
Chapter II.7
Validation of Satellite Rain Rate Estimation
with Ground-Based Observing Systems
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and H. Woolf

1 Introduction

The goal of the described work is to present an experimental product for the esti-
mation of convective precipitation rain rates (RR) from satellite observations and
the procedure used to create and evaluate the new product. The algorithm, devel-
oped to estimate convective RR, combines an existing precipitation product based
on AMSU data and developed under the Nowcasting Satellite Application Facility
(SAF) (Bennartz 2005) with a convection detection algorithm based on SEVIRI
data and developed at the Italian Centro Nazionale di Meteorologia e Climatologia
Aeronautica (CNMCA). The convective precipitation derived by the combination of
these two products is intended to be used by hydrologists for civil protection pur-
poses. The described validation procedure was not only relevant to the overall prod-
uct accuracy evaluation, but also represented a critical component for the develop-
ment of the merging algorithm. The chapter is divided into sections which describe:

• the available in situ data and their consistency;
• the precipitation product from AMSU (theoretical basis for precipitation algo-

rithm, product description, product validation and consequent error characteriza-
tion, and algorithm improvements);

• the convection detection algorithm based on SEVIRI data (theoretical basis
for the convection detection algorithm, product validation and consequent error
characterization, and algorithm improvements);

• the convective precipitation product based on the merging of precipitation
(AMSU) and convection (SEVIRI) products (methodology, product description,
and product validation);

• the conclusions on:

– validation issues related to the scientific hypothesis behind the merging
algorithm;
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– the individual modules used to derive the convective precipitation product;
– the accuracy of available observations;
– the accuracy of the final derived product.

2 Available in Situ Data

This section describes the in situ observations used to develop and evaluate the
convective precipitation product (RADAR RR and rain gauge values) and presents
a qualitative comparison between them.

2.1 RADAR

The Italian Department of Civil Protection (DPC), through the network of the
Regional Functional Centers, collects in real and near real-time RADAR data for
the hydro-meteorological monitoring and management. Using these observations,
the Meteorological Service of the Air Force (CNMCA) produces national mosaic of
rainfall intensity on a grid of 1, 400×1, 400km2 with a spatial resolution of 2.5 km2

and a time sampling of 30 min. This product (Fig. II.7.1) covers mainly North and
Center of Italy. It is worth emphasizing that the national surface rainfall intensity
(SRI), used for this project, was not validated nor adjusted with rain gauges. The
Italian SRI mosaic is composed of several RADARs managed directly by Regional
Government, the Italian Air Force and some foreign countries such as France, Swiss,

Fig. II.7.1 RADAR coverage
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Fig. II.7.2 RADAR national mosaic (For color figure see online version)

and Slovenia (Fig. II.7.2). However for this study only Italian RADAR network was
used. The most important technical features of the used RADAR systems are:

• C-band

– Frequency: 3.900–5.750 GHz
– Wavelength: 7.69–5.20 cm

• Doppler capacity up to 125 km;
• operation with polarimetric quantities (e.g., dual polarization);
• antenna with characteristics compatible with polarimetric observations;
• beam width = 1o;
• RADAR system remotely controlled with 24-h operability.

2.2 Rain Gauges

Rain gauge data acquisition and processing are performed at different temporal
intervals ranging from 5 to 30 min. The observation collected by the National
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Fig. II.7.3 Rain gauge distribution

Centers and Cumulate Maps of precipitation is made available within 45 min from
the acquisition. Figure II.7.3 shows the distribution of the rain gauges over Italy and
provides example of the available products.

2.3 Qualitative Comparison: RADAR–Rain Gauges

Since rain gauges and radars represent the main validation instruments for satellite-
derived precipitation estimates, it was considered worth to evaluating how they
compare to each other. This section describes the comparison of radar data aggre-
gated on a SEVIRI grid (app. A) with individual rain gauges. Figures II.7.4
and II.7.5 show some of the inherent difficulties in using these kind of observa-
tions, especially for quantitative estimations. Some of the issues, described also in
Sect. 3.4.1, are evident when comparing these two ground-based instruments. In
particular:

• too many rain gauge observations are suspiciously reported to be 0 even where
radar (as AMSU) sees precipitation;

• the rain gauge observations have not been convolved to the SEVIRI grid using
the same convolving scheme used for radar data;

• often the radar temporal resolution (30 min) does not allow for a fair comparison
with 10 min cumulated rain observed by the rain gauges;

• dependency of radar RR on observation radial distance from radar coordinates
should be taken into account.
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Fig. II.7.4 Radar-estimated RR on AMSU native grid between 02:00 and 02:30 UTC over the
Gulf of Genova. RR-derived precipitation is described by the values next to the colorbar. The
colored circles represent rain gauge observations. RR intensity estimated from 10 min cumulate
precipitation measured by the gauges at 02:20 UTC is described by the values in parenthesis next
to the colorbar (For color figure see online version)

3 Precipitation Retrieval from Microwave (AMSU) Data

3.1 AMSU Data

The advanced microwave scanning unit (AMSU) is a cross-track scanning micro-
wave radiometer consisting of two separate modules: AMSU-A and AMSU-B. The
first one has sounding channels in the water vapor (23.8 GHz) and oxygen absorp-
tion band complex (50 GHz) plus some window channels (at 31.4 and 89 GHz)
and is dedicated mainly to the retrieval of temperature and water vapor profiles.
AMSU-B has two window channels (at 89 and 157 GHz) and three channels in the
water vapor absorption band at 183 GHz and is dedicated to the retrieval of ice cloud
and precipitation (Grody et al., 2004). Being a sounding instrument, AMSU-A has a
lower spatial resolution than AMSU-B. Channels and spatial resolutions are detailed
in Table II.7.1. AMSU data used for this study were obtained from five platforms
(NOAA 15, 16, 17, 18, and METOP-A) over the H-SAF domain (Europe), for a
total of 10 overpasses per day, starting from February 1, 2006 (AMSU data from
METOP-A were added after the platform launch). Examples of AMSU-B data at 89
and 157 GHz are shown in Figs. II.7.6 and II.7.7.
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Fig. II.7.5 Radar-estimated RR on AMSU native grid between 02:30 and 03:00 UTC over
the Gulf of Genova. RR-derived precipitation is described by the values next to the colorbar. The
colored circles represent rain gauges observations. RR intensity estimated from 10 min cumulate
precipitation measured by the gauges at 02:50 UTC is described by the values in parenthesis next
to the colorbar (For color figure see online version)

