

Lecture Notes in Computer Science 6061
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Nicolas Sendrier (Ed.)

Post-Quantum
Cryptography
Third International Workshop, PQCrypto 2010
Darmstadt, Germany, May 25-28, 2010
Proceedings

13

Volume Editor

Nicolas Sendrier
Centre de Recherche INRIA Paris-Rocquencourt
Projet-team SECRET
B.P. 105, 78153 Le Chesnay Cedex, France
E-mail: Nicolas.Sendrier@inria.fr

Library of Congress Control Number: 2010926250

CR Subject Classification (1998): E.3, K.6.5, D.4.6, C.2, J.1, G.2.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-12928-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-12928-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Foreword

The recent development of quantum computing and quantum algorithmics has
raised important questions in cryptography. With Shor’s algorithm (Peter W.
Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer”, SIAM J. Sci. Statist. Comput. 41 (2): 303-332,
1999) the collapse of some of the most widely used techniques for securing digital
communications has become a possibility. In consequence, the everlasting duty
of the cryptographic research community to keep an eye on alternative tech-
niques has become an urgent necessity. Post-quantum cryptography was born.
Its primary concern is the study of public-key cryptosystems that remain se-
cure in a world with quantum computers. Currently, four families of public-key
cryptosystems seem to have this potential: code-based, hash-based, lattice-based
and multivariate public-key cryptosystems. Other techniques may certainly join
this rapidly growing research area. With the PQCrypto conference series, this
emerging community has created a place to disseminate results, exchange new
ideas and define the state of the art. In May of 2006, the First International
Workshop on Post-Quantum Cryptography was held at the Katholieke Univer-
siteit Leuven in Belgium with support from the European Network of Excellence
ECRYPT. The Second International Workshop on Post-Quantum Cryptography,
PQCrypto 2008, was held at the University of Cincinnati, USA, in October 2008.

The third event of this series, PQCrypto 2010, was organized in Darmstadt
by the Center for Advanced Security Research Darmstadt (CASED) at the Tech-
nische Universität Darmstadt during May 25-28, 2010. The Program Committee
received 32 proposals of contributed talks from which 16 were selected. Each pa-
per was thoroughly examined by several independent experts from the Program
Committee and additional external reviewers. The papers along with the reviews
were then scrutinized by the Program Committee members during a discussion
phase after which recommendations were given to all authors. Revised versions
of the accepted contributions are published in these proceedings. We would like
to thank the authors of all the papers for submitting their quality research work
to the conference. Special thanks go to the Program Committee members and
to the external reviewers for the time and energy they spent throughout the
selection process to offer a conference and a volume of high scientific quality.

In addition to the contributed talks, we were fortunate to have three out-
standing keynote lectures given by Oded Regev (Tel Aviv University, Israel),
Renato Renner (ETHZ, Switzerland) and Gregory Neven (IBM Research Zurich,
Switzerland).

Finally, a special thank goes to Matthieu Finiasz and Markus Rückert for or-
ganizing the very lively “recent result session,” and, on behalf of the community,
let me say that we are all indebted to Johannes Buchmann, Markus Rückert and
CASED for organizing this meeting.

May 2010 Nicolas Sendrier

Organization

PQCrypto 2010 was organized by the Center for Advanced Security Research
Darmstadt (CASED)

General Chairs

Johannes Buchmann Technische Universität Darmstadt, Germany
Markus Rückert Technische Universität Darmstadt, Germany

Program Chair

Nicolas Sendrier INRIA, France

Program Committee

Daniel Augot INRIA, France
Paulo Barreto Universidade de São Paulo, Brazil
Dan Bernstein University of Illinois at Chicago, USA
Gilles Brassard Université de Montréal, Canada
Claude Crépeau McGill University, Canada
Erik Dahmen Technische Universität Darmstadt, Germany
Jintai Ding University of Cincinnati, USA
Matthieu Finiasz ENSTA, France
Philippe Gaborit Université de Limoges, France
Gert-Martin Greuel Universität Kaiserslautern, Germany
Tanja Lange Technische Universiteit Eindhoven, The Netherlands
Pierre Loidreau CELAR, France
Vadim Lyubashevsky Tel Aviv University, Israel
Christof Paar Ruhr-Universität Bochum, Germany
Chris Peikert Georgia Tech, USA
Gerhard Schabhüser BSI, Germany
Nicolas Sendrier INRIA, France
Graeme Smith IBM T.J. Watson Research Center, USA
Damien Stehlé CNRS, France and University of Sydney/Macquarie

University, Australia
Michael Szydlo Akamai, USA
Shigeo Tsujii Chuo University, Japan
Ralf-Philipp Weinmann Université du Luxembourg, Luxembourg
Bo-Yin Yang Academia Sinica, Taiwan

VIII Organization

Additional Reviewers

John Baena
Stanislav Bulygin
Chen-Mou Cheng
Crystal Clough
Ryo Fujita
Tim Güneysu
Stefan Heyse

Cédric Lauradoux
Markus Rückert
Kohtaro Tadaki
Hamid Usef
Christopher Wolf
Chaoping Xing

PQCrypto Steering Committee

Dan Bernstein University of Illinois at Chicago, USA
Johannes Buchmann Technische Universität Darmstadt, Germany
Claude Crépeau McGill University, Canada
Jintai Ding University of Cincinnati, USA
Philippe Gaborit Université de Limoges, France
Tanja Lange Technische Universiteit Eindhoven, The Netherlands
Daniele Micciancio University of California at San Diego, USA
Werner Schindler BSI, Germany
Nicolas Sendrier INRIA, France
Shigeo Tsujii Chuo University, Japan
Bo-Yin Yang Academia Sinica, Taiwan

Sponsors

The organizers thank the following companies and institutions for their generous
financial support.

CASED, Darmstadt, Germany
CAST e.V., Darmstadt, Germany
cv cryptovision GmbH, Gelsenkirchen, Germany
Deutsche Bank AG, Frankfurt, Germany
Horst-Görtz-Stiftung, Neu-Anspach, Germany
IBM Deutschland GmbH, Ehningen, Germany
KOBIL Systems GmbH, Worms, Germany
Siemens AG, München, Germany
Software AG, Darmstadt, Germany

Table of Contents

Cryptanalysis of Multivariate Systems

Properties of the Discrete Differential with Cryptographic
Applications . 1

Daniel Smith-Tone

Growth of the Ideal Generated by a Quadratic Boolean Function 13
Jintai Ding, Timothy J. Hodges, and Victoria Kruglov

Mutant Zhuang-Zi Algorithm . 28
Jintai Ding and Dieter S. Schmidt

Cryptanalysis of Two Quartic Encryption Schemes and One Improved
MFE Scheme . 41

Weiwei Cao, Xiuyun Nie, Lei Hu, Xiling Tang, and Jintai Ding

Cryptanalysis of Code-Based Systems

Cryptanalysis of the Niederreiter Public Key Scheme Based on GRS
Subcodes . 61

Christian Wieschebrink

Grover vs. McEliece . 73
Daniel J. Bernstein

Information-Set Decoding for Linear Codes over Fq 81
Christiane Peters

A Timing Attack against the Secret Permutation in the McEliece
PKC . 95

Falko Strenzke

Practical Power Analysis Attacks on Software Implementations of
McEliece . 108

Stefan Heyse, Amir Moradi, and Christof Paar

Design of Encryption Schemes

Key Exchange and Encryption Schemes Based on Non-commutative
Skew Polynomials . 126

Delphine Boucher, Philippe Gaborit, Willi Geiselmann,
Olivier Ruatta, and Felix Ulmer

X Table of Contents

Designing a Rank Metric Based McEliece Cryptosystem 142
Pierre Loidreau

Secure Variants of the Square Encryption Scheme . 153
Crystal Lee Clough and Jintai Ding

Low-Reiter: Niederreiter Encryption Scheme for Embedded
Microcontrollers . 165

Stefan Heyse

Design of Signature Schemes

Strongly Unforgeable Signatures and Hierarchical Identity-Based
Signatures from Lattices without Random Oracles 182

Markus Rückert

Proposal of a Signature Scheme Based on STS Trapdoor 201
Shigeo Tsujii, Masahito Gotaishi, Kohtaro Tadaki, and Ryo Fujita

Selecting Parameters for the Rainbow Signature Scheme 218
Albrecht Petzoldt, Stanislav Bulygin, and Johannes Buchmann

Author Index . 241

Properties of the Discrete Differential
with Cryptographic Applications

Daniel Smith-Tone

Department of Mathematics, Indiana University
smithdc@indiana.edu

Abstract. Recently, the C∗− signature scheme has been completely bro-
ken by Dubois et al. [1,2]. As a consequence, the security of SFLASH and
other multivariate public key systems have been impaired. The attacks
presented in [1,2] rely on a symmetry of the differential of the encryption
mapping. In [3], Ding et al. experimentally justify the use projection as a
method of avoiding the new attack, and some theoretical backing to this
method is given in [4]. In this paper, we derive some properties of the dis-
crete differential, extend the theoretical justification for the reparation
in [3], and establish the exact context in which this attack is applicable.

Keywords: Matsumoto-Imai, multivariate public key cryptography, dis-
crete, differential, SFLASH, symmetry, HFE.

1 Introduction

In recent years much focus in public key cryptography has shifted to multivariate
systems. This change is due to several factors: the problem of solving a system
of quadratic equations is hard; to date, no great reduction of the complexity
of this problem has been found in the quantum model; there are very efficient
implementations of multivariate systems; and finally, it is easy to parameterize
many multivariate systems in such a way that vastly different schemes are derived
with potentially vastly different resistances to specialized attacks.

One multivariate scheme which has recently been broken by Dubois et al. in
[1,2] is the C∗− signature scheme. In particular, the attack breaks the SFLASH
signature scheme and some variants of the scheme by using a special property of
the differential of the encryption map to recover a full C∗ public key, compatible
with the C∗− public key, to which Patarin’s attack in [5] may be applied.

More recently, Ding et al., see [3], have repaired the SFLASH scheme using
projection, which also, ironically, has been called “fixing,” see [6]. They were
able to show strong experimental evidence that projection protects the scheme
from the differential attack. In [4], Ding et al. present some theoretical evidence
for this protection.

This paper is organized as follows. First, we review the C∗, HFE, C∗−, and
SFLASH schemes. Next, we look at the new attack on C∗− of Dubois, et al.
In the following section, we present some useful results on the differential of a
field map and establish limits for the effectivity of the new attack in the more

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 D. Smith-Tone

general HFE setting. We then extend the theoretical analysis presented in [4]
which suggests that projection avoids the new attack. Finally, we discuss the
implications of these results.

2 C∗, HFE, and SFLASH

The SFLASH signature scheme can be considered a special case of the C∗−

signature scheme which is derived from the Matsumoto-Imai cryptosystem, often
called the C∗ scheme, originally presented in [7]. Each of these schemes was
designed to take advantage of the difficulty of solving a nonlinear system of
equations over a finite field.

2.1 The C∗ Scheme

The idea of the C∗ scheme is to use affine maps to hide a “quadratic” monomial
map. This can be accomplished by composing functions, each of which is easily
invertible.

Choose a finite field Fq of even characteristic and a degree n extension k. The
map f : k → k defined by f(x) = x1+qθ

is a permutation polynomial for coprime
values of n and θ. Choosing two Fq-affine transformations, U and T , we can
encrypt via the composition

P = T ◦ f ◦ U. (1)

Note that the map x �→ xqθ

, a Frobenius map, is Fq-linear since

(x + a)qθ

= (x + a)pkθ

=
pkθ∑
i=0

(
pkθ

i

)
aixpkθ−i = xqθ

+ aqθ

, (2)

where the last equality is due to the fact that
(
pkθ

i

)
= 0 for 0 < i < pkθ in

a field of characteristic p, and the fact that x �→ xqθ

is the identity map on
Fq. Therefore, we can represent f as f(x) = x(Lθx), where Lθx = xqθ

is the
exponentiation expressed as an Fq-linear transformation. For this reason we call
f Fq-quadratic or simply “quadratic.” Encryption can thus be expressed as a
system of n multivariate quadratic equations over Fq. On the other hand, de-
cryption is accomplished by inverting each of the above maps, circumventing the
problem of solving a nonlinear system of equations:

P−1 = U−1 ◦ f−1 ◦ T−1. (3)

In [5], Patarin showed that C∗ is insecure. His attack is based on a relation
on the input and output of the monomial map. Given v = f(u) we have the
following:

vqθ

u = vuq2θ

. (4)

Properties of the Discrete Differential with Cryptographic Applications 3

By composing with the affine maps, T and U , we have T−1y = f(Ux) which we
can express as the following bilinear relation on the plaintext, x, and ciphertext,
y:

(T−1y)qθ

(Ux) = (T−1y)(Ux)qθ

. (5)

Once such a bilinear relation between x and y is obtained by computing a large
number of plaintext-ciphertext pairs, we have an efficient alternate means of
decryption.

2.2 HFE

The HFE cryptosystem, introduced by Patarin [8] is a generalization of C∗. HFE
still uses the setting of a finite field, Fq, and an n-dimensional extension k over
Fq. There is one main difference. Specifically, the hidden mapping, f , is no longer
necessarily a monomial; it can be a more general quadratic polynomial. While
general HFE schemes have the desirable quality of being resistant to Patarin’s
attack on C∗, there are some problems as well.

It is difficult to find permutation polynomials which are not translations of
monomial maps. Some conditions are known which guarantee that a polynomial
is a permutation polynomial, such as those given in [9] and [10], but no criteria
are known for the construction of general quadratic permutation polynomials.
For this reason, the HFE scheme is implemented with an encryption map which
is not, in general, bijective. This quality of the cryptosystem has the effect of
making collisions possible and rendering decryption and signature generation
much less efficient.

2.3 The C∗− Scheme

To prevent an attack exploiting the bilinear relation, (5), it was suggested in [11]
to remove some of the coordinate equations. The resulting scheme, suitable for
signatures, is commonly called the C∗− scheme.

Suppose we delete the last r equations in the public key of a C∗ scheme. Let
PΠ denote the projection of P onto the first n − r coordinates. To sign, a user
needs only compute a preimage of y = PΠ(x) which is easily accomplished by
padding y with r random coordinate values and using the decryption algorithm.
Since |{x|PΠ(x) = y}| = qr, it is apparent that allowing r to be too large renders
the scheme inefficient in the sense that the size of the field must be quite large
to maintain the improbability of collision detection. If r is too small, however,
there are methods to reduce the C∗− scheme to a C∗ scheme, as shown in [11].

The difficulty in removing r of the public equations lies in the fact that,
although (4) is still valid, (5) can no longer be used. We don’t know r of the
coordinates of y, and therefore, we are missing terms in each equation we generate
over Fq. Alternatively, we may consider T to be an r × n matrix, since the new
encryption mapping does not have access to r of the rows of T . As a consequence,
it is impossible to deterministically compute coefficients involving T−1.

4 D. Smith-Tone

2.4 SFLASH

SFLASH is a signature scheme based on the C∗− scheme. The choice of parame-
ters which were considered secure by the New European Schemes for Signature,
Integrity, and Encryption, NESSIE, consortium are q = 27, [k : Fq] = 37, θ = 11,
and r = 11. This scheme was widely heralded for nearly ten years until more
recently SFLASH and some possible variants were broken completely in [1,2].

3 The New Attacks on C∗− Schemes

Dubois et al. in [1] and [2] based the attacks on C∗− on a property of the bilinear
differential, Df(a, x) = f(a + x) − f(a) − f(x) + f(0), of the encryption map,
f , which they called “multiplicative.” The attacks utilize a linear symmetry of
f which guarantees the existence of L and Λf,L, Fq-linear maps, satisfying the
following relation:

Df(La, x) + Df(a, Lx) = Λf,LDf(a, x). (6)

In particular, the attacks focus on finding L which correspond to left multiplica-
tion by an element σ ∈ k. Therefore, we are interested in discovering properties
of f guaranteeing the existence of the following multiplicative symmetry for all
σ ∈ k:

Df(σa, x) + Df(a, σx) = pf(σ)Df(a, x), (7)

where pf : k → k is a polynomial, which we call the separation polynomial.
Notice that if an Fq-linear transformation is found which corresponds, when

factored through the encryption, to a nontrivial multiplication, it is likely that
new linearly independent relations on the output of the monomial function will
be found. Specifically, we have the following:

DPΠ(Nσa, x) + DPΠ(a, Nσx) = Π ◦ T ◦ Mp(σ) ◦ Df(Ua, Ux), (8)

where Nσ = U−1MσU and Mτ is the matrix of multiplication by τ . In practice,
equation (8) is used to find relations satisfied by these multiplication map conju-
gates. If enough new relations are derived in this manner to generate such a Nσ,
it is likely that a new full rank C∗ scheme may be constructed by gathering new
linearly independent relations from the following mapping, where f specifically
is multiplicative, as is the case for SFLASH,

PΠ ◦ Nσ = Π ◦ T ◦ f ◦ U ◦ Nσ

= Π ◦ T ◦ f ◦ Mσ ◦ U

= Π ◦ T ◦ Mf(σ) ◦ f ◦ U.

(9)

At this point, Patarin’s attack may be applied. If the system is not full rank,
or close enough to full rank to apply another attack, the process of finding a
nontrivial multiplication is repeated.

Properties of the Discrete Differential with Cryptographic Applications 5

Dubois et al. use this method in [2] to break variants of SFLASH in which
the θ parameter and the degree of the extension are not coprime. In [1] the same
method is used to break SFLASH with the NESSIE parameters. Both of these
attacks may be considered instances of the same attack since both use the mul-
tiplicative symmetry above. The only difference is that in the former the attack
focuses specifically on finding multiplications by roots of the separation polyno-
mial, whereas in the latter the focus is on finding multiplications by elements
which are not roots of the separation polynomial.

The question was asked in [1] to what extent these methods involving the
differential can be applied to the HFE− scheme, i.e., to what extent can we use
such a symmetry relation when the monomial function is replaced by a more
general polynomial?

4 Multiplicative Symmetric Properties of the Differential

To answer the questions posed in [1], we form a classification of polynomial maps
f : k → k having the multiplicative symmetry. We first need to establish some
basic definitions and ground work. Here we establish the convention that, unless
otherwise specified, the terms “linearity,” “bilinearity,” etc. refer to linearity over
a base field.

Definition 1. Given a field F, a field extension k, and a multivariate function
f : km → k, the discrete partial differential of f with respect to xi is the following
function of m + 1 variables:

Dxif(x1, . . . , xi−1, a, xi, . . . , xm) =f(x1, . . . , xi−1, a + xi, xi+1, . . . , xm)
− f(x1, . . . , xi−1, xi, xi+1, . . . , xm)
− f(x1, . . . , xi−1, a, xi+1, . . . , xm)
+ f(x1, . . . , xi−1, 0, xi+1, . . . , xm).

(10)

We should note that the discrete partial differential operator has the desired
property of F-linearity, i.e., Dxi(Mf + Ng) = MDxif + NDxig for F-linear
operators M and N . Using this property we are able to prove the following useful
result about bilinear maps, the proof of which generalizes to the multilinear case.

Theorem 1. Let k be an extension field of F and let f =
∑

i gi =
∑

i cix
αiyβi

be a bivariate polynomial in its canonical representation. If f is k-bilinear, then
then any monomial summand, gi, of f is k-bilinear.

Proof. Without loss of generality suppose by way of contradiction that g0 is not
bilinear; in particular, suppose that g0 is not linear with respect to x. Since the
discrete partial differential operator is F-linear, we have the following identity:

Dxf = Dx

∑
i

gi =
∑

i

Dxgi. (11)

6 D. Smith-Tone

Also, by the bilinearity of f , Dxf = 0. Therefore, applying the definition of Dx

to the right side of (11), we have the following:

0 =
∑

i

Dxgi =
∑

i

ciy
βi [(x + a)αi − xαi − aαi]

=
∑

i

ciy
βi

αi−1∑
j=1

(
αi

j

)
ajxαi−j ,

(12)

for all a, x, y ∈ k, where, of course, the binomial coefficients are taken modulo
the characteristic of k. Note that since the multidegree of each gi is unique,
the multidegree of each term in this expression is also unique. Let n be the
maximum multidegree in this sum. The collection {arxsyt|r + s + t ≤ n}, for
nonnegative integral r, s, and t, is linearly independent in k [a, x, y]. This fact is
easily verified: if

0 =
∑

r+s+t≤n

λr,s,ta
rxsyt (13)

is in canonical form, the homomorphism evaluating a and x at 1 gives us,

0 =
∑

r+s+t≤n

λr,s,ty
t, (14)

for all y ∈ k; hence, all λr,s,t = 0. Applying this linear independence to (12), we
obtain:

0 = ci

(
αi

j

)
, (15)

for all i and all 0 < j < αi. Since g0 is not linear with respect to x, there is a
j such that

(
α0
j

) �= 0. Consequently, by (15), c0 = 0. This fact, however, implies
that g0 = 0, contradicting our assumption that g0 is not bilinear. Thus every
monomial summand, gi, of f is bilinear.

The above result rigorously verifies the intuitional notion that there cannot be
cancelation of nonlinear components of monomial functions via summation. Since
we are interested in this property for the classification of polynomial functions
based on attributes of the discrete differential, this theorem is useful for the
following important corollary, which, again, is valid for arbitrary fields.

Corollary 1. Let f : k → k be a polynomial, and let g : k → k be a monomial
summand of f . If Df is bilinear, then Dg is bilinear.

Proof. Given f =
∑

i gi, by the linearity of the discrete differential operator, we
have

Df =
∑

i

Dgi. (16)

Note that, since each gi has a unique degree, each term in the right side of
(16) has a unique multidegree. Now by Theorem 1, since Df is bilinear, each
monomial summand of Df is bilinear, and therefore, any sum of such summands
is bilinear. Thus Dgi is bilinear for all i.

Properties of the Discrete Differential with Cryptographic Applications 7

Now we focus on the multiplicative symmetry and restrict to the finite field
setting. Notice that the above corollary is as general as possible in this setting
because finite fields have the distinguishing quality of being the only rings for
which every function from the ring to itself is a polynomial. In the following
results, k denotes a degree n extension of the finite field Fq.

Lemma 1. Let g be a monomial function with a nontrivial Fq-bilinear differen-
tial. Then g has the multiplicative symmetry. Furthermore, two such monomial
functions, g1 and g2, are quadratic, and share the same separation polynomial if
and only if g1 = cg2 for some constant c ∈ k.

Proof. Since g is a monomial function, Dg(a, x) = c
∑k−1

i=1

(
k
i

)
aixk−i. Dg is bi-

linear and thus, any monomial with nonzero coefficient in this sum must be
linear in both a and x. Therefore k = qθ1 + qθ2 for some 0 ≤ θ1, θ2 ≤ n. Hence,
g(x) = cxqθ1+qθ2 . As a consequence, we have Dg(a, x) = caqθ1

xqθ2 + caqθ2
xqθ1 .

Letting p(x) = xqθ1 +xqθ2 , we obtain Dg(σa, x)+Dg(a, σx) = p(σ)Dg(a, x). By
the above construction of the separation polynomial, two quadratic monomial
functions share the same separation polynomial if and only if they are constant
multiples of each other.

The following theorem gives a classification of polynomial functions with the
multiplicative symmetry.

Theorem 2. A polynomial f : k → k with a bilinear differential has the multi-
plicative symmetry if and only if it has one quadratic monomial summand.

Proof. (⇐) Suppose that f has exactly one quadratic monomial summand, g,
and all other monomial summands are linear. Then Df = Dg. Thus f has the
multiplicative symmetry with the same separation polynomial as that of g.

(⇒) By Corollary 1, we know that all monomial summands of f have a bilinear
differential. Suppose that f has r distinct quadratic monomial summands, gm.
We know Df =

∑r
m=1 Dgm. Therefore,

Df(σa, x) + Df(a, σx) = pf (σ)
r∑

m=1

Dgm(a, x) (17)

On the other hand,

Df(σa, x) + Df(a, σx) =
r∑

m=1

(Dgm(σa, x) + Dgm(a, σx))

=
r∑

m=1

pgm(σ)Dgm(a, x).

(18)

Therefore, taking the difference of 17 and 18,
r∑

m=1

(pf − pgm)(σ)Dgm(a, x) = 0, (19)

8 D. Smith-Tone

for all σ, a, x ∈ k. We know from Lemma 1 that gm(x) = cmxqθm+qτm . We can,
therefore, rewrite (19) as:

r∑
m=1

cm(pf − pgm)(σ)(aqθm
xqτm

+ aqτm
xqθm

) = 0. (20)

The collection {aixj} is linearly independent in k [a, x], thus for any arbitrary
fixed σ ∈ k, we obtain:

cm(pf − pgm)(σ) = 0, (21)

for all 1 ≤ m ≤ r. Since cm �= 0 for each m, and σ is arbitrary, we have that
pf = pgm for all m. Since the gm are distinct, by Lemma 1, r is zero or one.
Thus, f has at most one quadratic monomial summand.

Now we have an answer to the questions posed in [1]. Both of the attacks pre-
sented in [2,1] require the existence of a hidden field map with the multiplicative
symmetry. In particular, the experiments in [1] suggest that for large field ex-
tensions the general linear and multiplicative symmetries of equations 6 and 7
are intertwined, i.e., f has a linear symmetry only if there is a nonsingular linear
map, L, such that f ◦L has the multiplicative symmetry. The above results show
that the multiplicative symmetry is only present for field maps which differ from
a C∗ monomial by an affine map; thus, HFE is not, in general, susceptible to
the multiplicative symmetry attack.

5 The Effect of Projection

In [3], Ding et al. proposed projection as a method of securing the C∗− scheme
from the attack based on the multiplicative symmetry. Experimentally, it has
been verified that the projection onto a codimension 1 or more affine space breaks
the symmetry. In addition, Ding et al. in [4] prove that in the case of a codimen-
sion 1 projection, the multiplicative symmetry is destroyed. Some schemes, for
example Square, see [12], can be considered to have an implicit projection onto a
higher codimensional affine space. In light of the results of the previous section,
we can give a more categorical explanation for the behavior of such systems
under projection.

In the case of fixing m variables, projecting corresponds to the following map-
ping:

P (x) = T ◦ f ◦ Ma1,...,am ◦ U, (22)

where Ma1,...,am is the linear transformation which acts as the identity on the
first n − m coordinates and replaces the last m coordinates with ai · x, where
ai ∈ F

n
q has last m coordinates zero.

Let us first consider the singularity of Ma1,...,am to be subsumed by f . We
prove that the composition of f with a general singular factor of Ma1,...,amU
cannot have the multiplicative symmetry over k.

Properties of the Discrete Differential with Cryptographic Applications 9

Theorem 3. Let M be an Fq-affine transformation and let f be a C∗ monomial
map, f(x) = x1+qθ

. The composition f ◦ M has the multiplicative symmetry if
and only if M is a translation of a linear monomial map, i.e. Mx = cxqi

+d for
some i < n.

Proof. If we write Mx = M̂x + d, then f(Mx) = ((M̂x)qθ

+ dqθ

)(M̂x + d).
The quadratic part of this expression is independent of d, therefore it suffices to
consider linear maps.

(⇐) Suppose M is a linear monomial map, Mx = cMxqi

for some i < n.
Therefore, f ◦ M(x) = cqθ+1

M xqθ+i+qi

, where, of course, the sum in the expo-
nents of q is taken modulo n. As a consequence of Theorem 2, f ◦ M has the
multiplicative symmetry.

(⇒) Let f̂ = f ◦ M . Since every Fq-linear transformation, M , can be written
M =

∑n−1
i=0 cix

qi

, we have the following:

f̂(x) = f ◦ M(x)

= f ◦
n−1∑
i=0

cix
qi

= (
n−1∑
i=0

cix
qi

)1+qθ

=
∑

i,j<n

cic
qθ

j−θx
qi+qj

=
n−1∑
i=0

cic
qθ

i−θx
2qi

+
∑

i<j<n

(cic
qθ

j−θ + cjc
qθ

i−θ)x
qi+qj

.

(23)

Note that the right hand side expression is simplified because the equality qi +
qj = qk + ql implies either (i, j) = (k, l) or (i, j) = (l, k).

We have two distinct types of coefficients of f̂ . The first type, cic
qθ

i−θ, corre-
sponds to a product along a column in the following matrix, while the second
type, cic

qθ

j−θ + cjc
qθ

i−θ, which we will call minors for lack of a better term, corre-
sponds to the sum of the products along the diagonals of the square submatrix
formed from the ith and jth columns.(

c0 c1 . . . cn−1

cqθ

−θ cqθ

1−θ . . . cqθ

n−1−θ

)
(24)

Suppose f̂ has the multiplicative symmetry. By Theorem 2, the coefficient of
at most one power of x in (23) is nonzero. Therefore, the coefficient matrix
must have either one column with a nonzero product and no nonzero minors, no
column with a nonzero product and exactly one nonzero minor, or no nonzero
entries, in which case M is trivial.

10 D. Smith-Tone

In the first case, in which the one nonzero coefficient is of the form cic
qθ

i−θ,
suppose that M has another nonzero coefficient, cj. Since there are no other
columns with a nonzero product, the coefficient matrix must be of the form(

	 . . . ci . . . cj . . . 	

	 . . . cqθ

i−θ . . . 0 . . . 	

)
. (25)

This, however, results in a nonzero minor. Thus, cj = 0 for all j �= i, and
M = cix

qi

is a linear monomial map. Furthermore, since ci−θ �= 0, ci−θ = ci,
and so θ = 0. Thus, in this case, f(x) = cx2. Clearly, this case is only nontrivial
if q is odd.

In the other case, i.e., the one nonzero coefficient is of the form cic
qθ

j−θ +cjc
qθ

i−θ,
suppose that M has another nonzero coefficient, cl, for l �= i, j. Since there are no
columns with a nonzero product, our coefficient matrix has one of the following
forms: (

	 . . . ci . . . 0 . . . cl . . . 	

	 . . . 0 . . . cqθ

j−θ . . . 0 . . . 	

)
, (26)

or (
	 . . . 0 . . . cj . . . cl . . . 	

	 . . . cqθ

i−θ . . . 0 . . . 0 . . . 	

)
. (27)

Again, this results in an extra nonzero minor. Therefore, cl = 0 for all l �= i, j.
Furthermore, only one of ci and cj is nonzero. This fact again implies that Mx is
a nonzero linear monomial map. Thus the composition of a quadratic monomial
and a nonzero Fq-affine map, M , has the multiplicative symmetry if and only if
M is a translation of a linear monomial map.

Therefore, projection indeed does break the symmetry over the large field. The
only remaining possible application of the methods of Dubois et al. is if we
consider the matrix Ma1,...,am to be absorbed by U , in which case we must
accept that S = Ma1,...,amU is singular.

This case is fully investigated by Ding et al. in [4] under the same assumptions
we make here; namely, we expect each general linear symmetry of the form (6)
to be multiplicative, i.e., to be of the form (7). Ding et al. proved in [4] that this
is the case when the kernel of the projection is one dimensional, but the general
question is still open. While Ding et al. focus on determining when the hidden
C∗ monomial map maintains a linear symmetry restricted to a subspace of k, we
approach the problem somewhat differently, attempting to extend the methods
of the original attack by “inverting” the singular map, S.

It is conceivable that the original attack of Dubois et al. may be applied by
using a pseudoinverse, S+, instead of an inverse in the definition, Nσ = S+MσS.
We can then rely on the multiplicative symmetry of the hidden C∗ monomial
map to continue the original attack. The only restriction is that we require
SS+MσS = MσS, which occurs only when the image of S in k, which we denote
Sk, is σ-invariant. Since Sk is an Fq-subspace of k containing 〈σ〉 ≤ k∗, Sk is an

Properties of the Discrete Differential with Cryptographic Applications 11

-subspace of k where
 is the smallest intermediate extension of Fq containing σ.
This is the exact necessary condition found in [4], for symmetry to be preserved
in a subspace.

Therefore, although Theorem 3 guarantees that projection does remove the
multiplicative symmetry from the large field, projection does not exactly “break”
the multiplicative symmetry completely; rather, it “pushes down” the symmetry
into a subspace over a smaller field. It should be noted that, given a random
choice of singular map, S, it is extremely unlikely for Sk to be an
-subspace
of k. In particular, Ding et al., in [4], derive an asymptotic upper bound of q−n

for the probability of this occurrence. Moreover, as in the case of SFLASH, if k
is a prime extension of Fq, then there does not exist a nontrivial intermediate
extension,
, and the multiplicative symmetry is completely broken.

6 Conclusion

We conclude from the preceding facts that the method using multiplicative sym-
metry can be applied only when the hidden permutation polynomial has exactly
one nonlinear monomial summand. If this condition is not met, as is the case
for the general HFE scheme, the polynomial has no multiplicative symmetry in
this sense.

In addition, we extend the theoretical justification for the effectiveness of
projection as a means of removing the multiplicative symmetry, proving that
a general projection breaks the symmetry over the large field. Projection is a
legitimate method of avoiding the new attacks; however, more study is needed
to confirm that a projected SFLASH will be secure.

References

1. Dubois, V., Fouque, P.A., Shamir, A., Stern, J.: Practical Cryptanalysis of
SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12.
Springer, Heidelberg (2007)

2. Dubois, V., Fouque, P.A., Stern, J.: Cryptanalysis of SFLASH with Slightly Mod-
ified Parameters. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
264–275. Springer, Heidelberg (2007)

3. Ding, J., Yang, B.Y., Cheng, C.M., Chen, O., Dubois, V.: Breaking the Symmetry:
a Way to Resist the New Differential Attack. Cryptology ePrint Archive, Report
2007/366 (2007), http://eprint.iacr.org/

4. Ding, J., Dubois, V., Yang, B.Y., Chen, C.H.O., Cheng, C.M.: Could SFLASH
be Repaired? In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 691–701. Springer, Heidelberg (2008)

5. Patarin, J.: Cryptoanalysis of the Matsumoto and Imai Public Key Scheme of
Eurocrypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–
261. Springer, Heidelberg (1995)

6. Wolf, C., Preneel, B.: Taxonomy of Public Key Schemes Based on the Problem
of Multivariate Quadratic Equations. Cryptology ePrint Archive, Report 2005/077
(2005), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

12 D. Smith-Tone

7. Matsumoto, T., Imai, H.: Public Quadratic Polynominal-Tuples for Effi-
cient Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.)
EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

8. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomi-
als (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

9. Mollin, R.A., Small, C.: On Permutation Polynomials over Finite Fields. Internat.
J. Math. and Math. Sci. 10, 535–543 (1987)

10. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications.
Cambridge University Press, New York (1986)

11. Patarin, J., Goubin, L., Courtois, N.: C∗
−+ and HM: Variations Around Two

Schemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT
1998. LNCS, vol. 1514, pp. 35–49. Springer, Heidelberg (1998)

12. Clough, C., Baena, J., Ding, J., Yang, B.Y., Chen, M.S.: Square, a New Multi-
variate Encryption Scheme. In: Fischlin, M. (ed.) RSA Conference 2009. LNCS,
vol. 5473, pp. 252–264. Springer, Heidelberg (2009)

Growth of the Ideal Generated by a Quadratic
Boolean Function

Jintai Ding, Timothy J. Hodges, and Victoria Kruglov�

Department of Mathematical Sciences,
University of Cincinnati,

Cincinnati, OH, 45221-0025 USA
jintai.ding@uc.edu, timothy.hodges@uc.edu, kruglov@email.uc.edu

Abstract. We give exact formulas for the growth of the ideal Aλ for λ
a quadratic element of the algebra of Boolean functions over the Galois
field GF (2). That is, we calculate dim Akλ where Ak is the subspace of
elements of degree less than or equal to k. These results clarify some of
the assertions made in the article of Yang, Chen and Courtois [22,23]
concerning the efficiency of the XL algorithm.

1 Introduction

The solution of polynomial equations has been a central question in mathematics
since earliest times. Recently this problem has become a central topic in cryp-
tography, in the form of the solution of multivariate polynomial equations over a
finite field. For instance, in multivariate public key cryptography [12], the public
key is given by a set of polynomials

P (x1, .., xn) = (P1(x1, .., xn), ..., Pm(x1, .., xn))

over a finite field. To encrypt a message (x′
1, .., x

′
n), one computes the value

(y′
1, ...y

′
m) = P (x′

1, .., x
′
n) = (P1(x′

1, .., x
′
n), ..., Pm(x′

1, .., x
′
n)).

In order to attack this cipher directly, one needs to solve the system of equations

(y′
1, ...y

′
m) = P (x1, .., xn).

Similarly, the algebraic attack [10,3] on symmetric cryptosystems transforms the
problem of attacking the cryptosystems into one of solving systems of polynomial
equations. For instance in the case of AES, this attack produces a system of
6000 sparse equations in approximately 1600 variables. Though we know that in
general solving a set of random nonlinear equations is a NP-complete problem,
� This work grew out of discussions in the Taft Research Seminar on post-quantum

cryptography presented at the University of Cincinnati by Bo-Yin Yang. The authors
thank Yang for many interesting conversations on this topic. They also thank the
Taft Research Center at the University of Cincinnati for its support of the seminar.

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 13–27, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

14 J. Ding, T.J. Hodges, and V. Kruglov

the understanding of the complexity of solving multivariate equations is still
a critical problem which has not only theoretical significance but also serious
practical implications.

In 2000, Courtois et al. introduced the XL algorithm [8] to solve such systems
of equations. The idea of the XL algorithm, as applied to the solution of a system
of m quadratic equations fi(x) = 0, is to successively eliminate variables by
finding linear or 1-variables polynomials inside the ideal generated by the fi(x).
Specifically, one applies an elimination process to the space of functions spanned
by the xbfi(x) where xb is a monomial of total degree less than or equal to a
fixed number D. The key to understanding the complexity of the algorithm is to
understand the dimension of this subspace. In [8,9], some heuristic complexity
estimates were given for the XL algorithm, but these estimates have been shown
to be incorrect [18].

The most commonly quoted estimates of the computational complexity of the
XL algorithm use formulas developed in [22], and which were further explored
in [24,23]. Yang and Chen produced estimates of the complexity of the XL algo-
rithm based on formulas for the dimension of the space of functions spanned by
the xbfi(x). Although the complexity formulas were widely used (for instance,
in [21,16,1,2,20,7]), and were in close agreement with experimental evidence, the
proofs of the dimension theorems are based on unreliable heuristic arguments
and are not correct. Some further exploration of these formulas was also recently
done in [19], but based on some heuristic assumptions.

Another fundamental class of algorithms used to solve such systems of equa-
tions is the family of Gröbner basis algorithms including the F4 and F5 variants
[6,13,14]. F4’s implementation in Magma is considered the best in multivariate
polynomial solving among all that are publicly available. We also know from
[4] that F4 is actually a more efficient algorithm than the XL algorithm if we
assume that both of them will solve the polynomials systems using Gaussian
elimination to solve the systems of linear equations that arise. However, because
of the sparse structure of the matrices associated to the XL algorithm, one can
solve the linear systems more efficiently using the Wiedermann solver, which
has advantages in terms of both speed and memory. It was demonstrated in the
attack on the QUAD steam cipher [25] that the Wiedermann XL could indeed
outperform the F4 algorithm. Therefore the complexity of the XL algorithm
remains of great interests.

Because of the significance of these complexity formulas and their implications
in cryptography, we believe that it is important to systematically study this
question and to lay a solid mathematical foundation for future developments in
this area.

In this paper, we begin with the simplest case, that of a single quadratic
polynomial over the field GF (2). Of course, over a field of characteristic zero the
answer to the question is easy. The complication when dealing with finite fields
is that we are working not in the polynomial ring itself, but in the ring of the
functions; that is, the polynomial ring reduced by the related field equations,

Xq
i − Xi = 0,

Growth of the Ideal Generated by a Quadratic Boolean Function 15

where q is the size of the field. This makes our question a highly non-trivial math-
ematical problem, which turns out to have a surprisingly complex but elegant
solution.

The complexity of the Gröbner basis algorithms F4 and F5 was analyzed in [5].
A few words of explanation are in order concerning the difficulty of our results
compared to those in [5]. First, we consider here an arbitrary quadratic function,
while the results in [5] concern the case of semi-regular sequences. Second we
compute the exact dimension at each degree. The arguments in [5] concern the
dimensions of the graded components of the ideal generated by the leading terms
of the fi in the associated graded ring (where X2

i = 0). While this enables one
to pull back a certain amount of information to the original algebra of functions,
it does not provide the exact dimensions that we calculate here.

2 The Yang-Chen Dimension Formulas

Let F denote the Galois field GF (2). Let R = F [X1, . . . , Xn] be the ring of
polynomials over F and let

A = F [X1, . . . , Xn]/(X2
1 + X1, . . . , X

2
n + Xn)

be the ring of Boolean functions.
Let R(d) be the space of homogeneous polynomials of degree d, so that R =

⊕R(d) is the usual grading. Let Rd =
∑d

i=0 R(i) be the set of polynomials of
degree less than or equal to d, so that

F = R0 ⊂ R1 ⊂ · · · ⊂ R

is the usual filtration by degree. Denote by π : R → A the usual projection
and let A(i) = π(R(i)) and let Ai = π(Ri). Then A = ⊕A(d) is a vector space
direct sum but not a gradation of rings, but A0 ⊂ A1 ⊂ · · · ⊂ An = A is a ring
filtration. One may define a concept of degree for an element λ ∈ A by saying
that deg λ = min{d | λ ∈ Ad}. We say that an element is quadratic if it has
degree two.

In this article we calculate explicitly dim Akλ for a quadratic element λ ∈ A
and compare this result with that given by Yang and Chen in [22,23]. Let us
briefly review the assertions in [23].

Let λ1, . . . , λm ∈ A be a semi-regular [5] set of m quadratic elements. Corollary
4 of [23] asserts that

T − I = [tD]
(1 + t)n

(1 + t2)m(1 − t)

for all D < Dreg. Here [tD](1 + t)n(1 + t2)−m(1 − t)−1 denotes the coefficient of
tD in the powers series expansion of (1 + t)n(1 + t2)−m(1 − t)−1; T = dim AD;
I = dim

∑
i AD−2λi; and Dreg = min{D | [tD](1 + t)n(1 + t2)−m(1 − t)−1 ≤ 0}.

16 J. Ding, T.J. Hodges, and V. Kruglov

This formula has the following explicit form when m = 1. Set

σ(n, k) =
k∑

j=0

(
n

j

)
and δ(n, k) =

�k/2�∑
i=0

(−1)iσ(n, k − 2i),

Then for D < Dreg,

T − I = [tD]
(1 + t)n

(1 + t2)(1 − t)
= δ(n, D)

Since T = dim AD = σ(n, D), this yields I = σ(n, D) − δ(n, D) = δ(n, D − 2).
Hence

dim AD−2λ = δ(n, D − 2)

for any semi-regular quadratic element λ and for any D < Dreg. While this
assertion is suggestive of the actual behavior, the statement of the result is not
adequate to include any useful assertions when m = 1. It is easily verified that
for the definition of Dreg given above and in [23], Dreg = ∞. As can be seen
in Theorems 5.3 and 7.1, the assertion that dim AD−2λ = δ(n, D − 2) for all D
cannot hold for any λ (except for very small values of n). In fact, no λ can be
semi-regular (again except for exceptional cases), so the theorem as stated in
[23] is vacuous rather than false in the case m = 1. The appropriate formulation
of this assertion is that dim AD−2λ = δ(n, D − 2) whenever D − 2 < rankλ/2,
(Corollary 7.2). In [23], the authors also claim, that in the non-semi-regular case
“the value I can only decrease”. When m = 1, this becomes the assertion that
dim AD−2λ ≤ δ(n, i− 2) for all D ≤ Dreg. Theorem 5.3 shows that this claim is
false.

3 Some Combinatorial Lemmas

Before getting into the details of the man results we present some elementary
identities concerning σ(n, k) and δ(n, k) that we will need later.

Lemma 3.1. The following analogs of the Vandermonde identity hold for σ(n, k)
and δ(n, k):

σ(n, k) =
k∑

i=0

(
n − r

i

)
σ(r, k − i) δ(n, k) =

k∑
i=0

(
n − r

i

)
δ(r, k − i)

Proof. The Vandermonde identity for binomial coefficients states that(
n

k

)
=

k∑
i=0

(
n − r

i

)(
r

k − i

)
.

Growth of the Ideal Generated by a Quadratic Boolean Function 17

Hence

k∑
i=0

(
n − r

i

)
σ(r, k − i) =

k∑
i=0

(
n − r

i

) k−i∑
j=0

(
r

j

)

=
k∑

i=0

k−i∑
j=0

(
n − r

i

)(
r

k − i − j

)

=
k∑

j=0

k−j∑
i=0

(
n − r

i

)(
r

k − j − i

)

=
k∑

j=0

(
n

k − j

)
=

k∑
j=0

(
n

j

)
= σ(n, k)

Similarly,

k∑
i=0

(
n − r

i

)
δ(r, k − i) =

k∑
i=0

(
n − r

i

) �(k−i)/2�∑
j=0

(−1)jσ(r, k − i − 2j)

=
k∑

i=0

�(k−i)/2�∑
j=0

(−1)j

(
n − r

i

)
σ(r, k − 2j − i)

=
�k/2�∑
j=0

(−1)j

k−2j∑
i=0

(
n − r

i

)
σ(r, k − 2j − i)

=
�k/2�∑
j=0

(−1)jσ(n, k − 2j)

= δ(n, k)

Lemma 3.2. For any 0 ≤ k ≤ n,

δ(n, k) =
�k/4�∑
i=0

(
n

k − 4i

)
+

�(k−1)/4�∑
i=0

(
n

k − 1 − 4i

)
.

In particular,

δ(n, n) =
�n/4�∑
i=0

(
n

n − 4i

)
+

�(n−1)/4�∑
i=0

(
n

n − 1 − 4i

)
and

δ(n, n − 1) =
�(n−1)/4�∑

i=0

(
n

n − 1 − 4i

)
+

�(n−2)/4�∑
i=0

(
n

n − 2 − 4i

)

18 J. Ding, T.J. Hodges, and V. Kruglov

Proof.

δ(n, k) =
�k/2�∑
i=0

(−1)iσ(n, k − 2i)

= σ(n, k) − σ(n, k − 2) + σ(n, k − 4) − · · · ± σ(n, k − 2�k/2�)

=
(

n

k

)
+

(
n

k − 1

)
+

(
n

k − 4

)
+

(
n

k − 5

)
+

(
n

k − 8

)
+

(
n

k − 9

)
+ . . .

=
(

n

k

)
+

(
n

k − 4

)
+

(
n

k − 8

)
+ · · · +

(
n

k − 1

)
+

(
n

k − 5

)
+ . . .

=
�k/4�∑
i=0

(
n

k − 4i

)
+

�(k−1)/4�∑
i=0

(
n

k − 1 − 4i

)
Lemma 3.3.

�n/4�∑
i=0

(
n

4i

)
=

1
2

(
2n−1 + 2n/2 cos

nπ

4

)
�(n−1)/4�∑

i=0

(
n

4i + 1

)
=

1
2

(
2n−1 + 2n/2 sin

nπ

4

)
�(n−2)/4�∑

i=0

(
n

4i + 2

)
=

1
2

(
2n−1 − 2n/2 cos

nπ

4

)
�(n−3)/4�∑

i=0

(
n

4i + 3

)
=

1
2

(
2n−1 − 2n/2 sin

nπ

4

)
Proof. See [15, 0.153].

Define

ε(k) = cos
(

kπ

2

)
+ sin

(
kπ

2

)
Lemma 3.4. For any positive integer n,

1. δ(n, n) = 2n−1 + ε(n/2) 2
n
2 −1

2. δ(n, n − 1) = 2n−1 + ε(n/2 − 1) 2
n
2 −1

Proof. For part (1) observe that

δ(n, n) =
�n/4�∑
i=0

(
n

n − 4i

)
+

�(n−1)/4�∑
i=0

(
n

n − 1 − 4i

)

=
�n/4�∑
i=0

(
n

4i

)
+

�(n−1)/4�∑
i=0

(
n

4i + 1

)
= 2n−1 +

[
cos

nπ

4
+ sin

nπ

4

]
2n/2

= 2n−1 + ε(n/2) 2n/2

Growth of the Ideal Generated by a Quadratic Boolean Function 19

Similarly for part (2),

δ(n, n − 1) =
�(n−1)/4�∑

i=0

(
n

n − 1 − 4i

)
+

�(n−2)/4�∑
i=0

(
n

n − 2 − 4i

)

=
�(n−1)/4�∑

i=0

(
n

4i + 1

)
+

�(n−2)/4�∑
i=0

(
n

4i + 2

)
= 2n−1 +

[
sin

nπ

4
− cos

nπ

4

]
2n/2

= 2n−1 +
[
cos

(n − 2)π
4

+ sin
(n − 2)π

4

]
2n/2

= 2n−1 + ε(n/2 − 1) 2n/2

4 Equivalence, Rank and Type

The dimension of Akλ is not the same for all quadratic elements λ. However
it is obviously invariant under any automorphism that preserves degree. Inside
the group of all automorphisms of A we have the subgroup of automorphisms
that preserve degree; that is, the subgroup of all automorphisms φ such that
φ(A1) = A1. These are the affine automorphisms. We say that two elements
of λ, λ′ ∈ A are equivalent if there exist an affine automorphism φ such that
φ(λ) = λ′.

Definition 4.1. Let λ ∈ A. We define the rank of λ to be the smallest positive
integer r such that λ lies in a subalgebra generated by r linear elements. That is
the smallest r such that there exists
1, . . . ,
r ∈ A1 with λ ∈ F [
1, . . . ,
r].

It is clear that the rank of an element is invariant under an affine automorphism.
In general the set of elements of a given rank and degree is a union of a number
of different equivalence classes. For quadratic elements there are two equivalence
classes for even rank and one for odd rank.

Theorem 4.2. Let λ ∈ A be a quadratic element of rank r.

1. If r is even, then λ is either equivalent to x1x2 + · · ·+xr−1xr or x1x2 + · · ·+
xr−1xr + 1. Moreover these two elements are not equivalent.

2. If r is odd, then λ is equivalent to x1x2 + · · · + xr−2xr−1 + xr.

Proof. This follows from the classification of quadratic elements in the polyno-
mial ring given in [17].

Thus it suffices to calculate dim Akλ for the elements listed in the theorem. We
begin with the maximal rank case which is the simplest.

20 J. Ding, T.J. Hodges, and V. Kruglov

5 Even Maximal Rank

The calculation of dim Akλ in [22] uses the exact sequence:

0 −→ Ak ∩ A(λ + 1) −→ Ak −→ Akλ −→ 0

where the map from Ak to Akλ is just multiplication by λ. The kernel of this
map is the intersection of Ann λ = {b ∈ A | bλ = 0} (the annihilator of λ) with
Ak. It is well-known and easily verified that Ann λ = A(λ + 1), so the kernel is
Ak∩A(λ+1), yielding the exact sequence above. The kernel Ak∩A(λ+1) clearly
contains Ak−2(λ+1). In order to apply induction we would like Ak ∩A(λ+1) =
Ak−2(λ + 1). While this often holds, it is not always true. For instance, note
that, for r even,

(x1 + 1)(x3 + 1) . . . (xr−1 + 1)(x1x2 + · · · + xr−1xr) = 0

so that (x1 + 1)(x3 + 1) . . . (xr−1 + 1) ∈ Ar/2 ∩ Ann(x1x2 + · · · + xr−1xr) =
Ar/2∩A(x1x2+· · ·+xr−1xr+1) but (x1+1)(x3+1) . . . (xr−1+1) �∈ Ar/2−2(x1x2+
· · ·+xr−1xr +1). It turns out that these elements are the principal obstructions
to the above equality when r = n.

Theorem 5.1. Suppose that n is an even positive integer and suppose that λ =
x1x2 + · · · + xn−1xn. Then

1. Ak ∩ A(λ + 1) = Ak−2(λ + 1) for all 0 ≤ k < n/2 and n/2 + 2 ≤ k ≤ n + 2
2. Ak ∩ Aλ = Ak−2λ for all 0 ≤ k ≤ n + 2.

Proof. (1) It is clear that Ak−2(λ+1) ⊆ Ak ∩A(λ+1). Thus it suffices to prove
that Ak ∩A(λ+1) ⊆ Ak−2(λ+1) for 0 ≤ k < n/2 and n/2+2 ≤ k ≤ n+2. Note
that the two extreme cases are easily seen to be true. Since A = An = An+2,
An+2 ∩ A(λ + 1) = A ∩ A(λ + 1) = A(λ + 1) = An(λ + 1). On the other
hand, A−2 = 0 and A0 = F . Since λ + 1 is not a unit (because λ(λ + 1) = 0),
A0 ∩ A(λ + 1) = F ∩ A(λ + 1) = 0 = A−2(λ + 1).

We proceed by induction on n. Consider the case when n = 2 and λ = x1x2. It
remains to show that A3∩A(λ+1) = A1(λ+1); that is, that A(λ+1) = A1(λ+1).
It is easy to verify directly that {x1x2 + 1, x1x2 + x1, x1x2 + x2} forms a basis
for A(λ + 1) and that this basis is contained in A1(λ + 1).

We now assume the result is true for n−2 variables and deduce that it is true
for n variables. Now let A′ = F [x3, x4, . . . , xn] and λ′ = x3x4 + · · · + xn−1xn

and assume that the assertion is true for λ′ and A′. Note that A is a free A′-
module with basis {1, x1, x2, x1x2}. Thus an arbitrary element of A is of the
form a = a′

0 + a′
1x1 + a′

2x2 + a′
3x1x2, where a′

i ∈ A′. Since x1x2 = λ + λ′ and
λ(λ + 1) = 0 we see that x1x2(λ + 1) = λ′(λ + 1) and so a(λ + 1) = ã(λ + 1)
where ã = (a′

0 + a′
3λ

′) + a′
1x1 + a′

2x2. Hence an arbitrary element of A(λ + 1) is
of the form a(λ + 1) where a = a′

0 + a′
1x1 + a′

2x2 for some a′
i ∈ A′. Suppose that

a(λ + 1) ∈ Ak. Now

a(λ + 1) = (a′
0 + a′

1x1 + a′
2x2)(x1x2 + λ′ + 1)

= a′
0(λ

′ + 1) + a′
1(λ

′ + 1)x1 + a′
2(λ

′ + 1))x2 + (a′
0 + a′

1 + a′
2)x1x2.

Growth of the Ideal Generated by a Quadratic Boolean Function 21

Because of the linear independence of the elements {1, x1, x2, x1x2} over A′ each
of the summands must also lie in Ak. Hence a′

0(λ
′+1) ∈ Ak; a′

1(λ
′+1), a′

2(λ
′+1) ∈

Ak−1 and a′
0 + a′

1 + a′
2 ∈ A′

k−2.
Suppose that 1 ≤ k < n/2. Then 0 ≤ k − 1 < n/2 − 1 = (n − 2)/2. Hence by

induction, A′
k−1 ∩A′(λ′ +1)) = A′

k−3(λ
′ +1). So there exist b′1, b′2 ∈ A′

k−3, such
that a′

1(λ
′+1) = b′1(λ

′+1) and a′
2(λ

′+1) = b′2(λ
′+1). Let b′0 = a′

0+a′
1+a′

2+b′1+b′2.
Then b′0 ∈ A′

k−2 since a′
0 + a′

1 + a′
2 ∈ A′

k−2 and b′1 + b′2 ∈ A′
k−3. Moreover

b′0(λ′ + 1) = a′
0(λ′ + 1). Now define b = b′0 + b′1x1 + b′2x2. Then, b ∈ Ak−2 and

b(λ + 1) = b′0(λ
′ + 1) + b′1(λ

′ + 1)x1 + b′2(λ
′ + 1))x2 + (b′0 + b′1 + b′2)x1x2

= a′
0(λ

′ + 1) + a′
1(λ

′ + 1)x1 + a′
2(λ

′ + 1))x2 + (a′
0 + a′

1 + a′
2)x1x2.

= a(λ + 1)

Hence a(λ + 1) ∈ Ak−2(λ + 1). Thus Ak ∩A(λ + 1) ⊆ Ak−2(λ + 1), as required.
If on the other hand n/2 + 2 ≤ k ≤ n + 1, then (n − 2)/2 = n/2 − 1 ≤

k − 1 ≤ n = (n − 2)/2 + 2. Again we may apply the induction hypothesis to
deduce that A′

k−1 ∩ A′(λ′ + 1)) = A′
k−3(λ

′ + 1). The argument of the previous
paragraph can be repeated verbatim to deduce that there exists a b ∈ Ak−2 such
that b(λ+1) = a(λ+1). Thus Ak∩A(λ+1) ⊆ Ak−2(λ+1) if n/2+2 ≤ k ≤ n+2.

(2) A similar argument proves the second part of the theorem. We need to
show that Ak ∩A(λ) ⊆ Ak−2(λ) for 0 ≤ k ≤ n+2. the cases k = 0 and k = n+2
are easy to see directly just as in part (1).

The key difference lies in the base case n = 2. Here λ = x1x2, so x1λ = λ and
x2λ = λ. So Aλ = A0λ. Thus A0∩Aλ = 0 = A−2λ = 0, A1∩Aλ = 0 = A−1λ = 0,
A2 ∩ Aλ = A0λ, A3 ∩ Aλ = A0λ = A1λ. Thus the result is true when n = 2.

We now assume the result is true for n−2 variables and deduce that it is true
for n variables. Suppose that aλ ∈ Ak. Then a = a′

0+a′
1x1+a′

2x2+a′
3x1x2, where

a′
i ∈ A′. Since x1x2 + λ′ = λ, and λ(λ + 1) = 0, we have that x1x2λ = (λ′ + 1)λ.

hence aλ = [a′
0 + a3(λ′ + 1)] + a′

1x1 + a′
2x2. hence we may assume that a is of

the form a = a′
0 + a′

1x1 + a′
2x2. Thus

aλ = (a′
0 + a′

1x1 + a′
2x2)(x1x2 + λ′)

= a′
0λ

′ + a′
1λ

′x1 + a′
2λ

′)x2 + (a′
0 + a′

1 + a′
2)x1x2.

We deduce that a′
0(λ

′ +1) ∈ Ak; a′
1(λ

′ +1), a′
2(λ

′ +1) ∈ Ak−1 and a′
0 +a′

1 +a′
2 ∈

A′
k−2. We can then use the induction hypothesis and the argument above to

deduce that there exists a b ∈ Ak−2 such that aλ = bλ. Hence Ak∩Aλ = Ak−2λ,
as required.

Lemma 5.2. Let n be even and let λ = x1x2 + x3x4 + · · · + xn−1xn. Then,

dim Aλ = 2n−1 − 2
n
2 −1 and dim A(λ + 1) = 2n−1 + 2

n
2 −1.

Proof. Let Z(λ) be the set of zeros of λ. Then |Z(λ)| = dim A/Aλ. it is well-
known that |Z(λ)| = 2n−1 +2

n
2 −1, [17, Theorem 6.32]. Hence dim Aλ = dim A−

|Z(λ)| = 2n − (2n−1 + 2
n
2 −1) = 2n−1 − 2

n
2 −1. The second assertion follows from

the fact that |Z(λ)| = 2n−1 − 2
n
2 −1.

22 J. Ding, T.J. Hodges, and V. Kruglov

Theorem 5.3. Suppose that n is even and let λ = x1x2 + · · · + xn−1xn. Then

dim Akλ =

{
δ(n, k), if k < n/2
δ(n, k) − (ε(k − n/2) + 1)2

n
2 −1, if n/2 ≤ k ≤ n

dim Ak(λ + 1) =

{
δ(n, k), if k < n/2 + 2
δ(n, k) − (ε(k − n/2)− 1)2

n
2 −1, if n/2 ≤ k ≤ n

Proof. We first prove the assertion that dim Akλ = δ(n, k) = dim Ak(λ + 1) for
0 ≤ k < n/2 by induction on k. We need two base cases, k = 0 and k = 1. When
k = 0, Ak = F , and so it is clear that dim A0λ = dim A0(λ + 1) = 1 = δ(n, 1).
When k = 1 and n > 2, the maps from A1 to A1λ and A1(λ+1) are both bijective
by Theorem 5.1. So dim A1λ = dim A1(λ + 1) = dim A1 = σ(n, 1) = δ(n, 1).

Now suppose 1 < k < n/2. Since Ann λ = A(λ + 1) and Ak ∩ (λ + 1) =
Ak−2(λ + 1) we have the exact sequence

0 −→ Ak−2(λ + 1) −→ Ak −→ Akλ −→ 0

Applying the inductive hypothesis yields dim Akλ = dim Ak−dim Ak−2(λ+1) =
σ(n, k)−δ(n, k−2) = δ(n, k), as desired. A similar argument works for Ak(λ+1).

We now prove that for n/2 ≤ k ≤ n, dim Akλ = δ(n, k)−(ε(k−n/2)+1)2
n
2 −1

and dim Ak(λ+1) = δ(n, k)−(ε(k−n/2)−1)2
n
2 −1 by reverse induction using k =

n and k = n−1 as base cases. Consider the case k = n. Since An = A, dim Anλ =
2n−1 − 2

n
2 −1 = δ(n, n) − ε(n/2) 2n/2 − 2

n
2 −1 = δ(n, n) − (ε(n/2) + 1)2

n
2 −1, as

required. Similarly, dim An(λ+1) = 2n−1+2
n
2 −1 = δ(n, n)−ε(n/2) 2n/2+2

n
2 −1 =

δ(n, n) − (ε(n/2)− 1)2
n
2 −1.

Now consider the case k = n− 1. Observe that An−1λ ⊃ An−2λ = An ∩Aλ =
Aλ. So dim An−1λ = dim Anλ. However, using Lemma 3.4 we have that

δ(n, n − 1)−(ε(n − 1 − n/2) + 1)2
n
2 −1

= (2n−1 + ε(n/2 − 1)2
n
2 −1) − (ε(n/2 − 1) + 1)2

n
2 −1

= 2n−1 − 2
n
2 −1 = dim Aλ

A similar argument proves that An−1(λ + 1) = A(λ + 1) and that the formula
holds in this case also.

We now assume the formula holds for k + 2 and prove that it holds for k,
provided that k ≥ n/2 + 2. Again we have the short exact sequence

0 −→ Akλ −→ Ak+2 −→ Ak+2(λ + 1) −→ 0

So that

dim Akλ = dim Ak+2 − dim Ak+2(λ + 1)

= σ(n, k + 2) − (δ(n, k + 2) − (ε(k + 2 − n/2) − 1)2
n
2 −1)

= δ(n, k) − (ε(k − n/2) + 1)2
n
2 −1

Growth of the Ideal Generated by a Quadratic Boolean Function 23

since ε(k + 2) = −ε(k). Similarly the exact sequence

0 −→ Ak(λ + 1) −→ Ak+2 −→ Ak+2λ −→ 0

yields

dim Ak(λ + 1) = dim Ak+2 − dim Ak+2λ

= σ(n, k + 2) − (δ(n, k + 2) − (ε(k + 2 − n/2) + 1)2
n
2 −1)

= δ(n, k) − ε(k − n/2)− 1)2
n
2 −1

as required.
It remains to deal with the cases when k = n/2 and k = n/2 + 1. Using the

argument from the upward induction we get in these cases that

dim Ak(λ + 1) = dim Ak − dim Ak(λ) = δ(n, k) = δ(n, k) − ε(k − n/2)− 1)2
n
2 −1

since ε(0) = ε(1) = 1. The downward induction argument above extends to show
that dim Ak(λ) = dim Ak+2 − dim Ak+2(λ + 1) = δ(n, k)− (ε(k − n/2)+ 1)2

n
2 −1

in these cases.

Note that the values of ε(k − n/2) + 1 form a sequence of the form 0, 0, 2, 2,
0, 0, 2, . . . and those of ε(k−n/2)−1 form the sequence 0, 0,−2,−2, 0, 0,−2,
Thus in the first case, when k > rankλ/2, the dimension of Akλ varies at or
below δ(n, k), whereas in the second case it varies at or above δ(n, k). It is
asserted in [22,23] that dim Akλ ≤ δ(n, k) whenever k− 2 is less than the degree
of regularity. This theorem shows that this assertion is false. In fact it is clear
from this result that no such universal inequality is likely to hold in general.

6 Odd Maximal Rank

If n is odd and λ is quadratic of rank n, then as observed above, λ ∼ x1x2 +
· · · + xn−2xn−1 + xn.

Theorem 6.1. Suppose that n is odd let λ = x1x2 + · · ·+xn−2xn−1 +xn. Then

Ak ∩ Aλ = Ak−2λ

for k �= (n + 1)/2.

Proof. The proof is very similar to the proof of Theorem 5.1. Again, it is clear
that Ak−2λ ⊆ Ak ∩ Aλ. Using induction on n, we prove that Ak ∩ Aλ ⊆ Ak−2λ
for k �= (n + 1)/2

Consider the case when n = 3 and λ = x1x2 + x3. It is easily verified by hand
that A1 ∩ Aλ = {0} and that Aλ = A1λ so that A3 ∩ Aλ = A1λ.

Now suppose that n ≥ 5. Let A′ = F [x3, x4, . . . , xn] and λ′ = x3x4 + · · · +
xn−2xn−1 +xn and assume the assertion true for λ′ and A′. As above, note that

24 J. Ding, T.J. Hodges, and V. Kruglov

A is a free A′-module with basis {1, x1, x2, x1x2}. Again an arbitrary element of
Aλ is of the form aλ where a = a′

0 + a′
1x1 + a′

2x2 for some a′
i ∈ A′.

Let aλ ∈ Ak where a is as above. Now

aλ = (a′
0 + a′

1x1 + a′
2x2)(x1x2 + λ′)

= a′
0λ

′ + a′
1λ

′x1 + a′
2λ

′x2 + (a′
0 + a′

1 + a′
2)x1x2.

Because of the linear independence of the elements {1, x1, x2, x1x2} over A′ each
of the summands must also lie in Ak. Hence a′

0λ
′ ∈ Ak; a′

1λ
′, a′

2λ
′ ∈ Ak−1 and

a′
0 + a′

1 + a′
2 ∈ A′

k−2.
Suppose that k �= (n+1)/2. Then k−1 �= ((n−2)+1)/2. Hence by induction,

A′
k−1 ∩ A′λ′ = A′

k−3λ
′. So there exist b′1, b′2 ∈ A′

k−3, such that a′
1λ

′ = b′1λ
′ and

a′
2λ

′ = b′2λ′. Let b′0 = a′
0 +a′

1 +a′
2 + b′1 + b′2. Then b′0 ∈ A′

k−2 since a′
0 +a′

1 +a′
2 ∈

A′
k−2 and b′1+b′2 ∈ A′

k−3. Moreover b′0λ
′ = a′

0λ
′. Now define b = b′0+b′1x1 +b′2x2.

Then, b ∈ Ak−2 and

bλ = b′0λ
′ + b′1λ

′x1 + b′2λ
′x2 + (b′0 + b′1 + b′2)x1x2

= a′
0λ

′ + a′
1λ

′x1 + a′
2λ

′x2 + (a′
0 + a′

1 + a′
2)x1x2.

= aλ

Thus Ak ∩ Aλ ⊆ Ak−2λ as required.

Theorem 6.2. Suppose that n is odd and let λ = x1x2 + · · · + xn−2xn−1 + xn.
Then

dim Akλ =

{
δ(n, k), if k < (n + 1)/2
δ(n, k) − ε(k − n/2)2

n
2 −1, if k ≥ (n + 1)2

Proof. Since all quadratic elements of A of maximal rank are affine equivalent,
the assertion of the theorem is equivalent to the assertion that the result holds
for all such elements. In order for the induction to work correctly (that is, to
include both the cases of dim Akλ and dim Ak(λ + 1)), we need to work in the
framework of this more general assertion. The proof that dim Akλ = δ(n, k) if
k < (n + 1)/2 proceeds exactly as for Theorem 5.3 using Theorem 6.1 in place
of Theorem 5.1.

It remains to prove that for (n + 1)/2 ≤ k ≤ n, dim Akλ = δ(n, k) − ε(k −
n/2)2

n
2 −1. We again prove the result by reverse induction using k = n and

k = n − 1 as base cases. For the case k = n, note first that by the symmetry of
λ and λ + 1, dim Anλ = 2n/2. Moreover,

δ(n, k) − ε(k − n/2)2
n
2 −1 = δ(n, n) − ε(n/2)2

n
2 −1 = 2n/2

by Lemma 3.4. Now consider the case k = n−1 and assume that n > 3. Observe
that An−1λ = An+1 ∩ Aλ = Aλ. So dim An−1λ = dim Anλ. On the other hand,
using Lemma 3.4 we have that

δ(n, n − 1)−ε(n − 1 − n/2)2
n
2 −1

= (2n−1 + ε(n/2 − 1)2
n
2 −1) − ε(n/2 − 1)2

n
2 −1

= 2n−1 = dim Aλ

So the result holds in this case also.

Growth of the Ideal Generated by a Quadratic Boolean Function 25

We now assume the formula holds for k + 2 and prove that it holds for k,
provided that (n + 1)/2 < k < n − 2. The short exact sequence

0 −→ Akλ −→ Ak+2 −→ Ak+2(λ + 1) −→ 0

implies that

dim Akλ = dim Ak+2 − dim Ak+2(λ + 1)

= σ(n, k + 2) − (δ(n, k + 2) − ε(k + 2 − n/2)2
n
2 −1)

= δ(n, k) − ε(k − n/2)2
n
2 −1

since ε(k + 2) = −ε(k).

7 General Case

Now consider a quadratic element λ ∈ A of arbitrary rank r ≤ n. Without loss
of generality we assume that λ ∈ A′ = F [x1, . . . , xr] and that λ has one of the
three canonical forms with respect to the variables x1, . . . , xr . The dimension of
Akλ can be computed from the dimensions of the A′

k′λ. Recall that we make the
convention that Aj = 0 for j < 0,

Theorem 7.1

dim Akλ =
k∑

i=0

(
n − r

i

)
dim A′

k−iλ

Proof Let S = {xr+1, . . . , xn}, let P be the power set of S. For T ∈ P set xT =∏
i∈T xi. Then the monomials xT form a basis for A as a free A′-module. Let Vj

be the span of the monomials xT of degree j. Then Ak = ⊕n−r
i=0 A′

k−iVi and Ak =
⊕k

i=0A
′
k−iλVi and hence dim Akλ =

∑k
i=0 dim A′

k−iλVi =
∑k

i=0

(
n−r

i

)
dim A′

k−iλ.

Corollary 7.2. If k < rankλ/2, then dim Akλ = δ(n, k).

Proof. From Theorem 7.1 we have that dim Akλ =
∑k

i=0

(
n−r

i

)
dim A′

k−iλ. Since
k−i ≤ k < rankλ by hypothesis, we can conclude using Theorem 5.3 or Theorem
6.2 that dim A′

k−iλ = δ(r, k − i). Hence

dim Akλ =
k∑

i=0

(
n − r

i

)
dim A′

k−iλ =
k∑

i=0

(
n − r

i

)
δ(r, k − i) = δ(n, k)

by Lemma 3.1.

Corollary 7.3. Let λ be a quadratic element of rank r, then

| dim Akλ − δ(n, k)| ≤ 2n− r
2

26 J. Ding, T.J. Hodges, and V. Kruglov

Proof. From Theorem 7.1 and Theorems 5.3 and 6.2 we have that

| dim Akλ − δ(n, k)| =

∣∣∣∣∣
k∑

i=0

(
n − r

i

)
dim A′

k−iλ − δ(n, k)

∣∣∣∣∣
≤

∣∣∣∣∣
k∑

i=0

(
n − r

i

)(
δ(r, k − i) + 2

r
2
)− δ(n, k)

∣∣∣∣∣
=

∣∣∣∣∣δ(n, k) +
k∑

i=0

(
n − r

i

)(
2

r
2
)− δ(n, k)

∣∣∣∣∣
≤ 2n−r2

r
2 = 2n− r

2

8 Conclusion

Our results give insight on the validity of [23, Corollary 4]. In particular we
show that the formula dim Akλ = δ(n, k) is true for any λ provided that k is less
than (rankλ)/2. Furthermore, we see that the key conditions for the formula
to hold involve both the rank and the equivalence class of the element λ. We
proved that for large values of k, the value of dim Ak will oscillate above or below
δ(n, k), depending on the equivalence type of λ. Thus no inequality of the form
dim Akλ ≥ δ(n, k) or dim Akλ ≤ δ(n, k) can hold universally.

