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Knowledge-Free and Learning-Based Methods in Intelligent
Game Playing, 2010
ISBN 978-3-642-11677-3

Vol. 277. Filippo Spagnolo and Benedetto Di Paola (Eds.)
European and Chinese Cognitive Styles and their Impact on
Teaching Mathematics, 2010
ISBN 978-3-642-11679-7

Vol. 278. Radomir S. Stankovic and Jaakko Astola
From Boolean Logic to Switching Circuits and Automata, 2010
ISBN 978-3-642-11681-0

Vol. 279. Manolis Wallace, Ioannis E.Anagnostopoulos,
Phivos Mylonas, and Maria Bielikova (Eds.)
Semantics in Adaptive and Personalized Services, 2010
ISBN 978-3-642-11683-4

Vol. 280. Chang Wen Chen, Zhu Li, and Shiguo Lian (Eds.)
Intelligent Multimedia Communication: Techniques and
Applications, 2010
ISBN 978-3-642-11685-8

Vol. 281. Robert Babuska and Frans C.A. Groen (Eds.)
Interactive Collaborative Information Systems, 2010
ISBN 978-3-642-11687-2

Vol. 282. Husrev Taha Sencar, Sergio Velastin,
Nikolaos Nikolaidis, and Shiguo Lian (Eds.)
Intelligent Multimedia Analysis for Security
Applications, 2010
ISBN 978-3-642-11754-1

Vol. 283. Ngoc Thanh Nguyen, Radoslaw Katarzyniak, and
Shyi-Ming Chen (Eds.)
Advances in Intelligent Information and Database Systems,
2010
ISBN 978-3-642-12089-3
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Preface 

 

As cameras become more pervasive in our daily life, vast amounts of video data 
are generated. The popularity of YouTube and similar websites such as Tudou and 
Youku provides strong evidence for the increasing role of video in society. One of 
the main challenges confronting us in the era of information technology is to ef-
fectively rely on the huge and rapidly growing video data accumulating in large 
multimedia archives. Innovative video processing and analysis techniques will 
play an increasingly important role in resolving the difficult task of video search 
and retrieval. A wide range of video-based applications have benefited from ad-
vances in video search and mining including multimedia information manage-
ment, human-computer interaction, security and surveillance, copyright protec-
tion, and personal entertainment, to name a few.  

This book provides an overview of emerging new approaches to video search 
and mining based on promising methods being developed in the computer vision 
and image analysis community. Video search and mining is a rapidly evolving 
discipline whose aim is to capture interesting patterns in video data. It has become 
one of the core areas in the data mining research community.  In comparison to 
other types of data mining (e.g. text), video mining is still in its infancy. Many 
challenging research problems are facing video mining researchers. For example, 
how to extract knowledge from spatio-temporal data? How to infer high-level se-
mantic concepts from low-level features in videos? How to exploit unlabeled and 
untagged video data? The use of classical data mining techniques for video data is 
impractical due to the massive volume of high-dimensional video data. To address 
these difficult challenges, it is necessary to develop search and mining techniques 
and methods that are suitable for video data.  

The objective of this book is to present the latest advances in video search and 
mining covering both theoretical approaches and practical applications. The book 
provides researchers and practitioners a comprehensive understanding of the start-
of-the-art in video search and mining techniques and a resource for potential appli-
cations and successful practice. This book can also serve as an important reference 
tool and handbook for researchers and practitioners in video search and mining.  

 



VI Preface
 

The target audience of this book is mainly engineers and students working on 
video analysis in various disciplines, e.g. computer vision, pattern recognition, in-
formation technology, image processing, and artificial intelligence. The book is 
intended to be accessible to a broader audience including researchers and practic-
ing professionals working in video applications such as video surveillance, video 
retrieval, etc. 

The origin of this book stems from the immense success of the First Interna-
tional Workshop on Video Mining (VM’08), held in conjunction with the IEEE 
International Conference on Data Mining 2008. This workshop gathered experts 
from different fields working on video search and mining.  

Organization and Themes 

The book comprises both theoretical advances and applications in video search 
and mining. The organization of the book reflects the combination of analytical 
and practical topics addressed throughout the book. We have divided the book 
chapters into five parts; each addresses a specific theme in video search and min-
ing. The five themes presented include motion trajectory analysis, high-
dimensional video representation, semantic video analysis, personalized video, 
and video mining.  

Part I. Motion Trajectory Analysis: Object motion trajectories describe the rich 
dynamic content of video data. Motion trajectory analysis plays an important role 
in video mining and has been exploited for various applications, e.g. video re-
trieval, video summarization, video surveillance, traffic monitoring, and sports 
analysis.  

Chapter 1 is focused on the latest research in motion trajectory analysis for 
video search and mining. The main methodologies for the description of motion 
trajectories, as well as the indexing techniques and similarity metrics used in the 
retrieval process are introduced and examined through a comparative analysis,  
application examples, and discussion on future trends. In Chapter 2, trajectory 
clustering methods for learning activity models are introduced with a focus on pa-
rametric and non-parametric partition algorithms. A soft partition algorithm based 
on non-parametric mean-shift clustering is proposed and validated. The use of 
one- and multi-dimensional hidden Markov models (HMMs) for video classifica-
tion and recognition is also introduced.  

Several aspects of motion trajectory analysis including their representation,  
indexing, similarity, invariance, and application are addressed in Chapter 3. For 
instance, a representation of motion trajectories that is invariant to camera view is 
introduced based on null-space invariants. The representation of motion trajecto-
ries includes both isolated motion trajectories describing the dynamics of a single 
object as well as multiple motion trajectories characterizing the interaction among 
a group of objects in complex events. Several methods for efficient indexing based 
on matrix and tensor decomposition and various similarity measures for efficient 
storage, retrieval and classification of motion trajectories are reviewed.  



Preface VII
 

Examples of the use of motion trajectory analysis in real world applications 
provide a vivid illustration and help the reader gain a deeper insight into the poten-
tial of motion trajectory analysis in video search and mining. 

Part II. High-Dimensional Video Representation: Because of the innate abun-
dance of information in video sequences, efficient representation of video data has 
long been a subject of intense interest in video analysis. Video representations are 
invariably high-dimensional, and thus a great deal of effort is required for process-
ing video data. The representation of video in high-dimensional spaces is the topic 
of this part of the book. 

Chapter 4 explores extraction of features that reflect three-dimensional struc-
tural information embedded in videos. Three-dimensional features venture beyond 
traditional video features, e.g. two-dimensional appearance-based features or spa-
tio-temporal features. These three-dimensional features expand the kind of infor-
mation captured from videos, which is essential in tasks such as video mining and 
retrieval. The main difficulty posed by this approach is the need to infer accurate 
three-dimensional information. This limitation is due to the fact that typical video 
footage does not convey prior knowledge about the scene configuration or camera 
calibration. Several recent methods that address the challenge posed by three-
dimensional feature-based video analysis are reviewed including simultaneous  
localization and mapping, structure-from-motion, and 3D reconstruction. Illustra-
tive use of tensor-based representation in practical applications including shot 
boundary detection, object recognition, content-based video retrieval as well as 
human activity recognition are presented, and limitations of the state-of-the-art 
techniques are discussed.  

Models designed to understand, organize and utilize acquired high-dimensional 
video representation are considered. The goal is to extract semantically meaning-
ful information from a large collection of samples in a high-dimensional space. 
Specifically, in video analysis, one of the fundamental aims is to recognize actions 
or persons. Statistical inference has been very successful in performing these 
tasks. Extension of statistical inference tools to manifolds in high-dimensional 
spaces is discussed in Chapter 5. Manifold is critical to the representation of video 
data, which is distributed over a small fraction of the high-dimensional space. 
Once the distribution of video data on manifolds has been captured, efficient sta-
tistical inference and learning methods can be developed. Empirical evaluation of 
various manifold-based video analysis techniques for applications such as video 
understanding is presented. 

Part III. Semantic Video Analysis: The topic of understanding videos by seman-
tic learning has been an important research area over the past decade. The formal-
ism of semantic activity analysis including ontological representation of domain 
knowledge, statistical models and logical languages to describe activities, and the 
integration of semantic schemes will be discussed in Chapter 6. The focus is on 
techniques for addressing challenges in automatic activity recognition and abnor-
mality detection such as robust primitive action detection, multi-agent interaction, 
higher-/lower-level action mapping, etc.  
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Video genre inference, a technique that automatically clusters and tags video 
data and thus facilitates user browsing, search and retrieval, provides an important 
practical illustration of semantic inference in video analysis. A comprehensive in-
troduction of the necessary background for video genre inference as well as recent 
developments in the use of task-specific features, reflecting the video capture and 
camera configuration, is presented in Chapter 7.  

Chapter 8 explores the problem of semantic visual learning from weakly la-
beled web video. A general tenet of learning theory is that an infallible supervisor 
always provides useful information that yields improved results. In the context of 
learning from videos, however, it is generally too expensive, and often not possi-
ble, to attain complete and accurate information by a supervisor. A technique for 
robust learning from weakly tagged video data (as available from the web) is de-
scribed. The interesting feature of the technique illustrated is the mechanism used 
for automatic identification and filtering of irrelevant information. Another impor-
tant component of the method described is the use of active learning to allow users 
to intervene in order to further improve the performance at a controllable cost. 

 
Part IV. Personalized Video: Personalization is an increasingly important trait in 
recent multimedia applications. The theme in this part of the book will investigate 
the role of personalization in video analysis. In particular, the use of video-based 
face recognition for personalized video as well as a personalized recommendation 
system for broadcast news will be described. 

Automatic face recognition is one of the most active research areas in computer 
vision. It allows automatic identification and verification of a person from a static 
image or video sequences. In contrast to traditional static image-based approaches, 
video-based face recognition technology utilizes the abundant video information, 
leading to more accurate and robust face recognition methods, and thus provides 
an invaluable tool for personalized video applications. A comprehensive survey of 
video-based face recognition and retrieval techniques for personalized video ap-
plications is presented in Chapter 9.   

Because of the large number of broadcast channels and TV news programs, 
finding news videos of interest can be a difficult task. Chapter 10 presents an in-
teractive framework for personalized news video recommendation. The personal-
ized system allows news seekers to access programs of interest from large-scale 
news video archives more effectively. In this framework, multiple media sources 
(i.e. audio, video, and closed captions) are integrated to capture news topics, and 
their inter-topic contextual relationships are visualized to enable news seekers to 
interactively find news topics of interest.  

 
Part V. Video Mining: The final theme of the book is focused on empirical tasks 
in video mining. The scope of the discussion ranges from low-level tasks, such as 
motion detection and re-occurrence identification to semantic-level tasks.  

Motion is an important feature in content-based video parsing for high-level un-
derstanding. Mining motion information from video data is a critical task in video 
analysis. In Chapter 11, a case study is illustrated to introduce a unique technique of 
independent motion segmentation. A holistic, in-compression approach is presented, 
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thus attaining high-efficiency while providing very good performance in mining mo-
tion information from video data.  

Another critical facet of video data is represented by pattern re-occurrence in 
video sequences. The problem of detection of (almost)-repetitive pattern occur-
rence in video footage is an important task in video mining. Examples of recurring 
video sequences include commercials, channel advertisements, channel intros, and 
newscast intros. Video occurrence identification requires integration of various 
fundamental video analysis techniques, including feature extraction, classifier 
training, and efficient search. Several technologies for recognizing predefined and 
unknown recurring video sequences are discussed for mining general videos and 
broadcast television in Chapters 12 and 13, respectively. A real-time recurring 
video sequence recognition system is also presented in Chapter 13.  

Automatic video annotation is an important tool for video indexing and search. 
It has been well studied for several years. However, most existing efforts in video 
annotation have been conducted on small video corpuses and the size of concept 
vocabulary has been limited to tens or hundreds. The exponential increase in video 
data on the Web presents a great potential as well as new challenges for video an-
notation. Chapter 14 introduces the use of video mining techniques for automatic 
web-scale video annotation as well as annotating videos using large-sized natural 
language keywords. State-of-the-art techniques for video analysis, feature extrac-
tion and classification are presented. The focus is on the use of suitable tech-
niques, key algorithms, and data structures, for extremely large-scale automatic 
video annotation. A new web-scale automatic video annotation method is pre-
sented in which the keywords are augmented based on previous annotations, by 
leveraging the large collection of video data. The effectiveness and efficiency of 
the method described are validated using experiments conducted on a corpus of 
over 1.2 million videos crawled from YouTube. 
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Object Trajectory Analysis in Video Indexing
and Retrieval Applications

Mattia Broilo, Nicola Piotto, Giulia Boato,
Nicola Conci, and Francesco G.B. De Natale

Abstract. The focus of this chapter is to present a survey on the most recent ad-
vances in representation and analysis of video object trajectories, with application
to indexing and retrieval systems. We will review the main methodologies for the
description of motion trajectories, as well as the indexing techniques and similarity
metrics used in the retrieval process. Strengths and weaknesses of different solutions
will be discussed through a comparative analysis, taking into account performance
and implementation issues. In order to provide a deeper insight on the exploitation of
these technologies in real world products, a selection of examples will be introduced
and examined. The set of possible applications is very wide and includes (but it is
not limited to) generic browsing of video databases, as well as more specific and
context-dependent scenarios such as indexing and retrieval in visual surveillance,
traffic monitoring, sport events analysis, video-on-demand, and video broadcasting.

1 Introduction and Motivations, and Requirements

The concept of indexing and retrieval of videos is rather mature and various con-
sumer systems are already available and widely used in web browsing and related
applications (Google Video, Yahoo!, YouTube). Nevertheless, content-based video
retrieval is a very complex task and commercial systems still largely rely on pure
textual search. The most challenging issue consists in capturing users’ semantic,
which is still an unsolved problem, except for very specific or professional applica-
tion domains where video analysis and interpretation is less affected by subjectivity.
Unambiguous descriptions are difficult to be extrapolated unless a common dictio-
nary or specific rules for annotation are shared a priori. To bridge the semantic gap
between video content and its interpretation given by humans, motion information

Mattia Broilo, Nicola Piotto, Giulia Boato, Nicola Conci, Francesco G.B. De Natale
DISI - University of Trento, Via Sommarive, 14, 38100 Trento (Italy)
e-mail: {broilo,piotto,boato,conci}@disi.unitn.it,
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D. Schonfeld et al. (Eds.): Video Search and Mining, SCI 287, pp. 3–32.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Video database

Trajectory
query

Trajectory
database

Pre-processing 
and tracking

Trajectory 
representation Indexing

Matching

Results

Video 
acquisition 
modules

Input

Fig. 1 General scheme for a content-based video retrieval (CBVR) system.

plays a crucial role [1]. In fact, suitable motion analysis tools may allow identifying
activities, behaviors, and interactions that are fundamental to understand the video
content. The effectiveness of such features has been already proven in different ap-
plication domains, including video surveillance and monitoring, human-machine in-
teraction, automatic target recognition, automotive applications, and sport analysis.

Regardless the application scenario, a proper, compact, and meaningful descrip-
tion of the video sequence is crucial to achieve effective indexing. The identifica-
tion and extraction of significant features is a complex task, since video data convey
huge amount of information in both static (e.g., color statistics, appearance models,
shapes, textures) and dynamic (e.g., object or camera motion, inter-frame statistics,
scene activity) form. These features are widely used to capture the visual contents
of the sequence [2]. For instance, through moving object segmentation and trajec-
tory analysis it is possible to achieve a spatio-temporal description of an object that
would support activity classification [3] [4], behavior analysis [5] [6], and interac-
tion description [7] [8] [9].

Fig. 1 presents a high-level block diagram of a trajectory-based retrieval system.
First, the video sequence is pre-processed (on-line or off-line) by appropriate fil-
tering and tracking algorithms to extract object trajectories. Such trajectories are
usually noisy and need to be properly processed to ease the analysis, clustering, and
classification. After that, an indexing module uses the trajectory description to find
the best match within a set of models or a repository to be browsed. Several fac-
tors may affect the performance of the whole process. In particular, effective motion
representation cannot be achieved without taking into consideration the issues re-
lated to the acquisition process. For example, the trajectory extracted from a video
acquired using a camera on the ceiling of a room is significantly different from the
one extracted by another camera along the walls, even though they refer to the same
scene. The corresponding motion description will be different and only an a priori
knowledge about the geometry of the room allows to associate them to the same
event. More in general, we can summarize the characteristics of the analyzed video
on the basis of the following categories: (i) the geometrical features, (ii) the appear-
ance of objects, (iii) the presence and characteristics of motion in the scene, (iv) the
dimensionality of the analysis domain, and (v) the impact of noise and compression
artifacts.
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In this chapter a thorough overview of the most recent developments in trajec-
tory analysis and matching is given, providing a critical analysis of the presented
methods, paying particular attention to their possible application to media indexing
and retrieval. The focus is mainly put on the modules of trajectory representation,
indexing, and matching (highlighted in Fig. 1).

The chapter is organized as follows. In Section 2 we present and compare state
of the art methodologies for trajectory representation. In Section 3 techniques for
trajectory indexing are introduced, while corresponding matching strategies are
outlined and compared in Section 4. Section 5 provides some concrete examples
of trajectory-based video retrieval applications. Finally, future research trends and
challenges are drawn in Section 6.

2 Trajectory Representation

The problem of trajectory representation mainly consists of achieving an approxi-
mation of the raw path through a parametric curve. The simplest model consists in
the use of chain codes [10], or piecewise linear approximations [11]. More accu-
rate representations may use curvilinear approximations such as polynomials [12]
or splines [13]. The above methods consider the trajectory as a 2D projection of the
spatial displacement of the point inside the scene, even though 3D representations
are gaining considerable ground in the research community. In the following sec-
tions we will mainly focus on 2D representations, since they are more widespread.
However, some of the methods introduced for 2D have a straightforward extension
to 3D, also considering that in most cases the multidimensional analysis can be
carried out by combining different 2D views. Even though other features such as
velocity, motion direction, temporal offset, or view invariant tensor null-space rep-
resentations [14] have been considered in the literature, for the sake of conciseness
we will focus on spatial approximation, making it clear that the methods described
hereafter could be extended to the other trajectory features.

2.1 Polygonal Approximation

Polygonal approximation has been used in many pattern recognition problems, in-
cluding shape and contour representation. The idea is to interpolate the raw trajec-
tory with a piecewise linear curve with limited number of vertices. Since most of
the information is connected to the points of maximum curvature, this representa-
tion turns out to be significant as well as compact. The resulting polygon should
fulfill two requirements: (i) best fit of the original curve, and (ii) minimum number
of segments. The two conditions are conflicting, then a trade-off has to be found by
concurrently solving two optimization problems:

• Error ε() minimization problem: given a set of N points representing a raw tra-
jectory T = {ti} = {xi,yi}N

i=1, find the polygonal curve P = {p j} = {x j,y j}M
j=1
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with a number of line segments M, so that the approximation error ε(T,P) is
minimized.

• Number of dominant points minimization problem: given a set of N points repre-
senting a raw trajectory T , find the polygonal curve P with the minimum number
of segments M so that the approximation error ε(T,P) does not exceed a maxi-
mum tolerance εtol .

The most common criteria used for optimization are the compression ratio
CR = N/M and the integral square error [15] between vertices of T and linear seg-
ments of P. Fig. 2 shows a real trajectory and its approximation. The final number of
segments varies according the reconstruction error threshold imposed. Many polyg-
onal approximation techniques have been proposed in the literature. Jointly optimal
algorithms are quite slow, with a complexity in the order of O(N2) or even O(N3).
It is possible to reduce the complexity to O(Nlog(N)) by focusing on one of the two
minimization problems [16]. Heuristics are also widely used.

Approximation methods differ upon specific requirements, such as the applica-
tion context (e.g., pedestrians vs vehicles), and the error metrics used for evaluation.
The most important approximation methods can be roughly classified into four cat-
egories: (1) sequential, (2) split & merge, (3) dominant point-detection, and (4) op-
timization algorithms approaches. In the next paragraphs we will provide a general
overview of them.

2.1.1 Sequential Tracing Approaches

In sequential algorithms, the trajectory is progressively scanned and a mismatch
condition evaluated, when the error exceeds a threshold a new segment is started.
Algorithms are usually fast and can be applied in real-time, thus making them at-
tractive in trajectory representation even though the accuracy of the approximation
is quite limited. Among these methods, Sklansky and Gonzalez [17] proposed a
scan-along procedure for digitized curves, which starts from a point chosen ran-
domly and tries to find the longest line segments sequentially. Kurozumi and Davis
[18] proposed instead a minimax method, which determines the segments by mini-
mizing the maximum distance between a given set of points and the corresponding

N
iii yxT 1},{ ==

jp

Y

X

Fig. 2 Polygonal approximation.
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segment. Wall and Danielsson [19] proposed a sequential method, which scans the
points and outputs a new segment when the area deviation per length unit of the cur-
rent segment exceeds a pre-defined error. Ray and Ray [20] determine the longest
possible line segments with the minimum possible error. All the aforementioned
algorithms are designed to solve one of the minimization problems and reach the
solution in O(logN) or O(N) steps of binary search [16].

2.1.2 Split and Merge Methods

Split-based methods use a top-down approach where the coarsest approximation is
the segment connecting the first and last point of the path. If the approximation is
not satisfactory, it is refined by recursively splitting the segments until the accumu-
lated error reaches a predefined threshold or the maximum number of segments is
exceeded (see Fig. 3). Depending on the split procedure, the number of pieces at the
end of the process may be higher than needed. In this case, a merging may occur to
re-connect adjacent segments with similar direction. The depth of the split is driven
by the application requirements and can be adjusted by varying the split criterion or
the thresholds. The algorithm requires the availability of the whole path.

The most popular algorithm in this field is a heuristic method known as ”Douglas-
Peucker” [21], adopted in both [22] and [23]. The iterative procedure splits the curve
into smaller elements and, at each iteration, calculates the distance of each vertex
from the original curve. The stop condition is fulfilled when the cumulative distance
is smaller than a given tolerance ε . The complexity of the method is O(N2) in the
worst case, and O(NlogN) on average.

Leu and Chen [24] presented a hierarchical merging method, which considers the
trajectory as composed by a number of consecutive arcs. They are replaced by their
chord only if the arc-to-chord deviation results lower than a given threshold. Ansari
and Delp [25] proposed a technique that first uses Gaussian smoothing to reduce the
noise and then selects the points with maximal curvature as break points. The split &
merge process is then applied to the obtained samples. Ray and Ray [26] proposed
an orientation-invariant and scale-invariant method by introducing the use of ranks

Y

X

N
iii yxT 1},{ ==

First approximation (I - E)
Second approximation (I - A - E)
Third approximation (I - B - A - E)

ip
Init - I

A

B
End - E

Fig. 3 Polygonal approximation using iterative splitting.
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of points and normalized distances. In this case, the approximation returned by the
split-and-merge may be far from the optimal one if the initial segmentation is not
accurate.

2.1.3 Dominant Point-Detection Methods

The core idea of this class of algorithms is that a shape is well represented by its
high-curvature points [27]. Then, a contour can be described by using such points
as the vertices of a piecewise linear interpolation. Several heuristics have been de-
signed to this purpose. Teh and Chin [28] determine the curvature at each point
based on a support region, and detect the dominant points through a non-maxima
suppression process. Other approaches rely on the detection of salient points. Held
et al. [29] first apply a coarse-to-fine smoothing to identify dominant points, and
then define a hierarchical approximation based on perceptual significance. Zhu and
Chirlian [30] determine the importance of each point by transforming the curve into
polar coordinates and then calculating the relevant derivatives. In this class of al-
gorithms it is also possible to identify methods that search for the most significant
points using relaxation labeling [31]. The paper focuses on the contour extraction
of shapes, but the extension of the work to trajectory analysis is straightforward. In
this approach, the left and right slopes and the curvature are evaluated and associated
with an attribute list to each point of the input curve. This information determines
the initial probability of the current point to be a side (a linear piece in the case of
a trajectory), or an angle (a point with strong curvature). The relaxation process it-
eratively updates the probabilities until convergence. The obtained angle points can
therefore be used as a meaningful representation of the whole trajectory.

Similarly to split&merge, the above methods require the availability of the whole
trajectory. Moreover, their performance is bounded by the accuracy achieved in the
evaluation of the curvature.

2.1.4 Optimization Algorithms

The approximation problem is here considered as an optimization task where the
global error is the cost to be minimized. The search of the solution that provides
the minimum error can be performed by stochastic optimization methods (e.g., ge-
netic algorithms [32], ant colony [33], particle swarm optimizations [34]), or by
local optimization methods (e.g., tabu search [35] and vertex adjustment [36]). The
initialization is obtained based on some heuristics, and the approximation is progres-
sively improved towards the minimum of the global error. The final solution can be
considered nearly-optimal, although the global minimum is usually not guaranteed.
In these algorithms, the trajectory points are typically examined in sequential order.
The computational cost of these algorithms is pretty high, but the achievable results
have a higher fidelity since they are specifically designed to climb local minima
associated to suboptimal representations.
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2.2 Spline Approximation

A completely different approach consists in the use of splines [13]. Splines are
smooth curves (typically polynomials) that interpolate a set of points in a plane.
Among the many different spline types, B-Splines (a generalization of the Bèzier
curves) are very commonly adopted:

A(u) =
n

∑
i=0

Ni,d(u)pi (1)

where pi, i = 1,2, . . . ,n are the control points and Ni,d(u) are the B-spline basis
functions of order d. Control points represent the points of the original trajectory.
To create the spline approximation A(u), a vector of knots U = {u0,u1, . . . um−1} is
needed. Given the degree of the polynomial d and n control points, the number of
knots m should be equal to n+d +1.U is a set of non-decreasing values in [u0,um−1]
and all basis functions lie in this interval. The i-th basis function Ni,d is calculated
using the Cox de Boor formula:

Ni,0(u) =

⎧⎨⎩
1 i f ui ≤ u < ui+1

0 otherwise

Ni,d(u) =
u−ui

ui+d−ui
·Ni,d−1(u)+

ui+d+1−u
ui+d+1−ui+1

·Ni+1,d−1(u). (2)

The spline approximation consists of determining the optimal coefficients of the
polynomial model to fit the trajectory. If the trajectories to be described are complex,
higher degree polynomials may be used, or more often the curve is segmented and
represented through piecewise polynomial fitting. In this case, trajectory segmenta-
tion problems arise similar to those discussed in polygonal approximation. Usually,
the degree of the polynomial is kept low (e.g., third degree) to ensure smoothness
and avoid oscillations.

Spline approximation can be considered as a subset of the polynomial approx-
imations used in many areas of computer graphics. In the specific case of video
indexing and retrieval it is mainly used to smooth the noisy path of a moving object
in tracking. An important property of the approximated curve is that it is invariant
to affine transformations. Another advantage of the B-splines is that a local change
in the raw trajectory value does not affect the whole approximated curve, because
each control vertex influences ±k/2 segments of the polygon in u. A sample curve
approximated using a spline is shown in Fig. 4. Even though splines are usually
computed directly on the raw trajectory for computational reasons, it may be desir-
able to adopt a curvature detection algorithm to extract dominant points to be used
as control points. The above problem can be formulated as a nonlinear optimization
problem as follows. Given:

• a set of points of the raw trajectory tk, k = 1,2, . . . ,K in the plane
• a B-spline curve A(u) = ∑n

i=0 Ni,d(u)pi with control points pi
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Fig. 4 Spline approximation.

• the order and the knots of the B-spline curve (not subject to optimization)

find the control points pi, i = 1,2, . . . ,n such that f, defined in (3), is minimized

f =
1
2

K

∑
k=1

||A(u)− tk||2 +λ fs. (3)

where fs is a regularization term to ensure a smooth curve, and λ is a positive
constant that determines the weight of fs.

2.3 PCA Coefficients

Principal Components Analysis (PCA) is a method that reduces data dimensionality
based on the analysis of samples covariance. As such, it is suitable for data sets in
multiple dimensions, such as trajectory points [37]. The idea is to characterize a raw
trajectory only with its principal components, getting rid of all features that do not
convey significant information. Given a vector trajectory T made by a set of random
variables and known correlation matrix C, the k−th principal component (PC) is
given by an orthonormal linear transformation:

PCk = akT (4)

where ak is an eigenvectorofC corresponding to its k−th largest eigenvalueλk. Algo-
rithms for the computation of the PCs are usually based on correlation or covariance
[38]. Another approach that exploits PCA, is presented by Bashir et al. in [39], where
the authors first segment trajectories using a curvature zero-crossing approach, fol-
lowed by a clustering routine. The method applies then a two-level PCA analysis, in
which the principal components are first extracted from the whole object trajectory,
and successively analyzed to determine the corresponding sub-trajectories.

2.4 String-Based (Syntactical) Representation

Syntax-based approaches convert the analytic representation of a trajectory into
strings of symbols, to provide a higher-level description of the path. The main idea
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Table 1 Trajectory representation: a comparative analysis.

Category Description Strengths and Weaknesses

Polygonal
approximation

Interpolate the raw trajectories with
piecewise linear curves with the
minimum number of vertices.

Pros: simple and fast.
Cons: depends on thresholds.

Sequential tracing
[17] [18] [20]

Scan the raw trajectory to evaluate
error conditions. Start a new seg-
ment when the condition is not sat-
isfied.

Pros: minimization of the delay.
Cons: segmentation is not optimal.

Split and merge
[22] [23] [24] [25]
[26]

Iterative split until the accumulated
error is below a threshold.

Pros: simple and fast.
Cons: requires the full trajectory.

Dominant points
detection
[28] [29] [30] [31]

Find high-curvature points, and
connect these key points via linear
segments.

Pros: the trajectory curvature is
preserved.
Cons: entire trajectory needed.

Optimization
algorithms
[32] [33] [34] [35]
[36]

Starting from an initial approxima-
tion, iterate to find the global ap-
proximation error.

Pros: near-optimal solution is
found.
Cons: high computational cost.

Spline
approximation

Interpolate points with a smooth
curve.

Pros: approximation as a smooth
curve.
Cons: entire trajectory needed.

Polynomial
interpolation
[12]

Numerical analysis to represent an
interpolated curve with a polyno-
mial.

Pros: optimal solution according
numerical analisys.
Cons: high computational cost; or-
der of the polynomial dependent on
the number of key-points.

B-spline
approximation
[46] [47] [48]

Piecewise polynomial approxima-
tion.

Pros: keypoint choice affects only
a small part of the approximated
curve.
Cons: non linear approximation.

PCA
[38] [39] [49]

Characterize a raw trajectory only
with its principal components.

Pros: compact representation.
Cons: part of the information is
lost.

String-based
representation

High level description using sym-
bols.

Pros: add semantic information.
Cons: requires preprocessing.

Points labeling
[43]

Attach to a point/ set of points a text
label describing motion primitives.

Pros: it accepts textual queries.
Cons: machine learning needed.

Characters coding
[44] [50]

Translate key points information
into symbols and then code the se-
quence as a single string.

Pros: easy local and global match-
ing.
Cons: quantization necessary; key
points detection is required.
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is inspired by the alignment strategies used in bioinformatics to match genomic se-
quences [40]. String-based representation may be applied to raw trajectory samples,
or to the approximated representation achieved by one of the methods described
above. Once the key points of the trajectory are extracted, they are translated into
symbols according to the associated spatio-temporal information, and aligned into
strings.

String-based algorithms have been used in computer vision especially for shape
classification [41] and they have been introduced more recently in object trajectory
representation. For instance, in [42] the authors assume that each trajectory seg-
ment is labeled with a semantic symbol. Using the chain of successive symbols, a
support vector machine is trained to classify different events. In this case, the clus-
tering scheme requires a lot of training samples and each fragment has to be labeled
in advance. In the work of Chen [43], key points are labeled using characters to
map the moving direction. In this way, strings can be compared for both matching
and clustering purposes. This representation can easily tackle the problem of par-
tial matching, making it possible to detect sub-strings within the whole sequence
of symbols. Furthermore, this representation allows to easily achieve the invariance
to spatial shift and scaling. [44] provides a description of the trajectory using syn-
tactical elements. Here, key trajectory points are extracted and represented by three
characters, corresponding to angle, speed and temporal offset with respect to the
previous point, to achieve a full spatio-temporal representation.

The advantage of syntactical approaches is that the matching phase can be simply
implemented as a matching of ”words”, like in text processing tools, typically using
similarity metrics such as the edit distance [45]. This part will be better described
in the corresponding paragraph in Section 4.

3 Trajectory Indexing

In a retrieval system, indexing is a fundamental step to effectively structure large
data sets, and to ease the matching process in successive search operations [51]. In
content-based media retrieval this issue becomes even more evident. In fact, data are
extremely heterogeneous and search is made more complex by the joint use of visual
and textual features. Indexing methods taking into account object motion have been
already investigated [52]. Two main classes of methodologies are considered in the
following sections: tree-based approaches, where the data are organized into index-
ing structures, and transform-based approaches, in which the dimensionality of the
problem is reduced by exploiting the characteristics of different digital transforms.

3.1 Tree-Based Indexing

The capability of storing data and track their changes over time is a considerably
demanding task that required the implementation of efficient data structures that
can be browsed easily and which content can be updated with minimum effort. A
possibility is to adopt trees, thanks to the capability of performing insertion and



Object Trajectory Analysis in Video Indexing and Retrieval Applications 13

deletion operation in avery intuitive manner. In this paragraph we want therefore
to present a number of works that address this issue in the specific case of han-
dling the spatiotemporal evolution of a trajectory. In tree-based indexing the trajec-
tories are pre-processed to extract a set of feature vectors, which are inserted into
a multidimensional index tree, corresponding to the domain in which users express
queries to retrieve the desired content. Tree-based indexing is mainly used to in-
dex video streams in real time monitoring systems (e.g., traffic monitoring, video
surveillance), where the content and structure of the database is continuously evolv-
ing. Most of the proposed spatio-temporal techniques are based on variations of the
R-tree [53] (where ”R” stands for rectangle), which are common data structures
used to organize data in multi-dimensional spaces. Here, the data is split into nested
and possibly overlapping rectangles. Each non-leaf rectangle contains the informa-
tion about its child nodes and their corresponding bounding box, making it possible
to access data in a hierarchical manner (see Fig. 5).

3D R-trees [54] introduce time as an additional dimension by approximating tra-
jectory segments with the relevant Minimum Bounding Boxes (MBBs). The weak-
ness of 3D R-trees lies in the fact that spatial and temporal dimensions are treated in
the same manner. Since the bounding box includes also the time dimension, the box
overlap increases, thus reducing the discrimination capability of the tree. Looking
at Fig. 6 it can be observed that bounding boxes cover large parts of space, whereas
the actual space occupied by the trajectory is small. Accordingly, many trajectory
segments could be represented by the same leaf node, even if they carry completely
different information. Due to this small discrimination capability, the performance
of 3D R-trees degrades rapidly, as soon as the data set size increases. Another cate-
gory of trees is the so-called Historical R-trees (HR-trees) [55]. A separate R-tree is
maintained for each time stamp, so that duplication of unchanged trajectory nodes
in consecutive R-trees is avoided. This allows maintaining a history of the spatial

Fig. 5 R-Tree indexing example: 2D visualization (a), hierarchical dependencies (b).
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Fig. 6 3D R-Trees with Minimum Bounding Boxes.

position and overcomes the limitation of traditional R-trees (see Fig. 7), as well
as reducing storage requirements. Spatial objects are indexed with the MBB and
replaced if a change occurs. The resulting indexing structures are efficient in evalu-
ating queries regarding a particular time stamp, while search performance degrades
when the query concerns trajectories that span over long time intervals [56].

The MV3R-tree [57] is instead a hybrid structure that combines a multi-version
R-tree (MV) with a small 3D R-tree [58]. Multi-Version R Trees are an enhanced
version of a R-tree with the aim of eliminating duplicates by sharing as many com-
mon nodes as possible between different versions of R-trees. In MV3R-tree a 3D
R-tree is built on the leaf nodes of an MVR-tree. To keep the space requirement
manageable, the indices of both trees share the same leaves, which leads to a rather
complex insert algorithm. The combined structure opens for two possible choices in
query processing: the 3D R-tree or the MVR-tree. For queries involving the times-
tamp, MVR-tree is preferable and vice-versa. In addition, in MVR-trees temporal
changes are modeled as discrete events: this means that objects maintain the same
position until an update occurs. MV3R-trees outperform other indexing structures
such as the 3D R-tree and the HR-tree, but they cannot be used to represent grad-
ual changes in position. Trajectory Bundle trees (TB-tree) [59] are also based on
R-trees. This method strictly preserves trajectories, in the sense that each leaf node

Fig. 7 HR-Tree indexing example: initial hierarchy at step 0 (a), index reconfiguration at step
1 keeping in consideration previous step (b).
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only contains segments belonging to the same trajectory. The R-tree insert algo-
rithm is modified so that leaf nodes contain trajectory segments belonging to only
one moving object; the main idea is to cut the whole trajectory of a moving object
into pieces and link them with a double linked list that (i) preserves trajectory evolu-
tion, and (ii) is simple in retrieving segments based on the trajectory identifier. This
design aims at reducing the node accesses in retrieving a complete trajectory.

3.2 Transformation-Based Indexing

DFT is one of the most used transforms for indexing and retrieval of time sequences.
The idea is to exploit the sparseness in the frequency domain to make a sort of com-
pression of the trajectory information, keeping only the significant coefficients. A
known limitation of the DFT is that it only considers spatial coordinates, discard-
ing temporal references. Piecewise Fourier Transform of the time series has been
proposed to remove this problem, but the trajectory segmentation leads to other
problems: while large pieces reduce the potential of frequency representation, small
pieces do not model low frequencies properly. More recently, DWT has replaced
DFT in many applications of computer graphics [60] and signal processing [61],
mainly thanks to its multi-resolution properties that allow analyzing the data at dif-
ferent levels of granularity. In [62] the DWT is applied to trajectories for dimension-
ality reduction in content-based search. This allows dealing with time-frequency
localization, resulting in a more effective representation with respect to the DFT.

Other methods employed for dimension reduction are the Singular Value Decom-
position (SVD) [63] and the KL transform, which however is computationally very
demanding and therefore seldom used in real-time analysis.

4 Trajectory Matching

In order to exploit the trajectory information in a CBVR system, a final step is re-
quired, consisting in the match between users’ query and indexed video data. This
section deals with matching strategies that can be adopted to measure the similar-
ity among trajectories. In developing a matching algorithm several issues should be
taken into account. In fact, the extraction of object trajectories from video streams
is typically imprecise due to environmental noise, illumination variations, process-
ing errors, occlusions, and so on. The joint effect of these uncertainties typically
leads to noisy trajectories that contain gaps and outliers. Moreover, even trajectories
referring to similar events may present significant differences in several respects,
such as initial direction and location, spatial length, temporal duration, and sam-
pling rate, thus leading to mismatches. According to the abstraction level adopted
for trajectory representation, matching techniques can be roughly divided into three
categories: dynamic, statistical, and vector-based. Dynamic matching includes a set
of simple yet effective comparison tools that can be applied to raw or filtered sam-
ples, and are able to deal with limited trajectory misalignments. Statistical matching
is more sophisticated and requires a pre-processing to extract a set of consistent
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low-level features, the similarity measure is then obtained by comparing the distri-
bution of query and target samples in the feature space. Finally, vector matching
algorithms rely on a high-level representation of the trajectories, where the feature
vectors are mapped into symbols. This representation strongly simplifies the match-
ing phase, which can be achieved through simple metrics (e.g., Lp-norm, Hausdorff
or city block distances, string alignment techniques) and weighted combinations of
the features.

4.1 Dynamic Matching

Methods referred to as dynamic matching are basic comparison tools, enabling the
user to process sequences of different lengths. This is a key feature, since in real
applications it is almost impossible to impose the same length to trajectories. The
main feature of these methods is the capability of applying a local warping to the
sequences, in order to achieve the best alignment. Depending on the application
requirements, the stretch may be operated either in the temporal or spatial domain,
thus providing time warping and spatial warping, respectively.

Concerning the temporal domain, dynamic time warping (DTW) is a distance
measure used in 1-D time-series comparison [64]. Initially applied to speech signal
analysis, it has been recently extended with success to different application domains
including sign language recognition [65] and trajectory matching [66], because of
its conceptual simplicity and versatility. Basically, the method relies on a classic
distance operator (e.g., Lp-norm) and on a particular matching procedure that finds
the optimal alignment between the query and the target series, allowing temporally
shifted matches between samples. The matching score is calculated as the cumula-
tive distance among samples.

The distance between two generic series X = {xn}N
i=0 and Y = {yn}M

j=0 can be
measured by constructing a warping path [65], as in (5):

W = w0,w1, . . . ,wK max{N,M}< K < (N + M−1) (5)

where K is the length of the warp path and wk = (i, j) where i, j index X and Y ,
respectively. The warping path involves all samples in the trajectory (i.e., w0 = (0,0)
and wK = (N,M)); moreover, i and j have to be continuous (i.e., every index in all
series has to be used) and monotonically increasing. The distance between X and Y
is the optimum warp path that minimizes the overall warping distance, satisfying (6):

DTW (X ,Y ) = min

{
1
K

[
K

∑
k=1

wk

]}
(6)

where, wk is the minimum distance between two samples indexes (one from X , one
from Y ) in the k− th element of the warp path (see Fig. 8).

DTW presents some major drawbacks in the sensitivity to noise and outliers. Fur-
thermore, since the global similarity score is evaluated on the basis of cumulative
sample-to-sample distances, different sampling rates (scaling) and misalignments
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(shifting) may lead to high distances even in the presence of very similar series. Fi-
nally, the computational complexity of the method is relatively high: O((N +1)(M+
1)) with N + 1, M + 1 length of the sequences. Dynamic programming techniques
are usually employed to effectively achieve the best alignment and to drastically re-
duce the complexity. As an example, given the two sequences X and Y , the distance
DTW (X ,Y ) is calculated as:

DTW (Xi,Yj) = min

⎧⎨⎩
DTW (Xi,Yj−1)
DTW (Xi−1,Yj)
DTW (Xi−1,Yj−1)

⎫⎬⎭+ d(xi,yi) (7)

where d(·, ·) is a distance metric that strictly depends on the employed trajectory
representation, Xi = {x0,x1, . . . ,xi−1} and Yj = {y0,y1, . . . ,y j−1}. At each sample,
the warping distance DTW (Xi,Yj) between Xi and Yj indicates the cumulative sum
of the local distance d(xi,y j) and the minimum of cumulative distances among adja-
cent samples. In particular, DTW (Xi,Yj) is the optimum warping path between the
first i samples of X and the first j of Y .

An improved approach is presented in [67], which nearly replicates the DTW
matching scheme in the spatial domain with significant algorithmic enhancements.
Given two sequences, the Longest Common SubSequence (LCSS) is used to op-
timize the alignment by finding the longest subsequence between two trajectories.
This concept provides a higher flexibility allowing non consecutive samples and the
insertion of gaps. This feature is fundamental, since it introduces the capability of (i)
effectively processing paths of different lengths, (ii) coping with different sampling
rates, and (iii) partially handling problems related to noise and outliers.

Fig. 9 sketches the difference between the alignments of the same two sequences,
obtained through temporal and spatial warping, respectively. LCSS leads to a more
significant alignment, since it allows excluding some samples from the matching
process; on the contrary, DTW requires to match every query sample, thus causing
a one-to-many association between query and target paths (Fig. 9(a)).

Similarly to DTW, LCSS relies on standard distance metrics, although employed
in a different way. While in DTW the final score is evaluated by computing the
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Fig. 9 Comparison between the alignments obtained through (a) DTW and (b) LCSS.

sample-to-sample distance, in LCSS the distance is used to check whether two sam-
ples are correlated or not [68]. In particular, this strategy consists in checking if the
samples in the target trajectory fall within a spatio-temporal region defined in the
query. If the condition is verified, the match occurs. The matching region is defined
by two thresholds ε and δ , in space and time, respectively.

Since the computational burden of the alignment process is quite high, also the
LCSS scheme is usually implemented with dynamic programming techniques, with
a computational complexity in the order O((N + 1)(M + 1)). Given two 1D time
series X and Y , the LCSS distance is evaluated by dynamically computing the matrix
coefficients according the following recursion:

LCSSε,δ (Xi,Yj)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 0 or j = 0

1 + LCSSε,δ(Xi−1,Yj−1)) if |xi− y j|< ε and |i− j|< δ

max

{
LCSSε,δ (Xi−1,Yj),
LCSSε,δ (Xi,Yj−1) otherwise

(8)
Although performing generally better than DTW, LCSS still presents some limits

in dealing with significant noise or outliers, since the insertion of gaps is neither
penalized nor taken into account in the aligned subsequence.

4.2 Statistical Matching

In statistical matching, trajectory similarity is evaluated by analyzing the distribu-
tion of low-level features such as spatial location, local direction, or speed. In par-
ticular, these methods aim at estimating the probability density functions (pdf ) of
relevant parameters in order to build a statistical model of the target trajectory. Once
the model has been defined, the similarity between query and target is calculated
on the relevant distributions. A statistical inference process associates the input se-
quence T to the model Mn that most likely fits the query (see input/output flowchart
in Fig. 10(b)). This classification requires a training phase (sketched in Fig. 10(a)),
where the parameters of the machine learning algorithm (e.g., Self-Organizing
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Path prototypes
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MnStatistical
inference
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statistics  (output)

Prototypes (Mn) 
learning

Fig. 10 Input/Output of statistic matching methods: (a) learning phase, (b) classification.

Network, Hidden Markov Models) are learned from a pre-classified set of trajec-
tories or through unsupervised techniques.

The methods belonging to this family are proved to be particularly robust against
noise and outliers. Two major aspects have to be taken into account in statistical
matching: (i) the definition of target models, and (ii) the definition of the matching
strategy. As to the first point, models are usually obtained by processing a significant
set of paths associated to a given activity and estimating the distribution of the rel-
evant features: spatial location, moving direction, object speed, object acceleration.
The second point requires the definition of suitable metrics to evaluate the similarity
between the statistics of input and model.

Among statistical methods for trajectory analysis, clustering techniques are very
popular. In these techniques, similar paths are grouped together in clusters and com-
pared against a query sample, to determine the class it belongs to, with a maximum
similarity criterion. [69] proposes a strategy for trajectory distance measurement
and clustering relying on Hidden Markov Models (HMM). The model of the path is
build upon a mixture of HMMs and the similarity evaluation is performed by check-
ing the statistical distribution of a given query over each model. More formally,
considering two sequences X and Y , their distance is defined relying on their HMM
parameterization as follows:

D(X ,Y ) = |L(X ;λX )+ L(Y ;λY )−L(X ;λY )−L(Y ;λX)| (9)

where λX and λY are the models for X and Y , respectively, and the terms L(·; ·) indi-
cates the likelihood of a path with respect to a model. It is worth noticing that when
two sequences are similar, the cross terms are generally high. A major advantage of
this approach is that the speed can be considered together with geometrical/spatial
features of the trajectory. Moreover, the system can cope with the so-called un-
even sampling instances (i.e., non-uniform trajectory sampling between consecutive
points), which are typical of real-time tracking applications.

Top-down approaches introduce the concept of hierarchical clustering in statis-
tical matching. [70] presents a hierarchical clustering strategy that first identifies
global similarities and then refines the analysis of each coarse cluster. An initial
wavelet decomposition is employed to tackle noise in the raw trajectory. After
smoothing, a set of features is extracted concerned with the so-called trajectory
resampling point set (TRPS) and trajectory directional histogram (TDH). TRPS
is the result of the path resampling at regular spatial steps (i.e., it encodes spe-
cific positions); TDH is a directional histogram that considers the direction between
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consecutive track samples (i.e., it encodes the statistical trend of the direction pro-
viding a rough path representation). Finally, a two step clustering is carried out:
first, TDH information is exploited in a dominant-set clustering algorithm to iden-
tify coarse clusters; second, the similarity between two paths i and j is calculated
with the Bhattacharyya distance as follows:

BD(i, j) = [1−
N

∑
b=0

√
T DHibT DHjb]1/2 (10)

where T DHib and TDHjb are the bth elements of the directional histogram for the
paths i and j, respectively. Once rough clusters have been identified, TRPS infor-
mation is used to refine them, and the Lp-norm distance is used as metric.

More recently, [71] proposed an effective unsupervised clustering algorithm us-
ing mean-shift to detect coarse clusters, and a merging procedure to group adjacent
blobs and eliminate outliers. Even though this method outperforms the work in [70]
in the presence of noise, both methods require a resampling phase, thus not ensuring
the preservation of the original temporal information. Another interesting work for
trajectory clustering in video surveillance can be found in [72], where a system is
proposed, able to create and update the trajectory clusters as soon as the samples
are acquired by the tracker. The trajectory data are represented as concatenations of
raw samples T = {ti} = {xi,yi}N

i=1, while each cluster C is represented by a proto-
type, defined as a stream of raw spatio-temporal locations in conjunction with an
additional parameter (σ2

i ) that indicates the local variance of the cluster at time i:

C = {ci}= {xi,yi,σi}M
i=1 (11)

The metric to compare the incoming trajectory T against each detected cluster C
is defined as the average normalized distance of every trajectory point (ti) from the
nearest point of the cluster, calculated within a variable-size temporal window wi

centered in i, as follows:

D(T,C) =
1
n

N

∑
i=1

d(ti,C) ; d(ti,C) = min
j

(
dist(ti,c j)√σ j

)
j ∈ wi (12)

where dist(., .) is the Euclidean distance.
A particular case of matching is when one wants to detect trajectories that do

not comply with any model: this case is usually referred to as anomalous trajectory
detection. Johnson et al. [73] propose a method for anomalous trajectory identifica-
tion employing a sequence of feature vectors to represent the spatial location and the
velocity of the object at each time instant. The approximation of the statistical distri-
bution of the vectors in the feature space is achieved through a vector quantization.
In particular, two concurrent neural networks are developed: initially the sequence
of vectors that best represents a target trajectory is identified and then, similar tracks
are clustered. According to the proposed network topology, each output node repre-
sents one of the models and it is said to ’win’ if the associated model is the nearest
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to the feature vector presented as query. Leaky neurons with short-term memory ca-
pabilities are employed, in order to model also the temporal nature of the paths. The
major drawback of this technique is that it cannot handle sub-trajectories. Another
critical issue lies in the vector quantization phase, which provides a pdf approx-
imation relying on the point distribution of prototypes. In particular, the number
of the prototype vectors and their initial positioning within the feature space have
to be manually defined. To cope with these problems, [74] proposes an improved
method based on a completely autonomous system to detect anomalous motion.
Such method extends [73], providing a learning module that ensures higher accuracy
in the clustering phase and allows for an automatic setup of trajectory prototypes,
i.e, the representative of the cluster. Each prototype is supposed to have a Gaussian
distribution, and the anomaly detection is carried out by checking the fitness of the
incoming path over the available models, according to a Maximum-A-Posteriori cri-
terion. To improve the reliability of the system in detecting routes that range over
wider time intervals a feedback to the neural network is introduced in [75], while
Owens et al. in [76] employ a Kohonen self-organizing map [77]. The approach in
[78] further improves [76] by introducing a new hierarchical network structure that
allows faster learning.

4.3 Vector Matching

The general idea behind vector-based matching techniques is to extract a symbolic
signature of the path in the form of a feature vector, in order to evaluate the similarity
between trajectory pairs on the basis of the distance of the relevant signatures [79].
The path signature is calculated in two phases: first, the features are extracted from
the raw data; second, quantization and symbolic coding are performed. Since the
information is coded at the symbolic level, the vector distance can be effectively
evaluated using simple metrics (e.g., Euler, Minkovsky, or Hausdorff distances). In
Fig. 11 the generic flowchart of a vector-based matching is reported. The incoming
path is pre-processed in order to bring its representation to a symbolic domain. The
symbolic stream is then fed into the comparison routine to match the query with the
signatures extracted from database entries.

Feature
vector

Symbolic 
signature

Input
(query path)

Output
(path prototypes)

Feature vector
extraction

Quantization &
Symbolic coding

Symbolic
matchingPrototype

database

Fig. 11 Flowchart of vector-based matching methods.
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INPUT 
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S_2=PAWHEAE

Fig. 12 Comparison between (a) edit distance, (b) global alignment and (c) local alignment.

Since the representation consists of a string of symbols, the comparison between
trajectories can be casted to a string matching problem. The most popular metrics
used in this context are based on the edit-distance [80], which defines the distance
between two sequences as the minimum number of elementary operations required
to convert one string into the other. The allowed operations are: deletion, insertion
and substitution. Fig. 12-(a) reports an example of edit distance calculation between
two textual strings, where non-matching characters are highlighted in bold. Refer-
ring to the alignment string, pipe stands for matching symbols, cross stands for
symbol substitution, and - indicates a symbol insertion. In this example it is easy
to see that the final edit distance is 6 since S1 can be reverted to S2 by substituting
the symbol ”A” with ”P” and inserting 5 gaps. The most common way to calculate
the edit distance is through a dynamic programming approach. Given two strings of
symbols X = x0 . . .xN and Y = y0 . . .yM from a given alphabet, a matrix ED of M+1
rows and N + 1 columns is initialized and filled starting from the upper left to the
lower right corner, running the recursive algorithm reported in Table 2-(top). Here,
d is the penalty for the gap insertion and it is set to 1 (i.e., d = 1), while the symbol
substitution cost assumes binary values (i.e., cost = 0,1), depending whether sym-
bols match or not. Once the dynamic programming problem is solved, it returns the
final edit-distance ED(N,M).

Among the most interesting techniques that employ this approach, Chen et al.
[81] introduce a symbolic trajectory retrieval system called movement pattern string
(MPS). Raw samples are processed in order to recover information about the local
direction and the distance ratio, i.e., the ratio between the current segment and the
whole trajectory. These features are then quantized and each level is associated to
a symbol. Accordingly, a similarity metric based on the Levenshtein distance [82]
is used for trajectory alignment. Zheng et al. propose in [83] another interesting
video retrieval system that compares video clips using a string-based alignment of
trajectories. Although the temporal evolution of the path is a fundamental factor
characterizing motion, both methods do not take into consideration temporal dis-
placements. This problem is partially solved in [84], which proposes a complete
retrieval system aiming at bridging the semantic gap between the users’ query and
the trajectory representation. The incoming samples are filtered and hierarchically
clustered in space and time through spectral clustering. The classes are determined
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Table 2 Different metrics for comparison evaluation: (top) edit-distance, (center) Global
alignment, (bottom) Local alignment.

Category Cost
value

Initial matrix condition Recursion

Edit-
distance
[82]

Binary

f or i = 0 to N
ED(i,0) = i×d

f or j = 0 to M
ED(0, j) = j×d

with d = 1

ED(i, j) = min

⎧⎨⎩
ED(i, j−1)+d
ED(i−1, j)+d
ED(i−1, j−1)+cost

Global
align-
ment
[87]

Fuzzy

f or i = 0 to N
G(i,0) = i×d

f or j = 0 to M
G(0, j) = j×d

with d < 0

G(i, j) = min

⎧⎨⎩
G(i, j−1)+d
G(i−1, j)+d
G(i−1, j−1)+cost

Local
align-
ment
[88]

Fuzzy

f or i = 0 to N
L(i,0) = 0

f or j = 0 to M
L(0, j) = 0

with d < 0

L(i, j) = max

⎧⎪⎪⎨⎪⎪⎩
0
L(i, j−1)+d
L(i−1, j)+d
L(i−1, j−1)+cost

using the minimum cumulative square distance as a metric. Each cluster is then
associated with high-level activity models automatically learned from the paths. Fi-
nally, the acquired activity models are indexed in a hierarchical tree. A more recent
implementation that exploits the edit-distance, is presented in [85]. Here, the object
trajectories are processed and represented by a chain of symbols indicating the di-
rection and velocity components (sampling time is assumed unitary and constant).
The symbolic mapping of the path is then achieved by quantizing each component,
in order to reduce the redundancy. Since no resampling or trajectory smoothing is
applied, the symbolic mapping may lead to long symbol chains where each sample
is encoded as a symbol. In the same class of methods, [86] proposes a compari-
son strategy inspired by the alignment methods adopted in bioinformatics to match
genomic sequences [87][88], also referred to as inexact or approximate matching.

The adopted metrics rely on modifications of the Levenshtein distance. As for
edit-distance, they are still based on the combination of elementary operations such
as deletion, insertion and substitution of symbols, but they assign arbitrary scores
to each of them, in order to make more flexible the fitness function. This kind of
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Table 3 Trajectory matching: a comparative analysis.

Category Path Description Pros & Cons

Dynamic
[64] [65] [67]
[68]

Raw sam-
ple stream,
syntactic-
symbolic
represen-
tation.

Stretching in temporal/spatial do-
main to determine the best align-
ment. The similarity is the cumu-
lative distance between samples or
longest common subsequences. Dy-
namic programming is used to re-
cover the warping path and the final
similarity score.

Pros: match series with different
lengths.
Cons: high computational com-
plexity.

Statistic
[69] [70] [71]
[72] [73] [74]
[75] [76] [78]

Vectors of
low-level
features.

A statistical model is build process-
ing low level features. The similar-
ity is evaluated comparing the current
values with the models. Clustering is
a popular approach.

Pros: different features are con-
sidered and modeled separately.
Cons: large data set required for
training; the pdf modeling heav-
ily depends on the quality of the
training.

Vector-based
[44] [79] [81]
[83] [84] [85]
[89]

Syntactic-
symbolic
represen-
tation.

Extraction of low-level features,
coded at symbolic level. The tra-
jectory similarity is measured using
metrics such as Euler, Minkovsky,
Hausdorff distances, or modifications
of the edit-distance.

Pros: Comparison between
string of symbols.
Cons: Pre-processing is re-
quired to map the samples
into the symbolic domain.
Parameters depend on the
scenario.

matching algorithms provide several advantages over the implementations described
in Section 4.1. In particular, they provide a confidence parameter as compared to
hard (match/no-match) criteria. Referring to the formula in Table 2, the modifica-
tions concern the evaluation of substitution costs, expressed as real numbers in the
range [0−1]. Since alphabet of symbols is fixed, substitution scores of each symbol
pair can be encoded in a set of substitution matrices.

The examples in Fig. 12-(b) and 12-(c) show the results achieved when matching
the same pair of genetic sequences using a global and a local alignment, respec-
tively. The global alignment [87] optimizes the score corresponding to the overall
matching of the whole sequence, while the local alignment [88] searches for the
most similar subsequences. Dynamic problems that have to be solved in order to
recover global or local alignments are fairly the same, except for the matrix initial-
ization and some slight differences in the recursive algorithm [87][88]. In [88] the
first row and column of the dynamic matrix are padded with zeros and the recursion
is made using a maximum operator over the same entries as in edit-distance. In [87],
the initialization follows the scheme of edit-distance and considers a negative score
for gaps (i.e., d < 0). The recursion part is instead the same as for the edit-distance.
In Table 2 a schematization is reported to underline algorithmic differences among
edit-distance, global and local alignment.
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Recently, a syntactic representation was introduced in [44], where the path is de-
composed in high-level syntactic elements that represent significant substrings of
the original trajectory. The structure of the symbols has been arranged according
to a set of rules that ensure a flexible representation. Referring to Fig. 11, the flow
chart of the algorithm provides a preprocessing phase to detect meaningful spatio-
temporal discontinuities. Each element is quantized in direction, velocity, and dif-
ferential time, and then mapped into a symbol triplet according to a predefined code-
book. The matching among trajectories can be therefore expressed in terms of the
highest score obtained by aligning the strings of symbols.

In Table 3 a comparison among the considered matching categories in terms of
representation, strengths and weaknesses is reported.

5 Trajectory-Based Video Retrieval Applications

In this section we describe how the motion information can be exploited in CBVR,
by discussing a selection of representative approaches that consider trajectory anal-
ysis for retrieval purposes. Special attention is paid to the aspect of query formu-
lation, i.e., the instrument provided to the user to browse contents in a structured
video database.

5.1 Integration of Trajectory Analysis in CBVR Tools

The existing approaches using motion information to retrieve contents emphasize
the decomposition of object trajectories and adequate matching strategies to com-
pare them [90]. Chang et al. [91] propose an online video retrieval system sup-
porting automatic object-based indexing, and spatio-temporal queries. The system
includes algorithms for automated object segmentation and tracking, and real-time
video editing techniques to fulfill user queries. An approach that exploits PCA can
be found in [50], where the authors use the segmentation tool to reduce the di-
mensionality of the trajectory data. In the wavelet framework, Sahouria and Zakhor
[92] propose a trajectory-based system for video indexing, based on Haar wavelet
transform coefficients. Chen and Chang [49] use a wavelet decomposition to seg-
ment each trajectory and produce an index based on velocity features. Jung et al.
[93] introduce a motion model based on polynomial curve fitting, used as a key
to access individual objects and an efficient indexing and retrieval tool based on
object-specific features. Dagtas et al. [52] present a model that uses object motion
information to characterize events and allows video retrieval through scale-invariant
algorithms for spatio-temporal search. Basharat et al. [94] index and retrieve videos
using the volume of the moving object instead of the appearance features. Trajec-
tories are modeled through the Scale Invariant Feature Transform (SIFT), and are
clustered to form motion segments.
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All of the above approaches allow extracting a set of features from the original
trajectory, which can be considered as a signature. Such mathematical representa-
tion has then to be matched with the users’ queries. From there the importance of a
suitable formulation of the query.

5.2 Query Formulation

Natural human-computer interaction is one of the paramount challenges in com-
puter science. In content-based media retrieval, this problem arise when one has to
translate a generic user request, expressed in different ways (natural language, key-
words, metadata, examples), into a structured and quantitative target for the search.
While browsing a video database containing thousands of sequences, correspond-
ing to thousands of hours of contents and terabytes of data, the selection of a proper
query is a critical matter. Visual queries can be formulated by specifying any combi-
nation of object shapes, textures and movements with different levels of complexity.
Restricting the focus to trajectory-based systems, it is possible to summarize the
query formulation into three main types:

• Query by example (QbE). To avoid the problem of expressing the query in a
conventional way by using language, a simple alternative is to use as a query
a video sample showing similar properties to what one is searching [50]. The
system directly extrapolates the trajectory from the provided video sequence and
matches it with database trajectories. The question to be answered is then ”find
videos that best match this type of motion”. A major problem of QbE is the
availability of a sample. Furthermore, as recalled at the beginning of the chapter,
the appearance of the object motion in the scene may differ significantly from its
spatio-temporal characteristics, simply due to different camera settings and point
of view.

• Query by sketch (QbS). This method is a particular case of QbE [95] where the
sample trajectory is input in the form of a drawing. The user might specify the
size and shape of the object, its trajectory, as well as its velocity and acceleration.
Systems supporting QbS usually smooth the sample trajectory first, to bridge the
differences between the user’s representation (that could be affected by irregular-
ities) and the stored paths. One of the first systems that uses this kind of queries
is Violone [96], even though more recent frameworks allow the user exploiting
both QbE and QbS [97].

• Semantic-based query. The most challenging trends in trajectory-based video re-
trieval refer to the capability of extracting a semantic description of the object
path, to generate automatic annotations to be used in database querying. Thonnat
et al. [98] proposed a method to representing human activities using scenarios,
which are translated into text by filling entries in a template of natural language
sentences. Buxton et al. [99] use a Bayesian belief network and inference engine
in highway traffic scenes, to produce high-level concepts such as lane changing
or car stalling. In [100] an event-based visual surveillance system for monitor-
ing vehicles and pedestrians is proposed, which supplies verbal descriptions of
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dynamic activities in 3D scenes. Recently, a first-order complete query language
for trajectory databases, allowing expressing queries directly in terms of speed
and beads, has been presented in [101]. The main advantage is that the formula-
tion is inherently invariant under speed- and bead-preserving transformations.

6 Future Perspectives and Research Challenges

In this chapter we have analyzed the current status of the research in the field of
content-based video retrieval using object motion analysis. The problem has been
split into three main aspects: trajectory description, trajectory-based indexing, and
trajectory matching. The described methodologies and the relevant references pro-
vide a large technological toolbox, which can be used as a basis for developing
powerful applications and instruments. Nevertheless, an ultimate CBVR system is
still out of reach of current knowledge, and several challenging issues still remain
open for researchers working in this exciting field.

As we have pointed out, one big leap that still makes the process very difficult
and constrained to specific application domains is related to the dimensionality of
the data. Although the use of 3D data (through stereo or multi-view capture) is
more and more widespread, most of the available media, in particular at the con-
sumer level, are still 2D. This poses several problems related to the fact that only
projected motion can be detected. Even though this may change in the future, his-
torical archives will maintain an immense quantity of 2D data for the years to come.
This claims for more efficient techniques of camera motion estimation, 3D motion
from 2D data, spatial reasoning, and so on.

Furthermore, on the one hand most of the presented approaches are unable to take
into account at the same time all the spatio-temporal details contained in the object
motion, and consider geometrical data as the main source of information, neglect-
ing temporal references, which often play a major role in the detection of a motion
model or behavior (the same spatial evolution can significantly differ if performed
at different speeds). On the other hand, once all information is taken into account, it
would be important to suitably manage invariance problems (scale, rotation, shift,
duration), which could strongly affect the performance of a retrieval application.

Another, and probably the most important, challenge is the introduction of se-
mantics in the analysis. There is an ever growing need of new methodologies able
to increase the abstraction level in media search. Classical approaches relying on
low-level descriptions have to evolve in this direction, aiming at bridging the gap
between the quantitative nature of the raw data and user perception of the visual
content. A fundamental contribution in this respect is given by the exploitation of
the contextual information, which allows labeling a generic motion pattern with the
semantics related to domain, environment, events, situations. The idea behind this
is that future integrated media-based retrieval tools (using motion together with vi-
sual descriptions and context) may succeed in aligning the capabilities of current
multimedia understanding algorithms with the richness and subjectivity of human
interpretation of media.
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Trajectory Clustering for Scene Context
Learning and Outlier Detection

Nadeem Anjum and Andrea Cavallaro

Abstract. We present a scene understanding strategy for video sequences based on
clustering object trajectories. In this chapter, we discuss a set of relevant feature
spaces for trajectory representation and we critically analyze their relative merits.
Next, we examine various trajectory clustering methods that can be employed to
learn activity models, based on their classification into hierarchical and partitional
algorithms. In particular, we focus on parametric and non-parametric partitional al-
gorithms and discuss the limitations of existing approaches. To overcome the limita-
tions of state-of-the-art approaches we present a soft partitional algorithm based on
non-parametric Mean-shift clustering. The proposed algorithm is validated on real
datasets and compared with state-of-the-art approaches, based on objective evalua-
tion metrics.

1 Introduction

The considerable decrease in the costs of video equipment and the dramatic increase
in storage capabilities have favored the widespread use of video recording and video
analytics for applications such as remote sensing, visual surveillance, home videos
and sport event coverage. This generates huge volumes of visual data, which are
impractical to mine or analyze effectively by a trained person or a group of experts.
There is therefore the need to automatically manage these masses of visual data in
order to discover and describe interesting events, enable summarization and key-
frame extraction.
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Video mining has gained considerable attention and several techniques have been
presented to recognize certain events and activities, which provide means to summa-
rize the data into a more convenient form. This also helps in the annotation that can
be used for efficient searching and retrieval. However, existing approaches usually
require considerable domain knowledge input prior to event analysis.

This chapter focuses on describing how to understand the semantics of a scene,
with little or no contextual knowledge, by analyzing the patterns of a large number
of moving objects. Starting from the observation that object motion is conditioned
by the underlying scene structures and that these structures govern the expected
activities in a video, we build event models by observing the motion trajectories
over time. These models enable the accurate inference of the underlying scene. In
particular, this chapter describes a framework to cluster trajectories for scene under-
standing and for abnormal trajectory detection.

A natural way to handle the challenging task of scene understanding is to first
track objects and collects their trajectories over a period of time. Next, we cluster
the trajectories into typical patterns and use them to build activity models. In order
to compare trajectories, several spatio-temporal feature spaces are investigated and
discussed. Furthermore, we discuss the notion of abnormal activities and how to
detect them using the learnt activity models.

This chapter is organized as follows: Sec. 2 discusses trajectory representations
for clustering. Section 3 discusses the existing trajectory clustering approaches and
presents a framework for efficient clustering. Section 4 details the cluster fusion
process across multiple feature spaces, whereas Section 5 explains the outlier detec-
tion techniques. Section 6 discusses the comparisons of algorithms on real datasets.
Finally, in Sec. 7 we draw conclusions.

2 Trajectory Representation

Let a trajectory T j be represented as T j = {(x j
i ,y

j
i ) : i = 1, . . . ,n j}, where (x j

i ,y
j
i ) is

the estimated position of the jth target at instant i on the image plane and n j is the
number of trajectory samples.

Due to non-linearity of object motions and errors generated by existing track-
ers, it is possible to have unequal (both in time and space) trajectories that may
belong to the same class of object activity. To obtain trajectories of equal length,
zero-padding and resampling are commonly used [1]. Although, these approaches
are computationally simple, but due to large databases of raw trajectories and the
presence of noisy observations it is very difficult to select a-priori the appropriate
length of each trajectory. An important step in clustering algorithms is the choice
of a suitable representation, such that spatio-temporal variability does not affect the
overall clustering. This section discusses and compares existing approaches for tra-
jectory representation.

Trajectory representation techniques can be divided into two groups, namely
supervised and unsupervised. Supervised representations rely on the information
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Fig. 1 HMM-based trajectory representation. Key; λi: ith hidden state; ai j: probability of
transition from state i to state j; bi j: probability of getting output observation j from state i
and ri: ith observation.

supplied by training samples, e.g., Hidden Markov Models (HMMs) and Gaussian
Mixture Models (GMMs) [2, 3, 4, 5, 6, 7].

In HMM-based trajectory representation each trajectory is assumed to be pro-
duced by an underlying hidden stochastic process [8]. A model T̂ j represents the
trajectory T j as T̂ = (λ ,A,B), where λ is a set of hidden states, A=(ai j) is a tran-
sition probabilities matrix and B = (bi j) is an observation probabilities matrix. Fig-
ure 1 shows an HMM-based trajectory representation. During the training phase,
T̂ j is learnt from T j with appropriate initializations of state transition and prior
probability matrices. Finally, each trajectory is summarized by a unique model. In
order to lower the dependence on the parameter initialization, a trajectory can be-
long to more than one HMM, with some probability [9]. Although HMMs are ro-
bust to dynamic time warping, the structures and probability distributions are highly
domain-dependent. Moreover, the parameter space increases considerably with the
complexity of the events, as more hidden states are required for modeling.

GMM-based approaches are also used to associate statistical properties to each
trajectory. In such approaches, a trajectory can be represented by a mixture of M
Gaussian models as

T̂ j =
M

∑
m=1

wm p(T j|wm,θm), (1)

where θm=(μm,Σm) is the Gaussian’s parameter defined for the mth component and
wm is the corresponding mixing weight. Figure 2 shows an example where two
trajectories that started and ended at the same point are represented by two different
models. Again, these approaches tend to be sensitive to the initial choice of the
model parameters and the choice of number of mixing components.

An important aspect of HMM-based (with multiple states) trajectory represen-
tation is its ability to capture the temporal correlation between consecutive object
detections. We assume that the state transition matrix of the HMM model will avoid
abrupt state transition and hence will result in smoothed trajectory [10].

Unlike their counterpart, unsupervised trajectory representations do not require
training samples. Examples of such representations include Principal Component
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Fig. 2 GMM-based representation of a trajectory pair.

Analysis (PCA) [11, 12], Trajectory Directional Histogram (TDH) [13], average
velocity, directional distance, trajectory mean, polynomial regression [14, 15, 16]
and Discrete Fourier Transform (DFT) coefficients [17, 18].

Principal Components Analysis (PCA) has been used extensively, prior to cluster-
ing, to reduce the dimensionality of the data set, while extracting the most important
data variations. PCA is calculated as

P̃ j = P j.T j, (2)

where, P̃ j is the projection of T j in PCA space by applying transformation ma-
trix P j. When a trajectory is represented by number of sub-trajectories, based
on temporal ordering or curvature changes, then PCA is applied on these sub-
trajectories [11, 12, 19]. PCA works well for data with Gaussian distribution and
requires an accurate estimation of the noise covariance matrix from the data, which
is generally a difficult task. Furthermore, in its standard form, PCA representations
do not contain high-order statistical information and therefore the analysis is limited
to second-order statistics.

TDH is another representation to encode the statistical directional distribution of
the trajectories as is calculated as H̃ j = H (θ j), where H (.) is a histogram function
calculated over the directional angles (θ j

i = tan−1(y j
i+1− y j

i /x j
i+1− x j

i )).
PCA and TDH features do not encode spatial information. For this reason, two

similar trajectories that are far on the image plane would be mapped on the same
location. In order to incorporate spatial information, other ancillary feature repre-
sentations can also be used, such as average velocity, directional distance and tra-
jectory mean. The average velocity, Ṽ j, describes the rate of change of the jth object
position. Ṽ j helps separating the trajectories of objects moving at varying pace and
is defined as
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Ṽ j =
1

n j−1

n j−1

∑
i=1

(
x j

i+1− x j
i ,y

j
i+1− y j

i

)
. (3)

The directional distance, D̃ j, extracts the horizontal and vertical length of a trajec-
tory and also encodes the direction of motion (moving toward or away from the
camera). D̃ j helps distinguishing longer trajectories from shorter ones and also tra-
jectories in opposite directions and is calculated as

D̃ j =
(

x j
n j − x j

0,y
j
n j − y j

0

)
. (4)

The trajectory mean, M̃ j, is another important feature to distinguish trajectories
belonging to different regions on the image and is calculated as

M̃ j =
1
n j

n j

∑
i=1

(
x j

i ,y
j
i

)
. (5)

In order to model the shape of the jth trajectory, irrespective of its length and sam-
ple points, polynomial regression can be used. The matrix notation for the model
estimation of T j is

Ŷ j = ( 1 X j (X j)2 ... (X j)ρ ) (β j
0β

j
1 ...β j

ρ)T + E, (6)

where the first term of the R.H.S is a n jxρ matrix with X j = {x j
i }n j

i=1, the second
term is a ρx1 vector and the last term is a n jx1 vector. The output vector is also of
dimension n jx1. The goal here is to find the optimal values of β = (β j

0 ,β j
1 , ...,β j

ρ)
for which E = |Ŷ j−Y | becomes minimum. The process requires an inherent trade-
off between accuracy and efficiency. As the degree of the polynomial increases, the
fit grows in accuracy but only up to a point. A recursive procedure is often used to
find an appropriate degree.

Finally, in the frequency domain, DFT is used to decompose a trajectory into
its sine and cosine components. The output of the transformation represents the
trajectory in the frequency domain. In the Fourier domain, each point of a trajectory
T j represents a particular frequency and is calculated as{

X̃ j = 1√
n j ∑

n j−1
k=0 x j

ke−i2π f t/n j

Ỹ j = 1√
n j ∑

n j−1
k=0 y j

ke−i2π f t/n j , (7)

where i=
√−1 and f = 0,1, ...,n−1.

Figure 3 shows an illustration of the projection of a trajectory dataset into several
unsupervised feature spaces. The choice of an appropriate feature space is a critical
task for optimal clustering and depends upon the application at hand [20, 14, 7, 18,
21, 22]. However, a more generic solution can be obtained by employing multiple
feature spaces that can be used either simultaneously [13, 11] or independently [16].
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Fig. 3 Sample set of trajectories (a) and their projections on the following feature spaces: (b)
principal components; (c) TDH (three dominant angles); (d) average velocity; (e) directional
distance; (f) trajectory mean; (g) combination of initial position, speed and acceleration using
polynomial coefficients and (h) DFT real coefficients.



Trajectory Clustering for Scene Context Learning and Outlier Detection 39

Trajectory
clustering

hierarchical partitional

agglomerative divisive

hard soft

parametric non-parametric parametric non-parametric

Fig. 4 Classification of trajectory clustering techniques.

3 Trajectory Clustering

After transforming the trajectories into an appropriate feature space, trajectories are
grouped together based on a proximity measure (i.e., a similarity or dissimilarity
measure). Trajectory clustering techniques can be classified into hierarchical and
partitional [23], [24] (Fig. 4).

Hierarchical clustering provides a nested sequence of partitions [22]. These
methods can further be divided into two classes, namely agglomerative and divi-
sive. Agglomerative clustering methods start by first considering each trajectory as
a separate cluster and then merge the clusters in a nested sequence [25]. On the
other hand, divisive clustering starts with all trajectories in one single cluster, and
then successively splits the cluster to obtain the final partition [26, 27]. The level of
the tree structure depends upon the choice of threshold and is application specific.
The computation of the tree structures (dendograms) are expensive and impractical
with more than a few hundreds patterns [28].

Partitional clustering is more suitable for the analysis of large data collections
as it generate clusters iteratively by minimizing an objective function. Partitional
clustering methods can be further divided into two classes, namely hard (crisp) and
soft (fuzzy). In hard clustering, each trajectory is assigned to one cluster only; in
soft clustering each trajectory is assigned a degree of membership to each cluster.
Furthermore, each class can be further divided into parametric and non-parametric
sub-classes.

The remainder of this section focuses on these four sub-classes. To show cluster-
ing examples, we use a real highway dataset1 from the MPEG–7, captured at 25 Hz
and with resolution of 352 x 288 pixels. This dataset consists of two main clusters,
primarily formed from the motion of vehicles moving either toward or away from
the camera (Fig. 5(a)).

The following abbreviations are used in the remainder of the chapter: PHC
for parametric-hard-clustering methods, NPHC for non-parametric-hard-clustering

1 http://www.tele.ucl.ac.be/PROJECTS/MODEST/
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methods, PSC for parametric-soft-clustering methods and NPSC for non-parametric-
soft-clustering methods.

3.1 Hard Clustering Approaches

In PHC, the trajectories are clustered into pre-specified number of partitions with a
cluster representative for each cluster. A widely used algorithm is the iterative K-
means [29, 30], which works in two steps, namely assignment and update. In the
assignment step, each trajectory T j represented as S j in a particular feature space is
associated to the cluster (Ci

t ) with the nearest mean:

Ci
t = {S j : ||S j− μ i

t || ≤ ||S j− μk
t ||}, (8)

for k = 1, ...,n f , with n f being the number of clusters, t being the iteration index
and μ i

t being the mean of the cluster Ci
t . In the update step, the mean of the cluster

is re-calculated as

μ i
t+1 =

1

|Ci
t | ∑S j∈Ci

t

S j (9)

The process terminates when either the change in clusters’ mean is less than a
threshold or the number of iterations reaches a pre-defined value.

Since K-means tends to associate each trajectory to one cluster, outlier trajec-
tories can affect the overall shape of the clusters. To overcome this limitation, a
Self-Organizing Maps (SOMs) based approach can be used [21]. Initially, each tra-
jectory T j can be represented with N coefficients of the Discrete Fourier Transform
(DFT) (B j). In the training phase, using these coefficients the SOM randomly ini-
tializes a weight vector W associated to the neuron outputs, which are initially set to
nm > n f . B j is assigned to an output neuron W k for which it has minimum Euclidean
distance i.e.,

c∗ = argmin
k
||B j−Wk

t ||, (10)

where c∗ is the index to the output neuron and W k
t is updated iteratively as

W k
t+1 = W k

t +αt(B−Wk
t ), (11)

where αt is the linearly decreasing learning rate. At the end of the training phase,
the most similar cluster pairs are merged.

Figure 5(b) shows results of SOM-based approach applied on trajectories repre-
sented by 8 DFT-coefficients. The required number of clusters is set to 2. In this
approach, successful clustering depends upon the correct choice of the estimated
number of clusters and the rate of learning weights before the start of the process,
which is not a trivial task.

Dual Hierarchical Dirichlet Processes (Dual-HDP) is an example of NPHC al-
gorithm, which is inspired from document mining [31]. Trajectories are treated as
documents and the observations of an object on a trajectory are treated as words in a
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Fig. 5 Examples of trajectory clustering results: (a) input dataset; (b) SOM approach;
(c) Dual-DHP approach and (d) proposed approach.

document. Trajectories are clustered in an iterative way. In each iteration the process
performs clustering at two levels, namely at observation-level and at trajectory-level.
The first level helps in finding the regions and the second level associates each tra-
jectory to one region. An abnormal trajectory is defined as one that does not fall in
dense regions. Figure 5(c) shows results of the Dual-HDP.

3.2 Soft Clustering Approaches

Hard partitional clustering methods (PHC and NPHC) work well when the physical
boundaries of the clusters are well-defined. An advantage of soft clustering over
hard clustering is that it yields more detailed information on the structure of the data
as it may assign each element to multiple clusters with an associated membership
value [32]. Furthermore, fuzzy clustering is less sensitive to outliers that will have a
smaller membership value to a particular cluster and thus affects less on the overall
cluster structure.

A popular PSC algorithm is Fuzzy K-means, a variant of the K-means algorithm,
which assigns each trajectory a certain degree of belongingness to the clusters. Thus,
trajectories on the edge of a cluster would have a smaller degree of membership
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Fig. 6 Flow diagram of the proposed trajectory clustering and outlier detection framework.

than the trajectories in the center of the cluster. For each trajectory T j we have a
coefficient ul(T j) giving the degree of belongingness to the lth cluster. The sum
of those coefficients for any T j is 1. Although this algorithm minimizes the intra-
cluster variance, it has the same local minimum problem as K-means, and the results
depend on the initial choice of the number of clusters.

To overcome the limitations of PHC, NPHC and PSC discussed so far, we present
a framework for an NPSC algorithm, where a Mean-shift-based approach operates
on multiple feature spaces for clustering, without prior knowledge on the number of
clusters. The flow diagram of the proposed approach is shown in Fig. 6.

Let Fl(.) be a feature extraction function defined as S j
l = Fl(T j), where l=

1, ...,M and M is the total number of feature spaces. We treat each feature space
independently in order to avoid normalization problems. Let us consider each fea-
ture space as the empirical probability density function (pdf) of the distribution of
the trajectories in that particular feature space [33]. Mean-shift finds the modes of
the pdf and then each trajectory is associated with the nearest mode to form the
clusters [34]. Let Sl={S j

l }z
j=1 be a set of z transformed trajectories. The multivariate

density estimator F̂(S j
l ) is defined as

F̂(S j
l ) =

1
z1hl

z1

∑
i=1

K

(∣∣∣∣∣S j
l −Si

l

hl

∣∣∣∣∣
)

, (12)

where z1 (≤ z) is the number of trajectories contained in a hypersphere Sl ⊆ Sl with
radius hl and centered at S j

l . The choice of hl plays an important role in Mean-shift
clustering. A possible way to select this value is to employ an incremental proce-
dure. Initially, by setting hl to 10% of each dimension of the lth feature space and
iteratively increasing it to 80%. The lower bound prevents clusters from contain-
ing a single trajectory, while the upper bound avoids a cluster with all trajectories
grouped together. Although a smaller hl produces a less biased density estimator, it
increases the variance. In order to find the compromise between the two quantities,
the Mean Integrated Squared Error (MISE) [34] can be used

MISE(S j
l ) =

∫
E (Sl− F̂(S j

l ))
2dx. (13)

The value of hl for which MISE(S j
l ) is minimum is considered to be optimal. More-

over, K(.) in Eq. 12 is defined as
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Fig. 7 An illustration of the Mean-shift process: (a) input trajectories in a feature space;
(b) kernel weighted mean around a seed trajectory and (c) update of the mean in the direction
of a dense region.

K(k) =
{ 1

2Vl
(dl)(1− kT k) if kT k < 1

0 otherwise
, (14)

where k =
∣∣∣∣ S j

l−Si
l

hl

∣∣∣∣ and Vl represents the volume of Sl with dl dimensions.

The density gradient estimate of the kernel can be written as

∇̂F(S j
l ) = ∇F̂(S j

l ) =
1

z1hl

z1

∑
i=1

∇K

(∣∣∣∣∣S j
l −Si

l

hl

∣∣∣∣∣
)

. (15)

From Eq. 12 and Eq. 15, the Mean-shift vector Mh(S
j
l ) is defined as

Mh(S
j
l )∝

∇̂F(S j
l )

F̂(S j
l )

, (16)

or

Mh(S
j
l ) =

hlVl

dl

∇̂F(S j
l )

F̂(S j
l )

. (17)

The output of the Mean-shift procedure is the set of trajectories associated to
each mode. Initially, the mode seeking process starts by fixing a trajectory as a seed
point. Then, after the Mean-shift process converges to the local mode, all the trajec-
tories within the bandwidth, hl , of the kernel, K(.), are assigned to that mode [35]
(Fig. 7). These trajectories are not considered for future iterations. The next seed
point is selected randomly from the unprocessed trajectories. The process terminates
when all trajectories are assigned to a corresponding local mode. Finally, adjacent
clusters are merged if their modes are apart by less than a pre-defined threshold
(Fig. 8) [36].
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Fig. 8 Sample cluster merging results. (a) Initial trajectory clustering result (5 clusters);
(b) final clustering result after cluster merging (4 clusters).

4 Cluster Fusion

The final partitioning of the trajectories is obtained by integration after analyzing the
clustering results from each feature space. The integration of the clusters consists
of three steps, namely the estimation of the final number of clusters, the establish-
ment of the correspondence between clusters in different feature spaces, and the
association of each trajectory to a final cluster.

Let N = {n1,n2, ...,nm} be the set containing the number of clusters for each
feature space. A possible choice is to set the final number of clusters n f as the
median value of the set N. After selecting the final number of clusters, the structure
of clusters are estimated as characterized by a single mode; each cluster is modeled
with a univariate Gaussian with bandwidth of the kernel defining the variance of the
cluster itself.

In order to find the structure of each cluster, the process starts with a feature space
Fl ∈ F : F = {Fi}m

i=1 such that nl = n f . The initial parameters of the final clusters

(C f
i ; i = 1, ...,n f ) are those defined by Fl . To refine the parameters according to the

results of the other feature spaces, we find the correspondence of Fl with all the
other feature spaces Fn with Fn ∈ {Fk}m

k=1 and n �= l.
Let ν̂ be the index of the cluster in Fn that has the maximum correspondence

(maximum number of overlapping elements) with the ith cluster of Fl:

ν̂ = argmax
j

∣∣∣Cl
i ∩Cn

j

∣∣∣ , (18)

where |.| is the cardinality of the set of overlapping elements, i = 1, ...,n f , j =
1, ...,nn, Cl

i and Cn
j represent the ith and jth clusters in Fl and Fn, respectively.

C f
i is updated by taking the overlapping elements, C f

i = (C f
i ∩Cn

ν̂ ). This process
continues for all features spaces. This results in n f clusters consisting of all the
trajectories that are consistent across all feature spaces, and are therefore considered
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to represent a reliable structure for each cluster. At this point we associate to the final
clusters the trajectories (T

′ ⊆ {T j}z
j=1) that are not consistent across all the feature

spaces. To this end, we calculate a conditional probability of To ∈ T
′
generated from

the given cluster model as

p(To|C f
k ) =

1
m

m

∑
i=1

1√
2πσ f ,k

e
−(

μi, j−μ f ,k
σ f ,k

)2

, (19)

where μi, j = 1
|Ci

j |

|Ci
j |
∑
j=1

T̄ j and μ f ,k = 1
|C f

k |

|C f
k |
∑

k=1
T̄ j are the mean values of Ci

j and C f
k re-

spectively and σ f ,k is the standard deviation of C f
k . The motivation behind these pa-

rameters is that each cluster can be characterized by a single mode with the spread
of the cluster represented by σ . Note that the decision is made at the cluster level
and not at the feature space level, thus removing the dependence on dimensionality
or normalization. To will be assigned to C f

k if

p(To|C f
k ) > p(To|C f

l ), (20)

where l=1, ...,n f and l �= k.

5 Outlier Detection

An outlier trajectory deviates from other trajectories as result of an abnormal event.
In the anomaly detection literature, distance-based techniques are frequently used.
Zhou et al. [37] use an Edit distance to find the common pattern. A trajectory that
is far from the common pattern is considered as an anomaly. Similarly, Naftel et
al. [21] use the Hotelling T 2 test to determine if the Mahalanobis distance of a tra-
jectory to its nearest class center makes it an outlier. The choice of the threshold
value is selected according to the given dataset. Fu et al. [22] use a Gaussian distri-
bution to represent the test and template trajectories. If the difference between a test
trajectory and a template trajectory is larger than one standard deviation from the
mean of a template trajectory, then the test trajectory is considered as abnormal.

