
Chapter 1
Is Human Vision Any Good?

Jan J. Koenderink

Abstract. Human vision is often referred to as an “existence proof” for challenging
targets of machine vision. But in some areas machine vision evidently “beats” hu-
man vision, so the questions arise: Is human vision any good, will it be supplanted
by machine vision for most tasks soon? I analyze human vision with the aim to pro-
vide an answer to such questions. Does machine vision still have anything to learn
from human vision? I identify a number of basic principles of biological vision that
are likely to be of interest to the machine vision community.

1.1 Introduction

On May 11th, 1997 at 3:00PM EDT, game #6 of the match of Garry Kasparov,
the greatest (human!) player in the history of chess, against IBM’s Deep Blue Su-
percomputer put the final score at [kasparov 2.5: deep blue 3.5]. So
much for chess [1]. Are human chess players any good? Is vision like chess in this
respect?

In order to answer the question one needs to make more precise what is exactly
being meant by “human vision” and identify potentially interesting aspects. In an
attempt to learn from human vision one needs an overview of the various hardware
and algorithmic structures that implement human vision. One might (naı̈vely) be-
lieve that it would suffice to ask physiologists and psychologists for the required
information. Such is not the case. The best that can be done is to offer creative
guesses on the basis of a panoramic knowledge of these fields, framed in the lan-
guage understood by engineers. This is my aim in this chapter.

1.1.1 What Is “Human Vision”?

“Human vision” (or, more general, “biological vision”) stands for an extensive bun-
dle of human or animal capabilities of mutually very different types. The simplest of
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these are hardly worth the name “vision”, these include many optoreflexes found in
the simplest animals, but also present in man. Though vital for survival, they hardly
involve anything beyond wiring up a photocell to some effector. More complicated
cases of “optically guided behavior” include orientation/navigation on the basis of
optic flow and so forth. Such mechanisms make up a major part of the “visual sys-
tem”. This part can be understood in the engineering sense and are already emulated
in robotic systems. Here machines are going to beat man, the waiting is for the first
soccer match of a human team to a robot team that will be lost by the men. In this
chapter I am not so much interested in this aspect of vision.

Most of “optically guided behavior” goes on below the level of awareness. This
makes sense because of the real–time aspect and the pre–cognitive nature of overt
bodily actions. Just try to walk through consciously figuring out the right signals
to be sent to your muscular–skeletal system on the basis of the pattern of photons
impinging on your retinas and you will understand why. Here I will narrow down the
definition of “vision” to the level of awareness, that is optically induced experience.
Such experiences do not primarily influence your actual (real–time) behavior as in
optically guided behavior, but they are relevant for your potential behavior. Another
way to put this is to say that visual experiences lead to knowledge. For instance, on
leaving the door you may grab an umbrella or a raincoat because an earlier (maybe
much earlier) look out of the window taught you that it “looked like rain”. Or you
might do neither and remark “I don’t mind to get wet” to a companion. Thus there
is no direct link with action as there is in optically guided behavior.

As you open your eyes the world appears to you, you cannot voluntarily choose
not to see. Visual experiences are presentations that happen to you, much like sneez-
ing. Through your presentations (including those of your other modalities) you are
aware of your world. You are visually aware of the world itself, rather than your
thoughts of the world. That is why you are responsible for your thoughts but not
for your presentations. Presentations are pre–cognitive. They are “world–directed”
though, the technical term is “intentional”.

1.1.2 How Is Human Vision Implemented?

I will mainly address the level of the brain (including the retinas) here, although
the eye with its optics (cornea, lens, waveguides with photopigments), the eyeball
with its muscles, as well as the musculature of head and body play major roles in
everyday vision. One learns about the visual system from observations of generic
humans (experimental psychology, psychophysics), patients (neuropsychiatry), and
dead bodies (neuroanatomy). Nowadays one also records crude brain activity in
healthy volunteers and (sporadic) epilectic patients during operations. Most of the
more spatiotemporally precise observations are from electrophysiological experi-
ments on animals, sometimes (technically) asleep, sometimes in a waking or (very
rarely) even behaving state. Although huge amounts of observations are available,
the brain is such a complicated structure that it is fair to say that a synthesis of all
this knowledge is sadly lacking. One has to make do with lacunary data, usually
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available in potentially misleading formats. What I attempt to do here is to identify
some basic principles.

The global neural structure. The global structure of the visual system is made
up of a large number of mutually highly (two way) interconnected areas, roughly
branching out from the input stage as a hierarchical tree. As one moves into the
hierarchy the resolution decreases, in the areas with considerable resolution on finds
a retinotopic ordening, probably reflecting a tendency towards wiring economy. The
interconnection of the areas is so high that one can do little more than identify a
(very) rough division of labor. The two way wiring suggests that the processing is
certainly not limited to a “bottom up” stage.

The principle of locality. Most of the wiring inside an area is short range. Most of
the processing appears to be local, though with important “top down” (thus probably
somewhat global) modulation.

The principle of local selectivity. Most of the short range wiring inside an area is
highly selective. A common structure is “center–surround”, essentially an isotropic
Laplacean operator. Directional wirings are also common, essentially directional
derivative operators in space or space–time. Directional units are typically con-
nected to units of similar specificity in their environment.

The principle of global selectivity. Long range (area–to–area) wiring is (at least
approximately) somatotopic, that is selective in the sense that topological structure
is conserved.

Speculative interpretation. It is hard not to regard the various anatomically and
electrophysiologically distinct areas as functional subunits, dedicated to one or more
subtasks. The areas early in the stream (closest to the input) are best known and are
likely to be dedicated to various “image processing” tasks. The units are likely to
function largely independent of each other, possibly at quite different parameter
settings (due to local “adaptation”). The “glue” may be provided by the top down
queries and (implicitly) through the somatotopic connection to other areas.

A likely interpretation is to regard an area as a “geometry engine” [2], implement-
ing a basis for differential geometric queries. The units world compute a “jet space”
composed of directional derivatives up to a certain order (about 4 seems right), pos-
sibly at various scales. Then local algorithms might compute various differential
invariants (algebraic combinations of derivatives, e.g., curvature) and local statisti-
cal measures (e.g., structure tensors) that would be meaningful entities for top down
queries. The specific local wiring would be needed to implement geometrical en-
tities like covariant derivatives, curvature tensors, and so forth. This means that a
“signal” (e.g., a curvature tensor) cannot be carried by a single nerve fiber, it has
to be carried by a (small) ensemble of these. This again entails that present electro-
physiological methods all fail to address the meaningful structure of the areas.

