
Chapter 10
Multi-view Multi-object Detection and Tracking

Murtaza Taj and Andrea Cavallaro

Abstract. Multi-view trackers combine data from different camera views to estimate
the temporal evolution of objects across a monitored area. Data to be combined can
be represented by object features (such as position, color and silhouette) or by ob-
ject trajectories in each view. In this Chapter, we classify and survey state-of-the art
multi-view tracking algorithms and discuss their applications and algorithmic lim-
itations. Moreover, we present a multi-view track-before-detect approach that con-
sistently detects and recognizes multiple simultaneous objects in a common view,
based on motion models. This approach estimates the temporal evolution of ob-
jects from noisy data, given their motion model, without an explicit object detection
stage.

10.1 Introduction

Object detection and tracking is a fundamental task in various video-based appli-
cations such as security, sport analysis and tele-collaboration. Because occlusions
and limited field of view make detection and tracking a challenging task, multiple
video cameras can be used to increase the observability of objects, thus facilitating
their consistent identification over time. Multi-camera tracking aims to establish the
spatio-temporal correspondence of the same object across multiple views.

The modeling of the multi-view tracking problem depends on the management
policy, the network type and the coverage of the network. The management policy
of a network can be centralized [1], distributed [2] or hybrid [3]. The network can
be composed of passive cameras [1], active cameras [4], or a combination of both.
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Fig. 10.1 Overview of multi-view tracking approaches.

As for the coverage of the network, the cameras can have partially overlapping [5]
(multi-view) or non-overlapping [6] fields of view. This Chapter will focus mainly
on tracking algorithms for partially-overlapping passive camera networks working
with a centralized management policy, although some algorithms could be extended
to work in a distributed fashion or with active cameras.

Algorithms for target tracking in multi-view camera networks can be grouped
based on the modalities for tracking and information fusion and can be categorized
into three main classes, namely track-first, fuse-first and manifold-based. The cate-
gorical overview of these approaches is shown in Figure 10.1. Track-first approaches
perform tracking in each camera view and then project and link the resulting infor-
mation on other views. Fuse-first approaches project detection information from
each view to a common view and then apply tracking. Track-first approaches are in
general more complex computationally but require a lower data transfer load. Track-
first and fuse-first classes will be discussed in details in the rest of the Chapter.

Manifold-based approaches can be used when camera calibration information is
not available, cannot be computed efficiently, or the assumption that the world is
planar is not applicable. In this category, multi-camera tracking can be performed
by projecting features on a manifold through Locally Linear Embedding [7]. The
approach uses Caratheodory-Fejer (CF) interpolation theory, which is robust against
model uncertainty and occlusion, to identify the dynamic evolution of the data on
the manifolds. This method assumes that multiple views are highly overlapping and
uses rule-based multi-target tracking with multiple hypotheses. The approach relies
heavily on the training that uses segmented foreground objects.

The Chapter is organized as follows. The problem of multi-camera tracking is
formulated in Section 10.2. Section 10.3 discusses the calibration and data fusion
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between multiple views using plane-to-plane homography. Track-first approaches
are discussed in Section 10.4 that covers methods using independent trackers and
collaborative trackers. Fuse-first approaches are described in Section 10.5 that cov-
ers detection-based tracking as well as simultaneous detection and tracking. Finally,
in Section 10.6 we draw the conclusions.

10.2 Problem Formulation

Let a wide area be monitored by a set C = {C1, · · · ,Cc, · · · ,CN} of N cameras. Let
xc,i

k be the state of the ith object in camera Cc and let xπ ,i
k be the state of the ith object

on the common view plane π .
The state xc,i

k can be defined based on a set of features, such as the position and
the velocity components of the target in the image plane, the width and the height
of the bounding box (or the axes of the ellipse) defining the area of the target, and a
representation of the appearance (such as the color histogram) of the target [8].

As mentioned in Section 10.1, the multi-camera tracking problem can be catego-
rized into two classes, namely track-first or fuse-first.

• Track-first approaches can be divided into four steps:

1. Target localization in each view. This step extracts the localization informa-
tion or measurement Zc

k = {zc
m|m = 1, · · · ,k} in each view.

2. Target state estimation, xc,i
k , in each view, given the set of measurements Zc

k

up to time k and the state xc,i
k−1 at previous time k−1.