Table II.7.1 AMSU-A and AMSU-B/MHS instrument characteristics

Satellite characteristics AMSU-A AMSU-B

Spatial resolution 3.3◦ 1.1
Nadir effective FOV 50 × 50 km2 20 × 16 km2

Scan edge effective FOV 150 × 80 km2 64 × 52 km2

Channels 23.8, 31.4, 50 GHz
O2 complex, 89.0 GHz

89.0, 150.0, 183
(WV absorption and) GHz

3.2 Precipitation Algorithm Theoretical Basis

The algorithm, hereafter referred to as precipitating clouds (PC) algorithm, uses two
channels from AMSU-B. The main principle is that rainfall can be derived from the
brightness temperature (BT) difference depression with respect to the background
BT difference obtained in the absence of precipitation. In other words, the radia-
tive cooling due to the scattering of the radiation by the ice particles overshooting
precipitating convective clouds is taken as a rain indicator, and AMSU-B window
channels (89 and 157 GHz) are used for deriving a so-called Scattering Index (SI):

sl1 = (T89 − T150) − �Tbk (89−150)
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Fig. II.7.6 Example of AMSU-B at data 89 GHz

Fig. II.7.7 Example of AMSU-B at data 157 GHz
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where T89, T150, for a specific field of view, are BTs at 89 and 150 GHz and
�Tbk (89−150) is the corresponding difference of the BTs at 89 and 150 GHz in
absence of precipitation. Detailed description of the algorithm can be found in
Bennartz et al. (2002). Final product, obtained at AMSU-B resolution (Bennartz,
2000) is the likelihoods of rainfall classes (i.e., the probability that the rainfall falls
within predefined ranges of RRs). Table II.7.2 shows the different classes used.
Therefore, a given pixel will not be assigned a certain value but rather a set of
probabilities for each of the four RR classes. The algorithm’s approach is empirical.
The relationships between the precipitation classes and the AMSU-derived scatter-
ing indexes and derived from the use of co-located, radar data, convolved at AMSU
resolution. This approach allows to overcome the large systematic deviations that
the current lack of knowledge about the microwave response to cloud/precipitation
microphysics would introduce in case a detailed inverse modeling approach was
chosen. This is especially true where surface characteristics are highly heteroge-
neous. The precip-radiation database, created by convolving rain gauge adjusted
radar estimates, was used to calibrate the algorithm. The database is composed of
thousands of couples of AMSU observations and related radar-derived precipita-
tion classes. These data were collected during 8 months (April–November 1999)
at Swedish Hydrological and Meteorological Institute (SHMI) and cover the Baltic
Sea region. Due to the limited representativeness of this data set, the algorithm sen-
sitivity, in the current implementation, does not allow for the discrimination of more
classes.

It is worth emphasizing that the algorithm was tuned to perform optimally over
northern Europe and it may not be exported to other regions straightforwardly. In
fact, an adjustment to other climate regions is deemed necessary to re-define algo-
rithm characteristic thresholds. It is also important to recognize that the database
used to tune the algorithm must be statistically significant, and all the meteorolog-
ical and climatological situations of interest must be conveniently represented. In
fact, the problem of the representativeness of the database is a well-known prob-
lem in rainfall retrievals and may hamper the validity of the retrieval if not properly
handled (Panegrossi et al., 1998; Bauer, 2001; Di Michele et al., 2003; Kummerow
and Giglio, 1994). Finally, when using the precip-radiation database, one must be
conscious that several errors are intrinsically taken on-board like the spatial and
temporal collocation errors between radar data and satellite observations (due, for
example, to temporal misalignments, to satellite navigation errors, to the different
geometries of the observations).

Table II.7.2 Classes of different precipitation intensities used in this investigation (Bennartz,
2002)

Class Type of precipitation
Minimum
RR (mm/h)

Maximum
RR (mm/h)

1 No precipitation 0.0 0.1
2 Risk of light precipitation 0.1 0.5
3 Light/moderate precipitation 0.5 5.0
4 Intensive precipitation 5.0
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Fig. II.7.8 Example of PC standard RGB composite. The RGB is obtained mapping the probabil-
ity of each pixel belonging to class 1 to blue, class 2 to green, and class 3 to red. The RGB obtained
in this way shows high precipitation in red and low precipitation in blue. No precipitation is shown
in white. The RGB conveys the full information about the likelihood of each pixel belonging to any
of the four classes, however, it does not provide a single value per pixel and therefore can be used
only for qualitative comparisons with radar or rain gauges (For color figure see online version)

Fig. II.7.9 Example of likelihood for each individual class of precipitation as described in
Table II.7.2
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3.3 PC Products

From the PC output two products generated on the AMSU native grid are:

• likelihoods for four different intensity classes of precipitation;
• PC standard RGB composite (Fig. II.7.8). The RGB is obtained mapping the

probability of each pixel belonging to class 1 to BLUE, class 2 to GREEN, and
class 3 to RED. The RGB obtained in this way shows high precipitation in RED
and low precipitation in BLUE. Absence of precipitation is shown in white. The
RGB conveys the full information about the likelihood of each pixel belonging to
any of the four classes, however, it does not provide a single value per pixel and
therefore can be used only for qualitative comparisons with radar or rain gauges.
Individual classed of probability are shown in (Fig. II.7.9).

In order to obtain point values of precipitation, the first PC product was further
manipulated in two different ways:

• Maximum probability approach (Fig. II.7.10). The class with the highest proba-
bility is chosen. It is a straightforward approach, however it can be misleading: for

Fig. II.7.10 Example of original PC product: classification using the maximum probability
approach. Classifying each pixel according to the maximum probability among the different classes
provides a unique value (class), however, this value can be misleading when, for example, the prob-
ability, for a given pixel, is spread across two or more different classes. In this case the algorithm
would still assign the pixel to one class and of the information regarding the probability distribution
is lost
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example if, for a given pixel, the probability across two or more different classes
was uniform, the algorithm would still assigning one class only, and the infor-
mation regarding the actual probability distribution among the different classes
would be lost;

• Weighted average RR approach (Fig. II.7.11). The weighted average approach
provides an arbitrary estimate of the RR according to the following equation:
RR = ∑4

i=1 pirri where pi is the likelihood, and rri the mean RR value for class
i. This quantity conveys the full information about the likelihood of each pixel
belonging to any of the four classes, but the actual RR values are arbitrary as
the mean value for each class (especially class four, intense precipitation) is set
to a given value in an arbitrary way. In spite of this limitation, under specific
circumstances, the representation is still useful for qualitative and quantitative
comparisons.

Further developments of the PC algorithm, occurred after the realization of this
study, introduced a new PC product for the instantaneous RR. However, the new
product not used for the presented work is not discussed in this chapter.