In this work we focus on identifying two types of outlier trajectories: (a) those
existing in dense regions, but exhibiting a different behavior from the common pat-
tern; and (b) those located in sparse regions. A trajectory T

′
j belongs to the first type

of outliers if T
′
j ∈C f

k lies at least twice of the standard deviation from the center of
cluster, μ f ,k, i.e.,:

|μTo − μ f ,k|> 2σ f ,k. (21)

To detect the second type of outliers, we identify trajectories belonging to sparse
regions by considering the size of their cluster. If a cluster has few associated tra-
jectories and cannot be merged with a nearby cluster, then it is considered to be a
set of outliers. Here the threshold value is set to the 10% of the cardinality of the
cluster containing the median number of associated elements. Figure 5(d) shows an
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(a) (b)

Fig. 9 Standard datasets used for performance evaluation.

example of the clustering results using the proposed approach. The results show the
validity of the process in identifying the accurate number of clusters along with the
detection of outliers.

6 Performance Evaluation

We evaluate the proposed approach based on the following independent trajectory
representations: the first two components of PCA, the three dominant angles using
TDH, the average velocity, the directional distance, the trajectory mean and a com-
bination of initial position, speed and acceleration. We compare it with state-of-the-
art trajectory clustering algorithms on the following real world sequences datasets:
S1 is a traffic monitoring sequence, which consists of 47 trajectories [38], with the
resolution of 720x480 pixels (25 Hz); S2 is a parking monitoring sequence, which
consists of 535 trajectories [31] with the resolution of 360x480 pixels (25 Hz). Fig-
ure 9 shows the cumulated trajectories superimposed on a key-frame of each test
sequence. For S1 we are interested in finding 3 clusters. For S2 we are interested in
finding 7 clusters.

Figure 10(a) shows that the proposed approach has successfully clusters the tra-
jectories in 3 main motion patterns. Each cluster is summarized by the representative
trajectory (in bold line) and couple of boundary trajectories (in bold dash-line). The
representative trajectory u∗ is calculated as

u∗ = argmin
j

|μTj − μ f ,k|
σ f ,k

, (22)

where j is the index of all the trajectories in cluster C f
k . Furthermore, the boundary

trajectories are the top-two trajectories that are far from the center of the cluster and
are calculated as

v∗ = argmax
j

|μTj − μ f ,k|
σ f ,k

, (23)
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(a)

(b)

Fig. 10 Results of proposed clustering approach on (a) S1 and (b) S2. The semantic regions
are summarized by a representative trajectory (solid line) and a pair of boundary trajectories
(dash line).

where j is the index of all trajectories belonging to a cluster C f
k in two iterations.

In the second iteration the already selected trajectory is not considered anymore.
Figure 11(a) shows the outlier trajectories found in the sequence, which are primar-
ily the shorter and farther trajectories compared to the rest of the trajectories in a
cluster. Moreover, Figure 10(b) shows that the proposed approach has successfully
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(a) (b)

Fig. 11 Outlier detected on (a) S1 and (b) S2 using the proposed framework.

Table 1 Comparison of clustering results based on Precision and Recall figures.

S1 S2
SOM Dual-HDP Proposed SOM Dual-HDP Proposed

ID P R P R P R P R P R P R

C f
1 0.70 1.00 0.82 1.00 0.87 1.00 0.65 0.70 0.84 0.89 0.86 0.88

C f
2 0.87 0.65 0.79 1.00 0.84 1.00 0.73 0.71 0.86 0.90 0.86 0.95

C f
3 0.35 0.12 0.90 0.42 1.00 0.40 0.72 0.69 0.86 0.97 0.87 0.93

C f
4 - - - - - - 0.77 0.68 0.89 0.94 0.92 0.91

C f
5 - - - - - - 0.74 0.73 0.81 0.85 0.85 0.90

C f
6 - - - - - - 0.72 0.74 0.79 0.84 0.91 0.85

C f
7 - - - - - - 0.78 0.68 0.75 0.93 0.90 0.93

Avg. 0.64 0.59 0.84 0.81 0.90 0.80 0.73 0.70 0.83 0.90 0.88 0.91

clusters the trajectories in 7 main motion patterns. Figure 11(b) shows the outlier
trajectories found in the sequence, which are essentially the shorter trajectories or
trajectories formed by people crossing the grass.

To objectively assess the clustering performance of the proposed approach, we
use Precision (Pi) and Recall (Ri). For the ith final cluster, C f

i , P is calculated as

Pi =
|C f

i ∩Γi|
|C f

i |
, (24)

and Ri as

Ri =
|C f

i ∩Γi|
|Γi| , (25)

where |.| is the cardinality of a cluster andΓi is ground-truth of the ith cluster. We also
compare the proposed approach with a PHC and a NPHC approaches that are based
on SOM and Dual-HDP, respectively. The comparison of the three approaches is
summarized in Table 1. The proposed approach has outperformed in terms of R the
SOM-based approach on average by 21% for S1. However, the Dual-HDP approach
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has better performance by 1% than the proposed framework. On the other hand, ,
in terms of P the proposed approach has 26% and 6% better performance than the
SOM and Dual-DHP approaches, respectively. Similarly, the proposed approach has
outperformed in terms of R the SOM-based and Dual-HDP approaches on average
by 21% and 1%, respectively, for S2. Furthermore, the proposed approach has 15%
and 5% better performance in terms of P than the SOM and Dual-DHP approaches
respectively.

7 Conclusions

We presented a framework for scene context learning and outlier detection by clus-
tering video object trajectories. The input trajectories are transformed into distinct
feature spaces to represent the complementary characteristics of motion patterns.
Several supervised and unsupervised feature spaces have been described in this
chapter and their relative merits discussed. Next, Mean-shift was used to estimate
clusters in each feature space and adjacent clusters in a feature space were merged
to refine the initial results. A fuzzy membership of a trajectory to the final clusters
was estimated, and crisp clusters were then obtained based on the maximum mem-
bership using the information from all the feature spaces. Finally, the clusters with
only few associated trajectories and trajectories far from the clusters center were
considered outliers. The proposed approach was validated on standard datasets and
compared with state-of-the-art approaches.
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Motion Trajectory-Based Video Retrieval,
Classification, and Summarization

Xiang Ma, Xu Chen, Ashfaq Khokhar, and Dan Schonfeld

Abstract. This chapter provides an overview of various methods for motion
trajectory-based video content modeling, retrieval and classification. The techniques
discussed form the foundation for content-based video indexing and retrieval (CB-
VIR) systems. We focus on view-invariant representations of single and multiple
motion trajectories based on null-space invariants that allows for video retrieval
and classification from unknown and moving camera views. We introduce meth-
ods based on matrix and tensor decomposition for efficient storage and retrieval of
single and multiple motion trajectories, respectively. We subsequently explore the
use of one- and multi-dimensional hidden Markov models for video classification
and recognition based on single and multiple motion trajectories. We summarize
the basic concepts and present computer simulation results to demonstrate the fun-
damental notions introduced throughout the chapter. We finally discuss several open
problems in the field of motion trajectory analysis and future trends in content-based
video modeling, retrieval and classification.

1 Video Content Modeling

1.1 Video Structure

A video consists of multiple scenes. Each scene is composed of contiguous shots
that share a semantic theme. A shot is formed by successive frames acquired by a
continuous recording from a single camera. The shot is regarded as the fundamental
building block of the video sequence. Given the significance of shots in videos,
extraction of shots, or shot boundary detection, is a key step in video analysis.

1.2 Video Segmentation

We use the term video segmentation to refer to the problem of shot boundary de-
tection. The aim of video segmentation, or shot boundary detection, is to identify

D. Schonfeld et al. (Eds.): Video Search and Mining, SCI 287, pp. 53–82.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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the frames in the video sequence in which a transition between shots has occurred.
The simplest example of transition between video shots is known as a cut. A cut
represents a sharp transition between shots that occur when the camera recording is
suddenly terminated and later restarted. Most shot boundary detection methods are
designed for identification of cuts and rely on correlation between adjacent frames
[1][2][3]. However, other forms of gradual transitions between video shots are often
introduced in the video sequence by use of special effects (e.g. fades, dissolves, etc.).
Numerous techniques have been developed to address different potential special ef-
fects introduced through video editing. Lelescu and Schonfeld [4] have developed a
unified method for video segmentation that addresses both abrupt and gradual shot
transitions by relying on sequential hypothesis testing.

1.3 Video Tracking

A key feature in video analysis is provided by object motion [5]. Motion can be
captured by extraction of the object’s movement within shots using video tracking
algorithms. Numerous methods have been developed over the past few decades for
tracking of single and multiple objects [6][7][8]. Among the most popular video
tracking techniques are block-based methods [9][10] and tracking based on particle
filters [11]. Qu et al. [12] have developed an efficient, distributed framework for
multiple object tracking based on particle filtering. Video tracking algorithms can
be used to characterize the object’s shape, orientation, and position in each frame.

1.4 Motion Trajectories

A collection of the object’s coordinates over time is referred to as a motion trajec-
tory. The coordinates selected for representation of motion trajectories often repre-
sent the centroid, or other salient features of the object. The importance of motion
trajectories as a critical feature for activity modeling has been established in video
analysis applications [13][14][15][16]. Video sequences consisting of multiple mov-
ing objects lead to the representation of multiple simultaneous motion trajectories.

An object motion trajectory in a video shot of length L is usually represented by
an L-tuple formed by a collection of the x- and y-axes of the object’s centroid in a
two-dimensional coordinate system at each time instant; i.e.

rL = {x[t],y[t]}, t = 1, ...,L. (1)

In some cases, motion trajectories are represented by a three-dimensional coordi-
nate system for applications in which the depth of the object from the camera is
important.

Typically, for a video clip of length L with M moving objects, the multiple motion
trajectories are represented as a set S of M motion trajectories given by

S = {rL
1 ,rL

2 ,rL
3 , ...,rL

M}. (2)
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Fig. 1 Multiple motion trajectories: (a) snapshots extracted from three video sequences; and
(b) the corresponding multiple motion trajectories.

Figure 1 illustrates the representation of multiple motion trajectories. Snapshots ex-
tracted from three video clips are shown in Fig. 1(a) and the corresponding multiple
motion trajectories are depicted in Fig. 1(b).

2 View-Invariant Representation

View-Invariant representation is a very important and sometimes difficult aspect of
an intelligent system. The problem with this is that the system can only recognize
a predefined set of behaviors [17][18][19]. In this section, the state-of-the-art ap-
proaches in motion trajectory-based video content modelling and representation are
represented. These include: curvature scale space (CSS) and centroid distance func-
tions (CDF)-based representations. The null space invariant (NSI) representations
for video classification and retrieval due to camera motions are further discussed.
Moreover, the tensor null space invariant (TNSI) representation for high dimen-
sional data is presented in the last part of this section.

2.1 Curvature Scale-Space (CSS) and Centroid Distance
Function (CDF)-Based Representation

As described in [20], scale-space is a multi-resolution technique used to represent
data of arbitrary dimension without any knowledge of noise level and preferred
scale (smoothness). The curvature κ [k] for the trajectory represented as in (1) can
be expressed as:

κ [k] =
x
′
[k]y

′′
[k]− y

′
[k]x

′′
[k]

{x′ [k]2 + y′ [k]2}3/2
(3)

The curvature of a trajectory has several desirable computational and perceptual
characteristics. One such property is that it is invariant under planar rotation and
translation of the curve. Curvature is computed from dot and cross products of
parametric derivatives and these are purely local quantities, hence independent of
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rotations and translations. The dot and cross products are based only on the lengths,
and angles between, vectors. Hence, these are also independent of rigid transforma-
tions of the coordinate system. Given a trajectory as in Eq.(1), the evolved version
of the trajectory in terms of scale-space is defined by:

rσ [k] = X [k,σ ],Y [k,σ ] , (4)

where

X [k;σ ] = x[k]⊗g[k;σ ], (5)

Y [k;σ ] = y[k]⊗g[k;σ ] (6)

with g[k;σ ] being the symmetric Gaussian kernel used for smoothing. At each level
of scale, governed by the increasing standard deviation of Gaussian kernel, curvature
of the evolved trajectory is computed. Then the function implicitly defined by

κ [k;σ ] = 0 (7)

is the curvature scale space image of the trajectory. It is defined as a binary image
with a value of 1 assigned to the points of curvature zero crossing at each scale
level. Note that each of the arch-shaped contours in the CSS image corresponds to
a convexity or concavity on the original trajectory with the size of the arch being
proportional to the size of the corresponding feature. The CSS image is a very robust
representation under the presence of noise in trajectory data due to small camera
motions and minor jitters in tracking. Noise amplifies only the small peaks, with no
effect on the location or scale of the feature contour maxima. As evident from the
figure, the major peaks of the CSS image remain quite preserved after significant
affine transformation.

The centroid distance function is another invariant representation of the raw
shape data used in the affine invariant image retrieval applications. The centroid
distance function is expressed by the distance of each point in trajectory from the
centroid of the trajectory:

c[k] =
√

[x[k]− xc]2 +[y[k]− yc]2,k = 0,1, . . . ,N−1 (8)

where xc = 1
N ∑N−1

t=o x[k],yc = 1
N ∑N−1

t=o y[k]. Let us denote by uniform affine trans-
formation the set of affine transforms including translation, rotation and uniform
scaling. This excludes the shear transformation in general affine transformation. Let
us denote the centroid distance function of a trajectory before affine transformation
as C[k] and after uniform affine transformation as C

′
[k]. Then it can be easily proved

that under uniform affine transformation, the following relation holds between
the centroid distance functions computed from original and affined version of the
trajectory:

C′[k] = αC[k],
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α = 1, f or

(
u[k]
v[k]

)
=

(
cosθ sinθ
−sinθ cosθ

)(
x[k]
y[k]

)
+
(
β
γ

)

α = αs, f or

(
u[k]
v[k]

)
= αs

(
x[k]
y[k]

)
. (9)

Figure 2 displays one of the trajectories from ASL dataset along with two of
its rotated versions, and its representation in terms of the two feature spaces ex-
plored in this presentation. As seen from this figure, the CDF-based representation
is absolutely invariant to rotational deformations. The CSS-based representation,
on the other hand, results in the curvature zero crossings being consistent but the
CSS maxima tend to shift around. In the case of CSS representation, as outlined
previously, the trajectory is represented by the locations of CSS maxima in terms
of their temporal ordering and the scale of concavity. In this context, the trajectory
data is represented by a time-ordered sequence of two-dimensional feature vectors
containing CSS maxima. Results on a range of dataset sizes from the ASL [21]
dataset are reported, in terms of the ROC curves [22] in Figure 3. The ROC curves
are two-dimensional depiction of classifier performance.

Fig. 2 Trajectory of the hand motion for signing the word ’Alive’ in Australian Sign Lan-
guage with its two rotated versions, and their corresponding representations using centroid
distance functions (CDFs) and curvature scale-space (CSS) images.

Fig. 3 ROC curves for the rotated trajectories posed for classification.



58 X. Ma et al.

2.2 Null-Space Invariance (NSI) Representation

Null Space Invariant (NSI) of a trajectories matrix (each row in the matrix corre-
sponds to the positions of a single object over time) is introduced as a new and pow-
erful affine invariant space to be used for trajectory representation. This invariant,
which is a linear subspace of a particular vector space, is the most natural invariant
and is definitely more general and more robust than the familiar numerical invari-
ants. It does not need any assumptions and after invariant calculations it conserves
all the information of original raw data.

Let Qi = (xi,yi) be a single 2-D point, i = 0,1, . . . ,n−1, among n ordered non-
linear points in R2, representing a trajectory. Consider the following arrangement of
the n 2-D points in a 3×n matrix M:

M =

⎛⎝ x0 x1 ... xn−1

y0 y1 ... yn−1

1 1 ... 1

⎞⎠ (10)

(n-3)-dimensional linear subspace Hn−3 can be associated to a 2-D trajectory whose
features set is Q0,Q1, . . . ,Qn−1:

Hn−3 = {q = (q0,q1, . . . ,qn−1)T , i.e.Mq = (0,0,0)T} (11)

Since at least one determinant of 3× 3 minor of M is not zero because of non-
linear feature points, Hn−3 has a dimension of n-3. The attractive property of the
linear subspace is that it does not change when it undergoes any of the affine trans-
formations. The new invariant of the trajectory matrix M is used to represent each
trajectory. Moreover,

Hn−3 ⊂ Rn−1 = {q = (q0,q1, . . . ,qn−1)T ∈ Rn−1,and
n−1

∑
i=0

qi = 0} (12)

which produces (n-3)-planes in (n-1)-space, GrR(n−3,n−1). GrR(n−3,n−1) is a
well understood manifold of dimension 2n-6, which is the number of invariants as-
sociated to the matrix M. Hn−3 is spanned by the vectors vi = (qi

0,q
i
1, . . . ,q

i
n−1)

T ,i =
3,4, . . . ,n−1, where

qi
0 =−det

⎛⎝ x1 x2 xi

y1 y2 yi

1 1 1

⎞⎠/det

⎛⎝ x0 x1 x2

y0 y1 y2

1 1 1

⎞⎠ (13)

qi
1 = det

⎛⎝ x0 x2 xi

y0 y2 yi

1 1 1

⎞⎠/det

⎛⎝ x0 x1 x2

y0 y1 y2

1 1 1

⎞⎠ (14)

qi
2 =−det

⎛⎝ x0 x1 xi

y0 y1 yi

1 1 1

⎞⎠/det

⎛⎝ x0 x1 x2

y0 y1 y2

1 1 1

⎞⎠ (15)
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qi
i =−1andq j

i = 0 f or j = 3,4, . . . , i−1, i+ 1, . . .,n−1 (16)

Now each trajectory is represented now with a matrix NSIn×(n−3), which is com-
posed of vi columns, from the trajectory matrix M3×n. A method for dimensionality-
reduction and classification based on PCNSA [23] is chosen for the null space
operator. For noisy data, as described in [24][25], based on the perturbed null oper-
ator, it is desirable to know the ratio of the input error and the output error where
the input error is referred to the error of the trajectory matrix and the output error is
referred to the error of the null operator. Therefore, the ratio of the output error and
input error is:

τ =
E‖Q− Q̃‖2

F

E‖Z‖2
F

=
1
N

[(N−3)(r2
01 + r2

02 + r2
12)+

N−1

∑
i=3

(r2
0i + r2

1i + r2
2i)] . (17)

It can be seen that the ratio only relies on the trajectory itself while independent of
the noise. Defining the power of the output signal as ‖Q‖2

F , SNR can be computed

by ΔSNR = ‖Q‖2
F

E‖Q−Q̃‖2
F

as:

ΔSNR = {A
N−1

∑
i=3

y2
i +B

N−1

∑
i=3

x2
i +C

N−1

∑
i=3

xiyi +D
N−1

∑
i=3

xi +E
N−1

∑
i=3

yi +F}/{2δ 2[(N−3)
2

∑
j,k=0

r2
jk

+
N−1

∑
i=3

(r2
0i + r2

1i + r2
2i)]} , (18)

where

A =
2

∑
j,k=0

(x j− xk)2,B =
2

∑
j,k=0

(y j− yk)2 ,C =−2
2

∑
j,k=0

(x j− xk)(y j− yk) , (19)

D = 2
2

∑
j,k=0

(y j− yk)(x jyk− xky j) ,E = 2
2

∑
j,k=0

(x j− xk)(x jyk− xky j) , (20)

F = (N−3)[
2

∑
j,k=0

(x jyk− xky j)2 +(x1y2− x2y1 +

x0y1− x1y0− x0y2 + x2y0)2] , (21)

where j �= k. It can be seen that the critical points of SNR are trajectory-dependent.
Expanding arbitrary trajectories in x and y directions in Maclaurin series, we obtain:

x = f (t) = f (0)+ f
′
(0)t +

f
′′
(0)

2!
t2 + ...+

f (n)(0)
n!

tn . (22)

y = g(t) = g(0)+ g
′
(0)t +

g
′′
(0)

2!
t2 + ...+

g(n)(0)
n!

tn . (23)
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With regard to SNR, we have the following property:

Property 1:With uniform sampling tk = kT ,

lim
N→∞

ΔSNR =
A(g(n)(0))2 + B( f (n)(0))2

6δ 2[(g(n)(0))2 +( f (n)(0))2]
+

C f (n)(0)g(n)(0)
6δ 2[(g(n)(0))2 +( f (n)(0))2]

(24)

where A, B and C are defined in the expression of SNR.

Property 2: λ = O(N) should be chosen for Poisson sampling to guarantee the
convergence of τ , where N is the total number of samples.

Property 3: τ converges in mean sense given λ = O(N). Specifically, for λ = N
T ,

lim
N→∞

E(τ) = 3
2n

∑
k=1

(ak + bk)T k

k + 1
, (25)

where k is the index for Taylor series and for ak and bk, if k is odd,

ak =

k−1
2

∑
i=1

2g(i)(0)g(k−i)(0)
i!(k− i)!

, (26)

bk =

k−1
2

∑
i=1

2 f (i)(0) f (k−i)(0)
i!(k− i)!

, (27)

if k is even,

ak =

k−2
2

∑
i=1

2g(i)(0)g(k−i)(0)
i!(k− i)!

+
(g( k

2 )(0))2

( k
2 !)2

, (28)

bk =

k−2
2

∑
i=1

2 f (i)(0) f (k−i)(0)
i!(k− i)!

+
( f ( k

2 )(0))2

( k
2 !)2

. (29)

Property 4: If the trajectories are sampled with λ = O(N), the variance of the error
ratio converges to zero, namely,

lim
N→∞

Var(τ) = 0 . (30)

Remark: Property 3 can be proved by showing that

lim
N→+∞

1
N

N−1

∑
j=3

E(tk
j ) =

1
k + 1

. (31)

In this framework, the density λ corresponds to the average number of samples per
unit-length; i.e. λ = N

T .
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Fig. 4 (a) Accuracy values for the classification problem on increasing number of classes,
(b) Accuracy values for the classification problem on increasing number of trajectories in a
class. (c) The comparison with Precision-Recall Curve for retrieval with 20 classes for perfect
trajectories.

Since in real life trajectories in a class may have different lengths, the length is
normalized by taking the Fourier Transform and choosing the biggest n=32 coeffi-
cients and then taking the Inverse Fourier Transform so that all the trajectories are
of size 32 before invariant matrix calculations. For all the simulations δ1 = 107,
δ2 = 10−4 as thresholds and L = 32 in PCNSA. Figure.4(a) depicts accuracy of
the proposed classification system versus number of classes. There are K = 20 tra-
jectories in each class word. Simulation results show that this system preserves its
efficiency even for higher number of different classes. Figure.4(b) depicts accuracy
values versus increase in the number of trajectories within a class. There are C = 20
classes in the system. Figure.4(c) shows Precision vs. Recall curves for indexing and
retrieval problem by using 40 classes, each class having 20 trajectories. For retrieval
problems, the distance of the query trajectory to any other trajectory is computed
by using PCNSA on NSI as D(Xi,Y ) = ‖WNSA,i(Xi−Y)‖, where Y is the query tra-
jectory. This distance is then used to find α nearest trajectories, where α is a user
specified parameter. There are two curves in Figure 4(c), one is with using PCA on
NSI directly, where PCA is basically used for dimension reduction. As it can be

Fig. 5 Visual illustration for retrieval results with 20 classes with motion trajectories.
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seen from Figure 4(c) that the result of using PCNSA on NSI is much superior to
the one using PCA on NSI directly. The visual illustration of the query and the three
most similar retrieval are shown in Fig. 5.

2.3 Tensor Null-Space (TNSI) Invariance Representation

Among affine view-invariance systems, majority of them represent affine view-
invariance in a single dimension, thus limiting the system to only single object
motion based queries and single dimension affine view-invariance. In many appli-
cations, it is not only the individual movement of an object that is of interest, but
also the motion patterns that emerge while considering synchronized or overlapped
movements of multiple objects. In this subsection, a novel fundamental mathemati-
cal framework is proposed for tensor null space invariants and is further used for the
important application of view-invariant classification and retrieval of motion events
involving multiple motion trajectories. Let us denote the tensor A ∈ RI1×I2...IN−1×IN

as the multi-dimensional data. Elements of A are denoted as ai1i2...iN . A general-
ization of the product of two matrices is the product of a tensor and a matrix. The
mode-n product of a tensor A ∈ RI1×I2...×In...IN−1×IN by a matrix U ∈ RIn×Jn , denoted
by A×n U , is a tensor B ∈ RI1×...In−1×Jn×In+1...×IN whose entries are:

(A×n U)i1...in−1 jnin+1...iN =∑
in

ai1...in−1inin+1...iN uin jn (32)

The mode-n product B = A×n U can be computed via the matrix multiplication
B(n) = UA(n), followed by a re-tensorization to undo the mode-n flattening. As de-
scribed in the equations (10)-(12), applying the affine transformation T on the ma-
trix M1 = T M, the null spaces of M1 and M are identical. Similarly, applying the
affine transformation Tm,Tn on the mth, nth unfolding of the multi-dimensional data
M, respectively, if the resulting tensor null space Q is invariant in both dimensions,
the it is referred to as mode-m,n invariant. Let us derive the mathematical formula-
tion of the mode-1,2,3 invariant tensor Q for three dimensional data M ∈ RI1×I2×I3 .
To be rotation invariant, we have:

M(1)×Q(3) = 0 ,M(2)×Q(2) = 0 ,M(3)×Q(1) = 0 , (33)

where M(1),M(2),M(3) are the unfolding of the three order tensor M into matrices
with the dimension I2I3× I1, I1× I3I2 and I1× I2I3, respectively, and Q(3),Q(2),Q(1)
are the corresponding unfoldings of the tensor Q. The condition for invariance of
translation for the mode-1,2,3 invariant tensor Q:

∑Q(1) = 0,∑Q(2) = 0,∑Q(3) = 0 (34)

Combining the conditions for rotational and translational invariance, we can solve
the TNSI Q subject to the mode-1,2,3 affine view-invariant. If the order of the
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Fig. 6 Flattening a 3rd order motion event tensor for multiple trajectories representation.

tensor M is 2, it is easy to show that the condition boils down to the Stiller’s one
dimensional null space invariants [6]. It is also easy to extend the result to the case
of the Nth order tensor with mode-Ia, . . . , Ik affine view-invariant.

We align each trajectory as two rows in a matrix according to x and y coordi-
nates, and the number of rows of a matrix is set to be twice the number of the
objects in the motion event under analysis. M = (Mi, j)i=1,2,...,2J; j=1,2,...,P ,, where
P denotes the temporal length of normalized trajectories, J represents the num-
ber of trajectories within one motion event. Finally, multiple trajectory matrices
are aligned in the direction orthogonal to the plane spanned by them, and form
a three dimensional matrix, or tensor. We refer to it as Motion Event Tensor T .
T = (Ti, j,k)i=1,2,...,2J; j=1,2,...,P;k=1,2,...,K , where K is the number of motion event sam-
ples (trajectory video clips).

3 Video Indexing and Retrieval

In this section, the concepts, problems and state-of-the-art approaches for content-
based video indexing and retrieval (CBVIR) are discussed. We first investigate one
of the key problems in video retrieval-video summarization, where we summarize
the state-of-the-art approaches for both shot-boundary detection and key frame ex-
tractions. Then we focus on spatial-temporal motion trajectory analysis, and present
both single and multiple motion trajectory-based CBVIR techniques, especially, (i)
geometrical multiple-trajectory indexing and retrieval (GMIR) algorithm, (ii) un-
folded multiple-trajectory indexing and retrieval (UMIR) algorithm, and (iii) con-
centrated multiple-trajectory indexing and retrieval (CMIR) algorithm. The above
algorithms not only remarkably reduce the dimensionality of the indexing space but
also enable the realization of fast retrieval systems.
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3.1 Motion-Trajectory Representation

An object trajectory-based system for video indexing is proposed in [26], in which
the normalized x- and y-projections of trajectory are separately processed by
wavelet transform using Haar wavelets. Chen et al. [27] segment each trajectory into
subtrajectories using fine-scale wavelet coefficients at high levels of decomposition.
A feature vector is then extracted from each subtrajectory and Euclidean distances
between each subtrajectory in the query trajectory and all the indexed subtrajecto-
ries are computed to generate a list of similar trajectories in the database. Bashir
et al. [19][28] proposed a Principle Component Analysis (PCA)-based approach to
object motion trajectory indexing and retrieval, which has been shown to provide a
very effective method for indexing and retrieval of single object motion trajectory.

3.1.1 Multiple Motion-Trajectory Representation

For a video database consisting of many video clips, each video clip has an unique
corresponding set of multiple motion trajectories, which characterizing the dynam-
ics and motion pattern of multiple objects within that particular video clip. Thus by
indexing and retrieving a set of multiple object trajectories, we are able to index and
retrieve its corresponding video clip in the database.

Each set of multiple object trajectories S = {rL
1 ,rL

2 ,rL
3 , ...,rL

M}, extracted from a
particular video clip of length L with M objects, is modelled as a Multiple Trajectory
Matrix M of size 2L by M.

We firstly smooth out each of the noisy trajectories by applying wavelet transform
using Daubechies wavelet DB4, and taking coarse coefficients corresponding to the
low subband in a three level decomposition. After that, x− and y− location infor-
mation of each object trajectory rL

i (i = 1,2, ...,M) is concatenated into one column
vector, we refer to as Single Trajectory Vector Vi.

Vi = (xi[1],xi[2], ...,xi[L],yi[1],yi[2], ...,yi[L])T (35)

The single trajectory vectors are then aligned as columns of a matrix, where the
number of columns is set to be the number of objects in the particular set of multiple
object trajectories. We name this matrix as Multiple Trajectory Matrix M .

M = [V1|V2|V3|...|VM] (36)

Here, each multiple trajectory matrix represents the motion dynamics of a group of
objects within one particular video clip, please note that the order of single trajectory
vectors placed in the multiple trajectory matrix is very important, for simplicity, we
focused exclusively on the simplest case, where orders of multiple trajectories in
both the dataset and the query are known. However, the tensor-space representation
can be easily extended to the case where correspondence of multiple trajectories
between the dataset and the query is unknown. For more details, please refer to [29].
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In a motion video database with many video clips, multiple trajectories are firstly
extracted for each video, then multiple trajectory matrix is constructed. For compact
representation, multiple trajectory matrices of the same number of columns (video
clips with the same number of acting objects), are grouped together. Then each
group of video clips are resampled to a median size for further processing. The
median size is the median of lengths from all video clips within the same group.
Let there be N sets of M trajectories extracted from N video clips, and the original
lengths of each set of M trajectories be L1, L2,...,LN . Suppose the desired median
length after sampling is L′. For each set of M trajectories, we resample the whole
set of trajectories to the median length L′. For each trajectory within the same set,
we first use 2D fourier transform to get coefficients of each trajectory in frequency
domain; then we retain the first p biggest coefficients while ignoring the rest; finally
we perform L′-point inverse 2D fourier transform to get the re-sampled trajectory
with desired length L′. Figure 7 (b) depicts three sets of 2-trajectories S1, S2 and S3,
extracted from three video clips of lengths L1,L2 and L3, respectively; while Fig. 7
(c) shows the resampled multiple trajectory sets with the same median size L′. The
re-sampling process is a necessary step to transform different sets of trajectories
with varying lengths to the same format, such that they can be assembled into a
compact form (e.g. matrix or tensor form) for further efficient analysis.

After resampling, within each group, multiple trajectory matrices are of the same
size, then they are aligned in the direction orthogonal to the plane spanned by them,
and form a three-dimensional matrix, or tensor [30]. We refer to it as Multiple Tra-
jectory Tensor T

T = (Ti, j,k)i=1,2,...,2L′; j=1,2,...,M;k=1,2,...,K. (37)

where L and M are the same as previous defined, K is the depth of the tensor, refer-
ring to total number of video clips indexed so far.

Figure 7 depicts an example of constructing a multiple trajectory tensor by using
three set of multiple trajectories. The reason to align multiple trajectory matrices
and form a three-dimensional tensor is, to assemble as much as possible date into a
compact form and extract intrinsic and common characteristics of data for efficient
analysis. By assembling multiple trajectory into three-dimensional tensors, the mul-
tiple trajectory data spans a three-dimensional tensor-space.

Please note that this approach is built on trajectory representation by instanta-
neous x- and y- coordinates of object centroid at each frame. While processing
trajectories, it is assumed that the frame of reference for all of the trajectories is
held fixed during the generation of trajectories. This is consistent with the fixed-
camera scenario. For the moving camera case, such as PTZ cameras or airborne
surveillance, an additional step of trajectory registration will be needed to generate
trajectories which are all registered to a common frame of reference. The proposed
algorithms can then be used for indexing and retrieval of the registered trajectories
from multiple objects for the moving camera scenario.
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Fig. 7 Tensor-Space Representation of Multiple-Object Trajectories: (a) Three sets of mul-
tiple trajectories S1,S2,S3, extracted from three video clips displayed in Fig. 1. (b) Three
corresponding Multiple Trajectory Matrices M1, M2, M3. (c) Three Multiple Trajectory
Matrices M ′

1, M ′
2, M ′

3 after resampling. (d) Multiple Trajectory Tensor T constructed from
M ′

1, M ′
2, M ′

3.

3.1.2 Global and Segmented Multiple Motion-Trajectory Representation

Two types of multiple trajectory tensors based on two types of multiple trajectory
data are introduced.

Global multiple trajectory tensor. The “Global Multiple Trajectory Tensor” is
constructed by using sets of multiple trajectories extracted from video clips, as
shown in Fig. 1. Here, “Global” refers to the multiple trajectories with global
lengths.

Segmented multiple trajectory tensor. The “Segmented Multiple Trajectory Ten-
sor” is constructed by using sets of multiple subtrajectories. We jointly segment
multiple trajectories with global lengths into atomic ”units” which are called mul-
tiple subtrajectories. Those multiple subtrajectories represent certain joint motion
patterns of multiple objects within a certain time interval. The segmentation points
that define the joint segmentation of multiple trajectories depend on the segmenta-
tion technique and in general shall correspond to changes in joint motion patterns of
multiple objects, such as changes in velocity (1st order derivative) and/or accelera-
tion (2nd order derivative). The proposed segmentation technique ensures that only
joint change of motions of multiple objects would be chosen as segmentation point,
based on spatial curvatures of multiple trajectories. The spatial curvature of a 2-D
trajectory is given by:
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Θ [t] =
x′[t]y′′[t]− y′[t]x′′[t]
[(x′[t])2 +(y′[t])2]3/2

. (38)

The value of curvature at any point is a measure of inflection point, an indication of
concavity or convexity in the trajectory. For multiple trajectories, curvature data is
calculated for each trajectory. For example, for M(≥ 1) trajectories, there would be
M curvatures. We segment the multiple trajectories by applying a moving window
scheme and a hypothesis testing method on their spatial curvatures. Let X and Y be
two non-overlapping windows of size n, where X contains the first n M-dimensional
curvature vector samples, and Y contains the next n samples. Each M-dimensional
curvature vector consists of curvatures from M trajectories. Let Z be the window
of size 2n formed by concatenating window X and window Y. Then we perform
a likelihood ratio hypothesis test to determine if the two windows X and Y have
data drawn from the same distribution. If curvatures of multiple trajectories in X
and Y are from different distributions, then there would be a change of concavity or
convexity of multiple trajectories.

Specifically, we have two hypothesis:{
H0 : fx(X ;θx) = fy(Y ;θy) = fz(Z;θz).
H1 : fx(X ;θx) �= fy(Y ;θx).

Assume that curvature data in each window forms an i.i.d random variable and the
data is M-dimensional jointly Gaussian. We first compute the maximum likelihood
estimator of mean and variance for each hypothesis,

L0 =
[

1

(2π)
M
2 |Σ3| 12

]2n

exp{−1
2

s+2n

∑
i=s

(ki− μ3)TΣ−1
3 (ki− μ3)}

L1 =
[

1

(2π)M|Σ1| 12 |Σ2| 12

]n

exp{−1
2
[
s+n

∑
i=s

(ki− μ1)TΣ−1
1 (ki− μ1)

+
s+2n

∑
i=s+n+1

(ki− μ2)TΣ−1
2 (ki− μ2)]}. (39)

then the likelihood ratio is defined as,

λL =
L0

L1
. (40)

We finally calculate the distance d between the distributions of X and Y. We define
the distance function d between X and Y as

d(s) =−log(λL) =−nlog(
|Σ1|1/2|Σ2|1/2

|Σ3| )
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+
1
2

[ s+2n

∑
i=s

(ki− μ3)TΣ−1
3 (ki− μ3)−

s+n

∑
i=s

(ki− μ1)TΣ−1
1 (ki− μ1)

−
s+2n

∑
i=s+n+1

(ki− μ2)TΣ−1
2 (ki− μ2)

]
. (41)

where μi, Σi (i = 1,2,3) are mean column vectors and variance matrices of M-
dimensional Gaussian distributions, which represent distributions of data in win-
dows X,Y and Z, respectively. s is the start point of samples in window X , where
s = 1,2, ...,L− 2n. ki is curvature column vector which consists of curvature sam-
ples from M trajectories at time instant i, ki = [Θ1[i], ...,ΘM[i]]T . The distance d is
large if the data in window X and Y have different distributions. The windows are
moved by m (< n) samples and the process is repeated in the same manner. A 1-D
vector of distance function is then formed. The segmentation positions are chosen
at the locations along the trajectory where the likelihood ratio d attains a local max-
imum. To select the local maxima, the 1-D vector of likelihood ratio d is partitioned
into segments and the global maximum is selected within each partition to repre-
sent the segmentation location. The threshold α within each segment is chosen such
that only the global maximum of the likelihood ratio d is selected to represent the
segmentation location within each partition. Figure 8 displays the segmentation re-
sults of a set of multiple trajectories. Please note that the segmentation positions are
chosen when both curvatures of the two trajectories have a sudden change, e.g. at
segmentation points 2 and 4, which ensures that in the proposed segmentation only
joint change of motions of multiple objects would be chosen as segmentation point.

3.2 Multiple-Trajectory Indexing and Retrieval

Three multiple-object trajectory indexing and retrieval algorithms, that mainly dif-
fer in terms of representation techniques, are presented: (i) geometrical multiple-
trajectory indexing and retrieval (GMIR) algorithm, (ii) unfolded multiple-trajectory

Fig. 8 Example of segmentation of a set of global multiple trajectories (2 trajectories) into
segmented multiple subtrajectories. (a) a set of 2 trajectories with global length. (b) 6 sets of
segmented multiple subtrajectories, segmented from (a). In both figures, solid squares with
numbers indicate segmentation positions, the horizontal axis is x- location, the vertical axis
is y- location within the scene.
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indexing and retrieval (UMIR) algorithm, and (iii) concentrated multiple-trajectory
indexing and retrieval (CMIR) algorithm.

3.2.1 Geometrical Multiple-Trajectory Indexing and Retrieval (GMIR)
Algorithm

In the following we outline the Indexing and Retrieval processes of the GMIR
algorithm.

Indexing

1. Generate geometric bases G1, G2 and G3 from multiple trajectory tensor T .
The geometric bases represent the principle axes of variation across each co-
ordinate axis in a 3D coordinate system. Specifically, G1 spans the space of
spatial-temporal multiple trajectory data, G2 spans the space of object trajectory
cardinality, G3 spans the space of sets of multiple trajectories. They can be ob-
tained by using various tensor analysis techniques, such as[31].

2. Project each multiple trajectory matrix onto the first two bases G1 and G2 and
transform the multiple trajectory data into low-dimensional subspace defined by
those two bases:

MCoe f f = GT
1 ×MMulti−Tra j×G2. (42)

3. Use the coefficient matrices obtained in step 2 as indices of their corresponding
multiple-trajectory matrices in the database.

Retrieval

1. Project multiple trajectories in the input query on the 2 bases G1 and G2, and get
the GMIR coefficient matrix:

MQueryCoe f f = GT
1 ×MTra jQuery×G2. (43)

2. Calculate the Euclidean distance norm DGMIR between the GMIR coefficients
of query multiple-trajectory and the GMIR coefficients matrices stored in the
database, and return the ones that have the distances within a threshold.

DGMIR = ||(MCoe f f −MQueryCoe f f )||2. (44)

where in eqns.(6)-(8), Gi is the ith geometric base, GT
i is transpose of Gi, MCoe f f

and MQueryCoe f f are the coefficient matrices of multiple object trajectory in multi-
ple trajectory tensor and query multiple-trajectory, MMulti−Tra j and MTra jQuery are
multiple trajectory matrices in multiple trajectory tensor and query multiple object
trajectory, respectively.

3.2.2 Unfolded Multiple-Trajectory Indexing and Retrieval (UMIR)
Algorithm

The procedure of generating data-dependent bases of a multi-dimensional matrix or
tensor using unfolded multiple-trajectory indexing and retrieval (UMIR) algorithm
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can be viewed as a recursive ”unfold” process of tensor. By viewing slices of tensor,
which are matrices, as vectors, the tensor can be viewed as a matrix, then first use
SVD on the matrix, and then use SVD on the slice-matrices, as shown below:

T = σ1×1 T1...(N−1)×2 UN . (45)

T1...(N−1) = σ2×1 T1...(N−2)×2 UN−1. (46)

...

T12 = σN−1×1 U1×2 U2. (47)

Where in the above eqns., ×n refers to the mode-n product [32]. The indexing and
retrieval processes of the UMIR algorithm are summarized below:

Indexing

1. Generate unfolded bases U1, U2 and U3 from multi-dimensional data, by recur-
sive ”unfolding” of tensor T :

T = σ1×1 T12×2 U3. (48)

T12 = σ2×1 U1×2 U2. (49)

2. Project each multiple trajectory matrix onto the 2 bases U1 and U2 and transform
the multiple trajectory data into low-dimensional subspace spanned by those two
bases:

MCoe f f = UT
1 ×MMulti−Tra j×U3. (50)

3. Use the coefficient matrices obtained in step 2 as indices of their corresponding
multiple-trajectory matrices in the database.

Retrieval

1. Project query multiple trajectories on the 2 bases U1 and U3, and get UMIR co-
efficient matrix:

MQueryCoe f f = UT
1 ×MTra jQuery×U3. (51)

2. Calculate the Euclidean distance norm DUMIR between the UMIR coefficients of
query multiple-trajectory and those of each multiple-trajectory input indexed in
the database, and return the ones that have the distances within a threshold.

DUMIR = ||(MCoe f f −MQueryCoe f f )||2. (52)

Where in eqns.(9)-(16), T1...N is a matrix indexed by 1 to N, and Ui are un-
folded bases. UT

i is transpose of Ui (i = 1,2,3). MCoe f f 1, MCoe f f 2, MQueryCoe f f 1,
MQueryCoe f f 2 are coefficient matrices; MMulti−Tra j , MTra jQuery are the multiple-
trajectory matrix and query multi-trajectory matrix.
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3.2.3 Concentrated Multiple-Trajectory Indexing and Retrieval (CMIR)
Algorithm

The Indexing and Retrieval processes used in the CMIR algorithm are outlined
below:

Indexing

1. Generate concentrated bases C1, C2 and C3 from multiple trajectory tensor T by
minimizing the following sum-of-squares loss function:

min
C1,C2,C3

∑
i, j,k

||Ti jk−
R

∑
r

c1
irc2

jrc
3
kr||2. (53)

Where c1
ir,c2

jr, c3
kr are i, j and k-th column vectors of C1, C2 and C3, respec-

tively. The data-dependent bases can be obtained by solving the above equa-
tion. One solution to extract those bases is called Parallel Factors Decomposition
(PARAFAC) [33].

2. Project each multiple trajectory matrix onto the 2 bases C1 and C2 and transform
the multiple trajectory data into low-dimensional subspace spanned by those two
bases:

MCoe f f = CT
1 ×MMulti−Tra j×C2. (54)

3. Use the coefficient matrices obtained in step 2 as indices of their corresponding
multiple-trajectory matrices in the database.

Retrieval

1. Project query multiple trajectories on the 2 bases C1 and C2, and get CMIR coef-
ficient matrix:

MQueryCoe f f = CT
1 ×MTra jQuery×C2. (55)

2. Calculate the Euclidean distance norm DUMIR between the UMIR coefficients of
query multiple-trajectory and those of each multiple-trajectory input indexed in
the database, and return the ones that have the distances within a threshold.

DCMIR = ||(MCoe f f −MQueryCoe f f )||2. (56)

Where in eqns.(14)-(17) CT
i is transpose of Cii = 1,2,3, MMulti−Tra j and MTra jQuery

are trajectory matrices of multiple-trajectory in the database and query multiple-
trajectory, MCoe f f and MQueryCoe f f are their corresponding coefficient matrices.

The experiment shown in Fig. 9 demonstrates the retrieval results on two trajecto-
ries in CAVIAR [34] dataset. The query is represented in Fig. 9(a). The most-similar
and second-most-similar retrieval results are illustrated in Figs. 9(b) and 9(c), re-
spectively. In this case, the query depicts a video clip “two people who meet, fight
and chase each other”. The most-similar retrieved result show in Fig. 9(b) is a video
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Fig. 9 Retrieval results for CAVIAR dataset (INRIA) using the proposed CMIR algorithm for
multiple trajectory representation (2 trajectories): (a) the query; (b) the most-similar retrieval;
(c) the second-most-similar retrieval; (d) the most-dissimilar retrieval; (e) the second-most-
dissimilar retrieval.

Fig. 10 Retrieval results for CAVIAR dataset (Shopping Center in Portugal) using the pro-
posed CMIR algorithm for multiple trajectory representation (3 trajectories): (a) the query;
(b) the most-similar retrieval; (c) the second-most-similar retrieval; (d) the most-dissimilar
retrieval; (e) the second-most-dissimilar retrieval.

clip in which “two people meet, walk together and split apart”; whereas the second-
most similar retrieved result portrayed in Fig. 9(c) is a video clip in which “two
people meet, fight and run away”. We can see the retrieved multiple trajectories are
visually quite similar with the query. Figure 10 shows another retrieval result on
CAVIAR data for three-trajectory case. Trajectory data are selected from the clips
of shopping center in Portugal (2nd subset in CAVIAR). In this scenario, the query
depicts a video sequence “3 persons walking in the corridor”. The most-similar
retrieved result show in Fig. 10(b) is a video clip in which “Another 3 persons walk-
ing in the corridor”; whereas the second-most similar retrieved result portrayed in
Fig. 10(c) is a video clip in which “3 people walking together along the corridor”.
On contrast, the most-dissimilar retrieval and the second-most-dissimilar retrieval
are depicted in Figs. 10 (d) and (e), respectively. Both of retrieved dissimilar results
visually vary a lot from the query.
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4 Video Classification and Recognition

Video classification differs from video indexing and retrieval, since in video classi-
fication, all videos are put into categories, and each video is assigned a meaningful
label. While in video indexing and retrieval, the aim is to accurately retrieve videos
that match a user’s query. Many automatic video classification algorithms have been
proposed, most of them can be categorized into four groups: text-based approaches,
audio-based approaches, visual-based approaches, and combination of text, audio
and visual features. Many standard classifiers, such as Gaussian Mixture Models
(GMM), Bayesian, support vector machines (SVM), neural networks and hidden
Markov Models (HMMs) have been applied in video classification and recognition.
For more details, we refer to [35]. We propose a novel distributed multi-dimensional
hidden Markov Model (DHMM) for modelling of interacting trajectories involving
multiple objects. The proposed model is capable of conveying not only dynamics
of each trajectory, but also interactions information between multiple trajectories,
while requiring no further semantic analysis.

4.1 Hidden Markov Model

Hidden Markov model (HMM) is very powerful tool to model temporal dynamics
of processes, and has been successfully applied to many applications such as speech
recognition [36], gesture recognition [37], musical score following [38]. Bashir et
al. [39] presented a novel classification algorithm of object motion trajectory based
on 1D HMM. They segmented single trajectory into atomic segments called sub-
trajectories based on curvature of trajectory, then the subtrajectories are represented
by their principal component analysis (PCA) coefficients. Temporal relationships of
subtrajectories are represented by fitting a 1D HMM. However, all the above ap-
plications rely on a one-dimensional HMM structure. Simple combinations of 1D
HMMs can not be used to characterize multiple trajectories, since 1D models fail
to convey interaction information of multiple interacting objects. The major chal-
lenge here is to develop a new model that will semantically reserve and convey the
“interaction” information.

4.2 Multi-dimensional Distributed Hidden Markov Model

A novel distributed multi-dimensional hidden Markov Model (DHMM) for mod-
elling of interacting trajectories involving multiple objects is proposed. In this
model, each object-trajectory is modelled as a separate Hidden Markov process;
while “interactions” between objects are modelled as dependencies of state vari-
ables of one process on states of the others. The intuition of this work is that, HMM
is very powerful tool to model temporal dynamics of each process (trajectory); each
process (trajectory) has its own dynamics, while it may be influenced by or influ-
ence others. In the proposed model, “influence” or “interaction” among processes
(trajectories) are modelled as dependencies of state variables among processes
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(trajectories). This model is capable of conveying not only dynamics of each trajec-
tory, but also interactions information between multiple trajectories, while requiring
no semantic analysis.

A solution for non-causal, multi-dimensional HMMs is proposed by distribut-
ing the non-causal model into multiple distributed causal HMMs. Then the simul-
taneous solution of multiple distributed HMMs is approximated on a sequential
processor by an alternate updating scheme. Subsequently the training and classi-
fication algorithms presented in [45] are extended to a general causal model. A
new Expectation-Maximization (EM) algorithm for estimation of the new model is
derived, where a novel General Forward-Backward (GFB) algorithm is proposed
for recursive estimation of the model parameters. A new conditional independent
subset-state sequence structure decomposition of state sequences is proposed for
the 2D Viterbi algorithm. The new model can be applied to many problems in pat-
tern analysis and classification. For simplicity, the presentation in this paper will
focus primarily on a special case of the proposed model in two-dimensions, which
we referred to as distributed 2D hidden Markov Models (2D DHMMs).

Suppose there are M ∈ N interacting objects in a scene. Recall that in the pro-
posed model, each object-trajectory is modelled as a Hidden Markov process of
time; while “interactions” between object trajectories are modelled as dependencies
of state variables of one process on those of the others. We constrain the probabilis-
tic dependencies of state in one process (trajectory) at time t, on its own state at
time t-1, as well as on the states of other processes (trajectories) that “interact” or
influence on it at time t and t-1, i.e.

Pr(s(m,t)|s(l,t),s(n,1 : t−1)) = Pr(s(m, t)|s(n, t−1),s(l, t)) (57)

where m,n, l ∈ {1, ...,M} are indexes of processes (trajectories), l �= m. The above
constrain of state dependencies makes the desired model non-causal, since each
process (trajectory) can influence others, there is no guarantee that the influence
should be directional or causal. Figure 4(a) shows an example of the proposed non-
causal 2D HMM, which is used to model two interacting trajectories. Each node
S(i; t) in the figure represents one state at specific time t for trajectory i, where
t = {1,2, ...,T}, i = {1,2}; each node O(i,t) represents observations corresponding
to S(i,t), and each arrow indicates transition of states (the reverse direction of it
indicates dependency of states). The first row of states is the state sequence for
trajectory 1, and the second row corresponds to trajectory 2. As can be seen, each
state in one HMM chain (trajectory) will depend on its past state, the past state of
the other HMM chain (trajectory), and the concurrent state of the other HMM chain
(trajectory).

The above model is capable of modelling multiple processes and their interac-
tions, but it is intractable since it is non-causal. A novel and effective solution is
proposed, where the model is “decomposed” into M causal 2D hidden Markov
models with multiple dependencies of states, such that each HMM can be executed
in parallel in a distributed framework. In each of the distributed causal HMM, state
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Fig. 11 Distributed 2D Hidden Markov Models: (a) Non-causal 2D Hidden Markov Model.
(b) Distributed 2D Hidden Markov Model 1. (c) Distributed 2D Hidden Markov Model 2.

transitions (or state dependencies) must follow the same causality rule. For example,
we distributed the non-causal 2D HMM in Fig. 11(a) to two causal 2D HMMs,
shown in Figs. 11(b) and 11(c), respectively. In Fig. 11(b), state transitions follow
the same rule, so do state transitions in Fig. 11(c). The above rules ensure the ho-
mogeneous structure of each distributed HMM, which further enable us to develop
relatively tractable training and classification algorithms.

When trajectory number M=3, the proposed non-causal 2D hidden Markov
model is depicted as in Fig. 12(a), the same distributing scheme is used to get 3
distributed 2d hidden Markov models, as shown in Fig. 12(b), 12(c), and 12(d), re-
spectively. Using the same distributing scheme, any non-causal 2D hidden Markov
model that characterizing M(> 3) trajectories can be distributed to M distributed
causal 2D hidden Markov models.

Fig. 12 Distributed 2D Hidden Markov Models with application to 3 trajectories: (a) Non-
causal 2D Hidden Markov Model that treat 3 object trajectory as one system(only 2 adjacent
time slots of the system states are shown). (b) Distributed 2D Hidden Markov Model 1 for
Object Trajectory 1. (c) Distributed 2D Hidden Markov Model 2 for Object Trajectory 2. (d)
Distributed 2D Hidden Markov Model 3 for Object Trajectory 3. (Please note in Figures (b)
(c) and (d), only state transitions to one state point is shown, other state points follow the
same rules, respectively).
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4.2.1 DHMM Training and Classification

Define the observed feature vector set O = {o(m,t), m = 1,2,...,M; t = 1,2,...,T}
and corresponding hidden state set S = {s(m,t), m = 1,2,...,M; t = 1,2,...,T },
and assume each state will take N possible values. The model parameters are de-
fined as a set Θ = {Π ,A,B}, where Π is the set of initial probabilities of states
Π = {π(m,n)}; A is the set of state transition probabilities A = {ai, j,k,l(m)}, and
ai, j,k,l(m) = Pr(s(m,t) = l|s(m′,t) = k,s(m, t − 1) = i,s(m′, t − 1) = j) , and B is
the set of probability density functions (PDFs) of the observed feature vectors given
corresponding states, assume B is a set of Gaussian distribution with means μm,n

and variances Σm,n, where m,m′ = 1, ...,M;m �= m′;n, i, j,k, l = 1, ...,N; t = 1, ...,T .
Due to space limit, the case M = 2 is discussed. For more details, we refer to
[40][41][42][43].

Expectation-maximization (EM) algorithm. A new Expectation-Maximization
(EM) algorithm suitable for estimation of parameters of the M Distributed 2D Hid-
den Markov Models in M trajectory system is proposed. The proposed algorithm is
analogous to the classical EM algorithm for 1D HMM [44].

Define F (p)
m,n,k,l(i, j) as the probability of state corresponding to observation

o(i− 1, j) is state m, state corresponding to observation o(i− 1, j− 1) is state n,
state corresponding to observation o(i, j− 1) is state k and state corresponding to
observation o(i, j) is state l, given the observations and model parameters,

F (p)
m,n,k,l(i, j)=P

(
m = s(i−1, j),n=s(i−1, j−1),k=s(i, j−1), l = s(i, j)|O,Θ (p)

)
,

(58)
and define G(p)

m (i, j) as the probability of the state corresponding to observation
o(i, j) is state m, then

G(p)
m (i, j) = P(s(i, j) = m|O,Θ (p)). (59)

We can get the iterative updating formulas of parameters of the proposed model,

π (p+1)
m = P(G(p)

m (1,1)|O,Θ (p)). (60)

a(p+1)
m,n,k,l =

∑I
i ∑J

j F (p)
m,n,k,l(i, j)

∑M
l=1∑

I
i ∑J

j F (p)
m,n,k,l(i, j)

. (61)

μ (p+1)
m =

∑I
i ∑J

j G(p)
m (i, j)o(i, j)

∑I
i ∑J

j G(p)
m (i, j)

. (62)

Σ (p+1)
m =

∑I
i ∑J

j G(p)
m (i, j)(o(i, j)− μ (p+1)

m )(o(i, j)− μ (p+1)
m )T

∑I
i ∑J

j G(p)
m (i, j)

. (63)
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In eqns. (1)-(6), p is the iteration step number. F (p)
m,n,k,l(i, j), G(p)

m (i, j) are unknown
in the above formulas, a General Forward-Backward (GFB) algorithm will be intro-
duced to estimate those parameters.

General forward-backward (GFB) algorithm. Forward-Backward algorithm was
firstly proposed by Baum et al. [44] for 1D Hidden Markov Model and later mod-
ified by Li et al. [45]. Here, the Forward-Backward algorithm in [44][45] is gen-
eralized so that it can be applied to the proposed model, the proposed algorithm
is called General Forward-Backward (GFB) algorithm. Assume the probability of
all-state sequence S can be decomposed as products of probabilities of conditional-
independent subset-state sequences U0,U1, ..., i.e.,

P(S) = P(U0)P(U1/U0)...P(Ui/Ui−1)... (64)

where U0,U1, ...,Ui...are subsets of all-state sequence in the HMM system, we call
them subset-state sequences. Define the observation sequence corresponding to each
subset-state sequence Ui as Oi.

Define the forward probability αUu (u),u = 1,2, ... as the probability of observ-
ing the observation sequence Ov(v ≤ u) corresponding to subset-state sequence
Uv(v≤ u) and having state sequence for u-th product component in the decomposing
formula as Uu, given model parametersΘ , i.e. αUu(u) = P{S(u)=Uu,Ov,v≤ u|Θ},
and the backward probability βUu(u),u = 1,2, ... as the probability of observing the
observation sequence Ov (v > u) corresponding to subset-state sequence Uv(v > u),
given state sequence for u-th product component as Uu and model parametersΘ , i.e.
βUu(u) = P(Ov,v > u|S(u) = Uu,Θ).

The recursive updating formula of forward and backward probabilities can be
obtained as

αUu(u) = [∑
u−1

αUu−1(u−1)P{Uu|Uu−1,Θ}]P{Ou|Uu,Θ}. (65)

βUu(u) = ∑
u+1

P(Uu+1|Uu,Θ)P(Ou+1|Uu+1,Θ)βUu+1(u + 1). (66)

Then, the estimation formulas of Fm,n,k,l(i, j), Gm(i, j) are :

Gm(i, j) =
αUu(u)βUu(u)

∑u:Uu(i, j)=mαUu(u)βUu(u)
. (67)

Fm,n,k,l(i, j) =
αUu−1(u−1)P(Uu|Uu−1,Θ)P(Ou|Uu,Θ)βUu(u)

∑u∑u−1[αUu−1(u−1)P(Uu|Uu−1,Θ)P(Ou|Uu,Θ)βUu(u)]
. (68)

Viterbi algorithm. For classification, a two-dimensional Viterbi algorithm [46] is
employed to search for the best combination of states with maximum a posteriori
probability and map each block to a class. This process is equivalent to search for
the state of each block using an extension of the variable-state Viterbi algorithm pre-
sented in [45]. If we search for all the combinations of states, suppose the number
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Fig. 13 ROC curve of DHMM, Strictly Causal 2D HMM [45] and 1D HMM for CAVIAR
data

of states in each subset-state sequence Uu is w(u), then the number of possible
sequences of states at every position will be Mw(u), which is computationally in-
feasible. To reduce the computational complexity, only N sequences of states with
highest likelihoods out of the Mw(u) possible states are used.

For simplicity, the DHMM model-based multiple trajectory classification algo-
rithm is tested on the M=2 trajectory cases. The classification performance of pro-
posed distributed 2D HMM-based classifier, causal 2D HMM-based classifier and
traditional 1D HMM-based classifier are computed on subset of the CAVIAR [34]
dataset. The classification results are reported in terms of ROC curve [22]. As can
be seen, the proposed model outperforms the existing ones.

5 Summary

This chapter presented recent advances in motion trajectory-based video content
modeling, retrieval and classification. The developments in the chapter focused on
view-invariant representations for video retrieval and classification methods that are
robust to unknown camera views and dynamic camera motion. Moreover, special
attention was devoted in the chapter to the emerging focus on multiple motion tra-
jectory analysis. In particular, we introduced techniques for video retrieval and clas-
sification based on multiple simultaneous motion trajectories.

Despite the success of recent developments in content-based video retrieval and
classification, several fundamental open problems remain open and must be ad-
dressed prior to the widespread use of video retrieval and classification in com-
mercial systems. We shall conclude with a brief discussion of some of the open
problems and future trends in content-based video analysis.

5.1 Open Problems and Future Trends

1. Query-Database Matching: One of the main bottlenecks in content-based
video analysis pertains to the correspondence between objects in the query and
database. For instance, retrieval and classification of multiple motion trajectories



Motion Trajectory-Based Video Retrieval, Classification, and Summarization 79

leads to different performance characteristics depending on the pairing of objects
in the query and database. Current approaches to this problem require permuta-
tion of the object pairing and results in exponential computational complexity.
Practical methods that address the matching of objects in the query and database
must provide scalable solutions for large video databases [29][47].

2. Partial Query-Database Representation: A critical limitation of existing video
retrieval and classification methods is the need for the representation of entire
objects. For example, identical motion trajectory queries and database elements
may be represented very differently due to various factors: differences in the
instant of video capture initiation/termination, object occlusion, frame rate, etc.
Development of schemes that are flexible and robust to partial information must
be devised to accommodate the diversity of data captured in real-world video
applications [25][48].

3. Dynamic Databases: Representation of large video databases that can effec-
tively be used for video retrieval and classification is only useful if it can effi-
ciently handle insertions and deletions of entries in the database. Specifically,
practical video database systems cannot represent and index the entire video
database from scratch every time a video object is removed or added to the
archive. This requirement demands the development of efficient methods for
dynamic updating and downdating techniques for the representation of motion
trajectories [25][48].

4. Feature Fusion: Motion trajectories provide an important spatio-temporal fea-
ture for video analysis. However, integration of motion trajectories with other
video features can be used to extract much more information about the spatio-
temporal structure of video queries. Moreover, future multimedia systems will
require a unified representation of a flexible feature space used for the content-
based representation of text, audio, and visual data.

5. Semantic Gap: Visual feature-based techniques at low-level of abstraction have
been explored in the literature. Current research efforts aim to extend content-
based video analysis to high-level description of visual content. A critical need
arises to bridge low-level features and high-level semantics by providing a unified
representation between pixels and predicates for intelligent video systems.
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Part II
High-Dimensional Video Representation



Three Dimensional Information Extraction and
Applications to Video Analysis

Arturo Donate and Xiuwen Liu

Abstract. This chapter explores the idea of extracting three dimensional features
from a video, and using such features to aid various video analysis and mining tasks.
The use of 3D information in video analysis is scarce in the literature due to the in-
herent difficulties of such a system. When the only input to the system is a video
stream with no previous knowledge of the scene or camera (a typical scenario in
video analysis), computing an accurate 3D representation becomes a difficult task;
however, several recently proposed methods can be applied to solving the problem
efficiently, including simultaneous localization and mapping, structure from motion,
and 3D reconstruction. These methods are surveyed and presented in the context of
video analysis and demonstrated using videos from TRECVID 2005; their limita-
tions are also discussed. Once an accurate 3D representation of a video is obtained,
it can be used to increase the performance and accuracy of existing systems for var-
ious video analysis and mining tasks. Advantages of utilizing 3D representation are
illustrated using several of these tasks, including shot boundary detection, object
recognition, content-based video retrieval, as well as human activity recognition.
The chapter concludes with a discussion on limitations of existing 3D methods and
future research directions.

1 Introduction

With all the current and ever-increasing uses for video databases, the need for fast
and accurate mining systems grows every day. On account of this, video analysis
is quickly becoming a prominent field of active research. This field can be broken
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down into five main areas: multimodal analysis, video representation, summariza-
tion, browsing, and retrieval [43]. The area of multimodal analysis studies aspects
such as automatic shot boundary detection and key frame extraction. Video rep-
resentation studies different ways of representing a video. Video summarization
studies the problem of summarizing the entire content of a video and generating
metadata. Video browsing handles the problem of browsing sections of the video
without viewing it in its entirety. Finally, video retrieval deals with the problem of
retrieving videos (either an entire video, or particular sections of one) based on some
user-defined content-based query.

Video analysis tasks typically employ the use of image descriptors and other
statistical measurements. Some of the more popular descriptors are Harris fea-
tures [16], SIFT [22], and SURF [3] descriptors. Such descriptors rely on image
gradients and statistics to detect salient regions. Although such features have been
proven to be successful in various tasks in the literature, they are still unable to
model the inherent three dimensional structures of many real world objects. As such,
these two dimensional descriptors will always be limited in their explicative power.

Ultimately, the aim of this study is to extract three dimensional structure of the
environment observed in a video, and use this information to solve various video
analysis and mining tasks. The motivation for such an approach stems from the
recent advances made in various areas of computer vision in recent years. There
has been much work done in the areas of simultaneous localization and mapping
(SLAM) using a single camera, as well as structure from motion and 3D reconstruc-
tion from a single view. This chapter will present several approaches to extract 3D
information from a scene using only the video stream as input; such methods can be
adapted to video analysis since a video is essentially a view of a scene obtained from
a single monocular camera. We exclude special effect frames, where 3D information
is not well defined.

In a real-world scenario, a given video clip can be arbitrarily large. For this rea-
son, the methods chosen here perform accurate 3D reconstructions with real time
performance, typically 30 frames per second on typical hardware. In order to illus-
trate the idea that such methods are excellent candidates for various video analysis
and mining tasks, several videos from the TRECVID 2005 database [33] were re-
constructed in 3D. The following sections contain sample video frames as well as
reconstruction results in order to illustrate their performance.

This chapter is organized as follows: the next section explores several differ-
ent approaches for obtaining 3D information using only the image frames obtained
from a monocular video; such methods employ the use of structure from motion, si-
multaneous localization and mapping, as well as 3D reconstruction. The following
section discusses several ways in which this information can be utilized to perform
several video analysis and mining tasks including accurate and intrinsic shot bound-
ary detection, search and retrieval of videos in a database, object detection, as well
as recognition and analysis of human activities in a video. The final section presents
a summary of the current state of research on this particular topic, discusses sev-
eral problems and limitations, and presents several promising directions for future
research.
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2 Extracting 3D Cues from Videos

The use of 3D information has not been widely used in video analysis due to the
inherent difficulties of extracting accurate depth information of a scene from a sin-
gle monocular view. This section provides a review of recent works dealing with the
problem of estimating 3D geometry of a scene from a single camera. The works pre-
sented in this section employ the use of various techniques including structure from
motion, simultaneous localization and mapping, and real time 3D reconstruction.

Structure from motion (SFM) methods estimate the 3D structure of a scene using
observations of objects and the motion of a camera. They can be very useful in
extracting the structure of a scene, particularly when the scene is static and the only
motion present is that of the camera. Recent work has extended SFM approaches to
incorporate dynamically moving objects into the 3D estimation. Such advancements
may prove extremely valuable to the video analysis community, since it would be
an ideal candidate for reconstructing an arbitrary video in 3D.

Simultaneous localization and mapping (SLAM) is the process of determining
both the location of the system in a given world, as well as mapping the scene ob-
served by this system. This technique is often used in robotics to allow the robot to
model its surroundings. There are two basic categories of SLAM algorithms, EKF-
SLAM and FastSLAM [7]. Typically, EKF-SLAM approaches keep track of a small
subset of high quality features over time. Predicted motions and locations are cal-
culated using the Extended Kalman Filter [7, 13, 35] according to some predefined
state transition functions. FastSLAM, on the other hand, approaches the problem
by estimating the robot position then estimating landmarks based on the robot pose
estimate [27]. Estimations are calculated using a particle filter, and each landmark
is measured independently of all the others (unlike EKF-SLAM, which often mod-
els the covariance between landmarks). In doing so, FastSLAM methods are able
to track a much larger set of points over time. Both of these SLAM methods can
function with various forms of input, including cameras as well as laser scanners.
Typically, stereo cameras are used for vision-based SLAM [7, 42]. In recent years,
however, much research has been geared towards single view SLAM, where the
only input to the system is a video stream from a monocular camera. Much like
typical SLAM algorithms, these recent methods must accurately calculate the 3D
location of the observed features. Since the only input to such systems is a video
stream obtained from a monocular camera, any standard video may be used as input
to the SLAM algorithm, in an attempt to calculate 3D locations of salient features
in the scene.

Methods based on 3D reconstruction typically use a more geometric approach to
estimating depth of features. Some simulate the availability of stereo image pairs by
using video frames that are at a time t apart from each other. By doing so, they are
able to employ the use of essential and fundamental matrices in order to calculate
3D reconstructions using stereo reconstruction methods such as the 5-point and 8-
point algorithms [13, 17, 20, 29, 30]. Typically, such methods achieve high accuracy
and are computationally efficient.
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2.1 Structure from Motion

Structure from motion is an area of computer vision dealing with the problem of
extracting an estimate of the structure of each object in the scene based on observa-
tions of object and camera motions. It is useful in estimating the three dimensional
structure of a scene, particularly when viewed from a monocular camera moving
under arbitrary motion.

Recent work by Tola et al. [40] shows that structure from motion approaches
can be extended to handle independently moving objects in a scene, thus solving
the multi-body structure from motion problem for the single camera case. In other
words, the problem is to estimate a 3D reconstruction of the scene containing a
camera under arbitrary motion as well as independently moving objects. The authors
make several assumptions in order to solve the problem. First, they assume there are
only two types of motion present in the scene: camera motion and the independently
moving objects. Each motion is assumed to be slow and constant in one direction.
Second, the scene does not contain any abrupt changes in lighting over time, and
each object in the scene is rigid. Finally, the intrinsic parameters of the camera are
assumed to be known beforehand.

The first step of the algorithm is to solve the correspondence problem over a
large number of frames. This is done by using the Lucas-Kanade tracking algorithm
implemented into the OpenCV library [5], using the trajectory of points to solve
correspondences. For each independently moving object, a fundamental matrix Fi

can be computed that satisfies the epipolar constraint, which states that given two
views of a scene and a set of corresponding points {x,x′} in each of these views,
these points are related to each other via the fundamental matrix F as:

x′T Fx = 0, (1)

where x is a set of points in one view, and x′ is the corresponding set of points in the
other view.

Using a RANSAC-based fundamental matrix estimation, the F matrix estimated
by random sampling will correspond to the points of the most prominent motion
in the scene (typically background points due to camera motion), leaving all other
trajectories as outliers. If the same process is repeated on the outlying trajectories,
the next F matrix computed should correspond to the next most dominant motion;
it can be repeated to estimate a fundamental matrix for all independently moving
objects in the scene.

In order to simplify the calculation, trajectories are divided into one of four cat-
egories. The first are complete trajectories, which are trajectories visible in all the
frames of the video. The second are incomplete right trajectories which begin some-
where within the video and continue to the end. The third are incomplete left tra-
jectories, which are present in the beginning of the video, but end before the video
ends. The fourth and final are incomplete trajectories, which begin and end within
the video, and are not visible in the first or last frames. The first three categories of
trajectories are used. This segmentation of individual trajectories has four steps:
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1. Perform RANSAC using first and last frame in the video to extract first F matrix.
2. Perform RANSAC on outliers of previous step to find independently moving

objects (IMO).
3. Perform RANSAC on the IMO points of step 2 using the first and next-to-last

frame to find complete-left trajectories.
4. Perform RANSAC on the IMO points of step 2 using the second and last frame

to find complete-right trajectories.
5. Repeat steps 3 and 4 on the rest of the frames.

The incomplete trajectories, along with points labeled as outliers after performing
RANSAC n number of times, are discarded from the rest of the algorithm.

Given a fundamental matrix Fi, it is possible to decompose it into rotation and
translation matrices since the intrinsic parameters of the camera are assumed to be
known. With these matrices, the points can be triangulated to find the 3D location
in the world coordinate frame using the triangulation method described by Hartley
and Zisserman [17]. The overall reconstruction is then refined by minimizing the
re-projection error of the 3D points using global bundle adjustment, parameterized
by the equation:

m

∑
i=1

n

∑
j=1

d(x j
i ,P

j,Xi), (2)

where x j
i represents the ith image point seen with camera j, P j is the set of all

camera matrices, and Xi is the set of all 3D points calculated from all the cameras.
Minimizing equation 2 with respect to P j and Xi is the final step in the 3D structure
estimation.

The importance of this work stems from the fact that this is one of the few avail-
able methods that can reconstruct a scene observed by a single camera, while also
reconstructing the objects moving independently in the scene. This is crucial to es-
timating 3D structure for video analysis and mining, since most other approaches
assume a static scene and are unable to reconstruct the moving objects.

2.2 Simultaneous Localization and Mapping

One of the most popular single camera SLAM frameworks is MonoSLAM by Davi-
son et al. [7]. The method presents an efficient approach capable of localizing a
single monocular camera and simultaneously estimating the relative 3D structure of
the environment seen by the camera, all with real time performance.

The world is modeled as a probabilistic 3D map and the system stores the cur-
rent state of the camera, interesting features observed, as well as the uncertainty of
the estimates. Features may be added or removed from the map according to their
uncertainty. The map is initialized at startup and is continuously being updated via
an Extended Kalman Filter (EKF) [7, 13, 35].

The Kalman filter [7, 13, 35] is used to determine the state of a system based on
noisy measurements. For example, it can be used to compute the position and veloc-
ity of an object given only information about the object’s position at previous points
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in time, along with an uncertainty factor for each measurement. In the Kalman filter,
state transition models are built from linear equations. The Extended Kalman Filter
is an extension to the traditional Kalman filter where state transition models to be
built from non-linear equations by linearization of these non-linear functions [35].

The map is made up of a state vector x̂ and covariance matrix P. The state vector
is an estimate of the camera and visual features mapped in the world, composed
of the camera vector x̂v and all the feature vectors ŷi. The covariance matrix P is
a square matrix that can be divided into individual sub-matrix elements, allowing
the probability distribution to be approximated by a single multivariate Gaussian
distribution. The state vector and covariance matrix are defined as:

x̂ =

⎛⎜⎜⎜⎝
x̂v

ŷ1

ŷ2
...

⎞⎟⎟⎟⎠ , P =

⎡⎢⎢⎢⎣
Pxx Pxy1 Pxy2 . . .
Py1x Py1y1 Py1y2 . . .
Py2x Py2y1 Py2y2 . . .

...
...

...
. . .

⎤⎥⎥⎥⎦ . (3)

The camera and feature vectors describe the main scene elements. The elements
of the camera vector x̂v essentially describe the extrinsic parameters of the camera,
while the elements of the feature vectors ŷi describe the 3D location of each feature
in the world coordinate frame. These vectors are defined as:

x̂v =

⎛⎜⎜⎝
rWC

qWC

vW

ωW

⎞⎟⎟⎠ , yi =

⎛⎜⎜⎜⎜⎜⎜⎝
xi

yi

zi

θi

φi

ρi

⎞⎟⎟⎟⎟⎟⎟⎠ (4)

respectively. For the camera vector, the term rWC stores the current 3D position of
the camera in world coordinates, qWC is an orientation quaternion describing the
orientation of the camera in terms of azimuth and elevation, vW is the velocity of the
camera, and ωW is the angular velocity. For the feature vector, the first three terms
(xi,yi,zi) define the 3D location of the camera’s optical center at the time the feature
was first observed, (θi,φi) is the azimuth and elevation for the ray m(θi,φi) from the
camera to the observed feature, and ρi is the inverse depth ( 1

di
) of the feature along

this ray. These parameters keep track of a 3D point located at:⎛⎝ xi

yi

zi

⎞⎠+
1
ρi

m(θi,φi) . (5)

The geometry of this scene can be seen in Figure 1.
The primary function of the map is to provide localization of the camera, not

a dense mapping of the environment. Because of this, a sparse set of landmarks
are used for localization. Keeping the number of landmarks small helps achieve
real time performance. In order for this probabilistic map to function properly, the
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Fig. 1 Basic geometry of the scene, for details see [28].

assumption is made that the map is rigid and all landmarks are stationary. The only
motion in the scene is caused by the arbitrary camera motion.

Landmarks are initially found in the image by searching for salient image regions
using the Shi and Tomasi operator [36]. A window of 11× 11 pixels is used to
extract an image patch at the given location. The patch is assumed to be planar
and the surface normal is initially set to be equal to the optical axis of the camera
(to be updated later). This image patch is projected as an image and saved as a
template for matching. When a new view of this feature occurs during the execution
of MonoSLAM, the new visible image is compared to this template. These templates
are created from the first time a landmark is observed, and are never updated.

Fig. 2 Left image shows the camera viewpoint. Right image shows a 3D representation of
the probabilistic map.
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When a feature is detected, it is immediately inserted into the map with a large
possible depth range of [1, inf], coded as a Gaussian [28]. As points are re-observed
over time, the Extended Kalman Filter re-estimates the depth of each feature until
it converges to a more accurate depth value. For this to occur, there must be enough
parallax observed by the camera. Otherwise, the system assumes the features are at
infinity. Such features contribute only to estimating the camera position.

In order to model the movement of the camera, the authors employ a “constant
velocity, constant angular velocity model” [7]. This model does not necessarily as-
sume the camera moves at a constant velocity, but instead expects that accelerations
occur with a Gaussian profile. In other words, there are no sudden accelerations.
At a given point in time, an acceleration aW and angular acceleration αR cause a
change in the velocity and angular velocity of the camera, described as:

n =
(

VW

ΩR

)
=

(
aW Δ t
αR Δ t

)
(6)

which in turn is used to update the camera state vector in the following manner:

fv =

⎛⎜⎜⎝
rWC

new
qWC

new
vW

new
ωW

new

⎞⎟⎟⎠ =

⎛⎜⎜⎝
rWC +(vW +VW )Δ t)
qWC×q((ωW +ΩW )Δ t)
vW +VW

ωW +ΩW

⎞⎟⎟⎠ (7)

This updated camera vector is accompanied by the uncertainty measurement of the
camera after the motion (required by the EKF), which is expressed as

Qv =
∂ fv

∂n
Pn
∂ f T

v

∂n
, (8)

where Pn is the covariance of the noise vector n described in Equation 6. The rate
of growth in this uncertainty model depends on the covariance matrix Pn. When Pn

is small, the change in velocities is small and the system expects a smooth camera
motion. Likewise, when Pn is large, the uncertainty also grows large in order to cope
with rapid camera motions.

In order to provide good localization while achieving real time performance, the
system continuously measures 12 features at a time. If the number of currently vis-
ible features falls below 12 at any point in time, a new feature is added to the map.
If a feature is expected to be seen but fails to be found, the system continues try-
ing to look for it until the ratio of times found and times not found falls below a
certain threshold. When this happens, the feature is removed from the map entirely.
This usually happens when a feature is on a moving object, occluded, or drastically
changes in appearance (possibly caused by sudden changes in lighting).

Figure 2 shows the algorithm executing at a point in time. The left image illus-
trates the current frame of the video, while the right image illustrates the visual 3D
representation of the probabilistic map. Here, red features are correctly measured,
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Fig. 3 Left image shows a sample image being tracked using the MonoSLAM algorithm,
while the right image shows the corresponding 3D location of the features. The reconstruction
was performed on videos from the TRECVID 2005 database [33].

blue features have failed measurements, and green features are currently being ini-
tialized into the system.

This MonoSLAM algorithm has several benefits that make it an excellent can-
didate for extracting 3D information from a video. The only input to the system is
a video stream from a monocular camera, and it is able to extract 3D points in the
scene in real time from the input video. Unfortunately, however, the runtime of the
algorithm is O(N2) where N is the number of points in the probabilistic map. In or-
der to achieve real time performance, the authors place an upper bound of N = 100
and perform the SLAM cycle with a sparse set of features. Since the primary goal
is to provide accurate localization, a sparse set of points works nicely to solve this
problem. In order to map the environment with a dense cloud of points, however,
the value of N would have to be much larger than 100, causing a larger degradation
in performance.

By sacrificing the real time performance of the system and increasing the number
of features tracked, it is possible to extract a relatively dense set of 3D points from
the observed scene. Figure 3 illustrates the performance of estimating 3D locations
of features on one of the videos from the TRECVID 2005 database [33]. There are
some limitations to the process, however. First, this system is unable to extract 3D
points from dynamically moving objects. Tracked features in such objects will fail
to be recognized and be removed from the map. Second, the camera must have some
motion in order to achieve 3D point location accuracy. If the camera is static, the
system will assume distances from the camera to all the feature points are infinity,
and hence all lie on a single plane.

2.3 Real Time 3D Reconstruction

In the work by Mouragon et al. [29, 30], the authors propose a method to perform
real time 3D reconstruction of a scene viewed by a single monocular camera. The
method finds features in video frames and matches them across frames to exploit
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Fig. 4 Left image shows several feature points being tracked over time. Right image shows
these feature points in a 3D space.

parallax and estimate 3D structure. By tracking features over time, the authors use
separate video frames to simulate a stereo view of a scene.

The first step of the method is to find salient image features in the frames of the
video. For this, the Harris corner detector [16] is employed. For a given image point
in the first frame I1, the corresponding point is searched inside a region of interest
in the second frame I2. Zero-mean normalized cross correlation (ZNCC) is used as
a distance measure to find the matching point inside the region of interest. Pairs
with high ZNCC scores are selected as corresponding points between the pair of
video frames I1, I2. The left image of Figure 4 shows a sample video frame with the
detected Harris features.

In order to achieve good reconstruction results, the two frames used must be far
enough away from each other so that enough parallax is visible, but not too far so
that they still have a large number of points in common. To achieve this, not all
frames are used for 3D triangulation, only selected key frames. When the system is
first initialized, the first frame is always considered a key frame and is considered
I1. The second key frame I2 is selected so that there are as many image frames as
possible between I1 and I2, but the two key frames have at least M points in common.
In [29, 30], the authors use a value of M = 400.

A third key frame I3 is selected in a similar manner as the first two key frames.
The distance between I2 and I3 should be as large as possible with I2 and I3 having
at least M points in common, and I1 and I3 having at least M′ points in common. The
authors use a value of M′= 300 in the experiments presented in [29, 30]. The coordi-
nate system of I1 is set as the world coordinate frame, and the relative poses between
all the views are calculated using the 5-point algorithm along with RANSAC. The
3D points are then triangulated using I1 and I3.

After initialization, estimating the camera pose Ci at time i is done by first se-
lecting a set of points p visible from the last video frame, as well as the last key
frame. The projection of these points from previous camera poses (Ci−1, Ci−2, . . .)
is known, as well as their 3D coordinates. Using these 3D coordinates, the authors
employ the use of Grunert’s pose estimation algorithm to find camera pose [15].
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Fig. 5 3D reconstruction of a video using the TREVID 2005 database [33]. The left column
shows several feature points being tracked over time. The right column shows these feature
points in a 3D space.

Figure 4 shows a sample image frame from a monocular camera with detected Har-
ris features, and the corresponding 3D reconstruction.

As previously mentioned, only a small set of key frames are used for 3D estima-
tion. For a new key frame to be added by the system, one of two conditions must
be met. If either the number of matched points between the current image frame
and the last key frame drops below the previously mentioned threshold M, or if the
uncertainty of the camera pose becomes too large. If either of these two conditions
is true, the system selects the next incoming frame as a key frame.

After a new key frame is added to the system, a bundle adjustment optimiza-
tion takes place. This optimization is a Levenberg-Marquard minimization of a cost
function f i at time step i defined as

f i(Ci,Pi), (9)

where Ci contains the extrinsic parameters of the current camera, and Pi is the set of
3D points visible from the camera at pose Ci. It is essentially a minimization of the
re-projection error of the points. The authors here recognize that bundle adjustment
calculations become increasingly expensive as the number of key frames grows.
To solve this problem and retain real-time performance, the authors perform local
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bundle adjustment, where the process only optimizes the extrinsic parameters of the
last n cameras, taking into account the projection of the points in the last N frames.

The cost function to be minimized by local bundle adjustment can now be repre-
sented as

f i(Ci,Pi) = ∑
Ci∈{Ci−N+1; Ci}

∑
p j∈P j

d2 (pi j,Ki p j) , (10)

where the right hand side of the equation is the sum of the squared Euclidean dis-
tances between the estimated projection of a point from the ith camera (Ki p j), and its
observed location in the image (p j). It is important to note that Ki is the projection
matrix of the ith camera Ci, and is composed of the extrinsic parameters (calculated
from the camera pose) as well as the intrinsic parameters which are assumed to be
known by the system.

In this local bundle adjustment scheme, N and n are the two main parameters
affecting optimization performance. Larger values take more cameras and more key
frames into account, resulting in better data accuracy at the cost of calculation time.
Smaller values provide quicker performance, but may not have a very high degree of
accuracy. At system startup, when the number of key frames is below some threshold
Nf , the system performs global bundle adjustment; when i > Nf , the values for n and
N are set and local bundle adjustment is performed. As long as the value of Nf is
relatively low (approximately 20), there should be little to no loss of performance.

Out of all the possible ways discussed in this chapter for estimating 3D structure
of a video, this one appears to be by far the most effective. The method is not only
able to extract very accurate estimations for camera pose and 3D scene structure,
but it can do so in real time. These two factors are crucial for use in a video analysis
scenario. This system offers accurate reconstruction with minor errors, and is able to
compute them in an efficient manner. Figure 5 illustrates the reconstruction results
obtained using sample videos from the TRECVID 2005 database [33]; the frame in
the first row contained almost zero camera motion, making an accurate reconstruc-
tion very difficult. Still, however, the method was able to estimate the depth in the
scene quite accurately. The frame in the second row corresponds to a point in time
where the camera was moving around in the scene. As illustrated, the reconstruction
results were very successful in this particular case.

2.4 Other Methods for 3D Estimation

In [20], Klein and Murray present a framework for performing real time augmented
reality using a single monocular camera. This method borrows many aspects from
the method previously discussed by Mouragon et al. [29, 30], but makes some im-
provements upon it. First, the method splits the tasks of tracking and mapping into
separate threads, taking advantage of the fact that most modern computers contain
multiple CPU cores. Not all frames are used for mapping, only a small subset of
frames. These key frames do not need to be processed in real time, as long as the
computation is finished before the next key frame is retrieved.
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The method also deals with rapid camera motions by using a 4-level Gaussian
pyramid of the image, and performing a coarse-to-fine tracking procedure. When a
new key frame is first processed, the system initially searches for a small number of
the coarsest-scale features (typically, 50 features are used) according to the previous
camera pose estimate, and these are used to calculate the updated camera pose.
Then, a large number of fine-level features are searched for in the image (in their
experiments, the authors used 1000 features) according to the updated camera pose,
and a final pose estimate is calculated.

During tracking, the method keeps a fraction of the number of successfully
tracked features over the total number of features. If this fraction drops below a
threshold Tmin, the tracking is considered poor and no new key frames are inserted
until the fraction goes above the threshold again. This is so because poor tracking
results indicate there are poor tracking conditions currently in the frame (caused by
occlusion, motion blur, etc.). While this fraction is above Tmin, several conditions
must be met in order for the system to add a new key frame. First, the previous key
frame must be at least 20 frames apart. This is so that the stereo calculations have
a wide baseline to work with, and can achieve more accurate reconstructions. Also,
the camera must be a minimum distance away from the closest feature in the map.
This prevents a problem that may occur of stationary features corrupting the map.

During initialization, the mapping uses stereo to build the initial map. Since the
input video stream comes from a single monocular camera, the system requires
some user intervention at startup. The user grabs two frames so that the camera is
translated between them, creating a stereo image pair. Next, 1000 points are tracked
at the coarsest pyramid level and the 5 point algorithm along with RANSAC is used
to estimate the essential matrix. The essential matrix is related to the previously
mentioned fundamental matrix as described by the following equation

E = KT FK, (11)

where F is the fundamental matrix, and K is the intrinsic camera matrix. The equa-
tion defining the essential matrix is

x̂′T Ex̂ = 0, (12)

where x̂ ↔ x̂′ are corresponding points in stereo image pairs, and the x̂ notation
denotes the set of image points x after being converted to normalized image co-
ordinates [17]. Correlation between frames is performed using zero-mean sum of
squared differences, and are calculated on pixels along the epipolar line of the sec-
ond image. At this step, the corresponding points in the images can be triangulated
to determine the 3D location of the points in the world coordinate frame. Once
the points have been estimated, the dominant plane in the image is estimated using
RANSAC in order to find the best surface for projecting augmented reality objects.

