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Video Repeat Recognition and Mining by Visual 
Features 

Xianfeng Yang1and Qi Tian 

Abstract. Repeat video clips such as program logos and commercials are widely 
used in video productions, and mining them is important for video content analy-
sis and retrieval. In this chapter we present methods to identify known and un-
known video repeats respectively. For known video repeat recognition, we focus 
on robust feature extraction and classifier learning problems. A clustering model 
of visual features (e.g. color, texture) is proposed to represent video clip and sub-
space discriminative analysis is adopted to improve classification accuracy, which 
results in good results for short video clip recognition. We also propose a novel 
method to explore statistics of video database to estimate nearest neighbor classi-
fication error rate and learn the optimal classification threshold. For unknown 
video repeat mining, we address robust detection, searching efficiency and learn-
ing issues. Two detectors in a cascade structure are employed to efficiently detect 
unknown video repeats of arbitrary length, and this approach combines video 
segmentation, color fingerprinting, self-similarity analysis and Locality-Sensitive 
Hashing (LSH) indexing. A reinforcement learning approach is also adopted to ef-
ficiently learn optimal parameters. Experiment results show that very short video 
repeats and long ones can be detected with high accuracy. Video structure analysis 
by short video repeats mining is also presented in results.  

1   Introduction 

Video repeats which refer to copies of a video clip ubiquitously exist in broadcast 
and web videos, and their distributions embed abundant structural information 
both in program level and web database scale. The most common video repeats 
are those short video clips from a few seconds to several minutes such as TV 
commercials, station logo or program logo, etc. To discover and locate video re-
peats from large video database or video streams robustly and efficiently is very 
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important for video content analysis and retrieval. For example, by detecting video 
repeats in unlabeled video data, we can find correlation of different video parts 
and discover structural video elements used for syntactic segmentation purpose, 
hence video structure model can be effectively constructed and applied to video 
syntactical segmentation ([1][2]). Video repeat mining also has many other pro-
spective applications, such as commercial monitoring ([3][4][5]), video copy de-
tection ([6][7]), web video multiplicity estimation ([8]), video content summary, 
personalization as well as lossless video compression ([9]).  

Video repeat mining tasks can be divided into two categories: known video re-
peat mining and unknown video repeat mining. For known video repeat mining, 
we often construct a feature vector set from prototype videos and use nearest 
neighbor (NN) classifier to recognize copies of prototype videos from video col-
lections or streams. In this part we focus on the feature representation and classi-
fier learning problems. Since video copies located in different video sources have 
different formats, e.g. different frame sizes, frame rates as well as bitrates, so di-
verse distortions pose a big challenge to video copy recognition. So far many re-
search efforts on video identification have been dedicated to extraction of distinct 
and robust video features from color or geometry field ([10][11][12]), called video 
hashing, with the aim to map video object to a unique hash code that could also be 
robust to kinds of distortions. However, finding a general robust yet distinct video 
hash code is very difficult, so the question is: if video features do not show good 
identification performance under certain video distortions, can they be trans-
formed to a better one? In this chapter we examine commonly used visual features 
(e.g. color histogram, texture) and improve their video recognition performance 
under significant distortions through subspace discriminative analysis. Subspace 
discriminative analysis is extensively used in face recognition and text classifica-
tion ([13][14][15]), and we will show it also results in very promising results in 
video copy recognition ([16]).  

To obtain the minimum error classifier, we propose a novel method to explore 
statistics of prototype video database in order to estimate error rate of threshold 
NN classifier and learn the optimal threshold. Three types of ‘sample-to-database’ 
distances are defined, and error rate is exactly estimated from the three distance 
distributions. Compared to ‘sample-to-sample’ distance ([17]), ‘sample-to-
database’ distance is naturally related to the feature distribution of video database, 
thus making database statistics and error rate estimation more reasonable. 

Unknown repeat mining task is usually implemented on video collections from 
the same source, e.g. broadcast videos in different days, to analyze video structure, 
and the challenge is that prior knowledge about video repeats such as their con-
tent, length and location, is not known in advance, moreover video repeats in dif-
ferent locations may also have distortions, e.g. caption overlay, partial repeats.  
In unknown repeat mining section we will address robust detection, searching ef-
ficiency and learning issues. The approach we proposed combines video segmen-
tation, color fingerprinting, self-similarity analysis, cascaded detection, LSH in-
dexing and reinforcement learning. Compared to other media repeat pattern 
identification methods ([3][9][18]), our approach can detect very short repeats 
(e.g. those less than 1 second) along with long ones, and high accuracy has been 
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achieved in our experiments. Methods by Cheung et al. ([3]) and Herley ([18]) 
both use a fixed time window to do feature extraction and comparison, so those 
repeats significantly shorter than the window are very likely be missed. The 
method by Pua et al. ([9]) is able to identify repeated shots but can not identify 
partially repeated shots, while our approach can identify even small portion of a 
shot or clip by adopting segmentation with granularity smaller than the shot. An-
other novelty of our approach is that a reinforcement learning approach is adopted 
to train the video repeat detectors, and this approach demonstrates efficiency in 
parameter learning, which makes the repeat mining system manageable and easy 
to train.  