The local jets (essentially truncated Taylor series describing local structure) are
simply data structures “sitting there”, waiting to be queried, they are not necessarily
send upstream. Think of this structure as “stuck” in the area as a sample of the world
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“in brain readable form”. It is available, like a footprint in the sand of a beach. I
see no essential difference here even though the latter is “outside” and the former
“inside the head”. The queries can be of various nature and may expect the jets
to be available as local parameters to be used in computing an answer. What is
sent upstream by the area is a mere summary account of its overall state. Thus the
“bottom up” stream narrows down to what a top level might use to check the present
“gist”. Details are guessed, perhaps to be checked through a (focussed) stream of
“top down” queries.

The global functional structure. The functional structure of the visual system
(here “visual system” is meant in a functional sense distinct from the level of the
neural substrate) can only be addressed via observations of the interaction of the
agent with its world. Thus one needs the observations of experimental psychology
or psychophysics. A few observations stand out as especially basic.

The intentionality of visual experiences. Presentations are world–directed, with the
immediate implication that they cannot be computed in a purely bottom up fashion.
They must be imposed by the agent, hence derive from a centrofugal (“top down”
suggests a brain implementation) or “probing” process. Perception is active, it is
an outward directed probing rather than the passive reception of “data”. Without
probing there would be no “data”, but only structure (see below).

The rock bottom of Gestalts. The smallest parts of presentations (though not neces-
sarily in a spatial sense) are the Gestalts. There is no way to look “into” a Gestalt.
The Gestalts are to the human observer what “releasers” are to animals. They are
where the buck stops in “explaining” the available structure, avoiding an infinite
regress. They both limit and enable presentations.

Speculative interpretation. Much of presentation is essentially “controlled hallu-
cination”. Although the word “hallucination” has a bad ring to it, “hallucination” has
the advantage to resolve the problem of world–directedness in one go. Intentional-
ity is there from the start, no need to compute it—which is an impossibility anyway.
Hallucinations can be “controlled” through comparison with the facts, which are
records of optical structure. Thus the system needs top down queries in order to
keep its hallucinations in tune with its world. This modus operandus has several ad-
vantages. The “binding problem” vanishes since nothing like “binding” is needed;
lacking data are only a lack of constraint on the current hallucination; likewise in-
herent ambiguity (typical for “Shape From X” algorithms) simply means a partial
constraint. The presentations are always complete and unique by construction (for
hallucinations are constructions). The only problem is how to “hallucinate” produc-
tively. Usually this is no problem since most moments are much like the previous
ones. Here the generic knowledge of the agent world (“frames”, “scripts”, “back-
ground”, “Bayesian priors”, etc.) comes into play. It enables the “gist” that seeps in
from the bottom up to be used effectively. A wrong hallucination is not a disaster,
the agent is almost certain to win any “twenty questions game” with its world. Think
of wrong hallucinations as vehicles for learning, much like the hypotheses of sci-
entific research (see below). In that sense the controlled hallucination implements a
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selective probing process. When probing meets resistance due to unexpected mis-
matches the agent gains information from direct contact with the world in the con-
text of the (intentional) probing. No gain without pain: the mismatches are required
in order to be able to gain information at all.

The “Sherlock Model”. An apt model for the process of “controlled hallucination”
is that so expertly wielded by the famous Sherlock Holmes [3]. The “solution” to
a case cannot be “computed” for even the input is undefined. Anything (e.g., a dis-
carded cigarette butt, a hair in the soup, an odd noise at noon) can be either a valuable
clue or totally irrelevant. There is no end to this as the world is infinitely structured.
It is only a plot that enables Holmes to interpret random structures as clues, or even
to actually look for them (is there a bloodstain on the curtain, did someone cut a
rose, etc.). Moreover, the plot enables such clues to be interpreted, i.e., to become
data (meaningful) instead of structure (meaningless). Questions are like computer
formats in that they define the meaning of possible answers. The plot is not “com-
puted from data” either. It is freely invented by Holmes, on the basis of his prior
experience and his assessment of the “gist” of the scene. If it doesn’t work Holmes
discards it for another. How many possibilities are there anyway (the butler did it,
or maybe the countess, etc.)? Holmes’ method is not different from the way the
sciences operate either. No theory was ever “computed from data”! They are freely
invented by people like Einstein and checked against the observations. They lead
to novel observations to be made (“probing nature”) as further checks on the the-
ory. Theories that don’t check out are discarded for other (equally freely invented)
ones. Thus theories, plots and presentations are subject to a thorougly Darwinnian
selection process that soon weeds out ones that fail to explain the world. The ones
that remain are current best bets of what the world is like, or—perhaps more apt,
the currently most effective user interfaces of the agent (scientist, criminal inves-
tigator, visual observer, . . . ) to their world. To the user, the interface is what the
world is like, what they understand (having constructed it themselves). For the user
there is nothing understandable beyond the interface. In that sense perceptions are
“mental paint”.

The very idea of “bottom up processing” makes no sense in criminal investiga-
tion, nor in science. It makes no sense in visual perception either, despite the fact
that so many professionals (from philosophy, physiology, psychology and machine
vision alike) remain true believers. This (abortive) model assumes that the world is
a well defined place even in the absence of any observer and that it is the task for
visual systems to compute a representation of it. Thus one can conveniently assess
visual systems, their representations should replicate the world in as detailed a man-
ner as possible. Such a weird notion applies (at best) to zombies (no intentionality)
in limited settings.

1.2 Frameworks

In discussing vision one has to break down the problems in more or less coherent
chunks. In this chapter I discuss two generic “frameworks”, but I am by no means
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complete, nor did I make a serious attempt at a principled breakdown of the whole
of vision. I don’t doubt that such an endeavor is both possible and profitable though.
I pick these two examples because they lead to a similar formal structure (“geome-
try”), which enables me to keep the formalism at bay.

1.2.1 The Spatial Framework

“Space”, in the senses of “configuration”, “shape” or “possibility of movement”, is
one of the very backbones of presentations. There are many directions from which
one might approach the topic of “space”, various of them of a very fundamental na-
ture. Here I simply consider one possibility (arguably the simplest case), the struc-
ture of visual space as related to the physical space surrounding a single vantage
point (“cyclopean, stationary observer”). I will consider the topology of the visual
field to be “given” (so called problem of “local sign” [4]). These are strong assump-
tions, so we’re dealing with a toy system. (However, I know of no machine vision
work that seriously deals with the local sign problem.)

