=1 z=2 z=3

(1,1,0)

(2,3,0)

(4,4,0) (4,4,1)

(2,3,1)

(1,1,1) (1,1,2) (1,1,3)(3,1,2)

(1,3,2) (2,3,2)

(2,2,2)

(1,1,0)

(2,3,0)

(4,4,0) (4,4,1)

(2,3,1)

(1,1,1) (1,1,2) (1,1,3)(3,1,2)

(1,3,2) (2,3,2)

(2,2,2)

z=0 z=1 z=2 z=3

 

(a) BZ(4) 
 

(1,1,0)

(2,3,0)

(4,4,0) (4,4,1)

(3,2,1)

(1,1,1) (1,1,2) (1,1,3)(3,1,2)

(1,3,2)

(3,2,3)(2,2,2)

z=0 z=1 z=2 z=3

(1,1,0)

(2,3,0)

(4,4,0) (4,4,1)

(3,2,1)

(1,1,1) (1,1,2) (1,1,3)(3,1,2)

(1,3,2)

(3,2,3)(2,2,2)

(1,1,0)

(2,3,0)

(4,4,0) (4,4,1)

(3,2,1)

(1,1,1) (1,1,2) (1,1,3)(3,1,2)

(1,3,2)

(3,2,3)(2,2,2)

z=0 z=1 z=2 z=3

 

(b) BN(4) 

Fig. 7. Coordinate flipping between BZ(4) and BN(4) 
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Lemma 5. Consider both ConnectBZ(L, p) and ConnectBN(L, p) games over all L and 
p. Then, ConnectBZ(L, p) is drawn if and only if ConnectBN(L, p) is drawn.  

Proof. According to the above mapping from BZ(L) to BN(L), placing one stone on (x, y, 
z) in BZ(L) is equivalent to placing one stone on (y, x, z) in BN(L), and vice versa. Since 
both BZ(L) and BN(L) are hypergraph isomorphic for the mapping, some solid line (hy-
peredge) of BZ(L) is occupied by all black stones, if and only if the mapped solid line of  
< 

BN(L) is. Therefore, ConnectBZ(L, p) is drawn if and only if ConnectBN(L, p) is drawn.  ▌ 
 

Corollary 2 is satisfied directly from Corollary 1 and Lemma 5.  

3.2   Proof of Lemma 3 

Lemma 3 is proved by induction. Lemma 6 (below) shows the initial case that 
ConnectBN(4, 1) is drawn. Lemma 7 shows that if ConnectBN(L, p) is drawn,  
then ConnectBN(2L+1, L+p) is drawn too. From the two lemmas, Lemma 3 holds.  
,  

Subsection 3.2.1 proves Lemma 6, while Subsection 3.2.2 proves Lemma 7.          ▌ 

Lemma 6. ConnectBN(4, 1) is drawn.                                                                           ▌ 

Lemma 7. Assume that ConnectBN(L, p) is drawn. Then, ConnectBN(2L+1, L+p) is  
 

drawn too.                                                                                                                       ▌ 

3.2.1   Drawn ConnectBN(4, 1)  
Let us shorten the solid lines of BN(4) into BN–(4) as shown in Fig. 8. Since BN–(4) is a 
tree-based game board and none of the black stones exists initially, BN–(4) is drawn from  
< 

Lemma 2. Obviously, this implies that BN(4) with extra longer lines is drawn too.          ▌ 

      

(a)                                  (b)  

Fig. 8. (a) BN(4). (b) BN–(4), the same as BN(4) except for that all the solid lines are shorten. 

3.2.2   Induction 
In order to prove Lemma 7, we need to consider game boards with extra exclusive 
squares as defined in Definition 2.  

Definition 2. In a game board B as described in Definition 1, some of the squares 
each of which belongs to one distinct line only are designated as exclusive squares, as 
illustrated with solid bullets in Fig. 9 (a) and (b) (below). The game ConnectLX(B, b) 
is the same as ConnectLine(B, ∞), except for the following additional rules. 

 



 On Drawn K-In-A-Row Games 165 

1. Black is excluded to place stones on these exclusive squares. 
2. Black wins if some active line contains more than b black stones in Black’s turn4.  

The game is drawn if White has a strategy such that Black does not win in all cases.  ▌ 

m

n

m

n     

LLL

 

(a)                                (b)  

Fig. 9. Two game boards with exclusive squares (solid bullets). (a) BrecX(m, n). (b) BNX(L). 

In order to prove this theorem, we need to consider the following two game boards. 
One game board, denoted by BrecX(m, n), consists of m horizontal lines and n vertical 
lines each with one extra exclusive square, as shown in Fig. 9 (a). The other game 
board, denoted by BNX(L), simply extends each line of BN(L) by one exclusive square, 
as shown in Fig. 9 (b). For simplicity of discussion, let ConnectBNX(L, b) denote the 
game ConnectLX(BNX(L), b). Both Lemma 8 and Lemma 9 (below) show useful prop-
erties related to the two boards, respectively. These properties result in an important 
lemma, Lemma 10.  

From Lemma 9, since ConnectBN(L, p) is drawn (from the assumption of Lemma 
7), ConnectBNX(L, L–p–1) is drawn. Thus, we obtain that ConnectBN(2L+1, 2L–(L–
p–1)–1) is drawn from Lemma 10, that is, ConnectBN(2L+1, L+p) is drawn. Thus,  
 

Lemma 7 holds.                                                                                                              ▌ 

Lemma 8. As described above, ConnectLX(BrecX(m, n), 1) is drawn over all m and n.  

Proof. It suffices to prove that White has a strategy such that at most one of the active 
lines contains black stones and the active line, if it exists, contains at most one black 
stone in Black’s turn. Let variable R(i) and C(j) be the numbers of black stones in the 
i’th horizontal line and the j’th vertical line respectively, if the lines are still active, 
and otherwise be 0 (if not active). Let variable N be the summation over all R(i) and 
C(i). Then, it suffices to prove that White has a strategy such that N ≤ 1 in all Black’s 
turns.  

Assume by induction that N ≤ 1 in some Black’s turn. Assume that Black places 
only one stone for each move M. Obviously, the move M increases N by at most two. 
That is, N ≤ 3. White follows a strategy S to make moves such that N ≤ 1 as follows.  

1. Let Black place one stone on square s at row r and column c.  
2. In the case of N ≤ 2, simply block one active line with some black stone by plac-

ing one white stone on the exclusive square in that line. Thus, in this case, N is at 
most one.  

                                                           
4  In a game, when we say in Black’s turn (White’s turn), we mean the moment after White 

(Black) makes a move and before Black (White) makes the next move. 
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3. In the case of N = 3, if some active line contains two black stones, simply block 
the active line by placing one white stone on the exclusive square in that line. 

4. In the rest case that N = 3 and that none of active lines contains two black stones, 
assume some R(r') = 1 where r' ≠ r without loss of generality. Thus, the square s' 
at row r' and column c (both lines are active) must be empty (otherwise, two black 
stones in the column as at Step 3). Therefore, simply place one white stone on s'. 
Since the stone blocks the two active lines in row r' and column c, N is back to 
one.  

However, if Black makes a move with several black stones at a time, say t black 
stones, we separate the move into t sub-moves each with one stone only. Then, White 
pretends that Black made sub-moves one by one, and therefore follows the above 
strategy S to place stones, except for the following case. If White is to place one stone 
on an empty square s' at Step 4 as above, but one of the subsequent sub-moves M' 
places one black stone on it, the strategy needs to be changed as follows.  

5. Place two white stones respectively on the exclusive squares of the two active 
lines in row r' and column c containing s'. Thus, N is back to one too. Besides, 
when Black play M', White does not need to place any stones. Thus, the two white 
stones together are viewed as a reply to the two black stones at sub-moves M  
and M'.  

 
From the above strategy, N ≤ 1 is maintained in Black’s turn. Thus, this lemma holds.   ▌ 

Lemma 9. As described above, assume that the game ConnectBN(L, p) is drawn. 
Then, ConnectBNX(L, L–p–1) is drawn.  

Proof. Since ConnectBN(L, p) is drawn, White has some strategy S such that all ac-
tive lines have at most L–p–1 black stones in Black’s turn. Otherwise, for some active 
line with at least L–p black stones, Black wins by simply placing p stones on this line.  

In the game ConnectBNX(L, L–p–1), if Black still places at most p black stones for all 
moves, then White simply follows strategy S (without placing stones on exclusive 
squares) such that all active lines in BNX(L) contains at most L–p–1 black stones in all 
Black’s turns. However, if Black makes a move with more than p black stones, we 
separate the move into several sub-moves, each with at most p black stones. Then, 
White pretends that Black made sub-moves one by one, and for each sub-move M 
simply follows S to play with the following exceptional case. White follows S to place 
one white stone on an empty square s, but some of the subsequent sub-moves M' will 
place one black stone, the strategy is changed as follows. 

1. Place two white stones respectively on the exclusive squares of the two lines con-
taining s, instead. The reason is similar to that in Step 5 in Lemma 8. Since all the 
lines containing s are no longer active, the stone at s can be ignored in M'. Let the 
stone at s be added into M and removed from M'. Thus, White’s reply to M keeps 
Black from containing more than L–p–1 black stones. Although White’s reply 
uses one more stone, sub-move M has one more stone too.  
 

Thus, all active lines in the game ConnectBNX(L, L–p–1) still have no more black 
stones than those in the game ConnectBN(L, p). That is, all active lines in the game 
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ConnectBNX(L, L–p–1) have at most L–p–1 black stones. That is, ConnectBNX(L,  
< 

L–p–1) is drawn.                                                                                                             ▌ 

Lemma 10. Assume that ConnectBNX(L, b) is drawn, where 0 < b < L. Then, Con-
nectBN(2L+1, 2L–b–1) is drawn too. 

L

2L+1

L+1

L

2L+1

L+1

 

Fig. 10. Dividing BN(2L+1) into dark and light gray zones 

Proof. It suffices to prove that White has some strategy such that all active lines in 
BN(2L+1) contain at most b+1 black stones in all Black’s turns. Now, divide 
BN(2L+1) into two zones, dark and light gray zones, as shown in Fig. 10. We want to 
prove the property: all active lines in BN(2L+1) contain at most one black stone in the 
light gray zone and at most b in the dark gray zone in all Black’s turns. By induction, 
we assume that this property is satisfied in Black’s last turn. Since Black places at 
most 2L–b–1 black stones in the next move, all active lines contain at most (2L–b–
1)+(b+1) = 2L (< 2L+1) black stones. Thus, all active lines still have empty squares 
in White’s turn, which will be used as exclusive squares, whenever needed below.  

In the light gray zone, each parallelogram, a (L+1)×(L+1) matrix of squares, is trans-
formed into BrecX(L+1, L+1) by adding an extra exclusive square into each active line. 
Let White follow the strategy given in Lemma 8 to defend in the parallelogram. (Note 
that White places on an empty square in the corresponding active line in BN(2L+1) 
whenever required to place on the exclusive squares described in Lemma 8.) Thus, 
from Lemma 8, at most one of the active lines contains black stones and at most one 
black stone in the parallelogram in Black’s next turn. In brief, each active line in the 
parallelogram (BrecX(L+1, L+1)) contains at most one black stone.  
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(a)                 (b)  

Fig. 11. (a) Half of the dark gray zone. (b) Squeezing the zone in (a) into a BN(L). 
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In the dark gray zone, we consider each half of them as shown in Fig. 11 (a), and 
then squeeze them into a BN(L) game board in Fig. 11 (b). The squeezed BN(L) is 
transformed into BNX(L) by adding an extra exclusive square into each active line. 
From the assumption of this lemma, White has a strategy in game ConnectBNX(L, b) 
such that all active lines in BNX(L) contain at most b black stones in Black’s turn. 
Similarly, White can place on any empty square in the corresponding active line in 
BN(2L+1) whenever placing on the exclusive squares in the strategy. It is concluded  
, 

that each active line in the dark gray zone contains at most b black stones.                  ▌ 

3.3   Proof of Lemma 4 

In order to solve all p, we first investigate some small p and, second, generalize both 
Lemma 7 and Lemma 10 into Lemma 11 and Lemma 12 (below) as follows. First, 
both ConnectBNX(2, 1) and ConnectBNX(3, 2) are drawn from Lemma 13, and Con-
nectBNX(4, 2) is drawn from both Lemma 6 and Lemma 9. From these drawn Con-
nectBNX games and Lemma 12, we obtain that ConnectBN(5, 2), ConnectBN(7, 3)  
and ConnectBN(8, 4) are drawn. Then, from the above drawn ConnectBN games,  
we derive that Lemma 4 holds for all p > 4 by applying Lemma 11 recursively. The  
 

details are omitted.                                                                                                          ▌ 

Lemma 11. Assume that both ConnectBN(L1, p1) and ConnectBN(L2, p2) are drawn. 
Let p' = min(L2+p1, L1+p2). Then, ConnectBN(L1+L2+1, p') is drawn too.  

Proof. Since both ConnectBN(L1, p1) and ConnectBN(L2, p2) are drawn, both Con-
nectBNX(L1, L1–p1–1) and ConnectBNX(L2, L2–p2–1) are drawn from Lemma 9. From 
Lemma 12 (below), ConnectBN(L1+L2+1, p') is drawn too, since L1+L2–max(L1–p1–1,  
 

L2–p2–1)–1 = min(L2+p1, L1+p2) = p'.                                                                                ▌ 

Lemma 12. Assume that both ConnectBNX(L1, b1) and ConnectBNX(L2, b2) are 
drawn, where 0 < b1 < L1 and 0 < b2 < L2. Let b' be max(b1, b2). Then, Con-
nectBN(L1+L2+1, L1+L2–b'–1) is drawn too.  

L1+L2+1

L2

L1

L1+L2+1

L2

L1

 

Fig. 12. Dividing BN(L1+L2+1) into dark and light gray zones 

Proof. This proof is similar to that in Lemma 10. Divide BN(L1+L2+1) into dark and 
light gray zones, as shown in Fig. 12. First, consider the active lines covering the dark 
gray zones with larger triangles in BN(L1+L2+1). For the same reason described in 
Lemma 10, each of the active lines contains at most one black stone in the light and at 
most b1 in the dark in all Black’s turns. Similarly, for the active lines covering the 
dark with smaller triangles in BN(L1+L2+1), each of the active lines contains at most 
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one in the light and at most b2 in the dark in all Black’s turns. Thus, each active line 
contains at most 1+max(b1, b2) = 1+b' black stones in all Black’s turns. Since Black 
places at most L1+L2–b'–1 black stones, Black does not connect to L1+L2+1. Thus,  
 

ConnectBN(L1+L2+1, L1+L2–b'–1) is drawn.                                                                ▌ 

Lemma 13. Both ConnectBNX(2, 1) and ConnectBNX(3, 2) are drawn. 

Proof. Omitted in this paper.                                                                                          ▌ 

4   Future Work 

This paper presents tighter bounds kdraw(p) for 5 ≤ p < 1000 and p = 2. More problems 
are still open and are as follows.  

• Derive lower kdraw(p) for p < 1000, especially for small p, e.g., 1 ≤ p ≤ 10. These 
problems are more realistic in real games. 

• Derive general tight bounds that are smaller than those in this paper and those in 
[8] simultaneously.  
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Abstract. The past decades have witnessed a growing interest in re-
search on deductive games such as Mastermind and AB game. Because
of the complicated behavior of deductive games, tree-search approaches
are often adopted to find their optimal strategies. In this paper, a gen-
eralized version of deductive games, called 3 × n AB games, is intro-
duced. However, traditional tree-search approaches are not appropriate
for solving this problem since it can only solve instances with smaller
n. For larger values of n, a systematic approach is necessary. Therefore,
intensive analyses of playing 3×n AB games in the worst case optimally
are conducted and a sophisticated method, called structural reduction,
which aims at explaining the worst situation in this game is developed
in the study. Furthermore, a worthwhile formula for calculating the opti-
mal numbers of guesses required for arbitrary values of n is derived and
proven to be final.

1 Introduction

With the rapid increase in the need of encryption, it becomes urgent to de-
velop an efficient mechanism of cryptanalysis. A kind of cryptanalysis, differen-
tial cryptanalysis, however, bears resemblance to deductive games in accordance
with the analysis by Merelo-Guervos et al. [1]. In other words, deductive games
can be regraded as abstract models of cryptanalysis problems and any results
of deductive games may be applied to cryptography or related combinatorial
optimization problems.

There are two players invloved in a deductive game. They are called the
codemaker and the codebreaker, respectively. In the beginning of the game, the
codemaker thinks of a secret code in mind and afterwards, the codebreaker tries
to identify this secret code by guessing continuously. As long as the codebreaker
makes a guess, the codemaker will give him1 a response to describe the similarity
between this guess and the secret code. The mission of the codebreaker is to
obtain the code and minimize the number of guesses required at the same time.

More precisely, an m × n deductive game means that each possible secret
code in the game is composed of m digits while every digit has n possibilities
1 For brevity, we use ’he’ and ’his’ whenever ’he or she’ and ’his or her’ are meant.