The remainder of this chapter is arranged as follows: In section 2, we present 
the known video repeat recognition approach and results. In section 3, the un-
known video repeat mining method and results are presented. In section 4, the 
concluding remarks are discussed. 

2   Known Video Repeat Recognition 

In this section we first propose a model clustering visual features to represent a 
video clip, and adopt Oriented PCA (OPCA) approach to transform this video fea-
ture to subspace representation in order to improve video model separability while 
suppressing distortions. We also propose a novel method to explore statistics of 
video database to estimate error rate of threshold NN classifier and learn the opti-
mal classification threshold. Recognition performance is evaluated under signifi-
cant video distortions and different video length. Results show that recognition  
error rate below 5% has been achieved under significant distortions, and subspace 
representation lead to a large reduction of error rate compared to using original 
feature, especially for very short video clips (e.g.5s). 

2.1   Video Feature Extraction 

2.1.1   Color and Texture Feature Model 

Since a video clip consists of a group of images, to reduce video data and remove 
redundancy, the frames are sampled every half second. For each sample frame 
RGB color histogram and texture feature are calculated. R, G, B channels are each 
divided into 8 bins, thus color histogram is a 512 dimensional feature vector. Tex-
ture feature extraction adopts the statistical texture analysis method based on con-
currence gray matrix ([19]). In this method four gray level concurrence matrices 
are first computed, which corresponds to four neighborhood directions, namely 
horizontal, vertical, left-down diagonal 45° and right-down diagonal 45°. Totally 
13 texture components are computed from each gray level concurrence matrix,  
including Angular Second Moment, Contrast, Variance, Relevance Coefficient, 
Entropy etc. Complete computation of the 13 texture components please refer  
to ([19]). 
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Texture components computed from the four gray level concurrence matrices 
are averaged to form one mean texture feature vector. Since texture components 
have different physical meanings and value ranges, each component is normalized 
by Gaussian normalization approach to make them equally contribute to feature 
distance computation. Based on the normalized color and texture features ex-
tracted from sample frames, unsupervised clustering approach (e.g. K-Means clus-
tering) is employed to get typical feature model of the video clip. Color feature 
vector and texture feature vector are clustered separately, and feature distance 
measure adopts Euclidean distance. The number of clusters for color feature and 
texture feature are set as the same value, so the video clip’s feature model F is as 
follows,  

1 21 1[ ,..., ; ,..., ]K K
c c T TF F F F F=                                           (1) 

Where i
cF represents the ith color cluster center, i

TF represents the ith texture clus-

ter center, 1K  and 2K  are the number of clusters. Advantage of this representation 

is that a video clip can be represented by a fixed dimensional feature vectors, and 
it is robust to feature distortion of individual frames, as well as frame dropping. 

2.1.2   Subspace Discriminative Analysis by OPCA 

In above feature representation, dimension of color feature is 512x 1K , and that of 

texture feature is 13x 2K . If video is matched in this space, computation load will 

be heavy, and storage need is high, moreover, prototype videos may not be well 
separated regarding to Euclidean distance. So it is necessary to reduce feature’s 
dimensionality and find its optimal representation in subspace. 

In our approach, video clips with different contents means different video 
classes, and each class is represented by one prototype video, hence. a video data-
base with N classes consists of N prototype feature vectors represented by set 

1,{ }i i NX X == … , D
iX R∈ , where iX  is feature vector of the ith proto-video, 

which is treated as the signal vector, D is the dimension of original feature space. 
Thereafter, vector is defined as a row vector. The vectors of distorted proto-videos 

are included in set 1 2
1 1

ˆ ˆ ˆ ˆ{ , , , }m
NX X X X= " , ˆ k D

iX R∈ , where ˆ k
iX represents the kth 

distorted vector of the ith proto-video. Difference vector between vectors iX and 

ˆ k
iX  is ˆk k

i i iZ X X= − , which is treated as the noise vector. The set of difference 

vectors is denoted by 1 2
1 1{ , , , }m

NZ Z Z Z= " .  

Given original prototype feature set X and difference vector set Z, Oriented 
PCA is adopted to compute feature’s optimal subspace projection with the aim to 
maximize signal-to-noise ratio in this subspace ([17] [20]).  