If you turn the whole world about the vantage point, the observer can undo this
change through a voluntary eye movement, a rotation of the eye about its center.
In the absence of additional data (e.g., a gravity sensor) such changes generate no
information. The global optical structure shifts but the (all important) local spatial
configurations are not affected.

If you scale the whole world about the vantage point the optical structure remains
invariant. In the absence of additional data (e.g., the presence of Gulliver—who
doesn’t scale—in Lilliput and Brobdignac) such changes cannot be recorded at all.

We conclude that the optical structure available to a stationary, cyclopean ob-
server is invariant against the group of rotation–dilations about the vantage point. It
is easy enough to construct geometries that implement such invariance. Here is an
example, consider the Riemann space [5] with line element (metric)

ds2 =
dx2 + dy2 + dz2

x2 + y2 + z2 . (1.1)

This metric is evidently invariant against arbitrary rotation–dilations about the ori-
gin {x,y,z}= {0,0,0}. Transforming to polar coordinates

ρ =
√

x2 + y2 + z2, (1.2)

ϑ = arccos(z), (1.3)

ϕ = arctan(x,y), (1.4)

and setting

ζ = log
ρ
ρ0

, (1.5)

where ρ0 is an arbitrary unit of length (“yardstick”) you obtain

ds2 = dζ 2 + dϑ 2 + sin2ϑ dϕ2 = dζ 2 + dΩ 2, (1.6)
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where dΩ 2 is the line element (metric) of the unit sphere S
2. Since the yardstick

is arbitrary, the depth coordinate ζ indicates a point on the affine line A and we
conclude that this space is a vector bundle S

2×A with base space S
2 and fibers A.

Notice that points {ζ1,ϑ ,ϕ} and {ζ2,ϑ ,ϕ} are on the same “visual ray” and thus
are imaged on the same “pixel”. We conclude that such points are coincident in the
(physical) visual field, though they may be distinct in the (mental) visual space of
the observer. An example is a glyph like “×” where I may “see” the upslope “�”
as being in front of the downslope “�”, thus the point “·” where they intersect
as two points, one in front of the other, perhaps symbolized as “�”. Of course I
might as well “see” the upslope “�” as being behind the downslope “�”, the depth
order being fully idiosyncratic. “Visual space” is a mental entity where the mind
may shift the depths ζ1,2,... on the visual rays (directions, points of S

2) as if they
were beads on strings.

In order to deal with this in a formal manner you may redefine the metric in
such a way that points like {ζ1,ϑ ,ϕ} and {ζ2,ϑ ,ϕ} that are on the same “visual
ray” are assigned zero distance whereas still considered different. In the tradition of
geometry such points would have to be designated “parallel”. This is fully analog
to the usage in the case of planes in space. Generically two planes subtend a finite
angle (their distance in the angle metric), but it may happen that this angle vanishes
without the planes being coincident. In that case one designates the planes to be
“parallel”.

The way to bring this about is to make the depth dimension isotropic [6]. On the
“isotropic line” any two points subtend mutual distance zero. This is often useful in
science, perhaps the best known example being the special theory of relativity where
the light cones have isotropic generators. In a convenient formalism I introduce
the “dual imaginary unit ε”, where ε is defined as the nontrivial solution of the
quadratic equation x2 = 0. That is to say, you have ε2 = 0, ε �= 0. The numbers u+ε v
where u,v ∈ R are known as the “dual (imaginary) numbers”, an extension of the
real number line, much like the conventional imaginary numbers with imaginary
unit i, where i2 =−1. One easily proves that neither ε > 0 nor ε < 0 whereas ε �= 0.
Thus the “Law of the Excluded Third” does not work for the dual number system
and one has to adopt intuitionistic logic, which is probably as well in an engineering
context. Engineering “proofs” are by nature constructive, “proofs by contradiction”
play no role.

Writing the metric as
ds2 = dΩ 2 + ε2 dζ 2, (1.7)

solves our problem. Points on different visual rays have finite distances (simply their
angular separation), whereas points on a single ray have mutual distance zero, even
if they are distinct. However, in the latter case one might define them to subtend
the “special distance” ζ2− ζ1. This is indeed a useful distance measure because
it is invariant against arbitrary rotation–dilations. Notice that the special distance
applies only to points with zero regular distance. Then one may define “the” distance
as either the regular distance or (in case the regular distance vanishes) the special
distance.
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1.2.1.1 The Case of Narrow Visual Fields

In the case of narrow visual fields the formalism can be simplified. Let the main line
of sight be in the Z–direction (ϑ � 1). Then the angular coordinates {ϑ ,ϕ}may be
replaced with the “Riemann normal coordinates” {ξ ,η} [5]:

ξ = ϑ cosϕ , (1.8)

η = ϑ sinϕ . (1.9)

We obtain a space E
2×J (where E

2 denotes the Euclidian plane and J the isotropic
affine line). The 8–parameter group

ξ ′ = a(+ξ cosβ +η sinβ )+ cξ , (1.10)

η ′ = a(−ξ sinβ +η cosβ )+ cη , (1.11)

ζ ′ = fξ ξ + fηη+ gζ + h, (1.12)

is not unlike that of the similarities (thus including congruencies and movements)
of Euclidian space E

3, except for the fact that the latter group is only a 7–parameter
group. The group scales distances by the amount a, which may be regarded as due to
dilations, because it implements pseudo–perspective scaling; the parameter β results
from rotations about the viewing direction, the parameters {cξ ,cη} from rotations
about axes orthogonal to the viewing direction; the parameter h from a depth shift.
The parameters { fξ , fη} and g have been added because they conserve distance and
special distance, for if (ξ2− ξ1)2 +(η2−η1)2 > 0 you have (due to ε2 = 0)

((ξ ′2− ξ ′1)2 +(η ′2−η ′1)2) = a2 ((ξ2− ξ1)2 +(η2−η1)2), (1.13)

whereas for (ξ2− ξ1)2 +(η2−η1)2 = 0 you have

(ζ ′2− ζ ′1) = g(ζ2− ζ1). (1.14)

This group of similarities defines (in the sense of Felix Klein) the Cayley–Klein
space (one of 27) with a single isotropic dimension. The space has a parabolic dis-
tance measure (like Euclidian space), but unlike Euclidian space also a parabolic
angle measure. This accounts for the additional group parameter: one may scale
either distances or angles (or both), whereas Euclidian angles cannot be scaled be-
cause periodic (elliptic angle measure).