The pose estimate and 3D point locations of the system are optimized using local
bundle adjustment to minimize the re-projection error of the points. This process is
done much in the same way as it was done by Mouragon et al. [29, 30], as previously
described in Equations 9 and 10.
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Another improvement presented by Klein and Murray over the real time 3D re-
construction algorithm of Mouragon et al. [29, 30] has to do with the incorporation
of data association refinement. In the case that the local bundle adjustment optimiza-
tion converges, and the system does not need to add new key frames, then the thread
responsible for mapping can use its free CPU cycles to improve the map. This is
done by re-measuring features in previous key frames. Given a particular feature al-
ready in the map, the original measurement was based on two image frames (used to
simulate a stereo pair). During this step, if the feature is visible in other key frames,
it is re-measured and re-inserted into the map. This refinement step is given very
low priority in the system and only occurs if the mapping thread is idle (i.e., opti-
mization has converged, and no new key frames are being inserted into the system).
As soon as a new key frame is inserted, this process is interrupted in order to handle
the new frame and perform the necessary calculations.

3 Video Analysis Using 3D Information

As mentioned earlier in this chapter, the number of published methods in the area
of video analysis which incorporate the use of 3D information is somewhat limited.
This is likely due to the difficulty of extracting accurate 3D measurements from a
video stream with no prior knowledge. Although still a relatively new approach,
several works exist which employ methods similar to the ones described so far.
These works attempt to solve problems such as shot boundary detection, object
recognition, content-based video retrieval, as well as human activity recognition.
These methods successfully show that 3D cues provide enough information to solve
various video analysis and mining tasks.

Shot boundary detection refers to the development of algorithms for detecting
boundaries between shots (i.e., the point in time when one shot ends and another
begins). The literature is filled with methods for performing shot boundary detection
using 2D features and statistical approaches, including various surveys and compar-
isons of different methods [2, 4, 9, 14, 21, 44]. For example, Abd-Almageed [1]
proposed a method for shot boundary detection that works by first extracting mul-
tivariate feature vectors. These vectors are then placed in a matrix which is later
decomposed via singular value decomposition. The claim is that tracking the rank
of the singular vectors using a sliding window offers an accurate measurement of
shot boundaries. Such an approach, however, does not take into consideration the
inherent three-dimensional structure of the observed scene, and thus may fail in
certain scenarios.

Object recognition is one of the classic problems in computer vision, and deals
with searching for instances of objects in images and video. Queries may pertain to
a specific object, or a particular class of objects. One such work is done by Visser et
al. [41]. In [41], the authors first detect segmented blobs from image frames using
the Kalman filter. Each blob is then classified under one of three categories (person,
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automobile, other) using eigenvector decomposition. Finally, several temporal filters
are applied in order to perform sequential classification over all the frames of the
video. The drawback of methods such as this one lies in the fact that they do not
take into consideration 3D shape or curvature. Most objects in real life are three
dimensional; therefore to truly generate a list of descriptive features for an object,
one must take the third dimension into account.

Content-based video retrieval is another popular problem. The idea is to classify
and query a database of video clips based not on meta tags, but rather on the ac-
tual content within each video. One such example of a content-based video retrieval
system that provides excellent performance is the “Video Google” framework devel-
oped by Sivic and Zisserman [38, 37, 39]. The main idea is to create a dictionary of
visual words used to index video clips. When the user inputs to the system an image
of an object to look for, the system extracts the visual words from the input image
and searches for videos containing the same visual words (i.e., videos which contain
the same object). These visual words are built by first extracting salient features in
the image using one of two feature detectors. The first was proposed by Mikolajczyk
and Schmid, and is constructed by elliptical shape adaptation around a Harris inter-
est point [26]. The second feature detector, proposed by Matas et al. [25], detects
stable regions of an image after applying several intensity thresholds [25]. Each de-
tected area is then described using a SIFT descriptor [22]. The first detector has a
bias to be centered at image corners, while the second tends to be centered around
high contrast blobs. Neither, however, makes use of 3D information. Recognizing
the importance of incorporating 3D measurements into their content-based video
retrieval system, Sivic and Zisserman challenge the readers to extend their frame-
work to incorporate three dimensional information into their feature descriptors, and
provide the readers with possible research directions for doing so [39].

Activity recognition deals with the problem of tracking and recognizing the ac-
tivities of individual agents in videos. Typically, this area is applied to humans in an
attempt to track and classify human actions. One such dealing with this problem is
the work done by Kellokumpu et al. [19]. The authors use texture descriptors to de-
scribe human movements. Originally proposed by Ojala et al. [32], the local binary
patterns descriptor represents a texture using binary patterns around a neighbor-
hood. Image textures can thus be represented as histograms of these binary patterns.
Kellokumpu et al. use these descriptors to describe the movements of humans in
a spatio-temporal manner. These features are then modeled using Hidden Markov
Models. The authors show that the performance of their proposed method exceeds
that of several other methods which attempt to solve the same task. Their approach
is not without drawbacks, however. Since the descriptors used here rely on texture
measurements, they are sometimes unable to cope with dynamic backgrounds. Tex-
ture measurements, although very successful in the applications, do not encompass
enough information about a subject to be the sole descriptor used. Incorporation of
3D measurements into this framework may aid in removing some of the limitations
of the method.



100 A. Donate and X. Liu

3.1 Shot-Boundary Detection

Most videos can be decomposed according to a hierarchical structure. This structure
begins at the highest level with the actual video. The video can then be decomposed
into different scenes in a way such that each scene contains semantically related
content. According to Xiong et al. [43], scenes typically convey some high level
concepts and are divided using semantic boundaries. Each scene can then be bro-
ken down into video shots, and each shot is composed of image frames. Consider
an artificial example to describe all these concepts. Assuming the video is an arbi-
trary theatrical movie, an example scene may be a section of the movie where there
are two characters having a conversation at a coffee shop. This scene can be bro-
ken down into groups, one of which may be a discussion between two characters.
Assuming that the camera switches back and forth between the two characters ac-
cording to whomever is taking at the current point in time, an example shot is when
the camera is concentrated on one speaker. As soon as the camera cuts away from
the first speaker to show the second speaker, this is considered a new shot. Shots can
be viewed as small independent video clips which may or may not have semantic
meaning.

As mentioned earlier in this chapter, the MonoSLAM framework keeps track of
a small subset of high quality features to perform localization and mapping. Such
a framework provides an excellent tool for automatic shot boundary detection. The
idea is to create a system that tracks several high quality features across the video.
Since the system can cope with camera rotations about 3D objects in the scene,
it is much more than just a simple tracking algorithm. The underlying details of
the algorithm are essentially identical to MonoSLAM, only a few minor changes
have been incorporated. Figure 6 shows a sample frame being tracked. Here, the
red squares denote successfully tracked features, yellow squares are features not
currently being measured, and blue squares denote features for which the tracking
has failed.

Fig. 6 Sample frames using MonoSLAM to track features in videos from the TRECVID
2005 [33] database. Red squares denote successfully tracked regions, yellow squares are re-
gions about to be initialized, and blue squares denote regions for which the tracking has
failed.
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Fig. 7 Four frames making up a diagonal wipe transition from the lower right of the frame to
the upper left. Video was obtained from the TRECVID 2005 database [33].

The algorithm first begins by finding 16 salient regions in a given image frame,
as opposed to the eight regions that traditional MonoSLAM uses. These regions are
tracked over time and updated via the EKF. As long as tracking does not fail for
a given region, it remains in the probabilistic map. If tracking for a given region
fails for 15 consecutive frames, that region is then removed from the map and a new
region is detected to take its place after n frames. If at any point, the system fails
to successfully track all 16 regions simultaneously, such an event is considered to
be a shot boundary. The idea behind the approach is that at a given point in time, if
at least some regions of the image have not changed, a shot boundary must not be
occurring. Here, the SLAM loop operates as normal (blue regions here correspond
to areas which fail tracking due to the motion of the independent objects in the
scene).

The algorithm is constantly trying to keep track of 16 non-overlapping regions
in the video, each with dimensions 21× 21 pixels. These numbers are rather large
considering MonoSLAM falls under the EKF-SLAM category, and tracking such
a large number of features causes a decrease in the runtime performance of the
algorithm. The reason for such a large number is based on the fact that MonoSLAM
expects a static scene, and as such is unable to handle moving objects. Since most
videos will contain independently moving objects in the scene, by having a large
number of features, the hope is that at least several of those features will find static
regions of the scene (such as background objects, buildings, etc). Additionally, by
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Fig. 8 Six frames illustrating the tracking performance on dynamic scenes. Video was ob-
tained from the TRECVID 2005 database [33].

increasing the size of each region to 21× 21 pixels, the tracking quality of each
independent region increases significantly and reduces false negatives.

There are several limitations to such a system. For instance, if the system is un-
able to detect any features belonging to the static background, such features will
eventually fail to be tracked and a false shot boundary may be detected. Addition-
ally, if the majority of the features are located on independently moving objects, and
the system is unable to locate better features on static objects, this may also lead to
a false boundary detection. Lastly, at times the contents of a window will have little
to no change across shot boundaries. In such cases, this system may not be able to
detect the present boundaries.

This system was tested on sample videos from the TRECVID 2005 [33] database
for shot boundary detection. The system was successful in detecting complex shot
boundaries characterized by different video transitions. These transitions, such as
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wipes and fades, pose a serious challenge because at a given point in time, both shots
may be at least partially present on the screen. As seen in Figure 7, this method can
easily cope with such transitions. This figure illustrates a diagonal wipe transition
beginning from the lower right corner to the upper left corner of the video frame to
the upper left. In the first image of the sequence (top left), the algorithm is tracking
several high quality features in the current frame. The second image (top right)
shows the right third of the video screen has already changed to the next shot, and
all the features in that section of the video frame have failed tracking (denoted by
the blue squares). By the third frame of the sequence (bottom left), the transition
has wiped all but the upper left corner of the video frame. At this time, most of the
features are failing the tracking step, except for those in the upper left corner of the
frame. In the last frame of the sequence (bottom right), the system detects that all
current features have failed to be tracked, and thus the system considers the current
point in time to be a shot boundary. The tracking then re-initializes in order to detect
the next shot boundary.

One of the limitations of using MonoSLAM for this framework is its inability
to track moving objects. However, the effects of the limitation may be reduced by
increasing the size of each feature tracked, as well as the total number of features
tracked over time. In doing so, the system will be able to find and keep static features
on the scene, while quickly removing dynamic features from the map. Figure 8 illus-
trates such an example. The six video frames were obtained from one of the videos
from the TRECVID 2005 [33] database. In this scene, we see a woman talking to the
camera, and a man moving around the woman while moving his arms around vigor-
ously. Observe that the system manages to find features in both static and dynamic
objects. The tracking quality of the static background features is strong enough to
maintain good overall tracking performance, even though the frames contain sev-
eral dynamic features that are constantly being added and removed from the map.
As before, red features are successfully being tracked, yellow features are new fea-
tures just inserted, and blue features are currently unable to be tracked (soon to be
removed). By the second to last frame of the sequence (bottom left of Figure 8),
a wipe transition from left to right has begun. By the last frame (bottom right), all
features have failed tracking and a shot boundary has been detected.

3.2 Object Recognition

Recently, Castle et al. [6] published an extension to MonoSLAM which builds up
on the previous work done by Davison et al. [7] and Montiel et al. [28]. In their
work, the focus is developing SLAM algorithms for wearable cameras. According
to the authors, there are two preconditions needed for wearable SLAM. First, the
camera must be able to establish its location in an initially unknown environment.
This problem was addressed already by Davison et al. [7] and Montiel et al. [28]
as previously discussed. The second precondition is that some landmarks must have
some sort of higher level meaning to the system. This is achieved by integrating a
recognition and tracking functionality into MonoSLAM.
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It is important to note that the method proposed here does not change any part of
the existing MonoSLAM framework, but instead incorporates the functionality of
being able to insert into the probabilistic map objects which have been recognized
from a previously built database of known objects. In order to simplify the compu-
tation of this problem, the system uses the same feature points for localization and
for recognition. Features are first detected using SIFT [22], similarly to the work of
Sivic and Zisserman [39], described earlier in this chapter. Features detected using
SIFT are invariant to image scale and rotation, and are robust to changes in lighting,
noise, and small changes in viewpoint [6, 22].

In [6], Castle et al. build a database of objects to recognize. The objects are re-
stricted to be planar. The database contains an image of the object, the SIFT features
for the given object, as well as the location of each of the features in the image.
When a new object is observed in the scene, the SIFT features of the object are
compared with the SIFT features of the database entries. The matching algorithm is
based on the original work by Lowe [22], and it computes the Euclidean distance
between each feature descriptor, as well as the distance between the 2 nearest neigh-
bors. If the number of matched features is greater than some threshold Tmin (in [6],
the authors use a value of eight), the object is labeled as a possible candidate for
recognition.

It may be the case that some SIFT features may be incorrectly matched. To re-
solve this problem, RANSAC is employed. Let xi be the points in the image of the
observed candidate object, and x0 be the points in the image of the database object.
Since the objects in the database are known to be planar, the candidate and database
object points are related by a homography

xi = Hix0, (13)

and RANSAC can be used to estimate the homography Hi. If RANSAC is able to
find a large enough consensus, the candidate object has been recognized success-
fully. The incorrectly matched SIFT features should be considered as outliers by the
RANSAC.

The rest of the algorithm works in the exact same manner as the original
MonoSLAM proposed by Davison et al. [7] with the inclusion of inverse depth
parameterization as proposed by Montiel et al. [28]. In order to incorporate the rec-
ognized objects into the probabilistic map without having to add any extra function-
ality for handling SIFT feature vectors, these SIFT features are not directly inserted
into the map. Instead, each object in the database keeps track of the location of three
points on its boundary. These three points are inserted into the probabilistic map,
and MonoSLAM continues as normal. The number three comes from the fact that
three is the smallest number of points required to define a plane in three dimensions.

The drawback of the recognition process is computational cost. MonoSLAM is
bounded by a O(N2) complexity[7], where N is the number of features in the proba-
bilistic map, and is capable of running at 30Hz on a desktop computer with standard
hardware for a small value of N. The recognition process, however, can be computa-
tionally expensive to calculate all the SIFT features and estimate homographies via
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RANSAC. Because of this limitation, the recognition process is executed only once
every 30 frames, while the SLAM cycle is executed for every frame. This brings the
performance of the overall algorithm from 30Hz without recognition, down to 1Hz
with recognition performed once every 30 frames.

The main benefit provided by the method is that of greater accuracy for some
measurements, as well as incorporating recognition into the single camera SLAM
framework. This brings the monocular SLAM algorithms one step closer to being
able to track moving objects in a scene. Such functionality would be crucial to the
scope of research mentioned in this chapter. Being able to track the position of a
moving object from a single video, while concurrently estimating the 3D structure of
the scene, would allow video analysis and mining methods to segment objects based
on their movements and positions in a 3D world. Such information could be used
to create descriptive index terms for recognized objects, and would be beneficial for
various tasks.

This current method, however, suffers from many of the drawbacks previously
mentioned for MonoSLAM, but also from a performance perspective. Losing the
real time performance of the original MonoSLAM framework is a crucial drawback,
particularly since the 1Hz performance of the proposed method is achieved with a
sparse set of landmarks. Once the sparseness is removed and the system uses a
dense set of landmarks (for estimating scene 3D structure), the performance of the
algorithm may degrade further. Depending on the application and the length of the
input video, a large performance penalty such as this one may be highly undesirable.

3.3 Video Retrieval

Ewerth et al. [10] use depth information in order to index videos for retrieval. They
claim to be the first authors to use depth features describing the spatial arrangement
of three-dimensional objects in a video scene under a content-based video retrieval
framework. Although the input to the system is a video from a monocular camera,
the authors exploit the motion parallax visible under camera motion to use methods
normally applied to stereo vision problems.

The first step in the method is to detect salient features in the initial image frame.
These features are detected based on the eigenvalues of the covariance matrix of
intensity derivatives. Each feature is then tracked over time using the Lucas-Kanade
optical flow algorithm [23] implemented into Intel’s OpenCV library [5].

In order for stereo reconstruction algorithms to estimate the three dimensional
location of a point from two different viewpoints, that point must first be found in
both images. In order to build the correspondence, the authors exploit the epipolar
constraint. Given two cameras C1 and C2 (corresponding to two views of an object
from different angles) observing a point X in the world, the point maps to each
camera’s image plane as x1 and x2, respectively. The line of projection between
the camera C1 and the 3D point X (which passes through the projected point x1),
projects as a line in the image plane of the second camera, C2. This relation between
C1 and C2 is represented by the fundamental matrix F [17]. Figure 9 illustrates this
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Fig. 9 Geometry of a scene observed by two cameras.

representation. The epipolar constraint is defined in terms of this fundamental matrix
as previously described in Equation 1.

The fundamental matrix F can be estimated using the normalized 8 point algo-
rithm [13, 17]. Typically, the algorithm employs the use of singular value decompo-
sition to decompose a matrix containing feature points on both images (provided by
the image planes of C1 and C2 as previously described). The authors note that this
is error prone due to the fact that the method expects a moving camera observing
a static scene. If there is any additional motion in the scene, the reconstruction re-
sults suffer. To overcome this limitation, the authors use RANSAC [12] to eliminate
outlier trajectories.

In order to complete the scene reconstruction, the camera matrices must be com-
puted for each frame. To do so, the authors first calculate the epipole e′ of the second
image from the equation FT e′ = 0. After solving for e′, the camera matrices can be
computed as

P = [I|0] and P′ =
[[

e′
]

x F |e′] , (14)

where e′ is the epipole vector consisting of (e′1,e
′
2,e
′
3) and [e′]x is a 3× 3 matrix

composed from the epipole vector. After these camera matrices have been calcu-
lated, the points can be triangulated to find the corresponding 3D point for all image
point pairs between the two images [17].

The 3D reconstruction begins calculations when the first two image frames are
available. Afterwards, for every new frame that is obtained, a new camera matrix
P must be computed. In order to improve these results, subsequent image frames
may be added in order to minimize 3D reconstruction errors. In order to optimize
the reconstruction, the authors use bundle adjustment to minimize the re-projection
error of the observed m points in n views (image frames). This re-projection error is
parameterized by Equation 2. Minimizing this equation with respect to the camera
matrices P j and the set of all 3D points Xi is the final step in the 3D structure
estimation.
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Before a proper depth map can be generated, the camera must be calibrated in
order to calculate proper depth values. The authors incorporate the automatic camera
calibration technique proposed by Pollefeys et al. [34]. The distance of a point in the
3D world coordinate frame can now be described as the Euclidean distance between
the point and the camera’s center of projection, d(Xi,C j). Although this center of
projection C j is initially unknown, it is easily calculated from the equation P jC j = 0
using singular value decomposition [10, 17].

The depth information computed is sparse and covers a very small percentage of
the pixels visible in the image with arbitrary coordinates. In order to build complete
depth maps, the authors propagate the depth value of each pixel to its neighbors.
For a given pixel, the depth value assigned to it is that of the closest feature (i.e.,
the closest point with an actual calculated value), as long as the two distances are
no more than some threshold tdist apart. Note that it may be the case where certain
regions of the image are not assigned a depth value.

These generated depth maps are calculated for each video and used as indexing
terms for the task of video retrieval. In order to generate such index terms, first
the middle frame (in regards to time) is selected as the representative frame for the
video. The depth map generated for this frame is first divided into fixed size blocks
and two features are used to describe each block. The first is the normalized mean
depth value d′ within the block, and the second is the percentage of pixels with
depth values. These two features are used to describe each block of the frame, and
are inserted into a feature vector which will be used as the index term.

The final component from the framework is a way of measuring the distance
between two videos, calculated from their respective feature vectors v1,v2. Let B
be the set of all blocks in a frame, and let B1 ⊆ B and B2 ⊆ B be two subsets of
B for whom the values of the second features (percentage of features with depth
information) is above some set threshold for vectors v1 and v2 respectively. The
authors define a distance measurement between two such vectors as:

d(v1,v2) = ∑
i∈B1∩B2

∣∣d′i1 −d′i2
∣∣+λ1 · (|B1\B2|+ |B2\B1|)+λ2 · |B\(B1∪B2)| . (15)

The authors evaluate the proposed method using 136 videos from the TRECVID
2005 [33] data set. Although in the case where there is little or no camera motion
the 3D reconstruction should yield poor results, the depth maps generated were still
quite successful in achieving good retrieval results. Using videos similar to news
broadcasts (static camera, one or multiple speakers in the video), the authors claim
an average retrieval precision between 63% and 79% for the top 50 ranked videos
resulting from each query.

This is the first video retrieval system to incorporate the notion of 3D and depth
into content-based retrieval. The precision measurements calculated from the con-
ducted experiments show that such information can be very useful in describing the
contents of a video. The method is limited, however, by the sparse 3D reconstruction
generated. A much dense reconstruction, although more computationally expensive,
should yield much better results since it may provide more detailed depth maps as
well as information about each object. As it stands, the method provides very little
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information about each object in the scene aside from the depth, relative to other
objects.

3.4 Activity Recognition

The area of activity recognition deals with the detection and understanding of activ-
ities performed by autonomous entities in a video. Typically, this area of research
concentrates on human activities.

In [24], Luo and Hwang propose a video content analysis framework which infers
3D parameters of objects in videos. The authors use a coarse-to-fine approach to
segment videos containing sports video sequences. In the first (coarse) stage, the
system performs shot segmentation on the video, then uses Hidden Markov Models
to classify shots containing appropriate human body shapes. These body shapes are
then analyzed in the second (fine) stage.

In the second stage, the idea is to first segment the video objects from the shot,
then fit a 3D model to each one. Luo and Huang aim to detect video shots where a
tennis player is serving the ball. In order to identify such video shots, the authors
propose the use of Gaussian Mixture Models. Training the algorithm on test datasets
provides the parameters necessary for the Gaussian mixtures. Maximum likelihood
is then used to calculate the probability of each object in a shot to the GM of the
training data. If the maximum likelihood ratio of one of the objects exceeds a pre-
defined threshold Tmin, the object is declared to be in a serving pose.

The next step of the algorithm is to infer the 3D parameters of the human from
the sequence of 2D image frames. This is done in a two stage process which fits a
generic 3D model of a human onto the the segmented human poses extracted in the
previous step. First, the frames containing the extracted human poses are divided
into two groups. Cluster analysis is used on the first half of the group. Hu’s mo-
ments [18] along with K-Means clustering [8] are used to extract the mean clusters
of the images. The image with the smallest distance to the mean image is selected,
and the 3D model is initially fitted onto this image using manual interaction with
the system (the user is asked to manually fit the model as close as possible to the
image using the provided GUI).

The second step of the 3D model fitting is to refine the manually adjusted 3D
model. First, all extracted image frames are compared against the cluster mean of the
previous stage in order to find the frame that is closest to this mean. Nelder-Mead’s
algorithm [31] is then used to fit the 3D model into the shape of the segmented
human in this frame, using the parameters of the manually-adjusted 3D model as
the initial parameters to the fitting algorithm. This fitting process is then repeated
for every frame in the sequence.

The proposed method attempts to perform activity recognition by fitting a 3D
model of a human to extracted video frames containing a specific activity. Although
the authors do not actually extract 3D features from the video frames autonomously,
the method still provides excellent recognition results by employing the use of a
3D model. The reason lies in the fact that the model used allows for the different
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articulations of the human body. When applied to an activity (such as tennis, as illus-
trated in their work [24]) containing large ranges of motion for the human body, the
results illustrate the benefit of incorporating the use of 3D information into activity
recognition tasks.

According to the study performed by Fenton et al. [11] in 2007, the use of 3D
motion analysis is also very helpful to athletes. In this study, a group of athletes were
chosen at random and presented either a two dimensional or a three dimensional
analysis of their performance. The goal of this study was to determine if the use of
3D data is more beneficial than 2D data in assessing athletic performance. The study
concluded that the 3D data was more successful in assessing performance according
to the survey, although athletes complained that 2D data was easier to comprehend.

4 Current State of Research

The use of 3D information in video analysis has become increasingly popular in
recent years. As shown earlier in this chapter, if an accurate 3D representation of a
video clip is obtained, such information is extremely useful in solving various video
analysis tasks.

Currently, several approaches which use a video stream as input may be used to
estimate the 3D structure of a scene. These approaches use techniques such as struc-
ture from motion, simultaneous localization and mapping, as well as 3D reconstruc-
tion. Although these methods may be used to estimate 3D structure, none of them
are without drawbacks. This section provides a discussion of such drawbacks and
limitations, as well as possible ways of overcoming such drawbacks which would
make promising future research directions.

4.1 Problems and Limitations

Although the methods presented in this chapter show great promise for solving var-
ious tasks, each is not without its own set of drawbacks and limitations. Most of the
problems stem from the fact that these algorithms may not have been designed with
video analysis in mind. Therefore, they have some inherent limitations which make
it difficult for them to function flawlessly for this sort of application.

The work by Tola [40] mentioned in section 2.1 presents a structure from mo-
tion framework capable of extracting the motion of multiple independently moving
objects, as well as camera motion, all from a set of images obtained using a sin-
gle monocular camera. The importance of this work is its ability to not only cal-
culate accurate 3D estimations of points in a scene, but it is also able to handle
arbitrary camera motions along with the motions of independently moving objects.
The drawback of this method, however, stems from the fact that there are several
strict assumptions in regards to the motion of the objects. If these strict assumptions
are not met, the system may not be able to perform an accurate reconstruction of the
observed scene.
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As previously discussed in section 2.2, MonoSLAM is a recent algorithm that
proposes to solve the SLAM problem using only a single monocular camera as
input, and requires no previous knowledge of the scene. Since it is based on an
EKF-SLAM framework, it keeps track of high quality features and uses them to
accurately localize the camera in a 3D environment. Although the method performs
an excellent job of estimating the depth of features, its primary goal is to perform
camera (or robot) localization. As a result, when applied to a video sequence, it
generates a very sparse representation of the scene. Of course, as shown in the work
done by Ewerth et al. [10] in section 3.3, sparse 3D representations can still be very
useful, even if it is to segment objects based on depth alone.

Another limitation of MonoSLAM is its inability to track moving objects. The
seriousness of such a limitation is dependent on the content of the video being ana-
lyzed, but is a major limitation regardless. Depending on the scene being viewed, if
there are any moving objects, then features on such objects will fail to be recognized
(since they will not be located where the system predicts it should be), and thus will
be eventually removed from the probabilistic map. At times, such features may also
introduce errors into the camera location estimation, which in turn may result in
erroneous 3D point estimations for the other features.

The work by Mouragon et al. [29, 30] discussed in section 2.3 proposes to solve
the problem of scene reconstruction by using certain video frames as key frames
and treating them as stereo image pairs. The 3D point locations are then calculated
via triangulation, and later refined using bundle adjustment. Unlike MonoSLAM,
the method computes a dense reconstruction of the scene while still maintaining
efficient computational time. Unfortunately, however, it is also unable to extract 3D
locations of moving objects in a scene. Since each point is estimated independently
of the others, any points that are located on a moving object are simply discarded
once they fail to be tracked.

4.2 Promising Research Directions

As illustrated in this chapter, extracting 3D cues from video streams provides an
inherently powerful representation of a scene. Such a representation has already
been shown to be useful for solving certain video analysis problems. Still, there
remains much work to be done related to this topic. Many of these tasks present
new and exciting topics for future research directions.

In the area of 3D estimation from a single view, the biggest limitation to date is
the inability to estimate 3D points on moving objects. There has been some recent
work in solving this problem for the robotics community using Bayesian probabil-
ity to track the location of moving objects in a scene [42]. Such work, however,
does not use a video camera as input, but rather a 3D scanner which automatically
outputs a set of 3D points. As is, such an approach cannot be applied to video anal-
ysis, but may provide a good starting point to develop methods for tracking and
reconstructing objects in a video.
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Another potential direction of research is to study the best way of incorporating
the available 3D information into video analysis and mining tasks. Possible topics
include fitting 3D models to the available data, or estimating the shape of objects
present in the scene for use in certain analysis tasks. For example, given a set of 3D
points from a video, how key words can be extracted from the scene in a way such
that they help to improve the performance of a content-based video retrieval system.

5 Conclusion

The amount of available video data has seen a rapid increase in recent years, partly
due to the growth of personal, industrial, and online databases such as YouTube
(http://www.youtube.com). With the increase in activity and data availabil-
ity comes an increase in necessity of improved methods for video analysis and min-
ing. This chapter discusses the usefulness of incorporating 3D measurements into
such tasks. The idea is to estimate a 3D reconstruction from a video clip, and use the
available information to solve various tasks such as shot boundary detection, object
recognition, content-based video retrieval, as well as activity recognition.

Methods that make use of 3D cues to solve such problems are scarce in the lit-
erature due to the inherent difficulty of extracting an accurate 3D representation
of a scene in a video clip. This chapter presents several approaches which may be
used for such a task, each with its own strengths as well as weaknesses. Structure
from motion methods may be used to solve the problem, although they may be
computationally expensive and do place certain limitations on videos. SLAM-based
methods are also quite useful for solving such a task. Some methods which track a
small subset of high quality features have been shown to provide very good results
in automatic shot boundary detection due to their excellent three-dimensional track-
ing abilities. Others, which estimate a dense 3D point cloud of the observed surface,
may be used to solve more traditional video problems such as content-based video
retrieval and object recognition. These methods have successfully shown the fea-
sibility of such approaches, and provide a new and exciting direction for potential
research.

Much work still remains to be done on this particular topic, however. Although
current structure from motion, SLAM, and 3D reconstruction methods have shown
that 3D cues can be very powerful, they still lack the reliability and robustness re-
quired for a video analysis and mining application. Even with these limitations,
however, these works show us that 3D estimation of a video stream is not only pos-
sible, but also very useful. The next few years should bring very promising advances
in this field, which will translate to much higher performance in the analysis, search,
and mining of videos.
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Statistical Analysis on Manifolds and
Its Applications to Video Analysis�

Pavan Turaga, Ashok Veeraraghavan, Anuj Srivastava, and Rama Chellappa

Abstract. The analysis and interpretation of video data is an important com-
ponent of modern vision applications such as biometrics, surveillance, motion-
synthesis and web-based user interfaces. A common requirement among these
very different applications is the ability to learn statistical models of appear-
ance and motion from a collection of videos, and then use them for recognizing
actions or persons in a new video. These applications in video analysis require
statistical inference methods to be devised on non-Euclidean spaces or more
formally on manifolds. This chapter outlines a broad survey of applications
in video analysis that involve manifolds. We develop the required mathemat-
ical tools needed to perform statistical inference on manifolds and show their
effectiveness in real video-understanding applications.

1 Introduction

Applications in computer vision often involve the study of geometric scenes
and their interplay with physical phenomena such as illumination and motion.
When these scenes are imaged using cameras, the observed appearances obey
certain mathematical constraints that are induced by the underlying physical
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constraints. Examples include the observation that images of a convex object
under all possible illumination conditions lie on the so called ‘illumination-
cone’ [17]. Images taken under a stereo-pair are constrained by the epipolar
geometry of the cameras [22]. Similarly, the 3D pose of the human head is
parameterized by three angles – hence, under constant illumination and ex-
pression, the observed face of a human under different viewing directions lies
on a three-dimensional manifold. In a particular application, if the physical
and mathematical constraints are well-understood, such as in epipolar geom-
etry and illumination modeling, then one can design accurate modeling and
inference techniques derived from this understanding.

In several applications of video analysis such as gait-based human ID,
activity recognition, shape-based dynamics modeling, and video-based face
recognition, some of the constraints that arise have a special form. These
special constraints can often be expressed in the form of an equation with
some smoothness criterion. Such constraints can be formally defined as man-
ifolds. Before we give precise definitions of what is meant by a manifold, let
us first consider some simple problems that illustrate why special attention is
needed to study them. To enable this discussion, we shall for the time-being
assume that a ‘manifold’ is defined as a set of points in Rn that satisfy an
equation f(x) = 0 (with appropriate conditions on f() that shall be spelt out
in a later section). For example, the set of points that satisfy the equation
f(x) = xTx− 1 = 0 is the unit hyper-spherical manifold in Rn.

Now one might ask, what is special about these constraints that require
new mathematical tools from differential geometry and topology ? Can we
not use the classical Euclidean methods and multi-variate statistics, with
perhaps some loss of accuracy ? To answer these questions, we will consider a
very simple engineering problem. Suppose, a highway construction engineer
is laying out a road between two cities which are far apart. Given two cities
on the earth, the engineer wants to know a) what is the length of the road
required (so as to estimate the amount of building material that needs to be
ordered), b) where should a rest-area that is mid-way between the two cities
be placed.

Given two points x1 and x2 on the earth, he/she would like to compute
the shortest distance between them. If the curvature of the earth were not
taken into account, and all he/she knew was that the points are in R3, he/she
might choose to use the standard Euclidean norm ‖x1 − x2‖. Unfortunately,
this would lead to the engineer underestimating the distance between the
two cities. But equipped with the additional knowledge that the earth is
well-approximated as a sphere in R3, we can interpret the Euclidean norm as
the ‘chordal-length’ between these points. The knowledge of this geometry of
the constraint set also shows that the Euclidean distance is not intrinsic i.e.
if we sample points along the shortest straight line path, the samples do not
lie on the sphere. This distance is thus meaningless for the engineer since it
would require him to lay a tunnel underneath the surface instead of a road
on the surface of the earth.
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Similarly, given two cities/points that lie on the unit-hypersphere as before,
we wish to compute a mean-point where a rest-area may be constructed. Once
again, if we did not know the nature of the constraint set, we might use the
arithmetic-mean as the mean-point. Now given the extra information that
these points need to lie on a hypersphere, it is obvious that the arithmetic
mean is not intrinsic either since it does not lie on the hypersphere. The
arithmetic mean of these points would lie under the surface of the earth
rendering it physically meaningless. A much more complicated situation arises
when we want to place say 3 rest areas in the midst of 10 cities with some
optimality criterion such as reducing the overall length of road to be laid. This
requires solving an optimization problem with manifold-valued constraints.

Even though these are fairly simple applications, they illustrate the need
to understand the underlying constraints to obtain geometrically meaningful
distances and statistics. Naturally, in the presence of such constraints, classi-
cal Euclidean geometry fails to provide meaningful solutions. This motivates
the need to study such non-Euclidean spaces via methods from differential
geometry.

Organization: We begin the chapter by motivating the study of manifold
analysis for video processing applications. We then provide an introduction
to manifold theory and describe relevant manifolds and provide an introduc-
tion to differential geometry on these manifolds. In Section 4, we present
methods to perform statistical inference on these manifolds. In Section 5,
we present several applications of the presented theory to problems in video
understanding.

2 Motivation for Studying Manifolds in Video Analysis

Let us first consider some real applications in video understanding that
require appreciating the geometry of some non-Euclidean manifolds. Once
again, we shall for the time-being assume that a ‘manifold’ is defined as a set
of points in Rn that satisfy an equation f(x) = 0 (with appropriate conditions
on f() that shall be spelt out in the next section).

The problem of video understanding can be studied from three widely dif-
fering perspectives a) The feature space, b) The model space and c) The
transformation space. Even though the specific nature of these spaces can be
quite different, a large class of these spaces can be described mathematically
as manifolds. Traditionally, ‘manifold-learning’ methods have been at the
forefront of these applications where an analytical characterization of these
spaces cannot be found. In the past few years, computer vision researchers
have made significant advancement in the analytical and geometric under-
standing of these varied spaces. This marks an important development in
computer vision by moving away from data-driven approaches to geometry-
driven approaches for characterizing videos. We provide specific examples
of various analytical manifolds found in different applications of computer
vision below.
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1. Feature Spaces: Video understanding typically begins with the extrac-
tion of some specific features from the videos. Examples of these features
include background subtracted images, shapes, intensity features, motion
vectors etc. These features extracted from the videos might satisfy cer-
tain geometric and photometric constraints. The feature space deals with
understanding and characterizing the geometry of features that can be
extracted from videos. The study of this space then enables appropriate
modeling methodologies to be designed. Consider the example of the shape
feature. Shapes in images are commonly described by a set of landmarks on
the object being imaged. After appropriate translation, scale and rotation
normalization it can be shown that shapes reside on a complex spherical
manifold. Further, by factoring out all possible affine transformations, it
can be shown that shapes reside on a Grassmann Manifold.

2. Model Spaces: After features are extracted from each frame of the
video, the next step in video analysis, is to describe a sequence of such
features using appropriate spatio-temporal models. One specific example of
this is modeling the feature sequence as realizations of dynamical systems.
Examples include dynamic textures, human joint angle trajectories and
silhouette sequences. One popular dynamical model for such time-series
data is the autoregressive and moving average (ARMA) model. The space
spanned by the columns of the observability matrix of the ARMA model
can be identified as a point on the Grassmann manifold. Time-varying and
switching linear dynamical systems can then be interpreted as paths on
the Grassmann manifold.

3. Transformation Spaces: Finally, the transformation space encom-
passes all possible manifestations of the same semantic activity. The study
of this space is important to achieve invariance to factors such as view-
changes and execution-rate changes. In this chapter we consider the specific
instance of execution-rate variations in human activities, which is modeled
as temporal warps of feature trajectories. The space of these warps is the
space of positive and monotonically increasing functions mapping the unit-
interval to the unit-interval. The derivatives of warping functions can be
interpreted as probability density functions. The square-root form of pdfs
can then be described as a sphere in the space of functions. Variability in
sampling closed planar curves gives rise to variations in observed feature
points on shapes. This variability can also be modeled as a sphere in the
space of functions (also known as a Hilbert sphere).

As these examples illustrate, manifolds arise quite naturally in several
vision-based applications.

2.1 Manifold Theory in Vision

There has been an increasing awareness of the need to perform statistical
inferences on non-Euclidean domains for a variety of reasons. There has been
a significant amount of work in this area in several disciplines. Here, we will
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review some of these works. This treatment by no means should be considered
exhaustive. The use of certain groups, e.g. Euclidean groups, have been fun-
damental in physics since Einstein and perhaps earlier. The Euclidean motion
group plays a fundamental role in rigid body dynamics and uncertainties in
modeling dynamic systems have been characterized using probability mea-
sures on this group. Another community that has combined the strengths of
geometry and statistics is stochastic control [11, 10] where system variables
and controls are constrained to be on certain non-Euclidean manifolds.

To the best of our knowledge, the first major effort in using geometry and
statistics in pattern recognition was introduced by Ulf Grenander in the early
70s [19, 18]. Grenander created the field of pattern theory which had the fol-
lowing important components: (i) represent the systems of interest using al-
gebraic structures that favor rule-based compositions, (ii) capture variability
in these systems using probabilistic super-structures, and (iii) develop effi-
cient algorithms for inferences using geometries of underlying spaces. Over
the last three decades, this philosophy has been implemented in a number of
contexts with explicit involvement of statistics on non-Euclidean manifolds.
We list a few here: The work on analyzing anatomical variability using non-
invasive imaging (such as MRI, PET, etc) involved probabilistic structures
on high-dimensional deformation groups – this area has recently been labeled
as computational anatomy [20, 31]. An algebraic pattern theoretic approach
has not been exclusive to medical imaging only. It has also been used in ad-
dressing computer vision and image analysis problems. For example, in the
problem of recognizing objects in images, the variability due to viewing angle
of the camera is very important. [21] deals with the problem of estimating
the pose as an element of SO(3) and that of bounding the estimating er-
ror using statistical bounds. [40] studies the problem of using Markov Chain
Monte Carlo methods for performing estimation on some matrix Lie groups
e.g. SO(n), and their quotient spaces, e.g. a Grassmann manifold, while [41]
studies the problem of subspace tracking (in signal processing) as a problem
of nonlinear filtering on a complex Grassmann manifold. While these papers
involve statistical inferences on manifolds, there is a strong literature on more
general optimization problems. For example, a major work in the area of op-
timization algorithms on Grassmann and Stiefel manifolds was presented by
Edelman et al. [16, 1].

Another prominent area that employed statistical models and inferences on
non-Euclidean manifolds is shape analysis. Starting with a trend-setting pa-
per by Kendall [26, 28], there has been a remarkable literature on representing
and analyzing shapes of objects, in images or otherwise, using a “landmark-
based” approach. In terms of statistical analysis, this is perhaps the most
mature area involving manifolds as domains [15, 36]. In more recent years,
there has been an extension of Kendall’s shape theory to infinite-dimensional
representations of shapes of curves and surfaces [27, 39, 32].

The area of statistics and inference on manifolds has seen a large growth
in recent years. Many of the ideas have been formally introduced and ad-
vanced through the efforts of many researchers. One of the landmark works in
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establishing mean estimation and central limit theorems for manifold-valued
variables is Bhattacharya and Patrangenaru [5, 4]. Another important piece
of work comes from Pennec [33] who has applied these notions for detection
and classification of anatomical structures in medical images. Recent appli-
cations in computer vision have included study of Kendall’s shape spaces for
human gait analysis [48], and Hilbert sphere modeling of time warp func-
tions for human activities in [49]. Other applications include classification
over Grassmann manifolds for shape and activity analysis [3, 45], and face
recognition [30]. A recently developed formulation of using the covariance
of features in image-patches has found several applications such as texture
classification [46], and pedestrian detection [47]. Mean-shift clustering was
extended to general Riemannian manifolds in [42].

3 Introduction to Manifolds

We shall first start with the topological definition of a manifold in terms of
charts and atlases. Using them, we will show that Rn is indeed a differentiable
manifold. Then, we state a theorem that defines sub-manifold of a manifold as
a solution of an equation. This shall be specialized to the case of manifolds
that are actually sub-manifolds of Rn, arising as solutions of an equation
in Rn with some conditions. Furthermore, we will establish the notions of
tangent vectors and tangent spaces on non-Euclidean manifolds. This will
then allow the use of classical statistical methods on the tangent planes via
the exponential map and its inverse. We shall provide specific examples to
illustrate these notions.

3.1 General Background from Differential Geometry

We start by considering the definition of a general differentiable manifold.
The material provided here is brief and by no means comprehensive. We
refer the interested readers to two excellent books [9][38] for a more detailed
introduction to differential geometry and manifold analysis. A topological
space M is called a differentiable manifold if, amongst other properties,
it is locally Euclidean. This means that for each p ∈ M , there exists an
open neighborhood U of p and a mapping φ : U → Rn such that φ(U) is
open in Rn and φ : U → φ(U) is a diffeomorphism. The pair (U, φ) is called
a coordinate chart for the points that fall in U ; for any point y ∈ U , one
can view the Euclidean coordinates φ(y) = (φ1(y), φ2(y), . . . , φn(y)) as the
coordinates of y. The dimension of the manifold M is n. This is a way of
flattening the manifold locally. Using φ and φ−1, one can move between the
sets U and φ(U) and perform calculations in the more convenient Euclidean
space. If there exists multiple such charts, then they are compatible, i.e. their
compositions are smooth. We look at the some simple manifolds as examples.
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Example 1. (Rn is a manifold)

1. The Euclidean space Rn is an n-dimensional differentiable manifold which
can be covered by the single chart (Rn, φ), φ(x) = x.

2. Any open subset of a differentiable manifold is itself a differentiable man-
ifold. A well known example of this idea comes from linear algebra. Let
M(n) be the set of all n×n matrices; M(n) can be identified with the set
Rn×n and is, therefore, a differentiable manifold. Define the subset GL(n)
as the set of non-singular matrices, i.e. GL(n) = {A ∈M(n)| det(A) �= 0},
where det(·) denotes the determinant of a matrix. Since GL(n) is an open
subset of M(n), it is also a differentiable manifold.

Fig. 1 Figure illustrating the notions of tangent spaces, tangent vectors, and
geodesics

In order to perform differential calculus, i.e. to compute gradients, direc-
tional derivatives, critical points, etc., of functions on manifolds, one needs
to understand the tangent structure of those manifolds. Although there are
several ways to define tangent spaces, one intuitive approach is to consider
differentiable curves on the manifold passing through the point of interest,
and to study the velocity vectors of these curves at that point. To help vi-
sualize these ideas, we illustrate the notions of tangent planes, geodesics in
figure 1. More formally, let M be an n-dimensional manifold and, for a point
p ∈ M , consider a differentiable curve γ : (−ε, ε) → M such that γ(0) = p.
The velocity γ̇(0) denotes the velocity of γ at p. This vector has the same
dimension as the manifold M itself and is an example of a tangent vector
to M at p. The set of all such tangent vectors is called the tangent space
to M at p. Even though the manifold M maybe nonlinear, the tangent space
Tp(M) is always linear and one can impose probability models on it using
more traditional approaches.

Example 2. 1. In case of the Euclidean space Rn, the tangent space Tp(Rn) =
Rn for all p ∈ Rn.
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2. For GL(n), the space of non-singular matrices and for an A ∈ GL(n), let
γ(t) be a path in GL(n) passing through A ∈ GL(n) at t = 0. The velocity
vector at p, γ̇(0), is an element of M(n), the set of all n× n matrices.

Next we introduce the notion of a differential which is important in defining
the submanifolds of interest to us. Several of the spaces we will study can
be viewed as submanifolds of larger manifolds such as Rn and GL(n). The
differential of a smooth mapping f : M → N at p ∈M , denoted by dfp, is a
linear map dfp : Tp(M)→ Tf(p)(N) specified as follows. Let g : N → R be a
smooth function. Then, for any v ∈ Tp(M), define (dfp(v))(g) = v(f ◦ g)(p).
A point p ∈ M is said to be a regular point if dfp is onto, and its image
under f is said to be a regular value.

Theorem 1. Suppose M and N are manifolds of dimensions m and n re-
spectively, and let f : M → N be a smooth map, with a regular value y ∈ N .
Then f−1(y) is a submanifold of M of dimension m− n.

This theorem states that the pullback sets of certain types of points under
smooth maps have the submanifold structure. Important examples of such
pullback sets include spheres in Euclidean spaces.

Example 3. 1. Unit Sphere: Using this theorem, let us check if Sn is indeed
a submanifold of Rn+1. Let f : Rn+1 → R be a map given by f(p) =∑n+1
i=1 p2

i , where p = (p1, . . . , pn+1). The differential of f is given dfp(u) =
2〈p, u〉, which is clearly onto for all p ∈ f−1(1). Thus, 1 is a regular value
of f and the set f−1(1) given by Sn is an n-dimensional submanifold of
Rn+1. Also, the tangent space Tp(Sn) is just the orthogonal complement
of p ∈ Rn+1.

2. Orthogonal Matrices: We now consider the set O(n) of orthogonal ma-
trices, which is a subset of the manifold GL(n). We define O(n) to be the
set of all n×n invertible matrices O that satisfy OOT = I. Define S(n) to
be the set of n×n symmetric matrices, and then define f : GL(n)→ S(n)
by f(O) = OOT . It can easily be shown that I is a regular value of f
and, hence, f−1(I) = O(n) is a submanifold of GL(n). Note that O(n) is
not connected, but has two components: those orthogonal matrices with
determinant +1, and those with determinant −1. The set of orthogonal
matrices with determinant 1 is called the special orthogonal group,
and denoted by SO(n). The dimension of O(n) can be determined by the
above theorem; it is n2 − n(n + 1)/2 = n(n − 1)/2. One can show that
TOO(n) = {OX |X is an n× n skew-symmetric matrix}.
We now consider the task of measuring distances on a manifold. This is

accomplished using a Riemannian metric defined as follows.

Definition 1. A Riemannian metric on a differentiable manifold M is a
map 〈·, ·〉 that smoothly associates to each point p ∈M a symmetric, bilinear,
positive definite form on the tangent space Tp(M).

A differentiable manifold with a Riemannian metric on it is called a Rie-
mannian manifold.
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Example 4. 1. Rn is a Riemannian manifold with the Riemannian metric
〈v1, v2〉 = vT1 v2, the standard Euclidean product.

2. We have earlier examined the manifold O(n) and stated that its tangent
space is: TOO(n) = {OX : X is skew-symmetric}. Define the inner prod-
uct for any Y, Z ∈ TOO(n) by 〈Y, Z〉 = trace(Y ZT ), where trace denotes
the sum of diagonal elements. With this metric O(n) becomes a Rieman-
nian manifold.

3. Similarly, for the unit sphere Sn and a point p ∈ Sn, the Euclidean inner
product on the tangent vectors make Sn a Riemannian manifold. That is,
for any v1, v2 ∈ Tp(Sn), we used the Riemannian metric 〈v1, v2〉 = vT1 v2.

Using the Riemannian structure, it becomes possible to define lengths of
paths on a manifold. Let α : [0, 1] �→ M be a parameterized path on a
Riemannian manifold M that is differentiable everywhere on [0, 1]. Then dα

dt ,
the velocity vector at t, is an element of the tangent space Tα(t)(M), with

length given by
√〈

dα
dt ,

dα
dt

〉
. The length of the path α is then given by:

L[α] =
∫ 1

0

√(〈
dα(t)

dt
,
dα(t)

dt

〉)
dt . (1)

For any two points p, q ∈ M , one can define the distance between them as
the infimum of the lengths of all smooth paths on M which start at p and
end at q:

d(p, q) = inf
{α:[0,1] �→M|α(0)=p,α(1)=q}

L[α] . (2)

A path α̂ which achieves the above minimum, if it exists, is a geodesic
between p and q on M .

Example 5. 1. Geodesics on a unit sphere Sn are great circles [9]. The distance
minimizing geodesic between two points p and q is the shorter of the two
arcs of a great circle joining them between them. As a parameterized curve,
this geodesic is given by:

α(t) =
1

sin(θ)
[sin(θ − t)p + sin(t)q] (3)

where θ = cos−1(〈p, q〉).
2. To define geodesics on SO(n), we introduce the notion of matrix expo-

nential. For a matrix A ∈M(n), define its matrix exponential exp(A) by:

exp(A) = I +
A

1!
+

A2

2!
+

A3

3!
+ . . . (4)

Using the matrix exponential, one can define geodesics on SO(n) (with
respect to the Riemannian metric defined earlier) as follows: for any O ∈
SO(n) and any skew-symmetric matrix X , α(t) ≡ O exp(tX), is the unique
geodesic in SO(n) passing through O with velocity OX at t = 0 [9].
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An important tool in studying statistics on a manifold is an exponential
map. If M is a Riemannian manifold and p ∈ M , the exponential map
expp : Tp(M) → M , is defined by expp(v) = αv(1) where αv is a constant
speed geodesic whose velocity vector at p is v. For Rn, under the Euclidean
metric, since geodesics are given by straight lines, the exponential map is a
simple addition: expp(v) = p + v, for p, v ∈ Rn. The exponential map on a
sphere, exp : Tp(Sn) �→ Sn, is given by expp(v) = cos(‖v‖)p + sin(‖v‖) v

‖v‖ . In
case of SO(n), the exponential is given by expO(X) = O exp(X), where the
exponential on the right side is defined in Eqn. 4. We illustrate the notions
of the exponential map in figure 2.

Fig. 2 Figure illustrating the notion of exponential maps and inverse exponential
maps.

3.2 Special Manifolds of Interest

We are interested in quotient spaces of the special orthogonal group SO(n)
studied earlier. We start by introducing the notion of a quotient space of a
group. A group G is a set having an associative binary operation, denoted by
·, such that: (i) there is an identity element e in G, and (ii) for each element,
there exists a unique inverse. Let H be a subgroup of G. For any element
g ∈ G, define a left coset of H in G by gH = {g · h∣∣h ∈ H}. In general, the
cosets are not subgroups and the only coset that is a subgroup of G is H itself
(eH). For different elements g1 and g2, the cosets g1H and g2H will either
be identical or disjoint. They will be identical when g−1

2 g1 is an element of
H ; otherwise they will be disjoint. This is similar to an equivalence relation
that partitions a set into disjoint equivalence classes. In fact, one can define
an equivalence relation using membership of these cosets: we define g1 ∼ g2

if g1 ∈ g2H , i.e. g1 = g2h for some h ∈ H . In the notation of equivalence
classes, we have [g] = gH . The quotient space G/ ∼, also denoted by G/H to
emphasize the role of H in defining ∼, is the set of all left cosets of H in G.
The quotient space G/H is also called the space G modulo H , or the space
that results when H is removed from G.

Now we consider three specific manifolds that are important in our analysis
of features in videos.
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1. Stiefel Manifold: Let the set of all n× d orthogonal matrices be Sn,d,

Sn,d = {U ∈ Rn×d|UTU = Id} ⊂ GL(n, d). (5)

Sn,d is called a Stiefel manifold, and each element of Sn,d provides an
orthonormal basis for a d-dimensional subspace of Rn. Sn,d can also be
viewed as a quotient space of SO(n) as follows. First, consider SO(n− d)
as a subgroup of SO(n) using the embedding: φ1 : SO(n − d) �→ SO(n),
defined by

φ1(V ) =
[

Id 0
0 V

]
∈ SO(n) . (6)

With this embedding, we can generate left cosets of SO(n): for an O ∈
SO(n), a coset is given by Oφ1(S(n − d)). This defines an equivalence
relation ∼ in SO(n) according to: for Q1, Q2 ∈ SO(n),

Q1 ∼ Q2, if and only if Q1 = Q2φ1(V ), for some V ∈ SO(n− d) .

In other words, Q1 ∼ Q2 if and only if their first d columns are identical,
irrespective of the remaining columns. Therefore, Sn,d can be viewed as
the quotient space

Sn,d = SO(n)/ ∼ or SO(n)/φ1(SO(n−d)) or simply SO(n)/SO(n−d) .

2. Grassmann Manifold: If one is interested only in the subspace spanned
by the columns of U , and not in a particular basis, then the required space
is reduced further. Let SO(d)×SO(n− d) be a subset of SO(n) using the
embedding φ2 : (SO(d) × SO(n− d)) �→ SO(n):

φ2(V1, V2) =
[

V1 0
0 V2

]
∈ SO(n) , V1 ∈ SO(d), V2 ∈ SO(n− d). (7)

As for Sn,d, define an equivalence relation as a coset of SO(n) generated
by the subgroup φ2(SO(d)×SO(n−d)) and let Gn,d be the quotient space
SO(n)/φ2(SO(d) × SO(n − d)), or simply SO(n)/(SO(d) × SO(n − d)).
We will use the square-brackets to denote elements of Gn,d:

[U ] = {UO|U ∈ Sn,d, O ∈ SO(d)} .

3. Kendall’s Shape Manifold: Kendall [25] provided a mathematical the-
ory for the description of landmark based shapes. Bookstein [8] and later
Dryden and Mardia [14] have furthered the understanding of such land-
mark based shape descriptions. Kendall’s representation of shape describes
the shape configuration of n landmark points in an d-dimensional space as
a n× d matrix containing the coordinates of the landmarks. Pre-shape is
the geometric information that remains when location and scale effects are
filtered out. Let the configuration of a set of n landmark points be given
by a n-dimensional complex vector containing the positions of landmarks.
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Let us denote this configuration as X . The centered pre-shape is obtained
by subtracting the mean from the configuration and then scaling to norm
one. The centered pre-shape is given by

Zc =
CX

‖ CX ‖ , where C = In − 1
n

1n1Tn , (8)

where In is a n × n identity matrix and 1n is a n-dimensional vector
of ones. The pre-shape vector that is extracted by the method described
above lies on a spherical manifold. Let us denote this pre-shape space as
Pn,d. The shape space is now the quotient of the preshape space obtained
by removing all rotations of the shape i.e. Pn,d/SO(d).

Example 6 (Kendall Shape Metrics). Several distance metrics have been
defined in [14] to measure distances between shapes using the Kendall’s shape
representation. Here, we shall describe some of them. Consider two complex
configurations X and Y with corresponding preshapes α and β. The full
Procrustes distance between the configurations X and Y is defined as the
Euclidean distance between the full Procrustes fit of α and β. Full Procrustes
fit is chosen so as to minimize

d(Y, X) =‖ β − αsejθ − (a + jb)1n ‖, (9)

where s is a scale, θ is the rotation and (a + jb) is the translation. The Full
Procrustes distance is the minimum Full Procrustes fit i.e.,

dFull(Y, X) = inf
s,θ,a,b

d(Y, X). (10)

We note that the preshapes are actually obtained after filtering out effects
of translation and scale. Hence, the translation value that minimizes the full
Procrustes fit is given by (a + jb) = 0, while the scale s = 1. The rotation
angle θ that minimizes the Full Procrustes fit is given by θ = arg(|α∗β|).
The partial Procrustes distance between configurations X and Y is obtained
by matching their respective preshapes α and β as closely as possible over
rotations, but not scale. So,

dPartial(X, Y ) = inf
ΓεSO(d)

‖ β − αΓ ‖ . (11)

It is interesting to note that the optimal rotation θ is the same whether we
compute the full Procrustes distance or the partial Procrustes distance. The
Procrustes distance ρ(X, Y ) is the closest great circle distance between α and
β on the preshape sphere. The minimization is done over all rotations. Thus
ρ is the smallest angle between complex vectors α and β over rotations of α
and β. The three distance measures defined above are all trigonometrically
related as

dFull(X, Y ) = sinρ(X, Y ), dPartial(X, Y ) = 2 sin(
ρ(X, Y )

2
). (12)
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3.2.1 Tangent Structure of the Special Manifolds

If M/H is a quotient space of M under the action of a group H ⊂ M
(assuming H acts on M), then, for any point p ∈ M , a vector v ∈ Tp(M)
is also tangent to M/H as long as it is perpendicular to the tangent space
Tp(pH). Here, Tp(pH) is considered as a subspace of Tp(M). We will use this
idea to find tangent spaces on Sn,d, Gn,d, and Kendall’s shape space, using
the tangent structure of SO(n).

1. Tangent Structure of Sn,d: Since Sn,d = SO(n)/φ1(SO(n − d)), set
M = SO(n) and H = φ1(SO(n − d)), with φ1 as defined in Eqn. 6. Let
J ∈ Rn×d be a tall-skinny matrix, made up of the first d columns of In;
J acts as the “identity” element in Sn,d. A vector in TIn(SO(n)), that is
perpendicular to Tφ1(In−d)(InSO(n − d)), when multiplied on right by J
results in a tangent to Sn,d at J . This gives:

TJ(Sn,d) = {
[

C
−BT

]
|C = −CT , C ∈ Rd×d, B ∈ Rd×(n−d)} . (13)

For any other point U ∈ Sn,d, let Q ∈ SO(n) be a matrix that rotates the
columns of U to align with the columns of J , i.e. let U = QTJ . Note that
the choice of Q is not unique. It follows that the tangent space at U is
given by: TU (Sn,d) = {QTG|G ∈ TJ(Sn,d)}.

2. Tangent Structure of Gn,d: In this case, set M = SO(n) and H =
φ2(SO(d) × SO(n − d)), with φ2 as given in Eqn. 7. Using the same ar-
gument made before, the vectors tangent to SO(n) and perpendicular to
the space (TId

(SO(d)) × TIn−d
(SO(n − d))), will also be tangent to Gn,d

after multiplication on right by J . Thus, the tangent space at [J ] ∈ Gn,d
is given by:

T[J](Gn,d) = {
[

0
−BT

]
| B ∈ Rd×(n−d)} (14)

For any other point [U ] ∈ Gn,d, let Q ∈ SO(n) be a matrix such that U =
QTJ . Then, the tangent space at [U ] is given by TU (Gn,d) = {QTG|G ∈
TJ(Gn,d)}.

3. Tangent Structure of Kendall’s Shape Space: The pre-shape formed
by n points lie on a n−1 dimensional complex hypersphere of unit radius.
The Procrustes tangent coordinates of a preshape α are given by

v(α, μ) = αα∗μ− μ|α∗μ|2. (15)

where μ is the Procrustes mean shape of the data.

So far we have introduced several manifolds of interest – namely Sn, Sn,d
and Gn,d – and have defined their geometries, including their tangent spaces,
Riemannian metrics, geodesics and exponential maps. Now we consider the
task of studying statistics on these manifolds.
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4 Statistical Inference on Manifolds

What are the challenges in performing a statistical analysis if the underlying
state space is non-Euclidean? Take the case of the simplest statistic, the
sample mean, for a sample set (x1, x2, . . . , xn) on Rn:

x̄k =
1
k

k∑
i=1

xi, xi ∈ Rn . (16)

Since x̄k is a widely used and studied statistic, one already knows the pros
and cons of using x̄k as an estimate of the population mean. For example, we
know that x̄k is an unbiased and efficient estimator, but it is susceptible to
the outliers. Now what if the underlying space is not Rn but a non-Euclidean
manifold instead? To answer this question we consider an n-dimensional Rie-
mannian manifold M . Let d(p, q) denote the length of the shortest geodesic
between arbitrary points p, q ∈ M . To facilitate a general discussion, we
will assume that there exists an embedding ε : M → V where V is an m-
dimensional Hilbert space (n ≤ m). We have chosen V to be a vector space
so that we can perform a statistical analysis in V using standard techniques
from multivariate calculus. The distance between any two elements p, q ∈M
is the geodesic distance d(p, q) when the geodesic is restricted to be in M and
it is ‖ε(p) − ε(q)‖, with the norm of V , when the geodesic is allowed to be
in V . The latter distance, of course, depends on the choice of the embedding
ε. We start the analysis by assuming that we are given a probability density
function f on M . This function, by definition, satisfies the properties that
f : M → R≥0 and

∫
M f(p)dp = 1, where dp denotes the reference measure

on M with respect to which the density f is defined. We can extend f to the
larger set V by simply setting:

f̃(x) =
{

f(p) if x = ε(p), p ∈M
0 if x �∈ ε(M) . (17)

Naturally, f̃ is a probability density function on V . There are two possibilities
for computing statistics on M – intrinsic and extrinsic. We describe them
next.

4.1 Intrinsic Statistics

The first question that we consider is: What is a suitable notion of mean on
the Riemannian manifold M? A popular method for defining a mean on a
manifold was proposed by Karcher [24] who used the centroid of a density as
its mean.

Definition 2 (Karcher Mean [24]). The Karcher mean μint of a probabil-
ity density function f on M is defined as local minimizer of the cost function:
ρ : M → R≥0, where
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ρ(p) =
∫
M

d(p, q)2f(q) dq . (18)

dq denotes the reference measure used in defining the probability density f
on M . The value of function ρ at the Karcher mean is called the Karcher
variance. How does the definition of Karcher mean adapt to the sample set,
i.e. a finite set of points drawn from an underlying probability distribution?
Let q1, q2, . . . , qk be independent random samples from the density f . Then,
the sample Karcher mean of these points is defined to be the local minimizer
of the function:

ρk(p) =
1
k

k∑
i=1

d(p, qi)2 . (19)

An iterative algorithm for computing the sample Karcher mean is as follows.
Let μ0 be an initial estimate of the Karcher mean. Set j = 0.

1. For each i = 1, . . . , k, compute the tangent vector vi such that the geodesic
from μj , in the direction vi, reaches qi at time one, i.e. ψ1(μj , vi) = qi or
vi = exp−1

μj
(qi).

2. Compute the average direction v̄ = 1
k

∑k
i=1 vi.

3. If ‖v̄‖ is small, then stop. Else, update μj in the update direction using

μj+1 = ψε(μj , v̄),

where ε > 0 is small step size, typically 0.5. ψt(p, v) denotes the geodesic
path starting from p in the direction v parameterized by time t. In other
words, μj+1 = expμj

(εv̄).
4. Set j = j + 1 and return to Step 1.

It can be shown that this algorithm converges to a local minimum of the cost
function given in Eqn. 19 which by definition is μint. Depending upon the
initial value μ0 and the step size ε, it converges to the nearest local minimum.

We exploit the fact that the tangent spaces of M are vector spaces and can
provide a domain for defining covariances. We can transfer the probability
density f from M to a tangent space Tp(M), using the inverse exponential
map, and then use the standard definition of central moments in that vector
space. For any point p ∈ M , let p → v ≡ exp−1

μ (p) denote the inverse
exponential map at μ from M to Tμ(M). The point μ maps to the origin
0 ∈ Tμ(M) under this map. Now, we can define the Karcher covariance
matrix as:

Kint =
∫
Tµ(M)

vvT fv(v)dv, v = exp−1
μ (q) ,

where fv is the induced probability density on the tangent space. For a finite
sample set, the sample Karcher variance is given by

K̂int =
1

k − 1

k∑
i=1

viv
T
i , where vi = exp−1

μ (qi) . (20)
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4.2 Extrinsic Statistics

The other possibility for performing statistics is to use the vector space struc-
ture of V to simplify calculations. In this case one transfers the probability
measure to V , computes the pertinent statistical quantities in V and projects
the final results back to M . Let Π : V →M be a projection map defined in
such a way that

Π(v) = argminp∈M‖v − ε(p)‖2 . (21)

The existence and the uniqueness of Π , of course, depend on the nature of
M , p and ε. Now, the extrinsic mean of a density f on M is defined as follows.

Definition 3 (Extrinsic Mean). The extrinsic mean of density f on M ,
specified with respect to an embedding ε of M in a larger vector space V , is
given by

μext = Π(ν),

where:

• Π is the projection defined in Eqn. 21,
• ν =

∫
V

vf̃(v)dv is the standard mean of f̃ in V , and
• f̃ is the unique extension of f from M to V (given by Eqn. 17).

Once the embedding ε has been chosen, and a mechanism for projection
Π has been established, the rest of the process is quite straightforward. It
requires computing the mean of f̃ in V and projecting it down to M . In case
M is a Euclidean space, the projection is simply the identity operation and
the extrinsic mean coincides with the classical mean. Additionally, in this
case, if the Euclidean metric is chosen as the Riemannian metric, then the
intrinsic mean also coincides with the classical mean.

What about the covariance analysis in an extrinsic framework? An extrin-
sic covariance can be defined similar to the extrinsic mean. Let π : V →
Tν(M) be any linear map. Since it is a linear map, it can be written as a
n×m matrix A so that π(v) = Av. Define the covariance

Kv =
∫
V

(v − ν)(v − ν)tf̃(v)dv ,

in the vector space V and project it using:

Kext = AKvA
T . (22)

The advantages and disadvantages of an extrinsic mean, with respect to
the Karcher mean, are straightforward. The main advantage is its compu-
tational simplicity. Once an embedding ε is chosen, the rest of the analysis
is quite standard and typically very fast. In contrast, computation of the
Karcher mean requires repeated computations of the exponential and inverse
exponential maps. The disadvantage is that the result Π(ν) depends on the
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choice of embedding ε which is quite arbitrary. Different embeddings will
result in different solutions, and the projection Π itself may not be unique.

Example 7 (Extrinsic Mean of Subspaces). As discussed in section 3.2,
the Grassmann manifold can be viewed as a quotient space of the set of full-
rank n×d orthonormal matrices. We can also associate to each d-dimensional
subspace an n × n idempotent projection matrix P of rank d (not to be
confused with the projection operation Π), such that P = Y Y T , where Y is
a point on the Sn,d whose columns span the subspace. The space of n × n
projectors of rank d, denoted by Pn,d can be embedded into the set of all
n × n matrices – Rn×n – which is a vector space. The projection Π from
Rn×n to Pn,d is given by

Π(M) = UUT , where M = USV T is the d-rank SVD of M. (23)

Using this embedding, we can define an extrinsic distance metric on the
Grassmann manifold using the distance metric inherited from Rn×n.

d2(P1, P2) = tr(P1 − P2)T (P1 − P2) (24)

Given a set of sample points on the Grassmann manifold represented
uniquely by projectors {P1, P2, . . . , PN}, we can compute the extrinsic mean
by first computing the mean of the Pi’s and then projecting the solution to
the manifold by means of equation (23). i.e.

μext = Π(Pavg), where Pavg =
1
N

N∑
i=1

Pi (25)

4.3 Learning Distributions from Data

In addition to sample statistics such as the mean and covariance, it is possible
to define parametric probability distribution functions on manifolds. The in-
trinsic distributions are defined on the manifolds of interest directly without
embedding them into a vector space. Examples of such distributions include
the Langevin distribution for spherical data. Another intrinsic way of defin-
ing probability distributions is to project parametric distributions onto the
manifold of interest. In addition to intrinsic methods such as these, we can
estimate extrinsic distributions as well.

Example 8 (Intrinsic Density Estimation). Suppose, we have n sample
points, given by q1, q2, ...qn from a manifoldM. Then, we first compute their
Karcher mean q̄ as discussed before. The next step is to define and compute
a sample covariance for the observed qi’s. The key idea here is to use the fact
that the tangent space Tq̄(q) is a vector space. For a d-dimensional manifold,
the tangent space at a point is also d dimensional. Using a finite-dimensional
approximation, say V ⊂ Tq̄(q), we can use the classical multivariate calculus
for this purpose. The resulting sample covariance matrix is given by:
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Σ̄ =
1

n− 1

n∑
i=1

viv
T
i

where each vi is a d-dimensional sample of the function exp−1
q̄ qi. Note that

by definition, the mean of vis should be zero. In cases where the number of
samples n is smaller than d, one can apply an additional dimension-reduction
tool to work on a smaller space. For instance, we can use the singular value
decomposition (SVD) of the sample covariance matrix Σ̄ and retain only
the top m significant singular values and the corresponding singular vectors.
In such cases, the covariance matrix is indirectly stored using λ1, λ2, ...λm
singular values and their corresponding singular vectors u1, u2, ...um.

The exponential map: expq̄ : Tq̄(q) → M maps this covariance back to
M. Specifically, this approach is widely used to define wrapped-Gaussian
densities on a given manifold. In general, one can define arbitrary pdfs on
the tangent plane such as mixtures of Gaussians, Laplace etc and project it
back to the manifold via the exponential map. This allows us to experiment
with and choose an appropriate pdf that works well for a given problem
domain.

Example 9 (Extrinsic Densities using Kernels). Here we discuss density
estimation over the Grassmann manifold using extrinsic methods proposed
by [12]. Given two orthonormal bases Y1 and Y2 we define the distance be-
tween the subspaces as the smallest squared Euclidean distance between their
corresponding equivalence classes on the Stiefel manifold. Hence,

d2([Y1], [Y2]) = min
R∈SO(d)

tr(Y1 − Y2R)T (Y1 − Y2R) (26)

This distance is called the Procrustes distance [12]. This minimization can
be solved in closed form. It is possible to relax the constraint that R ∈ SO(d)
to R ∈ GL(d). In this case, the minimum is attained at R = A and the
distance is given by d2(Y1, Y2) = tr(Ik − ATA), where A = Y T

1 Y2. We refer
the reader to [12] for derivations and other cases. Using this interpretation,
we can define extrinsic statistics on the Grassmann manifold. Here, we discuss
a non-parametric method for estimation of pdfs. Given several samples from
a pdf, represented by orthonormal basis (Y1, Y2, . . . , Yn), the density can be
estimated using extrinsic methods and the Procrustes metric [12] as

f̂(Y ; M) =
1

n
C(M)

n∑
i=1

K[M−1/2(Ik − Y T
i Y Y T Yi)M

−1/2] (27)

where K(T ) is the kernel function, M is a k × k positive definite ma-
trix which plays the role of the kernel width or a smoothing parameter.
C(M) is a normalizing factor chosen so that the estimated density integrates
to unity.



Statistical Analysis on Manifolds and Its Applications to Video Analysis 133

5 Applications and Experiments

In this section, we present several examples where an understanding of the
manifold that the data lies on can provide a principled means of solving the
problem. The examples we discuss include 1. human gait analysis, 2. activity
analysis via state-space modeling and 3. modeling execution-rate variations
in human activities.

5.1 Feature Space Manifold: Kendall’s Shape Sphere
for Human Gait Analysis

Shape analysis plays a very important role in object recognition, matching
and registration. There has been substantial work in shape representation
and on defining a feature vector which captures the essential attributes of
the shape. A description of shape must be invariant to translation, scale and
rotation. The Kendall’s shape space is a natural feature to use in such cases.
Given a binary image consisting of the silhouette of a person, we extract the
shape from this binary image. The procedure for obtaining shapes from the
video sequence is graphically illustrated in Figure 3(a). Note that each frame
of the video sequence maps to a point on the spherical shape manifold.

Consider a situation where there are two shape sequences and we wish
to compare how similar these two shape sequences are. One may want to
use non-parametric sequence matching such as Dynamic-Time warping or a
parametric approach such as state-space modeling. In either case, we need
to take into account the geometry of the shape-manifold for matching. Con-
sider dynamic time warping, which has been successfully used by the speech
recognition [34] community for performing non-linear time normalization.
Pre-shape, as we have already discussed lies on a spherical manifold. In our
experiments, we use the Procrustes shape distance described in section 3.2
during the DTW distance computations. For state-space modeling such as
autoregressive (AR) or ARMA, we use the tangent structure of the mani-
fold. We project a given sequence to the tangent plane constructed at the
mean-point. The AR and ARMA model parameters are then estimated on
the tangent-planes. The tangent structure for Kendall’s shape manifold was
discussed in 3.2.1. Once the model parameters are estimated, computing sim-
ilarity between two sequences can be performed by computing the distance
between the model parameters. We refer the reader to [48] for details of
model fitting and computing similarity between the model-parameters. Next,
we present some experiments that demonstrate the utility of these methods.

5.1.1 Gait Recognition Experiment on the USF Gait Database

The USF database [35] consists of 71 people in the Gallery. Various covari-
ates such as camera position, shoe type, surface and time were varied in
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Fig. 3 (a)Graphical illustration of the sequence of shapes obtained during a walk-
ing cycle, (b)Bar Diagram comparing the identification rate of various algorithms.

a controlled manner to design a set of challenge experiments1[35]. On the
USF database we conducted experiments on recognition performance using
these methods- Stance Correlation, DTW on shape space, Stance based AR
(a slight modification of the AR model [48]) and the ARMA model. Gait
recognition experiments were designed for challenge experiments A-G. These
experiments featured and tested the recognition performance against various
covariates like the camera angle, shoe type, surface change etc. Refer to [35]
for a detailed description of the various experiments and the covariates in
these experiments. Figure 3(b) shows a comparison of the identification rate
(rank 1) of the various shape and kinematics based algorithms. It is clearly
seen that shape-based algorithms perform better than purely kinematics-
based algorithms.

5.2 Model Space Manifold: Grassmann Manifold for
Human Activity Analysis

Modeling of human activities is an important problem in video-understanding.
Applications of activity recognition include activity-based indexing, bio-
metrics, motion synthesis, and anomaly detection. Human activity analysis
typically proceeds in a hierarchical fashion. At lower-levels, some features
pertaining to motion of the human are extracted from video sequences such
as optical flow or background subtracted masks. Then, a model is imposed
on the feature evolution such as Hidden Markov Models (HMMs) or Linear
Dynamic Systems (LDS). Given training data, the goal is to estimate the

1 Challenge Experiments:Probes A-G in increasing order of difficulty.
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model parameters. Here we study ARMA models and show that the study
of these models can be formulated as a study of the geometry of the Grass-
mann manifold. A wide variety of time series data such as dynamic textures,
human joint angle trajectories, shape sequences, video based face recognition
etc are frequently modeled as ARMA models [37, 6, 48, 2]. The ARMA model
equations are given by

f(t) = Cz(t) + w(t) w(t) ∼ N(0, R) (28)
z(t + 1) = Az(t) + v(t) v(t) ∼ N(0, Q) (29)

where, z is the hidden state vector, A the transition matrix and C the
measurement matrix. f represents the observed features while w and v are
noise components modeled as normal with 0 mean and covariance R and Q
respectively.

The model parameters (A, C) learned as above do not lie on a Euclidean
space. The transition matrix A is constrained to be stable with eigenvalues
inside the unit circle. The observation matrix C is constrained to be an
orthonormal matrix. Now, starting from an initial condition z(0), it can be
shown that the expected observation sequence is given by

E

⎡⎢⎢⎢⎢⎣
f(0)
f(1)
f(2)

.

.

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
C

CA
CA2

.

.

⎤⎥⎥⎥⎥⎦ z(0) = O∞(M)z(0) (30)

Thus, the expected observation sequence generated by a time-invariant
model (A, C) lies in the column space of the extended observability matrix
given by O∞ = [CT , (CA)T , (CA2)T , ...]T . However, motivated by the fact
that human actions are of a finite-duration in time and not infinitely ex-
tending in time, we can simplify the study of the model by considering only
an n-length expected observation sequence instead of the infinite sequence as
above. Let the size of the temporal window be n. Thus, the n-length expected
observation sequence generated by the model (A, C) lies in the column space
of the finite observability matrix given by

OT
n =

[
CT , (CA)T , (CA2)T , . . . (CAn−1)T

]
(31)

We can thus identify a dynamical model by a point on the Grassmann
manifold, corresponding to the subspace spanned by the columns of the ob-
servability matrix. Since, the geometry of the Grassmann manifold is known
we can use its geometry as discussed in sections 3.2 and 3.2.1 to define dis-
tances, exponential maps, and statistics (section 4) for video classification.

5.2.1 INRIA iXMAS Activity Recogntion Experiment

We performed a recognition experiment on the publicly available INRIA
dataset [50]. The dataset consists of 10 actors performing 11 actions, each
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Table 1 Comparison of view invariant recognition of activities in the INRIA
dataset using a) Best DimRed [50] on 16× 16× 16 features, b) Best Dim. Red. [50]
on 64 × 64 × 64 features, c) Nearest Neighbor using Subspace angles (16 × 16 × 16
features) d) Nearest Neighbor using Procrustes distance (16× 16× 16 features), e)
Maximum likelihood using wrapped Gaussian(16 × 16 × 16 features) f) Maximum
likelihood using Parzen windows on the Grassmann manifold (16×16×16 features)

Activity Dim. Red.
[50] 163 vol-
ume

Best Dim.
Red. [50]

643 volume

Subspace
Angles 163

volume

Procrustes
Metric 163

volume

Wrapped
Normal
163 volume

Extrinsic
Kernel 163

volume

Check Watch 76.67 86.66 93.33 90 100 100
Cross Arms 100 100 100 96.67 96.67 100
Scratch Head 80 93.33 76.67 90 100 96.67
Sit Down 96.67 93.33 93.33 93.33 90 93.33
Get Up 93.33 93.33 86.67 80 96.67 96.67
Turn Around 96.67 96.67 100 100 96.67 100
Walk 100 100 100 100 100 100
Wave Hand 73.33 80 93.33 90 90 100
Punch 83.33 96.66 93.33 83.33 100 100
Kick 90 96.66 100 100 93.33 100
Pick Up 86.67 90 96.67 96.67 93.33 100
Average 88.78 93.33 93.93 92.72 96.06 98.78

action executed 3 times at varying rates while freely changing orientation.
We used the view-invariant representation and features as proposed in [50].
Specifically, we used the 16× 16× 16 circular FFT features proposed by [50].
Each activity was modeled as a linear dynamical system. Testing was per-
formed using a round-robin experiment where activity models were learnt us-
ing 9 actors and tested on 1 actor. In table 1, we show the recognition results
obtained using four methods. The first column shows the results obtained
using dimensionality reduction approaches of [50] on 16 × 16 × 16 features.
[50] reports recognition results using a variety of dimensionality reduction
techniques (PCA, LDA, Mahalanobis) and here we choose the row-wise best
performance from their experiments (denoted ‘Best Dim. Red.’) which were
obtained using 64×64×64 circular FFT features. The third column presents
results using the method of using subspace angles based distance between
dynamical models [13]. This is closely related to the geodesic on the Grass-
mann manifold for finite observability matrices. Column 4 shows the nearest-
neighbor classifier performance using Procrustes metric on the Grassmann
manifold (16 × 16 × 16 features). We see that the manifold Procrustes dis-
tance performs as well as subspace angles. But, statistical modeling of class
conditional densities for each activity using parametric and non-parametric
methods, leads to a significant improvement in recognition performance. In
addition to activity analysis and ARMA modeling, we refer the reader to
[45] for more example applications of statistical modeling on the Grassmann
manifold in computer vision applications.

5.2.2 Activity Based Summarization

The ARMA model described above in conjunction with statistical models on
the Grassmann manifold can be used to summarize long videos. Towards this
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purpose, we describe long videos as outputs of time-varying ARMA models
given by

f(t) = C(t)z(t) + w(t) w(t) ∼ N(0, R(t)) (32)
z(t + 1) = A(t)z(t) + v(t) v(t) ∼ N(0, Q(t)) (33)

Note that here the model parameters (A, C, Q, R) are allowed to vary with
time. Further, we assume that the model parameters change slowly with
time so that they can be approximated as locally constant. Thus, parameter
estimation is done in short-temporal windows (say of length 20 frames). This
gives rise to a sequence of model parameters Mt = (At, Ct). Each element
in the sequence can be considered to be a point on the Grassmann manifold
arising due to the time-varying observability matrix.

On(Mt) =
[
Ct; CtAt; . . . ; CtAn−1

t

]
(34)

Thus, the time-varying model can be viewed as a sequence of subspaces St,
where each subspace is spanned by the columns of the observability matrix
at the corresponding time instant. Thus, the sequence of subspaces can be
seen as a trajectory on the Grassmann manifold. To compactly represent the
subspace variations, we parametrize the trajectory using a switching model
akin to the HMM on the Grassmann manifold. This representation can be
used to provide a visual summarization of long videos [43]. The clusters of
the HMM represent the distinct actions in the video e.g. spins, leaps, glides
for the case of skating. The transition structure between the clusters repre-
sents how the overall activity in the video proceeds. In this experiment we
show the results of summarizing a long video containing a complex activ-
ity – the game of Blackjack. For this, we used the dataset reported in [51].
A few sample frames from the dataset are shown in figure 4. The game of
Blackjack consists of a few elements such as dealing cards, waiting for bids,
shuffling the cards etc. We try to estimate a Grassmann switching model for
the entire video of Blackjack. The Grassmann switching model would then
represent a ‘summary’ of the game, where the clusters of the model represent
various elements of the game and the switching structure represents how the
game progresses. This video consists of about 1700 frames. We extracted the
motion-histogram features as proposed in [51] for each frame of the video.
The time-varying model parameters are estimated in sliding windows of size
10. The dimension of the state vector is chosen to be d = 5. To estimate the
Grassmann switching model for the game of Blackjack, we manually set the
number of clusters to 5. In figure 5(a), we show an embedding of the video
obtained from the model parameters using Laplacian eigenmaps. Each point
corresponds to a time-invariant model parameter (A, C) pair or equivalently
a point on the Grassmann manifold. Each cluster was found to correspond
to a distinct element of the game as shown. The switching structure between
the clusters is encoded in the transition matrix and is shown in figure 5(b).
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Fig. 4 A few sample frames from the Blackjack dataset of [51].
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Fig. 5 (a) An embedding of the entire Blackjack video sequence. Figure best viewed
in color. (b) Estimated structure of the game of Blackjack. (For the sake of clarity
arcs with low weights have not been shown)

Similar ARMA models were also used in [44] for summarizing a long skating
video sequence.

5.3 Transformation Space Manifold: Hilbert Sphere
for Modeling Execution-Rate Variations in
Activities

In activity recognition, different instances of the same activity may consist
of varying relative speeds at which the actions are executed, in addition to
other intra- and inter- person variabilities. Most existing algorithms for ac-
tivity recognition are not very robust to intra- and inter-personal changes of
the same activity, and are sensitive to warping of the temporal axis due to
variations in speed profile. Results on gait-based person identification shown
in [7] indicate that it is very important to take into account the temporal
variations in the person’s gait. In [49], it was shown that accounting for exe-
cution rate enhances recognition performance for action recognition. Typical
approaches for accounting for variations in execution rate are either directly
based on the dynamic time warping (DTW) algorithm [34] or some variation
of this algorithm [49].

For now, let us assume that for each frame of the video, an appropriate
feature has been extracted and that the video data has now been converted
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into a feature sequence given by f1, f2, ..., for frames 1, 2, ... respectively.
We will use F to denote the feature space associated with the chosen feature.
Let γ be a diffeomorphism (A diffeomorphism is a smooth, invertible function
with a smooth inverse) from [0, 1] to itself with γ(0) = 0 and γ(1) = 1. Also,
let Γ be the set of all such functions. We will use elements of Γ to denote time
warping functions. Our model for an activity consists of an average activity
sequence given by a : [0, 1] → F , a parameterized trajectory on the feature
space. Any time-warped realization of this activity is then obtained using:

r(t) = a(γ(t)), γ ∈ Γ . (35)

Equation (35) actually defines an action of Γ on F [0,1], the space of all
continuous activities. In our model, the variability associated with γ in each
class will be modeled using a distribution Pγ on Γ. For the convenience of
analysis and computation, we prefer to work with ψ = +

√
γ̇ instead of γ

directly. There is a bijection between γ and ψ and the probability models on ψ
directly relate to equivalent models on γ. Thus, we will introduce probability
distributions Pψ on the set of all ψs, for each activity class.

The parameters of this model are a(t), the nominal activity trajectory,
and Pψ , the probability distribution on square-root representations of time
warping functions. In general, the nominal activity trajectory a(t) can also
be chosen to be random. Here, we restrict our analysis to cases where the
nominal activity trajectory a(t) is deterministic but unknown. We will con-
sider parametric forms of densities for Pψ and reduce the problem of learning
Pψ to one of learning the parameters of the distribution Pψ.

Let the space of all square-root density forms be given by

Ψ = {ψ : [0, 1]→ R|ψ ≥ 0,

∫ 1

0

ψ2(t)dt = 1} . (36)

This is the positive orthant of a unit hypersphere in the Hilbert space of all
square-integrable functions on [0, 1]. Let Tψ(Ψ) be the tangent space to Ψ at
any given point ψ. Then, for any v1 and v2 in Tψ(Ψ), the Fisher-Rao metric
is given by

〈v1, v2〉 =
∫ 1

0

v1(t)v2(t)dt. (37)

Since Ψ is a sphere, its geometry is well known and we can directly use
known expressions for geodesics, exponential maps, and inverse exponential
maps on Ψ as discussed in sections 3.2 and 3.2.1. Consequently, the algo-
rithms for computing sample statistics, defining probability density functions,
and generating inferences also become straightforward.

5.3.1 Common Activities Dataset

We used the UMD common activities dataset [49], a dataset of common activ-
ities to perform preliminary experiments to validate our model. The dataset
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consists of 10 activities and 10 different instances of each activity. We par-
tition the dataset into 10 disjoint sets each containing 1 instance of every
activity. In order to test the recognition performance for each set, we first
learn the model parameters from the remaining nine sets and then perform
recognition for the test sequences. We repeat the process for each of the 10
sets. Thus we ensure that there is no overlap between the training set and the
test sequences. Figure 6 shows the 10 × 100 similarity matrix for using the
function space algorithm with the uniform distribution on the space of tem-
poral warps. Each column corresponds to a different test sequence while each
row corresponds to a different activity. The strongly block diagonal nature
of the similarity matrix indicates that the recognition algorithm performs
well. In fact, on this database we obtained 100% recognition using both our
algorithms.

(f)  Kick                   (g) Bend to the side    (h) Throw      (i) Turn around     (j) Talk on Cellphone
(a) Pick up Object    (b) Jog in Place          (c) Push        (d) Squat             (e) Wave                  

(a) (b) (c) (e) (f) (g) (h) (j)(i)(d)

Fig. 6 10 X 100 Similarity matrix of 100 sequences and 10 different activities using
the function space algorithm.

5.3.2 USF Gait Database

Since the model for learning the function space of time-warpings is not ex-
plicitly dependent on the choice of features, one could potentially use the
same model to learn individual specific function spaces in order to perform
activity-based person identification. The only difference would be that we
would choose a feature that is person-specific (e.g., silhouette). The nominal
activity trajectory would be individual specific in this case. Various external
conditions (such as surface, shoe) induce systematic time-warping variations
within the gait signatures of each individual. The function space of temporal
warpings for each individual amounts to learning the class of person specific
warping functions. By learning the function space of these variations we are
able to account for the effects of such external conditions.