3. State estimates projection to a common view (from individual views). This
step projects the tracks from the image views to a common view π , using the
projection matrix Hc,π , which performs a mapping from camera Cc to π :

xπ ,i
1:k = Hc,πxc,i

1:k, (10.1)

where xπ ,i
1:k is the projection of track xc,i

1:k from camera Cc. Note that π can
be the camera view selected as reference view [9, 10] or a hypothetical top
view [11, 12, 13, 14].

4. Correspondence resolution between projections from multiple views. This
step establishes the link between all the tracks xπ ,i

1:k, projected from different
views, belonging to the same object. The fused tracks can be reprojected to
the individual views for improving track estimates.

• Fuse-first approaches can be divided into three steps:

1. Target localization in each view. This step extracts the localization informa-
tion or measurement Zc

k = {zc
m|m = 1, · · · ,k} in each view.

2. Projection of localization features from each view to a common view. This
step projects the localization information or measurement to π :

Zπ ,c
k (u,v) = Hc,πZc

k(x,y); (10.2)
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and fuses them:

Zπk (u,v) = ζ ({Zπ ,c
k (x,y)}c={1,··· ,N}), (10.3)

where ζ is a function that fuses the measurements from multiple cameras.
3. State estimation in the common view. This step estimates the state xπ ,i

k of
each object in Zπk . The state can be estimated using traditional detection and
tracking schemes or via simultaneous detection and tracking.

10.3 Calibration and Fusion

To fuse the data from multiple views, track-first and fuse-first approaches assume
the availability of camera calibration information. Homographic transformation ma-
trices are generally used to this end. Homographies can be computed manually [15]
or automatically [16] by identifying corresponding points between views.

The automatic selection of corresponding points (auto-calibration) may be ob-
tained through trajectory correspondence, field-of-view lines or feature-point cor-
respondence. Trajectory correspondence can be achieved with a least mean square
search on trajectory points from multiple views [10] or by using features such as po-
sition, velocity, size and color [17]. Automatically recovered field-of-view lines use
the correspondence between objects in multiple views when they enter or exit the
scene (i.e., when they appear on field-of-view lines in overlapping views). Both
trajectory-based and field-of-view-lines-based approaches rely heavily on detec-
tion and tracking performance and assume that reliable tracks are available from
each camera. Auto-calibration can also be performed using feature-point correspon-
dence, for example using SIFT features followed by RANSAC to reject outliers [16].
The limitation of this approach is the assumption that the ground plane in each view
is sufficiently textured in order to facilitate a reliable point correspondence.

The calibration information can then be used to map information from one view
to another, using single or multi-level homography.

10.3.1 Single-Level Homography

Different features, such as points or segmentation masks, can be projected on the
common view. In case of point projection (e.g., feet location [5, 18] or blob cen-
troid [19]) a binary signal identifies the points (Figure 10.2), thus making this ap-
proach very sensitive to detection errors in a view. Although the error can be reduced
with a Gaussian Kernel on the common view [20], these approaches are not appli-
cable in crowded scenes, as feet or centroid locations may not be visible or may be
misleading due to occlusions. In crowded scenarios a preferred solution is to track
head locations that can be obtained by projecting the whole information represented
by the change segmentation mask. In this case, Zπk (u,v) can be obtained by comput-
ing the variance at each pixel [21] as
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Fig. 10.2 Projection of the detections from multiple views to the top view.

Zπk (u,v) =
1

σ2({Zπ ,c
k (u,v)}c={1,··· ,N})

, (10.4)

where

Zπ ,c
k (u,v) =

{
Hc,πZc

k(x,y) i f Z̄c
k(x,y) = 1

0 otherwise
. (10.5)

Z̄c
k(x,y) is the foreground binary mask value at (x,y) in Cc that is projected to (u,v)

in Zπ ,c
k , a single channel image.

Similarly, instead of the actual pixel values [22, 23], the binary mask values can
be projected:

Zπk (u,v) =
N

∑
c=1

Zπ ,c
k (u,v), (10.6)

where

Zπ ,c
k (u,v) =

{
1 i f Z̄c

k (x,y) = 1

0 otherwise
. (10.7)
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As the aforementioned approaches use a foreground binary mask, they perform prior
thresholding on the image plane and may therefore ignore low-contrasted or small
targets.