Since the similarities in the “image plane” (the {ξ ,η}–plane) are trivial, as are
depth shifts, the subgroup

ξ ′ = ξ , (1.15)

η ′ = η , (1.16)

ζ ′ = fξ ξ + fηη+ gζ , (1.17)



1 Is Human Vision Any Good? 9

is perhaps of most immediate interest. It is the group of “bas–relief ambiguities”
identified for the “Shape From Shading” problem of machine vision. Apparently the
shading setting is irrelevant here, this transformation follows from a very general
analysis of stationary, cyclopean vision. The parameter g immediately scales the
depth of relief, whereas the parameters { fξ , fη} describe “additive planes”, formally
they describe isotropic rotations.

Consider a rotation

ξ ′ = ξ , (1.18)

ζ ′ = fξ + ζ , (1.19)

in a constant η plane. The “frontoparallel” line ζ = 0 is transformed into the slanted
line ζ = fξ , which has the isotropic slope angle f . (This is a good angle mea-
sure because the transformation changes the slope of arbitrarily slanted lines by the
same amount.) Apparently the slope angle varies between ±∞ and is not periodic.
Thus you can’t rotate the line “upside down”. There is no “turning around” in vi-
sual space! Notice that this is exactly what is required because these rotations are in
mental space: if you see the front of an object you can’t see its back, no matter how
you shift the depth “beads”along their visual ray “strings”. The formalism perfectly
captures the condition of a stationary, cyclopean observer.

The geometry and differential geometry of this “visual space” has been developed
in detail during the first half of the 20thc. (Not in the context of vision, but as a
purely formal endeavor [7].) The resulting geometry is as rich as that of the familiar
Euclidean space E

3, though with some surprises. Calculations are typically much
simpler than they are for analogous problems in Euclidean space, the main reason
being algebraic. The full Taylor expansion of a function F(u + ε v) being

F(u + ε v) = F(x)+ ε F ′(x)v, (1.20)

(no higher order terms!) really makes life easy. Especially, the trigonometric func-
tions become

sinε x = εx, (1.21)

cosε x = 1, (1.22)

which enormously simplifies numerous calculations in geometry.

1.2.2 The Photometric Framework

In the “photometric framework” one deals with an “image plane”, which is a Eu-
clidian plane E

2, and a scalar “intensity” field I(x,y) (say). The intensity could be
the irradiance of the image plane due to some optical system for instance.

The intensity domain. I will only consider two generic properties of the
“intensity”:
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• the intensity is positive I ∈ R
+ (I consider zero values singular);

• the intensity is a photometric quantity, i.e., its physical dimension is not length
but involves radiant power in some way.

In the context of machine vision one typically doesn’t care much about physical
dimensions, thus it is convenient to decide on some standard intensity I0 say, and
redefine intensity as the dimensionless quantity I = I/I0.

In the absence of any prior knowledge the Bayesian prior for the intensity is
hyperbolic:

P(I)dI =
dI

I
, (1.23)

thus the natural representation of intensity is logarithmic, for then the prior prob-
ability density is a uniform density. Consequently I redefine intensity yet another
time:

J = log I = log
I
I0

. (1.24)

Since the fiducial intensity I0 is arbitrary, the J–domain fails a natural origin. One
concludes that the natural representation of the intensity domain is the affine line A.

Apparently the objects that one deals with in the photometric framework are
cross sections of the fiberbundle E

2×A with the image plane as base space and
the intensity domain as fibers. Such cross sections are conveniently referred to as
“images”.

The topological structure. In most cases the image will not be defined over the
whole of the image plane, though the actual size of the available image is often ir-
relevant. For most purposes one may define a “region of interest”, such that anything
outside the region of interest does not affect the calculation. I will refer to the size
of the region of interest as the “outer scale” of an image.

In work of a theoretical nature one often thinks of the intensity as defined on
any point and one writes J(r), with r ∈ E

2, whereas in work of a practical nature
one considers intensities “pixel values” and writes Ji j, with ij ∈ Z

2. The former is
nonsense, the latter inconvenient. The former is nonsense because the intensity is a
flux density and only defined for finite collecting areas. Thus one needs to settle on
some value of the resolution. The latter is inconvenient because the pixels ideally
are (much) smaller than the size of one’s operators (e.g., an “edge detector”). I will
assume that a resolution has been decided upon and that it is much larger than the
pixel size. Then any pixelation is irrelevant, a mere matter of implementation (e.g.,
of one’s printer: you never hope to see the pixelation).

The formally correct way to deal with resolution is to consider the image a mem-
ber of a linear scale space. This allows changes of resolution—which are often nec-
essary or desirable—to be defined in a principled way. In this setting the “points” of
the image plane are operators that when queried yield the intensity “at that point”.
These operators are “points” in the sense of “Euclid’s Elements”: “A point is that
which has no parts”. You cannot look into a point. I will refer to the size of the
points as the “inner scale” of the image.
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An advantage of the linear scale space setting is that it allows one to introduce
partial spatial derivatives in a principled manner. One may actually take the deriva-
tive of a point and use the result as an operator that when applied to the image yields
the value of the derivative at that point. This avoids the problem that images are not
differentiable functions (in fact, not even functions to begin with) and that the ap-
proximate numerical differentiation of actual signals is a tricky business at best. (As
people say “numerical differentiation is ill posed”.) In fact, one may find deriva-
tives of any order of the image at any given scale. Whether such (perfectly good!)
derivatives are actually relevant or useful depends upon the current context.

1.2.2.1 The Structure of Image Space

The arena of images is a fiberbundle E
2×A. Can one identify additional structure?

This is of appreciable potential interest as uses of popular applications like Adobe’s
Photoshop c© indicate. People are ready to do all kinds of things to images, in many
cases claiming to merely “improve” their image, not essentially changing it. One
speaks of “straight photography”. The transformation admitted in the practice of
straight photography apparently play a role not unlike “congruences” or “similari-
ties” and one would like to relate them to the structure of image space.

At first blush one identifies similarities of the image plane and translations along
the intensity axis as obvious candidates. Another, perhaps less immediately obvious
group of transformations are the similarities of the intensity domain. They corre-
spond to the well known “gamma transformations”

I′ = Imax

(
I

Imax

)γ
, (1.25)

of intensities in the range (0, Imax).
Next consider transformations that leave the image plane invariant but depend on

both space and intensity. Here one meets with an obvious constraint. For instance, I
consider the “transformation”

x′ = J, (1.26)

y′ = y, (1.27)

J′ = x, (1.28)

as definitely not allowable. Why? Because the image plane dimensions and the in-
tensity dimension are mutually incommensurable. This transformation violates the
condition that images are cross–sections of the fiberbundle E

2×A. On the other
hand the transformation

x′ = x, (1.29)

y′ = y, (1.30)

J′ = ax + J, (1.31)



12 J.J. Koenderink

does not represent any problem. The factor a is apparently a gradient, so much
intensity per unit distance. The fiberbundle structure is not violated.