In order to compare the performance of our algorithm with the current
state of the art algorithms, we also performed a gait-based person identifica-
tion experiment on the publicly available USF gait database [35]. The USF
database consists of 71 people in the Gallery. Various covariates like camera
position, shoe type, surface and time were varied in a controlled manner to
design a set of challenge experiments[35]. We performed a round-robin recog-
nition experiment in which one of the challenge sets was used as test while
the other seven were used as training examples. The process was repeated
for each of the seven challenge sets on which results have been reported.
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Table 2 Comparison of Identification rates on the USF dataset. Note that the
experimental results reported in this table contain varying amounts of training
data. While columns 2-6 (Baseline - pHMM) used only the gallery sequences for
training, the results reported in columns 7-10 (PLW - PGaussIm) used all the probes
except the test probe during training.

Pr- Base- DTW HMM HMM pHMM PLW PUnif PGauss PGaussIm

obe line Shape Shape Image [29]

Avg. 42 42 41 50 65 51.5 59 59 64

A 79 81 80 96 85 68 70 78 82
B 66 74 72 86 89 51 68 68 78

C 56 52 56 74 72 51 81 82 76
D 29 29 22 32 57 53 40 50 48

E 24 20 20 28 66 46 64 51 54

F 30 19 20 17 46 50 37 42 56
G 10 19 19 21 41 42 53 40 55

Table 2 shows the identification rates of our algorithm with a uniform distri-
bution on the space of warps (PUnif ), our algorithm with a wrapped Gaussian
distribution on the tangent space of warps with shape as a feature and with
binary image feature (PGauss and PGaussIm). For comparison the table also
shows the baseline algorithm [35], simple DTW on shape features [48] and the
image-based HMM [23] algorithm on the USF dataset for the 7 probes A-G.
Since most of these other algorithms could not account for the systematic
variations in time-warping for each class the recognition experiment they
performed was not round robin but rather used only one sample per class
for learning. Therefore, to ensure a fair comparison, we also implemented a
round-robin experiment using the linear warping (PLW ).

The average performance of our algorithms PUnif and PGauss are bet-
ter than all the other algorithms that use the same feature, (DTW/HMM
(Shape)[48] and Linear warping PLW ) and is also better than the baseline[35]
and HMM[23] algorithms that use the image as a feature. The improvement
in performance while using binary image as a feature is shown in the last
column (PGaussIm). The experimental results presented here clearly show
that using multiple training samples per class and learning the distribution
of their time warps makes significant improvement to gait recognition re-
sults. While most algorithms based on learning from a single sample led to
overfitting and therefore performed much better when the gallery was similar
to the probe (Probe A-C), they also performed very poorly when the gallery
and the probes were significantly different. But, since our algorithm has good
generalization ability the performance of our algorithm did not suffer from
overfitting and therefore did not drop as much when moving from probes A-C
to Probes D-G.
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6 Conclusions

In this chapter we provided a brief overview of the usefulness and effectiveness
of statistical analysis on manifolds to specific applications in video analysis.
Typical video analysis is usually composed of three stages of processing -
feature extraction, building models and accounting for transformation in-
variance. We highlight three different applications of manifold analysis, one
for each of the three stages in a typical video analysis framework. We de-
scribe Kendall shape manifold for shape feature representation. We show the
applicability of the Grassmann manifold for understanding dynamical mod-
els. Finally, we show the space of time-warp transformations as a spherical
manifold of functions. In all applications, we show experiments that illustrate
the superior performance of algorithms that exploit the geometric properties
of the underlying manifold.
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Abstract. In recent years, there has been significant interest in the area of auto-
matically recognizing activities occurring in a camera’s field of view and detecting
abnormalities. The practical applications of such a system could include airport tar-
mac monitoring, or monitoring of activities in secure installations, to name a few.
The difficulty of the problem is compounded by several factors: detection of primi-
tive actions in spite of changes in illumination, occlusions and noise; complex multi-
agent interaction; mapping of higher-level activities to lower-level primitive actions;
variations in which the same semantic activity can be performed. In this chapter,
we develop a theory of semantic activity analysis that addresses each of these is-
sues in an integrated manner. Specifically, we discuss ontological representations of
knowledge of a domain, integration of domain knowledge and statistical models for
achieving semantic mappings, definition of logical languages to describe activities,
and design of frameworks which integrate all the above aspects in a coherent way,
thus laying the foundations of effective Semantic Video Content Analysis systems.

1 Introduction

Interaction amongst humans and with objects forms the basis of almost all human
activities. Semantics refers to the meaning associated with a particular interaction.
While the set of all possible interactions can be quite large, many activities are con-
strained in nature. These constraints are induced in part by the surrounding environ-
ment under consideration, such as an airport, and in part by the underlying motive
of the interaction, such as a hand-shake. The visual analysis of activities performed
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by a group of humans in such settings is of great importance in applications such
as automated security and surveillance systems. In real life, one usually has some
prior knowledge of the semantic structures of activities that occur in a given set-
ting. Taking into account this knowledge, we need to understand how to represent
the constraints induced both by the surrounding environment and by the motive of
the particular activity. The representation and analysis of these constraints and the
mapping to semantically meaningful concepts form the subject of this chapter.

There has been significant interest in the area of automatically recognizing ac-
tivities occurring in a camera’s field of view and detecting abnormalities. Several
factors contribute to the complexity of the problem: a) unambiguous detection of
low-level primitive actions in spite of changes in illumination, occlusions and noise;
b) high-level representation of activities in settings which are usually characterized
by complex multi-agent interaction; c) mapping higher-level concepts to lower-level
primitive actions; d) understanding the variations in which the same semantic activ-
ity can be performed and achieving robustness to such variations during recognition.

In this chapter, we develop a theory of semantic activity analysis that addresses
each of these issues in an integrated manner. Specifically, Section 2 summarizes
the major challenges and issues in the field of semantic activity analysis, and pro-
poses a general framework which integrates all these aspects in a coherent way.
Section 3 discusses ontological representations of domain knowledge, while Sec-
tion 4 proposes two different solutions – based on Finite State Automata and Petri
Nets respectively – for integrating domain knowledge and statistical models, and
achieving semantic mappings. Section 5 explores logical languages for describing
activities. Finally, experimental evaluations of the proposed techniques are reported
in Section 6 and concluding remarks are given in Section 7.

2 Human Interactions: Challenges and Issues

Designing a system for semantic analysis of human actions from video requires
one to adopt a principled approach starting from defining an activity. This requires
specifying the domain of interest and the types of activities of interest. Once we
enumerate and define what we mean by activities, we then need to represent them
by appropriate computational models. This forms the basis for any automatic ap-
proach to recognizing human activities. However, video data brings with it unique
challenges that require specific attention to enable deploying semantic models for
real applications. Many of the key challenges are a consequence of the nature of
the imaging process. Cameras generate mappings from the three-dimensional world
to a two-dimensional image plane. This necessarily introduces several ambiguities
which make reasoning difficult and low-level processing prone to errors. Therefore,
video analysis requires methods that are not only semantically rich, but also robust
to errors in the low-level processing. Furthermore, achieving all of these goals in a
real-time setting requires designing computationally efficient algorithms.

Another major issue in automatic activity detection is the semantic gap between
the types of primitive actions that can be automatically recognized using state of
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the art image processing algorithms (e.g., a person walking on a street, the presence
of a package-like object in the scene) and the type of complex interactions that
automatic surveillance systems are intended to detect. Therefore, expressive and
flexible models are needed to describe complex interactions in terms of primitive
actions. The challenge here is to build such models in a way that is general enough
to be applied to different domains and robust to noise and variations from standard
scenarios. Thus, video mining requires addressing the following core issues:

1. Representation: Defining the meaning of an activity.
2. Model: Defining computational models for an activity.
3. Robustness: Designing algorithms robust to ambiguities in the imaging process.
4. Efficiency: Designing efficient recognition algorithms.

In this chapter, we discuss each of these problems and provide the reader with a
deeper understanding of the underlying challenges. We demonstrate the effective-
ness of the proposed design philosophy using experiments on real video sequences.

2.1 Unified Framework for Activity Semantics

Although a huge amount of work has been done on many of the individual issues
discussed in the previous section, considerably less effort has been put towards the
definition of a framework where all the aspects of Semantic Video Content Analysis
are integrated in a coherent and effective way. Broadly speaking, there are three
main classes of problems – from a user’s perspective – that such an integrated system
should address:

• Evidence. Given a video v, a set of activity definitions A , a time interval (ts, te),
and a probability threshold pt , find all the minimal subsequences of v containing
occurrences X of activities in A such that X occurs within the interval (ts, te)
with probability p≥ pt .

• Identification. Given a video v, a set of activity definitions A , a time interval
(ts,te), find the activity which occurs in v within the interval (ts, te) with maximal
probability among the activities in A .

• Online Identification. Given a real-time video feed v = 〈 f1, f2, . . . , ft 〉, where ft
is the current frame, and a set of activity definitions A , find the probability that
each activity in A is unfolding at current time t.

In this chapter, we put particular emphasis on discussing how all the compo-
nents of a Semantic Video Content Analysis system can be integrated and propose
a framework and design methodology that takes into account these requirements
and the issues outlined in the previous section. We show in real experiments the
effectiveness of the proposed design philosophy.

Figure 1 shows the general architecture of the proposed framework. The front-
end of the system consists of the usual physical elements, such as cameras and
video storage units. At the core, there is an ontological repository of activity and
domain definitions, possibly provided by an expert. The Ontology consists of the
‘vocabulary’ and the ‘grammar’ of human activities. To bridge the gap between the
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Fig. 1 General architecture of a Semantic Video Content Analysis system

low-level features at the front-end and the activity-definitions at the core, we require
image and video analysis methods that can provide detection and recognition of the
‘vocabulary’. Computational algorithms for activity recognition draw upon these,
and identify activities of interest defined according to the ‘grammar’.

3 Knowledge Representation

With the proliferation of visual surveillance systems in a wide variety of domains
such as banks, airports, and convenience stores, it is necessary to create a general
representation framework for modeling activities. Examples of such knowledge-
bases, or more formally, ontologies have been in existence in other fields of AI such
as the semantic web, image and video annotation and computational genomics. De-
signing ontologies for human activities has only recently gained interest in the com-
puter vision community. The advantages of such a centralized representation are
easily seen. It standardizes activity definitions, allows for easy portability to specific
deployments, enables interoperability of different systems and allows easy replica-
tion and comparison of system performance. Since video-mining approaches rely on
a domain expert to provide activity semantics, it is useful to create a standardized on-
tology from which to draw upon. Recent efforts have focused at creating ontologies
for activities in specific scenarios. Examples include analysis of social interactions
in nursing homes [6], classification of meeting videos [13], and activity detection in
a bank monitoring setting [10]. As a result of the Video Event Ontology Challenge
Workshop held in 2003 [12], ontologies have been defined for six video surveillance
domains: 1) Perimeter and Internal Security, 2) Railroad Crossing Surveillance, 3)
Visual Bank Monitoring, 4) Visual Metro Monitoring, 5) Store Security, 6) Airport-
Tarmac Security. The workshop led to the development of two formal languages –
Video Event Representation Language (VERL) [15], which provides an ontological
representation of complex events in terms of simpler sub-events, and Video Event
Markup Language (VEML), which is used to annotate VERL events in videos.

In most practical deployments, activity definitions are constructed in an empirical
or ad-hoc manner. Though empirical constructs are fast to design and even work
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PROCESS(cruise-parking-lot(vehicle v, parking-lot lot),
Sequence(enter(v, lot), Repeat(AND(move-in-circuit(v), inside(v, lot))),

exit(v, lot)))

Fig. 2 Cruise Parking Lot ontology

very well in most cases, they are limited in their utility to the specific deployment
for which they have been designed. A principled approach must then be adopted.
An ontology for human activities describes entities, environment, interaction among
them and the sequence of events that is semantically identified with an activity. It
specifies how an activity can be composed using lower-level primitive events and
identifying the role played by each entity in the sequence of events. Building activity
ontologies for a domain may be broadly classified into the following steps:

Entities: Define animate and inanimate entities relevant to an activity. The list
could include humans, vehicles and environment (e.g. scene location, buildings).

Identity: Specify the properties – such as physical attributes and appearance –
that uniquely identify each entity.

Spatio-temporal Attributes: Specify spatio-temporal attributes representing the
state of an entity. Examples include definitions of ‘near’, ‘far’, ‘before’, ‘after’.

Activity Primitives: Describe primitive events involving each entity individually
and in relation to others.

Description of Activities: Define the relationship between entities and the spatio-
temporal sequence of change and interaction among the entities.

Human activities are characterized by complex spatio-temporal interactions.
Consider the activity of a vehicle cruising in a parking lot whose definition is given
in Figure 2. This definition illustrates the importance of encoding spatio-temporal
constraints. Without regard to such constraints, we might say that it is composed of
the primitives: ‘enter’, ‘move-in-circuit’ and ‘exit’. But, a normal car-parking activ-
ity can also be described using the same set of primitives. The difference that sets
apart the two activities lies in the temporal span of the ‘move-in-circuit’ primitive.

3.1 Designing a Good Ontology

Thomas Gruber [11] made one of the earliest systematic attempts to propose guide-
lines for the design of ontologies intended for knowledge sharing and interoperabil-
ity. Five important criteria for ontology design – clarity, coherence, extendibility,
minimal encoding bias and minimal ontological commitment – were proposed.

Clarity: An ontology should convey the meaning of all conceptualizations unam-
biguously.

Coherence: An ontology should be coherent and allow for meaningful inferences
to be drawn that are consistent with definitions and axioms.

Extendibility: The design of the ontology should allow future extensions without
the need for revising definitions.
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SINGLE-THREAD(suspicious-load(vehicle v, person p, ent obj, facility fac),
AND(zone(loading-area), near(loading-area, facility), portable(obj),

Sequence(approach(v, fac), AND(stop(v), near (v, fac), NOT(inside(v, loading-area))),
AND(approach(p, v), carry(p, obj)), AND(stop(p), near (p, v)),
cause(p, open(portal-of(v))), enter (obj, v),
cause(p, close(portal-of(v))), leave(v, facility))))

Fig. 3 Suspicious Load in Perimeter Security

Minimal Encoding Bias: An ontology should have symbol-independent concep-
tualizations.

Minimal Ontological Commitment: An ontology should make as few assump-
tions as possible about the domain being modeled.

Additional issues that are relevant from a computer vision perspective are:

View Invariance: An ontology should not be tuned to one particular camera
view, but should generalize across views.

Invariance to Rate of Activity Execution: The same activity performed by dif-
ferent agents may have different temporal spans. The ontology should not make
any assumptions about the activity execution rate.

Invariance to Sensor Characteristics: An ontology should be insensitive to vari-
ations of sensor characteristics such as resolution, frame-rate, etc.

We now show how to resolve ambiguities according to the design principles out-
lined above. Let us consider the ‘suspicious load’ example from the Perimeter Se-
curity ontology given in Figure 3. Though this example maintains clarity, further
inspection shows that minimal ontological commitment is not preserved. According
to the definition the vehicle’s portal has to be opened in order to load the object.
This does not encompass other possible scenarios. For example, the suspicious load
can be placed onto the trailer of a truck which is open from the top, hence not using
any portal, or it can even be an explosive that is placed under the body of the ve-
hicle. Moreover, it is not necessary for the vehicle to stop. For instance, somebody
inside the vehicle could grab a bag from a suspicious pedestrian through the win-
dow. Hence, minimal ontology should only include the object being on the vehicle’s
exterior, and then being transferred to the vehicle’s interior.

As this example illustrates, Gruber’s criteria provide a principled method to de-
sign and refine ontologies to make them generalizable to new deployments. We refer
the reader to [1] for several more detailed examples illustrating the use of Gruber’s
criteria in designing good ontologies for video surveillance.

4 Computational Models: Integrating Structure and Statistics

Defining semantic equivalence between two sets of interactions amounts to defining
equivalence classes on the space of all interactions. The space of interactions can
be quite large and doing this individually is not a feasible solution. In addition to a
priori knowledge, one may also have access to a limited training set, which in most
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cases is not exhaustive. Thus, we can leverage available domain knowledge to design
activity models and define semantic equivalence using statistical approaches. The
fusion of these disparate approaches – statistical, structural and knowledge based –
has not yet been fully realized and has gained attention only in recent years. The
two approaches described in this section fall in this category – we exploit domain
knowledge to create rich and expressive models for activities and augment them
with probabilistic extensions.

For this discussion, we present two computational models – Finite State Au-
tomata (FSA) and Petri Nets (PN). At this stage, the choice of the model is driven
mostly by the complexity of the activities that need to be represented. If activities of
interest are mostly sequential in nature, with only one or two agents involved in the
activity, then a FSA may suffice. On the other hand, if activities of interest involve
multiple agents performing different actions in parallel and occasionally interacting
with each other, then Petri Nets may be the model of choice, since it allows model-
ing more complex behavior such as parallelism and synchrony. Once we choose a
model for a particular domain, it is fundamental to equip this model with the ability
to handle (a) ’noise’ in the labeling of video data, (b) inaccuracies in vision algo-
rithms and (c) variations from a hard-coded activity model. We illustrate how this
can be achieved using FSA and PN as examples. However, it is important to note
that the same design principles can be extended to other activity models as well.

In the following, we will often refer to the output of the image processing library
with the term ‘observations’, or ‘observation table’, implicitly assuming that video
data was processed offline and the output stored in a database, which might have
been eventually indexed (see Section 4.1.2).

4.1 Probabilistic Automata

There is a large body of work in the AI community on plan and activity recog-
nition, a large portion of which relies on Hidden Markov Models (HMMs) and
their variants. Luhr at al. [16] use Hierarchical HMMs to learn the probabilistic
nature of simple sequences of activities. Duong at al. [9] introduce the Switching
Hidden Semi-Markov Model (S-HSMM), a two-layered extension of the Hidden
Semi-Markov Model (HSMM). The bottom layer represents atomic activities using
HSMMs, while the top layer represents a sequence of high-level activities, defined
in terms of atomic activities. [17] uses non-stationary HSMMs to model the de-
pendency of transition probabilities on the duration an agent has spent in a given
state. Dynamic Bayesian networks have also been used for tracking and recogniz-
ing multi-agent activities [14]. The CFG-based representation of human activities
and interactions [20] enables to formally define complex activities based on simple
actions. The problem of recognizing multiple interleaved activities has been studied
in [5], where the authors propose a symbolic plan recognition approach, relying on
a hierarchical plan-based representation.
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Frame 1 Frame 2

Frame 3 Frame 4

Frame 1 Frame 2

Frame 3 Frame 4

(a) (b)

Fig. 4 Frames from the Bank dataset depicting (a) a staged robbery; (b) regular bank
operations.

Example 1. Consider the two sequences of frames in Figures 4 depicting a staged
robbery and regular bank operations respectively. Suppose that the following five
activities may occur in a bank setting, and interleaving of activities is possible.

(a1) Regular customer-employee interaction, similar to the example in Figure 4.b.

(a2) Outsider enters the safe.

(a3) A bank robbery attempt – the suspected assailant does not make a getaway.

(a4) A successful bank robbery, similar to the example in Figure 4.a.

(a5) An employee accessing the safe on behalf of a customer.

We are interested in monitoring and detecting all of these activities concurrently.

In this section, we begin with the stochastic automaton activity model for video
described in [3], and extend it in order to capture multiple activities in a single
labeled stochastic automaton. We then define an index to index large numbers of
observations from interleaved activities and efficiently retrieve completed instances
of these activities. The stochastic activity model and the associated index presented
in this section enable activity recognition not only from video data labeling, but
also from any type of time-stamped data. In order to make this point clear, we will
present examples where this approach has been applied to log data.

Definition 1 (Stochastic activity). A stochastic activity is a labeled graph (V,E,δ )
where: V is a finite set of action symbols; E is a subset of (V×V); ∃v∈V s.t. �v′ ∈V
s.t. (v′,v) ∈ E , i.e., there exists at least one start node in V ; ∃v ∈ V s.t. �v′ ∈ V s.t.
(v,v′) ∈ E , i.e., there exists at least one end node in V ; δ : E → [0,1] is a function
that associates a probability distribution with the outgoing edges of each node, i.e.,
∀v ∈V ∑{v′∈V |(v,v′)∈E} δ (v,v′) = 1.

Example 2. Figure 5 shows the stochastic activity associated with ordering products
from an online store. A user first accesses the product catalog (catalog) and either
inspects the details of an item (itemDetails) or continues with a previously saved cart
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Fig. 5 Online purchase stochastic activity

Table 1 Example of a web log

id ts action id ts action id ts action id ts action

1 1 catalog 6 5 itemDetails 11 8 itemDetails 16 11 paymentMethod
2 2 catalog 7 5 shippingMethod 12 9 cart 17 11 review
3 3 itemDetails 8 6 cart 13 9 review 18 12 confirm
4 3 cart 9 7 shippingMethod 14 10 confirm 19 13 paymentMethod
5 4 itemDetails 10 7 paymentMethod 15 11 shippingMethod 20 13 review

(cart). The checkout process requires the user to select a shipping method (shipping-
Method), choose a payment method (paymentMethod), review the order (review)
and confirm it (confirm). At each stage during checkout, the user can cancel and re-
turn to the cart and from there on to one of the items. The probabilities labeling the
edges have the following intuitive meaning: once the catalog action has been taken,
there is a .9 probability that the user will check details of an item (itemDetails) and
a .1 probability that she will continue with a previously saved cart (cart).

Definition 2 (Activity instance). Let (V,E,δ ) be a stochastic activity. An instance
of (V,E,δ ) is a sequence 〈v1, . . . ,vn〉 with vi ∈V such that: (i) v1 is a start node and
vn is an end node in (V,E,δ ); (ii) ∀i ∈ [1,n− 1], (vi,vi+1) ∈ E . Thus, an activity
instance is a path from a start node to an end node in (V,E,δ ). The probability of
the instance is prob(〈v1, . . . ,vn〉) = Πi∈[1,n−1]δ (vi,vi+1).

Intuitively, an activity instance is a path from a start node to an end node – the
probability of this activity instance is the product of the edge probabilities on the
path. We assume that each node in an activity is an observable event. We also assume
that the probability of taking an action at any time only depends on the previous
event. Thus the probability labeling an edge (v1,v2) can be seen as the conditional
probability of observing action v2 given that action v1 has been observed. These
assumptions allow to easily learn the probabilities labeling the edges from training
data and to compute the probability of an instance as a product of probabilities.

4.1.1 The Evidence and Identification Problems

We assume that all observations are stored in a single relational database table O.
Each row (or tuple) o in the table denotes a single action, o.action, which is observed
at a given time, o.ts.

Definition 3 (Activity occurrence). Let (V,E,δ ) be a stochastic activity and let O
be an observation table. An occurrence of (V,E,δ ) in O with probability p is a
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set {o1, . . . ,on} ⊆ O s.t. o1.ts ≤ o2.ts . . . ≤ on.ts and 〈o1.action, . . . ,on.action〉 is
an instance of (V,E,δ ) with prob(〈o1.action, . . . ,on.action〉)≥ p. The span of the
occurrence is the time interval span({o1, . . . ,on}) = [o1.ts,on.ts].

Intuitively, an activity occurrence is a sequence {o1, . . . ,on} of observations in O
corresponding to the nodes of an activity instance and the probability of this occur-
rence is the probability of the instance.

Example 3. The activity in Figure 5 occurs in the server log of Table 1. In fact the
sequence of observations with identifiers 1, 4, 7, 10, 13, and 14, corresponds to the
instance {catalog, cart, shippingMethod, paymentMethod, review, con f irm}.
Proposition 1. Given an observation table O and a stochastic activity A, the prob-
lem of finding all occurrences of A in O takes exponential time, w.r.t. |O|.
The reason for this behavior is interleaving of activities, which leads to an expo-
nential number of identifiable occurrences of A in O. As an example, the set of
observations: {catalog, cart, shippingMethod, paymentMethod, review, con f irm,
con f irm} leads to two occurrences of the activity in Figure 5, one for each of the
con f irm actions. Therefore, it is not feasible in practice to try to find all occurrences.
Instead, we impose restrictions on what constitutes a valid occurrence in order to
greatly reduce the number of possible occurrences. We propose two constraints ap-
plicable in most real-world scenarios. In addition, due to the size of the search space,
it is important to have data structures that enable very fast searches for activity oc-
currences. We describe the Multi-Activity Graph Index Creation (MAGIC) [4] that
allows to solve the Evidence and Identification problems efficiently.

Our first restriction requires that if the span of an occurrence O2 is contained
within the span of an occurrence O1 we will discard O1 from the set of results. This
is called the minimal span restriction (MS for short).

Definition 4 (MS restriction). Let O1 = {o1, . . . ,ok} ⊆ O and O2 = {o′1, . . . ,o′l} ⊆
O be two occurrences of the same activity. We say that the span of O1 is less than or
equal to the span of O2 – span(O1)≤ span(O2) – iff o1.ts≥ o′1.ts and ok.ts≤ o′l.ts.
Under the MS restriction, we only consider occurrences that are minimal w.r.t. span.

The MS restriction may still allow exponentially many occurrences of an activity,
since multiple occurrences may have the same span. The earliest action (EA for
short) restriction requires that when looking for the next action in an activity occur-
rence, we always choose the first possible successor. For instance, consider the ac-

tivity definition v1
1→ v2

1→ v3 and the observation sequence {v1
1,v

2
2,v

3
1,v

4
2,v

5
3}where

vi
j denotes the fact that action v j was observed at time i. There are two occurrences

starting with v1
1, namely {v1

1,v
2
2,v

5
3} and {v1

1,v
4
2,v

5
3}. Under the EA restriction we

only consider {v1
1,v

2
2,v

5
3}, since v2

2 is the first possible successor to v1
1. This restric-

tion makes the search space linear in the size of the observation sequence.

Definition 5 (EA restriction). An activity occurrence {o1, . . . ,on} ⊆ O is said
to have the earliest action property if ∀i ∈ [2,n], �wi ∈ O s.t. wi.ts < oi.ts and
{o1, . . . ,oi−1, wi, oi+1, . . . , on} is an occurrence of the same activity.
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Fig. 6 Stochastic activities and multi-activity graph

It is now straightforward to generalize the Evidence and Identification problems
stated in Section 2.1. In particular, in the Evidence problem we are now interested
in recognizing all the possibly restricted occurrences of activities in A , from any
sequence of time-stamped observations, including video data as a particular case.

4.1.2 Multi-activity Graph Index Creation

In order to concurrently monitor multiple activities, we first merge all activity defi-
nitions from A = {A1, . . . , Ak} into a single graph.

Definition 6 (Multi-activity graph). Let A={A1, . . . ,Ak} be a set of stochastic ac-
tivities, where Ai = (Vi,Ei,δi). A Multi-Activity Graph is a triple G = (IA ,VG,δG)
where: (i) IA = {id(A1), . . . , id(Ak)} is a set of identifiers for activities in A ; (ii)
VG =∪i∈[1,k]Vi is a set of action symbols; (iii) δG : VG×VG× IA → [0,1] is a function
that associates a triple (v,v′, id(Ai)) with δi((v,v′)), if (v,v′) ∈ Ei and 0 otherwise.

A multi-activity graph can be graphically represented by labeling nodes with action
symbols and edges with id’s of activities containing them, along with the corre-
sponding probabilities. The multi-activity graph for a set A of activities can be
computed in time polynomial in the size of A . Figure 6 shows two stochastic ac-
tivities, A1 and A2, and the corresponding multi-activity graph. If A = (V,E,δ ) is
an activity and v ∈ V , we use A.pmax(v) to denote the maximum product of proba-
bilities on any path in A between v and an end node. The multi-activity graph index
allows us to efficiently monitor activity occurrences new observations occur.

Definition 7 (Multi-activity graph index). Let A = {A1, . . . , Ak} be a set of
stochastic activities, where Ai = (Vi,Ei,δi), and let G = (IA ,VG,δG) be the multi-
activity graph built over A . A Multi-Activity Graph Index is a 6-tuple IG = (G,
startG, endG, maxG, tablesG, completedG), where:

• startG : VG → 2IA is a function that associates each node v ∈ VG with the set of
activity-id’s for which v is a start node;

• endG : VG → 2IA is a function that associates each node v ∈ VG with the set of
activity id’s for which v is an end node;

• maxG : VG × IA → [0,1] is a function that associates a pair (v, id(Ai)) with
Ai.pmax(v), if v ∈Vi and 0 otherwise;

• For each v ∈ VG, tablesG(v) is a set of tuples of the form (current↑, actID, t0
is a timestamp, probability, previous↑, next↑), where current↑ is a pointer to an
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Algorithm 1. MAGIC-insert(tnew, IG, pt)
Require: New observation to be inserted tnew, multi-activity graph index IG , probability threshold pt
Ensure: Updated multi-activity graph index IG

1: for all tuple t ∈ tablesG(tnew.action) do {Look at start nodes}
2: if t.activityID ∈ startG(tnew.action) and t.next =⊥ then
3: t.current↑ ← t↑new
4: end if
5: end for
6: for all activity id for which no tuple was updated in the previous loop do
7: add (t↑new, id,tnew .ts,1,⊥,⊥) to tablesG(tnew.action)
8: end for
9: for all action symbol v ∈VG s.t. ∃id ∈ IA , δG(v,tnew.action, id) �= 0 do {Look at intermediate nodes}
10: for all tuple t ∈ tablesG(v) with t.next =⊥ and maximal t0 w.r.t. tuples in tablesG(v) with the same actID do
11: a← tnew.action, id← t.activityID
12: if δG(v,a, id) �= 0 and t.probability ·δG(v,a, id) ·maxG(a, id)≥ pt then
13: t ′ ← (t↑new, id,t.t0 ,t.probability ·δG(v,a, id),t↑,⊥)
14: add t ′ to tablesG(a)
15: t.next← t ′↑
16: if id ∈ endG(a) then {Look at end nodes}
17: add t ′↑ to completedG(id)
18: end if
19: end if
20: end for
21: end for

observation, actID ∈ IA , t0, probability ∈ IR+, previous↑ and next↑ are pointers
to tuples in tablesG;

• completedG : IA → 2P , where P is the set of tuples in tablesG, is a function that
associates an activity identifier id(A) with a set of references to tuples in tablesG

corresponding to a completed instance of activity A.

Note that G,startG,endG,maxG can be computed a-priori. All the tables that are
part of the index will be initially empty. As new observations are added, the index ta-
bles will be updated accordingly. Therefore, MAGIC can track partially-completed
activity occurrences.

4.1.3 MAGIC Insertion Algorithm

This section describes an algorithm to update the MAGIC index under the MS and
EA restrictions when new observations occur (Algorithm 1). We refer the reader to
[4] for a detailed example. Lines 1–8 handle the case when the observation contains
an action that is the start node of an activity in A . Tuples in the table associated with
the action are updated to minimize span, unless they already have a successor. In this
case a new tuple is added, indicating the start of a new concurrent occurrence. Lines
9–15 look at the tables associated with the predecessors of tnew.action in the multi-
activity graph and check whether the new observation can be linked to existing
partial occurrences. For each activity in A , the tuple with the most recent t0 is
linked, to minimize the span. Moreover, in order to impose the EA restriction, the
algorithm requires that each tuple has at most one successor. We also enforce the
probability threshold by detecting whether the partial occurrence can still have a
probability above the threshold on completion. If all these conditions are met, a new
tuple t ′ is added to the table associated with tnew.action. Finally, lines 16–18 check
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whether tnew.action is an end node for some activity; in this case, a pointer to t ′ is
added to completedG signaling that an occurrence has been completed.

Proposition 2. Algorithm MAGIC-insert runs in time O(|A | ·max(V,E,δ )∈A (|V |) ·
|O|), where O is the set of observations indexed so far.

The MAGIC-evidence algorithm finds all minimal sets of observations that validate
the occurrence of activities in A with a probability exceeding a given threshold.
The MAGIC-id algorithm, which solves the Identification problem, identifies the
activities in A that have maximum probability of occurring in the required time
span. For reasons of space, we omit a detailed description of the two algorithms and
refer the reader to [4] for further details.

4.2 Probabilistic Petri Nets

Petri Nets (PNs) [21] were defined as a mathematical tool for describing relations
between conditions and events, and are particularly useful to model and visualize
behaviors such as sequencing, concurrency, synchronization and resource sharing.
David et al. [8] and Murata [19] provide comprehensive surveys on Petri Nets. Sev-
eral forms of PNs such as Colored PNs, Continuous PNs, Stochastic timed PNs,
and Fuzzy PNs have been proposed. Colored PNs associate a color to each token,
hence are useful to model complex systems where each token can potentially have
a distinct identity. In Continuous PNs, the markings of places are real numbers,
hence they can be used to model situations where the underlying physical processes
are continuous in nature. Stochastic timed PNs [18] associate, to each transition, a
probability distribution representing the delay between the enabling and firing of the
transition. Fuzzy PNs [7] are used to represent fuzzy rules between propositions.

In real-life situations, vision systems have to deal with ambiguities and inaccura-
cies in the lower-level detection and tracking systems. Moreover, activities may not
unfold exactly as described by the model that represents them. The aforementioned
types of PNs are not well suited to deal with these situations. The probabilistic PN
model [2] described in this section is better suited to express uncertainty in the state
of a token or associate a probability to a particular unfolding of the Petri Net.

Definition 8 (Constrained Probabilistic Petri Net). A Constrained Probabilistic
Petri Net PPN is a 5-tuple {P,T,→,F,δ}, where

• P and T are finite disjoint sets of places and transitions respectively, i.e.,
P∩T = /0.

• → is the flow relation between places and transitions, i.e.,→⊆ (P×T )∪(T ×P).
• The preset .x of a node x ∈ P∪T is the set {y|y→ x}.
• The postset x. of a node x ∈ P∪T is the set {y|x→ y}.
• F is a function defined over the set of places P, that associates each place x with

a local probability distribution fx(t) over {t|x→ t}. For each place x ∈ P, we
denote by p∗(x) the maximum product of probabilities over all paths from x to a
terminal node. We will often abuse notation and use F(x, t) to denote fx(t).
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• δ : T → 2A associates a set of action symbols with every transition in the Petri
Net. Transitions will only fire when all the action symbols in the constraint are
also encountered in the video sequence labeling.

• ∃x ∈ P s.t. x. = /0, i.e., there exists at least one terminal node in the Petri Net.
• ∃x ∈ P s.t. .x = /0, i.e., there exists at least one start node in the Petri Net.

4.2.1 Tokens and Firing of Transitions

Petri Net dynamics are represented via ‘markings’. For a PPN (P,T,→,F,δ ), a
marking is a function μ : P→ � that assigns a number of tokens to each place in
P. In a PPN modeling an activity, a marking μ represents the current state of com-
pletion of that activity. The execution of a PN is controlled by its current marking.
A transition is enabled if and only if all its input places (the preset) have a token.
When a transition is enabled, it may fire. When a transition fires, all enabling tokens
are removed and a token is placed in each of the output places of the transition (the
postset). We use μ0 to denote the initial marking of a PPN. A terminal marking is
reached when one of the terminal nodes contains at least one token. In the simplest
case, all the enabled transitions may fire. However, to model more complex scenar-
ios we can impose other conditions to be satisfied before an enabled transition can
fire. This set of conditions is represented by δ .

Example 4. Consider the car pickup activity modeled by the PPN in Figure 7.a, with
places labeled p1, . . . , p7 and transitions t0, . . . ,t5, p0 being the start node and p7 the
terminal node. In the initial marking depicted in the figure all places except p0 have
0 tokens. Transition t0 is unconstrained and it is always fired, adding a token in both
p1 and p2. When a car enters the scene, t1 fires and a token is placed in p3 and we
have a new marking μ1 such that μ1(p3) = 1 and μ1(p) = 0 for any p �= p3. The
transition t3 is enabled in this state, but it cannot fire until the condition associated
with it is satisfied – i.e., when the car stops. When this occurs, and a person enters
the parking lot and then disappears near the car, the Petri Net evolves to a state
where there is a token in each of the enabling places of transition t5. Once the car
leaves, t5 fires and both the tokens are removed and a token placed in the final place
p7. This example illustrates sequencing, concurrency and synchronization.

In the above discussion, we have not yet discussed the probabilities labeling the
place-transition edges. Note that the postsets of p1, . . . p6 contain multiple transi-
tions. The skip transitions are used to explain away deviations from the base activity
pattern – each such deviation is penalized by a low probability. The probabilities
assigned to skip transitions control how tolerant the model is to deviations from the
base activity pattern. All tokens are initially assigned a probability of 1. Probabilities
are accumulated by multiplying the token and transition probabilities on the edges.
When two or more tokens are removed from the net and replaced by a single token
then the probability for the new token is set to be the product of the probabilities of
the removed tokens. We will use the final probability of a token in a terminal node
as the probability that the activity is satisfied.
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(a) Car-pickup (b) Bank attack

Fig. 7 Examples of Probabilistic Petri Nets

4.2.2 Activity Recognition

We now define the concepts of PPN trace and activity satisfaction and provide a
method for computing the probability with which the PPN is satisfied.

Definition 9 (PPN trace). A trace for a PPN (P,T ,→,F ,δ ) with initial marking μ0

is a sequence of transitions 〈t1, . . . ,tk〉 ⊆ T such that:

(i) t1 is enabled in marking μ0.

(ii) Firing t1, . . . ,tk in that order reaches a terminal marking.

For each i ∈ [1,k], let pi = Π{x∈P|x→ti}F(x,ti). The trace 〈t1, . . . , tk〉 has probability
p =Πi∈[1,k]pi

1. Let pmax be the maximum probability of any trace for (P,T,→,F,δ ).
Then 〈t1, . . . ,tk〉 has relative probability p

pmax
. Intuitively, the relative probability

measures how close that trace is to the ideal execution of the PPN, i.e., the execution
that leads to the maximum possible absolute probability.

Example 5. Consider the PPN in Figure 7.b. 〈t1, t2,t3,t4,t6,t7, t9〉 is a trace with prob-
ability .464 and a relative probability 1.

Definition 10 (Activity satisfaction). Let P =(P,T,→,F,δ ) be a PPN, let v be a
video sequence and let � be the labeling of v. We say � satisfies P with relative
probability p ∈ [0,1] iff there exists a trace 〈t1, . . . ,tk〉 for P such that:

(i) There exist frames f1 ≤ . . .≤ fk such that ∀i ∈ [1,k], δ (ti)⊆ �( fi) AND

(ii) The relative probability of 〈t1, . . . ,tk〉 is equal to p.

We will refer to a video sequence v satisfying an activity definition, as an equivalent
way of saying the labeling of v satisfies the activity. If � is the labeling of v and
v′ ⊆ v is a subsequence of v, we will also use � to refer to the restriction of � to v′.

1 We are assuming that the initial probability assigned to tokens in the start nodes is 1.
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4.2.3 The Evidence and Identification Problems

In this section we present an algorithm for the Evidence Problem stated in Sec-
tion 2.1, PPN-evidence (Algorithm 2), which simulates the constrained PPN for-
ward. The algorithm uses an ad-hoc data structure to store tuples of the form
〈μ , p, fs〉, where μ is a valid marking, p is the probability of the partial trace that
leads to μ and fs is the frame when the first transition in that trace was fired.

The algorithm starts by adding 〈μ0,1,0〉 to the store S (line 1). This means we
start with the initial marking μ0 and probability equal to 1. The value 0 for the start
frame means the first transition has not yet fired. Whenever the first transition fires
and the start frame is 0, the current frame is chosen as a start for this candidate
subsequence (lines 8–9). The algorithm iterates through the video frames, and at
each iteration analyzes the current candidates in S. Any transitions t enabled in
the current marking that have the conditions δ (t) satisfied are fired. The algorithm
generates a new marking, and with it a new candidate partial subsequence (line 7).
If the new probability p′ is still above the threshold (line 15) and can remain above
the threshold on the best path to a terminal marking (line 16), the new state is added
to the store S. This first pruning does away with any states that will result in low
probabilities. Note that we have not yet removed the old state from S, since we also
need to fire any enabled skip transition, in order to explore the space of solutions.
This is done on line 26. At this point (line 27) we also prune any states in S that have
no possibility of remaining above the threshold as we reach a terminal marking.

The following two theorems state correctness and complexity results for the
PPN-evidence algorithm. We refer the reader to [2] for proofs of both theorems.

Theorem 1 (PPN-evidence correctness). Let P=(P,T,→,F,δ ) be a PPN with
initial configurationμ0, let v be a video sequence and � its labeling, and let pt ∈ [0,1]
be a probability threshold. Then for any subsequence v′ ⊆ v that satisfies P with
probability greater than or equal to pt , one of the following holds:

(i) v′ is returned by PPN-evidence OR

(ii) ∃v′′ ⊆ v that is returned by PPN-evidence such that v′′ ⊆ v′.

Theorem 2 (PPN-evidence complexity). Let P =(P,T,→,F,δ ) be a PPN with
initial configuration μ0, such that the number of tokens in the network at any mark-
ing is bounded by a constant k. Let v be a video sequence and � its labeling. Then
PPN-evidence runs in time O(|v| · |T | · |P|k).
We now briefly describe an algorithm for the Identification Problem. Listing of the
algorithm, detailed description and correctness theorem are omitted for reasons of
space. We refer the reader to [4] for further details.

Let {P1, . . . ,Pn} be a given set of activity definitions. If we assume that there
is only one activity Pl which satisfies the video sequence v with maximal prob-
ability, a simple binary search iterative method – naivePPN-ident – can employ
PPN-evidence to find the answer: naivePPN-ident runs PPN-evidence for all
activities in {P1, . . . ,Pn} and for different thresholds until a delimiter threshold is
found (i.e., one for which only one activity Pl has a non-empty result from PPN-
evidence).
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Algorithm 2. PPN-evidence(P , μ0, �, pt )
Require: P = (P,T,→,F,δ ), initial configuration μ0, video sequence labeling �, probability threshold pt
Ensure: Set of minimal subsequences that satisfy P with relative probability above pt

1: S←{〈μ0 ,1,0〉}
2: R← /0
3: maxp ← the maximum probability for any trace of P

4: for all f frame in video sequence do
5: for all 〈μ, p, fs〉 ∈ S do
6: for all t ∈ T enabled in μ s.t. δ (t)⊆ �( f ) do
7: μ ′ ← fire transition t for marking μ
8: if fs = 0 and δ (t) �= /0 then
9: f ′ ← f
10: else
11: f ′ ← fs
12: end if
13: p∗ ←Π{x∈P|x→t}F(x,t)
14: p′ ← p · p∗
15: if p′ ≥ pt ·maxp then
16: if ∃x ∈ P s.t. μ(x) < μ ′(x)∧ p′ · p∗(x)≥ pt ·maxp then
17: S← S∪{〈μ ′, p′ , f ′〉}
18: end if
19: end if
20: if μ ′ is a terminal configuration then
21: S← S−{〈μ ′, p′, f ′ 〉}
22: R← R∪{[ fs, f ]}
23: end if
24: end for
25: for all skip transition t ∈ T enabled do
26: Fire skip transition if no other transitions fired and update 〈μ, p, fs〉
27: Prune 〈μ, p, fs〉 ∈ S s.t. ∀x ∈ P s.t. μ(x) > 0, p · p∗(x) < pt ·maxp

28: end for
29: end for
30: end for
31: Eliminate non-minimal subsequences in R
32: return R

A more efficient solution is PPN-ident which uses a similar storage structure
as PPN-evidence (tuples of the form 〈μ , p,P〉, where P is the activity defi-
nition to which marking μ applies). The algorithm maintains a global maximum
relative probability maxp with which the video satisfies any of the activities in
{P1, . . . ,Pn} and a list R of the activity definitions that have been satisfied with
probability maxp. maxp is updated any time a better relative probability is found.

Theorem 3 (PPN-ident complexity). Let {(Pi,Ti,→i,Fi, δi)}i∈[1,m] be a set of
PPNs, let v be a video sequence. PPN-ident runs in time O(m · |v| · |T | · |P|k).

5 Language Based Paradigm: PADL

The task of modeling complex activities using the models discussed in the previous
section may be challenging when the models need to be created manually by users.
Although a lot of work has been done on learning model parameters from training
data, learning the whole model from training data is still an open issue. Therefore,
we also explore the definition of logical languages to define complex activities in
an expressive yet formal fashion. Thus, we introduce PADL (Probabilistic Activity
Detection Language), an extensible logical language including a set of boolean and



164 M. Albanese et al.

probabilistic predicate symbols which map to primitive actions that can be recog-
nized through image processing algorithms. Along with PADL, we propose a suite
of offline and real-time algorithms that solve the Evidence and Online Identification
problems stated in Section 2.1.

5.1 Syntax of PADL

PADL is a logical language which has a set of constant, function and variable sym-
bols, a set of boolean predicate symbols, and, unlike ordinary logic, a set of prob-
abilistic predicate symbols. PADL builds on top of a library of image processing
algorithms. Each algorithm implements either a boolean or a probabilistic predi-
cate. PADL can be extended by extending the underlying image processing library.

Definition 11 (atom). If p is a predicate symbol with k arguments, and t1, . . . ,tk
are either variables or constants of the right types, then p(t1, . . . ,tk) is an atom.
p(t1, . . . ,tk) is an uninstantiated atom if at least one of the ti’s is a variable.

Note that the definition of an atom does not distinguish between boolean and prob-
abilistic predicates. We will address the issue in Section 5.2 when discussing prob-
abilistic activity satisfaction. We now define the set of well-formed formulas in
PADL. The degree of a formula is the number of alternating ∀ and ∃ quantifiers.

Definition 12 ( activity formula). An activity formula is defined as follows:

1. Every atom is an activity formula of degree 0.
2. If F is a formula of degree 0 and x is a variable, then (∀x)F and (∃x)F are activity

formulas of degree 1.
3. If F , G are activity formulas of degree m,n respectively, then the conjunction

(F ∧⊗ G) and the disjunction (F ∨G) are activity formulas of degree max(m,n).
By (F ∧⊗ G) we denote that, if F and/or G are probabilistic, the probability of
their conjunction can be obtained using the t-norm ⊗2. We will assume that the
default t-norm is independence (x⊗ y = xy), unless otherwise specified.

4. If F is an activity formula of degree k and x is a variable that is not within the
scope of any quantifier in F , then:

a. If F has the form (∀...)G then (∀x)F is an activity formula of degree k.
b. If F has the form (∃...)G then (∀x)F is an activity formula of degree k + 1.
c. If F has the form (∀...)G then (∃x)F is an activity formula of degree k + 1.
d. If F has the form (∃...)G then (∃x)F is an activity formula of degree k.

A well known result in logic [22] states that, as the degree of an activity formula
becomes higher, the problem of finding occurrences of the activity becomes more
complex. Moreover, if two formulas have the same form, but a different leading
quantifier, (∃) and (∀) respectively, then the former is easier to solve than the latter.

2 We omit the notations on disjunctions, as they can be expressed by conjunction and nega-
tion.
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5.2 Probabilistic Activity Satisfaction

As mentioned earlier, PADL assumes the existence of a set of image processing al-
gorithms By applying these algorithms to each frame in a video, we obtain a labeling
of the video.

Definition 13 (Frame labeling). Suppose O is a universe of distinct reference im-
age objects (e.g. a database of mugshots or a set of car images). A labeling is a
pair (�,pl) where � is a set of ground boolean atoms and pl is a function which as-
signs values in [0,1] to each probabilistic ground atom, such that for all objects o of
interest in a given frame ∑

o′∈O
pl(eq(o,o′)) = 13.

We will abuse notation and use (�,pl) to denote the labeling of the entire video
sequence or any subsequence of it. Once we obtain the video labeling (�, pl), we
need to compute the probability that it satisfies an activity formula. Intuitively, a
formula is satisfied if we can substitute objects from the labeling for the variables
in the formula. A substitution θ is any set θ = {X1 =v1, . . . ,Xn =vn} where the Xi’s
are variables and the vi’s are constants. Given an activity formula F , we use Fθ to
denote the replacement of all occurrences of Xi in F by vi. If θ1,θ2 are substitutions,
(θ1 ∪ θ2) is solvable if and only if the substitutions are consistent.

Given a labeling (�,pl) of a video and an activity formula F , we now define the
concept of a substitution set δ (F) for F . Intuitively, δ (F) contains all pairs (θ , p)
where θ is a substitution that binds existentially quantified variables in F to objects
or frame numbers and p is the probability that F is satisfied by the labeling when
applying substitution θ . These informal notions are formalized below.

Definition 14 (Substitution sets for activity formulas). Let F be an activity for-
mula, v a video sequence, and (�,pl) a labeling of v. The substitution set for F ,
denoted δ (F), is defined as follows:

(i) If F is a boolean atom, then δ (F) = {(θ ,1) |Fθ ∈ �(v)}.
(ii) If F is a probabilistic atom, then δ (F) = {(θ ,pl(Fθ )) | (Fθ ,pl(Fθ )) ∈ pl(v)}.

(iii) If F = (∃ x)G, then δ (F) = δ (G).
(iv) If F = (∀ x)G, δ (F) = δ (

∧
o∈Ox

G([x/o])), where Ox is the set of possible
values for x.

(v) If F = G∧⊗H, then δ (F) = {(θ1 ∪ θ2,v1⊗ v2) |(θ1,v1) ∈ δ (F) ∧ (θ2,v2) ∈
δ (G) ∧ (θ1 ∪ θ2) is solvable }.

(vi) If F = ¬G, let ΘG contain all substitutions for variables in G. Then δ (F) =
{(θ , p)|(θ ,1− p)∈ δ (G)}∪{(θ ,1)| � ∃(σ ,v) ∈ δ (G) s.t. σ ∪ θ is solvable }

(vii) If F = G∨H, then δ (F) = δ (G)∪δ (H).

Example 6. Consider the frame sequence in Figure. 8.a. We assume that the set
of reference objects consists of John Doe, Joe Doe – the two protagonists – and
the object Bag. The boolean labeling � and the probabilistic labeling pl might

3 For each object o in the video, pl(eq(o,o′)) is the probability that o is the same as some
o′ ∈O .
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Frame 1 Frame 2

Frame 3 Frame 4

Frame 1 Frame 2

Frame 3 Frame 4

(a) (b)

Fig. 8 Frames depicting (a) a package transfer from the ITEA CANDELA dataset; (b) tarmac
operations from the TSA dataset.

be: � = {in(p1, f1),haspkg(p1, pkg1, f1), in(p1, f2), in(p2, f2),haspkg(p1, pkg1, f2), in(p′1,
f3), . . .} pl = {(eq(p1, p′1),0.91),(eq(p2, p′2),0.95),(eq(p1, p2),0.07),(eq(p1,John Doe),
0.94), . . .}

Now consider the activity formula F=in(P1,F1)∧in(P2,F2)∧F1 < F2∧eq(P1,P2),
which requires the same person appear in two different frames F1 and F2. The sub-
stitution set for F is δ (F) = {({P1 → p1,P2 → p1,F1 → f1,F2 → f2},1),({P1 →
p1,P2→ p′1,F1→ f2,F2→ f3},0.91), . . .}.
We now formally define what constitutes an answer to the Evidence problem stated
in Section 2.1. we then present the OffPad algorithm that solves the Evidence prob-
lem, and the OnPad algorithm that solves the Online Identification problem.

Definition 15 (answer). Suppose (�,pl) is the labeling of video v, F is an activity
formula, and p is a real number in the [0,1] interval. A sub-sequence sv of v is said
to minimally satisfy F with probability p iff

i There exists a pair (θ ,q) ∈ δ (F) such that sv = [start(F),end(F)] and q≥ p4.

ii There is no strict sub-sequence sv′ of sv which satisfies the above condition.

5.3 The OffPad Algorithm

The OffPad algorithm (Algorithm 3) uses the answer a f method (Algorithm 4) to
compute the substitution set δ (F) for the activity formula F , whereas the main
body of the algorithm uses the substitutions returned by answer a f to compute
the minimal contiguous sub-sequences of the video that satisfy the given activity
definition.

4 We assume that the user has explicitly denoted some variables in F as frame variables,
and marked two frame variables as a start variable start(F) and an end variable end(F)
respectively.
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A brief outline of the algorithm reads as follows:

1. Compute the valid substitutions δ (F) by recursively decomposing F into parts.
2. Select those substitutions that have probability over the threshold.
3. For each substitution, find the sequence sv between start and end frame variables.
4. If a subsequence of sv is already in the result, continue to step 6.
5. Otherwise, add sv to the result.
6. Repeat steps 3–5.

The answer a f algorithm uses a recursive approach – based on Definition 14 – to
compute the subset of δ (F) which contains only those elements with probabilities
above the threshold pt (we denote this subset by δ (F)|pt ). The algorithm optimizes
the search for substitutions in three ways. The first is based on the observation that
a conjunction of multiple formulas allows us to combine the intermediate results for
each formula in any order we may choose; the heuristic order algorithm (omitted
for reasons of space) is used to give an ordering that is computationally optimal.

The second optimization uses the fact that we can eliminate those intermedi-
ate results that cannot possibly lead to solutions with probabilities higher than the
threshold. The pruning method removes substitutions that would yield results under
the given threshold. Consider the case of computing the substitution set for F ∧G
with probability threshold pt . A substitution (θ , p) ∈ δ (F) can only be combined
with substitutions in {(θ ′, p′) ∈ δ (G)|p′ ≥ min⊗(p, pt)}. If the cardinality of this
set is small, the number of operations in computing δ (F ∧G) is greatly reduced.

The third optimization separates the set of frame comparison predicates (e.g.,
t1 < t2) from the rest (lines 1, 13). The number of frames is much larger than the
number of objects in a video, hence frame variables have a huge number of possible
substitutions. We delay searching for substitutions for frame variables until the end
of the method because pruning may make this costly operation unnecessary.

Algorithm 3. OffPad(F , v, pt , Vs, Ve))
Require: Activity formula F , video v, probability threshold pt , variables Vs,Ve denoting start and end frames of result.
Ensure: Set of video subsequences satisfying F with probability above pt
1: R← answer a f (F,v, pt , pruning)
2: R′ ← /0
3: for all (θ ,℘) ∈ R do
4: should add← true
5: 〈 fs, fe〉 ← 〈Vsθ ,Veθ〉
6: for all [ f , f ′ ] ∈ R′ do
7: if [ f , f ′ ]⊇ [ fs , fe] then
8: R′ ← R′ −{[ f , f ′ ]}
9: else if [ f , f ′ ]⊆ [ fs , fe] then
10: should add← f alse
11: end if
12: end for
13: if should add then
14: R′ ← R′ ∪ {[ fs, fe ]}
15: end if
16: end for
17: S← /0
18: for all [ fs, fe ] ∈ R′ do
19: S← S∪{subvideo(v, fs, fe)}
20: end for
21: return S
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Algorithm 4. answer a f (F,v, pt , pruning)
Require: Activity formula F , video v, probability threshold pt , pruning method pruning. If M is a substitution set and

FA a set of boolean atoms, we denote by M|FA = {(θ , p) ∈M|∀ A ∈ FA,Aθ is true}. pruning method(M1,M2 , pt )
returns a pair of substitution sets 〈M′1,M′2〉 such that M′1 ⊆M1 and M′2 ⊆M2 and (M′1 ∧M′2)|pt = (M1∧M2)|pt .

Ensure: δ (F)|pt .
1: FC ← /0;
2: FA←{a atom in F|a involves f rame variable comparisons}
3: if F is an atom then
4: return δ (F)|pt ;
5: else if F is of type (∃ x)G then
6: return answer a f (G,v, pt , pruning)
7: else if F is of type (∀ x)G then
8: for all o ∈ Ox do {Ox is the set of all possible values of x}
9: FC ← FC ∪{G([x/o])}
10: end for
11: FC ← FC−FA
12: else if F = G1 ∧ ·· · ∧Gn then
13: FC ←{G1, · · · ,Gn}−FA
14: else if F = ¬G then
15: M← answer a f (G,v,0, pruning)
16: M′ ← {(θ , p)|(θ ,1− p) ∈M}∪{(θ ,1)| � ∃(σ ,v) ∈M s.t. θ ∪σ solvable }
17: return M′|pt

18: else if F = G∨H then
19: return answer a f (G,v, pt , pruning)∪answer a f (H ,v, pt , pruning)
20: end if
21: p← pt

22: for all Fi ∈ FC do
23: Mi← answer a f (Fi,v, p, pruning)
24: p← min⊗(max({p′ |(θ , p′) ∈Mi}), p)
25: end for
26: T ← heuristic order({M1, · · · ,Mi, · · ·}, pt )
27: while |T |> 1 do
28: for all nodes Mi,Mj with the same parent do
29: 〈M′i ,M′j〉 ← pruning(Mi,Mj , pt )
30: parent(Mi,Mj)← (M′i ∧M′j)|pt

31: if parent(Mi,Mj) = /0 then
32: return /0
33: end if
34: remove Mi,Mj from T
35: end for
36: end while
37: return root(T)|FA

pt

In the case of formulas of type ¬G (lines 14–17), the algorithm computes the
entire set of possible substitutions for the variables in G; this is because the answer
to ¬G contains – for boolean predicates – all substitutions that are not in δ (G)
which is very expensive. The OffPad algorithm takes the substitution set returned
by answer a f , along with the start and end frame variables and, for each substitution
returned, determines the corresponding video sub-sequence. In order to ensure the
minimality condition, such sub-sequences are retained if and only if they have no
sub-sequence that satisfies the activity definition with a probability above the thresh-
old. The following theorems state correctness and complexity results for answer a f
and OffPad. Proofs are omitted for reasons of space.

Lemma 1. Let F be an activity formula, v be a video sequence and pt ∈ [0,1] be
a probability threshold. Method answer a f (F,v, pt ,−,−) returns {(θ , p) | p ≥ pt}
independently of the pruning and order methods.
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Theorem 4 (OffPad correctness). Let F be an activity formula, v be a video se-
quence and pt ∈ [0,1] be a probability threshold. Let Fs,Fe be two frame variables
that appear in F. Let S be the set of video sub-sequences returned by OffPad. Then
∀ sv ∈ S, ( � ∃ sv′ ∈ S s.t. sv′ is a subsequence of sv) ∧ (∃ (θ , p) ∈ δ (F) s.t. p ≥ pt ,
Fsθ = s f rame(sv,v) and Feθ = e f rame(sv,v))5.

Theorem 5 (OffPad complexity). Let F be an activity formula, let v be a video
sequence and let pt ∈ [0,1] be a probability threshold. Let |F | be the number of
atoms in F and let O be the set of reference objects. Let (�,pl) be the labeling for
the video v; we denote by |pl| the size of the domain of pl. Then OffPad is running
in time O(max(|O|, |�|, |pl|)2·|F |).

5.4 The OnPad Algorithm

While OffPad is very effective for labeled videos, its recursive search for substitu-
tions cannot be performed unless the full labeling is available when the algorithm
is executed. However, in many security surveillance scenarios, activities must be
detected as the video is being captured. We now present a real-time algorithm that
solves the Online Identification problem stated in Section 2.1. OnPad (Algorithm 5)
is based on representing formulas and their substitution sets as trees that are incre-
mentally expanded and updated as new labeling information becomes available. We
start by defining the tree representation for activity formulas.

Definition 16 (activity formula tree). An activity formula tree is a tuple T =
〈N, l,v,var,→〉, where:

(i) N is the set of nodes.

(ii) l : N→{A,¬,∀,∧,∨} is a function that assigns a label to each node.

(iii) v : N→M is a function that assigns a substitution set to each node.

(iv) var : {n ∈ N|l(N) = ∀}→ V is a function that assigns a variable name to all nodes
that are labeled with ∀.

(v) → is a binary relation on N such that (N,→) is a tree and n ∈ N is a leaf node iff
l(n) = A. The transitive closure of→ will be denoted by→∗.

For n,n′ ∈N such that n→∗ n′ , we use Path(n,n′) to denote the set of nodes situated
on the path from n to n′, excluding n,n′. Let d(n,n′) = |Path(n,n′)|. We can easily
see that for any activity formula we can construct an activity formula tree in which
every leaf node is an atom in the formula; conversely, for any activity formula tree
we can easily compute the associated activity formula. We now define an ordering
relationship between activity formula trees, which models how an activity formula
tree can be expanded when new frames are available for processing.

Definition 17 (activity formula tree ordering). Let T1 = 〈N1, l1,v1,var1→1〉, T2 =
〈N2, l2,v2,var2,→2〉 be two activity formula trees. We write T1 � T2 iff there is an
injective function f : N1→ N2 such that:

5 s f rame(sv,v) and e f rame(sv,v) denote the start and end frames of sv in v.
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(i) Paths are preserved, i.e., ∀ n1,n′1 ∈ N1 s.t. n1→1 n′1, f (n1)→∗2 f (n′1).
(ii) The substitution set for a leaf node in T1 is a subset of the substitution set for the

corresponding node in T2, i.e., ∀ n1 ∈ N1 s.t. l1(n1) = A, v(n1)⊆ v( f (n1)).

Intuitively, T1 � T2 if T2 results from modifying T1 when new labeling elements
are added. This suggests that the OnPad algorithm will produce a order-preserving
sequence of activity formula trees, one at each step of the algorithm.

Activity formula trees provide an ideal way of representing the current state of
OnPad and are updated with new frames and labeling elements. However, the ac-
tivity formula trees do not provide a direct way of estimating the probability that
an activity is about to occur. To provide useful feedback to the user, OnPad re-
turns a numeric alert level between 0 and 1 representing an indirect measure of the
probability that an activity is about to occur.

Formally, an alert function takes an activity formula tree T =〈N, l,v,var,→〉 and,
based on its structure and/or contents, returns a real number L ∈ [0,1], such that:

(i) L = 1⇔ v(root((T )) �= /0;

(ii) ∀n ∈ T,v(n) = /0⇒L = 0.

Example 7. Let T = 〈N, l,v,var,→〉 be an activity formula tree and S = {n ∈
N | v(n) �= /0} be the set of non empty nodes in the tree. The following is an ex-
ample of alert level function, but many others functions are possible. One sanity
check is that an alert function returns 1 iff the activity has been fully detected.

fp(T ) =

{
1, if v(root(T )) �= /0
|S|
|N| otherwise

(1)

OnPad takes as input the current state represented by an activity formula tree
and the latest frame in the video sequence and returns a level of alert that measures
the probability that the activity will occur in the near future. We assume the activity
formula has been pre-parsed into an activity formula tree T , which is initialized so
that for each node n ∈ N, v(n)← /0. The algorithm starts by computing the labeling
for the frame currently being processed on line 1, and then recomputing the set of
all possible substitutions by instantiating variables to the new objects in frame f r. In
practice, we have noticed that these operations can often be avoided as frames gen-
erally resemble prior frames in a video sequence. Lines 5–12 may add new subtrees
to ∀-labeled nodes; the subtrees correspond to instances introduced in f r of the
same type as the universally-quantified variable. Finally, the algorithm computes
the new substitution sets in a bottom-up fashion – the nodes furthest from the root
are computed first and then changes are propagated upwards. When this process is
completed, T represents the new state of the algorithm and is returned together with
the alert level. The following theorems state correctness and complexity results for
OnPad. Proofs are omitted for reasons of space.

Theorem 6 (OnPad correctness). Let F be an event description, let v be a video
sequence consisting of frames [0, f r] and let pt ∈ [0,1] be a probability threshold.
Let 〈T,δ 〉 be the result of applying OnPad to the frames of v until frame f r− 1.
Then root(T ) = δ (F)|pt .
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Algorithm 5. OnPad(F , Ts, f r, �, pl, alert))
Require: Activity formula F , activity formula tree Ts = 〈Ns, ls ,vs,vars ,→s〉 for F representing the current state and

the current frame f r. (�,pl) represents the labeling of the video up to the current frame. alert is an instance of
alert level. We assume the existence of two methods: toAFTree(F), which returns an activity formula tree from an
activity formula F and f romAFTree(T) that returns the activity formula corresponding to activity formula tree T .

Ensure: Pair 〈T,δ 〉, where δ ∈ [0,1] representing the alert level and T represents the new state of the incremental
algorithm.

1: (�′,pl′)← (compute labeling for frame f r)
2: O ′ ← the set of new objects in f r
3: Θ ← recompute the set of all possible substitutions from O ′
4: T(〈N, l,v,var,→〉)← Ts
5: for all n ∈ T s.t. l(n) = ∀ do
6: T ′ ← the subtree of T rooted at n
7: F ← f romAFTree(T ′)
8: for all o ∈ O s.t. o has the same type with var(n) do
9: T ′ ← toAFTree(F[var(n)/o])
10: add T ′ as a child of n
11: end for
12: end for
13: S←{n ∈ N|l(n) = A}
14: h← maxn∈S(d(n,root(T))
15: w← 0
16: while w≤ h do
17: for all n ∈ N s.t. d(n,root(T)) = h−w do
18: if l(n) = A then
19: γ← compute new substitutions for fromAFTree(n) from (�′,pl′)
20: v(n)← v(n)∪ γ
21: else if l(n) = ∧ or l(n) = ∀ then
22: v(n)← ∧

m∈{n′∈N|n′→n}
v(m)

23: else if l(n) = ¬ then
24: n′ ← n′ ∈ N s.t. n′ → n
25: v(n)←{(θ ,1− p)|(θ , p) ∈ v(n′)}∪ {(θ ,1)| � ∃(σ ,x) ∈ v(n′) s.t.θ ∪σ solvable }
26: else if l(n) = ∨ then
27: v(n)← ⋃

m∈{n′∈N|n′→n}
v(m)

28: end if
29: end for
30: w← w+1
31: end while
32: return 〈T,alert(T)〉

Theorem 7 (OnPad complexity). Let F be an activity formula, let v be a video
sequence [0, f r− 1], let f r be the current frame and let (�,pl) be the labeling for
[0, f r]. We denote by O the set of possible objects in the video. Then OnPad is
running in time O(max(|O|, |�|, |pl|)|F |).

6 Experimental Evaluation

In this section, we report the most relevant results of the experimental evaluation of
the algorithms proposed in this chapter and refer the reader to [2, 4] for more details.

We used two publicly available datasets – the ITEA CANDELA dataset, a bank
surveillance dataset – and a third dataset containing TSA airport tarmac footage. In
addition, we evaluated MAGIC on (i) a synthetic dataset of 5 million observations;
(ii) a third party dataset consisting of travel information such as hotel reservations,
passport and flight information, containing approximately 7.5 million observations.
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The ITEA CANDELA dataset (http://www.multitel.be/∼va/) consists of 16 videos,
about 1 minute in length, depicting package exchanges or people picking up and
dropping off packages. We defined 10 activities of increasing complexity and de-
signed the corresponding activity formulas. The TSA dataset consists of approxi-
mately 118 minutes of tarmac footage. We used a set of 23 activity definition in-
cluding flight take-off and landing, baggage handling and other maintenance opera-
tions. The Bank dataset [23] consists of 7 videos, 15–30 seconds in length, depicting
staged bank attacks and daily bank operations. Figures 4(a) and 4(b) contain frames
from video sequences depicting a staged bank attack and regular bank operations re-
spectively. For the Bank dataset, we used the 5 activities of Example 1 and designed
the associated Stochastic Automata, PPNs and activity formulas.

We compared the precision and recall of our algorithms against the ground truth
provided by human reviewers as follows. Human reviewers received detailed ex-
planations on the activity models, as well as sets of activity definitions and were
asked to mark the starting and ending frame of each activity they encountered in the
videos. An average over the reviewers was then used as the ground truth. In order
to evaluate OnPad, for each activity definition, at uniformly sampled time points
throughout the video, reviewers were asked to provide a number between 0 and 1
representing the likelihood that the activity was about to complete. We considered
an average of the alert levels over the reviewers as the ground truth.

6.1 MAGIC

Figures 9.a and 9.b respectively show the time and memory taken to build the index
for the synthetic dataset, w.r.t. to number of observations. As expected, the expo-
nential nature of the unrestricted index makes the problem impractical for more
than 50,000 observations. Instead, the proposed restrictions yield significantly bet-
ter results. We also evaluated the average query time on the synthetic dataset. We
generated multiple evidence and identification queries. Each query was run on 10
intervals generated uniformly at random encompassing between 1% and 75% of the
data. Each evidence query was also run with different thresholds selected uniformly
at random. The running times reported in Figure 9.c are an average over the entire
set of queries. Query answering times are always below 2 seconds for any restric-
tions, showing that the MAGIC structure handles activity occurrences efficiently.

6.2 PPN-evidence, naivePPN-ident and PPN-ident

In the following, we briefly discuss the most significant results for PPN-evidence,
naivePPN-ident and PPN-ident. We first measured the running times of the three
algorithms for the five activity definitions described above while varying the the
number of action symbols in the labeling (Figure 10). It is worth noting that
naivePPN-ident exhibits a seemingly strange behavior – running time increases
almost exponentially with labeling size, only to drop suddenly at a labeling size of
30. At this labeling size activity definitions first begin to be satisfied by the labeling.
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Fig. 9 MAGIC (a) build time; (b) memory occupancy; and (c) query time

(a) (b)

Fig. 10 Typical execution times for (a) PPN-evidence, (b) naivePPN-ident and PPN-
ident.

When no activity definition is satisfied, naivePPN-ident performs several iterations
to decrease the threshold until it reaches 0, but it is comparable in terms of running
time with PPN-ident when the activity is satisfied by at least one subsequence. Both
PPN-evidence and PPN-ident perform linearly with the size of the input.

We then measured the precision and recall of PPN-evidence, naivePPN-ident
and PPN-ident w.r.t. the human reviewers. We observed that the minimality condi-
tion used by the PPN-evidence algorithm poses an interesting problem – in almost
all cases, humans will choose a sequence which is a superset of the minimal sub-
sequence for an activity. In order to have a better understanding of true precision
and recall, we compute two sets of measures: recall and precision at the frame level
(R f and Pf ) and recall and precision at the event (or activity) level (Re and Pe).
At the event level we count as correct any subsequence returned by the algorithm
that overlaps with a subsequence returned by a human reviewer. At the frame level
we count as correct any frame returned by the algorithm that is also returned by a
human reviewer. Details are omitted for reasons of space. However, it is worth men-
tioning that we observed a surprising behavior for frame recall of PPN-evidence,
which appears to increase as the threshold increases. This can be explained consid-
ering that, for low thresholds, there is a relatively high number of small candidate
subsequences, hence the minimality condition causes fewer frames to appear in the
answer. This pattern disappears for higher threshold. We also investigated to what
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(a) (b)

Fig. 11 (a) Precision/recall of OffPad; (b) Comparison between OnPad and human
reviewers

extent the sequences returned by the reviewers and by PPN-evidence actually over-
lap, and found that overlap is above 70% in 80% of the cases.

6.3 OffPad and OnPad

We first measured the running time of OffPad for the three datasets and observed
a high correlation (coefficient 0.95) between the degree of the formula and the time
taken to find an answer. We also investigated the impact of the heuristic order
and pruning methods on the running time of OffPad. Without the heuristic order
method, the average running time was 1.35 times greater. Pruning had an even larger
effect – running without the pruning method increased the running time 3.5 times,
due primarily to the fact that substitutions for frame variables were analyzed even on
search paths that could not lead to a viable result. Finally, we observed that running
time is at most linear in the size of the labeling. We then evaluated precision and re-
call of OffPad w.r.t. the ground truth provided by human reviewers. The minimality
condition used by OffPad poses the same problem discussed in Section 6.2, thus we
computed recall and precision both at the frame and event level (Figure 11.a).

W.r.t. to OnPad, we first evaluated the average processing time per frame, and
concluded that OnPad can process – in real-time – videos sampled at 4 frames
per second. We then looked at how the alert levels returned by OnPad compare
to those provided by human reviewers. In brief, the experiments show that OnPad
approximates very well the behavior of the reviewers (Figure 11).b. However, we
also observed that OnPad tends to be more “conservative” in its alert level while an
activity is in its incipient stages, whereas humans tend to have a better intuition for
what will happen, even just a few frames after the activity starts.

7 Conclusions and Future Directions

Significant progress has been made in recent years on several aspects of activity
detection in videos. However, considerably less effort has been put towards the



Semantic Video Content Analysis 175

definition of a framework where all the aspects of Semantic Video Content Analysis
are integrated in a coherent and effective way.

In this chapter, we have presented a framework and a design methodology with
the objective of bridging this gap. We have analyzed the typical requirements of a
video analysis system from a user’s perspective and identified three main classes of
problems that such an integrated system should address. We have shown that, based
on the nature and complexity of the activities being monitored, different formalisms
may be used to model those activities, and different classes of algorithms can be
designed to solve the above mentioned problems. Finally, we have shown in real
experiments the effectiveness of the proposed design philosophy.

Although our work constitutes a first important step toward a unified framework
for Semantic Video Content Analysis, there is still huge room for improvement.
As part of the effort to reduce the gap between low-level primitives and semantic
activities, we may explore the possibility of pre-processing the output of image pro-
cessing algorithms and combine primitive actions into ‘less than primitive’ actions,
in order to make the definition of high-level activities more intuitive.
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Video Genre Inference Based on Camera
Capturing Models

Ping-Hao Wu, Sanjay Purushotham, and C.-C. Jay Kuo

Abstract. On-line video collection is getting larger nowadays. It becomes difficult
for users to go through the whole collection to find the video of their interest. To al-
low efficient browsing, search and retrieval, one intuitive solution is to cluster video
clips according to their genres automatically. Then, users’ choices can be narrowed
down. Besides on-line video repositories, other applications include managing tele-
vision broadcasting archives, video conferencing records, etc. The goal of video
classification is to automatically place each video title in different categories, such
as news, sports, etc. The classification process involves extracting the information
from the video clips and classifying them into different classes. In this chapter, we
first review related work in this field. Then, two novel features based on the camera
shooting process is proposed for video genre classification. These new camera based
features exploit the fact that a different genre tends to have different camera effects
and user perception. Although a lot of work has been proposed with the considera-
tion of cinematic principles, most extracted features are low-level features without
much semantic information. We propose a feature that estimates the number of cam-
eras used in a short time interval. Then, we propose another feature by calculating
the distribution of the camera distance, which is approximated by the normalized
foreground area of each frame. The block-based motion vector field is adopted to
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reduce the complexity involved in foreground/background modeling. Preliminary
experiment results show that the proposed features capture additional genre-related
information so that the video genre can be inferred from the proposed features well.

1 Introduction/Motivation

The amount of video contents available to users is tremendous nowadays. The num-
ber of video files on the TV and the Internet is exponentially growing every day.
Video files can be generated by anyone using a professional camera, a home cam-
corder or a camera-enabled mobile phone. The professional and the user-generated
video contents make our video repositories extremely huge so that it is infeasible
for human to handle it manually. To find a video file of interest for a user from a
large video collection is a difficult task. Hence, there is a great need to automatically
classify and index video contents for easy access and retrieval from large databases.
Classifying video into various genres is not only helpful to video search but also for
video recommendation systems.

1.1 What Is Video Genre Classification?

Video genre classification and categorization is an important yet basic module in the
management of today’s ever-growing video databases and video mining. It helps end
users efficiently organize, browse, and search video clips in digital video libraries.
Traditionally, classifying video into several pre-determined categories such as news,
sports and commercials involves two steps. First, models are built for each genre
from a set of training video clips. Second, video clips with an unknown genre are
compared with the models of the pre-determined genres. In the first step, visual
and/or audio features are extracted to represent each video clip. Learning methods
are used to bridge the gap between low-level features and the video genre, which
is a high-level semantic concept. In the second step, a proper similarity function is
adopted to determine which genre the video belongs to.

Automatic video genre classification is an active challenging research topic today,
and its significance is highlighted by the NIST TRECVid Video Retrieval competi-
tion which is held every year starting from 2001.

1.2 Organization

This chapter is organized as follows. In Section 2, we briefly describe different video
genres and the genres considered in our work. In Section 3, different types of fea-
tures for classification are reviewed, and their advantages and disadvantages are
discussed. Typical classification tools are described in Section 4. Since the shooting
scenario is inherently linked with the video genre, two new features that take the
shooting process into account are proposed in Section 5. Preliminary experimen-
tal results are given and discussed in Section 6. We demonstrate that the proposed
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Fig. 1 Video genres considered in this chapter.

features can capture the additional genre-related information on top of traditional
features, followed by the summary and future research directions in Section 7.

2 Video Genre Types

A lot of video files are generated every day. Some of them are created by profes-
sionals while others are created by ordinary users. They can be classified as follows.

a) Professional video
Professional video files are created and edited by video/camera professionals.
These include news video, sports video, motion picture video from the movie
industry, commercial video, etc. They are carefully edited so that they tend to
follow the practice of film theory. Professional video is generally shot using mul-
tiple professional cameras.

b) Personal video
Personal video files are generated by ordinary users such as amateurs and hob-
byists. They are recorded generally using a single camera such as a camcorder,
a web cam, or a camera-based mobile phone. A large number of personal video
files available in the Internet are unedited.

There are different ways of video genre classification. Apart from professional
and personal video types, various video genres considered in this chapter are shown
in Figure 1. Note that the genres of our consideration can be further classified. For
example, the sports video may include basketball, baseball, soccer, football, etc.
There are different kinds of cartoon contents, too.

3 Feature Extraction

Automatic video genre classification is a grand challenging problem in the multime-
dia information retrieval field. A large number of researchers have been working on
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it for more than two decades. The task involves feature extraction and classification,
and researchers have classified genres based on different information modalities
(features) present in the video. For example, researchers use the visual modality fre-
quently. Other modalities such as audio and text modalities have also been used. A
few researchers use cinematic principles or concepts from film theory as additional
features for video classification. Some researchers classify an entire video clip to a
particular genre while others focus on classifying segments of video (e.g., identify-
ing violent scenes in a movie). Some classify a video file into one of board categories
such as the movie genre while others classify a video file to a sub-category such as
different types of sports video.

In this section, we examine different features such as visual, audio, text, and
cinematic-based features that can be extracted from a video clip.

3.1 Low Level Visual Features

A visual modality based approach uses visual features extracted from the visual
content of a frame, a shot or an entire scene. Although visual features are popular.
However, they possess some difficulties such as the amount and dimensionality of
the data can be huge and some of them are not easily extractable. As a result, visual-
based features sometimes are used along with other modality features, including
audio and text features.

3.1.1 Shot-Based Features

A shot is a continuous strip of video, made up of series of frames, generally between
two cuts. A shot is detected by finding the transition between different shots. There
are currently more than 100 different shot transitions and it is challenging to identify
all of them correctly. Most common shot transitions include: hard cuts, fade in/fade
out, and dissolves. It is important to identify shot transitions correctly to extract
other features such as color and motion features from a shot. The shot-based features
include: the shot transition length, the average number of shots and the type of shots.
The shot transition length represents the number of frames in a particular shot while
the average number of shots represents the mean number of shots in a scene or in
a video clip. They have been used by Iyegar and Lippman [12], Jadon [13], Troung
[30], among many others. Shot-based visual features are quite commonly used in
video genre classification.

3.1.2 Frame-Based Features

Each video frame has several pixels and the color of each pixel is represented by val-
ues in the color space. The color content of a frame or the distribution of colors in a
video frame can be represented by color-based features such as the color histogram.
Color histograms are often used to compare two frames/two shots. For example,
a horror scene has a darker color content than a comedy scene. Thus, color his-
tograms of comedy and horror scenes are completely different. The most commonly
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used color-based features include: the color histograms of video frames or regions
in a video frame, the color intensity feature of video frames, the color Saturation
feature (the amount of white light in the color) in video frames. Wan and Kuo [31]
described an efficient way for the hierarchical color histogram representation.

Other frame-based features include: the edge-based and the texture-based fea-
tures. The edge features represent the amount and the type of edges present in a
video shot. For example, a basketball court has slanted edges in a diagonal long
shot view. Texture features offer the texture of a surface seen in a shot. For example,
the texture content in a soccer game can be a useful feature to distinguish it from
a basketball game. Edge and texture features are often used in classifying sports
video.

For recent work on robust video frame features, we refer to the work of Drew and
Au [5], Fan et. al [6], Hauptmann [9], Iyegar [12] and Xu and Li [34].

3.1.3 Motion-Based Features

Generally speaking, there are two motion types; namely, the motion of objects in
a video shot and the motion due to the movement of cameras. Commonly used
motion-based features are: optical flow, motion vectors and pixel-based frame dif-
ferencing features. Fischer [7], Kobla [16], Roach [28], Troung [30], Wang [32] and
others have used motion-based features for video classification. The optical flow
feature is the estimated velocity flow of pixels in video frames due to object or cam-
era motion. It can be found by solving an optical flow equation under the smoothness
constraint as described by Horn and Schunck [10] or using wavelets to measure the
motion density as explained by Nam et al. [24]. The motion vector feature includes
the average magnitude and the standard deviation of the motion, which is deter-
mined by the motion vector field. The pixel-based frame differencing feature was
used by Roach et al. [27] in detecting the motion of foreground objects.

3.1.4 Object-Based Features

The object-based features include the number of objects, the color, size, texture, tra-
jectory of the object in a video shot, and DCT-based features. Brezeale and Cook [3]
and Lee [17] used the DCT based features exclusively in video genre classification.
Identifying people in a video program using face recognition techniques provides
another useful object-based feature. However, detecting and identifying objects and
faces is a difficult problem, so that they are less commonly used for video genre
classification.

3.2 Audio-Based Features

Audio-based features are very useful for video genre classification. The main advan-
tage of audio-based features is that they can be easily extracted as compared with
visual-based features. However, it was observed [2] that video classification with
only audio-based features is not efficient. That is, the correct classification rate is
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low. Thus, it is often to use the audio modality in combination with visual and text
modality features to achieve a higher video genre classification rate.

According to [2], audio features can lead to three classes of audio understanding:
low-level acoustics such as average frequency of a frame, midlevel feature classes
such as the audio signature of the sound, a person speaking etc., and high-level scene
classes such as background music playing in certain types of video scenes.The audio
features can be classified into time-domain and frequency domain based features
which are discussed below.

3.2.1 Time-Domain Based Features

The time-domain audio features include: RMS value of the audio signal energy, zero
crossing rate (ZCR), silence ratio, etc. RMS of the signal energy feature measures
the loudness/volume of the sound. For example, sports video have a different noise
(sound) level content than a romantic video. Zero crossing rate is the number of
amplitude changes of the audio signal in a video frame. ZCR feature can be used
to identify the silence frames in the video shot. Silence ratio (feature) is the ratio of
speech frames to silent frames in a video scene. The silence ratio for a news video is
higher than commercials. Some researchers such as Zhang and Kuo [36] have done
video segmentation based on audio based features.

3.2.2 Frequency-Domain Based Features

The most common frequency domain features are: the fundamental frequency, the
frequency bandwidth and Mel frequency cepstral coefficients (MFCC). They have
been used in [11, 17, 20]. The fundamental frequency is the lowest frequency in
a musical note, and it approximates the pitch information, which helps distinguish
male and female speakers. The bandwidth feature is a measure of the frequency
range of audio signals. It is useful to distinguish speech from music since speech
has narrower bandwidth than music. Thus, speech video such as a drama scene
has narrower bandwidth than musical video. MFCCs are obtained by taking the
logarithm of the spectral components and placing them in the Mel frequency bins.
It is a perception-based feature, which is useful to identify speakers.

3.3 Text-Based Features

Reseachers such as Brezeale and Cook [3], Jasinchi and Louie [14], Lin and Haupt-
mann [19], Zhu et al. [38] used text-based features for video classification since
the text feature containing a higher level semantic concept is easier to understand.
However, since the text information may not be readily available from a video file,
it is not as popular as the visual and the audio features.

Texts in a video file can be categorized as the viewable text and the transcript
text. The viewable text includes: the scene text and the graphic text while the
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transcript text includes transcript of dialogs and closed captions. The scene text
refers to the text on objects in a video scene, for example, athlete’s name on his
jersey, the building name etc. The graphic text refers to the text embedded in a
video shot such as scores of a sports event or subtitles in a movie. The view-
able text can be extracted using the optical character recognition (OCR) technique
while transcripts of dialogs can be extracted from speech in a video scene. Speech
and language recognition techniques are used to extract the speech presented in
video clip.

Closed captioning (similar to transcripts) is a method of displaying the text on a
video shot. In addition to dialogs, closed captions have other information such as en-
vironment sounds (e.g., bear growls [Grrrr], train passings [tututu]). The text-based
features generally show a direct relationship between the text feature and a specific
genre. To give an example, transcripts such as ‘sport arena’, ‘Lakers’, ‘basketball’
indicate a basketball sport genre. However, the character and speech recognition
techniques to extract text-based features have high error rates. Moreover, text-based
features are not present in many video clips, which makes the use of text-based fea-
tures for video genre classification less practical. Thus, text based features are often
used along with other features for video genre classification.

3.4 Cinematic Based Features

Cinematic-based features include: cinematic principles or concepts from film the-
ory and camera based features such as camera motion and camera angles. Cinematic
principles refers to the film grammar for different video shots such as the extreme
long, the long , the medium long, the medium, the close up and the extreme close
up shots. These cinematic principles can be used to interpret different genres differ-
ently. For example, a close up shot is commonly used in drama video while a long
shot is used in a soccer sport video. The camera motion feature include panning,
titling, zooming, etc, while the camera angle feature measures the camera angle of
the video shot. These features are helpful in classifying video, for example, a hor-
ror video may have more slanted camera angles than a news video. Wei [33], used
camera based features such as camera motion - panning, tilting, etc. in video genre
classification. Rasheed and Shah [25] considered concepts from film theory.

3.5 Feature Integration

Table 1 lists the advantages and the disadvantages of each type of feature. Consider-
ing the drawbacks when they are used alone, researchers have used multiple features
to better represent the underlying video. The integration of multiple features gives
higher classification accuracy than the use of a single feature. Fischer et al. [7] used
a three-step process to combine the visual, the audio and the cinematic features to
get better video classification results. Huang et al. [11] used joint audio and visual
features. Li et al. [18] did a thorough review on movie content analysis based on
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Table 1 Feature Comparison

Feature Type Advantages Disadvantages

Text-based features

• Viewable text such as
scene text, graphic text

• Transcript text such
closed captions, transcript
of dialogs

Relation between features
and specific genre is easy to
understand

• High OCR, ASR error
rates

• Text based features not
present in all videos

• Higher computational
cost for large dialogs

Audio-based features

• Time-domain features
such as ZCR, silence
ratio, RMS of audio
signal

• Frequency-domain fea-
tures such as fundamental
frequency, freq. band-
width, MFCCs

Computational complexity
lower than visual features

• Difficult to distinguish
between different envi-
ronment sounds

Visual-based features

• Color-based such as color
histogram, edge, texture

• Motion-based such as mo-
tion vectors, optical flow

• Shot-based such as avg.
no. of shots, shot length

• Object-based such as the
object size, texture, color

• Color-based features are
simple and easy to im-
plement

• Visual features are com-
monly used since they
are present in all video
contents

• Shot-based features
such as shot transition
detection are difficult to
identify

• Object recognition is
difficult and computa-
tionally expensive

joint features. Rasheed and Shah [25] used audio, visual, and cinematic principles.
A basket ball sports video was analyzed by Zhou et al. [37] using integrated motion,
color and edge features.

There is however no standard approach to combine different features. Some com-
bined all features into a single feature vector while others trained classifiers for each
feature type and used another classifier to make final decision [2]. Furthermore, it
is possible to study the correlation between different features to reduce complexity
and improve classification accuracy. Feature fusion is still in its infancy, and it is a
growing area in machine learning. It remains to be one of the challenging and active
research areas in the video information retrieval field.

4 Classification Rules

Video classification involves classification of input features into different gen-
res. A training set is used in finding the parameters of the classification model
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(or rule) while a testing set is used for video classification. Commonly used classi-
fiers include: k-nearest neighbors, the Guassian mixture model (GMM), the hidden
Markov model (HMM) and the support vector machine (SVM), etc. In this section,
we briefly discuss commonly used classification tools in the context of video genre
classification.

4.1 K-Nearest Neighbors (kNN)

KNN is one of the simplest and commonly used machine learning algorithms for
classifying features into multiple classes. A feature vector is classified to a par-
ticular class based on the majority vote of its neighbors. Sometimes, a weighted
contribution of neighbors is adopted for classification.

4.2 Gaussian Mixture Models (GMM)

Features under the modeling of GMM is generated by a probability density distribu-
tion (pdf), which is expressed as the weighted sum of a set of Gaussian pdfs. Using
the Expectation Maximization (EM) algorithm, the optimum set of GMM param-
eters can be identified in an iterative manner. In our context, the pdf of the input
feature vector is modeled by GMM, and the classification result is the target video
genre.

