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Preface

Rhodococci are metabolically versatile actinobacteria frequently found in the
environment with potential applications in bioremediation, biotransformations,
and biocatalysis among other biotechnological processes. These microorganisms
are currently the subject of research in many countries of the world. The number of
publications and patents on rhodococci has increased significantly during the last
several years. In this context, the knowledge acquired during the last decade on
basic aspects of Rhodococcus biology is significant and reveals promising future
prospects. Several public and private genomic projects involving Rhodococcus
members are now in progress due to the increasing interest in their biotechnological
applications. The large Rhodococcus genomes, which contain a multiplicity of
catabolic genes, a high genetic redundancy of biosynthetic pathways and a sophis-
ticated regulatory network, reflect the complexity of Rhodococcus biology. The
combination of functional genomic studies with biochemical and physiological
knowledge is providing new insights that will make it possible to put rhodococci
to biotechnological use.

This Microbiology Monographs volume provides a thorough review of many
aspects of the biochemistry, physiology, and genetics of Rhodococcus in the
context of new genomic information. Expert international scientists have contrib-
uted reviews on the extraordinary capabilities of the Rhodococcus genus with
regard to the biodegradation of diverse compounds, biosynthesis of lipids and
biosurfactants, and adaptation and tolerance to solvents. Chapters dealing with its
taxonomy, the structural aspects of rhodococcal cellular envelope, genomes and
plasmids, and central metabolism are also included in this volume. Moreover, the
book examines the basic aspects of the unique pathogenic Rhodococcus member
(R. equi) and the phytopathogenic R. fascians.

I would like to express my thanks to all of the authors, who contributed high-
quality reviews of each topic, to the series editor, Alexander Steinbiichel, and to the
staff at Springer, especially Jutta Lindenborn, for supporting this book.

I hope that this volume will serve as a guidebook for researchers and students
and will open new avenues for future research.

Comodoro Rivadavia, Héctor M. Alvarez
Chubut, Argentina
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Abstract The genus Rhodococcus in the sub-order Corynebacteriniae has had a
chequered taxonomic history, but many of the early uncertainties and confusions
have been resolved satisfactorily through the application of chemotaxonomic and
phylogenetic characters. Such information has allowed the creation and formal
recognition of the closely related genera Gordonia, Tsukamurella and Dietzia to
include isolates once placed unconvincingly in the genus Rhodococcus, and the re-
assignment of former members of Nocardia and Tsukamurella to it. However,
several taxonomic difficulties remain. Where to place Rhodococcus equi is still
problematic, and many Rhodococcus isolates, some probably representing new
species, have never been formally described. This chapter discusses the history of
the evolution of this genus and its current status and suggests what systematic issues
need to be resolved in the future.
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2 V. Girtler and R.J. Seviour

1 Introduction

It is now clear, as other sections of this book amply demonstrate, that the rhodo-
cocci are very important organisms, especially with their remarkably versatile
metabolic powers. This is often due to their possessing mobile, large and usually
linear plasmids carrying genes encoding enzymes capable of degrading an impres-
sive range of xenobiotic and naturally occurring organic compounds, some of
which are likely to pose long-term environmental risks (Bell et al. 1998; Larkin
et al. 2006). Thus, their potential in bioremediation is immense (Van der Geize and
Dijkhuizen 2004). They are also known to produce metabolites of industrial
potential including carotenoids, bio-surfactants and bio-flocculation agents and
especially acrylamide (Jones and Goodfellow 2010). These attributes alone empha-
sise the importance of being able to identify such populations rapidly and unequiv-
ocally, which requires that they are classified appropriately. Like most other
bacteria, the genus Rhodococcus has experienced an often tortuous taxonomic
history, consistently gaining and losing members (Table la, b) as the characters

Table 1 (a, b) Examples of the reclassification of earlier designated members of the genus
Rhodococcus to other closely related genera and (b) vice versa

Previous Classification Current Classification Reference

(a)
Rhodococcus aechiensis
Rhodococcus aurantiacus

Klatte et al. (1994c¢)
Collins et al. (1988)

Gordonia aechiensis

Tsukamurella
paurometabola

Gordonia bronchialis

Mycobacterium
chlorophenolicum

Gordonia sputi

Rhodococcus rubropertincta

Stackebrandt et al. (1988)
Haggblom et al. (1994)

Rhodococcus bronchialis
Rhodococcus
chlorophenolicus
Rhodococcus chubuensis
Rhodococcus corallinus

Stackebrandt et al. (1988)
Mordarski et al. (1980)

Rhodococcus luteus
Rhodococcus maris
Rhodococcus obuensis
Rhodococcus roseus
Rhodococcus
rubropertincta
Rhodococcus sputi

Rhodococcus terrae
“Rhodococcus australis”

()

Nocardia
corynebacteroides
Nocardioides simplex

Nocardia calcarea
Nocardia restricta

Brevibacterium
sterolicum

Tsukamurella
wratislaviensis

Rhodococcus fascians
Dietzia maris
Rhodococcus sputi
Rhodococcus rhodochrous
Gordonia rubripertincta

Gordonia sputi

Gordonia terrae
Gordonia malaquae

Rhodococcus
corynebacteroides
Rhodococcus erythropolis
Rhodococcus erythropolis
Rhodococcus equi
Rhodococcus equi

Klatte et al. (1994a)

Rainey et al. (1995b)
Zakrzewska-Czerwinska et al. (1988)
Rainey et al. (1995a)

Stackebrandt et al. (1988)

Riegel et al. (1994), Stackebrandt et al.
(1988)

Stackebrandt et al. (1988)

Stainsby et al. (unpublished)

Yassin and Schaal (2005)

Yoon et al. (1997)

Rainey et al. (1995a)
Goodfellow and Alderson (1977)
Ladron et al. (2003)

Rhodococcus wratislaviensis Goodfellow et al. (2002)
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applied to them have increased in their powers of discrimination (Goodfellow et al.
1998; Jones and Goodfellow 2010). Now with molecular techniques, especially 16S
rRNA gene sequence analyses, much of this anarchy and confusion is becoming
resolved, and Rhodococcus taxonomy is looking more stable. Yet several important
unresolved problems remain, as this chapter will point out.

Furthermore, as Goodfellow et al. discussed in 1998, many of the new envi-
ronmental isolates showing novel metabolic activities were never characterised
adequately after original isolation to allow their valid speciation. Consequently, it
is impossible to know whether each Rhodococcus environmental isolate repre-
sents a novel population, or is the same as or closely related to those used already
in previous studies. Clearly, this is an unsatisfactory situation which must com-
promise effective communication between people working with members of
this genus. In fact, despite considerable advances in our understanding of their
systematics in the past two decades, the same unwillingness to meet this essential
requirement persists, and in some respects has worsened in its scale, as discussed
later.

The aim of this chapter is to look at the present state of the taxonomy of members
of the genus Rhodococcus, identifying some of the problems that exist with it, and
to suggest how these might be addressed and possibly resolved by taking advantage
of some of the more powerful molecular techniques now available and by the
application of a wider range of phylogenetic markers (Giirtler et al. 2004). But
first we need to consider how the genus Rhodococcus came to be.

2 The Past: A Brief History of the Genus Rhodococcus:
A Red Coccus

The reviews of Goodfellow et al. (1998) and Jones and Goodfellow (2010) provide
highly readable accounts of the history of this troubled genus and the impacts
chemotaxonomic and molecular approaches have had on its emergence into what is
now a more clearly defined taxon. Consequently, only some of the major events will
be discussed here.

Zopf (1891) first proposed forming the genus Rhodococcus to include two red
bacteria named then by Overbeck (1891) as Micrococcus erythromyxa and
M. rhodochrous. This genus name, also suggested by Winslow and Rogers (1906)
and Molisch (1907) for other red cocci, and with R. rhodochrous as type strain, was
maintained in the first four editions of Bergey’s Manual of Determinative Bacteri-
ology. These and several other strains were then reassimilated into the genus
Micrococcus for the fifth edition of Bergey’s Manual, an arrangement which
persisted into the sixth, and which reflected the existing lack of suitable characters
for their description.

Gordon (Gordon and Mihm 1957, 1959) was the first to realise fully the
inadequacies of relying totally on cell morphology and staining responses to sort
out the taxonomy of a large number of the available strains that had been placed,
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often reluctantly, into several different genera including Rhodococcus. Conse-
quently, she undertook a series of defining studies applying a more polyphasic
approach (e.g. Gordon and Mihm 1961). Initially, she placed all these into the genus
Mycobacterium as M. rhodochrous, based mainly on similarities in their colony
morphology and the acid fastness of some cultures (Gordon 1966). It took numeri-
cal taxonomy to reveal the true taxonomic rank of M. rhodochrous, which emerged
from these studies as a grouping worthy of a separate genus status, and one clearly
distinct from other members of the genus Mycobacterium as well as Nocardia and
Corynebacterium (Goodfellow et al. 1998).

However, it was not until the seventh edition of Bergey’s Manual of Determina-
tive Bacteriology that some formal action was taken, where these strains were
removed from the genus Mycobacterium and re-assigned tentatively to a number
of Nocardia species (McClung 1974). The genus Gordona (later Gordonia) pro-
posed by Tsukamura (1971), to whose members some M. rhodochrous strains were
very similar phenotypically, was at that time considered a genus of uncertain status
(incertae sedis), and was not mentioned in this edition of the Manual. Its formation
and eventual formal recognition play an important role in the Rhodococcus story.

Among the possible taxonomic fates considered by Bousefield and Goodfellow
(1976) for these M. rhodochrous strains included leaving them where they were,
placing them in another pre-existing genus or constructing a new genus to incorpo-
rate them. The genus Rhodococcus already existed, but had fallen into disuse. It
had been resurrected by Tsukamura (1974) to contain six species which had been
placed as members of the genus Gordona, namely R. aurantiacus, R. bronchialis,
R. rhodochrous, R. roseus, R. rubropertinctus and R. terrae. This species list was
amended by Goodfellow and Alderson (1977) after their extensive numerical
taxonomic study, which led to the addition of four other species R. coprophilus,
R. corallinus, R. equi and R. ruber. The DNA:DNA hybridisation data generally
supported these placements (Mordarski et al. 1976, 1977).

The genus Rhodococcus was recognised in the Approved List of Bacterial Names
(Skerman et al. 1980) and in the first edition of Bergey’s Manual of Systematic
Bacteriology (Goodfellow 1989), where 14 species (some now no longer recog-
nised as Rhodococcus species — see below) were listed. Again, the genus Gordona
was not considered deserving of a mention in the Manual.

Now, in the second edition of Bergey’s Manual of Systematic Bacteriology, 30
Rhodococcus species are recognised and described (Jones and Goodfellow 2010).
However, as mentioned above, few of the original Rhodococcus species of Tsuka-
mura (1974) have survived (Table 1a). The decisions to remove them to other
genera have been based largely on comparisons of their chemotaxonomic charac-
ters. These include (Table 2) their peptidoglycan structure, wall sugar chemistry,
mycolic acid chain lengths, polar lipids and fatty acid compositions and menaqui-
none chemistry (Goodfellow et al. 1998), supported by 16S rRNA gene sequence
comparisons. Such data verified that members of the genera Nocardia and Rhodo-
coccus were both phylogenetically heterogenous groupings. Consequently, consid-
erable movement of their members has occurred since with the transfer of several
members from Rhodococcus to Gordona/Gordonia (a genus re-established by



saroads jo

! C 09< I 0s< L S S I 1 91 0s< I€ JIoqunu jusLmy
QUILLIB[OUBY)D
+ pu + pu - + + + + + + + + -1Apnreydsoyq
{p1oe JLIed)s
— + F + Quwos (+) - + + + (ooen) + + + + -o[noxoqny,
(104>
-0 "H)8-40S (124>
(104> D3N CH6IN (14> -0 YH) ad£y
-0 "H)8-VOS pu CH6MIN 10 (0D-JN 10 CH)$-MN - (CH)S-MIIN 61N CHISMN -OTH)$- N CH6- N 8N (H)$-JIN  duouind-eud|y
uonmusqns
Pare[0oA1D pu PaIR[09A1D pu PoIR[K120y  PAR[AIOY  PAIB[OIA[D  PAR[OIAID  PAIR[OdA[D)  PAB[OIAID  PRIR[0dA[D  PAIB[0IL[D Pare[0ok[D Pproe orueInA
adKy
A-1v ATV A1y ATV A1y A1y A-1v A1y A1y A1y A-1v A1y A-1y  ueoj5-opudog
3sojoe[es asojoe[ed asojoe[ed asojoe[ed 3sojoe[ed 3sojoe[es 2so0joe[ed asojoe[ed 3sojoe[ed 3sojoe[ed 2s0joe[ed 3sojoe[es
dsourqery pu JsoUIqeIy  9SOouIqery OSOUIQEIY  OSOUIqely  QSOUIqely  ASOUIqeIy  JSOUIqeIy OSOUIqEIY  QSOUIqelY  9SOuIqely osourqery  sIedns [[em [0
SorR[0dAW
R R ] y3ud] ureyod
(a4 £06< 0609 JuRsqy 8¢€-TC 6€—V¢ 8.9 96-08 [ Smad 9-8¢ 99-9% 79-0¥ 6-0¢ proe 1ok
LA
¥9 789 0L—C9 LS9 L9-1S €799 YL~L9 S99 S9 89 699 L9 €£L7€9 J+D VNd
pjja.mut vis
sn22001pSvpwS  snpdijuas  wni21onqoISH DJjAdLN]  WNLIIODGIULIOD) p1z)a1(] -vyns | -1 M DI DIUDULIDYS — DIUOPLOD) DIPADION  SNII0I0POYY 1910010y

aD1ULI21oDqaULL07) ATTWRY AY) UI BIOUST 9] UIIM]IIQ SIOUAIRJJIP dIWouoXelowayd Iofe] ¢ 3qe],



6 V. Girtler and R.J. Seviour

Stackebrandt et al. 1988 to accommodate these strains), Corynebacterium and
Nocardia and from Nocardia and Tsukamurella to Rhodococcus (see below).
Furthermore, some of the re-classified rhodococci provided the foundation for
establishing new mycolic acid producing genera, i.e. Dietzia (Rainey et al.
1995b) and Tsukamurella (Collins et al. 1988). Since then, many new species
have been described to include isolates from quite different habitats (Table 3),
and more new species almost certainly await description, as discussed later.

3 Current Systematics

Our present understanding of the properties that delineate members of this genus is
described, and the outstanding unresolved taxonomic problems are discussed.

3.1 The Genus Rhodococcus

Rho.do.coc’cus. Gr.n. rhodon, the rose; Gr.n. coccus, a grain, M.L. neut.n.

On the basis of extensive polyphasic taxonomic data, members of the genus
Rhodococcus are currently placed in the mycolic-acid-forming sub-order Coryne-
bacterineae in the family Nocardiaceae within in the phylum Actinobacteria,
which contains the Gram-positive, high mol% G+C bacteria. It has been suggested
that the Nocardiaceae should be emended on the basis of 16S rRNA signature
nucleotides (Zhi et al. 2009) to incorporate all the genera previously placed in the
family Gordoniaceae. Therefore, in addition to Rhodococcus (Goodfellow et al.
1998; Zopf 1891), Nocardia (Trevisan 1889) and Smaragdicoccus (Adachi et al.
2007), this family would now include Gordonia (Stackebrandt et al. 1988; Tsuka-
mura 1971), Skermania (Chun et al. 1997), Williamsia (Kampfer et al. 1999) and
Millisia (Soddell et al. 2006). The major chemotaxonomic features of these and the
other genera in the Corynebacterineae are given in Table 2.

The genus Rhodococcus embraces organisms with the following characteristics
(Goodfellow et al. 1998; Goodfellow and Maldanado 2006; Jones and Goodfellow
2010): Members are Gram positive to Gram variable, non-motile, aerobic chemoor-
ganotrophic organisms with an oxidative metabolism, able generally to use a wide
range of organic compounds as sole carbon and energy sources. They demonstrate a
life cycle whose complexity varies among the different members. Depending on the
strain, rods and cocci may undergo a series of morphological changes, with the
cocci in some converting to rods and filaments. Some of these forms branch and
may develop into extensively branched filaments or hyphae, which can become
aerially organised. These various morphological forms then fragment, eventually
reverting again to the cocci and short rods. In most but not all species some
morphological forms generated during these simple life cycle stages stain partially
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Table 3 List of all the currently recognised species of Rhodococcus, and their original sites of

isolation

Validly Named
Rhodococcus Species

Original Habitat of Isolated Strain

Reference

Rhodococcus
aetherivorans
Rhodococcus
baikonurensis
Rhodococcus
cercidiphylli
Rhodococcus
coprophilus
Rhodococcus
corynebacteroides
Rhodococcus equi

Rhodococcus
erythropolis
Rhodococcus fascians

Rhodococcus globerulus
Rhodococcus gordoniae

Rhodococcus imtechensis
Rhodococcus jostii
Rhodococcus koreensis
Rhodococcus
kroppenstedtii
Rhodococcus
kunmingensis
Rhodococcus kyotonensis
Rhodococcus
maanshanensis
Rhodococcus
marinonenascens
Rhodococcus opacus

Rhodococcus percolatus

Rhodococcus phenolicus
Rhodococcus
pyridinivorans
Rhodococcus qingshengii
Rhodococcus rhodnii

Rhodococcus
rhodochrous®
Rhodococcus ruber

Rhodococcus triatomae
Rhodococcus
tukisamuensis

Sludge from bioreactor treating
chemical waste

Air in Russian space laboratory

Leaf sample

Herbivorous dung/activated sludge
foam

Air-contaminated culture medium

Widely distributed in soil

Soil/activated sludge foam

Chrysanthemum morifolium

Soil

Blood culture from patient suffering

fatal pneumonia
Pesticide-contaminated land site

Skeletal remains in mediaeval grave

Industrial waste water
Cold Himalayan desert

Plant rhizosphere

Rhizosphere soil
Soil

Marine sediments

Soil

Culture enriched with 2,4,6-
trichlorophenol

Space centre bioprocessor

Industrial waste water

Contaminated land site
Intestine of bug

Soil/activated sludge foam
Soil/activated sludge foam

Blood-sucking bug
Soil

Soil

Goodfellow et al. (2004)

Li et al. (2004)

Gaitanis Li et al. (2008)
Rowbotham and Cross (1977)
Yassin and Schaal (2005)

Goodfellow and Alderson
(1977, 1979)

Goodfellow and Alderson
(1977, 1979)

Goodfellow (1984); Klatte et al.
(1994a)

Goodfellow et al. (1982)

Jones et al. (2004)

Ghosh et al. (2006)
Takeuchi et al. (2002)
Yoon et al. (2000a)
Mayilraj et al. (2006)

Wang et al. (2008)

Li et al. (2007)
Zhang et al. (2002)

Helmke and Weyland (1984)

Alvarez et al. (1996), Klatte
et al. (1994b)
Briglia et al. (1996)

Rehfuss and Urban (2005)
Yoon et al. (2000b)

Xu et al. (2007)

Goodfellow and Alderson
(1977, 1979)

Tsukamura (1974), Zopf (1891)

Goodfellow and Alderson
(1977), Kruse (1896)

Yassin (2005)

Matsuyama et al. (2003)

Goodfellow et al. (2002)

(continued)
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Table 3 (continued)

Validly Named Original Habitat of Isolated Strain ~ Reference
Rhodococcus Species

Rhodococcus
wratislaviensis

Rhodococcus Forest soil Zhang et al. (2005)
yunnanensis

Rhodococcus zopfii Bioreactor treating toluene/phenol  Stoecker et al. (1994)

acid fast. Not all are red, and colony colour can vary with strain from colourless to
buff, cream, yellow, orange and red.

The Rhodococcus peptidoglycan contains glycolated muramic acid residues in
the glycan chain and meso-2,6-diaminopimelic acid as the dibasic amino acid in the
tetrapeptide. Thus, the peptidoglycan is of the Aly type. Arabinose and galactose
are major wall sugars. Mycolic acids are 30-54 carbon atoms in length and contain
as many as four double bonds. Pyrolysis gas chromatography of their mycolic acid
esters releases fatty acids containing 12-16 carbon atoms. The predominant iso-
prenologue consists of dehydrogenated menaquinones containing eight isoprene
units, i.e. MK 8(H,). Major phospholipids are diphosphatidylglycerol, phos-
phoethanolamine and phosphatidyly inositol mannosides, and fatty acids are
straight-chain saturated and monosaturated fatty acids and 10-methyloctadecanoic
branched fatty acids (tuberculostearic acid). The G+C of the DNA is 63—73 mol%.

Type species is R. rhodochrous (Zopf 1889) Tsukamura 1974, 43V,

3.2 Current Species of Rhodococcus

At the time of writing this article, 31 species of Rhodococcus had been validly
named and recognised (Euzeby, http://bacterio.cict.fr/qr/rhodococcus.html). These
are listed in Table 3, together with their original sites of isolation. As mentioned
earlier and shown in Table 1la, b, a considerable shuffling among members of this
and other genera in the Corynebacterineae has taken place, after additional char-
acters have clarified their phylogeny. For example, some species originally
included in the genus Rhodococcus have been re-assigned subsequently into several
different genera (Table 1a) [e.g. Rhodococcus maris is now Dietzia maris (Rainey
et al. 1995b)], while others originally placed elsewhere are recognised now as
Rhodococcus spp. (Table 1b) [e.g. Rhodococcus corynebacteroides was previously
Nocardia corynebacteroides (Yassin and Schaal 2005)]. In a few, they emerge
as later synonyms of earlier described species [e.g. R. roseus is a synonym of
R. rhodochrous (Rainey et al. 1995a)].

Their phylogenetic relationships, based on 16S rRNA sequence data, are illu-
strated in Fig. 1. The species appear to cluster into three clear groups, which
McMinn et al. (2000) have referred to as the R. equi, R. erythropolis and
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Dietzia (i maris X79291

( i X53206

E Gordonia (Rhodococcus) aichiensis X80633

Gordonia sputi [Rhodococcus sputi (and R. obuensis)] X80627

Gordonia (Rhodococcus) bronchialis X81919
rI Gordonia ( ( corallinus) AY277554
I Gordonia (. terrae X92482

( i X79094
Rhodococcus aetherivorans AF447392
Rhodococcus ruber AY247275
Rhodococcus phenolicus AM933579
Rhodococcus zopfii AF191343

U93340

Rhodococcus gordoniae AY233202
4'_._ EU816696

(roseus) X79288
rhodnii X80622

Rhodococcus triatomae AJB54055

[ Rhodococcus corynebacterioides AY438619
1

ii AY726605

Rhodococcus equi AF490539

DQ997045

EU325542
,_r‘— Rhodococcus yunnanensis AY602219
| fascians AB211229

AB269261
Rhodococcus baikonurensis AB071951

ii sp. djl-6 DQ090961

[ Ythropolis DQV00156

I DSM4954T X80619

is AF416566

AB067734

X80617

AY525785
Rhodococcus wratislaviensis AY940037
Rhodococcus opacus CS000360

X92114
Rhodococcus jostii ABO46357
Rhodococcus koreensis AF124343

0.0080

Fig. 1 Phylogenetic tree of earlier designated (Table la, b) and all the currently recognised
species of Rhodococcus (Table 2) constructed by Neighbour-Joining within Geneious 3.8.5
(Biomatters)

R. rhodochrous sub-clades. The taxonomic implications of these groupings are
unclear, and although it was suggested that they might represent separate genera
(Goodfellow et al. 1998; McMinn et al. 2000), this proposal has not been pursued.

Still to be settled is the true taxonomic position of Rhodococcus equi, a serious
pathogen in horses and humans, which until recently was the sole member of one
such clade (McMinn et al. 2000). It was moved into the genus Rhodococcus from
the genus Corynebacterium because its muramic acid residues in the peptidoglycan
were acetylated not glycolated (Goodfellow and Alderson 1977). It now seems that
the 16S rRNA sequences of members of another genus Segniliparus, clusters into
the R. equi clade as a near neighbour, being 94.5-94.8% similar. This might support
the possible exclusion of R. equi from the genus Rhodococcus, although DNA:DNA
hybridisation values (2%) between R. equi and Segnliparaus species would suggest
they are not closely related. In fact R. kunmingensis (Wang et al. 2008) is much
more closely related to R. equi and is a member of the same clade (Fig. 1), with
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98.2% shared similarity in their 16S rRNA gene sequences. However, these too
share only a 38.4% DNA:DNA hybridisation level, and R. kunmingensis differs
markedly in its phenotypic and ecological properties from R. equi (Wang et al.
2008). Thus, whether R. equi should continue to be placed in the genus Rhodococcus
or moved to a separate or alternative existing genus still awaits resolution. Its whole
genome sequence data, not available at the time of writing, might assist in deciding
its taxonomic fate.

4 Ecology of Rhodococcus spp.

As Table 3 shows, rhodococci have been isolated from many different habitats,
although they mostly arise initially from faecally contaminated soil and aquatic
sediments (Jones and Goodfellow 2010), where often they have then become
enriched from persistent contamination with xenobiotic and other often complex
organic compounds that they can use as sole carbon and energy sources. It seems
unlikely that our current understanding of their global distribution is complete,
since they have also been isolated frequently from foaming activated sludge
reactors (De los Reyes 2009), from skeletal remains in graves (R. jostii) and from
the atmosphere of a Russian space laboratory (R. baikonurensis), as shown in
Table 3. Some like R. equi are serious animal and human pathogens, especially in
immuno-compromised patients, while others are members of the plant rhizosphere
community, gall-forming plant pathogens or symbionts in the gastrointestinal tract
of blood-sucking arthropods. As discussed elsewhere in this book, their role in
degrading xenobiotic compounds in a range of natural habitats is considerable
(Larkin et al. 2006; McLeod et al. 2006).

5 Identifying New Rhodococcus Species

The problems encountered in attempting to classify and identify strains of Rhodo-
coccus when only cell morphology data were available to early taxonomists have
been discussed above. Only with a combination of morphological, chemotaxo-
nomic (Table 2) and phylogenetic characters can members of this genus now be
identified more reliably (Goodfellow et al. 1998; Goodfellow and Maldanado 2006;
Jones and Goodfellow 2010). Detailed descriptions of all the currently validly
described species of Rhodococcus listing their individual attributes are given in
Jones and Goodfellow (2010), and so are not repeated here. The application of
rRNA-targeted, fluorescently tagged oligonucleotide probes using fluorescence in
situ hybridisation or FISH (Nielsen et al. 2009) has so far been restricted to the
rhodococci found in activated sludge foams (Davenport et al. 2000), but this
and other rapid polymerase chain reaction (PCR) molecular methods for their
identification (Girtler et al. 2004; Ladrén et al. 2003) will almost certainly increase
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in application, and provide a clearer view of their global distribution. Restriction
fragment length patterns (RFLP) of the 16S rRNA, Asp60 and choE genes have
been developed for typing some members of this genus (Glirtler et al. 2004), and
profiling the 16S rRNA-23S rRNA inter-spacer region, which was productively
used for many other bacteria (Giirtler and Stanisich 1996), needs to be explored for
its value for Rhodococcus species identification.

6 Tidying Up Rhodococcus Systematics

The literature is full of biodegradation/bioremediation studies employing Rhodo-
coccus isolates, for which no formal taxonomic descriptions are available but which
have been extensively characterised for their biochemical attributes. The commu-
nication problems associated with persisting with this state of affairs were alluded
to earlier. However, in many cases the 16S rRNA genes of these isolates have been
sequenced, and so using these data, it is possible, with due caution, to ascribe many
of these to existing Rhodococcus species. Thus, the Rhodococcus isolates listed in
Table 4 represent isolated strains placed by the original authors into existing validly
named species using only 16S rRNA sequence data. Table 5 lists isolates for which
16S rRNA sequence data have been generated but where no attempt was made by
the original authors to assign them to existing species of Rhodococcus. However,
based on their 16S rRNA similarities, it is possible to suggest, with due caution, to
suggest to what species each of these might belong, as shown.

These placements require confirmation since the problems associated with
relying solely on 16S rRNA sequence comparison data to make decisions of this
kind are well documented (Rossello-Mora and Amann 2001; Rossello-Mora and
Kampfer 2004). Its highly conserved nature means that other information (DNA:
DNA hybridisation values) is required to support such conclusions. Even so, these
16S rRNA sequence comparison data strongly support the view that some of these
cultured isolates may belong to novel species, and particular effort should be
directed at resolving their taxonomy. Thus, for some strains listed in Table 6
(KT1110, DFA3, TO9), their 16S rRNA sequences had very low similarities to
all other known rhodococcal sequences. However, again these decisions need to be
confirmed by applying other phylogenetic marker genes and adopting a polyphasic
approach (Gillis et al. 2005; Vandamme et al. 1996).