References

1. Afzal, M., Masood, A.: Algebraic Cryptanalysis of A NLFSR Based Stream Ci-
pher. In: The 3 rd International Conference on Information and Communication
Technologies: From Theory to Applications, ICTTA 2008 (2008)

2. Albrecht, M., Cid, C.: Algebraic Techniques in Differential Cryptanalysis. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 193–208. Springer, Heidelberg
(2009)

3. Armknecht, F., Krause, M.: Algebraic Attacks on Combiners with Memory. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer, Heidelberg
(2003)

4. Ars, G., Faugre, J.C., Imai, H., Kawazoe, M., Sugita, M.: Comparison Between
XL and Grobner Basis Algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 338–353. Springer, Heidelberg (2004)

5. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic Expansion of the
Degree of Regularity for Semi-Regular Systems of Equations. In: MEGA 2005,
Sardinia, Italy (2005)

6. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal, University of Innsbruck,
PhD thesis (1965)

7. Cid, C., Leurent, G.: An Analysis of the XSL Algorithm. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 333–352. Springer, Heidelberg (2005)

Growth of the Ideal Generated by a Quadratic Boolean Function 27

8. Courtois, N.T., Klimov, A.B., Patarin, J., Shamir, A.: Efficient Algorithms for
Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel,
B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg
(2000)

9. Courtois, N., Patarin, J.: About the XL Algorithm over GF(2). In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003)

10. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 267–287. Springer, Heidelberg (2002)

11. Diem, C.: The XL-Algorithm and a Conjecture from Commutative Algebra. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 323–337. Springer, Heidelberg
(2004)

12. Ding, J., Gower, J., Schmidt, D.: Multivariate Public-Key Cryptosystems. In: Ad-
vances in Information Security. Springer, Heidelberg (2006) ISBN 0-387-32229-9

13. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4).
J. Pure Appl. Algebra 139(1-3), 61–88 (1999)

14. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, pp. 75–83. ACM, New York (2002) (elec-
tronic)

15. Gradsteyn, S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn.
Academic Press, San Diego (2007)

16. Hu, Y.-H., Chou, C.-Y., Wang, L.-C., Lai, F.: Cryptanalysis of Variants of UOV.
In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006.
LNCS, vol. 4176, pp. 161–170. Springer, Heidelberg (2006)

17. Lidl, R., Niederreiter, H.: Finite Fields. In: Encyclopedia of Mathematics and its
applications, p. 20. Cambridge University Press, Cambridge (1997)

18. Moh, T.T.: On The Method of “XL” And Its Inefficiency to TTM, IACR eprint
server (2001), http://eprint.iacr.org/2001/047

19. Rønjom, S., Raddum, H.: Number of Linearly Independent Equations Generated
by XL. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds.) SETA 2008.
LNCS, vol. 5203, pp. 239–251. Springer, Heidelberg (2008)

20. Semaev, I.: On solving sparse algebraic equations over finite fields. Journal of De-
signs, Codes and Cryptography 49(1-3), 47–60 (2008)

21. Wong, K.K.-H., Colbert, B., Batten, L., Al-Hinai, S.: Algebraic Attacks on Clock-
Controlled Cascade Ciphers. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 32–47. Springer, Heidelberg (2006)

22. Yang, B.-Y., Chen, J.-M.: Theoretical Analysis of XL over Small Fields. In:
Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108,
pp. 277–288. Springer, Heidelberg (2004)

23. Yang, B.-Y., Chen, J.-M., Courtois, N.: On Asymptotic Security Estimates in
XL and Grobner Bases-Related Algebraic Cryptanalysis. In: López, J., Qing,
S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–413. Springer,
Heidelberg (2004)

24. Yang, B.-Y., Chen, J.-M.: All in the XL Family: Theory and Practice. In: Park,
C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg
(2005)

25. Yang, B.-Y., Chen, C.-H., Bernstein, D.J., Chen, J.-M.: Analysis of QUAD. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 290–308. Springer, Heidelberg
(2007)

http://eprint.iacr.org/2001/047

Mutant Zhuang-Zi Algorithm

Jintai Ding1,3,� and Dieter S. Schmidt2

1 Department of Mathematical Sciences
2 Department of Computer Science

University of Cincinnati
Cincinnati, OH 45220, USA

3 Department of Mathematics
Southern Chinese University of Technology

ding@math.uc.edu, dieter.schmidt@uc.edu

Abstract. In this paper we present a new variant of the Zhuang-Zi algo-
rithm, which solves multivariate polynomial equations over a finite field
by converting it into a single variable problem over a large extension
field. The improvement is based on the newly developed concept of mu-
tant in solving multivariate equations.

Keywords: multivariate polynomials, Hidden Field Equation, poly-
nomial roots, mutant.

1 Introduction

Solving polynomial equations of single or multiple variables has always been
a central problem in mathematics. This comes from our desire to understand
what is going on with those equations, but more fundamentally it comes from
the ubiquitous roles these simple but fundamental problems play in all branches
of science and engineering. Though, Babylonians found the first algebraic solu-
tion to a single variable quadratic equation [1] more than 3500 years ago, the
progress in this area has been very slow. The next successes came 3000 years
later with Ferro solving the single variable cubic equation and Ferrari solving the
single variable quartic in the 16th century. Galois’ theory put an end to finding
algebraic formulas for higher order single variable equations.

The situation is much harder in the multivariate case. The real great success
came with the Gröbner basis method [2], inspired by ideas of modern algebraic
geometry. Recently, a new area of solving multivariate equations over a finite
field has attracted a lot of attention, which is inspired by the appearance of
multivariate public key cryptography [3]. Here the public key is a set of quadratic
polynomials, and in the so called algebraic cryptanalysis one tries to break this
cryptosystem by solving a set of multivariate polynomial equations.

Solving a generic set of nonlinear equations over a finite field is not an easy
problem, since we know that solving a set of multivariate polynomial equations
� The first author was supported by grants from NSF, NSF China and the Taft Foun-

dation of the University of Cincinnati.

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 28–40, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Mutant Zhuang-Zi Algorithm 29

over a finite field is, in general, an NP-complete problem [4]. However, much effort
has been devoted to search for new methods for solving multivariate polynomial
equations over a finite field, along the line of Gröbner bases. Examples include
XL [5], the enhanced Gröbner bases methods F4 and F5 of Faugère [6,7], the
new mutant XL algorithms [8,9,10,11] and the Zhuang-Zi (ZZ) algorithm [12].

Among these algorithms the ZZ algorithm is totally different, since it converts
the problem of solving a set of multivariate polynomial equations into solving
a polynomial of a single variable over a large extension field. This can be done
since any finite n–dimensional vector space over a finite field can be identified
as a large finite field of degree n extension over the original finite field. The ZZ
algorithm uses the same method as the XL algorithm, except that we try to
produce low degree single variable polynomials. Then we solve the low degree
polynomial by the very efficient Berlekamp algorithm.

In order to describe the degeneration of multivariate polynomial systems while
they are being solved the concept of mutant was introduced recently. It was very
successfully applied to improve the XL algorithms [8,9,10,11]. In this paper we
will apply the same idea to the ZZ algorithm to produce a new more efficient
version of it, which we call the mutant ZZ algorithm.

2 Background

Let k be a finite field with q elements and suppose we have m polynomials
f0, f1, . . . , fm−1 ∈ k[x0, x1, . . . , xn−1]. We wish to find all (a0, a1, . . . , an−1) ∈ kn,
such that

f0(a0, a1, . . . , an−1) = 0
f1(a0, a1, . . . , an−1) = 0

...
fm−1(a0, a1, . . . , an−1) = 0

(1)

We may as well work in the ring

k[x0, x1, . . . , xn−1]/(xq
0 − x0, x

q
1 − x1, . . . , x

q
n−1 − xn−1),

though for convenience we will abuse notation and write k[x0, x1, . . . , xn−1].
The key idea of our new algorithm is to shift perspectives from the space of
polynomials k[x0, x1, . . . , xn−1] with coefficients in the small field k, to a space
of polynomials K[X] with coefficients in some suitably chosen extension field K.

To simplify matters, let us assume that m = n. Choose any irreducible polyno-
mial g(y) ∈ k[y] of degree n. Then K = k[y]/(g(y)) is a degree n field extension
of k. Let φ be the standard k-linear map that identifies K with the n-dimensional
vector space kn, i.e., φ : kn −→ K, defined by

φ(a0, a1, . . . , an−1) = a0 + a1y + · · · + an−1y
n−1 (2)

Let f : kn −→ kn be the polynomial map defined by f = (f0, f1, . . . , fn−1). We
can lift f up to the extension field K using φ to create a map F : K −→ K
defined by

F = φ ◦ f ◦ φ−1.

30 J. Ding and D.S. Schmidt

Using the Lagrangian interpolation formula, we can think of F as a polynomial
in K[X], where X is an intermediate. In fact, F has a unique representation in
the quotient space K[X]/(Xqn − X). For any given f , the corresponding F can
be calculated by solving a set of linear equations. The following theorem tells us
the exact form of this representation.

Theorem 1. Using the notation as defined above, for a linear polynomial map
f = (f0, f1, . . . , fn−1) we have

F (X) =
n−1∑
i=0

βiX
qi

+ α mod (Xqn − X),

for some βi, α ∈ K. If f is a quadratic polynomial map, then

F (X) =
n−1∑
i=0

n−1∑
j=i

γijX
qi+qj

+
n−1∑
i=0

βiX
qi

+ α mod (Xqn − X),

for some γij , βi, α ∈ K. Representations for higher order polynomial maps are
similarly described. In the case of q = 2, the formulas are slightly different.

In this paper, we will identify the map F with its corresponding representation
given in Theorem 1.

It is now clear that we can move freely between multivariate functions and
single variable functions, and we will do so in order to solve the original system of
equations. This is the basic idea of Matsumoto-Imai, Patarin, Kipnis and Shamir
[13,14,15], and is also the basis of our algorithm. Given a system of equations
such as (1), the basic strategy will be to lift the associated polynomial map f to
the map F in the extension field K. The roots of the representation of F given
in Theorem 1 correspond exactly with the solutions to the original system of
equations defined over k. Once we have the roots in K, we can descend down
to kn with φ−1. It remains to develop techniques for reducing the degree of F ,
which, if successful, will allow us to use efficient algorithms for solving single
variable polynomial equations.

We note a fundamental difference between the ZZ algorithm and others is
that the ZZ algorithm can be used only with finite fields and cannot be used
with fields of characteristic zero, since the lifting from the multivariate system
to a single variable equation works only for a finite field. However, in the case of
finite fields, the ZZ algorithm unifies the two problems of solving single variable
and multivariate polynomial equations into a single problem. This algorithm is
named after Zhuang-Zi, an ancient Chinese philosopher who we believe was one
of the first to propose the idea of shifting from a local view of problems to a
global view in terms of our mathematical interpretation.

The remainder of this paper is organized as follows. We will explain the ba-
sic ZZ algorithm and then our mutant ZZ algorithm. Again, we will present a
toy example in order to show how the algorithm works. We then present more
meaningful examples and conclude with a discussion of future work.

Mutant Zhuang-Zi Algorithm 31

3 The Zhuang-Zi Algorithm

We will start with the standard case of m = n, where we have the same num-
ber of variables and equations. The Zhuang-Zi algorithm takes the polynomi-
als f0, f1, . . . , fn−1 ∈ k[x0, x1, . . . , xn−1] and a positive integer D as its input,
where D is the upper bound on the degree of a polynomial equation which
can be solved efficiently. When successful the algorithm returns all n-tuples
(a0, a1, . . . , an−1) ∈ kn such that fi(a0, a1, . . . , an−1) = 0, for i = 0, 1, . . . , n− 1.

– Step 1: Choose any degree n irreducible polynomial g(y) ∈ k[y] and define
K = k[y]/(g(y)). Let φ : kn −→ K be as defined in (2). Lift the given
f = (f0, f1, . . . , fn−1) to K by F = φ ◦ f ◦φ−1, and compute the polynomial
representation of F (X) modulo Xqn −X . If deg (F (X)) ≤ D, then go to the
last step; otherwise continue to the next step.

– Step 2: Let G = Gal(K/k) be the Galois group of K over k consisting of
the Frobenius maps Gi(X) = Xqi

, for i = 0, 1, . . . , n − 1. Calculate

Fi(X) = Gi ◦ F (X) = F (X)qi

mod (Xqn − X),

for i = 0, 1, . . . , n − 1. Note that F0(X) = F (X).
– Step 3: Let N be the total number of monomials that appear in any Fi(X).

For each Fi(X) create a row vector in KN , where the entries are the co-
efficients of Fi(X) listed in decreasing order, and construct an n × N ma-
trix using these row vectors. Then use Gaussian elimination to produce a
new set of t basis polynomials S = {S0(X), S1(X), . . . , St−1(X)}. In other
words eliminate the monomials in the order of the highest degree first. La-
bel the elements of S so that St−1(X) is the element of lowest degree. If
deg (St−1(X)) ≤ D, then go to the last step; otherwise continue to the next
step.

– Step 4: For each i = 0, 1, . . . , t − 1 and j = 0, 1, . . . , n − 1 compute

Xqj

Si(X) mod (Xqn − X).

Amend these polynomials to S. As before, apply Gaussian elimination to the
matrix associated with this set of polynomials to produce a set S′ of new
basis polynomials. Let S′

t′−1(X) be the polynomial in S′ of minimal degree.
If deg (S′

t′−1(X)) ≤ D, then go to the last step; otherwise replace S with S′

and repeat this step.

– Step 5: At this point we have a polynomial Γ (x) with deg (Γ (x)) ≤ D.
Find the roots of Γ (x) = 0 with a suitable method to obtain a set V =
{α ∈ K |Γ (α) = 0}. The solutions of F (X) = 0 will be the subset {α ∈
V |F (α) = 0}.

Since the complexity of any polynomial root finding method depends on the
degree of the given polynomial and the size of the field, so too does the complexity

32 J. Ding and D.S. Schmidt

of the Zhuang-Zi algorithm. Improvements in the area of polynomial root finding
methods will translate directly into an improvement for the Zhuang-Zi algorithm.
Efficient methods for finding the roots of a polynomial in a finite field exist and
they are described for example in [16,17,18].

Remark 1. The Zhuang-Zi algorithm works also when m �= n. In this case one
has to use the maximum of m and n. When m < n, there are fewer equations
than variables and one simply introduces n − m polynomials identical to 0. If
there are more equations than variables (m > n) then one can simply introduce
m − n fictitious variables xn, . . . , xm−1.

4 The Mutant Zhuang-Zi Algorithm

Definition 1. Let Xd with 0 ≤ d < qn be the standard basis for the function
ring K[X] mod (Xqn − X). For each monomial Xd define a q-weight as the
sum of the coefficients in the q-expansion of the integer d.

The weight of any polynomial in the ring K[X] mod (Xqn−X) is the maximal
weight of its monomials.

For example, if q = 3, the 3-weight of X16 is 1 + 2 + 1 = 4, since

16 = 32 + 2 × 31 + 1,

and the 3-weight of the polynomial X27 + X18 + X16 + X15 + X + 1 is also
4, since the 3-weight of X16 is larger then those of the others. When viewed
together with the Frobenius map the weight represents the degree of the original
polynomials.

Two procedures for reducing a set of polynomials in X is used several times
in the algorithm so that they are defined here in advance:

Definition 2 (Reduce-by-degree(S)). Let S={S0(X), S1(X), . . . , Sn−1(X)}
be a set of polynomials in X. Let N be the total number of monomials that
appear in any element in S. For each element in S, create a row vector in
KN , where the entries are the coefficients of each element listed in decreas-
ing order, and construct an n × N matrix using these row vectors. Then use
Gaussian elimination to produce a new set of t basis polynomials to replace S:
S = {S0(X), S1(X), . . . , St−1(X)}. In other words eliminate the monomials in
the order of the highest degree first. Label the elements of S so that St−1(X) is
the element of lowest degree on return from the procedure.

Definition 3 (Reduce-by-weight(S)). Let S′={S′
0(X), S′

1(X), . . . , S′
n−1(X)}

be a set of polynomials in X. Again, let N be the total number of monomials
that appear in S′. For each element in S′, create a row vector in KN , where the
entries are the coefficients of the elements listed in decreasing order according
to the weight (if the same weight, then by the degree), and construct an n × N
matrix using these row vectors. Then use Gaussian elimination to produce and
return a new set of t basis polynomials S′ = {S′

0(X), S′
1(X), . . . , S′

t−1(X)}. In
other words eliminate the monomials in the order of the weight of the degree
first, then the degree.

Mutant Zhuang-Zi Algorithm 33

We now present the mutant ZZ algorithm. Here we will assume m = n but the
polynomials in the set f = (f0, f1, . . . , fn−1) can have different degrees. We first
select a degree D, such that we can solve a degree D polynomial over a finite
field of size qn efficiently.

– Step 1: Choose any degree n irreducible polynomial g(y) ∈ k[y] and de-
fine K = k[y]/(g(y)). Let φ : kn −→ K be as defined in (2). Define
f = (f0, f1, . . . , fn−1), lift this to K by F = φ ◦ f ◦ φ−1, and compute the
polynomial representation of F (X) modulo Xqn − X . If deg (F (X)) ≤ D,
then go to the last step; otherwise continue to the next step.

– Step 2: Let G = Gal(K/k) be the Galois group of K over k consisting of
the Frobenius maps Gi(X) = Xqi

, for i = 0, 1, . . . , n − 1. Calculate

Fi(X) = Gi ◦ F (X) = F (X)qi

mod (Xqn − X),

for i = 0, 1, . . . , n − 1. Note that F0(X) = F (X).
Create two sets of polynomials S and S′, and both of them consist of
{F0, F1, . . . , Fn−1} at the moment.

– Step 3: Reduce-by-degree(S). If deg (St−1(X)) ≤ D then go to the last step.

– Step 4: Reduce-by-weight(S′). Create a new set R by copying the polyno-
mials in S′. To each polynomial in R assign the index pair (wi, 0), where
wi is the weight of the polynomial, and the second value will be referred as
the multiplication index, denoted by ni. The set R will be called the root
polynomials.
Create a new set of monomials, which consists of the leading terms of S′,
and call this set LT. Let W be the weight of the polynomial in R with lowest
weight plus 1.

– Step 5: Multiply the polynomials Ri of lowest weight by Xqj

and amend
these polynomials to S′ and to S. Change the index of these polynomials in
R to (wi, 1).

– Step 6: Reduce-by-degree(S). If deg (St−1(X)) ≤ D then go to the last step.

– Step 7: Reduce-by-weight(S′). Create a new set of monomials, which con-
sists of all leading terms of S′, and call this set L̄T .
If the number of monomial whose weight is lower than W are the same in
both LT and L̄T , replace LT by L̄T and go to Step 8.
If the number of monomials whose weight is lower than W is different in LT
and in L̄T , pick the polynomials in S′ whose leading terms are the ones with
weight lower than W and whose leading terms do not belong to LT. Amend
these polynomials to the set R with index (weight of this polynomial, 0).

34 J. Ding and D.S. Schmidt

Then replace LT by L̄T , and set W to be the lowest weight of all mutants.
The newly amended polynomials in R are the mutants.

– Step 8: Set W = W + 1. For each root polynomial Ri in R if wi + ni < W ,
compute

XdRi(X) mod (Xqn − X),

where the weight of Xd + wi=W and amend this polynomial to S and S′.
Also increase the multiplication index ni belonging to Ri by 1. Then go to
Step 6.

– Step 9: At this point there exists a polynomial Γ (x) with deg (Γ (x)) ≤
D. Find the roots of Γ (x) = 0 with a suitable method to obtain a set
V = {α ∈ K |Γ (α) = 0}. The solutions of F (X) = 0 will be the subset
{α ∈ V |F (α) = 0}.

5 Examples

We present an illustrative and a toy example to see how the mutant Zhuang-Zi
algorithm works in practice. We then present two non-trivial examples where
Zhuang-Zi succeeds and Gröbner bases fail.

5.1 An Illustrative Example

Let K be the degree 7 extension of GF (2) given by the irreducible polynomial
y7 + y + 1. For the final degree require D = 1. Use

F (X) = X5 + 1 = F0
F 2(X) = X10 + 1 = F1
F 4(X) = X20 + 1 = F2
F 8(X) = X40 + 1 = F3
F 16(X) = X80 + 1 = F4
F 32(X) = X33 + 1 = F5
F 64(X) = X66 + 1 = F6.

For this case, the Gaussian elimination is done already and W = 2. This set also
becomes the root polynomials, each with index pair (2, 0). In Step 5 we add the
following new polynomials of weight 3.

(X5 + 1)X = X6 + X ;
(X5 + 1)X2 = X7 + X2;
(X5 + 1)X4 = X9 + X4;
(X5 + 1)X8 = X13 + X8;
(X5 + 1)X16 = X21 + X16;
(X5 + 1)X32 = X37 + X32;
(X5 + 1)X64 = X69 + X64.

Mutant Zhuang-Zi Algorithm 35

(X10 + 1)X = X11 + X ;
(X10 + 1)X2 = X12 + X2;
(X10 + 1)X4 = X14 + X4;
(X10 + 1)X8 = X18 + X8;
(X10 + 1)X16 = X26 + X16;
(X10 + 1)X32 = X42 + X32;
(X10 + 1)X64 = X74 + X64.

(X20 + 1)X = X21 + X ;
(X20 + 1)X2 = X22 + X2;
(X20 + 1)X4 = X24 + X4;
(X20 + 1)X8 = X28 + X8;
(X20 + 1)X16 = X36 + X16;
(X20 + 1)X32 = X52 + X32;
(X20 + 1)X64 = X84 + X64.

(X40 + 1)X = X41 + X ;
(X40 + 1)X2 = X42 + X2;
(X40 + 1)X4 = X44 + X4;
(X40 + 1)X8 = X48 + X8;
(X40 + 1)X16 = X56 + X16;
(X40 + 1)X32 = X72 + X32;
(X40 + 1)X64 = X104 + X64.

(X80 + 1)X = X81 + X ;
(X80 + 1)X2 = X82 + X2;
(X80 + 1)X4 = X84 + X4;
(X80 + 1)X8 = X88 + X8;
(X80 + 1)X16 = X96 + X16;
(X80 + 1)X32 = X112 + X32;
(X80 + 1)X64 = X17 + X64.

(X33 + 1)X = X34 + X ;
(X33 + 1)X2 = X35 + X2;
(X33 + 1)X4 = X37 + X4;
(X33 + 1)X8 = X41 + X8;
(X33 + 1)X16 = X49 + X16;
(X33 + 1)X32 = X65 + X32;
(X33 + 1)X64 = X97 + X64.

(X66 + 1)X = X67 + X ;
(X66 + 1)X2 = X68 + X2;
(X66 + 1)X4 = X70 + X4;
(X66 + 1)X8 = X74 + X8;
(X66 + 1)X16 = X82 + X16;
(X66 + 1)X32 = X98 + X32;
(X66 + 1)X64 = X3 + X64.

36 J. Ding and D.S. Schmidt

At the beginning of step 7 the root polynomials R with their indices are

R = { X80 + 1, (2, 1); X66 + 1, (2, 1); X40 + 1, (2, 1); X20 + 1, (2, 1);
X33 + 1, (2, 1); X10 + 1, (2, 1); X5 + 1, (2, 1) }.

After Reduce-by-weight(S′) the following polynomials with their indices have to
be added to R

{X96 + X, (2, 0); X72 + X, (2, 0); X68 + X, (2, 0); X48 + X, (2, 0);
X36 + X, (2, 0); X34 + X, (2, 0); X24 + X, (2, 0); X18 + X, (2, 0);
X17 + X, (2, 0); X12 + X, (2, 0); X9 + X, (2, 0); X6 + X, (2, 0);
X3 + X, (2, 0); X64 + X, (1, 0); X32 + X, (1, 0); X16 + X, (1, 0);
X8 + X, (1, 0); X4 + X, (1, 0); X2 + X, (1, 0)}

There are six mutants of weight 1. In step 8 we have W = 2 and these six mutants
are added to S and S′ after multiplying each with X, X2, X4, X8, X16, X32,
and X64. When we reduce the new system S′ we find X + 1 and with it the
solution to the system.

In the original ZZ, we would have expanded to weight 4 polynomials and
solved the system. But here we went only to weight 3 due to the mutant of
weight 1. The example as given could have been solved more easily by other
methods, but the details were given in order to illustrate how the mutant ZZ
algorithm works.

5.2 A Toy Example

In order to show how the algorithm works in a bigger example we use three
quadratic equations in three variables with coefficients in the field k = GF (3).
We define the polynomial map f : k3 −→ k3 by its components

f1(x1, x2, x3) = 2x1x2 + x1 + x2
2 + 2x2 + 2x3 + 1

f2(x1, x2, x3) = x2
1 + x1x2 + 2x2

2 + x3

f3(x1, x2, x3) = x2
1 + x1x2 + 2x1 + 2x2

2 + x3 + 1

in k[x1, x2, x3].
One irreducible polynomial of degree two with coefficients in k is

g(y) = y3 + 2y + 1.

The mapping φ : k3 −→ K is defined by

φ(x1, x2, x3) = x1 + x2y + x3y
2 = X,

while φ−1 : K −→ k3 is defined by (using matrix notation)

φ−1(X) :

⎛⎝x1
x2
x3

⎞⎠ =

⎛⎝2y2 + 1 2y2 + 2y 2y2 + y
2y 2y + 1 2y + 2
2 2 2

⎞⎠⎛⎝ X
X3

X9

⎞⎠

Mutant Zhuang-Zi Algorithm 37

With this notation, the polynomial map F = φ ◦ f ◦ φ−1 is given by

F (X) = (2y2 + y)X12 + (2y2 + 2)X10 + (2y2 + 2y)X9

+(y2 + 1)X6 + (y2 + y + 2)X4 + (2y2 + 2y + 2)X3

+(y2 + 2y + 1)X2 + (y2 + 2y + 2)X + y2 + 1

Since this is a trivial example, we could factor F (X) directly and obtain

F (X) = (X + y2 + 2)
(X11 + (2y2 + 1)X10 + (y2 + 1)X9 + (2y + 2)X8 + (y2 + 1)X7

+(2y2 + y + 1)X6 + (y + 2)X5 + y2X4 + (2y2 + 2y + 1)X3

+2yX2 + (y + 2)X + y2 + 2y + 1)

from which we can see that X = 2y2 + 1 is the only solution of the equation
F (X) = 0 in K and with it x1 = 1, x2 = 0 and x3 = 2.

If we set D = 1 we want to find the solution directly in the form of a linear
function in X . In the original ZZ algorithm, we need to run the algorithm to the
extent such that it will generate a space of full span, namely a space of dimension
26 after Gaussian elimination.

If we run the new mutant in ZZ algorithm, we can solve the equation with a
space of dimension only 8. The reason for this is that we do linear combinations of
the three quadratic equations, and we actually can find a linear equation inside.
This means that the set of equations F0, F1 and F2 will produce an equation of
the form

X9 + (y2 + y + 1)X3 + (2y2 + 2)X + 2y + 2 = 0,

which can be viewed as a mutant. With the help of this mutant, we can solve
the set of equations using only 8 equations such that each equation has only
9 monomial at most. This is great improvement in efficiency compared to the
original ZZ algorithm.

Someone may say that we are cheating here since we implicitly have a linear
equation inside the set of equations. This is true to certain extent, but the point
of this example is to illustrate the advantage of the new mutant ZZ algorithm
compared to the original ZZ. In larger examples it is more difficult to demonstrate
the concept of a mutant when looking at a larger set of equations.

5.3 Non-trivial Examples

The main application of the ZZ algorithms is to the nonlinear multivariate prob-
lem where Gröbner bases methods do not succeed. The Zhuang-Zi algorithm
requires that we work in a finite field, whereas Göbner bases do not.

When a Gröbner basis is computed in a finite field, it is accomplished usually
by augmenting the original set of equations with those defining the finite field.
Examples were constructed in [12], where a set of equations can be solved easily
by the Zhuang-Zi algorithm, but only with great difficulties via Gröbner bases.

38 J. Ding and D.S. Schmidt

The basic idea of the construction is to select a function F (X) : K −→ K
of low enough degree, so that it can be factored easily, while the corresponding
mapping f : kn −→ kn must be complicated, and therefore difficult to solve.

One such that example is the following case: Let k = GF (23) and let K =
k[y]/(g(y)) be a degree n extension of k, for some irreducible g(y) ∈ k[y]. We
use a polynomial of low degree in K[X]:

F (X) = X72 +a1X
65 +a2X

64 +a3X
16 +a4X

9 +a5X
8 +a6X

2 +a7X +a8, (3)

where the coefficients aj , for j = 1, . . . , 8, are chosen at random from k, treated
as a subfield of K via the standard embedding. With q = 8, all powers of X
in (3) can be written in the form X8i+8j

or X8i

, and so it is clear that (3)
f = φ−1 ◦F ◦φ is a quadratic polynomial map from kn to kn. As in the previous
example, it is helpful to write φ−1 : K −→ kn using matrix notation

AX = x,

where X = (X80
, X81

, . . . , X8n−1
)T , x = (x0, x1, . . . , xn−1)T , and A is an n × n

matrix with entries from K that can easily be found by writing each X8i

as a
polynomial in y with coefficients in k[x0, x1, . . . , xn−1].

The polynomial (3) can be factored easily by a computer algebra system like
Magma [19], depending on the coefficients a1, . . . , a8 of F , and on the value of
n. Finding the corresponding solutions directly with the help of a good Gröbner
bases program such as Faugère’s F4 version in Magma [6] requires exponential
time with increasing n. However this example does not at all demonstrate the
advantage of the new improvement since no computation in adding new polyno-
mials is needed.

In [12] another non-trivial example is presented, where F (X) is of a very high
degree and therefore cannot be solved with the simplest form of the Zhuang-Zi
algorithm. The example is as follows:

Let q = 4, k = GF (q). The multiplicative group for the nonzero elements of
this field can be generated by the field element a which satisfies a2 + a + 1 = 0.
Take g(y) ∈ k[y] to be the irreducible polynomial

g(y) = y12 + y11 + ay10 + ay9 + y8 + y7 + y5 + a2y4 + ay3 + a2y2 + ay + a,

and define K = k[y]/(g(y)), a degree n = 12 extension of k.
Let F (X) ∈ K[X] be the polynomial

F (X) =a2X17664 + X5440 + aX5376 + X4416 + aX4096 + aX1360

+ X1344 + X1280 + a2X1024 + a2X336 + aX320 + a2X276

+ X85 + aX84 + aX64 + aX21 + X20 + a

Here each exponent of X in F (X) is a sum of powers of four. The exponent with
the most powers of four is 5440 = 43 + 44 + 45 + 46. Therefore, the components
of f = φ−1 ◦ F ◦ φ will be of degree four.

Mutant Zhuang-Zi Algorithm 39

The degree of F prevents us from finding the roots of F (X) = 0 directly. Also,
the F4 implementation in Magma failed to find a Gröbner basis for f0, f1, . . . , fn−1
due to the fact that memory requirements exceeded the available resources on our
PC. The Zhuang-Zi algorithm found the polynomial

Γ (X) = X276 + aX85 + a2X84 + a2X64 + a2X21 + aX20 + a

and with it the solutions {1, a} of F (X) = 0.

6 Discussion and Conclusion

The ZZ algorithm is not just a new algorithm, but a new way to look at the
problem of solving a set of multivariate polynomial equations over a finite field.
The ZZ algorithm intends to unify the cases of solving multivariate equations
with the cases of solving single variable equations.

In this paper we presented an improvement to the original ZZ algorithm in-
spired by the idea of mutant, which was discovered recently. Our experiments
show that there are cases where the mutant Zhuang-Zi algorithm will work much
more efficiently than the old one and in a some cases it can beat other algorithms
including the Gröbner bases algorithms like F4.

Currently there are many directions for further research. One particular in-
teresting direction is to understand when the ZZ algorithm has an advantage
over other methods. We believe that the ZZ algorithm is well suited for an at-
tack on MPKCs and it should shed new lights on understanding the security of
systems like HFE. We intend to explore this in a subsequent paper, where we
can further demonstrate the advantage of the new mutant ZZ algorithm over
the ZZ algorithm. We have some small scale examples to show this point, but
there is still considerable room to improve and optimize the implementation of
the algorithm.

References

1. Smith, D.E.: History of Mathematics, vol. 1, 2. Dover, New York (1951-1952)
2. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-

lassenrings nach einem nulldimensionalen Polynomideal. Universität Innsbruck
(1965)

3. Ding, J., Gower, J., Schmidt, D.: Multivariate Public Key Cryptography. In: Ad-
vances in Information Security. Springer, Heidelberg (2006)

4. Garey, M.R., Johnson, D.S.: Computers and intractability. In: A Guide to the
theory of NP-completeness. W.H. Freeman, New York (1979)

5. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

6. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139, 61–88 (1999)

40 J. Ding and D.S. Schmidt

7. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: International Symposium on Symbolic and Algebraic
Computation — ISSAC 2002, July 2002, pp. 75–83. ACM Press, New York (2002)

8. Ding, J.: Mutants and its impact on polynomial solving strategies and algorithms.
In: Privately distributed research note, University of Cincinnati and Technical Uni-
versity of Darmstadt, 2006 (2006)

9. Ding, J., Carbarcas, D., Schmidt, D., Buchmann, J., Mohamed, M.S.E., Mohamed,
W.S.A.E., Tohaneanu, S., Weinmann, R.P.: Mutant XL. In: SCC 2008 (2008)

10. Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving
Polynomial Equations over GF(2) Using an Improved Mutant Strategy. In: Buch-
mann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer,
Heidelberg (2008)

11. Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3:
An efficient algorithm for computing Gröbner bases of zero-dimensional ideals.
In: The 12th International Conference on Information Security and Cryptology
(ICISC 2009), Seoul, Korea, December 2009. LNCS, Springer, Heidelberg (2009)

12. Ding, J., Gower, J.E., Schmidt, D.: Zhuang-Zi: A new algorithm for solving multi-
variate polynomial equations over a finite field. In: PQCrypto 2006: International
Workshop on Post-Quantum Cryptography, May 23-26. Katholieke Universiteit
Leuven, Belgium (2006)

13. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature
verification and message encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

14. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Euro-
crypt’88. Designs, Codes and Cryptography 20, 175–209 (2000)

15. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999)

16. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra.
Kluwer, Amsterdam (1992)

17. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and
its Application, vol. 20. Cambridge University Press, Cambridge (2003)

18. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge
University Press, Cambridge (2003)

19. Computational Algebra Group, University of Sydney: The MAGMA computational
algebra system for algebra, number theory and geometry (2005),
http://magma.maths.usyd.edu.au/magma/

http://magma.maths.usyd.edu.au/magma/

Cryptanalysis of Two Quartic Encryption
Schemes and One Improved MFE Scheme

Weiwei Cao1, Xiuyun Nie3, Lei Hu1, Xiling Tang4, and Jintai Ding2,4

1 State Key Laboratory of Information Security,
Graduate University of Chinese Academy of Sciences, Beijing 100049, China

2 Department of Mathematical Sciences, University of Cincinnati, OH 45221, USA
3 School of Computer Science and Engineering,

University of Electronic Science and Technology of China, Chengdu 610054, China
4 South China University of Technology, Guangzhou 510640, China

wwcao@is.ac.cn, jintai.ding@uc.edu, hu@is.ac.cn, xynie@uestc.edu.cn

Abstract. MFE, a multivariate public key encryption scheme proposed
by Wang et al in CT-RSA 2006, was conquered by second order lineariza-
tion equation (SOLE) attack by Ding et al in PKC 2007. To resist this
attack, many improved schemes were proposed. Wang et al in [WFW09]
and Wang in [Wan07] both modified MFE and raised the public key from
quadratic to quartic equations. We call the two quartic schemes Quartic-
1 and Quartic-2 respectively for convenience. They are indeed immune
to the SOLE attack. However, we find that there exist many quadrati-
zation equations (QEs), which are quadratic in plaintext variables and
linear in ciphertext variables and can be derived from the public keys
of Quartic-1 and Quartic-2. In this paper, we utilize QEs to recover the
corresponding plaintext for a given ciphertext. For Quartic-1, we firstly
find there are at least 2r SOLEs, which was regarded as impossible by
the original authors, furthermore, we can find at least 35r QEs with a
complexity O((90r2(15r+1)+180r2 +15r(15r+1)/2+27r+1)w), where
r is a small number denoting the degree of extension of finite fields and
w ≈ 2.732. The computational complexity of deriving these equations is
about 237. But to find the original plaintext, there still needs 240 times
Gröbner basis computations, which needs practically 1.328 seconds each
time. For Quartic-2, we make a theoretical analysis and find 18r QEs with
a computational complexity O((15r +1)6r(12r +1)+180r2 +27r +1)w.
The complexity is 236 for the parameter proposed in [Wan07], and we
can break the scheme practically in 3110.734 seconds. Finally, we show
that another improved version of MFE in [WZY07] is insecure against
the linearization equation attack although its authors claimed it is secure
against high order linearization equation attack. Our attack on the two
quartic schemes illustrates that non-linearization equations like quadra-
tization equations which are not degree one in plaintext variables can
also be used efficiently to analyze multivariate cryptosystems.

Keywords: multivariate public key encryption, quartic polynomial,
quadratic polynomial, linearization attack, quadratization attack.

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 41–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

42 W. Cao et al.

1 Introduction

Public key cryptography (PKC) has opened a new era of cryptography since
Diffie and Hellman delivered a new idea in their seminal paper in 1976 [DH76].
The classical trapdoors of PKC are based on the difficulty of integer factorization
for RSA and discrete logarithm for ElGamal and ECC. However, with the ar-
rival of quantum computer epoch, cryptosystems based on integer factorization
and discrete logarithm will be cracked by quantum computer attack [Sho97].
Therefore, multivariate public key cryptosystem (MPKC), one new public key
cryptography, attracts more attention and becomes a hot topic in the last years.

The multivariate public key encryption scheme MFE is proposed by Wang
et al in CT-RSA 2006 in [WYH06]. It was designed to be resist against the
Patarin attack [Pat95] that utilizes the so-called first order linearization equa-
tions (FOLEs) of the form∑

i,j

aijuivj +
∑

i

biui +
∑

j

cjvj + d = 0,

but was conquered by Ding et al in 2007 PKC in [DHN07] by using second order
linearization equations (SOLEs), which have a form like∑

i,j,k

aijkuivjvk +
∑
i,j

bijuivj +
∑
j,k

cjkvjvk +
∑

i

diui +
∑

j

ejvj + f = 0.

Here these SOLEs are satisfied by all plaintext variables ui and their correspond-
ing ciphertext variables vi and they are derived from the polynomials of the
public key. For both first and second order linearization equations, the degrees
of plaintext variables are one, and therefore, once the ciphertext variables vj are
evaluated, some plaintext variables can be linearly expressed by the rest plain-
text variables, which implies that the range of possible plaintexts is minimized
and the number of plaintext variables in public key equations can be reduced. If
from the reduced public key equations first or second order linearization equa-
tions can be still derived, then the number of plaintext variables can be again
reduced. If this number is small enough, we can directly solve out the plaintext
variables from the reduced public key equations by XL or Gröbner basis algo-
rithms [Fag99]. With the help of SOLEs, the authors of [DHN07] successfully
broke the two instances proposed in [WYH06].

To resist the SOLE attack, Wang et al in [WFW09] and Wang in [Wan07] both
modified MFE and raised the public key from quadratic to quartic equations.
The increase of degree enlarges the scale of the public key exponentially by the
degree of extension of fields r. To bound the length, r has to be very small,
like 2 or 3. We call the above two improvements as Quartic-1 and Quartic-2
respectively for convenience. It is indeed the case that the SOLE attack is not
practical on them, however, from their quartic public key equations, we can find
equations of the form∑

i,j,k

aijkuiujvk +
∑
i,j

bijuiuj +
∑
i,k

cikuivk +
∑

i

diui +
∑

k

ekvk + f = 0.

Cryptanalysis of Quartic Encryption and Improved MFE Schemes 43

We call them as Quadratization Equations (QEs). They are quadratic in plain-
text variables and linear in ciphertext variables, hence QEs are still quadratic
equations if ciphertext variables are evaluated. QEs can be regarded as a dual
of SOLEs in the sense that switching the plaintext and ciphertext variables,
QEs are turned into SOLEs. However, QEs can not be used to linearly eliminate
plaintext variables, but for our cryptanalysis here, the parameter r in Quartic-1
and Quartic-2 is smaller than that in the original MFE, this means the complex-
ity of searching QEs for Quartic-1 and Quartic-2 is much smaller than that of
searching SOLEs for the original MFE.

The main aim of this paper is to illustrate that quadratization equations are
helpful for reducing the range of possible plaintexts and can be used to efficiently
attack Quartic-1 and Quartic-2. The paper also contains a work of cracking down
another improved version of MFE by Wang et al [WZY07]. The improvement
maintains public key equations as quadratic and introduces a new operator on
matrices in its design for the goal of resisting against high order linearization
equation attack. We show that the scheme can be even broken by the first order
linearization equation attack.

The paper is organized as follows. In Section 2, we review the original MFE
encryption scheme where the notations employed are also used to describe the
three improved versions that are analyzed in this paper. In Sections 3 and 4 we
present the quadratization equation attack on Quartic-1 and Quartic-2 respec-
tively. Next in Section 5 we give the first order linearization equation attack on
the improved MFE scheme of [WZY07]. The last section is the conclusion.

2 MFE Public Key Cryptosystem

2.1 MFE

Let K be a finite field, generally F216 . Let L be its degree r extension field; L is
considered the ”Medium Field”, generally r = 4 or 5. Its encryption transforma-
tion is a composition of three maps L1, φ, and L2, where L1 : K12r → K12r and
L2 : K15r → K15r are two invertible affine maps and kept as a private key, and
the so-called central map φ : K12r → K15r is constructed by composing of 15r
quadratic polynomials in 12r variables. The composition map E = L2 ◦ φ ◦ L1
is used as a public key, and it is an ordered set of 15r quadratic polynomials in
12r variables.

The central map φ is publicly known and is constructed as follows. Let π : L →
Kr be the natural isomorphism. Namely we take a basis of L over K, θ1, · · · , θr,
and define π by π(a1θ1 + · · ·+arθr) = (a1, · · · , ar) for any a1, · · · , ar ∈ K. Let φ̃
be the polynomial map from L12 to L15. Let φ̃(X1, X2, ...X12) = (Y1, Y2, ...Y15).
Suppose

M1 =
(

X1 X2
X3 X4

)
, M2 =

(
X5 X6
X7 X8

)
, M3 =

(
X9 X10
X11 X12

)
.

and

Z3 = M1M2 =
(

Y4 Y5
Y6 Y7

)
, Z2 = M1M3 =

(
Y8 Y9
Y10 Y11

)
,

44 W. Cao et al.

Z1 = MT
2 M3 =

(
Y12 Y13
Y14 Y15

)
.

Then φ̃ is expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 = X1 + det(M2) + Q1

Y2 = X2 + det(M3) + Q2

Y3 = X3 + det(M1) + Q3

Y4 = X1X5 + X2X7 Y5 = X1X6 + X2X8

Y6 = X3X5 + X4X7 Y7 = X3X6 + X4X8

Y8 = X1X9 + X2X11 Y9 = X1X10 + X2X12

Y10 = X3X9 + X4X11 Y11 = X3X10 + X4X12

Y12 = X5X9 + X7X11 Y13 = X5X10 + X7X12

Y14 = X6X9 + X8X11 Y15 = X6X10 + X8X12

(1)

The triple(Q1, Q2, Q3) is a triangular map from K3r to itself as follows. Let
π(X1) = (x1, · · · , xr), π(X2) = (xr+1, · · · , x2r), π(X3) = (x2r+1, · · · , x3r), and
let qi ∈ K[x1, · · · , xi−1], 2 ≤ i ≤ 3r. Then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(X1) =
r∑

i=2

qi(x1, · · · , xi−1)θi

Q(X1, X2) =
r∑

i=1

qr+i(x1, · · · , xi−1θi)

Q(X1, X2, X3) =
r∑

i=1

q2r+i(x1, · · · , xi−1θi)

The qi can be any randomly chosen quadratic polynomials. The public key E =
L2 ◦ π ◦ φ̃ ◦ π−1 ◦ L1. The encryption of MFE is the evaluation of public key
polynomials, namely given a plaintext (u1, · · · , u12r), its ciphertext is

(v1, · · · , v15r) = (h1(u1, · · · , u12r), · · · , h15r(u1, · · · , u12r))

For a legal user, having known L1, L2, the key point of decryption is efficiently in-
verse φ̃. For a given (Y1, · · · , Y15), we can easily compute det(Z1), det(Z2), det(Z3),
and by ⎧⎪⎨⎪⎩

det(Z3) = det(M1)det(M2)
det(Z2) = det(M1)det(M3)
det(Z1) = det(M2)det(M3)

(2)

if M1,M2 and M3 are invertible, we can compute the value of det(M1),det(M2)
and det(M3). In this case, by the former three equations of (1), X1, X2 and X3
are solved out. If X1 �= 0, from X1X4 + X2X3 = det(M1), we can get the value
of X4. With X1, X2, X3 and X4 evaluated, the latter 12 equations of (1) form a
triangular structure, so X4, · · · , X12 are subsequently attained. Appendix B of

Cryptanalysis of Quartic Encryption and Improved MFE Schemes 45

[WYH06] presents the method of computing the X1 in the case when X1 = 0.
It is slightly easier than the case of X1 �= 0. Since the possibility that M1,M2
and M3 are invertible is close to 1, then we can assume that we can always
successfully decrypt a valid ciphertext in the above way.

There are two typical instances of MFE proposed by the designers of MFE.

1. MFE-1, where K = F216 and r = 4. The public key has 60 quadratic poly-
nomials with 48 variables.

2. MFE-1′,where K = F216 and r = 5. The public key has 75 quadratic poly-
nomials with 60 variables.

2.2 SOLE Attack on MFE

Denote M∗ as the associated matrix of a square matrix M ; then MM∗ =
det(M)I, where I is a square identity matrix. we have

Z3 = M1M2, Z2 = M1M3

From these, we can derive

M3M
∗
3 M∗

1 M1M2 = M3Z
∗
2Z3 = det(Z2)M2

That is

M3Z
∗
2Z3 = det(Z2)M2

Expand the relation into the matrix form, we can get 4 equations on each entry
of the form ∑

i,j,k

AijkXiYjYk = 0, Aijk ∈ L (3)

In [DHN07], using the same technique, 24 equations of this form can be found.
Applying (X1, · · · , X12) = π−1L1(v1, · · · , v12r) and (Y1, · · · , Y15) = π−1L−1

2 (u1,
· · · , u15r) to (3), we can get 24r equations of the form∑

ijk

aijkuivjvk +
∑
i,j

bijuivj +
∑
jk

cjkvjvk +
∑

i

diui +
∑

j

ejvj + c = 0

where aijk, bij , cjk, di, ej, c ∈ K. These equations are SOLEs. Once the cipher-
text variables are evaluated, these equations are linear in ui, so some plaintext
variables can be linearly expressed by the rest plaintext variables, which implies
that the number of plaintext variables in public key equations will be reduced.
If the number is small enough, we can directly solve out the plaintext variables
from the reduced public key equations by XL or Gröebner Basis. With the help
of these SOLEs, authors of [DHN07] successfully broke the above two instances.

46 W. Cao et al.

3 Quadratization Equation Attack on the Quartic-1
Scheme

3.1 The Quartic-1 Scheme

Having noticed the existence of SOLEs, the authors of [WFW09] design Z1, Z2
and Z3 in the following strategy. Here M1, M2, M3 are the same as those in the
original MFE.

M1 =
(

X1 X2
X3 X4

)
, M2 =

(
X5 X6
X7 X8

)
, M3 =

(
X9 X10
X11 X12

)
.

Set

Z3 = X2X3M1M2 =
(

Y4 Y5
Y6 Y7

)
,

Z2 = X1X2M1M3 =
(

Y8 Y9
Y10 Y11

)
,

and

Z1 = X1X3M
T
2 M3 =

(
Y12 Y13
Y14 Y15

)
.

The corresponding central map φ̃ : L12 → L15 is given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 = X1 + X2
1det(M3) + Q1

Y2 = X2 + X2
2det(M1) + Q2

Y3 = X3 + X2
3det(M2) + Q3

Y4 = X2X3(X1X5 + X2X7) Y5 = X2X3(X1X6 + X2X8)
Y6 = X2X3(X3X5 + X4X7) Y7 = X2X3(X3X6 + X4X8)
Y8 = X1X2(X1X9 + X2X11) Y9 = X1X2(X1X10 + X2X12)

Y10 = X1X2(X3X9 + X4X11) Y11 = X1X2(X3X10 + X4X12)
Y12 = X1X3(X5X9 + X7X11) Y13 = X1X3(X5X10 + X7X12)
Y14 = X1X3(X6X9 + X8X11) Y15 = X1X3(X6X10 + X8X12)

(4)

The triple (Q1, Q2, Q3) is constructed in the same way as in MFE [WYH06].
The decryption process follows the same line of that of MFE. Given a valid
ciphertext, we can get det(Z1), det(Z2), and det(Z3) as follows. Since we have⎧⎪⎨⎪⎩

det(Z3) = X2
2X2

3det(M1)det(M2)

det(Z2) = X2
1X2

2det(M1)det(M3)

det(Z1) = X2
1X2

3det(M2)det(M3)

(5)

when M1,M2 and M3 are invertible and none of X1,X2 and X3 is zero, we can
get values of X2

1det(M3), X2
3det(M2) and X2

2det(M1) as follows:⎧⎪⎪⎨⎪⎪⎩
X2

1det(Z3) =
√

det(Z2)det(Z1)det(Z3)−1

X2
3det(Z2) =

√
det(Z1)det(Z3)det(Z2)−1

X2
2det(Z1) =

√
det(Z2)det(Z3)det(Z1)−1

Cryptanalysis of Quartic Encryption and Improved MFE Schemes 47

The square root operation is easy to handle over a characteristic two field. Sub-
stituting X2

1det(M3), X2
3det(M2) and X2

2det(M1) into the first three equations
of (4), X1, X2 and X3 are solved out. From X2

2det(M1) = X2
2 (X1X4 + X2X3),

we can get X4. Substituting X1,X2,X3 and X4 into the last twelve equations of
(4), a triangular structure is formed so that X5, · · · , X12 can be subsequently
attained.

This new encryption scheme Quartic-1 raises the polynomials of the public
key to be degree four, namely they are quartic polynomials in plaintext variables.
To bound the size of public key, the authors in [WFW09] has to reduce the size
of K and the extension degree r. There are two sets of parameters proposed:

1. Quartic-1, where K = F28 and r = 2. The public key has 30 quartic polyno-
mials with 24 variables.

2. Quartic-1′,where K = F24 and r = 3. The public key has 45 quartic polyno-
mials with 36 variables.

3.2 Cryptanalysis of Quartic-1

In [WFW09], the authors claim that SOLEs do not exist for the Quartic-1 sys-
tem, however, our experiments show that at least 2r SOLEs always exist. We
find two equations that hold on φ̃:⎧⎪⎨⎪⎩

X2Y12Y15 + X2Y13Y14 + X9Y4Y15 + X9Y5Y13 + X10Y4Y14 + X10Y5Y12 = 0
X5Y10Y15 + X5Y11Y14 + X6Y10Y13 + X6Y11Y12 + X9Y4Y15 + X9Y5Y13

+X10Y4Y14 + X10Y5Y12 = 0
(6)

Substituting (X1, · · · , X12) = π−1L1(v1, · · · , v12r) and (Y1, · · · , Y15) = π−1L−1
2

(u1, · · · , u15r) to (6), we can get 2r equations of the form:∑
i,j,k

aijkuivjvk +
∑
i,j

bijuivj +
∑
j,k

cjkvjvk +
∑

i

diui +
∑

j

ejvj + f = 0 (7)

where aijk, bij , cjk, di, ej, c ∈ K. They are SOLEs and can help us to reduce
the number of plaintext variables for a ciphertext-only attack. The complexity
of recovering the coefficient vectors (aijk , bij , cjk, di, ej, c) is (90r2(15r + 1) +
180r2 + 15r(15r + 1)/2 + 27r + 1)w, w ≈ 2.732. For the parameter specification
of Quartic-1, this complexity is about 237; for the parameter of Quartic-1′, this
complexity is about 241.

Unfortunately, these SOLEs can only reduce 2r plaintext variables, and they
help little to simplify the central map in order to derive more SOLEs, moreover,
substituting them into the central map φ̃ would destroy its compact expression.

However, we can easily find plenty of quadratization equations from φ̃. Taking
Y4, Y5, Y6, Y7 into consideration, it is obvious that there holds a QE between any
two of them. Take Y4, Y5 as example, it is

(X1X5 + X2X7)Y5 = (X1X6 + X2X8)Y4

48 W. Cao et al.

In fact, there are at least 9 independent Quadratic Equation. They are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(X1X6 + X2X8)Y4 + (X1X5 + X2X7)Y5 = 0
(X3X5 + X4X7)Y4 + (X1X5 + X2X7)Y6 = 0
(X3X6 + X4X8)Y4 + (X1X5 + X2X7)Y7 = 0
(X3X5 + X4X7)Y5 + (X1X6 + X2X8)Y6 = 0
(X3X6 + X4X8)Y5 + (X1X6 + X2X8)Y7 = 0
(X3X6 + X4X8)Y6 + (X3X5 + X4X7)Y7 = 0

X3X6Y4 + X4X7Y5 + X1X6Y6 + X2X7Y7 = 0
X3X8Y4 + X3X7Y5 + X1X8Y6 + X1X7Y7 = 0
X4X6Y4 + X4X5Y5 + X2X6Y6 + X2X5Y7 = 0

(8)

If Y4, Y5, Y6, Y7 are substituted by a ciphertext, we will get 6 independent quadratic
equations in (8) ifY4Y5 �= 0, sincewe canfinda 6×6 invertible coefficient submatrix⎛⎜⎜⎜⎜⎜⎜⎝

Y5 0 0 0 0 0
Y6 Y4 Y4 0 0 0
Y7 0 0 Y4 0 0
0 0 Y5 Y4 0 0
0 0 0 0 Y4 0
0 0 0 0 0 Y4

⎞⎟⎟⎟⎟⎟⎟⎠
with determinant equal to Y 4

4 Y 2
5 . Here consider every term XiXj presented in

(8) as a single variable. Since Y4Y5 �= 0 holds with a probability almost being 1,
we can always get 6 independent quadratic equations.

Similarly to (8), we can find at least 9 independent QEs from Y8, Y9, Y10, Y11
and another 9 independent quadratic equations from Y12, Y13, Y14, Y15. These
three sets of QEs are composed of different terms, hence we can get 27 QEs,
and they become 18 independent quadratic equations if variables Yi are fixed by
ciphertext values.

Besides, observe the relation between Y4, Y5, Y12 and Y14 and the relation
between Y4, Y5, Y13 and Y15, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

X8X9Y4 + X7X9Y5 + X2X8Y12 + X2X7Y14 = 0
X8X11Y4 + X7X11Y5 + X2X6Y12 + X2X5Y14 = 0
X8X10Y4 + X7X10Y5 + X2X8Y13 + X2X7Y15 = 0
X8X12Y4 + X7X12Y5 + X2X6Y13 + X2X5Y15 = 0.

(9)

Similarly, we can also find another two QEs from Y10, Y11, Y12 and Y13, and 2
QEs from Y10, Y11, Y14 and Y15. So totally there are 35 QEs derived from the
central map, and at least 18 of them are independent.

Substituting (X1, · · · , X12) = π−1L1(v1, · · · , v12r) and (Y1, · · · , Y15) = π−1

L−1
2 (u1, · · · , u15r) into (8) and (9), we can get 35r QEs over K of the form∑
i,j,k

aijkuiujvk +
∑
i,j

bijuiuj +
∑
i,k

cikuivk +
∑

i

diui +
∑

k

ekvk + f = 0, (10)

Cryptanalysis of Quartic Encryption and Improved MFE Schemes 49

where aijk, bij , cjk, di, ej , c ∈ K. Since (8) and (9) exist for all corresponding plain-
text and ciphertext variables, recovering a basis of these QE’s coefficient vectors
(aijk, bij , cjk, di, ej , c) is a precomputation. The computational complexity is
O((15r +1)6r(12r +1)+180r2 + 27r +1)w, w ≈ 2.732. This complexity is about
236 for the parameter in Quartic-1; and 240 for the parameter in Quartic-1′.

Given a ciphertext, if it is substituted into (8) and (9), we can get a system of
at least 35r quadratic equations, denote it as S. If we can work out a Gröbner
basis of S with a small dimension, say s, we can find the original plaintext by
|K|s exhausted search.

3.3 Dimension of S
Since the scale of S is impractical for directly computing its Gröber basis, when
r = 2, |S| ≥ 70. Experiment shows that it is really time consuming, so after
obtaining S, how to determine its dimension s? We apply an intermediate way
to find s. Suppose we fix the last t variables by randomly chosen elements in K,
and compute the corresponding Gröbner basis by an equation solving algorithm
like F4. By experiment, we find the following three results can be efficiently
obtained:

1. if t > s, it always output GB={1}.
2. if t = s, it always output a zero-dimensional GB.
3. if t < s, it always output a positive-dimensional GB.

This observation help us to make a strategy to determine s. We can choose a
fairly big t, if it outputs GB={1} by F4, then t decrease by 1; if it outputs a
zero-dimensional GB, returns t and stops.

Using the above strategy we can efficiently determine the dimension of S,
i.e., s. The last step is to search the last s ciphertext variables |K|s times and
compute the Gröbner basis for each time. It would be a disaster for a normal
computer, but this set-back can be greatly improved by sufficiently many parallel
computers.

3.4 Experiment Results

In order to compare Quartic-1 and Quartic-2, which will be analyzed in the
following section, we take the parameter of Quartic-1 in section 3.1, K = F28 ,
r = 2, which is the same as Quartic-2 given in Section 4.1. We chose 10 different
pairs of L1 and L2 and, and for each of them, we chose 100 different valid
ciphertext for experiments.

The precomputation is to recover SOLEs and QEs from the public key of
Quartic-1. To recover (7), we randomly selected 13400 plain/cipher-text pairs
and substituted them into the public key. Then the main task is a Gaussian
elimination on a 13400 × 13400 matrix on F28 . On a normal computer, with
Genuine Intel(R) CPU T2300@1.66GHz, 504MB RAM, the time running in a
magma procedure is about 3595.125 seconds; To recover (10), use the same

50 W. Cao et al.

technique as for (7) to recover the coefficients in (10) and the running time is
about 2316.750 seconds.

Using the strategy mentioned in the previous subsection, we can efficiently
determine the dimension of S, s = 5. We find it just need 0.531 seconds when
t > s, and 1.328 seconds when t = s. However, doing 240 times GB computation
would still be a disaster for the above normal computer. If we have sufficiently
many fast-speed parallel computers, then we can run Gröbner basis algorithm
independently on multiple machines, so that the cost of time in this search
process can be greatly saved.

4 Quadratization Equation Attack on the Quartic-2
Scheme

4.1 The Quartic-2 Scheme

To resist SOLEs, the author of [Wan07] proposed to construct the Z1,Z2 and

Z3 in the MFE scheme as follows: Z3 = M1M
2
2 =

(
Y4 Y5
Y6 Y7

)
, Z2 = M1M

2
3 =(

Y8 Y9
Y10 Y11

)
, Z1 = M2

3 (MT
2)2 =

(
Y12 Y13
Y14 Y15

)
. Here M1, M2, M3 are defined as the

same as those in MFE.
Write the above three matrix equations into equations on their each entry,

the central map φ̃ : L12 → L15 is then defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 = X1 + det(M2) + Q1

Y2 = X2 + det(M3) + Q2

Y3 = X3 + det(M1) + Q3

Y4 = X1X
2
5 + X1X6X7 + X2X5X7 + X2X7X8

Y5 = X1X5X6 + X1X6X8 + X2X6X7 + X2X
2
8

Y6 = X3X
2
5 + X3X6X7 + X4X5X7 + X4X7X8

Y7 = X3X5X6 + X3X6X8 + X4X6X7 + X4X
2
8

Y8 = X1X
2
9 + X1X10X11 + X2X9X11 + X2X11X12

Y9 = X1X9X10 + X1X10X12 + X2X10X11 + X2X
2
12

Y10 = X3X
2
9 + X3X10X11 + X4X9X11 + X4X11X12

Y11 = X3X9X10 + X3X10X12 + X4X10X11 + X4X
2
12

Y12 = (X2
9 + X10X11)(X2

5 + X6X7) + (X9X10 + X10X12)(X5X6 + X6X8)

Y13 = (X2
9 + X10X11)(X5X7 + X7X8) + (X9X10 + X10X12)(X6X7 + X2

8)

Y14 = (X9X11 + X11X12)(X2
5 + X6X7) + (X10X11 + X2

12)(X5X6 + X6X8)

Y15 = (X9X11 + X11X12)(X5X7 + X7X8) + (X10X11 + X2
12)(X6X7 + X2

8)
(11)

Cryptanalysis of Quartic Encryption and Improved MFE Schemes 51

The triple (Q1, Q2, Q3) is constructed in the same way as in MFE. The decryp-
tion of a valid ciphertext is a little complex comparing with that of the original
MFE. As limit of space, and that the subsequent analysis do not rely on how to
decrypt, there is no need to elaborate the whole decryption process, so we only
give how to get det(M1),det(M2), and det(M3) given a valid ciphertext. Given
a valid ciphertext, we can get det(Z1), det(Z2), det(Z3). Since we have⎧⎪⎨⎪⎩

det(Z3) = det(M1)det(M2)2

det(Z2) = det(M1)det(M3)2

det(Z1) = det(M2)2det(M3)2
(12)

when M1,M2 and M3 are invertible and none of X1,X2 and X3 is zero, we can
get values of det(M3), det(M2) and det(M1) as follows:⎧⎪⎪⎨⎪⎪⎩

det(M1) =
√

det(Z2)det(Z3)det(Z1)−1

det(M2) = 4
√

det(Z3)det(Z1)det(Z2)−1

det(M3) = 4
√

det(Z1)det(Z2)det(Z3)−1

Note that square root operation here is easy to handle over a characteristic two
field.

Since the public key equations of Quartic-2 are raised up to quartic, to bound
the size of public key, the authors has to decrease the size of K and the extension
degree r. There is one set of parameters proposed in [Wan07]:

1. Quartic-2, where K = F28 and r = 2. The public key has 30 quartic polyno-
mials with 24 variables.

4.2 Cryptanalysis of Quartic-2

The designer of Quartic-2 noted that Quartic-2 is free from SOLE attack, this is
indeed the case by experiment. However, we can utilize Quadratization Equations
derived from quartic public key equations to attack Quartic-2.

From
Z3 = M1M

2
2 , Z2 = M1M

2
3 , Z1 = M2

3 (MT
2)2,

we can derive that {
M1Z

T
1 = Z3(MT

3)2

Z2(MT
2)2 = M1Z1

(13)

From matrix equations in (13), we can find 8 quadratic equations on each entry
over L of the form ∑

i,j,k

AijkXiXjYk +
∑
i,k

Bi,kXiYk = 0 (14)

where Aijk, Bj,k ∈ L. Obviously they become quadratic in plaintext variables
once the ciphertext variables are fixed. Consider all the QEs as a vector space

52 W. Cao et al.

spanned by the coefficients of terms. If Z3, Z2 are invertible (the probablity is
almost 1), then these 8 equations are linearly independent.

Moreover, we can find other 6 quadratic equations exsit on φ̃. They are as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X3X6Y4 + X4X7Y5 + X1X6Y6 + X2X7Y7 = 0

X3X10Y8 + X4X11Y9 + X1X10Y10 + X2X11Y11 = 0

X4X6Y4 + (X3X6 + X4X5 + X4X8)Y5 + X2X6Y6 + (X1X6 + X2X5 + X2X8)Y7 = 0

(X3X5 + X3X8 + X4X7)Y4 + X3X7Y5 + (X1X5 + X1X8 + X2X7)Y6 + X1X7Y7 = 0

(X3X9 + X3X12 + X4X11)Y8 + X3X11Y9 + (X1X9 + X1X12 + X2X11)Y10 + X1X11Y11 = 0

X4X10Y8 + (X3X10 + X4X9 + X4X12)Y9 + X2X10Y10 + (X1X10 + X2X9 + X2X12)Y11 = 0

(15)
Substituting (X1, · · · , X12) = π−1L1(v1, · · · , v12r) and (Y1, · · · , Y15) = π−1

L−1
2 (u1, · · · , u15r) into (13) and (4.2), we can get 14r QEs over K of the form∑
i,j,k

aijkuiujvk +
∑
i,j

bijuiuj +
∑
i,k

cikuivk +
∑

i

diui +
∑

k

ekvk + f = 0 (16)

where aijk, bij , cjk, di, ej , c ∈ K. Since (13) and (4.2) exist for all corresponding
plaintext and ciphertext variables, and recovering a basis of these QE’s coefficient
vectors (aijk , bij , cjk, di, ej, c) is a precomputation. The complexity is O((15r +
1)6r(12r + 1) + 180r2 + 27r + 1)w, w ≈ 2.732. It is about 236 for the parameter
given in the previous subsection.

Assume we have found the above 14r QEs in (16), now for a given ciphertext
(v′1, · · · , v′15r), after substituting v′i into (16), we get 14r quadratic equations in
12r plaintext variables, denoted as (16)′. Instead of solving the public quartic
equations by XL or F4, we can turn to solve (16)′. Since (16)′ are quadratic and
r is as small as 2, it is realistic to save much more time and memory. It also
means that we can find the variety of (16)′, denoted as V . Next we will show
there still exist Quadratic Equations that holds on V .

Let (Y ′
1 , · · · , Y ′

15)=π−1L−1
2 (v′1, · · · , v′15r) and (X1, · · · , X12)=π−1L1(u1, · · · ,

u12r). Note that here (v′1, · · · , v′15r) is known, and (u1, · · · , u12r) is unknown. By
(13), we have

M1Z
′T
1 = Z ′

3(M
T
3)2 Z ′

2(M
T
2)2 = M1Z

′
1. (17)

Here Z ′
1, Z ′

2 and Z ′
3 are constant matrices. Suppose after adding these two rela-

tions (17) into the φ̃ results into another φ̃′. The relation Z2 = M1M
2
3 , Z3 =

M1M2 which originally hold on φ̃, definitely still hold on φ̃′. From φ̃′, we get

Z2Z
′T
3 = M1Z

′
1M

T
1 . (18)

holds on φ̃′. From this matrix equation, we can get 4 quadratic equations over
L of the form ∑

i,j

AijXiXj +
∑

k

BkYk = 0 (19)

where Aij , Bk ∈ L. If Z ′
1 is invertible (the possiblity is almost 1), these 4

quadratic equations are linearly independent. Substituting (X1, · · · , X12) = π−1

L1(v1, · · · , v12r) and (Y1, · · · , Y15) = π−1L−1
2 (u1, · · · , u15r) into (19), we can get

Cryptanalysis of Quartic Encryption and Improved MFE Schemes 53

another 4r independent quadratic equations in plaintext variables over K of the
form ∑

i,j

aijuiuj +
∑

i

biui +
∑

k

ckvk + c = 0 (20)

where aij , bi, ck, c ∈ K. To recover the coefficients of (20), the complexity is
O(6r(12r+1)+27r+1)w. It is about 223 for the parameter given in the previous
subsection.

From the above analysis, given a ciphertext, (16) and (20) theoretically give
18r quadratic equations, of which at least 12r have linearly independent co-
efficient vectors. The complexity of recovering all these quadratic equations is
mainly depend on the precomputation of recovering (16), and it is about 236 for
the parameter given in section 4.1.

Given a ciphertext, after finding quadratic equations (16)′ and (20)′, here
(20) becomes (20)′ after ciphertext variabes are evaluated, the last step is to
find the plaintext by solving these quadratic equations. Experiment results show
that it efficiently works using equation solving algorithm to compute Gröbner
basis as r is small. So we conclude that ciphertext-only attack on Quartic-2
can be reduced to solving quadratic equations derived from (16)′ and (20)′ with
complexity O((15r+1)6r(12r+1)+180r2+27r+1)w, it is 236 for the parameter
mentioned above.

4.3 Experiment Results

As the parameter set proposed in [Wan07], we set K = F28 and r = 2. We chose
10 different pairs of L1 and L2, and for each of them we chose 100 different valid
ciphertext for experiments.

The first step of our attack is recovering (16). To recover (16), we randomly
selected 10075 plain/cipher-text pairs and substituted them into the public key.
Then the main task is a Gaussian elimination on a 10075×11075matrix on F28 . On
a normal computer, with Genuine Intel(R) CPU T2300@1.66GHz, 504MB RAM,
a Magma procedure run averagely in 1779.656 seconds. The number of (16) is al-
ways much bigger than 14r, which is 28 for our parameter, and it is always up
to 49. The second step is to use equation solving algorithms like F4 to find V in
order to deduce more quadratic equations in (20). This step takes up a long time
as 3110.734 seconds on average. Actually, our experiment results show that only
through solving quadratic equations from (16)′, we can always find the original
plaintext, which means we do not need to take the further step to find (20).

5 The Improved MFE Public Key Cryptosystem

5.1 The Improved MFE

To resist SOLE, the authors of [WZY07] proposed an improved MFE encryption
transformation. The public key polynomials are still of degree 2. Let

54 W. Cao et al.

φ̃(X1, X2, · · · , X8) = (Y1, Y2, · · · , Y10), the central map φ̃: L8 → L10 is defined
as follows. ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y1 = X1 + X5X8 + X6X7 + Q1;
Y2 = X2 + X1X4 + X2X3 + Q2;
Y3 = X1X5 + X2X7; Y4 = X1X6 + X2X8;
Y5 = X3X5 + X4X7; Y6 = X3X6 + X4X8;
Y7 = X1X5 + X3X7; Y8 = X2X5 + X4X7;
Y9 = X1X6 + X3X8; Y10 = X2X6 + X4X8;

(21)

Here the definitions of Q1, Q2 is similar to Q1, Q2, Q3 in section 2. Q1, Q2 form
a triangular map from K2r to itself. Suppose

M1 =
(

X1 X2
X3 X4

)
, M2 =

(
X5 X6
X7 X8

)
,

and

Z1 = M l̂
1M2 =

(
Y3 Y4
Y5 Y6

)
, Z2 = MT

2 M1 =
(

Y7 Y8
Y9 Y10

)
.

Here, the operator ”ˆ” is defined as follows:

M l̂ =
(

a b
c d

)l̂

=
(

al bl

cl dl

)
.

Given a valid ciphertext (v1, · · · , v10r), the decryption of the scheme follows the
same line of decrypting MFE, and the key point is to recover M1 and M2. From
Z1, Z2, we have {

[det (M1)]
l · det (M2) = det (Z1)

det (M2) · det (M1) = det (Z2)
(22)

Hence,

det (M1) =
(

det(Z1)
det(Z2)

) 1
l−1

det (M2) = det(Z2)
det(M1)

(23)

Then, the values of X1, · · · , X8 can be derived in turn.

Remark: Because for any X ∈ L, we have X l = X . Then,

M l̂
1 =

(
X1 X2
X3 X4

)l̂

=
(

X l
1 X l

2
X l

3 X l
4

)
=

(
X1 X2
X3 X4

)
= M1

So the left sides of two equations in system (22) are equal, and consequently the
value of det (M1) can not be gotten from (23). That means the decryption fails
to recovering ciphertext. There is no recommended parameter in [WZY07], to
assure the safety, we use K = F8, r = 10 for experiment in our paper.

