
Chapter 11
Shape from Photographs: A Multi-view Stereo
Pipeline

Carlos Hernández and George Vogiatzis

Abstract. Acquiring 3D shape from images is a classic problem in Computer Vi-
sion occupying researchers for at least 20 years. Only recently however have these
ideas matured enough to provide highly accurate results. We present a complete al-
gorithm to reconstruct 3D objects from images using the stereo correspondence cue.
The technique can be described as a pipeline of four basic building blocks: camera
calibration, image segmentation, photo-consistency estimation from images, and
surface extraction from photo-consistency. In this Chapter we will put more empha-
sis on the latter two: namely how to extract geometric information from a set of
photographs without explicit camera visibility, and how to combine different geom-
etry estimates in an optimal way.

11.1 Introduction

Digital modeling of 3D scenes is becoming increasingly popular and necessary for
a wide range of applications such as cultural heritage preservation, online shopping
or computer games. Although active methods [34, 49] remain one of the most pop-
ular techniques of acquiring shape, the high cost of the equipment, complexity, and
difficulties to capture color are three big disadvantages. As opposed to active tech-
niques, photograph-based techniques provide an efficient and easy way to acquire
shape and color by simply capturing a sequence of photographs of the object.

The goal of any shape-from-photographs algorithm can be described as “given a
set of input photographs, how to estimate a 3D shape that would generate the same
photographs, assuming same material, viewpoints and lighting conditions”. This
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Fig. 11.1 Image formation model. The image of a 3D scene depends on its geometry, material
properties, lighting conditions and pose of the viewer.

definition highlights the main difficulty of the problem: photographs are obtained
as a result of complex interactions between the geometry of the scene, the materials
of the scene, the lighting conditions and the viewpoints (see Figure 11.1). Hence
recovering the geometry just from photographs is not only a challenging problem
but also, in the general case, an ill-posed problem. It is challenging because lighting
and material properties play a very important role in the image formation model.
The same geometry with a different material or different lighting conditions can
give extremely different photographs. It is also an ill-posed problem because, in the
general case, different combinations of geometry, lighting and material can produce
exactly the same photographs, making it impossible to recover a single scene geom-
etry. The main recipe to make the problem well-posed is to use priors on the types of
surface that one expects. Traditionally the most common type of prior is the smooth
surface prior. However when dealing with special classes of objects such as human
faces or man-made objects, more evolved priors have been successfully used (e.g.,
human faces [54], buildings [53] or planes [15]).

As for the importance of materials and lighting conditions, it has been addressed
by restricting the class of materials a particular algorithm is designed for. As a
result, no single method is able to correctly reconstruct a general scene with any
type of materials and lighting conditions, leading to a plethora of specific algo-
rithms designed for specific types of objects and using specific cues: silhouettes [1],
texture [50], transparency [44], defocus [14], shading [51] or correspondence, both
sparse [3] and dense [40]. Historically the most successful cues have been silhou-
ettes, correspondence, and shading. Silhouettes and correspondences are the most
robust of all due to their invariance to illumination changes. The shading cue needs
a more controlled illumination environment, but it can produce breathtaking results,
which makes it widely used too. An example of an algorithm [23] exploiting the
shading cue is shown in Figure 11.2. The algorithm is designed to find a 3D shape
that produces the same shading as the original object. Interestingly, if the estimated
3D shape is then used to manufacture a replica from a different material (in Figure
11.2 the original is porcelain, while the replica is plaster) we can appreciate how the
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Fig. 11.2 Shading comparison of a porcelain figurine and a manufactured replica obtained
using [23]. The original porcelain figurine is shown on the left, while a manufactured replica
using the 3D model obtained using [23] is shown on the right. The material of the replica
is plaster. See how the replica perfectly imitates the shading component, even though the
materials are different.

replica still shows the same shading pattern. This is the desired behavior, since the
algorithm is specifically designed to imitate the shading, not to produce identical
photographies.

Among the vast literature available on image-based modeling techniques, recent
work on multi-view stereo (MVS) reconstruction has become a growing area of in-
terest in recent years with many differing techniques achieving a high degree of
accuracy [40]. These techniques are mainly based on the correspondence cue and
focus on producing 3D models from a sequence of calibrated images of an object,
where the intrinsic parameters and pose of the camera are known. In addition to
providing a taxonomy of methods, [40] also provides a quantitative analysis of per-
formance both in terms of accuracy and completeness. If we take a look at the top
performers, they may be loosely divided into two groups. The first group makes
use of techniques such as correspondence estimation, local region growing and fil-
tering to build up a “cloud of patches” [17, 19, 35, 36] that can be optionally made
dense using meshing algorithms such as Poisson reconstruction [4] or signed dis-
tance functions [12]. The second group makes use of some form of global optimiza-
tion strategy on a volumetric representation to extract a surface [18, 20, 24, 47, 48].
Under this second paradigm, a 3D cost volume is computed, and then a 3D surface
is extracted using tools previously developed for the 3D segmentation problem such
as deformable models [20], level-sets [13,39] or graph-cuts [6,16,24,33,41,46,48].

The way volumetric methods usually exploit photo-consistency is by building
a 3D map of photo-consistency where each 3D location gives an estimate of how
photo-consistent would be the reconstructed surface at that location. The only re-
quirement to compute this photo-consistency 3D map is that camera visibility is
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Fig. 11.3 Occlusion problem. In order to compute shape using photo-consistency, the camera
visibility is required. At the same time, in order to compute the camera visibility, the shape is
required.

available. Unfortunately, the geometry of the scene, i.e., what we try to compute,
is required to know which cameras see a 3D location (see Figure 11.3). In order to
break this dependency between visibility and shape, multi-view stereo algorithms
have taken different approaches. A majority of methods use the notion of “current
surface” in order to jointly optimize for camera visibility and shape. The visibility
computed from the reconstructed surface at iteration i− 1 is then used to compute
photo-consistency at iteration i, improving the reconstruction gradually [13]. Some
methods use a proxy of the true surface to estimate visibility, such as the visual
hull [24, 48]. Finally, a third category of methods tries to compute a “visibility-
independent” photo-consistency where occlusion is treated as an additional source
of image noise [7, 18, 20].

In this Chapter we will give further insight into a two-stage MVS volumetric
approach: namely how to extract a 3D volume of photo-consistency from a set of
photographs without explicit camera visibility in Section 11.3, and how to extract
a surface from the photo-consistency volume in a globally optimal way in Sec-
tion 11.4. The pipeline described in this Chapter is currently a top performer in the
recent evaluation of multi-view stereo algorithms by Seitz et al [40].