The situation should look familiar to the reader of this chapter. Images are manip-
ulated by “moving intensities” over the copies of A at any point of the image plane,
like beads on a string. Congruences should look like Euclidean motion in the image
plane and leave distances between “beads on a single string” invariant, similarities
should scale them by the same factor. This is exactly what is achieved by the group
of similarities of a Cayley–Klein space with single isotropic dimension. In this case
the isotropic dimension is the intensity domain. Thus I simply set:

x′ = a(+xcosβ + ysinβ )+ cx, (1.32)

y′ = a(−xsinβ + ycosβ )+ cy, (1.33)

J′ = fxx + fyy + gJ + h, (1.34)

as it does precisely the right things. The subgroup that leaves the image plane in-
variant is evidently the most interesting. It is

x′ = x, (1.35)

y′ = y, (1.36)

J′ = fxx + fyy + gJ + h. (1.37)

The parameter h controls overall brightness, whereas parameter g implements
the gamma–transformations (usually denoted “contrast control”). The parameters
{ fx, fy} are often applied by landscape photographers as “grad filters”.

These transformations have many applications in vision. For instance, consider
the local image structure

J(x,y) = a00 +(a10x + a01y)+
1
2!

(a20x2 + 2a11xy + a02y2)+ . . . (1.38)

Using a congruency of image space it can be transformed into canonical form

J′(u,v) =
1
2!

(κ1 u2 +κ2 v2)+ . . . (1.39)

With an additional similarity one may even achieve

√
κ2

1 +κ2
2

2
= 1, (1.40)

that is unit “curvedness”. The ratio κ1/κ2 is a pure (second order) shape measure.
The four coefficients of the cubic term are also interesting cubic shape measures
because obviously differential invariants. It seems likely that such local measures
are taken in the human visual system.
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1.3 A Case Study: “Shape from Shading”

“Shape From Shading” is not exactly the biggest success of machine vision. It is not
so clear that human vision is doing much better though. The issue remains undecided
because the very aims of machine vision and human vision appear to be widely
different. This makes shape from shading of some interest as a case study.

1.3.1 The So Called “Shape from Shading Problem”

The so called “Shape From Shading Problem” as conventionally construed is rather
artificial and relies on numerous shaky, even a priori unlikely, occasionally even
plainly wrong prior assumptions. Here is a rough outline:

An observer views a smooth, generically curved surface that is being illuminated
such as to produce a pattern of light and shade. The task is to report the shape
(that is the curvature landscape) of the surface. Sometimes the observer may also
be asked for the nature of the illuminating beam (e.g., the spatial configuration and
photometric properties of the “primary sources”).

As stated the problem is probably an impossible one to tackle, thus one lists any
number of simplifying prior assumptions. Among these may be:

• the surface is smooth, no edges, no contours, no 3D texture (roughness);
• the surface is uniform, i.e., the same at all places;
• the surface is characterized by a single bidirectional reflectance distribution func-

tion (BRDF). Thus effects of translucency do not play a role;
• the BRDF is constant, in other words, the surface is Lambertian;
• the illuminating beam has a uniform cross section, it will illuminate a set of

concentric spherical surfaces uniformly. (“A homocentric, collimated beam”);
• the illuminating beam will illuminate planes uniformly. (“A parallel beam”);
• the illumination is by primary sources only. I.e., there are no mutual interreflec-

tions;
• each point of the surface is illuminated by the same primary sources. I.e., there

is no “vignetting” or “cast shadow”.

Some of these assumptions are mutually exclusive, others imply each other. Accept-
ing some may have strong consequences, e.g., the absence of interreflections implies
that the surface is either black or non–concave; the Lambertian assumption implies
that the viewing geometry is irrelevant.

It is possible to frame certain limiting cases in which some of the assumptions
are automatically (though approximately) satisfied. One interesting example is to
assume “low relief”. This automatically takes care of the vignetting and interreflec-
tion issues. Whether such limiting cases are of any interest depend on one’s goals.
If the goal is applications the assumption of low relief is likely to be frequently
violated. If the goal is theoretical understanding such a limiting case may be of
considerable use.
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Fig. 1.1 The Asam house at Munich. Illumination by the overcast sky from above. The mate-
rial is whitewashed stucco, roughly Lambertian. There are various regions of low relief where
our simplifying assumptions hold reasonably well (the clock face, the sitting putto) though
there are also parts that are modeled “in the round” and where effects of vignetting and in-
terreflection are evident. In cases like this frontal viewing is a natural condition (I made the
photograph from he opposite side of he street).

A special case that appears rather limiting, yet is often applicable is that of frontal
viewing (see Figure 1.1). Expecially when combined with the low relief assumption
this often applied to cases of real life importance, just think of viewing bas relief
murals.

Another special case is that of frontal illumination. This case is completely differ-
ent from frontal viewing. Moreover, it has few other applications than photographs
taken with flash on the camera. Although this situation is avoided like the plague by
professional photographers (it “flattens” the scene, thus works against regular shape
from shading for the human observer), it is (perhaps perversely) a case for which
dedicated computer algorithms have been designed.

Some of the most useful assumptions are almost certainly wrong. A key exam-
ple is the assumption of Lambertian surfaces. It is a highly desirable assumption
because the influence of viewing geometry vanishes, thus greatly simplifying the
problem. But from physics one knows that Lambertian surfaces don’t exist. It is not
that basic physics forbids them, but they can be only approximately produced even
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under laboratory conditions. The non–Lambertian character of surface scattering be-
comes especially obvious for very oblique viewing and/or illumination directions.

Here I will assume Lambertian surfaces, low relief, frontal viewing and paral-
lel, collimated illumination. In this case most of the usual assumptions apply (no
vignetting, no interreflections, . . . ), even the Lambertian assumption is not prob-
lematic. This is easily the simplest setting imaginable that still holds some interest.