Giirtler et al. (2004) have discussed critically the value of applying alternative
genes to help clarify the systematics of Rhodococcus. These included those encoding
for outer membrane porin proteins, virulence genes only found in R. equi and
R. fascians and, in particular, genes involved in reactions in the biodegradation of
complex natural and xenobiotic organic compounds. Examples of the latter and their
occurrence in cultured strains are listed in Table 7. Some such as fossil fuel desulfur-
isation genes seem to be restricted to Rhodococcus strains (Glrtler et al. 2004). With
others, the particular gene is found in several Rhodococcus species and even other
genera (Giirtler et al. 2004), while in a few the gene has been found so far in a single
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Table 4 Other cultured strains that have been designated provisionally to an existing species of
Rhodococcus by the authors, based only on the 16S rRNA sequence data listed by GenBank
accession number

Species Strain Name Reference Sequence Accession Number
R. aetherivorans F (BCP1) Frascari et al. (2006) DQO001072
AF447392
R. baikonurensis 11_(MB)_6mbsf; Biddle et al. (2005) DQ344825; DQ344821
ABO71951 7E_(MB)_50.2mbsf
EN3 Lee et al. (2006) DQ842491
R. coprophilus Bt 14 Mohr and Tebbe (2007) AJ971866
U93340
R. equi AF490539  871-AN029;871-AN030 Brandio et al. (2002) AF420418;AF420420
JL-S2 Du et al. (2006) AY745838
MI-11a Tkner et al. (2007) DQ180958
KUA-6 Iwaki et al. (2008) AB376627
PO-1 Siragusa et al. (2007) DQ869048
R. erythropolis F22 Aspray et al. (2005) AY496587
DQ000156 T™M14_1 Barbieri et al. (2007) DQ279384
7/1 Bej et al. (2000) AF181691
870-ANO19; 871-AN053;  Brandio et al. (2002); AF420415; AF420422;
ANT-AN007; ARG- Heald et al. (2001) AF420412; AF420416;
ANO024; ARG-ANO025; AF420417; AY044095
122-AN065
Pi71; Rs73 Fahy et al. (2006) AM110074; AM110077
KS1; NSA5-1; NSA6 Futamata et al. (2004) AB177888; AB177889;
AB177885
Lactl Groudieva et al. (2004) AF513396
KUA-2; KUA-4 Iwaki et al. (2008) AB376623; AB376625
MSB3003 Lagacé et al. (2004) AY275517
E38 Lo Giudice et al. (2007) DQ667074
GIC31w; GIC32; GIC38 Miteva et al. (2004) AY439242; AY439243;
AY439248
FB6; FB8 Radwan et al. (2007) EF092424; EF092422
MOLA 353 Ribalet et al. (2008) AM945583
MBI1 Williams et al. (1997) U68710
S-7 Qi zhao et al. J Environ DQ306923
Sci 19,332-
R. fascians (luteus) Bt 11 Mohr and Tebbe (2007) AJ971863
X79187
R. fascians 5/1; 5/14 Bej et al. (2000) AF181689; AF181690
AB211229 JL-60; NPO-JL-61 Du et al. (2006) AY745830; AY745831
4a-1; RG-14 Fredrickson et al. (2004) AY561527; AY561580
NSA3-1 Futamata et al. (2004) AB177884
iRIV10; iRIV4; iRV10 Idris et al. (2004) AY358010; AY358008;
AY358017
B11; B15; B7; D13; D4; Lo Giudice et al. (2007); DQ646855; DQ646857;
D51; E56; ES7; F30; F32;  Michaud et al. (2004) DQ646853; DQ646868;
G3; G31; G33; G76; G77; DQ646867; DQ652551;
G9; H24; 114; 121; N44; DQ831960; DQ667082;
E60 DQ667090; DQ667091;

DQ667103; DQ667123;
DQ667124; DQ667128;
DQ667129; DQ667109;
DQ831961; DQ831962;
DQ831964; DQ831975;
AY316681

(continued)
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Table 4 (continued)

13

Species Strain Name Reference Sequence Accession Number
GIC26; GIC36 Miteva et al. (2004) AY439237; AY439246
NF42 Namba et al. (2007) AB182204
43/02 Saul et al. (2005) AYS571803
GWS-BW-H95M Stevens et al. (2007) AY370623
GA-05 Yakimov et al. (2004) AJ561177
R. globerulus EJP75 Poole et al. (2001) AJ302331
DSM4954T
X80619
R. imtechensis RKJ300 Ghosh et al. (2007) AYS525785
AY525785
R. koreensis 871-AN040 Brandio et al. (2002) AF420421
AF124343
R. kroppenstedtii TW53 Peng et al. (2008) DQ462176
AY726605
R. opacus RD6.2 De Marco et al. (2004) AY436807
CS000360 G-50; G-81 Gavrish et al. (2008) EF599977; EF599978
tSpl4 Tzumi et al. (2006) AJ971395
K004 Sfanos et al. (2005) AY368569
SW09 Kim and Fuerst (2006) DQ227674

R. pyridinivorans
EU816696

R. rhodochrous
AF439261

R. ruber AY247275

R. wratislaviensis
AY940037

TCH14; TCH4; TKN14;
TKN45; TKN46

HAO1; HN2006A
TUT1024; TUT1025
MOP100

ARG-BN062

SP2B
USA-ANO12
PR-N14
KUA-3
MOB100
SoD

F786

S1-2; 82-2; 85-3; ZC-3

Taki et al. (2007)

Aly et al. (2008)
Hiraishi et al. (2003)
Kim et al. (2007b)

Brandio et al. (2002)

Amouric et al. (2006)
Brandao et al. (2002)
Daane et al. (2001)
Iwaki et al. (2008)
Kim et al. (2007b)
Quatrini et al. (2008)
Sfanos et al. (2005)

La Rosa et al. (2006)

AB183440; AB183439;
AB183436; AB183437;
AB183438

EU622789; AM231909
AB098592; AB098593
AY927229

AF420423

AY887067
AF420413
AF353688
AB376624
AY927228
EU135971
AY368570

AMO076669; AM076670;
AMO076671; AM076672

All the gene databases were searched using Geneious 3.8.5 (Biomatters) and only those sequences

for which publications were also available are included in the table

strain (Glrtler et al. 2004). With these different marker genes, the systematics of
some strains where 16S rRNA sequence data could not place them into putative
species (e.g. strains DFA3, ITPS7, LJ2 and TO9) may be more clearly resolved.

7 The Future of Rhodococcus Systematics

This chapter has attempted to assess the current state of the systematics of members
of the genus Rhodococcus and to point out some areas which clearly need attention.
All the available evidence would indicate that the number of recognised and validly
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Table 5 Other strains that have been placed provisionally into a recognised species of Rhodo-
coccus not in the original publications but as part of this review, again based solely on their 16S
rRNA sequences from the given GenBank accession number

Species

Strain Name

Reference

Sequence Accession
Number

R. aetherivorans
AF447392

R. baikonurensis
AB071951

R. cercidiphyllus
EU325542

R. coprophilus
U93340

R. corynebacterioides
AY438619

R. erythropolis
DQO000156

R. fascians AB211229

R. jostii ABO46357

SoD

Ellin170; Ellin172

iMSN24
150205
iZBN12
KSM-B-3
BIL4; B2L1
YK9

4A-4 (4N-4)
AS83

B21; D58; E46;
F48

Fp2
iEI10; iEIIT14;
iRIV6

K4-07B; OS-20
RS-75

J109

cryopeg_11
OS-11

T12
IAIXBOX
X309

1

1S2.E8

YK2
iRV15; iRV8

NAB16
pfB30

FJ1117YT
OUCZ26;
OUCZ35;
OUCZ44;
OUCZ58
B03
OUCZ204
PN1

SoF

Quatrini et al. (2008)

Schoenborn et al. (2004)

Rasche et al. (2006)
Briick et al. (2007)
Wang et al. (1999)
Koike et al. (1999)

Willumsen et al. (2005)
Iida et al. (2002)
Belimov et al. (2005)

Kim et al. (2007a); Kim and

Fuerst (2006)

Lo Giudice et al. (2007)

Belimov et al. (2001)
Idris et al. (2004)

Mendez et al. (2008)
Adesina et al. (2007)

Siiss et al. (2004)

Bakermans et al. (2003)

Mendez et al. (2008)

Kunihiro et al. (2005)
Hendrickx et al. (2006)

Denis-Larose et al. (1997)
Uroz and Heinonsalo (2008)

Axelrood et al. (2002)

lida et al. (2002)
Idris et al. (2004)

Broderick et al. (2004)
Sessitsch et al. (2004)
Fujii et al. (2007)
Leigh et al. (2006)

Achour et al. (2007)
Leigh et al. (2006)
Takeo et al. (2003)

Quatrini et al. (2008)

AY496284
AF409012;
AF409014

DQ401249
DQ517184
DQ401257
AB032365

AJ634936; AJ634934
AB070471
AY197005
AM179867

DQ646859;
DQ652552;
DQ667076;
DQ667078

AF288731

AY364018;
AY364028;
AY358009

EF612291; EF612316

DQ846830

AJ630193

AY660692
EF612310

AB108558
AY512640
U87968
EF571896
AY043563

AB070458
AY358018;
AY358016
AY395020
AY336559

DQ157773
AY785734;
AY785735;
AY785736;
AY785741
AM285018
AY785749
AB044557

AY496287

(continued)
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Table 5 (continued)

Species Strain Name Reference Sequence Accession
Number
R. koreensis YU6 Jang et al. (2005) DQO11232
AF124343
R. kyotonensis g6 Katayama et al. (2007) AB272767
AB269261 H14 Lo Giudice et al. (2007) DQ667133
m23; m3 Katayama et al. (2007) AB272806;
AB272808
R. marinonascens SW09 Kim and Fuerst (2006) DQ227674
X80617
R. pyridinivorans AN-22 Matsumura et al. (2004) AB087282
EU816696 PA Gaja and Knapp (1997) AJ457068
LE2 Wang et al. (2008) EF683121
R. gingshengii sp. djl- TMP2 Kunihiro et al. (2005) AB108557
6 DQ090961 T™1 Kim et al. (2006) AY642534
RKIJS5 Labana et al. (2005) AY729889
lawq Ma et al. (2006) AY077846
ADC4 Valle et al. (2006) DQ272471
Q15 Whyte et al. (1998) AF046885
R. rhodnii X80622 1P-5 Belimov et al. (2005) AY197007
2P4 Ghosh et al. (2007) AY757296
R. rhodochrous #1 Panikov et al. (2007) AY773006
AF439261
R. ruber AY247275 THF100 Kim et al. (2007b) AY927230
1P2; 1P4; 2P2 Ghosh et al. (2007) AY757292;
AY757293;
AY757294
IM-43760 Wang et al. (1999) AF131484
R. wratislaviensis OucCZ16 Leigh et al. (2006) AY785730
AY940037 P2 Connon et al. (2005) AY429711

All the gene databases were searched using Geneious 3.8.5 (Biomatters) and only those sequences
for which publications were also available are included in the table

described species will increase from the present 31. This will be brought about by
applying a wider range of molecular characterisation methods to existing and new
isolates, including multilocus sequence typing of suitable housekeeping genes
(Coenye et al. 2005; Maiden 2006) and whole-genome sequence analysis (Ventura
et al. 2007). As far as we know, only one such sequence (McLeod et al. 2006) has
been published for Rhodococcus strain RHA1 (closely related to R. opacus), and so
it is too early to assess the taxonomic value of such data with members of this
genus. However, these analyses are likely to become more feasible on a routine
basis with improvements in the speed and cost of DNA sequencing (Hall 2007), and
so their impact will be revealed soon.

It is worth repeating here the final comments of Goodfellow et al. (1998) in their
review of Rhodococcus systematics, which still apply today. “While it is clear that
much has been achieved in the field of rhodococcal systematics in recent years,
much remains to be done”.



16

V. Girtler and R.J. Seviour

Table 6 The biodegradative properties of cultured strains provisionally designated to recognised
species of Rhodococcus in the original publications using only 16S rRNA sequence data given by
the respective GenBank accession number

Substrate Biodegraded Species Strain Reference
Name
2,4-D R. erythropolis F22 Aspray et al. (2005)
DQ000156.1
2,6,10,14-Tetramethylpentadecane R. erythropolis T12 Kunihiro et al. (2005)
(pristane) DQ000156.1
R. gingshengii sp.  TMP2 Kunihiro et al. (2005)
djl-6 DQ090961 .1
3-Chlorobenzoate R. erythropolis S-7 Qi zhao et al. J Environ
DQ000156.1 Sci 19,332-

Acyclic amines (morpholine, R. gingshengii sp.  TMI1 Kim et al. (2006)
peperidine, pyrrolidine) djl-6 DQ090961 .1

Alkane KT1110 Koike et al. (1999)

R. ruber SoD Quatrini et al. (2008)
AY247275.1
R. aetherivorans SoD Quatrini et al. (2008)
AF447392.1
R. koreensis SoF Quatrini et al. (2008)
AF124343.1
Alkyl ether R. ruber MOB100 Kim et al. (2007b)
AY247275.1
R. pyridinivorans MOP100  Kim et al. (2007b)
EU816696.1
R. ruber THF100 Kim et al. (2007b)
AY247275.1
Aniline R. pyridinivorans AN-22 Matsumura et al.
EU816696.1 (2004)

Azaarenes (nitrogen-containing R. cercidiphyllus B1L4 Willumsen et al.
heterocyclic aromatic EU325542.1 (2005)
hydrocarbons) R. cercidiphyllus B2L1 Willumsen et al.

EU325542.1 (2005)

Benzene R. erythropolis Pi71 Fahy et al. (2006)
DQ000156.1

R. erythropolis Rs73 Fahy et al. (2006)

DQ000156.1

Benzothiazoles R. pyridinivorans PA Gaja and Knapp
EU816696.1 (1997)

Biphenyl R. erythropolis MB1 Williams et al. (1997)
DQ000156.1

BTEX benzene toluene xylenes R. erythropolis IA1XBOX Hendrickx et al. (2006)
ethylbenzene DQ000156.1

Butane R. aetherivorans F (BCP1) Frascari et al. (2006)

AF447392.1
Cyclohexylacetic acid R. erythropolis KUA-2 Iwaki et al. (2008)
DQ000156.1
R. ruber KUA-3 Iwaki et al. (2008)
AY247275.1
R. erythropolis KUA-4 Iwaki et al. (2008)
DQ000156.1

(continued)
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Table 6 (continued)
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Substrate Biodegraded Species Strain Reference
Name
R. equi AF490539.1 KUA-6 Iwaki et al. (2008)
Desulfurisation of dibenzothiophene R. gingshengii sp. ~ RKIJ5 Labana et al. (2005)
(DBT) djl-6 DQ090961 .1
Dibenzofuran DFA3 Noumura et al. (2004)
R. pyridinivorans HAO1 Aly et al. (2008)
EU816696.1
R. pyridinivorans HN2006A Aly et al. (2008)
EU816696.1
R. erythropolis KS1 Futamata et al. (2004)
DQ000156.1
R. fascians NSA3-1 Futamata et al. (2004)
AB211229.1
R. erythropolis NSAS-1 Futamata et al. (2004)
DQ000156.1
R. erythropolis NSAG6 Futamata et al. (2004)
DQ000156.1
R. fascians YK2 Iida et al. (2002)
AB211229.1
R. cercidiphyllus YK9 Iida et al. (2002)
EU325542.1
Dibenzothiophene R. gingshengii sp. lawq Ma et al. (2006)
djl-6 DQ090961 .1
T09 Matsui et al. (2002)
R. erythropolis X309 Denis-Larose et al.
DQ000156.1 (1997)
Hexane R. ruber SP2B Amouric et al. (2006)
AY247275.1
Hydrocarbons R. fascians 43/02 Saul et al. (2005)
AB211229.1
R. wratislaviensis S1-2 La Rosa et al. (2006)
AY940037.1
R. wratislaviensis S2-2 La Rosa et al. (2006)
AY940037.1
R. wratislaviensis S5-3 La Rosa et al. (2006)
AY940037.1
R. wratislaviensis ZC-3 La Rosa et al. (2006)
AY940037.1
Methyl-s-triazines R. jostii FJ1117YT Fujii et al. (2007)
AB046357.1
Nitrile hydrolising R. erythropolis 122- Brandao et al. (2002);
DQ000156.1 ANO065 Heald et al. (2001)
Nitrophenol R. imtechensis RKJ300 Ghosh et al. (2007)
AY525785.2
PCB (polychlorinated biphenyl) R. wratislaviensis ~ OUCZ16  Leigh et al. (2006)
AY940037.1
R. jostii OUCZ26 Leigh et al. (2006)
AB046357.1
R. jostii OUCZ35 Leigh et al. (2006)
AB046357.1

(continued)
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Table 6 (continued)

Substrate Biodegraded Species Strain Reference
Name
R. jostii OUCZ44  Leigh et al. (2006)
AB046357.1
R. jostii OUCZ58  Leigh et al. (2006)
AB046357.1
Phenanthrene 871-AN040 17 Bodour et al. (2003)
Polycyclic aromatic hydrocarbon R. ruber PR-N14 Daane et al. (2001)
AY247275.1
Propane R. wratislaviensis P2 Connon et al. (2005)
AY940037.1
Radiation-resistant R. fascians 4a-1 Fredrickson et al.
AB211229.1 (2004)
R. fascians RG-14 Fredrickson et al.
AB211229.1 (2004)
TCE (trichloroethylene) R. opacus RD6.2 De Marco et al. (2004)
CS000360.1
Toluene L2 Wang et al. (2008)
Xylene R. pyridinivorans LE2 Wang et al. (2008)
EU816696.1
R. opacus TCH14 Taki et al. (2007)
CS000360.1
R. opacus TCH4 Taki et al. (2007)
CS000360.1
R. opacus TKN14 Taki et al. (2007)
CS000360.1
R. opacus TKN45 Taki et al. (2007)
CS000360.1
R. opacus TKN46 Taki et al. (2007)
CS000360.1
R. koreensis YU6 Jang et al. (2005)
AF124343.1

The list is limited by the number of relevant studies that have been performed and not all strains
could be accommodated into existing species. Those species shaded in yellow have been assigned
by the respective publication, while those unshaded have been assigned by the current review both
using 16S rRNA sequence homology data. All the gene databases were searched using Geneious
3.8.5 (Biomatters) and only those sequences for which publications were also available are
included in the table

8 Note Added in Proof

A new species has been described as R. jialingiae sp. nov., isolated from sludge of a
carbendazim wastewater treatment facility with djl-6-2T (= DSM 45257T =
CCTCC AB 208292T) as the type strain and DQ185597 the GenBank accession
number of the 16S rRNA gene sequence (Wang et al. 2009).
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Table 7 Genes encoded in cultured strains provisionally designated by the authors into species of
Rhodococcus names based only on 16S rRNA sequence data listed by GenBank accession number

Gene Encoding Strain Reference Species Sequence  Substrate
Name Accession  Biodegraded
Number
Alkb SoD Quatrini et al. R. ruber EU135971 Alkane
(2008) AY247275.1
SoD Quatrini et al. R. aetherivorans AY496284  Alkane
(2008) AF447392.1
SoF Quatrini et al. R. koreensis AY496287 Alkane
(2008) AF124343.1
Catechol 1,2- AN-22 Matsumura et al. R. pyridinivorans ~ AB087282  Aniline
dioxygenase (2004) EU816696.1
Cytochrome P450 MOB100 Kim et al. R. ruber AY927228 Alkyl ether
alkane (2007b) AY247275.1
monooxygena
dbfA1A2 DFA3 Noumura et al. AB180235 Dibenzofuran
(2004)
dfdA1A2A3A4 HN2006A Aly et al. (2008) R. pyridinivorans ~ AM231909 Dibenzofuran
oxygenases EU816696.1
Dibenzothiophene ITPS7 Gupta biotechnol DQ140354 Dibenzothiophene
monooxygenase left 29 1465-8
Dioxygenase LE2 Wang et al. R. pyridinivorans ~ EF683121  Xylene
(2008) EUS816696.1
LJ2 Wang et al. EF683119  Toluene
(2008)
YK2 Tida et al. (2002) R. fascians AB070458 Dibenzofuran
AB211229.1
YU6 Jang et al. (2005) R. koreensis DQO011232  Xylene
AF124343.1
dsz, dibenzothiophene T09 Matsui et al. AB074048 Dibenzothiophene
desulfurizi (2002)
Extradiol dioxygenase YK9 Tida et al. (2002) R. cercidiphyllus ABO070471 Dibenzofuran
EU325542.1
Monooxygenase RD6.2 De Marco et al.  R. opacus AY436807 TCE
(2004) CS000360.1 (trichloroe-
thylene)
polyketide synthase SW09 Kim et al. R. marinonascens  DQ227674
(2007b) X80617.1
SOX X309 Denis-Larose R. erythropolis U87968 Dibenzothiophene
et al. (1997) DQ000156.1
tmoA/xyIM/xylE1 IA1XBOX Hendrickx et al.  R. erythropolis AY512640 BTEX benzene
(2006) DQ000156.1 toluene xylenes
ethylbenzene

The list is limited by the number of relevant studies performed, and some strains cannot be
accommodated into existing species. Those species shaded in yellow have been assigned by the
respective publication, while those unshaded have been assigned by the current review both using
16S rRNA sequence homology data. All the gene databases were searched using Geneious 3.8.5
(Biomatters) and only those sequences for which publications were also available were included in
the table
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Abstract The cell envelopes of rhodococci and their closest relatives are domi-
nated by the presence of large branched chain fatty acids, the mycolic acids. Here we
review the structural features underlying the incorporation of the mycolic acids into
the rhodococcal cell envelope, notably their covalent anchoring to the peptidogly-
can—arabinogalactan complex and their organisation into an outer lipid permeability
barrier. Rhodococcal cell envelopes also accommodate diverse non-covalently
associated components such as channel-forming porin proteins, free lipids,
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lipoglycans, lipoproteins and capsules or cell envelope polysaccharides. Based on the
extensive studies of cell envelope biogenesis in corynebacteria and mycobacteria,
we have used a comparative genomics approach to examine the pathways for the
biosynthesis of the major cell envelope components of Rhodococcus jostii RHAL.

1 Introduction

The genus Rhodococcus belongs to the suborder Corynebacterineae, a distinctive
lineage within the phylum Actinobacteria (Gtrtler et al. 2004; Jones and Good-
fellow in press; Zhi et al. 2009). The members of this taxon are characterised by
distinctive cell envelopes typically dominated by large branched chain lipids, the
mycolic acids, and collectively they are often referred to as the mycolata. In
addition to the mycolic acids, these bacteria share a number of other common
cell envelope features, most notably an arabinogalactan (AG) cell wall polysaccha-
ride that is covalently attached to the cell wall peptidoglycan and in turn provides a
scaffold for the covalent anchoring of mycolic acids. Thus, the chemistry and
organisation of these components in a distinctive cell envelope architecture repre-
sents one of the defining features of the biology of the mycolata. The mycolate cell
envelope has received extensive study in the context of understanding the targets of
several crucial antibiotics that are used against the pathogenic mycobacteria, most
notably Mycobacterium tuberculosis (Dover et al. 2008a). These studies have been
vital in providing comparative insights into cell envelope biology in the genus
Rhodococcus (Sutcliffe 1998; Giirtler et al. 2004). Here we review recent progress
in understanding of the composition, architecture and biosynthesis of the mycolate
cell envelope, with particular reference to the rhodococci. In particular insights into
the biosynthesis of these cell envelope components are now possible using a
comparative genomics approach, based on the recently published genome sequence
of Rhodococcus jostii RHA1 (McLeod et al. 2006).

2 Cell Envelope Composition in the Genus Rhodococcus:
Covalently Associated Components

The mycolyl-arabinogalactan—peptidoglycan complex represents the defining
covalently interlinked structure of the cell envelope of the mycolata. These com-
ponents and their linkages are reviewed in the following sections.

2.1 Mycolic Acids

Mycolic acids are 2-alkyl branched, 3-hydroxy long chain fatty acids, which vary in
size and complexity with the different genera of the mycolata (Fig. 1). Those of the
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Fig. 1 Structures of representative mycolic acids from Corynebacterium, Rhodococcus and
Mpycobacterium species, illustrating their differing complexity. M. tuberculosis methoxymycolate
is an example of the most complex mycolic acids. The less complex M. smegmatis mycolates
encompass either double or single unsaturations whilst retaining the longer chain length. Rhodo-
coccus sp. mycolates are of an intermediate size. They present an aliphatic 2-alkyl chain varying
from 12 to 16 carbons, whilst the 3-hydroxyl meromycolate typically contains 18—40 carbons (i.e.
X, y and z total 18—40). The rhodomeromycolates have relatively simple modifications containing
up to four unsaturations at presently undetermined positions. Corynebacterium sp. mycolates are
the simplest known mycolates. For simplicity, corynemycolates are represented as the typical
32-36 carbon aliphatic mycolic acids but a proportion of the total cell wall mycolates may also
contain single or double unsaturations

corynebacteria are typically the smallest (size range 22-38 total carbons) and those
of the mycobacteria are the most complex, with a size range of 60-90 carbons and a
greater diversity of meromycolate chain functional groups such as cyclopropane,
methoxy- and keto- modifications (Dover et al. 2004; Giirtler et al. 2004; Takayama
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Fig. 2 Lengths of the meromycolate main chain extensions in the mycolic acids of Rhodococcus
rhodochrous. The data of Stratton et al. (1999) was re-analysed to calculate the number of carbons
by which the meromycolate main chain exceeded the length of the alkyl side branch. Data are
presented with respect to the proportion of the different mycolic acid types within the total
mycolates

et al. 2005). Members of the genus Rhodococcus produce mycolic acids of an
intermediate size, typically with 28-54 carbons in total (Alshamaony et al. 1976;
Klatte et al. 1994; Sutcliffe 1998; Stratton et al. 1999; Nishiuchi et al. 2000). One
important feature of mycolic acid structure is the length of the main meromycolate
chain compared to the alkyl side branch. In rhodococci, the alkyl side branch is
typically a saturated alkyl chain of 10-16 carbons in length, whereas the meromy-
colate is a longer chain (C20-C42) with up to four carbon—carbon double bonds
(Fig. 1). Thus consideration of the detailed profile of the mycolates present in
Rhodococcus rhodochrous (Stratton et al. 1999) reveals that the lengths of each
meromycolate chain will extend beyond that of its alkyl partner (Fig. 2) and similar
data are evident for other rhodococci (Nishiuchi et al. 2000). The positions of the
unsaturated bonds have not been determined unequivocally but studies of the
mycolic acids of Nocardia asteroides suggest it is likely that they are localised in
the distal regions of the meromycolate chain (Minnikin and O’Donnell 1984;
Sutcliffe 1998). This would mean the region of the meromycolate chain proximal
to the ester-linked terminus is effectively a saturated chain and would pack closely
with the saturated alkyl branch. Thus these features need to be considered when
predicting the arrangement of the mycolates esterified to AG within the rhodococ-
cal cell envelope (see below).

2.2 The Peptidoglycan—-Arabinogalactan Complex

As in other members of the mycolata, the peptidoglycan structure of members of
the genus Rhodococcus has been determined to be of the Aly type, i.e. with the
diamino acid meso-diaminopimelic acid forming direct cross-linkages between
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the stem peptides (Jones and Goodfellow in press). The muramic acid residues of
the glycan strands are N-glycolyated, which is a comparatively unusual peptido-
glycan modification (Uchida and Aida 1979; Vollmer 2008; Jones and Good-
fellow in press). N-glycolylation is likely carried out during cytoplasmic
peptidoglycan precursor biosynthesis, prior to lipid II formation (Raymond
et al. 2005; Vollmer 2008; Jones and Goodfellow in press). A clear orthologue
of the NamH protein recently identified as the Mycobacterium smegmatis oxy-
gen-dependent hydroxylase responsible for N-glycolylation was identified in the
R. jostii RHA1 genome (Raymond et al. 2005; RHA1_ro04045). Although the
physiological function of N-glycolyation remains unclear, it is notable that
deletion of namH in M. smegmatis increased susceptibility to lysozyme and
B-lactam antibiotics (Raymond et al. 2005). As an extra hydroxyl group is
introduced to the glycan chain, there may be additional hydrogen binding
possibilities within the cell envelope, which could contribute to novel aspects
of its supramolecular organisation.

The AG of the cell envelope is phosphodiester linked to the peptidoglycan by a
well conserved linker unit (LU) of L-rhamnose-p-N-acetylglucosamine phosphate
(Daffé et al. 1993). Mycobacterial AG has been extensively structurally charac-
terised as the scaffold for the attachment of the mycolic acids (Besra et al. 1995;
Bhamidi et al. 2008) and the target for the action of the anti-tubercular ethambutol
(EMB; Takayama and Kilburn 1989). The heteropolymer is divided into distinct
homopolymer galactan and arabinan domains. A galactan anchored to the peptido-
glycan via the LU will typically carry three arabinan domains, the branched termini
of which carry the mycolic acids. Comparatively little is known of the fine structure
of AG from most mycolic acid containing bacteria, although an important compar-
ative study revealed that the AG of Rhodococcus equi and R. rhodochrous have a
similar domain organisation of a linear homogalactan bearing discrete arabinan
domains (Daffé et al. 1993). The galactan of R. equi contained both 1—3, 1—5 and
1—6 glycosidic linkages whereas that of R. rhodochrous contained 1—2 and 1—5
linkages. Further galactan diversity was revealed in the galactans of Nocardia spp.
The arabinan domains of the AG also exhibit similar variations, that of mycobac-
teria typically present pentaarabinosyl branched termini, which can carry four
mycolates each (Besra et al. 1995; Bhamidi et al. 2008). In contrast, in R. equi, a
range of arabinose termini are present including a linear arabinan, a triarabinosyl
branched terminus and termini bearing mannose caps (Daffé et al. 1993). As minor
variations on the AG core structure have been reported in Tsukamurella paurome-
tabolum (Tropis et al. 2005a), it appears that AG is likely to be subject to genus and
species-specific variations in fine structure, which may also extend to the presence
of substituents such as succinate (Bhamidi et al. 2008). This may have implications
regarding the extent to which rhodococcal cells are covered with covalently bound
mycolates, the significance of which is discussed later.

In addition to the “secondary” cell wall polymers, Gram-positive bacteria also
anchor proteins to their peptidoglycan through the action of sortase transpeptidase
enzymes (Marraffini et al. 2006). Sortase substrates have a characteristic LPXTG
motif (or variants thereof), of which the threonine residue is targeted for the
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transpeptidation reaction. Sortase-mediated anchoring of proteins to the cell wall
does not appear to be as prominent in Actinobacteria compared to Firmicute Gram-
positive bacteria; important examples include the anchoring of the larger chaplins
during production of aerial hyphae by Streptomyces coelicolor (Di Berardo et al.
2008) and the polymerisation and anchoring of pili in Corynebacterium diphtheriae
(Mandlik et al. 2008a, b). Bioinformatic analyses have identified only a single
sortase encoded in the R. jostii RHA1 genome (see PFAM family PF04203 at
http://pfam.sanger.ac.uk//family/pf04203) and no members of the LPXTG family
(PF00746) of canonical sortase substrates. In R. jostii, the sortase protein
RHA1_ro03500 is apparently encoded in an operon with an adjacent coding
sequence (RHA1_ro03501), which has the requisite C-terminal features, including
an HPETG motif, that suggest RHA1_ro03501 might be the sortase substrate.
However, this pairing aside, it is clear that sortase-anchored proteins are not numer-
ically abundant in the predicted proteome of R. jostii.

3 Organisation of the Rhodococcal Cell Envelope

Determining how significant quantities of high molecular weight lipids (i.e. the
mycolic acids) are organised within the cell envelope presented a significant
challenge in earlier studies of the mycolata. However, the landmark studies of
Minnikin (1982, 1991) provided a model that, following extensive biochemical,
biophysical and structural analyses, has become accepted as the definitive model of
the mycobacterial cell envelope (Brennan and Nikaido 1995; Daffé and Draper
1998). Subsequently, this model has been applied to models of the corynebacterial
(Puech et al. 2001; Dover et al. 2004) and rhodococcal cell envelopes (Sutcliffe
1997, 1998). Recently, excellent cryo-electron microscopic studies have provided
clear visualisations of this structure for both Corynebacterium and Mycobacterium
spp. (Hoffmann et al. 2008; Zuber et al. 2008) and variations on this theme are most
likely applicable to all mycolic-acid containing actinomycetes.

