
Chapter 3
Dynamic Graph Cuts and Their Applications in
Computer Vision

Pushmeet Kohli and Philip H.S. Torr

Abstract. Over the last few years energy minimization has emerged as an indis-
pensable tool in computer vision. The primary reason for this rising popularity has
been the successes of efficient graph cut based minimization algorithms in solving
many low level vision problems such as image segmentation, object reconstruction,
image restoration and disparity estimation. The scale and form of computer vision
problems introduce many challenges in energy minimization. In this chapter we ad-
dress the problem of efficient and exact minimization of groups of similar functions
which are known to be solvable in polynomial time. We will present a novel dy-
namic algorithm for minimizing such functions. This algorithm reuses computation
from previous problem instances to solve new instances resulting in a substantial
improvement in the running time. We will present the results of using this approach
on the problems of interactive image segmentation, image segmentation in video,
human pose estimation and segmentation, and measuring uncertainty of solutions
obtained by minimizing energy functions.

3.1 Introduction

Many problems in computer vision and scene understanding can be formulated in
terms of finding the most probable values of certain hidden or unobserved variables.
These variables encode a desired property of the scene and can be continuous or
discrete. For the case of discrete variables, these problems are commonly referred
to as labelling problems as they involve assigning a label to the hidden variables.
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(a) (b) (c)

Fig. 3.1 Some labelling problems in computer vision. (a) Object segmentation and recog-
nition: Given any image, we want to find out which object each pixel in the image belongs
to. There is one discrete random variable for each pixel in the image which can take any
value from a set L of object labels. For instance, we can use the object set {road, building,
tree, sky}. (b) Image denoising: Given a noisy image of the scene, we want to infer the true
colour of each pixel in the image. The problem is formulated in a manner similar to object
segmentation. Again we use one discrete random variable per pixel which can take any value
in RGB space. (c) Human pose estimation: Given an image, we want to infer the pose of the
human visible in it. The problem is formulated using a vector of continuous pose variables
which encode the orientation and different joint angles of the human.

Labelling problems occur in many forms, from lattice based problems of dense
stereo and image segmentation [9, 66] to the use of pictorial structures for ob-
ject recognition [18]. Some examples of problems which can be formulated in this
manner are shown in Figure 3.1.

One of the major advances in computer vision in the past few years has been the
use of efficient deterministic algorithms for solving discrete labelling problems. In
particular, efficient graph cut based minimization algorithms have been extremely
successful in solving many low level vision problems. These methods work by infer-
ring the maximum a posteriori (MAP) solutions of conditional and markov random
fields which are generally used to model these problems.

3.1.1 Markov and Conditional Random Fields

Random fields provide an elegant probabilistic framework to formulate labelling
problems. They are able to model complex interactions between hidden variables in
a simple and precise manner. The power of this representation lies in the fact that the
probability distribution over different labellings of the random variables factorizes,
and thus allows efficient inference.
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Consider a discrete random field X defined over a lattice V = {1,2, . . . ,n} with a
neighbourhood system N . Each random variable Xi ∈ X is associated with a lattice
point i ∈ V and takes a value from the label set L= {l1, l2, . . . , lk}. The neighbour-
hood system N of the random field is defined by the sets Ni,∀i ∈ V , where Ni

denotes the set of all neighbours of the variable Xi. A clique c is a set of random
variables Xc which are conditionally dependent on each other. Any possible assign-
ment of labels to the random variables is called a labelling or configuration. It is
denoted by the vector x, and takes values from the set L = Ln.

A random field is said to be a Markov random field (MRF) with respect to a neigh-
bourhood system N = {Nv|v ∈ V} if and only if it satisfies the positivity property:
p(x) > 0 ∀x ∈ X n, and the Markovian property:

p(xv|{xu : u ∈ V −{v}}) = p(xv|{xu : u ∈ Nv}) ∀v ∈ V . (3.1)

Here we refer to p(X = x) by p(x) and p(Xi = xi) by p(xi). The pairwise MRF

commonly used to model image labelling problems is shown in Figure 3.8.
A conditional random field (CRF) may be viewed as an MRF globally conditioned

on the data. The conditional distribution p(x|D) over the labellings of the CRF is a
Gibbs distribution and can be written in the form:

p(x|D) =
1
Z

exp(−∑
c∈C
ψc(xc)), (3.2)

where Z is a normalizing constant known as the partition function, and C is the
set of all cliques [42]. The term ψc(xc) is known as the potential function of the
clique c where xc = {xi, i ∈ c} is the vector encoding the labelling of the variables
constituting the clique. The corresponding Gibbs energy is given by

E(x) =− log p(x|D)− logZ = ∑
c∈C
ψc(xc) (3.3)

The most probable or maximum a posteriori (MAP) labelling x∗ of the random field
is defined as

x∗ = argmax
x∈L

p(x|D). (3.4)

and can be found by minimizing the energy function E . This equivalence to MAP

inference has made discrete energy minimization extremely important for problems
which are solved using probabilistic methods.

Minimizing a discrete function is one of the core problems of optimization. Many
combinatorial problems such as MAXCUT and constraint satisfaction (CSP) can be
formulated in this manner. Although minimizing a function is NP-hard in general,
there exist families of energy functions for which this could be done in polynomial
time. Submodular set functions constitute one such well studied family. The algo-
rithms for minimizing general functions belonging to this class of functions have
high runtime complexity. This characteristic renders them useless for most com-
puter vision problems which involve large number of random variables. Functions
belonging to certain subclasses of submodular functions can be solved relatively
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easily (i.e., are less computationally expensive to minimize). For instance, certain
families of functions can be minimized by solving a st-mincut problem for which
fast and efficient algorithms are available [8, 19, 27, 56].

3.2 Graph Cuts for Energy Minimization

Graph cuts have been extensively used in computer vision to compute the maximum
a posteriori (MAP) solutions for various discrete pixel labelling problems such as
image restoration, segmentation, voxel occupancy and stereo [7,10,28,29,37,53,75].
Greig et al. [24] were one of the first to use graph cuts in computer vision. They
showed that if the pairwise potentials of a two label pairwise MRF were defined as
an Ising model, then its exact MAP solution can be obtained in polynomial time by
solving a st-mincut problem.

One of the primary reasons behind the growing popularity of graph cuts is the
availability of efficient algorithms for computing the maximum flow (max-flow) in
graphs of arbitrary topology [2, 8]. These algorithms have low polynomial runtime
complexity, and enable fast computation of the minimum cost st-cut (st-mincut)
problem. This in turn allows for the computation of globally optimal solutions for
important classes of energy functions which are encountered in many vision prob-
lems [38,33]. Even in problems where they do not guarantee globally optimal solu-
tions, these algorithms can be used to find solutions which are strong local minima
of the energy [9, 39, 32, 69]. These solutions for certain problems have been shown
to be better than the ones obtained using other inference methods [66].

3.2.1 The st-Mincut Problem

In this Section we provide a general overview of the st-mincut/maxflow problem and
give the graph notation used in this Chapter. A directed weighted graph G(V,E,C)
with non-negative edge weights, is defined by a set of nodes V , a set of directed
edges E , and an edge cost function C : E → R which maps each edge (i, j) of the
graph to a real number ci j

1. We will use n and m to denote the number of nodes |V |
and the number of edges |E| in the graph respectively. Graphs used in the st-mincut
problem have certain special nodes called the terminal nodes, namely the source s,
and the sink t. The edges in the graph can be divided into two disjoint categories:
t-edges which connect a node to a terminal node, and n-edges which connect nodes
other than the terminal nodes with each other. We make the following assumptions
in our notation: (i, j)∈E⇒ ( j, i)∈ E , and (s, i) ∈ E ∧ (i, t) ∈ E for all i ∈V . These
assumptions are non-restrictive as edges with zero edge weights are allowed in our
formulation. Thus we can conform to our notation without changing the problem.

A cut is a partition of the node set V into two parts S and S = V − S, and is
defined by the set of edges (i, j) such that i ∈ S and j ∈ S. The cost of the cut (S,S) is
given as:

1 We will restrict our attention to edge cost functions of the form C : E→ R
+∪{0}.
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Fig. 3.2 Graph reparameterization. The figure shows a graph G, and its reparameterization
G1 obtained by adding a constant α to both the t-edges of node a2. The edges included in the
st-mincut are depicted by dotted lines. Observe that although the cost of the st-mincut in G
and G1 is different, the st-mincut includes the same edges for both graphs and thus induces
the same partitioning of the graph.

CS,S = ∑
i∈S, j∈S

ci j. (3.5)

An st-cut is a cut satisfying the properties s ∈ S and t ∈ S. Given a directed weighted
graph G, the st-mincut problem is that of finding a st-cut with the smallest cost. By
the Ford-Fulkerson theorem [20], this is equivalent to computing the maximum flow
from the source to the sink with the capacity of each edge equal to ci j [2].

3.2.2 Formulating the Max-Flow Problem

For a network G(V,E) with a non-negative capacity ci j associated with each edge,
the max-flow problem is to find the maximum flow f from the source node s to the
sink node t subject to the edge capacity (3.6) and mass balance (3.7) constraints:

0≤ fi j ≤ ci j ∀(i, j) ∈ E, and (3.6)

∑
i∈ N( j)

( f ji− fi j) = 0 ∀ j ∈V (3.7)

where fi j is the flow from node i to node j and N( j) is the neighbourhood of node j
i.e., N( j) consists of all nodes connected by an edge to j [2].

Observe that we can initialize the flows in the t-edges of any node i of the graph as
fsi = fit = min(csi,cit). This corresponds to pushing flow through these edges from
the source to the sink and has no effect on the final solution of the st-mincut problem.
From this it can be deduced that the solution of the st-mincut problem is invariant
to the absolute value of the terminal edge capacities csi and cit . It only depends
on the difference of these capacities (cit − csi). Adding or subtracting a constant to
these capacities changes the objective function by a constant and does not affect the
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overall st-mincut solution as can be seen in Figure 3.2. Such transformations result
in a reparameterization of the graph and will be explained later in Section 3.3.

3.2.3 Augmenting Paths, Residual Graphs

Given a flow fi j , the residual capacity ri j of an edge (i, j) ∈ E is the maximum
additional flow that can be sent from node i to node j using the edges (i, j) and
( j, i) or formally ri j = ci j − fi j + f ji. A residual graph G( f ) of a weighted graph
G consists of the node set V and the edges with positive residual capacity (with
respect to the flow f ). An augmenting path is a path from the source to the sink
along unsaturated edges of the residual graph.

3.2.4 Minimizing Functions Using Graph Cuts

The problem of finding the minimum cost st-cut (st-mincut) in any graph can be
written in terms of minimizing a sum of functions defined on individual and pairs
of binary variables. Conversely, any submodular function of binary or boolean vari-
ables which can be written as a sum of unary and pairwise terms can be minimized
by finding the st-mincut in the corresponding graph. In this Chapter, we will call
functions of this form ‘second order functions’ or ‘functions of order 2’.

Definition 3.1. We say that a function f : Ln→ R is of order k if it can be written
in terms of a sum of functions fi : Lk → R, each of which is defined on at most k
variables.

In the above definition we use the function representation which leads to the smallest
order.

Example 3.1. The function f a(x1,x2,x3) = 4x1 + 5x2x3 + 3x2 is of order 2 because
of the maximal order term 5x2x3. Similarly, the function

f a(x1,x2,x3) = 4x1 + 5x1x2x3 (3.8)

is of order 3 because of the maximal term 5x1x2x3.

Algorithms for finding the st-mincut require that all edges in the graph have non-
negative weights. This condition results in a restriction on the class of energy func-
tions that can be solved in this manner. For instance, binary second order functions
can be minimized by solving a st-mincut problem only if they are submodular [38].

We will now show how second order functions of binary variables (also referred
as Pseudo boolean functions) can be minimized by solving a st-mincut problem.
The procedure for energy minimization using graph cuts comprises of building a
graph in which each st-cut defines a configuration x. The cost of an st-cut is equal
to the energy E(x|θ ) of its corresponding configuration x. Finding the minimum
cost st-cut in this graph thus provides us with the configuration having the least
energy. Kolmogorov and Zabih [38] described the procedure to construct graphs for
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Fig. 3.3 Energy minimization using graph cuts. The Figure shows how individual unary
and pairwise terms of an energy function taking two binary variables are represented and
combined in the graph. Multiple edges between the same nodes are merged into a single
edge by adding their weights. For instance, the cost w1 of the edge (s,xa) in the final graph
is equal to: w1 = θa;0 +θab;00. The cost of a st-cut in the final graph is equal to the energy
E(x) of the configuration x the cut induces. The minimum cost st-cut induces the least energy
configuration x for the energy function.

minimizing pseudo-boolean functions of order at most 3. The graph constructions
for functions of multi-valued variables were given later by [27] and [56].