J. van den Herik and P. Spronck (Eds.): ACG 2009, LNCS 6048, pp. 170–181, 2010.
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(symbols). Without loss of generality, the set of these n symbols is defined as S =
{0, 1, 2, ..., n− 1}. Assumee that the codemaker has a secret code c = c1c2...cm

in mind and the codebreaker makes a guess g = g1g2...gm, where si, gj ∈ S, ∀i, j.
Then, the codemaker will give a response [A, B], where A and B are defined as
follows.

– A = |{i : ci = gi}| , ∀i = 1, ..., m. Thus, A means the number of symbols
which appear in both c and g and meanwhile, every symbol occupies the
same position in both c and g.

– B =
∑n

j=0 min (pj , qj) − A, where pj = |{i : ci = j}| and qj = |{i : gi = j}|.
In other words, B represents the number of symbols which occur in both c
and g but the positions of these symbols in c and g do not match.

Besides the above definitions, there is one additional characteristic to distin-
guish two families of deductive games. One of the two is Mastermind, in which
repeated symbols are allowed in a secret code. The other is AB game, in which
all symbols within a code are distinct. Note that the numbers of all possible
responses given by the codemaker and all possible guesses the codebreaker can
make are calculated as follows.

– For an m×n deductive game, the codemaker may give one of these responses
which are [m, 0], [m−1, 0], [m−2, 2], [m−2, 1], [m−2, 0], ..., [m−i, i], ..., [m−
i, 0], ..., [0, m], ..., [0, 0]. So, the total number of responses is 1 + 1 + 3 + 4 +
5 + ... + (m + 1) = m (m + 3) /2.

– Obviously, there are nm secret codes in Mastermind and n!/ (n − m)! codes
in AB game.

In this study, 3×n AB games are investigated and analyzed, i.e., the case of m = 3
is discussed here. Hence, the number of all possible responses is 9 and these re-
sponses are [3, 0], [2, 0], [1, 2], [1, 1], [1, 0], [0, 3], [0, 2], [0, 1], and [0, 0] respectively.
The number of all possible secret codes equals to n (n − 1) (n − 2) as well.

For example, assume that the codemaker choose c = 215 as a secrete code
and meanwhile, the codebreaker makes a guess g = 012. Then, the codemaker
will offer a response [1, 1].

This paper consists of six major parts. In Section 2, previous surveys are con-
ducted. Section 3 provides some terminologies and notations. The optimal guess
for the codebreaker in each turn is analyzed in Section 4. The worst situation
caused by the codemaker is discussed in Section 5. Section 6 derives a theorem,
which can calculate the optimal number of guesses for 3 × n AB games in the
worst case and some conclusions are also given.

2 Preliminaries

Two well-known deductive games are Mastermind and AB game, of which the
dimensions are 4× 6 and 4× 10, respectively. The former is popular in America
while the later is widespread in England and Asia. AB game is called “Bulls and
Cows” in some places as well.
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There have been much research on Mastermind and AB game over past several
decades since Knuth [2] first investigated them. Knuth also proposed a worst-
case optimal strategy of Mastermind, where the maximum number of guesses is
5. Meanwhile, its expected-case number of guesses is 4.478. Later, many studies
for finding better strategies of Mastermind in the expected case were conducted.
For example, Irving [3], Neuwirth [4], and Norvig [5] improved the expected-case
strategies, in which the required guesses are 4.369, 4.364, and 4.47 in average,
respectively. Koyama and Lai [6] demonstrated an optimal strategy in the ex-
pected case for Mastermind eventually while the expected number of guesses is
about 4.34. Rosu [7] subsequently proposed an alternative algorithm to obtain
its optimal strategy as well. Afterwards, a new heuristics for Mastermind was
suggested by Barteld [8] and outperformed the conventional heuristics. Recently,
an advanced framework to seek the optimal strategy for Mastermind was sug-
gested by Huang et al. [9] as well, and this algorithm is innately superior to
traditional ones since branch-and-bound pruning is adopted. There were also
other approaches that emphasized the efficiency of determining good strategies
such as Shapiro [10] and Rosu [7]. However, the qualities of solutions may be
often worse than those of sophisticated methods because the simple approaches
may not take sufficient time to consider all possible strategies carefully. In re-
search on 4× 10 AB game, Chen et al. [11] first obtained an optimal strategy in
the worst case and showed that the maximum number of guesses is 7.

For the deductive games with higher dimensions, meta-heuristic algorithms
are usually developed to solve them. For instance, Kalisker and Camens [12],
Singley [13], Chen et al. [14], and Berghman et al. [15] proposed several meta-
heuristic approaches to deal with Mastermind with different dimensions. One
crucial research worthy of mention is Chen et al. [14]. This might be a promising
result as it is the first approximate approach to achieve a near-optimal result
for 4× 6 Mastermind in the expected case. Although these methods often oper-
ate efficiently and effectively, they are not able to guarantee to attain optimal
strategies.

For those deductive games with smaller dimensions, tree-search approaches
or heuristics are often adopted to find their optimal strategies. However, these
common methods are not appropriate for solving deductive games with higher
dimensions. Hence, a systematic theoretical analysis, called graph-partition ap-
proach, was used by Chen et al. to investigate 2 × n AB games [16] and 2 × n
Mastermind [17]. Optimal results of the two games in the worst and expected
case were obtained eventually. Goddard [18] offered some basic discussions of
m × n Mastermind and also attained the optimal numbers of guesses for 2 × n
Mastermind in both the worst and expected case, which were basically the same
as those in Chen et al. [17].

3 Terminologies

Before 3 × n AB games is discussed formally, some terminologies and notations
have to be explained first in order to describe the analyses precisely. Thus, some
terms are defined as follows.
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Definition 1. A secret code is eligible if it is compatible with all guesses and
the corresponding responses given so far.

Definition 2. A set, which contains some eligible codes, is referred to as a
state.

Definition 3. The state with only one eligible code, which has also been guessed
by the codebreaker now, is defined as a final state. That is to say that the secret
code has been identified and the game is over.

Definition 4. Let C1 and C2 denote two states. We say that C1 is harder than
C2 if identifying a secret code in C1 requires more guesses than that in C2. In
other words, the difficulty of a state means how many guesses the codebreaker
requires to identify a secret code.

Definition 5. A strategy of responses taken by the codemaker is called a devil’s
strategy or an adversary response if this strategy maximizes the number of
guesses required by the codebreaker.

Definition 6. Assume that there are two states, which are C1 and C2 respec-
tively. If there exists a one-to-one function r such that each secret code in C1
maps another one in C2 and preserves the structure of C1, then we say that C2
dominates C1. Furthermore, r is called a structural reduction. In symbols,
we write C1 ≤ C2.

Now, 3 × 5 AB game is taken into account as an illustrative example. Assumee
that the set of five symbols in this game is S = {0, 1, 2, 3, 4}. If the codebreaker
makes a guess, 012, and the codemaker responses [2, 0] in the first turn, the
eligible codes are therefore 013, 014, 032, 042, 312, and 412 after the first turn.
The set C[2,0] = {013, 014, 032, 042, 312, 412} forms a state. From the result of
the later experiment, which conducts an exhaustive search to 3×5 AB game, the
number of guesses required is maximum if the codemaker implements a devil’s
strategy to provide the response, [0, 2], at the first response. In contrast, C[2,0]
and the state, C[1,0] = {043, 034, 432, 342, 314, 413}, which is produced when the
codemaker responses [1, 0] at the first response, are then considered. Notice that
the elements in C[2,0] are of the forms, 01b, 0b2, or b12, where b ∈ B = {3, 4}.
Thus, we define a structural reduction of r as

r :

⎧⎨
⎩

01b �→ 0zb
0b2 �→ zb2, where b ∈ B and z ∈ B − {b} .
b12 �→ b1z

Figure 1 exhibits the mapping of each code in C[2,0] in detail. Note that the
mapped codes in C[1,0] preserve the structures of those in C[2,0]. This implies
that finding a secret code in C[1,0] is as hard as or harder than that in C[2,0].
Intuitively, this is also obvious since there is one more identified symbol in C[2,0]
than in C[1,0]. Hence, we say that C[1,0] dominates C[2,0]. Furthermore, the struc-
tural reduction has the property of the transitive relation obviously. That is to
say that C1 ≤ C3 if C1 ≤ C2 and C2 ≤ C3.
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Fig. 1. Mapping from codes in C[2,0] to those in C[1,0] for 3 × 5 AB game

4 Analyses of the Optimal Guesses for the Codebreaker

In this section, the analyses of the optimal guess in each turn for the codebreaker
are provided. First, a special kind of states C∗ will be analyzed to determine the
best guess for the codebreaker when he encounters this kind of states. Then, the
discussion in the next section will reveal that the special states that are discussed
here just match the attribution of states resulting from the devil’s strategy for
the codemaker. Consequently, our conclusions are attained finally.

Before the formal discussion, a critical concept should be clarified first. Intu-
itively, the more secret codes a state has, the harder the codebreaker identifies
a secret code in it. However, the rule is not absolutely correct especially when
the size of one state is very close to that of the other. Hence, the structural
reduction is adopted to determine the difficulties of two states instead of simply
comparing their sizes in the following discussion.

Assume that S = {0, 1, 2, ..., n− 1} represents the set of symbols appearing
in 3 × n AB games. The set, B = {b0, b1, ..., bh−1}, is a subset of S, where
bi ∈ S and |B| = h, 3 ≤ h ≤ n − 3. Moreover, another set, A, is defined as
A = S − B = {a0, a1, ..., an−h−1}, of which the cardinality is (n − h).

Assume that there is a special state, called C∗, which consists of the secret
codes that are all possible permutations of h symbols in B. In other words, the
special state has h (h − 1) (h − 2) secret codes in it. This state may be regarded
as a subproblem of a 3 × n AB game, i.e., a 3 × h AB game. Notice that the
symbols in A do not appear in the codes of the special state because of the
definition of C∗. We can intuitively treat the symbols in A as those eliminated
from previous responses made by the codemaker.

Now, imagine a scenario where C∗ is encountered by the codebreaker during
the process of playing a 3×n AB game. Since any symbols in S may be used in a
guess made by the codebreaker for a 3×n AB game, all possible guesses for the
codebreaker can be classified into four types according to the numbers of symbols
that belong to A and B. Thus, the four types of guesses for the codebreaker



Optimal Analyses for 3 × n AB Games in the Worst Case 175

are listed and discussed as follows. Here we assume that ai, aj , ak ∈ A and
bi, bj , bk ∈ B.

1. aiajak

All symbols of this type of guesses belong to A. If the codebreaker makes
this kind of guesses, all eligible codes are then classified into the substate,
C[0,0], trivially. So, the guesses of Type 1 are redundant and non-optimal
results will be obtained if the codebreaker chooses this kind of guesses.

2. bkaiaj , aibkaj , and aiajbk

The guesses of Type 2 contain two symbols in A and one symbol in B.
This type of guesses can be further divided into three kinds of guesses such
as bkaiaj , aibkaj , and aiajbk in accordance with their positions of symbols.
Without loss of generality, g = bkaiaj is taken to conduct the following
analyses. The discussions of the other two can be undertaken in a similar way.
Three nonempty substates, which are C[1,0], C[0,1], and C[0,0], are produced
as the codebreaker makes the guess, g. Note that their cardinality are (h −
1)(h − 2), 2(h − 1)(h − 2), and (h − 1)(h − 2)(h − 3), respectively. Now, we
can show that C[0,1] ≤ C[0,0] and C[1,0] ≤ C[0,0] if h ≥ 5.

Lemma 1. If the codebreaker encounters the state, C∗, and then makes the
guess, g = bkaiaj , aibkaj , or aiajbk, where ai, aj ∈ A and bk ∈ B, then C[0,0]
dominates C[0,1] and C[1,0] if h ≥ 5.

Proof. In order to prove that C[0,1] ≤ C[0,0], a structural reduction, r1, is
defined as

r1 :
{

bpbkbq �→ bpz1bq, where bp, bq ∈ B
′
= B − {bk}

bpbqbk �→ bpbqz2 and z1, z2 ∈ B
′ − {bp, bq} .

From r1, it reveals that the structures of the secret codes, which are bp?bq

and bpbq?, are preserved after mapping. Note that bpz1bq and bpbqz2 should
be distinct to reserve the property of one-to-one mapping. On the one hand,
we can achieve this by assigning the symbols of z1 and z2 carefully while
mapping is conducted. On the other hand, there should be two symbols left
for the assignments of z1 and z2 once bp and bq have been fixed during the
mapping. The proof is therefore correct if h ≥ 5. The proof of C[0,1] ≤ C[0,0]
is finished now. Afterwards, another structural reduction, r2, is defined as

r2 : bkbpbq �→ z1bpbq, where bp, bq ∈ B
′
= B − {bk} and z1 ∈ B

′ − {bp, bq} .

There should be one symbol left for the assignment of z1 once bp and bq

have been assigned. Hence, the proof is right if h ≥ 4. In other words,
C[1,0] ≤ C[0,0]. From the results of r1 and r2, we know that C[0,0] dominates
C[0,1] and C[1,0] when h ≥ 5. This completes the proof of Lemma 1. ��

3. aibjbk, bjaibk, and bjbkai

The guesses of this type are composed of a symbol in A and two symbols in
B. These guesses can also be further classified into three kinds of guesses, i.e.,
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aibjbk, bjaibk, and bjbkai. Without loss of generality, g = aibjbk is choosen
to undertake the following discussions. Besides, the analyses of bjaibk and
bjbkai can be derived in a similar way and so, they are ommited here. There
are six nonempty substates after the codebreaker makes the guess, g. They
are C[2,0], C[1,1], C[0,2], C[1,0], C[0,1], and C[0,0], respectively. Note that their
corresponding cardinality are (h− 2), 2(h− 2), (h− 2), 2(h− 2)(h− 3), 4(h−
2)(h−3), and (h−2)(h−3)(h−4). Now, we show that C[0,0] dominates the
other five substates if h ≥ 8.

Lemma 2. If the codebreaker encounters C∗, and then makes the guess,
g = aibjbk, bjaibk, or bjbkai, where ai ∈ A and bj , bk ∈ B, then C[0,0]
dominates C[0,1], C[1,0], C[0,2], C[1,1], and C[2,0] when h ≥ 8.

Proof. Five structural reductions, called r3, r4, r5, r6, and r7, are defined as
follows to certify that C[0,1] ≤ C[0,0], C[1,0] ≤ C[0,0], C[0,2] ≤ C[0,1], C[1,1] ≤
C[1,0], and C[2,0] ≤ C[1,0] respectively.

r3 :

⎧⎪⎪⎨
⎪⎪⎩

bjbpbq �→ z1bpbq

bpbqbj �→ bpbqz2, where bp, bq ∈ B
′
= B − {bj , bk} ,

bkbpbq �→ z3bpbq and z1, z2, z3, z4 ∈ B
′ − {bp, bq} .

bpbkbq �→ bpz4bq

r4 :
{

bpbjbq �→ bpz1bq, where bp, bq ∈ B
′
= B − {bj, bk}

bpbqbk �→ bpbqz2 and z1, z2 ∈ B
′ − {bp, bq} .

r5 :

⎧⎨
⎩

bjbkbp �→ bjz1bp

bpbkbj �→ bpz2bj, where bp ∈ B
′
= B − {bj, bk}

bkbpbj �→ bkbpz3 and z1, z2, z3 ∈ B
′ − {bp} .

r6 :
{

bkbjbp �→ z1bjbp, where bp ∈ B
′
= B − {bj , bk}

bjbpbk �→ z2bpbk and z1, z2 ∈ B
′ − {bp} .

r7 : bpbjbk �→ bpbjz1, where bp ∈ B
′
= B − {bj , bk} and z1 ∈ B

′ − {bp} .

Note that z1bpbq, bpbqz2, z3bpbq, and bpz4bq in r3 should be distinct to re-
serve the one-to-one mapping property. Likewise, bpz1bq and bpbqz2 in r4
should be distinct and bjz1bp, bpz2bj , and bkbpz3 in r5 should also be dis-
tinct while z1bjbp and z2bpbk in r6 have to be distinct as well. We can attain
this with assigning these symbols of z1, z2, z3, and z4 carefully when map-
ping is undertaken. In order to meet requirements of the assignments of zi in
r3, r4, r5, r6, and r7, the following conditions should be maintained respec-
tively: h ≥ 8, h ≥ 6, h ≥ 6, h ≥ 5, and h ≥ 4. Consequently, it is true that
C[0,0] dominates C[0,1], C[1,0], C[0,2], C[1,1], and C[2,0] while h ≥ 8. Hence, the
proof of Lemma 2 is completed. ��

4. bibjbk

All symbols of this kind of guesses belong to B entirely. There are totally
nine nonempty substates, which are C[3,0], C[1,2], C[0,3], C[2,0], C[1,1], C[0,2],
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C[1,0], C[0,1], and C[0,0] respectively, as the codebreaker makes the guess,
g = bibjbk. Notice that their cardinality are 1, 3, 2, 3(h − 3), 6(h − 3), 9(h −
3), 3(h− 3)(h− 4), 6(h− 3)(h− 4), and (h− 3)(h− 4)(h− 5), respectively. In
the following statements, we would certify that C[0,1] ≤ C[0,0], C[1,0] ≤ C[0,0],
C[0,2] ≤ C[0,1], C[1,1] ≤ C[1,0], C[2,0] ≤ C[1,0], C[0,3] ≤ C[0,0], C[1,2] ≤ C[0,0],
and C[3,0] ≤ C[0,0].