An alternative approach is to project the motion estimation likelihood without
any thresholding. In this case, one can compute on the common view the product of
the likelihood values from each camera [16]:

Zπk (u,v) =
N

∏
c=1

Zπ ,c
k (u,v), (10.8)

where Zπ ,c
k (u,v) is the projected likelihood value. The drawback of this approach

is that, instead of just the foreground pixels, the entire likelihood image from each
view has to be projected for each time k on the common view, thus increasing the
computational load.

Finally, as target points or features from more than one view can be projected on
the same pixel position on the common view, each point (u,v) in Zπk (u,v) has to be
normalized with respect to the number of overlapping cameras in that region.

10.3.2 Multi-Level Homography

To increase the amount of discriminative information in the projection, one can com-
pute the homography from multiple planes that are parallel to the ground plane [24].
Such homographies can be obtained by moving along the vertical vanishing points
and then estimating projection planes that are parallel to the planar top view [16].

Let Hc jπ j be the homographic matrix that projects points from c j, the jth plane
in the camera Cc, to the jth common-view plane π j as

Z
π j
k (u,v) = Hc jπ j Z

c j
k (x,y). (10.9)

The projections on multiple planes can either be treated separately to obtain the
information about the object shape [16] or can be combined as mentioned for the
single-level homography by concatenating the feature vectors from each parallel
plane [22]. Figure 10.3 shows an illustration of the projection of the localization in-
formation from a camera view to multiple planes on the common view. The common
view can be generated through the fusion of the pixel values from three homography
planes, one at the feet level, one at the head level and one between these two planes.
The fusion of the pixel values can be performed using Equation 10.4 that creates a
variance map.

The signal intensity at each position is proportional to the number of foreground
pixels being projected onto that position. In a multi-level homography, pixels repre-
senting different portions of an object (e.g., a person) in the image view along the
vertical-axis (e.g., feet, legs, torso, neck and head) are projected around the same
position on the common view, thus increasing the signal intensity.

The signal strength depends upon the number of cameras observing that region,
as points contributed from multiple cameras are projected on the same location on
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Fig. 10.3 Detections projected from one view to multiple parallel planes.

(a) (b)

Fig. 10.4 Example of parallax error. (a) Top view with 3 targets. (b) 3 high-intensity regions
on the top view generated by the projections of the targets together with several other high-
intensity regions due to phantoms.

the common view. This compensates for possible miss-detections in some camera
views. However, when an object is projected on the plane, pixels not belonging to
that plane are also projected there, thus creating a shadow of the object along that
plane. These projected shadows (from multiple objects) can overlap with each other
and create false signal intensities. These noise components, referred to as paral-
lax errors [22] or phantoms [25] (Figure 10.4), have to be filtered by the tracking
algorithm, as discussed in the next sections.

10.4 Track-First Approaches

Track-first multi-view tracking can be performed either independently in each view
or collaboratively across views. In collaborative tracking, estimated tracks in the
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Video Detection Tracking
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Fig. 10.5 Generic block diagram of track-first multi-view tracking algorithms. Solid line:
independent tracking. Solid and dotted line: collaborative tracking.

Fig. 10.6 Illustration of the track-first approach.

image view and in the common view can be used to assist each other and to improve
track estimates in one view (Figure 10.5). Both independent and collaborative algo-
rithms first track objects in each camera view and then project the tracks onto the
common view for fusion (Figure 10.6). The problem to be solved here is the fusion
of the multiple tracks belonging to the same target.
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10.4.1 Independent Tracking

Independent tracking computes the projection of single-view tracks to another cam-
era view [10] or to the hypothetical top view [11].

Kalman filter state estimates on the image plane can be used for single-target
tracking on the top view using a second Kalman filter based on covariance map-
ping [10]. For multi-target tracking, independent tracks from each view are pro-
jected on the common view or on the top view for fusion. The challenge is that
multiple corresponding tracks may not overlap with each other in time and space.
In fact, targets may be visible in one camera during a certain time interval and in
another camera during another interval. This problem can be solved by trajectory
association using multiple spatio-temporal features with an off-line processing that
allows recovering from failures due to occlusions and target merging [11].