We now explain the graph construction for minimizing energies involving binary
random variables. We use the notation of [35] and write a second order function as:

E(x|θ ) = θconst + ∑
v∈V,i∈L

θv;iδi(xv)+ ∑
(u,v)∈E,( j,k)∈L2

θuv; jkδ j(xu)δk(xv), (3.9)

where θv;i is the penalty for assigning label i to latent variable xv, θuv;i j is the penalty
for assigning labels i and j to the latent variables xu and xv respectively. Further, each
δ j(xv) is an indicator function, which is defined as:

δ j(xv) =
{

1 if xv = j,
0 otherwise.

Functions of binary variables (pseudo-boolean functions) can be written as:

E(x|θ ) = θconst +∑
v∈V

(θv;1xv +θv;0xv)

+ ∑
(u,v)∈E

(θst;11xuxv +θst;01xuxv +θst;10xuxv +θst;00xuxv). (3.10)

The individual unary and pairwise terms of the energy function are represented
by weighted edges in the graph. Multiple edges between the same nodes are merged
into a single edge by adding their weights. The graph construction for a two variable



58 P. Kohli and P.H.S. Torr

energy function is shown in Figure 3.3. The constant term θconst of the energy does
not depend on x and thus is not considered in the energy minimization procedure.
The st-mincut in this graph provides us with the minimum solution x∗. The cost of
this cut corresponds to the energy of the solution E(x∗|θ ). The labelling of a latent
variable depends on the terminal it is disconnected from by the minimum cut. In our
notation, if the node is disconnected from the source, we assign it the label zero and
one otherwise.

3.3 Minimizing Dynamic Energy Functions Using Dynamic
Graph Cuts

In many real world applications, multiple similar instances of a problem need to
be solved sequentially (e.g., performing image segmentation on the frames of a
video). The data (image) in this problem changes from one time instance to the next.
Similarly, successive sub-problems solved in move making algorithms algorithms
such as swap, expansion [9], or fusion move [44, 74] are also similar.

Given the solution to an instance of the problem, the question arises as to whether
this solution can help in solving other similar instances. In this Section we answer
this particular question positively for functions that can be minimized exactly using
graph cuts. Specifically, we show how the maxflow solution corresponding to an
energy minimization problem can be used for efficiently minimizing another similar
function with slightly different energy terms.

Our algorithm records the flow obtained during the computation of the max-flow
corresponding to a particular problem instance. This recorded flow is used as an ini-
tialization in the process of finding the max-flow solution corresponding to the new
problem instance (as seen in Figure 3.4). Our method belongs to a broad category
of algorithms which are referred to as dynamic. These algorithms solve a problem
by dynamically updating the solution of the previous problem instance. Their goal
is to be more efficient than a recomputation of the solution after every change from
scratch. Given a directed weighted graph, a fully dynamic algorithm should allow
for unrestricted modification of the graph. The modification may involve addition
and deletion of nodes and edges in the graph as well as changes in the cost (capacity)
of any graph edge.

3.3.1 Dynamic Computation

Dynamic algorithms are not new to computer vision. They have been extensively
used in computational geometry for problems such as range searching, point lo-
cation, convex hull, proximity and many others. For more on dynamic algorithms
used in computational geometry, the reader is referred to [11]. A number of algo-
rithms have been proposed for the dynamic mincut problem. Thorup [67] proposed
a method which had a O(

√
m) update time and took O(logn) time per edge to list the

cut edges. Here n and m denote the number of nodes and edges in the graph respec-
tively. However, the dynamic st-mincut problem has remained relatively ignored.
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Fig. 3.4 Dynamic image segmentation using graph cuts. The images in the first column are
two consecutive frames of the grazing cow video sequence. Their respective segmentations
are shown in the third column. The first image in the first column also shows the user seg-
mentation seeds (pixels marked by black (background) and white (foreground) colours). The
user marked image pixels are used to learn histograms modelling foreground and background
appearance (as in [7]). These histograms are used to compute a likelihood for each pixel be-
longing to a particular label. This likelihood is incorporated in the CRF used for formulating
the image segmentation problem. The optimal segmentation solution (shown in column 3)
is obtained by minimizing the energy function corresponding to the CRF. In column 2, we
observe the n-edge flows obtained while minimizing the energy functions using graph cuts.
It can be clearly seen that the flows corresponding to the two segmentations are similar. The
flows from the first segmentation were used as an initialization for the max-flow problem
corresponding to the second frame. The time taken for this procedure was much less than that
taken for finding the flows from scratch.

Gallo et al. [22] introduced the problem of parametric max-flow and used a par-
tially dynamic graph cut algorithm for the problem. Their algorithm had a low poly-
nomial time complexity but was unable to handle arbitrary changes in the graph.
Recently, Cohen and Tamassia [12] proposed a dynamic algorithm for the problem
by showing how dynamic expression trees can be used for maintaining st-mincuts
with O(logm) time for update operations. However, their algorithm could only han-
dle series-parallel diagraphs2.

Boykov and Jolly [7] were the first to use a partially dynamic st-mincut algo-
rithm in a vision application by proposing a technique with which they could update
capacities of certain graph edges, and recompute the st-mincut dynamically. They
used this method for performing interactive image segmentation, where the user
could improve segmentation results by giving additional segmentation cues (seeds)
in an online fashion. Specifically, they described a method for updating the cost
of t-edges in the graph. In this Section we present a new fully dynamic algorithm

2 Series-Parallel digraphs are graphs which are planar, acyclic and connected.
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for the st-mincut problem which allows for arbitrary changes in the graph3. Juan
and Boykov [30] proposed an algorithm in which instead of reusing flow, they used
the st-mincut solution corresponding to the previous problem for solving a new st-
mincut problem. Our work has been extended to the minimization of multi-label
non-submodular function in [3].

An outline of the Section follows. The relationship between energy and graph
reparameterization is explained in Section 3.3.2. Section 3.4 shows how exact st-
mincut solutions of dynamically changing graphs can be efficiently computed by
reusing flow. Specifically, it describes how the residual graph can be transformed
to reflect the changes in the original graph using graph reparameterization, and dis-
cusses issues related to the computational complexity of the algorithm. In Section
3.5, we describe how the process of recomputing the st-mincut/max-flow can be
further optimized by using recycled search trees.

3.3.2 Energy and Graph Reparameterization

We will now explain the concept of graph reparameterization which will be used
later to show how we can minimize dynamic energy functions.

Recall from equation 3.10 that a second order energy function can be written in
terms of an energy parameter vector θ as:

E(x|θ ) = θconst +∑
v∈V

(θv;1xv +θv;1xv)

+ ∑
(u,v)∈E

(θst;11xuxv +θst;01xuxv +θst;10xuxv +θst;00xuxv). (3.11)

Two energy parameter vectors θ1 and θ2 are called reparameterizations of each other
if and only if ∀x,E(x|θ1) = E(x|θ2) [6,35,56,72]. This definition simply means that
all possible labellings x have the same energy under both parameter vectors θ1 and
θ2, and does not imply that θ1 = θ2. There are a number of transformations which
can be applied to an energy parameter vector θ to obtain its reparameterization θ .
For instance the transformations given as:

∀i θ v;i = θv;i +α, θ const = θconst −α and (3.12)

∀i, j θ st;i j = θst;i j +α, θ const = θconst −α (3.13)

result in the reparameterization of the energy parameter vector.
As both parameters θ and θ define the same energy function, the minimum en-

ergy labelling for both will be the same i.e.

x∗ = argmin
x

E(x|θ1) = argmin
x

E(x|θ2) (3.14)

This in turn implies that the graphs constructed for minimizing the energy func-
tions E(x|θ1) and E(x|θ2) (using the procedure explained in the previous Section)

3 An earlier version of this Section appeared as [33].
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Fig. 3.5 Graph reparameterization. The Figure shows a graph G, its two reparameterizations
G1 and G2 along with their respective st-mincuts. The edges included in the st-mincut are
marked by dotted lines. The reparameterized graphs G1 and G2 are a results of two different
valid transformations of graph G. It can be clearly seen that reparameterized graphs G1 and
G2 have the same st-mincut as graph G.

will have the same st-mincut. We call these graphs reparameterizations of each
other. For any transformation of the energy function which results in such a repa-
rameterization we can derive a corresponding transformation for a graph. Under
these transformations the resulting graph will be a reparameterization of the original
graph and thus will have the same st-mincut. The graph transformations correspond-
ing to energy transformations given by equations (3.12) and (3.13) are shown in
Figure 3.5.

The transformations given above are not the only way to obtain a reparameteri-
zation. In fact pushing flow through any path in the graph can be seen as performing
a valid transformation. The residual graph resulting from this flow is a reparame-
terization of the original graph where no flow was being passed. This can be easily
observed from the fact that the residual graph has the same st-mincut as the original
graph, albeit with a different cost. In the next Section we show how the property
of graph reparameterization can be used for updating the residual graph when the
original graph has been modified and the st-mincut needs to be recomputed.

3.4 Recycling Computation

The max-flow solution obtained while minimizing an energy function can be used to
efficiently minimize other similar energy functions. Consider two energy functions
Ea and Eb which differ by a few terms. As we have seen in the previous Section,
this implies that the graph Gb representing energy Eb differs from that representing
energy Ea (Ga) by a few edge costs. Suppose we have found the optimal solution
of Ea by solving the max-flow problem on the graph Ga and now want to find the
solution of Eb. Instead of following the conventional procedure of recomputing the
max-flow on Gb from scratch, we perform the computation by reusing the flows
obtained while minimizing Ea.
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Boykov and Jolly [7], in their work on interactive image segmentation used this
technique for efficiently recomputing the MAP solution when only the unary terms
of the energy function change (due to addition of new hard and soft constraints by
the user). However, they did not address the problem of handling changes in the
pairwise terms of the energy function which result in changes in the cost of the n-
edges of the graph. Our method (explained below) can handle arbitrary changes in
the graph.

3.4.1 Updating Residual Graphs

The flows through a graph can be used to generate a residual graph (as explained in
Section 3.1). Our algorithm works by updating the residual graph obtained from the
max-flow computation in graph Ga to make it represent Gb. This is done by reducing
or increasing the residual capacity of an edge according to the change made to its
cost going from Ga to Gb.

Recall from equation (3.6) that the flow in an edge of the graph has to satisfy the
edge capacity constraint:

0≤ fi j ≤ ci j ∀(i, j) ∈ E. (3.15)

While modifying the residual graph, certain flows may violate the new edge capac-
ity constraints (3.15). This is because flow in certain edges might be greater than
the capacity of those edges under Gb. To make these flows consistent with the new
edge capacities, we reparameterize the updated graph (using reparameterizations de-
scribed in the previous Section) to make sure that the flows satisfy the edge capacity
constraints (3.15) of the graph. The max-flow is then computed on this reparameter-
ized graph. This gives us the st-mincut solution of graph Gb, and hence the global
minimum solution of energy Eb.

We now show how the residual graph is transformed to make sure that all edge
capacity constraints are satisfied. We use the two graph transformations given in
Section 3.3.2 to increase the capacities of edges in Gb in which the flow exceeds the
true capacity. These transformations lead to a reparameterization of the graph Gb.
We can then find the st-mincut on this reparameterized graph to get the st-mincut
solution of graph Gb.

The various changes that might occur to the graph going from Ga to Gb can be
expressed in terms of changes in the capacity of t-edges and n-edges of the graph.
The methods for handling these changes will be discussed now. We use c

′
si to refer to

the new edge capacity of the edge (s, i). r
′
si and f

′
si are used to represent the updated

residual capacity and flow of the edge (s, i) respectively.

Modifying t-edge Capacities

Our method for updating terminal or t-edges is similar to the one used in [7] and is
described below. The updated residual capacity of an edge (s, i) can be computed as:
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r
′
si = rsi + c

′
si− csi. (3.16)

This can be simplified to: r
′
si = c

′
si− fsi. If the flow fsi is greater than the updated

edge capacity c
′
si, it violates the edge capacity constraint (3.15) resulting in r

′
si be-

coming negative. To make the flow consistent a constant γ = fsi− c
′
si is added to

the capacity of both the t-edges {(s, i),(i, t)} connected to the node i. As has been
observed in Section 3.3.2 and in [7], this transformation is an example of graph
reparameterization which does not change the minimum cut (its cost changes but
not the cut itself). For an illustration see Figure 3.2. The residual capacities thus
become: r

′
si = c

′
si− fsi + γ = 0 and, r

′
it = cit − fit + γ, or r

′
it = rit − c

′
si + fsi.