11.2 Multi-view Stereo Pipeline: From Photographs to 3D
Models

There exists a vast literature on multi-view stereo algorithms. Even though many
of the methods share the same basic architecture, they differ mainly in what type
of scenes or computation time they are optimized to work with. All the multi-view
stereo methods use the correspondence cue, which is usually exploited in the form
of a photo-consistency metric such as Normalized Cross Correlation, Sum of Square
Differences, or Mutual Information. Starting from the photo-consistency metric, dif-
ferent algorithms focus on different target applications such as outdoor scenes [45],
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Fig. 11.4 3D multi-view stereo pipeline. Image calibration, photo-consistency 3D map from
a set of photographs (Section 11.3) and surface extraction from a photo-consistency 3D map
(Section 11.4).

building reconstruction [11, 37, 38], interior buildings [15] or object reconstruc-
tion [40]. In this Chapter we describe a volumetric multi-view stereo approach that
is optimized for general scene reconstruction, with a preference for watertight sur-
faces. The pipeline (see Figure 11.4) can be described as:

• photograph acquisition,
• camera calibration,
• computing 3D photo-consistency from a set of calibrated photographs,
• extracting a 3D surface from a 3D map of photo-consistency.

In the following Sections we focus on how to extract 3D photo-consistency from
a set of photographs (see Section 11.3) and how to use the 3D photo-consistency
to extract a 3D surface (see Section 11.4). We leave the discussion on image ac-
quisition, e.g., real-time vs photograph-based, and on camera calibration for future
discussion (see [43] for an state-of-the-art system to calibrate a set of photographs).

11.3 Computing Photo-Consistency from a Set of Calibrated
Photographs

Given a set of images and their corresponding camera poses, we would like to extract
a 3D map of photo-consistency that tell us how photo-consistent is a particular 3D
location for a given set of visible cameras. The main difficulty of this step is how
to produce a volumetric measure of photo-consistency without the knowledge of
the set of cameras that should be used to compute photo-consistency for every 3D
location.

This problem is addressed in the proposed 3D modeling pipeline by following
a similar approach to [20] where photo-consistency is made robust to occlusion.
This approach computes a 3D map of photo-consistency as an aggregation of depth-
maps from different view-points (see Figure 11.5). The creation of such a photo-
consistency 3D map is similar in spirit to the space carving approach proposed by
[32]. However, by computing it as an aggregation of depth-maps, two advantages
appear:
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• depth-map computation using dense stereo is a very successful and active re-
search topic. It is an ideal building block to use since improvements in the field
of dense stereo can be directly beneficial to the multi-view stereo problem.

• Computation time is no longer dependent on the resolution of the 3D volume, but
on the number of cameras. It is also highly parallelizable, since each depth-map
is independently computed and no iterated visibility computation is required.

By building a 3D map of photo-consistency, the 3D reconstruction problem can
now be seen as a 3D segmentation task, allowing us to use algorithms previously
developed for 3D segmentation. These algorithms include deformable surfaces [20],
Poisson reconstruction [17], signed distance functions [18], Delaunay [7] or MRFs
[22, 29, 47].

A comparison of the importance of this stage in the reconstruction pipeline is
shown in Figure 11.6. The occlusion-robust photo-consistency of [20] (Figure 11.6
middle) clearly outperforms [48] (Figure 11.6 left). However, since this method
exploit the redundancy between images to be robust against occlusion, it suffers with
sparse data sets (see the missing vertical wall in Figure 11.6 middle). An improved
version of the occlusion-robust photo-consistency has been proposed in [8] that is
capable of better dealing with sparse data sets (see the improvement in the vertical
wall in Figure 11.6 right). We adopt [8] in our multi-view stereo pipeline as the

Fig. 11.5 Computing a photo-consistency volume as aggregation of depth-maps. From left to
right, three different stages of merging individual depth-maps into a single photo-consistency
volume. Right shows the final photo-consistency volume.

Fig. 11.6 Noise reduction in photo-consistency. Left: a slice of the photo-consistency used
in [48] contains falsely photo-consistent regions (e.g., near the corners). Middle: occlusion ro-
bust photo-consistency proposed in [20] significantly suppresses noise and the correct surface
can be accurately localized. One side of the vertical wall is missing due to heavy occlusions.
Right: occlusion robust photo-consistency proposed in [8]. The vertical wall is correctly rep-
resented.
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building block to compute individual depth-maps. In the remaining of this Section
we describe this algorithm more in detail.

11.3.1 Normalized Cross Correlation for Depth-Map
Computation

Normalized Cross Correlation (NCC) may be used to define an error metric for
matching two windows in different images. Figure 11.7 provides an example of
using NCC and epipolar geometry to perform window based matching. If we fix a
pixel location in a reference image, for each possible depth away from that pixel
we get a corresponding pixel in the second image. By computing the NCC between
windows centered in those two pixels we can define a matching score as a function
of depth for the reference pixel. We refer to this function as the correlation curve
of the pixel. A typical correlation curve will exhibit a very sharp peak at the correct
depth, and possibly a number of secondary peaks in other depths.

In [20] a depth-map is generated for each input image using this matching tech-
nique for neighboring images. For each pixel a number of correlation curves are
computed (using a few of the neighboring viewpoints) and the depth that gives rise
to most peaks in those curves is selected as the depth for that pixel. See [20] or [47]
for details. This process results in an independent depth estimate for each pixel.
These depth estimates will unavoidably contain a significant percentage of outliers
which must be dealt with in the subsequent step of [20] which is the volumetric
fusion of multiple depth-maps. In data sets with a large number of images this is
is overcome by the redundancy in the depth-estimates. The same surface point is
expected to be covered by many different depth-maps, some of which will have the
right depth estimate. In sparse data-sets however, each surface point may be seen by
as few as two or three depth-maps. It is therefore crucial that outliers are minimized
in the depth-map generation stage.

Fig. 11.7 Normalized Cross-Correlation based window matching.
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In order to efficiently exploit NCC as a photo-consistency measure, we need to
focus on the two most significant failure modes of NCC matching which are (1)
the presence of repetitions in the texture and (2) complete matching failure due to
occlusion, distortion and lack of texture. These are now described in more detail.

11.3.1.1 Repeating Texture

In general, there is no guarantee that the appearance of a patch is unique across the
surface of the object. This results in correlation curve peaks at incorrect depths due
to repeated texture — ‘false’ matches (Figure 11.7). A larger window size is more
likely to uniquely match to the true surface, reducing the number of false matches.
However the associated peak will be broader and less well localized, reducing the
accuracy of the depth estimate. The absolute value of the NCC score at a peak re-
flects how well the two windows match. Thus one might expect the peak with the
maximum score to be the true peak. Unfortunately, the appearance of false matches
due to repeated texture may result in false peaks having similar or even greater scores
than the true surface peak (Figure 11.8 (a)). To identify the correct peak, we pro-
pose to apply a spatial consistency constraint across neighboring pixels in the depth-
map. The underlying assumption is that if a peak corresponds to the true surface,
the neighboring pixels should have peaks at a similar depth. The exception to this is
occlusion boundaries, which are however catered for under the next failure mode.

