
Chapter 9
A Vision-Based Remote Control

Björn Stenger, Thomas Woodley, and Roberto Cipolla

Abstract. This Chapter presents a vision-based system for touch-free interaction
with a display at a distance. A single camera is fixed on top of the screen and is
pointing towards the user. An attention mechanism allows the user to start the in-
teraction and control a screen pointer by moving their hand in a fist pose directed
at the camera. On-screen items can be chosen by a selection mechanism. Current
sample applications include browsing video collections as well as viewing a gallery
of 3D objects, which the user can rotate with their hand motion. We have included
an up-to-date review of hand tracking methods, and comment on the merits and
shortcomings of previous approaches. The proposed tracker uses multiple cues, ap-
pearance, color, and motion, for robustness. As the space of possible observation
models is generally too large for exhaustive online search, we select models that
are suitable for the particular tracking task at hand. During a training stage, various
off-the-shelf trackers are evaluated. From this data different methods of fusing them
online are investigated, including parallel and cascaded tracker evaluation. For the
case of fist tracking, combining a small number of observers in a cascade results in
an efficient algorithm that is used in our gesture interface. The system has been on
public display at conferences where over a hundred users have engaged with it.

9.1 Introduction

This Chapter presents a vision-based gesture interface using a single camera on top
of a display, allowing touch-free input at a distance. Figure 9.1 shows photos from
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Fig. 9.1 Showcase of the proposed gesture interface. Left: a single camera on top of the
display is directed towards the user, who is able to control a screen cursor with his fist. Videos
can be selected by hovering over a button. Right: The playback of a video can be stopped with
an open hand gesture.

Fig. 9.2 Appearance variation of hand regions. Shown are cropped hand regions from test
sequences. Motion blur, changing pose and other skin colored objects make tracking chal-
lenging.

a showcase presented during the Internationale Funk Ausstellung IFA 2008 exhibi-
tion in Berlin. Such a gesture system may have several uses in practice: to remotely
control a TV or other appliances, or browsing public information terminals in mu-
seums or shop windows. There are many factors that make hand tracking from a
single view difficult in practice. Hands can exhibit a wide range of appearances, for
example due to changes in pose and in scene lighting. Furthermore, the variability of
shapes, poses, and color between different people is high. At a standard frame rates
of 30 frames per second there may also be significant motion blur. Figure 9.2 illus-
trates this variability, showing examples of cropped hand regions, taken from image
sequences of four different people. The system should also use minimal computa-
tional resources because any lag in interactive applications is very noticeable.

In addition to fast and robust tracking, a method for automatic initialization is
required to find the hand at the beginning of the interaction and after tracking fail-
ure. Loss of track occurs regularly, for example every time the hand is outside the
camera’s view. The proposed system thus integrates an off-line trained detector
to initialize and also to update the tracker in order to avoid drift. Building a gen-
eral, robust hand detector is still a challenging problem, and we restrict ourselves
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to detecting a particular pose, in this case a fist pose. When viewed from the front,
the visual appearance of a fist is characteristic and a robust detector has been
trained for it.

In the following Section we provide an overview of prior work on hand track-
ing and object tracking in general. Section 9.3 explains the design of the tracking
algorithm and presents experimental results on test data. The full system and its
components are described in Section 9.4.

9.2 Prior Work

A large number of vision-based gesture interfaces have been proposed in the scien-
tific literature and some systems have already been commercialized. This Section
provides an overview of hand tracking methods in image sequences. It also summa-
rizes developments in the area of general object tracking as some of these methods
are used in Section 9.3.

9.2.1 Hand Tracking for Human Computer Interfaces

Reviews on hand tracking have been published by Pavlović et al. [62], Wu and
Huang [86,88]. These papers contain a good taxonomy of early work on hand track-
ing and gesture interfaces. More recently, Erol et al. [24] published a review of full
3D hand tracking. Generally, there are a number of factors to consider when design-
ing or describing a hand tracking system.

1. The number of state parameters. Methods differ by the number of parameters
they estimate. This may range from the case where only the 2D location of a hand
in an image is obtained to the case where the full articulated pose in 3D is esti-
mated. In some cases a dynamic model is used, whose parameters are included
in the estimation process.

2. The estimation method and features used. At the heart of each system is the
algorithm which estimates the state parameters from the observed image data.
Some methods employ an explicit geometric model and use a model-fitting ap-
proach, while others take the approach of learning from training data. Hybrid
approaches exist too, which generate training data from a geometric model.
Methods also differ in the types of features they use, which can be based on
color, shape, or motion of the hand.

3. The set-up and capture system. There exist a wide range of set-ups, differing in
the number and position of cameras, for example. Systems that use two or more
cameras may compute a depth map or a visual hull as the input to the recognition
system. Furthermore, active systems such as structured light or time-of-flight
systems are becoming more common and allow depth estimation that is often
more robust than passive two-view stereo. Other important parameters are the
camera’s resolution, light sensitivity and frame-rate. Clearly the camera position
also makes a difference: whether it is facing top-down towards a desktop, whether
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it is facing towards a user in front of an uncontrolled background, or whether it
is mounted on a mobile robot platform.

These factors should be kept in mind whenever analyzing a gesture interface system,
as the underlying assumptions differ in each case. In the following we introduce
some hand tracking systems that have been prominent in the literature.