Lemma 3. As the codebreaker encounters C∗, and then makes the guess,
g = bibjbk, where bi, bj, bk ∈ B, then C[0,0] dominates C[0,1], C[1,0], C[0,2],
C[1,1], C[2,0], C[0,3], C[1,2], and C[3,0] when h ≥ 11.

Proof. Since the cardinalities of C[3,0], C[1,2], and C[0,3] are fixed numbers,
then C[0,0] trivially dominates C[3,0], C[1,2], and C[0,3] as long as there are
at least three symbols in B and thus, the three symbols can be permuted
appropriately to map the three substates.

Below five definitions of structural reductions, which are named as r8, r9,
r10, r11, and r12, are provided as follows to confirm that C[0,1] ≤ C[0,0],
C[1,0] ≤ C[0,0], C[0,2] ≤ C[0,1], C[1,1] ≤ C[1,0], and C[2,0] ≤ C[1,0] respectively.

r8 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

bpbibq �→ bpz1bq

bpbqbi �→ bpbqz2

bjbpbq �→ z3bpbq, where bp, bq ∈ B
′
= B − {bi, bj, bk}

bpbqbj �→ bpbqz4 and z1, z2, z3, z4, z5, z6 ∈ B
′ − {bp, bq} .

bkbpbq �→ z5bpbq

bpbkbq �→ bpz6bq

r9 :

⎧⎨
⎩

bibpbq �→ z1bpbq

bpbjbq �→ bpz2bq, where bp, bq ∈ B
′
= B − {bi, bj, bk}

bpbqbk �→ bpbqz3 and z1, z2, z3 ∈ B
′ − {bp, bq} .

r10 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bjbibp �→ z1bibp

bpbibj �→ bpz1bj

bjbpbi �→ z1bpbi

bjbkbp �→ bjz1bp

bpbkbj �→ bpbkz1, where bp ∈ B
′
= B − {bi, bj, bk}

bkbpbj �→ bkbpz1 and z1, z2 ∈ B
′ − {bp} .

bkbibp �→ z2bibp

bkbpbi �→ bkbpz2
bpbkbi �→ bpz2bi

r11 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

bibpbj �→ bibpz1
bibkbp �→ biz2bp

bpbjbi �→ bpbjz1, where bp ∈ B
′
= B − {bi, bj, bk}

bkbjbp �→ z2bjbp and z1, z2 ∈ B
′ − {bp} .

bpbibk �→ bpz1bk

bjbpbk �→ z2bpbk
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r12 :

⎧⎨
⎩

bibjbp �→ biz1bp

bibpbk �→ z1bpbk, where bp ∈ B
′
= B − {bi, bj , bk}

bpbjbk �→ bpbjz1 and z1 ∈ B
′ − {bp} .

Note that each secret code in each structural reduction, i.e., r8, r9, r10, r11,
and r12, should be distinct from each other to reserve the one-to-one mapping
property. This can be attained by assigning these symbols of z1, z2, z3, z4,
z5, and z6 carefully. To satisfy each assignment of zi in r8, r9, r10, r11, and
r12, the following constraints have to be kept in correspondence with the
order given: h ≥ 11, h ≥ 8, h ≥ 6, h ≥ 6, and h ≥ 5. So, it is therefore correct
that C[0,0] dominates C[0,1], C[1,0], C[0,2], C[1,1], C[2,0], C[0,3], C[1,2], and C[3,0]
when h ≥ 11. Hence, the proof of Lemma 3 is completed. ��

After four kinds of guesses for the codebreaker are discussed, only three kinds
of guesses among them are useful since the first one causes non-optimal results
trivially. In order to simplify the notations, let C(2), C(3), and C(4) denote the
hardest states caused by guesses of Type 2, Type 3, and Type 4, respectively.
Hence, the difficulties of these three states have to be determined to choose
the best guess for the codebreaker. The following lemma therefore describes the
phenomena.

Lemma 4. When the codebreaker encounters C∗, the hardest states caused by
guesses of Type 2, Type 3, and Type 4, i.e., C(2), C(3), and C(4), are produced.
Thus, we have C(4) ≤ C(3) ≤ C(2).

Proof. From the meanings of C(2), C(3), and C(4), it reveals that C(2) is com-
posed of secret codes that are permutations of (h − 1) symbols, and C(3) consists
of what are permutations of (h − 2) symbols while the codes in C(4) are permu-
tations of (h − 3) symbols. Let S(2), S(3), and S(4) denote the sets of symbols
appearing in C(2), C(3), and C(4), respectively. Then, let the symbols in S(2),
S(3), and S(4) be sorted separately according to the lexicographical order. A
mapping is generated naturally if we map each symbol in S(4) to that in S(3)

one by one in sorted order. So does the mapping between S(3) and S(2). Obvi-
ously, we have C(4) ≤ C(3) ≤ C(2). This completes the proof. ��

After Lemma 1, Lemma 2, Lemma 3, and Lemma 4, we may conclude with the
following lemma.

Lemma 5. For a special state, C∗, which also represents a 3 × h AB game
(11 ≤ h ≤ n), the optimal guess for the codebreaker now is bibjbk, where bi, bj,
bk ∈ B.

Proof. From Lemma 4, C(4) is the easiest state to identify a secret code compared
to C(2) and C(3). The goal of the codebreaker is to minimize the number of
guesses required and so, the codebreaker has to choose the guess which results
in C(4) in the worst situation. The optimal guess for the codebreaker is therefore
bibjbk. ��
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5 The Devil’s Strategy for the Codemaker

Since the mission of the codebreaker aims to minimize the number of guesses to
acquire a secret code, the codemaker tries to maximize the number of guesses for
the codebreaker if he decides to implement a devil’s strategy. Hence, the worst
case for the codebreaker means that his opponent conducts a devil’s strategy
(or called a worst response for the codebreaker) in each turn during the gaming
process in order to maximize the number of guesses. In the follow-up, a lemma
is exhibited to demonstrate what is the worst response for the codebreaker if he
encounters a 3 × h AB game, where h ≤ n.

Lemma 6. For a 3×h AB game, where 11 ≤ h ≤ n, the codebreaker will require
a maximum number of guesses to obtain the code while the codemaker answers
[0, 0] after the codebreaker’s guess.

Proof. From Lemma 5, it is obvious that the codebreaker must choose bibjbk as
a guess for a 3×h AB game. After the codebreaker takes the optimal guess, nine
substates will be formed. These substates are C[0,0], C[0,1], C[1,0], C[0,2], C[1,1],
C[2,0], C[0,3], C[1,2], and C[3,0], respectively. C[0,0] dominates C[0,1], C[1,0], C[0,2],
C[1,1], C[2,0], C[0,3], C[1,2], and C[3,0] in accordance with the result of Lemma 3.
In other words, C[0,0] is the hardest substate among the nine ones. Conclusively,
the codemaker must response [0, 0] as his worst response and this will result in
the worst case for the codebreaker because of the maximum number of guesses.
The proof is thus finished. ��

6 Conclusions

From the above discussions, the optimal guess for the codebreaker and the ad-
versary response for the codemaker, which refers to the worst case for the code-
breaker as well, are eventually obtained with the consideration of the special
state C∗. In the follow-up, all results mentioned above will be concluded to
derive a theorem.

Theorem 1. For a 3 × n AB game, the minimum number of guesses for the
codebreaker in the worst case is{

�n/3�+ 3, if 3 ≤ n ≤ 7
�(n + 1) /3�+ 3, if n ≥ 8.

Proof. At the beginning of a 3×n AB game, the n symbols are not used and then
all secret codes are all equivalent. As a result, a secret code is chosen randomly
as the first guess for the codebreaker. Nine substates are therefore produced and
[0, 0] is taken as an adversary response according to Lemma 6. Afterwards, C[0,0],
which results from the first response, matches the attribution of the special state
C∗ described in Lemma 5. Thus, Lemma 5 can be applied to this state. We find
that the situations mentioned in Lemma 5 and Lemma 6 will appear alternately
in the following gaming process. So we have the following recurrence.

T (n) = T (n − 3) + 1, when n > 11. (1)
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The minimum number of guesses cannot be obtained easily with the use of anal-
yses when n ≤ 11 because of the irregular behavior. So, a refined exhaustive
search, which originates from Huang et al. [9], is adopted to acquire the results.
After the use of computer programs written with this approach, the minimum
numbers of guesses required for the codebreaker in the worst case are obtained
in several hours and they are 4, 4, 4, 5, 5, 6, 6, 6, and 7, respectively when
n = 3, 4, 5, 6, 7, 8, 9, 10, and 11. For example, an optimal strategy for 3 × 7 AB
game is considered with S = {0, 1, 2, 3, 4, 5, 6}. If the codemaker takes 165 as a
secret code, the gaming process will be as follows: 012, [0, 1], 023, [0, 0], 041, [0, 1],
156, [1, 2], 165, [3, 0]. In other words, the codebreaker requires 5 guesses to iden-
tify 165 while playing the worst-case optimal strategy.

We derive the above recurrence (1) and conclude with the results of smaller
values of n. Hence, the closed form of the formula is exhibited as follows.{

�n/3�+ 3, if 3 ≤ n ≤ 7
�(n + 1) /3� + 3, if n ≥ 8.

This completes the proof. ��

Partial results of 3 × n AB games, 3 ≤ n ≤ 16, are summarized in Table 1.
As 3 × n AB games have been solved successfully, a natural generalization is to
explore the techniques for m×n AB games, where m ≥ 4. This problem remains
open. We hope that the methods proposed here could help other related research
in the future.

Table 1. The minimum number of guesses for 3 × n AB games in the worst case

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# of guesses 4 4 4 5 5 6 6 6 7 7 7 8 8 8
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Abstract. One of the main challenges with selective search extensions
is designing effective move categories (features). Usually, it is a man-
ual trial-and-error task, which requires both intuition and expert human
knowledge. Automating this task potentially enables the discovery of
both more complex and more effective move categories. The current work
introduces Gradual Focus, an algorithm for automatically discovering in-
teresting move categories for selective search extensions. The algorithm
iteratively creates new more refined move categories by combining fea-
tures from an atomic feature set. Empirical data is presented for the
game Breakthrough showing that Gradual Focus looks at a number of
combinations that is two orders of magnitude fewer than a brute-force
method does, while preserving adequate precision and recall.

1 Introduction

The αβ algorithm is one of the fundamental and most effective search techniques
used by game-playing programs for playing two-person adversary board games,
such as chess and checkers. Over the years many enhancements have been pro-
posed to improve its efficiency. For instance, we know that the standard strategy
of exploring all alternatives to the same fixed depth is not most effective. Instead,
various techniques have been proposed for searching the game tree more selec-
tively, where some lines of play are terminated prematurely whereas others are
explored more deeply. The former scenario is referred to as search reductions
(or speculative pruning) and the latter as search extensions. In chess, for exam-
ple, it is common to resolve forced situations, such as checks and recaptures, by
searching them more deeply.

The move-decision quality of the alpha-beta algorithm is greatly influenced
by the choices of which lines are investigated deeply [1,2]. Therefore, the design
of an effective search-extension scheme is fundamental to any high-performance
αβ-based game-playing program. The typical approach for incorporating search
extensions into a game-playing program is to predefine a set of move categories
(e.g., checks and recaptures), and then associate a different cost weight to each
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Fig. 1. Fractional-ply example

category. During the search, each move is categorized as belonging to one of the
predefined move classes, and the depth of the current search path then becomes
the sum of the weights of the moves on the path. If all move categories have the
same weight, one would obtain the regular behaviour of a fixed-depth search.
However, by assigning a weight of less than one to selected move categories, e.g.,
checking moves, such lines of play will be explored more deeply. This scheme is
commonly referred to as fractional-ply extensions [3,4], depicted in Figure 1.

The weight of each move category, i.e., its fractional-ply value, is either man-
ually assigned a value based on trial and error, or, alternatively, automatically
tuned from game records [5,6], test-suites [7], or during play [7,8,9]. For creating
the move categories the standard practice is to do it manually based on intu-
ition and domain expertise. In this work we investigate ways for automatically
discovering useful move categories for use in game-playing programs. The main
contribution is a new method for automatically discovering such features, called
Gradual Focus. We experiment with it in the game Breakthrough, where there
exists little knowledge of what comprises good moves to extend on.

The paper is structured as follows. In Section 2 we give an overview of rele-
vant background material, followed by a description of the new Gradual Focus
feature-discovery algorithm in Section 3. The algorithm is empirically evaluated
in Section 4, and finally we conclude and discuss future work in Section 5.

2 Background

The general approach to automated feature discovery is to start with a set of
so-called atomic features. The atomic features are typically simple features ex-
pressing trivial facts about the problem domain, for example, type and placement
of pieces. As a standalone, these features are not necessary effective, for exam-
ple, because they might be too general. More sophisticated features are then
constructed by combining the atomic features in various ways, e.g., by using the
logical operators ∧ and ∨. This may be done in an iterative fashion, that is, first
pair-wise combinations are created, then three-wise, etc. The problem ,though,
is that the number of possible feature combinations grows exponentially in each
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iteration. For example, a brute-force power set method would generate in total
2n − 1 features from an atomic feature set of size n. Consequently, to limit the
growth rate, a selective mechanism judging the merits of newly create features
may be applied, carefully choosing which features to evolve further.

In the context of game-playing, automatic feature discovery has first and fore-
most been applied to the learning of evaluation functions, as opposed to search-
control features. One of the first such approaches was introduced in the system
Zenith [10]. The system works in a way backwards to the general approach
described above: it starts with a single feature, a logical formula describing the
goal of the game. It then gradually breaks the goal down into simpler sub-goals
by using predefined generic actions in the form of decomposition, abstraction,
goal regression, and specialization. Logical features of this kind have also been
successfully used to extract patterns that can be used as features for general
game playing [11]. In contrast, the system GLEM [12], creates new features by
gradually combining mutually exclusive atomic features along the lines described
above. The method is additionally capable of learning an importance weight for
each of the newly created features. This method was used to construct a high-
quality evaluation function for the Othello program Logistello [13], although,
in that case, the features were provided manually and GLEM used only for tun-
ing their relative weights. A different feature-combination approach was used to
learn an evaluation function for a program to play the card game Hearts [14].
All possible pair-wise, three-wise, and four-wise combinations were created in
more or less a brute-force manner and a reinforcement-learning approach then
used to learn their relative importance. Finally, learning of move-patterns for a
plausible move generation in chess is presented in [15].

3 Gradual Focus

Gradual focus (GF), the method we introduce here, is a more intelligent way
of constructing interesting features than an exhaustive power-set method. GF
combines atomic features in an iterative fashion, where each iteration creates a
set of more refined features, gradually narrowing their focus, using a variety of
pruning methods to reduce the number of possible combinations.

3.1 GF Overview

Given a set of atomic features GF combines these features using an ∧ oper-
ator. The features are combined one level at a time, i.e., one-wise, two-wise,
three-wise, etc., and their quality evaluated. Those features that do not show
an improvement are pruned off and prevented from occurring as subsets in later
feature combinations. This process is repeated until no more combinations are
formed.

Figure 2 shows an example of this process. The first level consists of the atomic
features, called Base set, and the second level shows the feature set generated
by the first iteration, where all two-wise combinations of the Base set are cre-
ated. Each feature in the set is evaluated individually and those that perform
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Fig. 2. Overview of Gradual Focus

worse than either parent are discarded, as feature b∧c in this example. The next
iteration evolves the surviving features further by combing the two-wise features
with the features in the Base set. As the b∧c feature has been discarded it is not
evolved any further, nor are any evolving features containing b∧c allowed. This
results in only two three-wise combinations. Four-wise combinations cannot be
formed either as b∧c is forbidden as a subfeature, so the process halts.

3.2 Implementation Details

A pseudo-code for the GF algorithm is shown as Algorithm 1. The variable
BlackList maintains disproven features, while the Output variable maintains the
viable features. The Neutral variable is the empty feature; it is evaluated in line 3
to establish a baseline of how the tree search behaves without search extensions.
The function evaluateFitness, which will be discussed in detail in Section 3.6,
returns a numerical value indicating the quality, i.e., the fitness of a feature. Each
of Base’s features is also evaluated (line 5). Those features that perform below
an expected level of quality (lines 7-13) can optionally be removed from the
Base set, reducing GF’s branching factor. This pruning method, called threshold
pruning, is discussed in a more detail in Section 3.5.

The iterative feature-evolution process is done in lines 17-26. The function
evolveFeatures (line 19) evolves the features in the workSet by combining them
with the Base set, and using the BlackList to remove disallowed combinations.
Both the Base and the workSet sets must be sorted in a descending order by
evaluation score (lines 14 and 18) for evolveFeatures to work as intended.