11.3.1.2 Matching Failure

The second failure mode is comprised of occlusion errors, distorted image windows
(due to slanted surfaces) and lack of texture. In all of these cases, the correlation curve
will not exhibit a peak at the true depth of the surface, resulting in only false peaks.
Furthermore no spatial consistency can be enforced between the pixel in question
and its neighbors. In this situation we would like to acknowledge that the depth at
this pixel is unknown and should therefore offer no vote for the surface location.

In order to achieve these two goals we propose an optimization strategy which
makes use of a discrete label Markov Random Field (MRF). The MRF allows each
pixel to choose a depth corresponding to one of the top NCC peaks which is spa-
tially consistent with neighboring pixels or select an unknown label to indicate that
no such peak occurs and there is no correct depth estimate. This process means that
the returned depth map should only contain accurate depths, estimated with a high
degree of certainty, and an unknown label for pixels which have no certain associ-
ated depth. Figure 11.8 illustrates the optimization for a 1D example of neighboring
pixels across an occlusion boundary.

11.3.2 Depth Map Estimation

The proposed algorithm estimates the depth for each pixel in the input images. It
proceeds in two stages: Initially we extract a set of possible depth values for each
pixel using NCC as a matching metric. We then solve a multi-label discrete MRF
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Fig. 11.8 Illustration of the MRF optimization applied to neighboring pixels. Existing
method return the maximum peak which results in outliers in the depth estimate. The MRF
optimization corrects an outlier to the true surface peak (a) and introduces an unknown label
at the occlusion boundary (b)

model which yields the depth assignment for every pixel. One of the key features
in this process is the inclusion of an unknown state in the MRF model. This state is
selected when there is insufficient evidence for the correct depth to be found.

11.3.2.1 Candidate Depths

The input to the algorithm is a set of calibrated images I and the output is a set of
corresponding depth-mapsD. In the following, we describe how to acquire a depth-
map for a reference image Iref ∈ I. Let N(Iref) denote a set of ‘neighboring’ images
to Iref.

As proposed in Section 11.3.1, we wish to obtain a hypothesis set of possible
depths for each pixel pi ∈ Iref. Taking each pixel in turn, we project the epipolar ray
into a second image In ∈ Iref and sample the NCC matching score over a depth range
ρi(z). We compute the score using a rectangular window centered at the projected
image co-ordinates. One of the advantages of the multiple depth hypotheses is the
ability to use a smaller matching window to provide a faster computation and im-
proved localization of the surface. Once we have obtained the sampled ray we store
the top K peaks ρ̂i(zi,k),k ∈ [1,K] with the greatest NCC score for each pixel. De-
pending on the number of images available, and the width of the camera baseline,
this process may be repeated for other neighboring images. We then continue to the
optimization stage with a set of the best K possible depths, and their corresponding
NCC scores, over all neighboring images of Iref.
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11.3.2.2 MRF Formulation

At this stage a set of candidate depths ρ̂i(zi,k),k ∈ [1,K], for each pixel pi in the
reference image Iref has been assigned and we wish to determine the correct depth
map label for each pixel. As described in Section 11.3.1, we also make use of an
unknown state to account for the failure modes of NCC matching.

We model the problem as a discrete MRF where each each pixel has a set of up
to (K + 1) labels. The first K labels, fewer if an insufficient number of peaks were
found during the matching stage, correspond to the peaks in the NCC function and
have associated depths zi,k ∈ Zi and scores ρ̂i(zi,k). The final state is the unknown
state U . If the optimization returns this state, the pixel is not assigned a depth in
the final depth map. For each pixel we therefore form an augmented label set z′i,k ∈
{Zi,U} to include the unknown state.

The optimization assigns a label k̄i ∈ {1 ...K,U)} to each pixel pi. The cost func-
tion to be minimized consists of unary potentials for each pixel and pairwise in-
teractions over first order cliques. The cost of a labeling k̄ = {k̄i} is expressed as

E
(
k̄
)

=∑
i

φ(k̄i)+∑
(i, j)
ψ(k̄i, k̄ j) (11.1)

where i denotes a pixel and (i, j) denote neighboring pixels.
The following Sections discuss the formulation of the unary potentials φ(·) and

pairwise interactions ψ(·, ·).

11.3.2.3 Unary Potentials

The unary labeling cost is derived from the NCC score of the peak. We wish to pe-
nalize peaks with a lower matching score since they are more likely to correspond
to an incorrect match due to occlusion or noise. The NCC process will always re-
turn a score in the range [−1,1]. As is common practice, [47], we take an inverse
exponential function to map this score to a positive cost.

The unary cost for the unknown state is set to a constant value φU. This term
serves two purposes. Firstly it acts as a cut-off threshold for peaks with poor NCC
scores which have no pairwise support (neighboring peaks of similar depth). This
mostly accounts for peaks which are weakly matched due to distortion or noise.
Secondly it acts as a truncation on the depth disparity cost of the pairwise term. By
assigning a low pairwise cost between peaks and the unknown state, the constant
unary cost will effectively act as a threshold on the depth disparity to handle the
case of an occlusion boundary. Thus the final unary term is given by

φ
(
ki = x

)
=

⎧
⎪⎪⎨

⎪⎪⎩

λ e−β ρ̂i(zi,x) x ∈ [1 ...K]

φU x = U
. (11.2)
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11.3.2.4 Pairwise Interactions

The pairwise labeling cost is derived from the disparity in depths of neighboring
peaks. As has been previously mentioned, this term is not intended to provide a
strong regularization of the depth map. Instead it is used to try and determine the
correct peak, corresponding to the true surface location, out of the returned peaks.
We observe that the correct peak may not have the maximum score. Therefore if
there is strong agreement on depth between neighboring peaks, we take this to be
the true location of the surface.

When dealing with the depth disparity term we are really considering surface ori-
entation; whether the surface normal is pointing towards or away from the camera.
Under a perspective projection camera model it is therefore necessary to correct for
the absolute depth of the peaks rather than simply taking the difference in depth.
We perform this correction by dividing by the average depth of the two peaks. The
resulting pairwise term is given by

ψ
(
ki = x,k j = y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

∣∣zi,x− z j,y
∣∣

(zi,x + z j,y)
x ∈ [1 ...K] y ∈ [1 ...K]

ψU x = U y ∈ [1 ...K]

ψU x ∈ [1 ...K] y = U

0 x = U y = U

. (11.3)

We set ψU to a small value to encourage regions with many pixels labeled as un-
known to coalesce. This acts as a further stage of noise reduction since it prevents
spurious peaks with high scores but no surrounding support from appearing in re-
gions of occlusion.