The central tenet of the Minnikin model is that the mycolic acids covalently
attached to the AG have a perpendicular orientation with respect to the plane of the
plasma membrane (Fig. 3). Thus, the mycolates form the basis of a second hydro-
phobic permeability barrier outside of the plasma membrane. This structure is
analogous to the outer membranes of Gram-negative bacteria but is chemically
and structurally distinct, most notably in that the defining feature of the permeabil-
ity barrier is not a bilayer but the monolayer of bound mycolates. Nevertheless,
depending on the extent to which bound mycolates are able to provide coverage of
the whole bacterial cell surface, additional components may be needed to “plug”
potential gaps in the mycolyl layer, a role proposed to be taken most likely by
mycolic acid containing-glycolipids (see Sect. 4.3; Sutcliffe 1998; Puech et al.
2001; Zuber et al. 2008). Indeed, trehalose mycolates are likely to act as carriers for
incorporation on newly synthesised mycolic acids into the cell envelope (Tropis
et al. 2005b).
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Fig. 3 Model for the organisation of the rhodococcal cell envelope. This adaptation of the classic
Minnikin model (Minnikin 1991) emphasises that vertically orientated mycolic acids form the
basis of the outer lipid permeability barrier. Components of the model in panel A are identified in
panel B. No specific conformation for the peptidoglycan—AG complex is favoured in this sche-
matic representation. Consideration of the sizes and conformations of rhodococcal mycolates
suggest that there may be filler lipids (and possibly lipoglycans and lipoproteins) associated with
the outer surface of mycolate layer (grey box) but this remains hypothetical. Not shown are the
outermost layers composed of the cell envelope polysaccharides and/or capsules that are known to
be present in many rhodococci
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A second consideration is the extent to which the longer meromycolate chains of
the mycolic acids project beyond the alkyl branches that are packed alongside them
(Sect. 2.1) and, with longer chain mycolates, the extent to which folded conforma-
tions can be adopted (Villeneuve et al. 2007). In rhodococci, we propose that as the
typical length of these meromycolate extensions corresponds most closely with the
lengths of typical fatty acyl lipids (Fig. 2), it is likely that the permeability barrier
provided by the mycolate layer is bolstered externally by the interaction of smaller
amphiphiles (e.g., acylglycerol-based lipids), which may vary on a species and
strain-specific basis, as discussed previously (Sutcliffe 1998; Puech et al. 2001).
Moreover, it is notable that rhodococcal mycolates lack both the length and chain
modifications necessary to achieve the more complex “Z” and “W” type conforma-
tions (e.g., see Villeneuve et al. 2007). Genus, species and strain-specific variations
in the length of the mycolic acids (Dover et al. 2004; Giirtler et al. 2004; Takayama
et al. 2005) dictate the precise configurations of the mycolates and so the extent to
which this necessitates their interactions with “filler” lipids is thus likely to vary in a
species-specific manner. Moreover, the mycolate layer is highly unlikely to be a
static barrier, and the permeability of this barrier is likely to be regulated, consistent
with studies showing that mycolic acid composition can vary with growth
conditions (Sutcliffe 1998; Sokolovska et al. 2003; Stratton et al. 2003).

The representation in Fig. 3 is in reasonable agreement with the recently pro-
posed “zippered” version of the classic Minnikin model, wherein free lipids are
shown intercalated with the mycolates (Zuber et al. 2008). This model is in reason-
able agreement with the measured thicknesses of the outer permeability barrier in
corynebacteria (4—5 nm) and mycobacteria (7-8 nm) (Hoffmann et al. 2008; Zuber
et al. 2008). However, specific studies are needed to further define the details of the
organisation of the rhodococcal cell envelope. Such studies will be of considerable
interest given that the length of the rhodococcal mycolates represents an intermedi-
ate stage between those of the corynebacterial and mycobacterial species whose cell
envelopes have been most extensively studied (Hoffmann et al. 2008; Zuber et al.
2008). Thus the extent to which the projecting meromycolate chains interact with
covering amphiphiles and other outermost components (notably capsules and other
polysaccharides; see Sect. 4.4) is an important question for future study, particularly
as these features will profoundly influence the cell surface hydrophobicity and thus
the possible biotechnological applications of rhodococcal strains.

The Minnikin model focuses primarily on the organisation of the mycolates
within the cell envelope. Thus, the organisation of the peptidoglycan in the myco-
lata has traditionally been assumed to be comparable to that of the peptidoglycan in
other bacteria, that is, a layered structured wherein the peptidoglycan strands are
orientated in parallel with the plane of the plasma membrane (Vollmer and Holtje
2004). Alternatively, it has been proposed that helical glycan strands of the pepti-
doglycan may have a novel vertical orientation (Dmitriev et al. 2005) and that in
mycobacteria this allows for helical galactan chains of the AG to be intercalated
within a grid of glycan “pillars” (Dmitriev et al. 2000). As yet this novel “scaffold”
hypothesis has not yet received extensive support from studies on other organisms
(Gan et al. 2008; Hayhurst et al. 2008) and it remains to be verified in the mycolata.
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Finally, the presence of an outer lipid permeability barrier suggests that the
location between this layer and the plasma membrane should be considered a
“pseudo-periplasm” and also dictates that pathways must exist for both solute
uptake (see Sect. 4.1) and secretion (notably of proteins but also of DNA). How-
ever, although there is a growing understanding of pathways of protein secretion in
mycobacteria (DiGiuseppe Champion and Cox 2007), no specific systems for the
export of proteins beyond the pseudoperiplasm have yet been identified.

4 Non-Covalently Associated Cell Envelope Components

As illustrated in Fig. 3, the mycolyl-arabinogalactan—peptidoglycan complex pro-
vides a scaffold upon which several crucial classes of cell envelope component can
be localised. These non-covalently associated cell envelope components are
reviewed in the following sections.

4.1 Channel Forming Porins

The organisation of the covalently linked mycolates and other cell envelope lipids
into an outer lipid permeability barrier suggests that channel forming proteins
(porins) need to be present to allow the accumulation of hydrophilic solutes. This
prediction was confirmed first for Mycobacterium chelonae (Trias et al. 1992) and
subsequently channel forming proteins have been identified in a considerable range
of mycolic acid containing actinomycetes (Nikaido 2003; Ziegler et al. 2008). The
channel forming proteins that have been best characterised to date, that is the cation
selective MspA channel of M. smegmatis (Faller et al. 2004) and the anion selective
channel PorB of Corynebacterium glutamicum (Ziegler et al. 2008), are both
relatively small proteins that oligomerise to form their respective channels. MspA
forms a novel octameric 16-stranded B-barrel structure (Faller et al. 2004) whereas
PorB forms a putative pentameric structure that is unusual in containing a-helices
(Ziegler et al. 2008).

Three studies have confirmed the presence of porins in rhodococci. Cation
selective channels have been isolated from Rhodococcus (formerly Nocardia),
corynebacteroides (Riep and Benz 2000) and Rhodococcus erythropolis (Lichtin-
ger et al. 2000), whilst complementary anion and cation selective channels were
identified in organic solvent extracts from R. equi (Riep et al. 2003). The ca. 2-nm
wide cation selective channels of R. equi and R. erythropolis have similar biophysi-
cal properties. However, the N-terminal sequence determined for the R. erythropo-
lis protein (Lichtinger et al. 2000) does not at present generate any significant
homology matches to any known proteins. M. smegmatis MspA is the prototype of
a porin family (PF09203; http://pfam.sanger.ac.uk//family/PF09203) and three
members of this family (RHA1_ro03127; RHA1_ro04074; RHA1_ro08561) with
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significant sequence homology to M. smegmatis MspA can also be identified in the
R. jostii genome.

The identity of the anion selective channel of R. equi has yet to be determined,
and it is notable that the known anion selective channels of corynebacteria appear to
be unique to this genus (Ziegler et al. 2008). Thus other novel channel forming
proteins are likely to be present in rhodococcal cell envelopes.

In addition to the above porins, Rv1968 from M. tuberculosis was recently
described as the prototype for a new class of channel forming proteins (Siroy
et al. 2008). In vitro, Rv1968 forms channels with a weak selectivity for cations.
A single significant homologue of Rv1968 is encoded in the R. jostii genome
(RHA1_ro00932; 145/308 amino acid sequence identity) suggesting that channels
of this type are also likely to be present in rhodococcal cell envelopes.

4.2 Lipoglycans

The cell envelopes of most, but not all, Actinobacteria bacteria are characterised by
the presence of membrane-anchored polysaccharides, the lipoglycans (Sutcliffe
1994; Rahman et al. 2009). In all mycolic acid-containing Actinobacteria studied
to date, the lipoglycans present belong to the lipoarabinomannan (LAM) family
(Nigou et al. 2003, 2008; Gilleron et al. 2005). As with AG, this lipoglycan family
is characterised by a conserved core structure that then exhibits considerable
species and strain-specific variation in fine structure. The core structure is defined
by the presence of a phosphatidylinositolmannoside-based lipid anchor, which is
extended into a 1 —6 linked mannan domain of variable length (Nigou et al. 2003).
In addition to mannose side chains, this mannan core will also carry arabinose or
arabinan branches, which in turn may carry a variety of substituent motifs, most
notable mannose caps in some strains (Nigou et al. 2003).

Three species of Rhodococcus have been investigated as to their lipoglycan
structure. The structure of the LAM-like lipoglycan of R. equi (ReqLAM) was
found to be the first known example of a ‘truncated’ LAM wherein the typical
phosphatidylinositol-anchored lipomannan core is decorated with 1—2 linked
mannose branches, some of which bear a single capping by t-arabinofuranose
residues (Garton et al. 2002). Thus, the substantial arabinan domains of mycobac-
terial LAM are not present in this structure, which has immunomodulatory proper-
ties that may be relevant to the pathogenesis of disease in foals (Garton et al. 2002;
Nigou et al. 2008). Likewise, the lipoarabinomannan of Rhodococcus ruber (Rru-
LAM) is also a truncated LAM structure in which the lipomannan core is directly
substituted with ¢-arabinofuranose residues (Gibson et al. 2003b). These truncated
LAMs are thus closely structurally related yet distinct from each other and it is
apparent that truncated LAMs represent as distinct subfamily within the LAM
archetype (Gilleron et al. 2005). A LAM-like lipoglycan has also been identified
in Rhodococcus rhodnii (Flaherty et al. 1996) but has not yet received full structural
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characterisation. However, the arabinose content determined by gas chromatogra-
phy suggests that this LAM might be more extensively arabinosylated (Flaherty
et al. 1996). Notably, in these rthodococci, the LAM-like lipoglycans appear to be
the sole membrane-anchored polysaccharides, whereas in mycobacteria, the LAM
is accompanied in the membrane by a structurally inter-related lipomannan (Nigou
et al. 2003).

The physiological functions of these lipoglycans remain obscure (Sutcliffe
2005) but recent advance in understanding the genetic basis of LAM biosynthesis
have led to the generation of mutants abrogated in various stages of the LAM
biosynthesis pathway. Mutation of an early stage in LAM biosynthesis (assembly
of the mannan core) was achieved in C. glutamicum, although at a low frequency
of homologous recombination and the mutant obtained exhibited notably poor
in vitro growth (Mishra et al. 2008b). This provides the clearest evidence to date
that LAM lipoglycans may not be essential for the growth of mycolic acid-
containing Actinobacteria but that they are likely to be necessary for optimal
growth.

By analogy with both lipoteichoic acids and other lipoglycans (Sutcliffe 1994;
Rahman et al. 2009), it has generally been assumed that LAM family lipoglycans
are anchored to the outer leaflet of the plasma membrane with the glycan polymer
projecting into the ‘pseudo-periplasm’. However, it remains possible that a sub-
fraction of lipoglycans is surface exposed through trafficking and intercalation of
the lipid anchor into the outer mycolate-based lipid layer (Fig. 3), as recently
discussed for mycobacterial LAM (Pitarque et al. 2008). These two subfractions
can be usefully distinguished as ‘parietal’ LAM (associated with the mycolate
layer) and ‘cellular’ LAM (associated with the plasma membrane) (Gilleron et al.
2000; Pitarque et al. 2008).

4.3 Cell Envelope Lipids

The cell envelopes of rhodococci are rich sources of structurally diverse lipids,
some of which have pronounced surfactant properties that facilitate the growth of
the bacteria on hydrophobic substrates and may be of biotechnological signifi-
cance (Lang and Philp 1998; Kuyukina, this volume; Sutcliffe 1998). These lipids
are typically glycolipids including both acyl- and mycolyl-glycolipids (Table 1).
There is also a rich diversity of lipopeptides and glycolipopeptides known to be
produced by rhodococci (Table 1). The nature of the associations and the specific
functions of these lipids within the rhodococcal cell envelope are largely unknown
but it is likely that they can interact/intercalate with the covalently bound mycolic
acids (see above). Whether the roles of these lipids are simply structural (i.e. as
fillers to complete to the outer lipid permeability barrier) or more dynamic (e.g. in
modulating surface physicochemical properties) remain to be determined.
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Table 1 Representative cell envelope lipids of rhodococci

I.C. Sutcliffe et al.

Lipid Species
Glycerol monomycolates R. erythropolis Ioneda and Ono (1996)
Glycosyl monomycolates R. erythropolis Kurane et al. (1995)
R. rhodochrous de Almeida and Ioneda (1989)
R. ruber Matsunaga et al. (1996)
Trehalose mycolates R. corynebacteroides Powalla et al. (1989)
R. erythropolis Kretschmer et al. (1982);

Kurane et al. (1995)

R. opacus Niescher et al. (2006)
R. rhodochrous Asselineau and Asselineau
(1978); de Almeida and
Toneda (1989)
R. ruber Matsunaga et al. (1996)
Acylated carotenoid glucosides R. rhodochrous Takaichi et al. (1997)
Acyl pentaglucoside R. corynebacteroides Powalla et al. (1989)
Succinylated acyl trehaloses R. erythropolis Uchida et al. (1989)

Tokumoto et al. (2009)
Tuleva et al. (2008)
Koronelli (1988)
Chiba et al. (1999);
Peng et al. (2008)

Rhodococcus sp.
R. wratislaviensis
R. erythropolis
Rhodococcus sp.

Peptidolipids (lipopeptides),
mycolylpeptidolipids and
peptidoglycolipids

4.4 Capsules and Cell Envelope Polysaccharides

The capsular polysaccharides of Rhodococcus spp. have received surprisingly little
attention. Seven capsular serotypes of R. equi were initially defined by Prescott
(1981), and the structures of six of these have been extensively characterised by
Richards and co-workers (Richards 1994; Severn and Richards 1999). These poly-
saccharides are structurally diverse acidic heteropolysaccharides, typically charac-
terised by the presence of acetal-linked pyruvate or lactic acid ether substituents. In
many cases, the acidic character in part stems from the presence of glucuronic acid
in the polymer repeating unit, although the structure of the serotype 4 capsule is
notable for containing a 5-amino-3,5-dideoxynonulosonic (rhodaminic) acid
(Richards 1994; Severn and Richards 1999). A recent study showed that inactiva-
tion of a gene encoding a putative mycolic acid transferase (fbpA) resulted in a
failure to correctly encapsulate R. equi strain 103 (Sydor et al. 2008), possibly due
to a failure to correctly incorporate capsule polymer into the cell envelope. Intrigu-
ingly, although the capsule has long been considered a potential virulence factor of
R. equi, it was found that the fbpA mutant strain was not attenuated in macrophage
or mouse infection models (Sydor et al. 2008).

A cell envelope polysaccharide of R. jostii has recently been characterised
as having a tetrasaccharide repeating unit containing p-glucuronic acid, p-glucose,
2-acetyl-p-galactose and L-fucose (Perry et al. 2007). Close association of the
polysaccharide with the cell envelope was suggested by the need to use hot
(60°C) 50% aqueous phenol to extract significant yields of the polymer, an extrac-
tion method similar to that used for lipoglycans (Garton et al. 2002; Gilleron et al.
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2005). Similarly, an extracellular polysaccharide has also been isolated and char-
acterised from R. rhodochrous as having a tetrasaccharide repeating unit containing
D-glucuronic acid, p-glucose, b-galactose and b-mannose (Urai et al. 2006b). Small
quantities of C16 and C18 fatty acids were found to be esterified to this polymer,
suggesting that these might represent a mechanism for anchoring the polysaccha-
ride to the cell envelope. A third polymer, named mucoidan, was identified in R.
erythropolis PR4 and characterised as having a pentasaccharide repeat unit contain-
ing p-glucuronic acid, two p-glucose, N-acetylglucosamine and L-fucose (Urai et al.
2007b). The same strain also produces another polysaccharide, named PR4
FACEPS (fatty acid-containing extracellular polysaccharide), with a tetrasacchar-
ide repeating unit containing p-glucuronic acid, p-glucose, p-galactose and pyru-
vylated p-mannose, which is esterified with small quantities of fatty acids, as in the
R. rhodochrous polysaccharide (Urai et al. 2007a). The polysaccharide component
of PR4 FACEPS is notably identical to the previously described extracellular
polysaccharide of Rhodococcus sp. 33 (Urai et al. 2006a).

The above rhodococcal cell envelope polysaccharides share some structural
features in common with the capsular polysaccharides of R. equi. Interestingly, the
structural motif of an acetal-linked pyruvic acid (1-carboxyethylidene) substituent,
which is present in the R. equi serotype 1,2 and 7 capsules (Richards 1994), was also
identified in the polysaccharide from Rhodococcus sp. 33 and PR4 FACEPS from R.
erythropolis (Urai et al. 2006a, 2007a). To date, 27 antigenically distinct capsular
types have been defined by serotyping in R. equi alone (Nakazawa et al. 1983), so it is
likely that the structural diversity of cell envelope and capsular polysaccharides
produced by rhodococci is high. Therefore, this remains an interesting area for future
study, particularly as these surface polymers may facilitate the ability of the bacteria
to utilise hydrophobic substrates; (Urai et al. 2006b; Perry et al. 2007).

4.5 Lipoproteins

Bacteria are capable of covalently modifying proteins by attachment of a lipid
group to a cysteine residue, which becomes the N-terminus of the mature protein,
that is, synthesising lipoproteins (Hutchings et al. 2009). This provides an important
mechanism for localising proteins to bacterial cell membranes. Bacterial lipopro-
teins are readily identifiable by bioinformatic methods, and analyses of sequenced
bacterial genomes have revealed that putative lipoproteins typically represent
ca. 2% of the predicted proteomes of Gram-positive bacteria (Sutcliffe and
Harrington 2004; Babu et al. 2006; Rahman et al. 2008). As such, bacterial
lipoproteins are a functionally diverse and numerically significant class of cell
envelope proteins in Actinobacteria. In Gram-positive bacteria, lipoproteins are
de facto anchored to the outer leaflet of the plasma membrane, and this is likely to
be the major destination of lipoproteins in mycolic-acid containing Actinobacteria,
although it remains possible that some lipoproteins are also associated with the
mycolate layer (Fig. 3; Sutcliffe and Harrington 2004).
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As in M. tuberculosis (Sutcliffe and Harrington 2004), bioinformatic analyses of
the R. jostii genome indicates that ca. 2.0% (>100 proteins) of the predicted
proteome are putative lipoproteins (our unpublished observations). As in other
Gram-positive bacteria, substrate binding proteins of ABC transport systems for
diverse substrates are well represented. Related to this is the recent demonstration
that the mce4 operon of R. jostii constitutes a complex ABC transport system
variant for cholesterol uptake (Mohn et al. 2008) and it is notable that the Mce4E
proteins of both R. jostii (RHA1_ro04702) and M. tuberculosis are predicted
lipoproteins (unpublished observations; Sutcliffe and Harrington 2004). Indeed,
the mceE proteins associated with each of the multiple mce loci of M. tuberculosis,
Nocardia farcinica and R. jostii are putative lipoproteins (Sutcliffe and Harrington
2004; our unpublished observations). Collectively, mce operons may encode puta-
tive ABC-related transport systems for various (probably hydrophobic) substrates
(Casali and Riley 2007). The putative lipoproteins may thus interact with the other
membrane-associated/secreted components to form a cell envelope complex
involved in substrate scavenging and delivery to the membrane permease.

Consistent with their location in proximity to both the cell membrane and wall,
various putative lipoprotein enzymes including cell wall active enzymes can be
distinguished. As noted in other Gram-positive bacteria (Hutchings et al. 2009),
several putative lipoproteins predicted to be involved in membrane-associated
redox processes can be identified (e.g. R. jostii RHA1_ro02035, a ResA homologue
likely to be involved in cytochrome ¢ biogenesis, and RHA1_ro01137, the cyto-
chrome ¢ oxidase subunit II CtaC). Moreover, at least two putative lipoproteins
(RHA1_ro06090 and RHA1_ro06326) appear to be involved in ‘three component
systems’ involved in cell envelope sensing and signalling processes (Hoskisson and
Hutchings 2006; Ortiz de Orué Lucana and Groves 2009). Finally, as in other
bacteria, significant numbers of conserved hypothetical proteins of unknown func-
tion were identified as putative lipoproteins.

In addition to these canonical lipoproteins, the immunodominant VapA viru-
lence factor of R. equi (Jain et al. 2003) has also been reported to be an acylated
protein (Tan et al. 1995) , which may explain its association with the rhodococcal
cell surface (Sutcliffe 1997). The VapA protein lacks any cysteine and thus cannot
be a conventional lipoprotein of the above described type, as a cysteine containing
signal peptide is central to the lipid modification pathway (Hutchings et al. 2009).
Whether VapA is a unique post-translationally acylated protein or represents the
prototype of a novel family of lipid-modified proteins (e.g. in other mycolata)
remains an important question for future study. It is notable that the other members
of the VapA family are not thought to be lipid-modified but to be surface-associated
or secreted proteins (Byrne et al. 2001; Meijer and Prescott 2004).

5 Biosynthesis of Key Cell Envelope Components

As described in Sects. 2 and 4, the mycolate cell envelope is dominated by several
distinctive covalently and non-covalently associated components. The biosynthesis
and coordinated assembly of these components is reviewed in the following sections.



The Rhodococcal Cell Envelope: Composition, Organisation and Biosynthesis 43

5.1 Mycolic Acid Biosynthesis

Few studies have directly addressed the production of rhodococcal mycolic acids
but the fundamental processes involved in biosynthesis have been extensively
investigated in mycobacteria. The synthesis of the component parts of the mycolic
acids is, in the main, a straightforward fatty acid biosynthesis, which occurs via the
repetition of a cycle of four reactions, where each cycle accomplishes an extension
of the alkyl chain by a two-carbon unit.

Two types of fatty acid synthase (FAS) are known. The mammalian-like type
FAS-I system is a homo-dimer containing all the necessary functions to achieve de
novo fatty acid synthesis (Smith et al. 2003). In contrast, most bacteria utilise a
FAS-II system wherein the growing fatty acyl chain is transferred between the
active sites of dissociable component enzymes as an acyl thioester of a highly acidic
acyl carrier protein (ACP). As with most other mycolata, R. jostii is unusual in that
both FAS systems are present. FAS-I (fas) has been identified as RHA1_ro01426
showing 1965/3100 (63%) amino acid sequence identity to its counterpart in
M. tuberculosis H37Rv. This FAS-I will be responsible for the de novo fatty acid
synthesis, producing fatty acids of C14—C24 carbon chain length. For meromycolic
acid biosynthesis, the further extension of the fatty acids produced by FAS-I is
performed by a dissociable FAS-II system (Kremer et al. 2001b; Takayama et al.
2005). Like M. tuberculosis AcpM, the R. jostii AcpM (RHA1_ro01200) that serves
FAS-II contains a C-terminal extension relative to other bacterial ACPs (data not
shown). The significance of this C-terminal extension is still unknown but a
sequence alignment of AcpM from representative mycolata reveals a correlation
between the larger mycolates and the size of this extended region (data not shown).
Thus it could be speculated that the length of this extension plays a role in the
ability of the bacterium to produce longer meromycolates.

The key enzyme that links FAS-I and FAS-II, the B-ketoacyl-ACP synthase III
FabH, can be identified as RHA1_ro05206 showing 56% amino acid sequence
identity to M. tuberculosis H37Rv mtFabH (Choi et al. 2000; Brown et al. 2005).
FabH elongates the acyl-CoA primers derived from FAS-I by condensing these
with a malonyl-thioester of AcpM to form a B-keto-acyl-AcpM thioester product
(Choi et al. 2000; Brown et al. 2005). The malonyl-AcpM substrate is produced by
the acyl-CoA/ACP transacylase FabD (RHA1_ro01199), which is encoded within a
syntenic gene cluster in M . tuberculosis H37Rv (Fig. 4; Kremer et al. 2001b). The
B-keto-acyl-AcpM product of FabH is reduced by the B-keto-acyl-reductase, FabG
(MabA, RHA1_ro07213) (Banerjee et al. 1998) and its B-hydroxy-acyl-AcpM prod-
uct is dehydrated by a FabZ-type protein complex. Recently, Rv0635-Rv0637
(FabZ', FabZ, FabZ”, respectively) in M. tuberculosis H37Rv were identified as the
three component subunits required to perform the dehydration reaction in this species
(Brown et al. 2007; Sacco et al. 2007). Interestingly, R. jostii carries only homologues
of FabZ' (RHA1_ro01983) and FabZ (RHA1_r001984). The core unit of the dehy-
dratase complex, FabZ, associates with the chain length specific subunits FabZ’ and
FabZ" and therefore the absence of FabZ”, which is associated with the later stages of
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Fig. 4 Comparative genomic alignment of the KasA loci. The M. tuberculosis protein sequences
within the kasA locus were BlastP searched against the R. jostii proteome. The R. jostii protein
sequences identified were then reciprocally BlastP searched against the M. tuberculosis proteome
to confirm the correct selection of the protein. The figure demonstrates the genomic region of the
KasA loci where the grey bars represent the proteins of significant homology

meromycolate chain extension, is consistent with the shorter mycolate chain lengths
observed in R. jostii RHA1. The trans-2-enoyl-AcpM product of the FabZZ' complex
then participates in the final step of the FAS-II reaction cycle, catalysed by the enoyl-
ACP reductase Fabl (InhA, RHA_ro07214), which is encoded adjacent to fabG, as in
mycobacteria (Kikuchi and Kusaka 1984; Banerjee et al. 1994). Completing the cycle
thus produces an aliphatic acyl-ACP two carbons longer than its acyl primer (Bane-
rjee et al. 1994).

In M. tuberculosis, the subsequent rounds of acyl extension by FAS-II are
thought to be initiated by the highly similar f-keto-acyl-AcpM synthases, KasA
and KasB (Kremer et al. 2000, 2002a; Schaeffer et al. 2001). These enzymes extend
acyl-AcpM thioesters, rather than acyl-CoAs, by condensing them with malonyl-
AcpM. Both enzymes require acyl-AcpM primers of at least 16 carbons, consistent
with a role of FAS-II in extending FAS-I products towards the biosynthesis of long
chain fatty acids (Kremer et al. 2002a). KasA, which is responsible for the exten-
sion intermediate chain length meromycolate precursors (Kremer et al. 2000),
is present in R. jostii (RHA1_ro01201, 67% amino acid sequence identity to
M. tuberculosis KasA). Bhatt et al. (2007) confirmed that KasB functions predomi-
nantly in the extension of long-chain length meromycolate precursors. A AkasB
null mutant in M. tuberculosis synthesised shorter mycolic acids compared to the
parent strain. Significantly, the only gene missing from the R. jostii kasA gene
cluster compared to that observed in all mycobacteria (Fig. 4) is a KasB homologue,
further supporting the hypothesis that the production of intermediate chain length
meromycolates in rhodococci is due to the absence of the requisite machinery to
perform further elongation cycles.

Introduction of C=C double bonds into fatty acids and mycolic acids requires
fatty acid desaturases. Two putative long-chain fatty acyl ACP desaturases are
encoded in the genome of M. tuberculosis H37Rv, Rv0824c (DesAl) and Rv1094
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(DesA2), respectively (Cole et al. 1998). DesAl was originally detected as an
exported component of an M. tuberculosis PhoA fusion library processed in
M. smegmatis (Lim et al. 1995). The protein contains two copies of the characteris-
tic (D/E)ENXH motif (Jackson et al. 1997) of the class II diiron-oxo proteins to
which acyl-ACP desaturases belong (Fox et al. 1994). Two homologues of DesAl
are present in R. jostii, RHA1_ro02258 and RHA1_ro04869. Both exhibit 58%
amino acid sequence identity to DesAl, and the gene for the latter is situated in a
conserved locus comparable with that of M. tuberculosis DesAl. M. tuberculosis
DesA2 does not contain the (D/E)ENXH motifs observed in other acyl-ACP
desaturases, although it does possess an EEHXH motif as well as showing a high
degree of homology throughout with stearoyl-ACP desaturases. RHA1_ro05863
appears to be an orthologue of DesA2 (37% amino acid sequence identity) in
R. jostii and like the M. tuberculosis DesA2 retains only an EENXH motif. Neither
of the M. tuberculosis gene products have yet been characterised in terms of
desaturase activity and the significance of DesAl secretion remains unknown.
A membrane-associated fatty acyl-CoA desaturase gene is encoded in the genome
of M. tuberculosis H37Rv (Rv3229c, DesA3; Phetsuksiri et al. 2003). Phetsuksiri
et al. (2003) demonstrated that DesA3 was involved in the production of oleate
from stearoyl-CoA and therefore it was designated as a A9-desaturase. R. jostii has
six other DesA homologues, five of which (RHA1_ro06336, RHA1_ro03422,
RHA1_ro01720, RHA1_ro6335 and RHA1_ro3346) show greater than 55%
amino acid sequence homology to M. tuberculosis DesA3 and may thus play
roles in fatty acid and/or mycolic acid desaturation. The sixth DesA3 homologue,
RHA1_ro04464, is noted to contain a significant N-terminal deletion and so may be
inactive.

The presence of complex mycolates in mycobacteria can be attributed to the
numerous methyltransferases that are involved in functional group formation at
proximal and distal modifications sites initially occupied by an unsaturated bond
(Dover et al. 2004; Takayama et al. 2005). The absence of modifications in the
relatively short mycolic acids of C. diphtheriae has been attributed to the absence of
similar modification enzymes as well as to the absence of any fatty acyl desaturase
DesA homologues that would provide the requisite unsaturation for further modifi-
cation by the methyltransferases (Dover et al. 2004). Rhodococcal mycolates are
intermediate in terms of both length and complexity compared to mycobacterial and
corynebacterial mycolates (Fig. 1), containing up to four double bonds (Alshama-
ony et al. 1976; Barton et al. 1989; Stratton et al. 1999; Nishiuchi et al. 2000) in the
distal part of the meromycolate. It is tempting to speculate that the multiple DesA
homologues identified above may be involved in the formation of multiply unsatu-
rated mycolates. As in C. diphtheriae, the absence of methoxyl mycolic acid
synthases and cyclopropane mycolic acid synthases from the genome of R. jostii
RHAL1 is consistent with the simpler mycolate profiles of rhodococci.

