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Preface

Computer vision is the science and technology of making machines that see.
It is concerned with the theory, design and implementation of algorithms that
can automatically process visual data to recognize objects, track and recover
their shape and spatial layout.

The International Computer Vision Summer School - ICVSS was estab-
lished in 2007 to provide both an objective and clear overview and an in-depth
analysis of the state-of-the-art research in Computer Vision. The courses
are delivered by world renowned experts in the field, from both academia
and industry, and cover both theoretical and practical aspects of real Com-
puter Vision problems. The school is organized every year by University
of Cambridge (Computer Vision and Robotics Group) and University of
Catania (Image Processing Lab). Different topics are covered each year. A
summary of the past Computer Vision Summer Schools can be found at:
http://www.dmi.unict.it/icvss

This edited volume contains a selection of articles covering some of the
talks and tutorials held during the first two editions of the school on topics
such as Recognition, Registration and Reconstruction. The chapters provide
an in-depth overview of these challenging areas with key references to the
existing literature.

The book starts with two chapters devoted to introducing the reader to
the exciting field of Vision. In Chapter 1 a discussion about the fundamen-
tals of the discipline is presented. Human vision is analyzed and a number of
basic principles of biological vision that might be of interest to the machine
vision community are identified. Chapter 2 introduces a methodology to eval-
uate the effectiveness of local features when employed for recognition tasks.
A novel mathematical characterisation of the co-variance properties of the
features which accounts for deviation from the usual idealised image affine
(de)formation model together with a novel metrics to evaluate the features
are described.

In Chapter 3 and Chapter 4 computational techniques based on Dy-
namic Graph Cuts and Discriminative Graphical Models are presented and
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employed in problems such as image and video segmentation, pose estima-
tion and context based classification. An overview of the Mutual SubSpace
Method and its applications in face and character recognition is presented
in Chapter 5. The book continues with three chapters that cover recent ap-
proaches for detection, classification and recognition of objects, scenes and
activities from images. Specifically, Chapter 6 concentrates on the task of ac-
tivity recognition by using graphical models which combine information from
both object recognition and scene classification. Chapter 7 examines Semantic
Texton Forests and evaluates their use for image categorization and semantic
segmentation, whereas Chapter 8 focuses on finding a suitable representation
that can efficiently capture the intrinsic three-dimensional and multi-view
nature of object categories to help the recognition and categorization task.

In Chapter 9 a vision-based system for touch-free interaction with a dis-
play at a distance is presented after a deep revision of the state of the art
techniques on hand tracking. The problem of tracking multiple objects taking
into account multiple views is introduced in Chapter 10.

Finally, two Chapters discussing the problem and existing solutions for 3D
reconstruction through multiview and photometric stereo conclude the book.

It is our hope that graduate students, young and senior researchers, and
academic/industrial professionals will find the book useful for reviewing cur-
rent approaches and for teaching Computer Vision, thereby continuing the
mission of the International Computer Vision Summer School.

Sicily, December 2009 Roberto Cipolla
Sebastiano Battiato

Giovanni Maria Farinella
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Chapter 1
Is Human Vision Any Good?

Jan J. Koenderink

Abstract. Human vision is often referred to as an “existence proof” for challenging
targets of machine vision. But in some areas machine vision evidently “beats” hu-
man vision, so the questions arise: Is human vision any good, will it be supplanted
by machine vision for most tasks soon? I analyze human vision with the aim to pro-
vide an answer to such questions. Does machine vision still have anything to learn
from human vision? I identify a number of basic principles of biological vision that
are likely to be of interest to the machine vision community.

1.1 Introduction

On May 11th, 1997 at 3:00PM EDT, game #6 of the match of Garry Kasparov,
the greatest (human!) player in the history of chess, against IBM’s Deep Blue Su-
percomputer put the final score at [kasparov 2.5: deep blue 3.5]. So
much for chess [1]. Are human chess players any good? Is vision like chess in this
respect?

In order to answer the question one needs to make more precise what is exactly
being meant by “human vision” and identify potentially interesting aspects. In an
attempt to learn from human vision one needs an overview of the various hardware
and algorithmic structures that implement human vision. One might (naı̈vely) be-
lieve that it would suffice to ask physiologists and psychologists for the required
information. Such is not the case. The best that can be done is to offer creative
guesses on the basis of a panoramic knowledge of these fields, framed in the lan-
guage understood by engineers. This is my aim in this chapter.

1.1.1 What Is “Human Vision”?

“Human vision” (or, more general, “biological vision”) stands for an extensive bun-
dle of human or animal capabilities of mutually very different types. The simplest of
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2 J.J. Koenderink

these are hardly worth the name “vision”, these include many optoreflexes found in
the simplest animals, but also present in man. Though vital for survival, they hardly
involve anything beyond wiring up a photocell to some effector. More complicated
cases of “optically guided behavior” include orientation/navigation on the basis of
optic flow and so forth. Such mechanisms make up a major part of the “visual sys-
tem”. This part can be understood in the engineering sense and are already emulated
in robotic systems. Here machines are going to beat man, the waiting is for the first
soccer match of a human team to a robot team that will be lost by the men. In this
chapter I am not so much interested in this aspect of vision.

Most of “optically guided behavior” goes on below the level of awareness. This
makes sense because of the real–time aspect and the pre–cognitive nature of overt
bodily actions. Just try to walk through consciously figuring out the right signals
to be sent to your muscular–skeletal system on the basis of the pattern of photons
impinging on your retinas and you will understand why. Here I will narrow down the
definition of “vision” to the level of awareness, that is optically induced experience.
Such experiences do not primarily influence your actual (real–time) behavior as in
optically guided behavior, but they are relevant for your potential behavior. Another
way to put this is to say that visual experiences lead to knowledge. For instance, on
leaving the door you may grab an umbrella or a raincoat because an earlier (maybe
much earlier) look out of the window taught you that it “looked like rain”. Or you
might do neither and remark “I don’t mind to get wet” to a companion. Thus there
is no direct link with action as there is in optically guided behavior.

As you open your eyes the world appears to you, you cannot voluntarily choose
not to see. Visual experiences are presentations that happen to you, much like sneez-
ing. Through your presentations (including those of your other modalities) you are
aware of your world. You are visually aware of the world itself, rather than your
thoughts of the world. That is why you are responsible for your thoughts but not
for your presentations. Presentations are pre–cognitive. They are “world–directed”
though, the technical term is “intentional”.

1.1.2 How Is Human Vision Implemented?

I will mainly address the level of the brain (including the retinas) here, although
the eye with its optics (cornea, lens, waveguides with photopigments), the eyeball
with its muscles, as well as the musculature of head and body play major roles in
everyday vision. One learns about the visual system from observations of generic
humans (experimental psychology, psychophysics), patients (neuropsychiatry), and
dead bodies (neuroanatomy). Nowadays one also records crude brain activity in
healthy volunteers and (sporadic) epilectic patients during operations. Most of the
more spatiotemporally precise observations are from electrophysiological experi-
ments on animals, sometimes (technically) asleep, sometimes in a waking or (very
rarely) even behaving state. Although huge amounts of observations are available,
the brain is such a complicated structure that it is fair to say that a synthesis of all
this knowledge is sadly lacking. One has to make do with lacunary data, usually
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available in potentially misleading formats. What I attempt to do here is to identify
some basic principles.

The global neural structure. The global structure of the visual system is made
up of a large number of mutually highly (two way) interconnected areas, roughly
branching out from the input stage as a hierarchical tree. As one moves into the
hierarchy the resolution decreases, in the areas with considerable resolution on finds
a retinotopic ordening, probably reflecting a tendency towards wiring economy. The
interconnection of the areas is so high that one can do little more than identify a
(very) rough division of labor. The two way wiring suggests that the processing is
certainly not limited to a “bottom up” stage.

The principle of locality. Most of the wiring inside an area is short range. Most of
the processing appears to be local, though with important “top down” (thus probably
somewhat global) modulation.

The principle of local selectivity. Most of the short range wiring inside an area is
highly selective. A common structure is “center–surround”, essentially an isotropic
Laplacean operator. Directional wirings are also common, essentially directional
derivative operators in space or space–time. Directional units are typically con-
nected to units of similar specificity in their environment.

The principle of global selectivity. Long range (area–to–area) wiring is (at least
approximately) somatotopic, that is selective in the sense that topological structure
is conserved.

Speculative interpretation. It is hard not to regard the various anatomically and
electrophysiologically distinct areas as functional subunits, dedicated to one or more
subtasks. The areas early in the stream (closest to the input) are best known and are
likely to be dedicated to various “image processing” tasks. The units are likely to
function largely independent of each other, possibly at quite different parameter
settings (due to local “adaptation”). The “glue” may be provided by the top down
queries and (implicitly) through the somatotopic connection to other areas.

A likely interpretation is to regard an area as a “geometry engine” [2], implement-
ing a basis for differential geometric queries. The units world compute a “jet space”
composed of directional derivatives up to a certain order (about 4 seems right), pos-
sibly at various scales. Then local algorithms might compute various differential
invariants (algebraic combinations of derivatives, e.g., curvature) and local statisti-
cal measures (e.g., structure tensors) that would be meaningful entities for top down
queries. The specific local wiring would be needed to implement geometrical en-
tities like covariant derivatives, curvature tensors, and so forth. This means that a
“signal” (e.g., a curvature tensor) cannot be carried by a single nerve fiber, it has
to be carried by a (small) ensemble of these. This again entails that present electro-
physiological methods all fail to address the meaningful structure of the areas.

The local jets (essentially truncated Taylor series describing local structure) are
simply data structures “sitting there”, waiting to be queried, they are not necessarily
send upstream. Think of this structure as “stuck” in the area as a sample of the world
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“in brain readable form”. It is available, like a footprint in the sand of a beach. I
see no essential difference here even though the latter is “outside” and the former
“inside the head”. The queries can be of various nature and may expect the jets
to be available as local parameters to be used in computing an answer. What is
sent upstream by the area is a mere summary account of its overall state. Thus the
“bottom up” stream narrows down to what a top level might use to check the present
“gist”. Details are guessed, perhaps to be checked through a (focussed) stream of
“top down” queries.

The global functional structure. The functional structure of the visual system
(here “visual system” is meant in a functional sense distinct from the level of the
neural substrate) can only be addressed via observations of the interaction of the
agent with its world. Thus one needs the observations of experimental psychology
or psychophysics. A few observations stand out as especially basic.

The intentionality of visual experiences. Presentations are world–directed, with the
immediate implication that they cannot be computed in a purely bottom up fashion.
They must be imposed by the agent, hence derive from a centrofugal (“top down”
suggests a brain implementation) or “probing” process. Perception is active, it is
an outward directed probing rather than the passive reception of “data”. Without
probing there would be no “data”, but only structure (see below).

The rock bottom of Gestalts. The smallest parts of presentations (though not neces-
sarily in a spatial sense) are the Gestalts. There is no way to look “into” a Gestalt.
The Gestalts are to the human observer what “releasers” are to animals. They are
where the buck stops in “explaining” the available structure, avoiding an infinite
regress. They both limit and enable presentations.

Speculative interpretation. Much of presentation is essentially “controlled hallu-
cination”. Although the word “hallucination” has a bad ring to it, “hallucination” has
the advantage to resolve the problem of world–directedness in one go. Intentional-
ity is there from the start, no need to compute it—which is an impossibility anyway.
Hallucinations can be “controlled” through comparison with the facts, which are
records of optical structure. Thus the system needs top down queries in order to
keep its hallucinations in tune with its world. This modus operandus has several ad-
vantages. The “binding problem” vanishes since nothing like “binding” is needed;
lacking data are only a lack of constraint on the current hallucination; likewise in-
herent ambiguity (typical for “Shape From X” algorithms) simply means a partial
constraint. The presentations are always complete and unique by construction (for
hallucinations are constructions). The only problem is how to “hallucinate” produc-
tively. Usually this is no problem since most moments are much like the previous
ones. Here the generic knowledge of the agent world (“frames”, “scripts”, “back-
ground”, “Bayesian priors”, etc.) comes into play. It enables the “gist” that seeps in
from the bottom up to be used effectively. A wrong hallucination is not a disaster,
the agent is almost certain to win any “twenty questions game” with its world. Think
of wrong hallucinations as vehicles for learning, much like the hypotheses of sci-
entific research (see below). In that sense the controlled hallucination implements a
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selective probing process. When probing meets resistance due to unexpected mis-
matches the agent gains information from direct contact with the world in the con-
text of the (intentional) probing. No gain without pain: the mismatches are required
in order to be able to gain information at all.

The “Sherlock Model”. An apt model for the process of “controlled hallucination”
is that so expertly wielded by the famous Sherlock Holmes [3]. The “solution” to
a case cannot be “computed” for even the input is undefined. Anything (e.g., a dis-
carded cigarette butt, a hair in the soup, an odd noise at noon) can be either a valuable
clue or totally irrelevant. There is no end to this as the world is infinitely structured.
It is only a plot that enables Holmes to interpret random structures as clues, or even
to actually look for them (is there a bloodstain on the curtain, did someone cut a
rose, etc.). Moreover, the plot enables such clues to be interpreted, i.e., to become
data (meaningful) instead of structure (meaningless). Questions are like computer
formats in that they define the meaning of possible answers. The plot is not “com-
puted from data” either. It is freely invented by Holmes, on the basis of his prior
experience and his assessment of the “gist” of the scene. If it doesn’t work Holmes
discards it for another. How many possibilities are there anyway (the butler did it,
or maybe the countess, etc.)? Holmes’ method is not different from the way the
sciences operate either. No theory was ever “computed from data”! They are freely
invented by people like Einstein and checked against the observations. They lead
to novel observations to be made (“probing nature”) as further checks on the the-
ory. Theories that don’t check out are discarded for other (equally freely invented)
ones. Thus theories, plots and presentations are subject to a thorougly Darwinnian
selection process that soon weeds out ones that fail to explain the world. The ones
that remain are current best bets of what the world is like, or—perhaps more apt,
the currently most effective user interfaces of the agent (scientist, criminal inves-
tigator, visual observer, . . . ) to their world. To the user, the interface is what the
world is like, what they understand (having constructed it themselves). For the user
there is nothing understandable beyond the interface. In that sense perceptions are
“mental paint”.

The very idea of “bottom up processing” makes no sense in criminal investiga-
tion, nor in science. It makes no sense in visual perception either, despite the fact
that so many professionals (from philosophy, physiology, psychology and machine
vision alike) remain true believers. This (abortive) model assumes that the world is
a well defined place even in the absence of any observer and that it is the task for
visual systems to compute a representation of it. Thus one can conveniently assess
visual systems, their representations should replicate the world in as detailed a man-
ner as possible. Such a weird notion applies (at best) to zombies (no intentionality)
in limited settings.

1.2 Frameworks

In discussing vision one has to break down the problems in more or less coherent
chunks. In this chapter I discuss two generic “frameworks”, but I am by no means
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complete, nor did I make a serious attempt at a principled breakdown of the whole
of vision. I don’t doubt that such an endeavor is both possible and profitable though.
I pick these two examples because they lead to a similar formal structure (“geome-
try”), which enables me to keep the formalism at bay.

1.2.1 The Spatial Framework

“Space”, in the senses of “configuration”, “shape” or “possibility of movement”, is
one of the very backbones of presentations. There are many directions from which
one might approach the topic of “space”, various of them of a very fundamental na-
ture. Here I simply consider one possibility (arguably the simplest case), the struc-
ture of visual space as related to the physical space surrounding a single vantage
point (“cyclopean, stationary observer”). I will consider the topology of the visual
field to be “given” (so called problem of “local sign” [4]). These are strong assump-
tions, so we’re dealing with a toy system. (However, I know of no machine vision
work that seriously deals with the local sign problem.)

If you turn the whole world about the vantage point, the observer can undo this
change through a voluntary eye movement, a rotation of the eye about its center.
In the absence of additional data (e.g., a gravity sensor) such changes generate no
information. The global optical structure shifts but the (all important) local spatial
configurations are not affected.

If you scale the whole world about the vantage point the optical structure remains
invariant. In the absence of additional data (e.g., the presence of Gulliver—who
doesn’t scale—in Lilliput and Brobdignac) such changes cannot be recorded at all.

We conclude that the optical structure available to a stationary, cyclopean ob-
server is invariant against the group of rotation–dilations about the vantage point. It
is easy enough to construct geometries that implement such invariance. Here is an
example, consider the Riemann space [5] with line element (metric)

ds2 =
dx2 + dy2 + dz2

x2 + y2 + z2 . (1.1)

This metric is evidently invariant against arbitrary rotation–dilations about the ori-
gin {x,y,z}= {0,0,0}. Transforming to polar coordinates

ρ =
√

x2 + y2 + z2, (1.2)

ϑ = arccos(z), (1.3)

ϕ = arctan(x,y), (1.4)

and setting

ζ = log
ρ
ρ0

, (1.5)

where ρ0 is an arbitrary unit of length (“yardstick”) you obtain

ds2 = dζ 2 + dϑ 2 + sin2ϑ dϕ2 = dζ 2 + dΩ 2, (1.6)
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where dΩ 2 is the line element (metric) of the unit sphere S
2. Since the yardstick

is arbitrary, the depth coordinate ζ indicates a point on the affine line A and we
conclude that this space is a vector bundle S

2×A with base space S
2 and fibers A.