11.3.2.5 Optimization

To obtain the final depth map we need to determine the optimal labeling k̂ such that

E( k̂ ) = arg min
(k̄)
∑

i

φ(k̄i)+∑
(i, j)
ψ(k̄i, k̄ j) . (11.4)

Since in the general case this is an NP-hard problem we must use an approximate
minimization algorithm to achieve a solution. The most well-known techniques for
solving problems of this nature are based on graph-cuts and belief propagation. In-
stead, we use the recently developed sequential tree-reweighted message passing
algorithm, termed TRW-S, of [30]. This has been shown to outperform belief prop-
agation and graph-cuts in tests on stereo matching using a discrete number of dis-
parity levels. In addition to minimizing the energy, the algorithm estimates a lower
bound on the energy at each iteration which is useful in checking for convergence
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and evaluating the performance of the algorithm. We should note, however, that we
are by no means guaranteed that the lower bound is attainable.

11.3.3 Photo-Consistency 3D Map from a Set of Depth-Maps

In order to create a 3D volume of photo-consistency from a set of depth-maps D
we “uplift” every depth-map in D into 3D using the camera calibration data. The
photo-consistency of a 3D point x is defined as the sum of the confidences of all
its nearby depth-map points. That is, given all the uplifted depth-map 3D points
di and their corresponding confidence values si, the photo-consistency C(x) can be
define as

C(x) = ∑
i:|x−di|<ε

si, (11.5)

where ε is a pre-defined ball size. If the photo-consistency is to be discretize using
a volumetric grid, then ε is simply the size of a voxel.

11.4 Extracting a 3D Surface from a 3D Map of
Photo-Consistency

Given a 3D map of photo-consistency, we would like to extract a 3D surface. As
mentioned earlier, by building a 3D map of photo-consistency, the reconstruction
problem can now be solved using 3D segmentation techniques. Out of all the seg-
mentation algorithms available, MRF approaches are very widely spread due to its
global convergence properties. They also allow the fusion of different cues in an
elegant way (e.g., see [29]). One of the main criticisms of MRFs applied to 3D seg-
mentation is the discretization artifacts originating from its discrete nature. In order
to remove them, the surface is usually further refined using a continuous formulation
such as level-sets [13,39] or deformable models [20], allowing for a finer control of
the regularization than the one provided by MRFs. In the remaining of this Section
we describe the MRF framework for multi-view stereo first proposed by [47] and
further extended in [22]. We also describe the deformable model by [20] that we use
as a refinement step.

11.4.1 Multi-view Stereo Using Multi-resolution Graph-Cuts

In [5] and subsequently in [2] it was shown how graph-cuts can optimally partition
2D or 3D space into ‘foreground’ and ‘background’ regions under any cost func-
tional consisting of the following two terms:

• Labeling cost or unary term: for every point in space there is a cost for it being
labeled ‘foreground’ or ‘background’.

• Discontinuity cost or binary term: for every point in space, there is a cost for
it lying on the boundary between the two partitions.
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Mathematically, the cost functional described above can be seen as the sum of a
weighted surface area of the boundary surface and a weighted volume of the ‘fore-
ground’ region as follows:

E(S) =
∫

S
ρ(x)dA +

∫

V (S)
σ(x)dV (11.6)

where S is the boundary between ‘foreground’ and ‘background’, V (S) denotes the
‘foreground’ volume enclosed by S and ρ and σ are two scalar density fields. The
application described in [5] was the problem of 2D/3D segmentation. In that domain
ρ(x) is defined as a function of the image intensity gradient and σ(x) as a function
of the image intensity itself or local image statistics.

In the framework of the multi-view stereo problem, this model balances two com-
peting terms: the first one minimizes a surface integral of photo-consistency (binary
term) while the second one maximizes the volume of regions with a high evidence
of being foreground (unary term). In the literature, it is usually the binary term that
is data driven, while the unary term is just used as a basic prior, e.g., as a ballooning
term [9]. In this work, we use the photo-consistency 3D map computed in Section
11.3 as the binary term. As for the unary term, very little work has been done to
obtain an appropriate ballooning term. In most of the previous work on volumetric
multi-view stereo the ballooning term is a very simplistic inflationary force that is
constant in the entire volume, i.e., σ(x) = −λ . This simple model tries to recover
thin structures by maximizing the volume inside the final surface. However, as a side
effect, it also fills in concavities behaving as a regularization force and smoothing
fine details.

When silhouettes of the object are available, an additional silhouette cue can be
used [24, 48], which provides the constraint that all points inside the object volume
must project inside the silhouettes of the object. Hence the silhouette cue can pro-
vide some foreground/background information by giving a very high likelihood of
being outside the object to 3D points that project outside the silhouettes. However
this ballooning term is not enough if thin structures or big concavities are present,
in which case the method fails (see Figure 11.16 middle row). Very recently, a data
driven, foreground/background model based on the concept of photo-flux has been
introduced [6]. However, the approach requires approximate knowledge of the ob-
ject surface orientation which in many cases is not readily available.

Ideally, the ballooning term should be linked to the notion of visibility, where
points that are not visible from any camera are considered to be inside the object or
foreground, and points that are visible from at least one camera are considered to be
outside the object or background. An intuition of how to obtain such a ballooning
term is found in a classic paper on depth sensor fusion by Curless and Levoy [12].
In that paper the authors fuse a set of depth sensors using signed distance functions.
This fusion relies on the basic principle that the space between the sensor and the
depth map should be empty or background, and the space after the depth map should
be considered as foreground. In this Section we follow the approach by [22] where
this visibility principle is generalized and computed in a probabilistic version by
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Fig. 11.9 Different terms used in the graph-cut algorithm to reconstruct the Gormley sculp-
ture of Figure 11.16. Left: multi-resolution grid used in the graph-cut algorithm. Middle:
Discontinuity cost ρ(x) (or photo-consistency). Right: labeling cost σ(x) (or intelligent bal-
looning).

calculating the “evidence of visibility” from a given set of depth-maps. The “evi-
dence of visibility” is then used as an intelligent ballooning term.

The outline of the full system is as follows:

• create a set of depth-maps from the set of input calibrated photographs,
• compute the photo-consistency 3D map from the set of depth-maps,
• derive the discontinuity cost ρ(x) from the photo-consistency 3D map,
• derive the labeling cost σ(x) from the set of depth-maps, i.e., use a data-aware

ballooning term computed from the evidence of visibility and,
• extract the final surface as the global solution of the min-cut problem given ρ(x)

and σ(x).

A real example of discontinuity and labeling costs is shown in Figure11.9. Note they
have been computed on a multi-resolution grid.

The algorithm just described can also be used when the input is no longer a set of
photographs but a set of depth-maps obtained from other types of sensor, e.g., laser
scanner. In this case, the system just skips the first step, since the depth-maps are
already available, and computes ρ and σ directly from the set of depth-maps given
as input.