Modifying n-edge Capacities

We now describe how the residual graph is updated when n-edge capacities are
changed. Observe that updating edge capacities in the residual graph is simple if
the new edge capacity c

′
i j is greater than or equal to the old edge capacity ci j. This

operation involves addition of extra capacity and thus the flow cannot become in-
consistent. The updated residual capacity r

′
i j is obtained as:

r
′
i j = ri j +(c

′
i j− ci j). (3.17)

Even if c
′
i j is less than ci j, the procedure still remains trivial if the flow fi j is less

than the new edge capacity c
′
i j. This is due to the fact that the reduction in the edge

capacity does not affect the flow consistency of the network i.e., flow fi j satisfies
the edge capacity constraint (3.15) for the new edge capacity. The residual capacity
of the edge can still be updated according to equation (3.17). The difference in
this case is that (c

′
i j− ci j) is negative and hence will result in the reduction of the

residual capacity. In both these cases, the flow through the edge remains unchanged
(i.e., f

′
i j = fi j).

The problem becomes complex when the new edge capacity c
′
i j is less than the

flow fi j. In this case, fi j violates the edge capacity constraint (3.15). To make fi j

consistent, we have to retract the excess flow ( fi j - c
′
i j) from the edge (i, j). At this

point, the reader should note that a trivial solution for this operation would be to push
back the flow through the augmenting path it originally came through. However such
an operation would be extremely computationally expensive. We now show how we
resolve this inconsistency in constant i.e. O(1) time.

The inconsistency arising from excess flow through edge (i, j) can be resolved
by a single valid transformation of the residual graph. This transformation is the
same as the one shown in Figure 3.2 for obtaining graph G2 from G, and does not
change the st-mincut. It leads to a reparameterization of the residual graph which
has non-negative residual capacity for the edge (i, j). The transformation involves
adding a constant α = fi j − c

′
i j to the capacity of edges (s, i),(i, j), and ( j, t) and

subtracting it from the residual capacity of edge ( j, i). The residual capacity r ji of
edge ( j, i) is greater than the flow fi j passing through edge (i, j). As α is always
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Fig. 3.6 Restoring consistency using graph reparameterization. The Figure illustrates how
edge capacities can be made consistent with the flow by reparameterizing the residual graph.
It starts by showing a residual graph consisting of two nodes i and j obtained after a max-flow
computation. For the second max-flow computation the capacity of edge (i, j) is reduced by
3 units resulting in the updated residual graph in which the residual capacity of edge (i, j) is
equal to -1. To make the residual capacities positive we reparameterize the graph by adding
α = 1 to the capacity of edges (i, j), (s, i) and ( j,t) and subtracting it from the capacity of edge
( j, i). This gives us the reparameterized residual graph in which the edge flows are consistent
with the edge capacities.

less than fi j the above transformation does not make the residual capacity of edge
( j, i) negative. The procedure for restoring consistency is illustrated in Figure 3.6.

3.4.2 Computational Complexity of Update Operations

In this Section we analyze the computational complexity of various update opera-
tions that can be performed on the graph. Modifying an edge cost in the residual
graph takes constant time. Arbitrary changes in the graph like addition or deletion
of nodes and edges can be expressed in terms of modifying an edge cost. The time
complexity of all such changes is O(1) except for deleting a node where the update
time is O(k). Here k is the degree of the node to be deleted4.

After the residual graph has been updated to reflect the changes in the energy
function, the augmenting path procedure is used to find the maximum flow. This
involves repeatedly finding paths with free capacity in the residual graph and satu-
rating them. When no such paths can be found i.e., the source and sink are discon-
nected in the residual graph, we reach the maximum flow.

The maximum flow from the source to the sink is an upper bound on the number
of augmenting paths found by the augmenting path procedure. Also, the total change
in edge capacity bounds the increase in the flow ∇ f defined as:

4 The capacity of all edges incident on the node has to be made zero which takes O(1) time
per edge.
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∇ f ≤
m
′

∑
i=1

|c′ei
− cei |, where ei ∈ E

or, ∇ f ≤ m
′
cmax where cmax = max(|c′ei

− cei |). Thus we get a loose O(m
′
cmax)

bound on the number of augmentations, where m
′

is the number of edge capacity
updates.

3.5 Improving Performance by Recycling Search Trees

We have seen how by dynamically updating the residual graph we can reduce the
time taken to compute the st-mincut. We can further improve the running time by
using a technique motivated by [8].

Typical augmenting path based methods start a new breadth-first search for
(source to sink) paths as soon as all paths of a given length are exhausted. For
instance, Dinic [16] proposed an augmenting path algorithm which builds search
trees to find augmenting paths. This is a computationally expensive operation as it
involves visiting almost all nodes of the graph and makes the algorithm slow if it has
to be performed too often. To counter this, Boykov and Kolmogorov [8] proposed an
algorithm in which they reused the search tree. In their experiments, this new algo-
rithm outperformed the best-known augmenting-path and push-relabel algorithms
on graphs commonly used in computer vision.

Motivated from their results we decided to reuse the search trees available from
the previous max-flow computation to find the solution in the updated residual
graph. This technique saved us the cost of creating a new search tree and made
our algorithm substantially faster. The main differences between our algorithm and
that of [8] are the presence of the tree restoration stage, and the dynamic selection of
active nodes. We will next describe how the algorithm of [8] works and then explain
how we modify it to recycle search trees for dynamic graph cuts.

3.5.1 Reusing Search Trees

The algorithm described in [8] maintains two non-overlapping search trees S and T
with roots at the source s and the sink t respectively. In tree S all edges from each
parent node to its children are non-saturated, while in tree T edges from children
to their parents are non-saturated. The nodes that are not in S or T are called free.
The nodes in the search trees S and T can be either active (can grow by acquiring
new children along non-saturated edges) or passive. The algorithm starts by setting
all nodes adjacent to the terminal nodes as active. The three basic stages of the
algorithm are as follows:

Growth Stage

The search trees S and T are grown until they touch each other (resulting in an
augmenting path) or all nodes become passive. The active nodes explore adjacent
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non-saturated edges and acquire new children from the set of free nodes which now
become active. As soon as all neighbours of a given active node are explored, the
active node becomes passive. When an active node comes in contact with a node
from the other tree, an augmenting path is found.

Augmentation Stage

In this stage of the algorithm, flow is pushed through the augmenting path found in
the growth stage. This results in some nodes of the trees S and T becoming orphans
since the edges linking them to their parents become saturated. At this point, the
source and sink search trees have decomposed into forests.

Adoption Stage

During the adoption stage the search trees are restored by finding a new valid parent
(of the same set) through a non-saturated edge for each orphan. If no qualifying
parent can be found, the node is made free.

3.5.2 Tree Recycling for Dynamic Graph Cuts

We now explain our method for recycling search trees of the augmenting path algo-
rithm. Our algorithm differs from that of [8] in the way we initialize the set of active
nodes and in the presence of the tree restoration stage.

Tree Restoration Stage

While dynamically updating the residual graph (as explained in Section 3.4) certain
edges of the search trees may become saturated and thus need to be deleted. This
operation results in the decomposition of the trees into forests and makes certain
nodes orphans. We keep track of all such edges and before recomputing the st-
mincut on the modified residual graph restore the trees by finding a new valid parent
for each of them. This process is similar to the adoption stage and is explained
below.

The aim of the tree restoration stage is two fold. First to find parents for orphaned
nodes, and secondly but more importantly, to make sure that the length of the path
from the root node to all other nodes in the tree is as small as possible. This is
necessary to reduce the time spent passing flow through an augmenting path. Note
that longer augmenting paths would lead to a slower algorithm. This is because the
time taken to update the residual capacities of the edges in the augmenting path
during the augmentation stage is proportional to the length of the path.

The first objective of the restoration stage can be met by using the adoption stage
alone. For the second objective we do the following: Suppose node i belonged to
the source tree before the updates. For each graph node i which has been affected
by the graph updates we check the residual capacities of its t-edges ((s, i) or (i, t)).
We can encounter the following two cases:
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1. rsi≥ rit : The original parent of the node (in this case, the source (s)) is reassigned
as the parent of the node.

2. rsi < rit : The parent of the node is changed to the other terminal node ‘sink’
(t). This means that the node has now become a member of sink tree T . All the
immediate child nodes of i are then made orphans as they had earlier belonged
to the source tree.

The reassignment of parents of updated nodes according to the above mentioned
rules resulted in a moderate but significant improvement in the results.

Dynamic Node Activation

The algorithm of [8] starts by marking the set of all nodes adjacent to the terminal
nodes as active. This set is usually large and exploring all its constituent nodes is
computationally expensive. However this is necessary as an augmenting path can
pass through any such node.

In the case of the dynamic st-mincut problem, we can isolate a much smaller
subset of nodes which need to be explored for possible augmenting paths. The key
observation to be made in this regard is that all new possible augmenting paths are
constrained to pass through nodes whose edges have undergone a capacity change.
This results in a much smaller active set and makes the max-flow computation sig-
nificantly faster. When no changes are made to the graph, all nodes in the graph re-
main passive and thus our augmenting path algorithm for computing the max-flow
takes no time.

3.6 Dynamic Image Segmentation

The dynamic graph cut algorithm proposed in the previous Section can be used to
dynamically perform MAP inference in an MRF or CRF. Such an inference procedure
is extremely fast and has been used for a number of computer vision problems [34,
10, 25, 54].

We now describe some applications of dynamic graph cuts. To demonstrate the
efficiency of the algorithm, we will provide quantitative results comparing its per-
formance with the dual-search tree algorithm proposed in [8] which has been ex-
perimentally shown to be the fastest for several vision problems including image
segmentation5.

We will call the algorithm of [8] static since it starts afresh for each problem in-
stance. The dynamic algorithm which reuses the search trees will be referred to as
the optimized dynamic graph cut algorithm. It should be noted that while comparing
running times the time taken to allocate memory for graph nodes was not consid-
ered. Further, to make the experimental results invariant to cache performance we
kept the graphs in memory.

Image segmentation has always remained an iconic problem in computer vision.
The past few years have seen rapid progress made on it driven by the emergence of

5 For the static algorithm we used the author’s original implementation.
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(a) (b) (c)

Fig. 3.7 Interactive image segmentation. The Figure shows how good segmentation results
can be obtained using a set of rough region cues supplied by the user. (a) An image with
user specified segmentation cues (shown in blue and red). These cues were used to obtain the
segmentation shown in image (b). This segmentation is not perfect and can be improved by
specifying additional cues which are shown in (b). The final segmentation result is shown in
image (c).

powerful optimization algorithms such as graph cuts. Early methods for perform-
ing image segmentation worked by coupling colour appearance information about
the object and background with the edges present in an image to obtain good seg-
mentations. However, this framework does not always guarantee good results. In
particular, it fails in cases where the colour appearance models of the object and
background are not discriminative.

A semi-automated solution to this problem was explored by Boykov and Jolly [7]
in their work on interactive image segmentation. They showed how users could
refine segmentation results by specifying additional constraints. This can be done
by labelling particular regions of the image as ‘object’ or ‘background’ and then
computing the MAP solution of the CRF again. The interactive image segmentation
process is illustrated in Figure 3.7.

3.6.1 CRFs for Image Segmentation

The image segmentation problem is commonly formulated using the CRF model
described in Section 3.1. In the context of image segmentation, the vertex set V cor-
responds to the set of all image pixels, N is a neighbourhood defined on this set6,
the set L consists of the labels representing the different image segments (which
in our case are ‘foreground’ and ‘background’), and the value xv denotes the la-
belling of the pixel v of the image. Every configuration x of such a CRF defines
a segmentation. The image segmentation problem can thus be solved by finding the
least energy configuration of the CRF.

The energy function characterizing the CRFs used for image segmentation can
be written as a sum of likelihood (φ(D|xi)) and prior (ψ(xi,x j)) terms as:

6 In this work, we have used the standard 8-neighbourhood i.e., each pixel is connected to
the 8 pixels surrounding it.
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Fig. 3.8 The pairwise MRF commonly used to model image labelling problems. The random
field contains a hidden node corresponding to each pixel in the image. The MRF shown in the
figure has a 4-neighbourhood, i.e., each node representing the random variables is connected
to 4 neighbouring nodes.