4.3 Support Vector Machine (SVM)

SVM is a state-of-the-art machine learning tool, which has been used by researchers
to classify video into various genres. SVM is trained by features extracted from
video shots or clips. SVM views the input data instances as two sets of vectors in
an n-dimensional space, and constructs a separating hyper-plane that maximizes the
margin between the two data sets. Thus, it is also known as the maximum margin
classifier.

Mathematically, given a training set of instance-label pairs (xi,yi), i = 1, · · · , l,
where xi ∈ Rn and y ∈ {−1,1} (i.e., two classes), SVM requires the solution to the
following optimization problem:

min
w,b,ξ

1
2

wT w+C
l

∑
i=1

ξi, (1)

subject to yi
(
wtφ(xi)+ b

)≥ 1− ξi, and ξ ≥ 0.

Here, training vectors xi are mapped into a higher (maybe infinite) dimensional
space by function φ . Then, SVM finds a linear separating hyperplane with the max-
imal margin in this higher dimensional space. C > 0 is a penalty parameter of the
error term.



186 P.-H. Wu, S. Purushotham, and C.-C. Jay Kuo

We can define a kernel function in form of

K(xi,x j)≡ φT (xi)φ(x j). (2)

Several other kernal functions are given below.

• Linear kernel: K(xi,x j) = xT
i x j,

• Polynomial kernel: K(xi,x j) = (γxT
i x j + r)d , γ > 0,

• Radial basis functions (RBF): K(xi,x j) = exp(−γ‖xi− x j‖2), γ > 0, and
• Sigmoid: K(xi,x j) = tanh(γxT

i x j + r), γ > 0,

where γ , r and d are kernel parameters.

4.4 Other Classification Tools

There are other classifiers used for video genre classification such as the hidden
Markov model (HMM), the linear threshold unit (LTU), the decision tree, linear
discriminant analysis, the neural network, the Bayesian network, etc.

5 Camera Capturing Model

Traditional methods use low-level features such as the shot length, color, motion
etc. Here, a novel approach based on an intermediate video capturing model is in-
troduced to bridge the gap between low-level features and the video genre. The idea
is that the video genre is inherently linked with the video capturing scenario. For ex-
ample, only a single camera is involved for personal video while multiple cameras
and editing are employed for producing professional video. Another example is the
dialogue scene, which happens frequently in romance and other character movies.
In dialog scenes, two cameras are often used to capture the faces of two actors.

Two novel features for video genre classification are proposed based on the video
capturing scenario. The first one is the number of cameras. By comparing the sim-
ilarity between key frames of shots, we can roughly determine how many scenes
there are within a certain time window. The second feature is the distance of the
subject to the camera. If the subject is farther away from the camera, it appears
smaller in the frame and could be of less importance. On the contrary, if the subject
is closer to the camera, the subject is bigger and could be more important. Since the
features are extracted by taking the filming process into account, most commonly
used classifiers can successfully label video clips into different genres.

This section started by discussing the basis knowledge in filming, especially the
effects of different usages of cameras. Then, two features are proposed.

5.1 Filming Basics

There are many ways to use cameras depending on how you want to shoot and
present the scene. The camera characteristics can be roughly categorized by different
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subject distances, camera angles (including horizontal and vertical positions), focal
lengths, or camera levels as explained below.

• Subject distances: extreme long shot, long shot, full shot, medium shot, head and
shoulders close-up, close-up, big close-up, extreme close-up.

• Horizontal position: front angle, profile angle, rear angle.
• Vertical position: bird’s eye angle, high angle, neutral angle, low angle, worm’s

eye angle.
• Lens or focal lengths: wide-angle lens, telephoto lens.
• Camera levels: normal, dutch angle (tilting the camera off to the side so that the

shot is composed with the horizon at an angle to the bottom of the frame).

Different uses of cameras can have different presentations for the same scene,
and convey different information. For example, close-ups indicate the importance
of a subject being filmed and create impacts; longer shots make the scene less in-
tense; high angles make the viewer feel more powerful than the subject while low
angles suggest the powerfulness of the subject; and dutch angles are often used to
create tension or uneasiness. Therefore, it is reasonable to argue that there could be
different distributions of camera distances or angles for video of a different genre.

For fiction video that wants to tell some stories usually sticks to a moderate po-
sition or angle, because they do not want to call attention to themselves. This is
especially true for video like comedy, which usually tries to avoid big close-ups.
The drama is similar except that tighter angles tend to be chosen to increase emo-
tional intensity. As for action movies, a lot of dutch angles are used. Sometimes,
unusual angles are used for some special effects. For example, a sudden bird’s eye
view or an extreme close-up can startle the audience. However, these special angles
are not used often.

As for non-fiction video such as news, sports and documentaries, the important
thing is neutrality. Therefore, camera setups tend to be neutral. The camera angle
types range from the long shot to the loose close-up. Extreme setups like the wide
angle, extreme close-up, or off-level angles are often avoided when filming video
of these genres. For example, on-camera reporters are usually covered in medium
shots. Even for the news shots in the field, similar rules also apply.

Long shots or telephoto lens are used often in sports videos, since directors would
like the camera to be off the playing field. Sometimes, closer shots on the players,
either on the field or the bench, coaches, or even the spectators may be desirable. In
these occasions, some close-ups may be used. Commercial and music video contents
usually contain a lot of editing or shooting effects. In some ways, more extreme
angles are preferred to create as dramatic and/or striking feeling as possible.

5.2 Camera Distance

The distance between the camera and the objects being shot can be classified into
the following several types.
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• Long shot (LS) (sometimes wide shot): Long shots typically show the entire
subject (for example, human figures) and usually include a large portion of the
surroundings to provide a comprehensive view. There are also the extreme long
shot (XLS) and the medium long shot (MLS). The extreme long shot is obtained
when the camera is at the furthest position from the subject. It usually shows
the outside of a building or a landscape. The medium long shot is a distance
somewhere between long shot and medium shot. In the case of a human figure,
it usually cuts off the feet and ankles.

• Medium shot (MS): In the medium shot, the subject and its surrounding occupy
about the same areas in the frame. In the case of the human figure, a medium shot
is from the knees or waist up. It is usually used for dialogue scenes. It is good at
showing body languages but lacks the ability to show facial expressions.

• Close-up (CU): Close-up shots show a very small part of background. They con-
centrate on the detail, such as a character’s face, which usually fills almost the
whole frame. Variations include the medium close-up (MCU), the extreme close-
up (XCU), etc. A medium close-up includes the head and the shoulder in the case
of a human figure. On the other hand, an extreme close-up magnifies the subjects
beyond what we usually experience in a real world. In the case of a human figure,
it shows the head, usually from the forehead to the chin.

For the shot distance, the main difference is the object size, which gets bigger
and bigger from the long shot to the close-up. Therefore, by measuring the ratio of
the foreground object area to the background area, the relative shot distance can be
estimated.

Extraction/detection of foreground or moving objects is an important step for
many applications, such as object tracking and identification in video surveil-
lance systems. In some applications, the background information is available for
all frames, for example, when the background is static. Instead of modeling fore-
ground objects, the background information allows the detection of the foreground
by “learning” and “subtracting” the background from the video frame. For example,
in [8], the frame difference of three consecutive frames are used and the background
is modeled from several seconds of video. The edge map of the frame difference is
used in [15]. The background registration technique is used to construct a reliable
background map in [4]. The mixture of Gaussian (MoG) model is often used in
background modeling [29, 21].

However, when the background is not static, that is, dynamic background, or
when the camera is moving, the modeling and detection of background becomes a
very challenging problem [22, 1, 26]. Background modeling and subtraction cannot
be applied directly to these cases. Usually, motion compensation has to be applied
to video frames first to compensate the movement caused by the moving camera. To
this end, motion parameters of a camera motion model are estimated, usually based
on optical flow, or motion vectors of certain feature points. These techniques assume
that the adopted camera motion models are accurate enough so that video frames
can be well compensated and aligned with others. Nevertheless, motion vectors are
usually noisy, which means accurate camera motion reconstruction is generally dif-
ficult, and the estimation of the camera motion parameters is usually a complicated
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process if certain accuracy is required. In addition, unlike surveillance video, shot
change occurs in most movies, after which the background model would have to be
reset. This makes the foreground/background extraction even more challenging.

Instead of the cumbersome procedure of estimating the camera motion, motion
compensation of video frames, background modeling, and background subtraction,
the idea of human visual attention model can be used to identify the foreground and
background. Foreground objects, usually with more motion, attract more human
attention then the background. By examining the motion vector field, it is possible
to identify the regions that attract more attention.

A director usually moves the camera to track the movements of objects. There-
fore, motion vectors should all be approximately equal to a global motion (v1,v2),
which can be roughly estimated by the mean of the motion vector field:

vi =
1

M×N

M−1

∑
x=0

N−1

∑
y=0

vi(x,y), i = 1,2, (3)

where (M,N) are the number of blocks in column and row, respectively, and vi(x,y)
is the motion vector at position (x,y).

Foreground objects are identified as regions with motion vectors different from
the global motion. Let V (x,y) be a map denoting background by 0 and foreground
by 1, then it can be obtained by

F(x,y) =
{

1, if |vi(x,y)− vi|> σi,
0, otherwise

(4)

where σi is the threshold between the foreground and background. If the current
motion vector is too much deviated from the mean motion vector, the current block
is labeled as foreground. The threshold is selected as the standard deviation of the
motion vector field:

σ2
i =

1
M×N

M−1

∑
x=0

N−1

∑
y=0

(vi(x,y)− vi)
2 , i = 1,2. (5)

However, when the background has some homogeneous or periodic content, the
estimated motion vector could be wrong, resulting in some background blocks to be
wrongly labeled as foreground blocks. To remedy this, for each 4× 4 block in the
current frame, a close neighborhood of the corresponding position in the previous
frame is checked. If there is a block from the previous frame that is similar enough to
the current block, the current block should be labeled as background. The similarity
of two blocks is measured by the sum of absolute difference (SAD) of the luminance
normalized by the sum of the luminance of the current block.

DΔx,Δy =
∑3

i=0∑
3
j=0 |It(x + i,y + j)− It−1(x + i+Δx,y + j +Δy)|

∑3
i=0∑

3
j=0 It(x + i,y + j)

, (6)
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where I(x,y) is the luminance component of the current frame, and Δx and Δy de-
fine the local neighborhood. If DΔx,Δy is smaller than a threshold, the current block
is labeled as background; otherwise, the foreground/background is determined by
F(x,y). The camera distance is then estimated by the ratio of the foreground area to
the background area, or to the entire frame.

The frame differencing is also often used in video classification. It measures the
amount of motion between frames. If the camera is still, frame differencing can
capture the movement of foreground objects. However, if the camera is moving, the
content of the entire frame is generally changing and thus difficult to capture the
movement of the foreground. In our approach, since regions that are consistent with
the global motion are excluded, the foreground objects can be identified and the
camera distance can be approximated.

5.3 Camera Number

Many existing methods use the average duration of shots or number of shots as
one of the feature to classify video. It is based on the observation that action video
usually has shorter and more shots to create the intense feeling for viewers, like car
chasing, fighting or explosion scene. On the other hand, drama or romance video
tends to have longer shots to develop the characters or scenes. Note that a longer
duration also implies fewer shots in a fix interval.

However, drama movies sometimes would also have shorter shot durations, not
necessarily as short as in action movies, but short enough to cause ambiguity. Take
dialogue scenes for example, which happen a lot in drama movies. Two cameras are
used to capture the faces of the two persons that are in the dialogue. There could
be more than 10, or even almost 20 shot changes during an one minute conversa-
tion between two people, depending on the content of the conversation. The action
movies sometimes have around 20 shot changes in one minute. Therefore, it is more
important to determine the number of cameras used during a period of time rather
than counting the number of shot changes.

Shot boundaries are determined via computing certain similarity (or distance)
measure between adjacent frames. If the similarity (distance) is below (above) some
threshold, a shot boundary is declared at the current frame. The same idea can be
used to determine the number of cameras. If the camera is not moving or changing
focus, the frames that are shot by the same camera should look similar given that
they are close in time. The simplest way is to compare every pair of frames during a
time period. However, this would demand heavy computations. The alternative is to
extract key frames. First, shot change detection is applied first. Then, for each shot,
the first frame is used as the key frame [23]. Although there exist other more com-
plicated algorithms for determining the key frame of each shot, this simple approach
should suffice for the purpose of determining the camera number.

To find out the number of cameras, we can simply compare the key frames ex-
tracted. If two key frames are similar enough according to a certain distance mea-
sure, they are labeled with the same camera index. Note that it makes no sense to
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......

Shot boundary
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Calculate
distance

Fig. 2 The process of determining new camera frames.

the numbers of cameras in a long video since when the scene is changed, the camera
setup is also changed as well. Therefore, the number of cameras should be calcu-
lated in a short time period only, for example, in one minute.

Furthermore, since camera motion is pretty common with which one key frame is
insufficient to represent a shot, more than one key frames should be extracted from
a shot. To achieve this, the approach presented in [35] is adopted, which compares
each frame with the current key frame in the shot. If the distance between them
exceeds a threshold, the current frame is selected as the next (new) key frame. This
is illustrated in Figure 2.

The proposed algorithm for determining the number of cameras in a short time
window is detailed below.

1. Compute the color histogram for the incoming (current) frame i.
2. Compute the distance between the current and the previous frames. If the distance

exceeds a threshold, T1, the current frame is chosen as a new key frame.
3. For each new key frame, compute the distances with previous key frames. As-

sign the camera index of the most similar key frames (should be below certain
threshold T3) to the new key frame.

4. If not, compute the distance between the current frame and the previous key
frame. If the distance exceeds a threshold, T2, the current frame is chosen as a
new key frame but with a camera index of the key frame corresponding to the
previous shot boundary.

5. Proceed to the next frame by increment frame index i by one.

6 Experimental Results and Discussions

Several video programs with different genres are collected from YouTube. They are
collected for movie and non-movie classes. The movie class contains action, car-
toon, drama, and horror, while the non-movie class contains music video, news,
and sports, as shown in Fig. 1. Video programs were first divided into segments of
approximately equal duration of 1 min. Then, they were all encoded by the H.264
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video format. There are 20 1min clips in each genre, 140 in total, except that ac-
tion08.mp4 is 20 seconds. The total length was around 2 hour and 20 minutes.

Note that this amount of video is not enough for both training and testing. In
addition, to form a complete representation of each genre, more features that take
other aspects such as color into consideration should be included as well. The results
shown here only serve as preliminary results that demonstrate the feasibility of the
proposed two new features. All thresholds that are used to extract the two features
are determined empirically.

6.1 Camera Distance

The camera distance is approximated by the ratio of the foreground to the entire
frame. Fig. 3 shows some examples of the foregrounds extracted. The idea is that a
different camera distance can achieve a different visual effect and different genres
should have different distributions of the camera distance. Therefore, the foreground
to background ratio should not be averaged over the whole clip. Instead, the his-
togram of the ratio should be measured during a short time window, say, 1 minute.
The ratio of the foreground to the whole frame is normalized and quantized to the

(a)

(b)

Fig. 3 Several foreground maps.
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Fig. 4 The camera distance histogram for each genre.



194 P.-H. Wu, S. Purushotham, and C.-C. Jay Kuo

range of 0 to 9. The histograms in every genre are averaged, respectively, as shown
in Fig. 4.

We see that the action movie has a more distinct histogram as compared with
others. The histograms for music video and sports video are similar to the one for
action, but with fewer frames having larger values (3 6). Horror forms another group
itself, which is a little like action, but actually quite different considering it has
larger value at bin 0. Cartoon, drama, and news are the third group. The common
point of these three genres is that they all have static background often. In addition,
the scenes of a news presenter bear strong resemblance to dialog scenes in dramas.
As for cartoon, when one object is moving, other objects tend not to move because
this is easier for animators to create animation, which makes the scene has similar
portion of foreground as the scenes in news or drama.

Note that since the proposed algorithm is based on the motion vector field, the
foreground object would not be detected if it is not moving at all. That is the rea-
son that many frames have value 0. Thus, this can be viewed as a metric related to
motion as well. However, unlike frame difference methods which cannot extract the
foreground when the camera is moving, the proposed algorithm is able to measure
the portion that foreground objects take and, as shown by the results, some informa-
tion about the video genre can be inferred from the distribution of the foreground
ratio.

To conclude, the proposed camera distance measure does have different distri-
butions among different genres. However, other features should be used as well in
order to obtain a more precise description of the video genre. For example, more
accurate measurement of the motion information can be obtained if it is combined
with the frame difference method.

6.2 Camera Number

As mentioned earlier, the average shot number is often used in video genre classi-
fication, but it fails to consider the fact that there are sometimes fewer scenes than
shots. The dialog scene, which happens often in movies that need character devel-
opment, is such an example. Although there might be many shot changes during a
conversation, there is actually only 2 cameras covering the two persons.

Fig. 5 shows the first frame of each shot in drama03.mp4, which is a short clip in
the movie No Country for Old Men. This clip contains a typical dialog scene, where
an establishing shot shooting the outside of a store is used to point out the location
of the following event. A second shot is one person inside the store followed by
another person walking into the store. Then, a conversation between them happens.
As seen in the figure, the shot is alternating between the two persons in the conver-
sation. There are 15 shot changes (with 16 shots in total) during this 1 minute clip.
However, there are only 3 cameras in this video. The number of cameras (3) is more
meaningful than the number of shots (16) in this case. The proposed algorithm suc-
cessfully picks the first three frames shown in Fig. 5 to represent the cameras used
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Fig. 5 Shots of drama03.mp4.

in this clip, which is an establishing shot, a shot of the first person and a shot of the
second person.

Fig. 6 gives another example. There are 20 shots in drama07.mp4, which is a
short clip from the movie Shawshank Redemption. However, by examining extracted
shots, we see that there are only 6 different camera angles, which can be represented
by the first 5 and the last key frames. Most of the time, the director just alternated be-
tween two cameras to capture face expressions and body movements of the subjects.
Fig. 7 shows the frames that are extracted by the proposed algorithm to represent
the cameras used in this clip. A total of 7 frames is extracted. The first 6 are correct
frames, while the last one is a false alarm caused by the sudden motion in the scene
where one person ripped off a wallpaper on the wall very quickly.

However, the proposed algorithm does not work well in every situation. Some-
times, the camera position changes when being inactive, which cause the frame con-
tent to change and can be regarded as a new camera. For example, in drama06.mp4,
there are only 4 different cameras but 8 are detected, which is caused by the fact that
there are several different close-ups for subjects besides a normal medium shot.

Figure 8 shows the numbers of shots and cameras for each video genre. In action
movies, the number of shots is generally large since shot change occurs frequently to
make the scene more intense. Sometimes, the number of cameras is much less than
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Fig. 6 Shots of drama07.mp4.
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Fig. 7 Cameras of drama07.mp4.

the number of shots in some cases. The reason is that, to make the scene intense,
the director sometimes quickly alternates between two cameras. Although several
action movie clips have about the same (or only a little bit less) number of cameras
as the number of shots, it is safe to say that, if the number of cameras is less than
the number of shots to a certain degree and the number of shots exceeds a certain
threshold, the video clip is likely to be an action movie.

Music video also has many shot changes as well. The difference is the number
of cameras is almost always about the same as the number of shots. Cartoon and
sport videos also have about the same number of shots and cameras, but with fewer
number of shots than the action movie or music video. For news video, the number
of shots is significantly less than other genres. The number of cameras depends on
what type of the segment is. If it is inside studio, the number of camera is less than
the number of shots since the cameras are alternating between each other. However,
if the news segment contains shots in the field, the number of cameras tend to be
about the same as the number of shots. Horror movies have more shots than drama
movies, but they both have a significantly less number of cameras then the number
of shots. In drama movies, the camera number is few because of frequent dialogue
scenes. As to horror movies, cameras sometimes switch quickly between several to
create intense feeling. In addition, scenes in horror movies are usually very dark,
which makes the differentiation more difficult than brighter scenes.

Recall that three groups can be formed by inspecting camera distance histogram.
Consider the first group, which contains action, music video, and sports. Action
movie and music video have similar number of shots, but action movies tend to have
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Fig. 8 Number of shots and number of cameras for each genre

less number of shots comparing to music video. On the other hand, sports video has
both less number of shot and number of camera than action and music video. As for
cartoon, drama, and news, which belong to the second group, cartoon has more shots
and about the same number of camera; drama and news both have fewer number of
shots comparing to their number of shots, but news video typically has less number
of shot. Therefore, using the number of shots and the camera number, it is easy to
distinguish inside each group.

To conclude, instead of using the number of shot changes alone, the number of
cameras should also be considered. By jointly consider the number of shots and
the number of cameras, much more information about the shooting process can be
inferred. Note also that the number of cameras should only be calculated in a short
interval, such as 1 min in the demonstrated cases.

7 Conclusion

In this chapter, we first reviewed techniques for video genre classification. Then, we
introduced two new features; namely, the camera number feature and the camera
distance feature based on the camera capturing model. It was shown by prelimi-
nary experimental results that, given the proposed features, we are able to infer the
shooting process to capture additional video genre-related information on top of
traditional visual features.

There is ample space for future research in video genre classification. Some of
them are given below.

• Feature fusion i.e., combining different multimodal features;
• Finding new features that are characteristic of a specific genre;
• Finding new classification rules for better video categorization;
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• Managing and classifying large video database;
• Sub-genre video classification;
• New computational techniques to make feature extraction easier.

Video genre classification has many real world applications. It is closely related
to other research areas such as video indexing, retrieval, and summarization. In some
sense, automatic video genre classification is the first step to the management of a
large video dataset. It helps end users efficiently organize, browse, and search video
clips in video libraries.
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Visual Concept Learning
from Weakly Labeled Web Videos

Adrian Ulges, Damian Borth, and Thomas M. Breuel

Abstract. Concept detection is a core component of video database search, con-
cerned with the automatic recognition of visually diverse categories of objects (“air-
plane”), locations (“desert”), or activities (“interview”). The task poses a difficult
challenge as the amount of accurately labeled data available for supervised training
is limited and coverage of concept classes is poor. In order to overcome these prob-
lems, we describe the use of videos found on the web as training data for concept
detectors, using tagging and folksonomies as annotation sources. This permits us to
scale up training to very large data sets and concept vocabularies.

In order to take advantage of user-supplied tags on the web, we need to over-
come problems of label weakness; web tags are context-dependent, unreliable and
coarse. Our approach to addressing this problem is to automatically identify and
filter non-relevant material. We demonstrate on a large database of videos retrieved
from the web that this approach – called relevance filtering – leads to significant im-
provements over supervised learning techniques for categorization. In addition, we
show how the approach can be combined with active learning to achieve additional
performance improvements at moderate annotation cost.

1 Introduction

Recent technological developments like high-speed internet and large-scale storage
devices have made it possible for private users to generate, publish, and share large
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amounts of data. This has led to a break-through of digital video, which is now
not only broadcasted by TV stations but is also produced, streamed and stored on
a private basis. Web video portals like YouTube, blinkx, or myspace1 have become
essential sources of information and entertainment to millions of users, and it is fair
to say that digital video is part of our everyday life, with massive amounts of content
being viewed and stored [34, 44].

While video content is fairly simple to produce, finding the desired information
becomes a difficult challenge as video databases grow larger and larger. The most
comfortable way for users to express their information needs remains a text-based
approach on the basis of keywords. This, however, requires an indexing that links
the video content in a database to semantic concepts (or tags) appearing in it, like
objects (“airplane”), scene types (“cityscape”), and activities taking place (“inter-
view”). The challenge of creating such an index has been referred to as the semantic
gap [36], the discrepancy between a video’s low-level content on the one hand and
the viewer’s high-level interpretation on the other.

So far, the only reliable bridge over the semantic gap remains human perception.
This means that – to build an accurate textual index for video search – human op-
erators are required to manually label video content with concepts appearing in it.
For many large-scale practical applications, however, this approach is simply too
time-consuming. As a scalable alternative to complement human labeling, concept
detection systems have been developed that infer the presence of tags automatically
from the content of a video [7, 6, 46, 49]. Though such detectors do not reach a
precision comparable to human annotators, they have been demonstrated to be ex-
traordinarily useful in a video search context [38].

While concept detection is considered an approach of high potential for video
search and has been realized in several research prototypes [7, 6, 19], it has not been
widely applied in practical large-scale settings yet. One reason for this is that the
supervised machine learning techniques underlying concept detection require video
content labeled with target concepts for training. Currently, this training information
is acquired manually, i.e. human operators label data with respect to concept pres-
ence. The quality of the resulting training material is high in a sense that the anno-
tated concepts are carefully selected with respect to feasibility and usefulness [27],
that clear and restrictive definitions of concepts are predefined, and that fine-grain
annotation is done on shot level.

On the downside, the effort associated with such a time-consuming acquisition
restricts concept detection in several ways: first, it limits the number of concepts
to be learned, such that the size of current detector vocabularies is far from opti-
mal [17]. Second, detectors have been reported to overfit to small training sets and
generalize poorly [51]. Third, keeping track of dynamic changes of users’ infor-
mation needs is infeasible as new concepts of interest emerge (such as “President
Obama” or “Olympics 2008”).

Given this scalability problem, the question arises whether explicit manual anno-
tations – which are precise but difficult to acquire – can be substituted with weaker

1 http://www.youtube.com, http://www.blinkx.com, http://vids.myspace.com
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Fig. 1 Sample frames from YouTube clips tagged with “basketball”. While some frames
do show basketball (top), other non-relevant content is not visually related to the concept
(bottom).

label information that can be obtained more easily (or is even freely available). One
source of such information is web video, which is publicly available at a large scale
from portals such as YouTube and comes with tags indicating the presence of con-
cepts in a clip. If we could utilize this tag information as class labels in a concept
learning framework, systems could automatically harvest training material from the
web. This way, detectors could perform a more autonomous learning, scale up to
thousands of concepts, and keep track of trends in user interest.

Two key aspects are important: first, the described label information is signifi-
cantly easier to acquire at a large scale, as the annotations used have already been
made by a large community of YouTube users. Second, labels are weak, i.e. content
annotated with a target concept may show the concept but does not necessarily do
so. An illustration is given in Fig. 1, which shows representative keyframes from
web videos tagged with “basketball”. While the concept is present in some frames,
others are not visually related to it at all. We will refer to the first kind of frames as
relevant, while calling the latter non-relevant.

It should be noted that non-relevant content can be caused by different reasons:
for once, tags are coarse and indicate that a concept appears in a video, but not when
it appears. A second reason is that labels are inherently unreliable - for example, the
tag “Steven Spielberg” does not necessarily indicate that Steven Spielberg appears
in a clip but might just hint to a news report on the Academy Awards.

In the following, we will refer to training content where positive labels are only
coarse and unreliable indicators of concept presence as weakly labeled. Obviously,
training a concept detection system on such data is a difficult challenge: typically,
for each target concept a binary classification problem is cast of differentiating con-
cept presence from concept absence, and a statistical model is learned from a set of
labeled training samples (here, keyframes). When applying such supervised learning
to web video, non-relevant content causes false positives in the training set, and it is
to be expected (and will be demonstrated later) that concept detection performance
degrades with increasing influence of non-relevant content.

In this chapter, this setup of training concept detectors on weakly labeled web
video data is studied. We will show that the tag information associated with web
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Fig. 2 Our concept detection system learning from web video. Clips downloaded from online
platforms like YouTube are used for concept learning. Since such videos are only weakly la-
beled, relevance filtering identifies and discards non-relevant content. The resulting statistical
model is applied to detect the learned concepts in previously unseen videos.

video is in fact unreliable, and that non-relevant material in the training set can de-
grade the performance of standard detectors severely (Sect. 3). To overcome this
problem, we present a framework for learning from weakly labeled web video data
called relevance filtering (Sect. 4). This probabilistic approach views the given la-
bels as weak indicators of true latent class labels, which are inferred during concept
detector training. This corresponds to a filtering of non-relevant material, which can
be applied as a wrapper around well-known supervised learning techniques. Two
such extensions are presented, one for a generative approach (kernel density esti-
mation) and one for a discriminative one (support vector machines [SVMs]). It is
shown in quantitative experiments (Sect. 5) that relevance filtering can successfully
identify non-relevant content and give significant improvements over standard su-
pervised learning.

As outlined so far, relevance filtering works without manual supervision and
identifies non-relevant material automatically based on its distribution in feature
space. Beyond this, we also demonstrate that the approach can be extended with
active learning. In this framework, the system requests labels for a few samples
from a user (Sect. 6). By selecting the most informative query samples, concept
models can be improved further at moderate annotation cost.

Overall, our contributions constitute an approach for concept learning from web
video. As illustrated in Fig. 2 for the concept “basketball”, concepts are learned by
acquiring a raw dataset from web portals like YouTube. Relevance filtering - which
can be optionally enriched with thoroughly selected manual annotations – is used
for a joint model learning and content filtering. The resulting concept detector can
then be applied to previously unseen videos.
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2 Related Work

In this section, related work in the context of learning from weakly labeled videos
is outlined. We will omit a general review of concept detection (for more informa-
tion on this topic, please refer to the literature [17, 27, 35, 39, 46, 49] or to a recent
survey [37]) and focus on the aspect of weak label information instead. This setup
is viewed from two different perspectives – the first tackles the machine learning
aspects of the problem and discusses semi-supervised learning (Sect. 2.1). The sec-
ond perspective is domain-specific and focuses on learning from noisy image and
video content. (Sect. 2.2 and Sect. 2.3).

2.1 Semi-supervised Learning

Semi-supervised learning refers to a class of machine learning techniques designed
for dealing with incomplete label information. In this setup, a (usually small) set of
training samples XL = {x1, ..,xl} with class labels y1, ..,yl is assumed to be given. A
second (usually large) set of samples XU = {xl+1, ..,XN} is available as well, but the
associated labels are unknown (or latent). Semi-supervised learning can be seen as
a borderline case between supervised learning (where all training data is labeled, i.e.
XU = ∅) and unsupervised learning (where no labels are given at all, i.e. XL = ∅).

Semi-supervised learning is attractive in application areas where lots of unlabeled
training samples can be obtained easily, but the acquisition of label information is
associated with considerable effort (as it is the case for concept detection). While
supervised methods in such setups learn only from a small set of labeled examples,
semi-supervised techniques can exploit further information in form of unlabeled
content (which can be viewed as evidence on the overall sample distribution p(x)).
To leverage this information, a variety of strategies has been proposed (for a survey
of the field, please refer to [9, 52]).

One simple semi-supervised learning strategy is to infer the labels of unlabeled
samples and treat the resulting labeled samples in a supervised framework. This
self-training is an iterative wrapper around a base classifier, in which samples are
iteratively classified and the training set is automatically expanded with a selection
of the newly labeled data (usually the ones for which the classifier is most confident).
As an extension, co-training [5] has been suggested, where multiple classifiers are
trained on different feature subsets of the data and “teach” each other.

Another technique called Expectation Maximization (EM) [11] casts semi-
supervised learning in a probabilistic setting. Model parameters are fitted by max-
imizing the data likelihood, whereas a marginalization over latent class labels is
done. This leads to a search in parameter space in which alternately label posteriors
are inferred, and based on these estimates the system parameters are updated.

An alternative strategy follows from the insight that decision boundaries are
usually situated in low-density areas of p(x), and should correspondingly lie far
away from data points. If cast in a maximum-margin setting, this approach leads to
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transductive SVMs [20], which estimate unseen labels together with a separating
hyperplane. Finally, graph-based methods have been proposed, which view sam-
ples as nodes in a graph and estimate node labels via label propagation or regular-
ization [9, Ch. 11].

2.2 Learning from Web Images

Web image content (as it can be acquired via text-based image search engines or
from portals like Flickr) is a data source similar to web video content in a sense that
label information is weak and large parts of the retrieved training data may be junk.
For Google Image Search, Fergus et al. [14] have reported a label precision between
18% and 77% for 7 object categories. Schroff et al. [31] have measured an average
precision of 39% over 18 categories.

To overcome this label weakness, a variety of approaches have been suggested [4,
31, 40, 50] targeted at a content-based refinement of raw web image sets. Usually,
a three-step procedure is applied: first, a raw set of images is acquired from the
web. Second, a subset of “good” candidate images for concept presence is selected,
which can be done using manual annotation [4] or an analysis of text and meta-data
surrounding the image [31, 50]. Finally, a statistical model of concept presence (a
support vector machine [31], a region-level annotation model [3], or a mining pro-
cedure based on a saliency measure [40]) is trained on the refined image set and
used to re-rank all web images. Similar to the work in this chapter, this approach is
targeted at a refinement of training sets. However, it does not cover the actual learn-
ing of concept models. In contrast to this, we tackle a joint training set refinement
and model learning, and our focus is on the performance of the resulting detectors.

Other related work follows an approach more similar to ours and combines train-
ing data refinement with model learning. Fergus et al. [14] learn visual models of
object categories from Google’s image search using a topic model. The key as-
sumption of the approach is that images showing the target object accumulate in a
single cluster (or topic), which is then used for object recognition. The OPTIMOL
system by Li et al. [24] follows an incremental approach instead: a training set is
agglomerated while learning an object model in parallel. The approach works in a
self-training fashion, starting from an initial highly accurate set of sample images.
Iteratively, a topic model is trained and the pool of training data is expanded using a
Bayesian decision. The approach has been demonstrated to outperform Fergus’ sys-
tem [14]. Yet, a problem remains in the initialization with good training samples,
which has been reported to be a crucial factor [26].

In contrast to the incremental OPTIMOL system [24], Wnuk and Soatto [48] fol-
low a filtering approach. A measure of strangeness is defined based on a nearest
neighbor analysis in feature space, and content with high strangeness values is fil-
tered out. We follow this general idea and extend it to a probabilistic setting called
relevance filtering, which can be integrated with a variety of supervised learning
techniques (Sect. 4).
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2.3 Learning from Weakly Labeled Videos

Only few previous contributions have been made with respect to learning from video
data with weak labels. Gargi and Yagnik [15] point out that label information in
videos may be coarse, which they refer to as the label resolution problem. They
rely on a feature selection using Adaboost to achieve robustness with respect to non-
relevant content. Gu et al. [16] cast concept detection as a multiple instance problem
and propose to adapt the kernel function in an SVM framework. Both methods,
however, do not model non-relevant content explicitly.

A contribution closer to the one presented here has been made by Wang et al. [47],
who study concept detection in a semi-supervised setup (where only a few initial
labeled samples are given). A kernel density model is extended such that the con-
tribution of each training sample is weighted by its class posterior, and an iterative
fitting algorithm is proposed to match unlabeled content to classes. Performance im-
provements over supervised learning from a few initial samples are demonstrated.

In previous work, we have already addressed the problem of concept learning
from weakly labeled web videos [43] and proposed a model similar to the one by
Wang et al. In this chapter, we will extend this idea further and demonstrate that it
can be integrated with a variety of supervised learning techniques.

3 Concept Learning on Web Video

In a first experiment, we study web video as a data source for concept detector train-
ing. First, we present manual annotation results demonstrating that the tag informa-
tion coming with web videos is only an unreliable indicator of concept presence,
such that web video training sets contain significant amounts of non-relevant con-
tent (Sect. 3.1). Second, we study how standard concept detection techniques are
influenced by this non-relevant content (Sect. 3.2) and show that significant perfor-
mance loss is to be expected.

3.1 The Precision of Web Video Tags

In a first experiment, we study the precision of web video tags when used as class
labels in a concept learning framework. Therefore, keyframes are sampled from
YouTube videos and serve as positive training samples (if the video is tagged with
the target concept) or as negative ones (if it is not). Since tags are coarse and un-
reliable, we expect that only a certain fraction of positive training samples is truly
relevant. This relevance fraction is denoted with α in the following:

α :=
number of positive training samples showing the concept

number of positive training samples

α can be seen as the precision of label information. It is close to 100% if annotations
are accurate (as it is usually assumed in concept detector training). For web video,
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Table 1 A manual annotation of training material downloaded from YouTube indicates that
the label precision α of web video training sets is low (in most cases below 50%).

Concept Raw Query∗ Refined Query∗ Concept Raw Query∗ Refined Query∗

basketball 20.5 40.6 helicopter 14.6 38.1
beach 15.6 44.3 sailing 16.4 26.2
cats 47.6 50.1 soccer 25.3 43.7
desert 11.4 19.0 swimming 23.4 60.0
eiffeltower 21.4 39.7 tank 14.5 24.3

average 21.1 38.6

∗ values indicate fraction of relevant training content α (%)

however, we expect α to be significantly lower and also to vary between concepts:
while for some concepts high-quality training sets may be obtained, others may be
used as tags often but appear only infrequently.

To get a deeper insight into the quality of tags as training annotations, we
conducted an annotation experiment. Ten test concepts were chosen from the
YouTube-22concepts dataset2 with respect to a good coverage of concepts, includ-
ing objects (“cats”, “eiffeltower”), locations (“beach”, “desert”), and sports (“bas-
ketball”, “golf”). For each concept, 1,000 clips were downloaded from YouTube
using two different queries to the YouTube API (the overall length of the dataset is
about 100 hours):

1. Raw Queries: The query consists of a single tag describing the concept, like
“beach”. This may be the case if a concept detection system is given only a
vocabulary of tags and crawls YouTube fully automatically for training material.

2. Refined Queries: Querying the YouTube API with a single tag must be expected
to give very noisy results. For example, the query “beach” does not only re-
turn scenes of beaches, but also music videos by the “Beach Boys” and scenes
of Daytona Beach. While these may be valid annotations to the video owner,
they must be considered non-relevant when it comes to learning a specific con-
cept like beach sceneries. Therefore, two refinements are made. First, the fact
is used that videos at YouTube are organized in categories like “Pets&Animals”
or “Autos&Vehicles”. The download is restricted to a canonical category (like
“Travel&Places” for “beach”, which excludes music videos). Second, queries
are refined according to a brief analysis of the first YouTube results page. For
example, the query “beach” is replaced with “walk on the beach”, which usually
rules out city names.

For each concept, a canonical definition was formulated (which can be found
in the Appendix and is publicly available3), and over 1,000 keyframes sampled
from YouTube clips tagged with the concepts were manually assessed according

2 http://www.dfki.uni-kl.de/˜ulges/youtube-22concepts/
3 http://www.dfki.uni-kl.de/˜ulges/VSM-testconcepts/
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to these definitions. Results of the annotation process are given in Table 1. They
indicate that YouTube labels are in fact weak – the downloaded content contains
significant fractions (in most cases more than 50%) of non-relevant material. It can
also be seen that α is particularly low for raw queries (21.1% on average), whereas a
manual refinement leads to better results (38.6%). Finally, the percentage of relevant
material varies strongly between concepts: for example, the label precision ranges
from 26.2% (“sailing”) to 60% (“swimming”) for refined queries.

These results correspond to similar observations made previously for the image
domain: for datasets based on image search, a precision of 39% has been reported
for object category recognition [31]. For Flickr images, Kennedy et al. [21] have
observed an accuracy of 50% for the domain of New York sights. These precisions
are slightly higher than our results, which can be attributed to the fact that for video
the coarseness of labels in the time domain poses an additional problem.

Yet, it should be noted that this does not necessarily mean that video is a worse
source for visual learning than images. Rather, it is to be expected that the preferred
training modality depends on the concepts: a wide variety of concepts are action-
related or video-specific (for example, think of “soccer” or “interview”). For such
concepts, video-based training material will be more appropriate than images.

3.2 Concept Learning from Web Video

In the last section, YouTube datasets have been demonstrated to contain significant
amounts of non-relevant content. The next key question is how this influences con-
cept detectors when trained on web video using standard methods. Intuitively, it can
be expected that material similar to false positives in the training set will be classi-
fied incorrectly, such that detection performance degrades. This is validated in the
following experiment.

Data. The experiment is conducted on the same YouTube data and annotations used
in the last section. According to our ground truth labels, we randomly compiled
training sets of varying noise ratio α as illustrated for the concept “desert” and
α = 60% in Fig. 3: negative samples – which can be obtained easily from videos
not tagged with the concept – are drawn for the background class. Positive samples
consist of 60% true positives (which were manually assessed to show the target
concept) and 40% non-relevant frames, which were again drawn randomly from
YouTube videos not tagged with the concept. Further, test sets with known ground
truth labels were sampled:

for α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0}:
1. // sample training set

– sample 1000 non-relevant frames with label −1
– sample (1−α) ·500 non-relevant frames with label 1 (“false positives”)
– sample α ·500 relevant frames with label 1 (“true positives”)

2. // sample test set
– sample 500 relevant frames with label 1
– sample 1500 non-relevant frames with label −1
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Fig. 3 Sampling a random training set for the concept “desert” and α = 60%. Non-desert
content models the background class (right). Positive samples are mixed of 60% desert frames
and 40% non-desert frames. The latter are incorrectly labeled as relevant. This weakly labeled
setup (top) is compared with learning from correct labels (bottom).

To avoid overfitting, it was made sure that no material from the same video clip was
assigned to training and testing at the same time. Also, it should be noted that only
the training set is weakly labeled, while the test set uses ground truth to assure a
precise evaluation.

Features. Frames are represented by bag-of-visual-words features [33], which have
previously been demonstrated to give a good performance in a variety of recognition
tasks including concept detection [45] or object category recognition [13]. For each
frame, a feature is extracted by regularly sampling about 3,600 SIFT patches [25]
at several scales. These are matched with a 2,000-dimensional visual codebook
learned previously on a large dataset of 81 concepts. A dimensionality reduction
is applied to the resulting visual word histograms using PLSA [18], obtaining a
64-dimensional feature vector per frame. This dimensionality reduction is done for
efficiency purposes and has previously been validated to give comparable results to
the high-dimensional visual word histograms.

Models. Tests were run for two standard supervised learning approaches: a gener-
ative model (kernel densities) [12, Ch. 4] and a discriminative one (SVMs) [30].
Given training samples x1, ..,xn with labels y1, ..,yn ∈ {−1,1}, the kernel density
approach models class-conditional densities of concept presence and absence:

p1(x) =
1
Z ∑

i:yi=1

Kh(x;xi),

p0(x) =
1
Z′ ∑

i:yi=−1

Kh(x;xi).
(1)

A test frame x is scored using Bayes’ rule (the class prior – which does not influence
the ranking of test items – is assumed to be uniform):

P(y = 1|x) =
p1(x)

p1(x)+ p0(x)
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Fig. 4 Comparing concept detection when trained on ground truth labels (green) and on weak
labels (red). The mean average precision over all 10 test concepts is plotted against the label
precision α . The two results on the left represent the kernel density system for bandwidths
0.25 (a) and 0.3 (b), the result on the right is for SVMs (c).

As a kernel function, the well-known Epanechnikov kernel with Euclidean distance
function is used:

Kh(x;x′) =
3
4
·
(

1− ||x− x′||2
h2

)
·1(||x−x′||≤h)

This choice is made mostly for efficiency reasons: as the Epanechnikov kernel has
only local support, it can be evaluated efficiently when combined with methods for
fast nearest neighbor search such as kd-trees [28]. The kernel bandwidth h is a free
parameter of the system. It has been reported previously to have a strong influence
on the resulting kernel densities [42], with high values of h leading to a smoother
density in feature space. For the experiment presented here, several choices of the
kernel bandwidth h ∈ {0.225, 0.25, 0.275, 0.3, 0.325} were tested, and results are
reported for a representative low value (h = 0.25) and a high one (h = 0.3).

As a discriminative approach, Support Vector Machines (SVMs) [30] were
tested, which are a popular choice for concept detection [45, 49, 51]. An RBF ker-
nel is used, whereas the smoothness σ and the cost C are evaluated in a grid search
cross-validation (for more information on these parameters, please refer to [8]). For
efficiency reasons, no complete search was done for each run, but the values C = 5
and σ = 25 are used, which were validated to give stable good results. SVM scores
were mapped to class posterior estimates using the LIBSVM implementation [8].

Results. Both systems – kernel densities and SVMs – were tested in two setups (as
illustrated in Fig. 3):

• weak labels: this setup corresponds to the practical situation of concept learning
from weakly labeled web content. Only a fraction α of positive training samples
is truly related to the concept.

• ground truth: this is a control run with an oracle providing ground truth labels
(which are not available in practice). The run indicates how well concept learning
would work if non-relevant content content was filtered out.
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As a performance measure, average precision is used, i.e. the area under the recall-
precision curve over the ranked list of test frames. By averaging over all 10 test
concepts, we obtain the mean average precision (MAP), which is a standard choice
for concept detector evaluation [22]. Quantitative results are given in Fig. 4 (all
values were obtained by averaging over 5 runs). Both systems were tested for vary-
ing fractions of relevant content α , and the system performance on the test data is
plotted against α .

We now study how concept detection behaves when varying the noise level in the
training set. A first observation is that the influence of non-relevant material on the
oracle-based control run (green) is negligible, such that performance remains almost
constant when varying α . This is intuitively correct, since non-relevant samples
(which become more frequent with lower values of α) are assigned their correct
negative labels. A lower performance for low relevance fractions α ≈ 10% can be
attributed to a lower absolute number of positive training samples.

When comparing the ground truth runs with systems trained on weakly labeled
data, we can see that in the absence of noise (α = 1) both systems give the same per-
formance (which is trivial, as no false positives exist and training labels are identical
otherwise). However, when decreasing α the performance of the weakly supervised
system degrades significantly: for example, for training sets with 70% non-relevant
material (α = 0.3) and a bandwidth of 0.25, the kernel density estimation trained
on weakly labeled data gives a performance of 43.7%, while training on the correct
labels gives 54.1%. The more noise in the training data, the stronger the gap be-
tween the weakly supervised run and the control run becomes. This observation can
be made for the generative model (Fig. 4(b) and 4(a)) as well as the discriminative
one (Fig. 4(c)).

We can now match these results with the annotations in Table 1, which indicate
that the label precision of web video data is typically in the range of 20% (for raw
queries) to 50% (for refined queries). This range is highlighted in yellow in all plots.
If we focus on this area, we can see that performance degradation due to weak labels
is significant, ranging from 4% to 19%.

4 Relevance Filtering

Our results in the last experiment indicate that concept learning on web video could
be improved significantly if we were able to filter out non-relevant content in the
training set. In this section, we follow this strategy and present a framework in
which the statistical models underlying concept detection are adapted such that non-
relevant content is automatically identified and filtered during training. The approach
is based on a formulation of concept learning as a weakly supervised learning prob-
lem, in which the given labels (here: YouTube tags) are only weak indicators of true
class labels. These true class labels are inferred during concept learning.

This approach will be referred to as relevance filtering in the following. Its
core assumption is that relevant content forms clusters in feature space, while non-
relevant material comes as outliers that can be identified and relabeled. The ap-
proach can be combined with a variety of well-known supervised learning
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Table 2 An overview of the basic concepts and notation used in Sect. 4. Concept detection
is viewed as a weakly supervised learning problem, in which given labels are only weak
indicators of true, latent ones.

x feature vector representing a test keyframe
y ∈ {−1,1} absence/presence of target concept in x
P(y = 1|x) keyframe score (to be estimated)

x1, ..,xn feature vectors representing training frames
ỹ1, ..., ỹn ∈ {−1,1} weak labels of concept presence in training frames (observed)
y1, .,yn ∈ {−1,1} actual absence/presence of target concept in training frames (unknown)

β j := P(yi = 1|xi, ỹi) relevance score: the probability of a training frame being relevant (un-
known)

α := P(yi = 1|ỹi = 1) relevance prior: assumed fraction of truly relevant training frames
among potentially relevant ones

techniques. Two such combinations are presented for the models used in the last
experiment (namely, kernel density estimation and Support Vector Machines).

4.1 Basic Concepts

In the following, a video is represented by keyframes, such that concept detection
is effectively conducted on keyframe level. Each frame is associated with a feature
vector x ∈ Rd . The presence of the target concept is denoted with a label y, such
that y = 1 indicates concept presence and y = −1 concept absence. The goal of
concept detection is to estimate the concept score P(y = 1|x). Training data is also
represented by keyframes (or associated features) x1, ..,xn ∈ Rd . For each training
frame xi, a weak indicator of concept presence is given that tells us whether the
concept may appear in the frame (in practice, this is a tag given to the corresponding
web video clip). This information is denoted by a weak label ỹi ∈ {−1,1}. The
actual presence of the target concept, however, is latent. It is denoted with yi ∈
{−1,1}. Concept detection is now cast as a binary classification problem (see Table
2 for an overview of the notation used):

Definition 1. Weakly Labeled Binary Classification Problem
Given training data in form of samples x1, ..,xn ∈Rd with labels ỹ1, .., ỹn ∈ {−1,1},
learn a scoring function φ : Rd→ [0,1] such that φ(x)≈ P(y = 1|x). Thereby, train-
ing labels are assumed to be weak indicators of true labels y1, ..,yn such that:

1. If the weak label is negative (ỹi =−1), the true label is negative as well (yi =−1).
2. If the weak label is positive (ỹi = 1), the sample may belong to the positive class,

but does not necessarily do so, i.e. the true label yi is unknown.
3. A prior for weakly labeled samples being truly positive is assumed to be given,

which is denoted with α := P(yi = 1|ỹi = 1).

In this setup, true latent class labels are separated from given ones. They can thus
be estimated during learning, such that the model φ is effectively trained on the
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estimated true class labels instead of the weak labels. It should also be noted that
– while we model false positives (i.e. it is possible that ỹi = 1 and yi = −1) – false
negatives (ỹi = −1 and yi = 1) are not taken into account. Strictly speaking, this
is not true (for example, there might be videos showing “basketball” that the user
has simply forgotten to label). According to our observations made on web video,
however, the percentage of such false negatives is negligible compared to the one of
false positives.

Let us compare the weakly labeled classification problem with other learning se-
tups. First, when compared with standard supervised learning, two key differences
are that only weak indicators of the true class labels are given, and that an additional
assumption is made (in form of α) on how much of the weakly labeled material
does in fact show the target concept. Particularly, the supervised setting can be seen
as a special case of the weakly supervised one, where α equals 100%.

Compared with the semi-supervised learning setup, the above definition can
be seen as a degenerate special case. This is because weakly labeled samples
{xi : ỹi = 1} can be viewed as unlabeled (their true label yi is not known). This
leads to an extremely imbalanced problem: while semi-supervised learning usu-
ally assumes a few initial labels of either class to be given, in our setup we are
confronted with many samples from class −1 (simply because content not labeled
with a concept can be obtained easily) but no sample of class 1 (since indicators
of concept presence are weak). This renders a straightforward application of many
semi-supervised algorithms impossible, since these would require an initialization
with a few reliable samples of both classes.

Finally, the weakly labeled learning setup strongly resembles several approaches
for visual learning from noisy image sources like Google’s image search [14, 24,
48]. The work in this chapter follows a strategy similar to these approaches (partic-
ularly to the one by Wnuk and Soatto [48], who also propose a distribution-based
filtering of training sets). Yet, several differences remain. First (and obviously), the
web video domain addressed here differs from images delivered by web search en-
gines. Second (and more importantly), we do not cover a single statistical model,
but view relevance filtering as a wrapper than can be applied around a variety of su-
pervised learning techniques. For both a generative and a discriminative base model,
relevance filtering extensions will be presented in the following.

4.2 The Generative Case: Kernel Density Estimation

In this section, relevance modelling is used as a wrapper around a generative model
for concept detection, namely kernel density estimation [12, Ch. 4]. Thereby, the
relevance of training content is modeled as a latent random variable that is inferred
during the learning procedure.

Class-conditional Densities and Scoring. Class-conditional densities of relevant
and non-relevant content are modeled by the following weighted kernel densities
p1
β and p0

β :
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p1
β (x) =

1
Z
·

n

∑
i=1

βi ·Kh(x;xi),

p0
β (x) =

1
Z′
·

n

∑
i=1

(1−βi) ·Kh(x;xi),
(2)

where Z = ∑i βi and Z′ = n−Z are normalization constants. Compared to the fully
supervised setup from Equation (1), the key difference is that p1 and p0 are now
parameterized by a vector β = (β1, ..,βn). This vector consists of relevance scores
βi := P(yi|ỹi,xi), which means that for p1

β each training sample is weighted by its
probability of being relevant (correspondingly, for the distribution of non-relevant
content p0

β this weight is 1− βi). Consequently, if a training sample is likely to

be relevant, it has a strong influence on the distribution of relevant samples p1
β but

low influence on p0
β . In this way, the uncertainty of label information is taken into

account (a similar model has been used in a semi-supervised setup before [47]).
Note that if we set the relevance scores according to the weak labels:

βi =
{

1, ỹi = 1
0, ỹi =−1

the system degenerates to the standard supervised case (Equation (1)) in which all
positively labeled samples are assumed to be relevant.

Training. To compute the class-conditional densities p1
β and p0

β , the vector of rel-
evance scores β must be inferred in system training. The input consists of features
x1, ..,xn, weak labels ỹ1, .., ỹn, and the relevance prior α . For each training frame xi,
three situations may occur:

1. ỹi = −1 (negative): if xi is not labeled with the concept, it is assumed to be non-
relevant, i.e. βi = 0.

2. ỹi = yi = 1 ( true positive): xi is labeled with the concept and is in fact relevant.
Accordingly, βi should be high.

3. ỹi = 1,yi =−1 (false positive): xi is labeled with the concept but is not relevant.
Such noise samples may occur, since labels ỹi are only weak indicators of concept
presence. For them, βi should be low.

Let us assume that m training samples are weakly labeled with the concept, and
that training samples are sorted such that ỹ1 = .. = ỹm = 1 and ỹm+1 = .. = ỹn =−1.
While we know that βm+1 = .. = βn = 0, the relevance scores β1, ., ,βm need to be
estimated, i.e. training must divide potentially relevant frames into actually relevant
ones and non-relevant ones. Therefore, the parameter vector β is restricted to the
non-zero entries β = (β1, ..,βm).

Our strategy to estimate β is based on a simple fixpoint iteration in parameter
space. First, relevance scores are initialized with the relevance prior: β 0 = (α, ..,α).
Then, the parameter vector β k is iteratively updated to a new version β k+1 by plug-
ging the current parameter estimate β k into the class-conditional densities p1

β k and
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p0
β k (Equation (2)). From these densities, new estimates of relevance scores can be

obtained using Bayes’ rule:

β k+1
i := P(yi = 1|xi, ỹi = 1)

=
p(yi = 1,xi|ỹi = 1)

p(yi = 1,xi|ỹi = 1)+ p(yi =−1,xi|ỹi = 1)

≈ P(yi = 1|ỹi = 1) · p(xi|yi = 1)
P(yi = 1|ỹi = 1) · p(xi|yi = 1)+ P(yi =−1|ỹi = 1) · p(xi|yi =−1)

≈
α · p1

β k(xi)

α · p1
β k(xi)+ (1−α) · p0

β k(xi)

This process is repeated for a fixed number of iterations. Intuitively, the algorithm
identifies regions in feature space where positively labeled samples concentrate and
assigns high relevance scores to them. Outliers similar to negative content are given
low relevance scores. The approach resembles the well-known Expectation Max-
imization (EM) scheme [11], which maximizes the data likelihood by alternating
so-called “E” steps (in which posteriors for latent variables are estimated) and “M”
steps (in which system parameters are updated according to this knowledge by max-
imizing the expected log-likelihood of training data). If we compare the EM scheme
to the fixpoint iteration used here, the relevance scores βi resemble posteriors for la-
tent variables in the EM scenario (namely the true labels yi). However, since the
parameters of the class-conditional densities are equal to the relevance scores βi and
the framework is non-parametric otherwise, no “M” step is required.

The approach is also similar to the training procedure used by Wang et al. [47],
but the system is constrained in a different way: while Wang et al. addressed a semi-
supervised setup – where initial reliable training samples for all classes are available
– we cannot rely on such information in our weakly supervised setup. Instead, we
constrain the system with a certain prior of the label precision α . Note that if we
choose this relevance prior to be α = 1, it follows that β1 = β2 = .. = βm = 1, such
that the model degenerates to the supervised case (Equation (1)).

A Sample Problem In the following, an illustration of relevance filtering for ker-
nel densities is given in a small experiment. A two-dimensional weakly labeled
dataset is generated such that samples from the positive class contain a certain
amount of incorrectly labeled false positives. For two classes (representing con-
cept presence and absence), random prototypes are drawn from [0,1]2. Samples are
drawn from the surrounding of these prototypes according to kernel densities p1

and p0 with bandwidth h = 0.05, obtaining a training set with 200 noisy positive
samples (which are again compiled of positive and negative content):

x1, ..,x200 ∼ α · p1 +(1−α) · p0.

The fraction of relevant samples is varied such that α ∈ {0.2, 0.6, 1.0}, i.e. we use
one clean training set without false positives (α = 1.0), one with moderate noise
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error rate (%)
α̂

α 0.2 0.6 1.0
0.2 27.7 32.2 35.5
0.6 13.0 12.1 15.8
1.0 11.0 10.9 4.1

(c)

Fig. 5 (a) A 2D sample training set. Positive samples (red) concentrate in 5 peaks, but con-
tain 40% outliers. (b) A learned relevance map shows that relevant content is identified at the
correct five peaks. (c) Classification error rates on synthetic sample sets, whereas the frac-
tion of relevant content α and its estimate α̂ are varied. A choice of α̂ ≈ α gives the best
classification results.

(α = 0.6) and one with lots of noisy samples (α = 0.2). For each training set, neg-
ative training samples are drawn from p0(x) and added. Finally, a test set of equal
size is sampled from the same distribution as the training set. This experiment is
repeated 100 times, whereas for each run the relevance filtering framework is tested
with a relevance prior of α̂ ∈ {0.2,0.6,1.0}. Note that the true relevance fraction is
unknown in practice, which is why we distinguish between the true value α and the
relevance prior we expect (which is denoted with α̂ in the following).

A typical dataset used in this experiment is illustrated in Fig. 5(a). It can be seen
that positive samples (red) concentrate near five prototypes of class 1, but many red
outliers (false positives) occur. The result of relevance filtering is also illustrated:
a relevance map plots the relevance score β over feature space (Fig. 5(b)). It can
be seen that high relevance scores are assigned to samples accumulating near the
five prototypes, while outliers close to negative samples are assigned low relevance
scores. Classification results when applying the kernel density model with relevance
filtering are reported in Table 5(c). Two observations can be made: first – and not
surprisingly – the overall error rate of classification increases with the amount of
noise material in the training set. The second observation is that the actual noise
level and the optimal choice of the relevance prior are correlated, i.e. the lowest
error rate is achieved for α̂ ≈ α . For example, for the clean training set (α = 1) the
supervised system (α̂ = 1) performs best, while for α = 0.2 the best performance
is achieved for α̂ = 0.2. Generally, this result indicates that relevance filtering can
improve kernel density classification on weakly labeled training sets.

4.3 The Discriminative Case: Support Vector Machines

While in the last section a generative technique was adapted for weakly labeled
concept detection, a similar extension will be presented for discriminative models
in the following. The approach can be applied as a wrapper around a variety of
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Table 3 Weakly Supervised Discriminative Training: Samples are iteratively refined in
a self-training fashion by learning a discriminative classifier, scoring training content, and
relabeling the samples most likely to be false positives.

1. for i=1,.,n: set βi =
{

1, ỹi = 1
0, ỹi =−1

2. randomly split X = {x1, ., , .xn} into five folds X1, ..,X5
3. until 1

p ∑
p
i=1 βi ≤ α:

• for k = 1, ..,5:
– train a classifier on X \Xk
– apply the classifier to Xk, obtaining scores σ
– for the Nf samples xi ∈ Xk with βi = 1 and lowest scores σ(xi):

set βi = 0

discriminative base classifiers. The only requirement on the base model is that it
delivers a posterior-like score σ . As a sample classifier, SVMs are used (which can
be considered a standard choice for concept detection [45, 49, 51]).

The basic idea of relevance filtering for discriminative methods is similar to a
semi-supervised self-training but works in a filtering fashion instead of an incremen-
tal one: iteratively, the base classifier is trained and used to identify false positives in
the training set. Samples that the classifier identifies as most likely to be false posi-
tives are relabeled (i.e., their relevance scores βi are set from 1 to 0), and training is
repeated. This way, the weakly labeled positive samples are iteratively filtered and
refined. The whole process is repeated until the estimated relevance prior 1

p ∑i βi

(which constantly decreases due to relabeling) reaches the expected relevance prior
α . The whole training procedure is outlined in Table 3 (note that filtering is done in
a cross-validation fashion to avoid overfitting).

Let us compare the approach with the generative relevance filtering from the last
section. Generally, both techniques follow the same idea, namely to estimate the
relevance of training content using the distribution in feature space and a relevance
prior. However, two key differences can be identified. First, while the generative
approach relied entirely on the distribution of content in feature space, the discrim-
inative technique involves a classification method, such that the quality of filtering
results is inherently bound to the classifier used. Second, the discriminative rele-
vance filtering approach is not probabilistic: the scores σ used for filtering may be
interpretable as relevance posteriors but do not necessarily have to be. Also, no soft
assignment is used (as for kernel densities), but a complete relabeling of samples
from the positive to the negative class takes place.

5 Experiments with Automatic Relevance Filtering

In the last section, relevance filtering has been proposed as a strategy to overcome
label unreliability in concept detection training sets, and based on this idea exten-
sions of two standard techniques (kernel densities and SVMs) have been presented.
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In practice, however, such an automatic filtering – which is entirely based on the
distribution of content in feature space – is not 100% accurate. Therefore, we need
to investigate how well relevant content be separated from non-relevant one, and
whether the performance of concept detection can be improved this way. In the
following, it is demonstrated that the filtering of non-relevant content is possible
(though far from perfect), and performance improvements of up to 9% compared
with an equivalent supervised system are validated when false positives are drawn
from an overall “world” distribution (Sect. 5.1). After this, the relevance filtering
framework is trained on raw web video content downloaded from YouTube (where
non-relevant material is correlated with the concept), and it is shown that relevance
filtering still gives performance improvements in the range of 2− 5% over the su-
pervised case (Sect. 5.2).

5.1 Controlled Setup

The purpose of this experiment is to study relevance filtering in a controlled sce-
nario with known relevance fraction α . The setup is almost identical to the one used
in Sect. 3: the same randomly sampled training sets and test sets are used, results
are averaged over 5 runs, the feature representation remains the same (visual words,
followed by a dimensionality reduction using PLSA), and the same statistical mod-
els are tested (namely kernel density estimation and Support Vector Machines). The
only difference is that – besides the control runs used in Sect. 3.2 – additional re-
sults for relevance filtering extensions are presented. The following approaches are
tested:

1. ground truth: the control run from Sect. 3.2 trained on ground truth labels.
2. weak labels: supervised learning from Sect. 3.2 trained on weak labels.
3. relevance filtering – kernel densities: the relevance filtering extension of the

generative kernel density approach from Sect. 4.2. The number of training iter-
ations is set to 100. The relevance prior is set to the correct fraction of relevant
material, i.e. α̂ := α (the behavior when varying this parameter will be studied
later). The run appears in Figs. 7(a) and 7(b).

4. relevance filtering – SVMs: the relevance filtering extension of the discrimina-
tive approach from Sect. 4.3 using SVMs as base classifiers. Ten false positives
are filtered in each training iteration. The same smoothness parameter σ = 25
and cost parameter C = 5 are used as in Sect. 3. The run appears in Fig. 7(c).
Again, we set α̂ := α .

We first visualize the effects of relevance filtering in Fig. 6 to find out what con-
tent is actually identified as non-relevant by the system. Positive training frames are
ranked by their score βi, and the images with highest scores and lowest scores are
displayed in Fig. 6 (a training set with α = 0.3 was used, a bandwidth of 0.275,
and a relevance prior of 0.3). At the top, we see the content identified to be most
relevant, i.e. the highest scores β were assigned. Below this, material is illustrated
that was labeled with the concept but was identified to be non-relevant by our sys-
tem. Obviously, the content identified as relevant is in fact very likely to be visually
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basketball desert cats

relevant
(high β )

non-
relevant
(low β )

soccer eiffeltower helicopter

relevant
(high β )

non-
relevant
(low β )

Fig. 6 Results of relevance filtering (using the generative approach): for six concept, the
frames are displayed that the relevance filtering approach learns to be most relevant (top)
and least relevant (bottom). Relevance filtering works in general, and non-relevant content –
though labeled with the concept – can be identified. However, the quality of filtering seems
strongly related to concept difficulty: for example, compare “cats” (top right) with “soccer”
(bottom left).

related to the concept, and non-relevant material – though labeled with the target
concept – tends to be identified successfully.

Quantitative results of the experiment are illustrated in Figs. 7(a) and 7(b) (for
the generative model) and in Fig. 7(c) (for the discriminative one). Performance is
plotted against the label precision α in a similar fashion as in Sect. 3. In contrast to
earlier results, however, relevance filtering is included.

One first observation is that for α = 1 all methods perform equally well (which
can be observed both for kernel densities and SVMs). This is trivial as the systems
are all trained on the same labels – no false positives exist and no filtering takes
place. However, with decreasing α – i.e. with increasing non-relevant content in
the training set – differences can be observed. It can be seen that relevance filtering
(though not reaching the performance of the oracle-based control run) significantly
outperforms standard supervised learning. For example, for a bandwidth h = 0.25
and a relevance fraction of α = 0.3, relevance filtering gives an improvement from
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Fig. 7 Results of relevance filtering for kernel densities (a,b) and SVMs (c). Performance
is plotted against the relevance fraction α . It can be seen that relevance filtering (blue) –
though not achieving the performance of a hypothetical perfect relevance filter (green) –
gives significant improvements over its standard supervised equivalent (red).

44% to 51%. For a higher bandwidth of 0.3 this improvement is lower, which can
be explained by the fact that the supervised baseline is more competitive due to a
stronger smoothing.

When comparing the results for kernel densities with the ones for the SVM ap-
proach, similar observations can be made for the discriminative model: due to in-
herent errors of filtering, relevance filtering does not reach the performance of the
oracle-based control run, but it significantly outperforms its standard supervised
counterparts.

Finally, the experiment also indicates for which label precisions relevance filter-
ing is the most promising. If the training set is extremely noisy (α ≤ 10%), a fully
automatic relevance filtering becomes difficult. This can be observed in Fig. 7(c),
where for the leftmost point (α = 10%) the improvement by relevance filtering is
only weak. On the other hand, for high values of α the supervised baseline is already
quite competitive. For moderate values of 0.2 ≤ α ≤ 0.5, the benefits of relevance
filtering are most prominent. According to this result, relevance filtering is of par-
ticular interest for web content, which comes with noise ratios in the same range.
Here, performance improvements in the range of 3−9% are achieved.

5.2 Raw Web Video Content

The purpose of the last experiment was to give a proof-of-concept for relevance
filtering in a controlled setup, where the ratio of relevant material is known. In
this case, relevance filtering was demonstrated to outperform supervised models
significantly.

In the following, we test relevance filtering on training sets of real-world web
video content. In contrast to the controlled setup studied in the last section, there are
two key differences. First, the fraction of relevant content is not known a priori when
downloading raw material from YouTube. A simple workaround for this is to set α̂
to a “reasonable” value like 0.5, which will be demonstrated to give comparable
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Fig. 8 Non-relevant content from web videos labeled with “Eiffel Tower”, which indicate that
noise content in real-world training sets is correlated with the target concept. This renders a
fully automatic relevance filtering based only on the distribution in feature space a difficult
challenge.

results to using the true relevance prior. The second issue is related to the non-
relevant samples themselves: while the proposed approach assumes such false pos-
itives to be drawn from an overall “world” distribution, non-relevant content in
practice depends strongly on the concept. For example, non-relevant material in
“basketball” videos tends to show scenes of a cheering crowd, while non-relevant
material for the concept “eiffeltower” contains many urban scenes of Paris (a few
typical false positives from “Eiffel Tower” videos are displayed in Fig. 8). Note that
– since relevance filtering is entirely based on the fact that relevant content forms
peaks in feature space – non-relevant material forming similar peaks (for example
“shots of Paris”) may be difficult to separate from truly relevant content.

We use a similar setup as in previous experiments, i.e. training sets of known
noise ratios are randomly compiled (the same sample numbers are used as described
in the last section). The key difference is that false positives – which were previ-
ously sampled from videos not labeled with the concepts – are now drawn from
clips tagged with the concept (but are still non-relevant according to manual an-
notation). Correspondingly, negative test samples now consist of 500 frames from
videos tagged with the concept and 1,000 frames from other videos.

Figure 9 also tackles the question how to estimate the relevance prior α . It sug-
gests a very simple solution, namely to set it to a “reasonable” choice such as 0.5
(which corresponds to a typical value for web-based training sets as shown in Sect.
3). Figure 9 compares relevance filtering when using the true prior α̂ = α and when
using α̂ = 0.5. It can be seen that by simply setting α̂ = 0.5 (i.e. by filtering half
of all positive training samples) a stable performance can be obtained that is com-
parable to the true relevance fraction, at least for the range of α = 0.2−0.5 typical
for web video. For the SVM approach and very noisy training sets (α < 0.2 in Fig.
9(c)), this choice even outperforms a more aggressive filtering as for α̂ = α .

6 Relevance Filtering with Active Learning

In previous experiments, it was shown that automatic relevance filtering improves
concept detection performance by up to 9% for real-world web video material
when run in an controlled setup. When trained on raw web video content as down-
loaded from YouTube, it was shown again that automatic relevance filtering gives
performance improvements. These improvements, however, are lower than for the
controlled setup, which can be explained by the fact that non-relevant content tends
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Fig. 9 Comparing relevance filtering on raw web video training sets when using the correct
relevance prior (α̂ = α , dark blue) with a default choice of α̂ = 0.5 (light blue). It can be
seen that a simple choice of α̂ = 0.5 leads to comparable results.

to be concept-dependent in practice (for example, noise material tagged with “Eiffel
Tower” tends to show urban scenes of Paris, as illustrated in Fig. 8). Such content
forms clusters in feature space similar to relevant material and cannot be separated
easily.

This raises the question whether a better filtering could be achieved using a lit-
tle manual supervision, i.e. by requiring human operators to provide a few selected
labels. Here, active learning techniques – where the system selects informative ex-
amples for the user to annotate [32] – is an interesting extension to the current
relevance filtering framework.

The approach has already proven to be successful in the large-scale concept de-
tection evaluation TRECVID [2], where training examples for a concept of interest
are accumulated from a completely unknown video database. This setup (which
usually starts from few reliable initial labels [1, 2, 10]) differs from the one studied
in this chapter, as we focus on a refinement of large and only partly non-relevant
training sets. Despite this difference, however, such an extension fits quite elegantly
into the proposed learning framework: whenever a user annotates a training sample
xi, the relevance score βi is adapted and fixed to the given label, and learning is
re-iterated.

In this section, an active learning extension to relevance filtering is presented.
Also, we compare several active learning sample selection strategies in an experi-
ment and show that the approach – if integrated with the kernel density version of
relevance filtering – leads to significant improvements of concept learning from web
video at moderate annotation effort.

6.1 Basic Concepts

In Sect. 4.2, a generative approach using kernel density estimation has been ex-
tended such that relevance scores βi capture the uncertainty of the given label in-
formation. To reduce this uncertainty, we propose an iterative manual refinement of
selected samples and successive retraining. Such a relevance feedback mechanism
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Table 4 Active Learning Extension: Wrapped around relevance filtering, active learning
selects informative samples for refinement by a human operator. Once the label is given, its
relevance score is set to either 0 or 1, the system is re-trained, and the remaining relevance
scores are adapted.

1. for j = 1, .,m do:

• train relevance filtering and get relevance scores β j = {β j
i }

• select sample s∗ according to an active learning criterion Q:

s∗ := argmax
i:ỹi=1

Q(β j
i )

• annotate manually, obtaining the true label ys∗

• fix the relevance score β j+1,..,m
s∗ =

{
1, ys∗ = 1
0, ys∗ =−1

can be placed as a wrapper around automatic relevance filtering. The procedure is
illustrated in Table 4: iteratively, relevance filtering training is applied, obtaining
relevance scores β . Based on these scores, the most informative weakly labeled
sample is selected for manual annotation (note that – as according to Definition 1
only positive labels are unreliable – we focus on the positive samples). After man-
ual labeling of the selected sample s∗, we can fix β j

s∗ to either 0 or 1 depending
on the received label. This new information is used for retraining relevance filter-
ing, providing new relevance scores β j+1

i for the next iteration of sample selection.
With increasing iterations of such active learning, the procedure separates relevant
content from non-relevant one more reliably.

6.2 Active Learning Methods

Different sample selection strategies for active learning have been proposed in the
literature (see [1, 10, 41] for work in the video retrieval domain and [32] for a
more complete survey). We test a few of the most popular ones in combination with
relevance learning. These strategies select samples based on their a class posterior
(which in our case corresponds to the relevance score β ).

1. random sampling: samples are selected randomly (serves as a baseline).
2. most relevant sampling: samples are selected which are most likely to be rel-

evant and are therefore associated with a maximum relevance score β . This ap-
proach was first introduces in information retrieval [29] but has also been proven
to be a good option in a concept detection setup [1, 2]:

QREL(β ) := β

3. uncertainty sampling: samples are selected for which the relevance filtering
method is most inconfident, i.e. β ≈ 0.5 [23]:
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QUNC(β ) := 1−|β −0.5|

6.3 Experiments with Active Relevance Filtering

In the following, we run an experiment on raw web video similar to Sect. 5.2 and
apply the active learning extension to relevance filtering with the goal to improve
concept detection performance further.

The dataset used is equal to the one in Sect. 5.2. The kernel bandwidth is fixed
to h = 0.275. The key difference to Sect. 5.2 is that the relevance fraction is fixed
at α = 0.2, which poses a difficult challenge to automatic relevance filtering as the
majority of content is non-relevant.

Results averaged over 5 runs are illustrated in Fig. 10. In contrast to the previous
experiments, performance is plotted against the number of manually annotated sam-
ples (α = 0.2). Also, the results from previous experiments in Sect. 5.2 can be found
in the plot as horizontal lines: no relevance filtering, automatic relevance filtering,
and ground truth training.

Now, we study how concept detection performance increases if we iteratively
replace weak labels – potentially associated with false positives – with true labels
provided by human annotations. As seen in Fig. 10 the performance of the differ-
ent active learning methods lies within a corridor bounded by automatic relevance
filtering (bottom) and the ground truth run (top). Starting with no refined samples,
the performance equals the one of automatic relevance filtering. With more manual
annotations, performance increases and finally converges to the ground truth case.
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Fig. 10 Results of active learning for relevance filtering with generative kernel densities.
The label precision α is fixed at 0.2. Performance is plotted against the number of manually
annotated training samples. It can be seen that – if using a proper sample selection – it is
sufficient to annotate only 30− 40 weakly positive training samples to achieve a significant
performance improvement.
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When comparing the different active learning strategies, it can be seen that they
both outperform random sampling significantly, and that the best performance is
achieved by most relevant sampling, which mines the dataset for truly relevant sam-
ples. This can be explained by the fact that relevance filtering relies strongly on
correct relevance weights. Consider the example of “eiffeltower” and assume that
the illustrated false positives in Fig. 8 all belong to the same cluster. If the sys-
tem misleadingly assigns high relevance score to this cluster, one of the samples
will be selected early for manual refinement. The false positives will be identified,
corrected, and further iterations of relevance filtering will propagate this new infor-
mation among the cluster in giving neighboring samples lower relevance scores.

Overall, it can be seen that with active learning we can improve performance
at moderate annotation cost. For example, with as few as 40 annotations, a per-
formance increase of about 4% is achieved. When continuing with annotation, we
can see that concept detection performance converges to the ground truth case at
100− 150 iterations (which corresponds to only 25− 30% of the overall dataset).
Concluding, relevance filtering – if combined with appropriate active learning strate-
gies – can improve concept learning on the difficult domain of raw web video
content.

7 Conclusions

In this chapter, the visual learning of concept detectors from weakly labeled videos
has been addressed. Such data offers a scalable alternative to the conventional man-
ual acquisition of training data, as label information can be acquired without manual
overhead. On the other hand, class information becomes unreliable, and labels are
only weak indicators of concept presence. We have demonstrated for the domain
of web video that typical training sets include significant amounts of non-relevant
noise material, with a resulting performance degradation of up to 20%.

To overcome this problem without additional manual overhead, a framework
called relevance filtering has been proposed. A binary classification problem is cast
for each target concept, whereas true (latent) concept presence is inferred during sys-
tem training. Based on this idea, two relevance filtering extensions of well-known
supervised techniques were presented, one for a generative approach (kernel den-
sities) and one for a discriminative one (Support Vector Machines). In experiments
on real-world web video material, it was demonstrated that relevant content can be
separated from non-relevant one in general, and that the performance of concept
detection can be improved by up to 9% in a controlled setup. When trained on raw
web video content as downloaded from YouTube, relevance filtering still improves
over the supervised case though by a lower margin, which is because non-relevant
content shows a tendency to be concept-dependent. To handle such conditions, an
extension to relevance filtering was introduced, where minimal manual supervision
adapts the scores of the weakly labeled training samples. In particular, by utilizing
active learning methods for sample selection, the system could improve by up to 8%
by refining only 25−30% of weak positive labels from the training set.
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As the approach in this chapter focuses entirely on a visual learning of concepts,
one interesting extension of the framework would be the additional use of tag in-
formation coming with web video clips for relevance filtering. While we currently
make only very limited use of such meta information, we envision our future system
to use tag information directly in the refinement process. Particularly, deep tagging
– where users provide detailed tags at certain time stamps in a video – might be an
interesting clue to overcome the label coarseness problem.
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Appendix

This section gives a description of the concepts used in our experiments. We have
defined canonical definitions of each concept and performed a manual annotation of
web-based material. Table 5 provides the definitions as well as information on how
video data was downloaded from YouTube.

http://www.usatoday.com/tech/news/2006-07-16-youtube-views_x.htm
http://www.usatoday.com/tech/news/2006-07-16-youtube-views_x.htm
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Table 5 Meta Information regarding the 10 test concepts used in the experiments

Concept Description YT Query∗ YT Category∗

basketball Scenes showing people playing basketball. Includes
streetball if recognizable as such.

basketball
basketball nba
basketball dunking
basketball best moves
basketball dunks

sports

beach Scenes showing a beach. Water does not have to be vis-
ible (if anything else qualifies the scene as showing a
beach). Shots from a distance qualify as well, but only if
the coastline is clearly a beach.

walk on the beach
beach sunbath
beach hawaii
beach panorama
beach malibu day

travel&places

cats Scenes showing one or multiple cats. Closeups qualify
as well as full body shots.

cats
cats funny
cats pets animals
cats playing
cats eating

pets&animals

desert Scenes showing desert landscape. Panoramic shots in-
volving significant amounts of sky are allowed (as long
as some desert landscape is visible at the bottom).
Things like plants, rocks, canyons, cars, etc. are allowed,
but the landscape should show desert.

desert egypt
driving through desert
desert panorama
desert sahara
desert trip

travel&places

eiffeltower Scenes showing the Eiffel Tower. Views from top of the
tower qualify only if you see a part of tower (like parts
of the steel construction). Night shots qualify. Closeups
showing only parts of the steel construction qualify (if
the tower can be identified) as well as panoramic shots
from the distance. Shots with people in the foreground
and the tower in the background count as well.

tour eiffel,
eiffel tower,
eiff.t. paris france,
eiffelturm paris

travel&places

helicopter Scenes showing a helicopter (airborne or on the ground).
Views from inside the helicopter are allowed if they can
be identified as such. Only instruments or the pilot are
not sufficient. Shots of toy helicopters qualify as well.

helicopter,
helicoptero,
helicopter flying,
helicopter landing

autos&vehicles

sailing Scenes showing sailing ships/boats on the water/in the
harbor. Panoramic views from onside a boat qualify if
you see a part of the boat (like sails). Catamarans qual-
ify as sailing ships, but surf boards or tankers do not
(generally, everything with a sail qualifies).

sailing,
sailing trip,
sailing boat,
sailing holiday,
sailing mediterranean

travel&places

soccer Shots showing a soccer match. Actions only distantly
related to soccer do not qualify (like people doing soccer
tricks in the street). Close-ups of players are allowed as
well as global shots (if clearly identifiable as soccer).
Soccer fields without action qualify as well. Shots of a
cheering crowd do not qualify.

soccer bundesliga,
soccer goals,
soccer match,
soccer game outdoor,
fussball spiel

sports

swimming Scenes showing somebody swimming. A swimming
pool counts too (even if nobody is swimming inside it).
Also includes swimming objects (fish, bottles).

swimming,
swimming pool -clean,
swimming technique,
sw. competition,
swimming olympics,
sw. championship

sports

tank Scenes showing a tank, i.e. a heavily armored vehi-
cle. Any scene qualifies if a part of the tank is visible
such that the tank is identifiable. Other sorts of military
ground vehicles qualify.

tanques,
tank,
tank battle,
panzer,
tank fire -flashpoint

autos&vehicles

∗ Values used for YouTube API calls
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Face Recognition and Retrieval in Video

Caifeng Shan

Abstract. Automatic face recognition has long been established as one of the most
active research areas in computer vision. Face recognition in unconstrained environ-
ments remains challenging for most practical applications. In contrast to traditional
still-image based approaches, recently the research focus has shifted towards video-
based approaches. Video data provides rich and redundant information, which can
be exploited to resolve the inherent ambiguities of image-based recognition like
sensitivity to low resolution, pose variations and occlusion, leading to more ac-
curate and robust recognition. Face recognition has also been considered in the
content-based video retrieval setup, for example, character-based video search. In
this chapter, we review existing research on face recognition and retrieval in video.
The relevant techniques are comprehensively surveyed and discussed.

1 Introduction

Automatic face recognition has long been established as one of the most active
research areas in computer vision [119, 70, 61, 99, 1]. This is mainly due to its
wide range of applications such as person identification, law enforcement, smart
environment, visual surveillance, human-computer interaction, and image/video re-
trieval. After three decades of intense research, the state-of-the-art approaches can
achieve high recognition rate under controlled settings [86]. However, face recogni-
tion in unconstrained real-life environments remains challenging for most practical
applications.

Faces are probably the most common cue used by humans for identifying people.
Face recognition has mainly been studied for biometric identification. Biometrics
refers to the measurement and analysis of physical or behavioral characteristics of
humans; various visual traits, such as fingerprint, face, iris, gait and hand geometry,
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have been explored for biometric recognition [54]. Among different biometric
modalities, face recognition allows unobtrusive identification in uncontrolled sce-
narios without requiring user cooperation, for example, in low quality surveillance
footage.

Numerous approaches have been developed for face recognition in the last three
decades. Traditionally, face recognition research has mainly focused on recognizing
faces from still images [103, 15]. However, single-shot based recognition is hard
because of the well-known problems such as illumination change, pose variation,
facial expression, and occlusion. The face image differences caused by these fac-
tors often exceed those due to identity changes. A single image might not provide
enough information for reliable classification. Another problem with image-based
face recognition is that it is possible to use a prerecorded face photo to confuse the
recognition system to take it as a live subject [101]. Recently, the research focus
has shifted more and more towards video-based approaches. The advent of inex-
pensive video cameras and increased processing power makes it viable to capture,
store and analyze face videos. Video inputs provide rich and redundant information
in the form of multiple frames, for example, normally in video people show a lot
of pose and expression variations. It is widely believed that, by properly extract-
ing the additional information, video-based recognition could resolve the inherent
ambiguities of image-based recognition, such as sensitivity to low resolution, pose
variations and partial occlusion, leading to more accurate and robust face recogni-
tion. Furthermore, video inputs allow to capture facial dynamics that are useful for
face identification [60, 83].

Although most of the existing research has been focused on the biometric identifi-
cation paradigm, recently face recognition has been considered in the content-based
video retrieval setup [11, 96]. Face information is important in different kinds of
videos, especially in news programs, dramas, and movies. Face recognition could
be used for video content description, indexing and mining, e.g., rapid browsing or
retrieval of scenes based on the presence of specific actors. Increasing amount of
video content on the web is marking a new phase of how users consume informa-
tion, where users often look for specific people related video content. Current video
search engines mainly rely on the keywords that appear in descriptions or in the sur-
rounding web page content. Face recognition enables more accurate video search
by focusing on the content of videos.

In this chapter, we review existing research on face recognition in video. The
relevant techniques are comprehensively surveyed and discussed. We also intro-
duce recent work on face retrieval in video. The chapter is organized as follows.
In Section 2, we briefly introduce face detection and face tracking, the two im-
portant components in face recognition and retrieval research. Section 3 discusses
video-based face recognition technologies. Specifically, three main categories, in-
cluding key-frame based, temporal model based, and image-set matching based, are
described respectively. In Section 4, we present recent research on face retrieval in
video. Challenges and future research directions are discussed in Section 5. Finally
Section 6 concludes the chapter.
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2 Face Detection and Tracking

Face detection and face tracking are important components in face recognition sys-
tems, which automatically detect or locate the face region in the input frames.
Normally from the located face region, the relevant features are extracted and sub-
sequently served as input to the face recognizer. In this section, we briefly introduce
existing work in these two areas.

2.1 Face Detection

Face detection plays a crucial role in face-related vision applications. Due to its
practical importance, numerous techniques have been proposed for face detection
(see [113] for a survey). In most of existing methods, appearance features such as
edge, intensity, and color, are extracted to locate the faces using statistical or geo-
metric models. The real-time face detection scheme proposed by Viola and Jones
[104, 105] is arguably the most commonly employed front face detector, which
consists of a cascade of classifiers trained by AdaBoost employing Harr-wavelet
features. AdaBoost [34, 92] is one of the most successful machine learning tech-
niques applied in computer vision, which provides a simple yet effective approach
for stagewise learning of a nonlinear classification function. Later their approach
was extended with rotated Harr-like features and different boosting algorithms [76].
In [71], by incorporating Floating Search into AdaBoost, FloatBoost was proposed
for improved performance on multi-view face detection.

Many other machine learning techniques such as Neural Network and Support
Vector Machine (SVM) have also been introduced for face detection. In [77], the
Bayes classifier was adopted with discriminating feature analysis for frontal face
detection. The input image, its 1D Harr wavelet representation, and its amplitude
projections are combined to derive a discriminating feature vector. Later the features
were extended and combined with a SVM-based classifier [94]. SVM was also used
with the spectral histogram features for face detection [107]. To improve the detec-
tion efficiency, Garcia and Delakis [37] designed a convolutional neural network for
face detection, which performs simple convolutional and subsampling operations.
More recently, the approach in [77], Viola and Jones’s approach [104, 105], and the
approach in [37] are modified and combined for a fast and robust face detector [22].
Overall, face detection technology is fairly mature and a number of reliable face
detectors have been built based on existing approaches.

2.2 Face Tracking

Most of face detectors can only detect faces in the frontal or near-frontal view.
To handle large head motion in video sequences, face or head tracking is usually
adopted. In some work [120, 55], face tracking and recognition are integrated in one
framework, for example, Zhou et al. [122, 120] proposed a probabilistic approach
for simultaneous tracking and recognition.
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Fig. 1 Examples of face tracking using the online boosting algorithm [44].

Visual tracking of objects has been intensively studied in computer vision, and
different approaches have been introduced, for example, particle filtering [13] and
mean shift [19, 23]. Accurate face tracking is difficult because of face appearance
variations caused by the non-rigid structure, 3D motion, occlusions, and environ-
mental changes (e.g., illumination). Therefore, adaptation to changing target ap-
pearance and scene conditions is a critical property a face tracker should satisfy.
Ross et al. [88] represented the target in a low-dimensional subspace which is adap-
tively updated using the images tracked in the previous frames. In [44], Grabner et
al. introduced the online boosting for tracking, which allows online updating of the
discriminative features of the target object. Some face tracking results of their ap-
proach are shown in Fig. 1. Compared to the approaches using a fixed target model
such as [14], these adaptive trackers are more robust to face appearance changes in
video sequences.