11.4.2 Discontinuity Cost from a Set of Depth-Maps

Once we have computed a depth-map for every input image, we can build the photo-
consistency 3D map (x) for every 3D location x as explained in Section 11.3.3. Since
the graph-cut algorithm minimizes the discontinuity cost, and we want to maximize
the photo-consistency, we invert the discontinuity map ρ(x) using the exponential:

ρ(x) = e−μC(x), (11.7)

where μ is a very stable rate-of-decay parameter that converts photo-consistency
scores into a normalized discontinuity cost in the range [0,1].
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As a way of improving the big memory requirements of graph-cut methods, we
propose to store the values of ρ(x) in an octree partition of 3D space. The size
of the octree voxel will depend on the photo-consistency value C(x). Voxels with a
non-zero photo-consistency value will have the finest resolution while the remaining
space where C(x) = 0 will be partitioned using bigger voxels, the voxel size being
directly linked with the distance to the closest non-empty voxel (see Figure 11.9 for
an example of such an octree partition).

11.4.3 Graph Structure

To obtain a discrete solution to Equation (11.6) 3D space is quantized into voxels
using an octree partition. The graph nodes consist of all voxels whose centers are
within a certain bounding box that is guaranteed to contain the object. For the re-
sults presented here these nodes were connected with a regular 6-neighborhood grid.
Bigger neighborhood systems can be used which provide a better approximation to
the continuous functional (11.6), at the expense of using more memory to store the
graph. Now assume two voxels centered at xi and xj are neighbors. Let the smaller
voxel be size h×h×h. Then the weight of the edge joining the two corresponding
nodes on the graph will be [5]

wi j =
4πh2

3
ρ
(

xi + xj

2

)
(11.8)

where ρ(x) is the matching cost function defined in (11.7). In addition to these
weights between neighboring voxels there is also the ballooning force edge con-
necting every voxel to the source node with a constant weight of wb = λh3. Finally,
the outer voxels that are part of the bounding box (or the voxels outside the visual
hull if that is available) are connected with the sink with edges of infinite weight.
The configuration of the graph is shown in Figure 11.10 (right).

It is worth pointing out that the graph structure described above can be thought
of as a simple binary MRF. Variables correspond to voxels and can be labeled as
being inside or outside the scene. The unitary clique potential is just 0 if the voxel
is outside and wb if it is inside the scene while the pairwise potential between two
neighbor voxels i and j is equal to wi j if the voxels have opposite labels and 0
otherwise. As a binary MRF with a sub-modular energy function [31] it can be
solved exactly in polynomial time using Graph-cuts.

11.4.4 Labeling Cost from a Set of Depth-Maps

In the same way as the computation of the discontinuity cost, the ballooning term
σ(x) can be computed exclusively from a set of depth-maps. We propose to use
the probabilistic evidence for visibility proposed by [22] and described in Section
11.4.5 as an intelligent ballooning term. To do so, all we need is to choose a noise
model for the sensor given a depth-map D and its confidence C(D). We propose
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Fig. 11.10 Surface geometry and flow graph construction. On the left: a 2D slice of space
showing the bounding volume and the optimal surface inside it that is obtained by computing
the minimum cut of a weighted graph. Note that complicated topologies such as holes or
disjoint volumes can be represented by the model and recovered after optimization. On the
right: the correspondence of voxels with nodes in the graph. Each voxel is connected to its
neighbors as well as to the source.

to use a simplistic yet powerful model of a Gaussian contaminated with a uniform
distribution, i.e., an inlier model plus an outlier model. The inlier model is assumed
to be a Gaussian distribution centered around the true depth. The standard deviation
is considered to be a constant value that only depends on the image resolution and
camera baseline. The outlier ratio varies according to the confidence on the depth
estimation C(D), and in this work is just proportional to it. The labeling cost σ(x) at
a given location is just the evidence of visibility. The details of this calculation are
laid out in the next Section.

11.4.5 Probabilistic Fusion of Depth Sensors

This Section considers the problem of probabilistically fusing depth maps obtained
from N depth sensors. We will be using the following notation: The sensor data is a
set of N depth maps D = D1, . . . ,DN . A 3D point x can therefore be projected to a
pixel of the depth map of the i-th sensor and the corresponding depth measurement
at that pixel is written as Di(x) while D∗i (x) denotes the true depth of the 3D scene.
The measurement Di(x) contains some noise which is modeled probabilistically by
a pdf conditional on the real surface depth

p(Di(x) |D∗i (x)) . (11.9)

The depth of the point x away from the sensor is di(x) (see Figure 11.11). If x is
located on the 3D scene surface then ∀i D∗i (x) = di(x). If for a particular sensor i we
have D∗i (x) > di(x) this means that the sensor can see beyond x or in other words
that x is visible from the sensor. We denote this event by Vi(x). When the opposite
event Vi(x) is true, as in Figure 11.11, then x is said to be occluded from the sensor.
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of sensor i
estimate

D (x)i
*

D (x)i

3D surface
x

sensor i

d (x)i

Fig. 11.11 Sensor depth notation. Sensor i measures the depth of the scene along the optic
ray from the sensor to 3D point x. The depth of point x from sensor i is di(x) while the correct
depth of the scene along that ray is D∗i (x) and the sensor measurement is Di(x).

To fuse these measurements we consider a predicate V (x) which is read as: ‘x is
visible from at least one sensor’. More formally the predicate is defined as follows:

V (x)≡ ∃i Vi(x) (11.10)

V (x) acts as a proxy for the predicate we should ideally be examining which is ‘x
is outside the volume of the 3D scene’. However the sensors cannot provide any
evidence beyond D∗i (x) along the optic ray, the rest of the points on that ray being
occluded. If there are locations that are occluded from all sensors, no algorithm
could produce any evidence for these locations being inside or outside the volume.
In that sense therefore, V (x) is the strongest predicate one could hope for in an
optical system. An intuitive assumption made throughout this Section is that the
probability of V (x) depends only on the depth measurements of sensors along optic
rays that go through x. This means that most of the inference Equations will be
referring to a single point x, in which case the x argument can be safely removed
from the predicates.

The set of assumptions which we denote by J consists of the following:

• The probability distributions of the true depths of the scene D∗1(x) · · ·D∗N(x) and
also of the measurements D1(x) · · ·DN(x) are independent given J (see Figure
11.12 for justification).

• The probability distribution of of a sensor measurement given the scene depths
and all other measurements only depends on the surface depth it is measuring:

p
(
Di |D∗1 · · ·D∗N D j �=iJ

)
= p(Di | D∗i J ) (11.11)

We are interested in computing the evidence function under this set of independence
assumptions [26] for the visibility of the point given all the sensor measurements:

e(V | D1 · · ·DNJ ) = log
p(V |D1 · · ·DNJ )
p
(
V |D1 · · ·DNJ

) . (11.12)
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sensor 1

sensor 2

x

Fig. 11.12 Visibility from sensors. In the example shown above the point is not visible from
sensor 2 while it is visible from sensor 1, i.e., we have V1V 2. In the absence a surface prior
that does not favor geometries such as the one shown above, one can safely assume that there
is no probabilistic dependence between visibility or invisibility from any two sensors.