Let one of the unit projection vector be denoted by n
G

, OPCA is to maximize 
the following generalized Rayleigh quotient: 
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where ( ) ( )T
X i iC E X X X X= − −  

( )T
Z i iR E Z Z=  

Where XC  is covariance matrix of feature vectors in X, while ZR is correlation 

matrix of difference vectors in Z. The nominator of (2) is the variance of prototype 
vectors’ projected values on direction n

G , while denominator is correlation of dif-
ference vectors’ projected values on the projection axis. Therefore maximizing q 
will make proto-vectors separate while making difference vectors shrink as much 
as possible on this projection direction. Here correlation matrix of difference vec-
tors is computed instead of covariance matrix, because their mean value not just 
variance should be compressed on the projections. To compute projection direc-
tions, let 0=∇q , then the solution of n

G  becomes solving the following general-

ized eigenvector problem，  

T T
X ZC n q R n⋅ = ⋅ ⋅G G

                                        (3) 

If the dimension of subspace is set to D1, then unit vectors corresponding to the 
D1 largest generalized eigenvalues are used as OPCA projection directions. Solv-

ing (3) can first take Cholesky decomposition of ZR  and transform it to the nor-

mal eigenvector problem. Different from PCA, OPCA projection vectors are not 
necessarily orthogonal to each other, and not necessarily unit ones. 

2.2   Statistical Analysis of Video Database  

A video model database generally consists of a lot of prototype feature vectors, so 
NN classifier will be an efficient way to recognize video copies. A test video is 
recognized as the closest proto-video if the distance is below a threshold θ , oth-
erwise the test video will not belong to any proto-video. 

In order to estimate error rate of threshold NN classifier and obtain optimal 
classification threshold optθ , it is necessary to know about statistics of video 

model database. Since classification is based on feature discrimination, we define 
three types of feature distances to explore video database statistics. Distances are 
defined as follows:  

1) The first type of distance is within-class distance wd  between distorted 

proto-videos and model database. Let the set of prototype vectors be denoted by 

{ } 1,...,i i N
O O == , and its distorted vector set be 1 2

1 1
ˆ ˆ ˆ ˆ{ , , , }m

NO O O O= " , where 

ˆ k
iO represents a distorted vector of the ith proto-video, so the within-class distance 

between ˆ k
iO and O is defined as, 
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ˆ ˆ( , ) ( , )k k
w i i id O O d O O=                                                    (4) 

Where ˆ( , )k
i id O O is the feature distance function.  

2) The second type of distance is the minimum between-class distance between 
distorted proto-video and the database, denoted by bid , 

ˆ ˆ( , ) min ( , )k k
bi i i j

j i
d O O d O O

≠
=                                              (5) 

3) The third type of distance is the minimum distance between non-prototype 
video and the database, denoted by bod , where non-prototype video means the 

video that does not belong to any class in database. 

If ˆQ O O∉ ∪ , ( , ) min ( , )bo i
i

d Q O d Q O=
                                 

(6) 

Illustration of wd , bid  and bod  in feature space is shown as Fig.1.  

 

Fig. 1 Illustration of wd , bid  and bod  

Distributions of wd  and bid  are built-in statistics of model database, which re-

flect the variation between proto-videos and their distorted copies, and the dis-
crimination between proto-videos. Distribution of bod  is not only dependent on 

model database, but also related to distribution of non-prototype videos.  
If we get the distributions of the above three distances, error rate of threshold 

NN classifier can be exactly computed. When the number of video models is 
greater than 2, recognition error comes from the following three sources: ① dis-
torted proto-video is classified as non-prototype video; ② distorted copy of one 
proto-video is recognized as another proto-video; ③ non-prototype video is rec-
ognized as a proto-video.  

If proto-video vector set is denoted as O , and video class label set be denoted 

by O� , prototype vectors and their distorted vectors are included in set 
ˆO O O= ∪ , q  is test video, ( )r q is the class label recognized, while ( )r q is its 
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true class label, then the probability that q  be wrongly classified is computed as 

follows: 

( )
( )

( , )

( , , ( ) ( )) ( , ( ) )

eP P q O r q O

P q O r q O r q r q P q O r q O

= ∈ ∉

+ ∈ ∈ ≠ + ∉ ∈

�

� �
            

(7) 

If a unified thresholdθ  is adopted, (7) will become as, 

( ) ( , | )

( ) ( , | )

( ) ( | )

e w bi

bi w bi
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P P q O P d d q O

P q O P d d d q O

P q O P d q O

θ θ
θ
θ

= ∈ ⋅ > > ∈
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+ ∉ ⋅ ≤ ∉
                

(8) 

Suppose normalized distance is continuous in [0,1], and the density functions of 

wd , bid and bod  are )(1 xp , )(2 xp and )(3 xp  respectively. It is also assumed that 

random variables wd , bid are independent to each other, which is reasonable  

because for one feature point wd , bid are computed with reference to two non-

overlapped subsets of proto-vectors. Given assumption above, if the prior prob-
ability of proto-videos and their distorted copies is ( )P q O η∈ = , and the prior for 

non-prototype videos is η-1)( =∉OqP , then (8) will become as,  

dxxpdyypdxxpdyypdxxpP
x
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Since it is a function of threshold θ , its minimum value can be obtained by set-

ting )(' θeP =0, which is, 

∫ =−+⋅=
1

321
' 0)()1()()(-)(

θ

θηθηθ pdxxppPe

 

If η =0.5,        
1

1 2 3( ) ( ) ( )p p x dx p
θ

θ θ=∫   (9) 

Since ∫ ≤
1

2 1)(
θ

dxxp , so )()( 31 θθ pp ≥ , the optimal threshold lies on the left of 

the intersection point of )(1 xp and )(3 xp .  