The assessment of newly evolved features occurs in line 20-25, where each of
the newly evolved features is evaluated (line 22) and its evolutionary direction
assessed within filterFeature (line 23) as either ascending or descending. De-
scending combinations are added to the BlackList, thereby removing them and
their descendants from the evolutionary process, while ascending combinations
are returned from the function and added to GF’s output (line 23). Disproving
a feature within filterFeature might also disprove other features in the workSet
that are yet to be evaluated, which is why features must be compared against
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Algorithm 1. featureLearner( ref Base )
1: BlackList ← {}
2: Output ← {}
3: evaluateFitness( Neutral )
4: for all b ∈ Base do
5: evaluateFitness( b )
6: end for
7: if UseThreasholdPruning then
8: for all b ∈ Base do
9: if bvalue < δ then

10: Base ← Base \ {b}
11: end if
12: end for
13: end if
14: sortDesc( Base )
15: Output ← Neutral ∪ Base
16: workSet ← Base
17: while workSet �= {} do
18: sortDesc( workSet )
19: workSet ← evolveFeatures( workSet, Base, BlackList )
20: for all f ∈ workSet do
21: if isCompositionAllowed( f, BlackList ) then
22: evaluateFitness( f )
23: Output ← Output ∪ filterFeature( f, BlackList )
24: end if
25: end for
26: end while
27: sortDesc( Output )
28: display( Output )

the BlackList each time in the loop before they are evaluated (line 21). This
evolution process is iterated until no new features can be formed, the evolveFea-
tures function returns an empty set (line 19 and 17), meaning that all promising
evolution paths have been explored.

The implementation of the evolveFeatures routine is shown as Algorithm 2,
where A is a set of features to be evolved and B is the set of features to combine
with. The same feature can be composed in various ways with different first and
second parent (i.e., a∧b and b∧a are considered the same feature). However, to
simplify the evaluation of features we impose an order such that the first parent
must have a greater fitness value than the second parent, which is why the input
sets are sorted in a descending order before the evolution phase and then paired
together from left to right. To prevent unnecessary combinations, the features
can neither belong to the same group nor can a subset of the new feature c be on
the BlackList (line 4 and 6). Moreover, duplicate combinations are not allowed
(line 6). In the Sections 3.3, 3.4, and 3.5, we discuss three enhancements. Feature
groups prevent illogical combinations and will be discussed in a more detail in
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Algorithm 2. evolveFeatures( A, B, BlackList )
1: new ← {}
2: for all a ∈ A do
3: for all b ∈ B do
4: if ¬ belongToSameGroup( a, b) then
5: c ← combine( a, b )
6: if isCompositionAllowed( c, BlackList ) ∧ c /∈ new then
7: new ← new ∪ c
8: end if
9: end if

10: end for
11: end for
12: return new

Section 3.3. Combinations that are not pruned away are added to a new set (line
7) which is then returned (line 12) as a new generation of features.

The assessment for the evolution progress is shown in Algorithm 3. In line
1 the new feature’s value is compared against its first parent. The value of ε
is domain-specific and is added to the feature’s value to control the level of
improvement needed for the feature to evolve further. Features that do not im-
prove upon their parent are pruned (Lineair Tree Pruning) by adding them to
the BlackList (line 2), thus preventing them from occurring in future evolution
sets. Features that surpass their parent, are returned (line 11). Lines 3-8 in the
algorithm are a part of the linear tree pruning method to be discussed in Section
3.4. Thereafter Section 3.5 discusses threshold pruning.

3.3 Groups

Some features are not compatible in a sense that combining them is meaningless
in the context of the game at hand, e.g., in chess: capture the king or move a
pawn and rook. Features can thus be put in advance into logical groups, where

Algorithm 3. filterFeature( newFeature, ref BlackList )
1: if newFeaturevalue < newFeaturefirstParentV alue + ε then
2: BlackList ← BlackList ∪ newFeature
3: if UseLinearTreePruning then
4: for all child ∈ getChildren( newFeaturesecondParent ) do
5: banned ← combine( newFeaturefirstParent, child )
6: BlackList ← BlackList ∪ banned
7: end for
8: end if
9: return {}

10: else
11: return newFeature
12: end if
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Fig. 3. Linear Tree Pruning example

combining features within a group is not allowed (line 4 in Algorithm 2). This
prevents many useless combinations from being formed. As an example, a set of
six features divided into two equal groups, creates 63 different feature combina-
tions without groups, but only 15 if groups are used. Combined features inherit
the groups of their parents, making them belong to more than one group.

3.4 Linear Tree Pruning

Features within a group can form a natural hierarchy, where some features are
subsets of others. This tree hierarchy can be used to predict the outcome of
future evaluations and prune off those that are expected to be inferior. The logic
is that if a new combination formed with a parent feature is pruned, then other
combinations with that feature’s children can also be eliminated.

Figure 3 shows an example of linear tree pruning. The Base set has been
divided into two groups, and the second group has a hierarchy with c2 and c3
being children of c1. In the first iteration GF creates all two-wise combinations
which are then evaluated. Assuming the combination a∧c1 is pruned, then if
linear tree pruning is used the features a∧c2 and a∧c3 would also be pruned.

This method cannot guarantee that interesting combinations would not be
pruned. The reason is that combinations with a highly frequent parent feature
might extend too aggressively, whereas a combination with its less frequent chil-
dren might not. The method is thus optional, as shown in Algorithm 3 in lines
3-8. It retrieves all the children of the second parent feature (line 4) and cre-
ates a new combination with the first parent and each of the retrieved children
features (line 5), which are then added to the BlackList (line 6).

3.5 Threshold Pruning

Threshold pruning is an attractive optional pruning method available for GF. It
removes all features from the Base set that are below a provided quality thresh-
old, determining those features immediately as disadvantageous and therefore
not eligible to participate in the evolution process (lines 7-13 in Algorithm 1).



Automated Discovery of Search-Extension Features 189

This is potentially a very effective pruning method as it reduces the expo-
nential growth of the number of combined features at all iterative levels, but
at the risk of wrongfully pruning away potentially good candidates. The risk
can be lessened by marking which features can be safely pruned; this however
requires knowledge of the search domain. A sensible choice for the threshold
parameter δ (line 9) would be to approximate it around the value of the Neutral
feature.

3.6 Fitness Evaluation

The true quality of a search-extension feature can be found only by using it
in actual game-play. However, playing games is time-consuming, so instead we
use a suite of selected test positions where the best move is known. Information
about the feature’s effect on the search is collected: number of solved positions,
mean iteration depth, mean height, and feature’s frequency in the search. Various
methods to evaluate the feature’s quality can be formed based on the gathered
information, but we choose to use straightforwardly the number of solved posi-
tions (i.e., best move played) as it directly measures a feature’s effectiveness.

4 Empirical Results

We empirically evaluate the GF method by discovering search-extension features
for the game Breakthrough. The experiments were run on a Linux CentOS 5
Intel(R) Xeon (TM) 3.00GHz CPU machine with 2GB of memory.

4.1 Breakthrough

Breakthrough [16] is a two-person perfect-information game created by Dan
Troyka in 2001. The game is played on a chess-board where each player has 16
pawn-like pieces that fill the two front and back rows of the board. The objective
of the game is to break through the opponent’s ranks and advance a piece to the
opponents back rank. Despite its simple rules, which are given below, the game
requires a sophisticated strategy to play at an expert level.

1. Players’ two back rows are filled with their pieces at the start of the game.
2. Players choose which side starts (our program assumes that White starts).
3. Players alternate moving a piece.

(a) One square forward or diagonally-forward to unoccupied squares.
(b) One square diagonally-forward to a square containing an opponent’s

piece, capturing opponent’s piece and removing it from the board.
4. Capture moves are not forced.
5. A game ends when a player’s piece reaches the opponent’s back rank.
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Table 1. Description of Breakthrough’s base features

Feature Feature Description

Ud Moved piece is not threatened on destination square.
PP Piece’s direction is unhindered towards opponent’s back rank.
Rc Capture previously moved piece.
C Capture opponents piece.
Ms Majority of squares surrounding moved piece is

occupied by players pieces, forming a greater mass.
Rdb Players half of the board.
RdBb First and second rank of the board.
RdBt Third and fourth rank of the board.
Rdt Opponents half of the board.
RdTb Fifth and sixth rank of the board.
RdTt Seventh and eighth rank of the board.
Edg The board’s edges, columns a, b, g, and h.
Mr The board’s middle, columns c, d, e, and f.
Udp Prepare to move around opponent’s piece.

Piece is not threatened and standing opposite opponent’s piece.
Bv2 Block opponent’s advancement by placing piece in front of it,

creating a vertical defensive line of two pieces.

4.2 Experiments Setup

A description of the atomic features forming GF’s Base set is shown in Table 1.
Each feature belongs to its own group except the following larger groups: {Rdb,
RdBb, RdBt}, {Rdt, RdTb, RdTt}, and {Edg, Mr}. Two of these have a tree-
hierarchy: RdBb and RdBt are Rdb’s children, and RdTb and RdTt are Rdt’s
children. The features are evaluated using a fixed fractional-ply value of 0.5, cho-
sen somewhat arbitrary although such that it is neither too conservative nor too
aggressive. Each feature was evaluated using our Breakthrough program search-
ing 500,000 nodes per search, which corresponds to approximately 5-ply search.
The program uses αβ search with iterative deepening, and a simple but fairly
effective heuristic based on material and bonuses for advanced non-attacked
pieces. GF’s evolution parameter ε is set to 3 to compensate for fluctuating eval-
uations, and the threshold pruning parameter δ equals to the Neutral feature’s
value. As there exists no standard position test-suite for Breakthrough we cre-
ated a set of 302 positions which were picked from a game of self-play where the
terminal state could be reached in 7 plies. This allowed us to identify unambigu-
ously the best move, but has the drawback of all the positions being taken from
the endgame. Three programs using different heuristic evaluations were used to
obtain a variety of endgame positions.

4.3 Feature Evolution Results

Four different instantiations of GF were evaluated. The results are shown in
Table 2 where Default disregards previously presented grouping of features, plac-
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Table 2. Gradual focus evaluations in Breakthrough

OverlookedMethod type Hours Evaluations # % of P combinations

Power Set - 32,768 100%
Default 30.6 138 0.42%
Default + G 24.9 112 0.34% 0
Default + G + LTP 23.7 105 0.32% 0
Default + G + LTP + TP 5.8 27 0.08% 5

ing each feature in a group of its own. The GF’s enhancements, Groups (G),
Linear tree pruning (LTP), and Threshold pruning (TP), are then cumulatively
added using the previously described grouping of features. The calculated result
of a power-set’s feature expansion are also shown.

As can be seen by the Default instance, GF reduces the number of generated
feature combinations immensely compared to the brute-force power-set method,
and without overlooking any interesting combinations. Thirteen of these evalu-
ations are incompatible combinations that can never occur in the game, which
were prevented in the G instance. Adding LTP improves the pruning slightly fur-
ther without overlooking any previously interesting combinations. Additionally,
TP further reduces the number of evaluations substantially, but at the cost of
overlooking five of Default ’s top ten most interesting combinations, Ud-PP-Rdt,
Ud-Rdt, PP-Rdt, PP-Rdt-Edg, and Rc-Rdb.

4.4 Precision and Recall

GF’s findings were compared with the complete set of all one, two, and tree-wise
combinations, in all 377 features. The resulting top 25 features are shown in
Table 3 along with the number of positions they solve and their first parent.
Features written in italics are less effective descendants of already discovered
features and as such redundant as their benefits are already obtained by the use
of their parent. Ignoring these features leaves only 11 of the original 25 features.

The top features that GF returns are exactly these 11 features. Thus, in this
domain, GF offers both perfect precision (number of correctly identified features)
and perfect recall (how large portion of the interesting features were discovered).

4.5 Tournament Results

The top-ten features suggested by GF as interesting were also evaluated through
self-play. Table 4 shows the results, with the last two columns contrasting the
feature frequency when (1) searching the test-suite and (2) in actual games.

All but three of the features lead to an improved play. The features Rc-Rdb
and PP-Rdt-Edg have a little effect on the game, which can in part be explained
by their low frequency. However, that alone is a not a sufficient explanation as
PP-RdTt with even a lower frequency is doing well. That feature is extending
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Table 3. Tree-Wise Combinations in Breakthrough

Feature Solved Parent Feature Solved Parent

� Ud-RdTt 235 Ud PP-Edg-RdTt 115 PP-RdTt
Ud-PP-RdTt 224 Ud-RdTt Ud-Ms-RdTt 114 Ud-RdTt

� PP-RdTt 211 PP Ud-PP-RdTb 111 Ud-PP
� RdTt 202 – Ms-RdTt 110 RdTt
� Ud-PP-Rdt 173 Ud-PP Ud-PP-Mr 109 Ud-PP
� Ud-PP 155 Ud � PP-Rdt-Edg 108 PP-Rdt

Ud-Edg-RdTt 149 Ud-RdTt Ud-Rdt-Mr 105 Ud-Rdt
Edg-RdTt 142 RdTt � Ud 102 –
Ud-RdTt-Mr 141 Ud-RdTt Ud-Rdt-Edg 102 Ud-Rdt
PP-RdTt-Mr 140 PP-RdTt � PP-Rdt 98 PP
RdTt-Mr 138 RdTt � PP-Edg 97 PP

� Ud-Rdt 125 Ud � Rc-Rdb 96 Rc
Ud-PP-Edg 122 Ud-PP

Table 4. Features’ result in Breakthrough

FrequencyFeature Games # Wins % Conf. Int. Suite Games

Ud-Rdt 2400 58.17% ±1.97 15.57% 4.71%
PP-RdTt 2400 57.04% ±1.98 2.87% 0.87%
RdTt 2400 56.54% ±1.98 8.75% 1.91%
Ud-RdTt 2400 55.96% ±1.99 7.76% 1.90%
Ud-PP 2400 53.92% ±1.99 8.44% 2.31%
Ud-PP-Rdt 2400 53.50% ±2.00 6.94% 1.99%
PP-Rdt 2400 52.03% ±2.00 12.33% 3.92%
Rc-Rdb 2400 49.29% ±2.00 1.55% 1.48%
PP-Rdt-Edg 2400 49.13% ±2.00 3.18% 1.18%
Ud 2400 46.46% ±2.00 32.18% 43.37%

only on safe pawn moves just about to reach the back rank and thus, even
though infrequent, almost always results in a more accurate evaluation score. In
contrast, the Ud feature has a negative effect on in-game performance, whereas
it was slightly beneficial on the test-suite. We see that this type of extension
is substantially more frequent in actual game play than in the test-suite, which
might be enough to tilt the balance. This could probably be avoided by using a
more diverse test-suite containing start, middle, and endgame positions.

5 Conclusions

We introduced a new method for learning search-extension features, called Grad-
ual Focus. It iteratively creates new refined features by combining atomic features
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from a base set with the ∧ operator, using various merit-based pruning tech-
niques to select which features to elaborate. We evaluated the method in the
game Breakthrough, where there exists little domain knowledge of what makes
up good move categories to extend on. The method learned several promising
search-extensions features from a suite of test positions. Moreover, it required
several orders of magnitude less time than a brute-force approach while demon-
strating both an excellent precision and recall. The learned features, when used
in regular game play, significantly improved our program’s playing strength.
Also, the method does not require the learned features necessarily to be move
categories, and GF could thus be used for other search-control features as well.

There is still much scope for improvements and we view this work as a first
step in exploring automatic discovery of search-control features. In particular,
currently we use the number of solved positions as the only indicator of a fea-
ture’s quality. However, by also monitoring other statistics when evaluating a
feature, such as its frequency in the search, one could pinpoint promising evolu-
tion paths more intelligently. For example, a feature that is much less frequent
than another might be preferred even if it solves a slightly less number of test
positions. A second issue is that we evaluate all features using a fixed FP value,
which undeniably excludes the discovery of potentially useful features (we have
observed that a feature’s quality is quite sensitive to its FP value). Thus, com-
bining learning of features with methods for learning FP values is a worthwhile
avenue for future research. Finally, it would be interesting to explore the method
in other game domains, and we have started preliminary work in chess.
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Deriving Concepts and Strategies from Chess
Tablebases
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University of Ljubljana, Slovenia

Abstract. Complete tablebases, indicating best moves for every posi-
tion, exist for chess endgames. There is no doubt that tablebases contain
a wealth of knowledge, however, mining for this knowledge, manually or
automatically, proved as extremely difficult. Recently, we developed an
approach that combines specialized minimax search with the argument-
based machine learning (ABML) paradigm. In this paper, we put this ap-
proach to test in an attempt to elicit human-understandable knowledge
from tablebases. Specifically, we semi-automatically synthesize knowl-
edge from the KBNK tablebase for teaching the difficult king, bishop,
and knight versus the lone king endgame.

1 Introduction

Chess tablebases [1] have enabled people a glimpse of how perfect play looks like.
It seems, however, that people are ill adapted to understanding this perfection.
While tablebases are a powerful help to computers, people are for the most part
puzzled by the style of play generated by tablebases. Yet, people would like to
learn as much as possible, and there is no doubt that tablebases contain an
enormous amount of potential knowledge — but in a form not easily accessible
to a human mind.

There have been many attempts to extract knowledge from tablebases. Per-
haps two best documented examples are a research project carried out by the
chess study specialist John Roycroft [2] and the work by grandmaster John Nunn
resulting in two books on pawnless endings [3,4]. All the attempts, however, had
their own, mostly limited success.