Notice that points {ζ1,ϑ ,ϕ} and {ζ2,ϑ ,ϕ} are on the same “visual ray” and thus
are imaged on the same “pixel”. We conclude that such points are coincident in the
(physical) visual field, though they may be distinct in the (mental) visual space of
the observer. An example is a glyph like “×” where I may “see” the upslope “�”
as being in front of the downslope “�”, thus the point “·” where they intersect
as two points, one in front of the other, perhaps symbolized as “�”. Of course I
might as well “see” the upslope “�” as being behind the downslope “�”, the depth
order being fully idiosyncratic. “Visual space” is a mental entity where the mind
may shift the depths ζ1,2,... on the visual rays (directions, points of S

2) as if they
were beads on strings.

In order to deal with this in a formal manner you may redefine the metric in
such a way that points like {ζ1,ϑ ,ϕ} and {ζ2,ϑ ,ϕ} that are on the same “visual
ray” are assigned zero distance whereas still considered different. In the tradition of
geometry such points would have to be designated “parallel”. This is fully analog
to the usage in the case of planes in space. Generically two planes subtend a finite
angle (their distance in the angle metric), but it may happen that this angle vanishes
without the planes being coincident. In that case one designates the planes to be
“parallel”.

The way to bring this about is to make the depth dimension isotropic [6]. On the
“isotropic line” any two points subtend mutual distance zero. This is often useful in
science, perhaps the best known example being the special theory of relativity where
the light cones have isotropic generators. In a convenient formalism I introduce
the “dual imaginary unit ε”, where ε is defined as the nontrivial solution of the
quadratic equation x2 = 0. That is to say, you have ε2 = 0, ε �= 0. The numbers u+ε v
where u,v ∈ R are known as the “dual (imaginary) numbers”, an extension of the
real number line, much like the conventional imaginary numbers with imaginary
unit i, where i2 =−1. One easily proves that neither ε > 0 nor ε < 0 whereas ε �= 0.
Thus the “Law of the Excluded Third” does not work for the dual number system
and one has to adopt intuitionistic logic, which is probably as well in an engineering
context. Engineering “proofs” are by nature constructive, “proofs by contradiction”
play no role.

Writing the metric as
ds2 = dΩ 2 + ε2 dζ 2, (1.7)

solves our problem. Points on different visual rays have finite distances (simply their
angular separation), whereas points on a single ray have mutual distance zero, even
if they are distinct. However, in the latter case one might define them to subtend
the “special distance” ζ2− ζ1. This is indeed a useful distance measure because
it is invariant against arbitrary rotation–dilations. Notice that the special distance
applies only to points with zero regular distance. Then one may define “the” distance
as either the regular distance or (in case the regular distance vanishes) the special
distance.
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1.2.1.1 The Case of Narrow Visual Fields

In the case of narrow visual fields the formalism can be simplified. Let the main line
of sight be in the Z–direction (ϑ � 1). Then the angular coordinates {ϑ ,ϕ}may be
replaced with the “Riemann normal coordinates” {ξ ,η} [5]:

ξ = ϑ cosϕ , (1.8)

η = ϑ sinϕ . (1.9)

We obtain a space E
2×J (where E

2 denotes the Euclidian plane and J the isotropic
affine line). The 8–parameter group

ξ ′ = a(+ξ cosβ +η sinβ )+ cξ , (1.10)

η ′ = a(−ξ sinβ +η cosβ )+ cη , (1.11)

ζ ′ = fξ ξ + fηη+ gζ + h, (1.12)

is not unlike that of the similarities (thus including congruencies and movements)
of Euclidian space E

3, except for the fact that the latter group is only a 7–parameter
group. The group scales distances by the amount a, which may be regarded as due to
dilations, because it implements pseudo–perspective scaling; the parameter β results
from rotations about the viewing direction, the parameters {cξ ,cη} from rotations
about axes orthogonal to the viewing direction; the parameter h from a depth shift.
The parameters { fξ , fη} and g have been added because they conserve distance and
special distance, for if (ξ2− ξ1)2 +(η2−η1)2 > 0 you have (due to ε2 = 0)

((ξ ′2− ξ ′1)2 +(η ′2−η ′1)2) = a2 ((ξ2− ξ1)2 +(η2−η1)2), (1.13)

whereas for (ξ2− ξ1)2 +(η2−η1)2 = 0 you have

(ζ ′2− ζ ′1) = g(ζ2− ζ1). (1.14)

This group of similarities defines (in the sense of Felix Klein) the Cayley–Klein
space (one of 27) with a single isotropic dimension. The space has a parabolic dis-
tance measure (like Euclidian space), but unlike Euclidian space also a parabolic
angle measure. This accounts for the additional group parameter: one may scale
either distances or angles (or both), whereas Euclidian angles cannot be scaled be-
cause periodic (elliptic angle measure).

Since the similarities in the “image plane” (the {ξ ,η}–plane) are trivial, as are
depth shifts, the subgroup

ξ ′ = ξ , (1.15)

η ′ = η , (1.16)

ζ ′ = fξ ξ + fηη+ gζ , (1.17)
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is perhaps of most immediate interest. It is the group of “bas–relief ambiguities”
identified for the “Shape From Shading” problem of machine vision. Apparently the
shading setting is irrelevant here, this transformation follows from a very general
analysis of stationary, cyclopean vision. The parameter g immediately scales the
depth of relief, whereas the parameters { fξ , fη} describe “additive planes”, formally
they describe isotropic rotations.

Consider a rotation

ξ ′ = ξ , (1.18)

ζ ′ = fξ + ζ , (1.19)

in a constant η plane. The “frontoparallel” line ζ = 0 is transformed into the slanted
line ζ = fξ , which has the isotropic slope angle f . (This is a good angle mea-
sure because the transformation changes the slope of arbitrarily slanted lines by the
same amount.) Apparently the slope angle varies between ±∞ and is not periodic.
Thus you can’t rotate the line “upside down”. There is no “turning around” in vi-
sual space! Notice that this is exactly what is required because these rotations are in
mental space: if you see the front of an object you can’t see its back, no matter how
you shift the depth “beads”along their visual ray “strings”. The formalism perfectly
captures the condition of a stationary, cyclopean observer.

The geometry and differential geometry of this “visual space” has been developed
in detail during the first half of the 20thc. (Not in the context of vision, but as a
purely formal endeavor [7].) The resulting geometry is as rich as that of the familiar
Euclidean space E

3, though with some surprises. Calculations are typically much
simpler than they are for analogous problems in Euclidean space, the main reason
being algebraic. The full Taylor expansion of a function F(u + ε v) being

F(u + ε v) = F(x)+ ε F ′(x)v, (1.20)

(no higher order terms!) really makes life easy. Especially, the trigonometric func-
tions become

sinε x = εx, (1.21)

cosε x = 1, (1.22)

which enormously simplifies numerous calculations in geometry.

1.2.2 The Photometric Framework

In the “photometric framework” one deals with an “image plane”, which is a Eu-
clidian plane E

2, and a scalar “intensity” field I(x,y) (say). The intensity could be
the irradiance of the image plane due to some optical system for instance.

The intensity domain. I will only consider two generic properties of the
“intensity”:
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• the intensity is positive I ∈ R
+ (I consider zero values singular);

• the intensity is a photometric quantity, i.e., its physical dimension is not length
but involves radiant power in some way.

In the context of machine vision one typically doesn’t care much about physical
dimensions, thus it is convenient to decide on some standard intensity I0 say, and
redefine intensity as the dimensionless quantity I = I/I0.

In the absence of any prior knowledge the Bayesian prior for the intensity is
hyperbolic:

P(I)dI =
dI

I
, (1.23)

thus the natural representation of intensity is logarithmic, for then the prior prob-
ability density is a uniform density. Consequently I redefine intensity yet another
time:

J = log I = log
I
I0

. (1.24)

Since the fiducial intensity I0 is arbitrary, the J–domain fails a natural origin. One
concludes that the natural representation of the intensity domain is the affine line A.

Apparently the objects that one deals with in the photometric framework are
cross sections of the fiberbundle E

2×A with the image plane as base space and
the intensity domain as fibers. Such cross sections are conveniently referred to as
“images”.

The topological structure. In most cases the image will not be defined over the
whole of the image plane, though the actual size of the available image is often ir-
relevant. For most purposes one may define a “region of interest”, such that anything
outside the region of interest does not affect the calculation. I will refer to the size
of the region of interest as the “outer scale” of an image.

In work of a theoretical nature one often thinks of the intensity as defined on
any point and one writes J(r), with r ∈ E

2, whereas in work of a practical nature
one considers intensities “pixel values” and writes Ji j, with ij ∈ Z

2. The former is
nonsense, the latter inconvenient. The former is nonsense because the intensity is a
flux density and only defined for finite collecting areas. Thus one needs to settle on
some value of the resolution. The latter is inconvenient because the pixels ideally
are (much) smaller than the size of one’s operators (e.g., an “edge detector”). I will
assume that a resolution has been decided upon and that it is much larger than the
pixel size. Then any pixelation is irrelevant, a mere matter of implementation (e.g.,
of one’s printer: you never hope to see the pixelation).

The formally correct way to deal with resolution is to consider the image a mem-
ber of a linear scale space. This allows changes of resolution—which are often nec-
essary or desirable—to be defined in a principled way. In this setting the “points” of
the image plane are operators that when queried yield the intensity “at that point”.
These operators are “points” in the sense of “Euclid’s Elements”: “A point is that
which has no parts”. You cannot look into a point. I will refer to the size of the
points as the “inner scale” of the image.
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An advantage of the linear scale space setting is that it allows one to introduce
partial spatial derivatives in a principled manner. One may actually take the deriva-
tive of a point and use the result as an operator that when applied to the image yields
the value of the derivative at that point. This avoids the problem that images are not
differentiable functions (in fact, not even functions to begin with) and that the ap-
proximate numerical differentiation of actual signals is a tricky business at best. (As
people say “numerical differentiation is ill posed”.) In fact, one may find deriva-
tives of any order of the image at any given scale. Whether such (perfectly good!)
derivatives are actually relevant or useful depends upon the current context.

1.2.2.1 The Structure of Image Space

The arena of images is a fiberbundle E
2×A. Can one identify additional structure?

This is of appreciable potential interest as uses of popular applications like Adobe’s
Photoshop c© indicate. People are ready to do all kinds of things to images, in many
cases claiming to merely “improve” their image, not essentially changing it. One
speaks of “straight photography”. The transformation admitted in the practice of
straight photography apparently play a role not unlike “congruences” or “similari-
ties” and one would like to relate them to the structure of image space.

At first blush one identifies similarities of the image plane and translations along
the intensity axis as obvious candidates. Another, perhaps less immediately obvious
group of transformations are the similarities of the intensity domain. They corre-
spond to the well known “gamma transformations”

I′ = Imax

(
I

Imax

)γ
, (1.25)

of intensities in the range (0, Imax).
Next consider transformations that leave the image plane invariant but depend on

both space and intensity. Here one meets with an obvious constraint. For instance, I
consider the “transformation”

x′ = J, (1.26)

y′ = y, (1.27)

J′ = x, (1.28)

as definitely not allowable. Why? Because the image plane dimensions and the in-
tensity dimension are mutually incommensurable. This transformation violates the
condition that images are cross–sections of the fiberbundle E

2×A. On the other
hand the transformation

x′ = x, (1.29)

y′ = y, (1.30)

J′ = ax + J, (1.31)
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does not represent any problem. The factor a is apparently a gradient, so much
intensity per unit distance. The fiberbundle structure is not violated.

The situation should look familiar to the reader of this chapter. Images are manip-
ulated by “moving intensities” over the copies of A at any point of the image plane,
like beads on a string. Congruences should look like Euclidean motion in the image
plane and leave distances between “beads on a single string” invariant, similarities
should scale them by the same factor. This is exactly what is achieved by the group
of similarities of a Cayley–Klein space with single isotropic dimension. In this case
the isotropic dimension is the intensity domain. Thus I simply set:

x′ = a(+xcosβ + ysinβ )+ cx, (1.32)

y′ = a(−xsinβ + ycosβ )+ cy, (1.33)

J′ = fxx + fyy + gJ + h, (1.34)

as it does precisely the right things. The subgroup that leaves the image plane in-
variant is evidently the most interesting. It is

x′ = x, (1.35)

y′ = y, (1.36)

J′ = fxx + fyy + gJ + h. (1.37)

The parameter h controls overall brightness, whereas parameter g implements
the gamma–transformations (usually denoted “contrast control”). The parameters
{ fx, fy} are often applied by landscape photographers as “grad filters”.

These transformations have many applications in vision. For instance, consider
the local image structure

J(x,y) = a00 +(a10x + a01y)+
1
2!

(a20x2 + 2a11xy + a02y2)+ . . . (1.38)

Using a congruency of image space it can be transformed into canonical form

J′(u,v) =
1
2!

(κ1 u2 +κ2 v2)+ . . . (1.39)

With an additional similarity one may even achieve

√
κ2

1 +κ2
2

2
= 1, (1.40)

that is unit “curvedness”. The ratio κ1/κ2 is a pure (second order) shape measure.
The four coefficients of the cubic term are also interesting cubic shape measures
because obviously differential invariants. It seems likely that such local measures
are taken in the human visual system.
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1.3 A Case Study: “Shape from Shading”

“Shape From Shading” is not exactly the biggest success of machine vision. It is not
so clear that human vision is doing much better though. The issue remains undecided
because the very aims of machine vision and human vision appear to be widely
different. This makes shape from shading of some interest as a case study.

1.3.1 The So Called “Shape from Shading Problem”

The so called “Shape From Shading Problem” as conventionally construed is rather
artificial and relies on numerous shaky, even a priori unlikely, occasionally even
plainly wrong prior assumptions. Here is a rough outline:

An observer views a smooth, generically curved surface that is being illuminated
such as to produce a pattern of light and shade. The task is to report the shape
(that is the curvature landscape) of the surface. Sometimes the observer may also
be asked for the nature of the illuminating beam (e.g., the spatial configuration and
photometric properties of the “primary sources”).

As stated the problem is probably an impossible one to tackle, thus one lists any
number of simplifying prior assumptions. Among these may be:

• the surface is smooth, no edges, no contours, no 3D texture (roughness);
• the surface is uniform, i.e., the same at all places;
• the surface is characterized by a single bidirectional reflectance distribution func-

tion (BRDF). Thus effects of translucency do not play a role;
• the BRDF is constant, in other words, the surface is Lambertian;
• the illuminating beam has a uniform cross section, it will illuminate a set of

concentric spherical surfaces uniformly. (“A homocentric, collimated beam”);
• the illuminating beam will illuminate planes uniformly. (“A parallel beam”);
• the illumination is by primary sources only. I.e., there are no mutual interreflec-

tions;
• each point of the surface is illuminated by the same primary sources. I.e., there

is no “vignetting” or “cast shadow”.

Some of these assumptions are mutually exclusive, others imply each other. Accept-
ing some may have strong consequences, e.g., the absence of interreflections implies
that the surface is either black or non–concave; the Lambertian assumption implies
that the viewing geometry is irrelevant.

It is possible to frame certain limiting cases in which some of the assumptions
are automatically (though approximately) satisfied. One interesting example is to
assume “low relief”. This automatically takes care of the vignetting and interreflec-
tion issues. Whether such limiting cases are of any interest depend on one’s goals.
If the goal is applications the assumption of low relief is likely to be frequently
violated. If the goal is theoretical understanding such a limiting case may be of
considerable use.
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Fig. 1.1 The Asam house at Munich. Illumination by the overcast sky from above. The mate-
rial is whitewashed stucco, roughly Lambertian. There are various regions of low relief where
our simplifying assumptions hold reasonably well (the clock face, the sitting putto) though
there are also parts that are modeled “in the round” and where effects of vignetting and in-
terreflection are evident. In cases like this frontal viewing is a natural condition (I made the
photograph from he opposite side of he street).

A special case that appears rather limiting, yet is often applicable is that of frontal
viewing (see Figure 1.1). Expecially when combined with the low relief assumption
this often applied to cases of real life importance, just think of viewing bas relief
murals.

Another special case is that of frontal illumination. This case is completely differ-
ent from frontal viewing. Moreover, it has few other applications than photographs
taken with flash on the camera. Although this situation is avoided like the plague by
professional photographers (it “flattens” the scene, thus works against regular shape
from shading for the human observer), it is (perhaps perversely) a case for which
dedicated computer algorithms have been designed.

Some of the most useful assumptions are almost certainly wrong. A key exam-
ple is the assumption of Lambertian surfaces. It is a highly desirable assumption
because the influence of viewing geometry vanishes, thus greatly simplifying the
problem. But from physics one knows that Lambertian surfaces don’t exist. It is not
that basic physics forbids them, but they can be only approximately produced even
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under laboratory conditions. The non–Lambertian character of surface scattering be-
comes especially obvious for very oblique viewing and/or illumination directions.