2.3   Results 

In experiment we built a prototype video database which consists of 1000 short 
video clips with length from 15 to 90s, most of which are commercials and film 
trailers. Video format is: frame size 720x576, 25fps. Distorted copies of these  
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Fig. 2 Histograms of wd , bid  and bod (350 models) 

 
Fig. 3  Density functions of wd , bid  and bod (350 models) 

proto-videos are produced by transcoding operations combining frame downsizing 
from 720x576 to 352x288 with frame rate reduction from 25fps to 15fps, which is 
the common distortion lying between broadcast video and web video copies. 
Video length is set to 10s when computing the feature vectors. The number of tex-
ture feature clusters is 5 while that of color feature is 1. Then OPCA is adopted to 
compute the 64 subspace projections. 

This method is evaluated under two database sizes, one has all the 1000 proto-
videos, and the other has 350 randomly chosen proto-videos. Density functions of 

wd  and bid  are estimated from proto-vectors and their distorted vectors in sub-

space, and another 670 non-prototype videos are used to compute distribution of 

bod . Histograms of the three distances for 350 models are shown as Fig.2, and 
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their density functions are shown as Fig.3, where wd  is approximated by normal 

distribution, while bid , bod  are approximated by Rayleigh distribution. 
From Fig.2, 3 we can see that distributions of wd and bid or bod  are well sepa-

rated in subspace. Optimal threshold optθ  is chosen as the intersection point of 

wd and bid  which is about 0.05, and corresponding training error rate is a quite 

low value 1.63%, as shown in Table 1.  

Table 1 Minimum training error rates 

Error rate 

Method 
L=5s L=10s L=15s 

Subspace feature 
(350 models) 

2.9 % 1.63 % 1.57 % 

Original feature 
(350 models) 

23.7 % 20.7 % 5.8 % 

Subspace feature 
(1000 models) 

7.38 % 4.27 % 5.37 % 

Original feature 
(1000 models) 

26.25 % 21 % 8 % 

The projection matrix computed from 10s clips is applied on 5s and 15s clips to 
calculate subspace features, and quite low error rates are also achieved. When the 
number of models increase from 350 to 1000, error rates increase correspondingly, 
but are still very low, the error rate for 5s clips is below 8%. 

By comparison, error rate is also tested using original video feature. As is 
shown in Table I, longer clips show better robustness to significant distortion by 
frame dropping and downsizing, since more feature points join clustering process, 
so the effect of frame distortion and dropping can be better counteracted. How-
ever, by subspace feature transformation shorter clips (e.g. below 10s) can result 
in the same performance with that of longer clips (e.g. 15s).  

For testing, those 1000 prototype videos are transcoded by frame downsizing to 
CIF or frame rate reduction to 15fps alone, and these distorted videos plus other 
1000 non-prototype videos are used to test the trained subspace classifier under 
1000 prototypes with length set to 10s. False negative error rate is zero, and total 
error rate is 2.8%. This result shows that since composite distortions by downsiz-
ing and frame dropping are maximally compressed in subspace projections, 
slighter distortion by downsizing or frame dropping alone can also be maximally 
compressed. 

We also tested that when PCA is applied to 10s videos using 64 eigenvector 
projections corresponding to the largest eigenvalues, minimum error rate is 19.8% 
in case of 350 models, nearly the same performance with original feature. This re-
sult explains that PCA is built for reconstruction and compression, while OPCA is 
good for classification. 
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3   Unknown Video Repeat Mining 

In this section we propose a novel approach for unknown repeat repeats mining. 
Two detectors in a cascade structure are employed to achieve fast and accurate de-
tection, and a reinforcement learning approach is adopted to efficiently maximize 
detection accuracy. In this approach very short video repeats (< 1s) and long ones 
can be detected by a single process, while overall accuracy remains high. Since 
video segmentation is essential for repeat detection, performance analysis is also 
conducted for several segmentation methods. Results of video structure analysis 
by video repeat mining are also presented. 

3.1   Framework 

The proposed framework is shown in Fig. 4. We employ two cascade detectors to 
identify repeated clips, with the first detector discovering potential repeated clips, 
and the second one improving accuracy. 

The first detector includes three temporal level video representations, namely 
video units (VU), video segments (VS) and video clips (VC), as well as corre-
sponding video similarity measures. The first step is content based video segmen-
tation. Video stream is partitioned into basic video units (VU). The second step is 
self-similarity analysis. Video units are grouped by a window size W, e.g. two 
units as one group, to form bigger size video segments (VS), then they are com-
pared with each other to produce similarity matrix S. By similarity measure f1, two  
segments will be judged as either identical or non-identical, so S is a binary matrix 
 

  

 

 

 

 

Fig. 4  Framework for repeat video clip identification 
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which is generally a sparse one that can be compactly represented to save storage. 
Here locality sensitive hashing (LSH) is adopted to reduce correlation complexity. 
The third step is to identify repeat clips from similarity matrix S. Basically re-
peated clips can be identified from diagonals, which is controlled by similarity 
measure f2. 