One main drawback of these adaptive approaches is their susceptibility to drift,
i.e., gradually adapting to non-targets, because the target model is built from the
previous tracked results. To address this problem, a mechanisms for detecting or
correcting drift should be introduced [55], by adding global constraints on the over-
all appearance of the target. For faces, such constraints could be learned from a set
of generic well-cropped/aligned face images that span possible variations in pose,
illumination, and expression. Specifically, two constraint terms were introduced in
[55]: (1) a set of facial pose subspaces (or manifolds), each of which represents a
particular out-of-plane pose, and (2) a SVM based goodness-of-crop discriminator
whose confidence score indicates how well the cropped face is aligned. Grabner
et al. [45] introduced an online semi-supervised boosting to alleviate the drifting
problem. They formulated the update process in a semi-supervised fashion which
uses the labeled data as a prior and the data collected during tracking as unlabeled
samples.
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After the face detection and tracking stages, faces are only roughly localized and
aligned. Face registration methods can be adopted to deal with the effect of varying
pose, for example, by utilizing the characteristic facial points (normally locations
of the mouth and eyes). In some work (e.g., [59]), face recognition is performed
directly on faces roughly localized, close to the conditions given by typical surveil-
lance systems.

3 Face Recognition in Video

Recent years have witnessed more and more studies on face recognition in video.
Zhang and Martinez [114, 115] investigated whether the methods, defined to recog-
nize faces from a single still image, perform better if they could work with multiple
images or video sequences. By extending their probabilistic appearance-based ap-
proach [80], they showed that regardless of the feature extraction method used, the
recognition results improve considerably when using a video sequence rather than
a single image. It is also observed in [47] that the spatial-temporal representation
derived from video outperforms the image-based counterpart. Video-based recogni-
tion provides a setting where weak evidence in individual frames can be integrated
over time, potentially leading to more reliable recognition in spite of the difficulties
such as pose variation and facial expression.

We partition the existing research into three categories: (1) key-frame (or exem-
plar) based approaches, (2) temporal model based approaches, and (3) image-set
matching based approaches. The first class [47, 115, 98, 101] considers the prob-
lem as a recognition problem from still images by independently using all or a
subset of the face images. Usually a voting rule is used to come up with a fi-
nal result. In most of cases, only a subset of representative face images is used
for recognition, where ad hoc heuristics are used to select key-frames. The sec-
ond class [75, 123, 64, 79, 49] makes use of all face images together with their
temporal order in the video. By taking into account temporal coherence, face dy-
namics (such as non-rigid facial expressions and rigid head movements) within the
video sequence are modeled and exploited to enforce recognition. The third class
[110, 93, 10, 59, 106] also uses all face images, but does not assume temporal
coherence between consecutive images; the problem was treated as an image-set
matching problem. The distributions of face images in each set are modeled and
compared for recognition, and the existing work can be further divided into statisti-
cal model-based and mutual subspace-based methods (see Section 3.3 for details).
Both the second and third categories integrate the information expressed by all the
face images into a single model. The categorization of relevant techniques are sum-
marized in Table 1. In the following sections, we discuss each category in details.

3.1 Key-Frame Based Approaches

The approaches in this category treat each video as a collection of images, and
perform face recognition by comparing all or a subset of individual face images
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Table 1 Categorization of video-based face recognition techniques.

Category Method
Key-frame based Approaches [90], [40], [47], [114], [100], [17], [115], [31],

[78], [85], [98], [101], [118]

Temporal Model based Approaches [74], [73], [72], [75], [18], [24], [67], [69], [68],
[122], [120], [123], [121], [64], [65], [66], [79],
[55], [2], [43], [50], [49]

Image-Set Matching based Approaches
Statistical model-based [93], [4], [96], [7], [10], [6], [9]
Mutual subspace-based [110], [90], [35], [82], [108], [56], [57], [5],

[58], [59], [106], [38]

with training data using image-based recognition techniques. They neither make
any assumption on the underlying distributions of input face images, nor use their
temporal coherence. They are based on premise that similarity of the test video with
the training data, which could be still images or videos, is reflected by the similarity
of the images from the testing video and training data. For example, Satoh [90]
matches two face sequences based on face matching between a closest pair of face
images across two sequences. These approaches may fail as they do not take into
account of the effect of outliers [59]. If requiring a comparison of every pair of
samples drawn from the input video and training data, such methods could be time
consuming.

Normally a subset of “good” or representative frames (called key-frames or ex-
emplars) is selected to perform image-based recognition. In [40], face recognition
is performed based on tracking the nose and eyes. Their locations are used to de-
cide whether the face is suitable for recognition. If they form an equilateral triangle,
image-based recognition is performed; otherwise, the tracking continues until an
appropriate frame occurs. Berrani and Garcia [17] proposed to select good-quality
face images using robust statistics. Specifically, by considering it as an outlier de-
tection problem, they utilized RobPCA to filter out the noisy face images (e.g., not
well-centered, non-frontal). Their experiments on two face image databases show
that the filtering procedure improves the recognition rate by 10% to 20%. In [85],
three face matchers are fused for face recognition in video, where the estimated face
poses and the detected motion blur are used for adaptive fusion, e.g., frames with
motion blur are not considered for recognition. Experimental results on the CMU
Face-In-Action database [39] with 204 subjects show that their approach achieves
consistent improvements.

It is argued in [63] that the best exemplars are those which minimize the expected
distance between the video frames and the exemplars; radial basis functions are
applied to select exemplars. Hadid and Pietikäinen [47] proposed to extract the most
representative faces by applying K-Means clustering in the low-dimensional space
derived by Locally Linear Embedding [89]. They adopted a probabilistic voting
to combine image-based recognition over video frames for final decision. In [31],
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following the Isomap algorithm [102], the geodesic distances between face images
are estimated, based on which a hierarchical agglomerative clustering algorithm is
applied to derive local face clusters of each individual. The authors argued that using
a single exemplar for each cluster may not fully characterize the image variability,
and proposed to construct two subspaces to characterize intra-personal and extra-
personal variations for each local cluster. Given a test image, the angle between
its projections onto the two subspace is used as a distance measure to the cluster.
Experiments on a video data set of 40 subjects demonstrate their approach produces
promising results compared to previous methods. Zhao and Yagnik [118] presented
an approach for large scale face recognition in web videos. For each face set derived
by facial feature tracking, key faces are selected by clustering; the face sets are
further clustered to get more representative key faces and remove duplicate key
faces. A combination of majority voting and probabilistic voting is adopted for final
decision. Evaluated on large-scale web videos, their approach achieves 80% top-5-
precision on tested persons.

Tang and Li [100, 101] proposed to align video sequences of different subjects
based on the audio signal in video, i.e., frames with similar facial expressions are
synchronized according to the associated speech signal. A number of distinctive
frames are selected from the synchronized video sequences. Key fiducial points
on each face image are further aligned, and Gabor wavelet features are extracted
from these points for facial representation. For matching the spatial and temporal
synchronized video sequences, they developed a multi-level discriminant subspace
analysis algorithm. They also integrated the frame-based classification using the ma-
jority voting or sum rule. In [78], Liu et al. proposed a synchronized frame clustering
method which incrementally outputs aligned clusters across all video sequences, and
adopted a Bayesian method to select key-frames. A Nonparametric Discriminant
Embedding is introduced for learning spatial embedding. With the spatial-temporal
embedding of video sequences, they presented a statistical classification solution,
which uses a probabilistic voting strategy to combine the recognition confidences
in each frame. Encouraging results on the XM2VTS database [81] are reported in
these studies [100, 101, 78].

Stallkamp et al. [98] presented a real-time video-based face recognition system
which recognizes people entering through the door of a laboratory. As shown in
Fig. 2, without user cooperation, the captured video data contains difficult situa-
tions arising from pose variations, facial expressions, occlusions due to accessories
and hair, illumination changes due to the time and weather conditions and light
switched on/off. Their approach combines the individual frame-based classification
results to one score per sequence. With DCT-based appearance features, individual
frame scores are generated using a k-nearest neighbor classifier and a set of Gaus-
sian mixture models learned from training sequences. They proposed two measures
to weight the contribution of each individual frame: distance-to-model (DTM) and
distance-to-second-closest (DT2ND). DTM takes into account how similar a test
sample is to the representatives of the training set. Test samples that are very differ-
ent from the training data are more likely to cause a misclassification, so DTM is
used to reduce the impact of these samples on the final score. Based on the idea that
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Fig. 2 The real-world video data used in [98], which shows a variety of different lighting,
pose and occlusion conditions.

reliable matching requires the best match to be significantly better than the second-
best match, DT2ND is used to reduce the impact of frames which deliver ambigu-
ous classification results. Their experiments on a database of 41 subjects show both
measures have positive effects on the classification results. Despite promising re-
sults, the need for parameter tuning and heuristic integration schemes may limit the
generalization of this approach.

3.2 Temporal Model Based Approaches

Other than the multitude of still frames, video allows to characterize faces based
on the inherent dynamics which is not possible with still images. Facial dynamics
include the non-rigid movement of facial features (e.g., facial expressions) and the
rigid movement of the whole face (e.g., head movements). Psychological studies
[60, 83, 95] indicate that facial dynamics play an important role in the face recog-
nition process, and both static and dynamic facial information are used in the hu-
man visual system to identify faces. Facial dynamics are even more crucial under
degraded viewing conditions such as poor illumination, low resolution, and recogni-
tion at distance. Many of these points have been verified in computer vision research
[48]. For example, Gorodnichy [41, 42] illustrated the lack of resolution can be
compensated by the dynamic information coming from the time dimension. Many
approaches have been proposed to utilize the temporal continuity inherent in videos
for face recognition [20].

Li et al. [74, 73, 72, 75] proposed to model facial dynamics by constructing facial
identity structures across views and over time, referred to identity surfaces (shown
in Fig. 3), in the Kernel Discriminant Analysis feature space. Dynamic face recogni-
tion is performed by matching the face trajectory computed from a video input and a
set of model trajectories constructed on the identity surfaces. The trajectory encodes
the spatio-temporal dynamics of moving faces, while the trajectory distance accu-
mulates recognition evidence over time. Experimental results on video sequences of
12 subjects were reported with a recognition rate of 93.9%. Similarly, in [18], each
image sequence of a rotating face is projected into the eigen-space using Principal
Component Analysis (PCA) and represented as a trajectory in the space; face recog-
nition is performed as the trajectory matching. They reported excellent recognition
rates on a data set of 28 subjects.
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Fig. 3 Identity surfaces for dynamic face recognition [73].

Edwards et al. [24] learnt how individual faces vary through video sequences by
decoupling sources of image variations such as expression, lighting and pose. The
trained statistical face model is used to integrate identity evidence over a sequence,
which is more stable and robust than a model trained from a single image. Li and
Chellappa [67, 69] presented an approach to simultaneous tracking and verification
in video, based on posterior density estimation using sequential Monte Carlo meth-
ods; verification is realized through hypothesis testing using the estimated posterior
density. By rectifying each face template onto the first frame of the testing video,
the approach has been applied to face verification in video. They [68] also intro-
duced a method for face verification using the motion parameters of tracked facial
features, where the features are extracted using Gabor filters on a regular 2D grid.
Their method produces encouraging results on a data set with 19 subjects.

Following [67, 69], Zhou et al. [122, 120] proposed a probabilistic approach for
simultaneous tracking and recognition in video. They used a time-series state space
model which is parameterized by a tracking state vector (continuous) and a identity
variable (discrete), in order to simultaneously characterize the evolving kinematics
and identity. The joint posterior probability is approximated and propagated using
the Sequential Importance Sampling algorithms, and the marginal distribution of the
identity variable is estimated to provide the identity result. In the still-to-video set-
ting, where the gallery consists of still images and the probe consists of videos, the
approach was evaluated on two data sets with 12 subjects and 30 subjects respec-
tively. In [123], to consider the video-to-video setting (i.e., generalizing the gallery
to videos), they adopted an exemplar learning method [63] to select representa-
tives from the gallery videos, serving as still templates in the still-to-video scenario.
Their approach was tested on the MoBo database [46]. Later the simultaneous track-
ing and recognition approach was improved by incorporating appearance-adaptive
models [121]. The appearance changes between input frames and gallery images
are modeled by constructing the intra- and extra-personal spaces. Experiments on a
data set of 29 subjects illustrate the approach can handle appearance changes caused
by pose and illumination variations, leading to improved tracking and recognition
performance.



244 C. Shan

To address continues head pose changes in video, Lee et al. [64] proposed to
learn a low-dimensional appearance manifold of faces, which is approximated by
piecewise linear subspaces (named pose manifolds). To construct the representa-
tion, exemplars are first sampled from videos by finding frames with the largest
distance to each other, which are further clustered using K-means clustering. Each
cluster models face appearance in nearby poses, represented by a linear subspace
computed by PCA. The dynamics among pose manifolds are encoded as transition
probabilities, learned from training video sequences. They presented a maximum a
posteriori formulation for face recognition, which integrates the likelihood that the
input image comes from a particular pose manifold and the transition probability
to this pose manifold from the previous frame. Their approach was extended for
simultaneously tracking and recognizing faces in video [65], achieving the recogni-
tion rate of 98.8% on a data set of 20 subjects. However, the appearance model in
these works was learned by a batch training process from short video clips, which is
not practical for large number of lengthy video sequences. In [66], an online learn-
ing algorithm was introduced to incrementally construct a person-specific appear-
ance manifold using an initial generic prior and successive frames from the video
of a subject. Experimental results demonstrate the approach constructs an effective
representation for face tracking and recognition.

Liu and Chen [79] introduced to use the adaptive Hidden Markov Model (HMM)
for video-based face recognition. In the training phase, a HMM is created for each
individual to learn the statistics and temporal dynamics using the eigen-face im-
age sequence. During the recognition process, the test sequence is analyzed over
time by the HMM corresponding to each subject; its identity is determined by the
model providing the highest likelihood. In case of face recognition with low-quality
images, the HMM-based method was shown to produce better results than image-
based methods [47]. Considering PCA features may not be sufficiently discrimina-
tive among multiple head poses, Kim et al. [55] proposed to use Linear Discriminant
Analysis (LDA) coupled with the modeled pose dynamics in the HMM framework.
By fusing pose-discriminant and person-discriminant features over the video se-
quence, their approach leads to superior performance, e.g., recognition rate of over
70% on a YouTube video set containing 35 celebrities in 1500 video sequences.

Aggarwal et al. [2] posed video-based face recognition as a dynamical system
identification problem. A moving face is modeled as a linear dynamical system, and
each frame is regarded as the output of the system. They adopted an autoregres-
sive and moving average (ARMA) model to represent such a system. The similar-
ity between gallery and probe video sequences is computed using principal angle
based metrics. Their approach performs well on the data set of 16 subjects and the
UCSD/Honda database [64]. Gorodnichy [43] proposed to use the neuro-associative
principle for face recognition, according to which both memorization and recogni-
tion are done based on a flow of frames. The temporal dependence between con-
secutive images is considered by adding extra neurons. This approach achieves
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Fig. 4 Example frames from video sequences in the IIT-NRC database.

recognition rate of over 95% on the IIT-NRC database1 of 11 subjects. Some ex-
ample frames of this database are shown in Fig. 4.

Recently texture-based spatiotemporal representations have been exploited for
analyzing faces in video. In [117], volume Local Binary Patterns (LBP) based de-
scription was applied to facial expression recognition. Hadid et al. [50, 49] proposed
to use local volumetric spatio-temporal features for face recognition, by consider-
ing a face sequence as a selected set of volumes from which local histograms of
extended volume LBP are extracted. They adopted the boosting scheme to learn the
discriminative local volumetric features, where all combination of sequence pairs
are considered as the intra- and extra-classes. Experimental results on three public
databases demonstrate their approach provides superior recognition performance.
We compare the reported recognition performance on several public datasets in
Table 2.

3.3 Image-Set Matching Based Approaches

While in some cases temporal dynamics could be exploited, in a more general sce-
nario, the extracted face images may not be temporally consecutive. This could be
due to the practical limitations in current face acquisition process, e.g., it is dif-
ficult to continuously detect or track face from every video frame, or the images
are the sparse and unordered observations collected over an long periods of time
and from multiple viewpoints. It is then not possible to model facial dynamics for
face recognition. Image-set matching based approaches formulate face recognition
as matching a probe image set against all the gallery image sets each of which rep-
resenting one subject, without assuming temporal coherence between consecutive
images. They can be applied to image sets containing ordered observations collected
over consecutive time steps, and also image sets acquired by multiple independent
still shots (e.g., photo collections) or long-term discontinuous observations.

In [59], relevant approaches to image set classification are divided into two cate-
gories: non-parametric sample-based and parametric model-based. Non-parametric
sample-based approaches are based on matching pair-wise samples in the image

1 http://synapse.vit.iit.nrc.ca/db/video/faces/cvglab.
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Table 2 Recognition results on several public databases in the literature.

Database Subjects/Sequences Approach Result(%)
Honda/UCSD[64] 20/40 Probabilistic appearance manifold [64] 93.2

Exemplar-based probabilistic voting [47] 86.5
System identification[2] 90.0
Extended probabilistic appearance mani-
fold [65]

98.8

HMM (LDA+LandMark Template) [55] 100
Boosted extended volume LBP [49] 96.0
Manifold-Manifold Distance [106] 96.9

MoBo[46] 24/96 Adaptive HMM [79] 98.8
Exemplar-based probabilistic voting [47] 90.8
Boosted extended volume LBP [49] 97.9
Manifold-Manifold Distance [106] 93.6

XM2VTS[81] 295/1180 Multi-level discriminant subspace analy-
sis [101]

99.3

Multi-classifier (voting or sum) [101] 99.3
Spatial-temporal embedding [78] 99.3

sets. To recognize the two image sets as the same class, a solution would be to
find the representative images from each image set and then measure their similar-
ity. These approaches have been discussed in Section 3.1. Parametric model-based
approaches tend to represent each image set by a parametric distribution and then
measure the similarity between two distributions [93, 7, 10]. This is based on the
assumption that images are drawn from some distributions on the underlying face
pattern manifold, and normally statistical learning algorithms are adopted to model
the distribution. Recently, following the mutual subspace method [110], many ap-
proaches build a compact model of the distribution by representing each image
set as a linear subspace, and measure their similarity using the canonical angles
[110, 82, 59]. In the following sections, we discuss these two groups of approaches:
statistical model-based and mutual subspace-based, respectively.

3.3.1 Statistical Model-Based Approaches

Shakhnarovich et al. [93] cast face recognition from an image set as a statistical
hypothesis testing problem, with the assumption that images are independently and
identically (i.i.d) drawn samples from a probability density function (pdf). They
proposed to classify sets of face images by comparing the probability distributions
of the probe set and the gallery sets. Specially, they estimated the face appearance
distribution by a multivariate Gaussian, and used the Kullback-Leibler (KL) diver-
gence, which quantifies how well a particular pdf describes samples from another



Face Recognition and Retrieval in Video 247

pdf, to measure the similarity. Evaluation on two data sets of frontal face images,
with 29 subjects and 23 subjects respectively, demonstrates their approach achieves
equal or improved recognition performance compared to image-based recognition
methods and the mutual subspace method. However, to make the divergence com-
putation tractable, they made a crude assumption that face patterns are normally
distributed, which may not be true [108]. Arandjelovic and Cipolla [4, 7] argued
against the use of KL divergence due to its asymmetry, and proposed to use the
Resistor-Average Distance (RAD) as the dissimilarity measure between distribu-
tions. They adopted kernel PCA to solve the closed-form expression of RAD be-
tween two Gaussian distributions, which also allows for expressive modeling of
nonlinear face manifolds. In addition, a data-driven approach was used for stochastic
manifold repopulating, in order to generalize unseen modes of variation. Their ap-
proach achieves recognition rate of 98% on a database of 100 individuals collected
under varying imaging conditions, outperforming KL divergence based approaches
and the mutual subspace method.

To deal with nonlinear variations in face appearance due to illumination and
pose changes, Arandjelovic et al. [10] model the face appearance distribution as
Gaussian Mixture Models (GMMs) on low-dimensional manifolds. The KL diver-
gence was adopted to measure the similarity between the estimated distributions.
The advantage of this approach over the previous kernel method [4, 7] lies in its bet-
ter modeling of distributions confined to nonlinear manifolds; however this benefit
comes at the cost of increased difficulty of divergence computation. The KL diver-
gence, which for GMMs cannot be computed in the closed form, is evaluated by
a Monte-Carlo algorithm. They evaluated the proposed method on a data set with
100 subjects, and obtained the average performance of 94%. In [6], they derived a
local manifold illumination invariant, and formulated the face appearance distribu-
tion as a collection of Gaussian distributions corresponding to clusters obtained by
K-means. The image set matching was performed by pair-wisely comparing all clus-
ters of two manifolds and the maximal of cluster similarities is chosen as the overall
manifold similarity. To compare two Gaussian clusters, they proposed to find the
most probable mode of mutual variations between the two clusters. Recently they
[9] proposed to decompose each face appearance manifold into three Gaussian pose
clusters describing small face motion around different head poses. Given two mani-
folds, the corresponding pose clusters are compared, and the pair-wise comparisons
are combined to measure the similarity between manifolds. To achieve illumina-
tion invariant recognition, they considered coarse region-based Gamma correlation
with fine illumination manifold-based normalization. Their approach demonstrated
consistently superior recognition performance on a database with 60 individuals.

Statistical model-based approaches make strong assumptions about the underly-
ing distributions. The main drawbacks are that they need to solve the difficult pa-
rameter estimation problem and they easily fail when the training sets and the testing
sets have weak statistical relationships, for example, when they are from different
ranges of poses, expressions or illumination changes.
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3.3.2 Mutual Subspace-Based Approaches

The distribution of a set of face images can be compactly represented by a lower-
dimensional linear subspace. Yamaguchi et al. [110] introduced the Mutual Sub-
space Method (MSM), where each image set is represented by the linear subspace
spanned by the principal components of the images. The similarity between image
sets is measured by the smallest principal angles between subspaces. Principal an-
gles [51] are the minimal angles between vectors of two subspaces, which reflect
the common modes of variation of two subspaces. Canonical correlations, which
are cosines of principal angles, are often used as the similarity measure. Later, to
make it insensitive to variations such as pose and illumination changes, MSM was
extended to the Constrained Mutual Subspace Method (CMSM) [35]. In CMSM, the
test subspace and the reference subspace are projected onto a constraint subspace,
where each subspace exhibits small variance and the two subspaces could be bet-
ter separated. A real-time system implemented using CMSM was demonstrated in
[62]. In [82], the authors further introduced the Multiple Constrained Mutual Sub-
space Method (MCMSM), which generates multiple constraint subspaces by using
the ensemble learning algorithms (Bagging and Boosting). The similarities on each
constraint subspace are combined for recognition. They conducted experiments on
a database of 50 subjects and a database of 500 subjects, and experimental results
show improved recognition performance compared to MSM and CMSM.

An attractive feature of MSM-based methods is their computational efficiency
[56]: principal angles between linear subspaces can be computed rapidly, while the
estimation of linear subspaces can be performed in an incremental manner. How-
ever, the simplistic modeling using a linear subspace cannot sufficiently model com-
plex and nonlinear face appearance variations, and is sensitive to particular data
variations. It is also argued in [93, 106] that MSM-based methods could not consider
the entire probabilistic model of face variations, since the eigenvalues corresponding
to the principal components, as well as the means of the samples, are disregarded.

There have been some attempts to extend MSM-based methods for nonlinear sub-
spaces or manifolds [108, 56, 106]. Wolf and Shashua [108] introduced to compute
principal angles between nonlinear manifolds using the kernel trick. However, as in
all kernel approaches, finding the optimal kernel function is a difficult problem. Kim
et al. [56, 57] argued that MSM-based methods have two shortcomings: the limited
capability of modeling nonlinear pattern variations and the ad hoc fusion of informa-
tion contained in different principal angles. They extended the concept of principal
angles to nonlinear manifolds by combining global manifold variations with local
variations, where the locally linear manifold patches are obtained using mixtures
of Probabilistic PCA. The similarity between manifolds is computed as a weighted
average of the similarity between global modes of data variation and the best match-
ing local patches. They further adopted AdaBoost to learn the application-optimal
principal angle fusion. Experiments on a database with 100 subjects demonstrate
the above two nonlinear manifold modeling approaches both achieve superior per-
formance to the basic MSM. By decomposing the nonlinear manifold as a collec-
tion of local linear models, each depicted by a linear subspace, Wang et al. [106]
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introduced to compute the Manifold-Manifold Distance, which is defined as the
distance of the closest subspace pair from two manifolds. Regarding the subspace-
subspace distance, they argued principal angles mainly reflect the common modes of
variation between two subspaces while ignoring the data itself, so they proposed to
also consider the sample means in the local models to measure the local model sim-
ilarity. Experiments on two public databases demonstrate their approach produces
superior performance to the MSM method.

Using canonical correlations as the distance measure of image sets, Kim et al.
[58, 59] proposed a discriminative learning method for image set classification.
They developed a linear discriminant function that maximizes canonical correla-
tions of within-class sets and minimizes canonical correlations of between-class
sets. Image sets transformed by the discriminant function are then compared by the
canonical correlations. There approach was evaluated on various object recognition
tasks, achieving consistently superior recognition performance. In [38], a loss based
Regularized LDA is introduced for face image set classification using canonical
correlations.

4 Face Retrieval in Video

Face recognition could be used for video content description, indexing, and retrieval
[25, 96]. The dramatic increase of videos demands more efficient and accurate ac-
cess to video content. Finding a specific person in videos is essential to understand
and retrieve videos [91]. Face information is an important cue for person identifi-
cation in many types of videos such as news programs, dramas, movies, and home-
made videos. Face retrieval enables many new functionality, e.g., rapid browsing,
where only shots containing a specific character are chosen to play. Face recogni-
tion also allows character-based video search, which receives growing interest due
to huge amount of video content online (e.g., YouTube).

Face retrieval in general is to retrieve shots containing particular persons/actors
given one or more query face images. In context of videos captured in real-life sce-
narios (e.g., news, programs, and films), lighting variations, scale changes, facial
expressions and varying head pose drastically change the appearance of faces. Par-
tial occlusions, because of the objects in front of faces or resulting from hair style
changes also cause problems. Artefacts caused by motion blur and low resolution
are also common. In brief, the uncontrolled imaging conditions makes face retrieval
very challenging [5]. Some example faces in films are shown in Fig. 5. The existing
studies mainly address two kinds of applications: person retrieval and cast listing.
In this section, we review relevant approaches for these applications.

Person Retrieval — Everingham and Zisserman [29, 28, 30] addressed finding par-
ticular characters in situation comedies, given a number of labeled faces (for each
character) as training data. They [29] used a skin color model with multi-scale blob
detection to detect candidate face regions in the input frame. To deal with pose vari-
ations, a coarse 3D ellipsoid head model with multiple texture maps was used to
render faces from the train data at the same pose as the target face. The identity of
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Fig. 5 Faces in films exhibits a great variability depending on the extrinsic imaging condi-
tions.

the target face is determined by comparing it with the rendered views. The texture
maps of the model can be automatically updated as new poses and expressions are
detected. In [30], rendered images are used to train a discriminative tree-structured
classifier, which detects the individual and estimates the pose over a range of scale
and pose. The identity is verified using a generative approach. Their approach was
evaluated on 4,400 key-frames (1,500 key-frames in [29]) from a TV situation com-
edy for detecting three characters. They [28] proposed to synthesize additional train-
ing data from a single training image by fitting the 3D model to the person’s head.
The parts-based constellation models are trained, which propose candidate detec-
tions in the input frame. The 3D model is aligned to the detected parts, and the
global appearance is considered for recognition. Sivic et al. [96] presented a video
shot retrieval system based on faces in the shot. Instead of matching single faces,
they proposed to match sets of faces for each person, where sets of faces (called face-
tracks) are gathered automatically in shots by tracking. Each face in the face-track is
described by a collection of five SIFT descriptors around salient facial features. The
entire face-track is represented as a distribution (i.e., histogram) over vector quan-
tized face exemplars, resulting in a single feature vector. Face-tracks are matched
by comparing the vectors using the chi-square statistics.

Arandjelovic and Zisserman [11, 12] built a system to retrieve film shots based
on the presence of specific characters, given one or multiple query face images. To
address the variations on scale, pose, and illumination, as well as occlusion, encoun-
tered in films, they proposed to obtain a signature image by a cascade of processing
steps for each detected face. In the first step, facial feature are detected by SVMs
that are trained on image patches surrounding eyes and mouth. Face images are then
affine warped to have salient facial features aligned. Considering the bounding box
typically contains background clutter, the face is segmented from the surrounding
background using the face outline, which is detected by combining a learnt prior on
the face shape and a set of measurements of intensity discontinuity. Finally illumi-
nation effects are removed by band-pass filtering. The end signature image is insen-
sitive to illumination changes, pose variations, and background clutter, and mainly
depends on the person’s identity (and expression). Signature images are matched
using a distance measure for person retrieval. Evaluations on several feature-length
films demonstrate that their system achieves recall rates (over 92%) whilst main-
taining good precision (over 93%). In [90], Satoh presented comparative evaluation
of face sequence matching methods in drama videos.

Face information has been combined with text information for face or person
retrieval in video [21, 111, 53, 112, 84]. In [111], multimodal content in videos,
including names occurred in the transcript, face information, anchor scenes, and



Face Recognition and Retrieval in Video 251

the timing pattern between names and appearances of people, are exploited to find
specific persons in broadcast news videos. However, face information was given
very small weight in their system. Ozkan and Duygulu [84] also integrated text and
face information for person retrieval. Specifically, they limit the search space for
a query name by choosing the shots around which the name appears. To find the
most-frequently occurring faces in the space, they construct a graph with nodes cor-
responding to all faces in the search space, and edges corresponding to the similarity
of the faces; the problem is transformed into finding the densest component in the
graph. A limitation of their approach is that it cannot find a person in parts of the
video where his/her name is not mentioned. Zhao and Yagnik [118] presented a
large scale system that can automatically learn and recognize faces in web videos
by combining text, image, and video. To address the difficulty of manually labeling
training data for a large set of people, they used the text-image co-occurrence in the
web as a weak signal of relevance, and proposed consistence learning to learn the
set of face models from the very large and nosy training set.

Cast Listing — An interesting face retrieval problem is automatically determining
the cast of a feature-length film. Cast listing has been mainly based on the recog-
nition of faces, as faces being the most repeatable cue in this setting [5], although
others cues, such as clothes, can be used as additional evidence. It is challenging be-
cause the cast size is unknown, with great face appearance changes caused by extrin-
sic imaging factors (e.g., illumination, pose, expression). Fitzgibbon and Zisserman
[33] made an earlier attempt to this problem using affine invariant clustering. They
developed a distance metric that is invariant to affine transformations. Two classes of
priors were considered in the distance metric: deformation priors between any pair
of frames, and temporal coherence prior between continuous frames. To address the
lighting variations, they utilized a simple bandpass filter to pre-process the detected
faces. Their approach was tested on the film ’Groundhog Day’ with a principal cast
of around 20. Arandjelovic and Cipolla [5] introduced an approach based on clus-
tering over face appearance manifolds, which correspond to sequences of moving
faces in a film. They temporally segment the video into shots, and obtain face tracks
by connecting face detections through time. The CMSM method [35] is adopted for
pair-wise comparisons of face tracks (i.e., face manifolds). To allow unsupervised
discriminative learning on an unlabeled set of video sequences, their approach starts
from a generic discriminative manifold and converges to a data-specific one, auto-
matically collecting within-class data. Evaluation on a situation comedy illustrates
the effectiveness of their method. However, it remains challenging to obtain a small
number of clusters per character without merging multiple characters into a single
cluster. In [36], normalized Graph Cuts is adopted to cluster face tracks for cast
indexing.

In the above cast listing systems, all faces of a particular character are collected
into one or a few clusters, which are then assigned a name manually. Everingham
et al. [26, 27] addressed the problem of automatically labeling faces of characters
in TV or film materials with their names. Similar to the “Faces in the News” la-
beling in [16], where detected frontal faces in news images are tagged with names
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appearing in the news story text, they proposed to combine visual cues (face and
cloth) and textual cues (subtitle and transcript) for assigning names. Regarding face
processing [3], face detections in each frame are linked to derive face tracks, and
each face is represented by local appearance descriptors computed around 13 facial
features. Clothing appearance was also considered as additional cues. They align the
transcripts with subtitles using dynamic time warping to obtain textual annotation,
and use visual speaker detection to resolve the ambiguities, i.e., only associating
names with face tracks where the face is detected as speaking. A nearest neighbor
[26] or SVM [27] classifier, trained on labeled tracks, is used to classify the unla-
beled face tracks. Their approach has demonstrated promising performance on three
40 minute episodes of a TV serial. In [97], the approach was further extended for
improved coverage by character detection and recognition in profile views. Consid-
ering there are not enough temporally local name cues in the subtitle and script for
local face-name matching, Zhang et al. [116] proposed to perform a global match-
ing between the clustered face tracks and the names extracted from the film script.
A graph matching method is utilized to build face-name association between a face
affinity network and a name affinity network. Experiments on ten films demonstrate
encouraging results.

Ramanan et al. [87] introduced a semi-supervised method for building large la-
beled face datasets by leveraging archival video. They implemented a system for
labeling archival footage spanning 11 years from the television show Friends. The
dataset they compiled consists of more than 600,000 faces, containing appearance
variations due to age, weight gain, changes in hairstyles, and other factors. In their
system, at the lowest level, detected frontal faces are clustered and tracked using the
color histogram of the face, hair and torso. By part-based color tracking, faces with
extreme pose changes are also collected in the clusters. The resulting face tracks are
reliable since body appearance is stable over short time scales. At the scene level,
face tracks are grouped by an agglomerative clustering procedure based on body
appearance, since people tend to ware consistent clothes within a scene. They man-
ually labeled the clusters from a single reference episode, which are used to label
the dataset using a nearest-neighbors framework.

5 Challenges and Future Directions

With camera sensors become pervasive in our society, video data has been one of
the main sensory inputs in electronic systems. Meantime, huge amounts of video
content have been generated. Face recognition in video, which has many applica-
tions such as biometric identification, video search and retrieval, visual surveillance,
and human-computer interaction, has received much interest in the last decade. Al-
though much progress has been made, the problem remains difficult for videos cap-
tured in unconstrained settings. Some major challenges that should be addressed in
future research are considered here:

• Databases: Most of the existing public datasets [81, 46, 64] were collected un-
der controlled (laboratory) conditions, with limited number of subjects, covering
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limited face appearance variations. It is believed that databases built from “the
wild” are important for training and evaluating real-world recognition systems.
Not only does lack of the large realistic database prevent suitable evaluation of
the existing techniques, but also provides little encouragement to novel ideas.
Recently the “Labeled Faces in the Wild” database [52] has been collected for
unconstrained face recognition. The database contains more than 13,000 labeled
face photographs collected from the web, spanning the range of conditions en-
countered in real life. However, only frontal face images are included in this
database. We believe a large database consisting of face videos “in the wild” is
necessary for future research. How to build a comprehensive face video database
with low manual effort should be investigated [87].

• Low-quality Video Data: In many real-life applications, the video data is of
low quality (e.g., limited imaging resolution or low frame rate), such as video
footage from surveillance cameras and videos captured by consumers via mobile
or wearable cameras. The low-quality data could be caused by the poor sensor
performance, motion blur, environmental factors such as illumination, or video
compression. The sensors in the non-visible spectrum (e.g. Near-Infrared) also
generate low-resolution videos with much noise. Existing face recognition ap-
proaches mainly focuses on good-quality video data, which cannot be directly
applied to low-quality video data. To enable practical applications, it is neces-
sary to investigate face recognition techniques for low-quality video data. Super-
resolution could be a solution [8], and temporal information in the video could
be used to compensate for the lost spatial information.

• Computational Cost: Many applications of face recognition can be foreseen on
platforms with limited computing power, for example, video retrieval in mobile
devices, smart cameras for video surveillance, user interface of consumer elec-
tronics (e.g., toy robotics). The processing power on these devices is limited for
traditional video processing tasks like face recognition. Although advanced hard-
ware design and algorithm optimization could be helpful to certain extent [32],
most of existing video-based face recognition approaches require high compu-
tation, which prevents them for wide applications in low-performance systems.
Therefore, there is a great need to investigate low-cost algorithms for face recog-
nition in video.

6 Conclusions

Face recognition in video has been an active topic in computer vision, due to many
potential applications. This chapter brings a comprehensive review on existing re-
search in this area. Different types of approaches to this problem are discussed. We
also introduce recent work on face retrieval. Finally, some challenges and research
directions are discussed. Although we mainly focus on video-based approaches,
recent years have witnessed some interesting still-image based approaches (e.g.,
[109]), which could be helpful for face recognition in video.
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6. Arandjelović, O., Cipolla, R.: Face set classification using maximally probable mutual
modes. In: International Conference on Pattern Recognition (ICPR), vol. 1, pp. 511–514
(2006)
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12. Arandjelović, O., Zisserman, A.: On film character retrieval in feature-length films. In:
Hammoud, R. (ed.) Interactive Video: Algorithms and Technologies. Springer, Heidel-
berg (2006)

13. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for
online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Process-
ing 50(2), 174–189 (2002)

14. Avidan, S.: Support vector tracking. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 26(8), 1064–1072 (2004)

15. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recogni-
tion using class specific linear projection. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19(7), 711–720 (1997)

16. Berg, T.L., Berg, A.C., Edwards, J., Maire, M., White, R., Teh, Y.W., Learned-Miller,
E., Forsyth, D.A.: Names and faces in the news. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 848–854 (2004)

17. Berrani, S.A., Garcia, C.: Enhancing face recognition from video sequences using ro-
bust statistics. In: IEEE International Conference on Advanced Video and Signal-Based
Surveillance (AVSS), pp. 324–329 (2005)



Face Recognition and Retrieval in Video 255

18. Biuk, Z., Loncaric, S.: Face recognition from multi-pose image sequence. In: Interna-
tional Symposium on Image and Signal Processing and Analysis, pp. 319–324 (2001)

19. Bradski, G.: Computer vision face tracking for use in a perceptual user interface. Intel
Technology Journal (Q2) (1998)

20. Chellappa, R., Aggarwal, G.: Video biometrics. In: International Conference on Image
Analysis and Processing, pp. 363–370 (2007)

21. Chen, M.Y., Hauptmann, A.: Searching for a specific person in broadcast news
video. In: IEEE International Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), pp. 1036–1039 (2004)

22. Chen, Y.N., Han, C.C., Wang, C.T., Jeng, B.S., Fan, K.C.: A cnn-based face detector
with a simple feature map and a coarse-to-fine classifier. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2010)

23. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using
mean shift. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 142–149 (2000)

24. Edwards, G., Taylor, C., Cootes, T.: Improving identification performance by integrat-
ing evidence from sequences. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1486–1491 (1999)

25. Eickeler, S., Wallhoff, F., Lurgel, U., Rigoll, G.: Content based indexing of images and
video using face detection and recognition methods. In: IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1505–1508 (2001)

26. Everingham, M., Sivic, J., Zisserman, A.: “hello! my name is.. buffy” automatic naming
of characters in tv video. In: British Machine Vision Conference (BMVC), pp. 889–908
(2006)

27. Everingham, M., Sivic, J., Zisserman, A.: Taking the bite out of automated naming of
characters in tv video. Image and Vision Computing 27(5), 545–559 (2009)

28. Everingham, M., Zisserman, A.: Automated visual identification of characters in situ-
ation comedies. In: International Conference on Pattern Recognition (ICPR), pp. 983–
986 (2004)

29. Everingham, M., Zisserman, A.: Automatic person identification in video. In: Interna-
tional Conference on Image and Video Retrieval (CIVR), pp. 289–298 (2004)

30. Everingham, M., Zisserman, A.: Identifying individuals in video by combining ’gener-
ative’ and discriminative head models. In: IEEE International Conference on Computer
Vision (ICCV), vol. 2, pp. 1103–1110 (2005)

31. Fan, W., Yeung, D.Y.: Locally linear models on face appearance manifolds with appli-
cation to dual-subspace based classification. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 2, pp. 1384–1390 (2006)

32. Farrugia, N., Mamalet, F., Roux, S., Yang, F., Paindavoine, M.: Fast and robust face
detection on a parallel optimized architecture implemented on fpga. IEEE Transactions
on Circuits and Systems for Video Technology 19(4), 597–602 (2009)

33. Fitzgibbon, A., Zisserman, A.: On affine invariant clustering and automatic cast listing
in movies. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002.
LNCS, vol. 2352, pp. 289–298. Springer, Heidelberg (2002)

34. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences 55(1), 119–139
(1997)

35. Fukui, K., Yamaguchi, O.: Face recognition using multi-viewpoint patterns for robot
vision. In: International Symposium of Robotics Research, pp. 192–201 (2003)

36. Gao, Y., Wang, T., Li, J., Du, Y., Hu, W., Zhang, Y., Ai, H.: Cast indexing for videos
by ncuts and page ranking. In: International Conference on Image and Video Retrieval
(CIVR), pp. 441–447 (2007)



256 C. Shan

37. Garcia, C., Delakis, M.: Convolutional face finder: A neural architecture for fast and
robust face detection. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 26(11), 1408–1423 (2004)

38. Geng, Y., Shan, C., Hao, P.: Square loss based regularized lda for face recognition using
image sets. In: IEEE CVPR Workshop on Biometrics, pp. 99–106 (2009)

39. Goh, R., Liu, L., Liu, X., Chen, T.: The cmu face in action (fia) database. In: IEEE
International Workshop on Analysis and Modeling of Faces and Gestures (AMFG), pp.
255–263 (2005)

40. Gorodnichy, D.O.: On importance of nose for face tracking. In: IEEE International
Conference on Automatic Face & Gesture Recognition (FG), pp. 181–186 (2002)

41. Gorodnichy, D.O.: Facial recognition in video. In: Kittler, J., Nixon, M.S. (eds.) AVBPA
2003. LNCS, vol. 2688, pp. 505–514. Springer, Heidelberg (2003)

42. Gorodnichy, D.O.: Recognizing faces in video requires approaches different from those
developed for face recognition in photographs. In: Workshop on Enhancing Information
System Security through Biometrics (2004)

43. Gorodnichy, D.O.: Video-based framework for face recognition in video. In: Interna-
tional Workshop on Face Processing in Video, pp. 330–338 (2005)

44. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In:
British Machine Vision Conference (BMVC), pp. 47–56 (2006)

45. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust
tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS,
vol. 5302, pp. 234–247. Springer, Heidelberg (2008)

46. Gross, R., Shi, J.: The cmu motion of body (mobo) database. Tech. rep., Robotics Insti-
tute, Carnegie Mellon University (2001)
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A Human-Centered Computing Framework to
Enable Personalized News Video
Recommendation

Hangzai Luo and Jianping Fan

Abstract. In this chapter, an interactive framework is developed to enable person-
alized news video recommendation and allow news seekers to access large-scale
news videos more effectively. First, multiple information sources (audio, video and
closed captions) are seamlessly integrated and synchronized to achieve more reli-
able news topic detection, and the inter-topic contextual relationships are extracted
automatically for characterizing the interestingness of the news topics more effec-
tively. Second, topic network (i.e., news topics and their inter-topic contextual re-
lationships) and hyperbolic visualization are seamlessly integrated to achieve more
effective navigation and exploration of large-scale news videos at the topic level,
so that news seekers can have a good global overview of large-scale collections of
news videos at the first glance. Through a hyperbolic approach for interactive topic
network visualization and navigation, large amounts of news topics and their con-
textual relationships are visible on the display screen, and thus news seekers can
obtain the news topics of interest interactively, build up their mental search models
easily and make better search decisions by selecting the visible news topics directly.
Our system can also capture the search intentions of news seekers implicitly and fur-
ther recommend the most relevant news videos according to their importance and
representativeness scores. Our experiments on large-scale news videos (10 TV news
programs for more than 3 months) have provided very positive results.

1 Introduction

According to the CIA world factbook, there are more than 30,000 television sta-
tions in the world. These stations broadcast a large number of TV news programs
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(news videos) every day. Different organizations and individuals utilize these broad-
cast news videos for different purposes, such as presidential candidates’ debat for
public assessment, economic performance analysis and prediction, sports and crime
reports. People watch the news videos (TV news programs) to understand what is
happening now and predict what might happen in the near future, so that they can
make better daily decisions.

Due to the large number of broadcast channels and TV news programs, finding
news videos of interest is not a trivial task: (a) Most existing content-based video
retrieval (CBVR) systems assume that news seekers can formulate their information
needs precisely either in terms of keywords or example videos. Unfortunately, news
seekers may not be able to know what is happening now (i.e., if they know it, it is
not a news), thus it is very hard for them to find the suitable keywords or example
videos to formulate their news needs precisely without obtaining sufficient knowl-
edge of the available news topics of interest. Thus there is an urgent need to develop
new techniques for detecting news topics of interest from large-scale news videos to
assist news seekers on finding news videos of interest more effectively. (b) Because
the same news topic can be discussed in many TV channels and news programs,
topic-based news search may return large amounts of news videos and thus simple
news search via keyword matching of news topics may bring the serious problem
of information overload to news seekers. (c) Most existing CBVR systems treat all
the news seekers equally while completely ignoring the diversity and rapid change
of their search interests. Besides the rapid growth of broadcast TV channels and
news programs, we have also observed different scenarios of news needs from dif-
ferent people, thus it is very difficult to come up with a one size fits all approach
for accessing large-scale news videos. (d) The keywords for news topic interpreta-
tion may not be expressive enough for describing the rich details of video content
precisely and using only the keywords may not be able to capture the search in-
tentions of news seekers effectively. Thus visualization is becoming a critical com-
ponent of personalized news video recommendation system [1-2, 9-12]. (e) The
objectives for personalized video recommendation and content-based video retrieval
are very different, which make it unsuitable to directly apply the existing CBVR
techniques for supporting personalized video recommendation. Thus supporting
personalized news video recommendation is becoming one important feature of
news services [3-4].

There are some existing approaches to support personalized video recommen-
dation by using only the associated text terms such as the titles, tags, and com-
ments [3-4], and the relevant videos are recommended according to the matching
between the associated text terms for video content description and the users’ pro-
files. Unfortunately, the text terms, which are associated with the videos, may not
have exact correspondence with the underlying video content. In addition, a suffi-
cient collection of users’ profiles may not be available for recommendation purpose.
Thus there is an urgent need to develop new frameworks for supporting personal-
ized news video recommendation, which may not completely depend on the users’
profiles and the associated texts for video content description.
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Context between the news topics is also very important for people to make better
search decisions, especially when they are not familiar with the available news top-
ics and their search goals or ideas are still fuzzy. The inter-topic context can give a
good approximation of the interestingness of the news topics (i.e., like PageRank for
characterizing the importance of web pages [17]). Thus it is very attractive to inte-
grate topic network (i.e., news topics and their inter-topic contextual relationships)
for characterizing the interestingness of the news topics, assisting news seekers on
making better search decisions and suggesting the future search directions.

To incorporate topic network for supporting user-adaptive topic recommenda-
tion, it is very important to develop new algorithm for large-scale topic network
visualization, which is able to provide a good balance between the local detail and
the global context. The local detail is used to help news seekers focus on the news
topics of interest in current focus. The global context is needed to tell news seekers
where the other news topics are and their contextual relationships with the news
topics in current focus, such global context can effectively suggest the new search
directions to news seekers. Thus supporting visualization and interactive navigation
of the topic network is becoming a complementary and necessary component for
personalized news video recommendation system and it may lead to the discovery
of unexpected news videos and guide the future search directions effectively.

On the other hand, the search criteria are often poorly defined or depend on the
personal preferences of news seekers. Thus supporting interactive visualization, ex-
ploration and assessment of the search results are very important for allowing news
seekers to find the news videos of interest according to their personal preferences.
Information retrieval community has also recognized that designing more intuitive
system interface for search result display may have significant effects on assisting
users to understand and assess the search results more effectively [13]. To incor-
porate visualization for improving news search, effective techniques for intelligemt
news video analysis should be developed to discover the meaningful knowledge
from large-scale news videos.

Several researchers have used the ontology (i.e., video concepts and their simple
inter-topic contextual relationships such as “IS-A" and “part-of") to assistant visual
content anslysis and retrieval [23-24]. Because the news content are highly dynamic,
the inter-topic contextual relationships cannot simply be characterized by using “IS-
A" or “part-of", which are used for ontology construction. Thus it is unacceptable
to incorporate the ontology for supporting personalized news video recommenda-
tion. On the other hand, automatic video understanding is still an open problem for
computer vision community [25-31].

In this chapter, an interactive approach is developed to enable personalized news
video recommendation, and our approach has significant differences from other
existing work: (a) Rather than performing semantic video classification for auto-
matic news video understanding, we have integrated multiple information sources
to achieve more reliable news topic detection. (b) The associations among the news
topics (i.e., inter-topic contextual relationships) are determined automatically and
an interestingness score is automatically assigned to each news topic via statistical
analysis, and such interestingness scores are further used to select the news topics
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of interest and filter out the less interesting news topics automatically. (c) A hyper-
bolic visualization tool is incorporated to inform news seekers with a better global
overview of large-scale news videos, so that they can make better search decisions
and find the most relevant news videos more effectively. (d) A novel video ranking
algorithm is developed for recommending the most relevant news videos according
to their importance and representativeness scores.

The chapter is organized as follows. Section 2 briefly reviews some related work
on news topic detection and personalized information recommendation; Section 3
introduces our work on integrating topic network and hyperbolic visualization to
enable user-adaptive topic recommendation; Section 4 introduces our new scheme
on news video ranking for supporting personalized news video recommendation;
Section 5 summarizes our work on algorithm and system evaluation; We conclude
in Section 6.

2 Related Work

To enable personalized news video recommendation, one of the most important
problems is to extract news topics of interest automatically from large-scale news
videos. This problem is becoming very critical because of the following reasons:
(a) The amount of news topics could be very large; (b) Different news topics may
have different importance and interestingness scores, such importance and interest-
ingness scores may also depend on the personal preferences of news seekers. In this
section, we have provided a brief review of some existing work which are critical for
developing personalized news video recommendation system: (1) automatic news
topic detection; (2) news visualization; (3) personalized video recommendation.

Topic extraction refers to the identification of individual stories or topics within
a broadcast news video by detecting the boundaries where the topic of discussion
changes. News topics may be of any length and consist of complete and cohesive
news report on one particular topic. Each broadcast channel has its own peculiarities
in terms of program structures and styles, which can be integrated for achieving more
accurate detection of news topics and their boundaries [11-12]. News topics can also
be detected by using some existing techniques for named-entity extraction [5-6].

There are two well-accepted approaches for supporting personalized informa-
tion retrieval [20-22]: content-based filtering and collaborative filtering. Because
the profiles for new users are not available, both the collaborative filtering approach
and the content-based filtering approach cannot support new users effectively. Thus
there is an urgent need to develop more effective frameworks for supporting person-
alized news video recommendation.

Visualization is widely used to help the users explore large amount of informa-
tion and find interesting parts interactively [9-12]. Rather than recommending the
most interesting news topics to news seekers, all of these existing news visualiza-
tion systems disclose all the available news topics to them, and thus news seekers
have to dig out the news topics of interest by themselves. When large-scale news
collections come into view, the number of the available news topics could be very



A Human-Centered Computing Framework 265

large and displaying all of them to news seekers may mislead them. Thus it is very
important to develop new algorithms for characterizing the interestingness of news
topics and reducing the number of news topics to enable more effective visualization
and exploration of large-scale news videos.

3 User-Adaptive News Topic Recommendation

In this chapter, a novel scheme is developed by incorporating topic network and hy-
perbolic visualization to recommend the news topics of interest for assisting news
seekers on accessing large-scale news videos more effectively. To do this, an au-
tomatic scheme is developed to construct the topic network for representing and
interpreting large-scale news videos at the topic level. In addition, a hyperbolic
visualization technique is developed to enable interactive topic network naviga-
tion and recommend the news topics of interest according to the personal prefer-
ences and timely observations of news seekers, so that they can make better search
decisions.

3.1 News Topic Detection

For TV news programs, there are three major information sources (audio, video and
closed captions) that can be integrated and synchronized to enable more reliable

Fig. 1 The flowchart for synchronizing multiple sources for news topic detection, where
automatic speech recognition (ASR), natural language processing (NLP), and semantic video
classification are seamlessly integrated.
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news topic detection. We have developed a new scheme for automatic news topic
detection by taking the advantage of multiple information sources (cross-media) as
shown in Fig. 1. First, automatic speech recognition (ASR), natural language pro-
cessing (NLP), and semantic video classification are performed on these three in-
formation sources parallelly to determime the keywords for news topic description
from both the audio channel and the closed captions and detect the video concepts
from the video channel. Second, the audio channel is synchronized with the closed
caption channel, and the video channel is further synchronized with the audio chan-
nel and the closed caption channel. Finally, the detection results of news topics from
these three information sources are integrated to boost the performance of our news
topic detection algorithm.

The closed captions of news videos can provide abundant information and such
information can be used to detect the news topics of interest and their semantic inter-
pretations with high accuracy. To do this, the closed captions are first segmented into
a set of sentences, and each sentence is further segmented into a set of keywords.
In news videos, some special text sentences, such as “somebody, CNN, somewhere”
and “ABC’s somebody reports from somewhere”, need to be processed separately.
The names for news reporters in those text sentences are generally not the content
of news report. Therefore, they are not appropriate for news semantics interpreta-
tion and should be removed. Because there have some clear and fixed patterns for
these specific sentences, we have designed a context-free syntax parser to detect and
mark this information. By incorporating 10-15 syntax rules, our parser can detect
and mark such specific sentences in high accuracy. Standard text processing tech-
niques are used to remove the stop words automatically.

Most named entity detectors may fail in processing all-capital strings because
initial capitalization is very important to achieve accurate named entity recognition.
One way to resolve this problem is to train a detector with ground truth from the text
documents of closed captions. However, it’s very expensive to obtain the manually
marked text material. Because English has relatively strict grammar, it’s possible
to parse the sentences and recover the most capital information by using part-of-
speech (POS) and lemma information. TreeTagger [7] is used to perform the part-
of-speech tagging. Capital information can be recovered automatically by using the
TreeTagger parsing results.

After such specific sentences are marked and the capital information is recovered,
an open source text analysis package LingPipe [8] is used to perform the named en-
tity detection and resolve co-reference of the named entities. The named entities re-
ferring to the same entity are normalized to the most representative format to enable
statistical analysis, where the news model of LingPipe is used and all the parameters
are set to default value. Finally, the normalized results are parsed again by TreeTag-
ger to extract the POS information and resolve the words to their original formats.
For example, TreeTagger can resolve “better” to “well” or “good” according to its
POS tag.

We have defined a set of over 4000 elemental topics, each keyword represents
an elemental topic, and all these detected news stories that consist of one particular
keyword are assigned to the corresponding cluster of news topic. Our multi-task
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Fig. 2 Integrating confidence map for salient object detection: (a) original images and the
detected salient objects; (b) confidence maps for the salient objects.

learning algorithm is performed to learn the topic detectors from a given corpus by
exploiting the inter-topic correlation [25-27]. Once we have a set of topic detectors,
they are used to determine the most topic-similar clusters for the new piece of news
videos.

For TV news videos, the video shots are the basic units for video content repre-
sentation, and thus they can be treated as one of the semantic items for news topic
detection. Unlike the keywords in text documents, the re-appearance of video shots
cannot be detected automatically via simple comparison of their visual properties.
For news videos, video objects, such as text areas and human faces, may provide
important clues about news stories of interest. Text lines and human faces in news
videos can be detected automatically by using suitable computer vision techniques
[28]. Obviously, these automatic detection functions may fail in some cases. Thus
the results that are detected by using a single video frame may not be reliable. To
address this problem, the detection results on all the video frames within the same
video shot are integrated and the corresponding confidence maps for the detection
results are calculated as shown in Fig. 2 [27]. The video concepts associated with
the video shots can provide valuable information to enable more accurate news topic
detection, and semantic video classification is one potential solution to detect such
video concepts [27]. To detect the video concepts automatically, we have adopted
our previous work reported in [25-28].

Unfortunately, the closed captions may not synchronize with the video channel
accurately and have a delay of a few seconds in general. Thus the news topics that
are detected from the closed captions cannot directly be synchronized with the video
concepts that are detected from the news videos. On the other hand, the closed cap-
tions have good synchronization with the relevant audios. Therefore, they can be
integrated to take advantage of cross-media to clarify the video content and re-
move the redundant information. Even the audio channel generally synchronizes
very well with the video channel, the accuracy of most existing techniques for auto-
matic speech recognition (ASR) is still low. By integrating the results for automatic
speech recognition with the topic detection results from the closed captions, we can
synchronize the closed captions with the video content in higher accuracy. After
the closed captions are synchronized with the news videos, we can assign the video
shots to the most relevant news topics that are accurately detected from the closed
captions. Thus all the video shots, which locate between the start time and the end
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time of a given new topic that has been detected from the closed captions, are as-
signed to the given news topic automatically.

3.2 Topic Association Extraction

The contextual relationships among these significant news topics are obtained au-
tomatically, where both the semantic similarity and the co-occurrence probability
for the relevant news topics are used to define a new measurement for determining
the inter-topic associations effectively. The inter-topic association (i.e., inter-topic
contextual relationship) φ(Ci, Cj) is determined by:

φ(Ci, Cj) = −α · log
d(Ci, Cj)

2L
+ β · ψ(Ci, Cj)

log ψ(Ci, Cj)
, α + β = 1 (1)

where the first part denotes the semantic similarity between the news topics Cj
and Ci, the second part indicates their co-occurrence probability, α and β are the
weighting parameters, d(Ci, Cj) is the length of the shortest path between the news
topics Ci and Cj by searching the relevant keywords for news topic interpretation
from WordNet [23], L is the maximum depth of WordNet, ψ(Ci, Cj) is the co-
ocurrence probability between the relevant news topics. The co-occurrence proba-
bility ψ(Ci, Cj), between two news topics Cj and Ci, is obtained in the news topic
detection process. Obviously, the value of the inter-topic association φ(Ci, Cj) in-
creases with the strength of the contextual relationship between the news topics Ci
and Cj .

Thus each news topic is automatically linked with multiple relevant news topics
with the higher values of the associations φ(·, ·). One portion of our large-scale
topic network is given in Fig. 3, where the news topics are connected and organized
according to the strength of their associations, φ(·, ·). One can observe that such a
topic network can provide a good global overview of large-scale news videos and

Fig. 3 One portion of our topic network for organizing large-scale news videos.
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can precisely characterize the interestingness of the relevant news topics, and thus
it can be used to assist news seekers on making better search decisions.

To integrate the topic network for supporting user-adaptive topic recommenda-
tion, it is very attractive to achieve graphical representation and visualization of the
topic network, so that news seekers can obtain a good global overview of large-
scale news videos at the first glance and make better search decisions in the process
of interactive topic network exploration and navigation. Unfortunately, visualizing
large-scale topic network in a 2D system interface with a limited screen size is not a
trivial task. To achieve more effective visualization of large-scale topic network, we
have developed multiple innovative techniques: (a) highlighting the news topics ac-
cording to their interestingness scores for allowing news seekers to obtain the most
important insights at the first glance; (b) integrating hyperbolic geometry to create
more space for large-scale topic network visualization and exploration.

3.3 Interestingness Scores of News Topics

We have integrated both the popularity of the news topics and the importance of
the news topics to determine their interestingness scores. The popularity of a given
news topic is related to the number of TV channels or news programs which have
discussed or reported the given news topic. If one news topic is discussed or re-
ported by more TV channels or news programs, it tends to be more interesting. The
importance of a given news topic is also related to its linkage structure with other
news topics on the topic network. If one news topic is related to more news topics on
the topic network, it tends to be more interesting [17]. For example, the news topic
for “roadside bond in Iraq" may relate to the news topics of “gap price increase" and
“stock decrease". Thus the interestingness score ρ(Ci) for a given news topic Ci is
defined as:

ρ(C) = λ·log(m(Ci)+
√

m2(Ci) + 1)+γ ·log(k(Ci)+
√

k2(Ci) + 1), λ+γ = 1
(2)

where m(ci) is the number of TV channels or news programs which have discussed
or reported the given news topic Ci, k(ci) is the number of news topics linked with
the given news topic Ci on the topic network. Thus the interestingness score for a
given news topic increases adaptively with both the number of the relevant TV chan-
nels or news programs and the number of the linked news topics. Such interesting-
ness scores can be used to highlight the most interesting news topics and eliminate
the less interesting news topics for reducing the visual complexity for large-scale
topic network visualization and exploration.

3.4 Hyperbolic Topic Network Visualization

Supporting graphical representation and visualization of the topic network can pro-
vide an effective solution for exploring large-scale news videos at the topic level and
recommend the news topics of interest interactively for assisting news seekers to make
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Fig. 4 One view of hyperbolic visualization of our topic network.

better search decisions. However, visualizing large-scale topic network in a 2D sys-
tem interface with a limited screen size is a challenging task. We have investigated
multiple solutions to tackle this challenge task: (a) A string-based approach is incor-
porated to visualize the topic network with a nested view, where each news topic node
is displayed closely with the most relevant news topic nodes according to the values
of their associations. The underlying inter-topic contextual relationships are repre-
sented as the linkage strings. (b) The geometric closeness of the news topic nodes is
related to the strength of their inter-topic contextual relationships, so that such graph-
ical representation of the topic network can reveal a great deal about how these news
topics are connected. (c) Both geometric zooming and semantic zooming are inte-
grated to adjust the levels of visible details automatically according to the discerning
constraint on the number of news topic nodes that can be displayed per view.

Our approach for topic network visualization exploits hyperbolic geometry [14-
16]. The hyperbolic geometry is particularly well suited for achieving graph-based
layout of the topic network, and it has “more space" than Euclidean geometry. The
essence of our approach is to project the topic network onto a hyperbolic plane
according to the inter-topic contextual relationships, and layout the topic network
by mapping the relevant news topic nodes onto a circular display region. Thus our
topic network visualization scheme takes the following steps: (a) The news topic
nodes on the topic network are projected onto a hyperbolic plane according to their
inter-topic contextual relationships, and such projection can usually preserve the
original contextual relationships between the news topic nodes. (b) After such
context-preserving projection of the news topic nodes is obtained, Poincaré disk
model [14-16] is used to map the news topic nodes on the hyperbolic plane to a 2D
display coordinate. Poincaré disk model maps the entire hyperbolic space onto an
open unit circle, and produces a non-uniform mapping of the news topic nodes to
the 2D display coordinate.

Our approach for topic network visualization relies on the representation of the
hyperbolic plane, rigid transformations of the hyperbolic plane and mappings of
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Fig. 5 Another view of hyperbolic visualization of our topic network.

the news topic nodes from the hyperbolic plane to the unit disk. Internally, each
news topic node on the graph is assigned a location z = (x, y) within the unit disk,
which represents its Poincaré coordinates. By treating the location of the news topic
node as a complex number, we can define such a mapping as the linear fractional
transformation [14-16]:

zt =
θz + P

1 + P̄ θz
(4)

where P and θ are the complex numbers, |P | < 1 and |θ| = 1, and P̄ is the com-
plex conjugate of P . This transformation indicates a rotation by θ around the origin
following by moving the origin to P (and −P to the origin).

To incorporate such transformation for topic network visualization, the layout
routine is structured as a recursion that takes a news topic node and a wedge in
which to lay out the news topic node and its relevant news topic nodes. It places
the news topic node at the vertex of the wedge, computes a wedge for each relevant
news topic node and recursively calls itself on each relevant news topic node. The
relevant news topic nodes are placed in the middle of their subwedges at a distance
computed by the formula:

d =

√(
(1 − s2)sin(a)

2s

)2

+ 1 − (1 − s2)sin(a)
2s

(5)

where a is the angle between the midline and the edge of the subwedge and s is the
desired distance between a relevant news topic node and the edge of its subwedge. In
our current implementation, we set s = 0.18. The result, d, is the necessary distance
from current news topic node to its relevant news topic node. If the value of d is less
than that of s, we set d to s for maintaining a minimum space between the current
news topic node and the relevant news topic node. Both s and d are represented as
the hyperbolic tangent of the distance in the hyperbolic plane.
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3.5 Personalized Topic Network Generation

After the hyperbolic visualization of the topic network is available, it can be used
to enable interactive exploration and navigation of large-scale news videos at the
topic level via change of focus. The change of focus is implemented by changing
the mapping of the news topic nodes from the hyperbolic plane to the unit disk for
display, and the positions of the news topic nodes in the hyperbolic plane need not
to be altered during the focus manipulation. As shown in Fig. 4 and Fig. 5, news
seekers can change their focuses of the news topics by clicking on any visible news
topic node to bring it into the focus at the screen center, or by dragging any vis-
ible news topic node interactively to any other screen location without losing the
contextual relationships between the news topics, where the rest of the layout of the
topic network transforms appropriately. In such interactive topic network navigation
and exploration process, news seekers can obtain the news topics of interest inter-
actively, build up their mental search models easily and make better search decision
effectively by selecting the visible news topics directly. Because our hyperbolic vi-
sualization framework can assign more spaces for the news topic node in current
focus and ignore the details for the residual news topic nodes on the topic network,
it can theoretically avoid the overlapping problem by supporting change of focus
and thus it can spporting large-scale topic network visualization and navigation.

On the other hand, such interactive topic network exploration process has also
provided a novel approach for capturing the search interests of news seekers au-
tomatically. We have developed a new algorithm for generating personalized topic
network automatically from the current search actions of news seeker while the new
seeker navigates the topic network. Thus the personalized interestingness score for
a given news topic Ci on the topic network is defined as:

ρ(Ci)=ρorg(Ci)+ρorg(Ci)

{
α

ev(Ci)−e−v(Ci)

ev(Ci)+e−v(Ci)
+ β

es(Ci) − e−s(Ci)

es(Ci) + e−s(Ci)
+ δ

ed(Ci) − e−d(Ci)

ed(Ci) + e−d(Ci)

}
(6)

where α + β + δ = 1, ρorg(Ci) is the original interestingness score for the given
news topic Ci as defined in Eq. (2), v(Ci) is the visiting times of the given news
topic Ci from the particular news seeker, s(Ci) is the staying seconds on the given
news topic Ci from the particular news seeker, d(Ci) is the interaction depth for
the particular user to interact with the news topic Ci and the relevant news videos
which are relevant to the given news topic Ci, α, β and δ are the weighting factors.
The visiting times v(Ci), the staying seconds s(Ci), and the interaction depth d(Ci)
can be captured automatically in the user-system interaction procedure. Thus the
personalized interestingness scores of the news topics are determined immediately
when such user-system interaction happens, and they will increase adaptively with
the visiting times v(Ci), the staying seconds s(Ci), and the interaction depth d(Ci).

After the personalized interestingness scores for all these news topics are learned
from the current search actions of news seeker, they can further be used to weight
the news topics for generating a personalized topic network to represent the user
profiles (i.e., search preferences of news seeker) precisely. Thus the news topics
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Fig. 6 The most relevant news topics for interestingness propagation.

with smaller values of the personalized interestingness scores can be eliminated
automatically from the topic network, so that each news seeker can be informed by
the most interesting news topics according to his/her personal preferences.

The search interests of news seeker may be changed according to his/her timely
observations of news topics, and one major problem for integrating the user’s pro-
files for topic recommendation is that the user’s profiles may over-specify the search
interests of news seeker and thus they may hinder news seeker to search other inter-
esting news topics on the topic network. Based on this observation, we have devel-
oped a novel algorithm for propagating the search preferences of news seeker over
other relevant news topics on the topic network, i.e., the news topics which have
stronger correlations with the news topics which have been accessed by the partic-
ular news seeker. Thus the personalized interestingness score υ(Cj) for the news
topic Cj to be propagated is determined as:

χ(Cj) = ρ(Cj)φ̄(Cj), φ̄(Cj) =
∑
l∈Ω

φ(Cl, Cj) (7)

where Ω is the set of the accessed news topics linked with the news topic Cj to be
propagated as shown in Fig. 6 and Fig. 7, φ(Cl, Cj) is the inter-topic association
between the news topic Cj and the news topic Cl which is linked with Cj and has
been accessed by the particular news seeker, and ρ(Cj) is the interestingness score
for the news topic Cj to be propagated. Thus the news topics, which have larger
values of the personalized interestingness scores χ(·) (strongly linked with some
accessed news topics on the topic network), can be propagated adaptively.

By integrating the inter-topic correlations for automatic propagation of the prefer-
ences of news seeker, our proposed framework can precisely predict his/her hidden
preferences (i.e., search intentions) from his/her current actions. Thus the user’s
profiles can be represented precisely by using the personalized topic network,
where the interesting news topics can be highlighted according to their personalized
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Fig. 7 The most relevant news topics for interestingness propagation.

interestingness scores as shown in Fig. 6 and Fig. 7. Such personalized topic net-
work can further be used to recommend the news topics of interest for news seekers
to make better future search decisions.

4 Personalized News Video Recommendation

Because the same news topic may be discussed many times in the same TV news
program or be discussed simultaneously by multiple TV news programs, the amount
of news videos under the same topic could be very large. Thus topic-based news
search via keyword matching may return large amount of news videos which are
relevant to the same news topic. To reduce the information overload, it is very im-
portant to develop new algorithms for ranking the news videos under the same news
topic and recommending the most relevant news videos according to their impor-
tance and representativeness scores [18-19].

The news videos, which are relevant to the given news topic Cj , are ranked ac-
cording to their importance and representiveness scores. For the given news topic
Cj , the importance and representativeness score �(x|Cj) for one particular news
video x is defined as:

�(x|Cj) = αe−Δt + (1 − α)
{

β
ev(x|Cj) − e−v(x|Cj)

ev(x|Cj) + e−v(x|Cj)
+ γ

er(x|Cj) − e−r(x|Cj)

er(x|Cj) + e−r(x|Cj)

+η
eq(x|Cj) − e−q(x|Cj)

eq(x|Cj) + e−q(x|Cj)

}
(8)
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where β + λ + η = 1, Δt is the time difference between the time for the TV news
programs to discuss and report the given news topic Cj and the time for the news
seeker to submit their searches, v(x|Cj) is the visiting times of the given news video
x from all the news seekers, r(x|Cj) is the rating score of the given news video x
from all the news seekers, q(x|Cj) is the quality of the given news video.

We separate the time factor from other factors for news video ranking because
the time factor is more important than other factors for news video ranking (i.e., one
topic can be treated as the news because it is new and tell people what is happening
now or what is discussing now). The quality q(x|Cj) is simply defined as the frame
resolution and the length of the given news video x. If a news video has higher
frame resolution and longer length (be discussed for longer time), it should be more
important and representative for the given news topic.

Fig. 8 Our system interface for supporting multi-modal news recommendation.

Fig. 9 Two examples for supporting multi-modal news recommendation.
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Fig. 10 Our system for supporting online news recommendation: (a) topic network for March
13; (b) topic network for March 14.

After the search goals pf news seekers (i.e., which are represented by the accessed
news topics) are captured interactively, our personalized news video recommenda-
tion system can: (a) recommend top 5 news videos according to their importance
and representative scores; (b) recommend the news topics of interest on the topic
network which are most relevant to the accessed news topic and suggest them as the
future search directions according to the current preferences of news seekers, where
the accessed news topic is set as the current focus (i.e., center of the topic network);
(c) recommend the most relevant online text news which are relevant with the ac-
cessed news topic, so that news seekers can also read the most relevant online web
news; (d) record the search history and preferences of news seekers for generating
more reliable personalized topic network to make better recommendation in the fu-
ture. Some experimental results are given in Fig. 8 and Fig. 9, one can conclude
that our personalized news video recommendation system can effectively support
multi-modal news recommendation from large-scale collections of news videos.

We have also extended our multi-modal news analysis tools to support person-
alized online news recommendation. First, the news topics of interest are extracted
from large-scale online news collections and the inter-topic similarity contexts are
determined for topic network generation as shown in Fig. 10, one can observe that

Fig. 11 Our system for supporting online news recommendation: personalized topic network
and the relevant online news sources.
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such the topic network can represent the news topics of interest and their inter-topic
similarity contexts effectively. By incorporating the inputs of news seekers for on-
line news recommendation, the accessed news topic is set as the current focus and
the most relevant news sources are recommended as shown in Fig. 11.

5 Algorithm Evaluation

We carry out our experimental studies by using large-scale news videos. The topic
network which consists of 4000 most popular news topics is learned automatically
from large-scale news videos. Our work on algorithm evaluation focus on: (1) eval-
uating the performance of our news topic detection algorithm and assessing the ad-
vantages for integrating multiple information sources for news topic detection; (2)
evaluating the response time for supporting change of focus in our system, which is
critical for supporting interactive navigation and exploration of large-scale topic net-
work to enable user-adaptive topic recommendation; (3) evaluating the performance
(efficiency and accuracy) of our system for allowing news seekers to look for some
particular news videos of interest (i.e., personalized news video recommendation).

Automatic news topic detection plays an important role in our personalized news
video recommendation system. However, automatic topic detection is still an open
problem in natural language processing community. On the other hand, automatic
video understanding via semantic classification is also an open issue in computer
vision community. In this chapter, we have integrated multiple information sources
(audio, video and closed captions) to exploit the cross-media advantages for achiev-
ing more reliable news topic detection.

Based on this observation, our algorithm evaluation for our automatic news topic
detection algorithm focuses on comparing its performance difference by combining
different information sources for news topic detection. We have compared three
combination scenarios for news topic detection: (a) only the closed captions are
used for news topic detection; (b) the closed captions and the audio channel are
integrated and synchronized for news topic detection; (c) the closed captions, the
audio channel and the video channel are seamlessly integrated and synchronized for
news topic detection. As shown in Fig. 12, integrating multiple information sources
for news topic detection can enhance the performance of our algorithm significantly.

One critical issue for evaluating our personalized news video recommendation
system is the response time for supporting change of focus to enable interactive topic
network navigation and exploration, which is critical for supporting user-adaptive
topic recommendation. In our system, the change of focus is used for achieving
interactive exploration and navigation of large-scale topic network. The change of
focus is implemented by changing the Poincaré mapping of the news topic nodes
from the hyperbolic plane to the display unit disk, and the positions of the news
topic nodes in the hyerbolic plane need not to be altered during the focus manip-
ulation. Thus the response time for supporting change of focus depends on two
components: (a) The computational time T1 for re-calculating the new Poincaré
mapping of large-scale topic network from a hyperbolic plane to a 2D display unit
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Fig. 12 The comparision results of our automatic news topic detection algorithm by integrat-
ing different sources.

disk, i.e., re-calculating the Poincaré position for each news topic node; (b) The vi-
sualization time T2 for re-layouting and re-visualizing the new Poincaré mapping of
large-scale topic network on the display disk unit. As shown in Fig. 13, one can find
that the computational time T1 is not sensitive to the number of news topics, and
thus re-calculating the Poincaré mapping for large-scale topic network can almost
be achieved in real time. We have also evaluated the empirical relationship between
the visualization time T2 and the number of news topic nodes. In our experiments,
we have found that re-visualization of large-scale topic network is not sensitive
to the number of news topics, and thus our system can support re-visualization of
large-scale topic network in real time.

When the news topics of interest are recommended, our system can further allow
news seekers to look for the most relevant news videos according to their importance
and representative scores. For evaluating the effeciency and the accuracy of our
personalized news video recommendation system, the benchmark metric includes
precision P and recall R. The precision P is used to characterize the accuracy of

Fig. 13 The empirical relationship between the computational time T1 (seconds) and the
number of news topic nodes.
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Table 1 The precision and recall for supporting personalized news video recommendation.

news topics policy pentagon change insult
precision/recall 95.6% /97.3% 98.5% /98.9% 100% /99.2% 92.8% /93.6%

news topics implant wedding haggard bob
precision/recall 90.2% /93.5% 96.3% /94.5% 96.5% /92.8% 90.3% /97.4%

news topics gate steny hoyer democrat urtha
precision/recall 95.9% /96.8% 96.5% /96.2% 96.3% /97.1% 93.6% /94.3%

news topics majority leader confirmation defence
precision/recall 99.2% /98.6% 93.8% /99.3% 94.5% /93.8% 100% /99.6%

news topics secretary veterm ceremony service
precision/recall 100% /98.8% 99.8% /99.2% 99.3% /96.6% 91.2% /93.2%

news topics honor vietnam lesson submit
precision/recall 91.2% /93.5% 98.8% /96.7% 90.3% /91.6% 91.2% /91.5%

news topics minority indonesia president trent lott
precision/recall 100% /99.6% 96.8% /97.7% 100% /96.8% 92.5% /92.3%

news topics o.j. sinpson trial money book
precision/recall 95.6% /99.4% 90.5% /90.3% 100% /90.6% 96.8% /93.6%

news topics john kerry military race mandate
precision/recall 100% /96.5% 100% /93.2% 100% /97.8% 92.6% /92.5%

news topics election leadship school gun shoot execution
precision/recall 100% /95.5% 92.8% /90.3% 100% /96.7% 90.6% /91.3%

news topics responsibility sex message congress
precision/recall 92.1% /91.5% 97.5% /98.2% 88.3% /87.6% 100% /96.3%

news topics north korea japan china white house
precision/recall 100% /99.3% 98.5% /95.6% 97.3% /95.2% 100% /94.8%

news topics nuclear test republican amish gun shoot
precision/recall 100% /97.6% 91.6% /92.8% 99.5% /91.6% 100% /99.8%

news topics teacher conduct program olmypic 2008
precision/recall 93.8% /94.5% 87.92% /88.3% 83.5% /90.2% 100% /99.3%

news topics beijing child tax reduction shooting
precision/recall 99.2% /97.3% 91.3% /91.5% 98.5% /96.9% 99.6% /98.4%

news topics safety investigation ethic committee
precision/recall 94.5% /94.8% 93.3% /96.5% 93.3% /95.6% 91.8% /95.2%

news topics scandal dennis hastert preseident candidates matter
precision/recall 96.6% /97.3% 95.3% /88.3% 98.5% /97.3% 85.2% /85.3%

our system for finding the particular news videos of interest, and the recall R is used
to characterize the efficiency of our system for finding the particular news videos of
interest. They are defined as:

P =
TP

TP + FP
, R =

TP

TP + TN
(9)

where TP is the set of true positive news videos that are relevant to the need of
news seeker and are recommended correctly, FP is the set of fause positive news
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videos that are relevant to the need of news seeker and are not recommended, and
TN is the set of true negative news videos that are relevant but are recommended
incorrectly. Table 1 gives the precision and recall of our personalized news video
recommendation system. From these experimental results, one can observe that our
system can support personalized news video recommendation effectively, thus news
seekers are allowed to search for some particular news videos of interest effectively.

6 Conclusions

In this chapter, we have developed an interactive framework to support personal-
ized news video recommendation and allow news seekers to access large-scale news
videos more effectively. To allow news seekers to obtain a good global overview of
large-scale news videos at the topic level, topic network and hyperbolic visualiza-
tion are seamlessly integrated to achieve user-adaptive topic recommendation. Thus
news seekers can obtain the news topics of interest interactively, build up their men-
tal search models easily and make better search decisions by selecting the visible
news topics directly. Our system can also capture the search intentions of news
seekers implicitly and further recommend the most relevant news videos according
to their importance and representativeness scores. Our experiments on large-scale
news videos have provided very positive results.
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Video Mining



A Holistic, In-Compression Approach to Mining
Independent Motion Segments for Massive
Surveillance Video Collections

Zhongfei (Mark) Zhang and Haroon Khan

Abstract. This chapter describes a large scale surveillance video data mining ap-
proach for those segments that contain independently moving targets. Given the
typical scenario where the video data collections are massive in size, We propose
a holistic, in-compression approach, called Linear System Consistency Analysis
(LSCA), to efficient video data mining for those independent motion segments. By
efficient, we mean that the mining speed is close to or even faster than real-time in
“normal” platforms (we do not assume using special hardware or any parallel ma-
chines) while still maintaining a good mining quality. Theoretical and experimental
analyses demonstrate and validate this holistic, in-compression approach to solving
for video mining problem for temporal independent motion segmentation.

1 Introduction

This chapter develops a large scale surveillance video data unsupervised segmenta-
tion technique regarding whether there is a presence of independent motion. Since
processing time is critical in summarizing and/or segmenting large scale surveil-
lance video, we must provide efficient processing. Consequently, we focus on de-
veloping a technique aiming at efficient processing of MPEG video stream data. By
efficient, we mean that the processing speed is close to or even faster than real-time
in “normal” platforms (we do not assume using special hardware or any parallel
machines) while still maintaining a good quality segmentation.

We target surveillance applications. Based on the ultimate goal of efficient video
segmentation, we propose a holistic, in-compression approach, and we demonstrate
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the approach by focusing on a specific video segmentation task — independent mo-
tion detection. By independent motion, we mean that the target in the surveillance
scene moves independently regardless of whether or not the camera is in motion.
Consequently, if the camera is still, independent motion detection trivially becomes
the standard motion detection in the scene. On the other hand, if the camera is in
motion, every pixel in a frame may contain motion. For those background pixels,
the motion reflected in the image domain corresponds to the 3D camera motion; for
those pixels corresponding to independently moving objects in a frame, their motion
corresponds to the combination of the 3D camera motion and their own independent
motion in the 3D space. In this case, simple frame based differencing does not work
[16], and certain sophisticated techniques must be applied to separate the indepen-
dent motion from the camera motion, which is also called the background motion.
This problem becomes even more complicated when there is 3D motion parallax
involved. In this case, a 3D motion model must be applied in order to robustly and
accurately separate the independent motion from the camera motion. Therefore, in-
dependent motion detection aims at detecting the target motion instead of the camera
motion. In the surveillance applications, it is not unusual that the surveillance cam-
eras are in motion. For example, the surveillance conducted by an unmanned aerial
vehical (UAV) is in such a scenario where the cameras are always in motion, which
is actually the scenario that motivates this research and is the scenario where the
experimental data are collected.

Since this research is motivated by the UAV surveillance scenario, for a typical
UAV surveillance, there are multiple UAVs performing the surveillance at the same
time, and for each UAV, there are multiple cameras shooting different directions si-
multaneously. For each camera in surveillance, the collected data are transmitted to
a ground station for archive. Clearly, for a typical UAV surveillance task, the volume
of the archived surveillance data transmitted from UAV cameras is massive. The cur-
rent practice is to have image analysts manually examine the archived surveillance
data to determine where attention needs to be paid and thus what subsequent ac-
tions need to be taken. Since mornally only those surveillance scenes that contain
independent motion need to pay attention to whereas typically the majority of the
surveillance scenes do not contain any independent motion, the problem now is re-
duced to mining a massive collection of UAV surveillance video data to filter out
the majority of the data that do not contain independent motion and to only identify
and return those scenes that contain independent motion. Given the massive data
collection, the current manual practice for image analysts is very expensive. Con-
sequently, we are motivated to develop an automated approach to identifying and
returning the scenes with independent motion. In addition, this also justifies why
the solution we have developed here must be efficient.

In fact, with a developed efficient independent motion detection solution, we may
apply this solution to the UAV surveillance scenario in two modes, the online mode
and the offline mode. In the online mode, each surveillance camera is equipped
with the solution while in surveillance. Thus, the detection is performed in real-time
and only those detected independent motion scenes need to be transmitted to the
ground station for image analysts to have further examinations and the rest of the
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surveillance video data do not need to be transmitted to the ground station at all.
In the offline mode, all the surveillance data from all the surveillance cameras are
transmitted to a ground station and the ground station database is equipped with
the solution. The independent motion detection solution works on all the archived
data to filter out those data that do not contain independent motion and only re-
turn those data that contain independent motion for image analysts to have further
examinations.

There are two scenarios related to independent motion detection. Given a video
stream or an image sequence, one scenario refers to the detection in which a tempo-
ral segmentation is conducted into those subsequences (called shots) that contain the
scene in which one or more independently moving objects are present, in addition to
a spatial segmentation and delineation of each of the independently moving objects
in each of the frames of these shots. The other scenario, on the other hand, refers
to the detection in which only the temporal segmentation is conducted to return
those shots that contain independent motion; no spatial segmentation is performed
to identify the independently moving objects in each frame. Clearly, the focus of
this chapter is primarily in the latter approach. We argue that it is not necessary for
spatial segmentation in the video frames in the UAV surveillance as well as other
related applications. This is due to the following two reasons. (i) In these applica-
tions, the time issue, i.e., the expectation of an efficient solution, is always an impor-
tant concern. Obviously the additional spatial domain segmentation requires more
processing time and thus reduces the mining speed. (ii) Even if the independently
moving objects are all segmented and identified in each frame, given the current
status of computer vision and artificial intelligence in general, it is not possible to
have a fully automated capability to interpret whether the segmented and identified
independent motion in the frames indicates any specific significance such that spe-
cial attention needs to be paid without interaction with human expertise. Therefore,
these detected shots must be sent to the users (i.e., image analysts) for further anal-
ysis anyway, regardless of whether or not the independently moving targets in the
frames are segmented and identified in these shots.

It is also observed that in the literature, most of the existing techniques for inde-
pendent motion detection are based on image sequences, as opposed to compressed
video streams. In other words, given a surveillance video, these methods require
that the video be first fully decompressed to recover an image sequence before
these methods can be applied. This restriction (or assumption) significantly hin-
ders these techniques from practical applications, as in today’s world, information
volume grows explosively, and all the video sequences are archived in compressed
forms. This is particularly true in the surveillance applications, in which the data
volume is massive and they must be archived in a compressed form, such as MPEG.

Even if this work only focuses on mining massive collections of surveillance
video data in temporal segmentation for the scenes with independent motion with-
out further spatial segmentation, there are still many challenging issues that need
to be addressed. The specific challenges include the expected efficient computation
and the related computation within the compressed domain in order to develop such
an efficient solution, the mining accuracy, the possible poor quality of the data, the
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possible multiple independently moving targets in the scene, and the possibly sig-
nificantly varying sizes of the independently moving targets in the scene. The main
contribution of this work is the development of a holistic, in-compression approach
to mining massive collections of surveillance video data that addresses all the above
challenging issues, which is validated by both theoretical analysis and experimental
evaluations.

2 Related Work

Motion analysis has been a focused topic in computer vision and image understand-
ing research for many years [36, 15, 13, 11, 25]. Due to the difficult nature of the
problems in this topic, it is still considered as an open topic and many research ef-
forts are still being developed in this topic [9, 10]. Independent motion analysis, on
the other hand, deals with multiple motion components simultaneously, and there-
fore, is presumably more challenging.

The earliest work in independent motion detection may be dated back to the early
80’s. Jain [18] proposed a solution assuming that the camera was under a translation.
Adiv [1] assumed the availability of optical flow and used the flow to group regions
based on the rigidity constraint over two frames. Nelson [26] proposed two methods
based on velocity constraints to detect independently moving objects. Thompson
et al [34] used a similar approach based on the rigidity constraint. Bouthemy and
Francois [8] treated the problem of independent motion detection as a statistical
regularization problem and attempted to use the Markov Random Field model to
solve for the problem. Ayer et al [6] used robust statistical regression techniques
to detect independent motion. Smith and Brady [32] used geometric constraints for
independent motion segmentation. Sharma and Aloimonos [30] provided a solution
to this problem based on the normal flow field — the spatiotemporal derivatives of
the image intensity function, as opposed to the typical optical flow field. Irani and
Anandan [16] proposed a three-frames constraint based on a general 3D motion par-
allax model to detect independent motion. Argyros et al [4, 2, 3, 5] and Lourakis et
al [23] used stereo camera streams to detect independent motion. Their techniques
were essentially the combination of applying the normal flow field to the stereo
streams and using robust statistical regression. Fejes and Davis [12] developed a
low-dimensional, projection-based algorithm to separate independent motion using
the epipolar structure of rigid 3D motion flow fields. Torr [35] proposed a method
based on model selection and segmentation for separating multiple 3D motion com-
ponents. Pless et al [27] provided a solution to the problem in a special case in which
the scene may be approximated as a plane, which is valid for typical aerial surveil-
lance. Their method is based on spatiotemporal intensity gradient measurements to
directly compute an exact background motion model, and then the independent mo-
tion is detected based on the constraint violation for the mosaics developed over
many frames. Sawhney et al [29] proposed a method that simultaneously exploits
both constraints of epipolar and shape constancy over multiple frames. This method
is based on the previous work on plane-plus-parallax decomposition [19, 28, 31],
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and thus requires explicitly estimating the epipolar and the homography between
a pair of frames. The other two pieces of related work are Ma et al [24] and Liu
et al [22].