Here I will assume Lambertian surfaces, low relief, frontal viewing and paral-
lel, collimated illumination. In this case most of the usual assumptions apply (no
vignetting, no interreflections, . . . ), even the Lambertian assumption is not prob-
lematic. This is easily the simplest setting imaginable that still holds some interest.

1.3.2 Setting up the Problem

Consider a relief
z(x,y) = z0 + μw(x,y), (1.41)

where μ keeps track of the depth of relief. It is a convenient parameter because we
simply carry calculation to 1st–order in μ . Here is an example, the surface normals
are

n(x,y) =−μ(
∂w(x,y)
∂x

ex +
∂w(x,y)
∂y

ey)+ ez + O[μ ]2. (1.42)

Here we obtained a significant gain in simplicity because the usual normalization
factor affects only 2nd and higher orders in μ and thus can be ignored.

I will set
∂ z(x,y)
∂x

‖x=y=0 =
∂ z(x,y)
∂y

‖x=y=0 = 0, (1.43)

throughout the computation because of the assumption of frontal viewing.
Assume the direction of the illuminating beam is i and that it causes a normal

illimination E0. Then Lambert’s Cosine Law yields the illumination pattern:

E(x,y) = E0 i ·n(x,y) = E0

(
−μ(ix

∂w(x,y)
∂x

+ iy
∂w(x,y)
∂y

)+ iz)
)

+O[μ ]2. (1.44)

Notice that the absolute value of the illuminance is irrelevant. The visual system
will merely record the spatial contrast C(x,y), which is

C(x,y) =
E(x,y)−E(0,0)

E(0,0)
=−

μ(ix
∂w(x,y)
∂x + iy

∂w(x,y)
∂y

iz
+ O[μ ]2. (1.45)

Writing
i =−(cosϑ(cosϕ ex + sinϕ ey)+ sinϑ ez) , (1.46)

where ϑ denotes the elevation and ϕ the direction of the illumination, we finally
obtain

C(x,y) = μ cotϑ(cosϕ
∂w(x,y)
∂x

+ sinϕ
∂w(x,y)
∂y

)+ O[μ ]2. (1.47)
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What can be observed locally is the contrast gradient ∇C = Cxex + Cyey, it can
be found by straight differentiation. The differentiation will generate second order
derivatives of the height z(x,y). Dropping higher order terms in μ you obtain

Cx = μ cotϑ(cosϕ
∂ 2w(x,y)
∂x2 + sinϕ

∂ 2w(x,y)
∂x∂y

) (1.48)

Cy = μ cotϑ(cosϕ
∂ 2w(x,y)
∂x∂y

+ sinϕ
∂ 2w(x,y)
∂y2 ). (1.49)

In the “Shape From Shading Problem” the “unknowns” are ϑ , ϕ , and the three 2nd–
order partial derivatives of the height of relief z(x,y). For this we have two equations,
the observables Cx and Cy. The problem is evidently underdetermined, even in this
simplest setting.

One ambiguity that is clearly unavoidable is the mix up between the height of
contrast and the elevation of the source as expressed through the factor μ cotϑ . A
scaling μw(x,y) can be undone by adjusting ϑ . We may as well notice this relation
and proceed to eliminate ϑ , obtaining a homogeneous equation for the three partial
derivatives.

Writing ∇C = G(cosγ ex + sinγ ey) we obtain

sinγ cosϕ zxx− cos(γ+ϕ)zxy− cosγ sinϕ zyy = 0, (1.50)

where I have introduced a more concise notation for the partial derivatives. Apart
from this we have that the height of relief is undefined. This may be expressed
through the equation

1
2
(z2

xx + 2z2
xy + z2

yy) = constant, (1.51)

the height being absorbed in the elevation of the source. (The expression is the
“curvedness”, see below.)

Thus we end up with one parameter (the elevation of the source) remaining fully
unspecified and two equations for four unknowns (the illumination direction and
three partial derivatives of the height). It would help to know the direction of illu-
mination, but even then we still have only two equations for the three partial deriva-
tives. The problem is evidently very underspecified.

Ways to proceed. There are various ways to proceed from here. Well known meth-
ods from machine vision recognize the fact that the local conditions are insufficient
to find the local shape (curvature) and reformulate the Shape From Shading Prob-
lem into a global problem, using either partial differential equations or a variational
method. Thus one introduces surface integrity constraints to force a solution. These
methods are well known and I will not pursue them here because they are quite un-
like anything that might be attempted by the human visual system. I will stubbornly
pursue the purely local problem in an attempt to guess what the visual system might
be doing.
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Posing the local problem in a more symmetrical way: describing 2nd–order
shape. The description of 2nd–order surface shape in terms of partial derivatives
in a Cartesian frame in the tangent plane is often convenient, but masks the symme-
tries of the 2nd–order structure. Here is a better adapted description:

Notice that a term like x2 + y2 is rotationally symmetric whereas terms like xy
and x2 − y2 have two lines of bilateral symmetry. The latter two terms are very
similar and can be transformed into each other through a rotation of the coordinate
system over π/4. Hence the transformation

zxx = r + t, (1.52)

zxy = s, (1.53)

zyy = t− r, (1.54)

thus we obtain

z(x,y) =
1
2
(zxxx2 + 2zxyxy + zyyy2) = r

x2− y2

2
+ sxy + t

x2 + y2

2
. (1.55)

I treat the surface as in visual space, that is to say, differential invariants like the
mean and Gaussian curvature are calculated as in singly isotropic (the z–direction)
space. This meshes perfectly with the assumption of “low relief”. (This even allows
one to introduce an overall surface slant without any complication.)

The principal curvatures are

κ1,2 = t±
√

r2 + s2, (1.56)

and the principal directions are

{r±
√

r2 + s2,s}. (1.57)

Thus the mean curvature H and Gaussian curvature K are

H =
1
2
(κ1 +κ2) = t, (1.58)

K = κ1κ2 =−r2− s2 + t2. (1.59)

The expression 1
2 (κ1 − κ2) may be called the “non–sphericity” as it measures

the deviation from rotational symmetry. It equals
√

r2 + s2, thus sphericity im-
plies r = s = 0.

The “curvedness” χ =
√

1
2 (κ2

1 +κ2
2) measures the deviation from planarity and

turns out to be
√

r2 + s2 + t2. The “shape index” specifies the pure shape and is
defined as

σ = arctan
κ1 +κ2

κ1−κ2
= arctan

t√
r2 + s2

. (1.60)

The shape index takes values on [− π2 ,+ π
2 ].
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All this can be summarized in an intuitively very attractive manner. The space of
all 2nd–order surface shapes is best represented by a Cartesian {r,s,t}–space. The
origin represents planarity, i.e., shapelessness, whereas distance from the origin, the
“curvedness” implies deviation from the tangent plane. On the surface of the unit
sphere the latitude is the shape index, whereas the longitude indicates twice of the
direction of principal curvature. The natural representation is in polar coordinates

r = χ cosσ cosψ , (1.61)

s = χ cosσ sinψ , (1.62)

t = χ sinσ . (1.63)

This direction of principal curvature (that is ψ2 ) is undefined at the poles because the
t–axis represents the spherical shapes. Notice that antipodes are mutually related as
a cast and its mold.

1.3.3 The Local Shape from Shading Problem

The local Shape From Shading problem is best recast in terms of the symmetrical
parameters {r,s,t} introduced above.

The ambiguity due to the elevation of the illumination means that shape infer-
ences have to be done modulo the curvedness, which again means that the space
of possible inferences is reduced to the lines through the origin of shape space, a
projective plane. We may represent it by the unit sphere in shape space with pairs of
antipodal points identified.

The observation of the contrast gradient yields the constraint

r sin(γ+ϕ)− s cos(γ+ϕ)+ t sin(γ−ϕ) = 0, (1.64)

which is a homogeneous, linear equation thus a plane through the origin of shape
space, which meets the unit sphere in a great circle. At this point we may sim-
plify the expression by specializing the coordinate system, letting the first frame
vector coincide with illuminance surface flow direction. Thus, setting γ → 0 the
constraint is

r sinϕ− s cosϕ− t sinϕ = 0. (1.65)

The pole of this great circle is

p(ϕ) =
sinϕ e1− cosϕ e2− sinϕ e3√

1 + sin2ϕ
. (1.66)

Of major interest is the colatitude of the pole, because it specifies the extreme values
of the possible shape index inference. It is
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Fig. 1.2 The range of fea-
sible shape indices (dark)
as a function of the angular
separation between the di-
rection of illumination and
the direction of the contrast
gradient.
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Although it is quite possible to infer any hyperbolic shape, no matter what the value
of ϕ might be, there is a maximum to the shape index of elliptic inferences (see
Fig. 1.2). For instance, a spherical inference implies γ = ϕ (of course modulo π).

1.3.3.1 The “Observables” for the Shape from Shading Problem

In the literature on the Shape From Shading Problem the generic assumption is that
the relevant observable is the spatial contrast. (For the local problem this reduces
to the contrast gradient, though this plays no role in the machine vision literature.)
However, this assumption may well be questioned.

Various attempts to find the illuminance direction from the image are found in
the literature, most of them ad hoc, some of of them mere shots in the dark.

A principled manner to find the illuminance direction from the image is available
if the surface is corrugated such as to yield a visible illuminance induced texture.
Such a method works if the statistical structure of the corrugations is isotropic. The
basic idea is simple enough. An isotropic protrusion will yield a dipole pattern, light
on the side facing the source, dark on the side facing the other direction. An isotropic
indentation will also yield a dipole pattern, it will have the same axis as that of the
protrusion, but the opposite polarity. Thus the gradients have the same orientation,
but opposite directions. The average gradient of an isotropic texture will indeed tend
to zero, but the average squared gradient will have the correct orientation. This is the
crux of the structure tensor method. One computes the eigensystem of the “structure
tensor”

S = 〈∇C†.∇C〉=
( 〈CxCx〉 〈CxCy〉
〈CyCx〉 〈CyCy〉

)
. (1.68)

The direction of the largest eigenvector is the orientation of the illumination flow [8].
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This method has been shown to work very well with a large variety of 3D tex-
tures. Isotropy is essentially the only requirement. It has also been shown that the
human observer uses this method and typically finds the orientation with an accu-
racy of about 5◦.

1.3.3.2 Human Vision and Shape from Shading

We have solved the Local Shape From Shading Problem above and we have intro-
duced the possibility of additional observational evidence. This should be sufficient
to investigate the angle human vision takes on the problem.

We identify three cases:

• the observer lacks any prior information, except for the general setting: the ob-
server is looking at a frontoparallel, Lambertian (e.g., plaster or marble) plane
with low relief modulation, illuminated by a uniform, parallel, collimated beam
(e.g., the sun);

• the observer additionally has prior knowledge concerning the illumination direc-
tion (e.g., through observation of 3D texture induced contrast);

• the observer has prior information concerning the shape (e.g., knows it to be
spherical).

In the first case the observer is supposed to estimate both the shape and the illumi-
nation direction, in the second case only the shape and in the third case only the
direction of illumination. The first case is the most interesting, though especially
the second case may be expected to have frequent application. An overview of the
various relations is graphically illustrated in figure 1.3.

Consider the first case. The observer observes the direction of the contrast gra-
dient, we specialize the coordinate system such that ex is in the contrast gradient
direction. Of course there remains a ±π ambiguity here. Then we know that the
shape index is limited as

σ ≤ π
2
−
∣
∣
∣
∣∣
∣
arcsin

sinϕ
√

1 + sin2ϕ

∣
∣
∣
∣∣
∣
, (1.69)

where the direction of illumination ϕ is supposed to be fully unknown.
It is always possible to infer a symmetrical saddle (s = 0), for any direction of

illumination. It is also possible to infer a spherical shape (s = ± π2 ), though this
implies that the illumination direction coincides with the contrast gradient direc-
tion (ϕ = 0), a very specific condition. Of course the saddle would have to be in a
specific orientation, whereas the sphere looks the same in all orientations. All con-
sidering, it is hard to make a principled choice. Of course any shape is possible, with
more complicated constraints on the directions.

Consider the second case. If the direction of illumination is known, there is a
constricted range of possible values of the shape index. Granted a preference for
elliptical shapes (see below) one expects the system to select the largest possible
value, then the best guess is
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Fig. 1.3 The unit sphere
in rst–space (equation 1.51
that is χ = 1), where the
r–dimension is the direc-
tion of the relative contrast
gradient. The sheave of
great circles through P (mid-
point of the arc rt) are the
constraint planes (equa-
tion 1.50) for the various
illumination directions (the
poles lie on the great circle
passing through s.) The fat
small circle is the locus of
“most spherical inferences”.
At P the inference is cylin-
drical and all illumination
directions go, at t the in-
ference is spherical and the
illumination direction co-
incides with the gradient
direction.
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Thus knowledge of the illumination direction fails to nail the shape, but does con-
strain the possibilities. (See Figure 1.4 .)

Finally consider the third case. Knowing the shape means that only points on the
latitude circle of that shape are feasible. Thus the solutions lie on the intersection of
the great circle defined by the constraint and this latitude (small) circle. It is possible
that no solution exists, otherwise there are two distinct ones. If so, the solution is

ϕ = arccos
|sinσ − cosψ cosσ |√

1− cos2σ cosψ
. (1.71)

In this case one might run into a contradiction, which is the strongest constraint
possible. Otherwise such a prior knowledge pretty much nails the direction of illu-
mination (see Figure 1.5). A key example is the spherical shape which may act like
a “wind sack” for the flow of light.

How well is the human visual system doing? In the absence of prior knowledge it
appears to be the case that the human observer invariably reports a spherical shape.
Apparently the visual system considers the spherical inference the best bet. This
may be due to the fact that (overall) smooth objects are likely to be predominantly
convex. The remaining convex/concave ambiguity is usually resolved by the prior
assumptions that illumination tends to be from above. If the illumination is actually
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Fig. 1.4 Assume the direction of illumination is known (each curve is for a specific direc-
tion of illumination), then the shape (as specified by the shape index) still depends upon
the (unknown) direction of principal curvature. Notice that an elliptical inference (convex or
concave) is always possible, though generically not spherical.

Fig. 1.5 Suppose the shape
(specified by the shape in-
dex) is known. If the direc-
tion of principal curvature
is also known the light di-
rection is fully determined,
otherwise there exists a one–
parameter ambiguity. The
shades run from black = 0
to white = π

2 .

from the side humans typically report convexities, thus an additional bias seems to
be on convexity as opposed to concavity.

Notice that these “inferences” are in fact “hallucinations”. In reality any shape
goes! Yet human observers rarely feel that they are guessing, the experience is that
of seeing a specific shape.
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Fig. 1.6 Two renderings of
a rough surface illuminated
from the right. Both sur-
faces are quadrics viewed
frontally at the center of the
figure. The surface at right
is spherically convex, that at
left is a symmetric saddle.
Notice that the 3D–texture
visually reveals the direction
of illumination.

If the direction of illumination is clearly visible one expects the human observer
to use this. (It has been established that human observers indeed see the illumination
direction based on 3D texture.) Perhaps surprisingly, they don’t. People tend to re-
port sphericity, even when there is no elliptic solution at all, that is when the contrast
gradient is orthogonal to the illumination direction! (see Figure 1.6) Thus there can
be no doubt that a machine algorithm would do better. What frequently happens in
such cases is that the presentation “splits” into two layers (like it does often as in
cases of apparent transparency). One layer has the 3D texture, illuminated veridi-
cally whereas the other layer gets the (spherical) shape, illuminated from a direction
perpendicular to the (clearly visible!) veridical direction.

We conclude that the visual system attempts to solve the local problem (where
machine vision gives up), but doesn’t do too well on it. One could easily beat it with
a simple machine algorithm.

Remaining questions. As always in the study of human visual perception, many
questions remain. One is whether the visual system does anything global in addition
to purely local inferences. Whereas it is very unlikely that the system does anything
remotely like the current machine algorithms, there remain a number of intriguing
possibilities.

It is likely that the visual system pursues “local” inferences on various levels of
resolution. Whereas this would hardly be of much interest if there were no “added
value” to it, this would be of interest because the assumption that the illumination di-
rections are the same irrespective of the level of resolution is a very reasonable one.
For articulated surfaces (a globally quadric surface would not profit at all) this is a
very promising proposition. Such methods would be in between local and global,
though quite different from the global algorithms in use by the machine vision com-
munity today.

It is also likely that the system would not stop at the 2nd–order surface struc-
ture. There is much reason to believe that the 3rd–order surface structure has to be
very relevant for shading based inferences. For instance, the singular points of the
illuminance pattern (extrema and saddle points) occur at the parabolic points of the
surface [9]. At such points the surface is locally degenerate (cylindrical) and for a
generic description one has to take the cubic terms into account. The cubic terms
will also affect the Hessian (in addition to the gradient) of the contrast and it is very
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likely that the visual system is sensitive to those, indeed, perhaps more so than to
the gradient. As we have argued above, at any given point the gradient can be trans-
formed away through a congruence in image space. Little is known about the way
cubic structure appears in shading, although the potential importance cannot be in
doubt.