The second detector adopts frame based matching to verify candidate repeated 
clips for accuracy improvement. After that a boundary refinement step is em-
ployed to extend repeated clips' boundaries close to their maximum ones as possi-
ble. The last step is repeated clip labeling. Repeated instances will be extracted 
from repeated clip pairs and grouped into multiple categories. Each category 
represents a unique repeat pattern.  

3.2   Video Representation and Feature Extraction 

3.2.1   Video Segmentation and Three Level Representation 

In our method video stream is segmented by content based keyframes, and interval 
between two consecutive keyframes is treated as the basic video unit (VU). Key-
frame selection is based on color histogram difference. Suppose H1 and Ho are 
color histograms of current frame and the last keyframe respectively, then current 
frame is selected as new keyframe if the following condition is satisfied,  

η>− ),inter(1 01 HH
                                       

(10) 

where 1 0inter( , )H H  is intersection of two color histograms, η  is threshold. 

This representation is a seamless video segmentation without temporal data 
loss, which is similar to shot segmentation, but its granularity is smaller than shot. 
Its advantages lie in: First it is robust to boundary shift of repeat clips. Generally 
shift error can be corrected after a shot cut. Secondly it can reduce correlation  
between adjacent video units, so diagonal pattern will be sharper and easier be 
identified. The third advantage is that temporal length of video unit can be added 
to increase feature discrimination. 

The second level video representation (VS) is formed by grouping two neighbor 
units (W=2). Compared to the first level, the second level has almost the same 
number of samples, but the discrimination ability will improve a lot, thus provid-
ing a less noisy output to build a higher level of video repeat clips. 

3.2.2   Video Features 

Two types of video features are extracted. The first one is video unit (VU) feature 
used in the first detector, and the other one is frame feature used in the second  
detector. 

1) Video unit feature  
Video unit feature includes interval length and color fingerprint proposed by 

Yang et. al ([12]). A video unit is partitioned into K sub-intervals, and represented 
by K blending images formed by averaging frames within each sub-interval along 
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time direction. Each blending image is then divided into M×N equal size blocks 
each of which is represented by the major and minor color components among 
RGB, as illustrated in Fig. 5. Color fingerprint is the ordered catenation of these 

block features. If R , G , B  are the average color values of a block, and their de-
scending order is (V1, V2, V3), then the major color and minor color are determined 
by the following rules: 

Rule 1: if  V1 > V3,  

1 3

1 3

arg max( , , )   if ( )
Major Color

Uncertain              if ( )

R G B V V

V V

τ
τ

⎧ − >⎪= ⎨ − ≤⎪⎩
 

⎩
⎨
⎧

≤−
>−

=
τ
τ

)( if             Uncertain 

)( if    ),,min(arg
ColorMinor 

32

32

VV

VVBGR

 
Where τ  is the parameter that controls the robustness to color distortion and dis-
criminative ability of this feature. 

Rule 2: if V1 = V3 (gray image), 

⎩
⎨
⎧

≤
>

==
11

11

  ifdark     

  ifbright   
ColorMinor ColorMajor 

τ
τ

V

V

 

  

 

 

 

 

Fig. 5 Illustration of video segmentation and feature extraction 

Major and minor color patterns have six possible symbol values from alphabet 
{R, G, B, U, L, H}, where U, L and H stand for uncertain, dark and bright respec-
tively. In this work one blending image (K=1) is used for each unit, and divided 
into 8x8 blocks (M=N=8), thus the color feature is a 128 dimensional symbol vec-
tor. We also apply LSH indexing on this color fingerprint, and its string represen-
tation can be easily transformed to a bit string required by LSH algorithm ([21]) 
without incurring extra errors. By LSH and unit length filtering, complexity of 
searching identical video units can be reduced by hundreds of times. 

2) Frame feature 
Each frame is divided into 4 sub-frames, and RGB color histogram(8x8x8 bins) 

of each sub-frame is quantized to a symbol by VQ, so each frame is represented 
by 4 symbols.    
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3.3   Video Similarity Measures 

Video similarity measures are conducted at several levels to ensure efficient and 
robust video repeat discovering: Video Unit, Video Segment, and Video Clip.  