From J and rules of probability one can derive:

p
(
V | D1 · · ·DNJ

)
=

N

∏
i=1

p
(
V i |DiJ

)
. (11.13)

and

p
(
V i | DiJ

)
=

∫ di
0 p(Di | D∗i J ) p(D∗i | J )dD∗i∫ ∞
0 p(Di |D∗i J ) p(D∗i | J )dD∗i

(11.14)

As mentioned, the distributions p(Di |D∗i J ) encode our knowledge about the mea-
surement model. Reasonable choices would be the Gaussian distribution or a Gaus-
sian contaminated by an outlier process. Both of these approaches are evaluated in
Section 11.5. Another interesting option would be multi-modal distributions. The
prior p(D∗i | J ) encodes some geometric knowledge about the depths in the scene.
In all the examples presented a bounding volume was given so we assumed a uni-
form distribution of D∗i inside that volume.

If we write πi = p
(
V i | DiJ

)
then the evidence for visibility is given by:

e(V |D1 · · ·DNJ ) = log
1−π1 . . .πN

π1 . . .πN
. (11.15)

In the following Section we point out an interesting connection between the proba-
bilistic visibility approach and one of the classic methods in the Computer Graphics
literature for merging range data.

11.4.5.1 Signed Distance Functions

In [12], Curless and Levoy compute signed distance functions from each depth-
map (positive towards the camera and negative inside the scene) whose weighted
average is then stored in a 3D scalar field. So if wi(x) represents the confidence of
depth measurement Di(x) in the i-th sensor, the 3D scalar field they compute is:
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F(x) =
N

∑
i=1

wi(x)(di(x)−Di(x)) (11.16)

The zero level of F(x) is then computed using marching cubes. While this method
provides quite accurate results it has a drawback: For a set of depth maps around a
closed object, distances from opposite sides interfere with each other. To avoid this
effect [12] actually clamps the distance on either side of a depth map. The distance
must be left un-clamped far enough behind the depth map so that all distance func-
tions contribute to the zero-level crossing, but not too far so as to compromise the
reconstruction of thin structures. This limitation is due to the fact that the method
implicitly assumes that the surface has low relief or that there are no self-occlusions.
This can be expressed in several ways but perhaps the most intuitive is that every
optic ray from every sensor intersects the surface only once. This means that if a
point x is visible from at least one sensor then it must be visible from all sensors
(see Figure 11.12). Using this assumption, an analysis similar to the one in the pre-
vious Section leads to some a surprising insight into the algorithm. More precisely,
if we set the prior probability for visibility to p(V ) = 0.5 and assume the logistic
distribution for sensor noise, i.e.,

p(Di,D
∗
i | I) ∝ sech

(
D∗i −Di

2wi

)2

(11.17)

then the probabilistic evidence for V given all the data exactly corresponds to the
right hand side of (11.16). In other words, the sum of signed distance functions
of [12] can be seen as an accumulation of probabilistic evidence for visibility of
points in space, given a set of noisy measurements of the depth of the 3D scene.
This further reinforces the usefulness of probabilistic evidence for visibility.

11.4.6 Deformable Models

In a similar way to the MRF framework in Section 11.4.1, the deformable model
framework [27] allows us to search for an optimal surface S∗ that is a minimizer of
some user defined energy function E . In general, this energy will be non-convex with
possible local optima. In our case, the optimization problem is posed as follows: find
the surface S∗ of R

3 that minimizes the energy E(S) defined as:

E(S) = Eext(S)+ Eint(S), (11.18)

where Eext(S) is the external energy term related to the photo-consistency 3D map
and Eint(S) is the internal energy term or regularization term, i.e., a smooth prior
on the types of surfaces that we expect. Minimizing Eq. (11.18) means finding a
surface S∗ such that satisfies the Euler Equation:

∇E(S∗) = ∇Eext(S∗)+∇Eint(S∗) = 0. (11.19)
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Equation (11.19) establishes the equilibrium condition for an optimal solution and
can also be seen as a force balance Equation:

Fext(S∗)+ Fint(S∗) = 0 (11.20)

with Fext(S) = ∇Eext(S) and Fint(S) = ∇Eint(S). A solution to Eq. (11.20) can be
found by introducing a time variable t for the surface S and solving the following
differential Equation:

∂S
∂ t

= Fext(S)+ Fint(S). (11.21)

The discrete version becomes:

Sk+1 = Sk +Δ t(Fext(Sk)+ Fint(Sk)). (11.22)

Once we have sketched the energies that will drive the process, we need to make a
choice for the representation of the surface S. This representation defines the way the
deformation of the surface is performed at each iteration. We choose the triangular
mesh because of its simplicity and well known properties, but other options such as
implicit surface representations can be used [25].

To completely define the deformation framework, we need an initial value of S,
i.e., an initial surface S0 that will evolve under the different forces until convergence.
S0 can range from the most basic initial shape such as a bounding box, to a better
one like the visual hull, or an even better one such as the provided by the MRF
framework in Section 11.4.1.

In the following we describe how to derive the external force from the photo-
consistency 3D map and the internal force on a triangular mesh.

11.4.6.1 External Force: Octree-Based Gradient Vector Flow

The external force is directly linked to the photo-consistency 3D map previously
described in Section 11.3. We want this force to drive the surface to high photo-
consistency locations. However the volume of photo-consistency C(x) itself cannot
be used as a force to drive the deformable model. A typical force would be the
gradient of C(x), i.e., Fext(x) = ∇C(x). The main objection is that it is a very local
force defined only in the vicinity of the object surface. A better solution is to use a
gradient vector flow (GVF) field derived from the photo-consistency in order drive
the deformable model.

The GVF field was introduced by [52] as a way to overcome a difficult problem
of traditional deformable models: the capture range of the data term. This problem
is caused by the local definition of the force, and the absence of an information
propagation mechanism. To eliminate this drawback, and for all the forces derived
from the gradient of a scalar field, they proposed to generate a vector field force
that propagates the gradient information. The GVF of a scalar field f (x,y,z) : R

3 �→
R is defined as the vector field F = [u(x,y,z),v(x,y,z),w(x,y,z)] : R

3 �→ R
3 that

minimizes the following energy functional EGVF :
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EGV F =
∫
μ ||∇F||2 + ||F−∇ f ||2||∇ f ||2, (11.23)

where μ is the weight of the regularization term and ∇F = [∇u,∇v,∇w]. The solu-
tion to this minimization problem has to satisfy the Euler Equation:

μ∇2F− (F−∇ f )||∇ f ||2 = 0, (11.24)

where ∇2F = [∇2u,∇2v,∇2w] and ∇2 is the Laplacian operator. A numerical solu-
tion can be found by introducing a time variable t and solving the following differ-
ential Equation:

∂F
∂ t

= μ∇2F− (F−∇ f )||∇ f ||2. (11.25)

The GVF can be seen as the original gradient smoothed by the action of a Laplacian
operator. This smoothing action allows eliminating strong variations of the gradient
and, at the same time, propagating it. The degree of smoothing/propagation is con-
trolled by μ . If μ is zero, the GVF will be the original gradient, if μ is very large,
the GVF will be a constant field whose components are the mean of the gradient
components. Applied to the deformable model problem, the external force Fext is
then found as the solution of the following differential Equation:

∂Fext

∂ t
= μ∇2Fext − (Fext −∇C)||∇C||2, (11.26)

with μ always fixed to 0.1.