One of the first systems for markerless hand tracking was that of Cipolla and
Hollinghurst [15, 16], who used a B-spline active contour as a 2D shape model to
track a pointing hand from two uncalibrated views. In each view an affine trans-
formation of the contour was estimated, and using a ground plane constraint the
indicated target position could be found. The system required a simple background,
but it could operate in real-time. Freeman and Weissman [26] introduced a single-
camera system for television remote control by tracking an open hand. It used an
image subwindow as a template for both detection and tracking. Matching was
performed using local edge orientation in order to be robust to some illumina-
tion changes. In their EigenTracking work, Black and Jepson [10] proposed an
eigenspace representation of a set of hand images. Using a coarse-to-fine match-
ing strategy, both the affine transformation as well as the closest of four gestures
were estimated. Isard and Blake [40] modeled the hand shape with a B-spline. The
tracker combined color blob tracking with contour tracking in a particle filter frame-
work. Later, MacCormick and Isard [52] presented a drawing system based on a
this tracker together with independent sampling of the finger parameters. Tosas [76]
recently presented a similar color-based contour tracker in a number of demo appli-
cations, such as a ‘virtual turntable’. Wu and Huang [87] applied a learning based
method, combining labeled and unlabeled data with the EM algorithm and using
neural network classification to distinguish 14 hand postures in different views. The
classification rate was 92% using features obtained by Principal Component Anal-
ysis of the hand images. Triesch and von der Malsburg [78] built a hand gesture
interface for robot control. Elastic 2D graph matching was employed to match tem-
plates of twelve different hand gestures to an image. Combined Gabor and color
features made the system relatively stable to clutter, achieving a recognition rate of
93% in front of simple background and 86% for cluttered backgrounds. Bretzner et
al. [11] used multi-scale blob detection of color features in order to detect an open
hand pose with possibly some of the fingers extended, corresponding to different
input commands. A simple 2D shape model was used for tracking with a particle
filter. The method required a skin color prior, which was obtained by manually la-
beling 30 frames. The system tracked at 10 fps and was also demonstrated in a TV
remote control application. Lockton and Fitzgibbon [50] built a real-time system
that could recognize 46 different hand poses, including finger spellings in American
Sign Language. Extracting hand silhouettes in each frame using color, their method
was based on efficient template matching. Accurate registration was facilitated by a
wrist band and led to a very high recognition rate. Krahnstoever et al. [47] presented
a multi-modal vision and speech interface to interact with a large display. The hand
tracking component was based on finding location hypotheses in each frame and
matching them over a time-window with the Viterbi algorithm. A spatial prior was
used to associate blobs to hand and face. An interface based on tracking multiple
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skin colored regions was proposed by Argyros and Lourakis in [1]. The skin color
model was obtained by manually labeling skin regions, but the color model was
adapted during tracking. The tracker was used in a stereo-system in order to real-
ize a 3D mouse application [2]. Extensions of cascaded detection using AdaBoost
were proposed in [46, 60]. Whereas Kölsch and Turk [46] showed robust detec-
tion of specific hand poses, Ong and Bowden [60] trained a classifier hierarchy for
multi-pose detection. Kölsch and Turk [45] further presented a multi-cue tracker
that combined color and a number of local features under ‘flocking’ constraints.
The color model was automatically initialized from hand detection. The system by
Robertson et al. [67] used a trained detector followed by optical flow tracking and
was employed in a ‘virtual mouse’ application. Ike et al. [37] presented a real-time
system for gesture control that could detect three different hand poses independently
in each frame. Due to the high computation requirement it was implemented on a
multi-core processor.

To summarize, a large number of hand trackers for gesture recognition have been
proposed in the literature. We have re-implemented some of these for evaluation.

One class of applications, which this Chapter does not discuss in detail are virtual
desktop applications [42,58,70,83]. Originally, in most of these systems the camera
and possibly a projector are mounted above, facing down towards the tabletop and a
user is able to interact with real and projected virtual objects. Similarly, by placing
the camera below a transparent tabletop a multi-touch interface can efficiently be
implemented, such as in Microsoft Surface [53].

In addition to gesture-based control, a further target application of hand track-
ing is automatic sign language recognition. The pioneering recognition system by
Starner et al. [69] modeled a hand by a skin-colored ellipse that was tracked in image
sequences. A hidden Markov model was then used to recognize a 40 word vocabu-
lary based on the shape and motion trajectory, obtaining a recognition rate of 98%.
Much progress has been made recently, see [61] for a general survey, and [12, 20]
for state-of-the-art results.

For some applications, such as motion capture for animation or biomechan-
ical analysis, it is desirable to fully capture the hand motion in 3D. Currently
these methods use either colored gloves, markers on the hand, or data gloves with
built-in sensors. However, there has been progress in markerless 3D hand track-
ing [3, 28, 35, 66, 68, 72]. A common approach to full 3D hand tracking is to use
a geometric hand model. The model is usually created manually, but can also be
obtained by reconstruction methods. Models that have been used for tracking are
based on planar patches [89, 90], deformable polygon meshes [35] or generalized
cylinders [21,66]. The underlying kinematic structure is based on the biomechanics
of the hand. Each finger can be modeled as a kinematic chain with four degrees
of freedom (DOF) attached to the palm, and the thumb may be modeled similarly
with either four or five DOF. Together with rigid body motion of the hand, there are
27 DOF to be estimated. Working in such a high dimensional space is particularly
difficult because feature points that can be tracked reliably are sparse: the texture on
hands is typically weak and self-occlusion occurs frequently. However, the anatom-
ical design places certain constraints on the hand motion. These constraints have
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been exploited in different ways to reduce the search space. One type of constraint
are the joint angle limits, defining the range of motion. Another very significant
constraint is the correlation of joint movement. Angles of the same finger, as well
as of different fingers, are not completely independent. These constraints can be en-
forced in different ways, either by parameter coupling or by working in a space of
reduced dimension, e.g., one found by PCA [35,89]. To summarize, while headway
has been made on the problem of full 3D tracking, the task remains challenging. It
has been shown to work in principle, but is often constrained to slow hand motion
or controlled scenes. The problem is generally ill-posed using a single camera, be-
cause in some poses finger motion can be unobservable due to self-occlusion. The
use of additional hardware, such as multiple cameras [13, 32], colored gloves [82]
or depth-cameras [34], can therefore help significantly.

9.2.2 Commercial Gesture Interface Systems

A number of commercial systems for gesture recognition have already been made
available and more are likely to follow.

Game console makers have shown interest in gesture recognition, while propos-
ing different solutions. While Sony has been working with a passive vision sys-
tem [25, 64], Nintendo is using a wireless controller with accelerometer and optical
sensing technology [56] and Microsoft has shown technology based on active illu-
mination [65]. One of the first widely known vision systems was the EyeToy camera
in 2003 [25] that could be connected to the Play Station 2 game console and its suc-
cessor in 2007, the PlayStation Eye for the PS3 [64]. Here the camera is placed on
top of the screen, facing the user who can interact with menus and games using ges-
tures. In gaming, it is clearly important to avoid any lag that can interfere with game
play. Another key requirement is to handle dark or changing lighting conditions in
living rooms. Until now, the algorithms used for gesture recognition used in EyeToy
games have been fairly basic yet sufficiently robust. Two examples are optical flow
estimation and frame differencing in order to find regions of object motion.