3 LSCA Approach

We propose a holistic, in-compression approach to solving for the unsupervised seg-
mentation problem for the independent motion detection based on the linear system
consistency analysis theory, and thus, we call this approach as LSCA. We use a 3D
to 2D affine model to approximate the video camera imaging system. For a typical
surveillance video, where the local changes in the ground are much smaller than the
depth from a sensor to the ground, this affine model is sufficiently accurate for the
mapping from 3D scenes to 2D images. Our experiments also show that this model
even works well for some of the non-surveillance video such as movies (see Fig. 3
for an example).

Given a 3D point P and its corresponding 2D point p, a 3D to 2D affine transform
is a linear transform, and is defined as [17]:

p = AP + t (1)

where A is a 2 by 3 matrix with six independent parameters, and t is a 2D vector
with another two independent parameters.

Assume that the camera motion between two arbitrary frames is an arbitrary 3D
motion, which can be represented as a 3 by 3 rotation matrix R, and a 3D translation
vector T .

P′ = RP + T (2)

where P′ is the same point of P after the camera motion in the 3D space. The dis-
placement of the point P in the 3D space with respect to time after the motion is:

Ṗ = P′ −P = (R− I)P + T (3)

where I is the identity matrix. From Eq. 1 and Eq. 3, it is clear:

ṗ = AṖ = A(R− I)P + AT (4)

Let P = (X ,Y,Z)T and p = (x,y)T . Given each image point p, Eqs. 4 and 1 give
rise to four independent equations. Eliminating P, we obtain a linear constraint for
each image point p in a video frame:

ẋ +θ ẏ+αx +βy + γ = 0 (5)

where the variables α , β , γ , and θ are functions of the motion parameters R,T be-
tween the two frames and the sensor parameters A, t with the following relationship:
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α =
f (mi j)
g(mi j)

(6)

where mi j are the motion parameters (the elements of R and T ) and/or the sensor
parameters (the elements of A and t), and f ,g are both quadratic functions. Similar
expressions exist for β ,θ ,γ .

When a pair of neighboring frames is determined, the motion parameters R,T are
constants for all the image points in the frames. This indicates that for each point in
a frame, there is a linear constraint represented in Eq. 5. Given n points, we have a
linear system:

Dξ = b (7)

D =

⎛⎝ ẏ1 x1 y1 1
... ...
ẏn xn yn 1

⎞⎠ ξ =

⎛⎜⎜⎝
θ
α
β
γ

⎞⎟⎟⎠ b =

⎛⎝−ẋ1

...
−ẋn

⎞⎠
with the following theorem:

Theorem 1. Given n points represented in the linear system of Eq. 7, if there is no
independent motion with any of these points, then the linear system is consistent.

This means that the consistency of the linear system is the necessary condition of no
independent motion in the n points. In general, given n > 4, the rank of D is 4; con-
sequently, the consistency of Eq. 7 means that there is a unique solution to this linear
system. From Theorem 1, it is clear that if the linear system Eq. 7 is not consistent,
there must be independent motion involved. However, the linear consistency of the
system Eq. 7 is not the sufficient condition for detecting any independent motion
of the n points. Nevertheless, we can still use it to detect the independent motion.
This may be subject to a false negative. Similarly, if a large computation noise oc-
curs (e.g., the image point localization errors, the displacement vector estimation
errors), a consistent linear system could turn out to be inconsistent. In this case, a
false positive would be generated. In general, a few false positives are allowed while
the number of false negatives must be guaranteed to a minimum.

Now the question is, given n points in two frames, how to determine whether the
linear system Eq. 7 is consistent. By linear algebra theory [20], Eq. 7 is consistent iff

Rank(D) = Rank(Db) (8)

where Db is the augmented matrix of Eq. 7. In order to determine the rank of the
above two matrices, we apply singular value decomposition (SVD) to both D and
Db, and define

R =
σmin(D)
σmin(Db)

(9)

where σmin(D) and σmin(Db) are the smallest singular values of D and Db, respec-
tively. Clearly, if Eq. 8 exactly holds true, σmin(D) > 0 and σmin(Db) = 0, leading
to R → ∞. In practice, Eq. 7 is consistent iff R is above a threshold, following the
theory and practice of [39, 40, 38]. Note that from the definition of Eq. 9, R ≥ 1.
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Recall Eqs. 1 and 4. Instead of applying them to a set of feature points in a frame,
we now apply them to every points of a region of m points in the frame. Thus, we
have

m

∑
i=1

ṗi = A(R− I)
m

∑
i=1

Pi + mAT
m

∑
i=1

pi = A
m

∑
i=1

Pi + mt (10)

Define

p̄ =
1
m

m

∑
i=1

pi = (x̄, ȳ)T ¯̇p =
1
m

m

∑
i=1

ṗi = ( ¯̇x, ¯̇y)T P̄ =
1
m

m

∑
i=1

Pi = (X̄ ,Ȳ , Z̄)T

we obtain
¯̇p = A(R− I)P̄+ AT p̄ = AP̄+ t (11)

If we take each MPEG macroblock as such a region, then m becomes a constant
(i.e., m = 256) over the whole frame. Therefore, we have a similar linear constraint
for each macroblock of a frame:

¯̇x +θ ¯̇y+α x̄+β ȳ+ γ = 0 (12)

and consequently, given n macroblocks, we can build a similar linear system

Dm = ξmbm (13)

Thus, we have a similar theorem:

Theorem 2. Given n macroblocks in an MPEG video frame represented in the linear
system of Eq. 13, if there is no independent motion with any of these macroblocks,
then the linear system is consistent.

In the MPEG compression standard, for each macroblock in a frame, if this mac-
roblock is inter-coded, there is a motion vector available. We approximate ¯̇p with the
motion vector, and p̄ is the center of the macroblock. Since the macroblock informa-
tion (including the motion vector and the center coordinates) can be easily obtained
directly from a compressed MPEG video stream, we have a linear system Eq. 13
that can directly work on the MPEG compressed data without having to depend on
a specific algorithm to compute the correspondence or optical flow between the two
frames, simultaneously eliminating the two potential problems mentioned above
with Eq. 7. If the macroblock is intra-coded, we just exclude this macroblock from
the linear system of Eq. 13. If the frame is an I-frame in which all the macroblocks
are intra-coded, we can obtain the motion vector of a macroblock by predicting it
from the one in the previous B-frame.

While the displacement vector may be approximated by the motion vector of a
macroblock, this may create another problem, i.e., how accurate this approxima-
tion is. It is known [33] that the motion vector estimation in MPEG is subject to
errors, and how large the errors are depends on the specific implementation of the
motion vector estimation algorithm under the MPEG standard [7]. The theoretic
relationship between the errors in motion vector estimation in MPEG and the de-
tection accuracy is shown in the Appendix. Here we provide a tentative solution to
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this problem based on the normal flow computation to attempt to lower the poten-
tial errors for the motion estimation. Research shows [37] that the normal flow is
more reliable than the standard optical flow. Assuming that the intensity function of
a frame is I(x,y), the normal flow np at the point p = (x,y)T is defined as the dot
product between the normalized gradient of the point p and the displacement vector
at this point:

np =
∂ I
∂x

ẋ +
∂ I
∂y

ẏ (14)

Since in the compressed MPEG video stream we only have the motion vectors for
each macroblock as opposed to each point, we must extend this point-based normal
flow definition to the macroblock based one. Let ∇I(p) be the normalized gradient
of the intensity function I at a point p. Given a macroblock M, the macroblock
gradient ∇I(M) is defined as:

∇I(M) =
1
m

m

∑
i=1

∇I(pi) (15)

where pi is a point of M, and m is the total number of points in M. In MPEG,
m = 256.

Now the question is how to estimate the gradient of a macroblock without decom-
pressing the video data. Lee et al [21] showed a method of estimating the approxi-
mated gradient for a whole block only using a few low frequency AC coefficients of
the DCT of the block in MPEG. This is essentially to approximate the original DCT
AC coefficients ACuv with the corresponding “continuous” versions ˜ACuv:

ACuv ≈ ˜ACuv = C(u)C(v)
∫ 8

0

∫ 8

0
cos

xuπ
8

cos
yvπ

8
I(x,y)dxdy (16)

where C(u) and C(v) are the scale factors of the standard DCT definition [33]. Given
a few limited lower frequency terms of ACuv, we can explicitly solve for the block
edge orientation, the block edge offset, and the block edge strength [21]. The ques-
tion, however, is how many such lower AC coefficients would suffice an accurate
estimate of the block gradient. Reported research [21] shows that in order to estimate
the block gradient, only the five lowest frequency AC coefficients are necessary to
recover the information (i.e., AC01,AC10,AC20,AC11,AC02). Consequently, the ma-
jority of the AC coefficients as well as the DC component are not required. This
shows that it is still not necessary to decompress the video stream in order to re-
cover the block gradient; the method can directly work on the compressed MPEG
stream to extract the small piece of the “essential” information (i.e., the motion vec-
tor of a macroblock and the five low frequency AC components of a block) without
having to decompress the video stream.

Once we have the block gradient vectors available for all the four blocks of a
macroblock, the macroblock gradient is computed by averaging the four block gra-
dient vectors based on the definition. Finally, the normal flow value of a macroblock,
n(M), is defined similar to that of a point in Eq. 14 by taking the dot product between
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the macroblock gradient vector, ∇I(M), and the motion vector of this macroblock,
V(M)

n(M) = ∇I(M) ·V(M) (17)

When we have the normal flow value computed for a macroblock, we can make a
decision regarding whether this macroblock should be incorporated into the linear
system of Eq. 13. In Appendix, we show the theoretic error bound for the detection
based on LSCA on the motion vector errors. It is shown that as long as the motion
vector errors are within the given bound, LSCA is capable of detecting the indepen-
dent motion video segments. Furthermore, even with outliers larger than the error
bound but the outliers are sporadic in distribution, LSCA can still filter them out
and result in a correct segmentation. This observation is further verified in the ex-
periments in Sec. 4. On the other hand, this analysis also indicates that LSCA is not
appropriate for dense outliers larger than the given error bound, in which case, the
outliers would be considered as independent motion. As demonstrated by the real
data experiments, we argue that in many applications it is rare to have dense outliers
larger than the given error bound.

Now the LSCA algorithm is summarized in Algorithm 1, which takes four pa-
rameters: the normal flow threshold Tn, the scan window width r, the R statistic
threshold TR, and the defined minimum number of frames Tf of a segment that con-
tains independent motion.

Note that LSCA is based on the assumption of constant camera model in terms
of the sensor parameters A and t. In real applications, it is possible that the camera

Input: a video stream in compressed MPEG. Output: All the video segments
containing independent motion. Method:
1: for Every pair of neighboring frames do
2: Start to build up the linear system Eq. 13.
3: for Each macroblock M of the first frame l of the pair do
4: Estimate the normal flow n(M) of M.
5: if n(M) > Tn then
6: Incorporate M into Eq. 13 based on Eq. 12.
7: end if
8: end for
9: Compute R of the linear system Eq. 13.

10: Compute the median filtered R̄ over a window of r frames.
11: end for
12: if R̄−1 > TR then
13: Label l as a frame with no independent motion.
14: else
15: Label l as a frame with independent motion.
16: end if
17: Any independent motion segment with frame number > Tf is retrieved.

Algorithm 1. LSCA Algorithm
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internal parameters change during the surveillance (e.g., zoom in/out). Since LSCA
only focuses on two neighboring frames, given the current video frame rate (about
30 frames/second), if the change is slow, we can ignore the change and still use the
algorithm to compute the R statistic between the two frames; if the change is fast,
the computed R value between the two frames may be wrong, which will lead to
a false positive or negative. However, in this case, there will be only a few frames
subject to the error of R values, and they will be shown as outliers of a temporal
window and will then typically be filtered out by LSCA.

Based on the analysis given above, it is clear that as a novel unsupervised video
segmentation solution to independent motion detection, LSCA has the following
distinctive advantages as compared with the existing methods in the literature:

1. No camera calibration is required or necessary in order to apply LSCA.
2. The statistics computed in LSCA are stable due to the low condition number

in the linear system.
3. LSCA is very fast because it directly works with compressed stream.

4 Experimental Evaluations

In this section, we first report a simulation based analysis on estimating the detection
false positives and false negatives, as well as the detectability bounds for LSCA. We
then present the real data experimental evaluations to demonstrate the robustness
and effectiveness of LSCA.

Both analyses on false positives and false negatives are the sensitivity analysis
for LSCA. This may be achieved by testing the stability of the statistic R of LSCA
under different levels of noise through simulation.

The simulated data consist of 10 3D points with no independent motion and an-
other 3D point with independent motion all projected to a 100× 120 pixel image.
Thus, 1 pixel deviation of Gaussian noise approximately corresponds to 1% of the
whole effective image dimension.

The corrupted image coordinates and the displacement vectors are input into
LSCA, and the R statistic is computed for each noise level. Since there is no in-
dependent motion involved in this scenario, the R value should be high. Under the
corruption of the noise, however, the R value degrades as the noise level increases.
Fig. 1(a) shows the logarithm of the R values averaged over 1000 runs with different
seeds under each Gaussian noise level parameterized by the standard deviation in
terms of the number of pixels when there is no independent motion.

From the Figure, if the noise level is controlled under 2 pixels, the R value al-
ways stabilizes somewhere statistically significantly higher than 1 (above 2). Note
that considering the effective image dimension as 100 by 120, 2 pixels’ noise is sig-
nificantly large in practice. This shows that LSCA is very robust in rejecting false
positives in independent motion detection.

The simulation scenario continues when the point of independent motion is added
into the original 10 point set. This time the R value always stays at 1 regardless
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of what level the noise is, indicating LSCA is effective in detecting independent
motion.

While false positives and false negatives are the probabilities describing an event
of a detection failure of LSCA, detectability is an issue of how significant an in-
dependent motion should be such that LSCA is able to detect it. Detectability is a
different but a related concept, which is defined as the smallest independent motion
that LSCA can detect. Fig. 1(b) to (g) show the detectabilities in different scenarios
of independent motion. A qualitative examination of these simulation results reveals
that the performance of LSCA appears less sensitive to the independent motion re-
lated to the Z axis (rotation about the axis or translation along the axis) than to the
independent motion related to the other axes; quantitatively, based on this simula-
tion, the detectability is related to the noise levels, and a higher noise level increases
detectability. The reason is that a higher level of noise increases the false positives,
which help increase detectability. Take the noise level of 1.5 pixel deviation for ex-
ample. If the threshold value is set as 2 for R, the detectability is under 1 unit for
all the translations, and under 0.1 degree for all the rotations. If the threshold of R
decreases to 1.5, the detectability for translations along X, Y, and Z axes is above
8, 10, and 20 units, respectively, for rotations about X, Y, and Z axes is above 0.4,
0.8, and 3.0 degrees, respectively. Note that these parameters are obtained from this
specific set of simulation only. However, since in the simulation data we know the
ground truth of the displacement vectors, we observe that the R statistic errors prop-
agated from the displacement vector errors confirm well with the theoretic bound
in Eq. 29.

We have implemented LSCA as a stand alone version in a Windows2000 plat-
form with Pentium III 800 MHz CPU and 512 MB memory. Fig. 2(a) and (b) show
two surveillance video clips for the two scenarios with and without independent
motion, and Fig. 2(c) and (d) show the R statistics computed at every frames for the
two shots from two surveillance videos in Fig. 2(a) and (b), respectively. The statis-
tics are obvious to tell whether and where there is independent motion in the video.
The first shot containing 264 frames describes an independent motion of an airplane
landing to its destination. The mean of the R statistics is 1.012 and the deviation
is 0.0083 over the 264 frames. The second shot containing 1024 frames surveys an
area of ground terrain with no independent motion. The mean of the R statistics is
1.389 and the deviation is 0.169 over the 1024 frames.

In order to give a meaningful evaluation, we make an assumption that a reliable
independent motion shot should last at least 30 frames (i.e., Tf = 30), which cor-
responds at least about one second presence of independent motion in the video.
This assumption ensures that any sporadic detection false positives due to motion
estimation outliers and/or sensor parameter changes will be removed. Since LSCA
performs frame-based independent motion detection, it is reasonable to define the
detection rate as the percentage of the number of truthed independent motion frames
detected by LSCA of the total number of detected independent motion frames, and
to define the detection false alarm as the percentage of the number of falsely de-
tected independent motion frames reported by LSCA of the total number of truthed
independent motion frames in a video. Based on these definitions, we have run
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Fig. 1 (a) Logarithm of the R statistic of LSCA under different Gaussian noise levels when
no independent motion involved. (b)-(d) Detectabilities of LSCA w.r.t. independent transla-
tions along X , Y , and Z axes, respectively. (e)-(g) Detectabilities of LSCA w.r.t. independent
rotations about X , Y , and Z axes, respectively.
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(a) (b)

(c) (d)

Fig. 2 (a) An example of a shot containing an independently moving object (an airplane)
(b) An example of a shot containing no independent motion (terrain) (c) The R statistics
computed for the shot in (a) (264 frames) (d) The R statistics computed for the shot in (b)
(1024 frames).

LSCA on a video testbed which collects different shots of surveillance video of
total 10602 frames. The overall detection rate is 94.9% and the false alarm is 3.07%
with the threshold of R as 1.2, which is obtained in a combination of the empirical
observation of the experimental data and the simulation-based analysis.

Since for the purpose of reporting the detection rate and the false alarm quantita-
tively, we must manually truth every frame in the testbed which is rather expensive,
we are unable to evaluate LSCA using a larger, ground-truthed testbed. However,
in addition to the 10602-frame testbed that we used for reporting the detection rate
and the false alarm, we have also tested LSCA in a much larger data collection that
is not ground-truthed. A comparably good performance is observed with different
types of independent motion (such as single target independent motion, multiple
targets independent motion, targets independently moving in different directions
simultaneously, independently moving targets in different sizes, and substantially
varying background when an independent motion occurs).

To show that LSCA is not only valid for the typical surveillance scenario where
the camera is far away from the scene, but also could be valid for the scenario where
the camera is relatively close to the scene, Fig. 3 demonstrates an experimental
result of LSCA in which we take a movie with an independent motion very close to
the camera, and split the spatial domain into the left and the right halves such that
the left video does not contain independent motion while the right one does. The
result clearly shows that LSCA is robust even under the situation where the camera
is close to the scene.
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(a)

(b)

(c)

Fig. 3 (a) A frame of a movie (100 frames) (b) The R statistics for the left halves of the
video (with no independent motion) (c) The R statistics for the right halves of the video (with
independent motion).

Since LSCA essentially just needs to compute the R value for each frame, and
since in each frame there is typically a very limited number of macroblocks, the
complexity of LSCA is very low. The current prototype of LSCA scans a com-
pressed MPEG video with a typical frame resolution of 240 by 350 at the speed
of 35 frames/second under the current platform, which is faster than real-time.
Note that this implementation is just for proof of the concept and the code has
not been optimized yet. This shows that LSCA holds a great promise in the fu-
ture applications in both proposed scenarios: real time surveillance data scanning
equipped with the sensors and efficient data mining for an archived database of
surveillance video.
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5 Conclusions

This chapter focuses on developing a large scale surveillance video data unsuper-
vised segmentation technique regarding whether there is a presence of independent
motion. We propose a holistic, in-compression approach LSCA to efficient video
segmentation. By efficient, we mean that the processing speed is close to or even
faster than real-time in “normal” platforms (we do not assume using special hard-
ware or any parallel machines) while still maintaining a good quality segmenta-
tion. Theoretical and experimental analyses demonstrate and validate the LSCA
technique in solving for the video segmentation for independent motion detection
problem.

Appendix: Theoretic Detection Bound of LSCA Method

To simplify the notations, in the rest of the chapter, we will drop the subscript m for
the matrices Dm, Dmbm, and the vectors ξm, bm in Eq. 13, and p̄ = (x̄, ȳ)T =⇒ p =
(x,y)T , and ¯̇p = ( ¯̇x, ¯̇y)T =⇒ ṗ = (ẋ, ẏ)T . Define ˜̇p = ṗ +	ṗ = (ẋ, ẏ)T +(	ẋ,	ẏ)T

as the motion vector given in the MPEG streams, which is assumed here to be de-
composed into the true motion vector ṗ = (ẋ, ẏ)T and the error 	ṗ = (	ẋ,	ẏ)T .
Thus,

(D+	D)ξ = b+	b (18)

where

D =

⎛⎝ ẏ1 x1 y1 1
... ...
ẏn xn yn 1

⎞⎠ 	D =

⎛⎝	ẏ1 0 0 0
... ...
	ẏn 0 0 0

⎞⎠ b =

⎛⎝−ẋ1

...
−ẋn

⎞⎠ 	b =

⎛⎝−	ẋ1

...
−	ẋn

⎞⎠
Define the augmented matrix

H = Db =

⎛⎝ ẏ1 x1 y1 1 −ẋ1

... ...
ẏn xn yn 1 −ẋn

⎞⎠
and further define

H ′ = H +	H = (D+	D)|(b+	b)

resulting in

	H =

⎛⎝	ẏ1 0 0 0 −	ẋ1

... ...
	ẏn 0 0 0 −	ẋn

⎞⎠
We introduce the following notations. For a matrix B, we denote λi(B) as the ith

eigenvalue of the matrix B, and σi(B) as the ith singular value of the matrix B. In
particular, we denote λmin(B) as the smallest eigenvalue of the matrix B, and σmin(B)
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as the smallest singular value of the matrix B. We assume that for a matrix B, all the
eigenvalues or the singular values are sorted from the largest to the smallest.

From the perturbation theory of singular value decomposition [14], we have

‖σmin(H +	H)−σmin(H)‖ ≤ σ1(	H) (19)

‖σmin(D+	D)−σmin(D)‖ ≤ σ1(	D) (20)

From the relationship between the eigenvalues and the singular values of the corre-
sponding matrices [14], we have

σ2
1 (	H) = λ1(	HT	H) (21)

σ2
1 (	D) = λ1(	DT	D) (22)

By explicitly solving for the eigenvalues of the matrices 	HT	H and 	DT	D,
we have

σ1(	H) =

√√√√∑n
i=1	ẏi

2 +∑n
i=1	ẋi

2 +
√

(∑n
i=1	ẏi

2 −∑n
i=1	ẋi

2)2 +4(∑n
i=1	ẋi	ẏi)2

2
(23)

σ1(	D) =

√
n

∑
i=1

	ẏi
2 (24)

Based on the definition in Eq. 9, now we have

	R = ∑n
i=1

∂R
∂ ẋi

	ẋi +∑n
i=1

∂R
∂ ẏi

	ẏi

= ∑n
i=1

∂σmin(D)
∂ ẋi

σmin(H)− ∂σmin(H )
∂ ẋi

σmin(D)

σ2
min(H)

	ẋi

+∑n
i=1

∂σmin(D)
∂ ẏi

σmin(H)− ∂σmin(H )
∂ ẏi

σmin(D)

σ2
min(H)

	ẏi

= 1
σmin(H) ∑

n
i=1(

∂σmin(D)
∂ ẋi

	ẋi +
∂σmin(D)

∂ ẏi
	ẏi)

− σmin(D)
σ2

min(H) ∑
n
i=1(

∂σmin(H)
∂ ẋi

	ẋi +
∂σmin(H)

∂ ẏi
	ẏi)

(25)

Based on the calculus theory,

‖
n

∑
i=1

(
∂σmin(D)

∂ ẋi
	ẋi +

∂σmin(D)
∂ ẏi

	ẏi)‖ � ‖σmin(D+	D)−σmin(D)‖ (26)

and

‖
n

∑
i=1

(
∂σmin(H)

∂ ẋi
	ẋi +

∂σmin(H)
∂ ẏi

	ẏi)‖ � ‖σmin(H +	H)−σmin(H)‖ (27)
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Consequently, from Eq. 25, we have

‖	R‖ ≤ ‖ 1
σmin(H) ∑

n
i=1(

∂σmin(D)
∂ ẋi

	ẋi +
∂σmin(D)

∂ ẏi
	ẏi)‖

+‖ σmin(D)
σ2

min(H) ∑
n
i=1(

∂σmin(H)
∂ ẋi

	ẋi +
∂σmin(H)

∂ ẏi
	ẏi)‖

(28)

Since σmin(D) > 0,σmin(H) > 0, from Eqs. 19, 20, 23, 24, 26, and 27, we have the
theoretic error bound for R:

‖	R‖ ≤
√

∑n
i=1	ẏi

2

σmin(H)

+ σmin(D)
σ2

min(H)

√
∑n

i=1 	ẏi
2+∑n

i=1 	ẋi
2+
√

(∑n
i=1 	ẏi

2−∑n
i=1	ẋi

2)2+4(∑n
i=1 	ẋi	ẏi)2

2

(29)
Experimental data (see Sec 4) have shown that this error bound is consistent very

well with the error distributions in the data.
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Video Repeat Recognition and Mining by Visual 
Features 

Xianfeng Yang1and Qi Tian 

Abstract. Repeat video clips such as program logos and commercials are widely 
used in video productions, and mining them is important for video content analy-
sis and retrieval. In this chapter we present methods to identify known and un-
known video repeats respectively. For known video repeat recognition, we focus 
on robust feature extraction and classifier learning problems. A clustering model 
of visual features (e.g. color, texture) is proposed to represent video clip and sub-
space discriminative analysis is adopted to improve classification accuracy, which 
results in good results for short video clip recognition. We also propose a novel 
method to explore statistics of video database to estimate nearest neighbor classi-
fication error rate and learn the optimal classification threshold. For unknown 
video repeat mining, we address robust detection, searching efficiency and learn-
ing issues. Two detectors in a cascade structure are employed to efficiently detect 
unknown video repeats of arbitrary length, and this approach combines video 
segmentation, color fingerprinting, self-similarity analysis and Locality-Sensitive 
Hashing (LSH) indexing. A reinforcement learning approach is also adopted to ef-
ficiently learn optimal parameters. Experiment results show that very short video 
repeats and long ones can be detected with high accuracy. Video structure analysis 
by short video repeats mining is also presented in results.  

1   Introduction 

Video repeats which refer to copies of a video clip ubiquitously exist in broadcast 
and web videos, and their distributions embed abundant structural information 
both in program level and web database scale. The most common video repeats 
are those short video clips from a few seconds to several minutes such as TV 
commercials, station logo or program logo, etc. To discover and locate video re-
peats from large video database or video streams robustly and efficiently is very 
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important for video content analysis and retrieval. For example, by detecting video 
repeats in unlabeled video data, we can find correlation of different video parts 
and discover structural video elements used for syntactic segmentation purpose, 
hence video structure model can be effectively constructed and applied to video 
syntactical segmentation ([1][2]). Video repeat mining also has many other pro-
spective applications, such as commercial monitoring ([3][4][5]), video copy de-
tection ([6][7]), web video multiplicity estimation ([8]), video content summary, 
personalization as well as lossless video compression ([9]).  

Video repeat mining tasks can be divided into two categories: known video re-
peat mining and unknown video repeat mining. For known video repeat mining, 
we often construct a feature vector set from prototype videos and use nearest 
neighbor (NN) classifier to recognize copies of prototype videos from video col-
lections or streams. In this part we focus on the feature representation and classi-
fier learning problems. Since video copies located in different video sources have 
different formats, e.g. different frame sizes, frame rates as well as bitrates, so di-
verse distortions pose a big challenge to video copy recognition. So far many re-
search efforts on video identification have been dedicated to extraction of distinct 
and robust video features from color or geometry field ([10][11][12]), called video 
hashing, with the aim to map video object to a unique hash code that could also be 
robust to kinds of distortions. However, finding a general robust yet distinct video 
hash code is very difficult, so the question is: if video features do not show good 
identification performance under certain video distortions, can they be trans-
formed to a better one? In this chapter we examine commonly used visual features 
(e.g. color histogram, texture) and improve their video recognition performance 
under significant distortions through subspace discriminative analysis. Subspace 
discriminative analysis is extensively used in face recognition and text classifica-
tion ([13][14][15]), and we will show it also results in very promising results in 
video copy recognition ([16]).  

To obtain the minimum error classifier, we propose a novel method to explore 
statistics of prototype video database in order to estimate error rate of threshold 
NN classifier and learn the optimal threshold. Three types of ‘sample-to-database’ 
distances are defined, and error rate is exactly estimated from the three distance 
distributions. Compared to ‘sample-to-sample’ distance ([17]), ‘sample-to-
database’ distance is naturally related to the feature distribution of video database, 
thus making database statistics and error rate estimation more reasonable. 

Unknown repeat mining task is usually implemented on video collections from 
the same source, e.g. broadcast videos in different days, to analyze video structure, 
and the challenge is that prior knowledge about video repeats such as their con-
tent, length and location, is not known in advance, moreover video repeats in dif-
ferent locations may also have distortions, e.g. caption overlay, partial repeats.  
In unknown repeat mining section we will address robust detection, searching ef-
ficiency and learning issues. The approach we proposed combines video segmen-
tation, color fingerprinting, self-similarity analysis, cascaded detection, LSH in-
dexing and reinforcement learning. Compared to other media repeat pattern 
identification methods ([3][9][18]), our approach can detect very short repeats 
(e.g. those less than 1 second) along with long ones, and high accuracy has been 
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achieved in our experiments. Methods by Cheung et al. ([3]) and Herley ([18]) 
both use a fixed time window to do feature extraction and comparison, so those 
repeats significantly shorter than the window are very likely be missed. The 
method by Pua et al. ([9]) is able to identify repeated shots but can not identify 
partially repeated shots, while our approach can identify even small portion of a 
shot or clip by adopting segmentation with granularity smaller than the shot. An-
other novelty of our approach is that a reinforcement learning approach is adopted 
to train the video repeat detectors, and this approach demonstrates efficiency in 
parameter learning, which makes the repeat mining system manageable and easy 
to train.  

The remainder of this chapter is arranged as follows: In section 2, we present 
the known video repeat recognition approach and results. In section 3, the un-
known video repeat mining method and results are presented. In section 4, the 
concluding remarks are discussed. 

2   Known Video Repeat Recognition 

In this section we first propose a model clustering visual features to represent a 
video clip, and adopt Oriented PCA (OPCA) approach to transform this video fea-
ture to subspace representation in order to improve video model separability while 
suppressing distortions. We also propose a novel method to explore statistics of 
video database to estimate error rate of threshold NN classifier and learn the opti-
mal classification threshold. Recognition performance is evaluated under signifi-
cant video distortions and different video length. Results show that recognition  
error rate below 5% has been achieved under significant distortions, and subspace 
representation lead to a large reduction of error rate compared to using original 
feature, especially for very short video clips (e.g.5s). 

2.1   Video Feature Extraction 

2.1.1   Color and Texture Feature Model 

Since a video clip consists of a group of images, to reduce video data and remove 
redundancy, the frames are sampled every half second. For each sample frame 
RGB color histogram and texture feature are calculated. R, G, B channels are each 
divided into 8 bins, thus color histogram is a 512 dimensional feature vector. Tex-
ture feature extraction adopts the statistical texture analysis method based on con-
currence gray matrix ([19]). In this method four gray level concurrence matrices 
are first computed, which corresponds to four neighborhood directions, namely 
horizontal, vertical, left-down diagonal 45° and right-down diagonal 45°. Totally 
13 texture components are computed from each gray level concurrence matrix,  
including Angular Second Moment, Contrast, Variance, Relevance Coefficient, 
Entropy etc. Complete computation of the 13 texture components please refer  
to ([19]). 
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Texture components computed from the four gray level concurrence matrices 
are averaged to form one mean texture feature vector. Since texture components 
have different physical meanings and value ranges, each component is normalized 
by Gaussian normalization approach to make them equally contribute to feature 
distance computation. Based on the normalized color and texture features ex-
tracted from sample frames, unsupervised clustering approach (e.g. K-Means clus-
tering) is employed to get typical feature model of the video clip. Color feature 
vector and texture feature vector are clustered separately, and feature distance 
measure adopts Euclidean distance. The number of clusters for color feature and 
texture feature are set as the same value, so the video clip’s feature model F is as 
follows,  

1 21 1[ ,..., ; ,..., ]K K
c c T TF F F F F=                                           (1) 

Where i
cF represents the ith color cluster center, i

TF represents the ith texture clus-

ter center, 1K  and 2K  are the number of clusters. Advantage of this representation 

is that a video clip can be represented by a fixed dimensional feature vectors, and 
it is robust to feature distortion of individual frames, as well as frame dropping. 

2.1.2   Subspace Discriminative Analysis by OPCA 

In above feature representation, dimension of color feature is 512x 1K , and that of 

texture feature is 13x 2K . If video is matched in this space, computation load will 

be heavy, and storage need is high, moreover, prototype videos may not be well 
separated regarding to Euclidean distance. So it is necessary to reduce feature’s 
dimensionality and find its optimal representation in subspace. 

In our approach, video clips with different contents means different video 
classes, and each class is represented by one prototype video, hence. a video data-
base with N classes consists of N prototype feature vectors represented by set 

1,{ }i i NX X == … , D
iX R∈ , where iX  is feature vector of the ith proto-video, 

which is treated as the signal vector, D is the dimension of original feature space. 
Thereafter, vector is defined as a row vector. The vectors of distorted proto-videos 

are included in set 1 2
1 1

ˆ ˆ ˆ ˆ{ , , , }m
NX X X X= , ˆ k D

iX R∈ , where ˆ k
iX represents the kth 

distorted vector of the ith proto-video. Difference vector between vectors iX and 

ˆ k
iX  is ˆk k

i i iZ X X= − , which is treated as the noise vector. The set of difference 

vectors is denoted by 1 2
1 1{ , , , }m

NZ Z Z Z= .  

Given original prototype feature set X and difference vector set Z, Oriented 
PCA is adopted to compute feature’s optimal subspace projection with the aim to 
maximize signal-to-noise ratio in this subspace ([17] [20]).  

Let one of the unit projection vector be denoted by n , OPCA is to maximize 
the following generalized Rayleigh quotient: 
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Z

nC n
q

nR n
=

                                                     
(2) 

where ( ) ( )T
X i iC E X X X X= − −  

( )T
Z i iR E Z Z=  

Where XC  is covariance matrix of feature vectors in X, while ZR is correlation 

matrix of difference vectors in Z. The nominator of (2) is the variance of prototype 
vectors’ projected values on direction n , while denominator is correlation of dif-
ference vectors’ projected values on the projection axis. Therefore maximizing q 
will make proto-vectors separate while making difference vectors shrink as much 
as possible on this projection direction. Here correlation matrix of difference vec-
tors is computed instead of covariance matrix, because their mean value not just 
variance should be compressed on the projections. To compute projection direc-
tions, let 0=∇q , then the solution of n  becomes solving the following general-

ized eigenvector problem，  

T T
X ZC n q R n⋅ = ⋅ ⋅                                         (3) 

If the dimension of subspace is set to D1, then unit vectors corresponding to the 
D1 largest generalized eigenvalues are used as OPCA projection directions. Solv-

ing (3) can first take Cholesky decomposition of ZR  and transform it to the nor-

mal eigenvector problem. Different from PCA, OPCA projection vectors are not 
necessarily orthogonal to each other, and not necessarily unit ones. 

2.2   Statistical Analysis of Video Database  

A video model database generally consists of a lot of prototype feature vectors, so 
NN classifier will be an efficient way to recognize video copies. A test video is 
recognized as the closest proto-video if the distance is below a threshold θ , oth-
erwise the test video will not belong to any proto-video. 

In order to estimate error rate of threshold NN classifier and obtain optimal 
classification threshold optθ , it is necessary to know about statistics of video 

model database. Since classification is based on feature discrimination, we define 
three types of feature distances to explore video database statistics. Distances are 
defined as follows:  

1) The first type of distance is within-class distance wd  between distorted 

proto-videos and model database. Let the set of prototype vectors be denoted by 

{ } 1,...,i i N
O O == , and its distorted vector set be 1 2

1 1
ˆ ˆ ˆ ˆ{ , , , }m

NO O O O= , where 

ˆ k
iO represents a distorted vector of the ith proto-video, so the within-class distance 

between ˆ k
iO and O is defined as, 
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ˆ ˆ( , ) ( , )k k
w i i id O O d O O=                                                    (4) 

Where ˆ( , )k
i id O O is the feature distance function.  

2) The second type of distance is the minimum between-class distance between 
distorted proto-video and the database, denoted by bid , 

ˆ ˆ( , ) min ( , )k k
bi i i j

j i
d O O d O O

≠
=                                              (5) 

3) The third type of distance is the minimum distance between non-prototype 
video and the database, denoted by bod , where non-prototype video means the 

video that does not belong to any class in database. 

If ˆQ O O∉ ∪ , ( , ) min ( , )bo i
i

d Q O d Q O=
                                 

(6) 

Illustration of wd , bid  and bod  in feature space is shown as Fig.1.  

 

Fig. 1 Illustration of wd , bid  and bod  

Distributions of wd  and bid  are built-in statistics of model database, which re-

flect the variation between proto-videos and their distorted copies, and the dis-
crimination between proto-videos. Distribution of bod  is not only dependent on 

model database, but also related to distribution of non-prototype videos.  
If we get the distributions of the above three distances, error rate of threshold 

NN classifier can be exactly computed. When the number of video models is 
greater than 2, recognition error comes from the following three sources: ① dis-
torted proto-video is classified as non-prototype video; ② distorted copy of one 
proto-video is recognized as another proto-video; ③ non-prototype video is rec-
ognized as a proto-video.  

If proto-video vector set is denoted as O , and video class label set be denoted 

by O , prototype vectors and their distorted vectors are included in set 
ˆO O O= ∪ , q  is test video, ( )r q is the class label recognized, while ( )r q is its 
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true class label, then the probability that q  be wrongly classified is computed as 

follows: 

( )
( )

( , )

( , , ( ) ( )) ( , ( ) )

eP P q O r q O

P q O r q O r q r q P q O r q O

= ∈ ∉

+ ∈ ∈ ≠ + ∉ ∈
            

(7) 

If a unified thresholdθ  is adopted, (7) will become as, 

( ) ( , | )

( ) ( , | )

( ) ( | )

e w bi

bi w bi

bo

P P q O P d d q O

P q O P d d d q O

P q O P d q O

θ θ
θ
θ

= ∈ ⋅ > > ∈

+ ∈ ⋅ ≤ > ∈

+ ∉ ⋅ ≤ ∉
                

(8) 

Suppose normalized distance is continuous in [0,1], and the density functions of 

wd , bid and bod  are )(1 xp , )(2 xp and )(3 xp  respectively. It is also assumed that 

random variables wd , bid are independent to each other, which is reasonable  

because for one feature point wd , bid are computed with reference to two non-

overlapped subsets of proto-vectors. Given assumption above, if the prior prob-
ability of proto-videos and their distorted copies is ( )P q O η∈ = , and the prior for 

non-prototype videos is η-1)( =∉OqP , then (8) will become as,  

dxxpdyypdxxpdyypdxxpP
x

e ⋅⋅−+⋅⋅+⋅⋅⋅= ∫∫∫∫∫ )()1())()()()(()(
0

3

1

1

0

2

1

2

1

1

θθ

θθ

ηηθ  

Since it is a function of threshold θ , its minimum value can be obtained by set-

ting )(' θeP =0, which is, 

∫ =−+⋅=
1

321
' 0)()1()()(-)(

θ

θηθηθ pdxxppPe

 

If η =0.5,        
1

1 2 3( ) ( ) ( )p p x dx p
θ

θ θ=∫   (9) 

Since ∫ ≤
1

2 1)(
θ

dxxp , so )()( 31 θθ pp ≥ , the optimal threshold lies on the left of 

the intersection point of )(1 xp and )(3 xp .  

2.3   Results 

In experiment we built a prototype video database which consists of 1000 short 
video clips with length from 15 to 90s, most of which are commercials and film 
trailers. Video format is: frame size 720x576, 25fps. Distorted copies of these  
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Fig. 2 Histograms of wd , bid  and bod (350 models) 

 
Fig. 3  Density functions of wd , bid  and bod (350 models) 

proto-videos are produced by transcoding operations combining frame downsizing 
from 720x576 to 352x288 with frame rate reduction from 25fps to 15fps, which is 
the common distortion lying between broadcast video and web video copies. 
Video length is set to 10s when computing the feature vectors. The number of tex-
ture feature clusters is 5 while that of color feature is 1. Then OPCA is adopted to 
compute the 64 subspace projections. 

This method is evaluated under two database sizes, one has all the 1000 proto-
videos, and the other has 350 randomly chosen proto-videos. Density functions of 

wd  and bid  are estimated from proto-vectors and their distorted vectors in sub-

space, and another 670 non-prototype videos are used to compute distribution of 

bod . Histograms of the three distances for 350 models are shown as Fig.2, and 
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their density functions are shown as Fig.3, where wd  is approximated by normal 

distribution, while bid , bod  are approximated by Rayleigh distribution. 
From Fig.2, 3 we can see that distributions of wd and bid or bod  are well sepa-

rated in subspace. Optimal threshold optθ  is chosen as the intersection point of 

wd and bid  which is about 0.05, and corresponding training error rate is a quite 

low value 1.63%, as shown in Table 1.  

Table 1 Minimum training error rates 

Error rate 

Method 
L=5s L=10s L=15s 

Subspace feature 
(350 models) 

2.9 % 1.63 % 1.57 % 

Original feature 
(350 models) 

23.7 % 20.7 % 5.8 % 

Subspace feature 
(1000 models) 

7.38 % 4.27 % 5.37 % 

Original feature 
(1000 models) 

26.25 % 21 % 8 % 

The projection matrix computed from 10s clips is applied on 5s and 15s clips to 
calculate subspace features, and quite low error rates are also achieved. When the 
number of models increase from 350 to 1000, error rates increase correspondingly, 
but are still very low, the error rate for 5s clips is below 8%. 

By comparison, error rate is also tested using original video feature. As is 
shown in Table I, longer clips show better robustness to significant distortion by 
frame dropping and downsizing, since more feature points join clustering process, 
so the effect of frame distortion and dropping can be better counteracted. How-
ever, by subspace feature transformation shorter clips (e.g. below 10s) can result 
in the same performance with that of longer clips (e.g. 15s).  

For testing, those 1000 prototype videos are transcoded by frame downsizing to 
CIF or frame rate reduction to 15fps alone, and these distorted videos plus other 
1000 non-prototype videos are used to test the trained subspace classifier under 
1000 prototypes with length set to 10s. False negative error rate is zero, and total 
error rate is 2.8%. This result shows that since composite distortions by downsiz-
ing and frame dropping are maximally compressed in subspace projections, 
slighter distortion by downsizing or frame dropping alone can also be maximally 
compressed. 

We also tested that when PCA is applied to 10s videos using 64 eigenvector 
projections corresponding to the largest eigenvalues, minimum error rate is 19.8% 
in case of 350 models, nearly the same performance with original feature. This re-
sult explains that PCA is built for reconstruction and compression, while OPCA is 
good for classification. 
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3   Unknown Video Repeat Mining 

In this section we propose a novel approach for unknown repeat repeats mining. 
Two detectors in a cascade structure are employed to achieve fast and accurate de-
tection, and a reinforcement learning approach is adopted to efficiently maximize 
detection accuracy. In this approach very short video repeats (< 1s) and long ones 
can be detected by a single process, while overall accuracy remains high. Since 
video segmentation is essential for repeat detection, performance analysis is also 
conducted for several segmentation methods. Results of video structure analysis 
by video repeat mining are also presented. 

3.1   Framework 

The proposed framework is shown in Fig. 4. We employ two cascade detectors to 
identify repeated clips, with the first detector discovering potential repeated clips, 
and the second one improving accuracy. 

The first detector includes three temporal level video representations, namely 
video units (VU), video segments (VS) and video clips (VC), as well as corre-
sponding video similarity measures. The first step is content based video segmen-
tation. Video stream is partitioned into basic video units (VU). The second step is 
self-similarity analysis. Video units are grouped by a window size W, e.g. two 
units as one group, to form bigger size video segments (VS), then they are com-
pared with each other to produce similarity matrix S. By similarity measure f1, two  
segments will be judged as either identical or non-identical, so S is a binary matrix 
 

  

 

 

 

 

Fig. 4  Framework for repeat video clip identification 
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which is generally a sparse one that can be compactly represented to save storage. 
Here locality sensitive hashing (LSH) is adopted to reduce correlation complexity. 
The third step is to identify repeat clips from similarity matrix S. Basically re-
peated clips can be identified from diagonals, which is controlled by similarity 
measure f2. 

The second detector adopts frame based matching to verify candidate repeated 
clips for accuracy improvement. After that a boundary refinement step is em-
ployed to extend repeated clips' boundaries close to their maximum ones as possi-
ble. The last step is repeated clip labeling. Repeated instances will be extracted 
from repeated clip pairs and grouped into multiple categories. Each category 
represents a unique repeat pattern.  

3.2   Video Representation and Feature Extraction 

3.2.1   Video Segmentation and Three Level Representation 

In our method video stream is segmented by content based keyframes, and interval 
between two consecutive keyframes is treated as the basic video unit (VU). Key-
frame selection is based on color histogram difference. Suppose H1 and Ho are 
color histograms of current frame and the last keyframe respectively, then current 
frame is selected as new keyframe if the following condition is satisfied,  

η>− ),inter(1 01 HH
                                       

(10) 

where 1 0inter( , )H H  is intersection of two color histograms, η  is threshold. 

This representation is a seamless video segmentation without temporal data 
loss, which is similar to shot segmentation, but its granularity is smaller than shot. 
Its advantages lie in: First it is robust to boundary shift of repeat clips. Generally 
shift error can be corrected after a shot cut. Secondly it can reduce correlation  
between adjacent video units, so diagonal pattern will be sharper and easier be 
identified. The third advantage is that temporal length of video unit can be added 
to increase feature discrimination. 

The second level video representation (VS) is formed by grouping two neighbor 
units (W=2). Compared to the first level, the second level has almost the same 
number of samples, but the discrimination ability will improve a lot, thus provid-
ing a less noisy output to build a higher level of video repeat clips. 

3.2.2   Video Features 

Two types of video features are extracted. The first one is video unit (VU) feature 
used in the first detector, and the other one is frame feature used in the second  
detector. 

1) Video unit feature  
Video unit feature includes interval length and color fingerprint proposed by 

Yang et. al ([12]). A video unit is partitioned into K sub-intervals, and represented 
by K blending images formed by averaging frames within each sub-interval along 
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time direction. Each blending image is then divided into M×N equal size blocks 
each of which is represented by the major and minor color components among 
RGB, as illustrated in Fig. 5. Color fingerprint is the ordered catenation of these 

block features. If R , G , B  are the average color values of a block, and their de-
scending order is (V1, V2, V3), then the major color and minor color are determined 
by the following rules: 

Rule 1: if  V1 > V3,  

1 3

1 3
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Where τ  is the parameter that controls the robustness to color distortion and dis-
criminative ability of this feature. 

Rule 2: if V1 = V3 (gray image), 
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Fig. 5 Illustration of video segmentation and feature extraction 

Major and minor color patterns have six possible symbol values from alphabet 
{R, G, B, U, L, H}, where U, L and H stand for uncertain, dark and bright respec-
tively. In this work one blending image (K=1) is used for each unit, and divided 
into 8x8 blocks (M=N=8), thus the color feature is a 128 dimensional symbol vec-
tor. We also apply LSH indexing on this color fingerprint, and its string represen-
tation can be easily transformed to a bit string required by LSH algorithm ([21]) 
without incurring extra errors. By LSH and unit length filtering, complexity of 
searching identical video units can be reduced by hundreds of times. 

2) Frame feature 
Each frame is divided into 4 sub-frames, and RGB color histogram(8x8x8 bins) 

of each sub-frame is quantized to a symbol by VQ, so each frame is represented 
by 4 symbols.    
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3.3   Video Similarity Measures 

Video similarity measures are conducted at several levels to ensure efficient and 
robust video repeat discovering: Video Unit, Video Segment, and Video Clip.  

3.3.1   Video Segment Similarity Measure 

Given two video units ivu and jvu , their distance ( , )i jD vu vu is defined as:  

22( , ) ( , ) ( ) ( )
i j i j i j

D vu vu d F F len vu len vu= + −⎡ ⎤⎣ ⎦                         
(11) 

where iF , jF are color fingerprint vectors of ivu and jvu , ( , )i jd F F is color finger-

print distance function ([12]), len(⋅) is length feature. If VS consists of W video 
units, similarity measure 1f between the ith segment and jth segment 

1:{ , }j j jVS vu vu +  is defined as: 

⎩
⎨
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= −+−+
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(12) 

where 1ε  is distance threshold. 

3.3.2   Clip Level Aggregation 

Repeat clips will appear as diagonals in similarity matrix. However, due to seg-
mentation errors, the line will not be the integrated one. Moreover those line  
 

 
Fig. 6 Example of diagonal tracks for repeat sequences 
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fragments will not be collinear if non-uniform partition is used. Fig. 6 shows part 
of a similarity matrix computed in our experiment. As we can see, diagonal tracks 
are fragmented and contaminated by noises. To get the whole repeat clip correctly 
we design a hierarchical aggregation algorithm purely based on temporal bounda-
ries of repeat segments.  

This algorithm is described as follows: 

Step 1: First link strong diagonal tracks whose length exceeds one. The start 
and end time of two pairs of repeat sequences (I,I’) and (II,II’) corresponding to 
two diagonal lines are represented by (T1start,T1end), (T1′start,T1′end) and 
(T2start,T2end), (T2′start,T2′end) respectively, which is illustrated in Fig. 7.  

 

Fig. 7 Illustration of two pairs of adjacent repeat segments 

If one of the two conditions in (13) is satisfied, (I,I’) and (II,II’) will be merged 
into one repeat pair.  

a. Overlap: T1start ≤T2start ≤  T1end ,   T1′start ≤T2′start ≤  T1′end  

b. Adjacency:  |T2start- T1end|<μ1, |T2′start- T1′end|<μ1, |(T2start- T1end)-( T2′start-   

T1′end)|< 2ε                                                          (13) 

where μ1 defines neighborhood distance, 2ε is displacement allowed for neighbor 

repeat segments, thus controls temporal variations of the whole repeat clip.  
Boundaries of merged repeat pair are computed as: 

Tstart=min(T1start,T2start),  Tend=max(T1end,T2end) ; 

T′start=min(T1′start,T2′start), T′end=max(T1′end , T2′end). 

This new repeat pair will be put into the repeats list to replace originals, and the 
above process is iterated till no change of the list. 

Step 2: Connecting single dots based on results of step 1 with the same merging 
criterion as step 1. 

Step 3: The connected sequences after above two steps are further connected 
and merged until there is no change. 

By the above aggregation algorithm the whole image of repeat clips can be well 
constructed from their local repeat segments, thus providing good foundation for 
further similarity analysis and boundary refinement. Moreover, this algorithm only 
needs to store boundaries of repeat segments but not similarity matrix, which can 
have efficient implementation for even large video data mining. 
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3.3.3   Second Stage Matching 

The second detector adopts frame by frame matching. The total number of identi-
cal frames is normalized by the average sequence length to get the similarity 
score. A repeat pair is judged as true one if the following condition is satisfied, 

3(1 )Lscore e ε−> +                                              (14) 

where score is the similarity value, L is the minimum length of the two clips in 
seconds, and 3ε is threshold. This decision rule uses soft thresholds for different 

length sequences. Since shorter sequences are assumed less reliable ones, they 
should satisfy more stringent condition to pass through verification. Once a repeat 
pair is verified, their boundaries are extended frame by frame until dissimilar 
frames are encountered.  

3.4   Reinforcement Learning of Detectors 

The two cascade detectors contain several parameters, like distance thresholds, 
LSH parameters etc., but the intrinsic and crucial ones that affect detection accu-
racy are 1ε , 2ε and 3ε  in (12)(13)(14) respectively. Tuning these three parameters 

can significantly change detection results. The three parameters have clear physi-
cal meanings. 1ε reflects feature distortion of identical video units for certain 

video data and feature extraction; 2ε  that defines maximum temporal displace-

ment between neighbor repeat segment pairs in clip aggregation function is related 
to video unit granularity and temporal variation allowed for the whole repeat clips. 

3ε  in the second detector balances recall and precision. Parameter μ1 in (13) defin-

ing neighborhood of repeat segments is not crucial for final results as long as it is  
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Fig. 8 Connectionist reinforcement learning network 
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in a range, e.g. 10s ~ 20s. Segmentation related parameter is important for final re-
sults, but it is not intrinsic to the detector. Different segmentation methods may 
have different types of parameters or no parameter at all.   

In the following we will propose a method to learn appropriate values of 

1ε , 2ε and 3ε in order to achieve optimal performance on selected video data. 

Given certain segmentation and feature extraction, the three parameters in the two 
detectors are trained together by reinforcement learning in a non-associative para-
digm. Given an input, the learning network produces the three parameters, then a 
scalar indicating “goodness” of detection results under these parameters is imme-
diately used as a reinforcement for the learning network. In our approach the sum 
of recall and precision is taken as the reinforcement factor. We also adopt the con-
nectionist REINFORCE algorithm ([22]) in which the units of network are Ber-
noulli quasilinear units whose output is 0 or 1, statistically determined by Ber-
noulli distribution with parameter )),exp(1/(1)( ssfp −+== which is shown in 

Fig.8. Each Bernoulli quasilinear unit has one input weight, and the three parame-
ters are encoded by gray codes corresponding to the outputs of n Bernoulli  
quasilinear units. After receiving a reinforcement r, the weights of Bernoulli  
quasilinear units are updated by (15). 

( )( )i i iw r b y pαΔ = − −                                           (15) 

whereα is a positive learning rate, b serves as a reinforcement baseline, iy  is the 

output of the ith Bernoulli quasilinear unit, and ip  is the Bernoulli distribution pa-

rameter.  It has been shown by Williams ([22]) that this learning algorithm statisti-
cally climbs the gradient of expected reinforcement in weight space, which means 
that the detector parameters will change in the direction along which the sum of 
recall and precision increases.  

3.5   Results 

For news video we chose half-hour CNN and ABC news videos from TRECVID 
data to form two video collections, each of which contains 12 day programs with 6 
hours around. By manually searching short repeat clips including program logos 
and commercials, but neglecting other repeat scenes, i.e. anchor persons, 34 kinds 
of repeat clips with totally 186 instances are found from CNN collection, while 35 
kinds with totally 116 instances found from ABC collection. In addition broadcast 
videos of Channel News Asia (CNA) are also used for structure analysis. 

3.5.1   Detector Training 

Parameters of the two detectors are learned by the approach presented in section 
3.4. Three hour CNN news videos are randomly chosen for training. Videos are 
segmented by content based keyframes. 

The reinforcement learning rate α in (15) is set to 0.01 and reinforcement base-
line b set to 0.7. Parameters 1ε , 2ε  and 3ε  are each encoded by 5 bit gray code, so  
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there are totally 15 Bernoulli units in this network. Parameter value range is set to 
[0,1]. Initial parameters are set to empirical values, and initial weights are all ze-
ros. During each learning round we manually check the detection results to com-
pute recall and precision, then feed their sum as reinforcement of the learning 
network. Recall and precision are calculated as (16). 

instances detectedallofnumber 

instancesrepeat correct  ofnumber 
precision

instancesrepeat   trueall ofnumber 

instancesrepeat correct  ofnumber 
recall

=

=

                          (16) 

In experiment recall and precision in the first round learning are 74% and 
100%, but after ten rounds of learning, recall and precision already climb to 94.2% 
and 96% respectively. Since the next several rounds of learning do not lead to re-
inforcement increase, we then stop the learning. 

3.5.2   Testing Accuracy 

The trained detectors are tested on the rest 3 hour CNN videos and 6 hour ABC 
videos. Recall and precision on CNN videos are 92.3% and 96%, while 90.1% and 
90% those for ABC videos. This accuracy is obtained without setting a minimum 
sequence length to filter errors, so most of the errors come from those very short 
clips. The shortest correct repeat detected is just 0.26s (partial of “play of the day” 
logo in CNN video), while the longest one is 75 seconds long.  

Boundary accuracy of repeat pairs is also measured. We selected 300 repeated 
pairs that cover almost all repeat patterns and checked their boundary shift before 
boundary refinement. The smallest shift is 0 s, while the largest one is 16.4s, and 
the average shift is 0.47s. Around 80% of the shifts are within 0.2 seconds. After 
frame by frame boundary refinement those large shifts can be effectively reduced 
to 0~1 second. 

3.5.3   Performance Analysis of Segmentation Methods 

Video segmentation is essential for this approach, so experiments are conducted to 
compare performances by proposed keyframe based segmentation, uniform seg-
mentation and shot segmentation. The video data are 3 hour CNN videos used in 
Section 3.5.1. Two keyframe based segmentations are implemented with η =0.15, 

0.30 respectively. Uniform segmentation utilizes I frames (every 12 frames). Shot 
detection includes cuts, fades in-outs and dissolves. Video unit features for all 
segmentations are color fingerprint and length. The video segment (VS) size W for 
shot segmentation is set to 1, and the minimum number of diagonal points in re-
peat aggregation is also set to 1. Thus this method can detect not only single repeat 
shots, but also repeat clips beyond shots. Detectors are separately trained for each 
segmentation strategy to achieve their nearly optimal performance, and training 
results are shown in Table 2.  
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Table 2 Performance comparison of video segmentation methods 

 
Uniform 
sampling 

Keyframe 
(η =0.15) 

Keyframe 
(η =0.30) Shot based 

recall 87.8% 94.2% 90.7% 66.7% 

precision 95.9% 96.0% 86.0% 84.7% 
Video units 26344 14872 6316 1911 

 
Fig. 9 CNN news video structure analysis by video repeats 
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From Table 2 we know that keyframe based segmentation achieves best per-
formance. The uniform segmentation results in several times more video units 
than keyframes, but still gets lower recall on program logos and commercials. 
Uniform segmentation also detects quite many stationary scenes, such as anchor 
shots and black frames which occupy nearly 74% of the whole detected repeat 
clips pool thus overwhelm other interesting repeat patterns like program logos and 
commercials. Under keyframe based segmentation these still scenes are all fil-
tered, program logos and commercials are main body of detected repeats. Shot 
based segmentation results in much fewer video units, but its total accuracy is 
much lower and many fast changing program logos are missed. When granularity 
of keyframe based segmentation becomes bigger, its performance will also drop 
because of heavier data loss.  

3.5.4   Searching Efficiency Evaluation  

By LSH indexing on color fingerprint, the average number of retrieved units for a 
query unit of CNN collection (totally 629,380frames and 31496 units) is 320, and 
the number of color feature comparisons is further reduced to 20 by pre-filtering 
one dimension length feature at trained distance threshold ε1 =0.1, thus speedup 
factor is about 1575 compared to pair-wise searching. For ABC collections (totally 
616,780 frames and 29838 units), the average number of retrieved units for a query 
unit is 1026, and further reduced to 56 by length filtering, thus speedup factor is 
533. On PC with Pentium-4 2.5GHz processor the two stage detections on 6 hour 
CNN videos can be finished in 22 seconds, while 40 seconds for ABC videos.  

3.5.5   Video Structure Discovery Results 

Fig. 9 shows temporal distribution of short video repeats identified from CNN 
news videos of six days. Those repeat instances linked by curves are chosen as 
structural video elements (SVE). From this map we can clearly see that the whole  
program is segmented by SVEs into several layers each of which contains certain 
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Fig. 10  CNA news video structure analysis by video repeats 
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topics, such as health program, top stories, financial news, sports news, commer-
cials et al. Similar results are also achieved for CNA video structure discovery. 
Fig. 10 shows distribution of short video repeats identified from CNA one hour 
news videos in two days.  

4   Concluding Remarks 

In this chapter we frame known video repeat recognition as a standard pattern rec-
ognition problem, and take advantage of the techniques successfully applied to 
other classical pattern recognition problems such as face recognition, speech  
recognition and OCR. For example, subspace discriminative analysis is used to 
optimize video feature representation. Video feature model adopts sampling and 
clustering strategy to capture typical color and texture features of a video clip, and 
it shows good robustness to frame distortion and dropping. Video feature’s sub-
space representation computed by OPCA leads to a significant improvement of 
recognition performance especially for very short video clips (e.g. below 10s). 
Compared with other robust image descriptors that require high computational 
complexity, e.g. SIFT ([10]), RGB color histogram and texture feature adopted in 
this approach can also achieve robustness to common distortions through appro-
priate coordinate transformation, while computation is much simpler. The pro-
posed statistical analysis method reflects the distribution of video database in  
feature space by three distance distributions from which nearest neighbor classi-
fier’s error probability can be exactly estimated, and optimal classification thresh-
old can be theoretically computed. Classification accuracy is evaluated under 1000 
video models, which is a reasonable database size for some real applications, e.g. 
TV commercial monitoring, and very low error rate is obtained. 

In unknown video repeat mining approach, we do not make feature optimiza-
tion according to specific video database, but rely on self-similarity rule to dis-
cover all possible video repeats in an unsupervised way. However, in order to 
achieve high mining accuracy for given video collections, we adopt a supervised 
approach to tune the mining parameters, so this approach can be regarded as a 
mixture of unsupervised discovery and supervised learning. This method achieves 
robust detection of arbitrary length video repeats by cascaded detectors that em-
ploy different features and similarity measures. Quite short repeats (e.g. those less 
than 1 second) along with long ones can be detected with high accuracy, which is 
the strength of our approach compared to previous work ([3][9]). Similarity 
searching complexity of the first detector is reduced hundreds of times through 
LSH indexing and length filtering. Here color fingerprint is used as video unit fea-
ture, for its discrete values are naturally suitable for LSH indexing, and its combi-
nation with unit length can give discriminative representation of video units. As a 
comparison, known video repeat recognition approach adopts color histogram and 
texture as feature, for they have continuous values that are suitable for statistical 
analysis and subspace feature transformation. By analyzing detection performance 
under several video segmentation strategies, we know that video segmentation  
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utilizing content-based keyframes achieves best balance between detection accu-
racy and efficiency on short video repeats mining compared to uniform and shot 
based segmentation. Parameters of detectors can be efficiently optimized in a few 
rounds of reinforcement learning without knowing statistics of large volume of 
video data, which makes our approach easily adapt to different video sources. Re-
sults also show that short video repeats mining is an effective way to discover syn-
tactic structure of news videos. 
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Mining TV Broadcasts 24/7 for Recurring Video
Sequences

Ina Döhring and Rainer Lienhart

Abstract. Monitoring and analyzing TV broadcasts is an important task in the me-
dia as well as the advertising business. An important subtask is the frame-accurate
detection of recurring video sequences. Examples of recurring video sequences are
commercials, channel advertisements, channel intros, and newscast intros. Most of
these different kinds of repeating video clips can automatically be classified by fur-
ther analyzing their temporal and visual properties. In this work we introduce an
algorithm and a real-time system for recognizing recurring video sequences frame-
accurately in a highly effective and efficient manner. The algorithm does not require
any temporal pre-segmentation by shot detection and can thus, in principle, be ap-
plied to any kind of temporal signal. It is frame-accurate, meaning that it exactly
identifies with which frame a repeating sequence starts and ends. Thus, the tempo-
ral accuracy is 40 milliseconds for PAL and 33 milliseconds for NTSC videos. On
a standard PC desktop a 24-hour live-stream can be processed in about 4 hours in-
cluding the computational expensive video decoding. To achieve this efficiency the
algorithm exploits an inverted index for identifying similar frames rapidly. Gradient-
based image features are mapped to the index by means of a hash function. The
search algorithm consists of two steps: firstly searching for recurring short segments
of 1 second duration and secondly assembling these small segments into the set of
repeated video clips. In our experiments we investigate the sensitivity of the algo-
rithm concerning all system parameters and apply it to the detection of unknown
commercials within 24 and 48 hours of various TV channels. It is shown that the
method is an excellent technique for searching for unknown commercials. Currently
the system is used 24 hours a day, 7 days a week in various countries to log all com-
mercials broadcast without manual intervention.
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1 Introduction

The influence of digital media on our lives is steadily growing. Lots of data, which
were formerly presented by audio, photography, or books, is now shared as digital
videos. Information from numberless broadcast stations are available 24 hours a day,
7 days a week. These large amounts of data require effective strategies for keeping it
accessible. Thus there is an urgent need for effective search and mining algorithms
for a variety of applications. Common tasks in video retrieval range from browsing
through video collections over copy detection in the World Wide Web to finding
special types of sequences in broadcasts such as commercials or news themes.

In this chapter we will focus on the detection of recurring sequences in TV broad-
casts such as commercials, music clips, jingles, news stories, and similar content.
For performance analysis and evaluation, however, we will only concentrate on the
detection of recurring commercials as they have the advantage that we can easily and
fast create frame-accurate ground truth annotations with a video wheel; something
that is normally not easily possible for other kinds of recurring video sequences.

Regarding commercials as recurring sequences is a highly effective method to
search for them. It only needs to rely as little as possible on vague, and/or easily
alterable audio-visual characteristics such as increased audio level or cut-frequency.
Usually simple duration constraints are enough to distinguish them from other recur-
ring sequences. As shown in Sec. 4 the percentage of repeated commercials within
24 hours in our test videos is about 90%. In other words, if we can detect all recur-
ring commercial clips, we cover 90% of all broadcast advertisements per day. For
longer mining periods such as days or weeks, this fraction will increase, because
some commercials that are shown only once a day will be repeated within the next
days. The detection of unknown commercials can be used, for instance, to create an
ad database as the basis for reliable recognition of broadcast advertisements [1].

This chapter is structured as follows: After some comments on the characteris-
tics of the videos we deal with, we will introduce and discuss two types of image
features for fingerprinting our sequences in Sec. 2. In Sec. 3 we explain our search
algorithm in more detail. Experimental results are discussed in Sec. 4. We inves-
tigate the sensitivity of the algorithm concerning all system parameters and apply
it to the detection of unknown commercials within 24 and 48 hours of various TV
channels. We give survey on related work in Sec. 5 and finally a summary in Sec. 6.

2 Fingerprinting Video Streams

Video streams are temporal sequences of individual images. With proper image fea-
tures the essence of these video frames can be captured. Hence a video stream can
be considered as a temporal sequence of image features. There already exists a very
large variety of image features. For instance, they can be derived from the colors
and/or the structures in the picture. Additionally, it may be worthwhile to take tem-
poral information into consideration. After explaining in Sec. 2.1 the context in
which we operate with our search algorithm, we introduce in Sec. 2.2 two types of
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image features – a color-based and a edge-based feature. Both image features are
suitable for real-time fingerprinting [10].

2.1 Video Model

There exist different intentions for searching for repetitions in videos. Depending on
the actual goal the search methods may vary, for instance, in the requirements on the
image features or the quality and precision of the results that have to be achieved.

We will focus on the mining of repeated sequences from a single sensor such
as a specific TV capture card for building a comprehensive database from TV live-
streams. Here, we have the constraint to operate in real-time, which means that we
need image features that are fast to compute and a very fast algorithm for detect-
ing recurring sequences. Storage needs are assumed to be moderate, because the
recurring sequences in live TV streams are expected to be of moderate length.

We also want to point out that our algorithm on purpose is designed for a data
stream coming from a fixed, but arbitrary sensor such a TV capture card from a
specific vendor. As every human observes the world through the same two eyes and
has to learn everything it can see for these two eyes, our system observes everything
through the same kind of video capture cards for the same kind of signals. Any
kind of artifact created by the sensor is consistent throughout time in the input data
stream. Thus our work does not address the copy detection problem on the Internet
or across different video formats and video fidelities. This is a completely different
problem domain. Nevertheless our task is also challenging since the focus lies on
temporal precision.

As we are interested in assembling a database of all commercials broadcast dur-
ing our 24/7 monitoring, we have to detect repeated sequences in real-time not only
within the stream but also in the database that is built on-the-fly during mining. In
this setting it can be an advantage to choose image features which are less robust,
but posses a ability to reliably distinguish between different images, since it may
lead to a better overall performance as precision is more important than recall.

2.2 Image Features

In this Section we introduce two image features: the Color Patches Feature (CPF)
and the Gradient Histogram (GH). A color patches feature is derived by computing
color average values for small parts of the image. Gradient Histograms are based on
the edges in an image. Advantages and disadvantages of both types of image features
are discussed in length in [10]. In the following we will evaluate quantitative and
qualitative properties of these image features. For visualization we take two sample
video frames from two different TV channel recordings (see Fig. 1).

Color Patches Features. We choose the color patches feature (CPF) as our color-
related image feature. It has been shown that it is robust and outperforms, for
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(a) (b)

Fig. 1 Sample images from (a) a UK broadcast in PAL norm and (b) a US broadcast in NTSC
norm.

instance, Color Coherence Vectors for the task of image matching [10]. Many vari-
ants of CPFs are widely used and amongst others described in [17].

CPFs are derived from mean intensities within small subareas of each color chan-
nel. The whole image is divided into N ×M rectangular blocks. For each block the
intensity of each color component red, green, and blue is averaged:

PC
nm =

1

∑(x1,x2)∈Inm 1 ∑
(x1,x2)∈Inm

C (x1,x2) (1)

with colors C ∈ (R,G,B) and subareas Inm, n = 1, . . . ,N and m = 1, . . . ,M.
Fig. 2 illustrates the effect of the CPF calculation. Each single-colored rectangle

represents three mean RGB intensities in the CPF vector. Thus, the size of the CPF
vector is 3×N×M.

(a) (b)

Fig. 2 The color patches features (CPFs) for the two sample images of Fig. 1: (a) for the UK
broadcast image and (b) for the US broadcast image.
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Gradient Histograms. An alternative to color-based features are edge-based fea-
tures. They evaluate color intensity gradients instead of absolute intensities. Edge-
based features similar to our gradient histograms are for instance investigated in
[17, 19, 26].

In our work we operate on grayscale images only and use intensity differences to
approximate the true gradients:

∂
∂x1

I (x1,x2) ∼ [I (x1 + 1,x2)− I (x1 −1,x2)] (2)

∂
∂x2

I (x1,x2) ∼ [I (x1,x2 + 1)− I (x1,x2 −1)] (3)

We again divide an image into N ×M subareas Inm. For each subarea we generate a
gradient direction histogram of K bins by summing sum up in each bin the gradient
magnitudes of all gradients, whose directions fall into the interval of the bin:

Hk
nm =

1

∑(x1,x2)∈Inm mg (x1,x2)
∑

(x1,x2)∈Inm

Mk (x1,x2) , (4)

with the gradient magnitude mg, orientation θg, and the auxiliary variables Mk and
θk defined by

mg =
√

(I (x1 + 1,x2)− I (x1 −1,x2))
2 +(I (x1,x2 + 1)− I (x1,x2 −1))2, (5)

θg = arctan

(
I (x1,x2 + 1)− I (x1,x2 −1)
I (x1 + 1,x2)− I (x1 −1,x2)

)
. (6)

Mk =

{
mg (x1,x2) if θk ≤ θg (x1,x2) < θk+1,

0 else,
(7)

θk = (k−1)360◦/K (8)

(a) (b)

Fig. 3 The gradient histograms (GHs) of the two sample images in Fig. 1: (a) for the UK
broadcast image and (b) for the US broadcast image.
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Figure 3 illustrates GHs. Each sample image has the same partitioning as for the
CPFs in Fig. 2. A rectangular subarea is divided into K = 8 directional bins to vi-
sualize the histogram. The histogram values are encoded by the grayscale intensity:
the lighter the gray, the larger the value of that histogram bin. Thus, darker parts in
the image mark areas with little structure, whereas rectangles with only a few nearly
white segments are typical for strong straight edges (compare to Fig. 1).

Thus a gradient histogram fingerprint consists of N ×M ×K values Hk
nm. In our

further work we use a compressed feature vector

H k
nm = min

(
256/L ·Hk

nm,255
)

, (9)

which maps all floating point values to 1-byte integers. For N = M = K = 8 L = 0.02
is a good choice [10].

Distance Measure. We measure the distance between two images I1 and I2 with
the L1-Norm of the particular feature vector

DFV (I1, I2)=

{
1

3NM ∑C∈(R,G,B)∑
N
n=1∑

M
m=1

∣∣PC
nm (I1)−PC

nm (I2)
∣∣ , FV = CPF,

1
NMK ∑N

n=1∑
M
m=1∑

K
k=1

∣∣H k
nm (I1)−H k

nm (I2)
∣∣ , FV = GH,

(10)
where FV is the place holder for the feature vector name. The distance between two
sequences S1 and S2 of length L is given by

DFV
L (S1,S2) =

1
L

L

∑
l=1

DFV (S1(l),S2(l)) . (11)

The distance measures in Eqs. 10 and 11 provide the possibility for defining the
equality of two images or image sequences, respectively. We call two images to be
equal to each other, if the feature vector distance is less than a threshold ΔFV

I

I1 = I2 ⇔ DFV (I1, I2) < ΔFV
I . (12)

Accordingly, we define two sequences S1 and S2 of length L1 and L2 to be equal,
if DFV

L (S1,S2) is less than a threshold ΔFV
S and their duration difference is less

than ΔL:

S1 = S2 ⇔ DFV
L (S1,S2) < ΔFV

S ,L = min(L1,L2), |L1 −L2| < ΔL. (13)

3 Searching Frame-Accurately

In this section we introduce our algorithm for frame-accurate identification of du-
plicate sequences in the fingerprints of live video streams.

The whole algorithm is composed of nearly independent parts, which are se-
quentially processed and which in principal can be replaced by other choices. After
having fingerprinted each frame of a video we need a fast and efficient image search
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method. We use an inverted index to identify similar images rapidly and a hash func-
tion to map an image feature vector to an one-dimensional table index. Details of
this step are explained in Sec. 3.1.

On the basis of the inverted image index we search next for short repeating se-
quences of about one second and call them clips. Candidate duplicate clip pairs are
built by looking for short sequence pairs with a required minimal percentage of
hash-value-identical frames. Details are explained in Sec. 3.2.

Clip pairs are grouped to longer target sequences according to their temporal
coherence and are aligned for proper estimation of start and end frames. This step
is explained in Sec. 3.3.

The application of filters dedicated to a search of special interest like commercial
mining is discussed in Sec. 3.4.

3.1 Inverted Index and Locality Sensitive Hashing

An inverted index is an efficient method for fast search through large databases. In
the text domain, for instance, an inverted index contains a list of all words occurring
in a text corpus. For each word, a list of all its positions in the text is provided.
Thus, a single look-up in the index is sufficient to retrieve all occurrences. No ex-
pensive sequential or tree-based search through the text corpus is required. The only
expensive step is the creation of the index. This, however, must only be done once.

A difference between image and text retrieval arises from the high-dimensional
and often continuous feature space in image representations. There are several ap-
proaches to construct inverted indices for such feature vectors. Hampapur and Bolle
(2001) used an inverted index for each component of the feature vector [18]. Shiv-
adas and Gauch (2007) mapped the complete feature vector by means of a hash
function to a single scalar value [30]. Hash functions are designed for determin-
istic but non-injective mapping a sparse representation of a large feature space to
an index space whose size is in the order of the data’s dense representation. The
mapping of different values to the same hash value is called a collision and can be
minimized by good mixing properties of the hash function. The modulo function is
often a proper choice [24].

The disadvantage of hash functions is that due to the mixing characteristics, no
distance measure can be directly deduced from the index values. Neighbored indices
do not necessarily belong to features which are close together. One possible answer
to this problem is Locality Sensitive Hashing (LSH). Here hash functions are used
for which the probability of mapping similar features to the same index is much
higher than the probability for mapping more distant features to the same index
[15, 23].

Color Patches Features. For the CPFs we evaluate the inverted index on the basis
of average image intensities CI , C ∈ (R,G,B), which can be easily obtained:

CI =
1

NM

N

∑
n=1

M

∑
m=1

PC
nm with C ∈ (R,G,B). (14)
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Taking the image averages provides locality sensitivity. The distance in the reduced
feature space is always less than or equal to the original distance (see Appendix for
a prove). Small variations are handled in the second step: we take the first b bits of
each of the averaged values to generate a scalar 3b-bits integer index value:

hC (I) = CI ÷2(8−b), C ∈ (R,G,B), b ∈ {0, ...,8}, (15)

hCPF (I) = 22bhR (I)+ 2bhG (I)+ hB (I) . (16)

In this way images with close color average intensities are grouped into the same
bins [6]. The bin size ShCPF and the index range RhCPF depend on the choice of b:

ShCPF = (28−b)3, RhCPF = (2b)3, b ∈ {0, ...,8}. (17)

Because of the limited index range RhCPF we do not need any further sample space
reduction for our index evaluation.

Gradient Histograms. For GHs we use a three step hashing algorithm to achieve
locality sensitivity in our index. We first reduce the feature vector size:

H k =
N

∑
n=1

M

∑
m=1

H k
nm. (18)

The image related gradient distribution H k is robust to small changes as all feature
vectors are mapped to vectors with equal or less distance (see Appendix). The size
of the H k is 8 + P bits, if P is the smallest integer with NM ≤ 2P.

In the second step we evaluate a first intermediate hash value for every component
H k by taking the first b bits of every single value H k:

h1 (I) =
K−1

∑
k=0

(
2b
)k

h1
k (I) , with h1

k (I) = H k ÷2(8+P−b). (19)

The number of possible values Rh1 (b,K) gives the range of this first hash value

Rh1 (b,K) =
(

2b
)K

, b ∈ {0, ...,8 + P}. (20)

In dependence on the values of K and b the index range Rh1 may be quite large,
because we deal with typical sizes of K = N = M = 8 [10]. Therefore we apply a
modulo function with index range Rh2 to the first hash value h1 (I)

h2 (I) = h1 (I) mod Rh2 . (21)

We evaluate Eq. 21 in an iterative way with the Horner scheme:

h2
1 (I) = h1

1 (I) mod Rh2 , (22)

h2
k (I) =

(
2b ·h2

k−1 (I)+ h1
k (I)

)
mod Rh2 for k = 2, . . . ,K,

hGH (I) = h2
K (I) . (23)
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For our calculations we use an index range Rh2 = 100,003, which meets the criteria
for choosing a good table size [24].

The first two steps preserve the locality sensitivity, whereas in the third step, the
evaluation of h2, we use a classical hash function with good mixing properties.

Distance Measure. The hash value representation is the basis for the similarity
definition. We call two Images I1 and I2 to be similar, if their hash values are equal

I1 ∼ I2 ⇔ hFV (I1) = hFV (I2), FV ∈ (CPF,GH), (24)

and we call two image sequences S and T of length LS and LT , LS ≤ LT without loss
of generality, to be similar, if a certain amount α ∈ (0,1) of images is similar

S ∼ T ⇔
LS

∑
i=1

θ (S (i)) > αLS, (25)

with

θ (S (i)) =

{
1, if ∃ j ∈ (1,LT ), S (i) ∼ T ( j) ,

0, else.
(26)

Thus we distinguish between identical (Eq. 13) and similar (Eq. 24) images. A
small image feature distance (Eq. 10) describes the visual identity of two im-
ages. For similar images there is only a certain probability that they are actually
identical.

In our search algorithm we first search for similar images and clips, which can be
done very fast with the index table, and then refining our results by evaluating the
more time consuming image feature distance to identify actually duplicate clips.

Implementation. There are several approaches to implement an inverted index for
live-stream applications. One possibility to handle the index search is to deal with
a dynamic index table, which is updated after processing each frame. In this case
you may execute a table search just in time. Beside the – for our application –
unnecessary additional computational overhead, an even more serious issue is that
all hashing functions are designed for a certain frame number range of video frames.
For instance, the index range Rh2 = 100,003 for the GH was chosen with a 2 hour
mining period in mind, i.e., for 180,000 hash values for PAl videos. Without causing
to many collisions the search period cannot just be increased to maybe 24 hours or
longer.

As we want to process the live-stream in real-time, while it is acceptable to ob-
tain results with a certain delay, we split the video stream into suitable pieces of
about two hours. The resulting fingerprint size of such segments fits into the system
memory in a comfortable way. For each slice we build a separate inverted index and
store it on the hard drive. Every two hours we invoke a sequence search that takes
the latest two hours of fingerprints as the input sequence, searches through it, and
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then continues through the previous two hours of fingerprints one after the other
until the period we want to search through has been processed (e.g., 24 hours).

3.2 Clip Search

A live video stream appears as an endless sequence of images without any direct
hints about embedded repeating sequences. Some information about the underlying
structure of the video stream could be gained by shot segmentation. However, in
the digital age we can find beside classical hard cuts many hardly to detect com-
plex transitions such as dissolves, wipes, and morphings. The correct detection of
all transitions would require separate reliable algorithms for each of them. To avoid
errors from cut detection and save the detection time we operate on the raw video
stream: we pick random pieces, called clips, out of the stream and search for repe-
titions of these clips. The duration of a clip may be arbitrarily chosen, but it should
be much shorter than the lengths of our target sequences to ensure that there ex-
ist clips that are completely contained within each repeated sequence. The smallest
unit to search for is a single image. However, single images are often not sufficiently
distinctive, and therefore we will settle on one-second clips.

The clip search approach is adopted from DNA sequencing. Complete DNA
strands are far too long to be sequenced in one single run. Therefore, they are bro-
ken up into much smaller pieces. This can be done in a deterministic or random way
(shotgun method). In the latter case all fragments have to be aligned after analysis.
There are a variety of sequence alignment methods known in bioinformatics [20].

We can use some pieces of information from the stream to make a proper choice
for the processed clips and only start a new clip search at an image, if we find similar
images in our inverted index. We scan a video frame by frame, calculate the hash
index of each frame and retrieve all similar frames by a look-up in the inverted
index. We reject matches, which are temporally very close to our query frame. A
minimal gap of 2000 frames is required to avoid detection within the same scene.
Furthermore we neglect frames belonging to hash indices with a very large number
of entries, i. e. we ignore non-distinctive frames such as black frames or parts of
long self-similar sequences.

Figure 4 shows two clips of 25 frames (1 second in PAL). Similar frames with
identical hash values are marked. It is possible, that there is no one-to-one mapping
between similar images, as visually similar images can be mapped to the same index.

If we find more than 20% similar frames within clips s1 and s2, we consider
s1 ∼ s2 withα = 0.2 (Eq. 25). For all duplicate clip candidates C (s1,s2) we calculate
the distance DFV

L (s1,s2) (Eq. 11) between them. All unequal candidates (Eq. 13) are
discarded, all equal ones are further processed.

Fig. 4 Two clips with
frames matched by hash
values. �
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3.3 Frame-Accurate Repeated Sequences Search

The next task in our algorithm is to build the repeated sequences from the identified
clip pairs. At first we group the pairs, which are temporally coherent together. After
aligning these groups of clips we can estimate the start and end of all found repeated
sequences.

We identify clip pairs C belonging to the same recurring sequence by looking at
their times of occurrence. Two clip pairs are assumed to belong to the same recurring
video sequence, if both clips of a pair are closer than 150 frames to the correspond-
ing clips in the other clip pair. This step results in a number of sequences, which
are pair-wise identical or similar in parts. Each pair of such sequences is called a
duplicate D . Each duplicate is described by two lists S1 and S2 representing the
corresponding sequences:

D = (S1,S2) . (27)

Each list Si contains the start frame numbers of the clips building the duplicate:

Si =
(
framei

1, . . . , framei
n

)
, (28)

with n denoting the number of clips forming the duplicate. Note that frame1
i and

frame2
i are the start frame numbers of the two clips of a clip pair i. According to

our search strategy the frames in S1 and S2 are not necessarily in the same temporal
order, especially for long still scenes.

Figure 5 illustrates the state in our search algorithm at this point. We have identi-
fied a number of small pieces of our target sequence. However, we still miss precise
informations about the boundaries.

To reduce the input for the next steps it is possible to do a coarse filtering at this
stage. For instance we discard sequences, which do not meet the required minimum
number of clips. Content related filtering is discussed in Sec. 3.4.

As it can be seen in Fig. 5 both sequences S1 and S2 due to their construction may
be shifted to each other, i. e., the offsets oi with

oi = frame2
i − frame1

i i = 1, . . . ,n, (29)

between corresponding clips are not the same for all n. Hence, we need a method
for estimating the real offset between the repetitions of the target sequence.

One simple technique is the iterative alignment during the detection of start and
end frames. We find the start and end frame of a found sequence by going back-
ward at the start and forward at the end frame by frame as long as the feature vec-
tor distance between the two associated frames is smaller than a threshold. If the
image distance signals different frames, we have recognized the end or the start,

Fig. 5 Recurring video
sequence with the clip pairs
that were found. Clips

S1

S2

Target Sequence
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respectively. For sequence alignment we do not stop this procedure, once we have
found different frames, but continue the search with a modified offset derived from
the original offset by adding a relative offset. We set initially this relative offset to
+1 frame. If the distance between two frames under this modified offset is smaller
than our threshold, we test the next two frames with the same modified offset until
we find different frames again. In the case that the current relative offset has not
resulted in frame equality, we try the same relative offset in the opposite direction
(i.e., we us the negative offset), and after that we increment the relative offset by
one. When a maximal allowed relative offset is reached, the procedure stops and the
last found identical frames are rated as start and end, respectively.

We can accelerate this operation by estimating at first the most likely offset o0

from all offsets oi. If F(oi) is the distribution function of the start frame differences
of all clip pairs of a sequence candidate, we take the most frequent offset as the first
guess for the alignment of both sequences, i.e.,

F (o0) ≥ F (oi) ∀i ∈ (1,n). (30)

After aligning the duplicate sequences with this offset o0, we can determine the
start and end frame with the method described above. At this time, we have frame-
accurately determined two occurrences of the same sequence; we know their be-
ginnig and temporal length. To validate results, we can at this stage evaluate the
feature-based distance function for the complete sequence and discard eventually
false matches.

In a last step we compare the pairwise matched sequences against those from
the other duplicates to group frequently occurring sequences together. All detected
repeated sequences are compared with the database and added if novel.

3.4 Content-Related Filtering

As already mentioned in Sec. 3.3 we can control the result by filtering the clips found
in dependence on the content we search for. Typically not all kinds of recurring se-
quences are of interest all times. Special kinds of sequences such as commercials can
be retrieved by taking their characteristic properties into account and eliminating all
non-complying sequences. A useful property is sequence length. For instance, you
may distinguish between channel logos (just a few seconds long), commercials (10
to 60 seconds long), and music videos (several minutes long). At this step you may
include all features you know are characteristic for the kind of repeating sequences
you are looking for. For ads this can be a higher cut rate, black frames, increased
audio volume, and others attributes as discussed by Lienhart et al. in [25].

As we want as much as possible to be independent of properties that can be
changed by the advertising industry, we restrict our commercial filter to sequence
length.
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4 Experimental Results

In our experiments we investigate the sensitivity of the algorithm concerning the
most relevant system parameters. We test the algorithm by detecting commercials
in 24 and 48 hours, respectively, of two manually labeled TV channels. Furthermore
we explore the choice of our image features and compare the performance of CPFs
against GHs. At last we apply the system to a variety of TV channels with quite
different characteristics of advertisement representation.

4.1 Parameters and Numbers of Relevance

For our quantitative experiments we use two 48-hour long video sequences recorded
from two different British television channels: Chart TV (a music channel) and Sky
Sports News (a sports channel). Both videos are downscaled to half PAL resolution
(360×288 pixels) at 25 frames per second. For these two test videos we determined
the locations of all occurring commercials manually as our reference truth.

Although our proposed search algorithm mines video streams for all kinds of
recurring video sequences, of which commercials are just one example, we focus
in our experimental evaluation on the detection of repeating commercials for the
following practical reason: It is quite easy and fast to determine manually and un-
ambiguously all recurring commercials in a test video.

Commonly performance of search algorithms is measured by recall and preci-
sion: recall R measures the percentage of detected relevant sequences, while preci-
sion P reports the percentage of relevant sequences in the search result:

R =
number of found relevant sequences

number of all relevant sequences
, (31)

P =
number of found relevant sequences

number of all found sequences
. (32)

Depending on the particular motive of the search, it makes sense to specify
slightly modified performance values. Recall and precision from Eqs. 31 and 32 de-
scribe the algorithm’s performance concerning all repeated sequences in the video
stream. As mentioned above we will concentrate on the detection of commercials.
We will use the superscript C to indicate this fact. In particular, we will consider
the following values, which are either of more theoretical or more practical interest.
The most important values for theoretical discussion are RC

M and PC
M, which stand

for the detection of Multiple occurring commercials, because these values describe
the quality of the algorithm. Of more practical interest are the values RC

MD and PC
MD.