Cryptanalysis of Quartic Encryption and Improved MFE Schemes 55

5.2 Linearization Equation Attack

Through analysis, we found that there are many FOLEs satisfied by the above
improved MFE. Since Z2 = MT

2 M1, multipling M2 on both sides, we have
Z2M2 = MT

2 M1M2 = MT
2 Z1, so,

Z2M2 = MT
2 Z1

Expanding it, we have(
Y7 Y8
Y9 Y10

)(
X5 X6
X7 X8

)
=

(
X5 X7
X6 X8

)(
Y3 Y4
Y5 Y6

)
then (

X5Y7 + X7Y8 X6Y7 + X8Y8
X5Y9 + X7Y10 X6Y9 + X8Y10

)
=

(
X5Y3 + X7Y5 X5Y4 + X7Y6
X6Y3 + X8Y5 X6Y4 + X8Y6

)
that is, ⎧⎪⎪⎨⎪⎪⎩

X5Y7 + X7Y8 = X5Y3 + X7Y5;
X6Y7 + X8Y8 = X5Y4 + X7Y6;
X5Y9 + X7Y10 = X6Y3 + X8Y5;
X6Y9 + X8Y10 = X6Y4 + X8Y6.

(24)

On the other hand, from Z1 = M1M2, take transpose on it and then right
multiply (MT

1)−1 on both sides, we have

ZT
1
(
MT

1
)−1

= MT
2 (25)

From Z2 = MT
2 M1, right multiply (M1)−1 on both sides, we get

Z2M
−1
1 = MT

2 . (26)

From (25) and (26), we can deduce

ZT
1
(
MT

1
)∗

= Z2M
∗
1 (27)

Expanding it, we derive⎧⎪⎪⎨⎪⎪⎩
X4Y3 + X2Y5 = X4Y7 + X3Y8;
X3Y3 + X1Y5 = X2Y7 + X1Y8;
X4Y4 + X2Y6 = X4Y9 + X3Y10;
X3Y4 + X1Y6 = X2Y9 + X1Y10.

(28)

Substituting (X1, · · · , X8) = π1 ◦ φ1(u1, · · · , u8r) and (Y1, · · · , Y10) = π−1
2 ◦

φ−1
3 (v1, · · · , v10r) into (24) and (28), we get 8r equations of the form∑

i,j

aijmizj +
∑

i

bimi +
∑

j

cjzj + d = 0 (29)

56 W. Cao et al.

where the coefficients aij , bi, cj , d ∈ K, and they are first order linearization
equations (FOLEs). The complexity of recovering coefficients in these equations
is (80r2 + 18r + 1)w., which is (8200)3 ≤ 240 for the parameter we choosen. So
there are at least 8r FOLEs.

Through analysis,we find that the ranks of systems (24) and (28) coefficients
matrix are both equal to 3. Hence, after substituting ciphertext variables into
them, we can at least get 6r independent linear equations. So all the plaintext
variables can be represented by 2r plaintext variables. Actually, from (24) and
(28), X1, X2, X3, X4 can be expressed by the multiple of one variable (say S1) of
them and X5, X6, X7, X8 can be expressed by the multiple of one variable (say
S2) of them. The central map of new quadratic functions can be changed to:⎧⎨⎩

Ỹ1 = C1S1 + C2S
2
2 + Q1

Ỹ2 = C3S1 + C4S
2
1 + Q2

Ỹ3 = C5S1S2

(30)

So, there are only 2r unknowns and 3r linearly independent equations in system
(30). We can solve this system directly by Gröbner algorithm.

5.3 Experiment Results

In our experiments, we choose K = F28 , r = 10. We chose 10 different pairs
of L1 and L2, and for each of them we chose 100 different valid ciphertext for
experiments.

The first step is recovering FOLEs in (29). To recover (29), we randomly
selected 8200 plain/cipher-text pairs and substituted them into the public key.
Then the main task is a Gaussian elimination on a 8200 × 8200 matrix on F28 ,
and it takes 22 minutes. The number of (29) is always much bigger than 8r, and
it is always 110 in our experiment. Since this step is independent of the value of
the ciphertext, then this step is a precomputation.

The second step is that given a ciphertext (v′1, · · · , v′10r), find corresponding
plaintext (u′

1, · · · , u′
8r). Substitute (v′1, · · · , v′10r) into (29), suppose we can get

s independent linear equations. Our experiments show s = 60 exactly the same
as the theoretical analysis in the above section.

The third step is to substitute the 60 linear expressions into the public key
polynomials and get a system of reduced linear public key polynomials as (30).
Our experiments show, it takes about 6 second to solve the system by F4 and
recover the corresponding plaintext.

5.4 Extension of Improved MFE and Its Analysis

We extend the improvement in [WZY07]. Use the same notation as in [WZY07],
we extended the central map φ̃2(X1, X2, · · · , X8) = (Y1, Y2, · · · , Y10) as following
form.

Cryptanalysis of Quartic Encryption and Improved MFE Schemes 57⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y1 = X1 + X5X8 + X6X7 + Q1
Y2 = X2 + X1X4 + X2X3 + Q2

Y3 = Xqt

1 X5 + Xqt

2 X7 Y4 = Xqt

1 X6 + Xqt

2 X8

Y5 = Xqt

3 X5 + Xqt

4 X7 Y6 = Xqt

3 X6 + Xqt

4 X8
Y7 = X1X5 + X3X7 Y8 = X2X5 + X4X7
Y9 = X1X6 + X3X8 Y10 = X2X6 + X4X8

where 1 ≤ t < l.
The matrix forms are listed as follows.

M1 =
(

X1 X2
X3 X4

)
, M2 =

(
X5 X6
X7 X8

)
.

Z1 = M t̂
1M2 =

(
Y3 Y4
Y5 Y6

)
, Z2 = MT

2 M1 =
(

Y7 Y8
Y9 Y10

)
.

From {
[det (M1)]

qt · det (M2) = det (Z1)
det (M2) · det (M1) = det (Z2)

we can obtain the values det (M1) and det (M2), then we can get X1, · · ·, X8 in
turn.

Unfortunately, this scheme also satisfy FOLEs, but in this case we can only
derive 4r FOLEs in first step.

Lemma 1. Let k be a finite field with characteristic q, the operator ”ˆ” defined
on k is homomorphic, that is(

a1 b1
c1 d1

)q̂t (
a2 b2
c2 d2

)q̂t

=
((

a1 b1
c1 d1

)(
a2 b2
c2 d2

))q̂t

wherea1, a2, b1, b2, c1, c2, d1, d2 ∈ k.

Proof. In finite field k with characteristic q,

(a + b)q = aq + bq, a, b ∈ k.

Then (
a1 b1
c1 d1

)q̂t (
a2 b2
c2 d2

)q̂t

=

(
aqt

1 bqt

1

cqt

1 dqt

1

)(
aqt

2 bqt

2

cqt

2 dqt

2

)

=

(
aqt

1 aqt

2 + bqt

1 cqt

2 aqt

1 bqt

2 + bqt

1 dqt

2

cqt

1 aqt

2 + dqt

1 cqt

2 cqt

1 bqt

2 + dqt

1 dqt

2

)

=

(
(a1a2 + b1c2)qt

(a1b2 + b1d2)qt

(c1a2 + d1c2)qt

(c1b2 + d1d2)qt

)

58 W. Cao et al.

=
(

a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)q̂t

=
((

a1 b1
c1 d1

)(
a2 b2
c2 d2

))q̂t

��
According to Lemma 1, we have

Z q̂t

2 = (MT
2 M1)q̂t

= (MT
2)q̂t

M q̂t

1

Multiplying M2 on both sides,

Z q̂t

2 M2 = (MT
2)q̂t

M q̂t

1 M2 = (MT
2)q̂t

Z1

Expanding it, we get 4 equation below,⎧⎪⎪⎪⎨⎪⎪⎪⎩
X5Y

qt

7 + X7Y
qt

8 = Xqt

5 Y3 + Xqt

7 Y5;
X6Y

qt

7 + X8Y
qt

8 = Xqt

5 Y4 + Xqt

7 Y6;
X5Y

qt

9 + X7Y
qt

10 = Xqt

6 Y3 + Xqt

8 Y5;
X6Y

qt

9 + X8Y
qt

10 = Xqt

6 Y4 + Xqt

8 Y.

(31)

If we use K-linear isomorphisms on map Y = Xqt

, X, Y ∈ L, it should be linear
map on K, see [DGS06]. Hence,we can find there exit at least 4r FOLEs satisfied
by this scheme.

On the other hand, from ZT
2 = MT

1 M2, Z1 = M q̂t

1 M2, we can derive(
M q̂t

1

)−1
Z1 = (MT

1)−1ZT
2

Namely,

det(M1)
(
M q̂t

1

)∗
Z1 = [det(M1)]q

t

(MT
1)∗ZT

2 . (32)

However, (32) is of degree 3 in plaintext variables. Hence, they can not help to
do plaintext variables elimination on public key from these equations.

Having (31), we can represent s variables of u1, · · · , u8r by linear combinations
of other 8r − s. Our experiments show s = 3r. However, when we substitute
s variables by their expression on other 8r − s, we find other 4r FOLEs by
experiments and we can eliminate 3r variables on public key furthermore. For
the reminder equations with 2r variables, we can solve it directly by Gröbner
basis algorithm.

We use parameters r = 10, K = F28 for experiment, it takes 918.783 seconds
to derive the first 4r FLOEs and 1021.183 seconds for second 4r FLOEs. In
the last step, we recover corresponding plaintext for a given ciphertext using
Gröbner basis algorithm in 2.621 seconds.

Cryptanalysis of Quartic Encryption and Improved MFE Schemes 59

All of our experiments were performed on a normal computer, with Genuine
Intel(R) CPU T2300@1.66GHz, 504MB RAM by magma.

6 Conclusion

In this paper, we give a new cryptanalysis on the two improved MFE schemes,
Quartic-1 andQuartic-2,byutilizing quadratization equationswhichare quadratic
in plaintext variables. For a given ciphertext, cracking down Quartic-1 with the
sameparameter as inQuartic-2needs240 timesGröbner basis computations (about
1.328 seconds each time), while the Quatic-2 instance can be broken by quadrati-
zation equations in 3110.734 seconds. They both have weak points in their central
map design. We also use the first order Linearization attack method to break an-
other improvedMFEschemeproposed in [WZY07].Our analysis on the two quartic
schemes is an example that non-linearization equations in plaintext variables like
quadratization equations canbeused efficiently in the cryptanalysisofmultivariate
cryptography.

Acknowledgement

This work is supported by the National Natural Science Foundation of China
under Grant Numbers 60773134, 60973131 and 10990011, the National High
Technology Research and Development (863) Program of China under Grant No.
2006AA01Z416, and the National Basic Research (973) Program of China under
Grant No. 2007CB311201. The first two authors also thank a partial support
from NSF and Taft Foundation.

References

[DH76] Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transac-
tions on Information Theory 22, 644–654 (1976)

[DGS06] Ding, J., Gower, J., Schmidt, D.: Multivariate Public-Key Cryptosys-
tems. In: Advances in Information Security. Springer, Heidelberg (2006)
ISBN 0-387-32229-9

[DHN07] Ding, J., Hu, L., Nie, X., Li, J., Wagner, J.: High Order Linearization
Equation (HOLE) Attack on Multivariate Public Key Cryptosystems. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 233–248.
Springer, Heidelberg (2007)

[Fag99] Faugère, J.: A New Efficient Algorithm for Computing Gröbner Bases (F4).
Journal of Applied and Pure Algebra 139, 61–88 (1999)

[Pat95] Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme
of Eurocrypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963,
pp. 248–261. Springer, Heidelberg (1995)

[Sho97] Shor, P.: Polynomial-time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing 26,
1484–1509 (1997)

60 W. Cao et al.

[Wan07] Wang, Z.: An Improved Medium-Field Equation (MFE) Multivariate
Public Key Encryption Scheme. In: IIH-MISP (2007),
http://bit.kuas.edu.tw/ iihmsp07/accepted

list general session.html

[WFW09] Wang, X., Feng, F., Wang, X., Wang, Q.: A More Secure MFE Multivariate
Public Key Encryption Scheme. International Journal of Computer Science
and Applications 6(3), 1–9 (2009),
http://www.tmrfindia.org/ijcsa/v6i31.pdf

[WYH06] Wang, L., Yang, B., Hu, Y., Lai, F.: A Medium-Field Multivariate Public
Key Encryption Scheme. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS,
vol. 3860, pp. 132–149. Springer, Heidelberg (2006)

[WZY07] Wang, Z., Zheng, S., Yang, Y., et al.: Improved Medium- Field Multivari-
ate Public Key Encryption. Journal of University of Electonic Science an
Technology of China 36(6), 1152–1154 (2007) (in Chinese)

http://bit.kuas.edu.tw/~iihmsp07/accepted_list_general_session.html
http://bit.kuas.edu.tw/~iihmsp07/accepted_list_general_session.html
http://www.tmrfindia.org/ijcsa/v6i31.pdf

Cryptanalysis of the Niederreiter Public Key
Scheme Based on GRS Subcodes

Christian Wieschebrink

Federal Office for Information Security (BSI),
Godesberger Allee 185-189, 53175 Bonn, Germany

christian.wieschebrink@bsi.bund.de

Abstract. In this paper a new structural attack on the McEliece/Nieder-
reiter public key cryptosystem based on subcodes of generalized Reed-
Solomon codes proposed by Berger and Loidreau is described. It allows
the reconstruction of the private key for almost all practical parameter
choices in polynomial time with high probability.

Keywords: Public key cryptography, McEliece encryption, Niederre-
iter encryption, error-correcting codes, generalized Reed-Solomon codes,
Sidelnikov-Shestakov attack.

1 Introduction

Public key cryptosystems based on the difficulty of the (syndrome) decoding prob-
lem for linear codes have been discussed since the work by McEliece [1] in 1977.
Although the McEliece cryptosystem remains unbroken till today (for suitable
parameter choices) and efficient quantum computer attacks are unknown in prac-
tice it could not stand up to encryption schemes such as RSA or schemes based on
the discrete logarithm problem. This is partly due to the large (public) key sizes
needed in the McEliece scheme. For example in terms of security a RSA public
key of size 1024 bit is comparable to a 69 kB key in the McEliece scheme [2].

In order to reduce key sizes several alternative approaches for code based
cryptography were proposed. In most of these approaches the Goppa code which
is used in the McEliece cryptosystem is replaced by other codes which al-
low polynomial-time bounded distance decoding such as Reed-Muller codes,
Gabidulin codes or generalized Reed-Solomon codes. However most of these basic
variants turn out to be insecure [3,4,5].

Recently Berger and Loidreau presented a public key scheme based on sub-
codes of generalized Reed-Solomon codes [6]. It was partially cryptanalyzed in
[7] where it was shown that the secret key can be recovered in manageable time if
the subcode is chosen too large. However the attack quickly becomes infeasible for
smaller subcodes. In the present paper we describe a new structural attack on the
Berger-Loidreau scheme which works for almost all practical parameter choices.
It is shown that even if relatively few (linear independent) codewords of a gener-
alized Reed-Solomon code are given the complete code can be recovered with high
probability which allows the reconstruction of the secret code parameters.

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 61–72, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

62 C. Wieschebrink

In the subsequent sections 2 and 3 we introduce some basic properties of
generalized Reed-Solomon codes and the cryptosystems using those. In section 4
we review some known attacks and in section 5 we continue with the description
of the new attack. A experimental analysis is given in section 6.

2 Basic Facts about Generalized Reed-Solomon Codes

Let F be a finite field with q elements. We will assume a field of characteristic 2,
i.e. q = 2e. For a matrix M let <M> denote the linear code generated by the rows
of M . Let k, n ∈ N, k ≤ n, α = (α1, . . . , αn) ∈ F

n, x = (x1, . . . , xn)∈ (F\{0})n,
where the αi are pairwise distinct. The generalized Reed-Solomon code (or GRS
code) GRSn,k(α, x) is a linear code of length n and dimension k over F given by
the generator matrix

Gα,x =

⎛⎜⎜⎜⎝
x1 x2 · · · xn

x1α1 x2α2 . . . xnαn

...
. . .

x1α
k−1
1 x2α

k−1
2 · · · xnαk−1

n

⎞⎟⎟⎟⎠ , (1)

i.e. GRSn,k(α, x) =<Gα,x>. Typically we will assume that GRSn,k(α, x) has
full length, i.e. n = q. It is easy to see that GRSn,k(x, α) consists exactly of
those codewords c ∈ F

n for which a (unique) polynomial fc ∈ F[x] of degree at
most k − 1 exists such that

c = (x1fc(α1), x2fc(α2), . . . , xnfc(αn)) .

We call fc the polynomial associated to c. GRS codes allow efficient error correc-
tion. Up to �n−k

2 � errors can be corrected using the Berlekamp-Welch algorithm
[8]. By applying so called list-decoding techniques even up to n − √

(k − 1)n
errors can be corrected [9] in polynomial time.

A useful fact about GRS codes is stated in the following

Proposition 1. Let α, x be defined as above. Then

GRSn,k(α, x) = GRSn,k((aα1 + b, . . . , aαn + b), (cx1, . . . , cxn))

for all a, b, c ∈ F, a, c �= 0.

A proof can be found in [10]. It follows for example that α1 and α2 can be fixed
to arbitrary distinct values in F.

The dual of a GRS code is also a GRS code:

Proposition 2. Let α, x be defined as above and u := (u1, . . .un) where ui :=
x−1

i

∏
j 	=i(αi − αj)−1. Then the dual code of GRSn,k(α, x) is given by

GRSn,k(α, x)⊥ = GRSn,n−k(α, u) .

Proof. See [10]. ��

Cryptanalysis of the Niederreiter Public Key Scheme 63

3 Cryptosystems Based on GRS Codes

Niederreiter was the first to suggest a public-key scheme based on GRS codes
[11]. It can be described as follows:

Key generation. Given n, k (k < n) randomly choose α, x with above proper-
ties and let Gα,x be the generator matrix (1) of the corresponding GRS code.
Furthermore choose a random nonsingular k × k-matrix H over F and compute
M := H · Gα,x. Let t := �n−k

2 �. The public key ist given by (M, t), the private
key by (α, x).

Encryption. Suppose Alice wants to send a message b ∈ F
k to Bob using his

public key (M, t). Therefore she chooses a random e ∈ F
n of Hamming weight

at most t and computes the ciphertext v := b · M + e.
Decryption. Using α, x Bob applies the Berlekamp-Welch algorithm to the

received ciphertext v obtaining b′ := b · M . Let M−1 be a right side inverse on
M . The plaintext is given by b = b′ · M−1.

As we will see below the Niederreiter scheme is insecure due to the Sidelnikov-
Shestakov attack.

The Berger-Loidreau cryptosystem [6] is a variant of the Niederreiter scheme
which resists the Sidelnikov-Shestakov attack:

Key generation. Let n, k, α, x and Gα,x be as above and l ∈ N
≤k. Now choose

a random (k− l)× k-matrix H over F of rank k− l and compute M := H ·Gα,x.
Let t := �n−k

2 �. The public key ist given by (M, t), the private key by (α, x).
Encryption. The plaintext b ∈ F

k−l is encrypted by choosing a random e ∈ F
n

of Hamming weight at most t and computing the ciphertext v := b · M + e.
Decryption. Decryption works the same way as in the Niederreiter scheme.

The Berlekamp-Welch algorithm is applied to v giving b′ := b ·M . Finally b can
be calculated from b′ as above.

Obviously in the Berger-Loidreau scheme the public matrix M is the generator
matrix of a subcode of GRSn,k(α, x). In [6] the example parameters (n, k, l) =
(255, 133, 4) are given. In this case the work factor of a decoding attack is > 2100.

4 Existing Attacks

4.1 The Sidelnikov-Shestakov Attack

As mentioned above the Niederreiter cryptosystem based on GRS codes was
broken by Sidelnikov and Shestakov [5]. They show that the parameters α, x of
the chosen GRS code can be recovered from the public key in polynomial time.
The basic idea of their attack can be described as follows. Let M = HGα,x

be the public key. In a first step α is reconstructed. Compute the echelon form
E(M) of M :

E(M) =

⎛⎜⎜⎜⎝
1 0 · · · 0 b1,k+1 · · · b1,n

0 1 · · · 0 b2,k+1 · · · b2,n

. . .
...

...
0 · · · 0 1 bk,k+1 · · · bk,n

⎞⎟⎟⎟⎠

64 C. Wieschebrink

Consider the i-th row bi of E(M) and the associated polynomial fbi . Since the
entries bi,1, . . . , bi,i−1 and bi,i+1, . . . , bi,k of bi are equal to zero and fbi has degree
at most k − 1 the polynomial must have the form

fbi(y) = cbi ·
k∏

j=1,j 	=i

(y − αj) (2)

with cbi ∈ F\{0}. Now pick two arbitrary rows of E(M), for example b1 and b2,
and divide the entries of the first row by the corresponding entries in the second
row as long as these are different from zero. Using (2) we get

b1,j

b2,j
=

xj · fb1(αj)
xj · fb2(αj)

=
cb1(αj − α2)
cb2(αj − α1)

(3)

for j = k + 1, . . . , n. By Proposition 1 we can assume that α1 = 0 and α2 = 1.
Since the b1,j

b2,j
are known, the αj can uniquely be reconstructed from (3), if cb1

cb2

is guessed correctly. It remains to find α3, . . . , αk. Therefore we replace the row
b2 by bi (i = 3, . . . , k) in the above equation (3) and get

b1,j

bi,j
(αj − α1) =

cb1

cbi

(αj − αi) . (4)

Here cb1
cbi

and αi are unknown, but by letting j = k + 1, k + 2 for example, those
values can uniqely be reconstructed by solving a system of two linear equations.

In total α can be calculated using O(k2n) arithmetic operations in F (assuming
that cb1

cb2
has been guessed correctly).

Now in a second step x (and the matrix H as a byproduct) can be recovered.
First find a non-trivial solution c = (c1, . . . , ck+1) of the linear system

M ′ · c = 0 ,

where M ′ is the k×(k+1)-matrix consisting of the k+1 leftmost columns of the
public key M . Let G′ be the k × (k + 1)-matrix consisting of the k + 1 leftmost
columns of Gα,x. Because of M ′ = HG′ c also solves

G′ · c = 0

and therefore the first k + 1 entries x1, . . . , xk+1 of x solve⎛⎜⎜⎜⎝
c1α

0
1 c2α

0
2 · · · ck+1α

0
k+1

c1α
1
1 c2α

1
2 · · · ck+1α

1
k+1

...
. . .

...
c1α

k−1
1 c2α

k−1
2 · · · ck+1α

k−1
k+1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x1
x2
...

xk+1

⎞⎟⎟⎟⎠ = 0 .

By assuming x1 = 1 the solution is uniquely determined. Now the matrix G′

is completely known. Let G′′ be the matrix consisting of the first k columns

Cryptanalysis of the Niederreiter Public Key Scheme 65

of G′ and M ′′ the matrix consisting of the first k columns of M . We have
H = M ′′(G′′)−1. Finally G = H−1M (and thereby the remaining xi) can be
computed. The second step can be completed with O(k3 + k2n) operations in F.
The attack works if 2 ≤ k ≤ n − 2.

The above attack proves the following

Proposition 3. Let 2 ≤ k ≤ n − 2 and α, x be as above. There are at most
q(q − 1)2 pairwise distinct vectors α′ ∈ F

n for which a x′ ∈ F
n exists, s.t.

GRSn,k(α, x) = GRSn,k(α′, x′) . (5)

If two arbitrary entries of α′ are fixed, the number of different α′ for which x′

with (5) exists is upper bounded by (q − 1).

Proof. Equation (3) shows that αk+1, . . . , αn are uniquely determined if α1, α2,
cb1
cb2

are given (since the GRS code has minimum weight n− k + 1 we know that
b1,j

b2,j
�= 0). Furthermore, if αk+1, αk+2 are uniquely determined, so are α3, . . . , αk:

considering (4) for j = k + 1, k + 2 define

γ1 :=
bi,k+1

b1,k+1(αk+1 − α1)
, γ2 :=

bi,k+2

b1,k+2(αk+2 − α1)
.

It follows
cbi

cb1

= γ1(αk+1 − αi) = γ2(αk+2 − αi)

and thereby
γ1αk+1 − γ2αk+2 = (γ1 − γ2)αi .

As a consequence γ1 − γ2 �= 0 since otherwise αk+1 = αk+2. This means αi is
uniquely determined for i = 3, . . . , k if αk+1, αk+2 are given.

The proof is complete by noting that there are at most q(q − 1)2 different
choices for (α1, α2,

cb1
cb2

).

4.2 An Attack on the Berger-Loidreau Cryptosystem

The attack on the Berger-Loidreau cryptosystem presented in [7] can be consid-
ered as an extension of the above method by Sidelnikov and Shestakov. We give
a brief overview. Let E(M) = [1k−l|B] = (ti,j) be the echelon form of the public
matrix M of the Berger-Loidreau scheme. Generalizing the above argument for
every pair (c, d) ∈ {1, . . . , k− l}2 there exist polynomials Pc, Pd ∈ F[x] of degree
≤ l such that

tc,j

td,j
=

(αj − αd)Pc(αj)
(αj − αc)Pd(αj)

(6)

for all j = k − l + 1, . . . , n with td,j �= 0. Now let d = k − l =: m and define

P̃c(x) := (x − αm)Pc(x), Q̃c(x) := (x − αc)Pm(x) ,

66 C. Wieschebrink

s.t. (6) becomes
tc,j

td,j
=

P̃c(αj)
Q̃c(αj)

.

Suppose (for a moment) that αm+1, . . . , αm+2l+3 are known. In this case the
polynomials P̃c, Q̃c can be calculated by solving a linear system. (The polynomi-
als are uniqely determined if we assume that they are relatively prime and Q̃c is
monic.) By extracting the linear factors of Q̃c, where c ranges over 1, . . . , m− 1
the α1, . . . , αm−1 can be recovered. By appropriately permuting the columns of
M and applying the just described method to the permuted matrix the remaining
αm, αm+2l+4, . . . , αn can be found. Once α is found, x can easily be determined:
since <M> is a subcode of GRSn,k(α, x) it follows from Proposition 2 that

Mi,1α
j
1u1 + · · · + Mi,nαj

nun = 0

for all i = 1, . . . , k− l and j = 0, . . . , n− k− 1, where M = (Mi,j). So the values
u1, . . . , un can be recovered by solving a system of (k− l)(n−k) linear equations.
Typically (k− l)(n−k) > n so (u1, . . . , un) is expected to be uniqely determined
if we require u1 = 1. Finally x can be computed from (u1, . . . , un).

Since αm+1, . . . , αm+2l+3 are unknown (we can assume αm+1 = 0 and αm+2 =
1 however) all (q−2) · . . .·(q−2l−2) possible assignments have to be checked. In
total the procedure to reconstruct α can be completed with O(m2n + q2l+1ml3)
arithmetic operations in F, so is feasible if l and q are small. However if for
example q ≥ 64 and l ≥ 8 the attack becomes impractical.

The described method can be improved by finding two codewords in <M>
which have many (i.e. more than m − 2) zero entries in common positions. For
details we refer to [7].

5 An Improved Attack on the Berger-Loidreau
Cryptosystem

Let M = H · Gα,x be the public matrix of the Berger-Loidreau cryptosystem,
which is the generator matrix of a (k− l)-dimensional subcode of GRSn,k(α, x).
We present an algorithm to recover the secret parameters α, x from M which is
feasible even for larger l.

Let r1, . . . , rm be the rows of M and f1, . . . , fm (m = k−l) be the polynomials
associated to these rows. For two row vectors a, b ∈ F

n we define the component-
wise product a ∗ b ∈ F

n to be

a ∗ b := (a1 · b1, a2 · b2, . . . , an · bn) .

For our attack we distinguish two cases. First we consider the case 2k−1 ≤ n−2.
Then the attack works as follows. Calculate ri ∗ rj for all i, j ∈ {1, . . . , m}, i ≤ j.
Obviously ri ∗ rj has the form

ri ∗ rj = (x2
1fi(α1) · fj(α1), . . . , x2

nfi(αn) · fj(αn)) ,

Cryptanalysis of the Niederreiter Public Key Scheme 67

and since deg fi · fj ≤ 2k − 2 the code C generated by the ri ∗ rj is a subcode
of GRSn,2k−1(α, x′), where x′ = (x2

1, . . . , x
2
n). If C = GRSn,2k−1(α, x′) then the

Sidelnikov-Shestakov attack can be applied to an generator matrix of C returning
x′, α. If char F = 2 the vector x can be computed from x′ directly (by applying
the inverse Frobenius operator), otherwise x can be recovered from M with the
method described in section 4.2.

Otherwise if C �= GRSn,2k−1(α, x′) we consider this attack to have failed.
Since the running time of the attack of section 4.2 largely depends on l = k−m at
least we can apply 4.2 to a generator matrix of C if 0 < 2k−1− dim C < l. Note
however that for not too large l the probability that C equals GRSn,2k−1(α, x′)
seems to be very high (see section 6).

For typical instances of the Berger-Loidreau cryptosystem the case 2k − 1 >
n − 2 may apply. The above attack does not work here in general since the
Sidelnikov-Shestakov algorithm cannot be applied or the code generated by the
ri ∗ rj may be equal to F

n. However the idea of multiplying codewords compo-
nentwise can be applied to a shortened code of <M>.

Definition 1. Let C ⊂ F
n be a linear code of length n and dimension k and let

d ∈ N
≤k. The shortened code Sd(C) consists of all codewords (s1, . . . , sn−d) ∈

F
n−d such that

(0, . . . , 0︸ ︷︷ ︸
d times

, s1, . . . , sn−d) ∈ C .

Given the generator matrix GC = [1k|E] of C in echelon form (where E denotes
a k × (n − k)-matrix) a basis of Sd(C) can easily be obtained by extracting the
n − d rightmost components of the last k − d rows of GC .

Now let M again be the public (m × n)-matrix of the Berger-Loidreau cryp-
tosystem and S be a generator matrix of Sd(<M>). For a row s = (s1, . . . sn−d)
of S we have

(0, . . . , 0, s1, . . . , sn−d) ∈ GRSn,k(α, x) ,

so s can be written

s = (xd+1f(αd+1), . . . , xnf(αn)) ,

where f(x) ∈ F[x] has the form

f(x) = g(x)
d∏

j=1

(x − αj)

with deg g(x) ≤ k − d − 1. Letting z := (xd+i

∏d
j=1(αd+i − αj))i=1,...,n−d and

α′ := (αd+1, . . . , αn) obviously we have

Sd(<M>) =<S>⊂ GRSn−d,k−d(α′, z) .

If d can be chosen such that d ≤ m − 1 and 2(k − d) − 1 ≤ n − d − 2 the above
algorithm can be applied to S which in case of success delivers at most q(q−1)2

68 C. Wieschebrink

candidates for α′ according to proposition 3 (q − 1 candidates at most if we
assume α′

n−1 = 1, α′
n = 0 for example). Let T be the set of these solutions. Once

T is known the remaining α1, . . . , αd could be computed with similiar methods
as described in [7]. In the following an alternative approach is given.

Let m(1), . . . , m(n) be the column vectors of matrix M and π : {1, . . . , n} →
{1, . . . , n} be a permutation. Let Mπ denote the matrix obtained from M by
permuting the columns according to π, i.e. Mπ = (m(π(1)), . . . , m(π(n))). Simil-
iarly for y := (y1, . . . , yn) ∈ F

n we define yπ := (yπ(1), . . . , yπ(n)). Obviously we
have

<Mπ>⊂ GRSn,k(απ, xπ) . (7)

For simplicity we assume 2d ≤ n − 3 (for typical instances d can be chosen this
way, however the following method can easily be extended to the general case).
Now let π : {1, . . . , n} → {1, . . . , n} be given by

π(i) =

⎧⎨⎩
i + d, 1 ≤ i ≤ d
i − d, d + 1 ≤ i ≤ 2d

i, 2d + 1 ≤ i ≤ n

⎫⎬⎭ .

Apply the above algorithm to Mπ, i.e. compute a generator matrix S′ of Sd(<
Mπ >) and multiply every pair of rows of S′ componentwise. Because of (7)
we find a set T ′ of candidates for (απ(d+1), . . . , απ(n)). A solution for α can be
reconstructed by finding σ ∈ T and τ ∈ T ′ with σd+1 = 0, σd+2 = 1 and σi = τi

for i = d + 1, . . . , n − d and setting

αi = τi for 1 ≤ i ≤ d,
αi = σi−d for d + 1 ≤ i ≤ 2d,
αi = σi−d = τi−d for 2d + 1 ≤ i ≤ n .

The above algorithm is summarized in Algorithms 1 and 2. The procedure
SidelnikovShestakovAlpha(P) in line 13 of algorithm 1 represents the Sidelnikov-
Shestakov algorithm and returns the set of all possible α for a given generator
matrix P of a GRS code.

6 Analysis and Experimental Results

Let us consider the case 2k ≤ n−1. The above attack is successful if the products
ri∗rj generate the code GRSn,2k−1(α, x′). The number of different products is at
most m(m+1)

2 . If l is chosen small (as it is suggested in [6]) then m(m+1)
2 > 2k−1.

For randomly chosen subcodes it is expected that indeed the above GRS code
is generated. In this case the algorithm takes O(m4n + k2n + m2(n − k)2n)
operations in F in the worst case, i.e. we have a polynomial running time in the
code length n.

In case 2k > n − 1 the attack is sucessful if there is a d with

2k − n + 1 ≤ d ≤ m − 1 (8)

Cryptanalysis of the Niederreiter Public Key Scheme 69

Algorithm 1. partAlpha(d,M)
Input: d, generator matrix M with m = k − l rows s.t. <M>⊂ GRSn,k(α, x)
Output: Set A of candidates for (αd+1, . . . , αn)

1: G = (Gi,j) ← echelon form of M
2: S ← (Gi,j)i=d+1,...,m

j=d+1,...,n

3: s1, . . . , sm−d ← rows of S
4: r ← 1
5: for i ← 1, . . . , m − d do
6: for j ← i, . . . , m − d do
7: pr ← si ∗ sj

8: r ← r + 1
9: end for

10: end for
11: P ← generator matrix of the code spanned by the pr

12: if dim <P>= 2(k − d) − 1 then
13: A ← SidelnikovShestakovAlpha(P)
14: return A
15: else
16: return FAIL
17: end if

such that the componentwise products of the rows of the generator matrices of
Sd(<M>) and Sd(<Mπ>) generate the corresponding GRS codes. A necessary
condition for this is

(m − d)(m − d + 1)
2

≥ 2(k − d) − 1 . (9)

In this case we need O((m − d)4n + (k − d)2n + n3 + m2(n − k)2n) operations
for the complete attack (assuming q = n).

The above attack was implemented in MAGMA and verified experimentally.
To this end 100 random instances of the public key for four different parameter
sets were created. It turned out that for all 400 created instances the private
key could be reconstructed. The average times tα and tx to reconstruct the
vectors α and x respectively are given in table 1. (Experiments were made using
MAGMA V2.11-6 on a 1.83 GHz Core 2 Duo machine.) The first line in table
1 represents the suggested parameters in [6]. The results clearly show that even
if the dimension m of the subcode is small the parameters of the GRS code
can easily be obtained.1 For most practical parameter sets the scheme of [6] is
insecure.

However it is not difficult to construct instances of the Berger-Loidreau scheme
where the above attack fails in the sense that GRSn,2k−1(α, x′) cannot be com-
pletely generated. For example let k < n−3

2 , b, c ∈ N with 1 < c < k and

1 Note that small m are insecure anyway due to possible decoding attacks.

70 C. Wieschebrink

Algorithm 2. Reconstruction of α and x

Input: Public generator matrix M of the Berger-Loidreau scheme with m = k− l rows
and n columns

Output: Parameters α, x, s.t. <M>⊂ GRSn,k(α, x)

1: d ← 2k − n + 2
2: if d > m − 1 then
3: return FAIL
4: end if
5: if d < 0 then
6: d ← 0
7: end if
8: A1 ← partAlpha(d,M)
9: if d = 0 then

10: α ← random element of A1

11: end if
12: if d > 0 then
13: for i ← 1, . . . , n do
14: if 1 ≤ i ≤ d then
15: π(i) ← d + i
16: end if
17: if d + 1 ≤ i ≤ 2d then
18: π(i) ← i − d
19: end if
20: if 2d + 1 ≤ i ≤ n then
21: π(i) ← i
22: end if
23: end for
24: A2 ← partAlpha(d, Mπ)
25: Find (σ, τ) ∈ A1 × A2 with σd+1 = 0, σd+2 = 1, σi = τi for i = d + 1, . . . , n − d
26: for i ← 1, . . . , n do
27: if 1 ≤ i ≤ d then
28: αi ← τi

29: end if
30: if d + 1 ≤ i ≤ n then
31: αi ← σi−d

32: end if
33: end for
34: end if
35: X ← solution space of the linear system

Mi,1α
j
1u1 + · · · + Mi,nαj

nun = 0

for i = 1, . . . , m and j = 0, . . . , n − k.
36: (u1, . . . , un) ← random nonzero element of X
37: for i ← 1, . . . , n do
38: xi ← (ui

∏
j �=i(αi − αj))−1

39: end for
40: return α, x

Cryptanalysis of the Niederreiter Public Key Scheme 71

Table 1. Running times of the attack

q n k m tα (sec) tx (sec)
28 256 133 129 337 209
28 256 126 45 176 105
27 128 60 16 23 10
27 128 70 34 40 14

b(b−1)
2 < c. Let M be an instance of the public matrix with rows mi where the

polynomials fi associated to the mi have the form

fi(y) = ai(y)g(y) + ri(y)

with i = 1, . . . , m (m < k) for a fixed g(y) where deg g(y) = c, deg ai(y) ≤
k − c − 1, deg ri(y) < c and

rb(y) = rb+1(y) = . . . = rm(y) = 0 .

We have
fi · fj = aiajg

2 + (airj + ajri)g + rirj .

Since there are at most b(b−1)
2 different rirj �= 0 the subspace of F[y] generated

by the fifj cannot cover all possible remainders mod g, which means the fifj

cannot generate the linear space F
2k−2[y] of all polynomials over F of degree at

most 2k − 2 and thus the mi ∗ mj cannot generate GRSn,2k−1(α, x′).

7 Conclusion and Future Work

A new attack on the Berger-Loidreau public key cryptosystem which allows the
reconstruction of the private key was presented. Experimental evidence of its
correctness was given. The presented attack is much more efficient than previ-
ously known structural attacks. It is possible to construct instances of the scheme
which resist the attack however it seems doubtful that these are secure.

Finally we make some remarks about possible implications for the security of
the original McEliece scheme [1]. The original McEliece cryptosystem is one of
the few unbroken code-based public key schemes. It is analogous to the Nieder-
reiter scheme presented in section 3 where the GRS code is replaced by a binary
irreducible Goppa code. This type of code belongs to the class of alternant
codes. More specifically let n := 2e, (α1, . . . , αn) a permutation of the elements
of F := GF (n) and G(x) ∈ F[x] an irreducible polynomial. Then the binary
linear code in GF (2)n given by

GRSn,deg G((α1, . . . , αn), (G(α1)−1, . . . , G(αn)−1)⊥ ∩ GF (2)n ,

is called binary irreducible Goppa code. So given a (scrambled) generator matrix
M of such a code (which represents the public key of the McEliece scheme), M

72 C. Wieschebrink

can be considered as a generator matrix of a subcode of a GRS code. However
the attack of section 5 fails in this case, since typically we have for the dimension
m of the Goppa code

m ≈ n − e · deg G = 2k − n − (e − 2)deg G ,

where k = n − deg G. As (e − 2)deg G > 0 there is no suitable d with (8). Of
course another reason is that the component-wise products of the rows of M
are elements of GF (2)n, so they cannot generate a non-trivial GRS code in F

n.
There seems to be no straightforward way to generalize the attack to this case,
however a more detailed analysis of the attack in this respect remains part of
future work.

References

1. McEliece, R.: A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report, Jet Prop. Lab., California Inst. Tech. 42-44, 114–116 (1978)

2. van Tilborg, H.: Encyclopedia of Cryptography and Security. Springer, Heidelberg
(2005)

3. Minder, L., Shokrollahi, A.: Cryptanalysis of the Sidelnikov cryptosystem. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 347–360. Springer, Heidelberg
(2007)

4. Gibson, K.: The security of the Gabidulin public-key cryptosystem. In: Mau-
rer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 212–223. Springer,
Heidelberg (1996)

5. Sidelnikov, V., Shestakov, S.: On insecurity of cryptosystems based on generalized
Reed-Solomon codes. Discrete Math. Appl. 2, 439–444 (1992)

6. Berger, T., Loidreau, P.: How to mask the structure of codes for a cryptographic
use. Designs, Codes and Cryptography 35, 63–79 (2005)

7. Wieschebrink, C.: An attack on a modified Niederreiter encryption scheme. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 14–26. Springer, Heidelberg (2006)

8. Berlekamp, E., Welch, L.: Error correction of algebraic block codes, US Patent No.
4,633,470 (1986)

9. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-
geometric codes. In: Proceedings of 39th Annual Symposium on Foundations of
Computer Science, pp. 28–37 (1998)

10. MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North-
Holland, Amsterdam (1997)

11. Niederreiter, N.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory 15, 159–166 (1986)

Grover vs. McEliece

Daniel J. Bernstein�

Department of Computer Science (MC 152)
The University of Illinois at Chicago

Chicago, IL 60607–7053
djb@cr.yp.to

Abstract. This paper shows that quantum information-set-decoding at-
tacks are asymptotically much faster than non-quantum information-set-
decoding attacks.

Keywords: code-based cryptography, post-quantum cryptography.

1 Introduction

Assume that large quantum computers are built, and that they scale as smoothly
as one could possibly hope. Shor’s algorithm and its generalizations will then
completely break RSA, DSA, ECDSA, and many other popular cryptographic
systems: for example, a quantum computer will find an RSA user’s secret key at
essentially the same speed that the user can apply the key. See [21] for Shor’s
original algorithm, [24] for a detailed complexity analysis, and [16] for a survey
of generalizations.

It seems inconceivable, however, that Shor’s period-finding idea will ever have
any relevance to the vast majority of “one-way” cryptographic systems: secret-
key stream ciphers, hash-based public-key signature systems, etc. There are,
furthermore, several well-known “trapdoor one-way” cryptographic systems—
most importantly, public-key encryption systems—that seem immune to Shor’s
algorithm. The oldest example is the code-based public-key system introduced
by McEliece in [19] thirty years ago.

The conventional wisdom is that all of these systems will nevertheless need to
double their key sizes in order to survive quantum computers. Shor’s algorithm is
not the only application of quantum computers! A quantum searching algorithm
introduced by Grover in [13] and [14] finds (e.g.) a 256-bit AES key in only about
2128 quantum operations, given a few known plaintexts encrypted under that key.
Users who want to push the attacker’s cost significantly higher than 2128—the
original motivation for 256-bit AES—will need a cipher with significantly more
than a 256-bit key.

� Permanent ID of this document: e2bbcdd82c3e967c7e3487dc945f3e87. Date of this
document: 2010.03.02. This work was supported in part by the National Science
Foundation under grant ITR–0716498, and in part by Cisco’s University Research
Program.

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 73–80, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

74 D.J. Bernstein

There is, however, no reason to think that the doubled key size for a secret-key
cipher will be matched by a doubled hash-function output length, a doubled key
size for McEliece, etc. Consider the following examples:

• A frequently cited Brassard–Høyer–Tapp paper “Quantum cryptanalysis of
hash and claw-free functions” [8] argues that quantum computers force a
1.5× expansion in the output length of a collision-resistant black-box hash
function. My new paper [3] argues that quantum computers actually have
no impact on the difficulty of finding black-box hash collisions.

• Quantum computers obviously have no impact on the key length required for
the Gilbert–MacWilliams–Sloane authenticator [11] and other information-
theoretically secure cryptographic systems.

• Overbeck and Sendrier argue in [20, Section 3.5] that quantum computers
have only a small impact on the McEliece public-key system, reducing the
attacker’s decoding cost from (e.g.) 2140 to 2133 for a code of length 4096
and dimension 4096− 45 · 12 = 3556.

Grover’s algorithm takes only square-root time compared to a brute-force key
search, but this does not mean that it takes less time than the more sophisticated
algorithms used to find hash collisions, McEliece error vectors, etc. Sometimes
Grover’s idea can be used to speed up the more sophisticated algorithms, but
understanding the extent of the speedup requires careful analysis.

Contents of this paper. This paper points out a way to attack the McEliece
system with Grover’s algorithm. This attack is asymptotically much faster than
the approach analyzed in [20, Section 3.5].

Fix a rational number R with 0 < R < 1. State-of-the-art information-set-
decoding algorithms take time just c(1+o(1))n/lg n to break a length-n rate-R
code; here c = 1/(1 − R)1−R, and o(1) is a function of n that converges to 0
as n → ∞. See [6] for a much more detailed analysis. What this paper shows
is that quantum versions of the same information-set-decoding algorithms take
time only c(1/2+o(1))n/lg n. Protecting against this attack requires replacing n by
(2 + o(1))n, essentially quadrupling the McEliece key size.

Users who were already making the worst-case assumption regarding the im-
pact of Grover’s algorithm, namely a square-root speedup in all attacks, will
not be affected by this paper. However, users who were making more optimistic
assumptions to reduce key size, decryption time, etc. will need to change their
parameters in the McEliece system and in other code-based systems to survive
quantum computers.

2 Review of Attacks against the McEliece System

This section reviews the McEliece public-key cryptosystem; information-set-
decoding attacks against the system; and some claims in the literature regarding
the applicability of quantum computers to information-set decoding.

Review of McEliece encryption. Recall that the McEliece public key is a
“random” full-rank k × n matrix G with entries in F2. Here k and n are system

Grover vs. McEliece 75

parameters. McEliece originally suggested k = 524 and n = 1024, aiming for
64-bit security, but these parameters were broken in [5]. Users today take much
larger parameters, such as k = 3556 and n = 4096.

The matrix G specifies a linear map from Fk
2 to Fn

2 . The sender encrypts a
suitably randomized message m ∈ Fk

2 , together with a uniform random vector
e ∈ Fn

2 of Hamming weight t, as Gm + e ∈ Fn
2 . Here t is another system

parameter. Typically t = (n − k)/�lg n�.
The receiver secretly generates G as a scrambled Goppa matrix, and uses this

structure to quickly decode Gm + e, obtaining m and e. This structure means
that G is not actually a uniform random full-rank matrix. However, all known
“structural attacks” that discover the secret, or that merely distinguish G from
uniform random, are much slower than the information-set-decoding attacks
discussed below.

Review of basic information-set decoding. Basic information-set decoding
works as follows. Choose a uniform random size-k subset S ⊆ {1, 2, . . . , n}, and
consider the natural projection Fn

2 → FS
2 that extracts the coordinates indexed

by S, discarding all other coordinates. Assume that the following two events
occur simultaneously:

• The error vector e projects to 0 ∈ FS
2 ; i.e., the entries of e indexed by S are

all 0.
• The composition Fk

2
G−→ Fn

2 → FS
2 is invertible; i.e., the columns of G

indexed by S form an invertible k × k matrix.

Obtain m by applying the inverse to the projection of Gm + e, and obtain e
by subtracting Gm from Gm + e. If this fails—i.e., if the composition is not
invertible, or if the resulting e does not have Hamming weight t—then go back
to the beginning and try another set S.

The first event occurs for exactly
(
n−t

k

)
out of the

(
n
k

)
choices of S, so it occurs

on average after
(
n
k

)
/
(
n−t

k

)
iterations. If k = Rn and t ≈ (1 − R)n/lg n then(

n
k

)(
n−t

k

) =
n · · · (n − t + 1)

(n − k) · · · (n − k − t + 1)
≈

(
n

n − k

)t

=
(

1
1 − R

)t

≈ cn/lg n

where c = 1/(1 − R)1−R. These approximations are quite crude, but a more
careful analysis shows that

(
n
k

)
/
(
n−t

k

) ∈ c(1+o(1))n/lg n when t is sufficiently close
to (1 − R)n/lgn.

For any particular S, the second event occurs for approximately 29% of all
matrices G, since approximately 29% of all k×k matrices over F2 are invertible.
It is tempting to leap to the conclusion that, for any particular G, the second
event occurs for approximately 29% of all choices of S, and that the combination
of events occurs for approximately 0.29

(
n−t

k

)
out of the

(
n
k

)
choices of S. This

conclusion is wrong for some choices of G but does appear to be correct for
McEliece public keys. For further discussion of this point see [6, Section 2, under
“Model of the number of iterations”].

Review of advanced information-set decoding. More advanced forms of
information-set decoding complicate each iteration but decrease the number of

76 D.J. Bernstein

iterations required, for example by allowing e to have a few bits set within S
and combinatorially searching for those bits. There are also many techniques
to reduce the cost of finding appropriate sets S, computing inverses, checking
whether m is correct, etc. See generally [5].

The analysis in [6] shows that these improvements collectively reduce the cost
of information-set decoding by more than a constant power of n but that the
final cost is still c(1+o(1))n/lg n.

Review of previous analyses of quantum decoding attacks. I am aware
of two previous attempts to quantify the impact of quantum computers upon
information-set decoding. The first is by Barg and Zhou in [2, Section 1]. The
second is by Overbeck and Sendrier in [20, Section 3.5], as mentioned above.

The Barg–Zhou analysis is a brief sentence claiming that Grover’s algorithm
can decode any length-n code C, linear or not, “on a quantum computer of
circuit size O(n|C|1/2) in time O(n|C|1/2), which is essentially optimal following
a result in [1997 Bennett et al.].” Note that if C has rate R then |C| = 2Rn and
|C|1/2 = 2Rn/2.

There are many reasons to question the Barg–Zhou claim. Specifying an ar-
bitrary non-linear code of length n and rate R requires almost 2Rnn bits of
information; there is no theoretical obstacle to this information being packed
into only O(2Rn/2n) qubits, but Barg and Zhou give no explanation of how to
extract the information again from those qubits, never mind the question of what
this has to do with Grover’s algorithm.

There is no difficulty in building a small computer to enumerate a large linear
code. In this case a naive application of Grover’s algorithm would take essentially
2Rn/2 iterations but would require only a polynomial-size quantum computer,
far below the “optimal” circuit size claimed by Barg and Zhou. Furthermore,
information-set decoding takes time only about cn/lg n on a small non-quantum
computer, asymptotically far below the “optimal” time 2Rn/2 claimed by Barg
and Zhou.

The Overbeck–Sendrier analysis is more detailed and is aimed at giving an
“intuition why Grover’s algorithm is not able [to] give a significant speed-up
for the existing attacks.” Overbeck and Sendrier begin with “the simplifying
assumption that by Grover’s algorithm we are able to search a set of size N
in O(

√
N) operations on a quantum computer with at least log2(N) QuBits.”

They say that the combinatorial search in advanced forms of information-set
decoding (e.g., the collision search introduced by Stern in [23]) “achieves the
same speed-up as Grover’s algorithm would achieve.”

Overbeck and Sendrier also briefly consider, but dismiss, the idea of using
Grover’s algorithm for “the guessing phase,” i.e., to search for sets S having both
of the desired properties. They say that “this would either require an iterative
application of Grover’s algorithm (which is not possible) or a memory of size of
the whole search space, as the search function in the second step depends on the
first step. This would clearly ruin the ‘divide-and-conquer’ strategy and is thus
not possible either.”

Grover vs. McEliece 77

This paper shows the opposite: Grover’s searching algorithm can be used to
drastically speed up the search for sets S. One might speculate that previous
authors were misled by Grover’s often-repeated description of his algorithm as
searching a “database.” See the next section of this paper for further discussion
of what Grover’s algorithm actually does.

3 Quantum Information-Set Decoding

Grover’s algorithm is properly understood not as searching through a “database”
but as searching for roots of a function. It is easy, from this perspective, to see
how to apply Grover’s algorithm to information-set decoding. This section spells
out the details.

Grover’s algorithm. Grover’s algorithm is actually a generic constructive
transformation from conventional circuits into quantum root-finding circuits.
The input to the transformation is a circuit that computes a function f : Fb

2 →
F2. The output is a quantum circuit that computes a root of f (if one exists): a
b-bit string x such that f(x) = 0.

In this paper I will be satisfied with a limited class of b-bit-to-1-bit circuits,
namely “combinatorial” circuits: i.e., directed acyclic graphs where each node has
two incoming edges and computes the NAND of its predecessor nodes. There is
a loss of space efficiency from unrolling a long computation into a combinatorial
circuit, but the specific functions used in this paper do not take very long to
compute, at least compared to the speedups discussed in this paper.

To build a quantum circuit for f one must first build a “reversible” circuit
for f : a non-erasing circuit built from Toffoli gates (x, y, z) �→ (x, y, z + xy)
rather than NANDs. This costs small constant factors in the number of input
bits and in the size of the circuit. Replacing the bits by qubits, and replacing
the Toffoli gates by quantum Toffoli gates, then produces a circuit of essentially
the same size, and essentially the same speed, that computes f on a quantum
superposition of inputs.

Grover assumes for simplicity that f has a unique root; combines a quantum
circuit for f with a quantum rotation and a Hadamard transformation; and
iterates the resulting quantum circuit approximately

√
2b times, obtaining the

root of f with high probability. The rotation and the Hadamard transformation
take negligible time and space compared to typical functions f .

Boyer, Brassard, Høyer, and Tapp in [7] presented a generalization of Grover’s
algorithm using

√
2b/r iterations to handle a function f having r roots. The

number r need not be known in advance. The generalization in [7] is not actually
necessary: one can simply apply Grover’s algorithm to random restrictions of f
having 1 input, 2 inputs, 4 inputs, etc. With either approach, the number of
iterations used by quantum search is only about the square root of the number
of iterations used by a traditional brute-force search.

78 D.J. Bernstein

Basic quantum information-set decoding. Fix y ∈ Fn
2 , and fix a k × n

matrix G. Consider the function that, given a size-k subset S ⊆ {1, 2, . . . , n},

• inverts the composition Fk
2

G−→ Fn
2 → FS

2 , giving up if the composition is
not invertible;

• applies the inverse to the image of y in FS
2 , obtaining a vector m ∈ Fk

2 ;
• computes Gm ∈ Fn

2 ;
• gives up if Gm − y does not have Hamming weight t; and, finally,
• returns 0.

This function can easily be computed by a combinatorial circuit consisting of
O(n3) bit operations.

Recall that basic information-set decoding searches randomly for a root of
this function. The search uses approximately

(
n
k

)
/0.29

(
n−t

k

) ≈ cn/lg n function
evaluations on average.

This paper’s basic quantum information-set-decoding algorithm finds a root
of exactly the same function by Grover’s algorithm. Grover’s algorithm uses

only about
√(

n
k

)
/0.29

(
n−t

k

) ≈ c(1/2)n/lg n iterations. Each iteration is a quantum
function evaluation performing O(n3) qubit operations; each iteration thus takes
time nO(1) on a quantum computer of size nO(1). The total time to find S is
c(1/2+o(1))n/lg n on a quantum computer of size nO(1). Having found S one can
compute m and e = Gm − y with negligible extra effort.

Consider again the example (n, k, t) = (4096, 3556, 45) from [20, Section 3.5].
Basic quantum information-set decoding performs only about 268 evaluations of
this function. Each function evaluation takes a few billion bit operations, so the
total cost is approximately 2100 qubit operations. Evidently these parameters
are far below a safe 128-bit security level, contrary to the analysis in [20].

Advanced quantum information-set decoding. Recall that more advanced
forms of information-set decoding evaluate more complicated functions that have
more roots S. One can—and, to properly optimize parameters, should—consider
analogous forms of quantum information-set decoding.

Beware that optimization of quantum information-set decoding is not the
same as optimization of non-quantum information-set decoding. A 100× increase
in the cost of function evaluation has a 100× impact in both settings, but a 100×
increase in the number of roots has only a 10× impact in the quantum setting.

For example, the improvement introduced by Lee and Brickell in [17] increases
the number of roots by a factor n2+o(1), while increasing the cost of each iteration
by only a constant factor. See [6, Section 3] for a detailed analysis of these factors.
This improvement therefore saves a factor n1+o(1) in quantum information-set
decoding.

The improvement introduced by Stern in [23] increases the number of roots by
a larger factor. However, it also increases the cost of each iteration by more than
the square root of the same factor. I do not see how Stern’s collision-searching
idea can save time in quantum information-set decoding.

Grover vs. McEliece 79

References

[1] Proceedings of the twenty-eighth annual ACM symposium on the theory of com-
puting, held in Philadelphia, PA, May 22-24. Association for Computing Machin-
ery (1996), ISBN 0-89791-785-5. MR 97g:68005. See [13]

[2] Barg, A., Zhou, S.: A quantum decoding algorithm of the simplex code. In: Pro-
ceedings of the 36th Annual Allerton Conference on Communication, Control and
Computing, Monticello, IL, September 23-25 (1998),
http://www.enee.umd.edu/~abarg/reprints/rm1dq.pdf;
Citations in this document: §2

[3] Bernstein, D.J.: Cost analysis of hash collisions: Will quantum computers make
SHARCS obsolete? In: Workshop Record of SHARCS ’09: Special-purpose Hard-
ware for Attacking Cryptographic Systems (2009),
http://cr.yp.to/papers.html#collisioncost; Citations in this document: §1

[4] Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-quantum cryptography.
Springer, Heidelberg (2009), ISBN 978–3–540–88701–0.See [16], [20]

[5] Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece
cryptosystem. In: [9], pp. 31–46 (2008), http://eprint.iacr.org/2008/318 ;
Citations in this document: §2, §2

[6] Bernstein, D.J., Lange, T., Peters, C., van Tilborg, H.: Explicit bounds for generic
decoding algorithms for code-based cryptography. In: WCC 2009 (2009); Citations
in this document: §1, §2, §2, §3

[7] Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching
(1996), http://arxiv.org/abs/quant-ph/9605034v1;
Citations in this document: §3, §3

[8] Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-
free functions. In: [18], pp. 163–169 (1998); MR 99g:94013. Citations in this
document: §1

[9] Buchmann, J., Ding, J. (eds.): PQCrypto 2008. LNCS, vol. 5299. Springer, Hei-
delberg (2008); See [5]

[10] Cohen, G.D., Wolfmann, J. (eds.): Coding Theory 1988. LNCS, vol. 388. Springer,
Heidelberg (1989)

[11] Gilbert, E.N., MacWilliams, F.J., Sloane, N.J.A.: Codes which detect deception.
Bell System Technical Journal 53, 405–424 (1974), ISSN 0005–8580. MR 55:5306,
http://cr.yp.to/bib/entries.html#1974/gilbert.
Citations in this document: §1

[12] Goldwasser, S. (ed.): 35th annual IEEE symposium on the foundations of com-
puter science. Proceedings of the IEEE symposium held in Santa Fe, NM, Novem-
ber 20-22. IEEE, Los Alamitos (1994), ISBN 0-8186-6580-7. MR 98h:68008. See
[21]

[13] Grover, L.K.: A fast quantum mechanical algorithm for database search. In: [1],
pp. 212–219 (1996); MR 1427516. Citations in this document: §1

[14] Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack.
Physical Review Letters 79, 325–328 (1997); Citations in this document: §1

[15] Günther, C.G. (ed.): EUROCRYPT 1988. LNCS, vol. 330. Springer, Heidelberg
(1988), ISBN 3–540–50251–3. MR 90a:94002. See [17]

[16] Hallgren, S., Vollmer, U.: Quantum computing. In: [4], pp. 15–34 (2009);
Citations in this document: §1

[17] Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: [15], pp. 275–280 (1988); Citations in this document: §3

http://www.enee.umd.edu/~abarg/reprints/rm1dq.pdf
http://cr.yp.to/papers.html#collisioncost
http://eprint.iacr.org/2008/318
http://arxiv.org/abs/quant-ph/9605034v1
http://cr.yp.to/bib/entries.html#1974/gilbert

80 D.J. Bernstein

[18] Lucchesi, C.L., Moura, A.V. (eds.): LATIN 1998. LNCS, vol. 1380. Springer, Hei-
delberg (1998), ISBN 3-540-64275-7. MR 99d:68007. See [8]

[19] McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL
DSN Progress Report, 114–116 (1978),
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF;
Citations in this document: §1

[20] Overbeck, R., Sendrier, N.: Code-based cryptography. In: [4], pp. 95–145 (2009);
Citations in this document: §1, §1, §2, §3, §3

[21] Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: [12], pp. 124–134 (1994), see also newer version [22]. MR 1489242.
Citations in this document: §1

[22] Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing 26, 1484–1509
(1997), see also older version [21]. MR 98i:11108

[23] Stern, J.: A method for finding codewords of small weight. In: [10], pp. 106–113
(1989); Citations in this document: §2, §3

[24] Zalka, C.: Fast versions of Shor’s quantum factoring algorithm (1998),
http://arxiv.org/abs/quant-ph/9806084; Citations in this document: §1

http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://arxiv.org/abs/quant-ph/9806084

Information-Set Decoding for Linear Codes
over Fq

Christiane Peters�

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands

c.p.peters@tue.nl

Abstract. The best known non-structural attacks against code-based
cryptosystems are based on information-set decoding. Stern’s algorithm
and its improvements are well optimized and the complexity is reasonably
well understood. However, these algorithms only handle codes over F2.

This paper presents a generalization of Stern’s information-set-
decoding algorithm for decoding linear codes over arbitrary finite fields
Fq and analyzes the complexity. This result makes it possible to compute
the security of recently proposed code-based systems over non-binary
fields.

As an illustration, ranges of parameters for generalized McEliece cryp-
tosystems using classical Goppa codes over F31 are suggested for which
the new information-set-decoding algorithm needs 2128 bit operations.

Keywords: Generalized McEliece cryptosystem, security analysis, Stern
attack, linear codes over Fq, information-set decoding.

1 Introduction

Quantum computers will break the most popular public-key cryptosystems. The
McEliece cryptosystem —introduced by McEliece in 1978 [12] — is one of the
public-key systems without known vulnerabilities to attacks by quantum com-
puters. Grover’s algorithm can be countered by doubling the key size (see [8],
[14]). Its public key is a random-looking algebraic code over a finite field. En-
cryption in McEliece’s system is remarkably fast. The sender simply multiplies
the information vector with a matrix and adds some errors. The receiver, having
generated the code by secretly transforming a Goppa code, can use standard
Goppa-code decoders to correct the errors and recover the plaintext.

The security of the McEliece cryptosystem relies on the fact that the pub-
lished code does not come with any known structure. An attacker is faced with
the classical decoding problem: Find the closest codeword in a linear code C
to a given vector in the ambient space of C, assuming that there is a unique

� Date of this document: 2010.02.28. This work has been supported in part by the
European Commission through the ICT Programme under Contract ICT–2007–
216676 ECRYPT II.

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 81–94, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

82 C. Peters

closest codeword. This is a well known-problem. Berlekamp, McEliece, and van
Tilborg [3] showed that the general decoding problem for linear binary codes
is NP-complete. The classical decoding problem is assumed to be hard on
average.

Information-set decoding. An attacker does not know the secret code and thus
has to decode a random-looking code without any obvious structure. The best
known algorithms which do not exploit any code structure rely on information-
set decoding, an approach introduced by Prange in [15]. The idea is to find a set
of coordinates of a garbled vector which are error-free and such that the restriction
of the code’s generator matrix to these positions is invertible. Then, the original
message can be computed by multiplying the encrypted vector by the inverse of
the submatrix. Improvements of this simplest form of information-set decoding
were devised by Lee and Brickell [10], Leon [11], and Stern [16] — all for binary
linear codes.

Best known attacks against binary McEliece. At PQCrypto 2008 Bern-
stein, Lange and Peters [4] presented several improvements to Stern’s attack and
gave a precise analysis of the complexity. Finiasz and Sendrier [7] presented a
further improvement which can be combined with the improvements in [4] but
did not analyze the combined attack. For 128-bit security [4] suggests the use of
binary Goppa codes of length 2960 and dimension 2288 with a degree-56 Goppa
polynomial and 57 added errors.

Decreasing public-key sizes by using larger fields. Several papers have
suggested to use base fields other than F2, e.g. [9], [2], and more recently [1]
and [13]. This idea is interesting as it has the potential to reduce the public-key
size. One could hope that using a code over Fq saves a factor of log2 q: row and
column dimension of the generator matrix both shrink by a factor of log2 q at the
cost of the matrix entries having size log2 q. However, information-set-decoding
algorithms do not scale as brute force attacks. It is important to understand
the implications of changing from F2 to Fq for arbitrary prime powers q on the
attacks. Note that some papers claim structural attacks against [13] but they
are using that the codes are dyadic and do not attack the general principle of
using larger base fields.

Contributions of this paper. This paper generalizes Lee–Brickell’s algorithm
and Stern’s algorithm to decoding algorithms for codes over arbitrary fields and
extends the improvements from [4] and [7]. The algorithms are both stated as
fixed-distance-decoding algorithms as in [5]. In particular, the algorithm using
Stern’s idea can be directly used for decoding a fixed number of errors. The most
important contribution of this paper is a precise analysis of these improved and
generalized algorithms. For q = 31, code parameters (length n, dimension k, and
degree t of the Goppa polynomial) are presented that require 2128 bit operations
to compute the closest codeword.

Information-Set Decoding for Linear Codes over Fq 83

2 The McEliece Cryptosystem

This section gives the background on the McEliece cryptosystem and introduces
notation for linear codes which is used throughout this paper.

Linear codes. Let Fq be a finite field with q elements. An [n, k] code C is a
linear code of length n and dimension k. A generator matrix for C is a k × n
matrix G such that C =

{
mG : m ∈ Fk

q

}
. The matrix G corresponds to a map

Fk
q → Fn

q sending a message m of length k to an element in Fn
q .

Setup of the McEliece cryptosystem. The secret key of the McEliece cryp-
tosystem consists of a classical Goppa code Γ over a finite field of Fq of length
n and dimension k with an error-correction capacity of w errors. A generator
matrix G for the code Γ as well as an n × n permutation matrix P , and an
invertible k × k matrix S are randomly generated and kept secret as part of the
secret key.

The parameters n, k, and w are public system parameters. The McEliece public
key is the k × n matrix Ĝ = SGP and the error weight w.

McEliece encryption of a message m ∈ Fk
q : Compute mĜ. Then hide the

message by adding a random error vector e of length n and weight w. Send
y = mĜ + e.

McEliece decryption: Compute yP−1 = mSG + eP−1. Use the decoding al-
gorithm for Γ to find mS and thereby m.

The decryption algorithm works since mSG is a codeword in Γ and the vector
eP−1 has weight w.

An attacker who got hold of an encrypted message y has two possibilities in
order to retrieve the original message m.

• Find out the secret code; i.e., find G given Ĝ, or
• Decode y without knowing an efficient decoding algorithm for the public

code given by Ĝ.

Attacks of the first type are called structural attacks. If G or an equivalently
efficiently decodable representation of the underlying code can be retrieved in
subexponential time, this code should not be used in the McEliece cryptosystem.
Suitable codes are such that the best known attacks are decoding random codes.
In the next section we will describe how to correct errors in a random-looking
code with no obvious structure.

3 Generalizations of Information-Set-Decoding
Algorithms

This section generalizes two information-set-decoding algorithms. Lee–Brickell’s
algorithm and Stern’s algorithm —both originally designed for binary codes —
are stated for arbitrary finite fields Fq. Stern’s algorithm is more efficient and

84 C. Peters

supersedes Lee–Brickell’s algorithm but the latter is easier to understand and
the generalization of it can be used as a stepping stone to the generalization of
Stern’s.

The preliminaries are the following: Let C be an [n, k] code over a finite field
Fq. Let G be a generator matrix for C. Let I be a non-empty subset of {1, . . . , n}.
Denote by GI the restriction of G to the columns indexed by I. For any vector
y in Fn

q denote by yI the restriction of y to the coordinates indexed by I.
Let y be a vector in Fn

q at distance w from the code C. The goal of this section
is to determine a vector e ∈ y + Fk

qG of weight w given G, y and w. Note that
y + Fk

qG is the coset of C containing e.
We start with the definition of an information set.

Information-set decoding. Let Gsys be a generator matrix for C in systematic
form, i.e., Gsys = (Ik|Q) where Q is a k×(n−k) matrix, and consider c = mGsys

for some vector m in Fk
q . Since the first k columns of Gsys form the identity

matrix the first k positions of c equal m. The first k symbols of mGsys are
therefore called information symbols.

The notion of information symbols leads to the concept of information sets as
follows. Let G be an arbitrary generator matrix of C. Let I be a size-k subset
of {1, . . . , n}. The columns indexed by I form a k × k submatrix of G which is
denoted by GI . If GI is invertible the I-indexed entries of any codeword mG−1

I G
are information symbols and the set I is called an information set. Note that
G−1

I G and G generate the same code.
Information-set decoding in its simplest form takes as input a vector y in Fn

q

which is known to have distance w from C. Denote the closest codeword by c. Let
I be an information set. Assume that y and c coincide on the positions indexed
by I, i.e., no errors occurred at these positions. Then, yIG

−1
I is the preimage of

c under the linear map induced by G and we obtain c as (yIG
−1
I)G.

The following subsection presents Lee–Brickell’s algorithm which is a clas-
sical information-set-decoding algorithm and serves as a basis for all further
improvements.

Notation: for any a in an information set I let ga denote the unique row of
G−1

I G where the column indexed by a has a 1.

Lee–Brickell’s algorithm. Let p be an integer with 0 ≤ p ≤ w.

1. Choose an information set I.
2. Replace y by y − yIG

−1
I G.

3. For each size-p subset A = {a1, . . . , ap} ⊂ I and for each m = (m1, . . . , mp)
in (F∗

q)
p compute e = y − ∑p

i=1 migai . If e has weight w print e. Else go
back to Step 1.

Step 1 can be performed by choosing k indices in {1, . . . , n} uniformly at random
and then performing Gaussian elimination on G in order to see if its I-indexed
columns form an invertible submatrix GI . A better way of determining an in-
formation set I is to choose k columns one by one: check for each newly selected
column if it does not linearly depend on the already selected columns.

Information-Set Decoding for Linear Codes over Fq 85

If p = 0 Step 3 only consists of checking whether y − yIG
−1
I G has weight w.

If p > 0 Step 3 requires going through all possible weighted sums of p rows of
G which need to be subtracted from y − yIG

−1
I G in order to make up for the

p errors permitted in I. In Section 4 we will explain how to generate all vectors
needed using exactly one row addition for each combination.

Steps 1–3 form one iteration of the generalized Lee–Brickell algorithm. If the
set I chosen in Step 1 does not lead to a weight-w word in Step 3 another
iteration has to be performed.

The parameter p is chosen to be a small number to keep the number of size-p
subsets small in Step 3. In the binary case p = 2 is optimal; see e.g., [5].

Lee–Brickell, Leon, Stern. Stern’s algorithm was originally designed to look
for a codeword of a given weight in a binary linear code. The algorithm presented
here builds on Stern’s algorithm but works for codes over arbitrary fields Fq.
It is stated as a fixed-distance-decoding algorithm following [5]: Given y in Fn

q ,
G and w, find e of weight w such that e lies in y + Fk

qG. This algorithm still
can be used to determine codewords of a given weight w: just choose y to be
the zero-codeword in Fn

q . See Sections 4 and 8 for a discussion of stating this
algorithm in a fixed-distance-decoding fashion.

The basic Stern algorithm uses two parameters p and
 whose size are deter-
mined later on. In each round an information set I is chosen. Stern’s algorithm
uses the idea of Lee and Brickell to allow a fixed number of errors in the infor-
mation set. The algorithm also uses the idea of Leon’s minimum-weight-word-
finding algorithm [11] to look for the error vector e: since e is a low-weight vector
one restricts the number of possible candidates to those vectors having
 zeros
outside the I-indexed columns.

Stern’s algorithm divides the information set I into two equal-size subsets X
and Y and looks for words having exactly weight p among the columns indexed
by X , exactly weight p among the columns indexed by Y , and exactly weight 0
on a fixed uniform random set of
 positions outside the I-indexed columns.

Stern’s algorithm. Let p be an integer with 0 ≤ p ≤ w. Let
 be an integer
with 0 ≤
 ≤ n − k. For simplicity assume that k is even.