Oblong Industries, co-founded by John Underkoffler, commercialized g-speak,
an interface using gloves and markers [57]. Underkoffler was also a scientific adviser
for the 2002 science fiction movie Minority Report which featured a similar gesture
interface for video navigation.

In order to overcome many of the robustness issues, active systems such as time-
of-flight cameras, have been used for gesture recognition, e.g., [14]. These systems
directly output a depth map, considerably simplifying feature extraction and seg-
mentation. Companies such as GestureTek have commercialized a number of gesture
recognition systems using time-of-flight cameras, for example systems for public
exhibitions [27].

In 2008 the Toshiba Qosmio laptop first shipped with hand gesture control soft-
ware that worked with the built-in webcam [77]. The gesture system works by inte-
grating global hand detection [38,54] with local tracking. Users are able to control a
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screen pointer with their hand and select objects by moving their thumb. The work
presented this Chapter mainly builds on this system.

9.2.3 Visual Tracking of a Single Object

In the following we take a more general view and consider the task of robustly track-
ing a single object in image sequences. This has been studied extensively in the com-
puter vision literature [9,19,33,36,39,75,79,85]. The task can be stated as follows:
Given an initial state of the object in the first frame, estimate the state of the object
in the subsequent frame, then do this sequentially on each frame of the sequence.
The state of the object contains the parameters of the geometric transformation that
we are interested in. This can be, for example, the target’s x-y-position in the image
or the full three-dimensional pose. Some methods also estimate the shape or articu-
lation parameters of a target object. Tracking methods also differ in the image cues
they employ to measure the similarity from frame to frame. These can be raw or
normalized image pixels, edge contours, color histograms, outputs of oriented fil-
ters, or any other features computed from the object region. In order to successfully
track the object in the next frame, the underlying assumption is that the features
are still sufficiently characteristic for the object (generative approaches), or make
it appear different from the background (discriminative approaches). The chance of
finding discriminative features is clearly increased when combining multiple cues.
Numerous papers on multi-cue tracking have demonstrated the concept of differ-
ent cues complementing each other and overcoming the failure cases of individual
cues [6,9,23,31,48,55]. A typical example is a hand being tracked while it moves in
front of the face. The hand may still be tracked based on shape while color features
become less reliable. The most common approach to multi-cue tracking is to eval-
uate several observers in parallel and subsequently combine their output, by either
switching between them [6] or by probabilistically merging them [23, 48, 55, 63]. A
key issue when merging tracking results is how to obtain a good confidence measure
for each cue. This is a tricky question since the performance of one cue may only
be assessed by using a different cue or different representation of the target object.
One answer is the discriminability between foreground object and background re-
gion. This is the basis of recent work on discriminative tracking [5, 17, 29], where
tracking is formulated as a classification task. Collins et al. proposed a method for
online feature selection which selects the most discriminative features from a pool
of color-based features [18]. The ability to discriminate was evaluated as either the
two-class variance ratio or the difference of the top two likelihood peaks. Avidan
introduced ensemble tracking, where multiple (3-5) weak classifiers were combined
via AdaBoost [5]. At each frame a new weak classifier was learned and the ensem-
ble was updated by replacing the least reliable classifiers in each time step. Grabner
and Bischof applied online boosting to feature selection [29]. Features from a larger
pool of 250 weak classifiers were evaluated and and a set of 50 selectors chose those
that were combined into a strong classifier.
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In practice, an issue with online adaptation is the adaptability vs. drift trade-off:
Allowing the tracker to adapt to rapid changes of the object’s appearance bears the
risk of incorrectly adapting to the background. Ideally an object model is available
that includes all possible variations. Such a model could then be used as an ‘anchor’
for the tracker. Obtaining such a model is challenging and different representations
have been used, including the color distribution [6], a representation learned from a
short initial sequence [30] or an off-line trained detector [4, 45, 84]. Detectors have
been included into tracking systems, for example, by running them in tandem [45,
84] or by closely integrating them with the tracker’s estimation procedure [4,49,59].
Indeed, a viable tracking solution is to use a detect-and-connect strategy, shown for
example in [44]. In many cases this approach is not yet sufficiently fast for real-time
tracking and the detectors lack sufficient flexibility, but this is a promising avenue
for future research.

Existing algorithms that integrate multiple cues choose their component ob-
servers in a heuristic manner beforehand [6,9,49]. In the following we are proposing
a method to make this choice in a more principled way.

9.3 Tracking with Multiple Observers

We now address the question of how to design a tracker using multiple observation
models. The observation models are components from different stand-alone tracking
algorithms such as single template matching, optical flow and online classification.
The idea is to learn which of these are suitable components and how they should be
arranged for efficient evaluation. We collect a set of training sequences and ground-
truth label them by hand. On these sequences we evaluate error distributions for
different observers. The ground truth labels allow us to evaluate combinations of
observers on a test set. The term ‘observer’ in this Chapter refers to an observation
model, and can be seen as a component of a tracker, the other component being
the dynamical model. However, in the evaluation we only rely on the observations
within a search window around the previous estimate, thus both terms may be used
interchangeably here. We consider the particular tracking scenario of tracking a fist
using a static camera. However, the method is general and can be applied to other
settings [73].

9.3.1 Observation Models

The goal is to find, for a given tracking scenario, the best observer or combination
of observers. Our approach is to first evaluate each observer individually and from
these values measure the performance of combinations of observers. The observers
we consider are those used previously in tracking algorithms, see Table 9.1. They
can be classified into four types: single template matching, motion consensus of
local features [6, 45, 51], histogram-based region matching [19] and online classi-
fication [17, 29, 49]. Note that the individual observers are not restricted to using a
single cue.
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Table 9.1 Observers in the evaluation. A diverse range of observers are tested in the experi-
ments. They can be grouped into four types: single template matching, local feature matching,
histogram-based region matching, and online classifiers. Between them they use a variety of
cues, including image intensity, color and motion features. Some observers maintain a fixed
representation while others are updated over time.