The penultimate step in the synthesis of mycolic acids involves the Claisen-type
condensation of an acyl-S-CoA (that contributes the alkyl branch) with a meromy-
colyl-AMP (Takayama et al. 2005; Gokhale et al. 2007). Recently a polyketide
synthase (Pks13, Rv3800 in M. tuberculosis) has been implicated in this process
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(Gande et al. 2004; Portevin et al. 2004; Gokhale et al. 2007). Gene disruption
experiments of Cg-pks in C. glutamicum generated a viable mutant devoid of
corynomycolates (Gande et al. 2004). In R. jostii, RHA1_ro04065 exhibits 1005/
1751 (57%) amino acid sequence identity to Rv3800 in M. tuberculosis. The region
encompassing pksi3 is highly conserved throughout the mycolata (see Sect. 5;
Vissa and Brennan 2001; Dover et al. 2004), including R. jostii, due to the essential
functions these gene products perform in cell wall biosynthesis (Fig. 5). The pksi3
locus also appears conserved in R. rhodochrous (Portevin et al. 2004). As in
M. tuberculosis, the specific fatty acyl-AMP ligase (FadD32) responsible for the
conversion of the meromycolyl-S-AcpM derived from the FAS-II system to mer-
omycolyl-AMP (Trivedi et al. 2004) is present in R. jostii adjacent to the pks/3 gene
(RHAI ro04064). In mycobacteria, the precursor of the 2-alkyl branch is carboxy-
lated by an acyl-CoA carboxylase composed of AccD4 and AccDS3, in complex
with an g-subunit and AccBC, to yield 2-carboxyl-acyl-CoA (Gande et al. 2007).
Bioinformatic searches have revealed R. jostii RHA1 possesses all the genes
required for this function; accD5 is situated alongside the &-subunit
(RHAI ro06292 and RHAI ro06291, respectively). However, it is unclear which
of the two possible homologues of AccBC (RHA1_ro06282 and RHA1_ro03742)
is most likely to be involved, although the proximity of RHAI ro06282 to

Fig. 5 Comparative genomic alignment of the pksi3-arabinogalactan loci. The M. tuberculosis
protein sequences within the pks-arabinogalactan locus were BlastP searched against the R. jostii
proteome. The R. jostii protein sequences identified were then reciprocally BlastP searched against
the M. tuberculosis proteome to confirm the correct selection of the protein. The figure demon-
strates the genomic region of the pks-arabinogalactan locus where the grey bars represent the
proteins of significant homology
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RHAI ro06291- RHAI ro06292 is noted. RHA1_ro04066 represents the likely
AccD4 candidate showing 67% amino acid sequence identity to the M. tuberculosis
protein. The meromycolyl-S-AMP and 2-carboxyl-acyl-CoA are transferred to the
B-keto-acyl synthase domain of Pks13 for condensation of the two fatty acyl groups
(Gande et al. 2004). In most cases, the B-keto-mycolate product of Pks13 is reduced
to a (B-hydroxy)mycolate before export for integration into the cell envelope.
Recently M. tuberculosis Rv2509 was implicated in the catalysis of this final step
of mycolate synthesis (Lea-Smith et al. 2007; Bhatt et al. 2008). In R. jostii,
RHA1_ro01416 exhibits 69% amino acid sequence identity to M. tuberculosis
Rv2509 and so is the most likely candidate to perform this function.

5.2 Arabinogalactan Biosynthesis

The organisation of AG and its interactions with other wall components, such as
peptidoglycan, are likely to prove crucial to the formation of a functional outer lipid
permeability barrier in the mycolata by defining the relative spacing of the tethered
mycolates on which it is based. Accordingly, the biosynthesis of AG appears to be
highly conserved across the taxon, although some diversity, most notably in patterns
of arabinan branching and the glycosyl linkages of the galactan domain, have been
recorded (Daffé et al. 1993; Eggeling et al. 2008). Much of our current understand-
ing of the route to its production is derived from the study of various mycobacteria
and, more recently, C. glutamicum (Eggeling et al. 2008). The dominant driving
force behind this research has been the need to define the mechanisms of action of
cell wall inhibitors used in current tuberculosis therapies and, following the emer-
gence of extensively drug resistant M. tuberculosis, the need to define new targets in
the biosynthesis of the M. tuberculosis wall (Dover et al. 2008b).

The first insight into AG biosynthesis was derived from the observation of a
series of glycolipids elaborated by plasma membrane fractions of M. smegmatis and
M. tuberculosis. Both preparations catalysed the incorporation of radioactivity from
UDP-[C]-N-acetylglucosamine (GlcNAc) into two polyprenyl phosphate (Pol-P)-
based glycolipids (GL1 and GL2). The initial step was identified as the formation
of GL1, a Pol-P-P-GlcNAc unit (Mikusova et al. 1996). Incorporation of [**C)
Rhamnose (Rha) from dTDP—[14C]Rha into GL2 exclusively identified it as Pol-P-
P-GIcNAc-Rha (Mikusova et al. 1996). Addition of a cell wall enzyme preparation
resulted in the formation of the increasingly polar glycolipids, GL3 and GL4. The
inclusion of UDP-['*C]Galactose (Gal) resulted in exclusive labelling of GL3 and
GL4 indicating the initiation of a galactan chain on the GL2 primer (Mikusova et al.
1996). Subsequent analysis of the polymerised product resulting from these label-
ling experiments pointed to the formation of longer chain intermediates, eventually
resulting in a polymer containing 35-50 residues (Besra and Brennan 1997,
Mikusova et al. 2000). Glycosidic linkage analysis revealed that the bulk of the
galactan polymer consisted of alternating 5- and 6-linked linear galactofuran
residues, with a small amount of branching.
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The incorporation of radiolabel from synthetic Pol-P-['*C]-Arabinofuranose
(Araf) (Lee et al. 1995) into this same polymer (Mikusova et al. 2000) suggested
that the total synthesis of the AG arabinan domain might occur while it is linked
to the Pol-P carrier. This switch to Pol-P-derived sugar donor substrates is likely
indicative of a shift in the membrane topology of AG biogenesis. The exclusive
use of sugar nucleotides until the incorporation of Araf into the polymer suggests
that biosynthesis of galactan occurs at the cytosolic face of the plasma mem-
brane. In contrast, the use of Pol-P-based Araf donors suggests that arabinan
deposition occurs at the ‘periplasmic’ face of the membrane and implies that the
Pol-P-P-LU-galactan is translocated across the plasma membrane before further
modification.

5.2.1 Linker Unit Synthesis

The LU disaccharide is formed via the addition of first GIcNAc (to form GL1) and
then Rha (to form GL2) at the cytoplasmic face of the plasma membrane. The first
glycosyltransferase is often purported to be a homologue of E. coli Rfe (WecA)
(Meier-Dieter et al. 1992) in M. tuberculosis (Rfe, Rv1302) though this designation
remains presumptive. The RHA1_ro01480 and RHA1_ro01091 proteins are clearly
members of the glycosyltransferase family 4 typified by the UDP-GlcNAc/Mur-
NAc:polyprenol-P GlcNAc/MurNAc-1-P transferases (Pfam PF00953, http://pfam.
sanger.ac.uk/family?acc=PF00953) (Lehrman 1994). The former displays 67%
amino acid identity with M. tuberculosis Rfe, and as RHAI ro01480 is located
within a highly syntenic locus in R. jostii, it is likely to represent an orthologue.
RHAI ro01091 forms part of an operon that is devoted to the production of
peptidoglycan precursors and is clearly the phospho-N-acetylmuramoyl-pentapep-
tide-transferase (MraY).

The complementation of a wbbL mutant of E. coli, which is deficient in Rha
transfer for lipopolysaccharide biosynthesis, with Rv3265¢ (wbbL1) of M. tubercu-
losis implicates its product as the probable rhamnosyltransferase involved in GL2
synthesis (McNeil 1999). A WbbL1 homologue (63% amino acid identity) is
encoded by RHAI ro06306. Confidence regarding its designation as a rhamnosyl-
transferase and thus its orthology with M. tuberculosis WbbL1 is derived from
analysis of its genetic context. The M. tuberculosis enzymes providing the dTDP-
Rha donor substrate have all been identified and expressed in E. coli (Ma et al.
1997, 2001). RmlA to RmID have been characterised as an a-p-glucose-1-phos-
phate thymidylyltransferase, dTDP-p-glucose 4,6-dehydratase, dTDP-4-keto-6-
deoxy-p-glucose 3,5 epimerase and dTDP-Rha synthase, respectively (Ma et al.
2001). Homologues of RmlIA (RHA1_ro04097, 73% amino acid identity), RmlB
(RHA1_ro04098, 70% amino acid identity), RmIC (RHA1_ro04096, 56% amino
acid identity) and RmID (RHA1_ro06305, 54% amino acyl identity) are apparent
within the R. jostii genome. In both genomes, rm/D and wbbL1 potentially form an
operon supporting their coordinated function and ultimately a role in rhamnosyl-
transfer to the LU precursor.
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5.2.2 Galactan Synthesis

The galactose (Gal) residues of AG occur in the relatively uncommon furanose (f)
form (McNeil et al. 1987). The requisite UDP-Galf nucleotide sugar donor in
M. tuberculosis is provided via two sequential reactions from UDP-Glucose (p,
pyranose form; UDP-Glcp). The first is catalysed by UDP-Glcp epimerase to form
UDP-Galp, which is then converted to UDP-Galf by UDP-Galp mutase. Weston
et al. (1997) purified a protein with UDP-glucose 4-epimerase activity from
M. smegmatis. N-terminal sequence analysis suggested that the protein was related
to the product of M. tuberculosis Rv3634. A similar strategy was used to identify M.
tuberculosis Rv3809c (GIf) as an orthologue of M. smegmatis UDP-Galp mutase;
the designation was confirmed by molecular cloning and analysis of crude extracts
containing the recombinant protein (Weston et al. 1997).

Two galactosyltransferases involved in M. tuberculosis galactan synthesis have
now been identified. The product of Rv3808c appeared to be a good candidate in
that it occupied the locus adjacent to glf. This putative transferase also contained the
signature QXXRW motif, which is found only in processive enzymes, i.e. those
which carry out multiple sugar transfers (Saxena et al. 1995). Over-expression of
Rv3808c in M. smegmatis caused an increased yield of a galactofuran polymer in
the over-producing strain (MikuSova et al. 2000). Analyses of the incorporation of
Galf into artificial Galf disaccharides by membranes of recombinant E. coli expres-
sing Rv3808c demonstrated that, consistent with the alternating B(1—5) and
B(1—6) linkages of the native galactan, the incoming sugar adopted a (1—6)
linkage when using a (1—35) linked disaccharide acceptor and vice versa (Kremer
et al. 2001a). Furthermore, larger oligosaccharide products were also formed in
these assays confirming that the product of Rv3808c, now designated GIfT2, is a
processive enzyme and, consequently, is likely to produce the bulk of the galactan
deposited in the M. tuberculosis cell wall (Kremer et al. 2001a). The importance
of galactan synthesis to mycobacteria was demonstrated by the disruption of glf in
M. smegmatis; growth was only supported when functional copies of both glf and
glfT2 were provided on complementing plasmids (Pan et al. 2001).

R. jostii orthologues of GIf (RHA1_ro04053, 82% amino acid identity) and GIfT2
(RHA1_ro04054, 69% amino acid identity) are apparent, and as in M. tuberculosis,
they are encoded by adjacent genes; glfT2 lies immediately downstream of and
overlaps with glf by four nucleotides. Little is known regarding the mechanism by
which GIfT2 introduces the distinctive alternating glycosyl linkage pattern that
characterises M. tuberculosis galactan and thus far the enzyme has proven intracta-
ble in structural studies. The genomes of all galactan-producing species sequenced
to date contain GIfT2 homologues. A combination of galactan characterisation and a
structural genomics survey of GIfT2 homologues or potential alternative galacto-
furanosyltransferases would provide structural details and illuminate the molecular
basis for galactan heterogeneity in the mycolata (Sect. 2.2).

Biophysical analyses of recombinant M. tuberculosis GIfT2 confirmed the
intuition that, although capable of depositing the bulk of the Galf residues, the
enzyme would require a galactosyl primer to extend towards galactan; specifically
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GIfT2 bound and donated Galf to both 5- and B6-linked Galf~Galf disaccharides
but could not donate Galf to an artificial f-p-Gal-(1—4)-a-L-Rha acceptor, which
mimics the reducing terminus of galactan (Alderwick et al. 2008). Bioinformatic
analyses led to the identification of a second M. tuberculosis galactosyltansferase
(Rv3782) that participates in the biogenesis of GL4, the Pol-P-LU-Galf, (Mikusova
et al. 2006; Alderwick et al. 2008). E. coli extracts containing recombinant Rv3782
(now designated GIfT1) transferred galactosyl residues to artificial acceptors
designed to emulate LU and LU-Galf (Alderwick et al. 2008; Belanova et al.
2008). These combined data suggest that GIfT1 might represent an even more
versatile bifunctional protein than GIfT2, able not only to produce both B-(1—4)
and B-(1—5) linkages but also to utilise diverse acceptor groups, that is a rhamnosyl
acceptor in the initial reaction.

The R. jostii genome encodes a convincing GIfT1 orthologue in RHA1_ro04113
(68% amino acid identity with M. tuberculosis GIfT1) and, as in M. tuberculosis,
the gene is clustered with two others encoding an apparent polysaccharide export-
ing ABC transporter (RHAI ro04114 and RHAI ro04115). This transport complex
represents an attractive candidate to facilitate the export of Pol-P-LU-galactan to
the periplasm for arabinosylation.

5.2.3 Arabinan Synthesis

The structure of the arabinan portion of M. tuberculosis AG is much more complex
than that of its galactan partner A series of branches contributes to the formation of
the characteristic terminal pentaarabinofuranosyl motif that provides the esterifica-
tion sites for AG-linked mycolates. Until the recent development of the genetically
tractable C. glutamicum as a model for AG biosynthesis (Alderwick et al. 2005;
Eggeling et al. 2008), much of our insight into arabinan biogenesis emerged from
studies related to the mode of action and resistance against the important anti-
tubercular drug EMB (reviewed in Dover et al. 2008a). In vivo pulse-chase label-
ling experiments in M. smegmatis suggested that the Araf residues ultimately
deposited in AG derive directly from a Pol-P-Araf sugar donor (Wolucka et al.
1994). EMB, which inhibits biosynthesis of both AG and LAM (Takayama and
Kilburn 1989), led to the accumulation of Pol-P-Araf (Wolucka et al. 1994)
suggesting the drug caused a lesion in arabinosyltransfer. Application of a synthetic
Pol-P-["*C]Araf (Lee et al. 1995) in a cell-free assay system led to deposition of
radiolabel in all recognised cell wall arabinan moieties, defining Pol-P-Araf as the
major arabinosyl donor in mycobacteria (Xin et al. 1997). However, the possibility
of both UDP-Ara (Singh and Hogan 1994) and GDP-Ara (Takayama and Kilburn
1989) in M. smegmatis, as well as an undefined soluble Araf donor in C. glutamicum
(Tatituri et al. 2007), have all been proposed and cannot yet be ruled out as minor
cell envelope Araf donors.

Pol-P-Araf appears to arise from 5-phosphoribose pyrophosphate (pRPP) with a
2’ epimerase mediating the ribose—arabinose conversion at an intermediate stage
(Scherman et al. 1996). M. tuberculosis Rv3806¢c (UbiA) was identified as the
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pRPP/polyprenyl-phosphate 5-phosphoribosyltransferase and represents the first
committed step towards Pol-P-Araf synthesis (Huang et al. 2005). Mikusova et al.
(2005) hypothesised that Pol-P-B-p-5-phosphoribose is dephosphorylated to form
Pol-P-B-p-ribose before epimerisation of the 2’ hydroxyl group is achieved in a
two-stage process. First, oxidation of the hydroxyl probably forms Pol-P-2-keto-
B-p-erythro-pentofuranose, which is subsequently reduced to generate Pol-P-f3-
D-Araf. Two candidate gene products were identified in M. tuberculosis through
their similarity to Noe proteins implicated in the arabinosylation of the Azorhizo-
bium caulidans nodulation factor. Rv3790 and Rv3791 were annotated as a putative
FAD-dependent oxidoreductase and a probable short-chain dehydrogenase/reduc-
tase, respectively, both functions consistent with the reaction schemes hypothesised
(Mikusova et al. 2005; Wolucka 2008). Together the purified recombinant proteins
were able to catalyse the epimerisation reaction despite neither protein being
sufficient to promote the initial oxidation step independently (Mikusova et al.
2005). The enzyme that catalyses the dephosphorylation of Pol-P-B-p-5-phosphor-
ibose that precedes this epimerisation remains unidentified but a candidate is the
putative phosphatase encoded by Rv3807c i.e. adjacent to ubiA (Wolucka 2008).
The genome of R. jostii encodes proteins that represent likely orthologues for each
of these Pol-P-Araf biosynthetic enzymes (Table 2).

The products of the emb locus of Mycobacterium avium were identified as the
targets for EMB. Overexpression of embA and embB from M. avium conferred
EMB resistance in M. smegmatis (Belanger et al. 1996). Taken together with the
immediate inhibition of [14C]Ara incorporation into both AG and LAM on EMB

Table 2 Comparison of the enzymology for arabinogalactan biosynthesis in R. jostii and
M. tuberculosis

Function M. tuberculosis RHAT1 orthologue %
archetype

Identity

Pol-P arabinose precursor synthesis

pRPP: Pol-P 5-phosphoribosyltransferase Rv3806¢c RHA1_ro04056 71

pRPP: Pol-P 5-phosphoribosyl phosphatase Rv3807¢c RHA1_ro04055 62

Pol-P-Ribose 2’ epimerisation

FAD-dependent oxidoreductase Rv3790 RHA1_ro04078 77

Short chain dehydrogenase Rv3791 RHA1_ro04077 78

Arabinosyltransferases (AraT)

a(1—5) AraT EmbA (Rv3794) Absent

a(1—5) AraT EmbB (Rv3795) RHA1_ro04068 51
EmbC (Rv3793) RHA1_ro04069 50
EmbC (Rv3793) RHAI1_ro01774* 47

Galactan priming o(1—3) AraT AftA (Rv3792) RHA1_ro04076 56

Arabinan branching o(1—3) AraT AftC (Rv2673) RHA1_ro06863 54

Arabinan terminating f(1—2) AraT AftB (Rv3805c) RHA1_ro04057 50

“The R. jostii genome contains three clear Emb proteins. This one is located outside of the locus
containing the EmbA/EmbB arabinosyl transferases likely to be involved in arabinogalactan
biosynthesis (see Sect. 5.2.3)
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treatment of M. smegmatis (Takayama and Kilburn 1989) and the accumulation of
Pol-P-Araf (Wolucka et al. 1994), a hypothesis that explains this resistance pheno-
type at the molecular level is that Emb proteins are the arabinosyltransferases
contributing to AG biosynthesis. However, their possession of glycosyltransferase
activities has yet to be demonstrated through their over-production in a heterolo-
gous organism.

As in M. tuberculosis, M. smegmatis possesses three closely related emb genes,
clustered embCAB, whilst despite possessing only one emb gene, C. glutamicum
produces a similar AG to the mycobacteria (Eggeling et al. 2008). Gene knock out
studies in M. smegmatis have shed light on the apparent redundancy in its emb locus
(Escuyer et al. 2001). Individual mutants inactivated in embC, embA and embB
were characterised. All three strains were viable but of them, the embB ™ mutant was
most profoundly affected. Cell wall integrity seemed to be compromised as mor-
phological changes were evident, and the cells displayed increased sensitivity to
hydrophobic drugs and detergents. The arabinose content of the AG was diminished
for both the embA™ and embB ™~ strains. Nuclear magnetic resonance studies showed
that these mutations resulted in considerable effects upon the formation of the
terminal pentaarabinofuranosyl motifs, specifically the addition of the B-p-Araf-
(1—2)-B-p-Araf disaccharide to the 3 position of the 3,5-linked Araf residue
resulting in a linear terminal motif. However, AG formation in the embC™ strain
seemed unaffected whereas arabinan deposition in LAM was abolished. These data
support the hypothesis that Emb proteins are intimately involved in the process of
cell envelope arabinan deposition and that EmbA and EmbB are crucial to the
formation of the pentaarabinofuranosyl motifs of AG that are crucial for the
deposition of mycolic acids.

Construction of a knock out mutant in the single emb gene of C. glutamicum
(Alderwick et al. 2005) heralded a period of rapid progress towards the definition of
arabinan biosynthesis. The mutant exhibited a slow growing phenotype and was
significantly depleted in arabinan. Residual arabinosylation of galactan at the 3’
positions of its 5-linked 8th, 10th and 12th Galf residues by a single Araf residue
was detected. This modification was not present in the galactan of a strain disrupted
in ubiA that lacks Pol-P-Araf (Alderwick et al. 2005). Deletion of the gene imme-
diately upstream of C. glutamicum emb, now designated aftA, which encodes a
member of the GT-C glycosyl transferase superfamily, resulted in an arabinan
deficient strain (Alderwick et al. 2006). Clearly, AftA represents a novel arabino-
syltransferase that primes arabinan biosynthesis on galactan by addition of a single
Araf residue that is presumably elaborated upon by EmbA/B or possibly another
Ara transferase. Systematic deletion of other GT-C transferases that might contrib-
ute to the biosynthesis of cell envelope polysaccharides in C. glutamicum and
mycobacteria has recently revealed two further conserved Araf transferases. AftC
represents a o-(1—3)-Araf transferase that is essential for the branching of the
arabinan towards its reducing end and may also contribute to the formation of the
pentaarabinofuranosyl motif (Birch et al. 2008). AftB is another GT-C enzyme that
forms the B-p-Araf-(1—2)-B-D-Araf structure that effectively terminates arabinan
and also provides one of the sites for mycolylation (Seidel et al. 2007).
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Although the R. jostii RHA1 AG has not been characterised, it appears that the
bacterium possesses orthologues of all of the enzymes implicated in M. tuberculosis
and C. glutamicum arabinan biosynthesis (Table 2). Two homologues of the Emb
proteins, as well as the enzymes that initiate and terminate arabinan biosynthesis,
AftA and AftB, respectively, are all encoded in a highly conserved cluster of 31
genes first recognised in M. tuberculosis by Belanger and Inamine (2000) incorpor-
ating Rv3779-Rv3809c and occupying 48.5 kb or ~1% of the chromosome (Fig. 5).
Among these genes are glf and gIfT (galactan polymerisation), embCAB, aftA and
aftB (arabinan deposition), pks/3 and associated enzymes (mycolyl condensation)
and fbpA (mycolyltransfer). Significantly, the region is well conserved in M. leprae,
the aetiological agent of leprosy (Vissa and Brennan 2001). This bacterium is an
obligate intracellular pathogen and exemplifies an extreme case of reductive evolu-
tion as less than half of its genome contains functional genes (Cole et al. 2001). The
retention of function over such a large syntenous genomic region in M. leprae
clearly emphasises the essentiality of the cell wall to the pathogenic mycobacteria.
Comparison of the M. tuberculosis cell wall locus with the equivalent from the more
distantly related bacterium C. diphtheriae showed that the overall genetic arrange-
ment remained well conserved but was split into two discontinuous segments
resulting in the emb homologue of C. diphtheriae lying over 460 kB away from
the glfT homologue (Dover et al. 2004). Likewise in R. jostii RHA1, two clusters are
apparent, encompassing RHAI ro04050 to RHAI ro04079 and RHAI ro04098 to
RHAI ro04118 (Fig. 5); each shows evidence of rearrangement and carry addi-
tional genes relative to M. tuberculosis, although it is not clear whether these
represent rhodococcal acquisitions or mycobacterial losses or, indeed, whether
they contribute to the construction of the rhodococcal cell envelope.

5.2.4 Macromolecular Ligation

Thus far, we have considered the independent biosyntheses of AG and the mycolic
acids but these components must be brought together in the pseudoperiplasm and
covalently combined to form the massive mycolyl-arabinogalactan—peptidoglycan
complex. This process will require export of each of the structural components
as well the enzymes responsible for mycolyl transfer to the terminal Araf residues
of AG.

Although their role in galactan export remains to be confirmed, M. tuberculosis
rfbDE and R. jostii RHA1_ro04114 and RHA1_ro04115 appear to represent a
conserved polysaccharide-exporting ABC transporter (Content and Peirs 2008)
and, as both are clustered with a gene encoding the galactan-priming Galf transfer-
ase GIfT1(RHA1_ro04113), their coordinated function in galactan biosynthesis and
export is likely. Once translocated, the arabinosylation of galactan can commence
with AftA. On completion, AG units must be integrated into the growing murein
sacculus; little is known regarding the process other than ligation requires simulta-
neous synthesis of both AG and peptidoglycan (Hancock et al. 2002). The enzy-
mology of AG ligation remains enigmatic.
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An interesting Pol-P-based mycolylated glycolipid, 6-O-mycolyl-B-p-manno-
pyranosyl-1-monophosphoryl-heptaprenol (Myc-PL), was purified from M. smeg-
matis and suggested to be the carrier of newly synthesised mycolic acid during
translocation across the plasma membrane (Besra et al. 1994). A similar lipid had
also been reported in C. diphtheriae (Datta and Takayama 1993) suggesting a
conserved means for translocation of mycolates across the membrane for the
synthesis of trehalose dimycolates and cell wall mycolates.

While prospecting for genes involved in mycolate biosynthesis and processing,
Wang et al. (2006) isolated a slow-growing transposon insertion mutant of Coryne-
bacterium matruchotii with an apparent impairment in corynomycolate production.
The transposon had inserted within a probable orthologue of C. diphtheriae
DIP1297, an integral membrane protein encoded by the first of a four gene cluster
of which the latter three genes had been annotated as encoding an antibiotic
transporter (Braibant et al. 2000). The genes of the equivalent cluster in C. gluta-
micum were apparently cotranscribed on a polycistronic mRNA suggesting coordi-
nated function. Application of comparative genomics techniques demonstrated the
conservation of the cluster in M. tuberculosis (rvi459c, rvi458c—rvi456c¢), other
mycobacteria, corynebacteria and nocardiae and, by supposition, across the Cor-
ynebacterineae but not in other Actinobacteria (Wang et al. 2006). A similar cluster
also occurs in R. jostii (RHAI ro07191 to RHAI ro07194). Analysis of mycolic
acid chain length in the C. matruchotii mutant revealed that shorter chain-length
corynomycolates (C4—C3;, rather than C;4—C36) were under-represented (Wang
et al. 2006) leading the authors to suggest that this represented an export complex
for short-chain mycolates (Wang et al. 2006). However, such short-chain mycolates
are likely to be, at best, infrequent modifications to the cell wall of mycobacteria.
As there was effective export of the larger mycolate subpopulation of corynomy-
colates in the C. matruchotii mutant, suggesting some redundancy in corynomyco-
late translocation, one might expect that other Corynebacterineae producing larger
mycolates would possess this alternate system.

Another important factor in the processing of mycolic acids is the requirement
for glucose or a-pD-glucopyranosyl-containing oligosaccharides such as trehalose,
which is essential for the growth of the M. tuberculosis but not corynebacteria.
Despite M. tuberculosis possessing three potential routes to trehalose, inactivation
of a component of the OtsAB pathway (OtsB2, Rv3372; trehalose-6-phosphate
phosphatase) abrogated growth (Murphy et al. 2005). R. jostii possesses a single
homologue of M. tuberculosis OtsB2 (RHA_ro00045, 56% amino acid identity) and
two homologues of M. tuberculosis OtsA (trehalose-6-phosphate synthase;
RHA_ro04708, 77% amino acid identity; RHA_ro04708, 69% amino acid identity).

In the absence of exogenous a-D-glucopyranosyl-containing oligosaccharides, a
multiply-mutated C. glutamicum strain incapable of trehalose synthesis exhibited
altered surface properties and lacked mycolic acids in its envelope. The mycolyl
residues synthesised by the mutant grown with suitable oligosaccharides were
transferred both onto the cell wall and free sugar acceptors. Furthermore, as the
mutant had shown no capacity for trehalose uptake, radioactive labelling experi-
ments with ["*C]trehalose showed that the transfer of mycoloyl residues onto sugars
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occurs outside the plasma membrane (Tropis et al. 2005b). Thus trehalose appears
to be an important extracytoplasmic carrier for mycolates, allowing their deposition
in the cell wall.

A mycolyltransferase capable of exchanging mycolyl residues between mycolyl-
trehalose and the free disaccharide was purified from M. smegmatis and a role in
mycolyl deposition suggested (Sathyamoorthy and Takayama 1987). Belisle et al.
subsequently demonstrated that three members of the M. tuberculosis antigen 85
complex, Ag85A, Ag85B and Ag85C2 (encoded by fbpA, fbpB and fbpC2 respec-
tively) were able to catalyse mycolyltransferase reactions (Belisle et al. 1997). In
order to shed light upon this apparent redundancy in mycolyltransferases and to
ascertain the biological roles of the individual enzymes, fbpC2, fbpA and fbpB have
all been disrupted (Jackson et al. 1999; Armitige et al. 2000). The disruption of
fbpC2 in M. tuberculosis decreased transfer of mycolates to the cell wall by 40%
without affecting the profile of mycolate types esterified to AG or occurring as free
glycolipids. Thus FbpC2 is involved, either directly or indirectly, in the transfer of
mycolates onto the cell wall and is probably not specific for a given type of
mycolate, or at least the remaining mycolyltransferases are able to maintain the
balance between the mycolate types through their own broad specificity (Jackson
etal. 1999). Although an fbpA mutant grew as well as the parent strain in laboratory
media and macrophage-like cell lines, the fbpB mutant only grew well in laboratory
media. In macrophage-like cell lines, the strain grew very poorly, if at all (Armitige
et al. 2000; Puech et al. 2002).

Corynebacteria possess genes with significant homology to those encoding the
antigen 85 complex (Joliff et al. 1992). Disruption of cspl encoding the secreted
Fbp-like protein PS1 of C. glutamicum led to a 50% decrease in the amount of cell
wall-linked corynomycolates and an alteration in the cell wall permeability (Puech
et al. 2000). The expression of fbpA, fbpB and fbpC2 from M. tuberculosis in this
cspl-deficient strain restored the cell wall-linked mycolate content and the outer
permeability barrier of the mutant. The enormous structural differences between
corynomycolates and their mycobacterial counterparts (Fig. 1) suggest that these
enzymes possess a broad specificity (Puech et al. 2002). All three enzymes are able
to transfer mycolates to AG and display no preference for mycolyltransfer to the
terminal or 2-linked Araf residues of the pentaarabinosyl motifs of AG (Puech et al.
2002). Redundancy in mycolyltransferase activity is apparently a common theme
among the mycolata.

R. jostii RHA1 appears to possess 13 (RHAI1_ro04059, ro04058, ro04960,
ro04060, ro04126, ro04189, ro05513, ro02206, ro02143, ro05007, ro05217,
ro05431, ro03469) potential mycolyltransferases (BLASTP query, M. tuberculosis
FbpA; cut off, E 10~") and, consistent with a periplasmic location, signal peptides
were predicted for all 13 proteins and all retained a conserved triad of active site
residues (Belisle et al. 1997; Kremer et al. 2002c). Similarly, Sydor et al. (2008)
suggested that R. equi might possess up to 13 FbpA homologues. RHA1_ro04060 is
distinct from the mycobacterial mycolyltransferases because of its larger size (640
amino acids, i.e. almost double the size of M. tuberculosis FbpA and the other R. jostii
homologues, which are ca. 330 amino acids) and is likely to represent an orthologue of
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PS1/Copl of C. glutamicum (Joliff et al. 1992; Brand et al. 2003). RHAI r-
004058-RHAI ro04060 are situated within one of the large cell wall biosynthetic
clusters (Fig. 5) in a position analogous to fbpAC2, that is, immediately downstream
from AftB which supplies terminal Araf residues to which mycolates are ultimately
esterified by mycolyltransferases. Thus RHA1_ro04058 and RHA1_ro04059 are
almost certainly mycolyltransferases. A thorough biochemical characterisation of
this group of rhodococcal proteins will determine whether these and their R. equi
counterparts represent astonishing redundancy in mycolyltransfer activity or
whether some represent a series of paralogous secreted esterases that have signifi-
cance in the metabolism of the rhodococci. As noted (Sect. 4.4), mutation of a fbpA
homologue in R. equi affected capsule incorporation, but a detailed mycolate profile
of mutant compared to wild type was not reported (Sydor et al. 2008).

Like C. glutamicum PS1, the N-terminus of RHA1_ro04060 exhibits significant
amino acid identity with M. tuberculosis fbpA over its full length (Joliff et al. 1992)
with the remaining sequence representing a C-terminal extension that carries three
LGFP repeats (Pfam08310) (Adindla et al. 2004). The four LGFP repeats of
C. glutamicum PS1 are hypothesised to anchor the protein to the wall and may be
important for maintaining cell wall integrity (Ramulu et al. 2006). Deletion of
C. glutamicum PS1 results in a tenfold increase in cell volume and implicates the
corresponding proteins in cell shape formation (Brand et al. 2003).