Fig. II.7.11 Example of original PC product: classification using the weighted average RR. The
weighted average conveys the full information about the likelihood of each pixel belonging to any
of the four classes, but the values above 5 mm/h are arbitrary as the mean value for class 4 (intense
precipitation) was set to 10 mm/h in an arbitrary way. In spite of this, the representation is still
useful for qualitative and quantitative comparisons
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3.4 PC Validation

3.4.1 Qualitative Validation: PC-GAUGES

Figure II.7.12 and II.7.13 shows that a simple comparison, between PC-weighted
average RR and the rain gauge observations, does not provide conclusive evi-
dence useful for the estimation of the PC accuracy. This might be explained by
the following considerations:

• too many rain gauge observations are suspiciously reported to be 0 even where
AMSU (as radar) sees precipitation;

• rain gauge observations were not convolved at AMSU resolution; and
• the impact AMSU geolocation uncertainty should be carefully estimated.

In spite of these difficulties the 10 min (cumulated rain) temporal resolution
of the rain gauge observations and their dense spatial distribution make them
potentially useful for qualitative and quantitative estimate of the PC accuracy.

Fig. II.7.12 PC-weighted average on AMSU native grid at 01:52 UTC over the Gulf of Genova.
AMSU-derived precipitation is described by the values next to the colorbar. The colored circles
represent rain gauges observations. RR intensity estimated from 10-min cumulate precipita-
tion measured by the gauges at 02:00 UTC, is described by the values in parenthesis next
to the colorbar (For color figure see online version)
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Fig. II.7.13 PC-weighted average on AMSU native grid at 02:35 UTC over the Gulf of Genova.
AMSU-derived precipitation is described by the values next to the colorbar. The colored circles
represent rain gauges observations. RR intensity estimated from 10 min cumulate precipitation
measured by the gauges at 02:30 UTC is described by the values in parenthesis next to the colorbar
(For color figure see online version)

3.4.2 Quantitative Validation of PC with Radar Data on AMSU Grid

The quantitative validation of the original PC algorithm, applied to Southern
Europe, was done for about 43,000 observations taken in 7 different days by
the NOAA 16 and 18 satellites. It was performed using radar data convolved
on the AMSU grid as shown in Fig. II.7.14. The results were compared in
two ways:

1. AMSU precipitation classes (max probability approach) were compared to radar-
derived classes of precipitation, pixel by pixel on AMSU native grid.

2. AMSU re-calculated classes (weighted average approach) were compared to
radar-derived classes of precipitation, pixel by pixel on AMSU native grid,
according to the following procedure:

(a) AMSU-derived RR was calculated using the weighted average of the likeli-
hoods. A mean RR value was assigned to each class (as described by third
point of Sect. 3.3) and

(b) weighted averages of RR were classified again according to Table II.7.2.

This methodology was required because the weighted average is an arbitrary
estimate (in particular, the mean value of the intense precipitation class is arbi-
trary), and the one based on the maximum likelihood does not take into account



254 P. Antonelli et al.

Fig. II.7.14 Example of radar data convolved at AMSU-B spatial resolution and binned using the
same classification thresholds used by the PC algorithm

the probability distribution among the different classes but only the maximum
probability.

Radar data were convolved on AMSU grid and classified according to
Table II.7.2 and the contingency tables were then calculated for all the selected
overpasses. These procedures do not take in account several of the issues discussed
in the previous sections but still provide some useful information on the perfor-
mances of the PC algorithm over the Mediterranean area. The results presented in
Tables II.7.3, II.7.4, and II.7.5 indicate that:

• In both cases (max probability and weighed average) PC misclassified several
pixel assigning them to class 2 and 3 (0.1 < RR < 5 [mm/h]) while according
to the radar the pixels were belonging to class 1 (no precipitation) as showed in
Table II.7.5. This misclassification issue appeared to be more evident for daytime
passes (Table II.7.3) than for nighttime ones (Table II.7.4);

• Several pixels were classified as class 4 (RR > 5 [mm/h]) by PC while according
to the radar they were belonging to class 3 (0.5 < RR < 5 [mm/h]). The issue is due
to the fact that radar, with increasing distance, tends in general to underestimate
RR intensity. The problem is also due to the arbitrary mean value associated to
class 4 in the intermediate step for the PC product when the weighted average
RR was calculated.
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Table II.7.3 Contingency table for daytime only for the max probability approach and for
the weighted average approach (in parenthesis). PC classification are on the rows while radar
estimations are on the columns

PC/RADAR R1 R2 R3 R4

C1 93.69 (95.02) 4.74 (3.86) 1.52 (1.10) 0.05 (0.01)
C2 66.05 (93.66) 21.21 (4.03) 12.15 (2.11) 0.73 (0.20)
C3 23.66 (63.33) 36.62 (19.79) 37.22 (16.03) 1.85 (0.84)
C4 3.40 (0) 16.54 (5.81) 68.98 (71.32) 5.82 (22.86)

Table II.7.4 Contingency table for nighttime only for the max probability approach and for
the weighted average approach (in parenthesis). PC classification are on the rows while radar
estimations are on the columns.

PC/RADAR R1 R2 R3 R4

C1 92.47 (93.52) 5.34 (4.70) 2.17 (1.76) 0.01 (0.01)
C2 53.50 (82.75) 28.78 (13.55) 16.99 (3.70) 0.73 (0.00)
C3 21.69 (50.87) 37.03 (26.24) 39.41 (21.70) 1.85 (1.18)
C4 13.60 (12.10) 17.67 (12.81) 62.91 (69.39) 5.82 (5.69)

Table II.7.5 Contingency table for day- and nighttime for the max probability approach and for
the weighted average approach (in parenthesis). PC classifications are on the rows while radar
estimations are on the columns. Overall the radars detected 37,044 FOVs with no precipitation
(C1), 3,427 of C2, 2,464 of C3, and 171 of C4; PC detected 36,740 FOVs with no precipitation
(C1), 3,955 of C2, 1,219 of C3, and 1,192 of C4

PC/RADAR R1 R2 R3 R4

C1 93.11 (94.28) 5.01 (4.28) 1.82 (1.42) 0.03 (0.01)
C2 62.14 (88.89) 23.56 (8.20) 13.65 (2.8) 0.63 (0.10)
C3 23.05 (59.79) 36.75 (21.62) 37.90 (17.63) 2.29 (0.94)
C4 7.80 (6.03) 17.03 (9.46) 66.35 (70.31) 8.81 (13.91)

Both issues are well understood and they were expected in the application of
the PC algorithm to Italian areas. For the described validation exercise the results
obtained were, on average, 18% worse, with a peak of 58% for class 4, with respect
to those obtained by Bennartz (2005). The discrepancies can be furher explained
considering that:

• the radar data used in the validation were not gauge adjusted, underestimation of
precipitation from radar data was, therefore, expected;

• the algorithm was trained only with North European radars and for high latitude
climate regimes;

• in his validation Bennartz discriminated between land and water pixels and
excluded coastal regions, which were less relevant over northern Europe, than
for the Italian case;
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• over coastal (and in general heterogeneous) and non-vegetated pixels the current
scheme for background temperature estimation does not provide optimal results,
this issue appears to be more evident over Italy;

• class 4 pixels over northern Europe are much less frequent than over southern
Europe, therefore the data set used to calibrate the algorithm might not be, at this
stage, enough representative for the Italian cases.