1.3.2 Setting up the Problem

Consider a relief
z(x,y) = z0 + μw(x,y), (1.41)

where μ keeps track of the depth of relief. It is a convenient parameter because we
simply carry calculation to 1st–order in μ . Here is an example, the surface normals
are

n(x,y) =−μ(
∂w(x,y)
∂x

ex +
∂w(x,y)
∂y

ey)+ ez + O[μ ]2. (1.42)

Here we obtained a significant gain in simplicity because the usual normalization
factor affects only 2nd and higher orders in μ and thus can be ignored.

I will set
∂ z(x,y)
∂x

‖x=y=0 =
∂ z(x,y)
∂y

‖x=y=0 = 0, (1.43)

throughout the computation because of the assumption of frontal viewing.
Assume the direction of the illuminating beam is i and that it causes a normal

illimination E0. Then Lambert’s Cosine Law yields the illumination pattern:

E(x,y) = E0 i ·n(x,y) = E0

(
−μ(ix

∂w(x,y)
∂x

+ iy
∂w(x,y)
∂y

)+ iz)
)

+O[μ ]2. (1.44)

Notice that the absolute value of the illuminance is irrelevant. The visual system
will merely record the spatial contrast C(x,y), which is

C(x,y) =
E(x,y)−E(0,0)

E(0,0)
=−

μ(ix
∂w(x,y)
∂x + iy

∂w(x,y)
∂y

iz
+ O[μ ]2. (1.45)

Writing
i =−(cosϑ(cosϕ ex + sinϕ ey)+ sinϑ ez) , (1.46)

where ϑ denotes the elevation and ϕ the direction of the illumination, we finally
obtain

C(x,y) = μ cotϑ(cosϕ
∂w(x,y)
∂x

+ sinϕ
∂w(x,y)
∂y

)+ O[μ ]2. (1.47)
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What can be observed locally is the contrast gradient ∇C = Cxex + Cyey, it can
be found by straight differentiation. The differentiation will generate second order
derivatives of the height z(x,y). Dropping higher order terms in μ you obtain

Cx = μ cotϑ(cosϕ
∂ 2w(x,y)
∂x2 + sinϕ

∂ 2w(x,y)
∂x∂y

) (1.48)

Cy = μ cotϑ(cosϕ
∂ 2w(x,y)
∂x∂y

+ sinϕ
∂ 2w(x,y)
∂y2 ). (1.49)

In the “Shape From Shading Problem” the “unknowns” are ϑ , ϕ , and the three 2nd–
order partial derivatives of the height of relief z(x,y). For this we have two equations,
the observables Cx and Cy. The problem is evidently underdetermined, even in this
simplest setting.

One ambiguity that is clearly unavoidable is the mix up between the height of
contrast and the elevation of the source as expressed through the factor μ cotϑ . A
scaling μw(x,y) can be undone by adjusting ϑ . We may as well notice this relation
and proceed to eliminate ϑ , obtaining a homogeneous equation for the three partial
derivatives.

Writing ∇C = G(cosγ ex + sinγ ey) we obtain

sinγ cosϕ zxx− cos(γ+ϕ)zxy− cosγ sinϕ zyy = 0, (1.50)

where I have introduced a more concise notation for the partial derivatives. Apart
from this we have that the height of relief is undefined. This may be expressed
through the equation

1
2
(z2

xx + 2z2
xy + z2

yy) = constant, (1.51)

the height being absorbed in the elevation of the source. (The expression is the
“curvedness”, see below.)

Thus we end up with one parameter (the elevation of the source) remaining fully
unspecified and two equations for four unknowns (the illumination direction and
three partial derivatives of the height). It would help to know the direction of illu-
mination, but even then we still have only two equations for the three partial deriva-
tives. The problem is evidently very underspecified.

Ways to proceed. There are various ways to proceed from here. Well known meth-
ods from machine vision recognize the fact that the local conditions are insufficient
to find the local shape (curvature) and reformulate the Shape From Shading Prob-
lem into a global problem, using either partial differential equations or a variational
method. Thus one introduces surface integrity constraints to force a solution. These
methods are well known and I will not pursue them here because they are quite un-
like anything that might be attempted by the human visual system. I will stubbornly
pursue the purely local problem in an attempt to guess what the visual system might
be doing.
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Posing the local problem in a more symmetrical way: describing 2nd–order
shape. The description of 2nd–order surface shape in terms of partial derivatives
in a Cartesian frame in the tangent plane is often convenient, but masks the symme-
tries of the 2nd–order structure. Here is a better adapted description:

Notice that a term like x2 + y2 is rotationally symmetric whereas terms like xy
and x2 − y2 have two lines of bilateral symmetry. The latter two terms are very
similar and can be transformed into each other through a rotation of the coordinate
system over π/4. Hence the transformation

zxx = r + t, (1.52)

zxy = s, (1.53)

zyy = t− r, (1.54)

thus we obtain

z(x,y) =
1
2
(zxxx2 + 2zxyxy + zyyy2) = r

x2− y2

2
+ sxy + t

x2 + y2

2
. (1.55)

I treat the surface as in visual space, that is to say, differential invariants like the
mean and Gaussian curvature are calculated as in singly isotropic (the z–direction)
space. This meshes perfectly with the assumption of “low relief”. (This even allows
one to introduce an overall surface slant without any complication.)

The principal curvatures are

κ1,2 = t±
√

r2 + s2, (1.56)

and the principal directions are

{r±
√

r2 + s2,s}. (1.57)

Thus the mean curvature H and Gaussian curvature K are

H =
1
2
(κ1 +κ2) = t, (1.58)

K = κ1κ2 =−r2− s2 + t2. (1.59)

The expression 1
2 (κ1 − κ2) may be called the “non–sphericity” as it measures

the deviation from rotational symmetry. It equals
√

r2 + s2, thus sphericity im-
plies r = s = 0.

The “curvedness” χ =
√

1
2 (κ2

1 +κ2
2) measures the deviation from planarity and

turns out to be
√

r2 + s2 + t2. The “shape index” specifies the pure shape and is
defined as

σ = arctan
κ1 +κ2

κ1−κ2
= arctan

t√
r2 + s2

. (1.60)

The shape index takes values on [− π2 ,+ π
2 ].
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All this can be summarized in an intuitively very attractive manner. The space of
all 2nd–order surface shapes is best represented by a Cartesian {r,s,t}–space. The
origin represents planarity, i.e., shapelessness, whereas distance from the origin, the
“curvedness” implies deviation from the tangent plane. On the surface of the unit
sphere the latitude is the shape index, whereas the longitude indicates twice of the
direction of principal curvature. The natural representation is in polar coordinates

r = χ cosσ cosψ , (1.61)

s = χ cosσ sinψ , (1.62)

t = χ sinσ . (1.63)

This direction of principal curvature (that is ψ2 ) is undefined at the poles because the
t–axis represents the spherical shapes. Notice that antipodes are mutually related as
a cast and its mold.