The goal of Roycroft’s study was that he would learn himself reliably to play
the KBBKN endgame (king and two bishops vs. king and knight). This endgame
was for a long time considered generally to be drawn, until the KBBKN tablebase
was computed. The tablebase showed that the side with two bishops can usually
force a win, but the winning play is extremely difficult and takes a long sequence
of moves under optimal play by both sides. Many moves in the optimal play for
the stronger side are completely obscure to a human. Roycroft tried to extract
a human-executable winning strategy by the help of this tablebase, trying to
discover manually important concepts in this endgame which would enable a
human to win reliably. After a one year’s effort, the project ended with a rather
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limited success when Roycroft’s accumulated skill for this endgame was still not
quite sufficient actually to win against the tablebase in many of the won KBBKN
positions.

The task of learning is not any easier for the computer. In an overview of
learning methods in games, Fürnkranz indicated that machine learning of un-
derstandable and usable concepts over the years did not yield much success
[5]. There have been various attempts to bridge the gap between perfect infor-
mation stored in tablebases and human-usable strategies. While some of these
approaches succeeded for relatively small domains (such as the KRK endgame in
chess), the resulting models are hardly intelligible to human experts [6], not to
mention beginners and novices. All related work did not result in breakthroughs
in more complex domains. Moreover, the research questions (1) how to learn
human-understandable models? and (2) how to use the models to generate in-
structions suitable for teaching humans? remained open.

In a way learning from tablebases resembles closely the extraction of an ex-
pert’s tacit knowledge when constructing a knowledge base of an expert system
— in both cases the knowledge is difficult to extract. Recently, we proposed a
new paradigm, which facilitates semi-automatic elicitation of knowledge in the
form of rules. We successfully applied it to creating a knowledge base of an ex-
pert system that recognizes bad bishops in chess middlegames and is able to
explain its decisions [7,8].

The goal of this paper is a practical demonstration of the usefulness of our
approach for semi-automatic elicitation of knowledge. We used a recently de-
veloped method within the aforementioned paradigm for learning strategic goal-
based rules. We harvested the tablebase to extract useful concepts and strategies
which the domain expert in close collaboration with the machine learning tool
turned into a textbook (and computer aid) for teaching the difficult-to-master
KBNK (king, bishop and knight versus a lone king) endgame. It is important to
note that at the beginning of the process the expert was unable to express such
precise instructions on his1 own and was even unaware of some of the important
concepts that were later used in the instructions.

The paper is organized as follows. We first present the obtained textbook
instructions for teaching the KBNK endgame. Section 3 explains the guide-
lines for interaction between the machine and the expert in order to obtain a
human-understandable rule-based model for playing a chess endgame, and how
the instructions were derived semi-automatically from our rule-based model for
KBNK. Note, however, that the details of the algorithm for obtaining the model
are not a subject of this paper. In Section 4, we present the evaluation of the
instructions by several renown chess teachers, and an evaluation of human-like
style of play generated by our method by four international grandmasters. Fi-
nally, we give some conclusions and intentions for further work. The rule-based
model for KBNK, the description of the algorithm and example games contain-
ing automatically generated instructions can be found in a web appendix at
http://www.ailab.si/matej/KBNK/.

1 For brevity, we use ’he’ and ’his’ whenever ’he or she’ and ’his or her’ are meant.
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2 Semi-automatically Derived Instructions for the Bishop
and Knight Checkmate

We present here the instructions in the form of goals for delivering checkmate
from any given KBNK position. These instructions were semi-automatically de-
rived from the tablebases. In the following hierarchical set of goals, to deliver a
checkmate successfully , the chess-player is instructed always to try to execute
the highest achievable goal listed below. The goals are listed in order of pref-
erence, goal 1 being the most preferred. The chess-player is expected to know
how to avoid stalemate, piece blunders, and threefold repetitions. Apart from
descriptions of the eleven goals we also illustrate most of the concepts behind
them.

Goal 1: Deliver Checkmate. A checkmating procedure is the following: two
consecutive checks with the minor pieces are delivered, the later one resulting in
one of the two types of checkmate positions shown in Fig. 1.

Fig. 1. Checkmate can be delivered by the bishop or the knight, always in the corner
of the bishop’s color (“right” corner). Each arrow indicates last bishop’s move.

Goal 2: Prepare the Knight for Checkmate. This goal applies when the
king and the bishop restrain the defender’s king to only two squares: the corner
square and a square on the edge of the board right beside the corner square (see
Fig. 2). The task of the attacker is to prepare the knight so that it is ready for
the checkmating procedure.

Fig. 2. A minimal area

Goal 3: Restrain Defending King to a Min-
imal Area Beside The Right Corner. The
task of the attacker is to take squares away from
the defending king until it is driven to the edge of
the board, and consequently to the corner square.
The chess-player is advised to aim for the type of
position shown in Fig. 2 where the king and the
bishop restrain the defending king to a minimal
area beside the right corner.
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Fig. 3. In the position shown in the left diagram, the attacking side could build the
barrier in the following manner: 1.Ne5-d7 Kc7-c6 2.Bh7-d3!, leading to the position
on the right. The area around the right-colored corner to which the defending king is
confined, could be squeezed further, e.g., after 2...Kc6-c7 3.Bd3-b5.

Goal 4: Build a Barrier and Squeeze Defending King. The attacker
is advised to build a barrier that holds the defending king in an area be-
side the right-colored corner. When such barrier is built, the attacker should
aim to squeeze the constrained area in order to restrain the defending king
(see Fig. 3).

Goal 5: Approach Defending King from Central Side. A part of the
basic strategy is to drive the opposing king to the edge of the board. In order
to achieve this, it is beneficial for the attacking side to occupy squares closer to
the center of the chessboard then the defending king does. The attacker should
aim to approach the opposing king from the central side of the board.

Goal 6: Block the Way to the Wrong Corner. When the defender’s king
is already pushed to the edge of the board, the attacker’s task is to constrain as
much as possible the defending king’s way to the wrong-colored corner. At the
same time, the attacker should try to keep restraining the king to the edge of
the board. Fig. 4 shows an example of a typical position that often occurred in
simulated games. It is called the wrong-corner position.

Goal 7: Push Defending King towards the Right Corner. The attacker
is advised to push the defending king towards the right-colored corner, at the
same time not allowing it to move further away from the edge of the board (see
Fig. 5).

Goal 8: Push Defending King towards the Edge. The attacker is advised
to arrange the pieces in such a way so that the defending king is pushed towards
the edge of the board, and cannot immediately increase the distance from the
edge.
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Fig. 4. In the position on the left, white pieces lure the defending king out of the wrong
corner: 1.Ne5-f7+ Kh8-g8 2.Bf5-g6 Kf8 (note that this is the only available square, since
h8 is attacked by the knight) 3.Bh7! The last move in this sequence takes under control
square g8, and sets up the blockade one square farther from the wrong corner.

Fig. 5. Black king’s distance to the desired corner (a8) should decrease, and the black
King should not be allowed to move away from the edge of the chessboard. This is
achieved by the move 1.Nf7-e5, and black cannot resist white’s goals: even after sub-
optimal 1...Ke8-f8 (optimal move according to tablebases is 1...Ke8-d8) white could
play 2.Ne5-d7+ Kf8-e8 3.Kf6-e6 and black should move closer to the right corner with
the only available move 3...Ke8-d8. After 4.Ke6-d6 Kd8-e8 5.Bh7-g6† the wrong corner
position is repeated; it is shifted over two files.

Goal 9: Bring the King Closer to the Defending King. The attacker is
advised to move the king closer to the opposing king.

Goal 10: Bring the Knight Closer to the Defending King. The attacker
is advised to bring the knight closer to the defending king.

Default Goal: Keep the Kings Close. If none of the above goals is achiev-
able, at least keep the king as close as possible to the defending king, and - if
possible - strive for the opposition of the kings.
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2.1 Example Games with Automatically Generated Suggestions

The instructions given in the previous subsection are accompanied by example
games containing automatically generated instructions. An instruction is given
each time the previous suggested goal was accomplished. These games serve
to illustrate how the teaching process would run with the help of a computer.
The student would first read the instructions and then be presented a random
position to play against the computer. At any point in the game, the computer
is able to give an appropriate suggestion to the student in the form of a goal to
accomplish. These suggestions/goals could be further augmented by occasionally
displaying a side diagram containing the position associated with the given goal.
We give the games in a web appendix at http://www.ailab.si/matej/KBNK/.

3 The Process of Synthesizing Instructions

Below we have partitioned the description of our process of synthesizing the
instructions into six sections.

3.1 Basic Description of Our Approach

As already mentioned, the rules were induced by a recently developed method
for goal-based rule induction [9]. This method extracts a strategy for solving
problems that require search (like chess, checkers etc.). A strategy is an ordered
list of goals that lead to the solution of the problem, similar to an advice list in
Advice Languages [10]. These goals can then be used to teach a human, who is
incapable of extensive search, how to act in these domains and be able to solve
these problems by following suggested goals. The method combines ideas from
the Argument Based Machine Learning (ABML) [11] with specialized minimax
search to extract a strategy for solving problems that require search.

3.2 Obtaining Knowledge from Domain Expert

In order to obtain meaningful and human-understandable instructions, the
knowledge has to be elicited from a chess expert (in our case this was a FIDE
master). Each chess position is described by a set of features that correspond to
some well-known chess concepts. The features are obtained by a domain expert
as a result of the knowledge elicitation process.

The knowledge elicitation process is similar as in [7,8]: the domain expert
and the machine learning algorithm improve the model iteratively. A typical
interaction between the method and the expert is shown in Fig. 6. As a result
of this particular interaction, a new attribute king constrained was introduced.

3.3 Strategic Goal-Based Rules

Our hierarchical model consists of an ordered set of rules of the following form:

IF preconditions THEN goal
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Fig. 6. Computer: “What goal would you suggest for white in this position? What
are the reasons for this goal to apply in this position?” The expert used his domain
knowledge to produce the following answer: “Black king is close to the edge of the
board, but the king is not constrained by white pieces. Therefore I would suggest
White to constrain black king.”

The rule’s preconditions and goals are both expressed by using the aforemen-
tioned features. The method used the expert’s argument given in Fig. 6 to induce
the following rule:

IF edist < 3 AND king constrained = false
THEN king constrained = true AND edist should not increase

where edist is the distance between black king and the edge of the board. The
subgoal edist should not increase was added by the computer. The method rec-
ognized that allowing Black to move away from the edge of the board would
increase the distance to mate. The expert can accept or reject such suggestions
before the rule’s acceptance, but doing so it is important to rely on his common
knowledge about the domain.

Preconditions can be a conjunction of various conditions (if none are given,
the goal is tried each time when no higher goal in the hierarchy is achievable).
Similarly, a goal is a conjunction of subgoals, where a subgoal can specify the
desired value of an attribute (true/false, <, >, etc.), its optimization (minimize,
maximize), and any of four possible qualitative changes: decrease, increase, not
decrease, not increase. Each rule should contain exactly one progressive subgoal
(as is the change of the value of king constrained in the above rule). Note that a
subgoal edist should not increase is not progressive, since it allows a chess-player
to maintain merely the status, not progressing towards delivering checkmate.

3.4 Allowing Non-optimal Play

Often, counter examples are detected by the method, and presented to the ex-
pert. Counter examples are positions where the goal can be achieved, but the
resulting play nevertheless leads to increased distance to mate. Among such
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Fig. 7. Computer: “Would you admonish a student if he or she played 1.Rd1-c1 in this
position?” The expert found this move to be perfectly acceptable. Despite of its non-
optimality: from the tablebase point of view 1.Ke7-d7 is a much better move - 1.Rd1-c1
(the worst possible execution of the suggested goal) achieves mate in 11 moves whereas
after 1.Ke7-d7 only 6 moves are necessary (after 1...Kb7-b6 2.Rd1-d5!).

positions, the one with the highest distance to mate is chosen as the key counter
example. Figure 7 illustrates.

Since human players typically choose a longer path to win by systematically
achieving intermediate goals, the expert is instructed to accept counter examples
where such subgoals are executed, although they often do not lead to optimal
play in the sense of shortest win against best defence. However, the resulting play
in counter examples should lead to overall progress towards achieving the final
goal of delivering checkmate. Constraining the black king in the above counter
example was judged to lead to such progress.

The expert may also find the execution of the goal in a counter example to
be unacceptable. In this case, he may add, modify, and/or remove any of the
preconditions and subgoals. Again, doing any of these, it is important that the
expert relies on his common knowledge about the domain.

3.5 Hierarchy of Goals

When a rule triggers, all the goals higher in the hierarchy are also taken into
account. The goal is achievable when at least one of these goals can be executed
regardless of the defender’s play (optimal or non-optimal). Such hierarchy of
goals is typical of a human way of thinking. For example, when the goal is to
push the defender’s king towards the right-colored corner in the KBNK endgame
and the defender resists the goal by allowing the opponent to deliver checkmate
(that would not be achievable without the opponent’s help), one is expected to
see such a possibility. It would be redundant to express goals in the following
way: “Push the defending king towards the right corner or deliver a checkmate,
if the opponent plays badly and allows it.”
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3.6 Constructing Human-Friendly Instructions from
Semi-automatically Generated Rules

The role of preconditions and non-progressive subgoals is merely to allow a
computer program to detect positions where no specific rule triggers and to
execute goals appropriately. All the goals in the instructions are obtained by
stating only the progressive subgoal. The exception is the last, default goal, since
it is desirable always to be able to give advice to the student. Let us demonstrate
this on the following rule (the descriptions of the attributes are available in a
web appendix at http://www.ailab.si/matej/KBNK/):

IF edist < 1 THEN edist should not increase AND knight on edge = false
AND wrong corner way should decrease AND wrong corner way minimise

AND white king more central = true

The precondition edist < 1 enables the program to try to achieve the goal only
when the defending king is confined to the edge of the board. The progressive
subgoal is wrong corner way should decrease, so when this rule triggers (i.e., this
goal is achievable and no higher rule triggers) the student is given the following
advice: “Block the way to the wrong corner.” It is expected from a human to
recognize (at least eventually) that moving the knight to the edge, allowing
the opponent to move away from the edge, and putting the king closer to the
edge than the opponent’s king does not lead to progress. For a computer, such
constraints are necessary to enable a sensible execution of the goals.

It is also desirable to obtain sensible diagrams and variations that are sup-
posed to provide the most useful representation of the goals and concepts in a
given domain. We obtained these by executing simulations of delivering check-
mate from randomly chosen initial positions using the hierarchy of goals. The
execution of goals in these simulations was optimal in the sense of minimizing
the distance to mate (quickest play). For five goals, the position that occurred
most frequently in the simulations, was chosen to be presented by a diagram.
When several positions occurred equally frequently, two diagrams were used.
Due to space limitations, we only presented the diagrams that occurred most
frequently.

4 Discussion and Evaluation

The bishop and knight checkmate (KBNK) is regarded as the most difficult
one of the elementary mates. Several chess books give the general strategy for
playing this endgame as follows. Since checkmate can only be forced in the
corner of the same color as the squares on which the bishop moves, an opponent
will try to stay first in the center of the board, and then retreat in the wrong-
colored corner. The checkmating process can be divided into three phases: (1)
driving the opposing king to the edge of the board, (2) forcing the king to the
appropriate corner, and (3) delivering a checkmate. However, only knowing this
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basic strategy hardly suffices for anyone to checkmate the opponent effectively.2

Another strategy is known as Delétang’s triangles, involving confining the lone
king in a series of three shrinking isosceles right-angled triangles (pioneered by
Delétang in 1923 [12]). This strategy usually takes five to ten moves longer
to deliver checkmate. Since state-of-the-art endgame manuals (e.g., [13]) prefer
teaching the aforementioned three-phase checkmating process, we decided to aim
for obtaining the rules for executing that (quicker) strategy.

To the best of our knowledge, no formalized models for KBNK endgame suit-
able for teaching purposes were derived by any machine-learning programs. As
H.J. van den Herik et al. in 2002 (and still valid today) nicely put it: “The cur-
rent state of the art of machine-learning programs is that many ad hoc recipes
are produced. Moreover, they are hardly intelligible to human experts. In fact,
the database itself is a long list of ad hoc recipes. Hence, the research question
is how to combine them into tractable clusters of analogue positions and then
to formulate a human-understandable rule.”[6]

Based on the aforementioned Delétang’s triangles method, van den Herik con-
structed a formalized model for playing KBNK endgame and successfully imple-
mented it in a chess-playing program [14]. The knowledge in the model was
partitioned into 28 patterned equivalence classes (introduced by Bramer [15])
aimed to correspond to some significant recognizable features of the endgame as
perceived by chess-players such as “confinement in the wrong corner” and “inter-
mediate class between the large and the middle bishop triangle” (the obtained
equivalence classes and patterns are fully described in [16]). The model was de-
rived from chess theory books, discussions with (grand)masters, and the author’s
experience, but without any machine-learning programs or chess-tablebases sup-
port. Similarly as with our approach, the resulting knowledge is intended to be
used jointly with tree search with a maximum search depth decided in advance
and does not necessarily produce optimal play. There are several important dif-
ferences between [14] and our approach, the most important two of them are
given below.

– Obtaining the formalized model for KBNK in [14] required existence of some
method for playing the endgame in question (in this case, the method discov-
ered by Delétang), while our ABML-based knowledge elicitation process pro-
vides a potential for obtaining goal-based instructions for any chess endgame
where tablebases are available. Note that no known method for delivering
checkmate exist for more complex endgames (such as KBBKN).