Ψ1(x) = ∑
i∈V

(

φ(D|xi)+ ∑
j∈Ni

ψ(xi,x j)

)

+ const. (3.18)

The term φ(D|xi) in the CRF energy is the data log likelihood which imposes individ-
ual penalties for assigning any label k ∈ L to pixel i. If we only take the appearance
model into consideration, the likelihood is given by

φ(D|xi) =− log p(i ∈ Sk|Hk) if xi = k, (3.19)

where Hk is the RGB (or for grey scale images, the intensity value) distribution for
the segment Sk denoted by label k ∈ L 7. The probability of a pixel belonging to
a particular segment i.e. p(i ∈ Sk|Hk) is proportional to the likelihood p(Ii|Hk),
where Ii is the colour intensity of the pixel i. The likelihood p(Ii|Hk) is generally
computed from the colour histogram of the pixels belonging to the segment Sk.

The prior ψ(xi,x j) terms takes the form of a Generalized Potts model:

ψ(xi,x j) =
{

Ki j if xi �= x j,
0 if xi = x j.

(3.20)

The CRF used to model the image segmentation problem also contains a contrast
term which favours pixels with similar colours having the same label [5, 7]. This
term is incorporated in the energy function by increasing the cost within the Potts
model (for two neighbouring variables being different) in proportion to the simi-
larity in intensities of their corresponding pixels. In our experiments, we use the
function:

γ(i, j) = λ exp

(−g2(i, j)
2σ2

)
1

dist(i, j)
, (3.21)

where g2(i, j) measures the difference in the RGB values of pixels i and j and
dist(i, j) gives the spatial distance between i and j. This is a likelihood term (not

7 In our problem, we have only 2 segments i.e., the foreground and the background.
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prior) as it is based on the data, and hence has to be added separately from the
smoothness prior. The energy function of the CRF now becomes

Ψ2(x) = ∑
i∈V

(

φ(D|xi)+ ∑
j∈Ni

(φ(D|xi,x j)+ψ(xi,x j))

)

(3.22)

The contrast term of the energy function has the form

φ(D|xi,x j) =
{
γ(i, j) if xi �= x j

0 if xi = x j.
(3.23)

By adding this term to the energy, we have diverged from the strict definition of an
MRF. The resulting energy function in fact now characterizes a Conditional Random
Field [42]. The pairwise MRF commonly used to model image labelling problems is
shown in Figure 3.8.

3.6.2 Image Segmentation in Videos

The object-background segmentation problem aims to cut out user specified objects
in an image [7]. We consider the case when this process has to be performed over
all frames in a video sequence. The problem is formulated as follows.

The user specifies hard and soft constraints on the segmentation by providing
segmentation cues or seeds on only the first frame of the video sequence. The soft
constraints are used to build colour histograms for the object and background. These
histograms are later used for calculating the likelihood term φ(D|xi) of the energy
function (3.22) of the CRF. This is done for all the frames of the video sequence.

The hard constraints are used for specifying pixel positions which are con-
strained to take a specific label (object or background) in all the frames of the video
sequence. Note that unlike soft constraints, the pixel positions specified under hard
constraints do not contribute in the construction of the colour histograms for the
object and background. This is different from the user-input strategy adopted in [7].
In our method the hard constraints are imposed on the segmentation by incorporat-
ing them in the likelihood term φ(D|xi). This is done by imposing a very high cost
for a label assignment that violates the hard constraints in a manner similar to [7].
This method for specifying hard constraints has been chosen because of its sim-
plicity. Readers should refer to [73] for a sophisticated method for specifying hard
constraints for the video segmentation problem. Figure 3.9 demonstrates the use of
constraints in the image segmentation process. The segmentation results are shown
in Figure 3.10.

3.6.3 Experimental Results

In this Section we demonstrate the performance of our dynamic graph cut algorithm
on the image segmentation problem. We compare the time taken by our algorithm
with that needed by the algorithm proposed in [8].



3 Dynamic Graph Cuts and Their Applications in Computer Vision 71

Fig. 3.9 Segmentation in videos using user seeds. The first image shows one frame of the
input video with user segmentation seeds (the black and white boxes). The image pixels
contained in these boxes are used to learn histograms modelling foreground and background
likelihoods. The second image shows the segmentation result obtained using these likelihoods
with the method of [7]. The result contains a certain portion of the background wrongly
marked as the foreground due to similarity in colour. This error in the segmentation can be
removed by the user by specifying a hard constraint. This involves marking a set of pixel
positions in the wrongly labelled region as background (shown as the checkered region in
the second image). This constraint is used for all the frames of the video sequence. The third
image is the final segmentation result.

Fig. 3.10 Segmentation results of the human lame walk video sequence.

In the interactive image segmentation experiments, we observed that dynamic
graph cuts resulted in a massive improvement in the running time. For the image
shown in Figure 3.7, the time taken by the static st-mincut algorithm to compute
the refined solution (from scratch) was 120 milliseconds. The dynamic algorithm
computed the same solution in 45 milliseconds, while the dynamic (optimized) al-
gorithm only required 25 milliseconds.

We now discuss the results of image segmentation in videos. The video se-
quences used in our tests had between one hundred to a thousand image frames.
For all the video sequences dynamically updating the residual graph produced a
decrease in the number of augmenting paths. Further, the dynamic algorithms (nor-
mal and optimized) were substantially faster than the static algorithm. The average
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Fig. 3.11 Running time and number of augmenting paths found by static and dynamic st-
mincut algorithms. Observe that as the first and second frames of the video sequence are the
same, the residual graph does not need to be updated, which results in no augmenting paths
found by the dynamic algorithms when segmenting frame 2. Further, the optimized dynamic
algorithm takes no time for computing the segmentation for the second image frame as the
CRFs corresponding to the first and second image frames are the same and thus no modifi-
cations were needed in the residual graph and search trees. However, the normal dynamic
algorithm takes a small amount of time since it recreates the search trees for every problem
instance from scratch.

running times per image frame for the static, dynamic and optimized-dynamic al-
gorithms for the human lame walk sequence8 of size 368x256 were 91.4, 66.0, and
33.6 milliseconds and for the grazing cow sequence of size 720x578 were 188.8,
151.3, and 78.0 milliseconds respectively. The time taken by the dynamic algorithm

8 Courtesy Derek Magee, University of Leeds.
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includes the time taken to recycle the search trees. The experiments were performed
on a Pentium 4 2.8 GHz machine.

The graphs in Figure 3.11 show the performance of the algorithms on the first
sixty frames of the human lame walk sequence. Observe that the number of aug-
menting paths found is lowest for the dynamic algorithm, followed by the dynamic
(optimized) and then the static algorithm. The use of more augmenting paths by
the dynamic (optimized) algorithm is due to the utilization of recycled search trees
which produce long augmenting paths.

3.6.4 Reusing Flow vs. Reusing Search Trees

In this Section, the relative contributions of reusing flow and search trees in improv-
ing the running time of the dynamic algorithm are discussed.

The procedure for constructing a search tree has linear time complexity and thus
should be quite fast. Further as seen in Figure 3.11 using a fresh search tree after
every graph update results in fewer augmenting paths. From these results it might
appear that recycling search trees would not yield a significant improvement in run-
ning time. However this is not the case in practice as seen in Figure 3.12. This is
because although the complexity of search tree construction is linear in the number
of edges in the graph, the time taken for tree construction is still substantial. This is
primarily due to the nature of graphs used in computer vision problems. The number
of nodes/edges in these graphs may be of the order of millions. For instance, when
segmenting an image of size 640×480, max-flow on a graph consisting of roughly
3×105 nodes and more than 2 million edges needs to be computed. The total time
taken for this operation is 90 milliseconds (msec) out of which almost 15 msec is
spent on constructing the search tree.

The time taken by the dynamic algorithm to compute the st-mincut decreases
with the decrease in the number of changes made to the graph. However, as the
time taken to construct the search tree is independent of the number of changes, it
remains constant. This results in a situation where if only a few changes to the graph
are made (as in the case of min-marginal computation [34]), the dominant part of
computation time is spent on constructing the search tree itself. By reusing search
trees we can get rid of this constant cost of creating a search tree and replace it with
a change dependent tree restoration cost.

The exact amount of speed-up contributed by reusing flow and search trees tech-
niques varies with the problem instance. For a typical interactive image segmenta-
tion example, the first st-mincut computation takes 120 msec out of which 30 msec
is spent on constructing the search tree. We need to recompute the st-mincut af-
ter further user interaction (which results in changes in the graphs). For the later
st-mincut computation, if we construct a new search tree then the time taken by
the algorithm is 45 msec (a speed up of roughly 3 times) out of which 30 msec is
used for tree creation and 15 msec is used for flow computation. However, if we
use reuse the search trees, then the algorithm takes only 25 msec (a speed up of 5



74 P. Kohli and P.H.S. Torr

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Edge Cost Changed (%)

F
ra

ct
io

n 
of

 T
im

e 
T

ak
en

 

 
dynamic(op)
dynamic

Fig. 3.12 Behavior of the dynamic algorithm. The Figure illustrates how the time taken by the
dynamic algorithm (with/without tree recycling) changes with the number of modifications
made to the graph. The graph shows the fraction of time taken to compute the st-mincut in the
updated residual graph (with/without tree recycling) compared to that taken for computing
the st-mincut in the original graph using the algorithm of [8]. For this experiment, we used a
graph consisting of 1×105 nodes which were connected in a 8-neighbourhood. The dynamic
algorithm with tree recycling is referred as dynamic(op).

times) out of which 7 msec is used for recycling the tree and 18 msec is used for
flow computation.

Our results indicate that when a small number of changes are made to the graph
the recycled search tree works quite well in obtaining short augmenting paths. The
time taken for recycling search trees is also small compared to the time taken to
create a new search tree in a large graph. With increased change in the graph the
advantage in using the recycled search tree fades due to the additional number of
flow augmentations needed as a result of longer augmentation paths obtained from
the search tree.

3.7 Simultaneous Segmentation and Pose Estimation of
Humans

In this Section we present a novel algorithm for performing integrated segmentation
and 3D pose estimation of a human body from multiple views. Unlike other state of
the art methods which focus on either segmentation or pose estimation individually,
our approach tackles these two tasks together. Our method works by optimizing a
cost function based on a Conditional Random Field (CRF). This has the advantage
that all information in the image (edges, background and foreground appearances),
as well as the prior information on the shape and pose of the subject can be combined
and used in a Bayesian framework. Optimizing such a cost function would have been
computationally infeasible earlier. However, our recent research in dynamic graph
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cuts allows this to be done much more efficiently than before. We demonstrate the
efficacy of our approach on challenging motion sequences. Although we target the
human pose inference problem in this work, our method is completely generic and
can be used to segment and infer the pose of any rigid, deformable or articulated
object.

Human pose inference is an important problem in computer vision. It stands at
the crossroads of various important applications ranging from Human Computer
Interaction (HCI) to surveillance. The importance and complexity of this prob-
lem can be gauged by observing the number of papers which have tried to deal
with it [1, 18, 31, 57, 23, 58, 60, 68, 43, 15, 46, 51]. Most algorithms which perform
pose estimation require the segmentation of humans as an essential introductory
step [1, 31, 57]. This precondition limits the use of these techniques to scenarios
where good segmentations are made available by enforcing strict studio conditions
like blue-screening. Otherwise a preprocessing step must be performed in an attempt
to segment the human, such as [62]. These approaches however cannot obtain good
segmentations in challenging scenarios which have: complex foreground and back-
ground, multiple objects in the scene, and moving camera/background. Some pose
inference methods exist which do not need segmentations. These rely on features
such as chamfer distance [23], appearance [58], or edge and intensity [60]. How-
ever, none of these methods is able to efficiently utilize all the information present
in an image, and fail if the feature detector they are using fails. This is partly because
the feature detector is not coupled to the knowledge of the pose and nature of the
object to be segmented.

The question is then, how to simultaneously obtain the segmentation and human
pose using all available information contained in the images?

Some elements of the answer to this question have been described by Kumar et
al. [40]. Addressing the object segmentation problem, they report that “samples
from the Gibbs distribution defined by a Markov Random Field very rarely give rise
to realistic shapes”. As an illustration of this statement, Figure 3.13(b) shows the
segmentation result corresponding to the maximum a posteriori (MAP) solution of
the Conditional Random Field (CRF) incorporating information about the image
edges and appearances of the object and background. It can be clearly seen that this
result is nowhere close to the ground truth.