1. Choose an information set I.
2. Replace y by y − yIG

−1
I G.

3. Choose a uniform random subset X ⊂ I of size k/2.
4. Set Y = I \ X .
5. Select a uniform random size-
 subset Z in {1, . . . , n} \ I.
6. For any size-p subset A = {a1, . . . , ap} ⊂ X consider the set

VA =
{
y −∑p

i=1 migai : m = (m1, . . . , mp) ∈ (F∗
q)p

}
. For each φ ∈ VA com-

pute the vector φ(Z) ∈ F

q: the Z-indexed entries of φ.

7. For any size-p subset B = {b1, . . . , bp} ⊂ Y consider the set

VB =
{∑p

j=1 m′
jgbj : m′ = (m′

1, . . . , m
′
p) ∈ (F∗

q)p
}
. For each ψ ∈ VB com-

pute the vector ψ(Z) ∈ F

q: the Z-indexed entries of ψ.

86 C. Peters

8. For each pair (A, B) where there is a pair of vectors φ = y −∑
i migai and

ψ =
∑

j m′
jgbj such that φ(Z) = ψ(Z) compute e = φ − ψ. If e has weight

w print e. Else go back to Step 1.

This algorithm finds a weight-w vector e in y + Fk
qG if an information set I

together with sets X , Y , and Z can be found such that e has weights p, p, 0 on
the positions indexed by X , Y , and Z, respectively. Steps 1–8 form one iteration
of the generalized Stern algorithm. If the set I chosen in Step 1 does not lead to
a weight-w word in Step 8 another iteration has to be performed.

4 Analysis of an Improved Version of Stern’s Algorithm
for Prime Fields

This section analyzes the cost for the generalization of Stern’s algorithm as
presented in Section 3. In this section the field Fq is restricted to prime fields.
The general case is handled in the next section.

Note that the Stern algorithm stated in Section 3 is the basic algorithm. The
following analysis takes several speedups into account that were introduced in
[4] for the binary case.

Reusing additions. In Step 6 one has to compute
(
k/2
p

)
(q − 1)p vectors y −∑p

i=1 migai on
 positions. Computing those vectors naively one by one would
require p
 multiplications and p
 additions in Fq per vector. However, each sum∑p

i=1 migai can be computed with exactly one row operation using intermediate
sums. The sums in Step 6 additionally involve adding y. The naive approach is
to subtract each

∑
i migai from y. Recall that for i ∈ I the vector gi is the

unique row of G−1
I G where the column indexed by i has a 1. Observe that each

y − ∑
i migai includes at least one vector y − gi for k/2 − p + 1 rows gi with

i ∈ X . So it is sufficient to carry out only k/2 − p + 1 additions for y.
In Step 7 all vectors induced by size-p subsets of Y on the Z-indexed columns

are also computed using intermediate sums.

Collisions. The expected number of colliding vectors φ(Z), ψ(Z) in Step 8 is
about ((

k/2
p

)
(q − 1)p

)2
/

q
.

For each collision one computes y minus the sum of 2p weighted rows on all
positions outside X , Y , and Z. Naive computation of one such a vector would
take 2p multiplications and 2p additions on n−k−
 positions. However, first of all
one can discard multiplications by 1, leaving 2p additions and (2p)(q−2)/(q−1)
multiplications. Looking more carefully one observes that each entry has a chance
of (q − 1)/q to be a non-zero entry. In order to save operations, one computes
the result in a column-by-column fashion and uses an early abort: after about
(q/(q−1))(w−2p+1) columns are handled it is very likely that the resulting row
vector has more than the allowed w − 2p non-zero entries and can be discarded.

Information-Set Decoding for Linear Codes over Fq 87

This means that partial collisions that do not lead to a full collision consume
only (q/(q − 1))(w − 2p + 1) operations.

If y is the all-zero codeword the algorithm looks for a weight-w codeword.
Then the cost for adding y to weighted rows ga coming from sets A in Steps 6
and 8 can be neglected.

Updating the matrix G with respect to I. At the beginning of each iteration
a new information set I needs to be chosen. Then one has to reduce —using
Gaussian elimination — the I-indexed columns of the matrix G to the k × k
identity matrix. A crude estimate of the cost for this step is given by (n −
k)2(n + k) operations.

Note that for large fields the cost for Gaussian elimination become negligible
in comparison to the cost of Steps 6–8. The same holds if the code length goes
to infinity as shown in [5]. However, for small fields the following improvements
should be taken into account.

Reusing parts of information sets and precomputations. Canteaut and
Chabaud in [6] proposed to use a column-swapping technique for Stern’s
algorithm in order to cut down on Gaussian elimination cost. If an informa-
tion set I does not lead to a weight-w vector e then instead of abandoning the
whole set I reuse k − 1 columns and select a new column out of the remain-
ing n − k non-selected columns of G. The submatrix GI′ has to be updated
for this new information set I ′. Bernstein, Lange, and Peters pointed out in [4]
that selecting only a single new column increases the number of iterations of
Stern’s algorithm significantly and proposed to swap more than one column in
each round: reuse k − c columns from the previous iteration and select c new
linearly independent columns out of the non-selected n − k columns. The value
c has to be chosen with respect to the code length n, its dimension k and the
error weight w.

At the beginning of each new iteration there are k columns from the previ-
ous iteration in row echelon form. Exchanging c columns means that Gaussian
elimination has to be performed on those c columns.

Updating the matrix and looking for pivots in c columns with respect to the
chosen columns is done using precomputations. Since sums of certain rows are
used multiple times those sums are precomputed. Following [4, Section 4] pick
e.g., the first r rows and compute all possible sums of those rows. The parameter
r needs to be tuned with respect to the field size q and the code dimension k. In
particular, r ≤ c. Starting with r columns one has to precompute qr−r−1 sums
of r rows. Each of the remaining k − r rows requires on average 1 − 1/qr vector
additions. Choosing r > 1 yields good speedups for codes over small fields.

We covered most of the improvements suggested in [4] but we omitted choosing
multiple sets Z of size
. This step amortizes the cost of Gaussian elimination over
more computations in the second part. As noted before, for larger q Gaussian
elimination is even less of a bottleneck than in binary fields and we thus omitted
this part here.

To estimate the cost per iteration we need to express the cost in one measure,
namely in additions in Fq. We described Steps 6–8 using multiplications. Since

88 C. Peters

we consider only quite small fields Fq multiplications can be implemented as
table lookups and thus cost the same as one addition.

Cost for one iteration of Stern’s algorithm. Stern’s algorithm in the version
presented here uses parameters p,
, and additional parameters c and r.

The cost of one iteration of Stern’s algorithm is as follows:

(n − 1)
(

(k − 1)
(

1 − 1
qr

)
+ (qr − r)

)
c

r

+
((

k

2
− p + 1

)
+ 2

(
k/2
p

)
(q − 1)p

)

+
q

q − 1
(w − 2p + 1)2p

(
1 +

q − 2
q − 1

) (
k/2
p

)2
(q − 1)2p

q

.

For large fields the improvements regarding Gaussian elimination do not result
in significantly lower cost. In this case the reader can also replace the first line
with (n − k)2(n + k).

Success probability of the first iteration. Let I be an information set chosen
uniformly at random. A random weight-w word e has weight 2p among the
columns indexed by I with probability

(
k
2p

)(
n−k

w−2p

)/ (
n
w

)
.

Let X , Y be disjoint size-(k/2) subsets of I chosen uniformly at random. The
conditional probability of the 2p errors of I-indexed positions in e appearing as
p errors among the positions indexed by X and p errors among the positions
indexed by Y is given by

(
k/2
p

)2/(
k
2p

)
.

Let Z be a size-
 subset in {1, . . . , n} \ I chosen uniformly at random. The
conditional probability of e having w − 2p errors outside the information set
avoiding the positions indexed by Z is given by

(
n−k−(w−2p)

)/ (
n−k

)
.

The product of these probabilities equals
(
k/2
p

)2(n−k−

w−2p

)/ (
n
w

)
and is the chance

that Stern’s algorithm finds e after the first round.

Number of iterations. The iterations of Stern’s algorithm are independent
if the set I is chosen uniformly at random in each round. Then the average
number of iterations of Stern’s algorithm is the multiplicative inverse of the
success probability of the first round.

However, the iterations are not independent if k − c columns are reused. In
fact, each iteration depends exactly on the preceding iteration. Thus the number
of iterations can be computed using a Markov chain as in [4]. The chain has w+2
states, namely

• 0: The chosen information set contains 0 errors.
• 1: The chosen information set contains 1 error.
• . . .
• w: The chosen information set contains w errors.
• Done: The attack has succeeded.

Information-Set Decoding for Linear Codes over Fq 89

An iteration chooses c distinct positions in the information set I of the preceding
iteration and c distinct positions outside I which are then swapped. An iteration
of the attack moves from state u to state u + d with probability∑

i

(
w − u

i

)(
n − k − w + u

c − i

)(
u

d + i

)(
k − u

c − d − i

)/(
n − k

c

)(
k

c

)
.

Then the iteration checks for success: in state 2p it moves to state “Done” with
probability

β =

(
k/2
p

)2(
k
2p

) (
n−k−(w−2p)

)(
n−k

) ,

and stays the same in any of the other states.

Choice of parameters for Stern’s algorithm. The parameter p is chosen
quite small in order to minimize the cost of going though all subsets A, B of X
and Y . The parameter
 is chosen to balance the number of all possible length-

vectors φ(Z) and ψ(Z), 2

(
k/2
p

)
(q−1)p with the number of expected collisions on

 positions,
(
k/2
p

)2
(q − 1)2p

/
q
. A reasonable choice is

 = logq

(
k/2
p

)
+ p logq(q − 1).

5 Analysis of an Improved Version of Stern’s Algorithm
for Extension Fields

We presented a generalization for information-set decoding over arbitrary finite
fields Fq. However, the cost analysis in the previous section was restricted to
prime values of q. Here we point out the differences in handling arbitrary finite
fields.

The main difference in handling arbitrary finite fields is in Steps 6 and 7 of
the generalized Stern algorithm when computing sums of p rows coming from
subsets A of X , and sums of p rows coming from subsets B of Y . In prime fields
all elements are reached by repeated addition since 1 generates the additive
group. If q is a prime power 1 does not generate the additive group.

Let Fq be represented over its prime field via an irreducible polynomial h(x).
To reach all elements we also need to compute x times a field element, which is
essentially the cost of reducing modulo h. In turn this means several additions
of the prime field elements. Even though these operations technically are not
additions in Fq, the costs are essentially the same. This means that the costs of
these steps are the same as before.

In the analysis of Step 8 we need to account for multiplications with the
coefficient vectors (m1, . . . , mp) and (m′

1, . . . , m
′
p). This is the same problem

that we faced in the previous section and thus we use the same assumption,
namely that one multiplication in Fq has about the same cost as one addition
in Fq.

90 C. Peters

This means that a good choice of
 again is given by

 = logq

(
k/2
p

)
+ p logq(q − 1).

6 Increasing the Collision Probability in Stern’s
Algorithm

In [7] Finiasz and Sendrier propose a speedup of Stern’s algorithm. This section
generalizes this approach to codes over arbitrary finite fields.

Stern splits an information set I into two disjoint sets X and Y , each of size(
k/2
p

)
and searches for collisions among size-p subsets taken from X and Y .

Finiasz and Sendrier propose not to split the information set I into two disjoint
sets but to look more generally for collisions. The split of I into two disjoint size-
(k/2) sets is omitted at the benefit of creating more possible words having weight
2p among the information set.

This version of Stern’s algorithm uses parameters p,
, N , and N ′ whose size
is determined in Section 7.

Stern’s algorithm with overlapping sets. Let p be an integer with 0 ≤
p ≤ w. Let
 be an integer with 0 ≤
 ≤ n − k. Let N, N ′ be integers with
0 ≤ N, N ′ ≤ (

k
p

)
.

1. Choose an information set I.
2. Replace y by y − yIG

−1
I G.

3. Select a uniform random size-
 subset Z in {1, . . . , n} \ I.
4. Repeat N times: Choose a size-p subset A = {a1, . . . , ap} ⊂ I uniformly at

random and consider the set
VA =

{
y −∑p

i=1 migai : m = (m1, . . . , mp) ∈ (F∗
q)

p
}
.

For each φ ∈ VA compute the vector φ(Z) ∈ F

q: the Z-indexed entries of φ.

5. Repeat N ′ times: Choose a size-p subset B = {b1, . . . , bp} ⊂ I uniformly at
random and consider the set
VB =

{∑p
j=1 m′

jgbj : m′ = (m′
1, . . . , m

′
p) ∈ (F∗

q)
p
}

.

For each ψ ∈ VB compute the vector ψ(Z) ∈ F

q: the Z-indexed entries of ψ.

6. For each pair (A, B) where there is a pair of vectors φ = y −∑
i migai and

ψ =
∑

j m′
jgbj such that φ(Z) = ψ(Z) compute e = φ − ψ.

If e has weight w print e. Else go back to Step 1.

This algorithm finds a weight-w vector e in y + Fk
qG if there is a vector e

having weight 2p on positions indexed by the information set and weight 0 on
the positions indexed by Z. Steps 1–6 form one iteration. If the set I chosen in
Step 1 does not lead to a weight-w word in Step 6 another iteration has to be
performed.

It is possible that a subset chosen in Step 4 is also chosen in Step 5. This
case is allowed in order to benefit from a larger set of possible sums of p rows.
The choice of N and N ′ is adjusted so that the number of overlapping sets is
minimal.

Information-Set Decoding for Linear Codes over Fq 91

7 Cost of Stern’s Algorithm with Finiasz–Sendrier’s
Improvement

The analysis of the cost for the algorithm presented in Section 6 is done analo-
gously to the analysis in Section 4 and Section 5.

In Step 4 one has to compute N(q−1)p vectors y−∑p
i=1 migai and in Step 5

one has to compute N ′(q−1)p vectors — each vector on
 positions. First compute
k − p + 1 vectors y − gi with i ∈ I and use intermediate sums so that each sum
of p rows is computed using only one row addition, i.e., only
 additions in Fq.
The expected number of collisions in Step 6 is about NN ′(q − 1)2p/q
.

The total cost for one iteration of the algorithm is

(n − 1)
(

(k − 1)
(

1 − 1
qr

)
+ (qr − r)

)
c

r

+ ((k − p + 1) + (N + N ′)(q − 1)p)

+
q

q − 1
(w − 2p)2p

(
1 +

q − 2
q − 1

)
NN ′(q − 1)2p

q

.

Success probability of the first iteration. There are
(2p

p

)
different possibil-

ities of splitting 2p errors into two disjoint subsets of cardinality p each. The
probability of not finding an error vector e, which has 2p errors in I, by a fixed
set A and a fixed set B is 1 − (2p

p

)
/
(
k
p

)2
. If one chooses N sets A and N ′ sets

B uniformly at random the probability of e not being found by any pair (A, B)

equals
(

1 − (2p
p

)/ (
k
p

)2
)NN ′

≈ exp
(
−NN ′(2p

p

)/ (
k
p

)2
)
.

The probability of the first iteration to succeed is thus(
k
2p

)(
n−k−

w−2p

)(
n
w

)
⎛⎜⎝1 −

⎛⎝1 −
(2p

p

)
(

k
p

)2

⎞⎠NN ′⎞⎟⎠ .

Compute the number of iterations. The same Markov chain computation
applies as in Section 4. Note that an iteration moves from state 2p to state
“Done” with probability

β =

⎛⎜⎝1 −
⎛⎝1 −

(2p
p

)
(
k
p

)2

⎞⎠NN ′⎞⎟⎠ (
n−k−(w−2p)

)(
n−k

) .

Choice of parameters. As in Stern’s algorithm the parameter p is chosen to
be a small number. Note that one could try to outweigh the extra cost for adding
y to rows induced by sets A in Step 4 by choosing N ′ to be a little larger than
N . The parameter
 is chosen to balance the number of all computed length-

 vectors φ(Z) and ψ(Z), (N+N ′)(q−1)p, with the number of expected collisions

92 C. Peters

on
 positions being NN ′(q − 1)2p/q
. Assuming N and N ′ are about the same
a reasonable choice is
 = logq N + p logq(q − 1).

This algorithm works for any numbers N and N ′ less than or equal to
(
k
p

)
,

the number of all possible size-p subsets taken from an information set I. There
is no point in choosing N larger than this number since otherwise all possible
combinations of p elements out of I could be deterministically tested. A sensible
choice for N and N ′ is N = N ′ =

(
k
p

)/√(2p
p

)
.

8 Parameters

The iterations of Stern’s algorithm for Fq with the speedups described in Sec-
tion 4 are not independent. The number of iterations has to be estimated with
a Markov chain computation. We adapted the Markov chain implementation
from [4] to look for parameter ranges for McEliece-cryptosystem setups using
codes over arbitrary fields Fq. Moreover we took the parameters proposed in [1]
and [13], respectively, and investigated their security against our attack. The
results as well as the code can be found at http://www.win.tue.nl/~cpeters/
isdfq.html.

Codes for 128-bit security. Our experiments show that an [n, k]-code over F31
with n = 961, k = 771, and w = 48 introduced errors achieves 128-bit secu-
rity against the attack presented in Section 3 with improvements described in
Section 4. Any Goppa code being the subfield subcode of a code in F312 with
a degree-95 Goppa polynomial can be used. A successful attack needs about
296.815 iterations with about 232.207 bit operations per iteration. A good choice
of parameters are p = 2,
 = 7, c = 12, and r = 1. Using the algorithm
in Section 6 costs about the same, namely 2129.0290 bit operations. In com-
parison to the classical disjoint split of the information set one can afford to
spend more time on Gaussian elimination and consider c = 17 new columns
in each iteration. Increasing the standard choice

(
k
p

)
/
√(2p

p

)
of the number of

subsets A and B by a factor of 1.1 to N = N ′ = 133300 yields the best result.
The expected number of iterations is 295.913, each taking about 233.116 bit
operations.

A public key for a [961, 771] code over F31 would consist of k(n− k) log2 31 =
725740 bits.

For comparison: a [2960, 2288] binary Goppa code where w = 57 errors are
added by the sender also achieves 128-bit security, but its public key needs
1537536 bits to store.

Note on fixed-distance decoding. Note that one can decode 48 errors in a
length-961 code with dimension 771 over F31 by increasing the dimension by
1 and looking for a word of weight 48 in an extended code of dimension 772.
This turns out to be more than 30% slower than direct decoding of the original
dimension-771 code.

At a first glance a single iteration is less costly despite the larger dimension
since the additions for y are not performed. However, the number of iterations

http://www.win.tue.nl/~cpeters/isdfq.html
http://www.win.tue.nl/~cpeters/isdfq.html

Information-Set Decoding for Linear Codes over Fq 93

increases significantly which makes the minimum-weight-word search less effi-
cient. Increasing the dimension by 1 decreases the probability of the first round
to succeed. If the iterations of the algorithms were independent one could eas-
ily see that the expected number of iterations increases. The same effect occurs
with depending iterations: consider the Markov process described in Section 4
and observe that the success chance β of moving from state 2p to state “Done”
decreases, resulting in a longer chain and thus more iterations.

Acknowledgments. The author would like to thank Dan Bernstein, Tanja
Lange, and Henk van Tilborg for fruitful discussions, helpful suggestions and
detailed comments.

References

1. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of
the McEliece cryptosystem. In: Preneel, B. (ed.) Progress in Cryptology –
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009)

2. Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic
use. Designs, Codes and Cryptography 35(1), 63–79 (2005)

3. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractabil-
ity of certain coding problems. IEEE Transactions on Information Theory 24,
384–386 (1978)

4. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008)

5. Bernstein, D.J., Lange, T., Peters, C., van Tilborg, H.C.A.: Explicit bounds for
generic decoding algorithms for code-based cryptography. In: Pre-Proceedings of
WCC 2009, pp. 168–180 (2009)

6. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory 44(1), 367–378
(1998)

7. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryp-
tosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105.
Springer, Heidelberg (2009)

8. Hallgren, S., Vollmer, U.: Quantum computing. In: Bernstein, D.J., Buchmann,
J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 15–34. Springer, Berlin
(2009)

9. Janwa, H., Moreno, O.: McEliece public key cryptosystems using algebraic-
geometric codes. Designs, Codes and Cryptography 8(3), 293–307 (1996)

10. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp.
275–280. Springer, Heidelberg (1988)

11. Leon, J.S.: A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory 34(5), 1354–1359
(1988)

12. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Jet
Propulsion Laboratory DSN Progress Report 42–44 (1978),
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF

http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF

94 C. Peters

13. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In:
Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 376–392. Springer, Heidelberg (2009)

14. Overbeck, R., Sendrier, N.: Code-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 95–145.
Springer, Berlin (2009)

15. Prange, E.: The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory 8(5), 5–9 (1962)

16. Stern, J.: A method for finding codewords of small weight. In: Wolfmann, J., Cohen,
G. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg
(1989)

A Timing Attack against the Secret
Permutation in the McEliece PKC

Falko Strenzke1,2,�

1 FlexSecure GmbH, Germany
strenzke@flexsecure.de

2 Cryptography and Computeralgebra, Department of Computer Science,
Technische Universität Darmstadt, Germany

Abstract. In this work we present a novel timing attack against the
McEliece public key cryptosystem (PKC). In contrast to former works
investigating timing attacks that aim at recovering the message, we de-
vise how to exploit a vulnerability in the Patterson algorithm that allows
the attacker to gather information about the secret permutation through
a timing side channel. This information can be used to dramatically re-
duce the cost of a brute force attack against the secret key. We also
describe the results obtained from a proof of concept implementation of
the attack and give an appropriate countermeasure.

Keywords: side channel attack, timing attack, post quantum crypto-
graphy, code-based cryptography.

1 Introduction

The McEliece PKC [1] so far has not experienced any use in real world ap-
plications. This is due basically to the enormous key sizes compared to other
cryptosystems based on the integer factorization problem or the discrete loga-
rithm problem [2,3,4,5]. But since these systems, that are widely used in public
key infrastructures, are vulnerable to quantum computer attacks [6,7,8], schemes
that are believed to be secure in the presence of quantum computers, like the
McEliece PKC, are of certain interest concerning implementation issues.

One very important implementation aspect is side channel security. A side
channel is given when a physical observable quantity that is measured during the
operation of a cryptographic device, allows an attacker to gain information about
a secret that is involved in the cryptographic operation. The usual observables
used in this respect are the duration of the operation (timing attacks [9]), or the
power consumption as a function over the time (power analysis attacks[10]).

So far, timing attacks against the decryption operation of the McEliece PKC
targeting the plaintext have been developed [11,12]. But to the best of our knowl-
edge, no timing attack targeting the McEliece private key has yet been published.
In this work, we give the theoretical derivation of a side channel vulnerability

� A part of the work of F. Strenzke was done at2.

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 95–107, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

96 F. Strenzke

present in any implementation using the Patterson Algorithm [13] in the error
correction phase of the decryption operation if no appropriate countermeasures
are realized.

The buildup of this paper is as follows. In Section 2, we describe the McEliece
PKC, where the focus lays on those aspects that are relevant for the under-
standing of the remainder of this paper. Then, in Section 3, we identify the
novel timing side channel in the decryption routine. Section 4 explains how this
side channel can be exploited by devising an attack against the permutation that
is part of the McEliece private key. Consequently, Section 5 explains an appro-
priate countermeasure that closes the timing side channel. Section 6 describes
our proof of concept implementation of the attack and gives experimental re-
sults. After that, we discuss difficulties and possible strategies for real life attacks
in Section 7. Specifically, we show how an attacker can implement a maximum
likelihood strategy and consider the threat resulting from a power analysis at-
tack that exploits the same information leakage as our attack. In Section 8, we
address topics closely related to the subject of this paper. Finally, we give the
conclusion and an outlook in Section 9.

2 Preliminaries

In this work, we give a brief description of the McEliece PKC, and stress those
features of the decryption algorithm, that are necessary to understand the tim-
ing attack presented in this paper. A more detailed description and security
considerations can be found e.g. in [14].

Goppa Codes. Goppa codes [15] are a class of linear error correcting codes. The
McEliece PKC makes use of irreducible binary Goppa codes, so we will restrict
ourselves to this subclass.

Definition 1. Let the polynomial g(Y) =
∑t

i=0 giY
i ∈ F2m [Y] be monic and

irreducible over F2m [Y], and let m, t be positive integers. Then g(Y) is called a
Goppa polynomial (for an irreducible binary Goppa code).

Then an irreducible binary Goppa code is defined as Γ (g(Y))={c∈F
n
2 |Sc(Y) :=∑n−1

i=0
ci

Y −γi
= 0 mod g(Y)}, where n = 2m, Sc(Y) is the syndrome of c, the γi,

i = 0, . . . , n− 1 are pairwise distinct elements of F2m , and ci are the entries of the
vector c.

The code defined in such way has length n, dimension k = n − mt and can
correct up to t errors. Note that in general, there is a freedom in choosing the
ordering of the elements γi, i = 0, . . . , n − 1. Each such ordering will yield a
different code. In this work, we choose lexicographical ordering for the γi.

As for any error correcting code, for a Goppa code there exists a generator
matrix G and a parity check matrix H [16]. Given these matrices, a message m
can be encoded into a codeword c of the code by computing z = mG, and the
syndrome of a (potentially distorted) codeword can be computed as s = zH .
Here, we do not give the formulas for the computation of these matrices as they

A Timing Attack against the Secret Permutation in the McEliece PKC 97

are of no importance for the understanding of the attack developed in this work.
The interested reader, however, is referred to [16].

Overview of the McEliece PKC. In this section we give a brief overview of the
McEliece PKC, where we closely follow the one given in [17].

The McEliece secret key consists of the Goppa polynomial g(Y) of degree t
defining the secret code Γ , an n × n permutation matrix P and a non-singular
k × k matrix S over F2. The public key is given by the public n × k generator
matrix Gp = SGsP over F2, where Gs is a generator matrix of the secret code Γ .
The encryption operation allows messages m ∈ F

k
2 . A random vector e ∈ F

n
2 with

hamming weight wt (e) = t has to be created. Then the ciphertext is computed
as z = mGp + e.

McEliece decryption is performed in the following way: First, compute z′ =
zP−1 = mSGs + eP−1. The right hand side of this equation demonstrates
that applying error correction using the secret code Γ will recover the permuted
error vector e′ = eP−1, since mSGs is a code word of Γ . The error correction
procedure is detailed in Section 2.

If the matrix S is chosen in such way that the public generator matrix is in
reduced row echelon form, i.e. Gp = [I|G2], then, in the decryption operation,
m can be recovered by extracting the first k bits of mSGs. This would be a
security problem if the McEliece PKC was used as proposed in [1]. But since
the system has been proven to be insecure against adaptive chosen ciphertext
attacks, a so called CCA2-Conversion [18,19] has to be applied in any case. Con-
sequently, using the reduced row echelon form is not a problem [20]. In this case,
the matrix S does not have to be part of the private key. This choice for the
matrix S will be assumed for the remainder of the paper. In this work however,
we describe the McEliece PKC without such a CCA2-Conversion, as this is of no
relevance for the side channel attack devised in this work. This will be addressed
in Section 8.

Appropriate choices for the security parameters of the scheme, n and t, would
e.g. be n = 2048 and t = 50 for about 100 bit security [17].

The Decryption Operation in the McEliece PKC. As mentioned above, the first
step in the decryption operation is computing z′ = zP−1. Then, the syndrome
associated with this ciphertext has to be computed. This can be done using a
parity check matrix H corresponding to the secret code Γ . Algorithm 1 depicts
the top level McEliece decryption. It makes use of the error correction algorithm,
given by the Patterson Algorithm [13], shown in Algorithm 2. Please note that
in Step 1 of this algorithm, the multiplication with the coefficient vector is used
to turn the syndrome vector into the syndrome polynomial S(Y). The Patter-
son Algorithm, in turn, uses an algorithm for finding roots in polynomials over
F2m (root find()), and the Extended Euclidean Algorithm (XGCD) for poly-
nomials with a break condition based on the degree of the remainder, given
in Algorithm 3. The root finding can e.g. be implemented as an exhaustive
search on F2m . Please note that all polynomials appearing in the algorithms have
coeffients in F2m .

98 F. Strenzke

In the following, we turn to those details, that are relevant for the side channel
issues we are going to address in Section 3. Please note that the error locator
polynomial σ(Y), which is determined in Step 4 of Algorithm 2, has the following
form1:

σ(Y) = σt

∏
j∈E′

(Y − γj) =
t∑

i=0

σiY
i. (1)

where E ′ is the set of those indexes i, for which e′i = 1, i.e. those elements of
F2m that correspond to the error positions in the permuted error vector. The
determination of the error vector in Step 6 of Algorithm 2 makes use of this
property. Accordingly, deg (σ(Y)) = wt (e) if wt (e) � t holds.

Algorithm 1. The McEliece De-
cryption Operation

Require: the McEliece ciphertext z
Ensure: the message m
1: z′ ← zP−1

2: e′ ← err corr(z′, g(Y))
3: e ← e′P
4: m′ ← z + e
5: m ←the first k bits of m′

6: return m

Algorithm 2. The McEliece error cor-
rection with the Patterson Algorithm
(err corr(z′, g(Y)))

Require: the permuted ciphertext z′, the
secret Goppa polynomial g(Y)

Ensure: the permuted error vector e′

1: S(Y) ← z′H� (
Y t−1, · · · , Y, 1

)�
2: τ (Y) ← √

S−1(Y) + Y mod g(Y)
3: (α(Y), β(Y)) ← XGCD(τ (Y), g(Y))
4: σ(Y) ← α2(Y) + Y β2(Y)
5: E ′ = {E0, . . . , Et−1} ← rootfind(σ(Y))

// if γi is a root, then E ′ contains i
6: e′ ← v ∈ F

n
2 with vi = 1 if and only if

i ∈ E ′

7: return e′

3 Identification of the Side Channel

In this section we will detail a timing side channel which allows for the construc-
tion of an attack against the permutation that is part of the private key, that
will be given in Section 4.

While the attack presented in [11] is based on manipulations of valid cipher-
texts, to which the underlying message shall be recovered, we focus on a different
approach in this work. Specifically, that is the ability of the attacker to construct
ciphertexts himself, having full control over the number of errors and the error
pattern introduced during the encryption phase.

In the following, we investigate the effect of ciphertexts that were constructed
by producing a correct code word in the public code by multiplying the message
vector with the public matrix as described in Section 2, and then adding an error

1 Usually, the error locator polynomial is defined to be monic, i.e σt = 1. But as
a matter of fact the error locator polynomial generated in Step 4 of Algorithm 2
generally is not monic.

A Timing Attack against the Secret Permutation in the McEliece PKC 99

vector e with hamming weight w < t, thus violating the scheme. Specifically,
we will turn to the case w = 4. In Section 8, we also consider the applicability
of other values of w, but in the timing attack we develop in this work we only
make use of w = 4, since it is the only one offering a plain timing side channel
present in a straightforward implementation.

Algorithm 3. The Extended Euclidean Algorithm (XGCD(τ (Y), g(Y)))

Require: the polynomial τ (Y) and the secret Goppa polynomial g(Y), with
deg (τ (Y)) < deg (g(Y))

Ensure: two polynomials α(Y), β(Y) satisfying α(Y) = β(Y)τ (Y) mod g(Y) and
deg (α) � �deg (g(Y)) /2	

1: d ← �deg (g(Y)) /2	 = �t/2	
2: β−1 ← 0
3: β0 ← 1
4: r−1 ← g(Y)
5: r0 ← τ (Y)
6: i ← 0
7: while deg (ri(Y)) > d do
8: i ← i + 1
9: (qi(Y), ri(Y)) ← ri−2(Y)/ri−1(Y) // polynomial division with quotient qi

and remainder ri

10: βi(Y) ← βi−2(Y) + qi(Y)βi−1(Y)
11: end while
12: α(Y) ← ri(Y)
13: β(Y) ← βi(Y)
14: return (α(Y), β(Y))

For w = 4 we certainly have deg (σ(Y)) = 4. This implies deg (α(Y)) = 2 and
deg (β(Y)) � 1. This freedom in the degree of β(Y) results from the following
two facts: First of all w = 4 is even, thus it is α(Y) that provides the leading
coefficient of σ(Y) (the summand polynomial providing the leading coefficient
of σ(Y) clearly never has any freedom in its degree for a given value of w).
Furthermore, in contrast to the case of w = 2, here deg (α(Y)) is high enough
to allow for more than just one value of deg (β(Y)) (the only restriction on the
summand polynomial not providing the leading coefficient self-evidently is that
its degree must be just as small as not to provide the leading coefficient). This
leads to two possible control flows in the decryption operation for w = 4: one
iteration in the XGCD (Algorithm 3, the loop starting at Step 7), and zero
iterations in the XGCD. Also, these two cases imply two different forms of the
resulting error locator polynomial σ(Y). These two possible forms of σ(Y) are as
follows, where N denotes the number of iterations in the XGCD. The case N = 1:
looking at Step 4 of Algorithm 2 we find that σ3 �= 0, since here β(Y) = q1(Y).
The case N = 0: here, clearly we have σ3 = 0 due to β(Y) = 1. Experiments show
that N = 0 appears with probability ≈ 2−m if random ciphertexts with w = 4
are being decrypted. This clearly fits the interpretation, that the coefficient σ3 is
chosen randomly and equally distributed from F2m for a random ciphertext with
the given properties. This is not essentially true, from the considerations given

100 F. Strenzke

later in Section 7 we will see that the probability for N = 0 is in fact 1/(2m − 3)
instead of 1/2m.

This observation shows a side channel with a new quality compared to the
one given in [11] : The error locator polynomial is related to the secret code,
thus the distinction between N = 0 and N = 1 must be analyzed with respect
to its potential of revealing information about the private key. This is done, with
success, in Section 4.

It must be pointed out, however, that based on the implementation, there
might be other sources of timing differences in the decryption algorithm, e.g.
when inverting the syndrome polynomial S(Y) modulo g(Y) in Step 2 of Algo-
rithm 2. Such an interference does not prevent the side channel, but it might
imply difficulties that call for a more sophisticated statistical approach in the
attack.

4 Construction of the Attack

In Section 3 it was found that if an attacker creates ciphertexts using error
vectors of hamming weight w = 4, the decryption process can yield two different
control flows. Specifically, in one case, N , the number of iterations in the XGCD,
will be zero, in the other we have N = 1. A different number of iterations in
the XGCD naturally leads to different timings, thus a timing side channel exists
that allows to determine N .

As already denoted in Section 3, the side channel observable N is directly
connected to the coefficient σ3 of the error locator polynomial. In Step 3 of
Algorithm 1 we can see that after the error vector has been determined, the
secret permutation is applied to it when computing e = e′P . Clearly, the attacker
knows e, since he controlled the encryption operation. Let us denote the set of
the indexes of the four positions having value 1 in an instance of e as E =
{f1, f2, f3, f4}.

In order to make the attack clear we want to introduce a new equation for
the error locator polynomial in which the permutation is incorporated so that
this polynomial is linked to the unpermuted error vector e instead of e′. Thus
we rewrite Equation (1) as

σ(Y) = σ4

∏
j∈E

(Y − γPj), (2)

where Pj refers to the notation of the permutation P as a vector: when e = e′P ,
then we can equivalently write ei = e′Pi

for the entries of the vector e.
From this we find that we can write the coefficient of interest, σ3, as a function

of the error positions, namely σ3(f1, f2, f3, f4) = σ4
(
γPf1

+ γPf2
+ γPf3

+ γPf4

)
,

by simply writing out Equation (2).
The basic idea of the attack now is to build a list of linear equations describ-

ing the secret permutation. The attacker achieves this by generating random
ciphertexts having error weight w = 4. He lets the decryption device decrypt
these, and measures the timing. Every time he concludes from the timing that

A Timing Attack against the Secret Permutation in the McEliece PKC 101

N = 0, he adds one equation of the form σ3(f1, f2, f3, f4) = 0 to his list, where
the fi stand for his actual choice of the four error positions. Please note that in
Equation 2 the leading coefficient σ4 �= 0, so that we can omit the multiplication
by σ4 in the equations in our list.

After a certain number of equations has been gathered, the attacker will run
a Gaussian elimination algorithm on his equation system. Note that due to the
fact that γj ∈ F2m , the equation system can be represented by an l × n binary
matrix, where n is the length of the code used in the McEliece PKC and l is the
number of equations in the list.

Depending on the defect of the matrix, a number of entries of the permutation
have to be guessed in order to solve the system.

5 Countermeasure

The attack can easily be defeated by checking and, when required, manipulating
the degree of τ(Y). This is due to the fact that N = 0 implies deg (τ(Y)) � d =
�t/2�, causing the break condition of the loop in Step 7 of Algorithm 3 to be
fulfilled before the first iteration. The check that has to be performed is the test
whether deg (τ(Y)) < d, this must be done after Step 2 of Algorithm 2. If that
is the case, then τ(Y) is manipulated in such way that deg (τ(Y)) = t−1. In the
following, we will show that this is both sufficient to defeat the attack described
in Section 4 and has no effect on the error correction for regular ciphertexts.

It defeats the attack, since it enforces the entering of the XGCD loop for
all but one value of the degree of τ(Y). Entering the loop is sufficient if the
countermeasures proposed in [11] are implemented, since then the maximum
number of iterations (that would occur for w = t) are executed in the XGCD.
The only uncovered case is deg (τ(Y)) = d. But this means for our attack that
for N = 0 we would have deg (σ(Y)) = 2deg (α(Y)) = 2deg (τ(Y)) = 2d. This
would only work for w = 4 when d = 2 and thus t = 4 or t = 5 which is clearly
not a realistic choice for this system parameter. Thus, for the cases relevant
for our attack, the possibility N = 0 is taken away, removing the side channel
observable. Furthermore, in Section 8, it is shown that other values of w can not
be used to construct an analogous attack.

The countermeasure will never lead to erroneous decryption, since the in-
equality deg (τ(Y)) < d is never fulfilled for the regular case w = t. For even
values of the system parameter t this is evident since otherwise deg (σ(Y)) =
2deg (τ(Y)) < 2d = t. For odd values of t we find that if it were that deg (τ(Y)) <
d, we obviously would have deg (β(Y)) = 0 leading to deg ((σ(Y)) = 1 �= t, since
here deg (α(Y)) � deg (β(Y)).

Activating the countermeasure for higher values of deg (τ(Y)), e.g. already for
deg (τ(Y)) � d would cause the decryption routine to potentially produce errors
for regular ciphertexts, as an error locator polynomial σ(Y) = α2(Y) + σ1Y is
valid2 for even values of the system parameter t.
2 It should be pointed out that this case is extremely unlikely and will not be observed

for realistic values of the parameters t and m.

102 F. Strenzke

The manipulation of τ(Y) certainly has to be performed without introducing
a timing difference. Please note that for the manipulation of the respective coef-
ficients of τ(Y), one should not use truly random values, but rather fixed ones,
or even better, use values that are pseudo-randomly derived from the ciphertext.
Using truly random coefficients is a problem, since then the attacker might be
able to determine that the decryption operation for a certain ciphertext is not
deterministic. He might use another side channel instead of the timing of the
operation, e.g. a power analysis attack could be mounted to this purpose. He
would then try to find out whether the indeterministic countermeasure is ac-
tivated for a specific ciphertext by repeatedly triggering the decryption of the
same ciphertext and computing the variance of certain measured quantities, e.g.
the power consumption at specific points in time. This is already pointed out in
[11]. Furthermore, if the usage of fixed values allows an attacker to detect the
appearance of these values e.g. through a power analysis attack, he could also
conclude that the countermeasure was activated and conduct the same attack
using this new side channel.

6 Implementation of the Attack and Results

The attack was implemented as a proof of concept. In this course, we did not
use real timings, because such measurements are not very exact on modern high
end CPUs found in today’s general purpose computers. Also, the focus of this
work lays on the exploration of the theoretic aspects of the underlying side
channel. Thus, we added an iteration counter for the number of iterations in
the XGCD and made this counter available to the attack routine. Please note
that on devices like smart cards, the identification of the iteration count through
an actual timing must be assumed to be rather easy. As already pointed out,
the attack is founded on collecting linear equations about the entries of the
permutation Pi. Experimental results showed that there seems to be a maximal
rank of the equation system that can be achieved for a certain parameter set. In
Table 1 the maximal ranks for those parameter sets we investigated are given.
For the lowest parameter set a complete scan using all possible error vectors

Table 1. Maximal ranks of the equation system obtainable in the attack. The values
in the third column are given for single runs and show certain variances, whereas the
maximal ranks are firm.

parameters
(n;t)

maximal
rank

number of ciphertexts to
reach max. rank

(64;5) 57 3,660
(256;10) 247 98,417
(512;20) 502 436,213
(1024;27) 1013 2,163,499
(2048;50) 2036 7,848,229

A Timing Attack against the Secret Permutation in the McEliece PKC 103

with wt (e) = 4 has been conducted, for the other parameter sets we used sets
of at least five times the number of ciphertexts that were needed to achieve the
maximal rank for this parameter set, the latter is given in column 3 of Table 1.
For a particular attack to be executed, one needs to define a break rank, which
in the optimal case is the maximal achievable rank for a given parameter set.

The McEliece implementation we attacked is based on the algorithms given in
Section 2, written in the C programming language and run on a Linux machine.
Any further details concerning the implementation and platform are unimpor-
tant since we do not measure real timings but count the iterations in the XGCD
algorithm, as already pointed out.

In the following we give the description of the attack routine. It is used
against a McEliece PKC which is described by the parameters n = 2m and
t = deg (g(Y)). The attack was executed for all the parameter sets given in
Table 1.

First Step of the Attack. In the first step, the attack routine creates ciphertexts
using random messages and random error vectors with wt (e) = 4. It then lets
the decryption routine decrypt the ciphertext. By checking the iteration counter
mentioned above the routine assesses whether zero or one iterations occurred in
the XGCD. If one iteration occurred, nothing is done, if zero iterations occurred,
the error vector is added as a new row of a matrix over F2 having n columns.
Every time a row is added a Gauss-Jordan elimination is run on this equation
system and the rank is determined. Once the break rank is reached, the first
step of the attack is completed.

Second Step of the Attack. For the second step to be executed in a real attack,
one would need a means of finding the correct Goppa polynomial g(Y) used in the
secret code, in order to recover the whole secret key. In this work, we do not give
such an algorithm. What is done in the proof of concept implementation of the
attack is to use real entries of the permutation for those variables Pi that have to
be guessed in order to solve the system. Ending up with the correct permutation
thus proves the correctness of the equations that were collected. The number of
permutation entries that still has to be guessed given an equation system with
rank r is determined by its defect, i.e. by D = n − r. This means for instance
in the case of n = 1024 that D = 11. The number of overall guesses for these
entries is found as

∏10
i=0(n − i), which is in the realm of 1033 for n = 1024.

But clearly in a real attack one would implement additional consistency checks
that are executed whenever a variable is determined by guessing or solving an
equation: no element of the permutation may appear more than once.

7 Possible Approaches for a Real Life Attack

In this section we give two possible improvements of the attack, the first being
useful if noisy timings are used and and the second one showing how a power
analysis attack could be used to retrieve the same information.

104 F. Strenzke

“n-3” Scans. In real attacks, the attacker is confronted with the problem of
receiving only noisy measurements. This means for our attack that the decision
whether N = 0 or N = 1, based on a timing measurement might be very difficult
or impossible for a single timing. But it is possible for the attacker to conduct
measurements on certain sets containing n−3 error vectors, where he knows that
exactly one of the vectors in the set causes N = 0. This is due to the following
observation.

For every error vector of hamming weight w = 4, we have σ3(a, b, c, d) =
γa + γb + γc + γd where a, b, c, d are all different values out of {0, . . . , n − 1}.
Now take, w. l. o. g, the sum of three of these elements, γa + γb + γc. We now
assume that there always exists some γd different from the former three elements,
such that σ3(a, b, c, d) = 0. We prove it by showing that assuming the opposite
statement leads to a contradiction. Specifically, the non-existence of such a γd

implies that the additive inverse of γa + γb + γc is one out of the set {γa, γb, γc}.
Since in a finite field of characteristic 2, each element is its own additive inverse,
this in turn would imply γa + γb + γc = γa, w. l. o. g. But then we would
have γb = γc, which is the contradiction we sought. This also implies that the
probability for N = 0 for a ciphertext with a random error pattern with w = 4
is 1/(n − 3).

Thus the attacker can proceed as follows: he fixes an error pattern of hamming
weight w = 3 and produces the n− 3 vectors that can be reached by adding one
more error position and uses them to create n− 3 ciphertexts and measures the
corresponding decryption times. He can now use a maximum-likelihood strategy
to determine the one timing which is corresponding to N = 0 iterations in the
XGCD. He can selectively repeat measurements to increase the certainty of his
decision if the amount of noise suggests this.

Starting Point for a Power Analysis Attack. From Algorithm 3 and the con-
siderations given in Section 3, it is clear that in the case of N = 0 we have
α(Y) = τ(Y), and thus deg (τ(Y)) = 2 in Step 2 of Algorithm 2. On the other
hand, if N = 1, then we know that deg (τ(Y)) = t − 1, because deg (β(Y)) =
deg (q1(Y)) = 1 is the only possibility according to Algorithm 3.

This means, that in Step 2 of Algorithm 2, a large number of coefficients
turns out to be zero when the square root is computed. Since the hamming
weight of registers respectively the number of the changed bits in a register are
usual targets of a power analysis attack [21], one could expect that an unsecured
implementation makes it possible to distinguish between the cases N = 0 and
N = 1.

8 Related Topics

In the following, we turn our attention to the interplay of the attack devised
in Section 4 with countermeasures against known timing attacks and integrity
tests that might be employed in the decryption operation. Furthermore we will
see why error vectors with a hamming weight other than four generally are not
suitable to build an attack analogous to ours.

A Timing Attack against the Secret Permutation in the McEliece PKC 105

Known Timing Side Channels and Countermeasures. Both [11] and [12] exam-
ine a timing attack against the McEliece decryption operation. There, however,
the secret that is targeted by the attack is the message. If the countermeasure
proposed in [11] is incorporated in an implementation, but not the countermea-
sure described in Section 5, then the attack presented in this work becomes even
easier. This is because the countermeasure from [11] tremendously bloats the
timing difference that is exploited in the attack. Specifically, it will not alter the
case of N = 0 on one hand, but will enforce the maximum number of iterations
(that would occur for w = t) instead of N = 1 on the other hand. This is a
direct consequence of the fact that this countermeasure so to say resides inside
the XGCD loop, and will be skipped if that loop is skipped.

Integrity Tests during the Decryption Operation. No conceivable integrity test
can prevent the side channel attack. In this context, by an integrity test we mean
e.g. a CCA2-conversion [19,18]. Such a conversion ensures that if an attacker
manipulates an existing ciphertext of the combined CCA2-McEliece scheme,
the decryption device will detect such a manipulation and refuse to output the
decrypted message. But since in the attack presented in this work, the attacker
himself prepares the combined ciphertext, this integrity test will pass.

What remains to be considered is that the ciphertexts used in the attack vi-
olate the McEliece scheme by using error vectors with a hamming weight lower
than t. This, of course, can easily be detected by the decryption device, specifi-
cally, in Step 4 of Algorithm 2, as in this case, as is pointed out in Section 2, the
degree of the error locator polynomial σ(Y) deviates from the intended value
t. But this does not help to prevent the side channel attack. The XGCD has
already been executed, the timing difference is already given, thus by simply let-
ting the device return an error message the timing difference resulting from the
two control flows for N = 0 and N = 1 would still be available to the attacker.

The Potential of Attacks with wt (e) > 4. For ciphertexts that are created by
using error vectors with w = wt (e) < 4, there are no alternative control flows
given the McEliece decryption is implemented as described in Section 2. This is
easily verified when evaluating Algorithm 3 for these cases. What remains is to
examine the potential of employing w > 4. First of all, using odd values of w
can not lead to a side channel like the one we base our attack on, since in that
case deg (β(Y)) is always determined by w.

Given this, we first turn our attention to w = 6. There, we encounter three
possibilities for the control flow: N = 0, N = 1, and N = 2. Analyzing Algorithm
3, we draw the following conclusions.

The case N = 0 is not very suitable to build an attack, as the probability for
σ5 = 0 and simultaneously σ3 = 0 must be assumed to be in the realm of 2−2m.
Furthermore, no approach to build a maximum likelihood strategy as described
for w = 4 in Section 7 is obvious.

Regarding N = 1, we find that the form of σ(Y) is still ambiguous, as there
are two qualitatively different causes for this control flow: First, we could have
deg (τ(Y)) = deg (g(Y))−1 and thus deg (q1(Y)) = 1. This leads to σ5 = 0 since

106 F. Strenzke

β(Y) = q1(Y). Second, it can happen that deg (τ(Y)) = deg (g(Y)) − 2 leading
to deg (q1(Y)) = 2, leaving us with σ5 �= 0.

The case N = 2, however, is again the very general case were q1(Y) and q2(Y)
both have degree one, and thus β(Y) = 1 + q1(Y)q2(Y) has degree two.

It is obvious that the variety of causes for a certain value of N gets even bigger
for larger (even) values of w, rendering them unsuitable to build an attack on.
However, if an attacker is able to distinguish these “causes”, e.g. by using power
analysis, clearly, an attack would be possible.

9 Conclusion and Outlook

In this work, we have we have devised a timing attack which is generally appli-
cable against any unsecured implementation of the McEliece scheme using the
Patterson Algorithm for error correction. In contrast to other known timing side
channels of the scheme (see Section 8), this vulnerability allows to gather infor-
mation about the secret permutation that is part of the private key. However,
it seems not to be possible to reduce the defect of the equation system that
is build up in the course of the attack below a certain value that seems to be
fixed for a certain parameter set. Thus, considerable effort remains if one aims
at recovering the full permutation for a realistic parameter set. Since in the case
of power analysis attacks, also given the countermeasure we developed to secure
against the timing attack, a certain a amount of side channel information about
the permutation might be available, it would be interesting to know exactly how
costly a brute force attack on the secret key remains, given a certain knowledge
about the permutation.

Furthermore, it would also be helpful to have a generic countermeasure, that
randomizes the process of error correction, which is so vulnerable, because the
number of errors [11,12] and, as shown in this work, special properties of the
error locator polynomial, are fairly exposed to side channel attacks. Today, such
a countermeasure has not been developed.

References

1. McEliece, R.J.: A public key cryptosystem based on algebraic coding theory. DSN
progress report 42–44, 114–116 (1978)

2. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography
(2004) ISBN 978-0387952734

3. Miller, V.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

4. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

5. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

6. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: Proceedings of 35th Annual Symposium on Foundation of Computer
Science (1994)

A Timing Attack against the Secret Permutation in the McEliece PKC 107

7. Peter, W.: Shor: Polynomial time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509
(1997)

8. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves,
Technical Report quant-ph/0301141, arXiv (2006)

9. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In: Proceedings of the 16th Annual International Cryptology Con-
ference on Advances in Cryptology, pp. 104–113 (1996)

10. Kocher, P.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

11. Shoufan, A., Strenzke, F., Molter, H.G., Stöttinger, M.: A Timing Attack Against
Patterson Algorithm in the McEliece PKC (2009); To be published in ICISC 2009
(2009)

12. Strenzke, F., Tews, E., Molter, H.G., Overbeck, R., Shoufan, A.: Side Channels
in the McEliece PKC. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS,
vol. 5299, pp. 216–229. Springer, Heidelberg (2008)

13. Patterson, N.: Algebraic decoding of Goppa codes. IEEE Trans. Info. Theory 21,
203–207 (1975)

14. Engelbert, D., Overbeck, R., Schmidt, A.: A Summary of McEliece-Type Cryp-
tosystems and their Security. Journal of Mathematical Cryptology (2006)

15. Goppa, V.D.: A new class of linear correcting codes. Problems of Information
Transmission 6, 207–212 (1970)

16. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes.
North-Holland, Amsterdam (1997)

17. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008)

18. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems - con-
versions for McEliece PKC. In: Practice and Theory in Public Key Cryptography
- PKC ’01 Proceedings (2001)

19. Pointcheval, D.: Chosen-chipertext security for any one-way cryptosystem. In: Imai,
H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 129–146. Springer, Heidelberg
(2000)

20. Biswas, B., Sendrier, N.: McEliece Cryptosystem Implementation: Theory and
Practice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
47–62. Springer, Heidelberg (2008)

21. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smard Cards. Springer, Heidelberg (2007)

Practical Power Analysis Attacks on
Software Implementations of McEliece

Stefan Heyse, Amir Moradi, and Christof Paar

Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{heyse,moradi,cpaar}@crypto.rub.de

Abstract. The McEliece public-key cryptosystem is based on the fact
that decoding unknown linear binary codes is an NP-complete problem.
The interest on implementing post-quantum cryptographic algorithms,
e.g. McEliece, on microprocessor-based platforms has been extremely
raised due to the increasing storage space of these platforms. Therefore,
their vulnerability and robustness against physical attacks, e.g., state-
of-the-art power analysis attacks, must be investigated. In this work, we
address mainly two power analysis attacks on various implementations
of McEliece on an 8-bit AVR microprocessor. To the best of our knowl-
edge, this is the first time that such side-channel attacks are practically
evaluated.

1 Introduction

1.1 Motivation

Mainly all modern security systems rely on public-key cryptography. Most com-
monly used are RSA, ECC and Diffie-Hellman (DH) based schemes. They are
well understood and withstand many types of attacks for years. However, these
cryptosystems rely on two primitive security assumptions, namely the factoring
problem (FP) and the discrete logarithm problem (DLP). A breakthrough in one
of the currently known attacks (e.g, Number Field Sieve or Index Calculus) or
newly introduced successful build of a quantum computer can make all of them
useless.

Fortunately, there are alternativepublic-key primitives, like hash-based, lattice-
based, MQ-methods and coding-based schemes. During the last years, much
research effort has been put into determining strengths and weaknesses of these
systems. They were implemented on different platforms, e.g., x86- and x64-based
CPUs, GPUs, FPGAs and small embedded systems employing microcontrollers.

The oldest scheme, which is based on coding theory, has been presented by
Robert J. McEliece in 1978. In its original form it withstands all the attacks.
The most recent and effective attack reported during the last 30 years reduces
the security of a system from 80- to 60-bit [2]. It has been implemented on
several platforms including CPU [3], GPU [13], FPGA [8,28], and 8-bit micro-
controllers [8]. To make this system a real alternative to the existing schemes,

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 108–125, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Practical Power Analysis Attacks on Software Implementations of McEliece 109

or to let it be a candidate for the post-quantum era, all possible attacks have to
be evaluated.

Since the first introduction of DPA in 1999 [15], it has become an alternative
approach for extracting secret key of cryptographic devices by exploiting side-
channel leakages despite robustness of the corresponding algorithms to cryptan-
alyzing methods. During the last ten years it has been showed by many articles
(cf., e.g., the CHES workshop proceedings since 1999) that side-channel attacks
must be considered as a potential risk for security related devices. The practical
attacks mounted on a real-world and widespread security applications, e.g., [9],
also strengthen the importance of side-channel attacks.

Though there are a few works on vulnerability and robustness of implemen-
tation of public-key algorithms to side-channel attacks (e.g., [7,20]), most of the
published articles in the scientific literatures on this field concentrated on the
state-of-the-art Differential Power Analysis (DPA) attacks on symmetric block
ciphers, e.g., [21,25,30]. In addition to classical DPA approaches (like [5,11,15,19])
combination of cryptanalytic schemes and side-channel leakages led to innova-
tive attacks, e.g., a couple of collision side-channel attacks [4,24,26] and algebraic
side-channel attacks [23].

1.2 Related Works and Our Contribution

There are not many articles regarding the evaluation of side-channel attacks on
post-quantum algorithms. The lattice based NTRUencrypt has been investigated
in [29] and [34]. Hash trees look more like a protocol than to a cryptographic
primitive, and they stand or fall with the underlying hash function. For MQ-
based algorithms, we know no research inquiry. Only coding-based cryptography
got some attention during the last two years.

Side-channel attacks on PC implementations of the McEliece scheme are al-
ready addressed in [32] and [12] where the authors mounted a timing attack.
By means of this attack, the adversary would be able to decrypt only the at-
tacked message. Though the attack is promising, the adversary needs to repeat
the attack for every later ciphertext by having physical access to the target de-
vice. Further, recently another timing attack on McEliece has been published
in [27] that shows the interest of the research community to side-channel attack
on McEliece implementations.

Resistance of McEliece against fault injection attacks has been investigated
in [6]. The authors stated that due to the error correction capability of this type
of cryptosystem, it is heavily resistant against fault injection attacks because
the faults are part of the algorithm and are simply corrected (maybe to a wrong
message, but no secret information is revealed).

An algebraic side-channel attack on AES presented in [23] is able to recover
the secret key of a microcontroller-based implementation by means of profil-
ing and a single mean trace supposing that the attacker knows the execution
path and can recover the Hamming weight (HW) of the operand of the selected
instructions. Though this attack is even efficient to overcome arithmetic mask-
ing schemes supposing the same adversary model, solving the algebraic system

110 S. Heyse, A. Moradi, and C. Paar

equations encounters many problems by wrong HW predictions. Our proposed
attacks are partially based on the same idea, i.e., examining the secret hypothe-
ses considering the predicted HW of the processed data.

In contrary to the side-channel attacks proposed on the McEliece implemen-
tations so far, we have implemented and practically evaluated all steps of our
proposed attacks. The target implementations which are considered in this work
are based on the article recently published in CHES 2009 [8]. Since there is not a
unique way to implement the McEliece decryption scheme by a microcontroller,
we define four different implementation profiles to realize the decryption algo-
rithm, and for each of which we propose an attack to recover the secret key.
Generally our proposed attacks can be divided into two phases:

– collecting side-channel observations for chosen ciphertexts and generating a
candidate list for each target secret element of the cipher and

– examining the candidates to check which hypotheses match to the public
parameters of the cipher.

By means of our proposed attacks we are able to recover the permutation matrix
and the parity check matrix if each one is performed solely. On the other hand
if both matrices are combined in the target implementation, we are also able
to recover the combined (permutation and parity check) matrix. Each of these
attacks leads to breaking the decryption scheme and recovering the secret key.
It should be noted that contrary to the attack presented in [23] our supposed
adversary model does not need to profile the side-channel leakage of the target
device, and our proposed attacks are more insensitive to wrong HW predictions
than that of presented in [23].

1.3 Organization

In the next section, a short introduction to McEliece cryptosystem is given. Then,
in Section 3 the implementation profiles which are considered in our attacks as
the target implementation are defined. Section 4 briefly reviews the concept
of power analysis attacks. In Section 5 first our supposed adversary model is
introduced. Then, we explain how to use side-channel observations to directly
recover a secret (e.g., the permutation matrix) or to partially predict a part of
a secret (e.g., the parity check matrix). Afterwards, we show how to break the
system using the revealed/predicted information. Further, we discuss possible
countermeasures to defeat our proposed attacks in Section 6. Finally, Section 7
concludes our research.

2 McEliece in a Flash

This section gives a short overview on the original McEliece cryptosystem, and
introduces the used Goppa codes. We stay superficial, and explain only what is
necessary to understand the attacks described afterwards.

Practical Power Analysis Attacks on Software Implementations of McEliece 111

Algorithm 1. McEliece Message Encryption
Require: m, Kpub = (Ĝ, t)
Ensure: Ciphertext c
1: Encode the message m as a binary string of length k
2: c′ ← m · Ĝ
3: Generate a random n-bit error vector z containing at most t ones
4: c = c′ + z
5: return c

Algorithm 2. McEliece Message Decryption
Require: c, Ksec = (P−1, G, S−1)
Ensure: Plaintext m
1: ĉ ← c · P−1

2: Use a decoding algorithm for the code C to decode ĉ to m̂ = m · S
3: m ← m̂ · S−1

4: return m

2.1 Background on the McEliece Cryptosystem

The McEliece scheme is a public-key cryptosystembased on linear error-correcting
codes proposed by Robert J. McEliece in 1978 [18]. The secret key is an efficient
decoding algorithm of an error-correcting code with dimension k, length n and
error correcting capability t. To create a public key, McEliece defines a random
k×k-dimensional scrambling matrix S and n×n-dimensional permutation matrix
P disguising the structure of the code by computing the product Ĝ = S ×G×P ,
where G is the generator matrix of the code. Using the public key Kpub = (Ĝ, t)
and private key Ksec = (P−1, G, S−1), encryption and decryption algorithms can
be given by Algorithm 1 and Algorithm 2 respectively.

Note that Algorithm 1 only consists of a simple matrix multiplication with
the input message and then distributes t random errors on the resulting code
word.

Decoding the ciphertext c for decryption as shown in Algorithm 2 is the
most time-consuming process and requires several more complex operations in
binary extension fields. In Section 2.2 we briefly introduce the required steps for
decoding codewords.

2.2 Classical Goppa Codes

This section reviews the underlying code-based part of McEliece without the
cryptographic portion. To encode a message m into a codeword c, the message m
should be represented as a binary string of length k and be multiplied by the k×n
generator matrix G of the code. Decoding a codeword r at the receiver side with
a (possibly) additive error vector e is much more complex than a simple matrix
vector multiplication for encoding. The most widely used decoding scheme for
Goppa codes is the Patterson algorithm [22].

Here we only give a short introduction and define the necessary abbreviations.

112 S. Heyse, A. Moradi, and C. Paar

Theorem 1. [33] Let g(z) be an irreducible polynomial of degree t over GF (2m).
Then the set

Γ (g(z), GF (2m)) = {(cα)α∈GF (2m) ∈ {0, 1}n |
∑

α∈GF (2m)

cα

z − α
≡ 0 mod g(z)}

(1)
defines a binary Goppa code C of length n = 2m, dimension k ≥ n − mt and
minimum distance d ≥ 2t + 1. The set of the αi is called the support L of the
code.

This code is capable of correcting up to t errors [1] and can be described as
a k × n generator matrix G such that C = {mG : m ∈ GF k

2 } . This matrix
is systematic, if it is in the form (Ik‖Q) , where Ik denotes the k × k identity
matrix and Q is a k × (n − k) matrix. Then H = (QT ‖In−k) is a parity-check
matrix of C with C = {c ∈ GFn

2 : cHT = 0}.

Since r = c + e ≡ e mod g(z) holds, the syndrome Syn(z) of a received
codeword can be obtained from Equation (1) by

Syn(z) =
∑

α∈GF (2m)

rα

z − α
≡

∑
α∈GF (2m)

eα

z − α
mod g(z) (2)

To finally recover e, we need to solve the key equation σ(z) · Syn(z) ≡ ω(z)
mod g(z), where σ(z) denotes a corresponding error-locator polynomial and ω(z)
denotes an error-weight polynomial.

The roots of σ(z) denote the positions of error bits. If σ(αi) ≡ 0 mod g(z)
where αi is the corresponding bit of a generator in GF (2m), there was an error
in the position i of the received codeword that can be corrected by bit-flipping.

This decoding process, as required in Step 2 of Algorithm 2 for message de-
cryption, is finally summarized in Algorithm 3 in the appendix.

Instead of writing inverted polynomials to the columns parity check matrix
H , there exist an alternative representation for the parity check matrix, which
is important for the attack in Section 5.3.

From Equation (2) we can derive the parity check matrix H as

H =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

gt

g(α0)
gt

g(α1) · · · gt

g(αn−1)
gt−1+gt·α0

g(α0)
gt−1+gt·α0

g(α1) · · · gt−1+gt·α0
g(αn−1)

...
. . .

...
g1+g2·α0+···+gt·αs−1

0
g(α0)

g1+g2·α0+···+gt·αs−1
0

g(α1) · · · g1+g2·α0+···+gt·αs−1
0

g(αn−1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3)

This can be split into

H =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
gt 0 · · · 0

gs−1 gt · · · 0
...

. . .
...

g1 g2 · · · gt

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ∗

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
g(α0)

1
g(α1) · · · 1

g(αn−1)
α0

g(α0)
α1

g(α1) · · · αn−1
g(αn−1)

...
. . .

...
αs−1

0
g(α0)

αs−1
1

g(α1) · · · αs−1
n−1

g(αn−1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (4)

Practical Power Analysis Attacks on Software Implementations of McEliece 113

where the first part has a non-zero determinant, and following the second part
Ĥ is equivalent to the parity check matrix, which has a simpler structure. By
applying the Gaussian algorithm to the second matrix Ĥ one can bring it to
systematic form (Ik | H), where Ik is the k × k identity matrix. Note that
whenever a column swap is performed, a swap on the corresponding elements
of the support L is also performed. From the systematic parity check matrix
(Ik | H), now the systematic generator matrix G can be derived as (In−k | HT).

In the context of McEliece decryption, reverting the permutation can be
merged into the parity check matrix by permuting the support L. Using LP =
P−1 ∗L to generate H leads to a parity check matrix that computes the correct
syndrome for a permuted codeword.

In the following we always refer to a binary irreducible Goppa code with
m = 11 and t = 27. This is a symmetric equivalent security of 80 bits and leads
to n = 2048 and k = 1751 [2].

3 Practical Aspects

The combination of the McEliece decryption Algorithm 2 and the Goppa de-
coding Algorithm 3 allows a wide range of different implementations. For our
proposed attacks, the most interesting point is the specific implementation of
step 1 of Algorithm 2 and step 1 of Algorithm 3 and whether they are merged
together or not. According to these points we define four so-called implementa-
tion profiles:

Profile I. performs the permutation of the ciphertext and computes the columns
of H as they are needed by either using the extended euclidean algorithm
(EEA) or the structure given in Equation (3) or (4).

Profile II. also performs the permutation, but uses the precomputed parity
check matrix H .

Profile III. does not really perform the permutation, but directly uses a per-
muted parity check matrix. As stated in Section 2.2, we can use LP = P−1∗L
to compute the syndrome of the unpermuted ciphertext. This profile com-
putes the permuted columns as needed.

Profile IV. does the same as profile III, but uses a precomputed and permuted
parity check matrix.

4 Introduction to Power Analysis Attacks

Power analysis attacks exploit the fact that the execution of a cryptographic al-
gorithm on a physical device leaks information about the processed data and/or
executed operations through instantaneous power consumption [15]. Measur-
ing and evaluating the power consumption of a cryptographic device allows ex-
ploiting information-dependent leakage combined with the knowledge about the
plaintext or ciphertext in order to extract, e.g., a secret key. Since intermediate
result of the computations are serially processed (especially in 8-,16-, or 32-bit

114 S. Heyse, A. Moradi, and C. Paar

architectures, e.g., general-purpose microcontrollers) a divide-and-conquer strat-
egy becomes possible, i.e., the secret key could be recovered byte by byte.

A Simple Power Analysis (SPA) attack, as introduced in [15], relies on visual
inspection of power traces, e.g., measured from an embedded microcontroller
of a smartcard. The aim of an SPA is to reveal details about the execution of
the program flow of a software implementation, like the detection of conditional
branches depending on secret information. Recovering an RSA private key bit-
by-bit by an SPA on square-and-multiply algorithm [15] and revealing a KeeLoq
secret key by SPA on software implementation of the decryption algorithm [14]
are amongst the powerful practical examples of SPA on real-world applications.
Contrary to SPA, Differential Power Analysis (DPA) utilizes statistical meth-
ods and evaluates several power traces. A DPA requires no knowledge about
the concrete implementation of the cipher and can hence be applied to most of
unprotected black box implementations. According to intermediate values de-
pending on key hypotheses the traces are correlated to estimated power values,
and then correlation coefficients indicate the most probable hypothesis amongst
all partially guessed key hypotheses [5]. In order to perform a correlation-based
DPA, the power consumption of the device under attack must be guessed; the
power model should be defined according to the characteristics of the attacked
device, e.g., Hamming weight (HW) of the processed data for a microcontroller
because of the existence of a precharged/predischarged bus in microcontrollers
architecture. In case of a bad quality of the acquired power consumption, e.g.,
due to a noisy environment, bad measurement setup or cheap equipment, aver-
aging can be applied by decrypting(encrypting) the same ciphertext(plaintext)
repeatedly and calculating the mean of the corresponding traces to decrease the
noise floor.

5 Our Proposed Attacks

In this section, we first specify the assumptions we have considered for a side-
channel adversary in our proposed attacks. Afterwards, we review the side-
channel vulnerabilities and information leakages which our specified adversary
can recover considering the target microcontroller (AVR ATmega256). Taking
the implementation profiles (defined in Section 3) into account different power
analysis attacks are proposed in Section 5.2 to recover some secrets of the de-
cryption algorithm. Finally, in Section 5.3 we discuss how to use the secrets
recovered by means of the side-channel attacks to break the decryption scheme
and reveal the system private key.

5.1 Adversary Model

In our proposed attacks we consider an adversary model:
The adversary knows what is public like Ĝ, t. Also he knows the implementation
platform (e.g., type of the microcontroller used), the implementation profile,
i.e, complete source code of the decryption scheme (of course excluding memory

Practical Power Analysis Attacks on Software Implementations of McEliece 115

contents, precomputed values, and secret key materials). Also, he is able to select
different ciphertexts and measure the power consumption during the decryption
operation.

5.2 Possible Power Analysis Vulnerabilities

In order to investigate the vulnerability of the target implementation platform
to power analysis attacks a measurement setup by means of an AVR ATmega256
microcontroller which is clocked by a 16MHz oscillator is developed. Power con-
sumption of the target device is measured using a LeCroy WP715Zi 1.5GHz
oscilloscope at a sampling rate of 10GS/s and by means of a differential probe
which captures voltage drop of a 10Ω resistor at VDD (5V) path.

To check the dependency of power traces on operations, different instructions
including arithmetic, load, and save operations are taken into account, and power
consumption for each one for different operands are collected. In contrary to
8051-based or PIC microcontrollers, which need 16, 8, or 4 clock cycles to execute
an operation, an AVR ATmega256 executes the instructions in 1 or 2 clock
cycles1. Therefore, the power consumption pattern of different instructions are
not so different from each other. As Figure 1 shows, though the instructions are
not certainly recognizable, load instructions are detectable amongst others. As
a result the adversary may be able to detect the execution paths by comparing
the power traces. Note that as mentioned in Section 4 if the adversary is able to
repeat the measurement for a certain input, averaging helps to reduce the noise
and hence improve the execution path detection procedure.

 LOAD
 from FLASH

 SAVE
 to SRAM

 JUMPXOR DEC LOAD
 from SRAM

 LOAD
 from SRAM

Fig. 1. A power consumption trace for different instructions

On the other hand, considering a fixed execution path, operand of instructions
play a significant role in variety of power consumption values. As mentioned
before, since the microcontrollers usually precharge/predischarge the bus lines,
HW of the operands or HW of the results are proportional to power values.
Figure 2 shows the dependency of power traces on the operands for XOR, LOAD,
and SAVE instructions. Note that XOR instruction takes place on two registers,
LOAD instruction loads an SRAM location to a specified register, and SAVE
stores the content of a register back to the SRAM. According to Figure 2(c), HW
of operands of SAVE instruction are more distinguishable in comparison to that
of XOR and LOAD instructions. Therefore, according to the defined adversary
1 Most of the arithmetic instructions in 1 clock cycle.

116 S. Heyse, A. Moradi, and C. Paar

(a) (b) (c)

Fig. 2. Power consumption traces for different operands of (a) XOR, (b) LOAD, and
SAVE instructions (all traces in gray and the averaged based on HWs in black)

model we suppose that the adversary considers only the leakage of the SAVE
instructions. Now the question is “How precisely the adversary can detect HW
of the values stored by a SAVE instruction?” It should be noted that a similar
question has been answered in the case of a PIC microcontroller in [23] where
the adversary (which fits to our defined adversary model in addition to profiling
ability) has to profile the power traces in order to correctly detect the HWs. The
same procedure can be performed on our implementation platform. However, in
our defined adversary model the device under attack can be controlled by the
attacker in order to repeat measurements as many as needed for the same input
(ciphertext). Therefore, without profiling the attacker might be able to reach
the correct HWs by means of averaging and probability distribution tests2. In
contrary to an algebraic side-channel attack which needs all correct HW of the
target bytes to perform a successful key recovery attack [23], as we describe later
in Section 5.3 our proposed attack is still able to recover the secrets if the attacker
guesses the HWs within a window around the correct HWs. Figure 3 presents
success rate of HW detection for different scenarios. In the figure, the number
of traces for the same target byte which are used in averaging is indicated by
“avg”. Further, “window” shows the size of a window which is defined around the
correct HWs. As shown by Figure 3, to detect the correct HWs the adversary
needs to repeat the measurements around 10 times, but defining a window by
the size of 1 (i.e., correct HWs ±1) leads to the success rate of 100% considering
only one measurement.