– Using a pattern-classes-based model leads to instructions in form of descrip-
tions of states the chess-player should aim to achieve from a given position,
while our strategic goal-based rules suggest the relative change (improve-
ment) in a position given in terms of one progressive goal per instruction.
For a student, it seems easier to memorize instructions containing a single
progressive goal than a sequence of several states.

2 For example, grandmaster Epishin (Kempinski-Epishin, Bundesliga 2001) failed to
force the defending king to the appropriate corner and the game ended in a draw.
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In a different attempt to obtain a formalized model for the KBNK endgame, van
den Herik and Herschberg [17] strived for optimal play, using tablebases. After
their very limited successes, the task of translating perfect information into a
set of rules to be followed by a human being or a computer was reported to be
too difficult for the state-of-the-art techniques of that time (1986).

The extracted strategy as described in Section 2 was presented to three chess
teachers (among them a selector of Slovenian women’s squad and a selector
of Slovenian youth squad) to evaluate its appropriateness for teaching chess-
players. They all agreed on the usefulness of the presented concepts and found the
derived strategy suitable for educational purposes. Among the reasons to support
this assessment was that the instructions “clearly demonstrate the intermediate
subgoals of delivering checkmate.”

We also evaluated the rules by using them as a heuristic function for 6-ply
minimax search to play 100 randomly chosen KBNK positions (each requiring
at least 28 moves to mate providing optimal play3) against perfect defender. We
tested two different strategies for cases when the heuristic suggests several moves
achieving the goal: either (a) a move that minimizes distance to mate (quickest
play), or (b) a move that maximizes distance to mate (slowest play) was chosen.
Our rules were able to achieve mate in 100% of the cases using both quickest
play (average game length was 32 moves) and slowest play (average game length
was 38 moves). Therefore, even with the slowest possible realization of strategic
goals, the strategic rules are expected to guide a student reliably towards the
final goal of achieving checkmate within the allowed 50 moves. It is worth noting
that state-of-the-art chess engines such as Rybka 2.1, Zappa 1.1, and Toga

II 1.3.1, when limited to a 6-ply search only, were not able to deliver checkmate
within 50 moves against an optimal defender from any of the 100 starting KBNK
positions.

Our ABML-based approach leads to obtaining domain’s strategic goal-based
rules using the same arguments and the same domain language attributes as the
expert does. We therefore expect the resulting models to produce “human-like”
style of play, in the sense that it would be clearly understandable by human
players. As typical for humans, such play would not aspire to minimize the dis-
tance to win. To verify this hypothesis, we applied our approach to constructing
strategic rules for the KRK chess endgame, where it is commonly accepted that
a traditional way of delivering mate differentiates from optimal (tablebase) play.

We verified our hypothesis with a kind of Turing test. Four strong grandmas-
ters were asked to observe 30 games: 10 games played by our KRK chess program
guided only by the rules obtained with our ABML-based method, 10 games by
a perfect (tablebase) player, and 10 additional games (to further complicate the
evaluators’ job), all facing a perfect (tablebase) opponent. They were only told
that at least in some of the games the white player was a computer program,
while black always defended optimally. The grandmasters were asked to express
their assessment for each game to what degree (marks 1 to 10) they find the play

3 KBNK is a 33-move game in the maximin sense, as it was established after the
complete tablebases were computed by Dekker and van den Herik in 1982 [16].
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to be human-like. The mark of 1 means that the attacker’s play seems totally
computer-like, and mark 10 means that it seems totally human-like. The average
scores given to our KRK rules by the four grandmasters were 4.1, 7.1, 8.2, and
7.3, while the average scores given to tablebase player were 2.2, 3.1, 1.8, and 2.0,
an obvious difference.

5 Conclusions

We developed a procedure for semi-automatic synthesis of textbook instructions
for teaching the KBNK endgame, accompanied by example games containing
generated instructions. The presentation of the derived strategy includes a num-
ber of concepts and key positions from this endgame that help the human learner
to understand the main principles of the strategy. The key positions were de-
tected automatically from simulated games played by the derived strategy. The
key positions in Figures 4, 5, and 3 belong to a frequent sequence of seven moves
in tablebase play. In our case, this sequence was reduced to the three key po-
sitions and conceptualized in terms of goals along the sequence. In contrast to
memorizing the optimal sequence itself, the extracted generalization also enables
correct play against sub-optimal defence. The derived strategy is human-friendly
in the sense of being easy to memorize, but produces suboptimal play. In the
opinion of chess coaches who commented on the derived strategy, the tutorial
presentation of this strategy is appropriate for teaching chess students to play
this ending.

We view the positive assessment of derived textbook instructions by chess
coaches as a confirmation that our approach is able to facilitate knowledge ex-
traction from the tablebases. We explained (1) the guidelines for interaction
between the machine and the expert in order to obtain a human-understandable
rule-based model for playing a chess endgame and (2) how the instructions, in-
cluding illustrative diagrams, could be derived semi-automatically from such a
model.

Our next goal is to create a computer tool for teaching the KBNK endgame.
All the main ingredients are already available as described in this paper, and
all that remains is to package them into an actual application as described in
Sect. 2.1. A second goal is to mimic this approach for a much harder endgame,
namely KBBKN.
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Abstract. Commercial games possess various methods of game balanc-
ing. Each of them modifies the game’s entertainment value for players
of different skill levels. This paper deals with one of them, viz. a way of
automatically adapting a game’s balance which is based on the theory of
incongruity. We tested our approach on a group of subjects, who played
a game with three difficulty settings. The idea is to maintain a specific
difference in incongruity automatically. We tested our idea extensively
and may report that the results coincide with the theory of incongruity
as far as positive incongruity is concerned. The main conclusion is that,
owing to our automatically maintained balanced difficulty setting, we
can avoid that a game becomes boring or frustrating.

1 Introduction

The main goal of many commercial computer games is to provide entertainment
to the player. To support player-experienced entertainment, the gaming industry
has invested substantial efforts in improving game attributes that contribute to
this goal. In particular, it is remarked that attributes such as graphics, anima-
tion, and physics have seen a rapid increase in technical detail and accuracy over
the past two decades. Although the attributes mentioned have an actual impact
on the entertainment value of a game, they are still a relatively small factor in
this respect. More important for the entertainment value are elements such as
design, diversity, story, game balancing, and gameplay.

In this paper we deal with game balancing, which is defined as the adaptation
of the game difficulty towards a player’s skill. More specifically, we focus on
the relationship between a game’s complexity and a player’s abilities. In a well-
balanced game, a player is challenged by the complexity of the game, but not to
the extent that he1 becomes frustrated. It is generally assumed that a balanced
game has a higher entertainment value than one that is too easy or too hard [3]. If
a game is considered to be balanced, then for the purpose of entertainment that
game should aim at remaining balanced from start to end, even while the player
learns to do better at handling specific game challenges. However all players are

1 For the sake of brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his and her’
are meant.

J. van den Herik and P. Spronck (Eds.): ACG 2009, LNCS 6048, pp. 208–220, 2010.
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different in their skills and learning abilities, therefore meeting this aim means
adapting the game’s complexity automatically to the observed player skill.

The incongruity theory [7] states that every context (such as a game) has
a level of complexity. To deal adequately with a context humans have internal
models of the varying levels of complexity. Incongruity is defined as is the dif-
ference between the complexity of a context and the complexity of the internal
human model of the context. When the incongruity is too large, the human loses
interest in the context, i.e., he loses interest in the game. This means that the
entertainment value of the game decreases.

In this paper we apply the incongruity theory to game balancing. To do so, we
measure the incongruity while a game is being played, and adapt the challenge of
the game automatically to maintain the incongruity at a constant level. This level
should be one that the human player experiences as entertaining, regardless of
skills and capabilities. For our investigations we present a new game called Glove,
developed in our laboratory. Glove contains a novel approach to keep incongruity
at a desired level. According to the incongruity theory, a large incongruity is less
entertaining than a small incongruity.

The outline of the paper is as follows. In Section 2 we provide background
information on game balancing and incongruity theory. Section 3 describes Glove,
including our approach to tactical balancing. The experimental setup is given
in Section 4. Our results are presented in Section 5 and discussed in Section 6.
Finally, in Section 7 we provide our conclusions and look at future work.

2 Background

In this section, we discuss the existing work currently done on game balancing
(Subsection 2.1), and provide details on the incongruity theory (Subsection 2.2).

2.1 Game Balancing

Commercial games usually provide a manual way of setting the difficulty at the
start of a new game. This method sometimes results in an inadequate difficulty
setting, e.g., if the player makes an unsuitable choice or if his skills improve
during play [12]. For example, the commercial game Max Payne features what
game developers refer to as dynamic difficulty adjustment (DDA). The DDA
monitors the amount of damage received, and adjusts the player’s auto-aim
assistance and the strength of the enemies [13]. DDA is easily recognised by
the players, which implies that it breaks the flow of the game [2]. Therefore,
DDA may cause players to accept extra damage to prohibit an increase of the
difficulty.

Recently, computer science researchers have started to investigate methods
that measure the entertainment value of a game [1,10,11], and adapt the game
automatically in order to increase entertainment [4,8]. Yannakakis [9] describes
two ways of optimising player enjoyment, namely implicit and explicit optimi-
sation. In implicit optimisation, machine learning techniques such as reinforce-
ment learning, genetic algorithms, probabilistic models, and dynamic scripting,
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Fig. 1. Schematic representation of incongruity

are used for optimisation. He also describes user modelling techniques as ex-
plained in interactive narration. In explicit optimisation he describes adaptive
learning mechanisms that optimise what he calls user-verified ad-hoc entertain-
ment. Two well known techniques are: (1) neuro-evolution mechanisms and (2)
player modelling through Bayesian learning.

2.2 Incongruity Theory

People continuously form mental models about the world in which they live.
These models allow them to estimate how the world is going to react to different
types of interaction and how the world will change over time. Incongruity theory
attempts to explain the emotions that arise during interaction between these
models and the world. For a proper understanding of this paper we introduce
below the terminology used in the literature on incongruity.

Incongruity theory uses the term ‘context complexity’ to describe the com-
plexity of the world or a part of the world. The term ‘system complexity’ is
meant to describe the complexity of a mental model that a person has of the
world. Complexity can be high, intermediate or low for both the context and the
system. The term ‘incongruity’ is used to describe the difference in complexity
between the system and the context. When system complexity is higher than
context complexity we speak of negative incongruity. When context complexity
is higher than system complexity we speak of positive incongruity. A schematic
visualisation of these concepts can be found in figure 1.

According to the incongruity theory, the difference between the system com-
plexity and the context complexity give rise to three types of emotion: boredom,
frustration, and pleasure. Boredom is a feeling of reduced interest, it arises with
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high negative incongruity. Frustration is a feeling of annoyance or anger, it arises
with high positive incongruity. According to Rauterberg [7], in situations of large
negative incongruity, people start to look for new a stimulation. Pleasure is a
feeling of entertainment, it arises when context complexity is roughly equal to
or slightly higher than system complexity.

Learning is stimulated in situations where incongruity is positive: it raises
the system complexity. Thus, learning can bring players from a large positive
incongruity via low or no incongruity to negative incongruity.

In a game context we can easily identify the concepts of incongruity. First
the difficulty of the game is equivalent to the context complexity. Then, the
player’s skill at the game is equal to the system complexity. If the player’s skill
is too low in order to cope with the current game difficulty setting, we may
speak of negative incongruity, which is expected to result in frustration. If the
player’s skill is too high in comparison to the game difficulty, we may speak of
positive incongruity, which is expected to result in boredom. When the player’s
skill matches the game difficulty, there is low or no incongruity and a feeling of
pleasure or, otherwise stated, entertainment is expected to occur.

Because system complexity is part of the human mind there is usually no direct
way to measure system complexity in games. One possibility is to measure the
complexity of the player’s behaviour in a game and infer the system complexity
from that. Rauterberg [7] states that low system complexity will lead to the
player’s behaviour being largely determined by heuristics, while expert players,
with high system complexity, use other, more straightforward methods.

3 Glove

In our experiments we use a new game called Glove. It is derived from the classic
game Gauntlet. In this section we describe the Glove game world (Subsection
3.1), and the balancing mechanism built into the game (Subsection 3.2).

3.1 Game World

Glove (depicted in Figure 2) is a two-player turn-based game between a (human)
player and a computer system. The player controls a knight. The knight is placed
in a world that consists of 2000 cells. The world is 10 cells high, and 200 cells
wide. Each cell is either passable (grass), or impassable (water or mountain).
The knight occupies one cell. The world also contains enemies, each of which
also occupies one cell only.

The knight starts at the leftmost end of the world, and his goal is to reach the
rightmost end of the world. The game ends in victory for the player when the
knight reaches the goal. It ends in a defeat for the player when the knight dies
before reaching the goal (i.e., the computer system wins). A knight dies when
he has no health left. Health is measured in hitpoints, of which the knight has
100 at the start of the game. As soon as the number of hitpoints reaches zero,
the knight dies. On each turn, the player can let the knight perform one of two
actions: he can either move, or attack.
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Fig. 2. Glove

When moving, the knight leaves the cell that he occupied, and moves over to
any of the eight adjacent cells. Each move costs the knight 0.5 hitpoint. This
means that if he moves steadily and unobstructed through the world, he has
exactly enough health to win the game.

When attacking, the knight executes an attack to one of the eight adjacent
cells. He can either attack with his sword that he always carries with him, or
with a rock, which he may have picked up in the game world (by moving over
it). The knight can carry at most one rock at a time. The difference between
attacking with the sword and a rock, is that the rock actually attacks two cells,
namely the cell which is attacked, and the one directly behind it (according to the
movement of the knight). There are three types of enemies that can attack the
cell containing the knight (dragon, ninja, and witch, see below). If an attacked
cell contains an enemy, the enemy dies. Upon dying, the enemy leaves behind
a health token, which the knight may pick up (by moving over it). This grants
the knight 5 hitpoints (they are added to the knight’s current amount up to a
maximum of 100).

There are three different kinds of enemies in the world, a number of which
are spawned at regular intervals. Each time that an enemy attacks and hits the
knight, the knight becomes damaged and loses 5 hitpoints. The three types of
enemies differ in their behaviour and their abilities. The three enemy types are
the following.
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1. Dragon: The dragon approaches the knight using a shortest-path method.
The dragon is visible. When the dragon is next to the knight, he attacks
the cell in which the knight resides. Arguably, the dragon’s behaviour is the
easiest behaviour of all three to deal with by the player.

2. Ninja: The ninja has the same basic behaviour as the dragon, but he has an
additional ability: he can become invisible. So, he will use this ability when
he is within a certain range of the knight, and will remain invisible for a
certain number of turns. As soon as he attacks the knight, he will become
visible again. The ninja’s behaviour is reasonably predictable, even when
invisible, for players who possess a good mental model of the game.

3. Witch: The witch approaches the knight in the same way as the other two en-
emy types, but stops when she is within a distance of three cells of the knight.
At that point, she will start to throw one fireball per turn in the direction of
the knight. Fireballs move at a speed of one cell per turn. When there are few
enemies on the screen, fireballs can usually be avoided easily. However, the
knight must approach the witch to be able to attack her, at which time avoid-
ance may be difficult. Damage statistics produced in the experiment lead us
to conclude that the witch is the hardest enemy to deal with.

3.2 Balancing Glove

Interaction with the game world is limited to move and attack actions, and there
is little diversity in the challenges that the player faces. This is done on purpose.
The aim of Glove is to provide the player with an entertaining experience, by only
varying the number and types of enemies with which the knight is confronted.

The basic game has three difficulty levels, named easy, balanced, and hard.
While it is possible to add more difficulty levels, for the present experiment
these three were deemed sufficient. When the difficulty is easy, the game aims
at having the knight win the game with about 50% of his health remaining.
When the difficulty is hard, the game aims at having the knight lose the game
when he has progressed through about 50% of the game world. When difficulty
is balanced, the game aims at having the knight experience a narrow victory or
a narrow defeat. The game accomplishes the result envisaged by controlling the
number and types of spawned enemies. In this way the easy and hard levels try
to keep the incongruity stable and high, while the balanced level tries to keep
incongruity stable and at a minimum.

For each enemy type, the game retains the average damage in hitpoints that
the enemy type involved has in relation to the knight. The number of hitpoints
can be positive or negative (or zero). If the number is positive, it means that
the knight on average loses health due to an encounter with this enemy type. If
the number is negative, it means that the knight on average gains health due
to an encounter with this enemy type. Gaining health is possible because the
enemies leave behind health tokens upon dying, and it is certainly possible to
kill an enemy without the enemy being able to damage the knight.

The net result of the spawning procedure is that between 2 and N enemies
are spawned, N being a number that depends on the difficulty setting and the
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current progress of the knight. The spawned enemy types are such that, according
to past experience with the enemies, the knight is expected to lose or gain the
amount of health needed to achieve the goal of the difficulty setting, regardless
of the player’s skills.