It is worth mentioning that overall the radars detected 37044 FOVs with no pre-
cipitation (C1), 3427 of C2, 2464 of C3, and 171 of C4; PC detected 36740 FOVs
with no precipitation (C1), 3955 of C2, 1219 of C3, and 1192 of C4.

3.5 Improvements to the PC Algorithm

As described in Sect. 3.2, and as shown in Sect. 3.4.2, the performances of the PC
algorithm largely rely on the computation of a realistic radiative background. In fact,
the rainfall estimation is based on the deviation of the measured BT differences, at
89 and 150 GHz, with respect to the background BT differences (i.e., the ones that
would be measured in non-precipitating conditions). In its original implementation,
the background BT was computed dynamically over a wide region surrounding the
pixel of interest (2 degrees by 2 degrees). This technique is simple and efficient
but has several drawbacks, since the possibility that the resulting BT is contami-
nated by precipitation and/or by heterogeneous backgrounds is extremely high. As
a consequence, an effort was devoted to developing a new technique for deriving
background BTs: a grid of clear sky pixels was built by making use of a certain
number of AMSU overpasses. For a given time interval preceding the one of inter-
est, AMSU data were projected onto a fixed regular grid (the SEVIRI one was used).
This projection was done by using the remapping process described in Appendix A.
The warmest AMSU clear sky BTs at 89 and 157 GHz, among all the overpasses
within a certain time window (4 days in this study), were retained and mapped onto
the the higher resolution SEVIRI fixed grid.

This approach provides good results but is not optimal. In fact, over the (radia-
tively) hot land surfaces, scattering cooling from precipitation causes BTs to
decrease. Thus, hot backgrounds easily mark clear sky pixels. However, the same
reasoning cannot be applied over ocean surfaces. In fact, since sea surface emissiv-
ity at 89 and 157 GHz varies between 0.6 and 0.7, ocean backgrounds are always
radiatively cold. Convective events still cause radiative cooling by scattering, how-
ever, water vapor and light precipitation can warm the measured BTs with respect
to the clear sky signatures. Therefore, hottest pixels might not necessarily corre-
spond to clear sky ones. However, since the warming varies with the wavelength
(the 89 GHz being more sensitive to water vapor), the differential signal should in
theory be kept as an indicator of clear sky pixels. The SI should be maximum at
clear sky (due to the differences in SSE) and minimum during convective precipita-
tion (due to the enhanced scattering at 157 GHz than at 89 GHz). The differential
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discrimination was attempted but caused significant errors by detecting light pre-
cipitation over clear sky ocean regions, therefore, was not adopted for this study as
deeper investigation is needed for its use.

The time window of 4 days used for the computation was proved to be large
enough to allow for clear sky conditions to be found for every scene pixel and
short enough to remain within background conditions that are representative of the
overpass under examination.

In this regard, it is worth noting that a considerable impact was observed from
night/day variations (implying deviations as large as 30 K on the background BTs),
a fact which suggested to restrict the computation of the background temperatures
to overpasses within a few (6 in this study) hours from the time of interest. In
order to avoid problems linked to the instrument calibration, separate background
calculations were also done for the different satellites.

The described approach resulted in a considerable improvement on the com-
puted clear sky BTs, and this had a significant impact on the derived precipitation
estimates as shown in Figs. II.7.15 and II.7.16. The improvements are visible espe-
cially over coastal regions (North Africa) and over non-vegetated land (Sicily and
Sardinia) where with original scheme, false precipitation was detected in clear sky

Fig. II.7.15 NOAA 18 16-08-2006 at 01:52 UTC: PC retrieval obtained with original estimation
of background BTs. Light precipitation is erroneously detected in clear sky regions (over Sicily,
Sardinia, and North Africa), Fig. II.7.21



258 P. Antonelli et al.

Fig. II.7.16 NOAA-18 August 16, 2006 at 01:52 UTC: PC retrieval obtained with the estima-
tion of background BTs derived from previous time-coincident, same-platform overpasses. No
precipitation is detected in the clear sky regions over Sicily, Sardinia, and North Africa

regions (Fig. II.7.21), whereas with the new scheme, the misclassification tends to
disappear. SEVIRI data in Fig. II.7.22 show the improvements of the new approach
even over ocean (Fig. II.7.17) with respect to the original version of the PC algo-
rithm for a different NOAA 18 overpass (September 14, 2006 at 01:56 UTC) as
shown in Fig. II.7.10. For the sake of clarity, Figs. II.7.6, II.7.8, II.7.9, and II.7.10,
show examples obtained with the original version of the PC algorithm.

The new implementation also allowed for an improvement in the estimation of
precipitation over very heterogeneous surfaces (namely over coastal areas): the fact
that the background BT selection was done by considering several overpasses and
on a fixed, high-resolution grid (the SEVIRI one is used), the heterogeneity of the
background BTs was better retained, thus allowing a mitigation of the estimation
errors.

A further possible improvement for this algorithm could consist of a smoothing
of the computed background BTs before ingesting them in the retrieval scheme. In
fact, being computed over different overpasses (and therefore even from different
observation angles) the radiative backgrounds may present some important discon-
tinuities among adjacent pixels (e.g., differences as large as 10% could derive from
the different scan angles of the retained clear sky pixel) that could impact on the
final rain estimation.
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Fig. II.7.17 NOAA-18 September 14, 2006 at 01:56 UTC: PC retrieval obtained with improved
estimation of background BTs derived from previous time-coincident, same-platform overpasses.
No precipitation is detected in the clear sky regions over Sicily and over ocean. In this figure PC
values are mapped onto actual AMSU effective FOVs (EFOVs) calculated according to Bennartz
(2000)

3.6 Errors and Uncertainties

The validation procedure described in Sect. 3.4.2 highlighted some issues spe-
cific to the PC product. These issues, discussed in the following subsections, were
accounted for the implementation of the merging algorithm described in Sect. 5.1.