Method Observation Estimate Confidence value

NCC Normalized cross correlation max correlation correlation score
SAD Sum of absolute differences min distance distance score

BOF Block-based optical flow of 3 × 3 tem-
plates

mean motion mean NCC score

KLT [51] Kanade-Lucas-Tomasi sparse optical
flow using 50 features

centroid of good features fraction of good features

FF [45] Flocks of features: Tracking 50 local
features with high color probability and
‘flocking’ constraints

centroid of good features fraction of good features

RT [6] Randomized templates: NCC track of
eight subwindows, with motion consen-
sus and resampling

centroid of good features fraction of good features

MS [19] Mean shift: Color histogram-based mean
shift tracking with background weight-
ing

min histogram distance histogram distance

C [71] Color probability map, blob detection scale space maximum probability score
M [71] Motion probability map, blob detection scale space maximum probability score
CM [47] Color and motion probability map scale space maximum probability score

OBD [29] Online boosted detector: Classifier
boosted from pool of rectangle features
updated online

max classifier output classifier margin

LDA [49] LDA classifier computed from five rect-
angle features in the previous frame (Ob-
server 1 in [49])

max classifier output classifier margin

BLDA [49] Boosted LDA classifier using 50 LDA
classifiers from a pool of 150, trained
on the previous five frames (Observer 2
in [49])

max classifier output classifier margin

OFS [17] Online feature selection of 3 out of 49
color-based features based on fg/bg vari-
ance ratio

centroid of top features mean variance ratio of se-
lected features

Single Template Matching. The first two observers use normalized cross correla-
tion (NCC), and sum of absolute differences (SAD), respectively. Given the sub-
window of the most recent detection, the matching score in the search window is
computed exhaustively. We also performed initial experiments using correlation of
local orientations, used by Freeman and Weissman [26]. We found that the tracker
works when the hand moves slowly, but edge features tend to be unstable when
motion blur occurs.

Local Feature Matching. The first local feature method is block-based optical flow
(BOF), where the object region is divided into a regular 3× 3 grid of subwindows
which are matched independently in the next frame using NCC. The second method
computes sparse optical flow on salient features, using the Kanade-Lucas-Tomasi
(KLT) tracker with a set of 50 features [8, 45]. The third method is the ‘flocks of
features’ tracker by Kölsch and Turk [46]. It combines motion cues with a learned
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object color distribution. KLT features are used to compute motion which has to
satisfy the following constraints constraints: (1) all features maintain a minimum
distance from each other, and (2) no feature is further from the current median than
a maximum distance. The name of the method comes from the similarity to the
motion pattern of flocks of birds. A further constraint is that the features need to
be located in regions of high object color probability. Features that do not satisfy
all three constraints are pruned and replaced with new ones. Finally, we have re-
implemented the randomized template method of [6]. A set of eight templates that
are randomly located and sized within the object region is tracked using NCC.

Region Matching. The first method in this category is color based mean shift [19],
where the best match is found by minimizing the distance of the color distribution
to the target. We use an RGB histogram representation, where each color channel is
divided into 16 bins. In addition we use the background color weighting scheme that
was proposed as an extension in [19]. The next method is based on pixel-wise color
probabilities as proposed by Jones and Rehg for skin color detection [43]. Color
distributions of the object and the surrounding background region are obtained dur-
ing initialization and the probability for each pixel belonging to the foreground is
computed. We then run a box filter over this probability image that finds blobs,
i.e., regions of high object probability surrounded by regions of low object proba-
bility [71]. This is quite similar to the hand tracker by Bretzner et al. [11] where
scale-space extrema in color feature space are found. The third method uses the
motion cue in a similar way. It computes the pixel-wise probability of motion in a
region. The distributions for moving regions and background are obtained off-line
from a hand labeled sequence of frame difference images. Note that in general this
cue is typically present near the object’s boundary, but not necessarily inside the ob-
ject for homogeneous surfaces. The final method combines both color and motion
cues. The function combines three terms as a weighted sum as in [47]. The functions
are smoothed spatially by Gaussians with a variance depending on the size of the
previously detected hand. The pixel-wise probability density function of observing
a hand at image location y is defined as

p(hand|y) ∝ wc p(y|col) + wm p(y|mot) + (1−wc−wm) p(y|col) p(y|mot), (9.1)

where wc and wm are weights that are determined through experiments on a valida-
tion set (in our case wc = wm = 0.1).

Online Classification. The first method in this category is a re-implementation of
online boosting as proposed by Grabner and Bischof [29]. A classifier is learned
online by selecting a set of rectangle features (weak classifiers) from a pre-selected
pool of 250 features. Assuming that the object location is known at frame t, the clas-
sifier is evaluated in the neighborhood of the previous location to create a confidence
map. The new object location is moved to its maximum and, using the new labels
for object and background, new training examples are sampled from the image to
update the classifier. The second online method uses linear discriminant analysis
(LDA), based on five rectangle features. The third method is Boosted LDA and
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Fig. 9.3 Observer evaluation. At each frame t of a test sequence an observer Ok outputs
its position estimate x̂k

t and confidence value ck
t . The position error ek

t relative to the ground
truth is calculated during successful tracking (represented by green cells). Loss of track occurs
when the error exceeds a threshold τ (switch to red). Tracking is re-initialized from an off-line
trained detector (blue). Precision and robustness metrics are calculated from the test results.

combines 50 classifiers from a pool of 150 using AdaBoost. These two methods
have been proposed by Li et al. [49] who used these as observation models in a
particle filter trained over different time periods. While the LDA classifier is trained
only on the previous frame, the Boosted LDA classifier is trained on the previous five
frames. Finally, we have implemented the online feature selection (OFS) scheme by
Collins et al. [18], where discriminative color features are found using the variance
ratio criterion.

We train a detector to initialize and re-initialize each tracker. The detector was
trained off-line using AdaBoost for feature selection [54, 81] from a dataset of ap-
proximately 5000 positive and negative examples. The version that we use [54] uses
feature co-occurrence to increase the performance over the baseline method.