11.4.6.2 Mesh Control

The goal of the internal force is to regularize the effect of the external forces. Fol-
lowing the formulation by [10], we define the internal energy Eint of a surface S as
the sum of two terms penalizing for changes in the first and second order deriva-
tives of the surface. A local minimum of the energy Eint(S) satisfies the associated
Euler-Lagrange Equation, which gives us the following form for the internal force:

Fint(S) == γ1ΔS + γ2Δ2S, (11.27)

where Δ is the Laplacian operator and Δ2 is the biharmonic operator. The discrete
version of the Laplacian operator Δ̃ on a triangle mesh can be easily implemented
using the umbrella operator, i.e., the operator that tries to move a given vertex v of
the mesh to the center of gravity of its 1-ring neighborhoodN1(v):

Δ̃v =

(

∑
i∈N1(v)

vi

m

)

−v, (11.28)

where vi are the neighbors of v and m is the total number of these neighbors (va-
lence). Concerning the discrete version of the biharmonic operator Δ̃2, its derivation
is less trivial:
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Δ̃2v =
1

1 +∑i∈N1(v)
1

mmi

Δ̃(Δ̃v), (11.29)

The total internal force on a mesh vertex v is defined as:

Fint(v) = γ1Δ̃v + γ2Δ̃2v. (11.30)

Since the texture force Fext can sometimes be orthogonal to the surface of the snake,
we do not use the force Fext itself but its projection FN

ext onto the surface normal n:

FN
ext(v) = (n� ·Fext(v))n. (11.31)

This avoids problems of coherence in the force of neighbor points and helps the
internal force to keep a well-shaped surface.

The evolution process (Eq. 11.22) at the kth iteration can then be written as the
evolution of all the points of the mesh vi:

vk+1
i = vk

i +Δ t(FN
ext(v

k
i )+ Fint(vk

i )), (11.32)

where Δ t is the time step and α is the weight of the regularization term relative to
the external term. Equation (11.32) is iterated until convergence of all the points
of the mesh is achieved. The time step Δ t has to be chosen as a compromise be-
tween the stability of the process and the convergence time. An additional step of
remeshing is done at the end of each iteration in order to maintain a minimum and a
maximum distance between neighbor points of the mesh. This is obtained by a con-
trolled decimation and refinement of the mesh. The decimation is based on the edge
collapse operator and the refinement is based on the

√
3-subdivision scheme [28].

11.5 Experiments

11.5.1 Depth Map Evaluation

In order to solve the depth-map computation algorithm described in Section 11.3, we
use the TRW-S implementation of Kolmogorov [30]. The proposed implementation,
running on a 3.0 GHz machine with an nVidia Quadro graphics card, can evaluate
900 NCC depth slices in 20 seconds for the temple sequence (image resolution
640× 480). The TRW-S optimization has a typical run time of 20 seconds for the
same images.

For all the experiments we used the following parameter values: β = 1, λ = 1,
φU = 0.04 and ψU = 0.002. We used an NCC window size of 5×5.

Figure 11.13 illustrates the improvement of the method described in Section
11.3.2 over the voting schemes of [20, 47]. Figure 11.13 (b) shows the depth that
would be determined by simply taking the NCC peak with the greatest score. The
new method, implemented here with K = 9 peaks, is able to select the peak corre-
sponding to true surface peak from the ranked candidate peaks and Figure 11.13 (d)
illustrates that a significant proportion of the true surface peaks are not the absolute
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11.13 Results of the depth map estimation algorithm. Two neighboring images are com-
bined with the reference image (a). If we simply took the NCC peak with the maximum score,
as in [20], we would obtain (b). The result of the algorithm used in Section 11.3.2 (c) shows
a significant reduction in noise. We have corrected noisy estimates of the surface and the
unknown state has also been used to clearly denote occlusion boundaries and remove poorly
matched regions. The number of the correct surface peak returned, ranked by NCC score,
is displayed in (d) where dark red indicates the peak with the greatest score. The rendered
depth-map is shown in (e) along with the neighboring depth-map (f) with (g) showing the
two superimposed. The final reconstruction (h) for the sparse temple sequence (16 images)
of [40]

maximum. We also observe that pixels are correctly labeled with the unknown state
along occlusion boundaries and along areas such as the back wall of the temple and
edges of the pillars where the surface normal is oriented away from the camera.
Looking at the rendering of this depth-map and its neighbor, Figure 11.13(e-g), we
can observe that very few erroneous depths are recovered and we observe that the
combination of the two depths maps align and complement each other rather than
attempting to fill in the holes on the individual depth-maps which would impact the
subsequent multi-view stereo global optimization.

Figure 11.14 shows the results on the ‘cones’ dataset which forms part of
the standard dense stereo evaluations images and consists of a single stereo pair
with the left image shown. The depth-map again shows a high degree of detail
on textured surfaces and we correctly identify occlusion boundaries with the un-
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(a) (b) (c)

Fig. 11.14 Single view stereo results for the ‘Cones’ data set. The left image of the stereo
pair is shown in (a) with the recovered depth-map in (b), rendered in (c)

known state. Further more the algorithm also correctly textures the failure modes
of NCC by returning the unknown state in texture-less regions where the matching
fails to accurately localize the surface.

11.5.2 Multi-view Stereo Evaluation

In order to evaluate the improvement of the depth-map estimation algorithm of Sec-
tion 11.3.2 for multi-view stereo we ran the algorithm on the standard evaluation
‘temple’ dataset. The following table provides the accuracy and completeness mea-
sures of [40] against the ground-truth data for the object. In terms of both accuracy
and completeness the results provide a significant improvement in both the sparse
ring and ring datasets. In particular we observe that the results for the sparse ring
offer greater accuracy than the other algorithms [40] running on the ring sequence
(3 times as many images) with the exception of [20].