Shape Priors and Segmentation

In recent years, a number of papers have tried to couple MRFs or CRFs used for
modelling the image segmentation problem, with information about the nature and
shape of the object to be segmented [40, 26, 21, 78]. One of the earliest methods
for combining MRFs with a shape prior was proposed by Huang et al. [26]. They
incrementally found the MAP solution of an extended MRF9 integrated with a proba-
bilistic deformable model. They were able to obtain a refined estimate of the object

9 It is named an extended MRF due to the presence of an extra layer in the MRF to cope with
the shape prior.
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Fig. 3.13 Improving segmentation results by incorporating more information in the CRF.
(a) Original image. (b) The segmentation obtained corresponding to the MAP solution of
a CRF consisting of colour likelihood and contrast terms as described in [7]. We give the
exact formulation of this CRF in Section 3.6.1. (c) The result obtained when the likelihood
term of the CRF also takes into account the Gaussian Mixture Models (GMM) of individual
pixel intensities as described in Section 3.7.1. (d) Segmentation obtained after incorporating a
‘pose-specific’ shape prior in the CRF as explained in Section 3.7.1. The prior is represented
as the distance transform of a stickman which guarantees a human-like segmentation. (e) The
stickman model after optimization of its 3D pose (see Section 3.7.2). Observe how incorpo-
rating the individual pixel colour models in the CRF (c) gives a considerably better result
than the one obtained using the standard appearance and contrast based representation (b).
However the segmentation still misses the face of the subject. The incorporation of a stick-
man shape prior ensures a human-like segmentation (d) and provides simultaneously (after
optimization) the 3D pose of the subject (e).

contour by using belief propagation in the area surrounding the contour of this de-
formable model. This process was iterated till convergence.

The problem however was still far from being completely solved since objects
in the real world change their shapes constantly and hence it is difficult to ascertain
what would be a good choice for a prior on the shape. This complex and important
problem was addressed by the work of Kumar et al. [40]. They modelled the seg-
mentation problem by combining CRFs with layered pictorial structures (LPS) which
provided them with a realistic shape prior described by a set of latent shape parame-
ters. Their cost function was a weighted sum of the energy terms for different shape
parameters (samples). The weights of this energy function were obtained by using
the Expectation-Maximization (EM) algorithm. During this optimization procedure,
a graph cut had to be computed in order to obtain the segmentation score each time
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any parameter of the CRF was changed. This made their algorithm extremely com-
putationally expensive.

Although their approach produced good results, it had some shortcomings. It was
focused on obtaining good segmentations and did not provide the pose of the ob-
ject explicitly. Moreover, a lot of effort had to be spent to learn the exemplars for
different parts of the LPS model. Recently, Zhao and Davis [78] exploited the idea
of object-specific segmentation to improve object recognition and detection. Their
method worked by coupling the twin problems of object detection and segmenta-
tion in a single framework. They matched exemplars to objects in the image using
chamfer matching and thus like [40] also suffered from the problem of maintaining
a huge exemplar set for complex objects. We will describe how we overcome the
problem of maintaining a huge exemplar set by using a simple articulated stickman
model, which is not only efficiently renderable, but also provides a robust human-
like segmentation and accurate pose estimate. To make our algorithm computation-
ally efficient we use the dynamic graph cut algorithm.

Shape Priors in Level Sets

Prior knowledge about the shape to be segmented has also been used in level set
methods for obtaining an object segmentation. Like [40] these methods learn the
prior using a number of training shapes. Leventon et al. [45] performed principal
component analysis on these shapes to get an embedding function which was inte-
grated in the evolution equation of the level set. More recently, Cremers et al. [13]
have used kernel density estimation and intrinsic alignment to embed more complex
shape distributions. Compared to [40] and [78] these methods have a more compact
representation of the shape prior. However, they suffer from the disadvantage that
equations for level set evolution may lead to a local minima.

Human Pose Estimation

In the last few years, several techniques have been proposed for tackling the pose
inference problem. In particular, the works of Agarwal and Triggs [1] using rele-
vance vector machines and that of Shakhnarovich et al. [57] based on parameter
sensitive hashing induced a lot of interest and have been shown to give good re-
sults. Some methods for human pose estimation in monocular images use a tree-
structured model to capture the kinematic relations between parts such as the torso
and limbs [46, 18, 51]. They then use efficient inference algorithms to perform ex-
act inference in such models. In their recent work, Lan and Huttenlocher [43] show
how the tree-structured restriction can be overcome while not greatly increasing the
computational cost of estimation.

Overview of the Method

Our method does not require a feature extraction step but uses all the data in the
image. We formulate the problem in a Bayesian framework building on the object-
specific CRF [40] and provide an efficient method for its solution called POSECUT.
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We include a human pose-specific shape prior in the CRF used for image segmen-
tation, to obtain high quality segmentation results. We refer to this integrated model
as a pose-specific CRF. Unlike Kumar et al. [40], our approach does not require the
laborious process of learning exemplars. Instead we use a simple articulated stick-
man model, which together with an CRF is used as our shape prior. The experimental
results show that this model suffices to ensure human-like segmentations.

Given an image, the solution of the pose-specific CRF is used to measure the qual-
ity of a 3D body pose. This cost function is then optimized over all pose parameters
using dynamic graph cuts to provide both an object-like segmentation and the pose.
The astute reader will notice that although we focus on the human pose inference
problem, our method is in-fact general and can be used to segment and/or infer the
pose of any object. We believe that our methodology is completely novel and we are
not aware of any published methods which perform simultaneous segmentation and
pose estimation. To summarize, the novelties of our approach include:

• An efficient method for combined object segmentation and pose estimation
(POSECUT).

• Integration of a simple ‘stickman prior’ based on the skeleton of the object in a
CRF to obtain a pose-specific CRF which helps us in obtaining high quality object
pose estimate and segmentation results.

3.7.1 Pose Specific CRF for Image Segmentation

The CRF framework for image segmentation described in Section 3.6.1 uses likeli-
hood terms which are only based on the pixel colour. This term is quite weak and
thus does not always guarantee good results. In particular, it fails in cases where the
colour appearance models of the object and background are not discriminative as
seen in Figure 3.13(b). The problem becomes even more pronounced in the case of
humans where we have to deal with the various idiosyncracies of human clothing.

From the work of Boykov and Jolly [7] on interactive image segmentation we
made the following interesting observations:

• Simple user supplied shape cues used as rough priors for the object segmentation
problem produced excellent results.

• The exact shape of the object can be induced from the edge information embed-
ded in the image.

Taking these into consideration, we hypothesized that the accurate exemplars used
in [40] to generate shape priors were in-fact an overkill and could be replaced by
much simpler models. Motivated by these observations we decided against using a
sophisticated shape prior. We have used two simple models in our work which are
described below.

Stickman Model

We used a simple articulated stickman model for the full body human pose estima-
tion problem. The model is shown in Figure 3.13(e). It is used to generate a rough
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pose-specific shape prior on the segmentation. As can been seen from the segmen-
tation results in Figure 3.13(d), the stickman model helped us to obtain excellent
segmentation results. The model has 26 degrees of freedom consisting of param-
eters defining absolute position and orientation of the torso, and the various joint
angle values. There were no constraints or joint-limits incorporated in our model.

The Upper body Model

The second model was primarily designed for the problem of segmenting the human
speaker in video conference scenarios. The model can be seen in Figure 3.14. It
is parameterized by 6 parameters which encode the x and y location of the two
shoulders and the length and angle of the neck.

We now describe how the image segmentation problem can be modeled using
a pose-specific CRF. Our pose specific CRF is obtained by augmenting the conven-
tionally used CRF model for image segmentation (see Section 3.6.1) with potentials
based on the shape of the object to be segmented, and appearances of individual
pixels.

Modeling Pixel Intensities by Gaussian Mixture Models

The CRF defined in Section 3.6.1 performs poorly when segmenting images in which
the appearance models of the foreground and background are not highly discrimina-
tive. When working on video sequences, we can use a background model developed
using the Grimson-Stauffer [62] algorithm to improve our results. This algorithm
works by representing the colour distribution of each pixel position in the video as
a Gaussian Mixture Model (GMM). The likelihoods of a pixel for being background
or foreground obtained by this technique are integrated in our CRF. Figure 3.13(c)
shows the segmentation result obtained after incorporating this information in our
CRF formulation.

Fig. 3.14 The human upper body model. (a) The human upper body model parameterized
by 6 parameters encoding the x and y location of the two shoulders, the length of the neck,
and the angle of the neck with respect to the vertical. (b) The shape prior generated using the
model. Pixels more likely to belong to the foreground/background are green/red. (c) and (d)
The model rendered in two poses.
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Incorporating the Pose-specific Shape Prior

Though the results obtained from the above formulation look decent, they are not
perfect. Note that there is no prior on the segmentation to look human like. Intu-
itively, incorporating such a constraint in the CRF would improve the segmentation.
In our case, this prior should be pose-specific as it depends on what pose the object
(the human) is in. Kumar et. al. [40], in their work on interleaved object recognition
and segmentation, used the result of the recognition to develop a shape prior over
the segmentation. This prior was defined by a set of latent variables which favoured
segmentations of a specific pose of the object. They called this model the Object
Category Specific CRF, which had the following energy function:

Ψ3(x,ω) =∑
i
(φ(D|xi)+φ(xi|ω)+∑

j
(φ(D|xi,x j)+ψ(xi,x j))) (3.24)

with posterior p(x,ω |D) = 1
Z3

exp(−Ψ3(x,ω)). Here ω ∈ Rp is used to denote the
vector of the object pose parameters. The shape-prior term of the energy function for
a particular pose of the human is shown in Figure 3.15(e). This is a distance trans-
form generated from the stick-man model silhouette using the fast implementation
of Felzenszwalb and Huttenlocher [17].

The function φ(xi|ω) was chosen such that given an estimate of the location and
shape of the object, pixels falling near to that shape were more likely to be labelled
as ‘foreground’ and vice versa. It has the form: φ(xi|ω) =− log p(xi|ω). We follow
the formulation of [40] and define p(xi|ω) as

p(xi = figure|ω) = 1− p(xi = ground|ω) =
1

1 + exp(μ ∗ (d(i,ω)−dr))
, (3.25)

where d(i,ω) is the distance of a pixel i from the shape defined byω (being negative
if inside the shape). The parameter dr decides how ‘fat’ the shape should be, while
parameter μ determines the ratio of the magnitude of the penalty that points outside
the shape have to face, compared to the points inside the shape.

Inference in the CRF Using Graph Cuts

Recall from Section 3.1 that energy functions like the one defined in (3.24) can be
solved using graph cuts if they are sub-modular [38]. A function f : {0,1}n→ R is
submodular if and only if all its projections on 2 variables ( f p : {0,1}2→R) satisfy:

f p(0,0)+ f p(1,1)≤ f p(0,1)+ f p(1,0). (3.26)

For the pairwise potentials, this condition can be seen as implying that the energy
for two labels taking similar values should be less than the energy for them taking
different values. In our case, this is indeed the case and thus we can find the optimal
configuration x∗ = minxΨ3(x,ω) using a single graph cut. The labels of the latent
variable in this configuration give the segmentation solution.
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Fig. 3.15 Different terms of our pose specific CRF. (a) Original image. (b) The ratios of
the likelihoods of pixels being labelled foreground/background (φ(D|xi = ‘fg’)− φ(D|xi =
‘bg’)). These values are derived from the colour intensity histograms. (c) The segmentation
results obtained by using the GMM models of pixel intensities. (d) The stickman in the opti-
mal pose (see Sections 3.7.1 and 3.7.2). (e) The shape prior (distance transform) correspond-
ing to the optimal pose of the stickman. (f) The ratio of the likelihoods of being labelled
foreground/background using all the energy terms (colour histograms defining appearance
models, GMMs for individual pixel intensities, and the pose-specific shape prior (see Sec-
tions 3.6.1,3.7.1 and 3.7.1))Ψ3(xi = ‘fg’,ω)−Ψ3(xi = ‘bg’,ω). (g) The segmentation result
obtained from our algorithm which is the MAP solution of the energyΨ3 of the pose-specific
CRF.
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3.7.2 Formulating the Pose Inference Problem

Since the segmentation of an object depends on its estimated pose, we would like
to make sure that our shape prior reflects the actual pose of the object. This takes
us to our original problem of finding the pose of the human in an image. In order
to solve this, we start with an initial guess of the object pose and optimize it to find
the correct pose. When dealing with videos, a good starting point for this process
would be the pose of the object in the previous frame. However, more sophisticated
methods could be used based on object detection [63] at the expense of increasing
the computation time.