9.3.2 Evaluating Single Observers

The evaluation of observers proceeds as follows. Given an image sequence It , t =
1, ...,T , at every time step t each observer Ok,k = 1, ...,K computes an estimate of
the target location x̂k

t as well as the distance to the labeled ground truth location xgt
t

as error ek
t = d(x̂k

t ,x
gt
t ). The estimate x̂t = (x,y,s) contains the center location x,y

and scale estimate s. The error is computed as the the scale-normalized distance be-
tween the centers. Observers that do not estimate the scale s, obtain this value from
the most recent detection and it remains constant during tracking. Every observer
also outputs a confidence value ck

t at each frame, which is computed depending on
the type of observer, see the right column of Table 9.1. Loss of track occurs when
the location error ek

t is above a threshold value τ < 1. In this case the tracker outputs
τ as error and is re-initialized at the next successful detection. The detections are
pre-computed by running the off-line detector over all sequences. In summary, the
measurements for the individual observers Ok on a training sequence are given by

Zk = {x̂k
t ,e

k
t ,c

k
t }, t = 1, ...,T . (9.2)

This allows the evaluation of single observers on the complete sequence, not just on
the first successfully tracked segment. Loss of track can occur at any time during the
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Fig. 9.4 Example of precision vs. robustness of trackers. The plot shows the tracking error
of two stand-alone trackers with different observation models: maximum correlation (NCC),
and randomized template tracking (RT). In this example, NCC is more accurate but fails early
on, while RT is able to track over a longer period with less precision.

sequence when an observer’s particular assumptions, e.g., slow motion or small pose
change, do not hold. The number of tracked frames when running the tracker only
once is dependent on when this event occurs: if it is near the beginning of a sequence
the measured robustness is worse than when it is near the end. The performance of
an observer is estimated as the expected error over all frames,

E[ek] =
1
T ∑t

ek
t , k = 1, ...,K. (9.3)

However, this function does not allow the comparison of observers when track is
lost, because the error is meaningless in this case. In practice we are therefore inter-
ested in both the tracking error while the tracker is following the target as well as the
probability of losing track. This motivates the distinction into two performance cri-
teria, precision and robustness. Precision is related to the expected error only during
successful tracking by

1−E[ek|ek < τ]. (9.4)

The robustness is the probability of successful tracking as

E[ek
t < τ|ek

t−1 < τ]. (9.5)

See Figure 9.3 for a schematic of the evaluation on one sequence.
It is interesting to look at the relationship between precision and robustness. Ob-

servers with a fixed spatial model tend to be more precise than observers where the
spatial arrangement is more flexible, see for example Figure 9.4, which shows track-
ing without re-initialization using single template matching (NCC) and local feature
matching (RT) on one sequence. In this example NCC is more precise than RT, but
the tracker loses lock earlier. Note that similar ideas have recently been explored
in the visual object classification literature, where a representation’s invariance vs.
discriminative power trade-off was explored [80].
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Fig. 9.5 Expected error as function of confidence. This data is obtained from training se-
quences and allows the direct comparison of observers given their confidence values. Shown
here are the results for observers NCC (normalized cross-correlation) and RT (randomized
templates).

In order to evaluate each observer individually in a tracking algorithm, we use a
threshold value of τ = 1 on the tracking error (in Equations 9.4 and 9.5) to determine
loss of track. When this value is exceeded, the tracker is re-initialized at the next
detection. The value of τ = 1 corresponds to the case where track has clearly been
lost. Other threshold values could be used, where a smaller value enforces higher
precision and lower robustness, and vice versa. Precision and robustness are then
computed by taking expectations over all frames of the test sequences.

9.3.3 Evaluating Multiple Observers

This Section deals with the question of how to evaluate the performance that can be
achieved by combining multiple observers. Ideally, we would like to select the ob-
server Ok with the lowest error ek

t at each time step. This information is not available
at test stage, so instead the observer’s confidence value ck

t is used. Confidence val-
ues have often been used to compare the results of multiple observers and combine
them [6,9,48]. However, most observers have a relatively simple object representa-
tion and thus the confidence value itself cannot be expected to be perfectly reliable.
For example, an observer may have a high confidence value at an incorrect location
if there is an object close-by that is similar to the target in the observer’s feature
space. The observer confidence values cannot be compared directly in our case, so
they are simply regarded as features computed by each observer. In order to make
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(a) (b)

Fig. 9.6 Evaluation schemes. (a) In the parallel evaluation, the output from the observer with
the lowest expected error is chosen. (b) In the cascaded evaluation, the next observer is only
evaluated if the expected error is above a threshold. An off-line trained detector is used to
re-initialize. The binary tests in this schematic represent threshold tests on the expected error.

them comparable we estimate the distributions p(ek|ck) from the training data, i.e.,
the error distribution of observer Ok given its confidence value. To use the finite data
set we discretize the range of the ck values and compute p(ek|ck) in each partition.
For the evaluation we represent it by the mean of each distribution, E[ek|ck]. Thus
the estimated error for an observer Ok at time t is êk

t = E
[
ek|ck

t

]
. Figure 9.5 shows

two of these functions for the normalized cross-correlation (NCC) and randomized
templates (RT) observers. For example, if both observers return a confidence value
of 0.9, the expected error of NCC is lower than that of RT.

We distinguish two different approaches of combining observers: parallel and se-
quential, respectively. In parallel evaluation, the estimates of multiple observers are
available at each time step and the output of the most reliable observer is selected.
Note that alternative fusion methods could be used, for example weighting the ob-
server estimates. In sequential (or cascaded) evaluation observers are evaluated in
sequence: If the first observer returns a high confidence, then no other observer is
evaluated. Otherwise, the evaluation continues with the next observer. The advan-
tage of sequential observation is that on average significantly less computation is
required. However, the order of evaluation as well as the thresholds on the expected
error are critical for good performance.

9.3.4 Parallel Evaluation

The parallel evaluation scheme selects the observer with the lowest expected error
given its confidence value at each time step, i.e., k∗t =argmink êk

t , see Figure 9.6(a).
If this error is above a certain threshold, then the tracker is re-initialized at the next
successful detection.