3.6.1 AMSU Geolocation Uncertainties

AMSU data suffer from considerable geolocation errors, depending on the plat-
form. NOAA scientists have evaluated these errors by analyzing the discontinuity
in correspondence of coastline in clear sky conditions. Errors were found in both
the along and the cross-track direction. The displacement was quantified as large as
4.2 and 5.5 km (cross-track and along-track respectively) for NOAA-17 and 3.2 km
and −16.4 km for NOAA-18. As for NOAA-18, an example of the considerable
displacement (two pixels) that was evidenced on the Red Sea with such a technique
is clearly visible in Fig. II.7.18.
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Fig. II.7.18 NOAA-18 AMSU-B image at 89 GHz over the Red Sea (figure exerted from
http://www.orbit.nesdis.noaa.gov/smcd/spb/n18calval/calval/mhs.html#mhsgeo)

3.6.2 Scan-Dependent Uncertainties

The fact that AMSU is a cross-track scanning instrument has a major impact on
the relative quality of the resulting rainfall estimations, due to several reasons.
Different viewing geometries correspond to different sensed areas and different
radiative properties. The effect of atmospheric optical thickness, surface emissiv-
ity, and hydrometeor particle emissivity, on observed BTs, all depend, to different
extent, on the viewing geometry. Even purely geometrical effects related to the
change in the equivalent area of the sensed portion of the cloud play an impor-
tant role in this respect. In addition, off-nadir slanted observing geometries may
introduce important geometrical distortions in the rain cell localization at surface
level, as schematically sketched in Fig. II.7.19. At the frequencies of interest, the
source of the (scattering) signal is not the surface rainfall layers, but the ice layers
aloft. At nadir, the surface rainfall can be assumed co-located with the BT scattering
signal.1 However, when observing through slanted views, significant displacements
may exist between the location of the scattering source location and the effective

1 This is true only in the hypothesis that the convective towers extend vertically under the sensor
field of view. However, horizontal shears may introduce possible shifts and generate tilted events
(see for instance Hong et al., (2000) about a tilted convective event observed from the TRMM
precipitation radar)
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Fig. II.7.19 Schematic representation of the localization error for surface rainfall rate position.
At slant angle β, rainfall is located in correspondence of position P, whereas the current location
should be P’. The corresponding shift x is referred to as the parallax error

location of the convective rain at surface level. This displacement is often referred
to as the parallax error, and it increases proportionally with the altitude of the cloud
and with the observation angle. Theoretically, a graupel cloud situated at 10 km
height could be located almost 10 km away from the real surface RR location, if
sensed at maximum scan edge.

A straightforward correction could be therefore attempted once the correspond-
ing cloud top height is supposed to be known. However, from using AMSU
brightness temperatures, there is no mean to derive this piece of information.2

Therefore an automatic correction for such a displacement is not deemed possible:
estimating the height of the main source of the scattering signal (i.e., the center
of gravity of the generalized weighting function) seems not reasonable due to the
complexity and the uncertainties related to the characterization of the micro and
macro-physical properties of the precipitating cloud.

Another scan-dependent source of error is due to the calibration of the instru-
ment itself: NOAA scientists have observed an asymmetric behavior of the sensed
radiances across the scan lines which amounts to more than 5 K

• http://www.orbit.nesdis.noaa.gov/smcd/spb/n18calval/calval/mhs.html#mhsgeo
• http://www.orbit.nesdis.noaa.gov/smcd/spb/mirs/validation/characterization.html

2Or in any case without introducing significant errors. As an example, the possibility to use
SEVIRI-derived cloud top heights was discarded due to the fact that the cloud top height sensed
by the IR channels might in general be much higher than the source of scattering signature charac-
terizing the microwave frequencies and also to the time-shift that in any case would exist between
the two observations.
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The main impact, however, is due to the fact that the dimensions of the
sensed area vary by more than 200% from nadir to scan edges. According to
Bennartz (2000), the relationship between EFOV and scan angle, both in cross-
track and along-track direction, can be modeled through the following interpolating
formula:

EFOV(across − track) = 79.08 + 2.84 m − 14.78 m0.66

EFOV(along − track) = 28.72 − 0.9 m + 0.094 m1.5,

where m is the scanning position. The cross-track EFOV passes from 15 km at nadir
to more than 50 km at scan edge. Within such a variation, the heterogeneity of
the sensed scene (and the possibility that the observed precipitation event “fills”
the EFOV homogeneously–the so called beam filling problem, see for instance
Kummerow (1998)) augments considerably. Everything that falls inside the sensed
area is integrated and filtered in the sensor view, but the significance of the resulting
information decreases with the heterogeneity of the observed scene. At scan edges,
the probability to filter out and even loose narrow isolated sub-pixel convective cells
increases considerably.

From all the considerations mentioned above, it should be clear that a different
degree of uncertainty should be associated to AMSU measurements, proportionally
depending on the scan angle: as a consequence, rainfall estimations at nadir are more
reliable than the ones located along scan edges. Instead of attempting risky (and, at
this stage, subjective) corrections to the estimates, we propose, as future work, that
a scan-dependent confidence index should be associated to AMSU measurements,
being maximum at nadir, and decreasing with the scanning angle. The confidence
index should be taken into account when evaluating the performances of AMSU-
derived rainfall rates.

4 Convection Detection from SEVIRI Data (Nefodina)

4.1 Data Description

SEVIRI is a scanning radiometer which operates on Meteosat Second Generation
(MSG). It provides data in visible, near infrared, and infrared channels. Full spatial
resolution in 12 spectral channels. Nominal Coverage includes Europe, Africa and
locations with satellite elevation greater than or equal to 10◦. The IR channels are
designed with three narrow band detector elements per channel to scan the Earth
every 3 km at the sub-satellite point. The high-resolution visible (HRV) channel
provides measurements with resolution of 1 km.

The full Earth disc image is obtained after 1,250 scan line steps (south–north
direction) of 9 km SSP per line step. The satellite spins at 100 rpm allowing to
complete (east–west direction) a full image in about 12.5 min. The Earth observation
repeat cycle is of 15 min. These real-time data are processed to Level 1.5, i.e., are
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corrected for radiometric and geometric non-linearity, before onward distribution to
the user. All SEVIRI data are available through EUMETCast.