The player can only see a part of the game world. He can see a 10 by 10
area centered around the knight. Enemies are spawned just outside the knight’s
vision, every 10 cells that the knight has progressed towards the right end of
the world. The number and types of spawned enemies are determined by the
game based on (1) the difficulty level, (2) the knight’s progress, (3) the knight’s
health, and (4) the average damage numbers. To spawn enemies, the following
algorithm is used (in pseudo-code).

procedure spawnEnemies
begin

needed_health := getNeededHealth( getCurrentProgress() ) +
getModifier( getDifficulty() );

health_to_lose := getCurrentHealth() - needed_health;
expected_health_loss := 0;
spawned := 0;

while
(spawned < 2) or
((expected_health_loss < health_to_lose) and
(spawned < getMaxSpawn(

getLastSpawned()+1, getDifficulty() )))
do
begin

enemyType := spawnRandomEnemy( health_to_lose );
health_to_lose := health_to_lose -

getAverageDamage( enemyType );
spawned := spawned + 1;

end;
end;

This algorithm uses the current game state and the settings of the game
to determine the amount and type of enemies to spawn. It consists of three
parts. The first part considers (1) the progress that the knight has already made
through the game world and (2) the health that he is expected to have. Part
two deals with spawning enemies until the combined enemy difficulty is at the
level required by the game settings. Finally, part three is used for smoothing the
increase of difficulty. It ensures that the amount of spawned enemies increases
gradually rather than instantly. What follows now is a detailed explanation of
eleven subroutines used in the algorithm.

getCurrentProgress() returns a percentage that expresses how far the
knight has progressed through the game world. getNeededHealth(), uses the
knight’s current progress as a parameter, and returns the number of hitpoints
that the knight needs when traversing the remaining part of the game world,
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if unobstructed by enemies. getDifficulty() returns the difficulty level (easy,
balanced, or hard), and getModifier(), has the difficulty level as a parameter;
it returns a number that is 50 for the easy difficulty level, 5 for balanced, and
−50 for hard. getCurrentHealth() returns the current health of the knight.
The result of the first two lines of the algorithm is that health_to_lose con-
tains the number of hitpoints that the knight should lose for the game to reach
the goal determined by the difficulty level. This number can be negative, which
indicates that the knight should actually gain health.

spawnRandomEnemy() spawns an enemy. This function has health_to_lose
as a parameter, by which it determines (1) whether it should spawn enemies
that are likely to gain the knight some health, or (2) whether it should spawn
enemies that cause the knight to lose health. To avoid the algorithm becoming
into an endless loop, when the function should make the knight gain health, it
will always allow dragons to be spawned; moreover, when it should make the
knight lose health, it will always allow ninjas and witches to be spawned. We
note that with more enemies, it is harder to avoid damage; even if the player has
reached a skill level in which he manages to gain health from all enemy types,
he will consider the game harder if he will be surrounded by more of them.

getLastSpawned() returns the number of enemies that were spawned at the
last time. getMaxSpawn() returns the maximum number that can be spawned.
It has two parameters, the first is a maximum that cannot be exceeded, and the
second is the difficulty level, which is used to determine a maximum number: 5
for easy, 7 for balanced, and 9 for hard. Finally, getAverageDamage() returns
the average damage done by the enemy type that is used as the parameter.

4 Experimental Setup

To test the effect of our game-balancing approach, and to investigate whether bore-
dom and frustration are indeed associated with a decreased entertainment value
and with increased incongruity, we requested a number of human test subjects to
play Glove. The experimental setup was as follows. Each human subject played
the game four times. The first time was a training run, in which the player should
experience the game controls. In the training run, at each spawn point the same
three enemies are spawned, namely one of each type. The player was allowed to
interrupt the play whenever he wanted, to start the actual experiment.

In the actual experiment, the subject had to play the game three times, viz.
once with an easy difficulty setting, once with a balanced one, and once with a
hard one. The order in which the difficulty settings were presented to the subject
was varied, each possible order being tested about an equal number of times.
The subject was not aware of the difficulty setting of his current game. A digital
questionnaire was presented to the subject after each game.

The questionnaire contained a total of 26 items. The items were all in Dutch
because our subjects were all Dutch native speakers. The items fell into five
categories, namely boredom, frustration, pleasure, concentration, and curiosity.
Boredom, frustration and pleasure are the experiences expected to occur during
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play according to the incongruity theory. Concentration and curiosity items were
added to assess whether the subjects were fully focused on the game, rather than
other thoughts or things in their surroundings. Each item was administered using
a seven-point Likert scale [6]. The seven points range from “does not apply to
me at all” to “completely applies to me”. The English translation of the Dutch
questionnaire can be found in the appendix.

In our preliminary experiments 24 subjects participated. The subjects’ age
ranged from 16 to 31 years. The subjects were selected from family, friends,
and the student population. All were Dutch native speakers. None of them had
prior knowledge of the game before playing. The subjects had a varying back-
ground, and varying experiences with computers and games. The exact subject
background did not matter for this experiment, since the game balances itself
automatically to the skills of the player.

5 Results

On the questionnaires, scores ranged from zero (0) to six (6) on a Likert scale.
So, assuming a continuous scale then the average would be 3. For each subject
and then for each category, the average of the answers to the questions belonging
to the category was calculated. Subsequently, for each of the difficulty settings,
the means of these averages over all test subjects were calculated. The means
are presented in Figure 3.

For a statistical analysis of the results, we had to remove one subject from the
pool because of an input error, leaving 23 subjects (N = 23). To compare the
means of the variables, an ANOVA is sufficient. However, (1) we had multiple
conditions (easy, balanced, hard) for the prediction of the five variables and
(2) we applied all three test conditions to each subject, therefore a repeated-
measures MANOVA test was needed. Straightforwardly, using an ANOVA test
would have ignored possible interaction and repetition effects.

The repeated-measures MANOVA multivariate test produced significant ef-
fects (P < 0.01). Thereafter a post-hoc univariate analysis and contrast analysis
were performed in order to examine (1) the differences between the five measured
variables and (2) the differences of the difficulty on these variables.

We found that the effect of order was not significant (P > 0.05). A subsequent
analysis was performed to see if there were significant effects of experience with
computer games. This effect was also not significant (P > 0.05).

Next, we tested the effect of the difficulty setting on each of the five categories
of the questionnaires. We found no significant results for the categories boredom,
concentration, and curiosity (P > 0.05 for all of them). However, we did find
significant effects for the categories frustration (P < 0.01) and pleasure (P <
0.05).

Contrasts showed that for the category frustration, the differences between
easy and balanced, and between balanced and hard were both significant (P <
0.01). In particular, we found that Glove is significantly more frustrating for a
balanced difficulty compared to an easy difficulty, and significantly more frus-
trating for a hard difficulty compared to a balanced difficulty. The estimated
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Fig. 3. Means for each category per difficulty setting

marginal means for the category frustration were 1.64 for easy difficulty, 2.67 for
balanced difficulty, and 4.01 for hard difficulty.

For the category pleasure we found significant effects for the difference be-
tween balanced and hard difficulty (P < 0.05). In particular, we found that
Glove provides significantly more pleasure for a balanced difficulty than for a
hard difficulty. We did not find a significant effect for the difference between an
easy and a balanced difficulty. The estimated marginal means for the category
pleasure were 3.24 for easy difficulty, 3.25 for balanced difficulty, and 2.50 for
hard difficulty.

Our tests show that our approach to game balancing, based on incongruity, can
influence both the frustration level and the entertainment level of a game. The
results reproduce the incongruity theory findings that a high positive incongruity
is correlated to frustration, and that, at least for Glove, a balanced difficulty
setting is more entertaining than a hard difficulty setting.

6 Discussion

The results of our experiments reproduce incongruity theory predictions in part
rather well. The frustration effect follows the expectations of incongruity theory,
while boredom (which should be significantly higher for easy difficulty) does not
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follow the expectations. The entertainment effect is also according to expecta-
tions, at least for the balanced and hard difficulty settings.

It is likely that entertainment would also be as expected for easy difficulty, if
easy difficulty was considered to be boring by the test subjects. Therefore it is
interesting to examine why the easy difficulty setting was not found to be boring.
We did not actually investigate this issue, but offer two possible explanations.
First, incongruity theory was originally applied to (relatively old) web interfaces
[7], and the increased visual and functional interactivity of our game, even in its
simplicity, might cause a sufficiently high increase in complexity to be interesting
in all modes of difficulty. Second, it is definitely possible that our easy difficulty
setting is still sufficiently complex to create positive incongruity. In future work,
we will examine this possibility by introducing a ‘very easy’ difficulty setting, in
which the knight is confronted with just a handful of enemies, and does not lose
any health moving.

We believe that our method of adaptive game balancing overcomes some of the
problems of which commercial games suffer with their method of difficulty scal-
ing, as our balanced difficulty setting manages to avoid that the game becomes
boring or frustrating.

7 Conclusions and Future Work

In this paper we examined (1) the relationship between game balancing and
incongruity, and (2) how adaptive game balancing can be used to increase the
entertainment value of a game. For our game Glove, we found that frustration
increases with difficulty, while the entertainment remains roughly the same for
easy and balanced difficulty, but drops for hard difficulty. So, we may conclude
that our results coincide with the incongruity theory as far as positive incon-
gruity is concerned. Furthermore, we may conclude that our approach to adaptive
game balancing is suitable to maintain a game’s entertainment value by keeping
incongruity at a balanced value.

The pool of test subjects used for our experiments was relatively small, yet the
results on which we base our conclusions are highly significant. Still, we could not
discover significant results for all the categories which we examined. Significant re-
sults for the remaining categories might be obtained by a higher number of test sub-
jects. Therefore, in future work, we will (1) continue our experiments with a bigger
subject pool, (2) introduce a ‘very easy’ difficulty setting, to examine whether the
boredom expectations of incongruity theory can also be confirmed, (3) implement
our adaptive game balancing approach in an actual commercial game, and (4) test
its effect on the entertainment value. Such an experiment is expected to demon-
strate the applicability of our approach to commercial game developers, and may
have an impact on how games are constructed in the near future.
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A Questionnaire (English Translation)

For the sake of clarity, the questions were translated from the original Dutch
version into English.

1. In my opinion the game was user friendly
2. I am interested in how the game works
3. I had fun while playing the game
4. I want to know more about the game
5. I can easily concentrate on what I need to do during the game
6. The time passed quickly
7. I got distracted
8. I felt involved in the task
9. The game frustrated me

10. The game made me curious
11. I felt challenged
12. The time passed slowly
13. The task fascinated me
14. I was thinking about other things during play
15. I found the game to be fun
16. I was bored
17. The game was tedious
18. I would like to ask questions about the game
19. I thought the game was hard
20. I was alert during the game
21. I was day dreaming during the game
22. I want to play the game again
23. I understood what I was supposed to do in the game
24. The game was easy
25. I feel I was not doing well during the game
26. I was annoyed during play



 

J. van den Herik and P. Spronck (Eds.): ACG 2009, LNCS 6048, pp. 221–231, 2010. 
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Abstract. The chess endgame is increasingly being seen through the lens of, and 
therefore effectively defined by, a data ‘model’ of itself. It is vital that such mod-
els are clearly faithful to the reality they purport to represent. This paper examines 
that issue and systems engineering responses to it, using the chess endgame as the 
exemplar scenario. A structured survey has been carried out of the intrinsic chal-
lenges and complexity of creating endgame data by reviewing the past pattern of 
errors during work in progress, surfacing in publications and occurring after the 
data was generated. Specific measures are proposed to counter observed classes of 
error-risk, including a preliminary survey of techniques for using state-of-the-art 
verification tools to generate EGTs that are correct by construction. The approach 
may be applied generically beyond the game domain.  

1   Introduction 

The laws of chess in use today date back to the end of the 15th century [1], while the 
rules of play, which need not concern us here, are regularly revised by FIDE [2]. 
There have thus been 500 years of attempts to analyse the game, the last 50 years 
being increasingly assisted by the computer since world-class computer chess was 
declared to be an aim of Artificial Intelligence at the 1956 Dartmouth Conference [3]. 

One approach has been the complete enumeration and analysis of endgames which 
are small enough to be computable in practice. Heinz [4] cites Ströhlein’s 1970 Ph.D. 
thesis [5] as the first computer construction of endgame tables (EGTs). Today, 6-man 
chess is essentially1 solved [6] and the EGTs are being distributed by DVD, ftp trans-
fer and p2p2 collaboration [7]. With new workers, ideas, and technology already ac-
tive, the prospects for 7-man chess being similarly solved by 2016 are good. 

The intrinsic problem of correctness of chess endgame data is summed up in the 
following quotation [8]. 

“The question of data integrity always arises with results which are not self-
evidently correct. Nalimov runs a separate self-consistency check on each EGT 
after it is generated. Both his EGTs and those of Wirth yield exactly the same 
number of mutual zugzwangs {…} for all 2- to 5-man endgames and no errors 
have yet been discovered.” 

                                                           
1  Essentially, because available 6-man EGTs do not include lone Kings or castling rights. 
2  The promulgation of the Nalimov EGTs is the second most intense use of eMule. 
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A verification check should not only be separate but independent. While Nalimov’s 
verification test is separate and valuable in that it has faulted some generated EGTs, it 
is not independent as it shares 80% of its code with the generation code [9]. Neverthe-
less, it should be added that Nalimov’s EGTs have not been faulted to date and are 
widely used without question. 

The problem of correctness is of course not unique to chess endgames or computer 
software. Famous examples include the faulty computer hardware that caused the 
Intel Pentium processor to divide certain numbers incorrectly [10]. In the field of 
mathematics, the Classification of Simple Groups theorem has a proof thousands of 
pages long which it is not feasible to check manually [11]. The recent computer-
generated proof of the Four Colour Theorem [12] will bring some comfort to those 
who find opaque proofs by exhaustion lacking in both aesthetics and auditability. 

Modern society is increasingly dependent on the integrity of its digital infrastruc-
ture, especially in a real-time, safety-critical context; globalization has led to greater 
homogeneity and standardised systems in all sectors, including that of Information 
Technology. The Internet, the Web and search engines leave their users ever more 
vulnerable to systemic failure, e.g., severings of vital FLAG cables [13-,14], Internet 
root nameserver corruption [15] and a Google search-engine bug [16]. 

It is therefore appropriate to look for evidence of highly assured system integrity 
and for tools to help to provide that manifest integrity. Chess endgames are not safety-
critical but serve as a case study to demonstrate the issues of assurance management. 

The main contributions here are the creation of a framework for analysing data as-
surance at every stage of the data life cycle, the use of this framework to analyse EGT 
vulnerabilities and the proposal of countermeasures and remedies. Naturally, mathe-
matical proofs cannot apply directly to the real world, and measures have to be taken 
to check against the fallibilities of man and machine. However, these measures and 
the HOL4/BDD-based approach [17] alluded to, demonstrate and deliver the highest 
levels of assurance to date. 

The remainder of this paper is structured as follows. Section 2 reviews sources of 
error in the whole process of endgame data management. Section 3 reviews the high-
assurance approach taken to generating EGTs using higher-order logic. The summary, 
in Section 4, indicates the future prospect for generating and validating chess EGTs. 

2   An Error Analysis of Endgame Data Management 

It is convenient to refer here to the producer of data as the author and the user of that 
data as the reader. The reader may become the author of derived data by, e.g., a data-
mining investigation. The lifecycle of the data, from first conception to use, is consid-
ered in three structured phases as follows. 

1) Definition: the author 

 – models the scenario which is to be the subject of a computation, 
 – analyses the requirements and designs/implements a computation, 

2) Computation: 

 – the author runs the computation on a platform and generates the output, 
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3) Use: 

 – the author manages the output: publishes, promulgates, comments, 
 – the reader interprets and uses the results of the computation. 

2.1   Phase 1: Definition, Design and Development 

The design of the computation involves mapping the relevant characteristics of the 
chosen problem domain into a representative model on the computer. Just as a good 
choice of concepts and notation will facilitate a mathematical proof, the choice of 
language to describe the real world and the model will facilitate the faithful transla-
tion of the last, informal statement of requirements into their first formal statement. 
As with much of what follows, the human agent needed combines the qualities of a 
domain expert and a systems engineer and can carry the responsibility of ensuring that 
requirements are faithfully and auditably translated into systems. 

Increasingly, people are working in teams – in academia, in industry, and interna-
tionally in the Open Source movement, across the web and towards the Semantic Web 
[18]. This further requires that the concepts in use are shared effectively and that the 
semantics of the language of any project are robust. In the late 1970s, a UK computer 
company defined a machine instruction for a new mainframe processor as ‘loop while 
predicate is TRUE’. In the South of England, while means as long as but in the North 
where the processor was being manufactured, while commonly means until – the 
exact opposite. The second author was one of the few who realised the implications of 
this facet of regional language just in time. 

The context in which a computer system works is important, as the system will in-
teract with its context through the interfaces at its system boundary. Van den Herik et 
al. ambitiously3 computed a KRP(a2)KbBP(a3) EGT [19], substituting complex ches-
sic logic for unavailable subgame EGTs. This ran the risk of model infidelity as chess 
is notoriously resistant to description by a small set of simple rules [20] and they 
rightly caveated the results. The logic and results were indeed faulted [21], leading to 
refined statistics [22] which are now being compared with results generated by Blei-
cher’s FREEZER [23] and WILHELM [24]. 