The running of tests consisting of all possible combinations of all trackers on all
test sequences would be very time consuming. We therefore run all the observers
individually on the test sequences and record the results on all frames. These are
then used in the combination tests as the result from each component observer. In
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Fig. 9.7 Fist data set. The evaluation is performed on a data set of 12 sequences of 500 frames
each, (top) six used for training and (bottom) six for testing. The sequences are taken with
a static camera on a display showing people moving their hand in front of the screen. The
dataset contains motion blur, skin-colored objects in the background, and occasionally other
people in the scene.

order to confirm the validity of such a set-up, we subsequently perform tests using
the complete tracking framework for a few combinations of observers.

9.3.5 Cascaded Evaluation

Although the combined estimate is generally expected to be better than individ-
ual estimates, the main disadvantage is the increased execution time. In cascaded
evaluation observers are evaluated in sequence, starting with the first observer, and
continuing with the next observer only if the expected error is above a threshold
value, see Figure 9.6(b). If no observer returns a sufficiently low expected error, the
algorithm attempts to jump to the top of the cascade using local detection. In the
evaluation, as in the parallel case, the output of the individual observers is used to
estimate the performance of different combinations of observers as well as threshold
values for switching observers.

9.3.6 Dynamic Model Discussion

A dynamic model is an integral component in every tracking algorithm as it can
enable tracking through short periods of occlusion or weight the observations ac-
cording to the most likely target motion. However, for the evaluation we aim to
be independent of the dynamics, which are difficult to model in the case of rapid
hand motion. Instead we sample the observation space densely at each pixel loca-
tion in a neighborhood around the previous estimate and rely only on the observa-
tions without prediction, corresponding to a maximum likelihood location estimate.
This methodology is consistent with the observation made in the particle filtering
literature that the performance largely depends on the proposal distribution [22]. If
good motion models are available, these should certainly be integrated in the final
system [41]. The final tracking algorithm used in the gesture interface does employ
prediction based on a constant velocity model for defining the search region and an
auto-regressive filter for temporal smoothing.
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Fig. 9.8 Evaluation of individual observers. This plot shows precision and robustness values
on the test data. NCC is the most precise observer, the color-motion observer (CM) is the
most robust.

9.3.7 Experimental Results

We evaluate the method on a hand dataset containing 12 sequences (10 with rapid
motion, 2 with slower motion) of 500 frames each of size 320×240, recorded at
30 fps. The sequences are taken indoors with a static camera on top of a screen
showing different people pointing their fist towards the camera in order to control a
screen pointer. Frames of the dataset are shown in Figure 9.7. Half of the sequences
are used to learn the expected errors E[ek|ck] for each observer Ok, the other half is
used for performance evaluation.

9.3.8 Individual Observers

The precision and robustness measurements on the unseen test data are shown in
Figure 9.8. A number of observations can be made. First, single template match-
ing has high precision, with NCC being the most precise, and SAD the third
most precise. Observers that include color also score highly, including the color
probability (C), color-motion probability (CM), mean shift (MS) and flocks of
features (FF) observers. Among the online classifiers, the online boosting (OB) ob-
server shows the highest precision. Observers using local features generally perform
slightly worse, with KLT and LDA observers ranking lower in terms of accuracy.
In terms of robustness, the color-motion (CM) observer comes out on top, followed
by the flocks of feature (FF) observer. Color based observers (MS, C) as well as
single template observers (SAD, NCC) also perform well. Color and motion prob-
ability individually show similar robustness. The regular block-based optical flow
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Fig. 9.9 Evaluation of observer combinations. These plots show the precision and robustness
measured on the test data. (top) pairs, (bottom) triplets, (left) parallel evaluation, (right) cas-
caded evaluation. Only a small subset of data points near the right upper corner with both
high robustness and precision are shown in these graphs.

algorithm showed to be more robust than the KLT tracker, but both had difficulties
handling rapid hand motion. The LDA observer shows significantly less robustness.

The performance of the off-line trained detector is not included in the evaluation.
According to our definition of robustness it does not perform well because every
missed detection is counted as loss of track. The percentage of correct detections
on the test set is 48.4%, but it varies significantly across the sequences. On some
sequences there are fewer detections due to blur and pose changes.

9.3.9 Observer Combinations

Parallel Evaluation. We evaluate all pairs of observers using a threshold value of
τ = 1 on the expected error, resulting in a total of 91 combinations. Subsets of the
results are shown in the top left of Figure 9.9. The graphs only show combinations
that are near the right upper corner of high robustness and high precision. The com-
bination of NCC with one of the color-based observers CM, C and MS shows good
performance. In the videos the hand occasionally moves rapidly, resulting in sig-
nificant motion blur. These cases tend to be failure modes for intensity or gradient
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Fig. 9.10 Comparison with real tracking results. These plots show the precision and robust-
ness measured for selected combinations of observers. It compares the results by theoretical
combination (as in Fig. 9.9) and real tracking results obtained for selected combinations of
observers, shown here with gray background. The left plot show the results on pairs and the
right plot on triplets. The agreement is reasonable, although there is inherently some variation
between the results.

based methods. On the other hand, the color distribution is less affected by mo-
tion blur. The robustness of these color-based observers is increased by most of the
other observers that help to bridge the frames where the color cue is unreliable. The
analysis also shows how observers using different cues complement each other. For
example, the NCC-C combination has robustness-precision values of (0.997, 0.892),
better than either NCC (0.992, 0.869) or C (0.991, 0.839) alone.

The evaluation of the 364 combinations of triplets shows a further improvement
in performance, see the bottom left of Figure 9.9. Most noticeably, the best perfor-
mance is achieved with combinations that include the NCC observer together with a
color-based observer, C or CM. A local feature based observer such as LDA, KLT, or
RT, can help too. Note, however, that the performance relative to the pairwise eval-
uation does not always change significantly. For example, by adding LDA to the
NCC-C combination, the precision only increases slightly and robustness remains
unchanged. Sometimes the precision can even decrease while robustness increases,
such as in the case of NCC-C-FF. This means that on some occasions the additional
observer helps to bridge gaps, but its estimate is otherwise not used.