One of the key contributions of this work is to show how given an image of the
object, the pose inference problem can be formulated in terms of an optimization
problem over the CRF energy given in (3.24). Specifically, we solve the problem:

ωopt = argmin
ω,x
Ψ3(x,ω)). (3.27)

The minimization problem defined above contains both discrete (x ∈ {0,1}n) and
continuous (ω ∈ RP) valued variables and thus is a mixed integer programming
problem. The large number of variables involved in the energy functionΨ3(x,ω))
make it especially challenging to minimize. To solve the minimization problem
(3.27), we decompose it as: ωopt = argminωF(ω), where

F(ω) = min
x
Ψ3(x,ω)). (3.28)

For any value of ω , the function Ψ3(x,ω)) is submodular in x and thus can be
minimized in polynomial time by solving a single st-mincut problem to give the
value of F(ω).

Fig. 3.16 Inferring the optimal pose. a) The values of minxΨ3(x,ω) obtained by varying the
global translation and rotation of the shape prior in the x-axis. b) Original image. c) The pose
obtained corresponding to the global minimum of the energy.
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Fig. 3.17 Optimizing the pose parameters. (a) The values of minxΨ3(x,ω) obtained by vary-
ing the rotation and length parameters of the neck. (b) The image shows five runs of the
Powell minimization algorithm [49] which are started from different initial solutions.

We will now explain how we minimize F(ω) to get the optimal value of the
pose parameters. Figure 3.16 shows how the function F(ω) depends on parameters
encoding the rotation and translation of our stickman model in the x-axes. It can
be seen that the function surface is unimodal in a large neighbourhood of the op-
timal solution. Hence, given a good initialization of the pose ω , it can be reliably
optimized using any standard optimization algorithm like gradient descent. In our
experiments, we used the Powell minimization [49] algorithm for optimization.

Figure 3.17(a) shows how the function F(ω) changes with changes to the neck
angle and length parameters of the upper body model shown in Figure 3.14. Like
in the case of the 3D stickman model, the energy surface is well behaved near the
optimal pose parameters. Our experiments showed that the Powell minimization
algorithm is able to converge to almost the same point for different initializations
(see Figure 3.17(b)).

Failure Modes

It can be seen that the function F(ω) is not unimodal over the whole domain and
contains local minima. This multi-modality of F(ω) can cause a gradient descent
algorithm to get trapped and converge to a local minimum. In our experiments we
observed that these spurious minima lie quite far from the globally optimal solution.
We also observed that the pose of the human subject generally does not change
substantially from one frame to the next. This lead us to use the pose estimate from
the previous frame as an initialization for the current frame. This good initialization
for the pose estimate made sure that spurious minima do not effect our method.

The failure rate of our method can be further improved by using object detection
systems which provide a better initialization of the pose of the object. Scenarios
where the method still converges to a local minima can be detected and dealt with
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using the strategy discussed in Section 3.7.5 which was used in our recent work on
object detection and segmentation [52].

Resolving Ambiguity Using Multiple Views

The human pose inference problem in the context of monocular images suffers
from ambiguity. This is because of the one-many nature of the mapping that relates
a human shape as seen in an image and the corresponding human pose. In other
words, many possible poses can explain the same human shape. This ambiguity can
be resolved by using multiple views of the object (‘human’). Our framework has
the advantage that information from multiple views can be integrated into a single
optimization framework. Specifically, when dealing with multiple views we solve
the problem:

ωopt = argmin
ω

( ∑
Views

min
x

(Ψ3(x,ω)). (3.29)

The framework is illustrated in Figure 3.18.

Dynamic Energy Minimization Using Graph Cuts

As explained earlier global minima of energies like the one defined in (3.24) can be
found by graph cuts [38]. The time taken for computing a graph cut for a reasonably
sized CRF is of the order of seconds. This would make our optimization algorithm
extremely slow since we need to compute the global optimum of Ψ3(x,ω) with
respect to x multiple number times for different values of ω . The graph cut com-
putation can be made significantly faster by using the dynamic graph cut algorithm
proposed in Section 3.3. This algorithm works by using the solution of the previous

Fig. 3.18 Resolving ambiguity in pose using multiple views. The Figure shows how informa-
tion from different views of the human can be integrated in a single energy function, which
can be used to find the true pose of the human subject.
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graph cut computation for solving the new instance of the problem. We obtained a
speed-up in the range of 15-20 times by using the dynamic graph cut algorithm.

3.7.3 Experiments

We now discuss the results obtained by our method. We provide the segmentation
and pose estimation results individually.

Segmentation Results

As expected, the experimental results show that the segmentation results improve
considerably as we increase the amount of information in our CRF framework.
Figure 3.19 shows how integrating more information in the CRF improves the
segmentation results. Quantitative results for the segmentation problem are shown in
Table 3.1.

Fig. 3.19 Results showing the effect of incorporating a shape prior on the segmentation re-
sults. The first image is the original image to be segmented. The second, third and fourth
images show the segmentation results obtained using colour, colour + smoothness prior and
colour + smoothness + shape prior respectively.

Table 3.1 Quantitative segmentation results. The table shows the effect of adding more infor-
mation in the Bayesian framework on the quantitative segmentation accuracy. The accuracy
was computed over all the pixels in the image. The ground truth for the data used in this
experiment was generated by hand labelling the foreground and background regions in the
images.

Information Used Correct object pixels All correct pixels
Colour 45.73% 95.2%

Colour + GMM 82.48% 96.9%
Colour + GMM +Shape 97.43% 99.4%
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Fig. 3.20 Segmentation results using the 2D upper body model. The first row shows some
frames from the video sequence. The second row shows the initial values of the pose parame-
ters of the model and the resulting segmentations. The last row shows the final pose estimate
and segmentation obtained using our method.

In order to demonstrate the performance of our method, we compare our segmen-
tation results with those obtained using the method proposed in [62]. It can be seen
from the results in Figure 3.21 that the segmentations obtained using the method
of [62] are not accurate: They contain “speckles” and often segment the shadows of
the feet as foreground. This is expected as they use only a pixelwise term to differ-
entiate the background from the foreground and do not incorporate any spatial term
which could offer a better “smoothing”. In contrast, POSECUT which uses a pair-
wise potential term (as any standard graph cut approach) and a shape prior (which
guarantees a human-like segmentation), is able to provide accurate results.

Our experiments on segmenting humans using the 2D upper body model (Figure
3.14) also produced good results. For these experiments, video sequences from the
Microsoft Research bilayer video segmentation dataset [36] were used. The results
of our method are shown in Figure 3.20.

Segmentation and Pose Estimation

Figures 3.22 and 3.23 present the segmentations and the pose estimates obtained
using POSECUT. The first data set comprises of three views of human walking
circularly. The time needed for computation of the 3D pose estimate, on an Intel
Pentium 2GHz machine, when dealing with 644×484 images, is about 50 seconds
per view10. As shown in these Figures, the pose estimates match the original images
accurately. In Figures 3.22 and 3.23, it should be noted that the appearance models
of the foreground and background are quite similar: for instance, in Figure 3.23,
the clothes of the subject are black in colour and the floor in the background is

10 However, this could be speeded up by computing the parameters of the CRF in an FPGA

(Field programmable gate array).
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Fig. 3.21 Segmentation results obtained by Grimson-Stauffer [62] and POSECUT.

rather dark. The accuracy of the segmentation obtained in such challenging condi-
tions demonstrates the robustness of POSECUT. An interesting fact to observe in
Figure 3.22 about frame 95 is that the torso rotation of the stickman does not ex-
actly conform with the original pose of the object. However, the segmentation of
these frames is still accurate.

3.7.4 Shape Priors for Reconstruction

Obtaining a 3D reconstruction of an object from multiple images is a fundamental
problem in computer vision. Reflecting the importance of the problem a number of
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Fig. 3.22 Segmentation (middle) and pose estimation (bottom) results from POSECUT.

methods have been proposed for its solution. These range from methods such as
shape from silhouettes [65] and space carving [41] to image based methods [55].
However, the problem of obtaining accurate reconstructions from sparse multiple
views still remains far from being solved. The primary problem afflicting recon-
struction methods is the inherent ambiguity in the problem (as shown in Figure 3.24)
which arises from the many-one nature of the mapping that relates 3D objects and
their images.

Intuitively the ambiguity in the object reconstruction can be overcome by using
prior knowledge. Researchers have long understood this fact and weak priors such as
surface smoothness have been used in a number of methods [37,61,71]. Such priors
help in recovering from the errors caused by noisy data. Although they improve
results, they are weak and do not carry enough information to guarantee a unique
solution. Taking inspiration from the success of using strong prior knowledge for
image segmentation, we use 3D shape priors to overcome the ambiguity inherent in
the problem of 3D reconstruction from multiple views.

Our framework uses a volumetric scene representation and integrates conven-
tional reconstruction measures such as photoconsistency, surface smoothness and
visual hull membership with a strong object specific prior. Simple parametric mod-
els of objects are used as strong priors in our framework. Our method not only gives
an accurate object reconstruction, but also provides us the pose or state of the object
being reconstructed. This work previously appeared in [64].
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Fig. 3.23 Segmentation (middle row) and pose estimation (bottom row) results obtained us-
ing POSECUT. Observe that although the foreground and background appearances are simi-
lar, our algorithm is able to obtain good segmentations.

Experimental Results

The data set for our experiments consists of video sequences of four views of a
human subject walking in a circle. This data set was earlier used in [4]. It comes
with silhouettes of the human subject obtained using pixel wise background inten-
sity modelling. The positions and orientations of the 4 cameras with respect to the
object are shown in Figure 3.25(i).

The first step in our method is the computation of the visual hull. The procedure
starts with the quantization of the volume of interest as a grid of cubical voxels of
equal size. Once this is done, each voxel center is projected into the input images.
If any of the projections falls outside the silhouette, then the voxel is discarded. All
remaining voxels constitute the visual hull. Some visual hull results are shown in
Figure 3.25(ii). It can be observed that because of the skewed distribution of the
cameras, the visual hull is quite different from the true object reconstruction. Fur-
ther, as object segmentations are not accurate, it has large errors. The prominent de-
fects in the visual hull results include: (i) the presence of holes because of segmen-
tation errors in the object silhouettes (bottom row (b)), (ii) the presence of auxiliary
parts caused by shadows, (iii) the third-arm effect resulting from self-occlusion and
ambiguity in the reconstruction due to the small number of views (bottom row (a)).
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Fig. 3.24 Ambiguity in object reconstruction due to few views. The Figure shows how two
completely different objects can have the same visual hull. Further, if both objects have the
same colour, the photo hull and their projections on multiple viewpoints would also be the
same.

(i) (ii)

Fig. 3.25 i) Camera Positions and Reconstruction. The Figure shows the position and orien-
tations of the four cameras which were used to obtain the images which constituted the data-
set for our first experiment. We also see the reconstruction result generated by our method.
ii) 3D Object Reconstruction using Strong Object-Specific priors. The first and second rows
show the images and silhouettes used as the data. Two views of the visual hull generated
using the data are shown in the first two columns of the bottom row ((a) and (b)). The visual
hull is noisy and contains artifacts like the spurious third arm caused by the ambiguity in
the problem. We are able to overcome such problems by using strong prior knowledge. The
reconstructions obtained by our method are shown in column 3 and 4 ((c) and (d)).
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Fig. 3.26 Pose inference and 3D object reconstruction results. The data used in this experi-
ment is taken from [4]. It consists of 4 views of a human subject walking in a circular path.
Middle row: Reconstruction result. Bottom row: Pose estimate. Observe that we are able to
get excellent reconstruction and pose estimation results even when the visual hull contains
large errors (as seen in frame 60 and 74).

It can be seen that our reconstruction results do not suffer from these errors (bottom
row (c) and (d)). The final results of our method for a few frames of the human
walking sequence are shown in Figure 3.26.

3.7.5 Discussion

Localizing the object in the image and inferring its pose is a computationally ex-
pensive task. Once a rough estimate of the object pose is obtained, the segmentation
can be computed extremely efficiently using graph cuts [10]. In our work on real
time face detection and segmentation [52], we showed how an off the shelf face-
detector such as the one described in [70] can be coupled with a CRF to get accurate
segmentation and improved face detection results in real time.
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Fig. 3.27 Real time face segmentation using face detection. The first image in the first row
shows the original image. The second image shows the face detection results. The third im-
age shows the segmentation obtained using shape priors generated from the detection and
localization results.