More subtly, a particularly efficient algorithm for computing DTM4 EGTs [25] ex-
ploits deferred adoption of subgame data, and therefore had to be forced to compute a 
minimum of maxDTM cycles even if an interim cycle did not discover any new deci-
sive positions.5 

Here are three examples of model infidelity in the categories of one out or bound-
ary errors. Wirth [26] used the software RETROENGINE which assumed that captures 
ending a phase of play would always be made by the winner. As a result, his depths 
are sometimes one ply too large. Secondly, De Koning’s FEG EGT generator origi-
nally failed to note losses in 0 in endgames with maxDTM = 1 [27]6. The so-called 

                                                           
3  n.b., in 1987, computers were some 16,000 times less powerful than they are today. 
4  DTM ≡ Depth to Mate, the ultimate goal: the most common, Nalimov EGTs are to DTM. 
  DTZ ≡ Depth to (move-count) Zeroing (move): a target metric for computing Pawnful EGTs. 
5  As for endgames such as KQKR, KRKP, KRKR, KBPK and KBBKP. 
6  FEG also suffered temporarily from the Transparent Pawn Bug: ‘model infidelity’ again. 
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KNNK Bug infected 7 4-man7, 35 5-man and then many of Bourzutschky’s 6-man 
FEG EGTs [28] before the latter spotted the problem. Thirdly, Rasmussen’s data-
mining of Thompson’s correct EGTs [29] resulted in a small number of errors stem-
ming from various coding slips [30-33]. 

A proposal here is that elements of a system should be designed to be self-
identifying. There is a requirement in the next two phases, Computation and Use, that 
agents should confirm at the time that they are working with appropriate inputs.8 The 
deepest endgames require a 2-byte cell per position in their Nalimov EGTs. However 
the access-code cannot determine cell-size at runtime and has to be appropriately 
configured for the cell-size chosen. This creates the potential for a mismatch between 
access-code and EGT and this inevitably occurred on occasion [35]. Most recently, 
Bourzutschky provided the last 16 Nalimov-format EGTs to KPPKPP by converting 
his FEG EGTs, and picked a 2-byte format for the two endgames, KQPK(B/R)P, [36] 
where Nalimov chose 1-byte.9 Clearly, runtime checks on the actual parameters of 
Nalimov-style10 EGT files would obviate several problems.  

Finally, Tamplin had to manage many coding issues in porting Nalimov-originated 
code from one environment to another,11 amongst which was the synchronization of 
parallelism, a technical issue which is becoming commonplace on multi-core plat-
forms. It is expected but not guaranteed that this issue would be detected by inde-
pendent verification testing. 

2.2   Phase 2: Computation 

This phase reviews hardware and software errors, and the human errors of incorrect 
input and inadequate verification. First, a caution against assuming the correctness of 
the infrastructure used for a computation. In his Turing Award lecture, Thompson 
[37] noted that anyone could insert their own nuances at any level of the computing 
infrastructure – application, collector, compiler or even commodity hardware. How-
ever, one has the reassurance that others are using the same infrastructure in a differ-
ent way and there is perhaps some ‘safety in numbers’. 

A correct computation requires the correct input. The computation of a DTx EGT12 
can require compatible EGTs for subgames. Because of the lack of self-identification 
noted above, Tamplin [35, 38] had to manage his file directories with great care to 
ensure correctness when computing first DTZ then DTZ50 EGTs: the one slip was 
picked up by a verification run. 

In the spirit of this paper, Schaeffer [39] detailed the various difficulties his team 
had encountered in computing 10-man EGTs. Like Tamplin, they had to manage a 
large set of files with great care. With regard to platform integrity, he noted not only 
application coding errors in scaling up from 32-bit to 64-bit working but also com-
piler errors in compromising 64-bit results by using 32-bit working internally. For a 

                                                           
7  The seven 4-man endgames affected were KBK(B/N/P), KNK(B/N/R) and KNNK. 
8  This is just one example of the benefits of run-time binding [34].  
9  Another EGT conversion from 2-byte to 1-byte produced full EN/MB compatibility. 
10 e.g., game, endgame, metric, side-to-move, block/cell-size, date, version, comments … 
11 Nalimov write compilers for Microsoft, and used their non-standard features in his programs. 
12 e.g., a DTZk EGT computing DTZ in the context of a hypothetical k-move drawing-rule.  
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while, Nalimov dropped multiples of 232 positions in counts of draws in his EGT 
statistics because of 32-bit limitations.13,14 

Schaeffer [39] compared his checkers EGTs with those of a completely independ-
ent computation and found errors on both sides. Despite the fact that modern micro-
chips devote a greater proportion of their real estate to self-checking, Schaeffer also 
noted hardware errors in CPU and RAM. He also noted errors in disks, which should 
give pause to think about the physics and material science of today’s storage products. 
Checksums at disc-block level were added to prevent storage and copying errors 
promulgating. Nalimov EGTs were integrity-checked by the DATACOMP software, 
and those investing in them soon learned to check MD5SUM file-signatures as well. 

With regard to software testing practice, Schaeffer [39] notes than an EGT-
verification which operates only within an endgame, i.e., without regard to the posi-
tions of successor endgames, will not pick up boundary errors caused by misinherit-
ing subgame information. 

2.3   Phase 3: Use 

The scope of the use phase includes errors of user cognition, data persistency and data 
access. Clearly, the mindsets of author and reader in, respectively, phases 1 and 3 
have to be aligned if the data is not to be misinterpreted. For example, in relating to 
some early EGTs [40], it is necessary to remember that they are not of the now-
prevalent Nalimov type, and that Thompson caveated his original KQPKQ EGT as 
correct only in the absence of underpromotions. Stiller [41] found an ‛error’ in the 
EGT traced to this cause. Thompson’s data is for Black to move (btm) positions only, 
and the depth of White to move (wtm) positions is reported as the depth of the suc-
ceeding btm position in the line, i.e., not including the next wtm move and one less 
than what is now commonly understood to be the depth. This interface quirk nearly 
produced a systematic one out error in Nunn’s 2nd edition of [42]. Further, the values 
reported by Thompson are either White wins in n moves or White does not win. Thus 
0-1/= zugzwang positions are invisible, and 0-1/1-0 zugzwangs are not distinguish-
able from =/1-0 ones. As with all extant EGTs, castling is assumed not to be an op-
tion, currently reasonable as castling rights have never survived to move 49 [43], but 
this does mean that EGTs will not help solve some Chess Studies.15 

There are arguments for computing EGTs to a variety of metrics [45] and therefore 
they need to identify their particular metric to any chess-engine using them. It can be 
demonstrated that when a chess-engine mistakes a DTZ EGT for a DTM EGT, it will 
prefer the position-depth in the current phase of play before a capture to that in the 
next phase, resulting in the bizarre refusal of a piece en prise.16 Thus, cell-size, met-
ric, and presumed k-move-rule in force must be part of the self-description of an EGT. 

                                                           
13 The second author sympathises: he made a similar error in a 1970s statistics package. 
14 Nalimov also once provided an incorrect and as yet unidentified statistics file for KBPKN.  
15 e.g. r1b5/8/8/7n/8/p7/6P1/RB2K2k w Q [44]. White draws: 1. Be4 Ra4 2. Bc6 Ra6 3. g4+ Rxc6 

4. gxh5 Ra6 5. h6 Bf5 6. h7 Bxf7 7. O-O-O+ K~ 8. Rd6 Ra4 (8. … Rxd6 =) 9. Rd4 etc.  
16 e.g., given 8/3Q4/8/k7/6r1/8/8/K7 w and a DTZ EGT interpreted as a DTM EGT, a chess-

engine will play 1. Qf5+? Kb6 2. Qe6+? Kc5 3. Qf5+? Kc4 4. Qe6+? Kc5 (pos 3w) 5. Qc8+? 
Kd5 6. Qf5+? Kc4 7. Qe6+? (pos. 4b). 
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Disc drives built ‘down to cost’ are perhaps the weakest part of PCs and laptops and 
subject to crash: this is a strong selling point for the diskless notebook. CDs/DVDs, 
particularly rewritable, are prone to environmental wear and handling damage [46], and 
it is somewhat ironic that the ancient materials of stone, parchment and shellac are more 
long-lived. To check against data decay, and for data persistency, it is necessary to 
check that data files have not subsequently been corrupted, e.g., by file-transfer (upload, 
download, CD burn, or reorganisation) or even deterioration during long-term storage. 
File use should therefore be preceded and followed by file-signature checks on input 
files, and it seems surprising that this is not an inbuilt facility in computers’ operating 
systems. RAID systems are excellent but not immune to the failure-warning system 
being accidentally turned off, e.g., by software update. 

Incorrect file-access code can turn an uncorrupted file into a virtually corrupted 
file: the Nalimov 1-byte/2-byte syndrome is an example here. This phenomenon af-
flicted KINGSROW in a World Computer-Checkers Championship [47], causing it to 
lose an otherwise drawn game and putting it out of contention for the title. 

Finally, there are some errors where the source has not been defined [39, 48]. 
Thompson [40] also cites errors in the KQP(g7)KQ EGT by Kommissarchik [49] but 
these errors17 did not prevent this EGT from assisting Bronstein during an adjourn-
ment to a win in 1975.18 

Following this review of the lifecycle of data, it is clear that if readers are to be as-
sured of data integrity, authors must provide self-identifying files with file-signatures 
and a certificate of provenance describing the production process and the measures 
that have been and should be taken to ensure integrity. 

3   Correct-by-Construction Endgame Tables 

As the preceding section demonstrates, errors can creep in at any point in the lifecycle 
of data, and there is no single solution that will eliminate all errors. A pragmatic ap-
proach is to analyse the errors that have occurred, and introduce a remedy that will 
reduce or eliminate a common cause of errors. For example, RAIDs and file signa-
tures are both remedies designed to tackle errors caused by faulty hard disc drives. 

A common cause of errors observed in practice is the misinterpretation of EGT da-
ta. Is the context in which the reader is using the data compatible with the context in 
which the author computed it? Stated this way, it is clear that this problem affects a 
broad class of data, not just EGTs, and there is a general approach to solving the prob-
lem based on assigning meaning to the data. If data carries along with it a description 
of what it means, then it is possible to check that the author and reader use it in com-
patible contexts. A prominent example of this approach is the Semantic Web project 
[18], which is working towards a world in which web pages include a standardized 
description of their contents. 

It is possible to apply this approach to EGTs by creating a standardized description 
of their contents, which unambiguously answers the question: what exactly does each 

                                                           
17  There are btm KQQ(g8)KQ draws and wins which Komissarchik did not anticipate. 
18  Grigorian-Bronstein, Vilnius: after 60m, 8/8/8/K2q2p1/8/2Q5/6k1/8 w {=} ... 76. Qd2?? 

Qc6+ {77. K~ Kh1} 0-1. 



 Data Assurance in Opaque Computations 227 

 

entry in the EGT mean with respect to the laws of chess? With such a description in 
place, the problem of verifying the correctness of the EGT reduces to providing suffi-
cient evidence that each entry in the EGT satisfies its description. 

This EGT verification process was carried out in a proof-of-concept experiment 
that generated correct-by-construction four piece pawnless EGTs [17], by using the 
following steps. 

1. The laws of chess, less Pawns and castling, were defined in higher order logic, 
and these definitions were entered into the HOL4 theorem prover. 

2. The format of EGTs represented as ordered binary decision diagrams was also 
defined in HOL4. 

3. For each EGT, a formal proof was constructed in the HOL4 theorem prover that 
all of the entries follow from the laws of chess. 

The remainder of this section will briefly examine the steps of this experiment. 

3.1   Formalizing the Laws of Chess 

The first step of the EGT verification process involves making a precise definition of 
the laws of chess, by translating them from the FIDE handbook [2] into a formal log-
ic. The Semantic Web uses description logic to describe the content of web pages, but 
this is not expressive enough to naturally formalise the laws of chess, and so higher 
order logic is chosen instead. 

The precise set of definitions formalising the laws of chess are presented in a tech-
nical report [17]; to illustrate the approach it suffices to give one example. Here is an 
excerpt from the FIDE handbook: 

Article 3.3. The rook may move to any square along the file or the rank on which 
it stands. 

And here is the corresponding definition in higher order logic: 

rookMaybeMoves sq1 sq2 ≡ (sameFile sq1 sq2 ∨ sameRank sq1 sq2) ∧ (sq1 ≠ sq2) 

The definition of rook moves is completed by combining the definition of rookMay-
beMoves with a formalisation of Article 3.5, which states that the Rook, Bishop and 
Queen may not move over any pieces. 

In this way the whole of the laws of chess (with no pawns or castling) are formal-
ised into about 60 definitions in higher order logic, culminating in the important 

depthToMate p n ≡ … 

EGT relation, which formalises the familiar metric from Nalimov’s EGTs that posi-
tion p has DTM n. 

3.2   Formal Verification of EGTs 

In itself the formalisation of the laws of chess into higher order logic is nothing more 
than a mathematical curiosity. However, matters get more interesting when the defini-
tions are entered into an interactive theorem prover, such as the HOL4 system [50]. 
These theorem provers are designed with a simple logical kernel that is equipped to 
execute the rules of inference of the logic, and it is up to the user to break apart large 
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proofs into a long sequence of inferences that are checked by the theorem prover. The 
theorem prover provides proof tools called tactics to help with the breaking apart of 
large proofs, but since everything must ultimately be checked by the logical kernel, 
the trusted part of the system is very small.19 As a consequence of this design, a proof 
that can be checked by an interactive theorem prover is highly reliable. This is why it 
is a significant milestone that the Four Colour Theorem is now underpinned by a 
formal proof that has been completely checked by an interactive theorem prover [12]. 

How can this capability of reliable proof checking be harnessed to check EGTs? In 
principle, for each (p,n) DTM entry in an EGT, a proof of the relation depthToMate p n 
could be constructed and checked, thus establishing that the EGT entry did indeed 
logically follow from the laws of chess as formalised in HOL4. However, in practice 
the size of any EGT would make this strategy completely infeasible. 

A more promising approach is to formalise the program that generates the EGT, 
and construct a proof that it could only generate EGT entries that followed from the 
laws of chess. This idea of using logic to verify formally computer programs is very 
old20, but it is only recently that theorem proving technology has made it practical for 
significant programs, such as the Verified C Compiler [52]. This is the most promis-
ing approach for generating verified EGTs of a realistic size, but it is still currently 
too labour-intensive for anything less than critical infrastructure.21  

An alternative approach works sufficiently well to construct a prototype verified 
EGT [17]. The whole EGT is formalised in the logic, as a sequence of sets of posi-
tions of increasing DTM. Each set of positions is encoded as a bit-vector, and stored 
as an ordered binary decision diagram or BDD [53]. Using a combination of deduc-
tion and BDD operations [54], it is possible to use the previous DTM set to construct 
a proof that the next set is correct. The verification is bootstrapped with the set of 
checkmate positions at DTM 0, which is easily checked by expanding the definition 
of a checkmate position. 

Due to the difficulty of compressing sets of positions using BDDs [55, 56], it is on-
ly possible to generate verified EGTs for four piece pawnless endgames using this 
technique, but as a result there are now many win/draw/loss positions that come with 
a proof that they logically follow from the laws of chess [17, 57].22 

4   Summary 

This paper has examined the correctness of endgame data from multiple perspec-
tives. A structured survey was presented on the past pattern of errors in EGTs man-
aged during work in progress, surfacing in publications, and occurring after the data 
was generated. Specific remedies were proposed to counter observed classes of 
error from creeping in to endgame data. A particular challenge is to pin down the 
precise meaning of the data in an EGT, so that the reader uses the data in a context 

                                                           
19 Typically, just a few hundred lines of code. 
20 The earliest reference known to the authors is a paper of Turing published in 1949 [51]. 
21 It is left as a challenge to the research community to come up with a safety-critical applica-

tion of EGTs. 
22 Naturally, the numbers generated by the verification agree with Nalimov’s results. 
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that is compatible with the context in which the author computed it. A possible 
solution to pinning down this meaning was described that used higher order logic, 
and the presence of a machine-readable specification opened the door to a discus-
sion of techniques for using interactive theorem provers to generate EGTs that are 
correct by construction. 

Although endgame data has been the focus of the paper, the methodology of exam-
ining data assurance carries over to many opaque computations. Specifically, the 
learning points are that:  

•     it is vital to collect data on errors that have occurred in practice, to ground any 
discussion of data assurance, 

•     there is no magic solution, but rather individual remedies must be introduced 
that counter observed classes of error, and 

•     the precise meaning of the data, the exact context in which it was computed,  
must be encoded in some form and made available with the data, to counter 
misinterpretations on the part of the reader.  

As society becomes increasingly dependent on computers and data generated by opa-
que computations, we cannot afford to overlook techniques for safeguarding data 
assurance. 
 
Acknowledgments. Our review illustrates the intrinsic challenges and complexity of 
the computations addressed here. The fact that there are so few, largely temporary, 
errors is a testimony to the awareness, skill, and rigour of those who have contributed 
significant EGT results to date. Great achievements lead to others, e.g., the solving of 
Checkers in 2007 [58]. Throughout, the ICCA and ICGA encouraged and championed 
work on endgames. We thank all those involved for their contributions in the end-
game field and for the example they have set in the field of Systems Engineering. 
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