1.4 Final Remarks

“Final remarks” is more apt than “conclusions” at this point, because there isn’t
any real “conclusion”. What I have tried to convey in this chapter is the enormous
gap between the attempts to understand the functioning of the human visual system
in a formal way and the attempts to implement machine systems that “see”. One
might expect these endeavors to overlap appreciably because both the initial “data”
and the final “goals” are very similar or even identical. Moreover, the generic hu-
man observer and the generic machine vision system are supposed to function in
very similar (often identical) worlds. However, the differences are very significant.
They are mainly due to hardware constraints. The major bottlenecks of biological
as opposed to artificial systems are:

• whereas absolute calibrations or at least fixed operation points are usually no
problem in artificial systems, such luxuries are not available in biological sys-
tems. In biological systems any level has to dynamically shift its operation level
in order to keep signals within the (very limited) dynamical range and these lev-
els are not known to other parts of the system (or even the individual subsystem
itself);

• in biological systems local processing is the rule, global processing only works in
very coarse grained (sub–)systems (that is to say, low resolution is substituted as
a cheap replacement of true globality). This rules out most algorithms that have
made machine vision into a viable technology.

As opposed to these limitations biological systems also have major strengths, the
main one being the full integration of the “background”. Biological systems are
part of their biotopes and background knowledge of the structure of the biotope is
evident at all levels of implementation, from the optics of the eye to the nature of
the “hallucinations”. This is an aspect that machine vision has hardly touched upon.

The examples I gave in this chapter I believe to be typical in showing up such
differences.

The limitations of biological systems may be a burden to an engineer designer,
but evolution has done remarkably well given these constraints. Thus I believe that
machine vision has something to learn from biological implementations even though
I also believe that biological systems are bound to be beaten in many subdomains
by well designed artificial systems, certainly on the long run. The lessons will be
(of course) very general design principles and in this chapter I have tried to outline
a few.

Areas where the human visual system is unlikely to give way to machine im-
plementations are those of the visual arts. However, such achievements are very
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difficult to measure up. There are essentially no yardsticks for the products of the
creative arts. The only way to assess this is to try to find whether there is a mar-
ket (in the art galleries circuit) for machine generated products. If human artists are
eventually muscled out of these circuits, machines will finally be in power. That’ll
be the day.
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Chapter 2
Knowing a Good Feature When You See It:
Ground Truth and Methodology to Evaluate
Local Features for Recognition

Andrea Vedaldi, Haibin Ling, and Stefano Soatto

Abstract. While the majority of computer vision systems are based on representing
images by local features, the design of the latter has been so far mostly empirical. In
this Chapter we propose to tie the design of local features to their systematic evalua-
tion on a realistic ground-truthed dataset. We propose a novel mathematical charac-
terisation of the co-variance properties of the features which accounts for deviation
from the usual idealised image affine (de)formation model. We propose novel met-
rics to evaluate the features and we show how these can be used to automatically
design improved features.

2.1 Introduction

Local features are the building blocks of many visual recognition systems. They are
deterministic functions of the image (i.e., statistics) designed to minimize the effect
of various “nuisance factors” such as illumination and viewpoint, while at the same
time remaining representative of the object or category at hand.

Local features are typically designed by exploiting common sense, sometime
drawing inspiration from current knowledge of the human visual system, without a
direct tie to the task at hand. So, we cannot say that any of the existing features is
the best possible one could design for the specific task of recognition. And it could
not be otherwise. Elementary decision-theoretic considerations reveal that the best
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possible feature is the trivial one – the image itself – as no deterministic function of
the data can “create information,” even without getting into too much detail on what
“information” means in the context of visual recognition.

So why would anyone want to use local features, let alone design or compare
them? For one, they seem to work, and it is worthwhile trying to understand why
and how.1 Given that we are not going to design features for optimality in the end-to-
end task, can we at least test their effectiveness? How do we compare two features?
How can we say that one is better than the other?

So far, all comparisons of local features have been empirical. That is, their effec-
tiveness is measured by recognition performance in an end-to-end task, where the
features are one element of the decision process, together with the classifier and the
dataset. An empirical test can tell which one is the better feature among the group
being tested, but it tells us nothing on how a given feature can be improved, or how
performance generalizes to different classifiers and different data sets.

In this Chapter we introduce a different methodology for evaluating features. We
call this rational evaluation, as opposed to empirical, even though it naturally entails
an experiment.

The first thing we need is ground truth. If features were designed for optimality in
an end-to-end task (in which case they would have to be co-designed with the clas-
sifier), then any labeled training set, along with standard decision-theoretic tools,
would suffice. But features are not co-designed with the classifier, so they should
be evaluated independently of it. For that we need ground truth. In this Chapter we
describe a way to design ground-truthed data to evaluate the effectiveness of a given
feature based on its underlying (explicit or implicit) invariance assumptions. Such
data consists of synthetic images, generated with a model that strictly includes the
model underlying the invariance assumptions of a given feature. While ultimately
an end-to-end system should be evaluated on the recognition task performed on real
images, there is no straightforward way to distill the role of features unless proper
ground truth is available.

Once we have ground truth, we need to elucidate the various components of
the feature design process, that includes a choice of image domain (the “feature
detector”), a choice of image statistic computed on such a domain (the “feature
descriptor”), and a choice of decision function (“feature matching”) that becomes
the elementary tool of the classifier downstream.

The effect of this procedure is not just a number to rank existing features based
on how well they perform, when coupled with a given classifier, on a given dataset.
A rational comparison also provides ways to improve the design of the feature, as
we illustrate with an example. A similar approach could be followed to design better
descriptors, and also better detector.

This Chapter is part of a three-prong approach we have been developing for de-
signing and evaluating local features: In [15] we provide a reliable open-source

1 Even though, theoretically, one could “learn away” nuisances with a super-classifier that
would take the raw images as input, such a classifier may be too hard to design, or require
too much data to train, especially for adversarial nuisances such as occlusions.
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implementation of some of the most common local features. In this manuscript we
describe a methodology to compare local features. Finally, in [14] we provide code
to generate synthetic test images, as well as a number of already rendered samples.

2.2 Empirical Studies of Local Features

Because of their prominent role in recognition systems, local features have been
the subject of considerable attention in the Computer Vision community. Due to the
difficulty of extracting adequate ground truth, however, direct evaluation (i.e., not
part of an end-to-end system) has been mostly limited to planar scenes [9] designed
to fit the conditions for which the features were designed. While local features are
usually designed to be invariant to a simple class of transformations (say affine,
or projective, corresponding to the assumption of planar scenes), it is the behavior
of the feature in the presence of violations of such assumptions that determines its
effectiveness. Therefore, it is important that the ground truth reflects conditions that
supersede the underlying assumptions.

The need to test features on more challenging data has driven some to employ
synthetic datasets [12, 5], although the resulting images lacked in visual realism.
More realistic data was used by [2] to infer ground truth via stereo. This procedure,
however, is difficult to scale up to be representative of the complexity and variabil-
ity of natural scenes. The most extensive collection of real objects to-date is [10],
where a selection of (uncluttered) objects was placed on a calibrated turntable in
front of a blue screen. Thousands of features were mapped from small-baseline
image pairs to wide-baseline views in a semi-automated fashion. A semi-synthetic
data set was produced in [13] by gathering range images acquired with a laser scan-
ner and generating a number of artificial views by rotating the data. [17] recog-
nized the importance of obtaining wide-baseline feature deformation data for the
study of viewpoint-invariant features and used structure from motion to estimate
re-projection of point features from a large number of views of real scenes. Unfor-
tunately this technique provides only limited ground truth information (i.e., sparse
3-D points estimated from the images themselves) and is laborious to collect, es-
pecially for controlled experimental conditions. To this date, however, there is no
extensive data set that can scale up to an arbitrarily large number of scenes, where
the geometry of the scene, its reflectance, the illumination, sensor resolution, clutter,
and lens artifacts can be controlled and analyzed by the user.

In order to make a useful tool for evaluating features, however, it is not sufficient
to generate (even a lot of) synthetic scenes with ground truth. We have to develop
a methodology that allows us to evaluate different aspects of the feature matching
process in isolation if we want to rationally improve the design of existing features.
The following section does just that. While the nomenclature we introduce may
seem like a burden to the reader at first, it will make the evaluation process more
rigorous and unequivocal.
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2.2.1 Some Nomenclature

The image is a function from a domain (the lattice, or the real plane) to a range
(the positive reals, possibly quantized into levels, or the three color channels). A
local feature is a local image statistic. That is, a deterministic function of the image
restricted to a neighborhood. A neighborhood is a compact, simply connected subset
of the image domain, which is often referred to as a “region.” A local feature that
does not depend on a particular parameter or function is said to be invariant to it.
A desirable feature is one that is invariant to phenomena that are independent of the
identity of the object or category of interest, often called nuisance factors. A feature
is called distinctive if, when considered as a function of the object or category of
interest, it is not a constant. A desirable feature is one that provides a “signature”
of the object of interest. We focus our attention on the two most common nuisance
factors, illumination and viewpoint, and seek for features that are distinctive of the
shape and reflectance properties of the object or category of interest. Conceptually,
the design of such features can be broken down into steps:

Detection. Given an image, the co-variant detector, or simply “detector”, selects
a number of image regions. It is designed to extract the same (deformed) re-
gions as the image deforms under a viewpoint change. A specific detector (SIFT,
Harris-Laplace, Harris-Affine) is compatible by design with a certain family of
such deformations (usually a group, e.g., similarities, affinities [9]). Section 2.3.1
develops a formal model of this step.

Canonization. The co-variant regions are canonized, i.e., deformed to a standard
shape. This process compensates (in part or entirely) for deformations induced
by the companion transformations. It is often assumed that such transformations
form a group, and therefore they can be undone (inverted).

Description. The descriptor computes a statistic of the image on the canonized
co-variant regions. This process may eliminate, or render the descriptor insensi-
tive to, additional deformations which are not removed by canonization.

Matching. A similarity measure is used to compare invariant descriptors to match
regions in different images.

2.3 Constructing a Rigorous Ground Truth

In Section 2.3.1 we introduce an idealized model of the output of co-variant detec-
tors and in Section 2.3.2 a model of feature correspondences. These will be used in
the empirical analysis in Section 2.3.3 and 2.3.4.

2.3.1 Modeling the Detector

Viewpoint has a direct effect on the geometry of local features, resulting in a defor-
mation of their shape and appearance. The purpose of a (co-variant) detector is to
select regions that warp according to, and hence track, image deformations induced
by viewpoint changes.
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(x0,r) (x0,r,θ ) (x0,Σ) (x0,A)

z

x0

frame companion warps fixed subset
point homeomorphisms translations
disk similarities translations and scalings
oriented disk similarities similarities
ellipse affinities affinities up to residual rotation
oriented ellipse affinities affinities

Fig. 2.1 Feature frames. Top. The figure depicts the five classes of feature frames, together
with their parameters and the selected point z used to represent orientation. From left to right:
point, disk, oriented disk, ellipse, oriented ellipse. Bottom. Association of frame types to
companion warps used in this Chapter.

There is a correspondence between the type of regions extracted by a detector
and the deformations that it can handle. We distinguish transformations that are (i)
compatible with and (ii) fixed by a detector. For instance, a detector that extracts
disks is compatible with, say, similarity transformations, but is not compatible with
affine transformations, because these in general map disks to other type of regions.
Still, this detector does not fix a full similarity transformation, because a disk is
rotationally invariant and that degree of freedom remains undetermined. These ideas
are clarified and formalized by the next definitions.

Frames. Typically one models the output of a detector as image regions, i.e., as
subsets of the image domain [9] . However, many popular detectors produce “at-
tributed regions” instead (for example the SIFT detector [6] produces oriented disks
rather than just disks). Since such attributed regions are ultimately used to specify
image transformations, in this work we refer to them as “frames.” Thus a frame is
a set Ω ⊂ R

2 possibly augmented with a point z ∈ Ω . For example, a disk is a set
Ω = {|x− x0|2 < r} and an oriented disk is the combination (Ω ,z) of a disk and a
point z ∈ Ω , z �= x0 representing its orientation2 (as the line connecting the center
x0 to z). Here we consider the following classes of frames (see Figure 2.1), that
capture the output of most detectors found in the literature:

• Points. Points are determined by their coordinates x0.
• Disks. Disks are determined by their center x0 and radius r.

2 We prefer to use a point z rather than specifying the orientation as a scalar parameter
because this representation is easier to work with and can be easily generalized to more
complex feature frames.
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• Oriented disks. Oriented disks are determined by their center x0, radius r and
orientation θ .

• Ellipses. Ellipses are determined by their center x0 and the moment of inertia
(covariance) matrix

Σ =
1

∫
Ω dx

∫

Ω
(x− x0)(x− x0)� dx.

Note that Σ has three free parameters.
• Oriented ellipses. Oriented ellipses are determined by the mapping A ∈ GL(2)

which brings the oriented unit circle Ωc onto the oriented ellipse Ω = AΩc.

Frames fix deformations. Each type of frame (point, disk, oriented disk, etc.) can
be used to fix (and undo, by canonization) certain image transformations. In fact,
given a pair of frames Ω1 and Ω2, the equation Ω2 = wΩ1 determines (partially
or entirely) the warp w. Therefore, a frame Ω acts as a reference frame to specify
deformations. This fact is captured by the following definitions:

• Frame deformations. For what concerns our discussion, an image deformation
(warp) w is simply a transformation R

2→ R
2 of the image domain, and wI de-

notes the image I(w−1(x)). Such deformations apply to frames as well: Given
a frame (Ω ,z), the warped frame w(Ω ,z) is the pair (wΩ ,w(z)). Note that, if
present, the selected point z is moved too; later we will use the shorthand no-
tation wΩ , still meaning that the warp applies to both the set and the selected
point z.

• Closed, complete, and free frames. Frames are closed under the deformations
W if warping a frame by w ∈W does not change their type. For example, disks
and oriented disks are closed under similarity transformations and ellipses and
oriented ellipses are closed under affine transformations. We say that a frame is
complete for a certain set of transformationW if the equation Ω2 = wΩ1 admits
at most one solution w ∈ W . We also say that the frames are free on the set W
(as in “free generators”) if such an equation has a solution for all possible pairs
of framesΩ1 and Ω2.

When analyzing a detector, it is important to specify both the type of frames it pro-
duces and the class of transformations that are assumed, which we call companion
warps. Notice in fact that each frame type can be used in connection with different
types of transformation, so both choices must be specified. In the rest of the Chapter
we focus on the most natural cases, summarized in Figure 2.1. For instance, from
the table we read that disks are used in conjunction with similarity transformations
(their companion warps), but are expected to fix only a subset of them.3

3 Notice also that frames (i) are closed under the companion warps, (ii) complete for a
subset of these, and (iii) free on the complete subset. Property (iii) is not always satisfied
by real detector. For instance, maximally stable extremal regions [8] have arbitrary shape
Ω , but their companion warps are just affine transformations. This means that the equation
Ω1 = wΩ2 may not have a solution.
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2.3.2 Modeling Correspondences

In the previous section we have modeled the detector as a mechanism that ex-
tracts (co-variant) frames. Operatively, the output of the detector is used to establish
frame-to-frame correspondences between multiple images of the same object. For
evaluation purposes, it is therefore necessary to extract sets of corresponding frames.
This idea is captured by the following definitions.

View sets (multiple views). A view set [4] V is a collection of images (I1, . . . , In)
of a scene taken under different viewpoints. Under Lambertian reflection and other
assumptions [16], any image I j(x), x ∈ Λ in a view set is obtained from any other
image Ii by a deformation I j(x) = Ii(hi j(x))=̇(h jiIi)(x). Such a deformation arises
from the equation

hi j(x) = π(Ri jπ−1
j (x)+ Ti j), x ∈Λ (2.1)

where π is the perspective projection and π−1
j (x) is the pre-image of pixel x from

viewpoint j and (Ri j,Ti j) is the camera motion from view j to view i. Also note that,
due to occlusions and other visibility artifacts, equations I j = h jiIi may have only
local validity, but this is sufficient for the analysis of local features.

Co-variant frame sets (correspondences). A (co-variant) frame set F is a selec-
tion of frames (Ω1, . . . ,Ωn), one for each image of a view set V = (I1, . . . , In), that
are linked by the same deformations of the view set, i.e.,

Ωi = hi jΩ j

where hi j is given by (2.1). It is useful to think of co-variant frames as collections of
geometric elements (such as points, regions, bars and so on) that are “attached” to
the images and deform accordingly. Co-variant frames define the support of features
and, by tracking image deformations, enable canonization.

Frame sets enable canonization. By mapping a co-variant frameΩi to a canonical
variantΩ0, the equationΩ0 = wiΩi defines a warp wi which undoes the local image
deformation in the sense that the local appearance wiIi is constant through the view
set i = 1, . . . ,n. For example, mapping an oriented disk Ωi to the disk Ω0 = wiΩi of
unit radius and orientation z = (0,1) undoes the effect of a similarity transformation.
Doing so for an un-oriented disk does the same up to a residual rotation.