The object (face) localization estimate (obtained from any generic face detector)
was incorporated in a discriminative CRF framework to obtain robust and accurate
face segmentation results as shown in Figure 3.27. The energy E(x∗) of any seg-
mentation solution x∗ is the negative log of the probability, and can be viewed as a
measure of how uncertain that solution is. The higher the energy of a segmentation,
the lower the probability that it is a good segmentation. Intuitively, if the face de-
tection is correct, the resulting segmentation obtained from our method should have
high probability and hence have low energy compared to that of false detections.
This characteristic of the energy of the segmentation solution can be used to prune
out false face detections thus improving the face detection accuracy. The procedure
is illustrated in Figure 3.28. A similar strategy was recently used in [50].

3.7.6 Summary and Future Work

This work sets out a novel method for performing simultaneous segmentation
and 3D pose estimation (POSECUT). The problem is formulated in a Bayesian

Fig. 3.28 Pruning false object detections. The Figure shows an image from the INRIA pedes-
trian data set. After running our algorithm, we obtain four face segmentations, one of which
(the one bounded by a black square) is a false detection. The energy-per-pixel values obtained
for the true detections were 74, 82 and 83 while that for the false detection was 87. As you
can see the energy of false detection is higher than that of the true detections, and can be used
to detect and remove it.



3 Dynamic Graph Cuts and Their Applications in Computer Vision 93

framework which has the ability to utilize all information available (prior as well as
observed data) to obtain good results. We showed how a rough pose-specific shape
prior could be used to improve segmentation results significantly. We also gave a
new formulation of the pose inference problem as an energy minimization prob-
lem and showed how it could be efficiently solved using dynamic graph cuts. The
experiments demonstrate that our method is able to obtain excellent segmentation
and pose estimation results. This method was recently also used for the problem of
reconstructing objects from multiple views [64].

Searching over Pose Manifolds

It is well known that the set of all human poses constitutes a low-dimensional man-
ifold in the complete pose space [68, 58]. Most work in exploiting this fact for hu-
man pose inference has been limited to finding linear manifolds in pose spaces.
The last few years have seen the emergence of non-linear dimensionality reduc-
tion techniques for solving the pose inference problem [59]. Recently, Urtasun et
al. [68] showed how Scaled Gaussian Process Latent Variable Models (SGPLVM)
can be used to learn prior models of human pose for 3D people tracking. They
showed impressive pose inference results using monocular data. Optimizing over
a parametrization of this low dimensional space instead of the 26D pose vector
would intuitively improve both the accuracy and computation efficiency of our al-
gorithm. Thus the use of dimensionality reduction algorithms is an important area
to be investigated. The directions for future work also include using an appearance
model per limb, which being more discriminative could help provide more accurate
segmentations and pose estimates.

3.8 Measuring Uncertainty in Graph Cut Solutions

Over the years researchers have asked the question whether it might be possible to
compute a measure of uncertainty associated with the graph cut solutions. In this Sec-
tion we answer this particular question positively by showing how the min-marginals
associated with the label assignments of a random field can be efficiently computed
using a new algorithm based on dynamic graph cuts. The min-marginal energies ob-
tained by our proposed algorithm are exact, as opposed to the ones obtained from
other inference algorithms like loopy belief propagation and generalized belief prop-
agation. We also show how these min-marginals can be used to compute a confidence
measure for label assignments in the image segmentation problem.

Graph cuts based minimization algorithms do not provide an uncertainty mea-
sure associated with the solution they produce. This is a serious drawback since
researchers using these algorithms do not obtain any information regarding the prob-
ability of a particular latent variable assignment in a graph cut solution. Inference al-
gorithms like Loopy Belief Propagation (LBP) [48], Generalized Belief Propagation
(GBP) [77], and Tree-reweighted message passing (TRW) [35, 72] provide the user
with marginal or min-marginal energies associated with each latent variable. How-
ever, these algorithms are not guaranteed to find the optimal solution for graphs of
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arbitrary topology. Note that for tree-structured graphs, the simple max-product be-
lief propagation algorithm gives the exact max-marginal probabilities/min-marginal
energies11 for different label assignments in O(nl2) time where n is the number of
latent variables, and l is the number of labels a latent variable can take.

We address the problem of efficiently computing the min-marginals associated
with the label assignments of any latent variable in a MRF. Our method works on
all MRFs that can be solved exactly using graph cuts. First, we give the definition
of flow potentials (defined in Section 3.8.1) of a graph node. We show that the min-
marginals associated with the labellings of a binary random variable are related to
the flow-potentials of the node representing that variable in the graph constructed in
the energy minimization procedure. In fact the exact min-marginal energies can be
found by computing these flow-potentials. We then show how flow potential com-
putation is equivalent to minimizing projections of the original energy function12.

Minimizing a projection of an energy function is a computationally expensive op-
eration and requires a graph cut to be computed. In order to obtain the min-marginals
corresponding to all label assignments of all random variables, we need to compute a
graph cut O(nl) number of times. We present an algorithm based on dynamic graph
cuts [33] which solves these O(nl) graph cuts extremely quickly. Our experiments
show that the running time of this algorithm i.e., the time taken for it to compute the
min-marginals corresponding to all latent variable label assignments is of the same
order of magnitude as the time taken to solve a single st-mincut problem.

3.8.1 Preliminaries

As explained in Section 3.1, a pairwise MRF can be solved by minimizing a second
order energy function. The energy of the MAP configuration of the MRF can be
computed by solving the problem:

ψ(θ ) = min
x∈L

E(x|θ ). (3.30)

The MAP solution of the MRF will be referred to as the optimal solution.

Min-Marginal Energies

A min-marginal is a function that provides information about the minimum values
of the energy E under different constraints. Following the notation of [35], we define
the min-marginal energies ψv; j,ψuv;i j as:

11 We will explain the relation between max-marginal probabilities and min-marginal ener-
gies later in Section 3.8.1. To make our notation consistent with recent work in graph cuts,
we formulate the problem in terms of min-marginal energies (subsequently referred to as
simply min-marginals).

12 A projection of the function f (x1,x2, ...,xn) can be obtained by fixing the values of some of
the variables in the function f (.). For instance f1(x2, ...,xn) = f (0,x2, ...,xn) is a projection
of the function f (.).
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ψv; j(θ ) = min
x∈L,xv= j

E(x|θ ), and (3.31)

ψuv;i j(θ ) = min
x∈L,xu=i,xv= j

E(x|θ ).

In words, given an energy function E whose value depends on the variables
(x1, . . . ,xn), ψv; j(θ ) represents the minimum energy value obtained if we fix the
value of variable xv to j and minimize over all remaining variables. Similarly,
ψuv;i j(θ ) represents the value of the minimum energy in the case when the values
of variables xu and xv are fixed to i and j respectively.

Uncertainty in Label Assignments

Now we show how min-marginals can be used to compute a confidence measure
for a particular latent variable label assignment. Given the function p(x|D), which
specifies the probability of a configuration of the MRF, the max-marginal μv; j gives
us the value of the maximum probability over all possible configurations of the MRF

in which xv = j. Formally, it is defined as:

μv; j = max
x∈L;xv= j

p(x|D) (3.32)

Inference algorithms like max-product belief propagation produce the max-
marginals along with the MAP solution. These max-marginals can be used to obtain
a confidence measure σ for any latent variable labelling as:

σv; j =
maxx∈L,xv= j p(x|D)

∑k∈L maxx∈L,xv=k p(x|D)
=

μv; j

∑k∈L μv;k
(3.33)

where σv; j is the confidence for the latent variable xv taking label j. This is the ratio
of the max-marginal corresponding to the label assignment xv = j to the sum of the
max-marginals for all possible label assignments.

We now proceed to show how these max-marginals can be obtained from the
min-marginal energies computed by our algorithm. Recall from equation (3.3) that
the energy and probability of a labelling are related as:

E(x) =− log p(x|D)− const (3.34)

Substituting the value of p(x|D) from equation (3.34) in equation (3.32), we get

μv; j = max
x∈L;xv= j

(exp (−E(x|θ)− const)) (3.35)

=
1
Z

exp (− min
x∈X ;xv= j

E(x|θ )), (3.36)

where Z is the partition function. Combining this with equation (3.31a), we get

μv; j =
1
Z

exp (−ψv; j(θ )). (3.37)
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As an example consider a binary label object-background image segmentation prob-
lem, where there are two possible labels i.e., object (‘ob’) and background (‘bg’).
The confidence measure σv;ob associated with the pixel v being labelled as object
can be computed as:

σv;ob =
μv;ob

μv;ob + μv;bg
=

1
Z exp (−ψv;ob(θ ))

1
Z exp (−ψv;ob(θ ))+ 1

Z exp (−ψv;bg(θ ))
, (3.38)

or σv;ob =
exp (−ψv;ob(θ ))

exp (−ψv;ob(θ ))+ exp (−ψv;bg(θ ))
(3.39)

Note that the Z’s cancel and thus we can compute the confidence measure from the
min-marginal energies alone without knowledge of the partition function.

Flow Potentials in Graphs

Given a directed weighted graph G(V,E,C) with non-negative edge weights and
flows f flowing through the edges E , we define the source/sink flow potential of a
graph node v ∈V as the maximum amount of net flow that can be pumped into/from
it without invalidating any edge capacity (3.6) or mass balance constraint (3.7) with
the exception of the mass balance constraint of the node v itself. Formally, we can
define the source flow potential of node v as:

f s
v = max

f
∑

i∈N(v)
fiv− fvi

Subject to:
0≤ fi j ≤ ci j ∀(i, j) ∈ E, and (3.40)

∑
i∈ N( j)\{s,t}

( f ji− fi j) = fs j− f jt ∀ j ∈V\{s, t,v} (3.41)

where maxf represents the maximization over the set of all edge flows

f = { fi j, ∀(i, j) ∈ E}. (3.42)

Similarly, the sink flow potential f t
v of a graph node v is defined as:

f t
v = max

f
∑

i∈N(v)
fvi− fiv (3.43)

subject to constraints (3.40) and (3.41).
The computation of a flow potential of a node is not a trivial process and in

essence requires a graph cut to be computed as explained in figure 3.30. The flow
potentials of a particular graph node are shown in figure 3.29. Note that in a residual
graph G( fmax) where fmax is the maximum flow, all nodes on the sink side of the
st-mincut are disconnected from the source and thus have the source flow potential
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Fig. 3.29 Flow potentials of graph nodes. The figure shows a directed graph having seven
nodes, two of which are the terminal nodes, the source s and the sink t. The number associated
with each directed edge in this graph is a capacity which tells us the maximum amount of flow
that can be passed through it in the direction of the arrow. The flow potentials for node 4 in
this graph when no flow is passing through any of the edges are f s

4 = 2 and f t
4 = 11.

equal to zero. Similarly, all nodes belonging to the source have the sink flow poten-
tial equal to zero. We will later show that the flow-potentials we have just defined are
intimately linked to the min-marginal energies of latent variable label assignments.

3.8.2 Computing Min-Marginals Using Graph Cuts

We now explain the procedure for the computation of min-marginal energies using
graph cuts. The total flow ftotal flowing from the source s to the sink t in a graph
can be found by computing the difference between the total amount of flow coming
in to a terminal node and that going out as:

ftotal = ∑
i∈N(s)

( fsi− fis) = ∑
i∈N(t)

( fit − fti). (3.44)

The cost of the st-mincut in an energy representing graph is equal to the energy of
the optimal configuration. From the Ford-Fulkerson theorem, this is also equal to
the maximum amount of flow fmax that can be transferred from the source to the
sink. Hence, from the minimum energy (3.30) and total flow equation (3.44) for a
graph in which maxflow has been achieved i.e. ftotal = fmax, we obtain:

ψ(θ ) = min
x∈L

E(x|θ ) = fmax = ∑
i∈N(s)

( fsi− fis). (3.45)

Note that flow cannot be pushed into the source i.e. fis = 0,∀i ∈ V , thus ψ(θ ) =
∑i∈N(s) fsi. The MAP configuration x∗ of a MRF is the one having the least energy
and is defined as x∗ = argminx∈L E(x|θ ).
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Fig. 3.30 Computing min-marginals using graph cuts. In (a) we see the graph representing
the original energy function. This is used to compute the minimum value of the energy ψ(θ )
which is equal to the max-flow fmax = 8. The residual graph obtained after the computation
of max-flow is shown in (b). In (c) we show how the flow-potential f s

5 can be computed in
the residual graph by adding an infinite capacity edge between it and the sink and computing
the max-flow again. The addition of this new edge constrains node 5 to belong to sink side of
the st-cut. A max-flow computation in the graph (c) yields f s

5 = 4. This from theorem 1, we
obtain the min-marginal ψ5;c = 8+4 = 12, where T(c) = source(s). The dotted arrows in (b)
and (c) correspond to edges in the residual graph whose residual capacities are due to flow
passing through the edges in their opposite direction.