Accuracy / Completeness
Full (312 images) Ring (47 images) SparseRing (16 images)

proposed method 0.41mm / 99.9% 0.48mm / 99.4% 0.53mm / 98.6%

11.5.3 Digitizing Works of Art

The proposed pipeline has been used to reconstruct a bronze statue located in the
British museum in London from holiday photographs. The photographs were taken
by a hand held camera during normal visiting hours (see Figure 11.15). This led
to the statue being photographed with cluttered and changing background. The
camera motion was automatically recovered using a structure-from-motion tech-
nique [55]. The bottom row of Figure 11.15 shows the intermediate results ob-
tained while reconstructing the statue. From left to right, we show a rendering of
the 3D map of photo-consistency (Section 11.3), the initial surface obtained using
graph-cuts (Section 11.4.1), the refined surface obtained with the deformable model
(Section 11.4.6), and the same surface textured mapped from the input photographs
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using [20]. Note how, even with a noisy photo-consistency 3D volume, the graph-
cut solution is able to extract a very detailed surface. However, this surface has
discretization artifacts due to the binary nature of the graph-cut solution. These arti-
facts are completely removed when the surface is refined using a deformable model.
A similar refinement step is also used in [17].

We present a second sequence of 72 images of a “crouching man” sculpture made
of plaster by the modern sculptor Antony Gormley (see Figure 11.16 top).

Fig. 11.15 Statue of a young man, Mimaut Collection. Bronze, Roman copy of the 1st cen-
tury BC after a Greek original. From Ziphteh, near Tell Atrib (ancient Athribis), Egypt. The
sequence was acquired with a hand held camera in the British museum with no special re-
quirements. Background is extremely cluttered. The object of interest is both in the center of
the photographs and in focus. Top and middle rows show a few samples of the original se-
quence. Last row shows from left to right, 3D map of photo-consistency described in Section
11.3, surface extracted using graph-cuts (Section 11.4.1), surface refined using a deformable
model (Section 11.4.6) and surface textured-map from the original photographs using [20].
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Fig. 11.16 Comparison of the improvement obtained with the visibility-driven ballooning
term. Plaster model of a crouching man by Antony Gormley, 2006. Top: some of the input
images. Middle: views of reconstructed model using the technique of [48] with a constant
ballooning term. No constant ballooning factor is able to reconstruct correctly the feet and
the concavities at the same time. Bottom: views of reconstructed model using the intelligent
ballooning proposed by [22] and shown in Figure11.17 right.

The image resolution is 5 Mpix and the camera motion was recovered by standard
structure from motion techniques [55] and further refined using a silhouette-based
technique [21]. The object exhibits significant self-occlusions, a large concavity in
the chest and two thin legs which make it a very challenging test to validate the
new ballooning term. The first step in the reconstruction process is to compute a set
of depth-maps from the input images. This process is by far the most expensive of
the whole pipeline in terms of computation time. A single depth-map takes between
90 and 120 seconds, the overall computation time being close to 2 hours. Once
the depth-maps are computed, a 3D octree grid can be built (see Figure 11.9 left)
together with the discontinuity cost and the labeling cost (see Figure 11.9 middle
and right respectively). Because of the octree grid, we are able to use up to 10 levels
of resolution to compute the graph-cut, i.e., the equivalent of a regular grid of 10243

voxels. We show in Figure 11.16 some of the images used in the reconstruction (top),
the result using an implementation of [48] (middle) and the reconstruction result of
the proposed method (bottom). We can appreciate how the constant ballooning term
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Fig. 11.17 Comparison of two different inlier/outlier ratios for the depth sensor noise model.
Left: 3D location of one slice of the volume of “evidence of visibility”. Middle: the sensor
model is a pure Gaussian without any outlier model. Outliers “drill” tunnels in the visibility
volume. Right: the sensor model takes into account an outlier model. The visibility volume
is more robust against outliers while the concavities are still distinguishable.

introduced in [48] is unable to reconstruct correctly the feet and the concavities at
the same time. In order to recover thin structures such as the feet, the ballooning term
needs to be stronger. But even before the feet are fully recovered, the concavities
start to over inflate.

Finally we show in Figure 11.17 the effect of having an outlier component in
the noise model of the depth sensor when computing the volume of evidence of
visibility. The absence of an outlier model that is able to cope with noisy depth
estimates appears in the volume of visibility as tunnels “drilled” by the outliers (see
Figure 11.17 center). Adding an outlier term clearly reduces the tunneling effect
while preserving the concavities (see Figure 11.17 right).

11.6 Discussion

We have described a formulation to multi-view stereo that splits the problem into a
well defined pipeline of 3 building blocks: camera calibration, computation of a 3D
volume of photo-consistency and extraction of a surface from the photo-consistency
volume. In this Chapter we have particularly focus on how to compute a 3D volume
of photo-consistency, and how to extract a 3D surface from the photo-consistency
volume. The main advantages of such an approach are its simplicity and room for
improvement, since it uses two very standard off-the-shelf algorithms such as dense
stereo and 3D segmentation algorithms. The main disadvantage is the rather simplis-
tic photo-consistency metric, which leads to poor performance in challenging condi-
tions such as sparse set of photographs or poorly textured surfaces. These problems
are partially mitigated by explicitly accounting for the failure modes of the window
matching technique in Section 11.3. However, a more thorough matching technique
using a local planarity assumption such as [17] would also greatly improve results
in challenging scenes. The framework we describe in this Chapter has been widely
adopted by a variety of multi-view stereo algorithms [7, 8, 18, 20, 24, 29, 38, 42, 47].
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This can be mainly justified by the simplicity of the approach, but also by the flex-
ibility that it offers, e.g., when trying to optimally fuse the photo-consistency cue
with apparent contours as proposed in [29].

Appendix: Interpretation of Signed Distance Functions

Using the predicates we have already defined, the assumption of no self-occlusion
can be expressed by

V ↔∀i Vi. (11.33)

From (11.10) and (11.33) we see that if a point x is visible (invisible) from one
sensor it is visible (invisible) from all sensors, i.e., V1↔ ··· ↔VN ↔V . Let I stand
for the prior knowledge which includes the geometric description of the problem
and (11.33). Given (11.33) events D1 · · ·DN are independent under the knowledge
of V or V which means that using Bayes’ theorem we can write:

p(V |D1 · · ·DNI) =
p(V | I)∏N

i=1 p(Di |VI)
p(D1 · · ·DN | I) (11.34)

Obtaining the equivalent Equation for V and dividing with Equation (11.34) and
taking logs gives us:

e(V |D1 · · ·DNI) = e(V | I)+
N

∑
i=1

log
p(Di |VI)
p
(
Di |VI

) . (11.35)

By several applications of Bayes’ theorem we get:

e(V |D1 · · ·DNI) =
N

∑
i=1

log
αi

βi
− (N−1)e(V | I) . (11.36)

where αi =
∫ ∞

di
p(Di,D∗i | I)dD∗i and βi =

∫ di
0 p(Di,D∗i | I)dD∗i . We now set

e(V | I) = 0 and assume the noise model is given by the logistic function

p(Di,D
∗
i | I) ∝ sech

(
D∗i −Di

2wi

)2

. (11.37)

Using standard calculus one can obtain the following expression for the evidence

e(V |D1 · · ·DNI) =
N

∑
i=1

wi (di−Di) , (11.38)

equal to the average of the distance functions used in [12].
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