Remark 2.1. Operatively, a detector can attach a frame to the local appearance only
if this has enough “structure:” We can associate a disc to a radially symmetric blob,
but we cannot (uniquely) associate an oriented disc to it because the image is rota-
tionally symmetric. It should be noted, however, that this is irrelevant to the end of
canonization: As long as the most specific frame is attached to each image struc-
ture, canonization will make the local appearance constant. For example, we cannot
associate an oriented disk to a symmetric blob, but this is irrelevant as the residual
rotation does not affect the local appearance by definition.
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While so far we have just listed nomenclature, the next section will tie these concepts
to the empirical process of evaluating features relative to ground truth.

2.3.3 Ground-Truth Correspondences

The main obstacle to the practical applicability of the concept of co-variant frames
given in Section 2.3.1 is that the actual image transformations hi j (2.1) are rarely of
the idealized types because world surfaces are seldom flat, so the actual pixel motion
h(x) is more complex than a similarity or other simple transformation that we might
assume. Furthermore, due to occlusion, folding, visibility and reflectance phenom-
ena, images in a view set are rarely related to one another by simple deformations
of their domains.

Therefore, we relax our requirement that the frames represent exactly the im-
age deformations, and look for the best fit. We propose the following operational
construction of a ground-truth frame set (i.e., of ground-truth correspondences):

1. We select a reference view I0 ∈ V and an initial frame Ω0 in I0. Then, given an
alternate view Ii ∈V , we map the points x of the frameΩ0 to points y = h(x) of the
alternate view. To this end we use the three-dimensional ground truth in order to
estimate the actual motion of the pixels from (2.1), which does not depend on the
local appearance. Note that h(x) is well defined even when some pixels y = h(x)
are occluded.

2. We search for the warp w ∈W that best approximates h, for example by solving

w = argmin
v∈W

∫

Ω0

‖h(x)− v(x)‖2 dx. (2.2)

Algorithms that solve efficiently this problem for the transformation classesW of
interest are reported in Appendix 2.5. Notice that one can choose a cost different
from (2.2), and we illustrate a different example in (2.3).

3. We map the frameΩ0 to the frame Ωi = wΩ0 by the estimated warp w.

Occlusions and Foldings

The procedure we have delineated is simple, but can be inadequate if the frame Ω0

contains an occlusion or a strong depth discontinuity, which induces a highly non-
linear or discontinuous motion h(x). In such cases, instead of trying to capture the
motion of all pixels simultaneously, one can expect the detector to track only the
dominant motion, i.e., the motion of the background or the foreground, depending
on which one occupies the larger portion of the region, or “patch.” To this end,
before executing step (2.2) we consider splitting the patch in half. We sort the pixels
x ∈ Ω0 by depth and we search for a (relative) gap in the sorted values which is
bigger than a threshold. If we find it, we restrict equation (2.2) only to the pixels
before or after the split, based on majority rule.
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Fig. 2.2 Deviation. The figure illustrates the quality index (2.3). Intuitively, the deviation
is the norm of the difference of the true motion h and the estimated motion w, normalized
by projecting on the unit disk (canonical configuration). Normalization reflects the fact that
features are being canonized before the descriptor is computed.

Quality Indices

The procedure just delineated finds, in each image Ii of a view set, the best matching
frameΩi. However, not all matches are equal. Some may approximate very well the
underlying image transformation, while others may be poor fits, due for instance
to occlusions or strong non-linear distortions. For the evaluation of a real-world
detector, it is important to assess which of these ground-truth matches are close to
the idealized working assumptions, and which are not. To this end, we propose the
following quality indices:

Deviation. This index measures the “non-linearity” of the warp. Let w0 = (A0,T0)
and wi = (Ai,Ti) be the affine transformations that map the unit (oriented) circle
on the reference frame Ω0 and the alternate frame Ωi; let w be the companion
warp Ωi = wΩ0 that approximates the true motion h(x). The deviation index is
a normalized version of the average square residual |h(x)−w(x)|2, obtained by
conjugation with wi:

dev(w,h,Ωi) =
1
π

∫

{x:|x|<1}
|w−1

i ◦ (h ◦w−1)◦wi(x)−w−1
i ◦wi(x)|2 dx. (2.3)

The formula has a simple interpretation (Figure 2.2). It is the average squared
residual |h(x)−w(x)|2 remapped to the canonized version of the frame Ωi. Not-
ing that, by definition, w = wiw−1

0 and all but h are affine warps, we find (see
Appendix 2.5)

dev(w,h,Ωi) =
1
π

∫

{x:|x|<1}
|A−1

i (h ◦w0(x)−wi(x))|2 dx. (2.4)
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In practice, we estimate the values of h on the pixels x̂i of the region Ω0; in this
case we use the formula

dev(w,h,Ωi)≈ 1
|Ω0| ∑x̃i∈Ω0

|A−1
i (h(x̃i)−w(x̃i))|2 (2.5)

which preserves its validity even if the regionΩ0 intersects the image boundaries.
Visibility. This is the portion of the frame Ωi that falls inside the image bound-

aries.
Occlusion. This is the portion of the region Ω0 that is occluded in the alternate

view Ii. Occluded pixels x ∈Ω0 are determined empirically by checking whether
their pre-image from the reference view I0 and the alternate view Ii correspond,
i.e.,

Ri0π−1
0 (x)+ Ti0 �= π−1

i (h(x)).

Splitting. This is the portion of frameΩ0 which is accounted for in the estimation
of the dominant motion and ranges from 1 (complete frame) to 1/2 (half frame).

Figure 2.4 illustrates the quality indices for a number of co-variant frames.

2.3.4 Comparing Ground-Truth and Real-World
Correspondences

One may regard a real-world detector as a mechanism that attempts to extract co-
variant frames from the local appearance only. This task is difficult because, while
the definition of correspondences (co-variant frames) is based on the knowledge
of the ground-truth transformations hi j, these are not available to the detector, and
cannot be estimated by it as this would require operating on multiple images simul-
taneously [16].

There exist several mechanisms by which detectors are implemented in prac-
tice. The simplest one is to randomly extract a large number of feature frames so
that eventually some frame sets will be filled “by chance”. Albeit very simple, this
process poses a high computational load on the matching step. More refined ap-
proaches, such as Harris, SIFT, attempt to attach feature frames to specific patterns
of the local image appearance (for example SIFT attaches oriented disks to “image
blobs”). This enables the detector to explicitly “track” image transformations while
avoiding the exhaustive approach of the random detectors. In general, constructing
a co-variant detector requires that it be possible to associate co-variant frames to im-
ages based on the (local) appearance only. So, for example, we can associate disks
to image “blobs,” as long as we make sure that, as the blobs move, the disks move
according.

No matter what the underlying principle on which a detector is based, the qual-
ity of the correspondences established by a real-world detector can be expected
to be much lower than the ideal correspondences introduced in Section 2.3.3,
which, under the limited expressive power of the regions extracted (e.g., disks
are limited to similarity transformations), optimally approximate the actual image
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transformations. Thus ground-truth frame sets can be used to compare and evaluate
the performance of the real-world detectors.

To asses the performance of a detector, we therefore measure how much the ap-
proximate co-variant frame Ω̃i extracted by the detector deviates from the ground
truth co-variant frame Ωi defined in Section 2.3.3. To this end, we use the same
criterion introduced in 2.3, and compare the deviation of the ground truth and esti-
mated motions. Consider first the simpler case in which frames are complete for the
companion transformationsW (for example oriented disks for similarity transfor-
mations). Let wi = (Ai,Ti) and w̃i = (Ãi, T̃i) be the unique (by hypothesis) warps in
W that bring the oriented unit circle to the framesΩi and Ω̃i. Let w = w̃iw−1

i be the
transformation mapping Ωi to Ω̃i; the desired transformation h is the identity 1 and
by plugging back into eq. (2.3) (see Appendix 2.5) we obtain the oriented matching
deviation

dev(w,1,Ω̃i) =
1
4
‖Ã−1

i Ai−1‖2
F + |Ã−1

i (Ti− T̃i)|2 (2.6)

where ‖ · ‖F is the Frobenius matrix norm.
In case the frames are not oriented, wi and w̃i are known only up to right rotations

R and R̃ and we have

dev(w,1,Ω̃i) =
1
4
‖R̃�Ã−1

i AiR−1‖2
F + |Ã−1

i (Ti− T̃i)|2 (2.7)

where we used the fact that the Euclidean norm | · | is rotationally invariant. We
obtain the un-oriented matching deviation by minimizing over R and R̃ (see Ap-
pendix 2.5)

dev(w,1,Ω̃i) =
1
4

(‖Ã−1
i Ai‖2

F + 2(1− tr[Λ ])
)

+ |Ã−1
i (Ti − T̃i)|2 (2.8)

where Λ is the matrix of the singular values of Ã−1
i Ãi.

2.3.5 The Data

Based on the concepts that we have introduced in the previous sections, we now de-
scribe a new dataset to evaluate and learn visual invariants. The dataset is composed
as follows:

View Sets

View sets are obtained from a number of three dimensional scenes shot from differ-
ent vantage points (Figure 2.3). Each image comes with accurate geometric ground
truth information in the form of a depth map. This data can be acquired by means
of special instrumentation (e.g., a dome and a laser scanner), but in this work we
propose to use high quality synthetic images instead. This has the advantages that
(a) no special instrumentation is needed; (b) much more accurate ground truth can
be generated; (c) automated data extraction procedures can be easily devised. Our
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Fig. 2.3 View sets. We show a small portion of a few view sets. These are synthetic rendering
of scenes from [11] and come with accurate ground truth. Each image requires several CPU
hours to be generated. The data set, which required a large computer cluster to be computed,
is available to the public at [14].

data is largely based on publicly available 3-D scenes developed by [11] and gener-
ated by means of the freely available POV-Ray ray tracer.4 Currently we work with
a few such scenes that include natural as well as man-made environments; for each
scene we compute a large number of views (from 300 to 1000) together with their
depth map and camera calibration. The camera is moved to cover a large volume of
space (it is more important to sample the camera translations rather than the camera
rotations as additional orientations can be simulated exactly in post-processing by
simple homographies).

4 We actually use a customized version to export the required ground truth data. Patches are
available from [14].
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Reference view Alternate view Visibility

Occlusion Split Deviation

SMALL BASELINE PAIR

Reference view Alternate view Visibility

Occlusion Split Deviation

WIDE BASELINE PAIR

Fig. 2.4 Quality indices. We show examples of the four quality indices (visibility, occlusion,
split, and deviation) for a selection of of features in a small baseline pair (top) and wide
baseline pair (bottom). Quality indices signal if, and for what reason, a certain match deviates
from the idealized working assumptions. Brighter colors indicate higher quality patches.

Frame Sets

For each view set we compute a number of co-variant frame sets (Figure 2.5). This
happens as follows:

• We choose a detector (e.g., SIFT) and a number of reference views in the view set.
• We run the detector on each reference view to extract reference frames.
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Fig. 2.5 Frame sets (correspondences). We show portion of two ground-truth frame sets
(Section 2.3.1) as canonized patches. Each patch is obtained by un-warping to a canonical
configuration the corresponding co-variant frame. Note that, due to complex reflectance and
geometric phenomena, canonization never yields perfectly aligned patches.

• We re-map each reference frame to all other views as explained in Section 2.3.3
and we compute the four quality indices. The resulting collection of frames is a
co-variant frame set. Based on the quality indices, frames can be filtered out in
order to generate data of varying difficulty.

• Optionally, we run the detector on each non-reference view as well and we match
each co-variant frame to a detected frame by minimizing the quality index intro-
duced in Section 2.3.4. We then record the matching score and matched frames
along with the co-variant frame set. This is the approximation of the co-variant
frame set obtained from the real-world detector.

In practice, only a few reference views (from 2 to 4) are selected for each view set.
This alone is sufficient to generate several thousand frame sets, and most frame sets
count dozens of frames from different views. Eventually it is easy to generate data in
the order of millions frames. The data comes with quality indices so that interesting
subsets can be easily extracted.

2.4 Learning to Compare Invariant Features

The data developed in Section 2.3 can be used to:

1. Learn natural deformation statistics, similarly to [13], but in a wide-baseline set-
ting.

2. Evaluate/learn detectors that compute good approximations of co-variant frames.
3. Evaluate/learn descriptors, given either the co-variant frame sets or the frame sets

matched to the output of any practical co-variant detector.
4. Evaluate/learn similarity measures between descriptors.

Here we limit ourselves to the last task for the purpose of illustration of the use
of the dataset. While the improvements we expect are limited, since we are only
operating on the last ingredient of the feature matching pipeline, the results are
readily applicable to existing systems.

More concretely, given a frame Ω0 in a reference view I0 and an alternate view
I1, we study two problems: (i) how to find the frameΩ1 of I1 that matchesΩ0 (Sec-
tion 2.4.2) and (ii) when to accept a putative match Ω0↔Ω1 in order to minimize
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Fig. 2.6 Learning SIFT metric. We show four views of a co-variant frame (the frame on the
ceiling lamp) and the ten most similar SIFT features in term of their SIFT descriptors. Shades
of green are proportional to the descriptor φ2-similarity to the reference descriptor.

the expected risk of making a mistake (Section 2.4.3). We focus on SIFT features
(both detector and descriptor) because of their popularity, but any other similar tech-
nique could be studied in this fashion.

2.4.1 Wide Baseline Motion Statistics

[13] studies the statistic of optical flow-based on simulated visual data. However,
the analysis is limited to small baseline motion; our data is characterized by a much
larger variety of viewing conditions, which enable us to collect statistic on wide-
baseline motion.

Here we propose to study the residual of the pixel motion after canonization, i.e.,
after the companion transformation has been removed, as in (2.2):

∀x : |x|< 1 : r(x)=̇w−1
i ◦ (h ◦w−1)◦wi(x)−w−1

i ◦wi(x)

where wi(x) maps the unit circle to the co-variant frameΩ0, h(x) is the ground-truth
motion and w(x) is the companion transformation.

2.4.2 Learning to Rank Matches

Given a frameΩ0 of the reference view I0, its descriptor f0 and an alternate view I1,
we order the frames Ω1, Ω2, . . . of I1 based on the similarity φ of their descriptors
f1, f2, . . . to f0, i.e.,

φ( f0, f1)≤ φ( f0, f2)≤ . . . .

Ideally the similarity function φ is chosen in such a way that the correct matching
frameΩi is ranked first.

Normally the similarity of a pair of SIFT descriptors is just their L1 or L2 distance,
i.e.,

φp( f0, f1)=̇‖ f0− f1‖p, p = 1,2.

Here we show how a similarity φ can be learned that outperforms both φ1 and φ2.
We do this by setting up a learning problem as follows: Based on our ground-truth
data, we sample pairs of corresponding descriptors ( f0, f1) from a frame set and
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Fig. 2.7 Learn to rank matches. The figure shows the distribution of the rank values of the
correct feature match, averaged for frame sets in our database. The SVM-based ranking out-
performs the naive φ1 and φ2 ranking, resulting in an expected rank of 1.62, 1.74 and 2.07
respectively.

a pair of non-corresponding descriptors ( f0, f ) randomly. We then learn a binary
classifier D( f0, f1) for the task of deciding whether f0 and f1 are the descriptors of
corresponding features. Following [3], we assume that the classifier is in the form
[φ( f0, f1)≤ τ] for some function φ (for example this is the case for a support vector
machine (SVM) but one could use boosting as well [18]) and we use φ as a similarity
measure.

Re-ranking. Since the goal is to improve φ1 and φ2 (which have already good per-
formance), instead of choosing negative descriptors f completely at random, we
select them among the descriptors of the alternate view that have φp-rank smaller
or equal to 10 (Figure 2.6). In testing, the learned similarity φ is then used to re-
rank these top matches in hope of further improving their ranking. This approach
has several benefits: (a) since the computation of φ is limited to a few features, test-
ing speed is not a concern; (b) experimentally we verified that the top ten features
include very often the correct match; (c) the learning problem has a much more
restricted variability because features are φp-similar by construction.

Learning. We select about 500 frame sets (matched to actual SIFT frames – see
Section 2.3.4) and we extract their reference framesΩ0 and descriptors f0; for each
of them we select about 10 alternate views and we extract the relative co-variant
frame Ω1 and descriptor f1. In this way, we form about 5,000 positive learning
pairs ( f0, f1). For each positive pair ( f0, f1), we add about 10 negative pairs ( f0, f )
formed as explained for a total of 55,000 examples. The data is used to learn an
SVM with polynomial kernel.

Testing. While φ is optimized for classification, here we are interested in its ranking
performance. Thus testing is done by taking a large number of fresh frame sets and
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Fig. 2.8 Learning to accept matches. The figure compares the ROC curves of the function
D( f0, f1, f2) in its basic form and as learned by an SVM.

averaging the ranking performance of φ over them. Figure 2.7 shows that learning
can indeed improve the basic similarities.