4.2 Algorithm Description

Nefodina (Puca et al., 2005, 2009) is an automated tool, developed at the Italian
Meteorological Service, which uses SEVIRI data to detect convective cloud systems
to monitor their life cycle and to forecast their development. The derived product,
using a varying threshold method in infrared window 10.8 μm and absorption chan-
nels 6.2 and 7.3 μm, allows for the identification of the convective object (CO) with
a top BT lower than a temperature threshold of 236 K.

The detection method relies on the following basic assumptions:

• the temporal and spatial satellite data sampling is compatible with the corre-
sponding scales of the phenomena;

• the evolution of the cloud top temperature joined with the water vapor amount
in the medium and high troposphere represent a good tracer of convective
cells;

• it is possible to represent the life cycle of the convective cell with a linear
combination of cloud top temperature and the water vapor amount in the high
troposphere.

The nefodina algorithm flow chart is reported in Fig. II.7.20.

4.3 Product Description

The nefodina product consists of a portable network graphic (PNG) image of the last
available SEVIRI infrared (10.8 μm) image where the detected cells, their develop-
ment, and their tracking are color coded to give a quick overview to the forecaster
(Figs. II.7.21 and II.7.22). This output image is associated to an ASCII file where the
minimum, medium, and modal BT of the 10.8, 6.2, and 7.3 μm channel is reported
with shape, slope area, and other information relative to the detected COs.

4.4 Nefodina Validation

4.4.1 Qualitative Comparison of Nefodina CO with Radar Data

As previously done for radar and rain gauge data, the nefodina-detected COs
superimposed to radar-derived RR are showed in Fig. II.7.23. The grey diamonds
represent the centers of the SEVIRI FOVs labeled as convective by nefodina, while
the black circle represent the positions of the COs after a rigid shift which maximize
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Fig. II.7.20 Nefodina flow diagram

the radar-detected precipitation within each CO. The misalignment of the original
CO positions with respect to the radar map looks consistent for the different COs.
Misalignments are mostly due parallax and geolocation errors. While Sect. 4.5.1
introduces a methodology to properly correct for parallax errors, the actual approach
selected to mitigate the misalignment between AMSU, SEVIRI, and radar data was
based on a rigid shift which maximizes the precipitation within each object and it is
described in Sect. 5.1.

4.4.2 Quantitative Validation

Validation on the detection efficiency of nefodina was performed, following the idea
that a CO during its life has an electric activity. Often this happens during the mature
stage. The validation was based indeed on the observation of lightning measured
by the lightening network (LN) of the International Association of Forensic and
Security Meteorology (IAFMS) during the life of the CO and it was conducted on
a set of 12,000 data uniformly selected along 1 year of MSG data. Probability of
detection (POD) and false alarm rate (FAR) were obtained, respectively, equal 0.84
and 0.17. Sixty percent of the CO were detected and classified as convective by
nefodina 30–45 min (2–3 MSG slot) before any electric activity was measure by LN.
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Fig. II.7.21 Example of nefodina product at 02:00 UTC on August 16, 2006. The colorbar shows
the cloud top temperature. The red pixels show increasing CB, while the pink pixels show the
decreasing CB (For color figure see online version)

4.5 Errors and Uncertainties

In this section the only source of uncertainty described refers to the parallax errors
because a full validation of nefodina is beyond the scope of work presented in this
chapter.

4.5.1 Parallax Error

The concept of parallax error (i.e., the mislocation, on the Earth surface, of rain
cells due to slanted satellite observations) was already introduced in Sect. 3.6.2 for
AMSU. However, even SEVIRI rain products may be affected by such a problem, as
already noticed by Davenport et al. (2007). In fact, the SEVIRI camera is observing
the Earth with a spherical geometry centered in the Gulf of Guinea (approxi-
mately at 0◦ latitude and longitude). The sensor viewing angle increases with the
radial distance from the nadir point. The viewing angle increases as function of the
geographical location, introducing potential distortions and pixel enlargement (the
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Fig. II.7.22 Nefodina September 14, 2006 at 02:00 UTC (For color figure see online version)

effective pixel size increases radially from the nadir point). Complete details about
SEVIRI are provided by Wolf et al. (1999).

For the purposes of this study, the SEVIRI slanted observing geometry may have
an impact in that the location of the observed signal source (cold pixels associated
to convective events and possibly to the largest cloud top heights) may be shifted
by several kilometers with respect to the effective location of the precipitation at the
surface. Therefore, the convective pixels are relocated so that are in correspondence
with the effective location of the surface rain. From Wolf (1999), we computed such
a displacement as function of the latitude and longitude of the observation (radial
distance from nadir sub-satellite pixel). As an example, for a 10 km height cloud top
in the Mediterranean, we obtain a displacement as large as 7 km in the radial direc-
tion. It must be highlighted, though, that this calculation relies on the assumption
that the observed event is perfectly vertical and that horizontal shears are minimal.
Correcting SEVIRI precipitation products for the parallax did not account for the
whole misplacement of the convective cell location with respect to the region of
high radar precipitation. However, the correction did lead to improved geolocation
with respect to radar data (Fig. II.7.24)
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Fig. II.7.23 Comparison of nefodina-detected CO and radar RR for April 24, 2008 at 15.30 UTC.
Grey diamonds represent the original COs detected by nefodina, the color-map represent the radar
rain rate and the black circles indicate the optimal position of the COs after re-colocating them
according to the procedure described in Sect. 5.3. (For color figure see online version)

5 Convective Precipitation Retrieval from Combined AMSU
and SEVIRI Data

5.1 Algorithm Description

In the proposed approach AMSU PC data were co-located with nefodina-detected
COs. The basic ideas were:

• to identify, for each CO detected in the closest SEVIRI time slot, the AMSU
FOVs affected by convection and use the corresponding AMSU precipitation
rates to calculate the mean precipitation associate to the CO and

• to apply a rigid shift to AMSU-derived precipitation of ±3 FOVs in every direc-
tions and select the one which maximizes the amount of precipitation for each
individual CO;

The estimated mean co-precipitation (MCP), �, was then computed as follows:

� =
∑N

i=1 RRi ∗ Ai∑M
j=1 aj

,
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Fig. II.7.24 Parallax correction: the colored circles represent radar data interpolated and re-
projected on the fixed SEVIRI grid, the red crosses are SEVIRI FOV characterized by convection
before parallax correction, and the green circles are the same SEVIRI FOVs after parallax
correction (For color figure see online version)

where RRi is the AMSU-derived RR for the jth; Ai the area of the ith AMSU FOV;
i goes from 1 to N with N being the number of AMSU FOVs affected by the con-
vective object; aj the area of the jth SEVIRI FOV; and j goes from 1 to M, with M
being the number of SEVIRI FOVs within the convective object.