A Gaussian Mixture PHD filter (GMPHD) can be used for on-line multi-target
tracking using independent trackers [13]. GMPHD can be applied on each view as
well as on the top view for track estimation, using features such as position, size
and color histograms. The 2D estimates of the target state from each view can be
projected onto the top view and used as observations for the GMPHD filter. Tracking
can be performed by assigning a label to each Gaussian component. Approaches
based on the PHD filter are computationally efficient as the complexity increases
only linearly with the number of targets.

As estimates in a view can be affected by partial occlusions, the drawback of in-
dependent tracking is that the tracking in one view does not help improving tracking
results in another view. An alternative solution is to perform collaborative tracking
by using track estimates from a view as measurement for other views, as discussed
in the next section.

10.4.2 Collaborative Tracking

In collaborative tracking, a set of measurements from a view are used to improve
tracking results in other views.

Objects can first be tracked using a particle filter in each view and then the par-
ticles can be projected onto the top view for fusion [12]. To compute the precise
location of the target on the top view, the principle axis1 of the target can be defined
in each view and then projected on the top view. The intersection of the projected
principle axes can be used as the target location. The closeness of the particle to the
principle axis is used as the likelihood criterion in the particle filter. To improve the
results on individual views using top-view tracking, the particles in each view can
be sampled from both camera-view particles and top-view particles [12].

Similarly, multiple independent regular particle filters (MIPFs) can be used to
track each target in a view. The posterior in each camera can be computed by using

1 The principle axis is the vertical line from the bottom (e.g., the feet of a person) to the top
(e.g., the head of a person) of a target.
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Table 10.1 Track-first multi-camera tracking algorithms. (Key: GMPHD = Gaussian Mixture
Probability Hypothesis Density; MT = Multi-target tracker; IT = Independent tracking; CT =
Collaborative tracking; M = Manual)

Ref. Features Tracker Calib. MT

IT

[10] 2D position, size, velocity Kalman filter M No
[9] 2D position, height and intensity Bayes tracker M No

[11] 2D position, size, velocity Graph matching M Yes
[13] position, size and color histogram GMPHD filter M Yes
[26] 2D position Template matching M Yes

CT
[12] 2D position, size Particle filter M No
[14] 5D state space using ellipses Particle filter M No

the measurements from all the cameras [14]. A summary of state-of-the-art track-
first approaches is shown in Table 10.1.

Track-first approaches involve multiple tracking steps and hence can be compu-
tationally expensive. To reduce the complexity, fuse-first approaches can be used
that defer the tracking step until when the information from each view is fused on a
common view.

10.5 Fuse-First Approaches

Although collaborative track-first approaches help improving trajectory estimation
in each camera view, they involve multiple tracking steps that can introduce sources
of estimation error. These multiple steps can be eliminated by tracking on the com-
mon view only, by accumulating on the common view the information from each
view (Figure 10.7).

Fuse-first multi-view tracking approaches are characterized by the features used
and by the strategy for the computation of the common view (Figure 10.8). The fea-
tures extracted can be the feet location of people [5], the silhouette centroid [19],
the change segmentation mask [22], the foreground pixels or the whole motion seg-
mentation likelihood [27].

Note that although fuse-first methods involve one tracking step only, they may
involve multiple detection steps: (i) in each camera view, before fusion and (ii) on
the common view, after fusion. Furthermore, as the fusion involves triangulation
of noisy information, this can result in a larger number of solutions (i.e., candidate
targets) than desired. To address this type of data and to reduce the overall complex-
ity of the tracker, simultaneous detection and tracking can be performed that does
not require a detection step (Figure 10.9). The various aspects of these multi-view
tracking techniques are discussed in this section. A summary of the state-of-the-art
of fuse-first multi-view tracking approaches is shown in Table 10.2.
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Fig. 10.7 Illustration of the fuse-first approach.

Fig. 10.8 Fuse-first multi-view tracking approaches: features and homography.

10.5.1 Detection-Based Tracking

Detection-based trackers first localize objects on the common view and then track
them. Target localization (detection) can be performed by thresholding [21, 23] or
by quantizing the top view into a grid such that each sub-area can only contain
one target. A dictionary of atoms modeling the presence of an object at a given
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Video Detection

Video Detection

Video Detection

Fusion TrackingDetection tracks

Fig. 10.9 Generic block diagram of fuse-first multi-view tracking algorithms. The switch
differentiates between detection-based trackers and simultaneous detection & tracking algo-
rithms that do not require the detection step after fusion.