Differential Power Analysis. First, one may think that the best side-channel
attack on implementation of McEliece decryption scheme would be a DPA to
reveal the secret key. However, the input (ciphertext) is processed in a bitwise
fashion, and in contrary to symmetric block ciphers the secret key does not
contribute as a parameter of a computation. Moreover, power traces for differ-
ent ciphertexts would not be aligned to each other based on the computations,
2 Probability distribution test here means to compare the probability distribution of

the power values to the distribution of HW of random data in order to find the
best match especially when highest (HW=8) or/and lowest (HW=0) is missing in
measurements.

Practical Power Analysis Attacks on Software Implementations of McEliece 117

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Number of Target Bytes

S
uc

ce
ss

 R
at

e

avg=1, window=0
avg=4, window=0
avg=8, window=0
avg=10, window=0
avg=1, window=1

Fig. 3. Success rate of HW detection using the leakage of a SAVE instruction for
different averaging and windowing parameters

and execution time of decryption also varies for different ciphertexts. As a con-
sequence, it is not possible to perform a classical DPA attack on our target
implementations.

SPA on Permutation Matrix. Considering implementation profiles I and II
(defined in Section 3) the first secret information which is used in decryption
process is permutation matrix P . After permuting the ciphertext it is multiplied
by matrix HT . Since the multiplication of ĉ and HT can be efficiently realized
by summing up those rows of H for which corresponding bit of ĉ is “1” and skip
all “0” bits, running time of multiplication depends on the number of “1”s (let
say HW) of ĉ. As mentioned before the side-channel adversary would be able
to detect the execution paths. If so, he can recover the content of ĉ bit-by-bit
by examining whether the summation is performed or not. However, HW of ĉ is
the same as HW of c, and only the bit locations are permuted. To recover the
permutation matrix, the adversary can consider only the ciphertexts with HW=1
(2048 different ciphertexts in this case), and for each ciphertext finds the instant
of time when the summation is performed (according to ĉ bits). Sorting the time
instants allows recovery whole of the permutation matrix. Figure 4 shows two
power traces of start of decryption for two different ciphertexts. Obviously start
of the summation is recognizable by visual inspection, but a general scheme
(which is supposed to work independent of the implementation platform) would
be similar to the scheme presented in [14]. That is, an arbitrary part of a trace
can be considered as the reference pattern, and computing the cross correlation of
the reference pattern and other power traces (for other ciphertexts with HW=1)
reveals the positions in time when the summation takes place. Figure 5 presents
two correlation vectors for the corresponding power traces of Figure 4. Note
that to reduce the noise effect we have repeated the measurements and took the
average over 10 traces for each ciphertext. Using this scheme for all ciphertexts
with HW=1, permutation matrix is completely recovered.

SPA on Parity Check Matrix. When implementation profiles III and IV are
used, the permutation is not solely performed and hence the attack described
above is not applicable. Therefore, the adversary has to take the multiplication

118 S. Heyse, A. Moradi, and C. Paar

0.5 1 1.5 2 2.5
Time (ms)

0.5 1 1.5 2 2.5
Time (ms)

Fig. 4. Power traces of ciphertext (left) 0x0...01 and (right) 0x0...02

0.5 1 1.5 2 2.5
Time (ms)

C
or

re
la

tio
n

0.5 1 1.5 2 2.5
Time (ms)

C
or

re
la

tio
n

Fig. 5. Correlation vectors for ciphertexts (left) 0x0...01 and (right) 0x0...02

process into account. Since in this case, execution path of multiplication does not
depend on any secret, recovering the conditional branches (which only depend
on ciphertext bits) would not help the attacker revealing the secrets. As a con-
sequence the adversary has to try revealing the content of the parity check matrix
H . To do so, as described before he may reach (or guess) HW of the processed
(or saved) data. Similarly to the last scheme the attacker can chose all ciphertexts
with HW=1 and guess the HW of elements of each column of matrix H separately.
Since 27 11-bit elements of each column of H are saved efficiently in a byte-wise
fashion in 38-byte chunks3, and the adversary can only guess the HW of each byte,
he can not certainly guess the HW of each 11-bit element of H . Therefore, the num-
ber of candidates for the HW of each 11-bit element is increased. As the result of
this procedure, the adversary will have a set of candidates for each 11-bit element
of parity matrix H at row i and column j as follows:

Ĥi,j =
{

h ∈ {0, 1}11 | HW(h) = the guessed HW by SPA ± window
}

.

SPA on Goppa Polynomial. If the attacker can follow the execution path
after the matrix multiplication, he would be able to measure the power con-
sumption during the computation of the syndrome polynomial inversion (step 2
of Algorithm 3). Since at the start of this computation the Goppa polynomial
is loaded, e.g., from a nonvolatile memory to SRAM, similarly to the scheme
3 Each 11-bit can be saved in 2 bytes, but it wastes the memory and also simplifies the

attack procedure by dividing the HW of an 11-bit value to the HW of two 8- and 3-bit
parts.

Practical Power Analysis Attacks on Software Implementations of McEliece 119

explained above the adversary can predict HW of the transfered values,
and hence make a list of candidates for each 11-bit element of the Goppa
polynomial.

5.3 Gains of Power Analysis Vulnerabilities

This section discusses how to use the so far gathered information to perform a
key recovery attack.

Attack I: Knowing the permutation matrix. Given the permutation matrix
P (which is recovered by means of an SPA), we are able to completely break the
systemwith one additional assumption. We need to know the original support L.
In [10], Section $3.1 it is stated that L can be published without loss in security.
Using the public key Ĝ = S ∗ G ∗ P , we can easily recover S ∗G. Multiplication
by a message with only a single “1” at position i gives us row S[i] because G is
considered to be in the systematic form. Therefore, by (n − k) multiplications
we can extract the scrambling matrix S and consequently G as well.

Now it is possible to recover the Goppa polynomial. According to Equation (1)
we know that for a valid codeword (i.e., error free) the corresponding syndrome
modulo g(z) equals to zero. It means that the gcd of two different syndromes,
which can now be computed by Equation (2) using G′ = S ∗ G and the original
support L, equals g(z) with high probability. In our experiments, it never took
more than one gcd-computation to recover the correct Goppa polynomial.

From this point on, we have extracted all parameters of the McEliece system,
and hence are able to decrypt every ciphertext. In order to verify the revealed
secrets, we executed the key generation algorithm with the extracted parameters
and retrieved exactly the same secret key as in the original setup.

Attack II: knowing parity check matrix. Without knowing the original
support L, the attack described above is not applicable; moreover, in implemen-
tation profiles III and IV it is not possible to solely recover the permutation
matrix. To overcome this problem we utilize the possible candidate lists Ĥi,j

derived by an SPA attack. According to the structure of the parity check matrix
H in Equation (3), every column is totally defined by elements α, g(α) and the
coefficients of g(z). We use this structure and the candidate lists in an exhaus-
tive search. For every column H [i] we randomly choose αi and g(αi) over all
possible elements. These two elements are fixed for the entire column. Now we
go recursively into the rows of column i. At every recursion level j we have to
choose a random value for gt−j and compute the actual value of H [i][j] according
to Equation (3). Only if this value is in the candidate list Ĥi,j , we recursively
call the search function for H [i][j + 1]. If a test fails, we remove the currently
selected element for gt−j from the possible list and choose a new one. When the
list gets empty, we return to one recursion level higher and try by a new element.
Thereby we only go deeper into the search algorithm if our currently selected
elements produce the values which are found in the corresponding candidate list.

120 S. Heyse, A. Moradi, and C. Paar

If the algorithm reaches row[t + 1], with t = 27 in our case, we have selected
candidates for αi, g(αi), and all coefficients of the Goppa polynomial g(z). Now
we can check backwards whether g(z) evaluates to g(αi) at αi. If so, we have
found a candidate for the Goppa polynomial and for the first support element.

While the above described algorithm continues to search new elements, we
can validate the current one. By choosing another column H [i] and one of the
remaining n−1 support elements, we can test in t trials whether the given value
exists in the corresponding candidate list. On success we additionally found
another support element. Repeating this step n − 1 times reveals the order of
the support L and verifies the Goppa polynomial. Column four in Table 1 shows
the average number of false αs, that pass the first searched column for the right
Goppa polynomial. However, these candidates are quickly sorted out by checking
them against another column of H . For all remaining pairs (L, g(z)) it is simply
tested whether it is possible to decode an erroneous codeword.

Because a single column of H is sufficient for the first part of the attack, we
could speed it up by selecting the column with the lowest number of candidates
for the 27 positions. Depending on the actual matrix the number of candidates
for a complete column varies between 1 000 and 25 000. It turns out that most
often the column constructed by α = 0 has the lowest number of candidates. So
in a first try we always examine the column with lowest number of candidates
with α = 0 before iterating over other possibilities.

Also every information that one might know can speed up the attack. If, for
example, it is known that a sparse Goppa polynomial is chosen, we can first test
coefficient gi = 0 before proceeding to other choices. For testing we generate a
McEliece key from a sparse Goppa polynomial where only 4 coefficients are not
zero. Table 1 shows the results for that key.

Even if the permutation matrix P is merged into the computation of H (im-
plementation profiles III and IV) this attack reveals a permuted support LP ,
which generates a parity check matrix capable of decoding the original cipher-
text c. As a result, although merging P and H is reasonable from a performance
point of view, this eases our proposed attack.

Attack III: Improving Attack II. Considering the fact mentioned at the end
of Section 5.2 knowing some information about the coefficients of g(z) dramati-
cally reduces the number of elements to be tested on every recursion level. The
use of additional information, here the HW of coefficients of g(z), significantly
speeds up the attack, as shown in Table 2.

As mentioned in the previous section, Table 1 shows the results for a sparse
Goppa polynomial. These result were achieved using a workstation PC equipped
by two Xeon E5345 CPUs and 16 GByte RAM and gcc-4.4 together with OpenMP-
3.0. The results for a full random Goppa polynomial are given in Table 2.

In this table a window size of X means that we do not use the information
about the Goppa polynomial. Instead, we iterate over all possibilities. #g(z)
denotes the number of Goppa polynomials found until the correct one is hit, and
α indicates how many wrong elements fulfil even the first validation round.
The column CPU Time is the time for a single CPU core.

Practical Power Analysis Attacks on Software Implementations of McEliece 121

Table 1. Runtime of the Search Algorithm for sparse Goppa polynomial

Window Size H Window Size g(z) #g(z) # α CPU Time

0 X > 106 112 115 hours
1 X > 232 > 232 150 years
0 0 3610 68 < 1 sec
1 0 112527 98 10 sec
0 1 793898 54 186 min
1 1 > 106 112 71 days

Table 2. Runtime of the Search Algorithm for full random Goppa polynomial

Window Size H Window Size g(z) #g(z) # α CPU Time

0 X > 106 52 90 hours
1 X > 232 > 232 impossible
0 0 4300 50 69 min
1 0 101230 37 21 hours
0 1 > 232 > 232 26 days
1 1 > 232 > 232 5 years

Note that the values in the second and last row of each table are only esti-
mates. They are based on the progress of the search in around 2 weeks and on
the knowledge of the right values. The impossible means, that there was only
little progress and the estimate varied by hundreds of years.

Also it should be investigated whether the additional information from the
side-channel attacks can improve one of the already known attacks, e.g.,
[2,16,17,31]. The information gathered by means of side-channels ought to be
useful since it downsizes the number of possibilities.

6 Countermeasures

Since the multiplication of the permuted ciphertext and parity check matrix HT

is efficiently implementing by summing up (XORing) some H rows which have
“1” as the corresponding permuted ciphertext, the order of checking/XORing
H rows can be changed arbitrarily. Since we have supposed that the attacker
(partially) knows the program code, any fix change on the execution path, e.g.,
changing the order of summing up the H rows would not help to counteract our
first attack (SPA on permutation matrix explained in Section 5.2). However, one
can change the order of checking/XORing randomly for every ciphertext, and
hence the execution path for a ciphertext in different instances of time will be
different. Therefore, the adversary (which is not able to detect the random value
and the selected order of computation) can not recover the permutation matrix.
Note that as mentioned before if the permutation is not merely performed (e.g.,
in implementation profiles III and IV) our first attack is inherently defeated.

122 S. Heyse, A. Moradi, and C. Paar

Defeating our second attack (SPA on parity check matrix explained in Sec-
tion 5.2) is not as easy as that of the first attack. One may consider changing
randomly the order of checking the H rows, which is described above, as a coun-
termeasure against the second attack as well. According to the attack scenario
the adversary examines the power traces for the ciphertexts with HW=1; then,
by means of pattern matching techniques he would be able to detect at which
instance of time the desired XOR operations (on the corresponding row of H)
is performed. As a result, randomly changing the order to computations does
not help to defeat the second attack. An alternative would be to randomly exe-
cute dummy instructions4. Though it leads to increasing the run time which is
an important parameter for post quantum cryptosystems especially for software
implementations, it extremely hardens our proposed attacks. A boolean masking
scheme may also provide robustness against our attacks. A simple way would
be to randomly fill the memory location which stores the result of XORing H
rows before start of the multiplication (between the permuted ciphertext and
the parity check matrix), and XORing the final results by the same start value.
This avoids predicting HW of H elements if the attacker considers only the
leakage of the SAVE instructions. However, if he can use the leakage of LOAD
instructions (those which load H rows), this scheme does not help to counteract
the attacks. One can make a randomly generated mask matrix as big as H , and
save the masked matrix. Since in order to avoid the effect of the masking after
multiplication it is needed to repeat the same procedure (multiplication) using
the mask matrix, this scheme doubles the run time (for multiplication) and the
area (for saving the mask matrix) as well though it definitely prevents our pro-
posed attacks. As a result designing a masking scheme which is adopted to the
limitations of our implementation platform is considered as a future work.

7 Conclusions

In this paper, we presented the first practical power analysis attacks on
different implementations of the McEliece public-key scheme which use an
8-bit general-purpose AVR microprocessor to realize the cipher decryption.
Since we believe that with growing memory of embedded systems and future
optimizations McEliece can be developed as a quantum computer-resistant re-
placement for RSA and ECC, vulnerability and robustness of McEliece imple-
mentations in the presence of side-channel attacks should be addressed before its
widespreading into pervasive applications and devices which are under control of
the side-channel adversaries. Further, to defeat the described vulnerabilities we
introduced and discussed possible countermeasures which seem not to be per-
fect because of their high time and memory overheads. As a result, designing a
suitable countermeasure which fits to the available resources of low-cost general-
purpose microprocessors and provides a reasonable level of security against side-
channel attacks is considered as a future work. This work shows clearly that
4 In our implementation platform it can be done by a random timer interrupt which

runs a random amount of dummy instructions.

Practical Power Analysis Attacks on Software Implementations of McEliece 123

every part of the secret key materials namely the support L, the Goppa polyno-
mial g(z), the permutation P and every (precomputed) part of the parity check
matrix H have to be well protected.

References

1. Berlekamp, E.R.: Goppa Codes. IEEE Trans. on Information Theory 19(3),
590–592 (1973)

2. Bernstein, D.J., Lange, T., Peters, C.: Attacking and Defending the McEliece Cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008), http://eprint.iacr.org/2008/318

3. Biswas, B., Sendrier, N.: McEliece Cryptosystem Implementation: Theory and
Practice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
47–62. Springer, Heidelberg (2008)

4. Bogdanov, A., Kizhvatov, I., Pyshkin, A.: Algebraic Methods in Side-Channel Col-
lision Attacks and Practical Collision Detection. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 251–265. Springer,
Heidelberg (2008)

5. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

6. Cayrel, P.-L., Dusart, P.: Fault Injection’s Sensitivity of the McEliece PKC (2009),
http://www.cayrel.net/IMG/pdf/Fault_injection_s_
sensitivity_of_the_McEliece_PKC.pdf

7. den Boer, B., Lemke, K., Wicke, G.: A DPA Attack against the Modular Reduction
within a CRT Implementation of RSA. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C.
(eds.) CHES 2002. LNCS, vol. 2523, pp. 228–243. Springer, Heidelberg (2003)

8. Eisenbarth, T., Güneysu, T., Heyse, S., Paar, C.: MicroEliece: McEliece for Em-
bedded Devices. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp.
49–64. Springer, Heidelberg (2009)

9. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the Power of Power Analysis in the Real World: A Complete Break of
the KeeLoq Code Hopping Scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 203–220. Springer, Heidelberg (2008)

10. Engelbert, D., Overbeck, R., Schmidt, A.: A Summary of McEliece-Type Cryp-
tosystems and their Security. Journal of Mathematical Cryptology 1(2), 151–199
(2006), http://eprint.iacr.org/2006/162

11. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

12. Hoerder, S.: Explicit Computational Aspects of McEliece Encryption Scheme. Mas-
ter’s thesis, Ruhr University Bochum, Germany (2009)

13. Howenga, T.: Efficient Implementation of the McEliece Cryptosystem on Graphics
Processing Units. Master’s thesis, Ruhr-University Bochum, Germany (2009)

14. Kasper, M., Kasper, T., Moradi, A., Paar, C.: Breaking KeeLoq in a Flash. In:
Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 403–420. Springer,
Heidelberg (2009)

http://eprint.iacr.org/2008/318
http://www.cayrel.net/IMG/pdf/Fault_injection_s_sensitivity_of_the_McEliece_PKC.pdf
http://www.cayrel.net/IMG/pdf/Fault_injection_s_sensitivity_of_the_McEliece_PKC.pdf
http://eprint.iacr.org/2006/162

124 S. Heyse, A. Moradi, and C. Paar

15. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

16. Lee, P.J., Brickell, E.F.: An Observation on the Security of McEliece’s Public-Key
Cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp.
275–280. Springer, Heidelberg (1988)

17. Leon, J.S.: A Probabilistic Algorithm for Computing Minimum Weights of Large
Error-Correcting Codes. IEEE Transactions on Information Theory 34(5), 1354–
1359 (1988)

18. McEliece, R.J.: A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report 44, 114–116 (1978)

19. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–
251. Springer, Heidelberg (2000)

20. Oswald, E.: Enhancing Simple Power-Analysis Attacks on Elliptic Curve Cryp-
tosystems. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 82–97. Springer, Heidelberg (2003)

21. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical Second-Order DPA At-
tacks for Masked Smart Card Implementations of Block Ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006)

22. Patterson, N.: The Algebraic Decoding of Goppa Codes. IEEE Transactions on
Information Theory 21, 203–207 (1975)

23. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic Side-Channel At-
tacks on the AES: Why Time also Matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009)

24. Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES: Com-
bining Side Channel- and Differential-Attack. In: Joye, M., Quisquater, J.-J. (eds.)
CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)

25. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

26. Schramm, K., Wollinger, T.J., Paar, C.: A New Class of Collision Attacks and
Its Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp.
206–222. Springer, Heidelberg (2003)

27. Shoufan, A., Strenzke, F., Molter, H.G., Stoettinger, M.: A Timing Attack Against
Patterson Algorithm in the McEliece PKC. In: International Conference on Infor-
mation Security and Cryptology - ICISC 2009. LNCS, Springer, Heidelberg (2009)
(to appear)

28. Shoufan, A., Wink, T., Molter, G., Huss, S., Strentzke, F.: A Novel Processor
Architecture for McEliece Cryptosystem and FPGA Platforms. In: Application-
specific Systems, Architectures and Processors - ASAP 2009, pp. 98–105. IEEE
Computer Society, Los Alamitos (2009)

29. Silverman, J.H., Whyte, W.: Timing Attacks on NTRUEncrypt Via Variation in
the Number of Hash Calls. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp.
208–224. Springer, Heidelberg (2007)

30. Standaert, F.-X., Örs, S.B., Quisquater, J.-J., Preneel, B.: Power Analysis Attacks
Against FPGA Implementations of the DES. In: Becker, J., Platzner, M., Vernalde,
S. (eds.) FPL 2004. LNCS, vol. 3203, pp. 84–94. Springer, Heidelberg (2004)

Practical Power Analysis Attacks on Software Implementations of McEliece 125

31. Stern, J.: A Method for Finding Codewords of Small Weight. In: Wolfmann, J.,
Cohen, G. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer,
Heidelberg (1989)

32. Strenzke, F., Tews, E., Molter, H.G., Overbeck, R., Shoufan, A.: Side Channels
in the McEliece PKC. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS,
vol. 5299, pp. 216–229. Springer, Heidelberg (2008)

33. van Tilborg, H.C.: Fundamentals of Cryptology. Kluwer Academic Publishers, Dor-
drecht (2000)

34. Vizev, N.V.: Side Channel Attacks on NTRUEncrypt. Bachelor’s thesis, Technical
University of Darmstadt, Germany (2007),
http://www.cdc.informatik.tu-darmstadt.de/reports/reports/
Nikolay_Vizev.bachelor.pdf

Appendix

Algorithm 3. Decoding Goppa Codes
Require: Received codeword r with up to t errors, inverse generator matrix iG
Ensure: Recovered message m̂
1: Compute syndrome Syn(z) for codeword r
2: T (z) ← Syn(z)−1 mod g(z)
3: if T (z) = z then
4: σ(z) ← z
5: else
6: R(z) ← √

T (z) + z
7: Compute a(z) and b(z) with a(z) ≡ b(z) · R(z) mod g(z)
8: σ(z) ← a(z)2 + z · b(z)2

9: end if
10: Determine roots of σ(z) and correct errors in r which results in r̂
11: m̂ ← r̂ · iG {Map rcor to m̂}
12: return m̂

http://www.cdc.informatik.tu-darmstadt.de/reports/reports/Nikolay_Vizev.bachelor.pdf
http://www.cdc.informatik.tu-darmstadt.de/reports/reports/Nikolay_Vizev.bachelor.pdf

Key Exchange and Encryption Schemes Based
on Non-commutative Skew Polynomials

Delphine Boucher1, Philippe Gaborit2, Willi Geiselmann3, Olivier Ruatta2,
and Felix Ulmer1

1 Université de Rennes 1,
IRMAR, CNRS, UMR 6625,

Université européenne de Bretagne
2 Université de Limoges, CNRS, XLIM-DMI,

123, Av. Albert Thomas
87060 Limoges Cedex, France

3 Karlsruhe Institut of Technology (KIT)
Am Fasanengarten 5

76131 Karsruhe, Germany

Abstract. In this paper we introduce a new key exchange algorithm
(Diffie-Hellman like) based on so called (non-commutative) skew poly-
nomials. The algorithm performs only polynomial multiplications in a
special small field and is very efficient. The security of the scheme can
be interpretated in terms of solving binary quadratic equations or ex-
haustive search of a set obtained through linear equations. We give an
evaluation of the security in terms of precise experimental heuristics and
usual bounds based on Groebner basis solvers. We also derive an El
Gamal like encryption protocol. We propose parameters which give 3600
bits exchanged for the key exchange protocol and a size of key of 3600
bits for the encryption protocol, with a complexity of roughly 223 binary
operations for performing each protocol. Overall this new approach based
on skew polynomials, seems very promising, as a good tradeoff between
size of keys and efficiency.

1 Introduction

The Diffie-Hellman protocol introduced in 1976 was a milestone in modern cryp-
tography. The key part of the protocol lies in the commutativity of the exponen-
tiation. Although the protocol is widely used nowadays, it has two drawbacks.
First it is rather costly in the sense that both parts have to do a general expo-
nentiation with a cubic complexity in the size of the key. Although for common
non recurrent use, it is not so important, there are cases in which one has to
proceed such a key exchange continuously, so that eventually it becomes a real
stake. The second drawback is that, like all protocols based on number theory,
it is broken if one day a putative quantum computer comes to exist.

Hence it makes sense to first find a secure faster key exchange protocol as well
as non number theory based protocols.

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 126–141, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Key Exchange and Encryption Schemes 127

In this paper we propose such a protocol. Our protocol also uses a commu-
tativity property of particular objects, the so called skew polynomials. More
precisely we start from special non commutative polynomials, from which we
construct a commutative subset (but not in the center). In some ways our ap-
proach can be related to the approach of braid cryptography, but without the
problem of the random braid generator, which was the cause of many efficient
attacks on braid cryptography.

Overall we obtain a very efficient protocol both in terms of complexity and size
of key. The security of our protocol is related to problems of multivariate cryp-
tography, but has the advantage of having only a small key size in comparison
with classical multivariate cryptography.

Skew polynomials are defined as follows. Let IK = IFq be a finite field and let
θ ∈ Aut(IK), we define a ring structure on the set

IK[X, θ] = {anXn + · · · + a1X + a0|n ∈ IN and ai ∈ IK, ∀i ∈ {0, . . . , n}}.

The addition of polynomials is the usual one and the multiplication is obtained
using the rule Xa = θ(a)X . We still denote IK[X, θ] the resulting ring. If θ = Id
we obtain the classical polynomial ring IK[X]. If θ is not the identity, then
the ring IK[X, θ] is not commutative, which implies that there exist a and
b ∈ IK[X, θ] such that ab �= ba since there exists a ∈ IK such that θ(a) �= a
and so Xa = θ(a)X �= aX . Those rings are well known and were introduced
in [10] in 1933. Over a finite field, they are the most general polynomial rings
with a commutative field of coefficients, where the degree of a product of two
elements is the sum of the degrees of the elements. The ring IK[X, θ] is a left
and right Euclidean ring, whose left and right ideals are principal ([10,9]). Left
and right gcd and lcm exist in IK[X, θ] and can be computed using the left and
right Euclidean algorithm [3]. However, the ring IK[X, θ] is not a unique fac-
torization domain. The main properties of IK[X, θ] used here are discussed in a
section below. The non unicity of factorization and the non-commutativity allow
us to give a sketch of the proposed protocol.

The paper is organized as follows, Section 2 recalls main facts about skew
polynomials, Section 3 proposes new algorithms: a Diffie-Hellman like key ex-
change and a related El Gamal like encryption scheme. In section 4 we discuss a
general setting for the security of the scheme, Section 5 looks at specific attacks
and at last Section 6 gives parameters for our scheme.

2 Background on Skew Polynomials Ring

2.1 Definition and Basic Properties

Let IK = IFq be a finite field and let θ be an automorphism of IK. Let us define:

IK[X, θ] = {anXn + · · · + a1X + a0|ai ∈ IK, ∀i ∈ {0, . . . , n} andn ∈ IN}

128 D. Boucher et al.

This set has a ring structure. The addition is defined as usually and the product

is such that Xna = θn(a)Xn for all n ∈ IN. If P =
n∑

i=0

aiX
i and Q =

n∑
j=0

bjX
j ,

we have:

PQ =
n+m∑
k=0

∑
i+j=k

aiθ
i(bj)Xk.

The ring is non-commutative as soon as θ �= Id since if θ �= Id there exists
a ∈ IK such that θ(a) �= a and then Xa = θ(a)X �= aX .

Example 1. For instance, take IK = IF4 and θ : a → a2, the Frobenius automor-
phism.

The ring IK[X, θ] is both left and right Euclidean (there is an Euclidean division
on the left and another on the right). Here right division means that for f, g ∈
IK[X, θ] which are non zero, there exist unique polynomials Qr, Rr ∈ IK[X, θ]
such that

f = Qr · g + Rr.

If Rr = 0 then g is a right divisor of f in IK[X, θ]. The definition of left divisor in
IK[X, θ] is similar, using the left Euclidean division. In the ring IK[X, θ] left and
right gcd and lcm exist and can be computed using the left and right Euclidean
algorithm ([3]).

Example 2. We denote α a generator of the multiplicative group of IF4 and
θ : a → a2, the Frobenius automorphism. The left and right division of X + α
by αX + 1 are

X + α = α2 (αX + 1) + 1
= (αX + 1)α + 0

An effect of the non-commutativity of such a ring is the non-uniqueness of a
factorization in form of products of irreducible factors. Two skew polynomi-
als P and Q are similar, noted P ∼ Q, if the left (or right) IK[X, θ] modules
IK[X, θ]/(P) and IK[X, θ]/(Q) are isomorphic.

Theorem 1. (cf. [8]) If P ∈ IK[X, θ] has two decompositions into irreducible
factors

P = P1P2 · · ·Pn = P̃1P̃2 · · · P̃m,

then n = m and there exists a permutation σ ∈ Sn such that Pi and P̃σ(i) are
similar.

Example 3. Taking again IK = IF4 = IF2[α] and θ : a → a2, then X4 − 1 admits
15 distinct decompositions as products of irreducible polynomials.

Key Exchange and Encryption Schemes 129

X4 − 1 = (X + α2) (X + α) (X + α) (X + α2)
= (X + α2) (X + α) (X + α2) (X + α)
= (X + 1) (X + 1) (X + α2) (X + α)
= (X + 1) (X + 1) (X + α) (X + α2)
= (X + α2) (X + 1) (X + 1) (X + α)
= (X + 1) (X + α2) (X + α) (X + 1)
= (X + α2) (X + α) (X + 1) (X + 1)
= (X + 1) (X + α) (X + α2) (X + 1)
= (X + α) (X + α2) (X + 1) (X + 1)
= (X + α) (X + α) (X + α2) (X + α2)
= (X + α) (X + 1) (X + 1) (X + α2)
= (X + α) (X + α2) (X + α2) (X + α)
= (X + α2) (X + α2) (X + α) (X + α)
= (X + 1) (X + 1) (X + 1) (X + 1)
= (X + α) (X + α2) (X + α) (X + α2)

The polynomial X6 − 1 has 90 distinct decompositions and X8 − 1 has 543
distinct decompositions.

Most of the polynomials do not commute in IK[X, θ]. According to ([9], Theorem
II.12), the monic polynomials who generate two sided ideals of IK[X, θ]are of the
form (b0 + b1X

m + b2X
2m + . . . + Xs·m)Xt, where m is the order of θ and

bi ∈ (IK)θ the fixed field of θ. The center of IK[X, θ] is IKθ[Xm]. A polynomial
in the center is said to be central, it commutes with all polynomials of IK[X, θ].
However, there are sets of polynomials which are not central and which commute
together.

Example 4. Taking IK = IF4 and θ : a → a2 again, the center of IF4[X, θ] is
IF2[X2]. The three polynomials Q1 = X + α, Q2 = X2 + X + α2 and Q3 =
X3 + α2X2 + 1 commute without being central since:

Q1Q2 = Q2Q1 = X3 + α2X2 + 1
Q1Q3 = Q3Q1 = X4 + X2 + X + α

Q2Q3 = Q3Q1 = X5 + αX4 + X3 + α2X2 + X + α2.

All the properties mentioned here will be used in order to design the protocol
described in this paper.

2.2 Difficult Problem for Skew Polynomials

The non commutativity of skew polynomials make some computational problems
like factorization more difficult. However the difficulty of the factorization is not
at the same level as for integer factorization. As we saw in examples, the difficulty
of the factorization of skew polynomials is linked to the large number of distinct
possible factorizations.

130 D. Boucher et al.

The number of factorizations grows with the number of polynomials, since
the more polynomials commute the more the effect of non-commutativity is
developed, as it is expressed in the previous examples.

Given the product p = p1...pr of a set of small polynomials it is difficult
to recover precisely the set {p1, ..., pr}, in fact there is an algorithm to find a
factorization of p ([7]), but only one in a set of a priori exponential size.

We will describe more formally the different problems in Section 4.

3 The Cryptosystems

3.1 A Diffie Helmann Like Key Exchange

We want that A and B construct and exchange a secret key using a Diffie
Helmann like cryptosystem.

We construct first a set S of polynomials in IK[X, θ] which commute each
other without commuting with all polynomials (i.e. without being central). We
hence get that for any polynomials L1 and L2 in S, L1L2 = L2L1, meanwhile
for any other polynomial Q not in S, we have in general (in fact almost always)
that L1Q �= QL1. Notice such a set S has not any particular structure and is
obtained simply by random search, we will see in Section 6 an example of such a
set. The idea of protocol consists in taking advantage that in some cases, when
polynomials are well chosen, it is possible that they commute. Let us consider A
and B who want to exchange a common secret. We consider a situation such that
A and B can take advantage of the commutativity but an observer C cannot.
It can be obtained in the following way: A chooses two polynomials LA and
RA in S and computes LAQRA using a random polynomial Q (a priori not in
S), B proceeds in the same way with LB and RB and the same polynomial
Q. The idea of the protocol is then that knowing LAQRA and Q, it is difficult
to recover LA and RA, since even if LA and RA commute, the fact that Q is
between them makes their commutativity ineffective for an observer. Now if B
knows only LAQRA, he can multiply the two sides of this polynomial and take
advantage of the commutativity. We then obtain the following Diffie-Hellman
like secret sharing protocol:

 DH-like protocol with skew polynomials

1. A and B publicly agree on a set of commutative polynomials S, a security
parameter d and a public polynomial Q of degree d (constructed with
random factors of small degree (ie between 6 and 10)).

2. A (resp. B) chooses two polynomials LA and RA (resp. LB and RB)
of degree d in S (constructed as products of 8 to 15 polynomials ob-
tained as sums of products of elements of S) and sends the polynomial
PA = LAQRA to B (resp. B sends PB = LBQRB to A).

3. A (resp. B) computes the common secret shared polynomial
P = LAPBRB (resp. P = LBPARB)

Key Exchange and Encryption Schemes 131

Proof of protocol: By recovering PB, A can compute LAPBRA=LALBQRBRA.
Since LA and LB are constructed as products of sums of products of polyno-
mials of S which commute, LA and LB commute together (resp. RA and RB)
and one obtains LAPRA = LBLAQRARB = LBPARB and hence by computing
LBPARB, B recovers the same secret shared polynomial.

Remark 1: The set S has not to be computed each time of course, it can be
computed once and made publicly known. The set typically contains more than
90 elements of degree 8 or 9 (see Appendix), so that it can be used as often as
necessary.

Remark 2: The particular structure of LA, LB, RA and RB is chosen in order
to assure a tradeoff between the combinatorial complexity to recover their struc-
ture (choice of sum of products of elements of S) and the overall effect of the non-
commutativity which increases when the number of factors increases (choice of 8 to
10 factors for LA, LB, RA and RB). The two configurations we want to avoid are:
only one factor in these polynomials which limits the effect of non-commutativity
or a product of polynomial directly in S, which can be tested one by one.

3.2 A El-Gamal Like Public Key Encryption Scheme

It is well known that it is possible to derive an encryption protocol from a Diffie-
Hellman like protocol, the idea is to fix, as public key, one of the sent data in the
Diffie-Hellman protocol. It is then possible for the person who wants to encrypt
to compute a common secret which is used to compute a common data used as
mask in a one-time pad protocol. The protocol is described in the following.

 El-Gamal like protocol with skew polynomials

1. Precomputation step and public data As for the key exchange pro-
tocol, one considers that a special set S of commutative polynomials is
known, we also consider as known a hash function h of output size n.

2. Key generation A chooses two polynomials LA and RA of degree d in S
and a random polynomial Q of degree d as for the Key exchange protocol,
then A computes PA = LAQRA. The secret key is the set {LA, RA},
the public key is the triple {S, PA, Q}.

3. Encryption B obtains the public key of A, cuts it into pieces of length n
and chooses two polynomials LB and RB of degree d in S. The encrypted
message is the set {c, P}, with c = m ⊕ h(LBPARB), and P = LBQRB.

4. Decryption A receives the encrypted message {c, P}, and computes m =
c ⊕ h(LAPRA).

Proof of the encryption protocol: By recovering P , B can reconstruct
LAPRA = LALBQRBRA, since LA and LB commute (resp. RA and RB), one
obtains LAPRA = LBLAQRARB = LBPARB and hence c ⊕ h(LAPRA) =
m ⊕ h(LBPARB) ⊕ h(LAPRA) = m.

132 D. Boucher et al.

Remark: The protocol is not constructed to be very efficient, since only n
bits are encrypted at each step, when in fact the entropy of the system could
probably assure more. Meanwhile since public key protocols are used essentially
for identification or key exchange, in practice it is enough.

3.3 Size of Parameters and Complexity of the Schemes

The scheme is very fast since only polynomial products are performed, moreover
the size of the public keys and private keys remain reasonable.

Size of keys

• Key exchange protocol: both sides exchange a polynomial of degree 3d over
IF4 hence 6d bits.

• Encryption protocol:

Private key: polynomials LA and RA: 6d bits.

Public key: PA: 6d bits
Remark: One may also consider sending the set S (even though it is public
data), it is composed of roughly 100 polynomials of degree 8 or 9, hence 1800
more bits.

Complexity

• Key exchange protocol: the first step consists in the creation of the polyno-
mials LA and RA and the creation of the polynomial PA = LAQRA. The second
part is the most important and has a complexity in d · d + 2d · d multiplications
in IF4, hence an overall complexity in 3d2 multiplications. The second step is the
computation of the shared polynomial LAPBRA, since PB has degree 3d, the
complexity of this step is d · 3d + 4d · d = 7d2 multiplications in IF4.

• Encryption protocol: the complexity is the same as for the Key exchange
protocol except that both steps are done simultanously, hence 10d2 multiplica-
tions in F4.

We will see in the last section that parameters can be chosen of order 600, which
makes an overall complexity of our schemes of roughly 223 binary operations,
which is very fast in comparison to other existing algorithms. Moreover the size
of parameters remains reasonable with only of few thousands bits.

4 General Setting for the Security of the Scheme

4.1 General Setting and Definition of Our “Difficult Problem”

Our method relies on the following problem:

Key Exchange and Encryption Schemes 133

 Simple factorization over skew ring

1. Data A skew polynomial F
2. Output Find skew polynomials f1, f2, .., fk such that F = f1 · · · fk.

There exists an algorithm which computes a right factor in polynomial time
([7]). But, since there exists in general a very large number of possible fac-
torizations, finding a factorization is not enough to break our method. The
number of factorizations grows combinatorially with the number of possible
factors. The difficulty of our problem is based on finding a particular factor-
ization in a very huge set of factorizations. This problem, although not proven
NP-hard seems very hard to solve based on the combinatorial growths of possible
factorizations.

Now our problem to recover directly the public key is a little more constrained
and can be formulated in the following way:

 Key factorization

1. Data A skew polynomial K product of three polynomials, i.e. K = LQR,
the skew polynomial Q and a subset S ⊂ IF4[X, θ] of polynomials com-
muting together and such that L and R can be obtained with sum and
product from elements of S.

2. Output Recover L̃ and R̃ such that they commute with all element of S
and K = L̃QR̃.

We only have to find L or R in order to solve this problem, since the solution
can then be obtained by performing divisions. In the following subsections, we
propose different approaches to solve this problem. Those approaches are all
based on a solution of the following equation:

P = LQR, . (1)

We propose a structural approach, using the fact that computing a right factor
can be done in polynomial time. Our second approach consists in deriving a set of
quadratic polynomial equations with the coefficients of L and R as unknown. It is
well known (see [6]) that solving quadratic polynomial systems is NP -complete.
We are not able to show that the instance proposed here is NP -complete, but we
give experimental results that show that the problem is difficult. We also propose
a randomized algorithm reducing the resolution of (1) to a linear system. We
study the complexity of the proposed attacks in order to propose parameters for
our method.

As for the discrete logarithm, it is possible to define by analogy with the
computational Diffie-Hellman the following problem:

134 D. Boucher et al.

 Computational key recovering

1. Data Two skew polynomials KA and KB, each is a product of three
polynomials, i.e. KA = LAQRA and KB = LBQRB, the skew polynomial
Q and a subset S ⊂ IF4[X, θ] of polynomials commuting together and
such that LA, LB, RA and RB can be obtained with sum and product
from elements of S.

2. Output Compute K = LALBQRBRA.

We do not have any proposition to solve this problem without solving the key
factorization problem. In order to evaluate the complexity of our attacks, we will
need some basic results on complexity of algebraic system solved over IF2. This
is the object of the following subsection.

4.2 Multivariate Interpretation of the Skew Factorization Problem

The problem of solving systems of multivariate polynomial equations is NP -
complete and it has been shown that this problem remains NP -complete is the
equations of the sytems are quadratic over IF2 ([4,6]). Here a first attack leads to
the resolution of a polynomial system over IF4[x1, . . . , xn]/(x4

1−x1, . . . , x
4
n−xn).

We denote P =
∑

piX
i, Q =

∑
qi X i and dQ the degree of Q. The polynomials

L and R are unknown polynomials but we will assume that we know their degrees
dL and dR. We will see them as polynomials in IF4[l0, . . . , ldL−1, r0, . . . , rdR−1]
[X, θ]. The equation (1) is equivalent to the polynomial system:

pi =
min(dL,i)∑

j=max(0,i−dQ−dR)

min(dQ,i−j)∑
k=max(0,i−dR−j)

ljq
2j

k r2j+k

i−j−k, i = 0, . . . , dQ + dL + dR − 1

in themultivariate commutativepolynomial ring IF4[l0, . . . , r0, . . .]/(l40−l0, . . . , r
4
0−

r0, . . .). Considering the equations for i = dQ + dL + dR − 1, . . . , dQ + dR, we get
a triangular linear system with unknown l0, l1, . . . , ldL−1, so the equation (1) can
be reduced to a polynomial system with dQ + dR equations and dR unknowns in
IF4[r0, . . . , rdR−1]/(r4

0 − r0, . . . , r
4
dR−1 − rdR−1)

4.3 Some Bounds for over Constrained Polynomial Systems Solving

Here, we consider algorithms using Gröbner bases to solve polynomial systems.
All the bounds are extracted from [2]. The number of arithmetic operations
needed to compute a Gröbner basis is controlled by a degree, called regularity
degree and denoted Ddeg. Here the complexity is given for the F5-matrical al-
gorithm (see [5]) which is the best known algorithm for Gröbner. For a system
over IF2 with αn equations in n variables (α is a scalar), which is semi-regular
and for n → ∞, we have:

Ddeg ∼ (−α +
1
2

+
1
2

√
α2 − 10α − 1 + 2(α + 2)

√
α(α + 2))n

Key Exchange and Encryption Schemes 135

The complexity is exponential of this degree. Not all the systems are semi-
regular. But it is conjectured and often checked experimentally that the proba-
bility to be semi-regular for an over constrained system tends to 1 as n growth.
There are easier cases, but also worse cases (doubly exponential). The fact that
the complexity of a generic problem is not the worst is generally explained by the
fact that over constrained systems have few solutions. Some particular bounds
can be computed if the systems have very few solutions (typically 1 solution).
But, we will see that our method gives rise to systems with more solutions and
that systems are not too over constrained.

Following directly the previous bounds leads to an overestimated security of
our scheme, since we are not in a completely random case.

In the following section we consider specific attacks taking account of the
particular structure of our scheme and try to do better than the generic bounds
using a specific exploitation of data.

5 Specific Attacks

In this section we look at three natural specific attacks in order to obtain a
security order for our scheme. The first attack is related to the direct structure
of the factorization problem and can be considered as a structural attack, it tries
to recover directly the correct factorization without considering unknowns. The
second attack is based on a quadratic interpretation from our problem and shows
that at some point it seems difficult to do better than direct solvers. The third
attack, based on linear algebra, leads to a solution of our system. This attack
tries to recover a special set of unknowns through a complete search. Eventually
the first two attacks seems to be quickly ineffective when the security parameter
d increase beyond a few hundred. The last attack based on a linear interpretation
seems to be the most effective and we evaluate its complexity.

5.1 Structural Attack Using Factorization

To solve the equation (1), we can proceed as follows, assuming that we know the
degree dR of R :

1. Using the bifactorization algorithm of Giesbrecht ([7]), find a right factor R̃
of P of degree dR.

2. Compute the quotient P̃ in the right division of P by R̃ and perform the
right division of P̃ by Q. If the remainder is not zero then go back to 1.

3. Denote L̃ the quotient of the (exact) right division of P̃ by Q. If L̃QR̃ = P ,
then (L̃, R̃) is a solution to the equation (1), else return to 1.

The first step can be done in polynomial time, however, the algorithm of [7]
enables to find only one right factor and there may be an exponential num-
ber of such factors. So L and R have to be chosen so that the number of the
factorizations of LQR becomes exponentially big.

Note also that the equation (1) may have many solutions, so at step 3 of the
algorithm, we are not sure to get the right L and the right R. One could check

136 D. Boucher et al.

at least if the two polynomials commute. We can improve this attack in several
ways. At step 1, each time we compute a right factor, to check that it is a right
factor of the correct type. The problem of checking that the computed factor as
the right type can be a difficult problem depending on the way the factors are
chosen.

One can try to compute factors and hope that the method will give a suitable
pair (L̃, R̃). But the ratio of acceptable pair is very low. The good right factors
can be obtained only by commutation of factors of R . The number of factors
in K is higher (at least by a factor 2) and the set of possible commutations
between factors of K growth exponentially. One can check that this factor is not
one coming from a factor of Q, but even this does not improve this approach.
Hence these attacks seems largely unpractical in our setting.

5.2 Attacks Using Vector Spaces and Quadratic Equations/Linear

To get a better understanding of the structure of possible secret keys, we use a
different way to represent the set of all possible secret keys Q, R. Let

V := {C ∈ IF4[X, θ]4 | deg(C) ≤ d, S · C = C · S ∀S ∈ S}

be the set of all polynomials of maximum degree d that commute with all ele-
ments of S. It is straight forward to check that V is an IF2 vector space (note:
not necessarily an IF4 vector space). Let b1, . . . , bc be a basis of V , then each
secret key L (resp. R) can be represented as an IF2 linear combination of these
basis elements (as long as the maximum degree d of elements in V is not smaller
than max{deg(L), deg(R)}). The basis can be selected as the central polynomi-
als x2j with 0 ≤ j ≤ �d/2� and polynomials of odd degree; there are at most
two polynomials of identical degree. Thus the dimension c of V is bounded by
d + d/2, in all examples we tried, c was slightly smaller than d.

Using V , we can represent the secret keys L, R of Equation 1 as IF2 linear
combinations of basis elements with 2 · c variables, and write the equation as

c∑
i=1

λibi · Q ·
c∑

i=1

λ̃ibi = L · Q · R = P,

where λi, λ̃i are unknowns over IF2.
With known P, Q, comparing the coefficients of Equation 1 gives us deg(P)

quadratic equations in 2 · c variables (with coefficients in IF4) for the unknown
L, R. Only solutions in IF2 are allowed here, therefore we can split each equation
into two equations over IF2 (say “the part not in IF2” and “the part in IF2”) and
end up with a system of 2 · deg(P) equations over IF2 in 2 · c unknowns.

The number of variables and the number of equations increases linearly in
the “size of the key exchange” (the degree of the secret keys and the degree of
the polynomial transmitted). This should make this attack infeasible for larger
parameters, at least if some additional structure in the system of equations can
not be used to reduce the growth in the complexity significantly. One obvious

Key Exchange and Encryption Schemes 137

structure in the system of equations is: there are equations with few unknowns,
the ones coming from the highest degrees of x. Therefore there is a reasonable
chance to get solutions for some variables by solving only a few equations (and
ignoring the rest).

This worked quite well in all the examples we tried; this technique produced
e.g. some 2000 solutions for some 20 unknowns. When selecting one of theses
solutions and substituting the 20 “known” variables in all equations, we got (e.g.
by calculating a Gröbner basis truncated at degree 2) a reasonable amount of
linear equations for the remaining (several hundred) unknowns, or could show
reasonably fast, that the partial solution (of the selected 20 variables) does not
continue to a full solution. Substituting the linear equations again in the original
system resulted in a system of equations that could be solved completely by
Gröbner bases, if the parameters were not too big. Systems with about 380
unknowns and about 1050 equations (deg(L) ≈ deg(R) ≈ 190, deg(Q) ≈ 150)
could be solved in around 20 h of CPU time on a 2.6 GHz Opteron 252 with
16 GB of memory. Systems with about 500 unknowns and about 1400 equations
(deg(L) ≈ deg(R) ≈ 250, deg(Q) ≈ 200) could be solved in around 60 h of
CPU time on the same machine. For all systems of this size, we found something
between 3 and 10 different solutions.

For slightly larger systems, deg(L) ≈ deg(R) ≈ 350, deg(Q) ≈ 250 the attack
did not work any more: already in the second step, falsifying a partial solution
required much more equations and worked in fewer cases. In the many cases that
survived, only few linear equations were found, so that it was impossible to go
on to the next step. At this level, all our strategies of selecting equations and
term orderings reached the point, where the expected exponential growth in the
complexity made it infeasible to find a solution of the full system.

We expect that other strategies might come a bit further, but they probably
will reach a point where the very large number of variables (> 700) does not
allow to take enough advantage of the structure of the system and thus is left
with the complexity of calculating a Gröbner basis of a system of “randomly”
selected quadratic equations.

5.3 An Attack Using Linear Algebra

In a second attack using the vector space structure, we reduce Equation 1 modulo
some central polynomial f with deg(f) > deg(Q · R). Now let us assume L is
invertible modulo f , then we write the equation as:

Q · R = L−1 · P (modf)

where R, L−1 are unknown. The calculation mod f will add solutions that do
not correspond with “real solutions”, but the original solution will remain in the
solution space of the equation.

The one factor R can be represented as a linear combination of the basis
elements b1, . . . , bc of V as before, and L−1 can be handled in a similar way: Let
V be the IF2 vector space that commutes with all v−1 mod f for all v ∈ V that

138 D. Boucher et al.

are invertible modf . Let b1, . . . , bc be a basis of V . The dimension c is bounded
by 2/3 · deg(f) with the same argument as before.

When representing the unknown R, L−1 as linear combinations of basis ele-
ments with unknown coefficients, the key equation now becomes

∑c
i=1 λiQ · bi +∑c

i=1 λ̄ib̄i · P = 0, where the products b̄i · P are calculated modf .
This gives a system of linear equations over IF4, where we are only interested

in solutions over IF2. Solving the systems results in a high dimensional solution
space W . The real solutions are included in W , but nearly all of the solutions
for L−1 have no inverse element in V . These are the solutions added through
the reduction modf . To find a valid solution, we are left to search through all
elements of W e.g. for R, and check if R is a right divisor of P . Therefore the
dimension of W is a suitable measure for the complexity of this attack, and, in
contrast to the previous section, can easily be calculated.

The dimension of W increases with increasing degrees of Q, L, R as expected.
There are some variations in the dimension of W for different tuples of (Q, L, R)
of identical degrees, and different degrees of f , but the range is not too large.

The following 5-tuples give the degrees of L, Q, R, the degree of factors of L
and Q and the range of dimensions of W that occurred in our examples:
(200, 200, 200, 18, 30), (300, 300, 300, 23, 25–30), (400, 400, 400, 50, 53–60),
(500, 500, 500, 65, 71–103), (600, 600, 600, 75, 82–116).

6 Parameters

6.1 Construction of a Set S of Commuting Elements

Constructing a set S of polynomials which commute together without being in
the center is not an easy task, but it can be obtained by a brute force approach.
In practice we give ourselves a set of polynomials G, a polynomial g0 = g ∈ G
and S = {g0}. Then for i ≥ 1 we take a polynomial h in G, if h commutes with
g0, . . . , gi−1 then gi := h, S := S ∪ {h} and G := G − {h}, else we take another
h and we repeat until G = {g0}.

We recall that in our algorithm the computation of the set S is done only once
and made public, so that the long computation is done only once and for all.

In the following we give two examples of such sets which can be used with
our algorithm, the sets have 96 polynomials which commute over IF4[X, θ] where
θ is the Frobenius automorphism. For each of these examples G was the set of
irreducible polynomials of degree 8 and 9:

6.2 Set of Parameters

The security analysis of Section 5, leads to the conclusion that in order to resist
to attacks one has to get a security parameter d of size greater than 600 to obtain
a security in 280. In that case the number of bits exchanged is 3600 in the key
exchange protocol and the public key has size 3600 for the encryption protocol
and the number of binary operations is roughly 223. Overall is compares very
well with other existing schemes.

Key Exchange and Encryption Schemes 139

7 Conclusion

In this paper we propose a new approach for key exchange protocol by intro-
ducing skew polynomials. Our system can be naturally interpretated in term of
quadratic equations. A closer look at possible attacks lead to a better class of
attack but still with an heuristic exponential complexity on which we based our
security. Overall the approach we propose seems very promising by achieving
seemingly a good tradeoff between speed, size of parameters, size of keys and
security.

References

1. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system i: The user
language. Journal of Symbolic Computation 24, 235–265 (1997)

2. Turrel-Bardet, M.: Etude des systèmes algébriques surdéterminés. Applications aux
codes correcteurs et la cryptographie., Ph.D. Thesis, Université de Paris VI, Pierre
et Marie Curie (2004)

3. Bronstein, M., Petkovsek, M.: On Ore Rings, Linear Operators and Factorisation.
Programming and Computer Software 20, 27–44 (1994)

4. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomil Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

5. Faugère, J.-C.: A new efficient algorithm for computing Grobner bases without
reduction to zero (f5). In: Mora, T. (ed.) ISSAC 2002, pp. 75–83 (2002)

6. Fraenkel, A.S., Yesha, Y.: Complexity of problems in games, graphs and algebraic
equations. Discrete Applied Mathematics 1, 15–30 (1979)

7. Giesbrecht, M.: Factoring in skew-polynomial rings over finite fields. J. Symbolic
Comput. 26(4), 463–486 (1998)

8. Jacobson, N.: The theory of rings. Publication of the AMS (1943)
9. McDonald, B.R.: Finite Rings with Identity. Marcel Dekker Inc., New York (1974)

10. Ore, O.: Theory of non-commutative polynomials. Ann. of Math. 34 (1933)

Appendix

In the following we give two examples of sets S with more than 90 polynomials
of degree 8 or 9

{X8+X6+X5+X3+α, X9+X8+X7+X6+X5+αX4+X3+X2+α, X9+
X8 +X7+X6+X5 +α2 X4 +X3 +α, X8+X7+X5 +αX2 +1, X8+X6+X5+
X3 +α2, X8 +X7 +X6 +X4 +X3 +α2 X2 +α2, X9 +X6 +α X4 +X3 +α X2 +
α, X9+X6+α X4+X3+α2 X2+α, X9+X6+α2 X4+X3+α X2+α, X9+X8+
X7+X5 +α2 X4 +X3+X2+α, X9 +X8+X7+X5 +αX4 +X3+α, X8 +X5+
X3 +X2 +α, X8 +X7 +X3 +α X2 +α, X8 +X7 +X5 +α2 X2 +1, X9 +α X4 +
X3 + α2 X2 + α, X8 + X5 + X3 + X2 + α2, X9 + α2 X4 + X3 + α X2 + α, X9 +
α2 X4+X3+α2 X2+α, X9+X6+X5+α X4+α2 X2+1, X9+X6+X5+α2 X4+
α X2+1, X8+X6+X5+X4+X3+α, X9+X8+X6+α X4+X3+α X2+α, X9+
X8+X6+α X4+X3+α2 X2+α, X8+X7+X5+X4+α X2+1, X9+X8+X6+

140 D. Boucher et al.

α2 X4 +X3 +α2 X2 +α, X9 +X5 +αX4 +α X2 +1, X8 +X6 +X5 +X4 +X3 +
α2, X9+X7+X6+X5+α X4+X3+X2+α2, X9+X5+α2 X4+α2 X2+1, X8+
X7 +X3 +α2 X2 +α2, X9 +X7 +X6 +X5+α2 X4 +X3+α2, X9 +X8+α X4 +
X3 + α X2 + α, X8 + X5 + X4 + X3 + X2 + α, X9 + X8 + α2 X4 + X3 + α X2 +
α, X9+X8+X6+X5+αX4+αX2+1, X9+X8+α2 X4+X3+α2 X2+α, X9+
X8+X6+X5+α2 X4+α2 X2+1, X8+X7+X5+X4+α2 X2+1, X9+X7+X5+
α2 X4+X3+X2+α2, X9+X7+X5+α X4+X3+α2, X8+X5+X4+X3+X2+
α2, X9+X7+X6+α X4+X2+1, X9+X7+X6+α2 X4+X2+1, X9+X7+X6+
α X4 +1, X8 +X7 +X4 +X3 +α X2 +α2, X9 +X7 +X6 +α2 X4 +1, X9 +X8 +
X5+α X4+α2 X2+1, X9+X8+X5+α2 X4+α X2+1, X8+X5+X3+α, X9+
X8+X7+X6+X5+α2 X4+X3+X2+α2, X9+X8+X7+X6+X5+α X4+X3+
α2, X8+X7+X4+X3+α2 X2+α, X9+X7+α X4+X2+1, X8+X7+X6+X5+
α X2+1, X9+X7+α2 X4+X2+1, X9+X7+α X4+1, X8+X5+X3+α2, X9+
X7+α2 X4+1, X9+X8+X7+X5+α X4+X3+X2+α2, X9+X6+α X4+X3+
α2 X2 +α2, X9+X6 +α2 X4 +X3+α X2 +α2, X9 +X6 +α2 X4 +X3+α2 X2 +
α2, X8+X6+X5+X3+X2+α, X9+X8+X7+X6+αX4 +X2+1, X9+X8+
X7+X5+α2 X4+X3+α2, X9+X8+X7+X6+α2 X4+X2+1, X9+X8+X7+
X6+α X4+1, X8+X7+X6+X5+α2 X2+1, X9+X8+X7+X6+α2 X4+1, X8+
X6+X5+X3+X2+α2, X9+α X4+X3+α X2+α2, X9+α X4 +X3+α2 X2+
α2, X9+α2 X4+X3+α X2+α2, X8+X7+X6+X3+α X2+α2, X9+X8+X7+
α X4+X2+1, X9+X8+X7+α2 X4+X2+1, X9+X8+X7+α X4+1, X8+X5+
X4+X3+α, X9+X8+X7+α2 X4+1, X8+X7+X6+X3+α2 X2+α, X9+X8+
X6+α X4+X3+α X2+α2, X8+X7+X6+X5+X4+α X2+1, X9+X8+X6+
α2 X4+X3+α X2+α2, X9+X8+X6+α2 X4+X3+α2 X2+α2, X8+X5+X4+
X3+α2, X9+X7+X6+X5+α2 X4+X3+X2+α, X9+X7+X6+X5+αX4+
X3+α, X8+X6+X5+X4+X3+X2+α, X9+X8+α X4+X3+α X2+α2, X9+
X8 +α X4 +X3 +α2 X2 +α2, X8 +X7 +X6 +X4 +X3 +α X2 +α, X9 +X8 +
α2 X4+X3+α2 X2+α2, X9+X7+X5+α X4+X3+X2+α, X8+X7+X6+X5+
X4+α2 X2+1, X8+X6+X5+X4+X3+X2+α2, X9+X7+X5+α2 X4+X3+α}

{X9+X8+α X6+α2 X4+α X2+X+α2, X9+X7+α X6+X5+X4+α X2+X+
α, X8+X7+X5+α2 X4+1, X9+X7+α2 X6+X5+X4+α2 X2+X+α, X9+X7+
α X6+X5+α2 X2+X+α, X8+X7+X6+α X4+X3+α X2+1, X8+X7+α2 X4+
α2 X2+X+α2, X9+α X6+X5+α X4+X3+X2+X+α, X8+X7+X6+α X4+
α X2+X +α, X9+X8+X7+α2 X6+X3+X +α2, X8+X3+X2+X +α, X9+
α X6 +X5 +α2 X4 +X3 +X +α, X9 +X8 +X7 +α X6 +X5 +X4 +α X2 +X +
α, X9+α2 X6+X5+α2 X4+X3+X2+X+α, X8+X7+X6+X5+α2 X4+X3+
X2+X+α2, X9+α2 X6+X5+α2 X4+X3+X+α, X9+X8+X7+α2 X6+X5+
X4+α X2+X+α, X9+X8+X7+α2 X6+X5+X4+α2 X2+X+α, X9+α X6+
X5+α X4+1, X8+X3+X2+X +α2, X9+X8+X7+α2 X6+X5+α X2+X +
α, X9+α2 X6+X5+α2 X4+1, X9+X7+α X6+X5+X4+X3+α2 X2+1, X9+
α2 X6+α X4+α X2+X+α, X8+X7+X6+X5+α X4+X3+X+α2, X9+X8+
α X6+X5+α X4+X3+X2+X +α, X9+X7+α2 X6+X5+X4+X3+α X2+
1, X9+α2 X6+α2 X4+α2 X2+X+α, X9+X8+α X6+X5+α2 X4+X3+X+
α, X9+X8+α2 X6+X5+α2 X4+X3+X2+X+α, X9+X8+α X6+X5+α X4+

Key Exchange and Encryption Schemes 141

X2+1, X8+X7+X5+α X4+X2+1, X8+X7+X6+α2 X4+X3+α2 X2+1, X9+
X8 +α2 X6 +X5+α2 X4 +X2 +1, X9+X7+α X6 +X4+1, X9+X7 +α2 X6 +
X4+1, X9+X8+X7+α X6+X5+X4+X3+α X2+1, X9+X7+α X6+X5+
X4+α X2+X+α2, X8+X7+X6+X5+α2 X4+X3+X+α, X9+X8+α2 X6+
α X4 +α2 X2 +X +α, X9 +X8 +X7 +α2 X6 +X5 +X4 +X3 +α2 X2 +1, X9 +
X7+α2 X6+X5+X4+α2 X2+X+α2, X8+X3+X+α, X9+X7+α2 X6+X5+
α X2+X +α2, X8+X7+X6+α2 X4+α2 X2+X +α2, X9+α X6+α X4+X3+
α2 X2+1, X9+X8+X7+α X6+X4+X2+1, X8+X3+X+α2, X9+X8+X7+
α X6+X3+X+α, X9+α2 X6+α2 X4+X3+α X2+1, X9+α X6+X5+α X4+
X3+X2+X +α2, X9+X8+X7+α2 X6+X4+X2+1, X8+X7+X5+α2 X4+
X2+1, X8+X7+α X4+αX2+X+α, X8+X6+X5+X3+α X2+1, X9+α X6+
X5+α X4+X3+X +α2, X9+X8+X7+α X6+X5+X4+α X2+X +α2, X9+
X8+X7+αX6+1, X9+α2 X6+X5+α2 X4+X3+X2+X+α2, X8+X7+α X4+
X3+α2 X2 +1, X9+X8+X7+α X6+X5+X4+α2 X2 +X +α2, X9 +α2 X6+
X5+α X4+X3+X+α2, X9+X8+X7+α2 X6+1, X9+X8+X7+α2 X6+X5+
X4+α2 X2+X+α2, X9+X8+X7+αX6+X5+α2 X2+X+α2, X8+X7+X5+
α X4+1, X8+X6+X5+X3+α2 X2+1, X9+α X6+αX4+α X2+X+α2, X8+
X6+X5+α X2+X+α2, X9+α X6+α2 X4+α2 X2+X+α2, X8+X7+α2 X4+
X3+α X2+1, X9+X8+α X6+X5+α X4+X3+X2+X +α2, X8+X6+X5+
α2 X2+X+α, X8+X7+X6+X5+α X4+X3+X2+X +α, X9+X8+α2 X6+
X5 +α2 X4 +X3 +X2 +X +α2, X9 +X8 +α2 X6 +X5 +α X4 +X3 +X +α2}

Designing a Rank Metric Based McEliece
Cryptosystem

Pierre Loidreau

DGA and IRMAR, Université de Rennes 1
Pierre.Loidreau@univ-rennes1.fr

Abstract. In this paper we describe the rank metric based McEliece
type cryptosystems which where first introduced by Gabidulin, Para-
monov and Tretjakov in the 90’s. Then we explain the principle of Over-
beck’s attack is so efficient on these types of systems. Finally we show
how to choose the parameters so that the public-key size remain rela-
tively small (typically less than 20 000 bits), with a good security against
structural and decoding attacks.

1 Introduction

Code based public-key cryptosystem form an interesting alternative to public-
key cryptosystems based on coding theory. Their principle was first stated by
McEliece in the early days of public-key cryptography, [20]. These systems have
some nice properties such as

– they are very fast in encryption and decryption compared to number theory
based systems,

– there are no algorithms working on quantum computers that would enable
to decrease the complexity of the attacks contrarily to number theory based
cryptosystems,

– the related complexity problem have been widely investigated since Shan-
non’s seminal paper more than 60 years ago.

The main drawback which made them unpractical in the 70’s and 80’s is that the
public-key size is too large to be implemented on limited resource devices, typi-
cally several hundreds of thousands of bits. Therefore one of the great challenges
designing of code based cryptosystems is to find a way to reduce the public-key
size, sufficiently to be implemented on cheap devices.

Since 20 years several proposals were made in that sense. Basically two di-
rections have been considered. The first one consists of exploiting the algebraic
structure of families of codes to diminish the key-size. For instance using of
Goppa codes with a non-trivial automorphism group as the family of codes, [18],
hiding the structure of codes by taking subcodes of generalised Reed-Solomon
codes [5], and more recently the using quasi-cyclic codes [14], or dyadic Goppa
codes [21]. However attacks against some of these systems show that the struc-
ture of the codes introduces structural weaknesses in the public-key [17,3,23].

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 142–152, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Designing a Rank Metric Based McEliece Cryptosystem 143

The second direction which is the heart of this paper consists of using rank
metric rather than Hamming metric, a metric in which the decoding problems
have the reputation to be more complex. This idea was first used by Gabidulin,
Paramonov and Tretjakov in 1991, who proposed a public-key cryptosystem
based on a family of codes published by Gabidulin correcting rank errors, [13]. In
the seminal paper, they proposed to use public-keys as low as 5 000 bits. During
the 90’s, different modifications of the system were published, see [5,12,25,26,4]
especially after the design of structural attacks by Gibson [15,16] which lead
to increasing the key size, however these kind of systems survived until Over-
beck designed a somehow devastating attack exploiting fully the structure of the
underlying family of codes, [30].

Until now the question was to know if cryptosystems based on rank metric
can be made resistant to Overbeck’s attack or not, by keeping a public-key size
reasonably small compared to the counterpart in Hamming metric. A first step
in the analysis of the problem consists in fully understanding the principle on
which is based Overbeck’s attack, that is to know, the relative stability of the
codes under the action of the Frobenius automorphism of the codes. In a second
step, we establish results and relations between parameters so that the attack
does not work.

In a first part we recall some essential properties of rank metric and of
Gabidulin codes. In a second part we design an attack on the system. This attack
uses the same structural flaw as Overbeck’s attack, and has the same working
domain. From the study of the working domain of the attack, a conceiver can
deduce parameters to secure the cryptosystem.

2 Background on Rank Metric and Gabidulin Codes

In this section we briefly recall the definition of rank metric and Gabidulin codes,
which form the heart of rank metric based cryptosystems. We will use only fields
of characteristic 2 but all these results can be extended to fields of any prime
characteristic.

2.1 Rank Metric

Let GF (2m) be the finite field with 2m elements and let (β1, . . . , βm) be a basis
of GF (2m) over GF (2).

Définition 1 ([9])
Let x = (x1, . . . , xn) ∈ GF (2m)n. The rank of x in GF (2) is the rank of the
matrix X = (xij), where xj =

∑m
i=1 xijβi. It is written Rg(x).

The rank of a vector is a norm, independent of the chosen basis (β1, . . . , βm),
and if C is a linear code, the minimum rank distance of C is naturally defined by

d
def
= min

c∈C∗
(Rg(c))

144 P. Loidreau

Let C be a code, y be a vector and t be an integer, the complexity problem
Bounded decoding for codes in rank metric can be defined as:

Bounded decoding(y, C, t)
Find if exists c ∈ C and e ∈ GF (2m)n with Rg(e) ≤ t such that y = c + e.

If d denotes the minimum rank distance of C, k its dimension, and in the case
where t ≤ (d − 1)/2, this problem has either one or zero solution. In the case
where there is exactly one solution, the best algorithms to find the solution are
probabilistic algorithms due to Ourivski and Johannson and have average work
factor, which are based on the principle of finding codewords of the smallest rank
in a linear code, [27]:

– Basis enumeration algorithm: Wbases ≈ (k + t)32(t−1)(m−t)+2.
– Coordinate enumeration algorithm: Wcoord ≈ (k + t)3t32(t−1)(k+1).

If we consider the same problem on the same parameters but in Hamming metric,
solving the problem is considerably less difficult, [7,1]. This is the reason why
McEliece types rank metric based cryptosystems can theoretically employ public-
keys of much smaller size than for Hamming metric based cryptosystems.

2.2 Gabidulin Codes

Let g = (g1, . . . , gn) ∈ GF (2m) linearly independent over GF (2). Let

G =

⎛⎜⎝ g1 · · · gn

...
. . .

...
g
[k−1]
1 · · · g

[k−1]
n

⎞⎟⎠ , (1)

where [i]
def
= 2i is the ith power of the Frobenius automorphismof GF (2m)/GF (2).

Définition 2 ([9])
The Gabidulin code Gabk(g) over GF (2m) of dimension k and generator vector
g is the code generated by G.

The error-correcting capability of Gabk(g) is �(n − k)/2�. There are very effi-
cient decoding algorithms for Gabidulin codes up to the rank error correcting
capability [9,10,32,31,19].

3 McEliece Type Cryptosystems Based on Rank Metric

In this section we first describe the original GPT cryptosystem, published in
1991, by Gabidulin, Paramonov and Tretjakov, [13]. Other versions where later
published like the one by Ourivski and Gabidulin, using a right scrambler which
is a linear isometry of rank metric [25]. It is immediate to see that this version
is a generalisation of the initial proposition. Therefore we will only present this
version of the cryptosystem.

Designing a Rank Metric Based McEliece Cryptosystem 145

3.1 The Original System

Parameters

– The field GF (2m)
– An integer t1

Key generation. The private key is composed with

– S, a k × k non-singular matrix with coefficients in GF (2m).
– G, a k × n matrix over GF (2m) generating a Gabidulin code of generator

vector g = (g1, . . . , gn) under the canonical form given in (1). Hence we can
correct up to rank t = �(n − k)/2� errors.

– Z, a k × t1 matrix with coefficients in GF (2m).
– T, a (n + t1)× (n + t1) non-singular matrix with coefficients in GF (2). The

matrix T is a linear isometry of rank metric [2].

The public-key is thus the k × (n + t1) matrix

Gpub = S(G | Z︸︷︷︸
t1 cols

)T (2)

The encryption procedure is exactly the same as for the original McEliece cryp-
tosystem:

Encryption. Let x ∈ GF (2m)k be the information vector that must be encrypted.
The ciphertext y is

y = xGpub + e

where e is a vector of rank ≤ t = �(n − k)/2� The decryption procedure is:

Decryption. Let y be the received ciphertext, we have

y = xGpub + e,

where Rg(e) ≤ t. Then the receiver computes

yT−1 = x(G | Z) + eT−1,

and removes the last t1 positions of yT−1. Finally he decodes in the Gabidulin
code of generator matrix G.

The security of the cryptosystem relies on the following two assumptions:

– The code generated by Gpub behaves randomly.
– Solving Bounded decoding(y, C, t), where C is a random code of length n,

dimension k over GF (2m) is difficult

As shown in section 2.1, the second assumption is satisfied provided the param-
eters are sufficiently large. The first assumption however is more problematic,

146 P. Loidreau

since the previous cryptosystems based on scrambled Gabidulin codes have until
now been severely attacked.

3.2 Structural Attacks

One of the main problem in designing rank metric based cryptosystems is that
there is only known family of codes with a fast decoding algorithm, the family
of Gabidulin codes. Therefore all rank metric based cryptosystems have to rely
on codes derived from Gabidulin codes (scrambled codes, subfield subcode for
instance). Moreover, it is impossible to use Gabidulin codes without scrambling
the structure as it was shown by Gabidulin (case where t1 = 0). Namely in
that case there exists an attack recovering a decoder for the public-code in
polynomial time. This attack is an analog of Sidel’nikov-Shestakov attack in the
case where Generalised Reed-Solomon codes are used in the Hamming metric
based McEliece cryptosystem.