5.3 LAM Biosynthesis

As with the biosynthesis of other cell envelope polymers, understanding of LAM
biosynthesis has been greatly advanced by comparative studies on mycobacteria
and corynebacteria. Consistent with the structural elements of the lipoglycans, the
biosynthetic pathway can be divided into distinct stages, with initial synthesis of
phosphatidylinositol mannosides (PIM) at the cytoplasmic face of the plasma
membrane preceding ‘flipping’ of the glycophospholipid prior to mannose chain
extension and arabinosylation at the outer face of the plasma membrane. As in
many other actinomycete genomes, and consistent with the widespread distribution
of PIM glycophospholipids, an operon containing the phosphatidylinositol
synthase, an acyltransferase and PimA mannosyltransferase required for the bio-
synthesis of acylated phosphatidylinositol monomannoside (PIM;; Korduldkova
et al. 2002, 2003) is present in the R. jostii RHA1 genome (RHA1_ro06880—R-
HAI ro06882). The mannose in PIM; is added to the inositol C2 position. The
second mannose, added to the inositol C6 position in PIMy, is added by the recently
defined PimB’ mannosyltransferase, which generates PIM, (Lea-Smith et al. 2008;
Mishra et al. 2008b, 2009). Both PimA and PimB are cytoplasmic enzymes that
utilise GDP-mannose as the mannose donor. In R. jostii, RHA1_ro01122 can be
clearly identified as PimB’ by its homology with C. glutamicum NCgl2106 and
M. tuberculosis Rv2188c (Lea-Smith et al. 2008; Mishra et al. 2008b, 2009).
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The mono- and dimannosylated ‘lower’ PIMs, notably acylated PIM,, are
readily observed as free lipids in the membranes of rhodococci and other mycolata
(Minnikin et al. 1977; Barton et al. 1989). Further to PIM, biosynthesis, subsequent
mannosyltransferase activities are needed to convert these ‘lower’ PIMs to the
‘higher’ PIMs that are found in mycobacteria (notably phosphatidylinositol hex-
amannoside, PIMg). Some relevant mannosyltransferases have been identified but
the extent to which there is redundancy in this pathway is not yet clear (Kremer
et al. 2002c; Morita et al. 2006; Crellin et al. 2008). Moreover, at an as-yet
undefined stage, PIMs are ‘flipped’ from the inner leaflet of the plasma membrane
to the outside leaflet such that the final steps of PIM mannosylation are carried out
by GT-C family glycosyltransferases, using Pol-P-linked mannose (see below) as
the mannose donor (Berg et al. 2007). After PIM translocation, PIM,4 can be either
shunted towards lipomannan/LAM biosynthesis by the LpqW lipoprotein (Kova-
cevic et al. 2006; Marland et al. 2006; Crellin et al. 2008) or, in mycobacteria,
mannosylated with o1 —2 linked mannose to generate PIMg (Morita et al. 2006;
Crellin et al. 2008). The PIM, precursor is mannosylated to generate the ol —6
lipomannan core of LAM by the sequential action of the MptB (Mishra et al. 2008a)
and MptA GT-C mannosyltransferases (Kaur et al. 2007; Mishra et al. 2007), each
using Pol-P-mannose as mannose donor. Branching «1—2 mannose units on the
mannan core can be introduced by the Rv2181 GT-C mannosyltransferase (Kaur
et al. 2008). Further to the generation of the lipomannan core unit, arabinosylation
of mycobacterial LAM is carried out by the EmbC arabinosyltransferase (Zhang
et al. 2003; Goude et al. 2008). However, as an embC mutant of M. smegmatis still
incorporated two to three arabinosyl units per lipomannan (Zhang et al. 2003), it is
likely that the initial ‘priming’ arabinose units are added by a separate arabinosyl-
transferase in a manner analogous to the priming by AftA in arabinogalactan
synthesis (Alderwick et al. 2006). Thus a nearly complete pathway for mycobacte-
rial LAM biosynthesis has been defined, with the crucial remaining questions
including the nature and substrate(s) of the PIM ‘flippase’ and the mannosyltrans-
ferase(s) that convert PIM, to PIMy, and the arabinosyl ‘priming’ activity.

From the above a near complete pathway for the biosynthesis of rhodococcal
LAM can be reconstructed from the R. jostii genome. In addition to the above
described acyl PIM; biosynthethic locus and PimB’, clear homologues of all the key
enzymes identified in corynebacteria and/or mycobacteria can be identified
(Table 3). In corynebacteria, higher PIMs are apparently not synthesised as free
lipids, as indicated by the buildup of PIM, in C. glutamicum mutants unable to
synthesise LAM or the Pol-P-mannose sugar donor (Gibson et al. 2003a; Mishra
et al. 2008a). Thus PIM, is most likely flipped and elaborated into LAM (Mishra
et al. 2008a). Intriguingly, the R. jostii genome contains a locus (RHA1_ro05934,
RHA1_r005929) comparable to that in mycobacterial genomes, which contains
homologues of both the lipoprotein LpgW required to shunt PIM, towards LAM
biosynthesis and the PimE mannosyl transferase required to synthesise PIMg from
PIM, (Kovacevic et al. 2006; Marland et al. 2006; Morita et al. 2006; Crellin et al.
2008). Thus, R. jostii may be able to synthesise both a LAM-like lipoglycan (as in
other rthodococci, see Sect. 4.2) and higher PIMs. PIMs larger than PIM, have not
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Table 3 Conservation in the pathway for LAM-like lipoglycan biosynthesis in R. jostii

Step M. tub. C. glut. RHAL1 Identity

Polyprenyl-P-sugar precursor biosynthesis

UbiA, polyprenyl phosphoribose Rv3806¢c NCgI2781  Ro04056 216/302 (71%)
5'phosphate synthase

Polyprenyl phosphoribose Rv3807c NCgI2782  Ro04055 86/138 (62%)
5- phosphate phosphatase

Polyprenyl phosphoribose Rv3790 NCgI0187  Ro04078 362/466 (77%)
2-epimerase (heterodimer) Rv3791 NCgI0186  Ro04077 198/253 (78%)

Ppm1, Polyprenylphosphate Rv2051c NCgl1423  Ro00145 164/242 (67%)

mannosyl transferase

PIM biosynthesis

PimA, mannosyl transferase Rv2610c NCgI1603  Ro06882 254/367 (69%)

PIM;, acyltransferase Rv2611c NCgl1604  Ro06880 131/209 (62%)

PgsA, phosphatidylinositol Rv2612c NCglI1605 Ro06881 192/300 (64%)
synthase

PimB’, mannosyl transferase Rv2188c NCgl2106  Ro01122 213/287 (74%)

PimC MT1800* Absent” R004052 219/365 (60%)

PIM,, extension to lipomannan

LpgW, lipoprotein delivering Rv1166 Absent” Ro05934 304/620 (49%)
PIM;, to MptB

MptB, mannosyl transferase Rv1459c NCgl1505 Ro07194 315/564 (55%)

MptA, mannosyl transferase Rv2174 NCgl2093  Ro01108 255/460 (55%)

Branching mannosyl transferase Rv2181 NCgl2100 RoO1114 175/394 (44%)
Arabinosyltransferases

Priming arabinosyl transferase Unidentified Unidentified Unidentified
EmbC Rv3793 NCgl0184  Ro01774°  508/1091 (46%)
Capping mannosyltransferase Rv1635c Absent” Ro04110 200/507 (39%)

“PimC is a redundant mannosyltransferase capable of synthesising PIM3. However, this protein is
absent from the genome of M. tuberculosis H37Rv (Kremer et al. 2002b)

®No clear orthologue (cut off, E 10~%) identified

“The R. jostii genome contains three clear homologues of EmbC. This one is located outside of the
locus containing the EmbA/EmbB arabinosyl transferases likely to be involved in arabinogalactan
biosynthesis (see Sect. 5.2.3)

been reported previously in rhodococci but have been reported in some mycolata
other than mycobacteria (e.g. Khuller 1977; Furneaux et al. 2005). This may reflect
the nature of the solvent systems used for extraction and analysis in early studies
(Minnikin et al. 1977) and so a re-evaluation of the distribution of higher PIMs in
rhodococci and other mycolate bacteria is warranted.

The extracytoplasmic stages of LAM biosynthesis rely on Pol-P-linked mannose
and arabinose sugar donors. The requisite genes for the biosynthesis of each are
present in the R. jostii genome (Sect. 5.2.3; Tables 2 and 3). Intriguingly, a ubiA
mutant of C. glutamicum can still produce a truncated LAM-variant (Tatituri et al.
2007). In conjunction with the above described apparent residual arabinosylation of
LAM in an M. smegmatis embC mutant (Zhang et al. 2003), it is possible to
speculate that an alternative arabinose donor may be needed to prime the core
lipomannan during LAM biosynthesis and that this might occur during the
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cytoplasmic stages of biosynthesis (Tatituri et al. 2007). This priming activity alone
might therefore be sufficient to generate the truncated LAM types observed in
R. equi and R. ruber (Sect. 4.2). In R. jostii, the presence of a third Emb family
protein (RHA1_ro01774; Table 3) might be related to LAM or AG biosynthesis,
although its gene is located outside of the cell wall biosynthetic loci (Fig. 5).
Further investigation of both the LAM structure in R. jostii and the functional
redundancy of the Emb proteins is needed. In this respect, it is intriguing that the
R. jostii genome contains a clear orthologue (Table 3) of the Rv1635¢ mannosyl-
transferase that is involved in adding the mannan caps to the arabinans of myco-
bacterial LAM (Dinadayala et al. 2006; Appelmelk et al. 2008).

A PIM-anchored lipomannan as well as a second lipomannan most likely
anchored by a mannosylglucosyluronic acid glycolipid have recently been iden-
tified in C. glutamicum (Tatituri et al. 2007; Lea-Smith et al. 2008). Synthesis
of the mannosylglucosyluronic acid glycolipid from glucosyluronic acid-diacyl-
glycerol depends on the mannosyltransferase MgtA (NCgl0452). An orthologue
of MgtA, ro01995 (64%, 248/382 amino acid sequence identity) is encoded in
the R. jostii genome raising the possibility that this species also synthesises novel
mannosylglucosuronic acid based glycolipid(s). However, it is notable that
extracts of R. equi and R. ruber that contain the truncated LAMs of these species
do not contain a separate lipomannan fraction (Garton et al. 2002; Gibson et al.
2003b).

Finally, in addition to providing mannose for lipomannan biosynthesis, Pol-
P-linked mannose can also be the sugar donor for protein glycosylation in Actino-
bacteria (VanderVen et al. 2005; Mahne et al. 2006; Wehmeier et al. 2009). R. jostii
RHAI 1005660 encodes a clear homologue of these protein mannosyltransferases,
suggesting some cell envelope or secreted proteins are glycosylated.

6 Concluding Comments

The presence of a mycolic acid containing cell envelope is clearly one of the
defining features that influences the biology of members of the genus Rhodococcus.
Significant studies have confirmed the presence of all of the components typical of
the cell envelopes of the mycolata, notably a peptidoglycan—arabinogalactan—my-
colic acid complex, mycolyl glycolipids, channel-forming porins and LAM-like
lipoglycans. As reviewed here and previously (Sutcliffe 1997, 1998), understanding
of the general principles underlying the organisation of these components can be
drawn from both theoretical models and experimental evidence obtained with other
mycolata, notably members of the genera Corynebacterium and Mycobacterium.
However, it is equally clear that there are likely to be genus, species and strain-
specific variations in the fine detail of the organisation of these cell envelopes.
Further to these models of cell envelope organisation, a comparative genomics
approach should allow a rapid growth in knowledge of the pathways leading to the
biosynthesis and assembly of cell envelope components, as illustrated herein by our
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analyses of the genome of R. jostii RHA1. These developments are likely to herald a
productive era in defining both the basic biology and the biotechnological potential
of members of this fascinating genus.
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Abstract Members of the genus Rhodococcus are a very diverse group of bacteria
that are found in many different niches. They are commonly found in the wider
environment, but are also associated with pathogenesis in plants and mammals,
including humans. They possess the ability to degrade a large number of organic
compounds including some of the most difficult compounds with regard to recalci-
trance and toxicity. This ability appears to be based upon the acquisition of a wide
and diverse range of catabolic genes by cells that can withstand stressful conditions.
Recent completion of genome sequences and analysis has revealed that they have
very large genomes (up to 9.7 Mbp) and many possess genes that encode multiple
catabolic enzymes and pathways. In addition to smaller circular plasmids, they also
harbour many large linear plasmids that contribute to their substrate diversity, and
these appear to be vehicles for the “mass storage” of numerous catabolic genes. The
presence of multiple catabolic pathways and gene homologues seems to be the basis
of their catabolic versatility. However, many of the genes associated with the

M.J. Larkin (X)), L.A. Kulakov, and C.C.R. Allen

School of Biological Sciences and The QUESTOR Centre, The Queen’s University of Belfast,
Belfast BT9 5AG, Northern Ireland, UK

e-mail: m.larkin@qub.ac.uk

H.M. Alvarez (ed.), Biology of Rhodococcus, Microbiology Monographs 16, 73
DOI 10.1007/978-3-642-12937-7_3, © Springer-Verlag Berlin Heidelberg 2010



74 M.J. Larkin et al.

pathways are dispersed around the genome, and it is becoming clear that their
co-regulation of gene expression is a feature of how the rhodococci adapt to
utilise many substrates.

1 Introduction

Members of the genus Rhodococcus are aerobic bacteria that are common in many
environmental niches from soils to sea water and also as mammalian and plant
pathogens. A notable feature is that they have been discovered in surprisingly
diverse environmental niches and can degrade numerous recalcitrant and toxic
pollutants. Taxonomically, the rhodococci belong to the wider grouping of Acti-
nomycetes. They differ from other Actinomycetes due to the presence of mycolic
acids in their cell walls and belong to the diverse grouping of non-sporulating
mycolic-acid-containing bacteria called the Mycolata. All of the rhodococci inves-
tigated to date appear to have sizeable and complex genomes, which reflect their
catabolic diversity. There is increasing evidence from biochemical analyses and
genome sequencing that there are multiple pathways and gene homologues in many
strains, which further indicates the versatility of Rhodococcus spp. in this respect.
Many also possess a variety of large linear plasmids and smaller circular plasmids
that contribute to and also explain the immense repertoire of catabolic abilities.
There also appears to be an ability to adapt readily to degrade many substrates
when presented with a new catabolic challenge; however, the molecular genetic
mechanisms underlying the flexibility of the Rhodococcus genome are still to
be elucidated. One striking feature is the presence of very large linear plasmids
in many of the strains isolated. Other characteristics include a system that pro-
motes high-frequency illegitimate recombination and the presence of transposons
(although a small number of insertion sequences have been identified). Events of
illegitimate recombination appear to occur, and these may serve to promote the
introgression of DNA in their genomes without the help of mobile genetic elements
(de Vries and Wackernagel 2002). Aspects of their overall genetics and metabolic
diversity have been covered previously in reviews (Bell et al. 1998; Larkin et al.
2005, 2006; Kulakov and Larkin 2002; O’Brien et al. 2002; Warhurst and Fewson
1994; van der Geize and Dijkhuizen 2004; McLeod and Eltis 2008; Gurtler et al.
2004). This review will focus on aspects of their genome content and organisation:
particularly, in the context of their roles in biodegradation in the environment.

2 Historical Context of Studies on Rhodococcus Genetics

The wide diversity, niches and the range of metabolic abilities and virulence
determinants that the rhodococci possess have attracted attention for some consid-
erable time. However, it is only in recent years that a better appreciation of the
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genetics in relation to their complex genome organisation has emerged. There have
been a number of technical obstacles to studying these bacteria, which have largely
been overcome in recent times. Also, there has been a lack of emphasis on studying
a single type strain and efforts have been extended over many different strains from
different environments and with widely varying functions. The emergence of
several genome sequences has coincidently addressed this, and considerable prog-
ress in understanding has been made. Rhodococcus genetic diversity is, however,
immense and selecting a representative strain on logical grounds is difficult to
justify. Other technical obstacles have included the recalcitrance of their cell walls
to digestion, thereby rendering it difficult to extract nucleic acids. Coupled with this
is their obvious cellular pleomorphism, whereby many strains grow as short rods,
cocci or branched multinucleated filaments (Williams et al. 1976; Locci and
Sharples 1984). This raises the issue of mutants not being fully segregated within
the filaments during replication and selection. Despite these difficulties, the interest
in these bacteria, which in earlier times were referred to as Nocardia species,
extends back to the early days of bacterial genetic studies. At that time, it was
noted that these bacteria possessed relatively unstable genetic traits. In 1950,
Waksman referred to the genetic instabilities of nocardias in these terms: “In
view of these variations, the question was raised: Is it possible that many of the
Nocardia species represent degenerate forms of Streptomyces?” (Waksman 1950).
To date, there have been some notable reviews on the subject of Rhodococcus
genetics (Kulakov and Larkin 2002; Finnerty 1992; Larkin et al. 1998) that provide
a more detailed backdrop to earlier discoveries.

From a taxonomic point of view, the rhodococci have presented a further
challenge to microbiologists. This is not inconsiderable and holds out a further
challenge in relation to their comparative genomics where studies are still in their
infancy. The rhocococci occupy many niches from soils, sea basins, plants and
animals (Finnerty 1992) and the observed diversity reflects this. Classification has
traditionally been based upon their cell-wall structure and the presence of mycolic
acids (Goodfellow 1989). Analysis of 16STDNA sequences has since established a
close phylogenetic relationship between the genera Rhodococcus, Corynebacte-
rium, Nocardia and Mycobacterium (Rainey et al. 1995; Stackebrandt et al. 1997).
As a direct result, the taxonomic position of many actinomycetes has been changed
at various times and further comparative genome analyses may lead to other
changes.

Research into the genetics of mating and recombination yields some insight into
the genetic organisation of various strains, largely due to the pioneering work of
Adams in the 1960s. In 1963, a recombination system was demonstrated in Nocar-
dia erythropolis and N. canicruria, now renamed Rhodococcus erythropolis
(Adams and Bradley 1963; Adams 1964; Brownell and Adams 1968). In these,
and indeed subsequent studies, crosses between mutants of the same strain were
found to be self-incompatible, whereas recombinations resulting from crosses of
different strains were possible. This suggested the presence of a system of hetero-
thallism in these bacteria, but the mechanism(s) underlying this have yet to be
elucidated. Despite this problem, genetic linkage maps have nevertheless been
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determined for some strains using non-genomic technology, particularly for
R. erythropolis (reviewed by Brownell and Denniston 1984). It emerged that the
role of extensive DNA homology in such recombinations may be doubtful for
Rhodococcus and Nocardia species. Since it appears that recombination only
occurs readily between strains from many different origins, homology may not
then be the main determinant for recombination. Also, several different mating
types were postulated with more than one mating type locus involved (Brownell
and Adams 1968; Brownell and Kelly 1969; Gowan and Dabbs 1994). There is
some evidence that the complex system of several mating-type loci may in part be
associated with an approximately 8-kb sequence on the 60—80-kb circular plasmid
pDA20 (Gowan and Dabbs 1994). A 3-kb region of pDA21 also appeared to be
involved in controlling conjugation.

A very early insight into the genomes and genetic makeup of these bacteria also
arose from the taxonomic studies involving DNA hybridisation between various
strains, which are worth noting here. Although the overall DNA homology between
genetically compatible strains of Rhodococcus and Nocardia can be low, as
determined by DNA/DNA re-association (Clark and Brownell 1972), regions of
homology, however, do exist. When DNA from the R. erythropolis mating type cE2
was hybridised with DNA from the compatible mating type Ce3, there was no more
than 60% homology evident. Yet when the reverse DNA/DNA re-association
experiment was done, nearly 100% homology was seen. This immediately indi-
cated that the Ce3 mating-type strain had a considerable amount of additional and
possibly non-homologous DNA added to its genome. Bearing in mind the number
of aberrant segregants also observed, the more recent discovery of large linear
and conjugative plasmids in these bacteria provides a ready explanation of these
earlier results.

3 Overview of Rhodococcus Genomes

Later, molecular genetic studies of rhodococci gave some further insight into their
complex and variable genomes. A large linear plasmid of about 1 Mb was reported
in 1992 for Rhodococcus fascians (Crespi et al. 1992). Around that time, there was
also some evidence that the four mega-base chromosome of R. fascians D188 may
also be linear (Crespi et al. 1992). However, other analyses of several virulent and
avirulent strains of R. fascians did not detect any linear replicons in the megabase
size range, (Pisabarro et al. 1998). Notably, the genome size estimated by the same
authors varied for different strains and was in a range of 5.6—8.0 Mb. These reported
differences in the genome size appeared to be mainly related to the presence of
large plasmids and instabilities in the Rhodococcus genomes. These early studies
were the first indication of the challenge ahead with regard to genome analysis, and
subsequent observations and experiments noted below have generally confirmed
the genome size variability initially observed.
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3.1 Genome Size and Variability

The most extensively studied genome of Rhodococcus confirms the large size of the
genome and sets up a challenge with regard to a comparative genomic analysis.
However, to this end, the genomes of several strains have now been sequenced and
can be compared to the genomes of other important bacteria that fall into the
general grouping of the mycolata. A summary of some relevant genome sequences
available is presented in Table 1.

Initially, work began in 2001 to determine the complete genome sequence of
Rhodococcus strain RHA1. This was carried out by Davies and co-workers at the
University of British Columbia, Vancouver, as part of the CanadaGenome initiative

Table 1 Summary of Rhodococcus genome sequences and those of related mycolata

Bacterial strain GenBank  Size %GC  Predicted Reference
Mb genes
Rhodococcus jostii RHA1* McLeod et al. (2006)
Chromosome CP000431 7.8 67 7,211
Linear plasmid pRHL1 CP000432 1.12 65 1,146
Linear plasmid pRHL2 CP000433 0.44 64 454
Linear plasmid pRHL3 CP000434 033 64 334
Rhodococcus opacus B4® Na et al. (2005)
Chromosome APO11115 79 67 7,246

Linear plasmid pROBO1 APOI1116 0.56 65 593
Linear plasmid pROB02 APO11117 0.24 64 248
Circular plasmid pKNR APO11118 0.11 65 102
Circular plasmid pKNRO1 APO11119 0.0044 64 6
Circular plasmid pKNR0O2 ~ AP011120 0.0028 63 2

Rhodococcus erythropolis Sekine et al. (2006)
PR4®

Chromosome AP008957 6.5 62 6,030

Plasmid pREC1 AP008932 0.1 63 102

Plasmid pREC2 AP008933 0.0036 62 3

Plasmid pREL1 AP008931 0.27 61 298

Rhodococcus equi 103S° Sequencing complete — annotation in progress

Chromosome 5.0 69

Circular plasmid 0.081

Nocardia farcinica IFM Ishikawa et al. (2004)
10152¢

Chromosome (circular) AP006618 6.0 70 5,683

Circular plasmid pNF1 AP006619 0.18 67 160

Circular plasmid pNF2 AP006620 0.09 68 93

Mpycobacterium tuberculosis Cole et al. (1998)
H37Rv*

Chromosome AL123456 4.4 65 3,989

#Genome Canada: http://www.rhodococcus.ca/

®National Institute of Technology and Evaluation (NITE), Japan: http://www.bio.nite.go.jp/ngac/
e/B4-e.html, http://www.bio.nite.go.jp/ngac/e/pr4-e.html

“Sanger Centre, Cambridge UK: http://www.sanger.ac.uk/Projects/R_equi/, http://www.sanger.ac.
uk/Projects/M_tuberculosis/

INational institute of Infectious Diseases, Japan: http://nocardia.nih.go.jp/
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(Microbial Envirogenomics: Micro-organisms and their Interaction with the
Environment). The outcome was that the catabolic diversity of the rhodococi has
been well demonstrated in the genome sequence of this strain, now designated as
Rhodococcus jostii strain RHA1. It is a polychlorinated biphenyl (PCB) degrading
bacterium originally isolated on lindane as a substrate (Seto et al. 1995). It pos-
sesses one of the largest bacterial genomes analysed to date, consisting of
9,702,737 bp (G+C 67%) that is shared between three large linear plasmids:
pRHLI (1,100 kb), pRHL2 (450 kb) and pRHL3 (330 kb), and a linear chromosome
(McLeod et al. 2006). In the case of each replicon, the telomeric sequences have
been clearly identified. The genome sequence data is also available for analysis at
the Genome Canada site at http://www.rhodococcus.ca/ and noted in Table 1.

The undoubted economic significance of these bacteria is also exemplified by the
completion of the genome sequence of a commercial strain, Rhodococcus aethor-
vorans 1G24 (Treadway et al. 1999) employed by Merck Corporation in developing
a novel biotransformation route for the production of the anti-HIV drug Crixivan®
(Priefert et al. 2004). Sequencing of this strain has been carried out by Integrated
Genomics Inc. (Chicago, IL), a part of the Massachusetts Institute of Technology,
Cambridge, MA. However, although the genome sequence is not available publicly,
the genome has been reported to consist of a single 6.0 Mb chromosome (62 Mbp
with approximately 97% sequenced) and plasmids of 300 and 100 Kb.

More recently, the genome sequences of Rhodococcus opacus B4 and
R. erythrypolis PR4 have been released. R. opacus B4 was isolated from petro-
leum-contaminated soil and is especially resistant to solvents (Honda et al. 2008;
Grund et al. 1992; Na et al. 2005). As for most environmental rhodococci isolated to
date, it also utilises a wide variety of aromatic and aliphatic hydrocarbons. To
reflect this ability, it has no less than six replicons: a large linear chromosome
(7,913,450 bp) (G+C 67.9%); two linear plasmids pROBO1 (558,192 bp) and
pROBO02 (244,997 bp) and three circular plasmids pKNR (111,160 bp), pKNRO1
(4,367 bp) and pKNRO2 (2,773 bp). The immediate observation is that there is
general overall synteny conservation when compared with the sequenced R. jostii
RHAT1 genome as noted above. Its genome also appears to be arranged similarly to
that of Nocardia farcinica, which has a circular chromosome (Ishikawa et al. 2004;
Wu et al. 2006). The telomeric sequences of the three linear replicons (chromosome
and plasmids) again appear to be conserved in relation to those of other Actinomy-
cetes. As expected, its genome encodes many catabolic pathways including those
for benzene, benzoate, phenol, 4-nitrophenol, 4-hydroxybenzoate, p-cumate, cate-
chol, protocatechuate, phenylacetate, naphthalene, indene, nicotine, the thiocarba-
mate herbicide (EPTC) and thiocyanate.

In contrast to the terrestrial origins of the isolates above, Rhodococcus erythro-
polis PR4 was isolated from the Pacific Ocean at a depth of about 1 km near Japan.
Again, this bacterium was found to utilise a wide variety of hydrocarbons and was
solvent-resistant (Sekine et al. 2006; Peng et al. 2006). However, the sizeable
genome this time consists of a circular chromosome (6,516,310 bp) (G+C
62.31%); a single, linear plasmid (pREL1: 271,577 bp) and two circular plasmids
(pRECI1: 104,014 bp; and pREC2: 3,637 bp). The chromosome and linear plasmid
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encode most of the genes associated with the ability of this bacterium to degrade a
wide variety of alkanes.

The development of the genome-sequencing projects that concentrated on isolates
from various environments has been paralleled by the sequencing by the Sanger
Centre, Cambridge, UK, of the pathogen Rhodococcus equi that causes broncho-
pneumonia in horses. In this case, the genome consists of 5,043,170 bp (68.82% GC)
and a virulence-associated plasmid of 80,609 bp that carries genes associated with
the pathogenicity of the bacterium. http://www.sanger.ac.uk/Projects/R_equi/

3.2 Plasmids — Role of Linear and Circular Plasmids

Plasmids are common in Rhodococcus species, and the majority of Rhodococcus
strains analysed to date harbour many different types of plasmids, both linear and
circular, in the same cells. Notably, various functions such as hydrogen autotrophy
in R. opacus (Kalkus et al. 1990, 1993), isopropyl benzene metabolism in
R. erythropolis (Dabrock et al. 1994), biphenyl metabolism in Rhodococcus sp.
RHA1 (Masai et al. 1995), the plant virulence/fasciation genes (fas) in R. fascians
(Crespi et al. 1992) and others have been reported to be encoded by linear plasmids.
In addition to the genome-sequenced strains noted above, linear plasmids similar to
those found in many Streptomyces species are a feature of many other Rhodococcus
strains isolated. The ends of many Streptomyces linear replicons have inverted
repeats, with proteins covalently bound to the 5’ end of each DNA strand (Hinne-
busch and Tilly 1993). Early indications in studies on the telomers of several
R. opacus linear plasmids showed features typical for linear plasmids of Strepto-
myces. However, plasmid pHG207 (225 kbp) has terminal inverted repeats (TIR) of
583/560 bp that are relatively short (Kalkus et al. 1993). Subsequently, the TIRs of
plasmids pHG201, pHG204 and pHG205 were also found to be significantly shorter
than those of large linear replicons of Streptomyces, and pHG201 was shown to
have no defined TIR at all. Here, the homology of the terminal 34/32 bases was only
65% (Kalkus et al. 1998).

For RHAL, it was initially reported that the sequence of the linear plasmid
pRHL3 is also a typical actinomycete invertron, containing large terminal inverted
repeats associated with a protein (Warren et al. 2004). Twenty-one percent of its
300 putative genes have a probable catabolic function and are organised into three
distinct clusters. Interestingly, four distinct regions are likely to have been acquired
by horizontal gene transfer involving transposition functions. There are similar
observations for pBD2 from the isopropyl benzene utilising strain R. erythropolis
BD2 (Stecker et al. 2003), where there are 23 of 99 putative catabolic genes. There
are also 32 genes that encode possible transposition functions.

The most striking feature of many studies is the presence of many large linear
plasmids associated with catabolic genes. Such plasmids have also been shown to
encode genes for the catabolism of trichloroethene (Saeki et al. 1999), naphthalene
(O’Brien et al. 2002; Kulakov et al. 2005; Uz et al. 2000), toluene (O’Brien et al.
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2002; Priefert et al. 2004), alkylbenzene (Kim et al. 2002), biphenyl (Taguchi et al.
2004) and chloroaromatic compounds (Konig et al. 2004). Although not formally
tested in many cases, such plasmids often are conjugative and have conjugative tra
genes and functions (Yang et al. 2007a).