In summary, � represents the precipitation that would characterize the CO if
all the precipitation observed in the corresponding AMSU FOVs was confined to
the convective region only. This assumption represents an approximation, and it
is intended to provide an upper bound to the precipitation associated to the CO.
In its current implementation the algorithm calculates the AMSU IFOVs accord-
ing to Bennartz (2000) and it accounts for the parallax error on the SEVIRI FOVs
(Sect. 4.5.1), it also corrects for AMSU geolocation errors (Sect. 3.6.1) using a rigid
shift scheme as previously described. In addition to the mean precipitation the algo-
rithm generates also RR values for each SEVIRI pixel, identified as convective by
nefodina, according to the following expression:
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φi,j = RRi,j ∗ Ai,j∑L
k=1 ak

,

where RRi,j is the RR for the AMSU FOV in the ith row and jth column of the
satellite swath; Ai,j the area of the AMSU FOV in the ith row and jth column of
the satellite swath; and ak is the area of the kth SEVIRI convective FOV within the
AMSU Ai,j FOV, with k going from 1 to the total number of convective pixels, L,
within the AMSU FOV.

The single pixel estimate φ is in general prone to geolocation and co-location
errors. If fact if, due to a small geolocation error, a single SEVIRI pixel belonging to
a broad CO which densely populate an AMSU FOV was erroneously located within
a different AMSU FOV, its RR would have been much higher with respect to the
average of the CO. Since even small errors in the AMSU geolocation can determine
whether a SEVIRI FOVs belongs to one (less densely populated) or another (more
densely populated) AMSU FOVs, this estimate might vary significantly within the
same CO, and it is to be used in a careful way.

5.2 Product Description

The co-location products were differentiated into: MCP (�) values which define
the mean RR for a nefodina CO; estimates (φi,j) of RR for individual SEVIRI FOVs
belonging to a nefodina CO. Since the first product, MCP, was more robust to geolo-
cation and parallax errors, while the second product was generally prone to these
errors and provided highly variable estimates even within the same CO, hereafter
only results on MCP are discussed.

5.3 Qualitative Validation of Nefodina/AMSU Combined Products

Proper co-location of PC and nefodina had a central role in the development of
the the MCP product. It represented the basis for merging geostationary and polar
orbiting products which allowed for the identification of highly precipitating regions
at SEVIRI spatial resolution (3–8 times finer than the native AMSU resolution),
and under well-defined approximations it provided an upper bound estimates of the
RR, within the convective regions. To describe the validation procedure established
to evaluate MCP, the following example in Fig. II.7.25 is provided. The example
shows the co-location of CO, as detected by nefodina, on the AMSU PC product.
The selected data for this comparison were related to the NOAA-15 overpass on
April 24, 2008 at 15:30 UTC. The figure shows the PC-weighted average for the
AMSU along with different convective systems which were active in the scene (for
sake of clarity only three systems over central Italy are shown to demonstrate the
concept). The PC-weighted average RR for the AMSU overpass is represented by
the color of the large FOVs, while the smaller SEVIRI FOVs indicate the location
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Fig. II.7.25 PC-weighted average on AMSU native grid at 15:30 UTC and on SEVIRI FOVs

of the nefodina-detected COs. The COs co-locate nicely with the highly probable
(P � 1) class 4 (RR > 5 mm/h) FOVs characterized by a weighted average RR of
about 7 mm/h. Under the assumption that most of the precipitation occurred in the
highly convective region, nefodina was shown to provide relevant information about
the distribution of precipitation within the AMSU FOVs. Figure II.7.26 shows the
same convective objects showed in Fig. II.7.25 but co-located with radar precipita-
tion: the objects identified by nefodina properly matched the regions of highest radar
precipitation, providing encouraging evidence that the hypothesis made on the pre-
cipitation distribution (highest where the convection is active) is solid. Quantitative
comparisons for all the COs detected for this overpass and for the NOAA-16 over-
pass at 16:03 UTC are presented in Tables II.7.6 and II.7.7. The first raw of the tables
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Fig. II.7.26 Radar RR compared to convective RR on SEVIRI grid 15:30 UTC (For color figure
see online version)

Table II.7.6 Comparison of MCP and CO radar-derived convective RR for NOAA-15 overpass at
15:30 UTC

RR in mm/h CO1 CO2 CO3 CO4 CO5

RADAR 15:30 UTC 39 42 23 3 22
MCP 15:20 UTC 38 27 17 13 11

shows the radar RR averaged on the nefodina-detected COs, while the second raw
shows the values of MCP for the same COs. The values of RR for MCP and radar
exhibit a correlation ρ = 0.66 which, given the very limited size of the sample, is a
purely indicative, but also encouraging, number.
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Table II.7.7 Comparison of MCP and CO radar-derived convective RR for NOAA-16 overpass at
16:00 UTC

RR in mm/h CO1 CO2 CO3 CO4

RADAR 16:00 UTC 27 25 21 16
MCP 15:55 UTC 36 41 46 18

6 Conclusions

This chapter described how in situ observations were used to show an important
relation between the precipitation estimates derived by the PC algorithm at AMSU
resolution and COs detected by nefodina at SEVIRI resolution. This relation opens
the way to a potentially fruitful merging of geostationary and polar orbiting prod-
ucts which could improve the accuracy and the usefulness of the AMSU-derived
precipitation products to hydrological and QPF activities. The case studies pre-
sented showed the good accordance between heavy rainfall (Class 4: RR > 5 mm/h)
deduced by PC and convection detected by nefodina. They also showed encouraging
results for the basic assumption on which the proposed merging strategy is based.
For this study, the PC algorithm (Bennartz et al., 2002) developed within NWC-SAF
was selected as the most suitable AMSU-based precipitation retrieval algorithm for
the development of a convective precipitation product (MCP). The selection was
based on pre-operational software availability, knowledge of performance character-
istics over a large part of H-saf area (Northern Europe), use of AMSU channels more
sensitive to heavy rainfall. The PC algorithm outputs were extended to the whole H-
saf area allowing for testing and validation in the Mediterranean regions (Italy).
Improvements in the performances of the algorithm were obtained through a refine-
ment of the estimation of the radiative background field. AMSU data from NOAA
15, 16, 17, and 18 (and METOP after launch) were routinly processed, but lack
of daily availability of radar data limited the validation activity. The precipitation
observations from radar and rain gauges were collected only for a few Italian con-
vective cases and upscaling and downscaling algorithms were developed to compare
precipitation ground-based observations with PC algorithm retrievals and SEVIRI
products. The validation procedure described in this chapter allowed:

• For improvements of the individual products. For the PC algorithm example,
more than 43,000 RR retrievals taken in 7 different days from NOAA 16 and
18 data were compared to radar data convolved on the AMSU grid. The results
obtained were on average 18%, with a peak of 58% for class 4, worse than those
obtained by Bennartz (2005). This was explained by the fact that the background
brightness temperature tuning that was originally developed for northern Europe
frequently produces spurious rainfall signatures, especially in arid regions during
daytime. On this basis a new approach for the estimation of the background BT
in the PC algorithm was implemented to mitigate, and in most cases eliminate,
the problem of spurious rainfall signatures.
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• For tuning of a merging algorithm capable of taking into account geolocation and
parallax errors which represented the most serious issues in combining SEVIRI-
derived products with AMSU RRs.