3.3.1   Video Segment Similarity Measure 

Given two video units ivu and jvu , their distance ( , )i jD vu vu is defined as:  

22( , ) ( , ) ( ) ( )
i j i j i j

D vu vu d F F len vu len vu= + −⎡ ⎤⎣ ⎦                         
(11) 

where iF , jF are color fingerprint vectors of ivu and jvu , ( , )i jd F F is color finger-

print distance function ([12]), len(⋅) is length feature. If VS consists of W video 
units, similarity measure 1f between the ith segment and jth segment 

1:{ , }j j jVS vu vu +  is defined as: 

⎩
⎨
⎧ <<

= −+−+

otherwise

vuvuDvuvuDif
VSVSf

WjWiji
ji

      0

),(,,),(        1
),(

1111
1

εε "

      

(12) 

where 1ε  is distance threshold. 

3.3.2   Clip Level Aggregation 

Repeat clips will appear as diagonals in similarity matrix. However, due to seg-
mentation errors, the line will not be the integrated one. Moreover those line  
 

 
Fig. 6 Example of diagonal tracks for repeat sequences 
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fragments will not be collinear if non-uniform partition is used. Fig. 6 shows part 
of a similarity matrix computed in our experiment. As we can see, diagonal tracks 
are fragmented and contaminated by noises. To get the whole repeat clip correctly 
we design a hierarchical aggregation algorithm purely based on temporal bounda-
ries of repeat segments.  

This algorithm is described as follows: 

Step 1: First link strong diagonal tracks whose length exceeds one. The start 
and end time of two pairs of repeat sequences (I,I’) and (II,II’) corresponding to 
two diagonal lines are represented by (T1start,T1end), (T1′start,T1′end) and 
(T2start,T2end), (T2′start,T2′end) respectively, which is illustrated in Fig. 7.  

 

Fig. 7 Illustration of two pairs of adjacent repeat segments 

If one of the two conditions in (13) is satisfied, (I,I’) and (II,II’) will be merged 
into one repeat pair.  

a. Overlap: T1start ≤ T2start ≤  T1end ,   T1′start ≤ T2′start ≤  T1′end  

b. Adjacency:  |T2start- T1end|<μ1, |T2′start- T1′end|<μ1, |(T2start- T1end)-( T2′start-   

T1′end)|< 2ε                                                          (13) 

where μ1 defines neighborhood distance, 2ε is displacement allowed for neighbor 

repeat segments, thus controls temporal variations of the whole repeat clip.  
Boundaries of merged repeat pair are computed as: 

Tstart=min(T1start,T2start),  Tend=max(T1end,T2end) ; 

T′start=min(T1′start,T2′start), T′end=max(T1′end , T2′end). 

This new repeat pair will be put into the repeats list to replace originals, and the 
above process is iterated till no change of the list. 

Step 2: Connecting single dots based on results of step 1 with the same merging 
criterion as step 1. 

Step 3: The connected sequences after above two steps are further connected 
and merged until there is no change. 

By the above aggregation algorithm the whole image of repeat clips can be well 
constructed from their local repeat segments, thus providing good foundation for 
further similarity analysis and boundary refinement. Moreover, this algorithm only 
needs to store boundaries of repeat segments but not similarity matrix, which can 
have efficient implementation for even large video data mining. 
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3.3.3   Second Stage Matching 

The second detector adopts frame by frame matching. The total number of identi-
cal frames is normalized by the average sequence length to get the similarity 
score. A repeat pair is judged as true one if the following condition is satisfied, 

3(1 )Lscore e ε−> +                                              (14) 

where score is the similarity value, L is the minimum length of the two clips in 
seconds, and 3ε is threshold. This decision rule uses soft thresholds for different 

length sequences. Since shorter sequences are assumed less reliable ones, they 
should satisfy more stringent condition to pass through verification. Once a repeat 
pair is verified, their boundaries are extended frame by frame until dissimilar 
frames are encountered.  

3.4   Reinforcement Learning of Detectors 

The two cascade detectors contain several parameters, like distance thresholds, 
LSH parameters etc., but the intrinsic and crucial ones that affect detection accu-
racy are 1ε , 2ε and 3ε  in (12)(13)(14) respectively. Tuning these three parameters 

can significantly change detection results. The three parameters have clear physi-
cal meanings. 1ε reflects feature distortion of identical video units for certain 

video data and feature extraction; 2ε  that defines maximum temporal displace-

ment between neighbor repeat segment pairs in clip aggregation function is related 
to video unit granularity and temporal variation allowed for the whole repeat clips. 

3ε  in the second detector balances recall and precision. Parameter μ1 in (13) defin-

ing neighborhood of repeat segments is not crucial for final results as long as it is  
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Fig. 8 Connectionist reinforcement learning network 
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in a range, e.g. 10s ~ 20s. Segmentation related parameter is important for final re-
sults, but it is not intrinsic to the detector. Different segmentation methods may 
have different types of parameters or no parameter at all.   

In the following we will propose a method to learn appropriate values of 

1ε , 2ε and 3ε in order to achieve optimal performance on selected video data. 