Moreover, different attacks have shown that the scrambling matrix Z had to
be very carefully chosen. The first person to attack structurally the initial pa-
rameters was Gibson [15,16], who exploited some properties of Gabidulin codes.
After these attacks some new parameters, as well as modifications of the sys-
tem were proposed to render Gibson attacks inefficient, [12,25]. More recently
Overbeck used Gibson’s attacks as black boxes against the new versions of the
system, [29]. But the most powerful attack until now using fully the structure
of the codes was still proposed by Overbeck who cryptanalysed almost all ver-
sions of McEliece type cryptosystems based Gabidulin codes, [28,30]. To pre-
vent the attack from succeeding, the parameters should be so much increased
that the interest of rank metric systems decreases compared to Hamming based
systems.

The success of this approach is that Overbeck fully exploits the large structure
of Gabidulin codes, that is that the intersection of a k–dimensional Gabidulin
code and the Gabidulin code on which the Frobenius automorphism acts is a
k − 1–dimensional Gabidulin code, namely it:

Gabk(g) ∩ Gabk(g)[1] = Gabk−1(g[1])

To show how to design cryptosystems which are resistant to Overbeck’s attacks,
and still with very reasonable key sizes, we first need to present an attack whose
efficiency is comparable to that of Overbeck’s. The heart of the attack is de-
scribed in proposition 1, which is not in Overbeck’s work.

The public key is given by the matrix Gpub from equation (2). Let us recall
that G[i] is the matrix derived from G, by elevating each component to the ith
power of the Frobenius automorphism, that is to the power 2i.

If all the components of Gpub are elevated to the powers [1], [2], . . . , [n−k−1],
we obtain

Designing a Rank Metric Based McEliece Cryptosystem 147

⎛⎜⎜⎜⎜⎝
Gpub
G[1]

pub
...
G[n−k−1]

pub

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Gpub

=

⎛⎜⎜⎜⎜⎝
S 0 · · · 0

0 S[1] . . . 0
... 0

. . .
...

0 · · · S[n−k−1]

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

S

⎛⎜⎜⎜⎝
G Z
G[1] Z[1]

...
...

G[n−k−1] Z[n−k−1]

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

(G | Z)

T, (3)

where

– Gpub is a k(n − k) × n matrix of rank n − 1, thanks to the properties of
Gabidulin codes.

– Since S is non-singular, so is S.
– Since T has coefficients in the base field GF (2), for all i, T[i] = T, and T

has rank n + t1.
– Z is a k(n − k) × t1 matrix of rank s ≤ min(k(n − k), t1).

Since we want to optimise the public-key size in the design of the system it
is reasonable to suppose that t1 is much less than k(n − k). In that case, if Z
is chosen randomly, then Z has very probably rank t1. This implies that Gpub
is very probably of rank n + t1 − 1. Hence its right kernel has rank 1. This
leads to the following proposition which shows that in the cases where the right
kernel is one dimensional, a decoder form the public-code can be recovered in
polynomial-time.

Proposition 1
If the right kernel kerr(Gpub) of Gpub has dimension 1, then

– There exists a vector h of rank n over GF (2) such that

ker(Gpub) = { T−1(αh | 0)T | α ∈ GF (2m)}.
– Let y ∈ ker(Gpub), then every matrix Q of size (n + t1) × (n + t1) and with

coefficients in GF (2) such that Qy = (x | 0)T , is non-singular and satisfies

TQ−1 =
(

A B
0 D

)
,

where A is an n × n non-singular matrix, and D is an t1 × t1 non-singular
matrix. Such a matrix Q can be determined in polynomial-time.

Proof

– Since the right kernel of Gpub has dimension 1 the kernel of (G | Z)
is of the form (αh | 0) where h generates the right kernel of G. But
G generates a n − 1–dimensional Gabidulin code whose dual is a 1–
dimensional Gabidulin code with generator vector h. This implies in
particular that h has rank n over GF (2).

148 P. Loidreau

– Let y ∈ ker(Gpub). From the structure of the kernel describe in the
preceding item, we have y = T−1(αh | 0)T . Suppose we have determined
a binary non-singular matrix Q such that

Qy = (x | 0)T = QT−1(αh | 0)T .

If we split QT−1 into four blocks such that

QT−1 =
(

A′ B′

C′ D′

)
,

then we have C′hT = 0. Therefore for all i = 1, . . . t1, cihT = 0 where
ci is the ith row of C′. Since the components of C′ are in GF (2) and
since h has rank n over GF (2), we have that αh has also rank n over
GF (q) and for all i = 1, . . . , t1 we have ci = 0. Moreover, since Q is
non-singular, the inverse (QT−1)−1 = TQ−1 is also upper-triangular by
blocks.
Given y ∈ ker(Gpub) we determine a non-singular matrix Q by:
1. Solving the equationQ2yT = 0 where Q2 is a t1 × (n + t1) matrix of

rank t1.
2. Determining a matrix Q1 such that

Q
def
=

(
Q1
Q2

)
,

is invertible
Since y has rank n over GF (2) the matrix Y obtained by expanding the
components of y over a basis of GF (2m)/GF (2) has size m × (n + t1)
and rank n. Hence the right kernel of Y has dimension t1. Finding Q2
consists thus in finding a bases of the right kernel of Y, since we have to
solve YQT

2 = 0. This can be done in polynomial time. �

Now whenever the right kernel kerr(Gpub) has rank 1, by applying the previous
proposition, we can find a matrix Q satisfying

GpubQ−1 = S(GA | Z′).

Since A is non-singular and has components in the base field GF (2), the matrix
G′ = GA generates Gabk(gA). If we denote by G1 the n first columns of
GpubQ

−1, the attacker has to solve the equation

G1 = SG′,

that is G1 is a randomly chosen generator matrix of Gabk(gA). This can be
done in polynomial time [11]. The matrix S thus determined is unique.

We have just proved the following proposition

Designing a Rank Metric Based McEliece Cryptosystem 149

Proposition 2
If the right kernel of Gpub given by the equation (3) has dimension 1, an attacker
can recover in polynomial-time matrices Q,S and Z such that

GpubQ
−1 = S(G′ | Z′),

where

– Q is a (n + t1) × (n + t1) matrix with coefficients in GF (2),
– S is a k × k non-singular matrix
– G′ generates a k-dimensional Gabidulin code,
– Z′ is a k × t1 matrix.

4 Which Parameters for a Rank Metric Based
Cryptosystem

From previous section, the parameters of the system must be chosen so that the
dimension of the right kernel of Gpub is greater than 1, and even sufficiently large
to avoid enumeration so that an attacker fall by chance on a vector of the dual
of the Gabidulin code by selecting a vector randomly in the kernel.

The following corollary gives us information to choose the parameters of the
system so that we cannot apply the previous attack.

4.1 Design Criteria

Corollary 1. Let Gpub = S(G | Z)T of size k× (n + t1). If there is an integer

 such that

1 ≤ Rg(Z) ≤ t1 −

n − k
,

then the dimension of kerr(Gpub) is greater or equal to 1 +
.

Proof
If s = Rg(Z), then Rg(Z) ≤ s(n − k). Hence Rg(Gpub) ≤ s(n − k) + n − 1.
Then if s(n− k) ≤ t1 −
, the right kernel of Gpub has dimension ≥ 1 +
. �

Therefore to prevent attacks based on the principle described in previous section,
it suffices to choose
 ≥ 1 and the distortion matrix Z such that

Rg(Z) ≤ t1 −

n − k
,

which implies t1 > (n − k).
Now here are the criteria that have to be taken into account in the design of

the cryptosystem:

– First note that the dimension of kerr(Gpub) must be large enough to avoid
enumerations since the vector h discussed in proposition 1

– Second, the best decoding attack has to be of sufficient complexity. We take
as references the complexities given in section 2.1

– Third we try to obtain the smallest possible size for these systems.

150 P. Loidreau

4.2 Proposition of Parameters

Suppose that we want to reach a security of 280 binary operations for the sys-
tem. In table 1 we propose two sets of parameters, involving a Gabidulin code
correcting rank 6 errors over GF (224)24. We can easily show that the complexity
of the decoding attacks is larger than 280

– In the first proposal kerr(Gpub) has dimension 5 over GF (224)
– In the second proposal kerr(Gpub) has also dimension 4 over GF (224)

This implies that an attack consisting in enumerating the right kernel and testing
all vectors candidates for being h will take on average (2120 − 1)/(224 − 1) ≈ 296

tries.
The last column shows how it is possible to improve the transmission rate of

the system by using a modification proposed in [4]. It increases the transmission
rate by

(m + n − t)t − r

m(n + t1)
,

where r is the number of selected random bits.

Table 1. Proposed parameters

m = n k s t1 Key size Decoding k/n Improv. BeLoi2004
24 12 3 40 14 976bits > 283 19% 30%
24 12 4 52 18 432bits > 283 15, 8% 24, 3%

5 Conclusion and Perspectives

In this paper we have shown how to choose parameters be to design rank met-
ric based cryptosystems. The resulting proposals are public-key cryptosystems
with public-keys of very reasonable sizes compared to the original McEliece
cryptosystem.

The performances of the systems in encryption and decryption have to be
compared to Hamming metric based cryptosystems, but this is another story.

References

1. Barg, A.: Handbook of Coding Theory, ch. 7, vol. 1, pp. 649–754. North-Holland,
Amsterdam (1998)

2. Berger, T.P.: Isometries for rank distance and permutation group of Gabidulin
codes. IEEE Transactions on Information Theory 49(11), 3016–3019 (2003)

3. Berger, T.P., Cayrel, P.L., Gaborit, P., Otmani, A.: Reducing key-length of
the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS,
vol. 5580, pp. 77–97. Springer, Heidelberg (2009)

Designing a Rank Metric Based McEliece Cryptosystem 151

4. Berger, T.P., Loidreau, P.: Designing an efficient and secure public-key cryptosys-
tem based on reducible rank codes. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 218–229. Springer, Heidelberg (2004)

5. Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic
use. Designs, Codes and Cryptography 35, 63–79 (2005)

6. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability
of certain coding problems. IEEE Transactions on Information Theory 24(3) (May
1978)

7. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in
a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory 44(1), 367–378
(1998)

8. Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based signature
scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 151–174.
Springer, Heidelberg (2001)

9. Gabidulin, E.M.: Theory of codes with maximal rank distance. Problems of Infor-
mation Transmission 21, 1–12 (1985)

10. Gabidulin, E.M.: A fast matrix decoding algorithm for rank-error correcting codes.
In: Cohen, G., Litsyn, S., Lobstein, A., Zémor, G. (eds.) Algebraic Coding 1991.
LNCS, vol. 573, pp. 126–133. Springer, Heidelberg (1991)

11. Gabidulin, E.M.: Public-key cryptosystems based on linear codes over large alpha-
bets: efficiency and weakness. In: Farrell, P.G. (ed.) Codes and Cyphers, Formara
Limited, Southend-on-sea, Essex, pp. 17–31 (1995)

12. Gabidulin, E.M., Ourivski, A.V.: Modified GPT PKC with right scrambler. In:
Augot, D., Carlet, C. (eds.) Proceedings of the 2nd International workshop on
Coding and Cryptography, WCC 2001, pp. 233–242 (2001), ISBN Number: 2-761-
1179-3

13. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-
commutative ring and their application in cryptology. In: Davies, D.W. (ed.) EU-
ROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991)

14. Gaborit, P.: Shorter keys for code based cryptography. In: Proceedings of
WCC 2005 (2005)

15. Gibson, J.K.: Severely denting the Gabidulin version of the McEliece public-key
cryptosystem. Designs, Codes and Cryptography 6, 37–45 (1995)

16. Gibson, J.K.: The security of the Gabidulin public-key cryptosystem. In: Maurer,
U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 212–223. Springer, Heidel-
berg (1996)

17. Kobara, K., Imai, H.: On the one-wayness against chosen-plaintext attacks of
the Loidreau’s modified McEliece PKC. IEEE Transactions on Information The-
ory 49(12), 3160–3168 (2003)

18. Loidreau, P.: Strengthening McEliece public-key cryptosystem. In: Okamoto, T.
(ed.) ASIACRYPT 2000. LNCS, vol. 1976, p. 585. Springer, Heidelberg (2000)

19. Loidreau, P.: A Welch-Berlekamp like algorithm for decoding Gabidulin codes. In:
Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 36–45. Springer, Heidelberg
(2006)

20. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Tech-
nical report, Jet Propulsion Lab. DSN Progress Report (1978)

21. Misoczki, R., Barreto, P.: Compact McEliece keys from goppa codes. In: Rijmen,
V. (ed.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009)

22. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory 15(2), 159–166 (1986)

152 P. Loidreau

23. Otmani, A., Tillich, J.P., Dallot, L.: Cryptanalysis of two mceliece cryptosystems
based on quasi-cyclic codes. Mathematics in Computer Science (to appear)

24. Ourivski, A.V.: Recovering a parent code for subcodes of maximal rank distance
codes. In: Augot, D., Charpin, P., Kabatianski, G. (eds.) Proceedings of the 3rd
International workshop on Coding and Cryptography, WCC 2003, pp. 357–363
(2003), ISBN Number: 2-7261-1205-6

25. Ourivski, A.V., Gabidulin, E.M.: Column scrambler for the GPT cryptosystem.
Discrete Applied Mathematics 128(1), 207–221 (2003); Special issue of the second
International Workshop on Coding and Cryptography (WCC 2001)

26. Ourivski, A.V., Gabidulin, E.M., Honary, B., Ammar, B.: Reducible rank codes
and their applications to cryptography. IEEE Transactions on Information The-
ory 49(12), 3289–3293 (2003)

27. Ourivski, A.V., Johannson, T.: New technique for decoding codes in the rank metric
and its cryptography applications. Problems of Information Transmission 38(3),
237–246 (2002)

28. Overbeck, R.: A new structural attack for GPT and variants. In: Dawson, E.,
Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 50–63. Springer, Heidel-
berg (2005)

29. Overbeck, R.: Extending Gibson’s attacks on the GPT cryptosystem. In: Ytrehus,
Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 178–188. Springer, Heidelberg (2006)

30. Overbeck, R.: Structural attacks for public-key cryptosystems based on gabidulin
codes. Journal of Cryptology 21(2), 280–301 (2008)

31. Richter, G., Plass, S.: Fast decoding of rank-codes with rank errors and col-
umn erasures. In: 2004 IEEE International Symposium on Information Theory,
ISIT 2004 (2004)

32. Roth, R.M.: Maximum-Rank array codes and their application to crisscross error
correction. IEEE Transactions on Information Theory 37(2), 328–336 (1991)

33. Sendrier, N.: Cryptosystèmes à clé publique basés sur les codes correcteurs d’erreurs
(2001)

34. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE
Transactions on Information Theory 43(6), 1757–1766 (1997)

Secure Variants of the Square Encryption
Scheme

Crystal Lee Clough1 and Jintai Ding2,3

1 Nanyang Technological University, Singapore
clclough@ntu.edu.sg

2 University of Cincinnati, Cincinnati, OH USA
3 Southern Chinese University of Technology

Abstract. This paper discusses two encryption schemes to fix the Square
scheme. Square+ uses the Plus modification of appending randomly cho-
sen polynomials. Double-Layer Square uses a construction similar to
some signature schemes, splitting the variables into two layers, one of
which depends on the other.

1 Introduction

Multivariate public-key cryptosystems (MPKCs) are thought to be one of the
options for cryptography in a post-quantum setting. Some secure MPKC encryp-
tion schmes exist but they are slow and unwieldy in comparison with multivariate
signature schemes. There is room for improvement in the realm of MPKCs.

In this paper we will show some new encryption schemes based on Square.
The original Square system was broken via a differential attack and we show two
different ways to thwart this attack. Square+ is a minor reformulation which
differs from Square only by the addition of a few extra polynomials. Double-
Layer Square is a more structural renovation, using layers of variables much like
the Rainbow and Square-Vinegar signature schemes [1,7]. We make the case that
both of these new options are secure against known attacks.

This paper is organized as follows: in Section 2 we describe the Square and
HFE cryptosystems and attacks on them, in Section 3 we describe and analyze
Square+, in Section 4 we describe and analyze Double-Layer Square, and we
conclude in Section 5.

2 Background

The Square system and the variants of it that we will introduce here can be seen
as a natural evolution of a sequence of MPKC schemes. Though not the first
in this vein1, the HFE (Hidden Field Equations) system of Patarin is a good
starting point for this discussion because it is very general and also extensively
analyzed (e.g., [4,8,9,11,12,13,16]).
1 For example, the C∗ scheme of Matsumoto and Imai [14] predates HFE by about 8

years.

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 153–164, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

154 C.L. Clough and J. Ding

2.1 HFE

Let k a field of size q and K a degree-n extension of k, say K ∼= k[y]/〈g(y)〉 for
some irreducible g. In the original versions of HFE, k is characteristic 2.

The construction exploits the relationship between the standard vector space
kn and the field K (they are isomorphic as vector spaces but K has additional
structure). Plaintext and ciphertext are vectors in kn and accordingly, the public
key is a map kn → kn. The private key is a detour through K, using a map of
a specific form.

Definition 1. An HFE polynomial with bound D over K is a univariate poly-
nomial of the form

G(X) =
∑

qi+qj≤D

αijX
qi+qj

+
∑

qj≤D

βjX
qj

+ γ,

with αij , βj , γ ∈ K.

The reason for using HFE polynomials is to guarantee that the components of
the public key are quadratic. Explicitly, an HFE system is constructed as follows:
the public key is

P = L1 ◦ ϕ ◦ F ◦ ϕ−1 ◦ L2, where

– L1, L2 : kn → kn are invertible affine maps
– ϕ : K → kn is the vector space isomorphism

a1 + a2y + · · · + anyn−1 �→ (a1, . . . , an)

– F : K → K is an HFE polynomial of some bound D.

See Figure 1. The private key is the decomposition of P . Since F is a uni-
variate polynomial of bounded degree, preimages under F can be found, using
Berlekamp’s algorithm for example.

K
F �� K

ϕ

��

kn S ��

Public Key P

��kn F̄ ��

ϕ−1

��

kn T �� kn

Fig. 1. The HFE system

Secure Variants of the Square Encryption Scheme 155

Algebraic Attacks. The most straighforward way for an attacker holding a
ciphertext (y1, . . . , yn) ∈ kn and the public key P is to try to find the corre-
sponding plaintext is to solve P (x1, . . . , xn) = (y1, . . . , yn). This is a system of
n quadratic equations in the n variables x1, . . . , xn:

P1(x1, . . . , xn) − y1 = 0
P2(x1, . . . , xn) − y2 = 0

...
Pn(x1, . . . , xn) − yn = 0.

(1)

Breaking an MPKC by solving these equations directly is known as an algebraic
attack. Since solutions to (1) are in the variety of the ideal 〈P1−y1, . . . , Pn−yn〉 ⊂
k[x1, . . . , xn], a Gröbner basis of this ideal is extremely helpful. For cases of
cryptographic interest, the reduced Gröbner basis with respect to lex ordering
will usually look like

{f1(xn), f2(xn−1, xn), . . . , fn(x1, x2, . . . , xn)},
whose zero set can be found, via back-substitution, as easily as n univariate
polynomial equations can be solved. One of the best algorithms to compute a
Gröbner basis is the F4 algorithm of Faugère [10].

In fact, using F4 for find the Gröbner basis of the corresponding ideal seems to
be the most effective way of algebraically attacking MPKCs2 and are particularly
effective against characteristic-2 HFE systems. Faugère used F4 to break several
instances of HFE [11], though it is important to note that these are characteristic-
2 cases. It was later pointed out that the characteristic has a significant effect
on the performance of F4 , since an attacker can make use of the field equations
xq − x = 0 [8].

2.2 Square

Square was proposed in [3]. This attempt at a new MPKC was motivated by
observations about the characteristic’s effect on F4 [8], and the then-apparent
success in using odd-characteristic HFE as the foundation of a signature scheme
[1]. All of the ideas of Square have been seen before; what makes this system
novel is that these ideas are combined in a new way.

See Figure 2. Let k be a field of size q, and here we force q ≡ 3 mod 4.
Plaintexts will be vectors in kn. Embed kn into a larger space kn+l via an
injective affine map L1 : kn → kn+l. We choose n and l so that n + l is odd.

Let K be a degree n+ l extension of k. Just as for HFE, we use a vector space
isomorphism ϕ : K → kn+l and an invertible affine map L2 : kn+l → kn+l. For
the core map K → K, we use

F (X) = X2,

2 Other polynomial solving algorithms exist, in particular the XL algorithm and its
improvements [13,15], but at present they outperform F4 only in contrived cases.

156 C.L. Clough and J. Ding

K
F �� K

ϕ

��

kn
L2 ��

P

��kn+l

ϕ−1

��

�� kn+l
L1 �� kn+l

Fig. 2. The Square system

hence the name Square. From these we construct the public key

P = L1 ◦ ϕ ◦ F ◦ ϕ−1 ◦ L2.

P will be an (n + l)-tuple of quadratic polynomials in n variables. The Square
setup is quite similar to that of HFE and the earlier C∗ scheme of [14]; in fact
one may think of it as an odd-characteristic, embedded HFE with D = 2 and a
specifically chosen HFE polynomial.

The decryption process is the real selling point of Square. When |K| ≡ 3
mod 4, we can find preimages under F using the square root formula

X = ±Y
qn+l+1

4 . (2)

This makes decryption fast, especially in comparison to traditional characteristic-
2 HFE systems, whose core maps have very high degree.

An Attack on Square. Though Square was shown to be strong against alge-
braic attacks, it was broken by what may be categorized as a differential attack
[2]. Recall that the discrete differential of a function f is

Df(A, X) = f(A + X) − f(A) − f(X) + f(0).

We will hereafter refer to the below as the “Square attack”.
Let us work over K. To emphasize that L1 and L2 (and hence their lifts) are

affine, let
ϕ−1 ◦ L1 ◦ ϕ = L̂1 + l̂1,

ϕ−1 ◦ L2 ◦ ϕ′ = L̂2 + l̂2,

where ϕ′ : Fqn → kn, L̂i linear and l̂i ∈ K. Also let

P̂ = ϕ−1 ◦ P ◦ ϕ′,

X = ϕ−1(−→x) and Y = ϕ−1(−→y).

Using this notation,

P̂ (X) = L̂1(L̂2(X)2) + L̂1(l̂2 · L̂2(X)) + l̂1

= quadratic + linear + constant.

Secure Variants of the Square Encryption Scheme 157

By fixing some A ∈ K, we can view the differential DP̂ as a univariate function

DP̂A(X) = DP̂ (X, A) = L̂1 ◦ MA ◦ L̂2(X),

where MA denotes multiplication by a constant which depends on A {DP̂A : A ∈
K} are all linear maps and they form a vector space over K.

Now, every DP̂A is of the form L̂1 ◦MA ◦ L̂2 and the linear part of P̂ , L̂1(l̂2 ·
L̂2(X)), has a similar form. By picking a basis for these we obtain a set

Δ = {DP̂A1 . . . , DP̂An} ∪ {L̂1(l̂2 · L̂2(X))}
= {Di = L̂1 ◦ Mλi ◦ L̂2; Mλi(X) = λiX, i = 1, . . . , n + 1}

for some unknown λ1, . . . , λn+1.
The maps of Δ are helpful because they can help us identify L̂1. This is due

to the fact that

(L̂1 ◦ Mλ ◦ L̂−1
1)(L̂1 ◦ Mλi ◦ L̂2) = L̂1 ◦ Mλλi ◦ L̂2. (3)

We look for solutions L to the system of equations

L ◦ Di ∈ Span{Dj : j > m}, i ≤ m. (4)

We are guaranteed by (3) that among the solutions will be some L̂1 ◦Mλ ◦ L̂−1
1 .

Once such an L is known, L1 and L2 can be recovered and Square is broken.

3 Square+

The Plus modification has been seen before, first by Patarin [17], but was con-
sidered useless and did not receive much attention. The real example of its use
is to counter differential attacks of a system called Perturbed Matsumoto-Imai
[6]. This motivated us to look at a Plus variant of Square.

The modification is simple: for any MPKC, a Plus variant can be constructed
by appending some number p of randomly chosen quadratic polynomials to the
public key before a final mixing process. Let us describe this specifically for the
case of Square.

As usual, let k be a field of size q, where q ≡ 3 mod 4. Plaintexts will be
vectors in kn, we will embed the space of plaintexts into kn+l, and K is a field
extension of degree n + l. Let m = n + l + p. As for Square, we make use of
the following maps: the vector space isomorphism ϕ : K → kn+l, the core map
F : K → K given by

F (X) = X2,

and an injective affine map L2 : kn → kn+l. We also use p quadratic polynomials
in n + l variables,

g1, . . . , gp ∈ k[x1, . . . , xn+l]

and an invertible affine map L1 : km → km.

158 C.L. Clough and J. Ding

Since ϕ ◦ F ◦ ϕ−1 is an (n + l)-tuple of quadratic polynomials, by appending
g1, . . . , gp we can create a map F

+
: kn → km. From this we construct the public

key
P+ = L1 ◦ F

+ ◦ L2.

See Figure 3. P+ will be an m-tuple of quadratic polynomials

P+(x1, . . . , xn) =

⎛⎜⎜⎜⎝
P+

1 (x1, . . . , xn)
P+

2 (x1, . . . , xn)
...

P+
m(x1, . . . , xn)

⎞⎟⎟⎟⎠ .

K
F �� K

ϕ

��

kn
L2 ��

P+

��

kn+l

ϕ−1

��

F ��

g1,...,gp

��
��

��
��

��
��

��
��

��
��

kn+l

		������������

*
L1 �� kn+l+p

kp

�������������

Fig. 3. Overview of the Square+ system. The * denotes concatenation.

Encryption with Square+. A plaintext (s1, . . . , sn) ∈ kn in encrypted by com-
puting

(c1, . . . , cm) = P+(s1, . . . , sn).

Decryption with Square+. For a ciphertext (c1, . . . , cm) = P+(s1, . . . , sn) ∈ km,
decryption is performed as follows: first, let

(y1, . . . , ym) = L−1
1 (c1, . . . , cm)

and
Y = ϕ−1(y1, . . . , yn+l) ∈ K.

In other words, we “unmix” the random polynomials and discard them before
moving the ciphertext to the big field. Then we solve X2 = Y . Due to our
choice of q and n + l, we can use the square root formula (2). This gives two
solutions. Since L2 is affine, in general only one of them will be in the image of
ϕ−1 ◦ L2. The preimage of the solution will be (s1, . . . , sn). Note that with the
Plus polynomials, we have a backup method of deciding between the two square
roots. The addition of random polynomials all but ensures that only one of them
will actually be a preimage of the ciphertext under P+.

Secure Variants of the Square Encryption Scheme 159

Security Analysis. The main question regarding the security of Square+ is,
How do the Plus polynomials change the potency of attacks against Square?
The answer is that some attacks become more successful, some are thwarted,
and others are mostly unaffected.

When Square was proposed, justifications were made for its resilience to at-
tacks reliant on invariant subspaces and/or properties of the bilinear forms asso-
ciated to the public key [3]. The addition of random polynomial information will
not increase the probability of linear algebraic properties of the core map. Of
course, an attacker could find linear combinations of the public key polynomials
and come across a large enough collection (around n+l) which are a combination
of only the original Square public key components. The chance of an attacker
doing so randomly is q−p(n+l) and at present there does not seem to be any way
to find these combinations in a more effficient way. So, there is no reason that
Plus polynomials will make these attacks suddenly dangerous.

On the other hand, providing more polynomial information about the
plaintext-ciphertext relationship will make algebraic attacks predictably more
effective. See Figures 4 and 5 for a summary of our experiments regarding al-
gebraic attack times for some Square+ systems. Thus it is important to use a
small p not only for practicality reasons but also security. Considering the results
of our algebraic attack experiments and extrapolating the data, it seems that a
Square+ scheme with q = 31, n = 48, l = 3, and p = 5 looks promising.

The reason for adding the Plus polynomials is to dodge the Square attack.
Since we add quadratic polynomials, the “noise” they create affects the differen-
tials. In particular, if we proceed as in the Square atttack - work in an extension

Fig. 4. Algebraic Attack times against Square+ vs p, for various q and n. The value
of l is 3 for all tests.

160 C.L. Clough and J. Ding

Fig. 5. Algebraic Attack times against Square+ vs n, for various q and p. The value
of l is 3 for all tests.

field and fix one input of the differential as in (2.2), we see that

DP̂A = L̂1 ◦ MA ◦ L̂2 + L,

for some linear map L which comes from the randomly-chosen Plus polynomials
and thus should also be random. So the differentials of teh Square+ public key
cannot be used in the same way as in 3 to identify the secret transformation.
Plus was effectively used to protect the Perturbed Matsumoto-Imai system from
differential attack in [6].

4 Double-Layer Square

The Plus variant of Square uses “cosmetic” changes to the structure of the system
to obstruct an attacker’s access to the nice differential properties of Square.
Another approach is to destroy the properties altogether by complicating the
core map. This is the main idea behind Double-Layer Square.

Construction. The construction takes cues from the Rainbow signature scheme
[7]. The variables are split into two “layers”; some of the input components
determine the polynomial into which other components are fed. We will discuss
below why an attacker should not be able to separate the layers.

Again |k| = q ≡ 3 mod 4. Plaintexts are vectors in k2n, n odd. Let L2 : k2n →
k2n+l be an affine transformation of rank 2n.

Secure Variants of the Square Encryption Scheme 161

Remark. Here, we would like to note that this map L2 uses the idea of embed-
ding proposed to enhance the security of Sflash in [5]. The application of this
embedding is critical in ensuring the security of our new scheme.

The first layer: Let K ∼= kn+l via vector space isomorphism ϕ and F : K → K
be given by F (X) = X2. The map

F = ϕ ◦ F ◦ ϕ−1

is an (n + l)-tuple of quadratic polynomials in n + l variables.
The second layer: Let K ′ ∼= kn via the vector space isomorphism ϕ′. Consider

the map G : kn+l × K ′ → K ′ given by

G((x1, . . . , xn+l), X) = αX2 + β(x1, . . . , xn+l)X + γ(x1, . . . , xn+l),

where α ∈ K ′, β is affine and γ is quadratic3. The map

G = ϕ′ ◦ G ◦ (id × ϕ′−1),

is an n-tuple of quadratic polynomials in 2n + l variables.
Altogether by concatenating the first and second layers, we obtain a map

k2n+l → k2n+l given by

F ∗ G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F 1(x1, . . . , xn+l)
F 2(x1, . . . , xn+l)

...
Fn+l(x1, . . . , xn+l)
G1(x1, . . . , x2n+l)
G2(x1, . . . , x2n+l)

...
Gn(x1, . . . , x2n+l)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using with the embedding L2 and a final invertible transformation L1 : k2n+l →
k2n+l we get a public key P : k2n → k2n+l

P = L1 ◦ (F ∗ G) ◦ L2.

Encryption. To encrypt a message (m1, . . . , m2n) ∈ k2n, simply compute

(c1, . . . , c2n+l) = P (m1, . . . , m2n).
3 More precisely the maps βi and γ are of the form

βi(x1, . . . , xn+l) =
∑

1≤j≤n+l

ξijxj + νi,

γ(x1, . . . , xn+l) =
∑

1≤j<l≤n+l

ηjkxjxk +
∑

1≤j≤n+l

σjxj + τ,

where ξij , νi, ηjl, σj and τ are randomly chosen from K′.

162 C.L. Clough and J. Ding

Decryption. Given a ciphertext (c1, . . . , c2n+l) we must first compute

(c′1, . . . , c
′
2n+l) = L−1

1 (c1, . . . , c2n+l) ∈ k2n+l.

We know that F (x1 . . . , xn+l) = (c′1, . . . , c
′
n+l). We can easily find preimages

under F by going back to the “big field” K and using the square root formula
in K: √

Y = ±Y
qn+l+1

4 (5)

Suppose (z(1)
1 , . . . , z

(1)
n+l) and (z(2)

1 , . . . , z
(2)
n+l) are the two preimages under F . Now

we find a preimage under G using each as vinegar variables. We solve

G((z(i)
1 , . . . , z

(i)
n+l), X) = ϕ′−1(cn+l+1, . . . , c2n+l).

With the z
(i)
j s plugged in, this is just a univariate polynomial equation over

K ′. We can solve it either by Berlekamp’s algorithm or via the quadratic formula,
again using the square root formula (5).

Now there are up to four preimages of F ∗ G. However, the correct preimage
must lie in L2(kn); in general only one will do so and that preimage is the
plaintext. We work under the assumption that we are trying to decrypt an
encrypted message, so at least one of the possibilities will lie in this space.

Remark 1. There is no reason why we cannot use more than two layers in this
construction. However, each layer will increase by a factor of 2 the number
of preimages to be checked in the final stage of the decryption process. Since
two layers seem to be enough to stymie attacks, there is no reason to slow the
decryption process with added layers.

Security Analysis. First we observe that algebraic attacks against Double-
Layer Square systems perform about as well as against Square systems with the
same number of variables. Thus we believe that Double-Layer Square is safe from
algebraic attacks.

Many successful attacks on MPKCs exploit the simplicity of private maps
when viewed as univariate polynomials, and this gives Double-Layer Square an
advantage. The univariate polynomial which corresponds to F ∗ G is an HFE
polynomial over a degree 2n + l extension, but in general it will have maximum
degree (2qn+l−1) and many terms. The Square attack relies on the differential
property DF (A, X) = 2AX which is not true for most HFE polynomials.

So, lifting to a large field and working with a univariate polynomial does not
seem to help an attacker. Let us consider the differential of the core map as it
is given. Let

(a1, . . . , a2n+l), (x1, . . . , x2n+l) ∈ k2n+l,

a = (a1, . . . , an+l) ∈ kn+l,

A = ϕ−1(a) ∈ K,

A′ = ϕ−1′
(an+l+1, . . . , a2n+l) ∈ K ′.

Secure Variants of the Square Encryption Scheme 163

(Analogous x, X and X ′.) Then the differentials are

DF (A, X) = 2AX (6)

DG((a, A′), (x, X ′)) = 2αA′X”′ + β(a)X ′ + β(x)A′ + Dγ(a, x). (7)

It is true that DF is the same as for Square. However a and x appear in both
(6) and (7), and γ is randomly chosen so we cannot expect Dγ to have any nice
properties. Once F and G are mixed together by L1, it seems highly unlikely
that an attacker can untangle the two differentials to access the simpler one (6).

5 Conclusions

In this paper, we proposed two new encryption schemes based on the Square
system. Square+ evades differential attacks by adding noise to the differentials
by way of Plus polynomials; Double-Layer Square achieves the same end by using
a more complicated core map structure. We explained the new constructions and
gave arguments and evidence suggesting that both are secure options.

Acknowledgments. The authors would like to thank Dr. John Baena Giraldo
for his help designing the experiments. Thanks also go to the Singapore MoE
Tier 2 grant T208B2206, the NSF, NSF China and the Charles Phelps Taft
Foundation.

References

1. Baena, J., Clough, C., Ding, J.: Square-Vinegar Signature Scheme. In: Buchmann,
J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 17–30. Springer, Heidelberg
(2008)

2. Billet, O., Gilles, M.-R.: Cryptanalysis of the Square Cryptosystems. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 451–468. Springer, Heidelberg
(2009)

3. Clough, C., Baena, J., Ding, J., Yang, B.-Y., Chen, M.: Square, a new multivariate
encryption scheme. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
252–264. Springer, Heidelberg (2009)

4. Courtois, N.: The security of hidden field equations (HFE). In: Naccache, D. (ed.)
CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg (2001)

5. Ding, J., Dubois, V., Yang, B.-Y., Owen Chen, C.-H., Cheng Could, C.-M.: Could
SFLASH be Repaired? In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 691–701. Springer, Heidelberg (2008)

6. Ding, J., Gower, J.E., et al.: Inoculating Multivariate Schemes against differential
attacks. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 290–301. Springer, Heidelberg (2006)

7. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 164–175. Springer, Heidelberg (2005)

164 C.L. Clough and J. Ding

8. Ding, J., Schmidt, D., Werner, F.: Algebraic attack on HFE revisited. In: Wu,
T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp.
215–227. Springer, Heidelberg (2008)

9. Dubois, V., Granboulan, L., Stern, J.: An efficient provable distinguisher for HFE.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 156–167. Springer, Heidelberg (2006)

10. Faugére, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139(1-3), 61–88 (1999); Effective methods in algebraic geometry
(Saint-Malo, 1998)

11. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

12. Jiang, X., Ding, J., Hu, L.: Public Key Analysis-Kipnis-Shamir Attack on HFE
Revisited. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS,
vol. 4990, pp. 399–411. Springer, Heidelberg (2008)

13. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999)

14. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

15. Mohamed, M.S.E., Mohamed, W., Ding, J., Buchmann, J.: MXL2: Solving Polyno-
mial Equations over GF (2) Using an Improved Mutant Strategy. In: Buchmann, J.,
Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer, Heidelberg
(2008)

16. Patarin, J.: Hidden Field Equations (HFE) and Isomorphisms of Polynomi-
als (IP): Two new families of asymmetric algorithms. In: Maurer, U.M. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

17. Patarin, J., Goubin, L., Courtois, N.: C*-+ and HM: Variations around two schemes
of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998.
LNCS, vol. 1514, pp. 35–50. Springer, Heidelberg (1998)

Low-Reiter: Niederreiter Encryption Scheme for
Embedded Microcontrollers

Stefan Heyse

Horst Görtz Institute for IT Security
Ruhr University Bochum
44780 Bochum, Germany
heyse@crypto.rub.de

Abstract. Most modern security systems rely on public-key schemes
based either on the factorization or the discrete logarithm problem. Since
both problems are known to be closely related, a major breakthrough in
cryptanalysis affecting one of those problems could render a large set of
cryptosystems completely useless. Coding based public-key schemes are
based on the alternative security assumption that decoding unknown
linear binary codes is NP-complete. There exist two basic schemes of
this type, namely McEliece and the Niederreiter variant, whereas the
security of both schemes are equivalent. The latter has the advantage of
smaller public keys, but the disadvantage of a computationally expensive
mapping, which slows down encryption and decryption.

In this work, we investigate the efficient implementation of the Nieder-
reiter scheme on very constrained micro controllers. We adopt existing
algorithms to the limited abilities of the target platform and finally com-
pare the implementation to widely used schemes and also to other alter-
native public schemes.

1 Introduction

The advanced properties of public-key cryptosystems are required for many
cryptographic issues, such as key establishment between parties and digital sig-
natures. In this context, RSA, ElGamal, and later ECC have evolved as most
popular choices and build the foundation for virtually all practical security proto-
cols and implementations with requirements for public-key cryptography. How-
ever, these cryptosystems rely on two primitive security assumptions, namely
the factoring problem (FP) and the discrete logarithm problem (DLP), which
are also known to be closely related. With a significant breakthrough in crypt-
analysis or a major improvement of the best known attacks on these problems
(i.e., the Number Field Sieve or Index Calculus), a large number of recently
employed cryptosystems may turn out to be insecure overnight. Already the ex-
istence of a quantum computer that can provide computations on a few thousand
qubits would render FP and DLP-based cryptography useless. Though quantum
computers of that dimension have not been reported to be built yet, we al-
ready want to encourage a larger diversification of cryptographic primitives in

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 165–181, 2010.
� Springer-Verlag Berlin Heidelberg 2010

166 S. Heyse

future public-key systems. However, to be accepted as real alternatives to conven-
tional systems like RSA and ECC, such security primitives need to support effi-
cient implementations on recent computing platforms with a comparable level of
security.

The first cryptosystem based on error correcting codes was proposed by
Robert J. McEliece in 1978 [22]. The Niederreiter encryption scheme was de-
rived from it in 1986 [24], but has the advantage of smaller keys (and it can be
transformed into a signature scheme).

Both cryptosystems incorporate a linear error-correcting code (namely a
Goppa code) which is hidden as a general linear code. For Goppa codes, fast
decoding algorithms exist when the code is known, while decoding codewords
without knowledge of the coding scheme is proven NP-complete [2]. Contrary to
DLP and FP-based systems, this makes this scheme also suitable in the post-
quantum era. Currently there is no know attack when appropriately chosen se-
curity parameters are used [5].

The vast majority1 of today’s computing platforms are embedded systems[33].
Only a few years ago, most of these devices could only provide a few hundred
bytes of RAM and ROM which was a strong restriction for application (and
security) designers. Thus, both schemes were regarded impracticable on such
small and embedded systems due to the large size of the private and public keys.
But nowadays, recent families of microcontrollers provide several hundreds of
bytes of Flash-ROM. In particular, these memories can be used to store the keys
of the Niederreiter cryptosystem.

In this work, we present an implementation of the Niederreiter encryption
scheme on a popular 8-bit AVR micro controller, namely the ATxMega256, which
is suitable for many embedded system applications. To the best of our knowl-
edge, no implementation of the Niederreiter scheme has been proposed targeting
8 bit micro controllers. Unlike FP and DLP-based cryptosystems, operations on
binary codes do not require computationally expensive multi-precision integer
arithmetic which is beneficial for small computing platforms.

This paper is structured as follows: we start with a brief introduction of the
Niederreiter scheme and shortly explain necessary operations on Goppa codes.
In Section 4, we discuss requirements and strategies to implement Niederreiter
on memory-constrained embedded devices. Section 5 describes our actual im-
plementation on an AVR 8-bit microprocessor. Finally, we present our result in
Section 6.

2 Previous Work

Although proposed already more than 30 years ago, coding based encryption
schemes have never gained much attention due to their large keys and thus have
not been implemented in many products. The most recent implementation of
the McEliece scheme on PCs is due to Biswas and Sendrier [7] and presented
1 Already in 2002, 98% of 32-bit microprocessors in world-wide production were inte-

grated in embedded platforms.

Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers 167

a slightly modified version that achieves about 83 bit security (taking the at-
tack in [5] into account). Comparing their implementation to other public key
schemes, it turns out that McEliece encryption can even be faster than of RSA
and NTRU [4]. In addition to those, only few further McEliece software imple-
mentations have been published up to now and they were all designed for 32 bit
architectures [26,27]. The more recent implementation [27] is available only as
uncommented C-source code and was nevertheless used for the open-source P2P
software Freenet and Entropy [16].

The latest implementation of McEliece for embedded devices is [14]. It is very
interesting to compare our work to this implementation, because it uses the same
security parameters and nearly the same platform.

3 Background on the Niederreiter Cryptosystem

Because Niederreiter heavily relies on Goppa codes, we start with an introduction
to this class of error correcting codes.

3.1 Classical Goppa Codes

Theorem 1. [34] Let G(z) be an irreducible polynomial of degree t over GF (2m).
Then the set

Γ (G(z), GF (2m)) = {(cα)α∈GF (2m) ∈ {0, 1}n |
∑

α∈GF (2m)

cα

z − α
≡ 0 mod G(z)}

(1)
defines a binary Goppa code C of length n = 2m, dimension k ≥ n − mt and
minimum distance d ≥ 2t + 1. The set of the αi is called the supportL of the
code.

There exist fast decoding algorithms with a runtime of O(n · t) operations (e.g
[25,32]). For each irreducible polynomial G(z) over GF (2m) of degree t exists a
binary Goppa code of length n = 2m and dimension k = n − mt. This code is
capable of correcting up to t errors [1] and can be described as a k×n generator
matrix G such that C = {mG : m ∈ F k

2 } .
To encode a message m into a codeword c, represent the message m as a

binary string of length k and multiply it with the k × n matrix G.
However, decoding such a codeword r = c + e on the receiver’s side with

a (possibly) additive error vector e is far more complex. For decoding, we use
Patterson’s algorithm [25] with improvements from [31].

Since r = c + e ≡ e mod G(z) holds, the syndrome Syn(z) of a received
codeword can be obtained from Equation (1) by

Syn(z) =
∑

α∈GF (2m)

rα

z − α
≡

∑
α∈GF (2m)

eα

z − α
mod G(z) (2)

To finally recover e, we need to solve the key equation σ(z) · Syn(z) ≡ ω(z)
mod G(z), where σ(z) denotes a corresponding error-locator polynomial and

168 S. Heyse

ω(z) denotes an error-weight polynomial. Note that it can be shown that ω(z) =
σ(z)′ is the formal derivative of the error-locator and by splitting σ(z) into even
and odd polynomial parts σ(z) = a(z)2 + z · b(z)2, we finally determine the
following equation to determine error positions:

Syn(z)(a(z)2 + z · b(z)2) ≡ b(z)2 mod G(z) (3)

To solve Equation (3) for a given codeword r, the following steps have to be
performed:

1. Compute the syndrome Syn(z) from the received codeword r according to
Equation (2). This can be done by using the extended euclidean algorithm
or by directly computing corresponding field elements. Another option is to
precompute the parity check matrix and perform the matrix multiplication
as simple table lookups.

2. Compute an inverse polynomial T (z) with T (z) · Syn(z) ≡ 1 mod G(z)
(or provide a corresponding table). It follows that (T (z) + z)b(z)2 ≡ a(z)2

mod G(z).
3. There is a simple case if T (z) = z ⇒ a(z) = 0 s.t. b(z)2 ≡ z · b(z)2 · Syn(z)

mod G(z) ⇒ 1 ≡ z · Syn(z) mod G(z) which directly leads to σ(z) = z.
Contrary, if T (z) �= z, compute a square root R(z) for the given polynomial
R(z)2 ≡ T (z) + z mod G(z). Based on an observation by Huber [19] this
can be done by a simple polynomial multiplication. We can then determine
solutions a(z), b(z) satisfying

a(z) = b(z) · R(z) mod G(z). (4)

using the extended euclidean algorithm. The computation is stopped, when
a(z) reaches degree � t

2�. Finally, we use the identified a(z), b(z) to construct
the error-locator polynomial σ(z) = a(z)2 + z · b(z)2.

4. The roots of σ(z) denote the positions of error bits. If σ(αi) ≡ 0 mod G(z)
with αi being the corresponding bit of a generator in GF (211), there was
an error at position i in the received codeword which can be corrected by
bit-flipping. Searching the roots of polynomials of degree t over GF (2m) is
very time consuming. Aside of plain evaluation in all support elements, the
two most commonly used methods are the Chien search [9] and the Horner
scheme [18]. We use the latter one, because is it slightly faster and the field
elements can be searched independently. This property can be useful, while
implementing side channel countermeasures. Another method proposed in
[6], which is faster on PCs, turned out to be slower on microprocessor since
we can not store the necessary precomputed values for a fast implementation.

This decoding process, as required in Step 2 of Algorithm 3 for message decryp-
tion, is finally summarized in Algorithm 1.

3.2 The Niederreiter Public Key Scheme

The Niederreiter scheme is a public key cryptosystem based on linear error-
correcting codes. The secret key is the parity check matrix H of an error-
correcting code with dimension k, length n and error correcting capability t.

Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers 169

Algorithm 1. Decoding Goppa Codes
Input: Received codeword r with up to t errors, inverse generator matrix iG
Output: Recovered message m̂
1: Compute syndrome Syn(z) for codeword r
2: T (z) ← Syn(z)−1 mod G(z)
3: if T (z) = z then
4: σ(z) ← z
5: else
6: R(z) ← √

T (z) + z
7: Compute a(z) and b(z) with a(z) ≡ b(z) · R(z) mod G(z)
8: σ(z) ← a(z)2 + z · b(z)2

9: end if
10: Determine roots of σ(z) and correct errors in r which results in r̂
11: m̂ ← r̂ · iG {Map rcor to m̂}
12: return m̂

To create a public key, Niederreiter defined a random n × n-dimensional per-
mutation matrix P disguising the structure of the code by computing the prod-
uct Ĥ = S × H × P . Here, S is the (n − k) × (n − k) matrix, which brings
Ĥ to systematic form. Using the public key Kpub = (Ĥ, t) and private key
Ksec = (P−1, H, S−1), encryption and decryption algorithms can be given by
Algorithm 2 and Algorithm 3, respectively.

Using our parameter set (m = 11, t = 27) leads to a size of S of 374KBytes,
which is too large to be efficiently stored inside the microcontroller. We decide
to use a PRNG to generate the columns of S at runtime, but then S is a random
matrix and can not bring Ĥ to systematic form. But saving 374KBytes for S
by allowing Ĥ to be 74Kbyte instead of 63Kbyte makes it possible to store all
secret information inside the flash of the AVR.

Algorithm 2. Niederreiter Message Encryption
Input: m, Kpub = (Ĥ, t)
Output: Ciphertext c
1: Encode the message m as a binary string of length n and weight t called e
2: c = ĤeT

3: return c

Note that Algorithm 2 only consists of a simple matrix multiplication with
the input message after it is transformed into a so called constant weight word.
The algorithm for constant weight encoding (Bin2CW) is given in Section 3.4.

Decoding the ciphertext c for decryption as shown in Algorithm 3 is the
most time-consuming process and requires several more complex operations in
binary extension fields. In Section 3.1 we briefly introduced the required steps
for decoding codewords that we need to implement on embedded systems.

As mentioned in the introduction, the main caveat against coding based cryp-
tosystems is the significant size of the public and private keys. Even the choice

170 S. Heyse

Algorithm 3. Niederreiter Message Decryption
Input: c, Ksec = (P, S, g(z),L)
Output: message m
1: c′ ← S−1c
2: decode c′ to error vector e′ = PeT

3: e ← P−1e′

4: Decode the error vector e to the binary message m
5: return m

of a minimal set of security parameters (m = 10, n = 1024, t = 38, k ≥ 644)
according to [23] already translates to a size of 47,5 kByte for the public key
and at least 52 kByte for the private key (without any optimizations). However,
this setup only provides the comparable security of a 60bit symmetric cipher.
For appropriate 80bit security, even larger keys, for example the parameters
m = 11, n = 2048, t = 27, k ≥ 1751, are required (more details in Section 3.3).

An effective approach for secret key protection is the use of secure on-chip
key memories that would require (with appropriate security features such as
prohibited memory readback) invasive attacks on the chip to reveal the key.
However, secure storage of key bits usually prove costly in hardware so that ef-
fective strategies are required to reduce the size of the private key to keep costs
low. Addressing this issue, we use the in [14] introduced technique of on-the-fly
generation of the large scrambling matrix S−1 instead of storing it in mem-
ory as in previous implementations. We build the PRNG around the hardware
accelerated DES engine of the ATxMega.

3.3 Security Parameters

All security parameters for cryptosystems are chosen in a way to provide suf-
ficient protection against the best known attack (whereas the notion of “suffi-
cient” is determined by the requirements of an application). A recent paper [5]
by Bernstein et al. presents a state-of-the-art attack of McEliece.

This attack reduces the binary work factor to break the original McEliece
scheme with a (1024, 524) Goppa code and t = 50 to 260.55 bit operations.
According to [5], Table 1 summarizes the security parameters for specific security
levels. Some suggestions include the use of a list decoding algorithm [3] for binary
Goppa codes, which allows to correct more errors than the Patterson algorithm.

Table 1. Security of Niederreiter Depending on Parameters

Security Level Parameters Size Kpub Size Ksec

(n, k, t), errors added in KBits (G(z), P, S) in KBits

Short-term (60 bit) (1024, 644, 38), 38 644 (0.38, 10, 405)
Mid-term I (80 bit) (2048, 1751, 27), 27 3, 502 (0.30, 22, 2994)
Mid-term II (128 bit) (2690, 2280, 56), 57 1537536 (0.30, 22, 2994)
Long-term (256 bit) (6624, 5129, 115), 117 33, 178 (1.47, 104, 25690)

Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers 171

3.4 Constant Weight Encoding

Before encrypting a message, it has to be encoded into an error vector. This
means transforming the message into a bit vector of length n and maximum
weight t. There exist a lot of encoding algorithms, e.g. [15,11,28]. We use the re-
cursive algorithm in [29], with some minor changes to speed up the encoding with
only negligible losses in efficiency. The original encoding algorithm (Bin2CW) is
given in Algorithm 4. It returns a t-tuple of integers, which indicate the distance
of two ones in the vector.

Read(B,i) is a function, that reads the next i bits from the string B and re-
turns them as Integer. decodefd and best d are two somewhat complex functions,
which determine depending on the actual value of n and t, how many message
bits should be encoded into the next string of zeros. Note that during the recur-
sions decodefd, n and t are constantly decreased until the algorithm terminates.
Decodefd is given in Algorithm 8 in the appendix.

To calculate the value d, the author gives the following formula:

d ≈ ln(2)
t

· (n − t − 1
t

) (5)

He also states that the algorithm will terminate for other values of d and u, with
only negligible efficiency loss, as long as the difference to the optimal value is
not large. See [29] for a brief explanation on these steps.

Our primary goal in optimizing this algorithm was to avoid multiplication
with a float (ln(2)) and the division by t. These operations are very time con-
suming on AVR micro controllers. We decided to merge decodefd and best d, and
additionally fix the choice of the optimal d to powers of two by a table lookup.

By running the original encoding algorithm several times with random input
strings, we detected the most likely behaviour of n and t during the recursion
and also the minimal amount of bits that can be encoded into an error vector

Algorithm 4. Bin2CW
Input: n, t, δ, binary stream B
Output: t-tuple of Integers
1: if t = 0 then
2: return
3: else if n ≤ t then
4: return δ, Bin2CW(n − 1, t − 1, 0, B)
5: else
6: d ←best d(n, t)
7: if read(B, 1) = 1 then
8: return Bin2CW(n − d, t, δ + d, B)
9: else

10: i ← decodefd(d, B)
11: return δ + i, Bin2CW(n − i − 1, t − 1, 0, B)
12: end if
13: end if

172 S. Heyse

Fig. 1. Run of bestD(n,t)

Fig. 2. Run of table based bestD(n,t)

of length t. Figure 1 depicts the behaviour of d over several runs of the origi-
nal encoding algorithm for random input strings. Afterwards, we precomputed
a table containing 4096 elements, each representing the power of two of d, which
is in fact u. Thus, d can be computed as (1 << u). The index to this table is
the concatenation of the upper seven bits of n and all five bits of t in binary
representation. Ignoring the lower five bits of n keeps the difference to the orig-
inal value d small, because only for small t and large n, which never happens
according to Figure 1, these bits have a large impact on d. This reduces the size
of the lookup table to only 4KByte. There is a lot of freedom in further reduc-
ing the size of this table, if one accepts a lower efficiency, e.g. by encoding only
128 bits into an error vector. Figure 2 shows the original d in red and the table
based in blue. It shows that our algorithm is close to the original behaviour. The
complete optimized encoding algorithm is given in Algorithm 5.

The decoding algorithm was adapted in a similar way, and is given in Algo-
rithm 6. The counterpart to decodefd is encodefd and is given in Algorithm 7 in
the appendix for completeness. For practical purposes, we finally fix the size of

Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers 173

Algorithm 5. Bin2CWsmall
Input: n, t, δ, binary stream B
Output: t-tuple of Integers
1: if t = 0 then
2: return
3: else if n ≤ t then
4: return δ,Bin2CWsmall(n − 1, t − 1, 0, B)
5: else
6: u ← uTable[(n&0xFFE0) + t]
7: d ← (1 << u)
8: if read(B, 1) = 1 then
9: return Bin2CWsmall(n − d, t, δ + d,B)

10: else
11: i ← read(B,u)
12: return δ + i Bin2CWsmall(n − i − 1, t − 1, 0, B)
13: end if
14: end if

Algorithm 6. CW2Binsmall
Input: n, t, δ, t-tuple (δ1, ..., δt) of Integers
Output: binary stream B
1: if t = 0 or n ≤ t then
2: return
3: end if
4: u ← uTable[(n&0xFFE0) + t]
5: d ← (1 << u)
6: if δ1 ≥ d then
7: Write(1, B), CW2Binsmall(n − d, t, (δ1 − d, ..., δt))
8: else
9: Write(0|δ1, B), CW2Binsmall(n − δ1 − 1, t − 1, (δ2, ..., δt))

10: end if

a message to 192 bits, which can in every case encoded into an appropriate error
vector.

4 Design Criteria for Embedded Systems

In this section, we discuss our assumptions, requirements and restrictions which
are required when implementing the Niederreiter cryptosystem on small, embed-
ded systems. Target platform for our investigation is an 8-bit AVR microproces-
sor, namely the ATXMega256A1.

4.1 Requirements and Assumptions

For many embedded systems such as prepaid phones or micropayment systems,
the short life cycle or comparably low value of the enclosed product often does

174 S. Heyse

not demand for long-term security. Hence, mid-term security parameters for
public-key cryptosystems providing a comparable security to 64-80 key bits of
symmetric ciphers are often regarded sufficient (and help reducing system costs).
Hence, our implementations are designed for security parameters that correspond
to an 80bit key size of a symmetric cipher. A second important design require-
ment is the processing and storage of the private key solely on-chip, ensuring
that all secrets are never used outside the device. With appropriate countermea-
sures to prevent data extraction from on-chip memories, an attacker can then
recover the private key only by sophisticated invasive attacks. For this purpose,
AVR μCs provide a lock-bit feature to enable write and read/write protection
of the Flash memory [10]. The lock-bits are used to set protection levels on the
different flash sections. They are used to block read and/or write access of the
code. Lock bits can be written by an external programmer and from the appli-
cation software to set a more strict protection level, but not to set a less strict
protection level. Chip erase is the only way to erase the lock bits. The lock bits
are erased after the rest of the flash memory is erased. An unprogrammed fuse
or lock bit will have the value one, while a programmed flash or lock bit will
have the value zero. Both fuses and lock bits are reprogrammable like the Flash
Program memory.

Analyzing Niederreiter encryption and decryption algorithms (cf. Section 3.1),
the following arithmetic components are required supporting computations in
GF (2m): a multiplier, a squaring unit, calculation of square roots, and an in-
verter. Furthermore, a binary matrix multiplier for encryption and a permuta-
tion element for step 2 in Algorithm 2 are needed. Many arithmetic operations
in Niederreiter can be replaced by table lookups to significantly accelerate com-
putations at the cost of additional memory.

The susceptibility of the Niederreiter cryptosystem to side channel attacks
has not extensively been studied, yet. However, embedded systems can always
be subject to passive attacks such as timing analysis [20] and power/EM anal-
ysis [21]. In [30], a successful timing attack on the Patterson algorithm was
demonstrated. The attack does not recover the key, but reveals the error vector
z and hence allows for efficient decryption of the message c. Our implementations
are not susceptible to this attack due to unconditional instruction execution, e.g.,
our implementation will not terminate after a certain number of errors have been
corrected. This leads to a constant runtime of the root searching part and pre-
vents the above mentioned attack. Differential EM/power attacks and timing
attacks are impeded by the permutation and scrambling operations (P and S)
obfuscating all internal states, and finally, the large key size. Yet template-like
attacks [8] might be feasible if no further protection is applied.

5 Implementation on AVR Microprocessors

In this section, we discuss our implementation of the Niederreiter cryptosystem
for 8-bit AVR microcontrollers, a popular family of 8-bit RISC microcontrollers
(μC) used in embedded systems. The Atmel AVR processors operate at clock

Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers 175

frequencies of up to 32MHz, provide few kBytes of SRAM, up to hundreds of
kBytes of Flash program memory, and additional EEPROM or mask ROM.
For our design, we chose an ATxMega256A1 μC due to its 16 kBytes of SRAM
and the integrated crypto accelerator engine for DES and AES [10]. The crypto
accelerator is particularly useful for a fast implementation of a CPRNG that
generates the scrambling matrix S−1 on-the-fly. Arithmetic operations in the
underlying field GF (211) can be performed efficiently with a combination of
polynomial and exponential representations. We store the coefficients of a value
a ∈ GF (211) in memory using a polynomial basis with natural order. Given an
a = a10α

10+a9α
9+a8α

8+· · ·+a0α
0, the coefficient ai ∈ GF (2) is determined by

bit i of an unsigned 16bit integer where bit 0 denotes the least significant bit. In
this representation, addition is fast just by performing an exclusive-or operation
on 2×2 registers. For more complex operations, such as multiplication, squaring,
inversion and root extraction, an exponential representation is more suitable.
Since every element except zero in GF (211) can be written as a power of some
primitive element α, all elements in the finite field can also be represented by αi

with i ∈ Z2m−1. Multiplication and squaring can then be performed by adding
the exponents of the factors over Z2m−1 such as

c = a · b = αi · αj = αi+j | a, b ∈ GF (211), 0 ≤ i, j ≤ 2m − 2. (6)

If one of the elements equals zero, obviously the result is zero. The inverse of a
value d ∈ GF (211) in exponential representation d = αi can be obtained from
a single subtraction in the exponent d−1 = α211−1−i with a subsequent table-
lookup. Root extraction, i.e., given a value a = αi to determine r = ai/2 is
simple, when i is even and can be performed by a simple right shift on index i.
For odd values of i, m − 1 = 10 left shifts followed by a reduction with 211 − 1
determine the square root.

To allow for efficient conversion between the two representations, we employ
two precomputed tables (so called log and antilog tables) that enable fast conver-
sion between polynomial and exponential representation. Each table consists of
2048 11-bit values that are stored as a pair of two bytes in the program memory.
Hence, each lookup table consumes 4 kBytes of Flash memory. Due to frequent
access, we copy the tables into the faster SRAM at startup time. Accessing the
table directly from Flash memory significantly reduces performance, but allows
migration to a (slightly) cheaper device with only 4 kBytes of SRAM. For multi-
plication, squaring, inversion, and root extraction, the operands are transformed
on-the-fly to exponential representation and reverted to the polynomial basis
after finishing the operation.

5.1 Generation and Storage of Matrices

All matrices as shown in Table 2 are precomputed and stored in Flash memory
of the μC . We store the permutation matrix P−1 as an array of 2048 16-bit
unsigned integers containing 11-bit indices. Matrix Ĥ is written in transposed
form to simplify multiplications (i.e., all columns are stored as consecutive words

176 S. Heyse

in memory for straightforward index calculations). Additionally, arrays for the
support of the code and the Goppa polynomial reside in Flash memory as well.

Table 2 shows the requirements of precomputed tables separated by actual size
and required size in memory including the necessary 16-bit address alignment
and/or padding.

Table 2. Sizes of tables and values in memory including overhead for address alignment

Use Name Actual Size Size in Memory

Encryption Public Key Ĥ 74,032 byte 74,032 byte

Decryption Private Key S−1 (IV only) 8 byte 8 byte
Decryption Private Key P−1 array 2,816 byte 4,096 byte

Decoding Goppa polynomial 309 bits 56 byte
Decoding ω-polynomial 297 bits 54 byte
Decoding Log table 22,528 bits 4,096 byte
Decoding Antilog table 22,528 bits 4,096 byte

Step 1 of Algorithm 3 can be implemented as the addition of a row from
S−1 if the corresponding cipher bit is 1. But if this bit is 0, we also have to
trigger the PRNG to get them generate the right next rows. To avoid this step,
which consist of five times DES (16 clock cycles each) per row, we construct a
key scheduling algorithm. This algorithm depends on the actual row of S and
the IV .Using this algorithm every row can be generated independently and the
PRNG can skip zero bits in the ciphertext.

5.2 System and Compiler Limitations

Due to the large demand for memory for Ĥ , we need to take care of some pecu-
liarities in the memory management of the AVR microcontroller. Since originally
AVR microcontrollers supported only a small amount of internal memory, the
AVR uses 16bit pointers to access its Flash memory. Additionally, each Flash cell
comprises 16bits of data, but the μC itself can only handle 8 bits. Hence, one bit
of this address pointer must be reserved to select the corresponding byte in the
retrieved word, reducing the maximal address range to 64KByte (or 32K 16bit
words). To address memory segments beyond 64K, additional RAMP-registers
need to be used. Additionally, the used avr-gcc compiler internally treats point-
ers as signed 16bit integer halving the addressable memory space again. For this
reason, the public matrix Ĥ need to be split into multiple parts resulting in an
additional overhead in the program code.

6 Results

We now present the results of our Niederreiter implementations providing 80bit
security (n = 2048, k = 1751, t = 27) for the AVR 8-bit microcontroller. We

Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers 177

report performance figures for the ATxMega256A1 obtained from the avr-gcc
compiler v4.3.2. The code size for combined encryption and decryption on the
AVR μC is 172.9kB, including all tables.

Table 3 summarizes the clock cycles needed for every part of the de- and
encryption routines. When looking at Figure 3, it is obvious that searching the
roots of σ(z) is the most time consuming step of the decryption algorithm. Even
an optimized implementation in assembly language reduced the runtime only
marginally.

Table 3. Performance of Niederreiter implementation with n = 2048, k = 1751, t = 27
on the AVR ATxMega256 μC

Aspect ATxMega256 μC

E
n
cr

yp
t. Maximum frequency 32 MHz

CW encode e = encode(m) 21,540 cycles
Encrypt c = e · Ĥ 29,707 cycles

D
ec

ry
p
ti
o
n

Maximum frequency 32 MHz

Undo scrambling c · S−1 198,946 cycles
convert to polynomial 15,785 cycles
Compute T = Syn(z)−1 492,656 cycles
Compute

√
T + z 107,569 cycles

Solve Equation (4) with EEA 170,121 cycles
Search roots 4,693,080 cycles
CW decode 71,987 cycles

The public-key cryptosystems RSA-1024 and ECC-P160 are assumed2 to
roughly achieve a similar margin of 80bit symmetric security [13]. We finally
compare our results to published implementations of these systems that target
similar platforms (i.e., AVR ATMega μC). Note that the figures for ECC are
obtained from the ECDSA signature scheme.

Embedded implementations of other alternative public key encryption
schemes are very rare. The proprietary encryption scheme NTRUEncrypt has
received some attention. An embedded software implementation of the related
NTRUSign performs one signature on an ATMega128L clocked at 7,37MHz in
619ms [12]. However, comparable performance figures of NTRU encryption and
decryption for the AVR platform are not available. As mentioned in the introduc-
tion, we also compare our work with the implementation from [14]. This gives a
direct comparison between two algorithms, offering the same security level and
being based on the same underlying problem. Note that both microcontroller
used only differ in the amount of Flash memory. Available SRAM, instruction
set and frequency are exactly the same.
2 According to [13], RSA-1248 actually corresponds to 80 bit symmetric security. How-

ever, no implementation results for embedded systems are available for this key size.

178 S. Heyse

Unscrambling

Convert to Polynomial

Invert Syndrome

Take SquareRoot

Solve Key Equation

Search Roots

CW Decode

3.4%
0.3%

8.6%

1.8%
3%

81.7%

1.2%

Fig. 3. Timing of Decryption

Note that all throughput figures are based on the number of plaintext bits pro-
cessed by each system and do not take any message expansion in the ciphertext
into account.

The main speed up of Niederreiter encryption compared to McEliece comes
from the smaller public key. Another advantage is the lower Hamming weight
of the message after it is transformed to the constant weight word. These prop-
erties lead to less data to be processed and thus a higher performance, which
is increased by a factor of 112. The decryption could not be improved in the
same order of magnitude. The main reason is the very expensive root searching

Table 4. Comparison of our Niederreiter implementation with single-core ECC and
RSA implementations and McEliece for 80 bit security

Method Platform Time Throughput
ms/op bits/sec

8
-b

it
μ
C

Niederreiter encryption ATxMega256@32MHz 1.6 119,890
Niederreiter decryption ATxMega256@32MHz 180 1,062

McEliece encryption ATxMega192@32MHz 450 3,889
McEliece decryption ATxMega192@32MHz 618 2,835

ECC-P160 (SECG) [17] ATMega128@8MHz 810/2031 197/7881

RSA-1024 216 + 1 [17] ATMega128@8MHz 430/1081 2,381/9,5241

RSA-1024 random [17] ATMega128@8MHz 10,990/2,7481 93/3731

1 For a fair comparison with our implementation running at 32MHz, timings at lower
frequencies were scaled accordingly.

Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers 179

algorithm, which is necessary in both schemes. Decryption benefits from the fact
that the syndrome computation is already done by the sender of the ciphertext.
The additional constant weight decoding can be neglected.

7 Conclusions

In this paper, we described the first implementations of the Niederreiter public-
key scheme for embedded systems using an AVR μC . Our performance results
for Niederreiter providing 80bit security on these system exceed all other systems
in terms of operations per second, except RSA with a small exponent. Especially
the encryption routine outperforms them all and with its convenient block size
of 192 bits it fits best for key transportation.

In direct comparison with McEliece, the Niederreiter scheme performs very
well. Note, that the McEliece scheme needs 1751 plaintext bits at our security
level, so that is it often not the best choice to encrypt small blocks, even if the
throughput in encryption is nearly by a factor of three larger.

However, although our implementations still leave room for further optimiza-
tions, our results already show better performance than every other system,
except RSA encrypt. Thus, we believe with growing memories in embedded
systems, ongoing research and further optimizations, Niederreiter has almost
evolved to a suitable and quantum computer-resistant alternative to RSA and
ECC that have been extensively studied for years.

The next step, which is already in progress, is to investigate possible side
channels. There seems to be a lot starting points due to the very structured
algorithms and know relations from input to intermediate values.

References

1. Berlekamp, E.R.: Goppa Codes. IEEE Trans. on Information Theory 19(3), 590–
592 (1973)

2. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractabil-
ity of certain coding problems. IEEE Trans. Information Theory 24(3), 384–386
(1978)

3. Bernstein, D.J.: List decoding for binary codes. Technical report, University of
Illinois at Chicago (2008), http://cr.yp.to/codes/goppalist-20081107.pdf

4. Bernstein, D.J., Lange, T.: ebacs: Ecrypt benchmarking of cryptographic systems
(February 17, 2009), http://bench.cr.yp.to

5. Bernstein, D.J., Lange, T., Peters, C.: Attacking and Defending the McEliece Cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008), http://eprint.iacr.org/2008/318

6. Biswas, B., Herbert, V.: Efficient Root Finding of Polynomials over Fields of Char-
acteristic 2. In: WEWoRC 2009. LNCS. Springer, Heidelberg (2009) (to appear)

7. Biswas, B., Sendrier, N.: Mceliece crypto-system: A reference implementation,
http://www-rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes

8. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

http://cr.yp.to/codes/goppalist-20081107.pdf
http://bench.cr.yp.to
http://eprint.iacr.org/2008/318
http://www-rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes

180 S. Heyse

9. Chien, R.T.: Cyclic decoding procedure for the bose-chaudhuri-hocquenghem
codes. IEEE Trans. Information Theory IT-10(10), 357–363 (1964)

10. Corp, A.: 8-bit xmega a microcontroller. User Guide (February 2009),
http://www.atmel.com/dyn/resources/prod_documents/doc8077.pdf

11. Cover, T.: Enumerative source encoding 19(1), 73–77 (1973)
12. Driessen, B., Poschmann, A., Paar, C.: Comparison of Innovative Signature Algo-

rithms for WSNs. In: Proceedings of ACM WiSec 2008. ACM, New York (2008)
13. ECRYPT. Yearly report on algorithms and keysizes (2007-2008). Technical report,

D.SPA.28 Rev. 1.1 (July 2008),
http://www.ecrypt.eu.org/documents/D.SPA.10-1.1.pdf

14. Eisenbarth, T., Gneysu, T., Heyse, S., Paar, C.: MicroEliece: McEliece for Em-
bedded Devices. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp.
49–64. Springer, Heidelberg (2009)

15. Fischer, J.-B., Stern, J.: An Efficient Pseudo-Random Generator Provably As Se-
cure As Syndrome Decoding. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 245–255. Springer, Heidelberg (1996)

16. Freenet and Entropy. Open-source p2p network applications (2009),
s http://freenetproject.org, http://entropy.stop1984.com

17. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and rsa on 8-bit cpus. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

18. Horner, W.G.: A new method of solving numerical equations of all orders, by con-
tinuous approximation. Philosophical Transactions of the Royal Society of London,
308–335 (1819)

19. Huber, K.: Note on decoding binary goppa codes. Electronics Letters 32, 102–103
(1996)

20. Kocher, P.C.: Timing Attacks On Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

21. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smartcards. Springer, Heidelberg (2007)

22. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep
Space Network Progress Report 44, 114–116 (1978)

23. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, New York (1996)

24. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory 15, 159–166 (1986)

25. Patterson, N.: The Algebraic Decoding of Goppa Codes. IEEE Transactions on
Information Theory 21, 203–207 (1975)

26. Preneel, B., Bosselaers, A., Govaerts, R., Vandewalle, J.: A Software Implementa-
tion of the McEliece Public-Key Cryptosystem. In: Proceedings of the 13th Sym-
posium on Information Theory in the Benelux, Werkgemeenschap voor Informatie
en Communicatietheorie, pp. 119–126. Springer, Heidelberg (1992)

27. Prometheus. Implementation of McEliece Cryptosystem for 32-bit microprocessors,
c-source (2009), http://www.eccpage.com/goppacode.c

28. Sendrier, N.: Efficient generation of binary words of given weight. In: Boyd, C.
(ed.) Cryptography and Coding 1995. LNCS, vol. 1025, pp. 184–187. Springer,
Heidelberg (1995)

29. Sendrier, N.: Encoding information into constant weight words. In: Proc. Interna-
tional Symposium on Information Theory ISIT 2005, September 4-9, pp. 435–438
(2005)

http://www.atmel.com/dyn/resources/prod_documents/doc8077.pdf
http://www.ecrypt.eu.org/documents/D.SPA.10-1.1.pdf
http://freenetproject.org
http://entropy.stop1984.com
http://www.eccpage.com/goppacode.c

Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers 181

30. Strenzke, F., Tews, E., Molter, H., Overbeck, R., Shoufan, A.: Side Channels in the
McEliece PKC. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299,
pp. 216–229. Springer, Heidelberg (2008)

31. Sugiyama, Y., Kasahara, M., Hirasawa, S., Namekawa, T.: A Method for Solving
Key Equation for Decoding Goppa Codes. IEEE Transactions on Information and
Control 27, 87–99 (1975)

32. Sugiyama, Y., Kasahara, M., Hirasawa, S., Namekawa, T.: An erasures-and-errors
decoding algorithm for goppa codes (corresp.). IEEE Transactions on Information
Theory 22, 238–241 (1976)

33. Turley, J.: The two percent solution (December 2002),
http://www.embedded.com/story/OEG20021217S0039

34. van Tilborg, H.C.: Fundamentals of Cryptology. Kluwer Academic Publishers, Dor-
drecht (2000)

Appendix

Algorithm 7. encodefd
Input: d, binary stream B
Output: a binary string
1: u ← log2(d)�
2: if δ ≤ 2u − d then
3: u ← u − 1
4: else
5: δ ← delta + 2u − d
6: end if
7: return base2(δ, u)

Algorithm 8. decodefd
Input: d, binary stream B
Output: a binary string
1: u ← log2(d)�
2: δ ← read(B,u − 1)
3: if δ ≥ 2u − d then
4: δ ← 2 ∗ delta + read(B,1) − 2u + d
5: end if
6: return δ

http://www.embedded.com/story/OEG20021217S0039

Strongly Unforgeable Signatures and
Hierarchical Identity-Based Signatures
from Lattices without Random Oracles

Markus Rückert�

Cryptography and Computeralgebra
Department of Computer Science

TU Darmstadt
markus.rueckert@cased.de

Abstract. We propose a variant of the “bonsai tree” signature scheme,
a lattice-based existentially unforgeable signature scheme in the standard
model. Our construction offers the same efficiency as the “bonsai tree”
scheme but supports the stronger notion of strong unforgeability. Strong
unforgeability demands that the adversary is unable to produce a new
message-signature pair (m, s), even if he or she is allowed to see a different
signature s′ for m.