This pair specifies the detection of Multiple Different occurring commercials. Here,
we count, if a recurring commercial is detected. It is unimportant whether all rep-
etitions are found. These values are of interest, if we want to build a database of
commercials. Here it is sufficient to detect one repetition. Last, but not least, RC

and PC stands for the detection of all commercials, and RC
D and PC

D for all Different
commercials. The last four values include commercials which are not repeated and
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thus cannot detected by the algorithm. They give the possibility to estimate, how
successful a repeated sequence search is regarding commercial detection.

It is important to note that our precision values do not correctly reflect the perfor-
mance of the algorithm. The result list of the search for repeating video sequences
will (absolutely correctly) contain plenty of repeated sequences, which are not com-
mercials. Therefore, the reported precision values concerning repeating commer-
cials are quite low, since every recurring sequence that is not a commercial will
count as a false alarm. We will try to mitigate this issue by applying a pre-filter to
the raw result list that discards all repeating video sequences whose durations divert
from the characteristic durations of commercials. In practice, it is our observation
that the true precision values of our system are very close to 1 for repeating video
sequences. We hardly remember having ever seen a false alarm for repeating video
sequences.

A commercial spot is found, if the start and end frame differ no more than 5
frames from the exact position. This tolerance is introduced since a commercial
spot is sometimes slightly shortened at the boundaries resulting in repetitions of the
same spot with slightly different durations. Additionally, commercials are some-
times separated by monochromatic, mostly black frames, which are, if present at
the boundaries of all repetitions, strongly spoken part of the repeated sequence, too,
but not of the commercial manually marked in the basic truth.

For both 48-hours sequences we manually labeled all commercials occurring
within the first 24 hours. In addition, we also labeled the second half of the Chart TV
video sequence. This gives us the possibility to estimate the benefit of a 48-hours
over a 24-hours search.

Table 1 Ground truth of our test videos: NC - number of all occurring commercials, NC
M -

number of all repeatedly occurring commercials, NC
S - number of all singly occurring com-

mercials, NC
D - number of different commercials, NC

MD - number of repeatedly occurring dif-
ferent commercials, tC - time covered by all occurring commercials, tC

M - time covered by all
repeatedly occurring commercials, and tC

S - time covered by all singly occurring commercials.

Chart TV 24h Chart TV 48h Sky Sports News 24h

NC 486 997 737
NC

M 428 928 650
NC

S 58 69 87
NC

D 164 212 245
NC

MD 106 143 158

NC
M/NC 88.1% 93.1% 88.2%

NC
MD/NC

D 64.6% 67.5% 64.5%

tC / video length 13.2% 13.5% 20.0%
tC
M / video length 11.6% 12.5% 17.4%

tC
S / video length 1.6% 1.0% 2.6%
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Table 1 reports key numbers about our test video sequences using the convention
that superscript C indicates that all numbers refer to commercials only: NC specifies
the overall number of occurring commercials in the test videos. For each test video
NC can be split into the number of ads NC

M which are repeated within the overall
video sequence and NC

S which are not repeating (subscript S stands for single occur-
rence). In other words: NC = NC

M +NC
S . The overall number of different commercials

is denoted by NC
D , of which only NC

MD are repeated in the overall video sequence.
Thus, the following relation holds: NC

D = NC
MD +ND

S . Thus, the subscript D signifies
that a recurring video sequence is counted only once.

As we can see from Table 1, around two thirds of all broadcast commercials
appear more than once a day, covering around 88% airtime of all occurring spots.
Additionally, the time fraction, which is allocated to TV ads, is shown. In Chart TV
about 13% of airtime is devoted to commercials, whereas it is 20% in Sky Sports
News. Only between 1% and 3% of the overall airtime is devoted to non-repeating
spots. These are the sequences that cannot be found by even a perfect search algo-
rithm for repeating commercials.

Figure 6 depicts the duration distribution of all occurring spots. In Chart TV all
commercials – with a few exceptions – are multiples of 10 seconds, whereas in
Sky Sports News we find a greater variance in spot durations with a tendency to
shorter spots. This distribution encourages the idea of duration filtering to improve
the results concerning commercials.

Most of our test cases concerning system parameters use GHs as image features
with N = M = K = 8. We build-up the inverted index based on hashing as explained
in Sec. 3.1.

Content Related Filtering. Our first experiment concerns the last step in our
search algorithm - the content related filtering. As discussed above, our proposed
algorithm mines videos for all kinds of recurring video sequences, of which com-
mercials are just one example. While recall is not affected by focusing on commer-
cials, it renders the precision value useless. We apply a “commercial filter” to the
raw result list in order to give the precision values a meaning: With what precision
can TV commercials be found with a repeating video clip search algorithm.
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Fig. 7 Content related filter methods.

Figure 7 shows recall and precision in dependence on the filter method. We com-
pare the unfiltered output with a simple length filter, which discards very short and
very long sequences, and a more sophisticated filter, which focuses on typical dura-
tions of TV commercials. The simple duration filter keeps all repeating sequences
with a length between 60 and 2005 frames. The more sophistic filter keeps all re-
peating sequences with durations representing multiples of 125 frames or 5 seconds
(with a tolerance of ± 5 frames). Additionally, we include sequences of 75 and 175
frames length. These values are derived from the duration distribution in Fig. 6.

As shown in Fig. 7 the “typical length filter” improves the precision significantly
compared to the unfiltered case. There is only a minor decrease in recall due to a
small amount of commercials with non-typical durations (Fig. 6). In the following
experiments we will always filter the raw result lists with the “typical length filter”,
i.e., with the “multiples of 5s filter”.

Alignment Method. We evaluate the two alignment methods introduced in Sec. 3:
(1) The frame-by-frame iteratively estimated offset (SIMPLE) and (2) its variant
where the initial offset is the most frequent offset (see Eq. 30) occurring between
the clip pairs of a duplicate (OFFSET).

As we can see in Fig. 8 performance values for both methods show only small
differences with a slight advantage of the OFFSET method . We tested both methods
for several maximum relative offset values, at which the algorithm stops. It can be
seen that the performance only degrades for maximum relative offset values of two
or less frames. We can reason that our clip pairs in most cases are already aligned
up to two frames. However the impact of the maximum allowed offset on execution
time is quite small, so we can try larger values to improve the results further.

All subsequent experiments are carried out with the OFFSET alignment method
of frame offset and variable start and end frame detection with a maximum relative
offset of 20 frames.

Clip Length. The following three test cases concern clip search. At first we inves-
tigate the impact of the length of the short segments. Figure 9 shows the recall and
precision values for both test videos as well as the execution times for clip search
and the whole sequence identification. Execution times are only depicted for the
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Fig. 8 Performance of the two alignment methods for (a) Chart TV and (b) Sky Sports News:
SIMPLE - offset estimation by iteratively varying start and end frames, OFFSET - the off-
set is initialized with the most frequent start difference between corresponding clips before
SIMPLE is applied. Recall, precision, and execution times for repeated sequence search are
plotted against the maximum allowed offset.
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Fig. 9 Performance and execution times in dependence on the duration of the clips.

Chart TV video in order to report the order of magnitude, since it is the same for
both videos.

We can recognize that by and large recall decreases with an increase in the length
of the clips, whereas the precision increases. In principal, the shorter the duration
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of the clips, the better the alignment that can be achieved due to the finer granu-
larity of the samples. The disadvantage of shorter durations is the higher hit rate
in non-commercial recurring sequences, which in turn affects precision negatively
and leads to an increase in execution times. Especially the time for identifying long
repeated sequences is significantly higher for short clips. The increase is mostly
caused by the chosen alignment method, with other methods the difference was not
that high [11]. This behavior indicates a worse alignment for clips of half a second
(1̃2 frames in PAL), the smallest length of clips we have investigated.

All in all a clip length between 25 and 50 frames (corresponds to 1 to 2 second-
segments) seems to be an appropriate choice. In our further work we use clips of 25
frames in length.

Minimum Fraction of Matched Frames. In this section we discuss the parameter
α which determines when two clips are regarded as similar (Eq. 25).

Fig. 10 plots performance values and execution times against different thresh-
old values α for clip similarity. It is not surprising that recall decreases for higher
thresholds, because more segments are missed. Nevertheless, there is a range for
smaller threshold values with little impact. The precision values reveal no signifi-
cant dependence on the test parameter, being stable over a wide range.

Lower threshold values lead to a higher number of falsely detected clips. Most of
them are discarded by the image feature based distance measure. Therefore, there
is mainly an influence on evaluation time. The more visual distances must be com-
puted, the longer the execution times. This is clearly revealed in Figure 10 by the
rapid decline in execution time for clip search for match ratios larger than or equal
to 20%.

As we find the range between 20% and 30% quite stable regarding performance
as well as execution time, we choose a threshold of 20% (i.e., α = 0.2 ) of matched
frames for the further investigations.

Maximum Number of Entries in Hash Table. This test case concerns the search
for similar frames in the inverted index. As explained in Sec. 3.1 we find similar
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Fig. 10 Performance and execution times in dependence on the minimum required fraction
of matched frames.
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Fig. 11 Performance and execution times in dependence on the upper limit of entries per
index in the hash table. All values refer to 2 hour slices.

frames by looking up the list of frame numbers with the same hash value in the
inverted index table. In practice, however, all hash values those frame number list
exceeds an upper limit of entries must be disregarded. A very large number of entries
can either be caused by too many collisions of the hash function or result from
unspecific (generic) images such as black frames. Thus, this knockout criterion is
introduced to keep evaluation times low for video streams with long self-similar or
unspecific image sequences.

As revealed in Figure 11, the influence of this parameter is as expected: Recall
can be increased, if we expand our image lists, but simultaneously precision de-
creases slightly. However, we find this parameter to be most relevant for execution
time. In fact, we introduced this limit after watching a tennis match that dramat-
ically slowed down the whole system. The parameter keeps execution time nearly
constant, even if there are long periods of very similar images in the stream. Keeping
in mind that commercials are short and in general of dynamic content, this parameter
is not a restriction.

According to our tests a maximum number of 100 entries per hash value in order
to take corresponding frames into account is a good choice for our test configuration
of 2 hour slices, i. e. per 180,000 frames. Clearly, this value highly depends on the
chosen image features, the applied hash function as well as the duration of the video
that is mined.

Minimum Length of Duplicates. This test case applies to the identification of
repeated sequences only. Requiring a minimum sequences duration Si when form-
ing a duplicate D is one possible mechanism for coarse filtering as described in
Sec. 3.4. In fact we require a minimum count n of clips as well as a minimum length
(framei

n − framei
1) before creating a duplicate as a possible candidate for a repeated

clip. In this way very short and sporadic similar clips can be discarded.
In Figure 12 performance values and execution times for different required se-

quence lengths are shown. During these experiments we scaled the required mini-
mum number n of clip proportionally.
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Fig. 12 Performance and execution times in dependence on the minimum length of sequence
duplicates.

The recall of Chart TV is nearly constant until the minimum required length
exceeds the smallest occurring commercials with a length of 125 frames (see Fig. 6).
The precision is lower for small values, but keeps nearly constant for lengths greater
than 80 frames. For TV content with such clear commercial characteristics as shown
by Chart TV this filter is a good choice for reducing false matches. For Sky Sports
News the situation is more complicated. There are many short ads of 75 frames only
as well as more recurring non-commercial clips with typical ad durations than in
Chart TV. Thus, we find that recall is negatively influenced by increased duration
thresholds, whereas the precision can be enhanced significantly. The execution times
for clip search is not influenced, because the filter is applied afterwards; the time for
identifying repeated sequences is nearly independent, too. For video content like
Chart TV a minimum length of 100 frames is an appropriate value, whereas in Sky
Sports News this threshold discards the very short commercials.

4.2 Detection Performance

After our sensitivity analysis in the various parameters we finally summarize the
performance of our system in detecting unknown commercials by means of their
repetitions over one day. Additionally, we discuss the improvements that can be
achieved by searching for repeated clips throughout two broadcast days. We use
the parameters, which led to the best results during our tests: we set the clip length
to 25 frames, require 20% of matched frames between two clips to be considered
similar, take only frames into account which belong to hash values with less than
100 entries, and require a minimum length of a 100 frames for sequences assembled
from clips. We initialized the frame-by-frame search for the estimation of start and
end frames with the most frequent offset from the clip pair set of the duplicate, and
filter the result list of repeated clips by the ’multiple of 5s’ filter that accounts for
the typical ad durations.
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Table 2 Recall, precision and execution times for our test videos: RC
M and PC

M - recall and
precision of all repeatedly occurring commercials, RC

MD and PC
MD - recall and precision of

repeatedly occurring different commercials, RC - recall of all occurring commercials, RC
D -

recall of different commercials.

Chart TV 24h Chart TV 48h Sky Sports News 24h

RC
M 94.4% 95.8% 74.0%

RC
MD 93.4% 93.7% 79.1%

RC 83.1% 89.2% 65.3%
RC

D 63.4% 67.5% 51.4%

PC
M 81.0% 78.6% 82.5%

PC
MD 82.0% 70.9% 80.6%

Search Time Clips [s] 260 1362 207
Search Time Rep. Seq.
[s]

33 491 32

Table 2 lists the different performance values discussed above for our two 24
hours test videos as well as for the 48 hours search through Chart TV.

Concentrating on the performance of finding repeated sequences recall values
RC

M and RC
MD are of interest. RC

M is the rate for detecting all recurring commercials,
while RC

MD concerns all recurring different commercials. The relationship between
both values depends on the number of repetitions of each spot. The detection rate
for Chart TV is – independent of the video length – better than for Sky Sports News.
The main reasons are already discussed above and are mainly due to the occurrence
of shorter commercials in Sky Sports News.

With regard to a commercial detection system RC and RC
D are of further interest.

RC captures the recall with respect to the detection of all occurring commercials
NC and RC

D to all occurring different commercials NC
D. Repetition is not required for

these recall values. Due to the high rate of repeated commercials (see Table 1), val-
ues are strongly correlated to RC

M and RC
MD, resulting in a reasonable recall concern-

ing all commercials for Chart TV. Results for Sky Sports News could be enhanced
by channel specific parameter settings.

The precision value PC
M relates to all detected repeating video sequences, while

PC
MD focus on repeated different sequences. Again, the relation between both values

depends on the number of repetitions of detected commercials and detected non-
commercial sequences. If commercials are more often repeated, PC

M is higher. Note
that precision drops for a longer search time due to finding more repeated non-
commercial sequences and a higher probability for coalescing two commercials to
one if both commercials are repeated in the same temporal order.

Run times in Tab. 2 belong to search runs through 24 and 48 hours videos, re-
spectively. Here, the search time does not scale linearly, because we compare nT

2 hours slices with each other, resulting in nT (nT + 1)/2 operations. Therefore, in
our live detection system the search is carried out each 2 hours, and execution time
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scales linearly with the number of past slices we search through, because in this case
only the actual slice is compared with those of the past resulting in nT operations.

4.3 Color Patches Features and Gradient Histograms

All experiments in the previous two sections have been carried out with Gradient
Histograms as image feature. In this section we investigate the influence of the cho-
sen image feature on the overall performance. Thus we compare the results with
GHs against the results with CPFs.

Figure 13 shows the precision and recall values for both of our test videos for
both image features: CPFs and GHs. Performance is plotted against the number
of significant bits b used in the locality sensitive hashing step. Both image features
perform in a similar way. Searching for clips with GHs is up to 30% faster than using
CPFs. This is probably due to the better mixing characteristics of the gradient-based
features. Color features are usually more clustered in feature space [10].

4.4 Mining Different TV Channels

This section is dedicated to the practical operation of our system. We apply the sys-
tem to a variety of broadcast stations from different countries with different content,
different ad presentation styles as well as different amounts of advertisements. For
every video analyzed we build a database of repeating sequences and label all en-
tries Ñ in the database manually as commercials or non-commercials. According to
these values we can evaluate the precision of our automatic mining for commercials.
However, it is almost not possible to predict the recall from the maximum expected
amount of advertisements, because the real fraction may vary from station to station
(see Tab. 1), and is influenced by the time of day, the day of week, or even single
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Fig. 13 Performance values for test videos (a) Chart TV and (b) Sky Sports News plotted
against the number of significant bits b used for quantization in the computation of the in-
verted index.
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Table 3 Commercial detection performance of our system for different broadcast stations.
Given are the durations of the videos we mine, the number ÑC of commercials found, the
number Ñ of all repeated clips found, the precision P̃C = ÑC/Ñ, the number ÑC

±0 of all frame-
accurately found commercials, and the number ÑC

±5 of commercials found if a maximum
error of ±5 frames at the start and/or end position is tolerated.

TV station Video length
[h]

ÑC Ñ P̃C [%] ÑC
±0 ÑC

±5

ARD 60 10 49 20.4 2 8
RTL A 13 31 34 91.2 1 30
RTL B 11 12 16 75.0 0 12
RTL C 13 25 35 71.4 1 24

Chart Show TV 51 102 130 78.5 96 6
MTV 48 67 138 48.6 59 8
MTV with mask 48 70 115 60.9 58 12
Sky Sports News A 48 166 221 82.6 156 10
Sky Sports News B 63 178 315 56.5 147 31

Gemini 48 25 79 31.6 20 5

CBS 5 A 4 15 18 83.3 4 11
CBS 5 B 12 32 45 71.1 9 23
ESPN 10 21 27 77.8 1 20

events. Note, that the precision P̃C may differ from the true value reported in Tab. 2,
because it may happen here that due to a recognition error a sequence is added twice
as different sequences to the database.

Table 3 lists the experimental results for various broadcast stations. We tested the
algorithm on TV channels, which contain only a small amount of commercials such
as the German public broadcaster ARD, as well as on private broadcast channels
like Sky Sports News (UK) or RTL (Germany), which devote about 20% of their
broadcast time to commercials (see Tab. 1). Note that 20% is the limit in the EU for
private broadcast channels due to a directive of the European Union [2], allowing a
maximum of 12 minutes of advertisement per hour.

The regulations for public broadcast in Germany are even stricter. Averaged over
the year only 20 minutes per day of commercials are allowed to be broadcast, but not
more than 25 minutes per day (see [3]). These rules make commercials a rare event
in our ARD video stream. Consequently, we only detected 10 distinct commercials
within 2.5 days at a low precision of about 20%. Among the falsely detected clips
are a number of channel previews with durations typical for commercials. The re-
maining false detections are mainly caused by repeated news stories. For the three
relatively short searches in RTL we achieve a good precision of 70–90%.

MTV (UK) is not only a music channel like Chart Show TV (Chart TV), but also
broadcasts shows and TV series, especially for young people, with a large amount
of commercials. Here, we can improve the low precision of less than 50% by using a
spatial mask, which neglects the first two rows of the 8×8 subareas. By this means
we can significantly reduce false detections, which have been caused by overlaying
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the music clip title in the upper part of the video frames. Because these overlays may
vary across repetitions of a music clip, clips are not detected as a whole. Detected
subsequences may unfortunately have the typical durations of commercial.

Sky Sports News A corresponds to our test video. Sky Sports News B is a differ-
ent recording of the same channel. This time precision is much lower as our algo-
rithm fails probably due to repeatedly broadcast sports events from NTSC footage
that is not repeated frame identical. This results in the detection of sequences with
arbitrarily beginning and ending. The lack of robustness in this specific case is a
disadvantage of our algorithm.

Gemini is an Indian TV channel. Here, we guess a precision of about 30%.
However, for non-natives it has been difficult to rate the results: what are commer-
cials and what not? For the same reason we could not analyze the problems of our
algorithm.

CBS 5 and ESPN are US broadcast stations. They differ from the other stations
by their TV norm NTSC instead of PAL. Nevertheless, we get comparable precision
values. Most false alarms result from previews and channel advertisements, which
are presented commercial-like. We include the relatively short recording named
CBS 5 A into our experiments, because we know the ground truth of this video.
We can determine the recall to be 78.9%.

In Tab. 3 we added information about the accuracy of the detected sequences.
Usually, 80% and more of the detected commercials have been detected frame-
accurate, except for the German and US stations. Here, the separating black frames
are detected as parts of the repeated sequences. we identify dissolves and fade-ins
and outs between commercials in the US TV as the source of problems.

5 Related Work

Analyzing TV broadcasts comprises several tasks such as the recognition of copies
of known video clips, the identification of certain events, or the detection of video
sequences of interest. In most cases all approaches are related to each other. So, you
may first detect sequences of interest and then search for copies. Or you first identify
all repeating sequences and than extract a particular subset. Commercial detection is
one well-studied topic of how all of these approaches can be applied to TV streams.
Other topics are, for example, news tracking or monitoring of sports events.

In the following we will give an overview of the approaches for commercial de-
tection and cast the detection of repeated sequences in the context of video retrieval.

If we do not have a database of commercials at hand, a feature-based detection
approach is needed. A first step is to identify commercial blocks based on the spe-
cial characteristics of commercials as well as their presentation by the TV stations.
In [25] Lienhart et al. (1997) derived typical ad properties such as their restricted
lengths, their high dynamic content, which can be measured by an increased cut-
rate, and the occurrence of still images at the end of spots presenting company re-
lated information, which are typically accompanied by the appearance of a certain
amount of text. Additionally, they extracted characteristic features of commercial
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blocks, which include the separation of single commercials by black frames and an
increased audio volume. The particular laws of a country may add more proper-
ties such as the requirement of intro/outro sequences which clearly separate adver-
tisements from program content and the disappearance of the channel logo during
commercial breaks.

This approach of identifying commercial blocks has been refined by other in-
vestigators. Dimitrova et al. (2002) [9] and Agnihotri et al. (2003) [4] extracted
commercial triggers from low-level MPEG decoding. At this level they could derive
information about the occurrence of black and unicolored frames, hard cuts, and
changes from and to letterbox formats. In [4] a genetic algorithm is used to exploit
the various analyzed features. Glasberg et al. (2006) [16] combined the appearance
of black frames, the disappearance of station logo, shot duration, and cut rate in
a decision tree to reliable recognize commercials, whereas Albiol et al. (2004) [5]
limit characteristic features to logo disappearance and shot duration (cut rate). In
[8] Chen et al. (2005) focused on the separation of commercials from news content.
Therefore, they combined cut frequency with a caption detector due to fewer cap-
tions in commercials than in newscasts. Furthermore, they implemented a speech-
music discriminator by combining typical audio-visual characteristics. Duan et al.
(2006) implemented a complete system consisting of commercial boundary detec-
tion, commercial classification and commercial identification [12]. In the first step
they seek for commercials using shot detection and audio scene change together
with the detection of black frames, silence and still images at the end of commercial
clips, which they mark as frames with product information. Especially from these
frames they extract keywords by means of OCR for the classification step and get
information about commercial content to identify the product line. For identifying
clips they use image features like ordinal representations and histograms of them.

There are several disadvantages of methods recognizing commercial blocks
based on their characteristic features. A certain amount of commercials are atyp-
ical. They have, for example, only a few cuts or even no cuts at all. They can appear
like news stories, movies or cartoons. Also laws vary between countries and in time,
which makes e.g. the logo disappearance during ad breaks not universally applica-
ble. Besides the separation by black frames we can find hard cuts or dissolves be-
tween consecutive commercials. Advertisements must not be part of a commercial
block at all, but can be broadcast as a single spot. This implies the need for a more
universal algorithm.

Detecting known commercials avoids the limitations of the feature-based ap-
proach. Therefore, a lot of frameworks follows this idea. Lienhart et al. (1997)
proposed an algorithm which makes use of approximate substring matching for
comparing the video input with sequences from a database [25]. Fingerprints based
on color coherence vector [27] of all known commercials are stored in the database.
Alternatives for fingerprinting as well as the detection and comparison methods have
been proposed. Sánchez and Binefa (1999), for example, reduced the fingerprint
storage by only storing image features for key frames [29]. Each key frame repre-
sents a single shot. They reduce the dimension of the fingerprint further by applying
Principle Component Analysis (PCA) to the color histograms feature vectors.
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Not only image features, but also temporal information from video stream can
be taken into account. Hoad and Zobel (2003) [21] improved their very compact
signature from [22], which only contains the duration of shots of a given video
sequence, to make it applicable to video clips containing only a few cuts. They
investigate features, which describe the differences between consecutive frames,
such as color shift, the distance between color histograms, and centroids, which
correspond to the motion vectors of the darkest and the lightest part of the pictures.

As a fast alternative for comparing two sequences, the use of inverted indexes
and hash tables has been investigated by Shivadas and Gauch (2007) in [30]. They
implemented a real-time commercial recognition system on the basis of color mo-
ments with frame-level hashing. The use of hash tables provides constant access to
large databases. Inverted indexes have been introduced to image retrieval by Squire
et al. (1999) [31].

For building a database for commercial recognition the detection of repeated se-
quences is an appropriate technique. Pua et al. (2004) introduced a real-time re-
peated video sequence identification system [28]. They extract color moments fea-
tures for all frames. Additionally they execute a temporal segmentation to get the
shot length to which an image belongs. Based on this temporal segmentation they
look for repeated shots by counting similar images, which are fast identified by
a hash table look-up. Gauch and Shivadas (2005) extend this approach to a com-
mercial detection system by adding a classifier, which labels repeated sequences
as commercials or non-commercials [14]. At this step they investigate the already
mentioned typical properties such as black frames or high cut rate.

Duygulu et al. (2004) only operate on the shot level by extracting key frames after
temporal segmentation [13]. They carry out a search for similar images concerning
a combination of color and edge based features together with a face detector. In their
second approach they merge audio and color features. With a proper combination
of both strategies they can improve their performance values. Together with Can
he developed in 2007 a system for near duplicate sequence detection, which are
not real copies, but can vary in illumination or view points [7]. These aspects are
more related to news tracking, and require image features, which are robust to such
variations, such as SIFT features [26] and HSV statistics. They construct a tree for
finding sequences within the lists of similar key frames.

In contrast to the previous approaches Yuan et al. (2007) provide an algorithm
without shot detection for finding repetitive clips [32]. They chop the video stream
into small overlapping segments and extract visual signatures for these small seg-
ments by averaging image color histograms and combining ordinal measures of all
frames into a histogram for the video segment. They build continuous paths for
finding repeated sequences through the lists of similar video segments.

6 Conclusion

We introduced an algorithm for detecting repeated sequences in TV streams. The
algorithm is designed to operate in real-time on live streams. The main intention of
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our framework is the creation of databases of recurring sequences. For later use of
such databases it is necessary to determine beginning and end of such sequences
frame-accurately, in contrast to other applications, which, for instance, only count
the number of repetitions. We applied the system to commercial detection as a pos-
sible field of application.

Our algorithm works well for broadcast station with only little amount of adver-
tisements as well as for stations heavy loaded with commercials. It is applicable to
both PAL and NTSC broadcasts. Our experiments showed that it is sometimes nec-
essary to adjust the system to channel characteristics to improve the performance of
repeated sequence detection in general and commercial detection based on simple
duration filters in specific. For channels making heavy use of overlay information
such as MTV or some sports casts, blocking out the spatial areas, which are of-
ten used to show overlay text, from the image feature computation improves the
detection performance significantly. In other cases we had to deal with constantly
appearing black frames for commercial separation. There was only one situation our
algorithm could not handle: the non-frame accurate repetition of sequences. Our al-
gorithm could not robustly detect these repetitions, since no provisions have been
taken for this specific scenario.

In our tests we investigated two different image features: color-based Color
Patches Features (CPFs) and edge-based Gradient Histograms (GHs). For our test
videos both feature types performed in a similar way. Color patches are faster to
evaluate and need a smaller amount of storage, but they are less discriminative and
may cause problems for ill-conditioned video streams [10].

We can finally conclude that we developed an algorithm for reliable real-time
detection of recurring sequences, which is successfully applied to broadcast stations
from all over the world.

Acknowledgements. This project was supported by Half Minute Media Ltd.

Appendix

The reduction of the feature vectors’ dimensionality by summation over subsets or
all components, respectively, preserves the relation of distances in the sense that
images, which are close together in the feature space, are also close together in the
reduced space. In the following we proof that the distance according to the L1-norm
in the reduced dimension is always equal to or less than the original distance.

Let a = (a1, . . . ,an) and b = (b1, . . . ,bn) be two n-dimensional feature vectors
with the L1-distance

d(a,b) =
n

∑
i=1

|ai −bi| , (33)

and A = (A1, . . . ,Ak) and B = (B1, . . . ,Bk), k < n, the corresponding feature vectors
in the k-dimensional reduced space with each of their components being a sum of a
subset of the components of the feature vectors a and b, respectively, i.e.,
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Ai =
ni

∑
j=mi

a j, Bi =
ni

∑
j=mi

b j, (34)

where without loss of generality

m1 = 1, mi ≤ ni ∀i, mi+1 = ni + 1 ∀i, nk = n.

Then, the L1-distance D(A, B) is always less than or equal to d(a,b), because

D(A,B) =
k

∑
i=1

|Ai −Bi| (35)

=
k

∑
i=1

∣∣∣∣∣ ni

∑
j=mi

a j −
ni

∑
j=mi

b j

∣∣∣∣∣ (36)

=
k

∑
i=1

∣∣∣∣∣ ni

∑
j=mi

(a j −b j)

∣∣∣∣∣ (37)

≤
k

∑
i=1

ni

∑
j=mi

∣∣a j −b j
∣∣ (38)

≤
n

∑
i=1

|ai −bi| (39)

≤ d(a,b). (40)
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5. Albiol, A., Fullà, M.J.C., Albiol, A., Torres, L.: Detection of tv commercials. In: Pro-
ceedings of the International Conference on Acoustics, Speech and Signal Processing,
Montreal, Canada, vol. 3, pp. 541–544 (2004)

6. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. Commun. ACM 51(1), 117–122 (2008),
http://doi.acm.org/10.1145/1327452.1327494

7. Can, T., Duygulu, P.: Searching for repeated video sequences. In: MIR 2007: Proceedings
of the international workshop on multimedia information retrieval, pp. 207–216. ACM,
New York (2007), http://doi.acm.org/10.1145/1290082.1290112

http://www.halfminute.com
http://doi.acm.org/10.1145/1327452.1327494
http://doi.acm.org/10.1145/1290082.1290112


Mining TV Broadcasts 24/7 for Recurring Video Sequences 355

8. Chen, J.C., Yeh, J.H., Chu, W.T., Kuo, J.H., Wu, J.: Improvement of commercial bound-
ary detection using audiovisual features. In: Ho, Y.-S., Kim, H.-J. (eds.) PCM 2005.
LNCS, vol. 3767, pp. 776–786. Springer, Heidelberg (2005)

9. Dimitrova, N., Jeannin, S., Nesvadba, J., McGee, T., Agnihotri, L., Mekenkamp, G.: Real
time commercial detection using mpeg features. In: Proceedings of the 9th International
Conference on Information Processing and Management of Uncertainty in Knowlwdge-
based Systems (IPMU 2002), Annecey, France, pp. 481–486 (2002)
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YouTube Scale, Large Vocabulary
Video Annotation

Nicholas Morsillo, Gideon Mann, and Christopher Pal

Abstract. As video content on the web continues to expand, it is increasingly im-
portant to properly annotate videos for effective search and mining. While the idea
of annotating static imagery with keywords is relatively well known, the idea of an-
notating videos with natural language keywords to enhance search is an important
emerging problem with great potential to improve the quality of video search. How-
ever, leveraging web-scale video datasets for automated annotation also presents
new challenges and requires methods specialized for scalability and efficiency.

In this chapter we review specific, state of the art techniques for video anal-
ysis, feature extraction and classification suitable for extremely large scale auto-
mated video annotation. We also review key algorithms and data structures that
make truly large scale video search possible. Drawing from these observations and
insights, we present a complete method for automatically augmenting keyword an-
notations to videos using previous annotations for a large collection of videos. Our
approach is designed explicitly to scale to YouTube sized datasets and we present
some experiments and analysis for keyword augmentation quality using a corpus of
over 1.2 million YouTube videos. We demonstrate how the automated annotation
of web-scale video collections is indeed feasible, and that an approach combining
visual features with existing textual annotations yields better results than unimodal
models.
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1 Introduction

The web has become an indispensable resource for media consumption and social
interaction. New web applications, coupled with spreading broadband availability,
allow anyone to create and share content on the world wide web. As a result there
has been an explosion of online multimedia content, and it is increasingly important
to index all forms of content for easy search and retrieval.

Text-based search engines have provided remarkably good access to traditional
web media in the online world. However, the web is rapidly evolving into a multime-
dia format, and video is especially prominent. For example, YouTube receives over
twenty hours of new video uploads every minute. Standard search engines cannot
index the vast resources of online video unless the videos are carefully annotated by
hand. User-provided annotations are often incomplete or incorrect, rendering many
online videos invisible to search engine users.

Clearly there is an immediate need for video-based search that can delve into
the audio-visual content to automatically index videos lacking good textual annota-
tions. Video indexing and retrieval is an active research discipline that is progressing
rapidly, yet much of this research avoids the difficult issue of web-scalability. We
need robust techniques for analyzing and indexing videos, and we also need tech-
niques to scale to handle millions of clips. Furthermore, we desire that web-scale
approaches benefit from the increase in data by learning improved representations
from the expanded datasets.

In this chapter we review a portion of the image and video mining literature with
a critical eye for scalability. Our survey covers both low level visual features and
higher level semantic concepts. We observe that in contrast to the relatively new
discipline of video annotation, image annotation has received considerably more
research attention in the past. Much of the image annotation work can be transferred
to the video domain, particularly where scalability issues are involved.

Video search and mining is a broad field, and here we choose to focus on the
task of automated annotation from web datasets. We propose a novel technique to
automatically generate new text annotations for clips within a large collection of
online videos. In contrast to existing designs which may involve user feedback,
visual queries, or high level semantic categories, our approach simply attempts to
enhance the textual annotations of videos. This is beneficial as user feedback and
visual query specification can be time consuming and difficult, and our approach is
not constrained to a fixed set of categories. Additionally, the enhanced annotations
resulting from our approach can be used directly in improving existing text-based
search engines.

Our method is depicted in Figure 1, and an overview of the procedure is as fol-
lows. Beginning with a query video to annotate, we decompose the video into shots
using a shot boundary detector. Visually similar shots are discovered from the pool
of shots across all videos in the corpus. Then, a probabilistic graphical model is used
to decide which annotation words to transfer from neighboring shots to the query
video. Key to this approach is a scalable approximate nearest neighbor algorithm
implemented using MapReduce [9], coupled with a compact representation of shot
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city bike jump parkour

city -

bike 0.3 -

jump 0.2 0.9 -

parkour 0.6 0.1 0.8 -

Existing
Annotations:

parkour

parkour
city

jump
people

bike
sports

New Annotations: jump, city

query video

compute visual similarity to corpus videos: compute co-occurrence of existing 
annotation(s) with corpus annotations:

combine visual and textual 
predictions

Fig. 1 An example of our approach to generating new text annotations for online videos.

feature vectors. The probabilistic model maintains efficiency by approximating the
contributions of the majority of corpus video shots which are not found to be nearest
neighbors to a query.

Video search and mining research has traditionally involved known datasets with
fixed sets of keywords and semantic concepts, such as TRECVID [41] and the Ko-
dak benchmark dataset [26]. A key difference in our work is the absence of a con-
strained set of annotation keywords. We construct an annotation vocabulary directly
from annotations provided by users and uploaders of online videos. This permits a
larger range of annotations that are tailored for the data and it avoids costly manual
construction of vocabularies and concept ontologies. However, it also introduces
new challenges for measurement and performance evaluation, since ground truth
labels are not fixed or verified.

We conclude the chapter with preliminary results of our approach applied to a
large portion of the YouTube corpus.
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2 Image and Video Analysis for Large-Scale Search

Successful annotation and search is supported by deep analysis of video content.
Here we review methods for analyzing and indexing visual data, and observe how
these methods relate to the problem of large-scale web video search. We begin our
review with image analysis techniques as many successful video analysis methods
are constructed from them, and they offer unique insights into the scalability prob-
lem. In some cases image techniques may be applied directly to still video frames.
We then turn our attention to techniques specifically for video.

2.1 Image Analysis and Annotation

Image annotation is an active field of research that serves as a precursor to video
annotation in numerous ways. Video features are often inspired and sometimes di-
rectly borrowed from image techniques and many methods for image indexing are
also easily applied to video. Here we survey some of the most relevant static image
annotation literature including modern trends in the field and adaptations of tech-
niques for static image annotation to video. We also cover emerging and state of the
art feature extraction techniques specifically designed for video. We review image
features, indexing techniques, and scalable designs that are particularly useful for
working with web-scale video collections.

2.1.1 Image Features for Annotation

The relatively early work on image annotation by Mori et al. [31] used the co-
occurrence of words and quantized sub-regions of an image. They divided an image
into a number of equally sized rectangular parts, typically 3x3 or 7x7. They then
use a 4x4x4 cubic RGB color histogram, and 8-direction and 4 resolution histogram
of intensity after Sobel filtering. This procedure gives them 96 features from an im-
age. Duygulu et al. [10] cast the object recognition problem as a form of machine
translation and sought to find a mapping between region types and annotation key-
words. They segmented images using normalized cuts then only used regions larger
than a minimum threshold for their visual representation. This procedure typically
lead to 5-10 regions for an image. From these regions they used k-means to ob-
tain 500 blobs. They computed 33 features for each image including: region color
and standard deviation, region average orientation energy (12 filters), region size,
location, convexity, first moment, and the ratio of region area to boundary length
squared. Their model was trained using 4500 Corel images where there are 371
words in total in the vocabulary and each image has 4-5 keywords. Jeon et al. [22]
used the same Corel data, word annotations and features used in [10]. They used
this vocabulary of blobs to construct probabilistic models to predict the probability
of generating a word given the blobs in an image. This general approach allows one
to annotate an image or retrieve images given a word as a query.

More recently Makadia et al. [28] have proposed a new, simple set of baseline im-
age features for image annotation problems. They also proposed a simple technique
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to combine distance computations to create a nearest neighbor classifier suitable for
baseline experiments. Furthermore, they showed that this new baseline outperforms
state of the art methods on the Corel standard including extensions of Jeon et al.
[22] such as [14]. The new baseline was also applied to the IAPR TC-12 [18] col-
lection of 19,805 images of natural scenes with a dictionary of 291 words as well
as 21,844 images from the ESP collaborative image labeling game [45]. We discuss
this method in some detail because it produces state of the art results and we will
use these features in our own experimental work on video annotation. We will refer
to these features as JEC (Joint Equal Contribution) features as the authors advocate
computing distances using an equal weighting of distances computed for a given
feature type when making comparisons. JEC features consist of simple color and
texture features. Color features are created from coarse histograms in three different
color spaces: RGB, HSV and LAB. For texture, Gabor and Haar Wavelets are used.

Color 16-bin per channel histograms are used for each colorspace. In a com-
parison of four distance measures (KL-divergence, a χ2 statistic, L1-distance, and
L2-distance) on the Corel dataset, [28] found that L1 performed the best for RGB
and HSV while the KL-divergence was better suited for LAB.

Texture Each image is filtered with Gabor wavelets at three scales and four ori-
entations. From each of twelve response images a histogram for the magnitudes is
built. The concatenation of these histograms is a refered to as feature vector ‘Gabor’.
The second component of the Gabor feature vector captures the phase by averaging
the phase over 16× 16 blocks in each of the twelve response images. The mean
phase angles are quantized into eight values or three bits and concatenated into a
feature vector referred to as ‘GaborQ’.

Haar wavelets are generated by block convolution with horizontally, diagonally
and vertically oriented filters. After rescaling an image to 64× 64 pixels a ‘Haar’
feature is generated by concatenating the Haar response magnitudes. Haar responses
are quantized into the three values: 0, 1 or -1 for zero, positive and negative re-
sponses. A quantized version of the Haar descriptor called ‘HaarQ’ was also ex-
plored. They used L1 distance for all texture features.

2.1.2 Image Features for Object, Category and Scene Recognition

Object recognition, scene recognition and object category recognition can all be
thought of as special cases of the more general image annotation problem. In object
recognition there has been an lot of interest in using techniques based on SIFT de-
scriptors [27]. We briefly review SIFT here since they are representative of a general
“keypoint plus descriptor” paradigm. SIFT and other similar variants consist of two
broad steps, keypoint detection and descriptor construction. First, one detects key-
points or interest points in an image. In the SIFT approach one detects minimal or
maximal points in a difference of Gaussians scale space pyramid, but other methods
use Harris corners or other interest point detection techniques. The local descriptor
centered at the interest point is assigned an orientation based on the image gradient
in a small region surrounding the key-point. Finally, given a scale and orientation,
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the SIFT descriptor itself is built from histograms of image gradient magnitudes in
the region surrounding the scaled and oriented region surrounding the key-point.

SIFT based techniques work well for detecting repeated instances of the same ob-
ject from images of multiple views. However, other research [13] has suggested that
for recognizing more variable visual concepts like natural scene categories such as
forest, suburb, office, etc. it is better to build SIFT descriptors based on dense sam-
pling as opposed to centered on an interest point detector. More recently histogram
of oriented gradient or HoG features [7] have been receiving increased attention
for more general visual recognition problems. Such features are similar to SIFT
descriptors but take a dense sampling strategy. More specifically, Dalal and Triggs
[7] studied each stage of descriptor computation and the effect on performance for
the problem of human detection. They concluded that fine-scale gradients, fine ori-
entation binning, relatively coarse spatial binning, and high-quality local contrast
normalization in overlapping descriptor blocks are all important for good results.
Since these observations HoG features have been a popular and effective choice for
various groups participating in the Pascal Visual Object Classes challenge [11]. The
Pascal challenge is a good example of a well organized competition focusing on
the task of recognition and detection for a 20 object classes, namely recognizing:
People, Animals - bird, cat, cow, dog, horse, sheep, Vehicles - aeroplane, bicycle,
boat, bus, car, motorbike, train, and Indoor items - bottle, chair, dining table, potted
plant, sofa, tv/monitor. Larger object category data sets such as CalTech101 [12] or
CalTech256 [17] with 101 and 256 object categories respectively have also received
considerable attention. Indeed, many of the recent developments in visual features
have been motivated by improving recognition performance for these object cate-
gory problems.

There has been increasing interest in addressing much larger problems for ob-
ject, category and scene recognition. A common theme amongst many of these ap-
proaches is the use of vocabulary trees and data structures for indexing large visual
vocabularies. In fact these vocabularies are typically so large that the indexing step
serves to operate much like an approximate nearest neighbor computation. We dis-
cuss a few prominent examples.

Recently, Nistér and Stewénius [32] developed a system able to recognize in real-
time specific CD covers from a database of 40,000 images of popular CDs. They
also presented recognition results for 1619 different everyday objects using images
of four different views of each object. For their features they use an interest point
detection step obtained from Maximally Stable Extremal Regions (MSERs) [29].
They obtained an elliptical patch from the image centered at the interest point which
they warped into a circular patch. From this patch they computed a SIFT descriptor.
They quantized descriptors using k-means and to accelerate the matching of these
features to a large database they created a hierarchical cluster tree. They used a bag
of visual words representation and performed retrieval using term frequency inverse
document frequency tf-idf commonly used in text retrieval.

In another example, Schindler et al. [37] used a similar approach for the problem
of location recognition from a city scale database of roadside images. Their imagery
continuously covered a 20 kilometer stretch of road through commercial, residential
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and industrial areas. Their database consisted of 30,000 images and 100 million
SIFT features. They used hierarchical k-means to obtain a vocabulary tree and they
experimented with different branching factors and techniques for identifying infor-
mative features.

Finally, the work of Torralba et al. [42] represents an important shift towards ad-
dressing problems related to extremely large data sets. They have used text based
queries to image search engines to collect 80 million low resolution images from
the web. Natural language annotations are used such that imagery is associated with
words; however, language tags are only based on the initial query terms used to
fetch imagery and the results are noisy. However, they have been able to demon-
strate that a large database of small images is able to solve many different types
of problems. Similar to other large scale techniques they use variations of nearest
neighbor methods to leverage the information contained in large data sets.

2.2 Analyzing and Searching Videos

In contrast to static images, working with video provides a fresh set of opportuni-
ties as well as new challenges. Video carries additional modalities of information
including motion cues, trajectories, temporal structure, and audio. These additional
data streams are rife with useful, search-relevant information, but they are also very
difficult to model. While audio is an important element of video we will focus our
discussion and experiments here on visual features.

2.2.1 Adapting Methods for Static Imagery to Video

One way to obtain features for video annotation is to directly adapt techniques de-
veloped for static image annotation. For example, [14] extends and adapts the initial
static image annotation approach presented in Jeon et al. [22] to create what they
call multiple bernoulli relevance models for image and video annotation. In this ap-
proach, a substantial time savings is realized by using a fixed sized grid for feature
computations as opposed to relying on segmentations as in [22] and [10]. The fixed
number of regions also simplifies parameter estimation in their underlying model
and makes models of spatial context more straightforward. To apply their method to
video they simply apply their model for visual features within rectangular regions
to the keyframes of a video. They compute 30 feature vectors for each rectangular
region consisting of: 18 color features (including region color average, standard de-
viation and skewness) and 12 texture features consisting of Gabor energy computed
over 3 scales and 4 orientations).

The underlying multiple bernoulli relevance model consists of a kernel density
estimate for the features in each region conditioned on the identity of the video and a
multivariate bernoulli distribution over words, also conditioned on the identity of the
video. As we shall see shortly, when we seek to use a kernel density type of approach
for extremely large datasets such as those produced by large video collections, we
must use some intelligent data structures and potentially some approximations to
keep computations tractable. The authors of [14] also argue that their underlying
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bernoulli model for annotations is more appropriate for image keyword annotations
where words are not repeated compared to the multinomial assumptions used in
their earlier work [22]. The experimental analysis of the multiple bernoulli model
of [14] used a subset of the NIST Video Trec dataset [34]. Their dataset consisted of
12 MPEG files, each 30 minutes long from CNN or ABC including advertisements.
There were 137 keywords in the annotation vocabulary and they found their model
produced a mean average precision of .29 for one word queries.

The “Video Google” work of Sivic and Zisserman [40] is representative of a dif-
ferent approach to video retrieval based more on object recognition and SIFT tech-
niques. The approach allows for searches and localizations of all the occurrences of
a user outlined object in a video. Sivic and Zisserman compute two different types of
regions for video feature descriptors. The first, referred to as a Shape Adapted (SA)
region, is constructed by elliptical shape adaptation around an interest point. The
ellipse center, scale and shape are determined iteratively. The scale is determined
from the local extremum across scale of a Laplacian and the shape is determined by
maximizing the intensity gradient isotropy over the region. The second type of re-
gion, referred to as a Maximally Stable (MS) region, is determined from an intensity
watershed image segmentation. Regions are identified for which the area is station-
ary as the intensity threshold is varied. SA regions tend to be centered on corner like
features and MS regions correspond to blobs of high contrast with respect to sur-
roundings. Both regions are represented as ellipses and for a 720×576 pixel video
frame one typically has 1600 such regions. Each type of region is then represented
as a 128 dimensional SIFT descriptor. Regions are tracked through frames and a
mean vector descriptor is computed for each of the regions. Unstable regions are re-
jected giving about 1000 regions per frame. A shot selection method is used to cover
about 10,000 frames or 10% of the frames in a typical feature length movie resulting
in a data set of 200,000 descriptors per movie. A visual vocabulary is then built by
K-means based clustering. Using scenes represented in this visual vocabulary they
use the standard term frequency-inverse document frequency or tf-idf weighting and
the standard normalized scalar product for computation for retrieval. This approach
produced impressive query by region demonstrations and results and while it was
not directly designed for the problem of video annotation, the approach could easily
be adapted by transferring labels from matching videos.

2.2.2 More Video Specific Methods

We now turn our attention to techniques much more specifically designed for video.
Certainly it is the spatio-temporal aspect of video that gives video feature computa-
tions their distinctive character compared to techniques designed for static imagery.
The particular task of human activity recognition frequently serves as a motivat-
ing problem. Early work on activity recognition analyzed the temporal structure
of video and built a table of motion magnitude, frequency, and position within a
segmented figure [35] or involved building a table with the presence or recency
of motion at each location in an image [4]. Of course, highly specific approaches
for activity recognition can use fairly detailed and explicit models of motions for
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activities to be recognized. These techniques can be very effective, but by their na-
ture, they cannot offer general models of the information in video in the way that
less domain-specific features can.

Recent developments in video feature extraction have continued to be strongly
influenced by activity recognition problems and have been largely based on local
spatio-temporal features. Many of these features have been inspired by the success
of SIFT like techniques and the approach of Sivic and Zisserman [40] described
previously is an early example. Similar to the SIFT approach, a common strategy
for obtaining spatio-temporal features is to first run an interest point detection step.
The interest points found by the detector are taken to be the center of a local spatial
or spatio-temporal patch, which is extracted and summarized by some descriptor.
Frequently, these features are then clustered and assigned to words in a codebook,
allowing the use of bag-of-words models from statistical natural language process-
ing for recognition and indexing tasks. Considerable recent work in activity recog-
nition has focused on these types of bag-of-spatio-temporal-features approaches,
often explicitly cast as generalizations of SIFT features. These techniques have been
shown to be effective on small, low resolution (160x120 pixels per frame) estab-
lished datasets such as the KTH database [38] with simple activities such as people
running or performing jumping jacks. Recent extensions of the space-time cuboid
approach [23] have been applied to learn more complex and realistic human actions
from movies using their associate scripts. This work has sought to identify complex
actions like answering a phone, getting out of a car or kissing. This work also em-
phasizes the importance of dealing with noisy or irrelevant information in the text
annotation or associated movie script.

Features based on space-time cuboids have certain limits on the amount of space
and time that they can describe. Human performance suggests that more global spa-
tial and temporal information could be necessary and sufficient for activity recogni-
tion. In some of our own recent research [30] we have proposed and evaluated a new
feature and some new models for recognizing complex human activities in higher
resolution video based on the long-term dynamics of tracked key-points. This ap-
proach is inspired by studies of human performance recognizing complex activities
from clouds of moving points alone.

2.3 TRECVID

TRECVID [41] is an ongoing yearly competitive evaluation of methods for video
indexing. TRECVID is an important evaluation for the field of video search as it
coordinates a rigorous competitive evaluation and allows the community to gauge
progress. For these reasons we briefly review some relevant elements of TRECVID
here and discuss some recent observations and developments. More details about
the 2008 competition are given in [34].

One of the TRECVID tasks is to identify “high level features” in video. These
features can be thought of as semantic concepts or annotation words in terms of



366 N. Morsillo, G. Mann, and C. Pal

our ongoing discussion. The following concepts were used for the 2008 evalua-
tion: classroom, bridge, emergency vehicle, dog, kitchen, airplane flying, two peo-
ple, bus, driver, cityscape, harbor, telephone, street, demonstration or protest, hand,
mountain, nighttime, boat or ship, flower, singing. Given the visual concepts and a
common shot boundary reference, for each visual concept evaluators return a list of
at most 2000 shots from the test collection, ranked according to the highest possibil-
ity of detecting the presence of the visual concept (or feature in the TRECVID lan-
guage). In 2004, Hauptmann and Christel [19] reviewed successful past approaches
to the challenge. Their conclusions were that combined text analysis and computer
vision methods work better than either alone; however, computer vision techniques
alone perform badly, and feature matching only works for near-duplicates. It is inter-
esting to note that this supports the notion that with a much larger corpus there is a
much better chance of finding near duplicates. In contrast to TRECVID, in our own
experiments that we present at the end of this chapter we are interested in dramati-
cally scaling up the amount of data used to millions of videos as well as extending
the annotation vocabulary to a size closer to the complete and unrestricted vocab-
ulary of words used on the web. The evaluation for this type of scenario poses the
additional real-world challenge of working with noisy web labels.

2.4 The Web, Collaborative Annotation and YouTube

The web has opened up new ways to collect, annotate store and retrieve video. Var-
ious attempts have been made to solve the annotation problem by allowing users on
the web to manually outline objects in imagery and associate a text annotation or
word with the region. The LabelMe project [36] represents a prominent and repre-
sentative example of such an approach. In contrast, Von Ahn et al. have developed a
number of games for interactively labeling static images [45, 46]. These methods are
attractive because the structure of the game leads to higher quality annotations and
the annotation process is fun enough to attract users. These projects have been suc-
cessful in obtaining moderate amounts of labeled data for annotation experiments;
however, the rise of YouTube has opened up new opportunities of unprecedented
scale.

YouTube is the world’s largest collection of video. In 2008 it was estimated that
there are over 45,000,000 videos in the YouTube repository and that it is growing
at a rate of about seven hours of video every minute [2]; in 2009 that rate was
measured at twenty hours of video per minute. Despite this there has been relatively
little published research on search for YouTube. Some recent research as examined
techniques for propagating preference information through a three-month snapshot
of viewing data [2]. Other works have examined the unique properties of web videos
[48] and the use of online videos as training data [44]. In contrast, we are interested
in addressing the video annotation problem using a combination of visual feature
analysis and a text model. YouTube allows an uploader to associate a substantial text
annotation with a video. In our own experimental analysis we will use the title of the
video and this annotation as the basis of the text labels for the video. While there are
also facilities for other users to comment on a video, our initial observations were



YouTube Scale, Large Vocabulary Video Annotation 367

that this information was extremely noisy. We thus do not use this information in
our own modeling efforts. In the following section we will discuss some of the key
technical challenges when creating a solution to the video annotation problem for a
video corpus the size of YouTube.

3 Web-Scale Computation of Video Similarity

Any technique for automatic annotation on YouTube must be designed to handle
vast amounts of data and a very large output vocabulary. With traditional classi-
fication approaches, a new classifier must be trained for each distinct word in the
vocabulary (to decide how likely that particular word is to be an appropriate la-
bel for that video). Clearly, this approach cannot support a vocabulary size in the
hundreds of thousands. In our scenario, retrieval based approaches offer an appeal-
ing alternative, since one similarity function can be used to transfer an unbounded
vocabulary. These issues motivate the following discussion on nonparametric ap-
proaches to computing visual similarity. The methods detailed in this section are
designed for scalability and we focus on those that have been applied experimen-
tally in the literature to large scale image and video problems.

We begin this section by considering the fundamental benefits and drawbacks
of shifting toward web-scale visual datasets. Next we examine current nonparamet-
ric techniques for computing visual similarity. Noting that our problem setting of
YouTube analysis requires extensive computational resources, we conclude the sec-
tion with a discussion of the MapReduce framework as it is an integral component
of the implementation of our proposed methods.

3.1 Working with Web-Scale Datasets

It has only recently become possible to attempt video search and mining on YouTube
sized datasets. Besides the steep computational resources required, the most obvious
impediment has been the collection of such a massive and diverse pool of videos.
The data collection problem has been conveniently solved by social media websites
coupled with contributions from millions of web users. Now that working with web-
scale video data is a real possibility, we must consider whether it is a worthwhile
endeavor.

Firstly, there are clear drawbacks to working with massive online video collec-
tions. It is difficult and computationally costly to process even moderately sized
video datasets. The cost is not always justified when existing datasets including
TRECVID remain adequately challenging for state of the art research. Furthermore,
web data suffers from quality control problems. Annotations of online videos are no-
toriously incomplete. Working with TRECVID avoids this issue by providing hand-
crafted annotations and carefully constructed categories. The goals of the TRECVID
challenge are clearly defined making direct comparative performance evaluations
easy. In contrast, noisily annotated online media have an unbounded and incomplete
annotation vocabulary, making performance evaluation difficult. When measuring
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annotation accuracy of online videos and treating user annotations as ground truth,
false positives and false negatives may be tallied incorrectly due to mistakes inherent
in the ground truth labels.

There are, however, a number of compelling reasons to focus research on web-
scale video datasets. The most immediate reason is that there is suddenly a practical
need for indexing and searching over these sets. Online video sites wish to have all
of their videos properly accessible by search. When videos are uploaded without
good metadata, those videos effectively become invisible to users since they cannot
be indexed by traditional search engines.

Working with real world web datasets provides new opportunities for studying
video annotation using large unbounded vocabularies. Most search terms posed
to sites like YouTube do not correspond to the limited category words used in
TRECVID; it is of practical importance to be able to annotate videos with a much
larger pool of relevant words that approach the natural vocabulary for describing
popular videos on the web. As we shall see in our experiments, an automatically
derived vocabulary from YouTube tags looks quite different from the TRECVID
category list.

Finally, a number of recent works in the image domain have shown promising re-
sults by harnessing the potential of web image collections [42, 6, 20]. New avenues
of research have become possible simply from the growth and availability of online
imagery, and we expect the same to be true of online video.

3.2 Scalable Nearest-Neighbors

Quickly finding neighboring points in high dimensional space is a fundamental
problem that is commonly involved in computing visual similarity. The k near-
est neighbor problem is defined on a set of points in d-dimensional vector space
Rd , where the goal is to find the k nearest points to a query vector under some dis-
tance metric. Euclidean distance is the most common and we use it exclusively in
the following sections. We examine 3 of the most prominent methods for approx-
imate nearest neighbor search which are well suited to large scale video analysis
problems. Here the focus is on search algorithms, keeping in mind that most of the
feature representations discussed earlier can be substituted into these procedures.

We begin with vocabulary trees which are an extension of the visual vocabulary
method of quantizing and indexing visual features. Vocabulary trees (and visual
vocabularies) are usually not branded as nearest neighbor methods; however, we
observe that as the number of nodes in a tree increases, feature space is quantized at
finer levels until the result resembles a nearest neighbor search.

Locality sensitive hashing (LSH) and spill-trees are also surveyed. These meth-
ods are true approximate nearest neighbor search structures with nice theoretical
performance guarantees, and spill-trees are particularly useful as they are easy to
implement in a computing cluster.
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3.2.1 Vocabulary Trees

The vocabulary tree method of Nister and Stewenius [32] is an efficient way of par-
titioning a vector space and searching over the partitions. The algorithm amounts to
a hierarchical k-means clustering and proceeds as follows. In the first step, all of the
data points are clustered using k-means. If there are many points a sampling of them
may be used in this step. Each point is assigned to its nearest cluster center, then all
points belonging to the individual centers are clustered using k-means again. The
process is repeated recursively until the number of points assigned to leaf clusters in
the tree is sufficiently small. The shape of the tree is controlled by k, the branching
factor at each node.

The tree is queried by recursively comparing a query vector to cluster centers
using depth first search. At each level of the tree k dot products are calculated to
determine the cluster center closest to the query. [32] use an inverted file approach
[47] to store images in the tree for efficient lookup. Local image feature vectors are
computed on the image database to be searched, and these vectors are pushed down
the tree. Only the image identifier and the count of local features reaching each node
are stored in the tree; the feature vectors need not be stored resulting in vast space
savings.

A downside to this approach is inaccuracy incurred by the depth first search pro-
cedure, which does not guarantee that the closest overall leaf node will be found.
Schindler et al. [37] call this the Best Bin First (BBF) algorithm and propose Greedy
N-Best Paths (GNP) as a solution. GNP simply allows the N closest cluster centers
to be traversed at each level of the tree, thus increasing the computation by a factor
of N and providing an easy tradeoff between accuracy and efficiency.

Generally, performance on retrieval tasks using vocabulary trees is observed to
improve as the size of the vocabulary increases. In [32] and [37] trees with as many
as 1 million leaf nodes were used. We can view the vocabulary tree with GNP search
as a nearest neighbor method that searches for the N closest vocabulary cluster cen-
ters. As the vocabulary size approaches the number of data points, results closely
approximate those of traditional nearest neighbor search over the data.

3.2.2 Locality Sensitive Hashing

Relaxing the goal of finding a precise set of nearest neighbors to finding neighbors
that are sufficiently close allows for significant computational speedup. The (1 +
ε)−NN problem is presented by [16] as follows: for a set of points P and query
point q, return a point p ∈ P such that d(q, p)≤ (1+ ε)d(q,P), where d(q,P) is the
distance of q to the closest point in P. Early solutions to this problem fall under the
category of locality sensitive hashing (LSH).

LSH is an approach wherein a hash function is designed to map similar data
points to the same hash bucket with high probability while mapping dissimilar
points to the same bucket with low probability. By choosing an appropriate hash
function and hashing the input multiple times, the locality preserving probability
can be driven up at the expense of additional computation. LSH has been applied
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successfully to visual data in numerous works, cf. [39, 16]. However, we choose to
focus on spill trees since they are particularly easy to implement in MapReduce and
are known to perform well in similar large scale situations [25]. For further details
on LSH we refer to the survey by Andoni et al. [1].

3.2.3 Spill Trees

Liu et al. [24] present the spill tree as a fast, approximate extension to the stan-
dard nearest neighbor structures of k-d, metric, and ball trees. The k-d tree [15] is
an exact solution where the vector space is split recursively and partition bound-
aries are constrained along the axes. Search in a k-d tree proceeds by traversing the
tree depth-first, backtracking and skipping nodes whose spatial extent is outside the
range of the nearest point seen so far during the search. Metric and ball trees [43, 33]
follow the same design but allow for less constrained partitioning schemes.

Spill trees build on these traditional nearest neighbor structures with a few crit-
ical enhancements. Most importantly, the amount of backtracking during search is
reduced by allowing the partitioned regions at each node in the tree to overlap. Us-
ing an overlap buffer means that points near to the partition boundary of a node will
be included in both of its children. Points in the overlap buffer are the ones most
frequently missed during depth first search of the tree. When a query point is close
to the partition boundary for a node, its actual nearest neighbor may fall arbitrarily
on either side of the boundary. Backtracking during search is no longer needed to re-
cover points that fall in the overlapping regions. This partitioning scheme is detailed
in Figure 2.

Efficient search in tree-based nearest neighbor structures results from splitting
the points roughly evenly at each node, leading to logarithmic depth of the tree. If

partition boundary

over
lap

 bu
ffe

r

Fig. 2 Partitioning at a node in the spill-tree with an overlap buffer. A buffer area is placed
around the partition boundary plane and any points falling within the boundary become mem-
bers of both children of the node.
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the spill tree overlap buffer is too large, each child of a node will inherit all data
points from the parent resulting in a tree of infinite depth. This motivates another
key enhancement of the spill tree: nodes whose children contain too many points
are treated as standard metric tree nodes, having their overlap buffers removed and
backtracking enabled. The hybrid spill tree becomes a mix of fast overlap nodes
requiring no backtracking and standard nodes where backtracking can be used dur-
ing search. Experimental comparisons show that spill trees are typically many times
faster than LSH at equal error rates for high dimensional data [24].

3.3 MapReduce

The algorithms we’ve described for finding neighboring vectors must scale to vast
amounts of data to be useful in our setting. Since storage for reference points is
expected to surpass the total memory of modern computers, we turn our attention
to issues of distributed computing. Specifically, we examine the MapReduce frame-
work and explain how it is used to implement a distributed version of spill trees.

MapReduce is a parallel computing framework that abstracts away much of the
difficulty of implementing and deploying data-intensive applications over a clus-
ter of machines [9]. A MapReduce program is comprised of a series of 3 distinct
operations:

1. Map. The map operation takes as input data a set of key-value pairs, distributing
these pairs arbitrarily to a number of machines. Data processing happens locally
on each machine, and for each data item one or more output key-value pairs may
be produced.

2. Shuffle. The key-value pairs output by map are grouped under a new key by a
user-defined shuffle operation. This phase is typically used to group data that
must be present together on a single machine for further processing.

3. Reduce. The grouped key-value pairs from shuffle are distributed individually
to machines for a final processing step, where one or more key-value pairs may
be output.

Each phase of a MapReduce program can be performed across multiple ma-
chines. Automatic fault tolerance is built in so that if a machine fails, the work
assigned to it is simply shifted to a different machine on the computing cluster.

Liu et al. [25] developed a distributed version of the spill tree algorithm using
MapReduce, and applied it to the problem of clustering nearly 1.5 billion images
from the web. We sketch the MapReduce algorithm for constructing and querying
the distributed spill tree here, as we have used this approach extensively in our ex-
periments in the following sections. The algorithm begins by building a root tree
from a small uniform sampling of all data points. This tree is then used to bin all of
the points in the dataset by pushing them down the tree to the leaf nodes. Each leaf
node can then be constructed as a separate spill-tree running on a separate machine.
In this way, the destination machine for a query point is first quickly determined by
the root tree, then the bulk of the computation can be done on a separate machine
dedicated to the particular subtree nearest to the query point.
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In the Map step of a batch query procedure where there are multiple points to
be processed, the query points are distributed arbitrarily to a cluster of machines.
Each machine uses a copy of the root tree to determine the nearest leaf trees for
input query points. Then, the Shuffle operation groups query points by their nearest
subtrees. In the Reduce phase, one machine is given to each subtree to process all
the points that were assigned to it. This procedure replicates the original spill tree
algorithm with the minor restriction that no backtracking can occur between nodes
of the subtrees and the root tree.

4 A Probabilistic Model for Label Transfer

In this section we develop a generative probabilistic model for label transfer that is
designed for scalability. Rather than constructing classifiers for a fixed set of labels,
our approach operates on a much larger pool of words that are drawn from existing
annotations on a video corpus. We extend the features used in the JEC method of
image annotation [28] for use with video shots, and use a distributed spill-tree to
inform the model of neighboring shots within the corpus. Each step of our approach
is implemented in MapReduce for scalability and efficiency.

In this model new annotations are computed based on (1) visual similarity with
a pool of pre-annotated videos and (2) co-occurrence statistics of annotation words.
We begin with an overview of the generative process, then detail an approximate
inference algorithm based on nearest neighbor methods. It is important to note that
the structure of the probabilistic model has been designed specifically to take ad-
vantage of the efficiency of our distributed spill tree implementation on Google’s
MapReduce infrastructure.

4.1 Generating New Video Annotations

Suppose we have a collection of N videos where each video V has a preexisting set
of NVw text labels {w}. Given a query video V with an incomplete set of labels our
goal is to predict the most likely held-out (unobserved) label, denoted wh.

We have two sources of information with which we can make our prediction:

1. Occurrence and co-occurrence statistics of labels. We compute p(wi|wj) for all
words i, j over the entire set of annotated videos. The co-occurrence probabilities
suggest new annotation words that are seen frequently in the video corpus with
any of the existing annotation words for the query video.

2. Visual similarity between videos. Using nearest-neighbor methods to find similar
video shots, we compute the probability of a query shot belonging to each video
in the corpus. Under the assumption that visually similar videos are likely to have
the same labels, a high probability of a query shot being generated by corpus
video V increases the chance of transferring one of V ’s annotations to the query.
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NVs
NVw

wh

vq wq

Fig. 3 A generative graphical model for automated annotation, with corpus videos V at the
root node.

The graphical model depicted in Figure 3 defines the generative process for
videos, shots, and annotations. We begin by considering each variable in the figure:

• V is an index variable for a video in the training set.
• vs is a single shot from the video V . Thus V is described by an unordered collec-

tion of NVs video shots.
• vq is an observed video shot feature vector belonging to the query.
• wh represents a held-out annotation word for the query video, and is the hidden

variable we wish to predict.
• wq is an observed annotation word for the query video.

With these definitions in place we can list the generative process:

1. Pick V , a single video from the corpus.
2. Sample Ns shots from V .
3. Generate an observation feature vector vq for each shot vs.
4. Sample an annotation word wh from V .
5. Generate a set of co-occurring annotation words {wq} conditioned on wh.

In the model only the variables involving the query video, {vq} and {wq}, are ob-
served. In order to perform exact inference on wh, we would sum over all shots {vs}
of all videos V in the corpus. In this setting, the joint probability of an observation
consisting of ({vq},{wq},wh) is:

p({vq},{wq},wh) =

∑
V

{
p(V )∏

vq

[
∑
vs

p(vs|V )p(vq|vs)

]
×

p(wh|V )∏
wq

p(wq|wh)
}

.

(1)
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We choose the most likely assignment to unobserved variable wh as

w∗
h = argmax

wh

p({vq},{wq},wh)
p({vq},{wq})

∝ argmax
wh

p({vq},{wq},wh)
(2)

since p({vq},{wq}) remains constant for a given query video. The model can be
called doubly nonparametric due to the summation over V and over each shot vs

of V , a trait in common with the image annotation model of [14] where there is a
summation over images and image patches.

We consider each factor of Equation 1:

• P(V ) = 1
N where N is the number of videos in the training set. This amounts to a

uniform prior such that each training video is weighted equally.
• p(vs|V ) = 1

NVs
if vs belongs to video V , 0 otherwise.

• p(vq|vs) = 1
σ
√

2π exp

(
− (vq−μvs )

2

2σ2

)
, a normal distribution centered on vs with

uniform variance σ . The probability of query shot vq being generated by corpus
shot vs falls off gradually as the distance between their feature vectors increases.

• p(wh|V ) = 1
NVw

for words belonging to the annotation set of V , and is set to 0 for
all other words.

• p(wq|wh) is determined by the co-occurence statistics of words wq and wh com-

puted from the training set. p(wq|wh) = N(wq,wh)
N(wh) , where N(wq,wh) is the number

of times wq and wh appear together in the video corpus, and N(wh) is the total
occurrence count of wh.

Substituting these definitions yields

p({vq},{wq},wh) =

∑
V

{
1
N ∏vq

[
∑

vs∈V

1
NVs

1

σ
√

2π
exp

(
− (vq −μvs)

2

2σ2

)]
× N(wh ∈V )

NVw
∏
wq

N(wq,wh)
N(wh)

}
.

(3)

We must carefully handle smoothing in this model. The shots of each V are
treated as i.i.d. and as such, if any shot has zero probability of matching to the
query video, the entire video-video match has probability zero. In most cases, sim-
ilar videos share many visually close shots, but inevitably there will be some shots
that have no match, resulting in p(vq|vs) = 0 in the product over s in Equation 3. To
alleviate this problem we assign a minimal non-zero probability ε to p(vq|vs) when
the computed probability is close to zero. ε can be tuned using a held-out validation
set to achieve a proper degree of smoothing. Equation 3 becomes:
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P({vq},{wq},wh) =

∑
V

{
1
N ∏vq

[
∑

vs∈V∧vs∈NNvq

1
NVs

1

σ
√

2π
exp

(
− (vq,s − μvs)

2

2σ2

)
+

∑
vs∈V∧vs /∈NNvq

1
NVs

ε
]
× N(wh ∈V )

NVw
∏
wq

N(wq,wh)
N(wh)

}
.

(4)

4.2 Nearest Neighbor for Scalability

Performing exact inference by summing over all shots of every corpus video is pro-
hibitively expensive. However, we know that for a given query, most corpus shots
are dissimilar and contribute little or nothing to the computation by virtue of our
definition of p(vq|vs). In fact, the only corpus shots that matter for a query are the
ones that are nearest to the query shot vectors.

This scenario is perfect for application of the approximate nearest neighbor meth-
ods discussed earlier. We choose the distributed spill-tree structure for finding neigh-
boring shots in our system. Spill trees operate on data points within relatively low
dimensional vector space, and this motivates our choice of feature representation for
shot matching. We opt to use modified versions of the JEC features [28] which were
discussed in Section 2.1. These image features include LAB and HSV global color
histograms, and the Haar and Gabor wavelets. The features are modified for video
shots by computing them at evenly spaced frames throughout a shot and concate-
nating the results. This representation retains the simplicity and good performance
of JEC features, and it also captures some of the temporal information in each shot.

Our proposed shot feature vectors are very high dimensional, typically one to
two orders of magnitude larger than JEC features depending on how many frames
are sampled from each shot. In order to generate a single summary vector per shot,
the vectors from each feature modality are concatenated, resulting in an even larger
vector. Since the spill tree requires a low dimensional representation, the shot vec-
tors are reduced to 100 dimensions by random projection [3]. Random projection
is simple, fast, and is known to preserve neighborhood structure [8] making it a
good choice for preprocessing nearest neighbor data. The complete procedure for
preparing the nearest neighbor component of the model is given by Figure 4.

Working from Equation 1, we distinguish between videos VNN which have at least
one nearest neighbor shot discovered by the spill tree, and videos VNN which do not
have any:

p({vq},{wq},wh) =

∑
VNN

{
p(VNN)∏

vq

[
∑
vs

p(vs|V )p(vq|vs)

]
× p(wh|VNN)∏

wq

p(wq|wh)
}

+

∑
VNN

{
p(VNN)∏

vq

[
∑
vs

ε
NVs

]
× p(wh|VNN)∏

wq

p(wq|wh)
}

.

(5)
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Fig. 4 Procedure for preparing videos for shot-based nearest neighbor lookup.

The distance to each of the NVs shots of a VNN corpus video is approximated by ε .
Notice that all terms of Equation 5 involving visual features of corpus videos with-
out nearest-neighbor shots ({VNN}) reduce to a single constant, hereafter denoted
λ . At this point, we make a simplifying approximation to completely remove de-
pendence on all videos {VNN} by substituting the prior word probability p(wh) for
p(wh|VNN). With this simplification, the model requires word counts and distances
to features for only the small subset of corpus videos that have neighboring shots to
the query, as determined by the distributed spill tree. Thusly, the spill tree provides
not only the distance information to nearby points but also information about which
small subset of corpus videos is relevant in answering the query.

Combining these observations with Equation 4, we arrive at the complete anno-
tation likelihood for our model:

P({vq},{wq},wh) =

∑
VNN

{
1
N ∏vq

[
∑

vs∈VNN∧vs∈NNvq

1
NVs

1

σ
√

2π
exp

(
− (vq,s − μvs)

2

2σ2

)
+

∑
vs∈Vnn∧vs /∈NNvq

ε
NVs

]
× N(wh ∈VNN)

NVNN,w
∏
wq

N(wq,wh)
N(wh)

}
+

∑
VNN

{
λ p(wh)∏

wq

N(wq,wh)
N(wh)

}
.

(6)

For a candidate annotation wh we have a likelihood that is a weighted combina-
tion of the prior over wh and the conditionals p(wh|VNN) based on nearest-neighbor
visual similarity. The balance between these elements depends on ε , and we note
that the only free parameters of the model (besides ones belonging to low level
video features and spill tree computation) are ε and σ , both of which can be tuned
by cross validation.
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4.3 Alternative Models

The annotation model presented in the previous section is scalable, principled, and
easy to implement, but it is only one of many potential solutions to the video annota-
tion problem. Here we consider a few alternative formulations based on the original
model that deserve further consideration.

The original model in Figure 3 incorporates information from all videos for
which there is a neighboring shot to the query. A simpler approach is to transfer
all labels from the single closest video, which is determined by:

V ∗ = argmax
V

p(V )∏
vq

[
∑
vs

p(vs|V )p(vq|vs)

]
. (7)

This 1-nn approach, while simplistic, has been shown to provide state of the art
results for image annotation [28]. Taking the idea further, the single-best annotation
could be selected for each query shot individually, rather than for a complete query
video comprised of a collection of shots. Then, the most likely annotation is selected
from the query shot with the best match to the corpus:

V ∗ = arg max
V,vq,vs

p(V )p(vs|V )p(vq|vs). (8)

In a slightly different approach, we can consider a model that computes anno-
tation probabilities directly by assigning words to corpus shots and abandoning
the concept of corpus documents. The model presented in the previous section is
document-centric in the sense that the root node V of the model is a corpus docu-
ment. It was shown in [5] that for image classification tasks, category-based nearest-
neighbor models outperform instance-based models. In a category-based approach
the unobserved root node of the graphical model indexes annotation words rather
than instances in the dataset. We can apply this idea to our task of video annotation
and arrive at the model depicted in Figure 5. Computing the annotation likelihood
becomes:

p({vq},{wq},wh) =

p(wh)
{
∏
vq

⎡⎣ ∑
vs∈Vwh

p(vs|wh)p(vq|vs)

⎤⎦×∏
wq

p(wq|wh)
}

.
(9)

Intuitively, this annotation-centric model should improve upon the document-
centric one when annotation words correlate strongly with individual shots rather
than entire videos. This is a property of the dataset that is likely to vary between
different videos and annotation words. Automatic model selection among the alter-
natives presented here is likely to enhance performance.
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Fig. 5 An alternative graphical model for automated annotation with a hidden annotation
word as the root node.

5 Experiments

Here we present preliminary results of testing our system on a large portion of the
YouTube corpus. Our goal is to demonstrate the feasibility of methods detailed in the
previous section under the emerging real-world scenario of extremely large online
video collections.

Approximately 1.2 million of the most popular YouTube videos were selected for
the experiments. From these videos an annotation vocabulary of 1000 words was
formed by filtering words taken from titles, descriptions, and uploader tags through
common stoplists. An initial set of annotations for each video was generated by
filtering the metadata through the annotation vocabulary. Then, for each video we
computed shot boundaries and JEC features for each shot. The pool of features from
all 1.2 million videos was used to construct a distributed spill tree using MapReduce.

We note that the spill tree must be kept in memory to retain its efficiency, and
for large video collections this can only be accomplished by distributing the tree
across multiple machines. If each 100-dimensional shot vector consumes 400 bytes
of data, we can store at most approximately 10 million shots on a machine with
4GB ram. Typical videos in YouTube are found to have 20-40 shots by our shot
boundary detector, further increasing memory requirements and necessitating the
use of MapReduce to distribute the load. The complete preparation procedure for
our experiments is shown in Figure 6.

Testing proceeded using the model defined by Figure 3 and the procedure shown
in Figure 7. Each existing annotation word for each video was withheld in turn, and
for each a new list of all possible annotations was generated, ordered according to
the likelihoods computed using Equation 2. Annotation words were held out one
at a time because the remaining words for the query video provide co-occurrence
information to the inference procedure.
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extract video shots

select corpus videos 
from YouTube

extract title, description, 
user tags

compute feature vectors 
for all shots

filter, construct 
annotation
vocabulary

set {wq} for each video

construct distributed spill 
tree from feature vectors

compute co-occurrence 
for pairs of words

Fig. 6 Preprocessing steps for our YouTube labeling experiments. The bulk of the computa-
tion time and resources in this procedure is consumed by the feature computation step. Each
step is implemented as a separate distributed program using the MapReduce framework.

extract video shots, 
compute feature vectors

select query video

extract title, description, 
user tags

query spill tree for 
nearest-neighbor shots 

and distances

apply label transfer model and output 
ordered list of most likely annotations 

Fig. 7 Steps for performing new annotation inference on a YouTube video.

When developing an evaluation metric for our results, we note that our approach
is designed explicitly for generating annotations and is not synonymous with video
retrieval. Rather than computing a list of videos for a particular annotation word, we
generate an ordered list of most likely annotations for each query video. As such,
the standard retrieval measure of precision-recall is not appropriate for our task.

We consider a closely related measure instead: for an annotation list position
and a particular annotation word, we measure the probability of that word being
correctly assigned at precisely that list position. Probability of correctness for word
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w at list position n is computed by counting the number of times w is observed in
the generated annotation lists at position n for all query videos having w as a held
out word, divided by the total number of occurrences of w at position n for all query
videos. Formally, our measure is computed as:

Probn
w =

∑V :w∈Vw
Iw,n
V

∑V Iw,n
V

(10)

where Iw,n
V is 1 if w appears on V ’s new annotations list at position n, and is 0

otherwise.
As an example, consider our measure for the annotation word “music” at list po-

sition 1. We count all the times “music” is the first annotation word returned for all
videos where “music” is the correct word currently being held out, and divide by the
total number of times “music” is returned as the first annotation for all videos in the
corpus. If this ratio is close to 1, we conclude that the system accurately assigns the
word “music” when it is the first annotation word returned for a query. In contrast to
more conventional cumulative measures, our approach displays a conditional mea-
surement: we are computing the probability of a returned annotation word equalling
the held-out annotation word, given that it was returned at list position n. Suppose
“music” is recovered at equal rates at positions 1 and 2 when it is the missing held-
out word, and it is always recovered at position 1 for videos where it is not a correct
annotation. Then, “music” is more likely to be a correct annotation if it is recovered
at position 2 rather than position 1.

Figure 8 displays our measure for list positions 1 through 200. Probabilities are
computed for each word individually and at each list position using the method
described above, then the probabilities at each position are averaged over all anno-
tation words. The resulting curves provide the average word-normalized precision at
each position on the list. Better results are indicated by higher average probability at
earlier positions on the list: this means that held out annotation words are recovered
correctly more often and with higher likelihood than other words. If we imagine a
usage scenario where just the top 20 new annotations are retained for each query
video, then we only care about the probability of these top 20 being correct; the rest
of the list is unimportant unless more annotations are desired.

Two variants of the model were tested for comparison. We applied the same test
protocol using only the portion of the graphical model involving visual features and
excluding word co-occurrence. Similarly, we repeated the procedure using only co-
occurrence and excluding vision. We observe in Figure 8 that these model variants
exhibit drastically different behaviors at various list positions. Importantly, the com-
bined vision+text model is more than the sum of its parts, showing better average
precision than either vision or text alone among the top suggested annotations.

Peak performance reaches 25 percent average precision for the full model, but
this does not mean that the majority of annotations generated are necessarily “in-
appropriate”. As we have noted earlier, working with user-annotations rather than
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Fig. 8 Average word-normalized precision at each list position using variants of the full
model specified in Figure 3.

hand-labeled data makes performance measurement challenging. When user la-
bels are incomplete, a typical characteristic among social media sources including
YouTube, our proposed system may generate reasonable annotations that were orig-
inally absent. Conversely, incorrect original user annotations that do not relate to the
video content may not be predicted by our system, thus penalizing performance for
correct behavior.

Table 1 lists the accuracy (recovery rate) of held-out annotations among the top
20 annotations returned for 100 words selected from the vocabulary. In this measure-
ment we have set a cutoff by observing occurrence within the first 20 list positions;
a natural alternative is to set a threshold on the returned annotation word probabil-
ities, and we wish to explore this in future work. This data highlights the unique
nature of large, automatically generated annotation vocabularies. In contrast to ex-
isting methods which use small, carefully constructed category labels, the list of
words produced by our method is data-driven and tailored to the dataset. The results
in table 1 indicate that our method performs well on an extremely diverse collection
of annotation words. Table 2 narrows these results to words that naturally co-occur.
One might expect that these words would be predicted entirely by co-occurrence
probabilities with their counterparts. We find that the combined model using both
text and vision almost always produces the best results, an observation that is shared
with other works in image and video annotation [21, 19].
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Table 1 Top-20 annotation accuracy for top 100 words of the annotation vocabulary, ordered
by the results of the full text+vision model of Figure 3.

# annotation vid-only text-only text+vis chance # annotation vid-only text-only text+vis chance
1 roses .000 .535 .924 .003 51 birthday .000 .173 .601 .002
2 daily .000 .151 .875 .001 52 baseball .000 .094 .600 .001
3 avril .000 .712 .810 .002 53 boom .000 .156 .600 .001
4 totally .000 .419 .800 .002 54 brawl .000 .169 .598 .002
5 discussed .000 .546 .791 .001 55 mac .000 .265 .597 .002
6 related .000 .494 .788 .001 56 aguilera .000 .091 .596 .003
7 montana .600 .482 .787 .002 57 rangers .000 .265 .596 .001
8 theft .000 .433 .783 .001 58 pic 1.000 .514 .595 .002
9 hannah .100 .445 .781 .003 59 travel .000 .253 .591 .001

10 rated .000 .535 .776 .002 60 bull .429 .180 .591 .001
11 hearts 1.000 .353 .769 .002 61 nba .560 .313 .583 .004
12 gta .000 .255 .757 .002 62 pants .000 .123 .581 .002
13 lavigne .000 .604 .743 .001 63 william .083 .145 .575 .002
14 tree .000 .295 .742 .003 64 eurovision .000 .130 .571 .001
15 zac .000 .328 .735 .002 65 pokemon .789 .356 .570 .004
16 efron .000 .334 .734 .001 66 hero .120 .380 .566 .003
17 miley .000 .332 .730 .001 67 indie .000 .096 .563 .002
18 viewed .000 .501 .729 .002 68 ufo .500 .231 .560 .002
19 knight .657 .241 .724 .001 69 purely .118 .130 .558 .002
20 favorites .000 .461 .723 .002 70 winter .000 .166 .557 .002
21 advertising .000 .167 .720 .001 71 expert .000 .204 .556 .001
22 cnn .000 .013 .714 .002 72 sunday .100 .264 .556 .002
23 smash 1.000 .231 .709 .002 73 crap .000 .086 .556 .002
24 cyrus .000 .329 .697 .002 74 legendary .000 .088 .551 .002
25 runescape .862 .019 .694 .003 75 vanessa .000 .222 .546 .001
26 chocolate .000 .183 .693 .002 76 alba .000 .094 .545 .002
27 potter .962 .486 .691 .002 77 dutch 1.000 .083 .542 .002
28 lindsay .000 .188 .688 .001 78 def .000 .151 .537 .002
29 mexican 1.000 .136 .677 .003 79 trip .000 .197 .536 .004
30 harry .684 .552 .668 .003 80 soulja .000 .250 .531 .001
31 alien 1.000 .232 .667 .002 81 blooper .000 .143 .530 .002
32 kingdom 1.000 .439 .661 .003 82 manga .754 .061 .529 .003
33 clinton .000 .133 .650 .002 83 greece .000 .103 .529 .002
34 fantastic .000 .233 .650 .001 84 batman .000 .244 .526 .001
35 jonas 1.000 .243 .648 .002 85 hill .000 .390 .524 .003
36 tokio .000 .285 .647 .002 86 nick 1.000 .207 .524 .004
37 wave .000 .124 .645 .001 87 student .000 .189 .523 .001
38 diamond .000 .367 .637 .002 88 hockey .500 .139 .520 .003
39 bros .625 .224 .637 .003 89 fanmade .077 .116 .517 .002
40 lucky .667 .279 .636 .001 90 journey .000 .195 .515 .002
41 sims .000 .094 .635 .001 91 busty .000 .195 .513 .001
42 warcraft .647 .346 .634 .003 92 bang .512 .113 .510 .002
43 tna .000 .266 .633 .002 93 store .000 .167 .508 .001
44 bow .000 .169 .627 .001 94 foot .000 .390 .507 .005
45 crank .000 .291 .622 .001 95 alternative .000 .113 .496 .002
46 commercials .000 .103 .622 .002 96 sweden .000 .068 .494 .002
47 holiday .000 .134 .615 .000 97 guns .500 .304 .493 .004
48 lion .000 .257 .613 .002 98 jamie 1.000 .068 .490 .002
49 obama .200 .231 .612 .002 99 chapter .500 .201 .488 .001
50 martial .000 .230 .607 .002 100 company .135 .412 .486 .003
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Table 2 Top-20 annotation accuracy of selected pairs of words which naturally co-occur
together. In most cases the full model combining text and vision achieves the best accuracy.

annotation vid-only text-only full-model chance acc.

guns .500 .304 .493 .004
roses .000 .535 .924 .003
harry .684 .552 .668 .003
potter .962 .486 .691 .002
grand .308 .381 .461 .004
theft .000 .433 .783 .001
gta .000 .255 .757 .002
hannah .100 .445 .781 .003
montana .600 .482 .787 .002
avril .000 .712 .810 .002
lavigne .000 .604 .743 .001

6 Conclusions and Discussion

As online video content continues to grow, automatic tools for annotation are be-
coming a critical component of web indexing and search. Automated video annota-
tion must explicitly address the issue of scalability, both in terms of the quantity of
video and the expansiveness of the annotation vocabulary. Research in video search
and mining techniques is progressing rapidly yet most works are limited by small
vocabularies and dataset sizes. In this chapter we examined modern, scalable tech-
niques for computing visual similarity, with special emphasis on nearest neighbors
and distributed computing.

Based on these observations, we developed a prototype system to enhance web-
scale video search with automated text annotation. Our system uses features inspired
by recent image annotation work, and it efficiently computes similar video shots us-
ing a distributed approximate nearest neighbor technique. A probabilistic model ties
visual similarity with annotation co-occurrence statistics to generate new annotation
suggestions. Testing the model on a portion of YouTube demonstrates the scalability
and efficacy of our approach. Our results indicate that web-scale automated video
annotation using large, data-driven vocabularies is feasible and deserves further re-
search exploration.
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