• For verification that most of the precipitation does indeed occur in the detected
convective portion of the cloud, hypothesis which represents the foundation of
the MCP algorithm.

• For an initial evaluation of the MCP product with radar data.

Future work includes a more extensive validation with radar data and also a more
accurate use of rain gauge data, only partially used in the described effort.

Appendix A Implementation Details on Data Projections

This appendix is included simply to clarify the methodology used for the inter-
comparisons of the various products. In order to compare values derived at different
resolutions, several procedures were implemented to remap products:

• from AMSU to SEVIRI grid;
• from radar to AMSU grid;
• from radar to SEVIRI grid;
• from gauges to SEVIRI grid.

In particular the SEVIRI grid was chosen as reference, since it provides a fixed
grid at a convenient resolution.

A.1 The AMSU-to-SEVIRI Remapping Process

This process was designed to allow the comparison of current PC products with
SEVIRI-derived rainfall products and with radar and rain gauge data on a fixed grid.
However, it was also used to compute the background BTs for the PC algorithm (as
described in Sect. 3.2). An example of the AMSU-SEVIRI remapping is shown in
Fig. II.7.27.

The basic concepts of the implementation are hereafter described.
Given the location of a SEVIRI pixel, the bounds of the corresponding AMSU

pixel are found. Routine begins by determining if it lies within the bounds of the
AMSU grid, and if so, then searches for the closest AMSU observation. Having
found the nearest AMSU, the routine then looks to the left and right (on the same
AMSU row) to find which of these two is closer to the SEVIRI, and then the closest
and its neighbor to the left or right are chosen as two of the four AMSUs surrounding
the SEVIRI pixel. A check is performed to make sure the selected pixel is not on
the lateral edge of the AMSU array, so that it makes sense to look left or right. If
the pixel is on the edge, then the algorithm simply uses the two points on the row
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nearest the edge. A weight is assigned to these two based on their distance from the
SEVIRI pixel. The distances are determined by computing the angle between the
SEVIRI position vector and either of the two chosen AMSU position vectors. This
part of the algorithm, using vector algebra, is quite efficient.

Once the distances are calculated there are two different strategies to derive the
BT on the SEVIRI grid. The first one makes simply use of the nearest neighbors,
while the second interpolates (weighted average) among the four closest AMSU
FOVs according to the following procedure: returning to the previously found near-
est AMSU, the routine looks at the two AMSU points above and below, in adjacent
rows, to find which of these two is closer to the SEVIRI point. The chosen row
(above or below the row in which the closest AMSU lies) is then used, and the four
points used for interpolation are the two found in the first row, and the two in the
next-best row.

An interpolated estimated is made in each row (Wi) between the two chosen
points on that row, using weights

Wi1 = 1 − s1/(s1 + s2)
Wi2 = 1 − Wi1

(3)

where s1 and s2 are the distances (in latitude degrees) between SEVIRI and the first
and second closest AMSU points on that row. In the above case, if s1 = 0 (i.e., an
AMSU coincides with SEVIRI), then that AMSU has weight 1 and its neighbor has
weight 0. A similar weighting scheme is then used vertically (Wj) along the AMSU
column containing the closest AMSU to arrive at the weights which are used to
interpolate as many of the AMSU channels as are needed to the SEVIRI location.

Wj1 = 1 − d1/(d1 + d2)
Wj2 = 1 − Wj1

(4)

where d1 and d2 are distances of two AMSUs along the minimal column from
SEVIRI.

The horizontal weights and the vertical weights are then used to average the
AMSU BTs (or any other quantity defined on the AMSU grid) on the two rows (e1
and e2):

e1 = Wi1 ∗ BT(1, 1) + Wi2 ∗ BT(2, 1)
e2 = Wi1 ∗ BT(1, 2) + Wi2 ∗ BT(2, 2)
e = Wj1 ∗ e1 + Wj2 ∗ e2

(5)

to get the final estimate e of the BT.
The co-location scheme based on the nearest neighbors was used for the deriva-

tion of background BTs (as described in Section 3.5), while the second one (based
on weighted averages) was used for validation purposes.
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Fig. II.7.27 Example of PC remapping onto SEVIRI grid

A.2 The RADAR-to-AMSU Remapping Process

Radar data were convolved to the AMSU footprint using the methods described
in Bennartz (1999), Bennartz and Michelson (2003), and Bennartz et al. (2002).
The methods used in this study were initially derived for Baltex radar Data Center
(BRDC) composites but were adjusted to account for the radar composites provided
by CNMCA. The convolution takes into account the actual spatial sensitivity of
AMSU-A and AMSU-B as outlined in Bennartz (2000). A fixed Z–R relation of
Z = 200R1.6 was used in this study. Due to missing information about the actual
position of the radar in the composite imagery, a parallax correction could not be
performed. Also, the radar data used in this study were not gauge adjusted.

A.3 The RADAR-to-SEVIRI Remapping Process

The observations available for surface rain intensity (SRI) were on a different scale
(spatial resolution and projection) compared to satellite grids and since the vari-
ability of precipitation fields strongly depends on the scale at which the fields were
considered a meaningful comparison was not trivial. The upscaling technique (fine
to course resolution) used to remap radar data onto MSG grid, here described, is very
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simple but numerically effective. National mosaic of SRI generated by radars and
MSG product were composed of two static grids, each radar cell was linked to the
SEVIRI pixel which contains the center of radar pixel. Therefore, radar data were
remapped onto geostationary grid through the mean value of SRI calculated on radar
cells linked to each satellite grid (Fig. II.7.28). An example of the RADAR-SEVIRI
remapping is shown in Figs. II.7.29 and II.7.30.

Fig. II.7.28 Radar-to-
SEVIRI remapping scheme

Fig. II.7.29 Example of radar-derived RR on SEVIRI grid
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Fig. II.7.30 Example of radar-derived precipitation classes on SEVIRI grid
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