In particular, we provide the first treeless signature scheme that sup-
ports strong unforgeability for the post-quantum era in the standard
model. Moreover, we show how to directly implement identity-based, and
even hierarchical identity-based, signatures (IBS) in the same strong se-
curity model without random oracles. An additional advantage of this
direct approach over the usual generic conversion of hierarchical identity-
based encryption to IBS is that we can exploit the efficiency of ideal
lattices without significantly harming security.

We equip all constructions with strong security proofs based on mild
worst-case assumptions on lattices and we also propose concrete security
parameters.

Keywords: Post-quantum cryptography, lattice cryptography, digital
signatures, identity-based cryptography, standard model.

1 Introduction

Digital signature schemes are the cornerstone of e-business, e-government, soft-
ware security, and many more applications. Their importance is likely to grow
in the future as more and more everyday tasks and processes are computerized.
With identity-based signature schemes (IBS), motivated by Shamir [34], one can
get rid of public-key infrastructures. The public key is replaced with a unique
identifier string, such as an e-mail address, and the secret key is “extracted”
by a trusted party for this identifier. In hierarchical identity-based signatures

� This work was supported by CASED (www.cased.de).

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 182–200, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Strongly Unforgeable Signatures and Hierarchical Identity-Based Signatures 183

(HIBS), this concept is generalized so that each party can act as a key extrac-
tion authority for its subordinates.

There are two classes of signature schemes. The first comprises tree-based and
stateful Merkle signature schemes [29] with a limited signature capacity. Such
schemes can be solely based on the security of hash functions. The drawback is
that they require an inefficient key generation phase, where all signatures need
to be prepared in advance. Furthermore, its statefulness poses a synchronization
problem as soon as more than one computer, or process thread, is supposed to
issue signatures with the same secret key.

The second class contains treeless constructions that are typically more effi-
cient and allow for an unlimited number of signatures without a complex setup
phase. Currently, we mainly use schemes that fall into the second category be-
cause they are easier to handle. Most of them rely on the hardness of factoring
or computing discrete logarithms.

Alternatives for the post-quantum era can be based on the hardness of the
decoding problem in error correcting codes, on the hardness of solving non-
linear multivariate equation systems, or on the hardness of lattice problems.
Refer to [7] for an overview of each field. Basically, all three alternatives rely
on the hardness of certain average-case problems and, at first, it is unclear how
to generate hard instances of these problems. More precisely, we always need to
know a “hard” distribution of keys that admits efficient key generation. Unlike
with multivariate or code-based cryptography, lattice-based constructions have
a “trust anchor” in the form of Ajtai’s worst-case to average-case reduction [2]
that is not found anywhere else in cryptography. It states that solving a certain
average-case problem, which is relevant in cryptography, implies a solution to
a related worst-case problem. Although this may sound purely theoretical, it is
of great practical value as keys that are chosen uniformly at random already
provide worst-case security guarantees. The hardness of this underlying worst-
case problem is also plausible as the best known algorithm to solve the relevant
lattice problems requires exponential time [3].

Another advantage of lattice-based cryptography over the alternatives is that
there is a whole range of provably secure signature schemes. In the random oracle
model there are schemes due to Gentry, Peikert, and Vaikuntanathan [16]; Stehlé,
Steinfeld, Tanaka, and Xagawa [35]; and Lyubashevsky [26]. As for the standard
model, there are the works of Lyubashevsky and Micciancio [27] (tree-based);
and Cash, Hofheinz, Kiltz, and Peikert [12].

However, there is a gap in this range because none of the above schemes is
stateless, provably secure in the standard model, and strongly unforgeable. Strong
unforgeability under chosen message attacks (SU-CMA) is stronger than existen-
tial unforgeability (EU-CMA) in the sense that the adversary is not artificially
restricted by the security model. In EU-CMA, the adversary is forced to output
a signature for a fresh message m∗ after seeing signature for messages mi �= m∗of
his or her choice. The SU-CMA adversary is also allowed to output a fresh sig-
nature for one of the mi.

184 M. Rückert

Strong unforgeability is interesting in both, theory and practice. Consider
generic tranformations from CPA to CCA2 security in the standard model, e.g.,
Dolev, Dwork, and Naor [13] or Boneh, Canetti, Halevi, and Katz [9]. They
typically involve a strongly unforgeable signature scheme to make the ciphertext
authentic and non-malleable. An EU-CMA signature of the CPA ciphertext may
already provide some security against CCA1 adversaries but a CCA2 attack
would certainly still succeed. Another reason is the construction of ID-based
blind signatures due to Galindo, Herranz, and Kiltz [14].

As a practical example, consider an access control protocol where you may
delegate certain rights to another party by signing a description for these rights
with a signature s. You want to be able to revoke them at any time in the future
via an online revocation system. The rights are revoked as soon as the online
system has s in its database. If the signature scheme is only EU-CMA secure,
the delegee can construct another signature s∗ for the same set of rights and
present this token instead of s — the revocation mechanism breaks down.

Notice that there are generic transformations from EU-CMA to SU-CMA.
They typically only apply to a certain small subclass of signature schemes,
e.g., Boneh-Shen-Waters [10]. Recently, Bellare and Shoup [6] proposed an unre-
stricted transformation. However, all lose efficiency compared to the underlying
EU-CMA scheme because they require multiple signing steps.

Similarly, HIBS can be constructed from any signature scheme, e.g., via the
certification approach [17] by Gentry and Silverberg or via Append-Only Sig-
natures due to Kiltz, Mityagin, Panjwani, and Raghavan [20]. Here, the key
extraction authority basically emulates a public-key infrastructure: It generates
a new public key for each identity and issues a certificate, binding the key to
the identity. In consequence, the resulting identity-based signatures grow by the
size of one public key, which will not be practical in our case.

Our Contribution. Table 1 compares our result with the current state-of-the-
art for lattice signatures, including the typical improvements with ideal lattices
[32,30]. All previously known SU-CMA schemes are either stateful, causing, e.g.,
synchronization problems, or they require random oracles. Using random oracles
is discouraged by the works of Canetti, Goldreich, and Halevi [11], as well as by
the more practical work of Leurent and Nguyen [24]. The only known scheme
that directly provides SU-CMA security in the standard model is stateful and has
a large secret key.1 Our construction in Section 4.1 offers the same complexity as
[12]. In our case, signing involves a simple additional linear algebra step that can
be pre-computed. Thus, we achieve a stronger security notion without additional
cost.

The situation is quite similar for HIBS. With the exception of Libert and
Quisquater [25], previous results deal only with existentially unforgeable HIBS.
They typically provide hierarchical identity-based encryption (HIBE) and then
apply a generic conversion, e.g., [21], to obtain an HIBS. Both, HIBE and HIBS,

1 Trade-offs are possible but the key generation complexity is nO(1), typically for a
large polynomial.

Strongly Unforgeable Signatures and Hierarchical Identity-Based Signatures 185

Table 1. Comparison of the properties of current lattice-based signature schemes

Scheme Stateless Standard model SU-CMA Public key Secret Key Signature

[16] with [35] Yes No Yes Õ(n) Õ(n2) Õ(n)
[26] Yes No Yes Õ(n) O(n) Õ(n)
[12] Yes Yes No Õ(n) Õ(n2) Õ(n)
[27] with [29] No Yes Yes O(n) nO(1) Õ(n)
Section 4.1 Yes Yes Yes Õ(n) Õ(n2) Õ(n)

can be classified as selective-ID or adaptive-ID secure. Selective-ID security forces
the adversary to name its target identity before seeing the public key. In the
adaptive case, it may output a forgery for any identity. So far, lattice-based IBE
schemes either support selective-ID security [12,1] in the standard model or they
support adaptive-ID security [16] in the random oracle model. In contrast to our
constructions, using the HIBE to HIBS conversion with the above HIBE schemes
requires a subexponential time quantum reduction in the security proof when
using efficient ideal lattices [35].

Note that using the generic construction [17] in conjunction with our SU-CMA
signature scheme (Section 4) would work and the result would be a strongly-
unforgeable HIBS. However, the resulting signature size would be completely
impractical.

Hence, in addition to the first stateless standard-model SU-CMA signature
scheme from lattices in Section 4.1, we provide the first direct lattice-based con-
structions for adaptive-ID secure and strongly unforgeably HIBS in the random
oracle model in Section 3.2 and for strongly unforgeable HIBS in the standard
model in Section 4.2. Our constructions in Section 4 rely on Chameleon hash
functions [23]. The security proofs involve a generic transformation to SU-CMA
from a slightly weaker notion, which was not explicitly known before (cf. Section
2). Due to space restrictions, some of the proofs had to be moved to the full
version [33].

Our Modifications to [12]. For those familiar with [12], we give a brief overview
of the changes that are necessary to achieve SU-CMA security. In [12], signatures
are short vectors s that satisfy As ≡ 0 (mod q), i.e., they are in the q-ary lattice
Λ⊥

q (A). An adversary may succeed in breaking SU-CMA security of this scheme
by simply asking for a signature s for a message m and then return (m,−s) as
its forgery. Such an answer is useless in the reduction because the simulator had
to know a trapdoor for Λ⊥

q (A) beforehand.
Instead, we let the signature algorithm sample short vectors from a random

coset {x : Ax ≡ y (mod q)}. The appraoch is similar to [16] but with a fixed y
that is part of the public key. In the simulation, we can prepare y such that we
know a corresponding signature s that is used to simulate the signature oracle.
Now, the adversary against SU-CMA security needs to output a different short
vector s∗ from the same coset. This, however enables the simulation to find a
short vector s − s∗ in Λ⊥

q (A) and solve the underlying problem.

186 M. Rückert

2 Preliminaries

The security parameter is n. The statement x←$X means x is chosen uniformly
at random from X . With x ∼ Δ(X), we denote that x is chosen according to a
distribution Δ over X . The concatenation of strings, vectors, and matrix columns
is done via ◦. Furthermore, x � y means x is a prefix of y and ∅ is the empty
string. Lower-case boldface identifies vectors and upper-case boldface denotes
a matrix. For a given matrix X ∈ R

m×m, we write X̃ for its Gram-Schmidt
orthogonalization.

2.1 Security Models

Throughout the paper we stick to the following notation. The length of identities
is κ, the message length is λ, and
 is the hierarchy depth, meaning that there are

+1 levels in the hierarchy tree. With {xi}m

1 we denote the set {x1, . . . , xm}. The
subsequent paragraphs deal with the specification of strongly unforgeable sig-
nature schemes DSig = (Kg, Sign, Vf) and hierarchical identity-based signature
schemes HIBS = (Kg, Extract, Sign, Vf).

Signature Schemes. We follow the standard specification for digital signature
schemes: Kg(1n) outputs a private signing key sk and a public verification key
pk; Sign(sk, m) outputs a signature s under sk for the message m; Vf(pk, s, m)
outputs 1 iff s is a valid signature on m under pk.

Most schemes are proven to be existentially unforgeable under chosen message
attacks (EU-CMA), but we will consider the stronger notion of strongly unforge-
ability under chosen message attacks (SU-CMA) as described in the following
experiment, where H is a family of random oracles.

Experiment ExpSU-CMA
A,DSig (n)

H ← H(1n); (sk, pk) ← Kg(1n)
(m∗, s∗) ← ASign(sk,·),H(·)(pk)
Let (mi, si) be the answer returned by Sign(sk, ·) on input mi,for i=1, . . . , k.
Return 1 iff Vf(pk, m∗, s∗) = 1 and (m∗, s∗) �∈ {(m1, s1), . . . , (mk, sk)}.

DSig is (t, qS, qH, ε)-strongly unforgeable if there is no t-time adversary that suc-
ceeds with probability ≥ ε after making ≤ qS signature oracle queries and ≤ qH

random oracle queries. In the standard model, we leave out H and qH.
The difference to the EU-CMA model is that the adversary in the SU-CMA

model even wins if it outputs a new signature for a message that it already
knows a signature for. In the EU-CMA model, the adversary is forced to output
a forgery for a “fresh” message. Instead of directly providing SU-CMA security in
our main constructions in Section 4, we use the weaker notion of strong unforge-
ability against static message attacks (SU-SMA). Here, the adversary submits
all messages m1, . . . , mqS

before seeing the public key and the corresponding sig-
natures. Then, we use a generic transformation to achieve full security.

Strongly Unforgeable Signatures and Hierarchical Identity-Based Signatures 187

HIBS Schemes. The specification for HIBS schemes is a straightforward general-
ization of that for digital signature schemes. The main difference is that there are
no per-signer verification keys but rather a shared verification key for the entire
system. Moreover, the signer’s public key is easily computable from a unique
user identification string ID over a binary alphabet. The corresponding secret
signing key is “extracted” by a trusted authority using a master secret key. The
hierarchy is modeled by letting identities be a concatenation of per-level identi-
fiers with decreasing rank, i.e., ID = ID0 ◦ ID1 ◦ ID2 describes an identity on level
2 with parent identity ID0 ◦ ID1, whose parent identity is the master identity ID0.

More formally: Kg(1n) outputs a master private key msk and a master public
key mpk. The master identity is the empty string ∅; Extract(skID� , ID) outputs a
secret signing key sk for ID if ID� � ID, otherwise ⊥; Sign(skID, ID, m) outputs a
signature s under skID for m; Vf(mpk, ID, s, m) outputs 1 iff s is a valid signature
on m for the given identity and master public key.

The security models for HIBS and ordinary signatures are tightly related with
the exception that one has to deal with the additional key extraction mechanism.
We consider two variants, selective-ID security (similar to selective-secure HIBE
[8]) and the stronger notion of adaptive-ID security. In both models, the adver-
sary can query a key extraction oracle E, a signature oracle, and an optional
random oracle. The experiment ExpSU-CMA-SelectiveID

A,HIBS describes selective-ID secu-
rity, where the adversary has to fix an identity ID∗ before seeing the master
public key. He is then forced to output a forgery for ID∗. The adversary gets
secret keys for all identities that are not a prefix of ID∗. Furthermore, it can
query a signature oracle S(ID, m) with arbitrary identities and messages.

Experiment ExpSU-CMA-SelectiveID
A,HIBS (n)

H ← H(1n); (ID∗, state) ← A(1n); (msk, mpk) ← Kg(1n)
(m∗, s∗) ← AE(msk,·)\{·�ID∗},S(·,·),H(·)(mpk, state)
Let {(IDi, mi, si)}k

1 be the query-answer tuples for S.
Return 1 iff Vf(mpk, ID∗, s∗, m∗) = 1 and (ID∗, m∗, s∗) �∈ {(IDi, mi, si)}k

1 .

In the stronger model of adaptive-ID security, the adversary can output a forgery
for any identity, for which he has never queried a prefix to the extraction oracle
before.

Experiment ExpSU-CMA-AdaptiveID
A,HIBS (n)

H ← H(1n); (msk, mpk) ← Kg(1n)
(ID∗, m∗, s∗) ← AE(msk,·),S(·,·),H(·)(mpk)
Let {(IDi, mi, si)}k

1 be the query-answer tuples of S;
Let {IDj}l

1 be the query-answer pairs of E.
Return 1 iff Vf(mpk, ID∗, s∗, m∗) = 1

and (ID∗, m∗, s∗) �∈ {(IDi, mi, si)}k
1

and {IDj}l
1 $ IDj �� ID∗.

HIBS is (t, qE, qS, qH, ε)-strongly unforgeable under chosen message and selective
(adaptive) identity attacks if there is no t-time adversary that succeeds with
probability ≥ ε after making ≤ qE extraction queries, ≤ qS signature oracle

188 M. Rückert

queries, and ≤ qH random oracle queries in the respective experiment. Again, we
leave out H and qH in the standard model.

In Section 4, we will provide instantiations secure against static message at-
tacks (SMA) and then use the following transformation to achieve CMA security.

From SMA to CMA. Krawczyk and Rabin [23] proposed Chameleon hashes to
be hash functions with a trapdoor and the following properties. 1) The function
C : D × E → R is chosen from a family C of Chameleon hashes along with
a secret trapdoor t. 2) In order to sample from the distribution (d, e, C(d)) ∈
D×E×R, we can do one of two things. Either we run C on the given document
d and a randomness e ∼ Δ(E) (efficiently sampleable), or we apply an inversion
algorithm e ← C−1

t (r, d) on a given image r ∈ R and a target document d ∈ D.
Thus, we obtain a randomness e such that C(d) = (e, r). It is important that
the resulting distributions are within negligible statistical distance. Note that
whenever we need the Chameleon hash to map to a certain range �= R, we
can compose it with an arbitrary collision resistant hash function. As for their
realization, Krawczyk and Rabin claim in [22] that Chameleon hash functions
exist if there are claw-free trapdoor permutations. Interestingly, they can be
easily implemented with the lattice-based trapdoor function in [16] as observed
in [12].

A helpful fact about Chameleon hash functions is that if they exist, then
there is a generic transformation from EU-SMA to EU-CMA signatures. This
was known since [23] and it is proven in [19]. We show that the transformation
also works for SU -SMA to SU -CMA in the full version [33]. Observe that it is
also applicable to selective-ID secure HIBS schemes as it only affects the way the
signature oracle is simulated for the challenge identity.

Lemma 1. SU-SMA implies SU-CMA if Chameleon hash functions exist.

2.2 Lattices

In this work, we deal only with full-rank q-ary lattices, i.e., lattices that represent
the kernel of the linear map x �→ Ax mod q for a prime modulus q and a matrix
A ∈ Z

n×m
q . These lattices are denoted with Λ⊥

q (A) := {v ∈ Z
m : Av ≡ 0

(mod q)}. As with all lattices of dimension m ≥ 2, they have infinitely many
bases. A basis of Λ⊥

q (A) is a matrix B ∈ Z
m×m, such that Λ(B) := {Bx :

x ∈ Z
m} is equal to Λ⊥

q (A). The quantity det(Λ) = |det(B)| (for any basis)
is a lattice constant. The main computational problem in q-ary lattices is the
“short integer solution” problem SIS. It is parameterized with positive integers
n, m = poly(n), q = poly(n), and a real norm bound ν and it is formulated as
an average-case problem: Given a uniformly random A ∈ Z

n×m
q , find a non-zero

v ∈ Λ⊥
q (A) with ‖v‖2 ≤ ν. Ajtai showed in [2] that this problem is at least as

hard as finding short vectors in all lattices of dimension n, i.e., solving a related
worst-case problem. A recent improvement to this reduction can be formulated
as follows.

Strongly Unforgeable Signatures and Hierarchical Identity-Based Signatures 189

Theorem 1 (Worst-case to Average-case Reduction [16] (informal)).
If there is a polynomial time algorithm that breaks SIS(n, m, q, ν) for q ≥ ν
ω(

√
n log(n)), ν = poly(n) with non-negligible probability, then there is a poly-

nomial time algorithm that finds short non-zero vectors, which are only a γ ≥
νÕ(

√
n) factor longer than the shortest vector, in all lattices of dimension n.

In cryptography, we typically hand over A, or a “bad” basis with long vectors,
as the public key and keep a “good” (short) basis as our secret. The length of a
basis is ‖B‖ := maxi=1,...,m ‖bi‖2. This principle goes back to Ajtai. The most
recent improvement for generating such a matrix A together with a particularly
short trapdoor T for SIS is due to Alwen and Peikert [5].

2.3 Bonsai Trees

The notion of “bonsai trees” on lattices is introduced in [12] in analogy to arbori-
culture. An arborist always starts with a certain amount of undirected, i.e., ran-
dom, natural growth that he cannot control. Then, he applies his tools and starts
cultivating individual branches to achieve the desired looks via directed growth.
The arborist is successful if the resulting tree still looks sufficiently natural to the
observer. Once cultivated, a branch can easily be extended to form more directed
growth without too much additional care. Instead of extending directed growth,
the arborist can also generate a randomized offstrings, which can be given to an-
other arborist that can easily cultivate them by extending growth. The offsprings
hide the first arborist’s work and the employed techniques. We formalize these
concepts in the context of lattices. A (binary) bonsai tree is generated out of
a root A� and branches A(b)

i ∈ Z
n×mi
q , b ∈ {0, 1}, i ≤ k ≤ poly(n), that are

statistically close to uniform. The entire tree is the set {A� ◦A(x1)
1 ◦ · · · ◦A(xk)

k :
x ∈ {0, 1}≤k}.
Proposition 1 (Directed Growth). Let δ > 0 be any fixed real constant and
let q ≥ 3 be odd. There is a polynomial time algorithm ExtLattice(A1, m2) that,
given uniformly random A ∈ Z

n×m1
q for any m1 ≥ (1 + δ)n log2(q) and poly(n)-

bounded m2 ≥ (4 + 2δ)n log2(q), outputs (A2 ∈ Z
n×m2
q ,S ∈ Z

m×m), where
m = m1 + m2, such that A = A1 ◦ A2 is within negligible statistical distance
of uniform; S is a basis of Λ⊥

q (A1 ◦ A2); ‖S‖ ≤ L = Cn log2(q) with over-

whelming probability; and
∥∥∥S̃∥∥∥ ≤ L̃ = 1+C

√
(1 + δ)n log2(n) ≤ 1+C

√
m1 with

overwhelming probability.

The proposition reflects the most recent result on lattice trapdoors from [4]. In
the following, we will use C = 20, δ = 1 for simplicity and assume that A2
is uniformly random instead of within negligible statistical distance from uni-
form. The resulting key sizes can be optimized by taking δ close to 0 instead.
This results in a less uniform distribution of A2 but it is still within distance
m2q

−δn/2 from uniform. The interpretation in terms of arboriculture is generat-
ing “directed growth” out of “undirected growth” because one starts with some
random growth A1 and cultivates a branch A1 ◦ A2 along with a trapdoor T,

190 M. Rückert

which is the arborist’s journal or a trace of his work. However, the observer
cannot distinguish undirected growth from directed growth.

An important observation is that knowing a trapdoor for A ∈ Z
n×m
q implies

knowing a trapdoor for all A′ ∈ Z
n×m′
q , m′ ≥ m, when A � A′. This is because

one can apply the trapdoor in dimension m and then pad the resulting vector
with zeros to solve SIS in dimension m′.

Proposition 2 (Extending Control). There is polynomial time algorithm
ExtBasis(S1,A = A1 ◦ A2) that takes a basis S of Λ⊥

q (A1) and a matrix A

with Z
n×m1
q $ A1 � A ∈ Z

n×(m1+m2)
q as input. If m1 ≥ 2n log2(q), it outputs a

basis S for Λ⊥
q (A) with

∥∥∥S̃∥∥∥ =
∥∥∥S̃1

∥∥∥.
Whenever trapdoor delegation is required, one cannot simply use extending con-
trol and hand over the resulting basis as it leaks information about the original
trapdoor. Here, we can use tree propagation to obtain a randomized offspring
with a new, random trapdoor.

Proposition 3 (Randomizing Control). On input a basis S of the lattice
Λ⊥

q (A) of dimension m and a Gaussian parameter s ≥
∥∥∥S̃∥∥∥ω(

√
log(n)), the

polynomial time algorithm RandBasis(S, s) outputs a basis S′ of Λ⊥
q (A) with∥∥∥S̃′

∥∥∥ ≤ s
√

m. The basis is independent of S in the sense that for any two

bases S0,S1 of Λ⊥
q (A) and s ≥ max{

∥∥∥S̃0

∥∥∥ ,
∥∥∥S̃1

∥∥∥}ω(
√

log(n)), RandBasis(S0, s)
is within negligible statistical distance of RandBasis(S1, s).

Estimating Secure Parameters. We could use the worst-case to average-case
reduction for selecting secure parameters but that might be too conservative as
the reduction is quite loose with respect to the ratio m/n = Ω(log(n)). The
observations of Gama and Nguyen in [15] may be more realistic. They assume
that lattice reduction algorithms find short lattice vectors v in lattices Λ of
dimension d with ‖v‖2 ≤ δd det(Λ)1/d for some δ > 0. This value δ is supposed to
“summarize” the capability of the employed lattice reduction algorithm. Nguyen
and Gama analyze random lattices from a certain distribution and find that
reaching δ < 1.01 in high dimensions is hard.

Since the distribution of lattices in the SIS problem is different, their conjec-
ture is not directly applicable. Furthermore, Micciancio and Regev describe an
attack that works best in a sub-lattice of the usual q-ary lattice Λ⊥

q (A). Assum-
ing an adversary with capability δ∗, they show that for given parameters n and
q, the best strategy of for the adversary is to attack a sub-lattice of dimension
d∗ =

√
n log(q)/ log(δ∗). In this dimension, the adversary finds vectors of Eu-

clidean length ν∗ = min{q, 22
√

n log(q) log(δ∗)} [31]. For our parameter choices, we
will always assume that the adversary is capable of reaching δ∗ = 1.01, but no
less. All schemes in Sections 3 and 4 are based on the hardness of SIS in q-ary
lattices of dimension m for a particular norm bound ν. Given this norm bound
and δ∗, we need to establish that ν∗ % ν, e.g., with a factor of 10 between both

Strongly Unforgeable Signatures and Hierarchical Identity-Based Signatures 191

sides. The implicit assumption is that lattice basis reduction algorithms behave
the same on random q-ary sub-lattices. Whether this heuristic is completely
sound, is still unknown.

3 Warm-Up — Constructions with Random Oracles

In this section, we recall strongly unforgeable GPV signatures as introduced in
[16]. Then, we show how to use GPV together with the Bonsai-tree concept to
build strongly unforgeable hierarchical identity-based signatures in the random
oracle model. The proposed scheme is also secure under adaptive-identity queries.

3.1 Strongly Unforgeable Signatures

Lattice-based strongly unforgeable signatures were first proposed by Gentry,
Peikert, and Vaikuntanathan in [16]. They introduce a family of preimage sam-
pleable functions GPV = (TrapGen, Eval, SamplePre) on lattices. Its parameters
q, m, L̃, s = ω(

√
log(n))L̃ only depend on the security parameter n as in Propo-

sition 1. We define the sets Dd := {x ∈ Z
m \ {0} : ‖x‖2 ≤ d} and R := Z

n
q .

The algorithm TrapGen(1n) outputs a public description A ∈ Z
n×m
q together

with a secret trapdoor T ∈ Z
m×m,

∥∥∥T̃∥∥∥ ≤ L̃. Evaluation of the function
fA : Z

m
q → R is performed by Eval(A,x) = Ax mod q. Finally, the inversion

algorithm SamplePre(T, s,y) samples from the set of preimages {x ∈ Ds
√

m :
fA(x) = y}. Preimages have a conditional min-entropy of ω(log(n)) and follow
a certain Gaussian distribution that can be efficiently sampled with SampleDom,
even without the trapdoor. By construction, the function compresses the input
and therefore admits collisions. Finding collisions in Dd, however, is at least as
hard as solving SIS(n, q, m, 2d).

Now, we can define DSigGPV accordingly. Let H be a family of random oracles
H : {0, 1}∗ → R = Z

n
q . The key generator simply forwards the output of TrapGen.

Signing a message m involves choosing r←${0, 1}n, computing y ← H(m, r), and
calling s ← SamplePre(T, s,y). A signature (s, r) for m verifies if s ∈ Ds

√
m and

fA(s) = H(m, r).

Security. Notice that the signature oracle can be efficiently simulated without
the trapdoor by standard random oracle techniques. A forgery (m∗, s∗, r∗) in
the SU-CMA experiment implies a collision (s∗, si) with fA(si) = fA(s∗) =
H(m∗, r∗), where si was chosen during the random oracle simulation. By the
conditional min-entropy, we know that si �= s∗ with probability 1 − n−ω(1).
Let TTrapGen(n), TSampleDom(n), and TEval(n) be the cost functions for trapdoor
generation, sampling, and trapdoor evaluation. In addition, let TList(n) be the
cost function for list processing in the simulation of the random oracle.

Theorem 2 (Strong Unforgeability [16]). For the above choice of parame-
ters, DSigGPV is (t, qS, qH, ε)-strongly unforgeable in the random oracle model if
SIS(n, m, q, 2s

√
m) is (t + qSTList + qH(TSampleDom(n) + TEval(n) + TList(n)), (ε −

q2
S/2n)(1 − n−ω(1)))-hard.

192 M. Rückert

Via Theorem 1, a corollary states that a successful attacker can find the shortest
vector in all lattices of dimension n up to an approximation factor γ ≥ L̃Õ(n) =
Õ(n

√
n).

Secure Parameters. We estimate secure paramters for DSigGPV as described in
Section 2. For a given security parameter n, we choose the remaining parameters
according to Proposition 1 and a prime q ≈ n4.5. For n ≥ 197, we obtain the
required hardness of the underlying SIS problem.

3.2 Strongly Unforgeable Hierarchical ID-Based Signatures

Using the signature scheme from the previous section, we can can directly apply
the Bonsai-tree concept to obtain a hierarchical identity-based signature scheme
HIBSGPV in the random oracle model. The idea is that, based on a given ID, the
secret key extraction algorithm Extract first uses ExtBasis to extend the matrix
A� to AID and the secret master key T� to TID such that AIDTID ≡ 0. Then,
in order to protect the master key, it uses RandBasis and outputs a randomized
trapdoor SID. The individual signers use DSigGPV and we have an identity-based
signature scheme that is strongly unforgeable. This concept can be transfered to
the hierarchical setting, where every signer may act as a key extraction entity.
Note that the number of levels in the hierarchy affects the tightness of the
security proof as these randomized trapdoors are slightly worse than the master
trapdoor.

We assume that all identities on all levels have length κ. The maximum num-
ber of levels, including the master-key, is
+1. We denote the basis length on level
k with L̃k and the corresponding Gaussian parameter with sk = ω(

√
log(n))L̃k.

Master-key Generation. Let q, L̃, m1, m2 be chosen according to Proposition
1 and let d = L̃ω(

√
log(n))
+1

√
m1 + (
κ + 1)m2

+1
. These parameters may

be excluded from the public key as they are the same for all users. Generate
a description A� ∈ Z

n×m1+m2
q of the master lattice Λ⊥

q (A�) together with

a trapdoor S� such that
∥∥∥S̃∥∥∥ ≤ L̃ with ExtLattice. Then, choose random

matrices 〈A〉 :=
{

(A(0)
i ,A(1)

i)
}
κ

1
from Z

n×m2
q . The secret is S� and the

public key is (A�, 〈A〉).
Key Extraction. On input S�

ID� , ID with ID = ID� ◦ ID′, |ID| = l ≤
κ, ID′ =
ID′

1, . . . , ID
′
κ ∈ {0, 1}κ recursively define the matrix AID := AID�◦A(ID′

1)
l+1 ◦· · ·◦

A(ID′
κ)

l+κ with A∅ := A�, and call TID ← ExtBasis(S�
ID� ,AID). Then, let s =∥∥∥T̃ID

∥∥∥ω(
√

log(n)) and output the randomized basis SID ← RandBasis(SID, s)

with
∥∥∥S̃ID

∥∥∥ ≤ s
√

dim(SID). For inappropriate inputs, return ⊥.
Signing. On input a message m ∈ {0, 1}∗ and the trapdoor SID, the signer with

identity ID on level k chooses r←${0, 1}n and computes s ← SamplePre(SID,
sk, H(m, r, ID)). It outputs (s, r).

Strongly Unforgeable Signatures and Hierarchical Identity-Based Signatures 193

Verification. On input (A�, 〈A〉), an identity ID, a signature (s, r), and a
message m, the algorithm outputs 1 if and only if s ∈ Dd and fAID

(s) =
H(m, r, ID).

Recall that SamplePre outputs a vector of length at most s
√

m with s =
ω(

√
log(n))L̃ when called with a trapdoor of length at most L̃ in dimension

m. The maximum dimension in the scheme is m1 + (
κ + 1)m2 on level
. The
maximum basis length on level i is L̃i = si−1

√
m1 + (
κ + 1)m2 with L̃0 := L̃.

The Gaussian parameter for presampling on level i is si = ω(
√

log(n))L̃i with

s0 = s. This recurrence yields L̃
 = L̃ω(
√

log(n))

√

m1 + (
κ + 1)m2

. Signing

with such a basis yields signatures of Euclidean length at most ω(
√

log(n))L̃
√
m1 + (
κ + 1)m2 = d. Thus, such signatures are accepted by the verifier. The

security guarantees scale with the depth of the hierarchy as the norm bound
becomes looser for increasing
.

Security. We prove that HIBSGPV is secure under selective identity attacks. The
second theorem shows that it is even secure under adaptive identity attacks,
but with a looser reduction. The latter reduction, however, is not as loose as
the generic method of guessing the right identity with probability 2−κ [8]. Let
Tfunc(x) be the cost function for function func and let TList(n) be the cost function
for list processing for simulating a random oracle.

Theorem 3 (Selective Security). HIBSGPV is (t, qS, qH, ε)-strongly unforge-
able under selective identity attacks in the random oracle model if SIS is (t +
2TExtLattice + qETExtract + (qH + qS)TH, (1 − n−ω(1))(ε − q2

S/2n))-hard with norm

bound ν = 2L̃ω(
√

log(n))
+1
√

m1 + (
κ + 1)m2

+1

.

Notice the the GPV signature scheme can be efficiently simulated by a standard
random oracle technique. Moreoever, the adversary will make ≤ qE extraction
queries that need to be answered. We prepare for this by “knowing” a trapdoor
for a prefix of all but the challenge identity. Upon an extraction query, this
trapdoor can be extended to a trapdoor for the requested identity. The external
challenge, the input A from the SIS problem, is embedded in the public key
of the challenge identity. Via random oracle techniques, the reduction knows a
valid signature for the output message of the adversary. However, the adversary
outputs a different signature with probability 1−n−ω(1) by the conditional min-
entropy of the set of possible signature. The proof is in the full version [33].

Theorem 4 (AdaptiveSecurity).HIBSGPV can bemade (t, qS, qH, qG, ε)-strong-
ly unforgeable under adaptive identity attacks in the random oracle model if it is
(t, qS, qH, qG, ε/qG)-strongly unforgeable under selective identity attacks.

Here, we only give the idea of the conversion. We need to change the way the
identities are mapped to the branches of the Bonsai tree. Instead of directly using
the binary representation of ID or its hash value, we apply a random oracle G to
the individual substrings of length κ first. Thus, every ID is mapped to a random
position in the tree. Assume that the adversary makes qG queries to this random

194 M. Rückert

oracle, we can prepare a randomly selected path in the tree with “undirected
growth” and program the random oracle to map one of the qG queries to this
path. Therefore, the success probability of the reduction degrades with a factor
1/qG instead of the generic 1/2κ.

The worst-case to average-case reduction guarantees security if finding short-
est vectors up to an approximation factor γ ≥ 2dÕ(

√
n) = Õ(

√
n

+3) is hard in
the worst case in dimension n.

Secure Parameters. We assume identites of length κ = 40 bits, which should be
sufficient in practical scenarios. The parameter q is crucial as it greatly influences
the hardness of SIS and the worst-case to average-case reduction only holds for
large enough q. The scheme’s efficiency greatly depends on the number
 + 1 of
layers in the hierarchy. For larger
, we are forced to increase q. Possible secure
choices for (
, n, q) are (1, 467, n6), (2, 692, n8), (3, 1011, n9), or (4, 1258, n11).

4 Constructions without Random Oracles

In the following, we propose our main constructions. We start with a strongly un-
forgeable signature scheme and then propose a strongly unforgeable hierarchical
identity-based signature scheme that is secure under selective identity attacks.
Both constructions are secure in the standard model.

In the following, we let H : {0, 1}∗ → {0, 1}λ be a collision-resistant hash
function that maps into the message space. Finding collisions in polynomial
time is only possible with probability ≤ c.

4.1 Strongly Unforgeable Signatures

We propose a variant of the EU-CMA signature scheme [12]. The authors first
create an EU-SMA secure signature scheme in the standard model and then
apply a generic conversion from EU-SMA to EU-CMA, using a Chameleon hash
function. We follow this line of thought and construct a signature scheme that is
even secure in the SU-CMA sense. We achieve this by computing the signatures
in a different way, compared to [12] scheme. In their scheme, there is a matrix Am

and a corresponding lattice Λ⊥
q (Am) for which the signer can derive a trapdoor.

The matrix Am is formed as in Section 3.2. The signatures in their work are
short lattice vectors in Λ⊥

q (Am), i.e., short vectors s �= 0 such that Ams ≡ 0.
In our scheme, we fix a random y ∈ Z

n
q and let the signer solve Ams ≡ y

instead. The overhead is a simple linear algebra step (cf. [16]) that can done
once during key generation. Surprisingly, this slight change enables us to prove
strong unforgeability. It is important to note that, unlike in [12], we need to
be able to answer all signature queries in the security proof, i.e., even for the
message m∗ that the adversary outputs a forgery for.

First of all, we demonstrate that the scheme in [12] is not strongly unforgeable
by showing an attack that only works in the SU-SMA model and not in EU-
SMA. The adversary in the SU-SMA experiment queries its signature oracle

Strongly Unforgeable Signatures and Hierarchical Identity-Based Signatures 195

with a random message m∗ and receives a signature s such that s ∈ D(s
√

m)
and Ams ≡ 0. The adversary simply returns the valid forgery s∗ ← −s.

We specify DSigsu-sma, where one may interpret the randomness-message pair
as an identity.

Key Generation. Let q, L̃, m1, m2 be chosen according to Proposition 1 and
let s = L̃ω(

√
log(n)) and d = s

√
m1 + (λ + 1)m2. These parameters may

be excluded from the public key as they are the same for all users. Use
ExtLattice to generate a description A� ∈ Z

n×m1+m2
q of the master lattice

Λ⊥
q (A�) together with a trapdoor S� such that

∥∥∥S̃∥∥∥ ≤ L̃. Furthermore,

generate a set 〈B〉 :=
{

(B(0)
i ,B(1)

i)
}λ

1
random matrices in Z

n×m2
q . Finally,

choose y←$Z
n
q and output the secret key S� and the public key (A�, 〈B〉,y).

Signing. On input a message m ∈ {0, 1}∗ and the secret trapdoor S�, the
signer with identity chooses r←${0, 1}n and computes h ← H(m, r), s ←
SamplePre(Sh, s,y). The trapdoor Sh is formed via ExtBasis(S�,Ah), where
Ah := A� ◦ B(h1)

1 ◦ · · · ◦ B(hλ)
λ . It outputs (s, r).

Verification. On input (A�, 〈B〉,y), a signature (s, r), and a message m, the
algorithm outputs 1 if and only if s ∈ Dd and AH(m,r)(s) = y.

The scheme is complete because all signatures are generated using a basis of
length L̃ and with the Gaussian parameter s = ω(

√
log(n))L̃. The total dimen-

sion is m = m1 + (λ + 1)m2. Thus, SamplePre outputs signatures of length at
most s

√
m1 + (λ + 1)m2 = d that are accepted by Vf. In order to get the full

(SU-CMA) scheme, we wrap the message with a Chameleon hash function.

Security. We prove that DSigsu-sma is SU-SMA secure and then apply the black-
box conversion in Lemma 1. Let Tfunc(n) be the cost function for the function
func and let TList(n) be the cost function for list processing, which is explained
in the analysis below.

Theorem 5 (Strong Unforgeability). DSigsu-sma is (t, ε) strongly unforge-
able under static message attacks (SU-SMA) if SIS with ν = 2L̃ω(

√
log(n))√

m1 + (λ + 1)m2 is (t + λqSTList + TExtLattice + qS(TSamplePre + TExtBasis), 1/2(1−
n−ω(1))(ε − q2

S/2n − c)/(λqS))-hard.

The idea is to separate the adversaries into two classes. One works in the EU-
SMA sense and the other exploits the additional freedom of the SU-SMA setting.
The reduction guesses the type of adversary before handing over the public key.
If it expects an EU-SMA forger, the reduction knows x with A�x ≡ y and
forces the forger to solve an inhomogeneous SIS, for which the reduction does
not know the trapdoor. Together with x, it can solve the corresponding SIS with
overwhelming probability. For the SU-SMA forger, the reduction has to guess
the index i∗ of the signature query that will be recycled in the forgery with
probability 1/qS. There, it plants an x with AH(mi∗ ,ri∗)x ≡ y. Again, with the
adversary’s help, the reduction solves SIS with overwhelming probability, while
being able to answer a single signature query for mi∗ with x. The key extraction

196 M. Rückert

queries are answered as described in Section 3.2. The full proof is in the full
version [33]

Therefore, DSigsu-sma is secure if finding shortest vectors in dimension n, within
factors γ ≥ Õ(n

√
n), is hard in the worst case. Via Lemma 1, we immediately

get similar results for SU-CMA.

Secure Parameters. The underlying problem is SIS with ν = 2ω(
√

log(n))L̃√
m1 + (λ + 1)m2. Let λ = 160 and consider log(n) = ω(

√
log(n)). As before,

q is chosen such that the worst-case to average-case reduction holds (q ≈ n5).
Now, for n ≥ 247, we obtain the required complexity of SIS.

4.2 Strongly Unforgeable Hierarchical ID-Based Signatures

By adding more layers to the hierarchy in Section 4.1, we construct a hierarchical
identity-based signature scheme HIBSsu-sma that is strongly unforgeable. The
identities are handled as in Section 3.2 but then we use an additional Bonsai
tree to sign.

The length of each sub-identity on each level is κ, the number of levels is
,
and messages have λ bits. L̃k is the basis length on level k. The corresponding
Gaussian parameter is sk := ω(

√
log(n))L̃k.

Master-key Generation. Let q, L̃, m1, m2 be chosen according to Proposition
1 and let d = L̃ω(

√
log(n))
+1

√
m1 + (
κ + λ + 1)m2

+1
. These parameters

may be excluded from the public key as they are the same for all users. Use
ExtLattice to generate a description A� ∈ Z

n×m1+m2
q of the master lattice

Λ⊥
q (A�) together with a trapdoor S� such that

∥∥∥T̃∥∥∥ ≤ L̃. Furthermore, gen-

erate the sets 〈A〉 :=
{

(A(0)
i ,A(1)

i)
}
κ

1
, 〈B〉 :=

{
(B(0)

i ,B(1)
i)

}λ

1
of random

matrices in Z
n×m2
q . Finally, choose y←$Z

n
q and output the secret key S� and

the public key (A�, 〈A〉, 〈B〉,y).
Key Extraction. On input S�

ID� , ID with ID = ID� ◦ ID′, |ID| = l ≤
κ, ID′ =
ID′

1, . . . , ID
′
κ ∈ {0, 1}κ recursively define the matrix AID := AID�◦A(ID′

1)
l+1 ◦· · ·◦

A(ID′
κ)

l+κ with A∅ := A�, and call TID ← ExtBasis(S�
ID� ,AID). Then, let s =∥∥∥T̃∥∥∥ω(

√
log(n)) and output the randomized basis SID ← RandBasis(TID, s)

with
∥∥∥S̃ID

∥∥∥ ≤ s
√

dim(TID). For inappropriate inputs, return ⊥.
Signing. On input a message m ∈ {0, 1}∗ and a secret trapdoor SID, the signer

with identity ID on level k chooses r←${0, 1}n and computes μ ← H(m, r).
Now μ is used to form AID◦μ := AID ◦ B(μ1)

1 ◦ · · · ◦ B(μλ)
λ . Then, the signer

extends its secret basis by calling SID◦μ ← ExtBasis(SID,AID◦μ). Finally, it
outputs s ← SamplePre(SID◦μ, sk,y) and r.

Verification. On input (A�, 〈A〉, 〈B〉,y), a signature (s, r), and a message m,
the algorithm outputs 1 if and only if s ∈ Dd and AID◦H(m,r)(s) = y.

Notice that the scheme is complete by a similar argument as in Section 3.2. The
maximumtrapdoor length (level
) is L̃
 = L̃ω(

√
log(n))

√
m1 + (
κ + λ + 1)m2

.

Strongly Unforgeable Signatures and Hierarchical Identity-Based Signatures 197

This basis is extended once before signing, which is length-preserving. Then, sign-
ing is done via SamplePre that outputs a vector of length at most ω(

√
log(n))L̃
√

m1 + (
κ + λ + 1)m2 ≤ d. Thus, the verification algorithm accepts.

Unforgeability. We prove that HIBSsu-sma is SU-SMA secure under a selective-
identity attack. Then, we can apply the transform in Lemma 1 to make it SU-
CMA secure. For the transformation to be identity-based as well, the Chameleon
hash function needs to be published as part of mpk.

Theorem 6 (Selective Security). HIBSsu-sma is (t, qS, ε) SU-SMA secure un-
der selective identity attacks if SIS is (t + 3TExtLattice + qETExtract + λqSTList +
qS(TSamplePre + TExtBasis), 1/2(1 − n−ω(1))(ε − q2

S/2n − c)/(λqS))-hard with norm

bound ν = 2L̃ω(
√

log(n))
+1
√

m1 + (
κ + λ + 1)m2

+1

.

Proof (Sketch). We assume that there is a successful adversary A against un-
forgeability of HIBSsu-sma and construct a reduction B that solves SIS. The setup
is as in Theorem 3 in order to be able to simulate the key extraction queries
for all identities that are not a prefix of the challenge identity I. However, the
input A of the reduction needs to be wider, namely in Z

m1+(
κ+λ+1)m2
q in or-

der to simulate the static signature queries for identity I. Signature queries for
identities I ′ �= I can be simulated with a known trapdoor. The overhead of the
reduction is 2TExtLattice + qETExtract for setting up and running the extraction ora-
cle. The overhead for signing is λqSTList +TExtLattice + qS(TSamplePre +TExtBasis). As
in Theorem 5, the reduction sets y such that it knows a preimage x either for
EU-SMA or for SU-SMA forgers. In both cases, the reduction solves SIS. The
probability that the adversary outputs a signature that yields a solution to SIS
is as in Theorem 5 because we use the same signature scheme here and we can
prepare for all extraction queries.

The full proof is a combination of the techniques that are used in Theorems
3 and 5. ��
In consequence, HIBSsu-sma is secure as long as finding shortest lattice vectors up
to approximation factors γ ≥ 2dÕ(

√
n) = Õ(n

√
n

+3) is hard in the worst case
in dimension n.

Secure Parameters. We let κ = 40 and λ = 160 and estimate secure parame-
ters for
 = 1, 2, 3, 4, i.e., for 2, 3, 4, 5 levels. For (
, n, q), we obtain (1, 478, n7),
(2, 730, n9), (3, 1082, n10), or (4, 1362, n12).

5 Conclusions

We have shown three results. As a warm-up, we have constructed an adaptive-
ID secure, strongly unforgeable hierarchical identity-based signature scheme in
the random oracle model. Then, we have shown the first lattice-based strongly
unforgeable signature scheme without Merkle trees [29] in the standard model.
And, finally, we provide the first strongly unforgeable hierarchical identity-based

198 M. Rückert

signatures scheme in the standard model from lattices. For each construction,
we have proposed a set of secure parameters based on today’s knowledge about
lattice reduction algorithms. Another benefit is that all of our constructions can
be transferred to ideal lattices that admit short keys and efficient operations.
Moreover, we can use mild, worst-case hardness assumptions in lattices as the
basis of security in all constructions.

Acknowledgments

The author would like to thank Benôıt Libert for a helpful discussion on HIBS.
He also thanks Pierre-Louis Cayrel and Dominique Schröder for reviewing parts
of this work. Furthermore, the author thanks the anonymous reviewers of PQC
2010 for their constructive comments. The author is indebted to one of the
reviewers, who suggested a simplification for demonstrating that the scheme
in [12] is not SU-CMA secure. This part of Section 4 is now much easier to
understand.

References

1. Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard
model (July 2009) (manuscript), http://www.cs.stanford.edu/~xb/ab09/

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC, pp. 99–108. ACM, New York (1996)

3. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: STOC, pp. 601–610. ACM, New York (2001)

4. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Cryptol-
ogy ePrint Archive, Report 2008/521 (2008), http://eprint.iacr.org/

5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: Al-
bers, S., Marion, J.-Y. (eds.) STACS. Dagstuhl Seminar Proceedings, vol. 09001,
pp. 75–86. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany Inter-
nationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany (2009)

6. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and
fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

7. Bernstein, D.J., Buchmann, J.A., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2008)

8. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

9. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

10. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on compu-
tational diffie-hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

http://www.cs.stanford.edu/~xb/ab09/
http://eprint.iacr.org/

Strongly Unforgeable Signatures and Hierarchical Identity-Based Signatures 199

11. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

12. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: EUROCRYPT 2010 (to appear, 2010)

13. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Com-
put. 30(2), 391–437 (2000)

14. Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-
based signatures with additional properties. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006)

15. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) STOC, pp. 197–
206. ACM, New York (2008)

17. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

18. Halevi, S. (ed.): CRYPTO 2009. LNCS, vol. 5677. Springer, Heidelberg (2009)
19. Hohenberger, S., Waters, B.: Short and stateless signatures from the rsa assump-

tion. In: Halevi (ed.) [18], pp. 654–670.
20. Kiltz, E., Mityagin, A., Panjwani, S., Raghavan, B.: Append-only signatures.

In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 434–445. Springer, Heidelberg (2005)

21. Kiltz, E., Neven, G.: Identity-based signatures. In: Joye, M., Neven, G. (eds.) Cryp-
tology and Information Security Series, vol. 2, pp. 31–44. IOS Press, Amsterdam
(2008)

22. Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. Cryptology ePrint
Archive, Report 1998/010 (1998), http://eprint.iacr.org/

23. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS. The Internet Society
(2000)

24. Leurent, G., Nguyen, P.Q.: How risky is the random-oracle model? In: Halevi (ed.)
[18], pp. 445–464

25. Libert, B., Quisquater, J.-J.: The exact security of an identity based signa-
ture and its applications. Cryptology ePrint Archive, Report 2004/102 (2004),
http://eprint.iacr.org/

26. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui (ed.) [28], pp. 598–616

27. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008)

28. Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009)
29. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.

LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)
30. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-

way functions. Computational Complexity 16(4), 365–411 (2007); Prelim. in
FOCS 2002 (2002)

31. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, et al. (eds.)
[7], pp. 147–191

32. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006)

http://eprint.iacr.org/
http://eprint.iacr.org/

200 M. Rückert

33. Rückert, M.: Strongly unforgeable signatures and hierarchical identity-based sig-
natures from lattices without random oracles. Cryptology ePrint Archive, Report
2010/070 (2010), http://eprint.iacr.org/

34. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

35. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption
based on ideal lattices. In: Matsui (ed.) [28], pp. 617–635

http://eprint.iacr.org/

Proposal of a Signature Scheme Based on
STS Trapdoor

Shigeo Tsujii1, Masahito Gotaishi1, Kohtaro Tadaki1,2, and Ryo Fujita1

1 Research & Development Initiative, Chuo University
2 JST CREST

1–13–27 Kasuga, Bunkyo-ku, Tokyo 112–8551, Japan

Abstract. A New digital signature scheme based on Stepwise Trian-
gular Scheme (STS) is proposed. The proposed trapdoor has resolved
the vulnerability of STS and secure against both Gröbner Bases and
Rank Attacks. In addition, as a basic trapdoor, it is more efficient than
the existing systems. With the efficient implementation, the Multivariate
Public Key Cryptosystems (MPKC) signature public key has the signa-
ture longer than the message by less than 25 %, for example.

Keywords: public key cryptosystem, multivariate polynomial, multi-
variate public key cryptosystem, stepwise triangular scheme, digital
signature.

1 Introduction

Various kinds of Multivariate Public Key Cryptosystem (MPKC) are actively
developed worldwide. Like traditional cryptosystems such as RSA or ElGamal,
MPKCs are used both for encryption and signature. Historically most of them
are based on either of the two basic trapdoors:

(i) MI-HFE Trapdoor (Matsumoto, Imai, Patarin)
The development of the first MPKC in the world had been launched around
1983 by Matsumoto and Imai [24]. The new cryptosystem, which is widely
known as “Matsumoto-Imai cryptosystem” (MI), was proposed in EURO-
CRYPT in 1988 [25]. MI was successfully cryptanalyzed by Patarin [27].
Patarin has extended the idea of MI further and proposed Hidden Field
Equation (HFE) cryptosystem in 1996 [28]. Both MI and HFE are applied
to signature schemes, resulting in SFLASH and QUARTZ [7,31]. Although
SFLASH was accepted as one of the final selections for the NESSIE, it was
cryptanalyzed by Shamir et al. [14] in 2007. QUARTZ was one of the can-
didates for short digital signatures of NESSIE, but it consumes so much
memory that it is difficult to implement in a practical system.

(ii) STS Trapdoor (Tsujii, et al. Shamir, Kasahara, et al.)
STS trapdoor was proposed by the group in Tokyo Institute of Technology
led by Tsujii in 1985 [33]. Its initial scheme, which was named “Sequential
Solution Method” [34], was cryptanalyzed by Kaneko, et al. in 1987 [18].

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 201–217, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

202 S. Tsujii et al.

Table 1. Taxonomy of MPKC

Basic Scheme Encryption Signature
MI- MI Scheme A or C∗ [25] SFLASH [7]
HFE Hidden Field Equation [28] QUARTZ [31]

�-IC [11] �-IC− [11]
Square [4] Square-Vinegar [1]

STS Sequential Solution Method [34] Birational
[17,42] Permutation [32,19]

TTM [26] TTS [3,43]
RSE [20], RSSE [21] Our Proposal
Tractable Rational Map [39], TRMS [40]
MFE [41]

UOV Unbalanced
None Oil and Vinegar [23],

Rainbow [10]

Tsujii et al. proposed the improved version in 1989 [35]. While the above
cryptosystems have been proposed in Japan for encryption, Shamir proposed
the signature scheme based on the same trapdoor, with its linear polynomi-
als hidden, in CRYPTO 1993 [32]. His signature was also cryptanalyzed by
Coppersmith et al. [5], with the attack similar to the Rank Attack, which
is described later in this paper. 1989 version of Tsujii’s cryptosystem, which
was translated to English by Tadaki, et al. and published on the Cryptology
ePrint Archive [36] in 2004, was cryptanalyzed by Ding et al. in PQCrypto
2008 [12].
Afterwards Kasahara et al. actively published various schemes including
RSE, generalizing the concept of Sequential Solution Method [20,21]. Moh et
al. proposed their scheme utilizing the Sequential Solution Method [26,39,41].
When Wolf, et al. attacked Kasahara’s scheme with Rank Attack, they spec-
ified the family of the cryptosystems which Kasahara’s group proposed as
“Stepwise Triangular System” (STS) [42]. Here the family of MPKCs based
on the trapdoor of Sequential Solution Method is called “STS scheme” in
this paper.

Although both MI-HFE and STS have been studied for long time, it would
safely be said that the application of STS to signatures is not so thoroughly
discussed yet [3,43,40,19] compared with the MI-HFE. On the other hand, one
of the MPKCs exclusively for signature is UOV (Unbalanced Oil and Vinegar)
scheme, which was proposed in 1999 and also well-known worldwide [29,23]. The
current situation is illustrated in the Table 1.

We propose a new signature scheme based on STS. Random variables are
included in each step according to the number of variables. All of the resulting
polynomials have the same number of variables and therefore every public key
polynomial has the same rank, regardless of the step (refer to Figure 4 and
formula (1)). The resulting system would become secure against both Gröbner

Proposal of a Signature Scheme Based on STS Trapdoor 203

bases and Rank attack. We have presented the idea of applying the concept to
encryption system [38][37]. Here we propose a signature scheme. As explained
in the subsequent sections, the signature scheme which we propose here has the
structure entirely different from STS, although it is based on STS scheme. Our
scheme would be specified as another basic trapdoor for signatures.

2 Preliminaries

2.1 General Design of MPKC

In general, MPKCs are structured as shown in Figure 1 and Figure 2.

x ∈ Fq
n

Plaintext

�z = S(x)
S: Secret Key

� z ∈ Fq
n �w = G(z)

G: Secret Key

� w ∈ Fq
m �y = T (w)

T : Secret Key

�
�

E(x) = T (G(S(x))): Public Key

y ∈ Fq
m

Ciphertext

Fig. 1. Multivariate Public Key Cryptosystem (Encryption Scheme)

x ∈ Fq
n

Signature

�z = S(x)
S: Secret Key

� z ∈ Fq
n �w = G(z)

G: Secret Key

� w ∈ Fq
m �y = T (w)

T : Secret Key

�
�

E(x) = T (G(S(x))): Public Key

y ∈ Fq
m

Message

Fig. 2. Multivariate Public Key Cryptosystem (Signature Scheme)

Figure 1 shows the case of encryption, Figure 2 the signature. The plaintext
variable vector is transformed to intermediate variable vector by the initial affine
transformation S in the encryption scheme. On the other hand, in signature
schemes, it is the message variable vector that is transformed. Subsequently,
the central map part transforms the intermediate vector with the system of
polynomials (usually quadratic) which has some trapdoor structure. Finally,
intermediate polynomial vector is transformed by the affine transformation T to
form the polynomial vector. The resulting polynomial vector is the public key.

2.2 Summary of STS Scheme and Its Security

Sequential Solution Method [34] is a cryptosystem for encryption. The equation
system obtained by inverting the affine transformation is shown in Figure 3,

204 S. Tsujii et al.

w1 = g1(v1, v2, . . . , vk−1, vk)
w2 = g2(v1, v2, . . . , vk−1)
...

wk−1 = gk−1(v1, v2)
wk = gk(v1)

Fig. 3. Non-linear Transformations in the Sequential Solution Method

where the last polynomial is univariate. And the number of variables increases
as the sequential number of the polynomial decreases. When the i variables up
to vi are obtained by solving the n-th to (n − i + 1)-th equation, the (n − i)-th
equation becomes univariate by substituting the variables up to vi with solution.
The system is thus solved by solving the sequence of univariate equations one by
one, as shown in Figure 3. Random Singular Simultaneous Equation (R(S)SE)
cryptosystem [20][21] proposed by Kasahara et al. is a system where the equation
is solved by solving each r-variate determined equation system, instead of the
univariate equation. Kasahara et al. published various encryption system for
the case of r = 4 and r = 5. In the case of r = 4, the legitimate receiver solves
the 4-variate determined random equation in the L-th step. (L−1)-th step has 4
polynomials with 8 variables. Among them, 4 variables are obtained by solving
the 4-variate determined system of equation in the L-th step. In this way, the
overall system is solved by solving the subsystems of equation step by step. It
should be noted that both RSSE, one of the variants of STS scheme, and MI are
bijections, while the majority of MPKCs are not.
The STS Scheme has 2 vulnerabilities:

(i) Vulnerability to the Gröbner Bases Attack [6,15]
It is possible to solve multivariate algebraic equation systems by comput-
ing the Gröbner bases of the ideal generated by the public key. This is the
Gröbner bases attack, which successfully cryptanalyzed various MPKCs in-
cluding HFE [15]. According to the ideal theory, the affine transformation,
which seems to effectively disguise the structure of the central map, does not
influence the complexity of computing Gröbner bases. The structure of the
STS polynomials in the central map is vulnerable to Gröbner bases algorithm
and easily computed. According to our experiments, the time complexity of
computing Gröbner bases of the STS scheme is roughly the same as MI
scheme.

(ii) Vulnerability to the Rank Attack [17,42]
Since public key and central map polynomials of MPKCs are quadratic,
Since elements of the 1st layer have n variables, In the STS scheme where
r is 4, the linear space spanned by the central map polynomials has 4 lin-
early independent polynomials with the rank less than 4. Likewise, it has
8 polynomials with the rank up to 8. If the public key is 100-variate deter-
mined polynomial system, the linear space spanned by the polynomials has
25 subspaces with the dimension 4.

Proposal of a Signature Scheme Based on STS Trapdoor 205

The central map polynomial vector is hidden by the affine transformation
T . However, it is possible to compute a transformation equivalent for the
inverse transformation T−1. If it is found, low-rank central equations, which
are easy to solve, are computed from the public key [17,42]. Therefore it
should be possible to compute the bases of the linear space equivalent for the
central map vectors. Although the effectiveness of the Rank Attack should
be discussed more in detail, we have to consider the countermeasure against
Rank Attack in designing MPKCs. It has been pointed out that STS scheme
is also vulnerable to Rank Attack.

3 Enhanced STS Scheme

3.1 The Key Idea

The vulnerability of the STS Scheme to Rank Attack is caused by the difference
of rank among each step. On the other hand, all polynomials in the top steps of
STS are random and with high rank. Therefore if two independent STS schemes
are symmetrically combined together, this vulnerability would be corrected. One
of the systems increases the number of variables by r from the initial r variables
and the other decreases by r from the initial m. If a new central map is created
by linearly combining the elements of each system in the same step, the rank
of all elements in the central map becomes the same. Consequent cryptosystem
should be secure both against Gröbner Bases and Rank Attack. The concept of
the structure is illustrated in Figure 5.

The purpose of Figure 5 is to describe the essentials of our idea and therefore
we prioritized the understandability over the preciseness, i.e. the definition and
description of u, v is not accurate. Precise definition of polynomials and variables
are provided in the next subsection.

The vulnerability is resolved by
combining two symmetric STS schemes.
The consequent system does not have
difference of ranks and therefore secure
against both Gröbner and Rank attacks.

Conventional STS is vulnerable because
of the difference of the rank

Fig. 4. Basic Idea of Enhanced STS

206 S. Tsujii et al.

y = T p(u, v)

⇑Central Map

Structure of
Enhanced STS

S x

Fig. 5. Structure of Enhanced STS

3.2 Enhanced STS Trapdoor

Enhanced STS Signature Scheme is described as follows:
u := (u1, . . . , um) and v := (v1, . . . , vm−r) are sets of variables. The number of
the steps L is equal to m/r, hence m must be divisible by r. Let the polynomial
vectors p ∈ F q[u, v]m be a polynomial vector described in the formula (1).
The length of the variable x (signature length) is n(= 2m − r). Polynomials in
the step 1 of p include r variables u1, . . . , ur ∈ u and all variables of v, with
the total number of variables m. The variables of u increase by r as the step
proceeds, and so many variables of v decrease, thereby keeping the total number
of variables included in each polynomial at m. Hence the polynomials in the last
step L := m/r have all variables of u and no variable of v.

Step 1

⎧⎪⎨⎪⎩
p1(u1, . . . , ur, v1, . . . , vm−r)

...
pr(u1, . . . , ur, v1, . . . , vm−r)

...

Step i

⎧⎪⎨⎪⎩
p(i−1)r+1(u1, . . . , uir, v(i−1)r+1, . . . , vm−r)

...
p(i−1)r+r(u1, . . . , uir, v(i−1)r+1, . . . , vm−r)

...

Step L − 1

⎧⎪⎨⎪⎩
p(L−2)r+1(u1, . . . , um−r, vm−2r+1, . . . , vm−r)

...
p(L−2)r+r(u1, . . . , um−r, vm−2r+1, . . . , vm−r)

Step L

⎧⎪⎨⎪⎩
p(L−1)r+1(u1, . . . , um)

...
p(L−1)r+r(u1, . . . , um)

(1)

Proposal of a Signature Scheme Based on STS Trapdoor 207

All polynomials of p have the rank m, but when constant value c := (c1, . . . , cm−r)
are assigned to v, the consequent polynomial vector p′ = p(u, c) has STS struc-
ture (formula (2)).

Step 1

⎧⎪⎨⎪⎩
p′1(u1, . . . , ur)

...
p′r(u1, . . . , ur)

...

Step i

⎧⎪⎨⎪⎩
p′(i−1)r+1(u1, . . . , uir)

...
p′(i−1)r+r(u1, . . . , uir)

...

Step L − 1

⎧⎪⎨⎪⎩
p′(L−2)r+1(u1, . . . , um−r)

...
p′(L−2)r+r(u1, . . . , um−r)

Step L

⎧⎪⎨⎪⎩
p′(L−1)r+1(u1, . . . , um−r, . . . , um)

...
p′(L−1)r+r(u1, . . . , um−r, . . . , um)

(2)

The central map of the Enhanced STS w is created by substituting u with
z1 := (z1, . . . , zm) and v with z2 := (zm+1, . . . , zn) in the polynomial vector p.
The linear polynomial vector z := z1||z2 = (z1(x), . . . , zn(x)) is the image of
the affine transformation S(x).

w := p(z1, z2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1(z1, . . . , zr, zm+1, . . . , zn)
...

pr(z1, . . . , zr, zm+1, . . . , zn)
...
...

pm−2r+1(z1, . . . , zm−r, zn−r+1, . . . , zn)
...

pm−r(z1, . . . , zm−r, zn−r+1, . . . , zn)
pm−r+1(z1, . . . , zm)

...
pm(z1, . . . , zm)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

Finally, the public key y is created by applying affine transformation T to the
central map w

y := T (w) (4)

208 S. Tsujii et al.

Public Key

– Polynomial Vector y

Secret Key

– Central Map w
– Affine Transformations S and T

3.3 Signature and Verification

The message m := (m1, . . . , mm) is signed as follows:

Signature
(i) Apply the inverse affine transformation T−1 to the message m.
(ii) Substitute each element of v with random number.
(iii) Since thus computed set of polynomials

p1(u1, . . . , ur), . . . , pm(u1, . . . , um) has the structure of m-variate STS, u is
computed by decrypting the STS cryptosystem.

(iv) Value of x is computed by inverting the affine transformation S to the
vector u||v. Thus obtained vector (s1, . . . , sn) is the signature of m.

Verification
Signature verification is done by assigning the signature (s1, . . . , sn) to x of the
public key and checking whether the value is equal to m.

4 Discussion of the Security

Following attacks for MPKCs should be possible both to encryption and signa-
ture schemes:

(i) Gröbner Bases Attack [6,15]
(ii) Rank Attack [17,42]
(iii) Differential Attack [16,13,14]
(iv) Other attacks exploiting other Vulnerability of the Trapdoor

Security against these attacks is discussed.

4.1 Security against Gröbner Bases Attack

Besides the constraint on the rank of the two STS systems, quadratic polynomials
in the central map are all random. Since coefficients are randomly determined,
there is not a structural vulnerability for Gröbner Bases algorithm to exploit.
Consequently, it is expected that the system is secure against Gröbner Bases
Attack. The above assumption is validated by experiment by a computer.

Proposal of a Signature Scheme Based on STS Trapdoor 209

Experiment. The above Enhanced STS Signature System is implemented in
the script language of Magma, the computational algebra system. The public
keys generated by the above program were tested the time complexity of Gröbner
Bases Attack and compared with the random system of n-variate system with
m polynomials.

Since the signature polynomials are underdetermined, usually Gröbner Bases
Attacks are done after excess variables are eliminated. In this experiment ran-
dom values were assigned to the variables xm+1, . . . , xn. Thus obtained m-variate
determined polynomial sets are the generators of the ideals.

Computing Environment
We perform the experiments using the computational algebra system Magma.
Gröbner bases are computed by F4 algorithm implemented in Magma as the
function GroebnerBasis(). The attack is repeated 10 times for each condition.
All computer experiments are performed with the following environment:

(i) Computer: Japan Computing System (JCS) VC98220WSA-4U/T worksta-
tion, with CPU AMD Opteron 8220 (2.80 GHz) quadcore and 128 Gbyte
Memory

(ii) Magma ver. 2.15-15 running on Red Hat Enterprise Linux Advanced Plat-
form Standard. The computation time is counted by the function Cputime()
of Magma.

Condition
The parameter r is fixed at 4 and the message length m is varied from 18 to
25. The signature length n is set 2m− r. The public key is generated under the
above condition.

Result is shown in Table 2 and Figure 6.

Table 2. F4 computation time vs. the
size of the signed messages

F4 Computation Time
in Second

Message Enhanced Random
Length STS System

18 4.06 4.32
19 8.05 8.24
20 17.04 16.47
21 34.44 33.25
22 103.41 99.99
23 166.10 159.57
24 1038.48 1020.04
25 2159.80 2125.24

1

10

100

1000

10000

18 19 20 21 22 23 24 25bi
na

ry
 lo

ga
rit

hm
 o

f F
4

co
m

pu
ta

tio
n

tim
e

Message Length

Fig. 6. Relationship between the size of
the message and binary logarithm of F4
computation time

210 S. Tsujii et al.

Not only the time complexity of computation increases exponentially as the
message length increases, the F4 computing time is almost equal to the random
system. Hence the signature system is expected to be sufficiently secure against
Gröbner bases attack.

4.2 Security against Rank Attack

As discussed above, all polynomials in all steps of the central map have the same
rank. Since there is not a difference of rank between each polynomial, the public
key is entirely inoculate to Rank Attacks.

4.3 Security against Differential Attack

Differential Attack was designed to attack internally perturbed system such as
PMI [8] and IPHFE [9], both of which are created by modifying existing trap-
doors such as MI and HFE. Since our scheme does not depend on any trapdoors
of MI or HFE, it is not applicable.

4.4 Attacks Exploiting Other Vulnerabilities of the Trapdoor

We are going to further investigate its security and discuss whether there is not
any such vulnerability.