2.4.3 Learning to Accept Matches

Once putative matches have been proposed, for example based on the similarity
metric φ , we need to accept or reject them based on some notion of expected risk.
In some applications we also want to order matches by reliability [1]. [6] proposes
a simple score that can be used to both accept and rank putative matches. With
notation similar to the previous section, denote f0 the descriptor of a reference frame
Ω0 and by f1 and f2 the two φ -top matches in an alternate view. We define the belief
that the match Ω0↔Ω1 is correct as

P(Ω0↔Ω1| f0, f1, f2) = 1− φ( f1, f0)
φ( f2, f0)

.

Here we use φ = φ2 to be compatible with [6]. This quantity can be directly used
to rank and accept matches, the latter by comparing it to a threshold τ , getting the
decision function

D( f0, f1, f2) = [P(Ω0↔Ω1| f0, f1, f2)≤ τ] . (2.9)

As D( f0, f1, f2) is a decision function, it can also be learned by means of some
standard technique, which we do next.

Data and learning. Data is obtained similarly to Section 2.4.2, with the obvious
adaptations. Learning is still performed by an SVM based on a polynomial kernel.
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Testing. In Figure 2.8 we plot the ROC curve of (2.9) as τ is varied and the ROC
curve of the SVM-based decision function D( f0, f1, f2). The equal error rate is low-
ered from 0.16 to 0.13 showing again that learning can be used to improve the basic
method.

2.5 Discussion

We have presented an extensive, flexible, accurate ground-truthed dataset for match-
ing local invariant features. Together with it, we have presented a methodology to
evaluate local features, and illustrated their use to not only evaluate, but also im-
prove current algorithms. Our analysis separates the effects of a feature detector,
a descriptor, and a matching algorithm, and our dataset is aimed at facilitating the
collection of natural image deformation statistics induced by viewpoint changes,
and at incorporating them in the design of better features. A similar procedure can
be followed to incorporate natural reflectance, illumination and occlusion statistics,
which is obviously beyond the scope of this Chapter. We have demonstrated the use
of the dataset to improve on the matching score in matching SIFT features. Albeit
the quantitative improvement is not stunning, it is sufficient to illustrate the potential
advantage associated in the use of the dataset and the associated methodology for
evaluating local features.

Appendix 1: Calculations

Justification of Equation (2.5)

By changing variabile in (2.4) we obtain

dev(w,h,Ωi) =
1

π detA0

∫

Ω0

|A−1
i (h(x̃)−w(x̃))|2 dx̃

≈ 1
π detA0

∑
x̃i∈Ω0

|A−1
i (h(x̃i)−w(x̃i))|2.

Note that π detA0 is just the area of the region Ω0, so we obtain (2.5).

Oriented Matching Deviation and Frobenius Norm

Define the “size” of the linear deformation A ∈GL(2) the quantity

‖A‖2 =
1
π

∫

|x|<1
x�A�Axdx.

This is the average of the norm of the vector Ax as x is moved along the unit circle.
We have
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‖A‖2 =
1
π

tr

[
A�A

∫

|x|<1
xx� dx

]
=

1
4

tr[A�A]

so this is just the Frobenius norm of A (up to a scale factor). Now consider the affine
deformation Ax + T . We define analogously

π‖(A,T)‖2 =
∫

|x|<1
|Ax + T |2 dx

=
∫

|x|<1
x�A�Axdx + 2

∫

|x|<1
T�Axdx +

∫

|x|<1
T�T dx.

So the “Frobenius norm” of an affine deformation is

‖(A,T )‖2 =
1
π

∫

|x|<1
|Ax + T |2 dx =

1
4

tr[A�A]+ |T |2.

This also justifies (2.6) because

dev(w,1,Ω̃i) =
1
π

∫

{x:|x|<1}
|Ã−1

i (wi(x)− w̃i(x))|2 dx

=
1
π

∫

{x:|x|<1}
|(Ã−1

i Ai−1)x + Ã−1
i (Ti− T̃i)|2 dx.

Unoriented Matching Deviation

Lemma 2.1. Let A be a square matrix and Q a rotation of the same dimension and
let UΛV� = A be the SVD of A. Then the rotation Q which minimizes the quantity
tr[QA] is UV� and the minimum is tr[Λ ].

Proof. Let VΛU� = A be the SVD decomposition of matrix A. We have tr[QA] =
tr[LΛ ] where Λ is a diagonal matrix with non-negative entries and L = U�QV is a
rotation matrix. The trace is equal to ∑i Liiλi where 0 ≤ Lii ≤ 1 and Lii = 1 for all i
if, and only if, L is the identity. So the optimal value of Q is Q = UV�.

Since the Frobenius norm is rotationally invariant, (2.7) can be written as

‖R̃�Ã−1
i AiR−1‖2

F = ‖Ã−1
i Ãi‖2

F −2tr[QÃ−1
i Ai]+ 2, Q = RR̃�i .

Minimizing this expression with respect to Q is equivalent to maximizing the term
tr[QÃ−1

i AiR]. Let VΛU� = Ã−1
i Ãi be the SVD of Ã−1

i Ai; Lemma 2.1 shows that the
maximum is tr[Λ ] (obtained for Q = UV�), yielding (2.8).

Appendix 2: Algorithms

In this Section we derive algorithms to minimize (2.2) in the cases of interest. The

purpose of the following algorithm is to align a set of points x(1)
1 , . . . ,x(K)

1 to a set of

points x(1)
2 , . . . ,x(K)

2 up to either an affine, rigid, or similarity motion.
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Alignment by an Affine Motion

Let x2 = Ax1 + T for an affine motion (A,T ). We can transform this equation as

x2 = Ax1 + T = Bx = (x�⊗ I2×2)vecB, x =
[

x1

1

]
, B =

[
A T

]

where⊗ is the Kroneker product and vec is the stacking operator. We obtain one of

these equations for each of the points x(k)
1 , k = 1, . . . ,K to be aligned and solve them

in the least-squares sense for the unknown B.

Alignment by a Rigid Motion

We give first a closed-form sub-optimal algorithm. This algorithm is the equivalent
as the one proposed in [19], but our development is straightforward.

Let x2 = Rx1 + T be a rigid motion (R,T ) and assume for the moment that the
points are three dimensional. Let R = exp(θ r̂) where r, |r| = 1 is the axis of rota-
tion, r̂ is the hat operator [7], and θ > 0 is the rotation angle. We use Rodrigues’
formula [7] R = I + sinθ r̂ +(1− cosθ )r̂2 to get

x2 = Rx1 + T = x1 + sinθ r̂x1 +(1− cosθ ) r̂2x1 + T,

x1 = R−1(x2−T) = x2−T − sinθ r̂(x2−T)+ (1− cosθ ) r̂2(x2−T ).

Adding the previous equations, collecting sinθ r̂, and using the trigonometric iden-
tity tan(θ/2) = (1− cosθ )/sinθ we obtain

sinθ r̂

(
x1− x2 + T + tan

θ
2

r̂(x1 + x2−T)
)

= 0.

It is easy to check that this condition is equivalent to x2 = Rx1 + T for |θ | < π . A
sufficient condition is

x1− x2 + T + tan
θ
2

r̂(x1 + x2−T ) = 0

which can be rewritten as

x1− x2 + tan
θ
2

r̂(x1 + x2)+ z = 0, z = T − tan
θ
2

r̂T.

Since, no matter what r is, z spans all R
3 as T varies, we can equivalently solve

this equation linear in the unknowns tan(θ/2)r and z in order to estimate the rigid
transformation. As in the previous section, one obtains one of such equations for

each of the points x(k)
1 , k = 1, . . . ,K to be aligned and finds the solution in the least-

squares sense.
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If there is noise in the model, i.e., if x2 = Rx1 + T + n, we get the condition

x1− x2 + tan
θ
2

r̂(x1 + x2)+ z+ tan
θ
2

r̂n =−n.

This means that for moderate rotations (away from ±π) minimizing the l2 residual
of this equation is almost equivalent to minimizing the norm of n itself. However if
θ approaches±π , then the term tan(θ/2)r̂n will dominate, biasing the estimate.

The formulas work for the 2-D case with little adaptation. In this case we assume
that all the points lie on the X-Y plane and the rotation vector is aligned to the Z
axis, obtaining

x1− x2− tan
θ
2

[
x2,1 + x2,2

−x1,1− x1,2

]
+ z = 0.

Finally, the estimate can be refined by the iterative algorithm given in the next sec-
tion (where one fixes the scale s to the constant 1).

Alignment by a Similarity

There is no closed-form algorithm for this case. Instead, we estimate iteratively the
translation T and the linear mapping sR. While the solution to the first problem is
obvious, for the second consider the following equation:

min
s,R
∑
k

(x(k)
2 − sRx(k)

1 )�(x(k)
2 − sRx(k)

1 )

= min
s,R
∑
k

|x(k)
2 |2−2s∑

k

x(k)
2

�
Rx(k)

1 + s2∑
k

|x(k)
1 |2. (2.10)

Rewrite the cost function al as c−2bs+as2. The optimal value for s given a certain
R is s∗ = b/a and the optimal value of the cost function is a + c− 2b2/a. Note
that only the term b is a function of R, while neither a nor c depend on it. As a
consequence, the optimal value of R is obtained by solving the problem

max
R

b = max
R
∑
k

x(k)
2

�
Rx(k)

1 = max
R
∑
k

tr

(
Rx(k)

1 x(k)
2

�)
.

Thus we are simply maximizing the correlation of the rotated point Rx(k)
1 and the

target points x(k)
2 . By taking the derivative of the trace w.r.t. the rotation angle θ , we

immediately find that the optimal angle is θ ∗ = atan(w2/w1) where

w1 =∑
k

|x(k)
2 ||x(k)

1 |cosθ (k), w2 =∑
k

|x(k)
2 ||x(k)

1 |sinθ (k)

where θ (k) is the angle from vector x(k)
1 to vector x(k)

2 .
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Thus, in order to estimate R and s, we can first solve for the optimal rotation R∗,
and then solve for the scale, which is obtained as

s∗ =
b
a

=
∑k x(k),�

2 R∗x(k)
1

∑k |x(k)
1 |2

.

The convergence of the alternating optimization can be greatly improved by remov-

ing the mean from x(k)
1 , k = 1, . . . ,K as a pre-processing step.
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Chapter 3
Dynamic Graph Cuts and Their Applications in
Computer Vision

Pushmeet Kohli and Philip H.S. Torr

Abstract. Over the last few years energy minimization has emerged as an indis-
pensable tool in computer vision. The primary reason for this rising popularity has
been the successes of efficient graph cut based minimization algorithms in solving
many low level vision problems such as image segmentation, object reconstruction,
image restoration and disparity estimation. The scale and form of computer vision
problems introduce many challenges in energy minimization. In this chapter we ad-
dress the problem of efficient and exact minimization of groups of similar functions
which are known to be solvable in polynomial time. We will present a novel dy-
namic algorithm for minimizing such functions. This algorithm reuses computation
from previous problem instances to solve new instances resulting in a substantial
improvement in the running time. We will present the results of using this approach
on the problems of interactive image segmentation, image segmentation in video,
human pose estimation and segmentation, and measuring uncertainty of solutions
obtained by minimizing energy functions.

3.1 Introduction

Many problems in computer vision and scene understanding can be formulated in
terms of finding the most probable values of certain hidden or unobserved variables.
These variables encode a desired property of the scene and can be continuous or
discrete. For the case of discrete variables, these problems are commonly referred
to as labelling problems as they involve assigning a label to the hidden variables.
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(a) (b) (c)

Fig. 3.1 Some labelling problems in computer vision. (a) Object segmentation and recog-
nition: Given any image, we want to find out which object each pixel in the image belongs
to. There is one discrete random variable for each pixel in the image which can take any
value from a set L of object labels. For instance, we can use the object set {road, building,
tree, sky}. (b) Image denoising: Given a noisy image of the scene, we want to infer the true
colour of each pixel in the image. The problem is formulated in a manner similar to object
segmentation. Again we use one discrete random variable per pixel which can take any value
in RGB space. (c) Human pose estimation: Given an image, we want to infer the pose of the
human visible in it. The problem is formulated using a vector of continuous pose variables
which encode the orientation and different joint angles of the human.

Labelling problems occur in many forms, from lattice based problems of dense
stereo and image segmentation [9, 66] to the use of pictorial structures for ob-
ject recognition [18]. Some examples of problems which can be formulated in this
manner are shown in Figure 3.1.

One of the major advances in computer vision in the past few years has been the
use of efficient deterministic algorithms for solving discrete labelling problems. In
particular, efficient graph cut based minimization algorithms have been extremely
successful in solving many low level vision problems. These methods work by infer-
ring the maximum a posteriori (MAP) solutions of conditional and markov random
fields which are generally used to model these problems.

3.1.1 Markov and Conditional Random Fields

Random fields provide an elegant probabilistic framework to formulate labelling
problems. They are able to model complex interactions between hidden variables in
a simple and precise manner. The power of this representation lies in the fact that the
probability distribution over different labellings of the random variables factorizes,
and thus allows efficient inference.
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Consider a discrete random field X defined over a lattice V = {1,2, . . . ,n} with a
neighbourhood system N . Each random variable Xi ∈ X is associated with a lattice
point i ∈ V and takes a value from the label set L= {l1, l2, . . . , lk}. The neighbour-
hood system N of the random field is defined by the sets Ni,∀i ∈ V , where Ni

denotes the set of all neighbours of the variable Xi. A clique c is a set of random
variables Xc which are conditionally dependent on each other. Any possible assign-
ment of labels to the random variables is called a labelling or configuration. It is
denoted by the vector x, and takes values from the set L = Ln.

A random field is said to be a Markov random field (MRF) with respect to a neigh-
bourhood system N = {Nv|v ∈ V} if and only if it satisfies the positivity property:
p(x) > 0 ∀x ∈ X n, and the Markovian property:

p(xv|{xu : u ∈ V −{v}}) = p(xv|{xu : u ∈ Nv}) ∀v ∈ V . (3.1)

Here we refer to p(X = x) by p(x) and p(Xi = xi) by p(xi). The pairwise MRF

commonly used to model image labelling problems is shown in Figure 3.8.
A conditional random field (CRF) may be viewed as an MRF globally conditioned

on the data. The conditional distribution p(x|D) over the labellings of the CRF is a
Gibbs distribution and can be written in the form:

p(x|D) =
1
Z

exp(−∑
c∈C
ψc(xc)), (3.2)

where Z is a normalizing constant known as the partition function, and C is the
set of all cliques [42]. The term ψc(xc) is known as the potential function of the
clique c where xc = {xi, i ∈ c} is the vector encoding the labelling of the variables
constituting the clique. The corresponding Gibbs energy is given by

E(x) =− log p(x|D)− logZ = ∑
c∈C
ψc(xc) (3.3)

The most probable or maximum a posteriori (MAP) labelling x∗ of the random field
is defined as

x∗ = argmax
x∈L

p(x|D). (3.4)

and can be found by minimizing the energy function E . This equivalence to MAP

inference has made discrete energy minimization extremely important for problems
which are solved using probabilistic methods.

Minimizing a discrete function is one of the core problems of optimization. Many
combinatorial problems such as MAXCUT and constraint satisfaction (CSP) can be
formulated in this manner. Although minimizing a function is NP-hard in general,
there exist families of energy functions for which this could be done in polynomial
time. Submodular set functions constitute one such well studied family. The algo-
rithms for minimizing general functions belonging to this class of functions have
high runtime complexity. This characteristic renders them useless for most com-
puter vision problems which involve large number of random variables. Functions
belonging to certain subclasses of submodular functions can be solved relatively



54 P. Kohli and P.H.S. Torr

easily (i.e., are less computationally expensive to minimize). For instance, certain
families of functions can be minimized by solving a st-mincut problem for which
fast and efficient algorithms are available [8, 19, 27, 56].

3.2 Graph Cuts for Energy Minimization

Graph cuts have been extensively used in computer vision to compute the maximum
a posteriori (MAP) solutions for various discrete pixel labelling problems such as
image restoration, segmentation, voxel occupancy and stereo [7,10,28,29,37,53,75].
Greig et al. [24] were one of the first to use graph cuts in computer vision. They
showed that if the pairwise potentials of a two label pairwise MRF were defined as
an Ising model, then its exact MAP solution can be obtained in polynomial time by
solving a st-mincut problem.

One of the primary reasons behind the growing popularity of graph cuts is the
availability of efficient algorithms for computing the maximum flow (max-flow) in
graphs of arbitrary topology [2, 8]. These algorithms have low polynomial runtime
complexity, and enable fast computation of the minimum cost st-cut (st-mincut)
problem. This in turn allows for the computation of globally optimal solutions for
important classes of energy functions which are encountered in many vision prob-
lems [38,33]. Even in problems where they do not guarantee globally optimal solu-
tions, these algorithms can be used to find solutions which are strong local minima
of the energy [9, 39, 32, 69]. These solutions for certain problems have been shown
to be better than the ones obtained using other inference methods [66].