Given certain segmentation and feature extraction, the three parameters in the two 
detectors are trained together by reinforcement learning in a non-associative para-
digm. Given an input, the learning network produces the three parameters, then a 
scalar indicating “goodness” of detection results under these parameters is imme-
diately used as a reinforcement for the learning network. In our approach the sum 
of recall and precision is taken as the reinforcement factor. We also adopt the con-
nectionist REINFORCE algorithm ([22]) in which the units of network are Ber-
noulli quasilinear units whose output is 0 or 1, statistically determined by Ber-
noulli distribution with parameter )),exp(1/(1)( ssfp −+== which is shown in 

Fig.8. Each Bernoulli quasilinear unit has one input weight, and the three parame-
ters are encoded by gray codes corresponding to the outputs of n Bernoulli  
quasilinear units. After receiving a reinforcement r, the weights of Bernoulli  
quasilinear units are updated by (15). 

( )( )i i iw r b y pαΔ = − −                                           (15) 

whereα is a positive learning rate, b serves as a reinforcement baseline, iy  is the 

output of the ith Bernoulli quasilinear unit, and ip  is the Bernoulli distribution pa-

rameter.  It has been shown by Williams ([22]) that this learning algorithm statisti-
cally climbs the gradient of expected reinforcement in weight space, which means 
that the detector parameters will change in the direction along which the sum of 
recall and precision increases.  

3.5   Results 

For news video we chose half-hour CNN and ABC news videos from TRECVID 
data to form two video collections, each of which contains 12 day programs with 6 
hours around. By manually searching short repeat clips including program logos 
and commercials, but neglecting other repeat scenes, i.e. anchor persons, 34 kinds 
of repeat clips with totally 186 instances are found from CNN collection, while 35 
kinds with totally 116 instances found from ABC collection. In addition broadcast 
videos of Channel News Asia (CNA) are also used for structure analysis. 

3.5.1   Detector Training 

Parameters of the two detectors are learned by the approach presented in section 
3.4. Three hour CNN news videos are randomly chosen for training. Videos are 
segmented by content based keyframes. 

The reinforcement learning rate α in (15) is set to 0.01 and reinforcement base-
line b set to 0.7. Parameters 1ε , 2ε  and 3ε  are each encoded by 5 bit gray code, so  
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there are totally 15 Bernoulli units in this network. Parameter value range is set to 
[0,1]. Initial parameters are set to empirical values, and initial weights are all ze-
ros. During each learning round we manually check the detection results to com-
pute recall and precision, then feed their sum as reinforcement of the learning 
network. Recall and precision are calculated as (16). 

instances detectedallofnumber 

instancesrepeat correct  ofnumber 
precision

instancesrepeat   trueall ofnumber 

instancesrepeat correct  ofnumber 
recall

=

=

                          (16) 

In experiment recall and precision in the first round learning are 74% and 
100%, but after ten rounds of learning, recall and precision already climb to 94.2% 
and 96% respectively. Since the next several rounds of learning do not lead to re-
inforcement increase, we then stop the learning. 

3.5.2   Testing Accuracy 

The trained detectors are tested on the rest 3 hour CNN videos and 6 hour ABC 
videos. Recall and precision on CNN videos are 92.3% and 96%, while 90.1% and 
90% those for ABC videos. This accuracy is obtained without setting a minimum 
sequence length to filter errors, so most of the errors come from those very short 
clips. The shortest correct repeat detected is just 0.26s (partial of “play of the day” 
logo in CNN video), while the longest one is 75 seconds long.  

Boundary accuracy of repeat pairs is also measured. We selected 300 repeated 
pairs that cover almost all repeat patterns and checked their boundary shift before 
boundary refinement. The smallest shift is 0 s, while the largest one is 16.4s, and 
the average shift is 0.47s. Around 80% of the shifts are within 0.2 seconds. After 
frame by frame boundary refinement those large shifts can be effectively reduced 
to 0~1 second. 

3.5.3   Performance Analysis of Segmentation Methods 

Video segmentation is essential for this approach, so experiments are conducted to 
compare performances by proposed keyframe based segmentation, uniform seg-
mentation and shot segmentation. The video data are 3 hour CNN videos used in 
Section 3.5.1. Two keyframe based segmentations are implemented with η =0.15, 

0.30 respectively. Uniform segmentation utilizes I frames (every 12 frames). Shot 
detection includes cuts, fades in-outs and dissolves. Video unit features for all 
segmentations are color fingerprint and length. The video segment (VS) size W for 
shot segmentation is set to 1, and the minimum number of diagonal points in re-
peat aggregation is also set to 1. Thus this method can detect not only single repeat 
shots, but also repeat clips beyond shots. Detectors are separately trained for each 
segmentation strategy to achieve their nearly optimal performance, and training 
results are shown in Table 2.  
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Table 2 Performance comparison of video segmentation methods 

 
Uniform 
sampling 

Keyframe 
(η =0.15) 