Cascaded evaluation. We compared all ordered combinations of pairs at five dif-
ferent threshold levels (0.1, 0.2, 0.3, 0.4, 1.0) resulting in a total of 912 evaluations.
Subsets of the results are shown in the top right plot in Figure 9.9. Most of the
results with the highest precision employ NCC at the beginning of the cascade.
High robustness is achieved when at least one of the observers uses the color cue,
such as C or CM. The combination of NCC and CM (NCC-CM-3, i.e., a threshold
value of 0.3) that was proposed in [74] performs well in terms of precision, only
slightly slightly worse compared to evaluating the same observers in parallel. Some
combinations show higher precision, e.g., NCC-MS-3, however, this comes at the
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Fig. 9.11 Hand tracking results using NCC and color-motion (CM) observers. Shown are re-
sults of individual observers, a detector and parallel and cascaded evaluation. Colors indicate
which estimate is used. In this sequence the hand is tracked successfully by both pair-wise
schemes with a lower error than with either of the observers.

cost of lower robustness. It is also interesting to note that the performance of LDA
in combination with other observers shows significantly improved robustness, e.g.,
LDA-CM-4, compared to its individual result.

We also evaluated all triplets of observers at five different threshold levels, a total
of 4468 combinations. Subsets of the results are shown in the bottom right plot in
Figure 9.9. As a general observation, the results are further improved. Successful
combinations frequently include different types of observers, typically a single tem-
plate, a color-based observer and either motion or local features. If one component
is reliable over a long time period, the overall performance changes only little.

The results also suggest that in many cases arranging the observers in the order
of their individual precision leads to good performance. Combinations that include
NCC as first or second component perform consistently high. One idea is therefore
to estimate using the most precise observer at each time step. If the expected error
falls below the threshold, the next observer acts as a fallback method. Note that in
some cases the cascaded tracker may have switched to an observer that is less precise
during a difficult part of the sequence. It is therefore worth checking regularly if it
is possible to jump to the top of the cascade again via local detection in order to
increase tracking precision.
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Fig. 9.12 Hand tracking using NCC-CM-M observers in parallel. The NCC observer (blue) is
used initially. During motion blur the tracker switches to the CM observer (red). For a couple
of frames the M observer (purple) is used, while the light is turned off, before switching back
to CM.

Fig. 9.13 Hand tracking using NCC-CM-FF observers in a cascade. The NCC observer (blue)
is used initially, switching to the CM observer (red) during motion blur.

9.3.10 Tracker Evaluation on Selected Combinations

Given that the above analysis of observer combinations is based on the analysis of
individual observers, an obvious question is how this result varies when the full
combination is tested in a tracking framework. The two set-ups are not expected to
give identical results because in the combined case the observer estimates are de-
pendent on each other. Testing all combinations of observers becomes prohibitively
expensive, thus we use the results on independent observations as a method to select
promising combinations to evaluate. Figure 9.10 shows results on pairs and triplets
using cascaded evaluation. On all examples the precision in the real tracking result
is slightly smaller than to the results obtained with the simplified analysis, while the
robustness values are very similar.

Figures 9.11 shows example results of two different observers individually, their
pairwise combination, as well as the detector output. It can be seen that NCC is more
precise, but in the end loses track due to fast motion. CM is less precise, but tracks
the complete sequence successfully. The detector only fires in one frame in this
example. Both pairwise schemes work well. In some cases the parallel and cascaded
evaluation select different estimates, as in the second column of the figures.

Figures 9.12 and 9.13 show example frames from two test sequences using dif-
ferent observer triplets. Figure 9.12 shows results of the combination NCC-CM-M,
evaluated in parallel. The NCC observer is used initially, but during fast motion the
tracker switches to the CM observer. For a short while the motion (M) observer is
used while the light is turned off. Figure 9.13 shows another case where the tracker
switches from NCC to CM during fast motion.

The switching behavior of the NCC-CM tracker is illustrated in Figure 9.14, the
same sequence as in Figure 9.12. During this sequence the light is turned off and
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Fig. 9.14 Switching trackers over time. This figure shows the tracker’s switching be-
havior, colors in the plot indicate the component at each frame (blue=NCC, red=CM,
green=detector). The hand velocity in pixels is shown in the second plot. During this se-
quence the light was turned off and on as can be seen in the mean brightness plot (third from
top). Example frames where transitions occur are shown below (first and third pair from NCC
to CM due to motion blur, middle pair from CM to NCC via local detection).

on, as shown in the mean brightness plot in Figure 9.12. As the light is switched off,
the template used by NCC is no longer suitable and the tracker switches to the CM
observer.

When examining the performance during slow object motion, it becomes clear
that in these cases the NCC tracker has a very low error, while the color based track-
ers can be distracted by other skin-colored objects such as the arms. See Figure 9.15
for a comparison on two sequences with slow hand motion. In the comparison, lo-
cal orientation correlation (LOC) matching [26] is included, which shows the same
precision as NCC, but slightly lower robustness on this data set.

9.4 Gesture Interface System

This Section describes the components and the operation of the proposed gesture
interface.

9.4.1 Visual Attention Mechanism

One goal of this work is being able to set up the system in an arbitrary environment,
such as a living room or a public space, where multiple people may be within the
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Fig. 9.15 Results on two sequences with slow target motion. During slow hand motion the
NCC and LOC observers which both use single templates are the most precise, however, LOC
showed lower robustness.

camera’s view. For some periods there may be no interaction at all, until one person
initiates the interaction in order to achieve a specific task. Initially, our system finds
faces using a boosted detector [54]. Once a face is detected, the user is prompted to
hold up their fist within a rectangular input area below their face, see Figure 9.16(a).
This also works for multiple users in the scene as the input areas are ordered ac-
cording to scale of the face detections, giving priority to users who are closer to the
camera. When a fist is detected, an interaction area is defined, within which the fist
is tracked. The area is placed at the detected fist location and is scaled proportional
to the detected size, meaning that the range of hand motion is largely independent of
the distance to the camera. In tracking mode the user is then able to browse content
shown on the display.

9.4.2 Tracking Mechanism

We take the results from the experiments in Section 9.3, which showed that an NCC-
CM cascade gives good performance and use this as our fist tracker. The interface
consists of a grid of windows, one of which shows the camera output. The ‘active’
region of fist tracking is shown as an overlay on the camera output window, see
Figure 9.16(b). This window has the same aspect ratio as the overall screen, so the
tracking result can be scaled up to give a cursor position on the screen, indicated
with an arrow icon. The user can move their fist out of the interaction area at any
time. In this case the tracker will fall back to global detection mode and re-calibrate
the active tracking region to around the location of a newly detected fist.