3.2.1 The st-Mincut Problem

In this Section we provide a general overview of the st-mincut/maxflow problem and
give the graph notation used in this Chapter. A directed weighted graph G(V,E,C)
with non-negative edge weights, is defined by a set of nodes V , a set of directed
edges E , and an edge cost function C : E → R which maps each edge (i, j) of the
graph to a real number ci j

1. We will use n and m to denote the number of nodes |V |
and the number of edges |E| in the graph respectively. Graphs used in the st-mincut
problem have certain special nodes called the terminal nodes, namely the source s,
and the sink t. The edges in the graph can be divided into two disjoint categories:
t-edges which connect a node to a terminal node, and n-edges which connect nodes
other than the terminal nodes with each other. We make the following assumptions
in our notation: (i, j)∈E⇒ ( j, i)∈ E , and (s, i) ∈ E ∧ (i, t) ∈ E for all i ∈V . These
assumptions are non-restrictive as edges with zero edge weights are allowed in our
formulation. Thus we can conform to our notation without changing the problem.

A cut is a partition of the node set V into two parts S and S = V − S, and is
defined by the set of edges (i, j) such that i ∈ S and j ∈ S. The cost of the cut (S,S) is
given as:

1 We will restrict our attention to edge cost functions of the form C : E→ R
+∪{0}.
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Fig. 3.2 Graph reparameterization. The figure shows a graph G, and its reparameterization
G1 obtained by adding a constant α to both the t-edges of node a2. The edges included in the
st-mincut are depicted by dotted lines. Observe that although the cost of the st-mincut in G
and G1 is different, the st-mincut includes the same edges for both graphs and thus induces
the same partitioning of the graph.

CS,S = ∑
i∈S, j∈S

ci j. (3.5)

An st-cut is a cut satisfying the properties s ∈ S and t ∈ S. Given a directed weighted
graph G, the st-mincut problem is that of finding a st-cut with the smallest cost. By
the Ford-Fulkerson theorem [20], this is equivalent to computing the maximum flow
from the source to the sink with the capacity of each edge equal to ci j [2].

3.2.2 Formulating the Max-Flow Problem

For a network G(V,E) with a non-negative capacity ci j associated with each edge,
the max-flow problem is to find the maximum flow f from the source node s to the
sink node t subject to the edge capacity (3.6) and mass balance (3.7) constraints:

0≤ fi j ≤ ci j ∀(i, j) ∈ E, and (3.6)

∑
i∈ N( j)

( f ji− fi j) = 0 ∀ j ∈V (3.7)

where fi j is the flow from node i to node j and N( j) is the neighbourhood of node j
i.e., N( j) consists of all nodes connected by an edge to j [2].

Observe that we can initialize the flows in the t-edges of any node i of the graph as
fsi = fit = min(csi,cit). This corresponds to pushing flow through these edges from
the source to the sink and has no effect on the final solution of the st-mincut problem.
From this it can be deduced that the solution of the st-mincut problem is invariant
to the absolute value of the terminal edge capacities csi and cit . It only depends
on the difference of these capacities (cit − csi). Adding or subtracting a constant to
these capacities changes the objective function by a constant and does not affect the
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overall st-mincut solution as can be seen in Figure 3.2. Such transformations result
in a reparameterization of the graph and will be explained later in Section 3.3.

3.2.3 Augmenting Paths, Residual Graphs

Given a flow fi j , the residual capacity ri j of an edge (i, j) ∈ E is the maximum
additional flow that can be sent from node i to node j using the edges (i, j) and
( j, i) or formally ri j = ci j − fi j + f ji. A residual graph G( f ) of a weighted graph
G consists of the node set V and the edges with positive residual capacity (with
respect to the flow f ). An augmenting path is a path from the source to the sink
along unsaturated edges of the residual graph.

3.2.4 Minimizing Functions Using Graph Cuts

The problem of finding the minimum cost st-cut (st-mincut) in any graph can be
written in terms of minimizing a sum of functions defined on individual and pairs
of binary variables. Conversely, any submodular function of binary or boolean vari-
ables which can be written as a sum of unary and pairwise terms can be minimized
by finding the st-mincut in the corresponding graph. In this Chapter, we will call
functions of this form ‘second order functions’ or ‘functions of order 2’.

Definition 3.1. We say that a function f : Ln→ R is of order k if it can be written
in terms of a sum of functions fi : Lk → R, each of which is defined on at most k
variables.

In the above definition we use the function representation which leads to the smallest
order.

Example 3.1. The function f a(x1,x2,x3) = 4x1 + 5x2x3 + 3x2 is of order 2 because
of the maximal order term 5x2x3. Similarly, the function

f a(x1,x2,x3) = 4x1 + 5x1x2x3 (3.8)

is of order 3 because of the maximal term 5x1x2x3.

Algorithms for finding the st-mincut require that all edges in the graph have non-
negative weights. This condition results in a restriction on the class of energy func-
tions that can be solved in this manner. For instance, binary second order functions
can be minimized by solving a st-mincut problem only if they are submodular [38].

We will now show how second order functions of binary variables (also referred
as Pseudo boolean functions) can be minimized by solving a st-mincut problem.
The procedure for energy minimization using graph cuts comprises of building a
graph in which each st-cut defines a configuration x. The cost of an st-cut is equal
to the energy E(x|θ ) of its corresponding configuration x. Finding the minimum
cost st-cut in this graph thus provides us with the configuration having the least
energy. Kolmogorov and Zabih [38] described the procedure to construct graphs for
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Fig. 3.3 Energy minimization using graph cuts. The Figure shows how individual unary
and pairwise terms of an energy function taking two binary variables are represented and
combined in the graph. Multiple edges between the same nodes are merged into a single
edge by adding their weights. For instance, the cost w1 of the edge (s,xa) in the final graph
is equal to: w1 = θa;0 +θab;00. The cost of a st-cut in the final graph is equal to the energy
E(x) of the configuration x the cut induces. The minimum cost st-cut induces the least energy
configuration x for the energy function.

minimizing pseudo-boolean functions of order at most 3. The graph constructions
for functions of multi-valued variables were given later by [27] and [56].

We now explain the graph construction for minimizing energies involving binary
random variables. We use the notation of [35] and write a second order function as:

E(x|θ ) = θconst + ∑
v∈V,i∈L

θv;iδi(xv)+ ∑
(u,v)∈E,( j,k)∈L2

θuv; jkδ j(xu)δk(xv), (3.9)

where θv;i is the penalty for assigning label i to latent variable xv, θuv;i j is the penalty
for assigning labels i and j to the latent variables xu and xv respectively. Further, each
δ j(xv) is an indicator function, which is defined as:

δ j(xv) =
{

1 if xv = j,
0 otherwise.

Functions of binary variables (pseudo-boolean functions) can be written as:

E(x|θ ) = θconst +∑
v∈V

(θv;1xv +θv;0xv)

+ ∑
(u,v)∈E

(θst;11xuxv +θst;01xuxv +θst;10xuxv +θst;00xuxv). (3.10)

The individual unary and pairwise terms of the energy function are represented
by weighted edges in the graph. Multiple edges between the same nodes are merged
into a single edge by adding their weights. The graph construction for a two variable
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energy function is shown in Figure 3.3. The constant term θconst of the energy does
not depend on x and thus is not considered in the energy minimization procedure.
The st-mincut in this graph provides us with the minimum solution x∗. The cost of
this cut corresponds to the energy of the solution E(x∗|θ ). The labelling of a latent
variable depends on the terminal it is disconnected from by the minimum cut. In our
notation, if the node is disconnected from the source, we assign it the label zero and
one otherwise.

3.3 Minimizing Dynamic Energy Functions Using Dynamic
Graph Cuts

In many real world applications, multiple similar instances of a problem need to
be solved sequentially (e.g., performing image segmentation on the frames of a
video). The data (image) in this problem changes from one time instance to the next.
Similarly, successive sub-problems solved in move making algorithms algorithms
such as swap, expansion [9], or fusion move [44, 74] are also similar.

Given the solution to an instance of the problem, the question arises as to whether
this solution can help in solving other similar instances. In this Section we answer
this particular question positively for functions that can be minimized exactly using
graph cuts. Specifically, we show how the maxflow solution corresponding to an
energy minimization problem can be used for efficiently minimizing another similar
function with slightly different energy terms.

Our algorithm records the flow obtained during the computation of the max-flow
corresponding to a particular problem instance. This recorded flow is used as an ini-
tialization in the process of finding the max-flow solution corresponding to the new
problem instance (as seen in Figure 3.4). Our method belongs to a broad category
of algorithms which are referred to as dynamic. These algorithms solve a problem
by dynamically updating the solution of the previous problem instance. Their goal
is to be more efficient than a recomputation of the solution after every change from
scratch. Given a directed weighted graph, a fully dynamic algorithm should allow
for unrestricted modification of the graph. The modification may involve addition
and deletion of nodes and edges in the graph as well as changes in the cost (capacity)
of any graph edge.

3.3.1 Dynamic Computation

Dynamic algorithms are not new to computer vision. They have been extensively
used in computational geometry for problems such as range searching, point lo-
cation, convex hull, proximity and many others. For more on dynamic algorithms
used in computational geometry, the reader is referred to [11]. A number of algo-
rithms have been proposed for the dynamic mincut problem. Thorup [67] proposed
a method which had a O(

√
m) update time and took O(logn) time per edge to list the

cut edges. Here n and m denote the number of nodes and edges in the graph respec-
tively. However, the dynamic st-mincut problem has remained relatively ignored.
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Fig. 3.4 Dynamic image segmentation using graph cuts. The images in the first column are
two consecutive frames of the grazing cow video sequence. Their respective segmentations
are shown in the third column. The first image in the first column also shows the user seg-
mentation seeds (pixels marked by black (background) and white (foreground) colours). The
user marked image pixels are used to learn histograms modelling foreground and background
appearance (as in [7]). These histograms are used to compute a likelihood for each pixel be-
longing to a particular label. This likelihood is incorporated in the CRF used for formulating
the image segmentation problem. The optimal segmentation solution (shown in column 3)
is obtained by minimizing the energy function corresponding to the CRF. In column 2, we
observe the n-edge flows obtained while minimizing the energy functions using graph cuts.
It can be clearly seen that the flows corresponding to the two segmentations are similar. The
flows from the first segmentation were used as an initialization for the max-flow problem
corresponding to the second frame. The time taken for this procedure was much less than that
taken for finding the flows from scratch.

Gallo et al. [22] introduced the problem of parametric max-flow and used a par-
tially dynamic graph cut algorithm for the problem. Their algorithm had a low poly-
nomial time complexity but was unable to handle arbitrary changes in the graph.
Recently, Cohen and Tamassia [12] proposed a dynamic algorithm for the problem
by showing how dynamic expression trees can be used for maintaining st-mincuts
with O(logm) time for update operations. However, their algorithm could only han-
dle series-parallel diagraphs2.

Boykov and Jolly [7] were the first to use a partially dynamic st-mincut algo-
rithm in a vision application by proposing a technique with which they could update
capacities of certain graph edges, and recompute the st-mincut dynamically. They
used this method for performing interactive image segmentation, where the user
could improve segmentation results by giving additional segmentation cues (seeds)
in an online fashion. Specifically, they described a method for updating the cost
of t-edges in the graph. In this Section we present a new fully dynamic algorithm

2 Series-Parallel digraphs are graphs which are planar, acyclic and connected.
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for the st-mincut problem which allows for arbitrary changes in the graph3. Juan
and Boykov [30] proposed an algorithm in which instead of reusing flow, they used
the st-mincut solution corresponding to the previous problem for solving a new st-
mincut problem. Our work has been extended to the minimization of multi-label
non-submodular function in [3].

An outline of the Section follows. The relationship between energy and graph
reparameterization is explained in Section 3.3.2. Section 3.4 shows how exact st-
mincut solutions of dynamically changing graphs can be efficiently computed by
reusing flow. Specifically, it describes how the residual graph can be transformed
to reflect the changes in the original graph using graph reparameterization, and dis-
cusses issues related to the computational complexity of the algorithm. In Section
3.5, we describe how the process of recomputing the st-mincut/max-flow can be
further optimized by using recycled search trees.

3.3.2 Energy and Graph Reparameterization

We will now explain the concept of graph reparameterization which will be used
later to show how we can minimize dynamic energy functions.

Recall from equation 3.10 that a second order energy function can be written in
terms of an energy parameter vector θ as:

E(x|θ ) = θconst +∑
v∈V

(θv;1xv +θv;1xv)

+ ∑
(u,v)∈E

(θst;11xuxv +θst;01xuxv +θst;10xuxv +θst;00xuxv). (3.11)

Two energy parameter vectors θ1 and θ2 are called reparameterizations of each other
if and only if ∀x,E(x|θ1) = E(x|θ2) [6,35,56,72]. This definition simply means that
all possible labellings x have the same energy under both parameter vectors θ1 and
θ2, and does not imply that θ1 = θ2. There are a number of transformations which
can be applied to an energy parameter vector θ to obtain its reparameterization θ .
For instance the transformations given as:

∀i θ v;i = θv;i +α, θ const = θconst −α and (3.12)

∀i, j θ st;i j = θst;i j +α, θ const = θconst −α (3.13)

result in the reparameterization of the energy parameter vector.
As both parameters θ and θ define the same energy function, the minimum en-

ergy labelling for both will be the same i.e.

x∗ = argmin
x

E(x|θ1) = argmin
x

E(x|θ2) (3.14)

This in turn implies that the graphs constructed for minimizing the energy func-
tions E(x|θ1) and E(x|θ2) (using the procedure explained in the previous Section)

3 An earlier version of this Section appeared as [33].
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Fig. 3.5 Graph reparameterization. The Figure shows a graph G, its two reparameterizations
G1 and G2 along with their respective st-mincuts. The edges included in the st-mincut are
marked by dotted lines. The reparameterized graphs G1 and G2 are a results of two different
valid transformations of graph G. It can be clearly seen that reparameterized graphs G1 and
G2 have the same st-mincut as graph G.

will have the same st-mincut. We call these graphs reparameterizations of each
other. For any transformation of the energy function which results in such a repa-
rameterization we can derive a corresponding transformation for a graph. Under
these transformations the resulting graph will be a reparameterization of the original
graph and thus will have the same st-mincut. The graph transformations correspond-
ing to energy transformations given by equations (3.12) and (3.13) are shown in
Figure 3.5.

The transformations given above are not the only way to obtain a reparameteri-
zation. In fact pushing flow through any path in the graph can be seen as performing
a valid transformation. The residual graph resulting from this flow is a reparame-
terization of the original graph where no flow was being passed. This can be easily
observed from the fact that the residual graph has the same st-mincut as the original
graph, albeit with a different cost. In the next Section we show how the property
of graph reparameterization can be used for updating the residual graph when the
original graph has been modified and the st-mincut needs to be recomputed.

3.4 Recycling Computation

The max-flow solution obtained while minimizing an energy function can be used to
efficiently minimize other similar energy functions. Consider two energy functions
Ea and Eb which differ by a few terms. As we have seen in the previous Section,
this implies that the graph Gb representing energy Eb differs from that representing
energy Ea (Ga) by a few edge costs. Suppose we have found the optimal solution
of Ea by solving the max-flow problem on the graph Ga and now want to find the
solution of Eb. Instead of following the conventional procedure of recomputing the
max-flow on Gb from scratch, we perform the computation by reusing the flows
obtained while minimizing Ea.
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Boykov and Jolly [7], in their work on interactive image segmentation used this
technique for efficiently recomputing the MAP solution when only the unary terms
of the energy function change (due to addition of new hard and soft constraints by
the user). However, they did not address the problem of handling changes in the
pairwise terms of the energy function which result in changes in the cost of the n-
edges of the graph. Our method (explained below) can handle arbitrary changes in
the graph.

3.4.1 Updating Residual Graphs

The flows through a graph can be used to generate a residual graph (as explained in
Section 3.1). Our algorithm works by updating the residual graph obtained from the
max-flow computation in graph Ga to make it represent Gb. This is done by reducing
or increasing the residual capacity of an edge according to the change made to its
cost going from Ga to Gb.

Recall from equation (3.6) that the flow in an edge of the graph has to satisfy the
edge capacity constraint:

0≤ fi j ≤ ci j ∀(i, j) ∈ E. (3.15)

While modifying the residual graph, certain flows may violate the new edge capac-
ity constraints (3.15). This is because flow in certain edges might be greater than
the capacity of those edges under Gb. To make these flows consistent with the new
edge capacities, we reparameterize the updated graph (using reparameterizations de-
scribed in the previous Section) to make sure that the flows satisfy the edge capacity
constraints (3.15) of the graph. The max-flow is then computed on this reparameter-
ized graph. This gives us the st-mincut solution of graph Gb, and hence the global
minimum solution of energy Eb.

We now show how the residual graph is transformed to make sure that all edge
capacity constraints are satisfied. We use the two graph transformations given in
Section 3.3.2 to increase the capacities of edges in Gb in which the flow exceeds the
true capacity. These transformations lead to a reparameterization of the graph Gb.
We can then find the st-mincut on this reparameterized graph to get the st-mincut
solution of graph Gb.