Keyframe 
(η =0.30) Shot based 

recall 87.8% 94.2% 90.7% 66.7% 

precision 95.9% 96.0% 86.0% 84.7% 
Video units 26344 14872 6316 1911 

 
Fig. 9 CNN news video structure analysis by video repeats 
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From Table 2 we know that keyframe based segmentation achieves best per-
formance. The uniform segmentation results in several times more video units 
than keyframes, but still gets lower recall on program logos and commercials. 
Uniform segmentation also detects quite many stationary scenes, such as anchor 
shots and black frames which occupy nearly 74% of the whole detected repeat 
clips pool thus overwhelm other interesting repeat patterns like program logos and 
commercials. Under keyframe based segmentation these still scenes are all fil-
tered, program logos and commercials are main body of detected repeats. Shot 
based segmentation results in much fewer video units, but its total accuracy is 
much lower and many fast changing program logos are missed. When granularity 
of keyframe based segmentation becomes bigger, its performance will also drop 
because of heavier data loss.  

3.5.4   Searching Efficiency Evaluation  

By LSH indexing on color fingerprint, the average number of retrieved units for a 
query unit of CNN collection (totally 629,380frames and 31496 units) is 320, and 
the number of color feature comparisons is further reduced to 20 by pre-filtering 
one dimension length feature at trained distance threshold ε1 =0.1, thus speedup 
factor is about 1575 compared to pair-wise searching. For ABC collections (totally 
616,780 frames and 29838 units), the average number of retrieved units for a query 
unit is 1026, and further reduced to 56 by length filtering, thus speedup factor is 
533. On PC with Pentium-4 2.5GHz processor the two stage detections on 6 hour 
CNN videos can be finished in 22 seconds, while 40 seconds for ABC videos.  

3.5.5   Video Structure Discovery Results 

Fig. 9 shows temporal distribution of short video repeats identified from CNN 
news videos of six days. Those repeat instances linked by curves are chosen as 
structural video elements (SVE). From this map we can clearly see that the whole  
program is segmented by SVEs into several layers each of which contains certain 
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Fig. 10  CNA news video structure analysis by video repeats 
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topics, such as health program, top stories, financial news, sports news, commer-
cials et al. Similar results are also achieved for CNA video structure discovery. 
Fig. 10 shows distribution of short video repeats identified from CNA one hour 
news videos in two days.  

4   Concluding Remarks 

In this chapter we frame known video repeat recognition as a standard pattern rec-
ognition problem, and take advantage of the techniques successfully applied to 
other classical pattern recognition problems such as face recognition, speech  
recognition and OCR. For example, subspace discriminative analysis is used to 
optimize video feature representation. Video feature model adopts sampling and 
clustering strategy to capture typical color and texture features of a video clip, and 
it shows good robustness to frame distortion and dropping. Video feature’s sub-
space representation computed by OPCA leads to a significant improvement of 
recognition performance especially for very short video clips (e.g. below 10s). 
Compared with other robust image descriptors that require high computational 
complexity, e.g. SIFT ([10]), RGB color histogram and texture feature adopted in 
this approach can also achieve robustness to common distortions through appro-
priate coordinate transformation, while computation is much simpler. The pro-
posed statistical analysis method reflects the distribution of video database in  
feature space by three distance distributions from which nearest neighbor classi-
fier’s error probability can be exactly estimated, and optimal classification thresh-
old can be theoretically computed. Classification accuracy is evaluated under 1000 
video models, which is a reasonable database size for some real applications, e.g. 
TV commercial monitoring, and very low error rate is obtained. 

In unknown video repeat mining approach, we do not make feature optimiza-
tion according to specific video database, but rely on self-similarity rule to dis-
cover all possible video repeats in an unsupervised way. However, in order to 
achieve high mining accuracy for given video collections, we adopt a supervised 
approach to tune the mining parameters, so this approach can be regarded as a 
mixture of unsupervised discovery and supervised learning. This method achieves 
robust detection of arbitrary length video repeats by cascaded detectors that em-
ploy different features and similarity measures. Quite short repeats (e.g. those less 
than 1 second) along with long ones can be detected with high accuracy, which is 
the strength of our approach compared to previous work ([3][9]). Similarity 
searching complexity of the first detector is reduced hundreds of times through 
LSH indexing and length filtering. Here color fingerprint is used as video unit fea-
ture, for its discrete values are naturally suitable for LSH indexing, and its combi-
nation with unit length can give discriminative representation of video units. As a 
comparison, known video repeat recognition approach adopts color histogram and 
texture as feature, for they have continuous values that are suitable for statistical 
analysis and subspace feature transformation. By analyzing detection performance 
under several video segmentation strategies, we know that video segmentation  
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utilizing content-based keyframes achieves best balance between detection accu-
racy and efficiency on short video repeats mining compared to uniform and shot 
based segmentation. Parameters of detectors can be efficiently optimized in a few 
rounds of reinforcement learning without knowing statistics of large volume of 
video data, which makes our approach easily adapt to different video sources. Re-
sults also show that short video repeats mining is an effective way to discover syn-
tactic structure of news videos. 
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