Table 10.2 Fuse-first multi-view tracking algorithms (MT: Multi-target tracking; MHPT:
Multi-Hypothesis Probabilistic Tracker; M = Manual; A = Automatic)

Ref. Features Tracker Calib. MT
[28] color and motion Viterbi algorithm M Yes
[5] person vertical axis, ground position Particle filter M Yes

[20] feet position Kalman filter M Yes
[19] color histogram, bounding box, centroid MHPT M Yes
[21] head position Bayes tracker M Yes
[16] multiple planes occupancy map Minimum graph cut A Yes
[27] field of view lines not mentioned/any M NA
[22] foreground mask Particle filter M Yes
[29] foreground mask Rule-based M No
[23] foreground mask Graph cut M Yes
[30] 2D position Kalman filter M No

location in a view can then be used to identify if the position in the quantized top-
view grid contains a target [29]. When the top view is composed of projected points
representing target centroids or feet locations, all the non-zero values can be used as
candidate locations [30]. A ray can be drawn from the center of projection of each
camera through the centroid of foreground regions from that camera. The intersec-
tion of these rays can then be used as target location, which can be tracked using
Multi-hypothesis Probabilistic Tracker (MHPT) [19]. Similarly, the vertical axis of
the target across views can be mapped on the top-view plane and their intersection
point on the ground can be used as the feet location of the target on the top view [5]
(Fig 10.10). Contrary to [12], in [5] target feet locations (obtained through vertical
axis lines) are not tracked in each camera view but detected and tracked only once on
the common view. The detection step involves associating multiple projected points
to the same target by using a threshold on the inter-point distance. The top-view
feet locations can then be tracked using a single-view tracker such as particle fil-
ter. The thresholding on inter-point distance for associating multiple projected feet
locations belonging to the same target can be eliminated by using a Gaussian kernel
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Fig. 10.10 Illustration of the target vertical axis intersection on the top view.

for a single image pair [20]. This results in a common plane that is similar to the
one generated using foreground masks (Equation 10.4, Equation 10.6) or likelihood
maps (Equation 10.8).

When the common view is based on foreground masks, object segmentation can
also be performed by thresholding, thus resulting in a large number of points for
each target. These points need to be grouped to obtain the target location. The group-
ing can be performed using K-means, Mixture of Gaussians or Mean-shift [31, 32].
The mean of these clusters represents the target location, which can be tracked us-
ing single-view trackers such as multiple single target Kalman filter [20]. Color and
motion information can also be used in the common view with a generative model
to explicitly handle complex occlusions and interactions between objects [28]. The
tracking of each object can be performed using the Viterbi algorithm. A greedy ap-
proach that makes the locally optimal choice at each stage can be used to avoid
the combinatorial explosion of the computational cost due to joint posteriors. Un-
like approaches that perform state estimation using frame-to-frame correspondence
only, this method computes global optima of scores summed over several frames,
thus making it more robust to persistent and prolonged occlusions. However, this
approach can only process a batch of frames at a time and hence the results are
delayed.

To further improve the effectiveness of tracking in the fused domain, multi-level
homography can be used [24] (see Section 10.3.2). Head detection can be performed
by thresholding the variance map (Equation 10.4) and by employing floor-level ho-
mographic projections. Finally, the candidate head-top positions can be estimated
by clustering with double threshold hysteresis. Note that head tracking requires the
cameras to be mounted at a significant height so that the heads are fully visible.
The number of homography levels can be increased to further improve the localiza-
tion information [16], at an additional computational cost. The localization informa-
tion can also be improved by projecting the motion segmentation likelihood values
and obtaining the mask by taking the product of the values from multiple views
(Equation 10.8). The foreground likelihood probabilities from each plane of each
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view at each time can be projected onto the corresponding plane of the common-
view to obtain a 4D spatio-temporal occupancy map. The minimum graph cut
procedure can be applied with alpha-expansion to segment targets. Trajectory seg-
mentation can then be performed using graph cut. Although this approach shows
promising results, it is computationally very expensive as it requires obtaining a 4D
occupancy map before applying the minimum cut procedure.