Figure 9.17 shows the system with two users in the field of view. The system only
allows interaction of one user at a time. Priority is given using a simple first-come-
first-serve policy. The figure shows one user taking control first and as he drops his
hand, the other user’s fist is detected.

In order to ensure continuous tracking, two additional mechanisms are included
in the system. The first is an additional local detection step if the NCC confidence
value is too low. Instead of directly switching to CM, the tracker first attempts to re-
detect and continue tracking with NCC. If local detection fails, it switches to CM.
Secondly, there is a maximum number of frames that CM is used before detection
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Fig. 9.16 Gesture interface showcase. (a) During the attention phase, a face detector is run
continuously and, as soon as a person looks towards the screen, a welcome message is dis-
played. (b) If the person holds up their fist within the shown rectangle placed below the
detected face, tracking begins and the user can move a screen pointer. Shown here is the
language selection screen. (c) Video content can be selected by hovering over the buttons
that appear when the arrow is over the corresponding thumbnail image. (d) In the 3D model
viewer application, the user can rotate a 3D model with their hand motion.

is triggered. Tracking with CM allows some variation in hand pose, but may also
result in locking on to other skin colored objects. Correct tracking is verified with
the detector, and if a fist a found, the system returns to the top of the cascade.

We use a Point Grey Flea2 camera, connected via a IEEE 1394b cable, to capture
images of resolution 320×240 pixels at 30 fps. The system has been implemented
and tested on different platforms, including (i) a desktop with an eight-core Intel
Xeon E5345, 2.33 GHz with 2GB RAM, (ii) a laptop with a dual-core Intel CPU
T2600, 2.16 GHz with 1GB RAM. (iii) a laptop with a dual-core Intel Core 2 Duo
T9800, 2.93 GHz with 3GB RAM. The system runs in real-time on these platforms
and on the Core 2 Duo laptop it uses 30-50% of CPU cycles in tracking mode.

9.4.3 Selection Mechanisms

In order to activate a screen icon, we need to define a selection mechanism equiva-
lent to a mouse click. Solutions that have previously been proposed include chang-
ing hand pose, finger or thumb extension, and simply hovering over an icon for a
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Fig. 9.17 Interaction example with two users. This figure shows the system’s behavior when
two users are using the interface in turn. (a) Two faces are detected, both users are prompted
to show a fist. (b) User on right raises hand, defining new interaction region, shown as a
rectangle. (c) User on left shows fist, but user on right stays in control. (d) User on right
lowers fist out of camera’s view, fist of user on left is detected. (e) Both users lower their
hands, no fist detection. (f) When fist is shown closer to the camera, the interaction region
becomes larger. (g) User on right lowers fist, control switches. (h) User on right takes over
again, this time with his other hand. (i) User on left raises fist, user on right shows both fists,
control stays with current hand.

short time period [11,26,37,45,52,67]. We have implemented these by training sep-
arate detectors, see Figure 9.18, (a) an open hand detector, (b) a ‘thumb up’ detector,
and (c) hovering over an icon for a short period of time (0.5 seconds). Additionally,
we propose the following method: (d) detecting a quick left-right shake gesture. The
shake gesture is detected by recording the hand motion over a sliding time window
of 20 frames and classifying this vector. In experiments linear discriminant analysis
(LDA) and k-nearest neighbor classifiers were tested, but more reliable results were
obtained by computing the distance to the closest positive training example (among
a small set of 75 examples) and thresholding this value. The activation mechanism
can be set according to the user’s preference, however, selection by hovering has
been used as default setting during exhibitions.

A video can be played by selecting the button that appears when the cursor is over
the corresponding thumbnail image, see Figure 9.16(c). Another sample application
is a 3D model viewer, shown in Figure 9.16(d), where the user can rotate a displayed
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Fig. 9.18 Different gestures for selection. (a) Open hand pose, (b) thumb up pose, (c) hover-
ing for a short time period, and (d) a shake gesture.

3D model with their hand motion. A video showing the system in operation can be
viewed at http://www.youtube.com/watch?v=RL9MpXhWCrQ&fmt=18.

9.5 Summary and Conclusion

This Chapter has addressed the task of selecting component observers for particular
tracking scenarios. To this end, a set of 14 observers has been evaluated on test
sequences. A framework was proposed that evaluates the robustness and precision
of observers, allowing the user to choose a profile suitable for a given application.
The measurements of individual components were used to exhaustively evaluate
combinations of components. We have shown results on observer pairs and triplets
only, but the analysis can be applied to larger numbers of components.

The observers that were used in this paper have been used in stand-alone trackers.
Some of these trackers themselves employ online feature selection. Here, instead
of switching between relatively simple features from a pool [5, 18, 29], we pro-
pose switching online between observers that may use different cues and estimation
schemes. Our evaluation framework allows combining arbitrary components that
output an estimate and a confidence value. Direct comparison is possible because
we estimate the observers’ error distribution given their confidence.

In our experiments, cascaded evaluation gives similar performance to parallel
evaluation at much higher efficiency. One suggested strategy is to use the most pre-
cise tracker if possible and use more robust ones as a fallback mechanism, with an
off-line trained detector for re-initialization. This architecture allows for long term
operation, which is required in many applications.

The proposed gesture interface works by tracking a pointing fist with a sin-
gle camera facing the user. Our proposed system includes an attention mechanism
that allows one user at a time to be in control. Note that face recognition could
be employed for customizing the interface, as done in a previous version of our
system [74]. For tracking the hand, we propose a multi-cue method that switches
trackers over time and is updated continually by an off-line trained detector. Cur-
rent sample applications include browsing videos as well as viewing a gallery of
3D models of sculptures. The system allows the user to view the 3D model from
different directions by rotating it by hand. This can also be seen as a step towards
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manipulation of virtual objects, which is still an active research area [7]. The sys-
tem has been successfully used by over hundred people at conferences and public
exhibitions.
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