1.3.3 The Local Shape from Shading Problem

The local Shape From Shading problem is best recast in terms of the symmetrical
parameters {r,s,t} introduced above.

The ambiguity due to the elevation of the illumination means that shape infer-
ences have to be done modulo the curvedness, which again means that the space
of possible inferences is reduced to the lines through the origin of shape space, a
projective plane. We may represent it by the unit sphere in shape space with pairs of
antipodal points identified.

The observation of the contrast gradient yields the constraint

r sin(γ+ϕ)− s cos(γ+ϕ)+ t sin(γ−ϕ) = 0, (1.64)

which is a homogeneous, linear equation thus a plane through the origin of shape
space, which meets the unit sphere in a great circle. At this point we may sim-
plify the expression by specializing the coordinate system, letting the first frame
vector coincide with illuminance surface flow direction. Thus, setting γ → 0 the
constraint is

r sinϕ− s cosϕ− t sinϕ = 0. (1.65)

The pole of this great circle is

p(ϕ) =
sinϕ e1− cosϕ e2− sinϕ e3√

1 + sin2ϕ
. (1.66)

Of major interest is the colatitude of the pole, because it specifies the extreme values
of the possible shape index inference. It is
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Fig. 1.2 The range of fea-
sible shape indices (dark)
as a function of the angular
separation between the di-
rection of illumination and
the direction of the contrast
gradient.
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. (1.67)

Although it is quite possible to infer any hyperbolic shape, no matter what the value
of ϕ might be, there is a maximum to the shape index of elliptic inferences (see
Fig. 1.2). For instance, a spherical inference implies γ = ϕ (of course modulo π).

1.3.3.1 The “Observables” for the Shape from Shading Problem

In the literature on the Shape From Shading Problem the generic assumption is that
the relevant observable is the spatial contrast. (For the local problem this reduces
to the contrast gradient, though this plays no role in the machine vision literature.)
However, this assumption may well be questioned.

Various attempts to find the illuminance direction from the image are found in
the literature, most of them ad hoc, some of of them mere shots in the dark.

A principled manner to find the illuminance direction from the image is available
if the surface is corrugated such as to yield a visible illuminance induced texture.
Such a method works if the statistical structure of the corrugations is isotropic. The
basic idea is simple enough. An isotropic protrusion will yield a dipole pattern, light
on the side facing the source, dark on the side facing the other direction. An isotropic
indentation will also yield a dipole pattern, it will have the same axis as that of the
protrusion, but the opposite polarity. Thus the gradients have the same orientation,
but opposite directions. The average gradient of an isotropic texture will indeed tend
to zero, but the average squared gradient will have the correct orientation. This is the
crux of the structure tensor method. One computes the eigensystem of the “structure
tensor”

S = 〈∇C†.∇C〉=
( 〈CxCx〉 〈CxCy〉
〈CyCx〉 〈CyCy〉

)
. (1.68)

The direction of the largest eigenvector is the orientation of the illumination flow [8].
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This method has been shown to work very well with a large variety of 3D tex-
tures. Isotropy is essentially the only requirement. It has also been shown that the
human observer uses this method and typically finds the orientation with an accu-
racy of about 5◦.

1.3.3.2 Human Vision and Shape from Shading

We have solved the Local Shape From Shading Problem above and we have intro-
duced the possibility of additional observational evidence. This should be sufficient
to investigate the angle human vision takes on the problem.

We identify three cases:

• the observer lacks any prior information, except for the general setting: the ob-
server is looking at a frontoparallel, Lambertian (e.g., plaster or marble) plane
with low relief modulation, illuminated by a uniform, parallel, collimated beam
(e.g., the sun);

• the observer additionally has prior knowledge concerning the illumination direc-
tion (e.g., through observation of 3D texture induced contrast);

• the observer has prior information concerning the shape (e.g., knows it to be
spherical).

In the first case the observer is supposed to estimate both the shape and the illumi-
nation direction, in the second case only the shape and in the third case only the
direction of illumination. The first case is the most interesting, though especially
the second case may be expected to have frequent application. An overview of the
various relations is graphically illustrated in figure 1.3.

Consider the first case. The observer observes the direction of the contrast gra-
dient, we specialize the coordinate system such that ex is in the contrast gradient
direction. Of course there remains a ±π ambiguity here. Then we know that the
shape index is limited as

σ ≤ π
2
−
∣
∣
∣
∣∣
∣
arcsin

sinϕ
√

1 + sin2ϕ

∣
∣
∣
∣∣
∣
, (1.69)

where the direction of illumination ϕ is supposed to be fully unknown.
It is always possible to infer a symmetrical saddle (s = 0), for any direction of

illumination. It is also possible to infer a spherical shape (s = ± π2 ), though this
implies that the illumination direction coincides with the contrast gradient direc-
tion (ϕ = 0), a very specific condition. Of course the saddle would have to be in a
specific orientation, whereas the sphere looks the same in all orientations. All con-
sidering, it is hard to make a principled choice. Of course any shape is possible, with
more complicated constraints on the directions.

Consider the second case. If the direction of illumination is known, there is a
constricted range of possible values of the shape index. Granted a preference for
elliptical shapes (see below) one expects the system to select the largest possible
value, then the best guess is
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Fig. 1.3 The unit sphere
in rst–space (equation 1.51
that is χ = 1), where the
r–dimension is the direc-
tion of the relative contrast
gradient. The sheave of
great circles through P (mid-
point of the arc rt) are the
constraint planes (equa-
tion 1.50) for the various
illumination directions (the
poles lie on the great circle
passing through s.) The fat
small circle is the locus of
“most spherical inferences”.
At P the inference is cylin-
drical and all illumination
directions go, at t the in-
ference is spherical and the
illumination direction co-
incides with the gradient
direction.

σ =
π
2
−
∣∣
∣
∣
∣
∣
arcsin

⎛

⎝ sinϕ
√

1 + sin2ϕ

⎞

⎠

∣∣
∣
∣
∣
∣
. (1.70)

Thus knowledge of the illumination direction fails to nail the shape, but does con-
strain the possibilities. (See Figure 1.4 .)