As for most bacteria, circular plasmids are also very common in Rhodococcus
species, and there are numerous examples noted by many researchers that are too
many to cite here. There are many relatively small circular plasmids noted in the
rhodococci such as the cryptic plasmid pKA22 (4,969 bp), pRTL1 (100 bp) encod-
ing halolakane degradation genes (Kulakova et al. 1995) and a 150 bp, a 150 kb
plasmid in Rhodococcus sp. strain IGTS8 encoding genes that are involved in the
desulphurisation of organosulphur compounds (Denis-Larose et al. 1997). Interest-
ingly, some of these cryptic plasmids possess mobilisation functions (Yang et al.
2007b). The most extensively characterised plasmids are either associated with
pathogenesis determinants of R. equi (Tkachuk-Saad and Prescott 1991; Prescott
1991; Takai et al. 1991) or control the degradation of aromatic compounds in
various strains (Kulakova et al. 1995). Pathogenicity genes are demonstrably
associated in R. equi with the presence of large, circular plasmids of between 80
and 90 kb (Takai et al. 1991). These encode vap genes that have been clearly
associated with genes involved with pathogenicty in horses (vapA) or pigs (vapB).
There is evidence that these genes have evolved in plasmid-encoded pathogenicity
islands and the parental vap gene was acquired by an ancestral plasmid that
subsequently evolved to the currently observed host-adapted plasmids (Letek
et al. 2008). A considerable amount of further genetic analysis is reviewed in
chapter, “Genetics of the virulence of Rhodococcus equi” by Vazquez-Boland.
Additionally, small cryptic plasmids have been characterised in various Rhodococ-
cus strains. Several cryptic plasmids have been analysed (e.g. Kostichka et al. 2003)
and shuttle vectors constructed (e.g. Matsui et al. 2007). Additionally, very useful
plasmid vectors that can detect and test promoter activities in Rhodococcus have
been developed (Knoppova et al. 2007) and these will provide more insight into the
identification and versatility of prompter sequences. The sequences of two small
circular cryptic plasmids, pKA22 and pFAJ2600 (Kulakov et al. 1997; De Mot et al.
1997), reveal that the putative RepA proteins of these plasmids are related to RepA
proteins of the enterobacterial ColE2-type plasmids. Similarly, the replication
region of the 100-kbp plasmid (pSOX), encoding desulphurisation from Rhodococ-
cus sp X309 has a putative replication (Rep) protein related to the Rep proteins of
the pLR7 family of plasmids characterised in Mycobacteria (Denis-Larose et al.
1997). Further analysis of the diversity of replication origins and mechanisms may
lead to a better understanding of their origins and distribution.

3.3 Mobile Genetic Elements and Genetic Instability

It is likely that multiple recombinations have resulted in many diverse genes being
distributed around Rhodococcus genomes, which are also made up of many linear
plasmids. However, it is notable that very few transposable elements have been
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characterised or observed (McLeod et al. 2006; Lessard et al. 1999; Nagy et al.
1997; Kulakov et al. 1999). Earlier research had indicated that the rhodococci
possess mechanisms for high-frequency and illegitimate recombination (Kulakov
and Larkin 2002) and, as noted above, it may, alongside homologous recombina-
tion, lead to the intro-regression of DNA without the need for many of the mobile
genetic elements as first suggested for Acinetobacter (de Vries and Wackernagel
2002). Indeed, studies of plasmid integration in Rhodococcus fascians (Desomer
et al. 1991) have shown the involvement of a short palindromic sequence
(CCGCGQG) and that exogenous DNA, bearing such a sequence, could lead to a
non-homologous integration at a recombinational “hot-spot” sequence. Although
this phenomenon has not been extensively studied, it is possible that the rhodococci
may recombine easily with many heterologous sequences. Direct evidence of
transposition has been demonstrated through the use of the Bacillus subtilis sacB
gene, which encodes the production of levansucrase (Steinmetz et al. 1985; Gay
et al. 1985). Its lethal effect in the presence of sucrose is widely used to select
the transposition of insertion sequences and has been used to isolate an insertion
sequence (IS) (IS-Rf) from R. fascians (Jager et al. 1995). Additionally, transposon
mutagenesis and transposon-based vectors have been shown to function well in
various rhodococci. A Tn5-based system has been used to create mutants in
rhodococci (Fernandes et al. 2001; Sallam et al. 2007), and transposon-based
vectors (pPTNR-KA and pTNR-TA) have been used to transfer and express the
proteasome complex from Streptomyces coelicolor in R. erythropolis (Sallam et al.
2006, 2007). Further evidence of effective transposition has been acquired from
experiments with artificial constructs. A mini-transposon (Tn55617) was constructed
by inserting the chloramphenicol resistance gene cmirA derived from pDA71
plasmid into IS/415, an element of the IS2/ family found upstream of the cobala-
min biosynthesis genes (cobLMK) in R. erythropolis N186/21 (Nagy et al. 1997).
This construct successfully transposed following delivery on a suicide vector to
R. erythropolis SQI1, and low specificity of the target sequences and 5- or 6-bp
duplication of the target sequences was demonstrated.

However, most mobile genetic elements in Rhodococcus spp. have been identi-
fied when sequencing analysis of DNA regions flanking genes of interest was
undertaken. Three of these mobile elements have been IS/766 located downstream
of the sulphur oxidation genes (soxABC) in R. erythropolis IGTS8 (Denome and
Young 1995); IS7164 found upstream of the structural genes for the high molecular
mass-nitrile hydratase (nhhBA) in R. rhodochrous J1 (Komeda et al. 1996b); and an
IS element detected upstream of the hydrogenase subunit genes (hoxFUYH) of
R. opacus MR11 (Grzeszik et al. 1997). All these IS elements belong to the IS256
family, members of which were identified in a wide range of organisms (Mahillon
and Chandler 1998). The obvious fact that there are multiple copies of these
elements in some strains indicates their ability to transpose effectively. Of note is
the discovery of two copies of IS2/72 on the catabolic plasmid pRTL1 in Rhodo-
coccus rhodochrous NCIMB13064 (Kulakov et al. 1999). IS2712 belongs to the
IS/10 family of transposable elements. These elements do not possess typical
terminal inverted repeats and are not flanked by directly repeated sequences
(Mahillon and Chandler 1998).
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The possible involvement of integrons in mediating rearrangements and recom-
binations in Rhodococcus has not been fully established, but they may play a key
role in genome evolution. The observation of a 47-bp sequence with some homol-
ogy with 5" end of several integrons from Gram-negative bacteria was noted in a
region near IS/415 in R. erythropolis N186/21 (Nagy et al. 1997). However, the
essential components of a typical integron, namely an int gene (encoding a site-
specific recombinase or integrase) for integration of incoming gene cassettes, are
not evident.

4 The Genetic Basis of Catabolic Capabilities

The general conclusion from the genome studies to date is that RHA1 and other
environmental strains appear to have evolved to simultaneously catabolise a very
diverse range of organic compounds. Their obligate aerobic requirement means that
this has probably been in an oxygen-rich environment. In this regard, it is particu-
larly notable that there are at least 203 different oxygenases associated with the
degradation pathways of aromatic compounds and steroids identified in RHA1. In
the case of aromatic compounds, there appears to be at least 26 different “peripheral
aromatic” pathways for a very wide range of compounds and eight “central
aromatic pathways”. In the light of this remarkable potential catabolic ability, it
is therefore surprising that the RHA1 genome appears to harbour very few recent
gene duplications. Indeed, many genes also do not appear to have been acquired
through recent horizontal transfer. However, in other Rhodococcus strains there is
evidence that gene transfer is a key factor related to the degradation of many
xenobiotic compounds as discussed below. For example, there is evidence of
transfer of genes associated with the catabolism of haloalkanes (Poelarends et al.
2000a, b), alkenes (Leahy et al. 2003), biphenyl (Taguchi et al. 2004, 2007),
naphthalene (Kulakov et al. 2005) and the explosive RDX (Seth-Smith et al.
2008) amongst various independently isolated strains from different global loca-
tions. However, in the case of RHA, it appears to have primarily acquired its large
genome through very ancient gene duplications and gene transfers. It is of note,
however, that the RHA1 genome possesses only two intact insertion sequences and
relatively few transposase genes (McLeod et al. 2006). The large genomes (over
7 Mb each) of two other rhodococci, Rhodococcus aetherovorans strain 124 and
Rhodococcus erythropolis strain PR4, have also indicated the presence of multiple
gene homologues and this is probably a feature of most of the biodegradative
rhodococci. However, it is interesting that the pathogen R. equi has a smaller
genome of just over 5 Mb.

The observation of many catabolic genes in RHA1 has in turn led to the
discovery of new pathways. Initial analyses showed that putative genes encoding
taurine-pyruvate aminotransferase (Tpa) and alanine dehydrogenase (Ald) for the
catabolism and regulation of taurine catabolism were present. Later experiments
confirmed growth on taurine and involvement of these genes (Denger et al. 2004).
However, it is notable that these genes are separated from the associated
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sulfoacetaldehyde acetyltransferase (xsc), phosphotransacetylase (pta) and possible
ABC transporter (fauBC) genes. Additionally, proteomic analysis of RHA1, in
response to growth on nitriles, has led to the discovery of a new class of acetonitrile
hydratase on the linear plasmid pRHL2 (Okamoto and Eltis 2007). Interestingly,
transcriptomic analysis of cells grown on cholesterol led to the discovery and
confirmation of steroid catabolic genes that are also present in Mycobacterium
tuberculosis (Van der Geize et al. 2007). Similar transcriptomic studies have con-
cluded that a propane monooxygenase (PrmA) is involved in the degradation of
N-nitrosodimethylamine in RHA1 (Sharp et al. 2007) and that phthalate is likely to
be degraded solely via the protocatechuate pathway. However, terephthalate is
degraded via a bifurcated pathway that includes the catechol branch of the proto-
catechuate pathway (Hara et al. 2007). These studies are tending to lead to the
conclusion that there are many hidden capabilities in RHA1 and that this is likely to
be the case for many other strains. The initial results also lead to the conclusion that
there is a mechanism of co-regulation of these catabolic genes that are expressed
from different genomic locations and that this is likely to be a complex arrangement.

5 Gene Regulation and Expression

Not surprisingly, studies on the regulation of Rhodococcus biodegradation gene
clusters have revealed many examples of both positive gene regulators (Komeda
et al. 1996a) and repressors (Barnes et al. 1997; Nga et al. 2004). However, as noted
above, recent studies based upon investigating the whole genome indicate that there
is co-regulation of genetically unlinked transcriptional units. The most thoroughly
investigated examples of this have been the multiple biphenyl/PCB degradation
genes of RHA1 (also in Rhodococcus strain MS5) that were originally noted as
distributed in several clusters (Kitagawa et al. 2001; Yamada et al. 1998) on
plasmids pRHL1 and pRHL2 (Shimizu et al. 2001). RHA1 expresses two biphenyl
dioxygenases (BphA and EtbA/EbdA) (Iwasaki et al. 2007), and the wide substrate
range of the EtbA/EbdA dioxygenase suggested that it may play a role in the
degradation of other compounds such as the PCBs (Iwasaki et al. 2006).

Rhodococcus M5 has a two-component regulatory system (bpdST) that regulates
expression of some of the bph genes (Labbe et al. 1997), and this also appears to be
the case for RHA1 (Takeda et al. 2004a, b) and for the regulation of expression of
the o-xylene catabolic genes in Rhodococcus sp. strain DK17 (Kim et al. 2005).
A putative GntR-like transcriptional regulation mechanism, involving narRI and
narR2, is involved in several naphthalene-degrading Rhodococcus strains (Kulakov
et al. 2005). Again, there is evidence that the genes are not organised in a single
cluster, and different strains have several homologous transcriptional units sepa-
rated by non-homologous sequences containing direct and inverted repeats. This is
complicated by the demonstration of different promoter sequences initiating the
expression of the homologous narAa—narB gene clusters, and recombination events
may be involved in the acquisition and then alignment of the regulatory regions
with the catabolic genes.
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Further insights arise from studies of Rhodococcus RHA1 where the degradation
genes for benzoate (ben), phthalate (pad), uptake of phthalate (pat) and the genes
for two branches of the B-ketoadipate pathway (cat and pca) are also dispersed in
the genome. Some are contained on a putative “catabolic island” that is duplicated
in the linear plasmids pRHL1 and pRHL?2. The regulatory interrelationship between
the gene clusters is likely to be complex with involvement of pad- and par-encoded
enzymes in phthalate degradation and ben and cat gene products in benzoate
degradation. Expression of the pca-encoded products is also evident after growth
on both substrates (Patrauchan et al. 2005).

To further elucidate the complex expression of such gene clusters, both proteo-
mic and gene disruption techniques have been used to investigate the degradation of
benzene, styrene, biphenyl and ethylbenzene in RHA1. Cells grown on biphenyl,
ethylbenzene or benzene produce enzymes associated with both biphenyl and ethyl
benzene catabolism and enzymes from at least two sets of lower biphenyl pathways.
Styrene-grown cells do not express the ethylbenzene pathway genes and only one set
of lower biphenyl pathway enzymes are produced. Biphenyl dioxygenase is essen-
tial for growth on benzene or styrene, but the putative ethylbenzene dioxygenase was
not required for growth on any of the substrates (Patrauchan et al. 2008).

These results indicate that co-expression of genes from different loci may be
commonplace. Indeed, the utilisation of phenylacetic acid is encoded in part by 13
paa genes on the chromosome. A single transcript encodes 11 genes but production
of a further 146 proteins was induced by growth on phenylacetic acid (Navarro-
Llorens et al. 2005).

Further evidence for such co-expression has also been noted by the analysis of
the RHAL transcriptome when the cells were grown on various substrates. RHA 1
encodes multiple isoenzymes for most of the steps in biphenyl catabolism, and
co-expression of these is clearly associated with the catabolism of biphenyl,
ethylbenzene and PCBs. Transcriptomic analysis of over 8,000 potential catabolic
genes indicates that over 320 are up-regulated for growth on biphenyl and ethyl-
benzene, unlike growth on benzoate that led to up-regulation of 65 genes. There
was no difference in the expression of key catabolic genes for ethylbenzene and
biphenyl, indicating the likelihood of a common regulation for these (Goncalves
et al. 2006).

In terms of regulation and expression of genes in the environment, there has
been little research; however, it has been observed that genes associated with
biphenyl degradation are expressed in biphenyl-amended soils (Wang et al. 2008).
Although it has been acknowledged that rhodococci can withstand environmental
stresses such as solvents and desiccation, to date there have been few studies that
have addressed this. However, a very interesting transcriptomic study indicated
that the genes associated with desiccation were maximally up-regulated upon
complete drying of the Rhodococcus RHA1 cells. These included genes
putatively associated with oxidative stress and biosynthesis of the compatible
solute, ectoine and sigma factors, indicating their putative role in regulation
(LeBlanc et al. 2008).
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6 Concluding Remarks

Analysis of the biochemical diversity, physiology and the genomes of Rhodococcus
strains is revealing slowly why they can adapt to catabolise many different sub-
strates and how they persist in and adapt to conditions in many different environ-
ments. The data confirm many of the earlier genetic observations made in older
studies of these bacteria and raise some intriguing questions about the basis of
recombination and the acquisition of genes by lateral transfer. Initial whole genome
analysis has been based largely upon one strain, Rhodococcus jostii RHA1, but the
existence of other genome sequences now allows us to embark upon the road to
making comparative genome analyses. In relation to catabolic genes, the research to
date goes some way to explain how single strains can utilise a remarkably wide
range of substrates. The surprise is the extent to which the pathways for biodegra-
dation are dispersed around the genome and apparently the subject of co-regulation.
Elucidating how this occurs and how the arrangement works to the benefit of the
organism is a major challenge but will enable a better understanding of their
relationship with the wider environment and their host—pathogen interactions.
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Abstract The metabolism of Rhodococcus has evolved to adapt to a wide range of
nutritional conditions. This adaptation often involves the flexibility of the central
metabolism, which usually provides energy and precursors for the biosynthesis
processes, either during growth or during nonreplicative metabolically active per-
iods. The pathways of central metabolism are close to identical across widely
divergent organisms, which share essentially the same metabolic network. How-
ever, this network possesses species-specific components, which depend on the
biology of rhodococci. The central metabolism of the members of the Rhodococcus
genus in the context of their physiology is the main topic of this chapter. An
overview of the main pathways of the central metabolism and their link with
other metabolic processes is given. The glycolytic pathways, the gluconeogenesis
and the phosphoenolpyruvate—pyruvate—oxalacetate node, the tricarboxylic acid
cycle (TCA), the glyoxylate pathway, and some litoautotrophic pathways are
included.
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1 Introduction

The members of the genus Rhodococcus are aerobic nonsporulating bacteria widely
distributed in diverse natural environments. They have been detected in tropical,
arctic and arid soils, as well in marine and very deep-sea sediments (Whyte et al.
1999; Heald et al. 2001; Peressutti et al. 2003; Alvarez et al. 2004; Luz et al. 2004;
Peng et al. 2008). One striking feature of rhodococci is the metabolic versatility
with capabilities for biodegradation and transformation of a wide range of pollutant
compounds such as hydrocarbons, pesticides, and xenobiotics (Warhurst and Few-
son 1994; Larkin et al. 2005; Martinkova et al. 2009). This feature, in addition to
their extraordinary environmental persistence and tolerance to stress conditions,
makes such microorganisms promising candidates for in situ bioremediation
of contaminated soil environments. Moreover, the members of the Rhodococcus
are able to synthesize diverse compounds, such as surfactants, wax esters, and
oils, which are of interest for biotechnological purposes. For these reasons, the
studies on rhodococci have intensified significantly within the last years. In this
context, most knowledge on metabolism acquired during the last years has been
focused principally on catabolism of diverse compounds and on the biosynthesis of
lipids. For detailed overviews on these topics, the readers should refer to the recent
reviews (Larkin et al. 2005; Alvarez and Steinbiichel 2002; Alvarez 2006; Martin-
kova et al. 2009). Despite the importance of the central metabolism for understand-
ing the biology of rhodococci, this topic has been studied only very poorly, in
comparison with the other metabolic processes mentioned above. The pathways of
central metabolism are highly conserved among the organisms; however, each
species adopts a metabolic configuration specific to its biology. In this context,
the pathways of central metabolism in thodococci must provide energy and meta-
bolic intermediates not only during growth periods, but also in those environmental
conditions, where cells are metabolically active despite cessation of cellular
growth. Under stress conditions, the physiology of rhodococci seems to depend
on the metabolism of diverse storage compounds. The members of the Rhodococ-
cus genus possess an extensive capacity to synthesize and metabolize diverse
storage compounds, such as triacylglycerols, wax esters, polyhydroxyalkanoates,
glycogen, and polyphosphate (Anderson et al. 1995; Alvarez et al. 1997; Alvarez
2003; Hernandez et al. 2008).

Several genomic projects of the Rhodococcus members are now in progress
through public and private efforts due to the increasing interest in their use for
biotechnology. Among them, the genome sequence of Rhodococcus jostii strain
RHAI has been the first sequence publicly available for screening and identification
of genes and metabolic pathways (http://www.ncbi.nlm.nih.gov/genomes/Iproks.
cgi). For this reason, R. jostii RHA1 is a good model organism for understanding
the genetics, physiology, and metabolism of Rhodococcus genus. Strain RHA1
possesses one of the largest bacterial genomes sequenced to date, containing
9.7 Mbp arranged in a linear chromosome (7,802,028 bp) and three linear plas-
mids: pRHL1 (1,123,075 bp), pRHL2 (442,536 bp), and pRHL3 (332,361 bp)
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(McLeod et al. 2006). RHAL1 is a soil bacterium with the ability to degrade and
transform polychlorinated biphenyls and other aromatic compounds (Masai et al.
1995; Van der Geize et al. 2007; Patrauchan et al. 2008). The large RHA1 genome
contains a multiplicity of catabolic genes, a high genetic redundancy of biosyn-
thetic pathways, and a sophisticated regulatory network, which reflect the complex-
ity of Rhodococcus biology. In addition to the RHA1 genome, databases of the
complete genome sequences of R. opacus B4 and R. erythropolis are now publicly
available. R. erythropolis PR4 was isolated from the Pacific Ocean, south of
Okinawa Island, Japan, at a depth of 1,000 m (Komukai-Nakamura et al. 1996),
whereas R. opacus B4 has been isolated as an organic solvent-tolerant bacterium
from gasoline-contaminated soil (Na et al. 2005).

Based on a genome-wide examination of key genes involved in metabolism in
R. jostii RHAT1 and on biochemical and genetic studies published in peer reviewed
journals, this paper summarizes some aspects of the central metabolism of species
of the genus Rhodococcus, including glycolytic pathways, gluconeogenesis and the
phosphoenolpyruvate (PEP)—pyruvate—oxalacetate node, the tricarboxylic acid
cycle (TCA), and the glyoxylate shunt. In addition, some new information about
the energy pathways will be given.

2 Glycolytic Pathways

Glycolysis (Embden—Meyerhof-Parnas pathway; EMP) is a common pathway for
the oxidation of glucose, which is used by eukaryotic cells, and by some aerobic and
facultatively anaerobic bacteria, but not by Archaea. In this pathway, glucose is
split into two molecules of pyruvic acid with the formation of two ATP through
substrate level phosphorylations. Many aerobic bacteria and the Archaea use an
alternative glycolytic pathway called the Entner—Duodoroff pathway (ED path-
way), which produces pyruvate directly from glucose and only one ATP from each
molecule of glucose. This pathway is found only in prokaryotes, such as Pseudo-
monas, Azotobacter, Rhizobium, and many Gram negatives. ED pathway occurs
also in actinomycetes bacteria (Gunnarsson et al. 2004; Borodina et al. 2005).

The genome of R. jostii RHA1 was examined for the presence of key genes
involved in glycolytic pathways. Strain RHA1 seems to be able to use both
glycolytic pathways, the EMP- and ED-pathways, for catabolism of carbohydrates.
Figure 1 and Table 1 give an overview on the pathways and enzymes/genes that are
implicated in the oxidation of glucose by R. jostii RHAL.

The RHA1 genome also contains all necessary genes/enzymes for the pentose
phosphate pathway (PP pathway) (Fig. 1 and Table 1). This pathway produces
precursors to the ribose and deoxyribose in nucleic acids and provides erythrose for
the synthesis of aromatic amino acids. In addition, the PP pathway produces
reducing power as NADPH.

In general, all these genes involved in carbohydrate metabolism are widely
distributed throughout the RHA1 genome. The genes piA, gap2, and pgk involved
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Fig. 1 Pathways involved in central metabolism of Rhodococcus jostii RHA1 deduced from the
genome database

in the glycolytic pathways are clustered in the genome. In addition, the genes
ro02367 and ro02368, coding for phosphogluconate dehydratase and KHG/
KDPG aldolase that are specifically involved in the ED pathway, are also clustered
in RHA1 genome.
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3 Glycogen Synthesis and the Link with the Central Metabolism

Recent studies revealed that the members of the Rhodococcus genus, such as
R. jostii (Hernandez et al. 2008), R. opacus, R. erythropolis, R. ruber, and
R. fascians (Hernandez and Alvarez, unpublished results), are able to synthesize
and accumulate glycogen. In general, the total content of glycogen in those micro-
organisms amounted up to 2—6% of cellular dry weight. The studied strains
accumulated glycogen during exponential growth phase and the content decreased
during stationary growth phase. Glycogen accumulation during exponential growth
phase has also been observed in other actinomycetes, such as M. smegmatis
(Belanger and Hatfull 1999) and Corynebacterium glutamicum (Seibold et al.
2007). Glycogen may have a role as metabolic intermediate since it is accumulated
mainly during the exponential growth phase by cells and is mobilized later in the
stationary phase; thus, glycogen has been proposed as a carbon capacitor for
glycolysis during exponential growth (Belanger and Hatfull 1999). Glycogen may
be a part of a mechanism for controlling sugar excess in Rhodococcus, or may act as
a part of a sensing/signaling mechanism. Persson et al. (2007) proposed that the
expression of some genes involved in the response of E. coli to carbon starvation or
stationary phase, like that encoding the universal stress protein (uspA), is regulated
by glycolytic intermediates such as fructose-6-phosphate. Alteration in the pool
size of phosphorylated sugars of the upper glycolytic pathway may ensure expres-
sion of stress proteins preceding the complete depletion of the external carbon
source and growth arrest (Persson et al. 2007). Thus, glycogen formation may act to
attenuate phosphorylated sugar signals and to protect cells from sudden increases in
fluxes of sugars.

4 Gluconeogenesis and the Phosphoenolpyruvate—
Pyruvate—Oxalacetate Node

The metabolic link between glycolysis/gluconeogenesis and the TCA cycle is
represented by the PEP—pyruvate—oxalacetate node, also called the anaplerotic
node (Sauer and Eikmanns 2005) (Fig. 1). This node comprises a set of reactions
that direct the carbon flux into appropriate directions in a flexible manner. The node
represents a relevant switch point for carbon flux distribution within the central
metabolism (Sauer and Eikmanns 2005).

During growth on acetate, fatty acids, or ethanol, which enter central metabolism
via acetyl-CoA or on TCA cycle intermediates, the cycle intermediates malate and
oxalacetate must be converted to pyruvate and PEP for the synthesis of sugars.
Once PEP is formed, the synthesis of sugar phosphates is accomplished by revers-
ible reactions of glycolysis (gluconeogenesis). Under gluconeogenic conditions,
the TCA cycle intermediates, oxalacetate and malate, must be decarboxylated
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(C4-decarboxylation) to form pyruvate and PEP, which serve as precursors for
sugar phosphate synthesis. The formation of PEP can be achieved either by the PEP
carboxykinase enzyme (Pck) directly or oxalacetate decarboxylase and/or malic
enzyme in combination with PEP synthetase. As in C. glutamicum (Sauer and
Eikmanns 2005), PEP carboxykinase (r005180) may be the only enzyme responsi-
ble for PEP synthesis from TCA cycle intermediates in strain RHA1, since the gene
coding a PEP synthetase is lacking in its genome. The main role of malic enzyme in
RHA1 may be the generation of NADPH on those substrates which do not flux
through the PP pathway (Fig. 1).

Under glycolytic conditions, the final products of glycolysis, PEP and pyruvate
through the pyruvate kinase and pyruvate dehydrogenase complex, feed acetyl-
CoA into the TCA cycle (Fig. 1 and Table 1). Anaplerotic reactions (C3-carboxyl-
ation) must replenish TCA cycle intermediates that were bled off for anabolic
processes. This function is accomplished in most bacteria by PEP carboxylase
and/or pyruvate carboxylase, which convert PEP and pyruvate, respectively, to
oxalacetate (Sauer and Eikmanns 2005). R. jostii RHA1 seems to possess only a
PEP carboxylase in its genome as anaplerotic enzyme (Fig. 1 and Table 1). It is
known that pyruvate carboxylase plays a major anaplerotic role in mammals and in
yeast, and that only few prokaryotes, such as Rhodopseudomonas spheroids,
Arthrobacter globiformis, or Mycobacterium smegmatis, possess this enzyme;
whereas many bacteria, such as Pseudomonas citronellolis, Azotobacter vinelandii,
or C. glutamicum, use both PEP carboxylase and pyruvate carboxylase as anaplero-
tic enzymes (Sauer and Eikmanns 2005).

As in C. glutamicum genome (Sauer and Eikmanns 2005), the putative PEP
carboxylase gene (ppc) of strain RHA1 is organized in a glycolytic gene cluster
together with the genes encoding glyceraldehyde-3-phosphate dehydrogenase
(gap?2), phosphoglycerate kinase (pgk), and triose-phosphate isomerase (piA).

Recently, Feisthauer et al. (2008) reported the dependence of externally provided
CO, for growth in R. opacus 1CP in comparison with Pseudomonas knackmussii
B13, which was able to grow in the absence of external CO, under similar culture
conditions. Using '*CO,, the authors demonstrated that during growth on glucose,
R. opacus 1CP showed lower C yield than P. knackmussii B13. In addition, fatty
acids (principally the odd-numbered fraction) and the amino acids (principally the
aspartate family) contained in R. opacus 1CP were highly enriched in '*C than those
in strain B13 (Feisthauer et al. 2008). The authors concluded that the Rhodococcus
strain used in that study possesses an essential dependence on heterotrophic CO,
fixation by anaplerotic reactions. The odd-numbered fatty acids are usually pro-
duced by Rhodococcus species using propionyl-CoA as precursor for biosynthesis,
as has been reported previously (Alvarez et al. 1997). Propionyl-CoA is produced
through the methyl malonyl-CoA pathway using TCA cycle intermediates as pre-
cursors (Fig. 1). These intermediates can be formed by direct carboxylation of PEP
or pyruvate through anaplerotic reactions, as has been reported for R. ruber (Ander-
son et al. 1995), R. opacus PD630 (Alvarez et al. 1997) and R. opacus 1CP
(Feisthauer et al. 2008). The use of TCA cycle intermediates for the biosynthesis
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of odd-numbered fatty acids, which may account up to 20-30% of the total fatty
acids in many Rhodococcus strains, is probably in detriment of the energy gain by
cells and may explain the lower C yields of Rhodococcus in comparison with other
Gram-negatives (Feisthauer et al. 2008). Altogether, these results emphasize the role
of the PEP carboxylase enzyme in the thodococci metabolism, which seems to be the
unique anaplerotic enzyme occurring in R. jostii RHA1 genome; a very close species
to R. opacus. The occurrence of additional anaplerotic enzymes (C3 carboxylation)
in R. jostii and R. opacus genomes should be investigated in the future.

Pyruvate kinase and the pyruvate dehydrogenase complex, which are responsi-
ble for the production of acetyl-CoA from PEP, are also implicated in the PEP—
pyruvate—oxalacetate node (Fig. 1 and Table 1). The acetyl-CoA fuels the TCA
cycle to produce energy and anabolic precursors. The pyruvate:quinine oxidore-
ductase enzyme, which is present in C. glutamicum, seems not to occur in RHA1
genome; thus, the bypass of the pyruvate dehydrogenase reaction via pyruvate:
quinine oxidoreductase, in combination with AskA and Pta enzymes, may not be
functional in R. jostii. However, the askA and pta genes encoding a putative acetate
kinase and a phosphotransacetylase, respectively, are present in the RHA1 genome.
When acetyl-CoA is in excess and the C flux exceeds the amphibolic capability of
the central metabolism, acetyl-CoA can be converted to acetate and ATP by the
AK-PTA pathway (Yasuda et al. 2007). The acetyl-CoA synthetase enzymes can
re-activate acetate to acetyl-CoA when the metabolic situation changes (Fig. 1).
The occurrence of the AK-PTA pathway in R. jostii RHA1 and probably in other
members of the genus may contribute to the control of C fluxes and the maintenance
of the intracellular acetyl-CoA pools during fluctuating nutritional conditions, as
found in the environment. In this context, askA and pta genes were down-regulated
by strain RHA1 during cultivation of cells under nitrogen-limiting conditions,
which promote a high flux of acetyl-CoA toward the fatty acid biosynthesis
pathway for the accumulation of triacylglycerols (Alvarez, Miyazawa, Topp,
Mohn, unpublished results). The askA and pta genes are also present in R. opacus
B4 and R. erythropolis PR4 genomes.