To reduce the computational cost and to obtain an on-line solution, multiple ho-
mography planes can be collapsed on the ground plane [23]. Similar thresholding
and clustering can be performed to localize targets followed by graph matching to
obtain the tracks.

The thresholding step to localize targets is a bottleneck in most detection-based
trackers. Furthermore, due to parallax error (Figure 10.4), false peaks can be se-
lected as candidate target locations. These false peaks can be filtered using heuristics
on size and speed [25]. A better alternative is to perform tracking without applying
the detection step by using simultaneous detection and tracking via track-before-
detect.

10.5.2 Track-Before-Detect

Track-before-detect (TBD) is a Bayesian approach that extends the target state with
the signal intensity and evaluates each image segment against a certain dynamic
model. As the target intensity along with its dynamics follow a statistical model, this
approach allows us to track targets with lower signal strength, without applying an
additional detection step. The state estimation can then be performed using particle
filtering [22].

To avoid an explicit target localization step, in track-before-detect the entire input
signal is considered as a measurement. This measurement is a highly non-linear
function of the target state and can be solved either by discretization of the state [34]

(a) (b)

Fig. 10.11 Example of particle weights and positions. (a) Without multi-target update (one
target has very small weights and another one is missing); (b) with multi-target update. As
the weights for weak targets are very low, without the multi-target update strategy, lost tracks
are possible.
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(a)

(b) (c)

(d) (e)

Fig. 10.12 Multi-view tracking on the top view on frames 160 and 500 of ISSIA dataset.
(a) Original frames from each view. (b,d) Top view after fusion. (c,e) Tracks generated with
multi-target track-before-detect.

or by non-linear state estimation techniques (e.g., particle filtering [35]), which are
less computationally expensive.

In track-before-detect multi-view tracking, the common view can be based on
the foreground likelihood (Equation 10.8) or the binary mask (Equation 10.6, Equa-
tion 10.4). The single-target multi-view track-before-detect particle filter can be
modified for multiple targets by incorporating particle clustering [22]. The cluster
information allows normalizing weights per target/cluster, thus facilitating tracking
weak and new born targets.

Figure 10.11 shows a comparison between the evolution of particle weights
with and without the cluster-based update strategy. It can be seen that without the
multi-target update strategy (Figure 10.11(a)), a target is lost while another has a
very low weight that will cause that target to be lost in the subsequent frame.
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The particles can be clustered using K-means, Mixture of Gaussians or Mean-
shift (MS) [36]. If the total number of targets is not known, a nonparametric cluster-
ing technique that does not require prior knowledge of the number of clusters, such
as MS, can be used. MS climbs the gradient of a probability distribution to find the
nearest dominant mode or peak and does not impose constraints on the shape of the
clusters.

An example of tracking results obtained with the multi-target particle filter-
ing track-before-detect (MT-PF-TBD) on the ISSIA2 dataset is shown in Fig-
ure 10.12(c,e). The bandwidth chosen for MS is h = 5, which is appropriate for
clustering particles generated around a target that is affected by blurring; 3000 par-
ticles per target are used. It can be seen that most targets are tracked over the entire
scene, the exception being the goalkeeper on the left corner of the field. This target
is not tracked initially (Figure 10.12(c)) despite being represented with significant
information (Figure 10.12(b)) as he was static and hence not following the expected
motion model. The prediction resulted in moving all particles away from the target.
The corresponding track is generated when he starts moving during the attack on
the goal (Figure 10.12(d-e)).

10.6 Conclusions

This Chapter discussed and classified techniques for tracking in multiple cameras
with partially overlapping fields of view. The Chapter covers the two major groups of
multi-view tracking algorithms, namely track-first and fuse-first approaches. Track-
first approaches employ tracking in each view as well as on the common view. Track-
ers in each view can also collaborate with each other to improve the target estimates.
Contrary to track-first methods, fuse-first approaches defer tracking until the fusion
of target localization information on the common view. Tracking is then performed
only once on the common view using multiple single-target trackers or multi-target
trackers. Tracking on the common view can be based on detections (when targets
are first localized prior to tracking) or on simultaneous detection and tracking. In
this context, the Chapter has presented a track-before-detect multi-target particle fil-
ter tracker where only pixels following a certain dynamic model are tracked, without
any explicit detection mechanisms. This approach not only eliminates the detection
step after data fusion, but also helps reducing false positives due to noise.
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