Finally consider the third case. Knowing the shape means that only points on the
latitude circle of that shape are feasible. Thus the solutions lie on the intersection of
the great circle defined by the constraint and this latitude (small) circle. It is possible
that no solution exists, otherwise there are two distinct ones. If so, the solution is

ϕ = arccos
|sinσ − cosψ cosσ |√

1− cos2σ cosψ
. (1.71)

In this case one might run into a contradiction, which is the strongest constraint
possible. Otherwise such a prior knowledge pretty much nails the direction of illu-
mination (see Figure 1.5). A key example is the spherical shape which may act like
a “wind sack” for the flow of light.

How well is the human visual system doing? In the absence of prior knowledge it
appears to be the case that the human observer invariably reports a spherical shape.
Apparently the visual system considers the spherical inference the best bet. This
may be due to the fact that (overall) smooth objects are likely to be predominantly
convex. The remaining convex/concave ambiguity is usually resolved by the prior
assumptions that illumination tends to be from above. If the illumination is actually
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Fig. 1.4 Assume the direction of illumination is known (each curve is for a specific direc-
tion of illumination), then the shape (as specified by the shape index) still depends upon
the (unknown) direction of principal curvature. Notice that an elliptical inference (convex or
concave) is always possible, though generically not spherical.

Fig. 1.5 Suppose the shape
(specified by the shape in-
dex) is known. If the direc-
tion of principal curvature
is also known the light di-
rection is fully determined,
otherwise there exists a one–
parameter ambiguity. The
shades run from black = 0
to white = π

2 .

from the side humans typically report convexities, thus an additional bias seems to
be on convexity as opposed to concavity.

Notice that these “inferences” are in fact “hallucinations”. In reality any shape
goes! Yet human observers rarely feel that they are guessing, the experience is that
of seeing a specific shape.
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Fig. 1.6 Two renderings of
a rough surface illuminated
from the right. Both sur-
faces are quadrics viewed
frontally at the center of the
figure. The surface at right
is spherically convex, that at
left is a symmetric saddle.
Notice that the 3D–texture
visually reveals the direction
of illumination.

If the direction of illumination is clearly visible one expects the human observer
to use this. (It has been established that human observers indeed see the illumination
direction based on 3D texture.) Perhaps surprisingly, they don’t. People tend to re-
port sphericity, even when there is no elliptic solution at all, that is when the contrast
gradient is orthogonal to the illumination direction! (see Figure 1.6) Thus there can
be no doubt that a machine algorithm would do better. What frequently happens in
such cases is that the presentation “splits” into two layers (like it does often as in
cases of apparent transparency). One layer has the 3D texture, illuminated veridi-
cally whereas the other layer gets the (spherical) shape, illuminated from a direction
perpendicular to the (clearly visible!) veridical direction.

We conclude that the visual system attempts to solve the local problem (where
machine vision gives up), but doesn’t do too well on it. One could easily beat it with
a simple machine algorithm.

Remaining questions. As always in the study of human visual perception, many
questions remain. One is whether the visual system does anything global in addition
to purely local inferences. Whereas it is very unlikely that the system does anything
remotely like the current machine algorithms, there remain a number of intriguing
possibilities.

It is likely that the visual system pursues “local” inferences on various levels of
resolution. Whereas this would hardly be of much interest if there were no “added
value” to it, this would be of interest because the assumption that the illumination di-
rections are the same irrespective of the level of resolution is a very reasonable one.
For articulated surfaces (a globally quadric surface would not profit at all) this is a
very promising proposition. Such methods would be in between local and global,
though quite different from the global algorithms in use by the machine vision com-
munity today.

It is also likely that the system would not stop at the 2nd–order surface struc-
ture. There is much reason to believe that the 3rd–order surface structure has to be
very relevant for shading based inferences. For instance, the singular points of the
illuminance pattern (extrema and saddle points) occur at the parabolic points of the
surface [9]. At such points the surface is locally degenerate (cylindrical) and for a
generic description one has to take the cubic terms into account. The cubic terms
will also affect the Hessian (in addition to the gradient) of the contrast and it is very
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likely that the visual system is sensitive to those, indeed, perhaps more so than to
the gradient. As we have argued above, at any given point the gradient can be trans-
formed away through a congruence in image space. Little is known about the way
cubic structure appears in shading, although the potential importance cannot be in
doubt.

1.4 Final Remarks

“Final remarks” is more apt than “conclusions” at this point, because there isn’t
any real “conclusion”. What I have tried to convey in this chapter is the enormous
gap between the attempts to understand the functioning of the human visual system
in a formal way and the attempts to implement machine systems that “see”. One
might expect these endeavors to overlap appreciably because both the initial “data”
and the final “goals” are very similar or even identical. Moreover, the generic hu-
man observer and the generic machine vision system are supposed to function in
very similar (often identical) worlds. However, the differences are very significant.
They are mainly due to hardware constraints. The major bottlenecks of biological
as opposed to artificial systems are:

• whereas absolute calibrations or at least fixed operation points are usually no
problem in artificial systems, such luxuries are not available in biological sys-
tems. In biological systems any level has to dynamically shift its operation level
in order to keep signals within the (very limited) dynamical range and these lev-
els are not known to other parts of the system (or even the individual subsystem
itself);

• in biological systems local processing is the rule, global processing only works in
very coarse grained (sub–)systems (that is to say, low resolution is substituted as
a cheap replacement of true globality). This rules out most algorithms that have
made machine vision into a viable technology.

As opposed to these limitations biological systems also have major strengths, the
main one being the full integration of the “background”. Biological systems are
part of their biotopes and background knowledge of the structure of the biotope is
evident at all levels of implementation, from the optics of the eye to the nature of
the “hallucinations”. This is an aspect that machine vision has hardly touched upon.

The examples I gave in this chapter I believe to be typical in showing up such
differences.

The limitations of biological systems may be a burden to an engineer designer,
but evolution has done remarkably well given these constraints. Thus I believe that
machine vision has something to learn from biological implementations even though
I also believe that biological systems are bound to be beaten in many subdomains
by well designed artificial systems, certainly on the long run. The lessons will be
(of course) very general design principles and in this chapter I have tried to outline
a few.

Areas where the human visual system is unlikely to give way to machine im-
plementations are those of the visual arts. However, such achievements are very
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difficult to measure up. There are essentially no yardsticks for the products of the
creative arts. The only way to assess this is to try to find whether there is a mar-
ket (in the art galleries circuit) for machine generated products. If human artists are
eventually muscled out of these circuits, machines will finally be in power. That’ll
be the day.
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