In general, the demand of acetyl-CoA in rhodococci is probably high, consider-
ing the high content of different lipid species found in their cellular structures, such
as the cell envelope and the storage lipids as triacylglycerols. As Mycobacterium
tuberculosis, the genome of R. jostii RHA1 possesses a multiplicity of genes
involved in lipid metabolism (Cole et al. 1998; Hernandez et al. 2008). The
synthesis of acetyl-CoA from PEP via pyruvate kinase and pyruvate dehydrogenase
complex may be the main source for acetyl-CoA production in rhodococci. How-
ever, other reactions could contribute to the intracellular acetyl-CoA pool, such as
the reaction catalyzed by citrate lyase enzyme, which converts citric acid into
acetyl-CoA and oxalacetate, and the eventual activation of acetate to acetyl-CoA
by an acetyl-CoA synthetase. The significant induction of a gene coding for
a putative citrate lyase enzyme by cells of strain RHA1 has been observed during
their cultivation under nitrogen starvation conditions (Alvarez, Miyazawa, Topp,
Mohn, unpublished results).
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5 The Tricarboxylic Acid Cycle

In aerobic bacteria like Rhodococcus, the TCA cycle in the oxidative direction
oxidizes acetate to CO, and provides reducing power (NADH and FADH,) for
energy production and metabolic intermediates for use in biosynthesis pathways.
R. jostii RHA1 seems to be able to drive the entire TCA cycle oxidatively, since it
possesses all necessary genes/enzymes (Table 1 and Fig. 1). The reducing power
generated under aerobic conditions via the TCA cycle, in addition to the glycolysis
or B-oxidation pathway, could be reoxidized through the respiratory electron-
transport chain. As mentioned above, the TCA cycle in the Rhodococcus members
serves as a source for the production of propionyl-CoA, via methyl malonyl-CoA
pathway, which is used for the biosynthesis of odd-numbered fatty acids (Anderson
et al. 1995; Alvarez et al. 1997; Feisthauer et al. 2008) (Fig. 1).

Interestingly, genomic data revealed the presence of the key enzymes of the
reductive TCA cycle in the RHA1 genome, including genes encoding citrate lyase
and 2-oxoglutarate synthase, in addition to the rest of the TCA cycle enzymes,
which may act reversible (Fig. 1 and Table 1). The occurrence of those enzymes in
the RHA1 genome suggests that this strain should be able to drive the entire
reductive TCA cycle. Citrate lyase converts citric acid into acetyl-CoA and oxalac-
etate; whereas the 2-oxoglutarate synthase produces 2-oxoglutarate from succinyl-
CoA. This permits the metabolism to incorporate CO, and to serve as an engine for
synthesis instead of one of energy production (Srinivasan and Morowitz 2006). The
switch from oxidative to reductive TCA cycle may both facilitate carbon fixation
and restore the balance of oxidative and reductive reactions during environmental
fluctuations (Srinivasan and Morowitz 2006). The ability to drive the TCA cycle in
both directions, either oxidative or reductive, has also been reported for other
actinomycetes, such as M. tuberculosis and Streptomyces coelicolor (Srinivasan
and Morowitz 2006). In addition, the genes coding for key enzymes of the reductive
TCA cycle also seems to be present in R. opacus B4 and R. erythropolis PR4
genomes. A partial or fully functional oxidative or reductive TCA cycle may be
used by these microorganisms to balance metabolism and to adapt to diverse
environments.

6 The Glyoxylate Pathway

Strain RHA1 possesses both enzymes involved in the glyoxylate pathway; isoci-
trate lyase and malate synthase (Table 1). This pathway serves as a mechanism for
replenishing oxalacetate during growth on acetate and fatty acids (Fig. 1). The
glyoxylate pathway is relevant not only for R. jostii RHAI but also for other
triacylglycerol-accumulating Rhodococcus strains, such as R. opacus PD630,
because it links the gluconeogenesis with the oxidation of acetyl-residues obtained
by the B-oxidation of fatty acids during mobilization of the stored triacylglycerols.
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The members of the genus Rhodococcus are able to accumulate intracellularly
variable amounts of triacylglycerols, which are degraded during carbon starvation
(Alvarez et al. 2000; Alvarez 2006). The up-regulation of isocitrate lyase (aceA)
and malate synthase (g/cB) by cells of strain RHA1 suggested the activation of the
glyoxylate shunt under C-starvation, which correlated with the use of intracellular
fatty acids as carbon and energy source (Alvarez, Miyazawa, Topp, Mohn, unpub-
lished results). The synthesis of triacylglycerols seems to be an important metabolic
pathway in rhodococci for the maintenance of energy homeostasis. Triacylglycerols
are synthesized by these bacteria when a carbon source is available, and then
degraded to provide carbon and energy during C starvation via the successive
operation of B-oxidation, the glyoxylate cycle, the partial TCA, and gluconeogene-
sis. Thus, the glyoxylate cycle may be very active in rhodococci due to their
dependence on the degradation of stored triacylglycerols under nutritional fluctuat-
ing conditions. In this context, the glycoxylate cycle plays a pivotal role in the
persistence of M. tuberculosis in mice by sustaining intracellular infection in
inflammatory macrophages (Sharma et al. 2000; Singh and Ghosh 2006). This
pathway enables mycobacteria to utilize carbon sources when TCA cycle is shut
down during O, and nutrient limitation (Boshoff and Barry 2005; Tang et al. 2009).

7 Litoautotrophic Processes in Rhodococcus

Rhodococcus bacteria are considered chemoheterotrophic microorganisms, which
use organic compounds as sources of carbon and energy. However, there is evi-
dence from literature and genomic data examination that the members of this genus
may be rather facultative chemolitoautotrophs. Lithotrophy is the use of an inor-
ganic compound as a source of energy. Some aerobic bacteria are able to remove
electrons from a substrate and put them through an electron transport system that
will produce ATP by electron transport phosphorylation. When lithotrophs take
their carbon from CO,, they are autotrophs. In this context, Grzeszik et al. (1997)
reported the capability of R. opacus strain MR11, which is very close to strain
RHALI, for growing on CO, and gaseous H, as the sole carbon and energy sources.
Aragno and Schlegel (1992) previously identified a soluble hydrogenase system in
strain MR11, which was localized in the cytoplasm and catalyzed the transfer of
electrons directly to NAD. The examination of genomic data revealed that R. jostii
RHATI possesses a gene cluster (ro04601-04) encoding a putative hydrogenase
system, which was highly induced by cells during C- and N-starvation (Alvarez,
Miyazawa, Topp, Mohn, unpublished results). Hydrogenase genes also occur in the
genome of R. opacus B4 and R. erythropolis PR4. Altogether, these results indi-
cated that the Rhodococcus members are not only able to use a wide range of
organic compounds as carbon and energy sources, but also to oxidize H, as an
additional energy source. Moreover, analysis of the genome database of R. jostii
RHALI revealed the occurrence of additional litoautotrophic pathways, including
genes coding for putative carbon monoxide dehydrogenases (CODH) and a
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thiocyanate hydrolase enzyme. Thiocyanate hydrolase, which usually occurs in
obligate as well as in facultative chemolithotrophs, is a cobalt(Ill)-containing
enzyme catalyzing the degradation of thiocyanate to carbonyl sulfide and ammonia
(Yamasaki et al. 2002). The genes coding for the three subunits of the enzyme (o, B,
and vy) are localized into an operon (ro04428-30) in the RHA1 genome. The
homologous of these RHA1 genes can be identified in R. opacus B4 genome with
the same locus organization. Curiously, thiocyanate hydrolase genes are missing in
R. erythropolis PR4 genome. On the other hand, the genomes of R. jostii RHA1 and
R. opacus B4 contains three clusters including genes coding for putative CO
dehydrogenases. Bioinformatics analyses have identified only a single CO dehy-
drogenase cluster encoded in the R. erythropolis PR4 genome. Altogether, compar-
ative genomic of the Rhodococcus members suggests that litoautotrophic pathways
could be a species-dependent feature. CODH as well as hydrogenase and thiocya-
nate hydrolase systems may avoid the release of carbon as CO, by rhodococcal
metabolism and may serve as auxiliary mechanisms for energy metabolism during
nutritional starvation conditions.

8 Concluding Remarks

Rhodococcus bacteria are endowed with a robust, flexible, and versatile central
metabolism, which is necessary for metabolically adapting to environments with
fluctuating nutritional conditions. The central metabolism must provide all neces-
sary intermediates for the biosynthesis of a wide diversity of molecules and
complex macromolecules for assembling cellular structures like the cellular enve-
lope or secondary metabolites. These bacteria exert a very efficient management of
their nutritional resources, based on the flexibility of their metabolism and the
diversity of metabolic reactions. The partitioning of carbon through the central
metabolism of the substrates to either energy production or synthesis of compounds
depends on the metabolic demands of the cells. Rhodococci seem to posses the
ability to conserve useful energy during catabolism, distributing the carbon flux of
the substrate between the energy production, the biosynthesis of essential mole-
cules, reserving a part of the carbon into diverse storage compounds, such as
triacylglycerols, polyhydroxyalkanoates, and glycogen. Thus, cells may resign
energetic productivity and growth yield, which may be compensated to some extent
with additional processes providing energy and carbon intermediates from inor-
ganic compounds, such as H,, CO,, or thiocyanate, among other possible. This
feature may be environmentally favorable for growth and survival in environments
with low energy fluxes, such as in soil or marine sediments. The flexibility of the
central metabolism is other essential feature of rhodococci. These microorganisms
seem to have the potential to use alternatively different glycolytic pathways, such as
EMP or ED pathways, the PP pathway, and a partial or fully functional TCA in both
oxidative or reductive directions according to the conditions. Moreover, the central
metabolism of rhodococci possesses some mechanisms that probably permit cells to
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respond rapidly to changes in nutritional state and to balance metabolism. One of
them may be the glycogen biosynthesis, which may deal with the sugar excess
during exponential growth phase, and probably serve as a pool of sugars for using
when necessary. Other point may be the AK-PTA pathway, which may contribute
to the control of C fluxes and the maintenance of the intracellular acetyl-CoA pools
during fluctuating conditions. The management of acetyl-CoA pool may be a key
point for thodococci metabolism, since they usually synthesize many different lipid
species, which perform important function in their interactions with the environ-
ment. In this context, the PEP—pyruvate—oxalacetate node may play a key role in the
C flux distribution within the overall cell metabolism.

The biochemistry and the molecular biology of the central metabolism of the
Rhodococcus genus have not been studied in depth. More studies involving the
regulation of metabolic genes and enzymes, the kinetic characterization of
enzymes, or the analysis of carbon fluxes through the metabolism should help to
define a clearer picture of the functionality and regulation of the central metabolism
within the cellular context in thodococci.
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Abstract Bacterial tolerance and ability to adapt to organic solvents can be of
valuable importance in biocatalytic and bioremediation processes. Strains of Rho-
dococcus have been reported to be particularly solvent tolerant, while presenting a
broad array of enzymes with potential for the production of commercially interest-
ing compounds and/or for the metabolism of recalcitrant organic solvents. The
adaptability and versatility of Rhodococcus cells can further broaden their applica-
tion scope. In fact, these cells can adapt the cell wall and membrane compositions,
as well as the physicochemical properties of the cell surface, can degrade or
bioconvert toxic compounds such as benzene and toluene, and can aggregate and
produce exopolymeric substances to protect the cell population from stressful
environments.
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1 Introduction

Bacterial strains tolerant or adapted to organic solvents are of interest in both
biocatalysis and bioremediation processes. These cells may work in the presence
of organic solvents effective in overcoming the solubility of hydrophobic substrates
and/or products in biocatalytic processes (de Carvalho and da Fonseca 2002a;
Daugulis 2001; Heipieper et al. 2007), or biodegrade organic solvents released in
the environment (Aislabie et al. 2006; de Carvalho and da Fonseca 2007; Leisinge
1996; Parales and Haddock 2004).

The first report of a bacterium tolerant to organic solvents was by Inoue and
Horikoshi (1989), who discovered a Pseudomonas putida strain, IH-2000, able to
tolerate and grow in the presence of 50% (v/v) toluene. This strain was, nonetheless,
unable to metabolize toluene as sole carbon source. Since then, several Gram-
positive strains belonging to the genus Bacillus, Arthrobacter, and Rhodococcus
have shown high tolerance to organic solvents including benzene, which is much
more toxic than toluene. Rhodococcus strains have been reported as efficient
catalysts in the presence of organic solvents and also as degraders of these com-
pounds because of their ability to metabolize a wide range of organic compounds
under a wide set of conditions (de Carvalho and da Fonseca 2005a; Larkin et al.
2006). Rhodococcus cells are ubiquitous and are able to thrive in stressful environ-
ments, having been found in Antarctica (Bej et al. 2000; Pini et al. 2007), in the
Artic (Thomassin-Lacroix et al. 2001; Whyte et al. 2002), at sea level (Bell et al.
1998), in the deep sea (Colquhoun et al. 1998), at high altitude (Margesin et al.
2003), and in semiarid soils (Pucci et al. 2000). The high hydrophobicity of
Rhodococcus cells and the production of surface active compounds enhance their
biocatalytic/degradation abilities.

1.1 Predicting Solvent Toxicity

The use of organic solvents in biocatalysis and bioremediation processes is limited as
organic solvents can be extremely toxic to bacterial cells even at low concentrations.
The toxicity of water-immiscible solvents may result from its direct contact to the
cells (phase toxicity) and/or from the solvent molecules dissolved in the aqueous
phase (molecular toxicity). These compounds partition to cell membranes, increasing
its fluidity and disrupting the lipid bilayer, and ultimately cause cell death (Heipieper
etal. 1991, 1994; Sikkema et al. 1995). In fact, organic solvents such as alcohols and
phenols contained within natural oils and balsams have been widely used as antimi-
crobial agents since antiquity, long before their mode of action and effect was known.

Several authors have tried to present a way to predict solvent toxicity based on
its physicochemical properties. In 1985, Brink and Tramper proposed that the
suitability of a solvent to be used in a multiphasic biocatalytic system could be
predicted by evaluating the solvent polarity and the molecular size of the solvent.
The first could be determined by the Hildebrand solubility parameter, J, while the
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latter could be expressed as molecular weight or molar volume. In this system, high
biocatalytic rates should be obtained using organic solvents with low polarity
(0<~8) and high molecular weight (M>~150).

The antimicrobial action of a solvent was found later to better correlate to its
hydrophobicity, measured as the logarithm of the octanol-water partition coeffi-
cient, log Po,w, (Laane et al. 1987; Osborne et al. 1990; Sikkema et al. 1994).
According to this scale, enzymes and microorganisms present a minimum of activity
with solvents with log P values of 0-2 and 24, respectively, after which the use of
solvents with increasing log P values will result in increased biocatalyst stability.
However, the actual concentration of the solvent in the bacterial cell membrane will
depend both on the solvent concentration in the water phase and on the partitioning
of the solvent from the water phase to the membrane. In 1994, Sikkema and
coworkers proposed the following equation to correlate the log Py value of a
solvent and its partitioning value between the membrane and water, log Pyyw:

log Pyyw = 0.97 x log Pow — 0.64. €))

Hydrophobic solvents, with log Pow>4, accumulate in the membrane but will
not reach a high membrane concentration and are not toxic because of their low
water solubility. On the contrary, solvents with log Pow between 1 and 4 present
higher water solubility values, while being also able to partition to biological
membranes, resulting in relatively high concentrations of these solvents in the
membranes and high toxicity to the cells (de Bont 1998). The fact that solvents
with high partition coefficient to the membrane, such as n-dodecane and n-hexade-
cane, are not toxic to bacterial cells is, apparently, contradictory. However, a “cut-
off” in toxic effect around log P 4—5 was observed for microorganisms (Laane et al.
1985; Vermué et al. 1993), above which the solvents do not present toxicity. The
reasons presented involve low solubility of the solvents in the membrane bilayer or
absence of a membrane disturbing effect, with significant responses being observed
with different organisms and solvents (Sikkema et al. 1994). As pointed out by de
Bont (1998), calculating the actual solvent concentration in membranes could
be helpful. However, the author notes that several parameters that can also affect
the partitioning of solvents, such as the composition of the biological membrane,
are disregarded. Furthermore, many of the potentially interesting substrates are not
very soluble in apolar solvents (those with higher log P values) and the reaction
rates in favorable solvents are often low (Cassells and Halling 1990). Nevertheless,
the log P values could be used as an indication of the biocatalyst behavior, even in
processes requiring cofactor regeneration by viable cells (Fig. 1).

Recently, Hamada et al. (2008) compared several methods to predict bacterial
predilection for organic solvents, namely: bacterial adhesion to hydrocarbon
(BATH), contact angle measurement (CAM), hydrophobic interaction chromato-
graphy (HIC), and glass adhesion test (GAT). They concluded that CAM could be
used to predict the dispersibility of bacteria in anhydrous organic solvents,
while the BATH assays were better to predict the behavior of bacterial cells in
organic—aqueous two phase systems. The differences in the obtained results using
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Fig. 1 Effect of the log P value of the solvent in R. erythropolis DCL14 cells carrying out the
biotransformation of carveol into carvone in an organic-aqueous system (adapted from de Car-
valho and da Fonseca 2002)

the two techniques were ascribed to the effect of electrostatic interactions between
bacteria and oil droplets.

1.2 Effect of Solvents on Bacterial Cells

In a review on the cellular toxicity of lipophilic compounds, Sikkema et al. (1994)
discussed the results published until then showing that the accumulation of lipo-
philic compounds occurs at various depths in the membrane bilayer, depending on
the presence of hydroxyl, carboxyl, or phenyl groups. Hydrophobic cyclic hydro-
carbons should accumulate in the acyl region of the membrane, while hydrophobic
compounds should interact with hydrophobic end of acyl chains and more hydro-
philic compounds should affect the hydration of the head groups of the membrane
lipids. Small lipophilic compounds should intercalate with the acyl chains, resulting
in membrane swelling and in an increased fluidity of the membrane. Since larger
hydrophobic molecules affect both the inner and outer leaflet of the lipid bilayer, an
increased ordering of the membrane lipids reduces the membrane permeability and
fluidity but increases the bilayer width.

The cellular membrane of bacteria acts as a permeability barrier to solutes,
regulating the intracellular environment, but is also responsible for the maintenance
of the energy status of the cell, turgor pressure, signal transduction, and other
energy-transduction processes (Sikkema et al. 1995). When solvents disrupt the
membrane, loss of ions, metabolites, lipids and proteins, and impairment of the
proton motive force across the membrane may occur, which stops the pH gradient
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and the electrical potential and inhibits the function of membrane proteins. The
ability of the microorganisms to maintain their biological functions under stressful
conditions, such as the presence of organic solvents, results from changes in
protein, sterol, hopanoid, and carotenoid content, and mainly changes in membrane
lipid composition (Heipieper et al. 1994; Weber and de Bont 1996). The cells try to
modify the fatty acid composition of the cellular membrane to maintain the
membrane fluidity. The membrane fluidity is kept constant by changes in the degree
of saturation of the fatty acids of the membrane phospholipids through a mechanism
called “homeoviscous adaptation” (Sinensky 1974). Gram-negative bacteria, such
as those of the genera Pseudomonas and Vibrio, isomerize unsaturated fatty acids
from conformation cis to trans (Heipieper et al. 1992; Weber et al. 1994), which
seems to be a special mechanism of adaptation to high concentrations of toxic
compounds when de novo synthesis of lipids is not possible (Diefenbach et al.
1992). The studies carried out suggested that cis to trans conversion increases
membrane ordering, decreasing the membrane fluidity. The level of isomerization
has been found to correlate with the concentration (Diefenbach et al. 1992;
Heipieper et al. 1992) and hydrophobicity (Heipieper et al. 2003) of the toxic
compounds. Changes in the saturated—unsaturated and in the long chain—short
chain fatty acid ratios can be seen as long-term changes to regulate membrane
fluidity as synthesis of fatty acids is required. Other mechanisms involved in the
response of Gram-negative bacteria to organic solvents include changes in the
phospholipids headgroups, in the outer membrane proteins and lipopolysacchar-
ides, and the action of efflux pumps. These mechanisms have been reviewed by
Segura et al. (1999). Several other reviews have been published on solvent-tolerant
bacteria (de Bont 1998; Isken and de Bont 1998; Ramos et al. 2002; Sardessai and
Bhosle 2002; Sikkema et al. 1994). Although these works report solvent-tolerant
Rhodococcus and other Gram-positive strains, the authors agree that without an
outer membrane, Gram-positive bacteria should be less tolerant to organic solvents
and an in-depth study on the mechanisms of solvent tolerance in these bacteria is
still missing. The permeable cell wall of Gram-positive bacteria does not usually
restrict the penetration of antimicrobial agents, but vancomycin-intermediate resis-
tant Staphylococcus aureus strains are resistant due to a significantly thickened cell
wall (Lambert 2002). Bacteria containing mycolic acids, such as mycobacteria and
Rhodococcus, have cell walls with a high lipid content, which may act as a barrier to
both hydrophobic and hydrophilic antimicrobials (Brennan and Nikaido 1995). In
this chapter, the resistance and the mechanisms conferring adaptation capabilities to
Rhodococcus strains will be presented and discussed.

2 Intrinsic Resistance to Organic Solvents

Some microorganisms have the ability to resist or tolerate concentrations of a
certain compound that would kill or stress others. Intrinsic resistance is defined as
an innate genetically controlled property of a bacterial cell that enables it to elude
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the action of a biocide (Russell 1995). Resistance genes may reside on the chromo-
some, on a plasmid, or on a transposon. This natural resistance is the result of
penetration barriers, metabolic pathways, or effective efflux pumps, while the
acquired resistance results from an increased tolerance gained through a genetic
change by which an organism and its progeny will be able to remain viable and/or
multiply under the stress conditions. As long as the basal level of the repair systems
is not surpassed by the stress damages, the cells will be able to survive.

Gram-negative bacteria are generally considered less susceptible to biocides
than Gram-positive bacteria because their outer membrane acts as a permeability
barrier. However, mycobacteria can present a high intrinsic tolerance as their
cell is highly hydrophobic due to the mycoylarabinogalactan—peptidoglycan
skeleton (McDonnell and Russell 1999). In the case of staphylococci, the cell
wall is mainly composed of peptidoglycan and teichoic acid, which are not
effective as penetration barriers. However, the physiological state of the cells
can influence the susceptibility of the cells to biocides as the growth rate or
growth under limiting nutrient conditions may change the thickness and degree
of cross-linking of the peptidoglycan (Gilbert and Brown 1995). Slime producing
S. aureus strains also present a higher resistance to antimicrobial agents than
nonmucoid strains, indicating that exopolymeric substances may act as physical
barrier or as absorbent of biocide molecules (McDonnell and Russell 1999).
When the physical barriers allow the passage of the toxic compound, intrinsic
resistance is given by efflux pumps that may extrude different types of com-
pounds (Piddock 2006; Poole 2008).

In a study comparing the resistance of Gram-negative P. putida, and the gram-
positive Mycobacterium sp. and R. erythropolis cells to various water miscible and
immiscible solvents, it was found that of the three strains only R. erythropolis was
able to endure high concentrations of water miscible solvents (de Carvalho et al.
2004). This result showed that R. erythropolis was able to maintain viability at
higher solvent concentrations than P. putida, which should be more tolerant to
organic solvents than Gram-positive bacteria because of the protective effect of the
outer membrane (Isken and de Bont 1998). Fang et al. (2007) also found the Gram-
positive Bacillus subtilis to be more tolerant than P. putida toward fullerene-based
manufactured nanomaterials. Bacillus, Rhodococcus, and Arthrobacter have been
found to be organic-solvent-tolerant even to benzene, one of the most toxic organic
compounds (Sardessai and Bhosle 2002). The dominance of BTEX degrading
Gram-positive bacteria in nearshore surface water and in sediments from the Pacific
Ocean also contradicts the general idea that Gram-negative bacteria are the main
group of organic pollutant degraders (Wang et al. 2008). Apparently, the more
extensively linked peptidoglycan in Gram-positive cells (Sikkema et al. 1995) and
the enzymes/substances excreted by these cells to emulsify/solubilize the organic
solvents could play an important role in decreasing the solvent toxicity toward them
(Abe et al. 1995).

Rhodococcus strains have been found to endure considerably high concentra-
tions of known toxic compounds, for example, phenol, benzene, and toluene
(Table 1). The work of Gutiérrez et al. (2003) with Rhodococcus sp. showed that
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Table 1 Intrinsic resistance of several Rhodococcus strains to organic solvents

Strain Compound Tolerance References
R. phenolicus G2PT Phenol 0.75%* Rehfuss and Urban (2005)
R. opacus B-4, B-9, Benzene 90%° Na et al. (2005)
B-10
R. opacus B-4 n-Tetradecane 100% Hamada et al. (2008)
Rhodococcus sp. CN6,  p-Nitrophenol 100 mg/L* Zhang et al. (2009)
R. rhodochrous S-2 n-Hexadecane 10% Iwabuchi et al. (2000)
R. sp. NO14-1 n-Hexadecane 34%° Margesin et al. (2005)
Diesel oil 27%°
Phenol 12.5 mM*
Rhodococcus sp. n-Hexadecane 54%° Margesin et al. (2005)
NO20-3 Diesel oil 37%¢
Phenol 12.5 mM*
Rhodococcus sp. Benzene 200 mg/L Gutiérrez et al. (2003)
R. equi 85F Hydrogen peroxide 150 mM Benoit et al. (2002)
R. erythropolis Phenol 1,000 mg/L Prieto et al. (2002)
UPV-1
Ethanol 40% de Carvalho et al. (2004)
Butanol 20%
Dimethylformamide  50%
Dodecane 5%
bis(2-Ethylhexyl) 5%
phthalate
Toluene 1%°
Toluene 20%4 de Carvalho et al. (2007)
R. erythropolis Methanol 15%* de Carvalho et al. (2005)
DCL14 Ethanol 20%"
Butanol 2%*
Cyclohexanol 1%*
Dodecanol 5%*
Iso-octane 99.99% de Carvalho et al. (2000)
C5-C16 n-alkanes 0.25%* de Carvalho and da Fonseca
Motor oils 2%*" (2005b)
Fuel oil 1.6%"

#Organic solvent used as sole carbon source
"Growth observed

°At 10°C

dAfter 1 h incubation

although benzene caused an increase in membrane fluidity after 0.5 h, the cells did
not change the fluidity of the membrane in the 6 h of the assay, during which the
cells were alive. The authors ascribed this to a well-adapted inherent mechanism
allowing the cells to survive benzene and other solvent “shocks” in the environ-
ment. Recently, Gutiérrez et al. (2009) studied the constitutive processes that confer
resistance to benzene. Nonadapted Rhodococcus sp. 33 cells were able to endure
shock concentrations of up to 1,000 mg/L of presolubilized benzene, a concentra-
tion usually lethal to most microorganisms. The production of an extracellular
polymer and the composition of the cell wall and cell plasma membrane may be
responsible for this high tolerance. In some cases, tolerance was related to the
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capacity of the cells to degrade the toxic molecule and to use it as sole carbon and
energy source (de Carvalho et al. 2005; de Carvalho and da Fonseca 2007). In the
case of R. rhodochrous, the extracellular polysaccharide produced by the mucoidal
strains was responsible for the tolerance of the cells to n-hexadecane (Iwabuchi
et al. 2000).

In 1942, Withell observed an exponential relation between the duration of a
stress episode and bacterial death, which could be explained by cells with differ-
ent tolerance within the population. According to Booth (2002), survival to a
stress agent largely occurs at the level of a single cell (as seen by the ability of a
single cell to form a colony on an agar plate). After exposure to stressors that kill
the majority of the cells, the heterogeneity of a population determines its survival
as a small fraction of the cells may possess the necessary tools to endure the
stress. The results obtained by de Carvalho et al. (2007) indicated that cells that
are able to remain viable after the first seconds of exposure to high toluene
concentrations will also be able to endure this toxic for longer periods. Two
explanations could justify this result (1) the existence of toluene tolerant persistent
cells within the population and (2) the tolerance is induced by cell exposure to a
toxic, and until tolerance is acquired, cell death occurs at a toluene-concentration
dependent rate.

3 Adaptation Mechanisms to Organic Solvents

Several reviews have been published on the tolerance of bacterial cells to organic
solvents where the mechanisms of cell adaptation are discussed (de Bont 1998;
Chapman 2003; Isken and de Bont 1998; Sardessai and Bhosle 2002; Segura et al.
1999; Sikkema et al. 1994). Among the most important mechanisms described are
(1) changes in the cell membrane to modulate its fluidity, (2) the metabolism of the
toxic compound or its inactivation, (3) increased efflux of the toxic compound.
Most of the papers published on this subject dealt with Gram-negative bacteria.
Although the interest in using Gram-positive bacteria in biocatalysis and bioreme-
diation processes is increasing, studies on the adaptation of nonpathogenic strains to
nonantibiotic compounds are still scarce.

One basic idea observed in adaptation studies is that cells growing at a slow rate
acquire general tolerance to the stress agent (Booth 2002 ; Sonnleitner 1998).
Furthermore, by growing at slower growth rates, separate but overlapping pathways
that confer tolerance of diverse stresses are induced, and the cells become simulta-
neously resistant to, for example, acid, heat, alkali, and hydrogen peroxide (Booth
2002). This mechanism of tolerance acquisition is particularly important in bio-
films. The slow growth observed in the matrix-embedded cells and the limited
transport of nutrients, metabolites, and oxygen between the surface and the interior
of the biofilm could be responsible for an increased antibiotic and disinfectant
resistance of biofilm cells over planktonic cells (Stewart and Costerton 2001;
Donlan and Costerton 2002).
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3.1 Adaptation of the Cell Wall and of the Cellular Membrane

Several papers have reported that when exposed to toxic organic compounds,
tolerant bacterial strains change the fatty acid profile of their membrane (e.g.,
Heipieper et al. 1994; Isken and de Bont 1998; Sardessai and Bhosle 2002; Sikkema
et al. 1995). The existence of an outer membrane allow Gram-negative bacteria to
quickly modify and adapt the lipopolyssacharides, efflux pumps, and the fatty acid
composition of the cellular membrane (Ramos et al. 2002). Among the modifica-
tions described are cis/trans isomerization of fatty acids, changes in the saturated/
unsaturated fatty acid ratio, and changes in the phospholipids headgroups (de Bont
1998; Sardessai and Bhosle 2002; Segura et al. 1999). The cis/trans isomerization,
which results in a lower penetration of the solvents through the inner membrane
(Cronan 2002), is a short-term response, which takes place within 1 min after
solvent exposure, while the remaining changes are long-term responses (Junker
and Ramos 1999). The mechanisms involved in the adaptation of Gram-positive
strains are not fully known (Fang et al. 2007; Nielsen et al. 2005), although it has
been suggested that the mechanisms should be similar to those presented by Gram-
negative bacteria (Ramos et al. 2002). In this case, the mycolic acids of rhodococci
will act as a permeability barrier for hydrophilic compounds, and water-filled
channels are required for their entrance in the cell. Lichtinger et al. (2000) identified
and purified a channel-forming protein in R. erythropolis with a molecular mass of
just 8.4 kDa with no significant homology to known protein sequences. The authors
suggested that 2.0 nm channels were formed by protein oligomers in the cell wall,
being highly cation selective due to negative charges located at the channel mouths.

n-Alkanes droplets have negative zeta potentials, for example, the value for
n-hexadecane droplets is —46.0+—3.4 mV (de Carvalho et al. 2009). The negative
zeta potential of n-alkane droplets is the result of selective adsorption of OH™ ions,
which causes gathering of the excessive negative charge at the oil-water interface
(Stachurski and Michalek 1996). Since n-alkanes and the channels at the cell wall
have both localized negative charges, the entrance of these compounds could be
prevented in the cells. However, several papers published showed that Rhodococ-
cus cells are able to adhere directly to organic layers in organic—aqueous two-phase
systems (de Carvalho and da Fonseca 2002b, 2003, 2007). Bouchez-Naitali et al.
(2001) also observed a direct uptake of n-hexadecane by four R. equi strains, which
did not produce biosurfactants.