Let a be the label for random variable xv under the MAP solution and b be any
label other than a. Then in the case of xv = a, the min-marginal energy ψv;x∗v (θ ) is
equal to the minimum energy i.e.

E(x|θ ) = ψ(θ ) (3.46)

Thus it can be seen that the maximum flow equals the min-marginals for the case
when the latent variables take their respective MAP labels.

The min-marginal energy ψv;b(θ ) corresponding to the non-optimal label b can
be computed by finding the minimum value of the energy function projection E

′

obtained by constraining the value of xv to b as:

ψv;b(θ ) = min
x∈Ln,xv=b

E(x|θ ) (3.47)

or, ψv;b(θ ) = min
(x−xv)∈Ln−1

E(x1, ..,xv−1,b,xv+1..xn|θ ). (3.48)

In the next sub-section, we will show that this constraint can be enforced in the
original graph construction used for minimizing E(x|θ ) by modifying certain edge
weights ensuring that the latent variable xv takes the label b. The exact modifications
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needed in the graph for the binary label case are given first, while those required in
the graph for the multi-label case are discussed later.

3.8.3 Min-Marginals and Flow Potentials

We now show how in the case of binary variables, flow-potentials in the residual
graph G( fmax) are related to the min-marginal energy values. Again, a and b are
used to represent the MAP and non-MAP label respectively.

Theorem 3.1. The min-marginal energies of a binary latent variable xv are equal to
the sum of the max-flow and the source/sink flow potentials of the node representing
it in the residual graph G( fmax) corresponding to the max-flow solution i.e.

ψv; j(θ ) = min
x∈L,xv= j

E(x|θ ) = ψ(θ )+ f T ( j)
v = fmax + f T( j)

v (3.49)

where T ( j) is the terminal corresponding to the label j, and fmax is the value of the
maximum flow in the graph G representing the energy function E(x|θ ).

Proof. The proof is trivial for the case where the latent variable takes the optimal
label. We already know that the value of the min-marginal ψv;a(θ ) is equal to the
lowest energy ψ(θ ). Further, the flow potential of the node for the terminal corre-
sponding to the label assignment is zero since the node is disconnected from the
terminal T (a) by the minimum cut13.

We already know from (3.48) that the min-marginal ψv;b(θ ) corresponding to the
non-optimal label b can be computed by finding the minimum value of the function
E under the constraint xv = b. This constraint can be enforced in our original graph
(used for minimizing E(x|θ )) by adding an edge with infinite weight between the
graph node and the terminal corresponding to the label a, and then computing the
st-mincut on this updated graph14. In Section 3.8.5 we shall explain how to solve the
new st-mincut problem efficiently using the dynamic graph cut algorithm proposed
in the previous Section.

It can be easily seen that the additional amount of flow that would now flow from

the source to the sink is equal to the flow potential f T (b)
v of the node. Thus the value

of the max-flow now becomes equal to ψ(θ )+ f T (b)
v where T (b) is the terminal

corresponding to the label b. The whole process is shown graphically in figure 3.30.
We have shown how minimizing an energy function with constraints on the value

of a latent variable, is equivalent to computing the flow potentials of a node in the

13 The amount of flow that can be transferred from the node to the terminal T (a) in the
residual graph is zero since otherwise it would contradict our assumption that the max-
flow solution has been achieved.

14 Adding an infinite weight edge between the node and the terminal T (a) is equivalent to
putting a hard constraint on the variable xv to have the label b. Observe that the addition
of an infinite weight edge can be realized by using an edge whose weight is more than the
sum of all other edges incident on the node. This condition would make sure that the edge
is not saturated during the max-flow computation.
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Fig. 3.31 Graph construction for projections of energy functions involving multiple labels.
The first graph G shows the graph construction proposed by Ishikawa [27] for minimizing
energy functions representing MRFs involving latent variables which can take more than 2
labels. All the label sets L, v ∈ V consist of 4 labels namely l1, l2, l3 and l4. The MAP con-
figuration of the MRF induced by the st-mincut is found by observing which data edges are
cut (data edges are depicted as black arrows). Four of them are in the cut here (as seen in
graph G), representing the assignments x1 = l2, x2 = l3, x3 = l3, and x4 = l4. The graph G′
representing the projection E ′ = E(x1,x2,x3, l2) can be obtained by inserting infinite capac-
ity edges from the source and the sink to the tail and head node respectively of the edge
representing the label l2 for latent variable x4.

residual graph G( fmax). Note that a similar procedure can be used to compute the
min-marginal ψuv;i j(θ ) by taking the projection and enforcing hard constraints on
pairs of latent variables.

3.8.4 Extension to Multiple Labels

Graph cuts can also be used to exactly optimize convex energy functions which in-
volve variables taking multiple labels [27, 56]. Graphs representing the projections
of such energy functions can be obtained by incorporating hard constraints in a
fashion analogous to the one used for binary variables. In the graph construction for
multiple labels proposed by Ishikawa [27], the label of a discrete latent variable is
found by observing which data edge is cut. The value of a variable can be con-
strained or ‘fixed’ in this graph construction by making sure that the data edge
corresponding to the particular label is cut. This can be realized by adding edges
of infinite capacity from the source and the sink to the tail and head node of the
edge respectively as shown in figure 3.31. The cost of the st-mincut in this mod-
ified graph will give the exact value of min-marginal energy associated with that
particular labelling. It should be noted here that the method of Ishikawa [27] ap-
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Table 3.2 Algorithm for computing min-marginal energies using dynamic graph cuts.

1. Construct graph G for minimizing the MRF energy E.
2. Compute the maximum s-t flow in the graph. This induces the residual

graph Gr consisting of unsaturated edges.

3. For computing each min-marginal, perform the following operations:

a. Obtain the energy projection E ′ corresponding to the latent variable
assignment.

b. Construct the graph G′ to minimize E ′.
c. Use dynamic graph cut updates as given in [33] to make Gr consis-

tent with G′, thus obtaining the new graph G
′
r.

d. Compute the min-marginal by minimizing E ′ using the dynamic
(optimized) st-mincut algorithm on G

′
r.

plies to a restricted class of energy functions. These do not include energies with
non-convex priors (such at the Potts model) which are used in many computer vi-
sion applications. Measuring uncertainty in solutions of such energies is thus still
an open problem.

3.8.5 Minimizing Energy Function Projections Using Dynamic
Graph Cuts

Having shown how min-marginals can be computed using graph cuts, we now ex-
plain how this can be done efficiently. As explained in the proof of Theorem 1,
we can compute min-marginals by minimizing projections of the energy function.
However, it might be thought that such a process is extremely computationally ex-
pensive as a graph cut has to be computed for every min-marginal computation.
However, when modifying the graph in order to minimize the projection E

′
of the

energy function, only a few edge weights have to be changed15 as seen in figure 3.30,
where only one infinite capacity edge had to inserted in the graph. We have shown
earlier how the st-mincut can be recomputed rapidly for such minimal changes in
the problem by using dynamic graph cuts. Our proposed algorithm for min-marginal
computation is given in Table 3.2.

3.8.6 Computational Complexity and Experimental Evaluation

We now discuss the computational complexity of our algorithm, and report the time
taken by it to compute min-marginals in MRFs of different sizes. In step (3.4) of the
algorithm given in Table 3.2, the amount of flow computed is equal to the difference
in the min-marginal ψv; j(θ ) of the particular label assignment and the minimum

15 The exact number of edge weights that have to be changed is of the order of the number
of variables whose value is being fixed for obtaining the projection.



102 P. Kohli and P.H.S. Torr

energy ψ(θ ). Let Q be the set of all label assignments whose corresponding min-
marginals have to be computed. Then the number of augmenting paths to be found
during the whole algorithm is bounded from above by:

U = ψ(θ )+ ∑
q∈Q

(ψq(θ )−ψ(θ )). (3.50)

For the case of binary random variables, assuming that we want to compute all latent
variable min-marginals i.e.

Q= {(u; i) : u ∈V, i ∈ L},and (3.51)

qmax = max
q∈Q

(ψq(θ )−ψ(θ )), (3.52)

the complexity of the above algorithm becomes O((ψ(θ )+ nqmax)T (n,m)), where
T (n,m) is the complexity of finding an augmenting path in the graph with n nodes
and m edges and pushing flow through it. Although the worst case complexity
T (n,m) of the augmentation operation is O(m), we observe experimentally that
using the dual search tree algorithm of [8], we can get a much better amortized
time performance. The average time taken by our algorithm for computing the min-
marginals in random MRFs of different sizes is given in table 3.3.

Table 3.3 Time taken for min-marginal computation. For a sequence of randomly generated
MRFs of a particular size and neighbourhood system, a pair of times (in seconds) is given
in each cell of the table. On the left is the average time taken to compute the MAP solution
using a single graph cut while on the right is the average time taken to compute the min-
marginals corresponding to all latent variable label assignments. The dynamic algorithm with
tree-recycling was used for this experiment. All experiments were performed on an Intel
Pentium 2GHz machine.

MRF size 105 2×105 4×105 8×105

4-neighbourhood 0.18, 0.70 0.46, 1.34 0.92, 3.156 2.17, 8.21
8-neighbourhood 0.40, 1.53 1.39, 3.59 2.42, 8.50 5.12, 15.61

3.8.7 Applications of Min-Marginals

Min-marginal energies have been used for a number of different purposes. How-
ever, prior to our work, the use of min-marginals in computer vision was severely
restricted. This was primarily due to the fact that they were computationally ex-
pensive to compute for MRFs having a large number of latent variables. Our new
algorithm is able to handle large MRFs which opens up possibilities for many new
applications. For instance, in the experiments shown in figure 3.32, the time taken
for computing all min-marginals for a MRF consisting of 2×105 binary latent vari-
ables was 1.2 seconds. This is roughly four times the time taken for computing the
MAP solution of the same MRF by solving a single st-mincut problem.
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Fig. 3.32 Image segmentation with max-marginal probabilities. The first image is a frame of
the movie Run Lola Run. The second shows the binary foreground-background segmentation
where the aim was to segment out the human. The third and fourth images shows the confi-
dence values obtained by our algorithm for assigning pixels to be foreground and background
respectively. In the image, the max-marginal probability is represented in terms of decreas-
ing intensity of the pixel. Our algorithm took 1.2 seconds for computing the max-marginal
probabilities for each latent variable label assignment. The time taken to compute the MAP

solution was 0.3 seconds.

Min-Marginals as a Confidence Measure

We had shown in Section 3.8.1 how min-marginals can be used to compute a con-
fidence measure for any latent variable assignment in a MRF. Figure 3.32 shows
the confidence values obtained for the MRF used for modeling the two label (fore-
ground and background) image-segmentation problem as defined in [7]. Ideally we
would like the confidence map to be black and white showing extremely ‘low’ or
‘high’ confidence for a particular label assignment. However, as can be seen from
the result, the confidence map contains regions of different shades of grey. Such con-
fidence maps can be used for many vision applications. For instance, they could be
used in interactive image segmentation to direct user interaction at regions which
have high uncertainty. They can also be applied in coarse-to-fine techniques for
efficient computation of low level vision problems. Here confidence maps could be
used to isolate variables which have low confidence in the optimal label assignment.
These variables can be solved at higher resolution to get a better solution.

Computing the M most Probable Configurations

One of the most important uses of min-marginals has been to find the M most prob-
able configurations (or labellings) for latent variables in a Bayesian network [76].



104 P. Kohli and P.H.S. Torr

Dawid [14] showed how min-marginals on junction trees can be computed. This
method was later used by [47] to find the M most probable configurations of a prob-
abilistic graphical network. The method of [14] is guaranteed to run in polynomial
time for tree-structured networks. However, for arbitrary graphs, its worst case com-
plexity is exponential in the number of the nodes in the graphical model. By using
our method, the M most probable solutions of some graphical models with loops
can be computed in reasonable time.

We end this Section by giving a brief summary. We have addressed the long-
standing problem of computing the exact min-marginals for graphs with arbitrary
topology in polynomial time. We propose a novel algorithm based on dynamic
graph cuts [33] that computes the min-marginals extremely efficiently. Our algo-
rithm makes it feasible to compute exact min-marginals for MRFs with large number
of latent variables. This opens up many new applications for min-marginals which
were not feasible earlier.
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