5 Efficiency of the Basic Trapdoor Scheme

Now the efficiency of the proposed system is discussed by comparing the size
of the polynomial with existing schemes. The Oil and Vinegar system, which
is classified as the only basic trapdoor for signature, requires the variables to
be “Unbalanced.” Hence the Vinegar variables must be longer than the Oil
variables. Consequently the signature becomes far longer than the message. Al-
though, as shown in the discussion of the security, the proposed system is suffi-
ciently secure with the signature as short as a twice of the message. Therefore
the implementation of the proposed scheme is expected to be more compact
than the Unbalanced Oil and Vinegar. Besides, Oil and Vinegar scheme has the
constraint that a product of two Oil variables does not exist. Nevertheless, the
proposed scheme is not restricted in such a way.

Consequently, our scheme is closer to randompolynomials than existingMPKCs
and therefore it should be highly secure. Since the time complexity of attacks in-
creasesmore steeply thanexisting systems, use of computing resources suchasCPU
and memory would be more efficient than the existing MPKC signature schemes.

6 Improvement in the Practical Implementation

The new idea of applying the STS cryptosystem to signature scheme is pro-
posed. The structure of the central map was described above. Here we propose

Proposal of a Signature Scheme Based on STS Trapdoor 211

further improvement to employ in implementation. One is to shorten the signa-
ture (number of variables) and thereby making the public key more compact.
Another one is an idea to further improve the security.

6.1 Further Improving the Efficiency of the Public Key

The advantage of the Enhanced STS over existing trapdoors has been described
above. Although, the signature is still at least twice (precisely, (2− r/m) times)
as long as the message. Now we propose to divide the overall polynomial system
into several blocks. The central map w is divided into k blocks B1, . . . , Bk, each of
which has b := m/k polynomials. So w := B1||B2, . . . , ||Bk := [p1(u1, v1), . . . ,
pk(uk, vk)]T . Each block Bi has the structure of Enhanced STS, where the
polynomial system pi(ui, vi) becomes STS when random values are assigned
to vi. The elements of each block are algebraic function of (ui, vi), where u :=

p1(u1, v1)

p2(u2, v2)

pk(uk, vk)

........

Only the variable set v1 is
randomly determined.

vi in the subsequent blocks are
given by solving the previous
systems.

v1

u1

v2

u2

uk

vk

The variable set v2 in the
second block is a subset
of u1 ∪ v1.

B1:

B2:

Bk:

Fig. 7. Implementation of Enhanced STS and operation of signing

212 S. Tsujii et al.

u1||u2|| . . . ||uk. The variable set u1 and v1 are given initially and vi (2 ≤ i ≤ k)
is defined such that the (b−r) dimensional linear space spanned by vi is contained
in the one spanned by u1 ∪ v1 ∪ u2 . . .ui−1 ∪ vi−1. As illustrated in Figure 7,
the value of vi is given by solving all systems B1, . . . , Bi−1. In this case the
set of variables u1 ∪ u2 . . . ∪ uk ∪ v1 . . . ∪ vk has the dimension m + b − r, i.e.
the signature length exceeds the message length by b − r. Therefore the ratio
of signature to message length is 1 + (b − r)/m. Generally the system takes the
above structure. A message is signed as follows.

Signing a Message

(i) Give random values to the variables v1.
(ii) Equation system B1, which becomes STS, is solved to find the values of

u1.
(iii) Since the value of v1 and u1 is found, v2 is known.
(iv) Step 2 to 3 are repeated until the last block.

The security of the combined signature system is assured as long as the basic
trapdoor of Enhanced STS is structurally secure.

Example
If a system has the message length m = 256 and the STS step size r = 4, and
divided into 4 blocks (k = 4), each block has m/k = 64 polynomials. Each
variable set ui has 64 elements and vi has 56. In this case the signature length
is 256 + 64− 4 = 316, which is approximately 1.23 times as long as the message.
Although characteristic of the finite field is 2 in the above discussion, we think
that the base ring should be GF (28). Other environmental factor should have
to be considered in the actual implementation.

6.2 Security Improvement by Check Polynomial System

Vulnerability of Underdetermined MPKC signature scheme
Almost all MPKC signature schemes are underdetermined, in order to enable
preimage of every message to exist. As well as it increases the public key size
compared with the message length (number of equations), it might generate
vulnerability for the attackers to exploit. If the signature public key has m poly-
nomials with n variables defined on GF (q), the equation system derived from
the public key has qn−m solutions as a rule of thumb. In the case of our Com-
plementary STS signature, there can be more than qm−r valid signatures. We
propose here a further security improvement by appending extra polynomials.

It should be noted that most of the MPKC signature public keys have subsets of
the variable set. Messages are signed by assigning value to the elements of one sub-
set and solving the consequent equation. Therefore typically the structure of the
subsets constitutes an important part of the secret key. In the case of Enhanced
STS, variables are specified into subsets u and v. Most of the attacks to MPKC
signatures are done by finding the elements of the subsets, like done to the Bal-
anced Oil and Vinegar [29]. In case an attack should be developed to distinguish
the variables of u from the ones of v, the signature scheme is in serious jeopardy.

Proposal of a Signature Scheme Based on STS Trapdoor 213

p1(x)
p2(x)
......
pm(x)

p(x)

Public Key

m
Message

p(s)=m
s=(s1,s2,,,sn)

Signer

Verifier

p(s)=m ?

(m, s)

(1) Conventional MPKC signature scheme:
There are a number of valid signatures to a given message.

p1(x)
p2(x)

......
pm(x)

g1(x)
.....
g2m-r(x)

p(x)

Public Key

m
Message

p(s)=m
g(s)=O

s=(s1,s2,,,sn)

Signer

Verifier
p(s)=m ?
g(s)=O ?

(m, s)

(2) MPKC signature with check equations:
Most of the solution of the equation are excluded from the set of
valid signatures. Only the solution which satisfy the n equations
are accepted.

g(x)

Fig. 8. Comparison between conventional Signature and the Signature with Check
Equation System

214 S. Tsujii et al.

System of Check Equations
In case even either one of the two linear spaces spanned by the set of vectors u
and the one spanned by v should be found by any remote chance, the signatures
would be forged by solving the equation. Although, it is possible to further im-
prove its security by limiting the acceptable value of the variables in v. Together
with the public key p(x), the system of check equations g(x) is published. It
is specified as a rule that the valid signature must satisfy both the system of
equation p(x) = m and g(x) = o. The difference of the signing and verify-
ing procedure between the conventional MPKC signature and the one using the
check polynomials is illustrated in Figure 8.

Generation of the System of Check Equation
It is possible to create a polynomial set g(x), all elements of which become 0
when v is equal to the pre-defined vector α ∈ F m−r

2 . Let f(u, v) ∈ F 2[u, v]m−r

be a set of random polynomials of x. Then the polynomial set g(x) = f (u, v)−
f(α, v) satisfies the condition. The system of check equations is one-time use.
The system is renewed every time a message is signed.
Then messages are signed in the following way:

Signing a Message

(i) Invert the Affine transformation T−1 to the message m
(ii) Assign the value α to the variables u
(iii) The consequent STS polynomials are solved. The solution is s′ ∈ F n

2
(iv) The Affine transformation is inverted to the solution. s := S−1s′.

Verification

(i) It is checked whether p(s) is equal to m
(ii) It is checked whether g(s) is zero vector.

7 Conclusion

We proposed a new basic trapdoor for signature scheme based on STS, with two
different STS polynomial systems combined together —a system to be called
“Enhanced STS.” This signature scheme is secure against various existing attacks
and more efficient than existing schemes such as UOV, in itself.

Based on the above concept, we proposed a signature system where the sig-
nature is still shorter. Consequently this system has a compact public key.

We are going to study further to evaluate and improve the proposed system.

Acknowledgment

This work is supported by the Strategic Information and Communications R &
D Promotion Programme (SCOPE) from the Ministry of Internal Affairs and
Communications of Japan.

Proposal of a Signature Scheme Based on STS Trapdoor 215

References

1. Baena, J., Clough, C., Ding, J.: Square-Vinegar signature scheme. In: Buchmann,
J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 17–30. Springer, Heidelberg
(2008)

2. Braeken, A., Wolf, C., Preneel, B.: A study of the security of unbalanced oil and
vinegar signature schemes. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 29–43. Springer, Heidelberg (2005)

3. Chen, J.M., Yang, B.Y.: A more secure and efficacious TTS signature scheme. In:
Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 320–338. Springer,
Heidelberg (2004)

4. Clough, C., Baena, J., Ding, J., Yang, B.Y., Chen, M.S.: Square, a new multi-
variate encryption scheme. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473,
pp. 252–264. Springer, Heidelberg (2009)

5. Coppersmith, D., Stern, J., Vaudenay, S.: Attacks on the birational permutation
signature schemes. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
435–443. Springer, Heidelberg (1994)

6. Courtois, N., Daum, M., Felke, P.: On the security of HFE, HFEv- and Quartz. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 337–350. Springer, Heidelberg
(2003)

7. Courtois, N., Goubin, L., Patarin, J.: SFLASHv3, a fast asymmetric signature
scheme. Cryptology ePrint Archive, Report 2003/211 (October 2003),
http://eprint.iacr.org/2003/211

8. Ding, J.: A new variant of the Matsumoto-Imai cryptosystem through perturbation.
In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 305–318.
Springer, Heidelberg (2004)

9. Ding, J., Schmidt, D.: Cryptanalysis of HFEv and internal perturbation of HFE. In:
Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 288–301. Springer, Heidelberg
(2005)

10. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 164–175. Springer, Heidelberg (2005)

11. Ding, J., Wolf, C., Yang, B.Y.: �-Invertible Cycles for Multivariate Quadratic
(MQ) public key cryptography. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 266–281. Springer, Heidelberg (2007)

12. Ding, J., Wagner, J.: Cryptanalysis of rational multivariate public key cryptosys-
tems. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
124–136. Springer, Heidelberg (2008)

13. Dubois, V., Granboulan, L., Stern, J.: Cryptanalysis of HFE with internal pertur-
bation. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 249–265.
Springer, Heidelberg (2007)

14. Dubois, V., Fouque, P.A., Shamir, A., Stern, J.: Practical cryptanalysis of SFLASH.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12. Springer,
Heidelberg (2007)

15. Faugère, J.C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

16. Fouque, P.A., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate
schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353.
Springer, Heidelberg (2005)

http://eprint.iacr.org/2003/211

216 S. Tsujii et al.

17. Goubin, L., Courtois, N.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T.
(ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000)

18. Hasegawa, S., Kaneko, T.: An attacking method for a public-key cryptosystem
based on the difficulty of solving a system of non-linear equations. In: Proc. 10th
SITA, JA5-3 (November 1987) (in Japanese)

19. Hashimoto, Y., Sakurai, K.: On construction of signature schemes based on bira-
tional permutations over noncommutative rings. In: Proceedings of the First In-
ternational Conference on Symbolic Computation and Cryptography (SCC 2008),
pp. 218–227 (2008)

20. Kasahara, M., Sakai, R.: A construction of public key cryptosystem for realizing
ciphertext of size 100 bit and digital signature scheme. IEICE Transactions on
Fundamentals E87-A(1) , 102–109 (2004)

21. Kasahara, M., Sakai, R.: A construction of public-key cryptosystem based on singu-
lar simultaneous equations. IEICE Transactions on Fundamentals E88-A(1), 74–80
(2005)

22. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998)

23. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999)

24. Matsumoto, T., Imai, H., Harashima, H., Miyakawa, H.: A class of asymmetric
cryptosystems using obscure representations of enciphering functions. In: 1983 Na-
tional Convention Record on Information Systems, IECE Japan, S8-5 (1983) (in
Japanese)

25. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

26. Moh, T.T.: A public key system with signature and master key functions. Com-
munications in Algebra 27(5), 2207–2222 (1999)

27. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of
Eurocrypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–
261. Springer, Heidelberg (1995)

28. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

29. Patarin, J.: The oil and vinegar signature scheme. Presented at the Dagstuhl Work-
shop on Cryptography (September 1997) (transparencies)

30. Patarin, J., Goubin, L., Courtois, N.: C∗
−+ and HM : Variations around two schemes

of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998.
LNCS, vol. 1514, pp. 35–50. Springer, Heidelberg (1998)

31. Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-bit long digital signatures.
In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer,
Heidelberg (2001)

32. Shamir, A.: Efficient signature schemes based on birational permutations. In: Stin-
son, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 1–12. Springer, Heidelberg
(1994)

33. Tsujii, S.: Public key cryptosystem using nonlinear equations. In: Proc. 8th SITA,
December 1985, pp. 156–157 (1985) (in Japanese)

Proposal of a Signature Scheme Based on STS Trapdoor 217

34. Tsujii, S., Kurosawa, K., Itoh, T., Fujioka, A., Matsumoto, T.: A public-key cryp-
tosystem based on the difficulty of solving a system of non-linear equations. IEICE
Transactions (D), J69-D(12) (1986) (1963–1970) (in Japanese)

35. Tsujii, S., Fujioka, A., Hirayama, Y.: Generalization of the public-key cryptosystem
based on the difficulty of solving a system of non-linear equations. IEICE Transac-
tions (A), J72-A(2), 390–397 (1989) (in Japanese); An English translation of [35]
is included in [36] as an appendix

36. Tsujii, S., Tadaki, K., Fujita, R.: Piece in hand concept for enhancing the security
of multivariate type public key cryptosystems: public key without containing all the
information of secret key. Cryptology ePrint Archive, Report 2004/366 (December
2004), http://eprint.iacr.org/2004/366

37. Tsujii, S., Tadaki, K., Gotaishi, M., Fujita, R., Kasahara, M.: Proposal of PPS mul-
tivariate public key cryptosystems. Cryptology ePrint Archive, Report 2009/264
(June 2009), http://eprint.iacr.org/2009/264

38. Tsujii, S., Tadaki, K., Gotaishi, M., Fujita, R., Kasahara, M.: Proposal of inte-
grated MPKC: PPS — STS enhanced by perturbed piece in hand method —.
Technical Report of IEICE, ISEC2009-27, SITE2009-19, ICSS2009-41 (2009-2007)
(July 2009) (in Japanese)

39. Wang, L.C., Chang, F.H.: Revision of tractable rational map cryptosystem. Cryp-
tology ePrint Archive, Report 2004/046 (2006),
http://eprint.iacr.org/2004/046

40. Wang, L.C., Hu, Y.H., Lai, F., Chou, C.Y., Yang, B.Y.: Tractable rational map sig-
nature. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 244–257. Springer,
Heidelberg (2005)

41. Wang, L.C., Yang, B.Y., Hu, Y.H., Lai, F.: A “medium-field” multivariate public-
key encryption scheme. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860,
pp. 132–149. Springer, Heidelberg (2006)

42. Wolf, C., Braeken, A., Preneel, B.: Efficient cryptanalysis of RSE(2)PKC and
RSSE(2)PKC. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp.
294–309. Springer, Heidelberg (2005)

43. Yang, B.Y., Chen, J.M.: Building secure tame-like multivariate public-key cryp-
tosystems: the new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005.
LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)

http://eprint.iacr.org/2004/366
http://eprint.iacr.org/2009/264
http://eprint.iacr.org/2004/046

Selecting Parameters for the Rainbow Signature
Scheme

Albrecht Petzoldt1, Stanislav Bulygin2, and Johannes Buchmann1,2

1 Technische Universität Darmstadt, Department of Computer Science
Hochschulstraße 10, 64289 Darmstadt, Germany

{apetzoldt,buchmann}@cdc.informatik.tu-darmstadt.de
2 Center for Advanced Security Research Darmstadt - CASED

Mornewegstraße 32, 64293 Darmstadt, Germany
{johannes.buchmann,Stanislav.Bulygin}@cased.de

Abstract. Multivariate public key cryptography is one of the main ap-
proaches to guarantee the security of communication in a post-quantum
world. One of the most promising candidates in this area is the Rainbow
signature scheme, which was first proposed by J. Ding and D. Schmidt
in 2005. In this paper we develop a model of security for the Rainbow
signature scheme. We use this model to find parameters which, under
certain assumptions, guarantee the security of the scheme for now and
the near future.

Keywords: Multivariate cryptography, Rainbow signature scheme,
parameters.

1 Introduction

To guarantee the security of communication it is important to have fast and
secure signature schemes. One major field of application for them is the authen-
ticity of data and information, for example software updates.

One of the most promising candidates in this area is the Rainbow signature
scheme, which was presented by J. Ding and D. Schmidt in [DS05]. Similarly
to other multivariate schemes like 3iC−p [DW07] and Projected Flash [PC01],
[DY07] it is very efficient and provides fast signature generation and verification.
In opposite to classical schemes, e.g. RSA or ECDSA, Rainbow is believed to be
secure against attacks with quantum computers [BB08].

In the last years a lot of work has been done to study the security of multivari-
ate schemes and many attacks were proposed. Among these are direct attacks on
which a lot of work was done [YC07], [Fa99] as well as rank attacks which were
introduced in [CS94] by Coppersmith and Stern to attack the Birational Per-
mutation Scheme and later improved by a number of other researchers [YC05],
[BG06]. A good overview of these attacks can be found in [GC00]. Special at-
tacks on Rainbow-like schemes were proposed by Ding and Yang in [DY08].
There have also been some attempts to derive appropriate parameters from the
complexities of these attacks [CC08]. However, it is still an open problem how

N. Sendrier (Ed.): PQCrypto 2010, LNCS 6061, pp. 218–240, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Selecting Parameters for the Rainbow Signature Scheme 219

we have to adapt the parameters of multivariate schemes to future developments
in cryptanalysis and computing power.

In this paper we try to answer this question for the Rainbow signature scheme.
We start with the security model of Lenstra and Verheul [LV00] to compute nec-
essary security levels for the years 2010 to 2050. After that we look at the known
attacks against the Rainbow signature scheme and observe that the security of
the scheme is mainly determined by two of them, namely the direct attack and
the Rainbow-Band-Separation attack. We study the complexity of these two at-
tacks, both with data from the literature and with own experiments, for which
we use two of the most efficient available software packages, namely MAGMA
and Singular. Finally, we use the results of these experiments to find appropriate
parameters for Rainbow such that it fulfills the given security levels, as well as
Rainbow schemes for limited hash sizes. One of our main results here is, that we
need at least 26 equations to achieve the necessary security level for 2010. So, the
often proposed scheme Rainbow(18,12,12) does not provide adequate security.

The structure of the paper is as follows: In Section 2 we describe the Rainbow
signature scheme. Section 3 describes our model of security for the Rainbow
scheme. In Section 4 we take a closer look at the complexities of the direct and
the Rainbow-Band-Separation attack and present the results of our experiments.
Section 5 gives secure parameter sets optimized for small public key sizes as well
as Rainbow schemes for limited hash sizes. Finally, Section 6 concludes the paper.

2 Multivariate Public Key Cryptography

Multivariate Public Key Cryptography is one of the main approaches for se-
cure communication in a post-quantum world. The principle idea is to choose
a multivariate system F of quadratic polynomials which can be easily inverted
(central map). After that one chooses two affine linear invertible maps S and T
to hide the structure of the central map. The public key of the cryptosystem is
the composed map P = S ◦ F ◦ T which is difficult to invert. The private key
consists of S, F and T and therefore allows to invert P .

There are several ways to build the central map F . One approach are the
so called BigField-Schemes like Matsumoto-Imai [MI88] and HFE [Pa96] with
many variations and improvements [BB08], [Di04], [PC01]. On the other hand,
we have the so called SingleField family with schemes like UOV [KP99] and
Rainbow [DS05]. Recently, a third family called MediumField has been proposed
which contains schemes like
-iC [DW07].

2.1 The Principle of Oil and Vinegar (OV)

One way to create easily invertible multivariate quadratic systems is the principle
of Oil and Vinegar, which was first proposed by J. Patarin in [Pa97].

Let K be a finite field (e.g. K = GF (28)). Let o and v be two integers and
set n = o + v. Patarin suggested to choose o = v. After this original scheme
was broken by Kipnis and Shamir in [KS98], it was recommended in [KP99] to

220 A. Petzoldt, S. Bulygin, and J. Buchmann

choose v > o (Unbalanced Oil and Vinegar (UOV)). In this Section we describe
the more general approach UOV.

We set V = {1, . . . , v} and O = {v + 1, . . . , n}. Of the n variables x1, . . . , xn

we call x1, . . . , xv the Vinegar variables and xv+1, . . . , xn Oil variables. We define
o quadratic polynomials
fk(x) = fk(x1, . . . , xn) by

fk(x) =
∑

i∈V, j∈O

α
(k)
ij xixj +

∑
i,j∈V, i≤j

β
(k)
ij xixj +

∑
i∈V ∪O

γ
(k)
i xi + η(k) (k ∈ O)

Note that Oil and Vinegar variables are not fully mixed, just like oil and vinegar
in a salad dressing.

The map F = (fv+1(x), . . . , fn(x)) can be easily inverted. First, we choose
the values of the v Vinegar variables x1, . . . , xv at random. Such we get a system
of o linear equations in the o variables xv+1, . . . , xn which can be solved by
Gaussian Elimination. (If the system doesn’t have a solution, choose other values
of x1, . . . , xv and try again).

2.2 The Rainbow Signature Scheme

In [DS05] J. Ding and D. Schmidt proposed a new signature scheme called Rain-
bow, which is based on the idea of Oil and Vinegar.

Let K be a finite field (e.g. K = GF (28)) and S be the set {1, . . . , n}. Let
v1, . . . , vu+1, u ≥ 1 be integers such that 0 < v1 < v2 < · · · < vu < vu+1 = n and
define the sets of integers Si = {1, . . . , vi} for i = 1, . . . , u. We set oi = vi+1 − vi

and Oi = {vi + 1, . . . , vi+1} (i = 1, . . . , u). The number of elements in Si is vi

and we have |Oi| = oi. For k = v1 + 1, . . . , n we define multivariate quadratic
polynomials in the n variables x1, . . . , xn by

fk(x) =
∑

i∈Ol, j∈Sl

α
(k)
i,j xixj +

∑
i,j∈Sl, i≤j

β
(k)
i,j xixj +

∑
i∈Sl∪Ol

γ
(k)
i xi + η(k),

where l is the only integer such that k ∈ Ol. Note that these are Oil and Vinegar
polynomials with xi, i ∈ Sl being the Vinegar variables and xj , j ∈ Ol being
the Oil variables.

The map F (x) = (fv1+1(x), . . . , fn(x)) can be inverted as follows: First, we
choose x1, . . . , xv1 at random. Hence we get a system of o1 linear equations (given
by the polynomials fk (k ∈ O1)) in the o1 unknowns xv1+1, . . . , xv2 , which can
be solved by Gaussian Elimination. The so computed values of xi (i ∈ O1)
are put into the polynomials fk(x) (k > v2) and a system of o2 linear equa-
tions (given by the polynomials fk (k ∈ O2)) in the o2 unknowns xi (i ∈ O2)
is obtained. By repeating this process we can get values for all the variables
xi (i = 1, . . . , n) 1.

1 It may happen, that one of the linear systems does not have a solution. If so, one
has to choose other values of x1, . . . xv1 and try again.

Selecting Parameters for the Rainbow Signature Scheme 221

The Rainbow signature scheme is defined as follows:

Key Generation. The private key consists of two invertible affine maps L1 :
Km → Km and L2 : Kn → Kn and the map F = (fv1+1(x), . . . , fn(x)). Here,
m = n − v1 is the number of components of F .

The public key consists of the field K and the composed map P (x) = L1 ◦
F ◦ L2(x) : Kn → Km.

Signature Generation. To sign a document d, we use a hash function h : K∗ →
Km to compute the value h = h(d) ∈ Km. Then we compute recursively x =
L−1

1 (h), y = F−1(x) and z = L−1
2 (y). The signature of the document is z ∈ Kn.

Here, F−1(x) means finding one (of the possibly many) pre-image of x.

Verification. To verify the authenticity of a signature, one simply computes h′ =
P (z) and the hashvalue h = h(d) of the document. If h′ = h holds, the signature
is accepted, otherwise rejected.

The size of the public key is (for K = GF (28))

size(public key) = m ·
(

n · (n + 1)
2

+ n + 1
)

= m · (n + 1) · (n + 2)
2

bytes, (1)

the size of the private key

size(private key) = m · (m + 1) + n · (n + 1)

+
u∑

l=1

ol ·
(

vl · ol +
vl · (vl + 1)

2
+ vl+1 + 1

)
bytes. (2)

The length of the needed hash value is m bytes, the length of the signature is n
bytes.

The scheme is denoted by Rainbow(v1, o1, . . . , ou). For u = 1 we get the
original UOV scheme.

3 Our Model of Security

In this Section we describe the model underlying our parameter choices below.
We base on the approach of Lenstra and Verheul [LV00].

3.1 The Model

In [LV00] Lenstra and Verheul developed a security model, which they used to
find appropriate parameters for symmetric cryptography and some asymmetric
schemes. The main points of their model are:
1. Security margin: a definition of the term “adequate security”.
2. Computing environment: the expected change in computational resources
available to attackers.
3. Cryptanalytic development: the expected development in cryptanalysis.

In the following we take a closer look at these items.

222 A. Petzoldt, S. Bulygin, and J. Buchmann

Security margin. To decide, whether a given scheme offers adequate security,
one has to define the term “adequate security”. [LV00] defines it by the security
offered by DES in 1982. That is, in 1982 a computational effort of 5 · 105 MIPS
years provided an adequate security. We follow this definition.

Computing environment. Here [LV00] use a slightly modified version of
Moore’s law, which states that the amount of computing power and random
access memory one gets for 1 dollar doubles every t months. Our default setting
of t is 18, see [LV00].

Another thing we have to take into account, is the budget of an attacker,
which might increase over time. The variable b > 0 is defined as the number of
years it takes on average for an expected two-fold increase of a budget. Statistical
data says, that the US Gross National product (in today’s prices) doubles about
every ten years. So our default setting for b is 10.

Cryptanalytic Development. The number r > 0 is defined to be the num-
ber of months it is expected to take on average for cryptanalytic developments
affecting Multivariate Public Key Cryptosystems to become twice as effective.

Under the assumption, that the pace of cryptanalytic findings in the area of
multivariate cryptography will not vary dramatically from those in the field of
classical cryptosystems, our default setting for r is r = 18.

After having developed concrete security levels based on these three items,
Lenstra and Verheul analyzed known attacks against several schemes to get
concrete parameter sets.

Analogous to [LV00], we will use “Infeasible number of MIPS years” (IMY) to
define security requirements for the Rainbow signature scheme. Given that break-
ing DES takes 5 · 105 MIPS years, which was infeasible to do in year 1982, we get
the number of MIPS years that are infeasible to break in the year y by the formula

IMY (y) = 5 · 105 · 212(y−1982)/t · 2(y−1982)/b MIPS years. (3)

With our default settings we get

IMY (y) = 2
23
30 ·y−1500.6 MIPS years (4)

So far, we have not considered the possible advances in cryptanalysis. To cover
these, we have to adapt the upper formula slightly. So, a cryptosystem, which
shall be secure in the year y, must reach the security level

Security level(y) ≥ IMY (y) · 212(y−2009)/r MIPS years r=18= 2
43
30 ·y−2839.9 MIPS years

(5)

3.2 Security Level of Rainbow

In this subsection we look at the known attacks against the Rainbow signature
scheme. We will find, that the security of the scheme is mainly given by the
complexities of two attacks, namely the direct and the Rainbow-Band-Separation
attack and therefore can be said to be the minimum of those two complexities.

Selecting Parameters for the Rainbow Signature Scheme 223

The known attacks against the Rainbow Signature Scheme are:

1. direct attacks [BB08], [Ya07]: Direct attacks use equation solvers like XL
and its derivatives as well as Gröbner Basis algorithms: Buchberger, F4, and
F5. The complexity is approximately given as

Cdirect(q, m, n) = CMQ(q,m,n), (6)

where CMQ(q,m,n) denotes the complexity of solving a “generic” system of
m quadratic equations in n variables over a field with q elements.

2. MinRank attack [GC00], [YC05]

CMR(q, m, n, v1) = [qv1+1 · m · (n2/2 − m2/6)] m (7)

3. HighRank attack [GC00], [DY08]

CHR(q, n, ou) = [qou · n3/6] m (8)

4. UOV attack [KP99]

CUOV(q, n, ou) = [qn−2·ou−1 · o4
u] m (9)

5. UOV-Reconciliation attack [BB08], [DY08]

CUOVR(q, m, n, ou) = CMQ(q,m,n−ou) (10)

6. Rainbow-Band-Separation attack [DY08]

CRBS(q, m, n) = CMQ(q,m+n−1,n) (11)

Here, m stands for the number of field multiplications needed during the attack.
Defending a Rainbow scheme against the attacks from the items 2 to 4 is rela-
tively easy:

Proposition 1: A Rainbow instance over GF (2a) with parameters v1, o1, . . . , ou

(see Section 2.2) and n ≥ m ≥ 10, for which the items

1. v1 ≥

a − 1

2. ou ≥

a

3. n − 2 · ou ≥

a + 1

hold, has a security level of
 bits against the MinRank, the HighRank and the
UOV attack.

Proof: The proof of Proposition 1 can be found in the appendix of this
paper.

Table 1 shows how we have to adapt the parameters of Rainbow over time
according to Proposition 1.

224 A. Petzoldt, S. Bulygin, and J. Buchmann

Table 1. Parameter restrictions according to Proposition 1

years MinRank HighRank UOV-Attack
v1 ≥ ou ≥ n − 2ou ≥

2010 9 10 11
2011-2015 10 11 12
2016-2021 11 12 13
2022-2027 12 13 14
2028-2032 13 14 15
2033-2038 14 15 16
2039-2043 15 16 17
2044-2049 16 17 18
2050-2055 17 18 19

To defend the scheme against the UOV-Reconciliation attack, we need v1 ≥
ou. Then, the algebraic part of the attack leads to an underdetermined system
of quadratic equations which is as difficult to solve as a direct attack against the
original scheme.

In the following, we look at Rainbow instances which are secure against these
four attacks. So, the security of a Rainbow scheme depends only on the complex-
ities of the direct and the Rainbow-Band-Separation (RBS) attack and therefore
can be said to be the minimum of those two complexities. Hence, it depends only
on the number of equations m and the number of variables n. The security of a
scheme is therefore given by

Sec(m, n) = min{Cdirect(q, m, n), CRBS(q, m, n)} (12)

In the next Section, we will take a closer look at these two complexities.

4 Complexity Estimations for the Direct and RBS
Attacks

In this Section we look at the complexities of the direct and the RBS attack
against Rainbow schemes. For both of these two attacks we have to solve sys-
tems of quadratic equations. We look at several ways to do this step, namely
XL-Wiedemann, the implementation of Faugere’s F4 algorithm contained in
MAGMA and Singular’s implementation of Buchberger’s algorithm. Unfortu-
nately, our analysis does not contain the F5 algorithm, because no implemen-
tation of it is publicly available. Throughout this section, we look at Rainbow
Schemes defined over a field of 256 elements.

4.1 XL-Wiedemann

In this subsection we look at XL-Wiedemann, which it is the best analyzed
general method for solving systems of quadratic equations. The complexity of

Selecting Parameters for the Rainbow Signature Scheme 225

XL-Wiedemann for an overdetermined system of m quadratic equations in n
variables (m ≥ n) over a field with q elements is given by the formula [BB08]

CXL−Wiedemann = [3 · T 2 · τ] m, (13)

where T is the number of monomials up to a certain degree D reduced mod
xq − x (T =

(
n+D

D

)
for larger fields), and τ stands for the average number of

terms per equation, which in our case is given by τ = (n+1)·(n+2)
2 . The minimal

degree D0, for which XL works is given by
D0 = min{D : [tD]((1 − t)m−n−1(1 + t)m) ≤ D}, where [tD](p) denotes the

coefficient of tD in p.
By guessing some of the variables before applying the algorithm it might be

possible to decrease the necessary degree D. This can speed up the time needed
to solve the system even if one has to run the algorithm several times with
different guesses (see also the discussion of FXL in [Ya07]).

Direct attacks on Rainbow Schemes. When attacking a Rainbow instance
directly we have to solve an underdetermined system of quadratic equations.
Since XL-Wiedemann doesn’t work for underdetermined systems, we have to
guess at n − m variables to create a determined system before applying the
algorithm2. We computed the complexity of solving determined systems for 10 ≤
m ≤ 50 equations by formula (13) with guessing at 1, 2, 3 or 4 variables3. We
found, that for m ≤ 30 we get the best results when guessing at 2 variables and
then try to solve the 2562 overdetermined systems with m equations in m − 2
variables. For m ≥ 31 it seems to be even better to guess at 3 variables before
applying the algorithm to all of the 2563 overdetermined systems (see figure 1
in the appendix of this paper).

When guessing at more variables, the slope of the corresponding graphs is even
less, but due to the guessing part we have to run the algorithm so often, that
this does not help much. By guessing at 2 resp. 3 variables, we get the following
approximation for the complexity of solving an (under-)determined system by
XL-Wiedemann

CXL−Wiedemann(m) =
[
22.84·m+17.6]m (10 ≤ m ≤ 30)

CXL−Wiedemann(m) =
[
22.62·m+24.3]m (31 ≤ m ≤ 50) (14)

Complexity of the RBS attack. The algebraic part of the RBS attack leads
to a system of m + n − 1 quadratic equations in n variables. So we have to
solve an overdetermined system of equations. We can use XL-Wiedemann on
this system without guessing at any variables. Figure 2 (in the appendix) shows
the complexity of this attack for some fixed values of m.
2 It might occur that the determined system one gets after the guessing part does not

have a solution. If this happens, one has to choose other values for the variables to
be guessed and try again. However, this occurs very rarely, so that we do not take
this case into further consideration.

3 Without guessing, XL runs at degree q, which is impractical for q = 256 [Ya07].

226 A. Petzoldt, S. Bulygin, and J. Buchmann

While the number of equations we need for the security of the scheme is given
by the complexity of the direct attack, the necessary number of variables is
determined by the complexity of the RBS attack.

We define n̄(m) to be the minimum number of variables, such that the RBS
attack on the Rainbow instance with m equations and n variables has at least
the complexity of the direct attack, i.e.

n̄(m) = min{n| CRBS(q, m, n) ≥ Cdirect(q, m, n)} (15)

This number n̄ is optimal in the following sense: (1) for less than n̄ variables
the security of the Rainbow scheme is not as high as it would be possible for
a Rainbow scheme with m equations and (2) more than n̄ variables will not
provide higher security, but increase the size of the public (and the private) key.

The optimal ratio between m and n depends on the algorithm one uses for
solving the systems of quadratic equations.

To get n̄ for XL-Wiedemann, we computed the complexity of the direct attack
on Rainbow schemes with m equations (10 ≤ m ≤ 50). After that, we computed
the complexity of the RBS attack on a Rainbow scheme with m equations and
n = m + 1 variables. Then we increased n until this complexity was at least the
same as that of the direct attack against a scheme with m equations. We found

n̄XL−Wiedemann = 2 · (m − 1). (16)

To translate the complexity estimations of formula (14), which are given in
GF (28)-field multiplications, into MIPS years, we use a data-point computed
by J. Ding et al. in [DY08]. There the authors solve a system of 37 quadratic
equations in 22 variables over GF (28) in about 1.06 · 106 seconds on a single 2.2
GHz Opteron machine by XL-Wiedemann. This corresponds to approximately
329.7 MIPS years 4. Since the complexity of the system is about 246.7 m, we get

1 MIPS year = 3.49 · 1011 m (17)

4.2 MAGMA’s Implementation of the F4 Algorithm

We carried out a number of experiments with MAGMA, which contains an
implementation of Faugere’s F4 algorithm for computing Gröbner bases. We
used MAGMA version 2.13-10 and solved the quadratic systems (given as se-
quences of polynomials in reversed graded lexicographical order) by the function
GroebnerBasis. The experiments were carried out on a single core Opteron 2.3
GHz CPU, which achieves about 10200 MIPS. So a MIPS year corresponds to
3094 seconds or roughly 52 minutes of computation.

Running time of direct attacks. For a direct attack on a Rainbow scheme
one has to solve an underdetermined system of m quadratic equations in n > m
variables. Since the Gröbner bases MAGMA creates for underdetermined sys-
tems are not convenient for our purposes (because of the high complexity of the
4 The given processor achieves about 9800 MIPS (SiSoft Sandra).

Selecting Parameters for the Rainbow Signature Scheme 227

Table 2. Solving determined systems with F4 with guessing

equations 11 12 13 14 15 16

no guessing
6.4 m 0.8 h 6.6 h 47.2 h - -

342 MB 1236 MB 7426 MB 35182 MB ooM

guessing 1 variable
29 m 2.8 h 23 h 134 h 48 d 257 d

11 MB 23 MB 76 MB 285 MB 997 MB 3953 MB

guessing 2 variables
264 m 30 h 170 h 1214 h 230 d 1259 d
8.6 MB 10.7 MB 14.5 MB 42 MB 118 MB 335 MB

guessing 3 variables
5880 m 715 h 3830 h 23597 h 4449 d 18443 d
8.3 MB 9.0 MB 11.2 MB 14.8 MB 24.8 MB 51.7 MB

guessing 4 variables
93807 m 8126 h 43465 h 22652 h 67129 d 382986 d
7.9 MB 8.6 MB 10.6 MB 11.8 MB 12.9 MB 18.0 MB

corresponding variety), we had to guess at at least n − m variables before ap-
plying the algorithm. Table 2 shows the results of our experiments when solving
determined systems and guessing at a = 0, 1, 2, 3 or 4 variables. When doing so,
we had to multiply the running time of MAGMA by a factor 256a.

So, in our examples, we get the best results without guessing. But, as our
extrapolation shows, for m ≥ 22 equations it will be better to guess at one
variable, and for m ≥ 29 to guess at two variables before applying F4 (see figure
3 in the appendix).

The time MAGMA needs for solving a determined system with m equations
can then be estimated by the formula

RTF4(28, m) = 22.74·m−19.4 sec (22 ≤ m ≤ 28)
RTF4(28, m) = 22.55·m−13.9 sec (29 ≤ m ≤ 50) (18)

Running time of the RBS attack. In this paragraph we try to find out the
optimal number of variables n̄(m) we should use in our Rainbow scheme (as
defined by formula (15)). To get this number, we carried out some experiments
where the number m of equations is a small multiple of the number n of variables.
Table 3 shows the results.

Systems like these are created during the first part of the RBS attack, where
an underdetermined system of m equations in n variables leads to an overde-
termined system with m + n − 1 equations in n variables. So, a system of n
variables and a ·n equations is created from a Rainbow scheme with n variables
and (a − 1) · n + 1 equations. The other way round, a Rainbow scheme with m
equations and n = a · (m−1) variables leads via the first part of the RBS attack
to an overdetermined system of a+1

a · n equations in n variables. For example, a
Rainbow scheme with m = 16 equations in n = 5

3 · (m − 1) = 25 variables leads
to an overdetermined system of 8

5 · n = 40 equations in n = 25 variables. Figure
4 shows the data-points from the table in terms of the number of equations of
the original scheme.

228 A. Petzoldt, S. Bulygin, and J. Buchmann

Table 3. Solving overdetermined systems with F4

m = 3
2
· n

equations 21 24 27 30
variables 14 16 18 20

36 s 804 s 7293 s 120831 s
30 MB 214 MB 765 MB 2890 MB

m = 8
5
· n

equations 16 24 32
variables 10 15 20

0.15 s 52.5 s 18263 s
0.7 MB 37 MB 2081 MB

m = 5
3
· n

equations 20 25 30 35
variables 12 15 18 21

0.8 s 42,7 s 985 s 40298 s
1.2 MB 36 MB 231 MB 3291 MB

As can be seen from the graph, for a Rainbow scheme with m and n =
5
3 · (m − 1) variables the running time of the RBS attack is nearly the same as
that of a direct attack on the same scheme (when solving the quadratic systems
with MAGMA). So, for MAGMA, the number n̄ of variables we should use in
our Rainbow scheme is given by

n̄F4(m) = � 5
3 · (m − 1)� (19)

4.3 Singular’s Implementation of Buchbergers Algorithm

For better comparison, we also carried out some experiments with Singular [GP09],
which contains an efficient implementation of Buchberger’s algorithm. We used
Singular version 3-1-0 and the command std to find Groebner bases for ideals of
polynomials in reversed graded lexicographical order. The experiments with Sin-
gular were carried out in the same environment as those with MAGMA, namely on
a single core Opteron 2.3 GHz CPU, which achieves about 10200 MIPS.

Running time of direct attacks. When attacking a Rainbow scheme directly,
one has to solve an underdetermined system of m quadratic equations in n > m
variables. Since Buchberger’s algorithm does not lead to a ”nice” Gröbner basis
for such a system, one has to guess at at least n − m variables. We carried out
experiments on determined systems by guessing at a = 0, 1, 2, 3 or 4 variables
before applying Buchberger’s algorithm. Again we had to run the algorithm 256a

times. Table 4 shows the results of these experiments.
So, in our experiments, we get the best results without guessing. But, as it

seems, for m ≥ 23 it should be better to guess at one variable and then to find
Gröbner bases for all the 256 overdetermined systems with m equations and
m− 1 variables. And for m ≥ 30, it might be even better to guess at 2 variables
before applying Buchbergers algorithm (see figure 5 in the appendix). Note, that
these results are very similar to those with MAGMA.

Selecting Parameters for the Rainbow Signature Scheme 229

Table 4. Solving determined systems with Buchberger’s algorithm with guessing

equations 11 12 13 14 15 16

no guessing
12.3 m 1.7 h 15 h 146 h - -
137 MB 264 MB 1167 MB 4268 MB

guessing 1 variable
96.5 m 11.9 h 62.4 h 548 h 137 d 957.2 d
8.4 MB 29 MB 99 MB 354 MB 1280 MB 4631 MB

guessing 2 variables
1442 m 142 h 975 h 4174 h 1041 d 8134 d
1.7 MB 4.8 MB 14 MB 40 MB 145 MB 467 MB

guessing 3 variables
19712 m 1590 h 12175 h 63847 h 10892 d 95313 d
0.7 MB 1.2 MB 3.3 MB 8.0 MB 23 MB 69 MB

guessing 4 variables
456167 m 45661 h 267564 h 1593056 h 382769 d 2250127 d
0.6 MB 0.8 MB 1.2 MB 2.3 MB 5.4 MB 14 MB

Hence, we can estimate the time needed for solving a determined system with
m equations with Buchberger’s algorithm by the formula

RTBuchberger(28, m) = 22.76·m−17.9 s (23 ≤ m ≤ 29)
RTBuchberger(28, m) = 22.55·m−11.7 s (30 ≤ m ≤ 50) (20)

As a comparison of formulas (18) and (20) shows, for large m MAGMA solves
the systems about 4.5 times faster.

Running time of the RBS attack. In this paragraph we try to find out
the optimal number of variables n̄ we should use in our Rainbow scheme (as
defined by formula (15)). To get this number, we carried out the same experi-
ments as presented for MAGMA in the previous subsection with Singular, too
(see Table 5).

Table 5. Solving overdetermined systems with Buchberger’s algorithm

m = 3
2
· n

equations 21 24 27 30
variables 14 16 18 20

219 s 1871 s 16500 s 179473 s
35 MB 178 MB 960 MB 4953 MB

m = 8
5
· n

equations 16 24 32
variables 10 15 20

0.7 s 250 s 109468 s
2.3 MB 50 MB 2130 MB

m = 5
3
· n

equations 20 25 30 35
variables 12 15 18 21

4.1 s 113.5 s 4723 s 172863 s
5.9 MB 37 MB 335 MB 2520 MB

230 A. Petzoldt, S. Bulygin, and J. Buchmann

Again we looked at the Rainbow schemes from which these systems were
created during the first part of the RBS attack (see figure 6 in the appendix).

As the figure shows, the running time of the RBS attack against a Rainbow
scheme with m equations in n = 5

3 · (m − 1) variables is nearly the same as the
running time of a direct attack against a scheme with m equations. The results
are very similar to those with MAGMA, and so we get

n̄Buchberger(m) = � 5
3 · (m − 1)� (21)

4.4 Storage

As you can see from tables 2 and 4, the storage both MAGMA and Singular need
for solving determined systems is generally large (for example, we can’t solve a
determined system of 15 equations on our server with 128 GB main memory us-
ing MAGMA’s F4 algorithm). However, when guessing at some of the variables,
the storage needed for solving the systems reduces by a large factor. To this, we
want to remark the following:

When fixing a variables before applying F4 or Buchbergers algorithm, one
has to run the algorithm qa times to find a solution (where q is the number
of elements in the underlying field). So the time needed to solve the original
system is qa · ta, where ta is the time one needs to solve the overdetermined
system. But, the storage needed to solve the system is not influenced by the
repeated execution of the algorithm. If one overdetermined system does not
have a solution, one discards it and tries again with a different choice of the
fixed variables. That is why fixing some variables reduces the storage needed to
solve the systems by a large amount.

Since we found out in the previous subsections, that guessing 2 or 3 variables
is also a good strategy to reduce the time you need to solve the system, we do
not think that storage is a bigger problem when attacking Rainbow. That’s why
we don’t take storage into account when proposing the parameters.

One interesting thing concerning the storage is, that the values for Singular
(see tables 4 and 5) are not much better (and in some cases even worse) as
those for MAGMA, especially for large numbers of equations. This is against
our expectations, according to which Buchbergers algorithm should require less
memory than F4.

5 Parameter Choice

In this Section we give actual parameters which guarantee the security of the
Rainbow signature scheme for now and the near future under the model assump-
tions presented in Section 3. The parameters are chosen for an underlying field
of 256 elements.

Selecting Parameters for the Rainbow Signature Scheme 231

5.1 Parameters for Rainbow Optimized for Small Public Key Size

The following table shows the number of equations m and variables n we propose
to use for Rainbow in the year y. The numbers are chosen to be the smallest
ones, such that a Rainbow scheme with m equations in n variables fulfills the
necessary security levels for each of the three algorithms we looked at.

In each case there are various possibilities for the actual layout of the Rainbow
layers. As long as one takes into account the limitations given in Table 1, the
details of the layout will not affect the security of the scheme. For each pair of
m and n we give one example scheme.

To get the numbers in the table, we first computed for each year y the minimal
number m0 of equations such that the complexity of a direct attack against the
scheme is as least as high as the security level for the year y , i.e.

m0(y) = min{m| Cdirect(q, m) ≥ Security level(y)} (22)

For this step we used our results with MAGMA (as presented in Section 4.2),
because they lead to the most conservative parameter choices.
Such we get (with formulas (5) and (18))

m0(y) = �0.523 · y − 1025.3� (y ≤ 2014)
m0(y) = �0.562 · y − 1103.7� (2015 ≤ y ≤ 2050) (23)

We define n0(y) to be the minimal number of variables such that the complexity
of the RBS attack against a Rainbow Scheme with m0 equations and n0 variables
lies above our security margin, i. e.

n0(y) = min{n| CRBS(q, m0(y), n) ≥ Security level(y)}, (24)

where m0(y) is defined by formula (22).
One can easily see that n̄(m0) (as defined by formula (15)) fulfills this condi-

tion. Thus we have n0(y) ≤ n̄(m0).
To find n0(y) for XL-Wiedemann, we use a similar technique as we used in

Section 4.1 to find n̄.
For each year y (2010 ≤ y ≤ 2050) we first computed the neccessary number

m0(y) of equations and the complexity of an RBS attack against a scheme with
m0 equations in n = m0 +1 variables. Then we increased n until the complexity
of the RBS attack reached our Security level. Note that the numbers n0(y) we
get by doing so fulfill the conditions

n0(y) ≥ n̄MAGMA(m0) and
n0(y) ≥ n̄Singular(m0) (25)

(see formulas (19) and (21)).
Therefore we have

CRBSMAGMA(q, m0, n0) ≥ CdirectMAGMA(q, m0, n0) ≥ Security level(y) and (26)
CRBSSingular(q, m0, n0) ≥ CdirectSingular(q, m0, n0) ≥ Security level(y) (27)

So, the proposed schemes will be secure for MAGMA and Singular, too.

232 A. Petzoldt, S. Bulygin, and J. Buchmann

Table 6. Proposed parameters for the Rainbow Signature Scheme

example scheme
public key hash signature private key

Year (m, n) size (kB) size (bit) size (bit) (v1, o1, o2) size (kB)
2010 (26,43) 25.7 208 344 (17,13,13) 19.1
2020 (32,53) 47.5 256 424 (21,16,16) 34.3
2030 (38,65) 84.0 304 520 (27,19,19) 60.5
2040 (43,74) 122.6 344 592 (31,21,22) 87.7
2050 (49,85) 183.3 392 680 (36,24,25) 130.2

Proposition 2: By following the above strategy we get not only the minimal
m but also the minimal n required for the security of Rainbow in the year y.
Hence, the schemes proposed in the table below also minimize the size of the
public key.

Proof: The proof of Proposition 2 can be found in the appendix of this
paper.

The complete table of the proposed parameters can be found in the appendix of
this paper.

5.2 Rainbow Schemes for Limited Hash Size

In this subsection we look at the question what security level we can achieve
with restricted hash sizes. We want to examine until what year it is safe to use
Rainbow along with a hash function of a given size and look for the optimal
Rainbow parameters in this scenario.

A given size s of the hash value determines the number of equations in our
system by m = s

8 . So the maximal security we can obtain is upper bounded by
the complexity of solving an underdetermined system of m quadratic equations.
In the following, we use the results we got from our experiments with MAGMA,
because they lead to the most conservative parameter choices.

To compute the year until which it is secure to use Rainbow along with a hash
function of a given size s (s ≡ 0 mod 8 bit) we have to invert formula (23) and
come up with

y = �0.239 · s + 1960.1� (s ≤ 224)
y = �0.223 · s + 1963.9�(232 ≤ s ≤ 400) (28)

Table 7 shows for several hash sizes the year until which it is safe to use Rainbow
along with a hash function of the given size as well as one example scheme.

As the table shows, using Rainbow along with a hash function which provides
a hash length of 160 bit (like SHA-1), is no longer secure.

Selecting Parameters for the Rainbow Signature Scheme 233

Table 7. Rainbow Schemes for limited hash size

proposed scheme
hash size secure until public key private key

(bit) m (formula (27)) (m,n) size (kB) (v1, o1, o2) size (kB)
208 26 2010 (26,43) 25.7 (17,13,13) 19.1
224 28 2013 (28,46) 31.6 (18,14,14) 23.1
240 30 2017 (30,51) 41.3 (21,15,15) 30.5
256 32 2020 (32,53) 47.3 (21,16,16) 34.4
288 36 2027 (36,60) 68.1 (24,18,18) 48.7
320 40 2035 (40,69) 99.4 (29,20,20) 71.6
352 44 2042 (44,78) 139.0 (32,22,22) 94.4
384 48 2049 (48,85) 179.6 (37,24,24) 128.8

6 Conclusion

Although nobody can say, which cryptanalytic developments and developments
in computing devices will take place in the next years, we hope that this paper
will help people to choose appropriate parameters for the Rainbow signature
scheme. The proposed parameter sets should give the reader an impression,
what public key sizes are needed to achieve given levels of security.

Acknowledgements
The first author wants to thank Jintai Ding, Bo-Yin Yang and Erik Dahmen for
many helpful comments.

References

[BB08] Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post Quantum Cryptogra-
phy. Springer, Heidelberg (2009)

[BG06] Billet, O., Gilbert, H.: Cryptanalysis of Rainbow. In: De Prisco, R., Yung, M.
(eds.) SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006)

[CC08] Chen, A.I.-T., Chen, C.-H.O., Chen, M.-S., Cheng, C.M., Yang, B.-Y.:
Practical-Sized Instances for Multivariate PKCs: Rainbow, TTS and �IC-
Derivatives. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS,
vol. 5299, pp. 95–108. Springer, Heidelberg (2008)

[CS94] Coppersmith, D., Stern, J., Vaudenay, S.: Attacks on the Birational Signature
Scheme. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 435–443.
Springer, Heidelberg (1994)

[DS05] Ding, J., Schmidt, D.: Rainbow, a new multivariate polynomial signature
scheme. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 164–175. Springer, Heidelberg (2005)

[Di04] Ding, J.: A new variant of the Matsumoto-Imai cryptosystem through pertur-
bation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
305–318. Springer, Heidelberg (2004)

[DY08] Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.M.: New
Differential-Algebraic Attacks and Reparametrization of Rainbow. In: Bellovin,
S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 242–257. Springer, Heidelberg (2008)

234 A. Petzoldt, S. Bulygin, and J. Buchmann

[DW07] Ding, J., Wolf, C., Yang, B.-Y.: �-invertible Cycles for Multivariate Quadratic
Public Key Cryptography. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 266–281. Springer, Heidelberg (2007)

[DY07] Ding, J., Yang, B.-Y., Cheng, C.-M., Chen, O., Dubois, V.: Breaking the sym-
metry: A way to resist the new Differential attacks,
http://www.eprint.iacr.org/2007/366.pdf

[Fa99] Faugere, J.C.: A new efficient algorithm for computing Groebner bases (F4).
Journal of Pure and Applied Algebra 139, 61–88 (1999)

[Fa02] Faugere, J.C.: A new efficient algorithm for computing Groebner bases without
reduction to zero (F5). In: International Symposium on Symbolic and Algebraic
Computation — ISSAC 2002, pp. 75–83. ACM Press, New York (2002)

[FP08] Faugere, J.-C.,Perret, L.:On the security ofUOV. In:Proceedings of theFirst In-
ternationalConferenceonSymbolicComputationandCryptology,Beijing(2008)

[GC00] Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer,
Heidelberg (2000)

[GP09] Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3.1.0 — A computer
algebra system for polynomial computations (2009),
http://www.singular.uni-kl.de

[KP99] Kipnis, A., Patarin, L., Goubin, L.: Unbalanced Oil and Vinegar Schemes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999)

[KS98] Kipnis, A., Shamir, A.: Cryptanalysis of the Oil and Vinegar Signature scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998)

[LV00] Lenstra, A.K., Verheul, E.R.: Selecting Cryptographic Key Sizes. In: Imai, H.,
Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 446–465. Springer, Heidelberg
(2000), www.keylength.com

[MI88] Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for efficient
Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EU-
ROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

[Pa96] Patarin, J.: Hidden Field equations (HFE) and Isomorphisms of Polynomials
(IP). In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48.
Springer, Heidelberg (1996)

[Pa97] Patarin, J.: The oil and vinegar signature scheme. Presented at the Dagstuhl
Workshop on Cryptography (September 1997)

[PG98] Patarin, J., Goubin, L., Courtois, N.: C�
+ and HM: Variations about two

schemes of H. Matsumoto and T. Imai. In: Ohta, K., Pei, D. (eds.) ASI-
ACRYPT 1998. LNCS, vol. 1514, pp. 35–50. Springer, Heidelberg (1998)

[PC01] Patarin, J., Courtois, N., Goubin, L.: Flash, a fast multivariate signature al-
gorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307.
Springer, Heidelberg (2001)

[YC05] Yang, B.-Y., Chen, J.-M.: Building secure tame like multivariate public-key
cryptosystems: The new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP
2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)

[YC07] Yang, B.-Y., Chen, J.-M.: All in the XL family: Theory and practice. In: Park,
C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Hei-
delberg (2005)

[Ya07] Yang, B.-Y., Chen, C.-H.O., Bernstein, D.J., Chen, J.-M.: Analysis of QUAD.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 290–308. Springer,
Heidelberg (2007)

http://www.eprint.iacr.org/2007/366.pdf
http://www.singular.uni-kl.de
www.keylength.com

Selecting Parameters for the Rainbow Signature Scheme 235

Appendix

Fig. 1. Solving determined systemes with XL-Wiedemann with guessing additional
variables

Fig. 2. Complexity of the RBS attack with XL-Wiedemann for different numbers of
equations

236 A. Petzoldt, S. Bulygin, and J. Buchmann

Fig. 3. Solving determined systems with F4 with guessing (datapoints and
extrapolation)

Fig. 4. Running time of the RBS attack with F4 for different ratios of m and n The
dotted line marks the running time of a direct attack against a scheme with m equations

Selecting Parameters for the Rainbow Signature Scheme 237

Fig. 5. Running time of the direct attack with Buchberger’s algorithm (datapoints and
extrapolation)

Fig. 6. Running time of the RBS attack with Buchberger’s algorithm for different ratios
of m and n The dotted line marks the running time of a direct attack against a scheme
with m equations

238 A. Petzoldt, S. Bulygin, and J. Buchmann

Proof of Proposition 1

Proposition 1: A Rainbow instance over GF (2a) with parameters v1, o1, . . . , ou

and n ≥ m ≥ 10, for which the items

1. v1 ≥

a − 1

2. ou ≥

a

3. n − 2 · ou ≥

a + 1

hold, has a security level of
 bits against the MinRank, the HighRank and the
UOV attack.

Proof:

CMR(q, m, n, v1)=[qv1+1·m·(n2/2−m2/6)]m
1.≥ [2a·
/a·m·(n2/2−m2/6)] m > 2
 m

CHR(q, n, ou) = [qou· n3/6] m
2.≥ [2a·
/a · n3/6] m > 2
 m

CUOV(q, n, ou) = [qn−2ou−1 · o4
u] m

3.≥ [2a·
/a · o4
u] m > 2
 m �

Proof of Proposition 2

Proposition 2: By following the above strategy we get not only the minimal
m but also the minimal n required for the security of Rainbow in the year y.
Hence, the schemes proposed in the table below also minimize the size of the
public key.

Proof: It is clear, that m0 is the minimal number of equations we need for the
security of Rainbow in the year y. So, it remains to show that we get with n0
the minimal required number of variables, too. To show this, we assume that we
had another Rainbow instance with m′ equations and n′ < n0 variables which
also fulfills our security level.
Since m0 was defined to be the minimal number of equations such that the com-
plexity of the direct attack lies above our security level, we have m′ ≥ m0. In
the following, we distinguish between two cases:

Case 1: m′ = m0: Since n0 was defined by

n0 = min{n|CRBS(q, m0, n) ≥ Security level}
we have n′ ≥ n0 which contradicts our assumption.

Case 2: m′ > m0: Here we assume that we had a Rainbow instance with m′ >
m0 equations and n′ < n0 variables which fulfills our security level. Such a
Rainbow Scheme leads via the first part of the RBS attack to an overdetermined
system of m′+n′−1 equations in n′ variables, which has a complexity to solve of

Selecting Parameters for the Rainbow Signature Scheme 239

about CMQ(q,m′+n′−1,n′), which lies (as we assume) above the security margin.
Thus we have

Security margin ≤ CMQ(q,m′+n′−1,n′)
m′>m0≤ CMQ(q,m0+n′−1,n′)

So we have found a Rainbow instance with m0 equations and n′ < n0 variables
which fulfills our security level. This is a contradiction to Case 1.

As a consequence, the strategy described in Section 5 minimizes both the
number m of equations and the number n of variables.
Since the public key size of Rainbow is given as (see formula (1))

size(public key) = m · (n + 1) · (n + 2)
2

byte,

the strategy also minimizes the public key size. �

240 A. Petzoldt, S. Bulygin, and J. Buchmann

Table 8. Proposed parameters (for K = GF (28), t = 18, b = 10 and r = 18), optimized
for small public key size

Rainbow RSA Elliptic Elliptic
example scheme Sym- Key Size Curve Curve Infeasible

public key private key metric and SDL Key Size Key Size number of
Year (m, n) size (kB) (v1, o1, o2) size (kB) Key Size Field Size c = 0 c = 18 MIPS years
1982 56 417 288 105 85 5.00 · 105

2010 (26,43) 25.7 (17,13,13) 19.1 78 1369 1056 146 160 1.45 · 1012

2011 (27,45) 29.2 (18,13,14) 21.7 79 1416 1088 148 163 2.47 · 1012

2012 (27,45) 29.2 (18,13,14) 21.7 80 1464 1120 149 165 4.19 · 1012

2013 (28,46) 31.6 (18,14,14) 23.1 80 1513 1184 151 168 7.14 · 1012

2014 (29,47) 34.1 (18,14,15) 24.8 81 1562 1216 152 172 1.21 · 1013

2015 (29,47) 34.1 (18,14,15) 24.8 82 1613 1248 154 173 2.07 · 1013

2016 (30,49) 38.3 (19,15,15) 27.7 83 1664 1312 155 177 3.51 · 1013

2017 (30,51) 41.3 (21,15,15) 30.5 83 1717 1344 157 180 5.98 · 1013

2018 (31,52) 44.4 (21,15,16) 32.4 84 1771 1376 158 181 1.02 · 1014

2019 (31,52) 44.4 (21,15,16) 32.4 85 1825 1440 160 185 1.73 · 1014

2020 (32,53) 47.3 (21,16,16) 34.4 86 1881 1472 161 188 2.94 · 1014

2021 (33,54) 50.8 (21,16,17) 36.5 86 1937 1536 163 190 5.01 · 1014

2022 (33,55) 52.7 (22,16,17) 38.1 87 1995 1568 164 193 8.52 · 1014

2023 (34,57) 58.2 (23,17,17) 42.0 88 2054 1632 166 197 1.45 · 1015

2024 (34,58) 60.2 (24,17,17) 43.8 89 2113 1696 167 198 2.47 · 1015

2025 (35,59) 64.1 (24,17,18) 46.3 89 2174 1728 169 202 4.20 · 1015

2026 (35,59) 64.1 (24,17,18) 46.3 90 2236 1792 170 205 7.14 · 1015

2027 (36,60) 68.1 (24,18,18) 48.7 91 2299 1856 172 207 1.21 · 1016

2028 (37,61) 72.3 (24,18,19) 51.4 92 2362 1888 173 210 2.07 · 1016

2029 (37,63) 77.0 (26,18,19) 55.6 93 2427 1952 175 213 3.52 · 1016

2030 (38,65) 84.0 (27,19,19) 60.5 93 2493 2016 176 215 5.98 · 1016

2031 (38,65) 84.0 (27,19,19) 60.5 94 2560 2080 178 219 1.02 · 1017

2032 (39,66) 88.8 (27,19,20) 63.6 95 2629 2144 179 222 1.73 · 1017

2033 (39,66) 88.8 (27,19,20) 63.6 96 2698 2208 181 224 2.95 · 1017

2034 (40,68) 96.7 (28,20,20) 69.1 96 2768 2272 182 227 5.01 · 1017

2035 (40,69) 99.4 (29,20,20) 71.6 97 2839 2336 184 229 8.53 · 1017

2036 (41,72) 110.7 (31,20,21) 80.3 98 2912 2400 185 232 1.45 · 1018

2037 (42,73) 116.6 (31,21,21) 83.8 99 2986 2464 187 236 2.47 · 1018

2038 (42,73) 116.6 (31,21,21) 83.8 99 3061 2528 188 239 4.20 · 1018

2039 (43,74) 122.6 (31,21,22) 87.7 100 3137 2592 190 241 7.14 · 1018

2040 (43,74) 122.6 (31,21,22) 87.7 101 3214 2656 191 244 1.22 · 1019

2041 (44,76) 132.1 (32,22,22) 94.4 102 3292 2720 193 246 2.07 · 1019

2042 (44,78) 139.0 (32,22,22) 94.4 103 3371 2784 194 248 3.52 · 1019

2043 (45,79) 145.8 (34,22,23) 104.8 103 3451 2880 196 251 5.99 · 1019

2044 (46,80) 152.8 (34,23,23) 109.1 104 3533 2944 197 255 1.02 · 1020

2045 (46,80) 152.8 (34,23,23) 109.1 105 3616 3008 199 258 1.73 · 1020

2046 (47,81) 159.9 (34,23,24) 113.6 106 3700 3072 200 260 2.95 · 1020

2047 (47,82) 163.8 (35,23,24) 117.1 106 3785 3168 102 262 5.02 · 1020

2048 (48,84) 175.4 (36,24,24) 125.2 107 3871 3232 203 265 8.53 · 1020

2049 (48,85) 179.6 (37,24,24) 128.8 108 3958 3296 105 269 1.45 · 1021

2050 (49,85) 183.3 (36,24,25) 130.2 109 4047 3392 206 272 2.47 · 1021

Author Index

Bernstein, Daniel J. 73
Boucher, Delphine 126
Buchmann, Johannes 218
Bulygin, Stanislav 218

Cao, Weiwei 41
Clough, Crystal Lee 153

Ding, Jintai 13, 28, 41, 153

Fujita, Ryo 201

Gaborit, Philippe 126
Geiselmann, Willi 126
Gotaishi, Masahito 201

Heyse, Stefan 108, 165
Hodges, Timothy J. 13
Hu, Lei 41

Kruglov, Victoria 13

Loidreau, Pierre 142

Moradi, Amir 108

Nie, Xiuyun 41

Paar, Christof 108
Peters, Christiane 81
Petzoldt, Albrecht 218

Ruatta, Olivier 126
Rückert, Markus 182

Schmidt, Dieter S. 28
Smith-Tone, Daniel 1
Strenzke, Falko 95

Tadaki, Kohtaro 201
Tang, Xiling 41
Tsujii, Shigeo 201

Ulmer, Felix 126

Wieschebrink, Christian 61

	Title Page
	Foreword
	Organization
	Table of Contents
	Cryptanalysis of Multivariate Systems
	Properties of the Discrete Differential with Cryptographic Applications
	Introduction
	$C*, HFE$, and SFLASH
	The C* Scheme
	HFE
	The C*− Scheme
	SFLASH

	The New Attacks on C*− Schemes
	Multiplicative Symmetric Properties of the Differential
	The Effect of Projection
	Conclusion
	References

	Growth of the Ideal Generated by a Quadratic Boolean Function
	Introduction
	The Yang-Chen Dimension Formulas
	Some Combinatorial Lemmas
	Equivalence, Rank and Type
	Even Maximal Rank
	Odd Maximal Rank
	General Case
	Conclusion
	References

	Mutant Zhuang-Zi Algorithm
	Introduction
	Background
	The Zhuang-Zi Algorithm
	The Mutant Zhuang-Zi Algorithm
	Examples
	An Illustrative Example
	A Toy Example
	Non-trivial Examples

	Discussion and Conclusion
	References

	Cryptanalysis of Two Quartic Encryption Schemes and One Improved MFE Scheme
	Introduction
	MFE Public Key Cryptosystem
	MFE
	SOLE Attack on MFE

	Quadratization Equation Attack on the Quartic-1 Scheme
	The Quartic-1 Scheme
	Cryptanalysis of Quartic-1
	Dimension of ${\mathcal S}$
	Experiment Results

	Quadratization Equation Attack on the Quartic-2 Scheme
	The Quartic-2 Scheme
	Cryptanalysis of Quartic-2
	Experiment Results

	The Improved MFE Public Key Cryptosystem
	The Improved MFE
	Linearization Equation Attack
	Experiment Results
	Extension of Improved MFE and Its Analysis

	Conclusion
	References

	Cryptanalysis of Code-Based Systems
	Cryptanalysis of the Niederreiter Public Key Scheme Based on GRS Subcodes
	Introduction
	Basic Facts about Generalized Reed-Solomon Codes
	Cryptosystems Based on GRS Codes
	Existing Attacks
	The Sidelnikov-Shestakov Attack
	An Attack on the Berger-Loidreau Cryptosystem

	An Improved Attack on the Berger-Loidreau Cryptosystem
	Analysis and Experimental Results
	Conclusion and Future Work
	References

	Grover vs. McEliece
	Introduction
	Review of Attacks against the McEliece System
	Quantum Information-Set Decoding
	References

	Information-Set Decoding for Linear Codes over F_{q}
	Introduction
	The McEliece Cryptosystem
	Generalizations of Information-Set-Decoding Algorithms
	Analysis of an Improved Version of Stern’s Algorithm for Prime Fields
	Analysis of an Improved Version of Stern’s Algorithm for Extension Fields
	Increasing the Collision Probability in Stern’s Algorithm
	Cost of Stern’s Algorithm with Finiasz–Sendrier’s Improvement
	Parameters
	References

	A Timing Attack against the Secret Permutation in the McEliece PKC
	Introduction
	Preliminaries
	Identification of the Side Channel
	Construction of the Attack
	Countermeasure
	Implementation of the Attack and Results
	Possible Approaches for a Real Life Attack
	Related Topics
	Conclusion and Outlook
	References

	Practical Power Analysis Attacks on Software Implementations of McEliece
	Introduction
	Motivation
	Related Works and Our Contribution
	Organization

	McEliece in a Flash
	Background on the McEliece Cryptosystem
	Classical Goppa Codes

	Practical Aspects
	Introduction to Power Analysis Attacks
	Our Proposed Attacks
	Adversary Model
	Possible Power Analysis Vulnerabilities
	Gains of Power Analysis Vulnerabilities

	Countermeasures
	Conclusions
	References
	Appendix

	Design of Encryption Schemes
	Key Exchange and Encryption Schemes Based on Non-commutative Skew Polynomials
	Introduction
	Background on Skew Polynomials Ring
	Definition and Basic Properties
	Difficult Problem for Skew Polynomials

	The Cryptosystems
	A Diffie Helmann Like Key Exchange
	Size of Parameters and Complexity of the Schemes

	General Setting for the Security of the Scheme
	General Setting and Definition of Our “Difficult Problem”
	Multivariate Interpretation of the Skew Factorization Problem
	Some Bounds for over Constrained Polynomial Systems Solving

	Specific Attacks
	Structural Attack Using Factorization
	Attacks Using Vector Spaces and Quadratic Equations/Linear
	An Attack Using Linear Algebra

	Parameters
	Construction of a Set ${\mathcal S}$ of Commuting Elements
	Set of Parameters

	Conclusion
	References
	Appendix

	Designing a Rank Metric Based McEliece Cryptosystem
	Introduction
	Background on Rank Metric and Gabidulin Codes
	Rank Metric
	Gabidulin Codes

	McEliece Type Cryptosystems Based on Rank Metric
	The Original System
	Structural Attacks

	Which Parameters for a Rank Metric Based Cryptosystem
	Design Criteria
	Proposition of Parameters

	Conclusion and Perspectives
	References

	Secure Variants of the Square Encryption Scheme
	Introduction
	Background
	HFE
	Square

	Square+
	Double-Layer Square
	Conclusions
	References

	Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers
	Introduction
	Previous Work
	Background on the Niederreiter Cryptosystem
	Classical Goppa Codes
	The Niederreiter Public Key Scheme
	Security Parameters
	Constant Weight Encoding

	Design Criteria for Embedded Systems
	Requirements and Assumptions

	Implementation on AVR Microprocessors
	Generation and Storage of Matrices
	System and Compiler Limitations

	Results
	Conclusions
	References
	Appendix

	Design of Signature Schemes
	Strongly Unforgeable Signatures and Hierarchical Identity-Based Signatures from Lattices without Random Oracles
	Introduction
	Preliminaries
	Security Models
	Lattices
	Bonsai Trees

	Warm-Up — Constructions with Random Oracles
	Strongly Unforgeable Signatures
	Strongly Unforgeable Hierarchical ID-Based Signatures

	Constructions without Random Oracles
	Strongly Unforgeable Signatures
	Strongly Unforgeable Hierarchical ID-Based Signatures

	Conclusions
	References

	Proposal of a Signature Scheme Based on STS Trapdoor
	Introduction
	Preliminaries
	General Design of MPKC
	Summary of STS Scheme and Its Security

	Enhanced STS Scheme
	The Key Idea
	Enhanced STS Trapdoor
	Signature and Verification

	Discussion of the Security
	Security against Gr¨obner Bases Attack
	Security against Rank Attack
	Security against Differential Attack
	Attacks Exploiting Other Vulnerabilities of the Trapdoor

	Efficiency of the Basic Trapdoor Scheme
	Improvement in the Practical Implementation
	Further Improving the Efficiency of the Public Key
	Security Improvement by Check Polynomial System

	Conclusion
	References

	Selecting Parameters for the Rainbow Signature Scheme
	Introduction
	Multivariate Public Key Cryptography
	The Principle of Oil and Vinegar (OV)
	The Rainbow Signature Scheme

	Our Model of Security
	The Model
	Security Level of Rainbow

	Complexity Estimations for the Direct and RBS Attacks
	XL-Wiedemann
	MAGMA’s Implementation of the F4 Algorithm
	Singular’s Implementation of Buchbergers Algorithm
	Storage

	Parameter Choice
	Parameters for Rainbow Optimized for Small Public Key Size
	Rainbow Schemes for Limited Hash Size

	Conclusion
	References
	Appendix

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