When comparing the effect of low and higher doses of buckminsterfullerene
(n-C60) on Bacillus subtilis with the effect of hyperosmotic conditions, Fang et al.
(2007) concluded that Gram-negative bacteria can present different responses to the
same type of membrane-active compounds under different conditions, whereas
Gram-positive bacteria can have the same response in terms of fatty acid composi-
tion under different stress conditions. Rhodococcus strains responded to the pres-
ence of organic solvents by changing the degree of saturation of the fatty acids of the
cellular membrane, by changing the length of the fatty acids and mycolic acids
according to the chain length of the carbon source, and by altering the percentage of
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Table 2 Mechanisms of solvent tolerance observed at the cellular membrane level in Rhodococ-

cus strains

Strain Compound Reported mechanism References
Rhodococcus sp. 33  Benzene Increased degree of Gutierrez et al.
saturation (1999)
Rhodococcus opacus Benzene, phenol, Increase content of Tsiko et al.
GM-14, GM-29, 4-chlorophenol, branched (10-methyl) (1999)
and 1CP chlorobenzene, or fatty acids

R. erythropolis
DCL14

R. erythropolis
DCL14

R. erythropolis
DCL14

R. erythropolis
DCL14

R. erythropolis E1

R. erythropolis 17,
Rhodococcus sp.
20, R. opacus

Rhodococcus sp.

Ql15

toluene
Short-chain alcohols
(methanol, ethanol)
n-alkanes and n-alkanols

C5-C16 n-alkanes

Carveol and carvone

Toluene

C2-C7 n-alkanoic acid
salts
C9-C15 n-alkanes

Pentadecane,
hexadecane

Alkanes at low T

Decrease of degree of
saturation

Increase in degree of
saturation

Saturated fatty acids with
chain length
corresponding to the
substrate used;

Net surface charge
increased with chain
length

Lower percentage of long
chain fatty acids;
decrease of the
unsaturation index

C14:0 and C16:0 increased
while C18:0 decreased,;

Increased percentage of iso-
branched fatty acids
when compared to
straight-chain

MA profile according to the
even—odd nature of the
carbon chain of
substrate

Changed cell wall
permeability

Fatty acids related to the
chain length of the
substrate

Decrease of degree of
saturation

de Carvalho et al.
(2005)

de Carvalho et al.
(2009)

de Carvalho and
de Fonseca
(2007)

de Carvalho et al.
(2007)

Sokolovska et al.

(2003)

Alvarez (2003)

Whyte et al.
(1999)

branched fatty acids (Table 2). Rodgers et al. (2000), by using '*C-enriched C16 and
C18 alkanes and electrospray ionization fourier transform ion cyclotron resonance
mass spectrometry, showed that complete mineralization was achieved by R. rho-
dochrous, with complete '*C incorporation in the bacterial lipids. The incorporation
of saturated fatty acids in the membrane phospholipids with chain length
corresponding to the substrate used for cell growth has been found frequently.
Studies carried out by Alvarez (2003) showed that most fatty acids in actinomycetes
were related to the chain length of the substrate and also to B-oxidation derived
fatty acids. Only when R. erythropolis DCL14 cells were grown on n-tridecane and
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n-pentane, were the fatty acids C13:0 and C15:0 found in the cellular membrane,
respectively (de Carvalho et al. 2009). Sokolovska et al. (2003) also observed two
types of responses in mycolic acid patterns of R. erythropolis El: lack of odd-
numbered carbon chains when the cells grew on linear alkanes with even number of
carbon atoms; mycolic acids with both even and odd carbon chains in cells grown on
branched alkanes, or on mixtures of substrates. Furthermore, hydrocarbons can also
be used in the biosynthesis of tryacylglycerols and wax esters under nitrogen
starvation (Alvarez et al. 1996; Voss and Steinbiichel 2001).

Gutiérrez et al. (2003) compared a Rhodococcus sp. strain, able to tolerate and
degrade high concentrations of benzene, with a benzene-sensitive mutant obtained
by mutagenesis. The mutant was unable to increase the saturation degree of the
fatty acids to the levels achieved by the wild type when exposed to benzene. The
fluidity of the membranes increased after only 0.5 h of exposure to benzene, but
the wild type was able to respond by changing the saturation:unsaturation ratio
of the cellular membrane, especially by changing the proportion of myristic and
oleic acids.

R. erythropolis cells adapted to 20-65% toluene concentrations by increasing the
percentage of tetradecanoic and hexadecenoic acids while decreasing the percent-
age of octadecanoic acid (de Carvalho et al. 2007). The proportion of saturated iso-
branched fatty acids also increased during toluene adaptation, while the amount of
straight-chain fatty acids decreased. By increasing the content of iso-branched fatty
acids, the cells decreased the fluidity or flexibility of the cellular membrane.

The content of branched (10-methyl) fatty acids also increased in R. opacus
GM-14, GM-29, and 1CP, when the cells were grown on benzene, phenol, 4-
chlorophenol, chlorobenzene, or toluene as sole carbon sources, as compared to
fructose grown cells (Tsiko et al. 1999). A dose-related increase in the percentage
of 10-methyl branched fatty acids was also observed as a response to increasing
concentrations of phenol and toluene in strain GM-14, which is unable to
metabolize toluene. 10-Methyl branched fatty acids are also present in Rhodo-
coccus koreensis DNP505", which is able to degrade 2,4-dinitrophenol (Yoon
et al. 2000). The role and position of 10-methyl branched fatty acids in Rhodo-
coccus is still unclear but the results of Tsiko et al. (1999) suggest the cell
envelope lipids that contain 10-methyl branched fatty acids should be involved
in the adaptation of Rhodococcus strains to compounds affecting the cellular
membrane, such as aromatics.

Changes in cell hydrophobicity may be promoted by using the cell response to
organic compounds. By exposing R. erythropolis cells to the terpenes carveol and
carvone in organic—aqueous systems, it was possible to demote biofilm formation
and even to disrupt established biofilms (de Carvalho and da Fonseca 2007). Strain
DCL14 responded to the presence of the solvents tested by decreasing the unsatura-
tion index, which reflects the average number of double bonds per fatty acid chain,
with increasing number of carbons in the alkane chain. In the presence of carveol or
carvone, the cells increased the unsaturated index, thus counteracting the effect of
the solvents. The presence of polyunsaturated fatty acids has been reported to allow
the cells to change membrane fluidity (Melchior 1982) and permeability (Russell
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1988). The major response to the presence of these two terpenes was, however,
adecrease in the percentage of fatty acids with a number of carbons higher than 16 (de
Carvalho and da Fonseca 2007). Since a direct relation between these fatty acids and
cell hydrophobicity was found, by decreasing the percentage of fatty acids with more
than 16 carbon atoms, cell hydrophobicity decreased, which resulted in the dispersion
of cells previously aggregated because of the presence of organic solvents.

The cell surface hydrophobicity of Rhodococcus sp. Q15, which is able to
mineralize alkanes, diesel, and Bunker C crude oil at both 5°C and 24°C, was higher
after growth on diesel fuel and hexadecane than when the cells were grown on
glucose-acetate (Whyte et al. 1999). The carbon source strongly influenced the fatty
acid profile of the cells, with small amounts of C18 fatty acids and greater amounts of
C16 and C14:0 fatty acids being observed in cells grown on n-hexadecane when
compared to those grown on glucose-acetate. The degree of saturation of the fatty
acids of the membrane of strain Q15 decreased as response to a lower growth
temperature: the membrane contained relatively saturated fatty acids at 24°C and
relatively unsaturated fatty acids at 5°C. This happened independently of the
substrate used, although the decrease in the degree of saturation occurred at a lesser
extent when the cells grew on hydrocarbons than on glucose-acetate. The cells were
thus able to modulate the membrane fluidity to respond to both the influences of low
temperature and hydrocarbon toxicity.

The most interesting physicochemical surface properties adaptation of Rhodo-
coccus cells to organic solvents was observed with R. erythropolis growing
on C5-C16 n-alkanes (de Carvalho et al. 2009). A strong correlation between the
n-alkane chain length and the zeta potential of the bacterial cells was observed, with
the cells even becoming positive when they grew on C14-C16. Most known
bacteria only exhibit negative surface charges at circum neutral pH (Jucker et al.
1996) and the fact that R. erythropolis DCL14 presents a positive surface charge is
quite remarkable. According to the extended Derjaguin, Landau, Verwey, and
Overbeek (DLVO) theory of colloidal stability (Van Oss 1995), in which electro-
static repulsion, van der Waals attraction, and acid—base (hydrophobic) interactions
are considered, the adhesion capacity of bacterial cells is inversely correlated with
the (negative) surface charge of the cell. Since most natural surfaces are negative,
adhesion will only take place when the electrostatic repulsion is overcome by
attractive forces (e.g., van der Waals, hydrophobic interactions) between the bacte-
ria and the surface. In the case of strain DCL14, the positive surface charge
will contribute to the attachment of the cells to negatively charged surfaces such
as n-hexadecane droplets (zeta potential of —46.0+—3.4 mM).

3.2 Biocatalysis and Biodegradation of the Toxic Compound

Bioconversion or mineralization of a toxic compound has been presented as a
mechanism for bacterial strains to thrive in its presence. However, although some
studies indicate that tolerance to solvents derives from the capacity of the cells
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to metabolize them, other works suggest that conversion or metabolism of organic
solvents is not essential to tolerance. The degradation may mediate the resistance of
some bacterial strains to solvents but it cannot be the main mechanism conferring
tolerance to a broad number of solvents (Isken and de Bont 1998).

Rhodococci present a broad catabolic diversity and enzymatic capabilities,
increasing their importance in environmental and biotechnological processes
(Bell et al. 1998; de Carvalho and da Fonseca 2005a; Martinkova et al. 2009;
Warhurst and Fewson 1994). Their exceptional ability to resist and degrade hydro-
phobic compounds and xenobiotics is related to the presence and mobilization of
large linear and circular plasmids, while the presence of multiple pathways and
gene homologous enhance their versatility (Larkin et al. 2005, 2006; van der Geize
and Dijkhuizen 2004). Works reporting the ability of Rhodococcus strains to act as
whole-cell biocatalyst even in anhydrous organic solvents have also been published
(e.g., Yamashita et al. 2007).

In a work carried out to study the effects of organic solvents in organic—aqueous
systems on R. erythropolis, Xanthobacter Py2, Arthrobacter simplex, and Myco-
bacterium sp. NRRL B-3805, principal components analysis was used to interpret
the data (de Carvalho and da Fonseca 2004). The variables used to construct the
data matrix were cell viability, cell morphological parameters (e.g., size, elongation
factor, circularity), number of cells in clusters, and the conditions to which the cells
were exposed [substrate concentration, carbon source used for growth, adaptation
time to the solvent prior to substrate addition, and physical properties of the
solvents (e.g., density, molecular weight and log P)]. Over a third of the variability
of the data related to R. erythropolis could be explained by solvent toxicity. When
studying the effect of several solvents, present at different organic:aqueous
ratios, on whole cells of R. erthropolis DCL14 carrying out the biotransformation
of (—)-carveol to (—)-carvone, principal components analysis showed that 41.2% of
the variance of the data responsible for the cell behavior could be ascribed also to
solvent toxicity (de Carvalho et al. 2003).

In two-phase systems, R. erythropolis cells migrate toward the organic phase
because of their high cell hydrophobicity (de Carvalho and da Fonseca 2002a, b,
2003). When emulsion samples were collected and droplets of solvent were
observed by fluorescence microscopy, it was found that the cells partitioned
between the organic and the aqueous phase. Part of the cell population was even
inside the solvent droplets (Fig. 2a, b). The images with cells on the organic phase
were not just the result of a superposition of different planes, as shown by a
technique developed by de Carvalho and da Fonseca in 2003 (Fig. 2c¢), which
allows the observation of 3D solvent droplets adsorbed to solid particles, for
example, of silica gel. Cells were preferentially inside the organic droplets in the
solvents with high log P value, being the percentage of cells in droplets lower when
the organic phase was more toxic (Table 3). However, in the presence of cyclohex-
ane, which has a log P value of 3.2 and should be toxic, most of the cells were also
positioned inside the solvent droplets. Cells directly positioned in the organic phase
can access the dissolved hydrophobic substrates in biocatalytic processes (de
Carvalho et al. 2000; de Carvalho and da Fonseca 2002b), and can degrade organic
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Fig. 2 R. erythropolis cells inside n-dodecane droplets. (a, b) solvent droplets trapped between a
slide and cover slip (horizontal and vertical field widths equal to 0.16 and 0.12 mm, respectively);
(c) solvent droplets adsorbed on silica gel particles (horizontal and vertical field widths equal to 0.4
and 0.3 mm, respectively)

Table 3 Percentage of R. erythropolis cells inside solvent droplets with different toxicities at
different phase ratios

Phase ratio 0.0005 0.0025 0.025

log P (solvent) 185 32 45 66 —-135 185 32 35 96 1288 —-135 6.6 12.88
Cells in droplets (%) 649 935 725 97.7 734 585 99.0 572 73.0 99.3 68.0 91.7 97.6
The cells were carrying out the conversion of carveol into carvone in the organic—aqueous two-
phase systems

solvents by direct uptake in bioremediation systems (Bouchez-Naitali et al. 2001;
de Carvalho and da Fonseca 2007). In these cases, the growth and conversion rates
obtained are independent of the interfacial area, due to the strong adsorption of the
bacterial cells at the solvent—aqueous interface.

In a paper regarding adaptation of microbes, Sonnleitner (1998) discussed the
role of static effectors (such as concentrations of substrates and products) that affect
the system instantaneously and independently of time (limiting or inhibiting the
cells) and dynamic effectors that are time dependent and associated to changes in
the physiological state or protein synthesis or degradation. When in contact with a
toxic compound, the cells may express an enzyme(s) or use an alternative pathway
to catabolize it and decrease the concentration of the biocide in the microenviron-
ment surrounding the cells. For economical reasons, the cells usually only express
the required enzymes after being exposed to the toxic compound.

By slowly increasing the concentration of solvent, substrate, and product, it was
possible to adapt R. erythropolis DCL14 cells in an air-driven direct contact
bioreactor (de Carvalho and da Fonseca 2002b). By recirculating n-dodecane
through the column reactor at a rate slow enough so that the biotransformation
could only take place at a small extent, the cells were able to adapt. When the
biotransformation was performed after the adaptation period, the product carvone
reached a concentration of 94 mM after 310 h of operation, thus overcoming
carvone inhibition (observed at carvone concentrations of 50 mM). By increasing
the adaptation period to 136 h, carvone accumulation reached 259 mM. Since the
biomass was kept relatively constant during the experiments, the adapted cells were
able to produce much more product than the nonadapted cells.
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A similar strategy could be used to adapt strain DCL 14 cells to toluene to allow its
degradation at high concentrations in n-dodecane—aqueous systems (de Carvalho
et al. 2007). Only 10.5% of the initially nonadapted cells remained viable after 1 h
exposure to 20% (v/v) toluene. Cell adaptation was carried out by adding a toluene
pulse, whenever its concentration reached ca. 50% of the initial value, to double the
previous initial concentration (i.e., if the initial concentration was 1%, a pulse of
toluene was added when toluene concentration reached 0.5% so that the concentra-
tion would be 2%). Curiously, toluene degradation rate increased with the increasing
toluene concentrations added to the reactor. By using this strategy, the cells could
endure a maximum toluene concentration of 4.9 M, which corresponds to 52.4%
(v/v) in the organic phase, toluene being consumed at 10.7 mg/(h.mg protein).
Once more, the amount of biomass was kept nearly constant through out the 35
days of the experiment. The fatty acid composition of the adapted cells presented a
higher amount of branched fatty acids and ca. 40% decrease in the amount of
straight-chain fatty acids. Interestingly, cells adapted to toluene presented a signifi-
cant increased resistance to ethanol, silver ions, and iodine when compared to
nonadapted cells.

The results obtained with R. erythropolis DCL14 suggest that toluene meta-
bolism should be related to toluene tolerance mechanisms, as a correlation between
toluene consumption rate and initial toluene concentration was found. The presence
and cometabolism of o-, m-, and p-xylene further enhanced the degradation of
toluene (de Carvalho et al. 2007). Leneva et al. (2009) could also adapt R. opacus
412 and R. rhodnii 135 to phenanthrene and anthracene on solid medium. The cells
accelerated the metabolism and became able to grow on phenanthrene as sole
carbon and energy source in liquid medium. R. erythropolis CCM 2595, although
able to use phenol, pyrocatechol, resorcinol, p-nitrophenol, p-chlorophenol, hydro-
quinone, and hydroxybenzoate, was strongly affected by the substrate and initial
concentration, and while some of the monoaromatic compounds suppressed the
ability of strain CCM 2595 to use phenol in binary mixtures, others were strong
inducers of phenol 2-monooxygenase (éejkovzi et al. 2005). In the latter case, the
mixtures were more rapidly metabolized, if the cells were preexposed to the
substrates. Cold-adapted Rhodococcus sp. strain NO14-1 and strain NO20-3 were
able to fully degrade 12.5 mM phenol after 25 and 28 days, respectively, but when
exposed to 15 mM phenol only 4 mM were degraded after 10 days and no further
degradation was observed over 36 days (Margesin et al. 2005). Adaptation of
R. rhodochrous 172 on agar mineral medium with fluorene for 6 months resulted
in rapid growth without lag phase of the adapted cells: complete degradation of
12 mg/L fluorene was achieved in liquid medium within 5 days, while the non-
adapted cells were unable to grow (Rubashko et al. 2006). The results presented are
an indication that in these strains tolerance and degradation capacity may be
strongly related.

The initial results obtained by Na et al. (2005) also seemed to indicate a crucial
role between solvent tolerance and its utilization or degradation in R. opacus B-4.
However, a mutant defective in benzene dioxygenase was as tolerant to organic
solvents as the wild strain B-4. This suggests that conversion or degradation is
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not essential for organic solvent tolerance of R. opacus B-4. Two mutants of
Rhodococcus sp. 33 unable to degrade benzene were still tolerant to 500-800 mg/L
of benzene (nonadapted strain 33 cells were able to tolerate ca. 1,000 mg/L), also
confirming that benzene-degradation is of minor importance to the tolerance of these
variants (Gutiérrez et al. 2009). Mosqueda et al. (1999) also suggested that toluene
metabolism is not involved in toluene tolerance in P. putida DOT-T1. Independently
of the mechanisms used by each strain, solvent tolerance is important as it allows
bacterial growth at high organic solvent concentrations, which is of paramount
importance in the bioremediation of sites contaminated with compounds such as
benzene and toluene (Chen et al. 2009; Na et al. 2005).

Lately, organic solvent tolerant strains have received a further notice because
biodesulfurization of petroleum occurs in the presence of high concentrations of
hydrocarbons. Many of the described competent bacteria to perform desulfuriza-
tions are R. erythropolis strains, for example, IGTS8, N1-43, D-1, and KA2-5-1,
with strain IGTS8 being the best characterized. The dszA, B, and C genes primarily
responsible for DBT metabolism are located in a single operon on a large plasmid in
strain IGTS8 and in other related strains (Monticello 2000). Five strains, able to
utilize dibenzothiophene (DBT) as sole sulfur source and convert it to hydroxy-
biphenyl (HBP), isolated from coal storage sites in the north of France and from
soils contaminated with heavy crude oil with high sulfur content belonged to the
Rhodococcus/Gordonia cluster (Abbad-Andaloussi et al. 2003). All strains were
able to use DBT in 95% n-hexadecane, used as model for diesel oil, although no
activity was observed at n-hexadecane concentration of 99%. Some of the strains
used by Bouchez-Naitali et al. (2004), namely Rhodococcus sp. MK7C1 and
MK?2.4, exhibited good resistance to solvents, being even more tolerant than
nondesulfurizing Pseudomonas strains, which could explain why transference of
biodesulfurizing genes into Gram-negative strains did not promote biodesulfuriza-
tion activity. An increased DBT desulfurization activity could be increased
in biphasic systems, as reported by Ohshiro et al. (1995) with R. erythropolis H-2
in 70% n-tetradecane, Patel et al. (1997) with R. erythropolis IGTS8 in 50%
n-hexadecane, and Abbad-Andaloussi et al. (2003) with Rhodococcus sp. strain
1-2207 in the presence of 50% n-hexadecane. Nevertheless, total biodesulfurization
of fossil fuel at industrial scale is not expected to occur in the near future (Soleimani
et al. 2007).

3.3 Other Mechanisms of Protection

Iwabuchi et al. (2000) reported an association between colony morphotypes and oil
tolerance in R. rhodochrous. The mucoidal strain was resistant to 10% (v/v)
n-hexadecane while the rough derivatives were sensitive to this concentration.
Furthermore, when the extracellular substance (EPS) produced by the mucoidal
strain was added to cultures of the rough strain, the latter acquired resistance to
n-hexadecane. Rough strains are hydrophobic and mucoidal strains are hydrophilic.
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The EPS produced could confer tolerance to organic solvents by lowering the
surface hydrophobicity, since, as Kobayashi et al. (1999) showed, low cell surface
hydrophobicity could act as a defense mechanism against these compounds.
The EPS produced by R. rhodochrous S-2 was even effective in stimulating the
degradation of aromatic compounds in crude oil by native marine bacteria
(Iwabuchi et al. 2002). Urai et al. (2007) also suggested that the large quantity of
extracellular polysaccharides produced by R. erythropolis PR4 cells (able to
degrade several hydrocarbons, including pristine) play an important role in hydro-
carbon tolerance.

Cells of R. erythropolis DCL14 also present a non-EPS and a EPS producer
variant. When exposed to the terpenes carveol and carvone and to organic solvents,
the degree of saturation of the membrane phospholipids decreased, while the
reverse was observed on the EPS producer counterpart (de Carvalho and da Fonseca
2007). The presence of EPS altered the level of cell exposure to solvents and
terpenes. In the presence of organic solvents, part of the initially rough DCL14
population may start producing EPS (de Carvalho and da Fonseca 2002b, 2007).
When these cells were under organic solvent stress-induced conditions, the small
part of the population that remained viable produced colonies with a different
phenotype: they were yellow or white while the nonstressed cells produced pink
colonies (de Carvalho et al. 2004). Furthermore, under conditions that allow
high cell viability, cells that died presented no significant morphological changes
when compared to viable cells. However, under aggressive conditions, nonviable
cells were much larger, probably because of an increase in membrane fluidity,
with the viable cells succeeding in decreasing their surface area to minimize the
area of contact with the toxic agent (de Carvalho and da Fonseca 2004; de Carvalho
et al. 2004).

Several rthodococci strains have been reported to produce biosurfactants, usually
glycolipids, such as R. erythropolis 51 T7 (Marqués et al. 2009), R. erythropolis
DSM 43215 (Lang and Philp 1998) and R. equi Ou2 (Bouchez-Naitali and Vande-
casteele 2008). A relation between the surface tension of the culture medium and
the alkane chain length during C5-C16 growth of R. erythropolis DCL14 indicated
the production of a biosurfactant in the presence of n-alkanes with longer carbon
chains (de Carvalho et al. 2009). The significant reduction of the surface tension to
values lower than 30 mN/m indicates the biosurfactant power of the compound
produced.

A common pattern for growth on long-chain alkanes in bacteria not producing
biosurfactants is the formation of cellular flocs (Bouchez-Naitali et al. 2001). In this
case, the degradation rates during linear growth do not increase with interfacial area
but with the efficiency of stirring, the interfacial uptake being limited by floc
formation. Cell clustering was also visible with R. erythropolis DCL14 cells
growing on n-dodecane, n-tetradecane, and n-hexadecane (de Carvalho and da
Fonseca 2005b; de Carvalho et al. 2009). Biofilm formation can also been seen as
a form of protection of cells to stress environments as cells inside the biofilm matrix
are more protected (Heipieper et al. 1991). For example, no toxic effect of n-octane
on biofilm growth was observed while the cells in suspension were strongly



126 C.C.C.R. de Carvalho

inhibited by the accumulation of 1-octanol, a metabolite of the alkane monooxy-
genase during growth on n-octane (de Carvalho et al. 2009).

The action of efflux pumps responsible for the efflux of organic solvents
from the inside of cells could also be responsible for adaptation of Rhodococcus
cells to these compounds. Several antibiotic efflux pumps have been reported in
Gram-positive strains, especially in S. aureus. However, studies on solvent efflux
pumps in these bacteria are nearly inexistent (Fernandes et al. 2003).

4 Application

A large set of enzymes from rhodococci cells have been reported and identified,
allowing these cells to carry out a large array of bioconversions and degradations:
from oxidations to dehydrogenations, epoxidations, hydrolysis, hydroxylations,
dehalogenations, and desulfurizations. Since the cells are able to tolerate and
adapt to organic solvents, bioreactions can be done in nonconventional media,
using low water soluble substrates, which makes this genus one of the most
promising in biotechnology.

The ability of Rhodococcus cells to metabolize hydrocarbons (even at signifi-
cantly high concentrations and under a wide variety of environments), to produce
biosurfactants (required to increase the bioavailability of low water soluble organic
solvents) and to change the physicochemical properties of the cellular surface
(making these cells highly adaptive) make these cells ideal candidates to in situ
bioremediation of hydrocarbon contaminated sites.
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Abstract Aromatic compounds and steroids are among the remarkable variety of
organic compounds utilized by rhodococci as growth substrates. This degradation
helps maintain the global carbon cycle and has increasing applications ranging from
the biodegradation of pollutants to the biocatalytic production of drugs and hor-
mones. The catabolism of aromatic compounds and steroids converge as steroid
degradation proceeds via aromatic intermediates. Consistent with the aerobic
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lifestyle of rhodococci, these pathways are rich in oxygenases. Analysis of five
rhodococcal genomes confirms the modular nature of the aromatic compound
catabolic pathways: peripheral pathways degrade compounds such as biphenyl
and phthalate to common intermediates, while central pathways transform these
intermediates, such as catechol and phenylacetate, to central metabolites. Studies of
Rhodococcus jostii RHAL1 in particular have revealed a similar modular structure of
steroid degradation pathways, which is also conserved in related actinobacteria,
such as Mycobacterium tuberculosis. Indeed, steroid degradation appears to be a
very common, potentially ubiquitous characteristic of rhodococci. Nevertheless,
the steroid catabolic pathways appear to be more redundant than the aromatic
compound catabolic pathways. Finally, studies in thodococci have helped elucidate
the role of key steroid-degrading proteins including the Mce4 steroid uptake system
which define a new class of ABC transporters. The significance of some of these
recent discoveries for industrial processes and pathogenesis is discussed.

1 Introduction

Aromatic compounds are widely distributed in the biosphere, being produced by a
variety of biological and chemical processes. They range in size from low-molecu-
lar-mass compounds such as benzene to the large, insoluble biopolymer lignin. The
defining characteristic of aromatic compounds is a planar, fully conjugated, ring-
shaped moiety possessing (4n+2) m electrons, where # is a non-negative integer
(Huckel’s rule) (Fig. 1la) (McMurry 1992). The exceptional stability of these
compounds arises from the delocalization of their & orbitals, also called resonance
energy. It is this stability that has contributed to the widespread production and use
of natural and xenobiotic aromatic compounds for a variety of industrial applica-
tions. For example, polychlorinated biphenyls (PCBs) have been used as dielectric
fluids and coolants (Field and Sierra-Alvarez 2008), while polybrominated diphe-
nyl ethers (PBDEs) are used as flame retardants (Sjodin et al. 2003). Such com-
pounds are among the most stable and persistent organic pollutants. Finally,
polycyclic aromatic hydrocarbons (PAHs) constitute a family of compounds pos-
sessing fused aromatic rings. These compounds occur in hydrocarbon deposits and
are also produced as byproducts of incomplete combustion of fossil fuels or
biomass (Harvey 1991).

Steroids are a class of terpenoid lipids characterized by a carbon skeleton of four
fused rings, labeled A to D, and side chains consisting of up to ten carbons. Hundreds
of steroids have been identified in plants, animals, and fungi, varying in functional
groups attached to the four fused rings. Bacteria contain the structurally related five-
ringed hopanoids (Fernandes et al. 2003). The most important physiological roles of
steroids are as hormones and in modulating membrane fluidity. In addition, these
bioactive compounds have a range of therapeutic applications including as anti-
inflammatory agents (Ko et al. 2000), antifungals (Chung et al. 1998), and contra-
ceptives (Tuba et al. 2000). The discovery of the 11a-hydroxylation activity of the
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fungus Rhizopus in 1949 enabled the transformation of simple sterols to corticoster-
oids and sparked interest in the synthesis and production of active steroid molecules
(Hogg 1992). Cholesterol, obtained from animal fats and oils, and phytosterols, such
as stigmasterol, -sitosterol, and campesterol, are major starting materials for the
production of steroid drugs and hormones owing to their low cost and ease of
transformation.

In light of the exceptional ability of rhodococci to utilize a wide range of
organic compounds as growth substrates, particularly hydrophobic ones, it is
hardly surprising that these organisms figure prominently among known degra-
ders of aromatic compounds and steroids (van der Geize and Dijkhuizen 2004).
Indeed, Rhodococcus jostii RHA1, isolated from lindane-contaminated soil (Seto
et al. 1995a), is one of the most potent PCB degraders characterized to date,
contains up to four steroid-degrading pathways, and has recently been reported to
degrade lignin. The catabolic activities of Rhodococcus likely help sustain the
biosphere, as these organisms are found in a broad range of environments
including various soils, sea water, and eukaryotic cells. Indeed, in at least one
study of o-xylene-contaminated soils, rhodococci were the most prominent
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species (Taki et al. 2007). The exceptional ability of rhodococci to degrade such
compounds may be due in part to their mycolic-acid-containing outer membrane
(see chapter “The Rhodococcal Cell Envelope: Composition, Organisation and
Biosynthesis” by Sutcliffe et al.) as well as their production of surfactants
(Iwabuchi et al. 2002; Vogt Singer et al. 1990). Recent genomic, molecular
genetic, microbiological, and biochemical studies have increased our understand-
ing of this degradation in rhodococci as well as in related mycolic-acid-producing
actinomycetes such as Corynebacterium, Nocardia, and Mycobacterium.

This chapter focuses on the catabolic pathways utilized by rhodococci to degrade
aromatic compounds and steroids. We first discuss the overall strategies used by
these bacteria to degrade naturally occurring mononuclear aromatic compounds.
The underlying principles are illustrated using several pathways. We then discuss
the catabolism of more complex compounds, including lignin, PAHs, some halo-
genated pollutants, and steroids. Differences and similarities of rhodococcal catab-
olism with that of other bacteria are highlighted by genomic analyses of five
rhodococci: R. opacus B4, R. erythropolis PR4, R. jostii RHAL,'R. erythropolis
SK121, and R. equi 103S. Particular emphasis is placed on recent discoveries that
provide new insights into how this degradation occurs. These advances have
important implications for industrial processes, ranging for bioremediation to
biocatalysis, as well as for the pathogenesis of Mycobacterium tuberculosis, the
leading cause of mortality from bacterial infection, and R. equi, a horse pathogen
that can infect immunocompromised humans (Prescott 1991).

2 Mon