The various changes that might occur to the graph going from Ga to Gb can be
expressed in terms of changes in the capacity of t-edges and n-edges of the graph.
The methods for handling these changes will be discussed now. We use c

′
si to refer to

the new edge capacity of the edge (s, i). r
′
si and f

′
si are used to represent the updated

residual capacity and flow of the edge (s, i) respectively.

Modifying t-edge Capacities

Our method for updating terminal or t-edges is similar to the one used in [7] and is
described below. The updated residual capacity of an edge (s, i) can be computed as:
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r
′
si = rsi + c

′
si− csi. (3.16)

This can be simplified to: r
′
si = c

′
si− fsi. If the flow fsi is greater than the updated

edge capacity c
′
si, it violates the edge capacity constraint (3.15) resulting in r

′
si be-

coming negative. To make the flow consistent a constant γ = fsi− c
′
si is added to

the capacity of both the t-edges {(s, i),(i, t)} connected to the node i. As has been
observed in Section 3.3.2 and in [7], this transformation is an example of graph
reparameterization which does not change the minimum cut (its cost changes but
not the cut itself). For an illustration see Figure 3.2. The residual capacities thus
become: r

′
si = c

′
si− fsi + γ = 0 and, r

′
it = cit − fit + γ, or r

′
it = rit − c

′
si + fsi.

Modifying n-edge Capacities

We now describe how the residual graph is updated when n-edge capacities are
changed. Observe that updating edge capacities in the residual graph is simple if
the new edge capacity c

′
i j is greater than or equal to the old edge capacity ci j. This

operation involves addition of extra capacity and thus the flow cannot become in-
consistent. The updated residual capacity r

′
i j is obtained as:

r
′
i j = ri j +(c

′
i j− ci j). (3.17)

Even if c
′
i j is less than ci j, the procedure still remains trivial if the flow fi j is less

than the new edge capacity c
′
i j. This is due to the fact that the reduction in the edge

capacity does not affect the flow consistency of the network i.e., flow fi j satisfies
the edge capacity constraint (3.15) for the new edge capacity. The residual capacity
of the edge can still be updated according to equation (3.17). The difference in
this case is that (c

′
i j− ci j) is negative and hence will result in the reduction of the

residual capacity. In both these cases, the flow through the edge remains unchanged
(i.e., f

′
i j = fi j).

The problem becomes complex when the new edge capacity c
′
i j is less than the

flow fi j. In this case, fi j violates the edge capacity constraint (3.15). To make fi j

consistent, we have to retract the excess flow ( fi j - c
′
i j) from the edge (i, j). At this

point, the reader should note that a trivial solution for this operation would be to push
back the flow through the augmenting path it originally came through. However such
an operation would be extremely computationally expensive. We now show how we
resolve this inconsistency in constant i.e. O(1) time.

The inconsistency arising from excess flow through edge (i, j) can be resolved
by a single valid transformation of the residual graph. This transformation is the
same as the one shown in Figure 3.2 for obtaining graph G2 from G, and does not
change the st-mincut. It leads to a reparameterization of the residual graph which
has non-negative residual capacity for the edge (i, j). The transformation involves
adding a constant α = fi j − c

′
i j to the capacity of edges (s, i),(i, j), and ( j, t) and

subtracting it from the residual capacity of edge ( j, i). The residual capacity r ji of
edge ( j, i) is greater than the flow fi j passing through edge (i, j). As α is always
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Fig. 3.6 Restoring consistency using graph reparameterization. The Figure illustrates how
edge capacities can be made consistent with the flow by reparameterizing the residual graph.
It starts by showing a residual graph consisting of two nodes i and j obtained after a max-flow
computation. For the second max-flow computation the capacity of edge (i, j) is reduced by
3 units resulting in the updated residual graph in which the residual capacity of edge (i, j) is
equal to -1. To make the residual capacities positive we reparameterize the graph by adding
α = 1 to the capacity of edges (i, j), (s, i) and ( j,t) and subtracting it from the capacity of edge
( j, i). This gives us the reparameterized residual graph in which the edge flows are consistent
with the edge capacities.

less than fi j the above transformation does not make the residual capacity of edge
( j, i) negative. The procedure for restoring consistency is illustrated in Figure 3.6.

3.4.2 Computational Complexity of Update Operations

In this Section we analyze the computational complexity of various update opera-
tions that can be performed on the graph. Modifying an edge cost in the residual
graph takes constant time. Arbitrary changes in the graph like addition or deletion
of nodes and edges can be expressed in terms of modifying an edge cost. The time
complexity of all such changes is O(1) except for deleting a node where the update
time is O(k). Here k is the degree of the node to be deleted4.

After the residual graph has been updated to reflect the changes in the energy
function, the augmenting path procedure is used to find the maximum flow. This
involves repeatedly finding paths with free capacity in the residual graph and satu-
rating them. When no such paths can be found i.e., the source and sink are discon-
nected in the residual graph, we reach the maximum flow.

The maximum flow from the source to the sink is an upper bound on the number
of augmenting paths found by the augmenting path procedure. Also, the total change
in edge capacity bounds the increase in the flow ∇ f defined as:

4 The capacity of all edges incident on the node has to be made zero which takes O(1) time
per edge.



3 Dynamic Graph Cuts and Their Applications in Computer Vision 65

∇ f ≤
m
′

∑
i=1

|c′ei
− cei |, where ei ∈ E

or, ∇ f ≤ m
′
cmax where cmax = max(|c′ei

− cei |). Thus we get a loose O(m
′
cmax)

bound on the number of augmentations, where m
′

is the number of edge capacity
updates.

3.5 Improving Performance by Recycling Search Trees

We have seen how by dynamically updating the residual graph we can reduce the
time taken to compute the st-mincut. We can further improve the running time by
using a technique motivated by [8].

Typical augmenting path based methods start a new breadth-first search for
(source to sink) paths as soon as all paths of a given length are exhausted. For
instance, Dinic [16] proposed an augmenting path algorithm which builds search
trees to find augmenting paths. This is a computationally expensive operation as it
involves visiting almost all nodes of the graph and makes the algorithm slow if it has
to be performed too often. To counter this, Boykov and Kolmogorov [8] proposed an
algorithm in which they reused the search tree. In their experiments, this new algo-
rithm outperformed the best-known augmenting-path and push-relabel algorithms
on graphs commonly used in computer vision.

Motivated from their results we decided to reuse the search trees available from
the previous max-flow computation to find the solution in the updated residual
graph. This technique saved us the cost of creating a new search tree and made
our algorithm substantially faster. The main differences between our algorithm and
that of [8] are the presence of the tree restoration stage, and the dynamic selection of
active nodes. We will next describe how the algorithm of [8] works and then explain
how we modify it to recycle search trees for dynamic graph cuts.

3.5.1 Reusing Search Trees

The algorithm described in [8] maintains two non-overlapping search trees S and T
with roots at the source s and the sink t respectively. In tree S all edges from each
parent node to its children are non-saturated, while in tree T edges from children
to their parents are non-saturated. The nodes that are not in S or T are called free.
The nodes in the search trees S and T can be either active (can grow by acquiring
new children along non-saturated edges) or passive. The algorithm starts by setting
all nodes adjacent to the terminal nodes as active. The three basic stages of the
algorithm are as follows:

Growth Stage

The search trees S and T are grown until they touch each other (resulting in an
augmenting path) or all nodes become passive. The active nodes explore adjacent
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non-saturated edges and acquire new children from the set of free nodes which now
become active. As soon as all neighbours of a given active node are explored, the
active node becomes passive. When an active node comes in contact with a node
from the other tree, an augmenting path is found.

Augmentation Stage

In this stage of the algorithm, flow is pushed through the augmenting path found in
the growth stage. This results in some nodes of the trees S and T becoming orphans
since the edges linking them to their parents become saturated. At this point, the
source and sink search trees have decomposed into forests.

Adoption Stage

During the adoption stage the search trees are restored by finding a new valid parent
(of the same set) through a non-saturated edge for each orphan. If no qualifying
parent can be found, the node is made free.

3.5.2 Tree Recycling for Dynamic Graph Cuts

We now explain our method for recycling search trees of the augmenting path algo-
rithm. Our algorithm differs from that of [8] in the way we initialize the set of active
nodes and in the presence of the tree restoration stage.

Tree Restoration Stage

While dynamically updating the residual graph (as explained in Section 3.4) certain
edges of the search trees may become saturated and thus need to be deleted. This
operation results in the decomposition of the trees into forests and makes certain
nodes orphans. We keep track of all such edges and before recomputing the st-
mincut on the modified residual graph restore the trees by finding a new valid parent
for each of them. This process is similar to the adoption stage and is explained
below.

The aim of the tree restoration stage is two fold. First to find parents for orphaned
nodes, and secondly but more importantly, to make sure that the length of the path
from the root node to all other nodes in the tree is as small as possible. This is
necessary to reduce the time spent passing flow through an augmenting path. Note
that longer augmenting paths would lead to a slower algorithm. This is because the
time taken to update the residual capacities of the edges in the augmenting path
during the augmentation stage is proportional to the length of the path.

The first objective of the restoration stage can be met by using the adoption stage
alone. For the second objective we do the following: Suppose node i belonged to
the source tree before the updates. For each graph node i which has been affected
by the graph updates we check the residual capacities of its t-edges ((s, i) or (i, t)).
We can encounter the following two cases:
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1. rsi≥ rit : The original parent of the node (in this case, the source (s)) is reassigned
as the parent of the node.

2. rsi < rit : The parent of the node is changed to the other terminal node ‘sink’
(t). This means that the node has now become a member of sink tree T . All the
immediate child nodes of i are then made orphans as they had earlier belonged
to the source tree.

The reassignment of parents of updated nodes according to the above mentioned
rules resulted in a moderate but significant improvement in the results.

Dynamic Node Activation

The algorithm of [8] starts by marking the set of all nodes adjacent to the terminal
nodes as active. This set is usually large and exploring all its constituent nodes is
computationally expensive. However this is necessary as an augmenting path can
pass through any such node.

In the case of the dynamic st-mincut problem, we can isolate a much smaller
subset of nodes which need to be explored for possible augmenting paths. The key
observation to be made in this regard is that all new possible augmenting paths are
constrained to pass through nodes whose edges have undergone a capacity change.
This results in a much smaller active set and makes the max-flow computation sig-
nificantly faster. When no changes are made to the graph, all nodes in the graph re-
main passive and thus our augmenting path algorithm for computing the max-flow
takes no time.

3.6 Dynamic Image Segmentation

The dynamic graph cut algorithm proposed in the previous Section can be used to
dynamically perform MAP inference in an MRF or CRF. Such an inference procedure
is extremely fast and has been used for a number of computer vision problems [34,
10, 25, 54].

We now describe some applications of dynamic graph cuts. To demonstrate the
efficiency of the algorithm, we will provide quantitative results comparing its per-
formance with the dual-search tree algorithm proposed in [8] which has been ex-
perimentally shown to be the fastest for several vision problems including image
segmentation5.

We will call the algorithm of [8] static since it starts afresh for each problem in-
stance. The dynamic algorithm which reuses the search trees will be referred to as
the optimized dynamic graph cut algorithm. It should be noted that while comparing
running times the time taken to allocate memory for graph nodes was not consid-
ered. Further, to make the experimental results invariant to cache performance we
kept the graphs in memory.

Image segmentation has always remained an iconic problem in computer vision.
The past few years have seen rapid progress made on it driven by the emergence of

5 For the static algorithm we used the author’s original implementation.
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(a) (b) (c)

Fig. 3.7 Interactive image segmentation. The Figure shows how good segmentation results
can be obtained using a set of rough region cues supplied by the user. (a) An image with
user specified segmentation cues (shown in blue and red). These cues were used to obtain the
segmentation shown in image (b). This segmentation is not perfect and can be improved by
specifying additional cues which are shown in (b). The final segmentation result is shown in
image (c).

powerful optimization algorithms such as graph cuts. Early methods for perform-
ing image segmentation worked by coupling colour appearance information about
the object and background with the edges present in an image to obtain good seg-
mentations. However, this framework does not always guarantee good results. In
particular, it fails in cases where the colour appearance models of the object and
background are not discriminative.

A semi-automated solution to this problem was explored by Boykov and Jolly [7]
in their work on interactive image segmentation. They showed how users could
refine segmentation results by specifying additional constraints. This can be done
by labelling particular regions of the image as ‘object’ or ‘background’ and then
computing the MAP solution of the CRF again. The interactive image segmentation
process is illustrated in Figure 3.7.

3.6.1 CRFs for Image Segmentation

The image segmentation problem is commonly formulated using the CRF model
described in Section 3.1. In the context of image segmentation, the vertex set V cor-
responds to the set of all image pixels, N is a neighbourhood defined on this set6,
the set L consists of the labels representing the different image segments (which
in our case are ‘foreground’ and ‘background’), and the value xv denotes the la-
belling of the pixel v of the image. Every configuration x of such a CRF defines
a segmentation. The image segmentation problem can thus be solved by finding the
least energy configuration of the CRF.

The energy function characterizing the CRFs used for image segmentation can
be written as a sum of likelihood (φ(D|xi)) and prior (ψ(xi,x j)) terms as:

6 In this work, we have used the standard 8-neighbourhood i.e., each pixel is connected to
the 8 pixels surrounding it.
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Fig. 3.8 The pairwise MRF commonly used to model image labelling problems. The random
field contains a hidden node corresponding to each pixel in the image. The MRF shown in the
figure has a 4-neighbourhood, i.e., each node representing the random variables is connected
to 4 neighbouring nodes.

Ψ1(x) = ∑
i∈V

(

φ(D|xi)+ ∑
j∈Ni

ψ(xi,x j)

)

+ const. (3.18)

The term φ(D|xi) in the CRF energy is the data log likelihood which imposes individ-
ual penalties for assigning any label k ∈ L to pixel i. If we only take the appearance
model into consideration, the likelihood is given by

φ(D|xi) =− log p(i ∈ Sk|Hk) if xi = k, (3.19)

where Hk is the RGB (or for grey scale images, the intensity value) distribution for
the segment Sk denoted by label k ∈ L 7. The probability of a pixel belonging to
a particular segment i.e. p(i ∈ Sk|Hk) is proportional to the likelihood p(Ii|Hk),
where Ii is the colour intensity of the pixel i. The likelihood p(Ii|Hk) is generally
computed from the colour histogram of the pixels belonging to the segment Sk.

The prior ψ(xi,x j) terms takes the form of a Generalized Potts model:

ψ(xi,x j) =
{

Ki j if xi �= x j,
0 if xi = x j.

(3.20)

The CRF used to model the image segmentation problem also contains a contrast
term which favours pixels with similar colours having the same label [5, 7]. This
term is incorporated in the energy function by increasing the cost within the Potts
model (for two neighbouring variables being different) in proportion to the simi-
larity in intensities of their corresponding pixels. In our experiments, we use the
function:

γ(i, j) = λ exp

(−g2(i, j)
2σ2

)
1

dist(i, j)
, (3.21)

where g2(i, j) measures the difference in the RGB values of pixels i and j and
dist(i, j) gives the spatial distance between i and j. This is a likelihood term (not

7 In our problem, we have only 2 segments i.e., the foreground and the background.
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prior) as it is based on the data, and hence has to be added separately from the
smoothness prior. The energy function of the CRF now becomes

Ψ2(x) = ∑
i∈V

(

φ(D|xi)+ ∑
j∈Ni

(φ(D|xi,x j)+ψ(xi,x j))

)

(3.22)

The contrast term of the energy function has the form

φ(D|xi,x j) =
{
γ(i, j) if xi �= x j

0 if xi = x j.
(3.23)

By adding this term to the energy, we have diverged from the strict definition of an
MRF. The resulting energy function in fact now characterizes a Conditional Random
Field [42]. The pairwise MRF commonly used to model image labelling problems is
shown in Figure 3.8.

3.6.2 Image Segmentation in Videos

The object-background segmentation problem aims to cut out user specified objects
in an image [7]. We consider the case when this process has to be performed over
all frames in a video sequence. The problem is formulated as follows.

The user specifies hard and soft constraints on the segmentation by providing
segmentation cues or seeds on only the first frame of the video sequence. The soft
constraints are used to build colour histograms for the object and background. These
histograms are later used for calculating the likelihood term φ(D|xi) of the energy
function (3.22) of the CRF. This is done for all the frames of the video sequence.

The hard constraints are used for specifying pixel positions which are con-
strained to take a specific label (object or background) in all the frames of the video
sequence. Note that unlike soft constraints, the pixel positions specified under hard
constraints do not contribute in the construction of the colour histograms for the
object and background. This is different from the user-input strategy adopted in [7].
In our method the hard constraints are imposed on the segmentation by incorporat-
ing them in the likelihood term φ(D|xi). This is done by imposing a very high cost
for a label assignment that violates the hard constraints in a manner similar to [7].
This method for specifying hard constraints has been chosen because of its sim-
plicity. Readers should refer to [73] for a sophisticated method for specifying hard
constraints for the video segmentation problem. Figure 3.9 demonstrates the use of
constraints in the image segmentation process. The segmentation results are shown
in Figure 3.10.

3.6.3 Experimental Results

In this Section we demonstrate the performance of our dynamic graph cut algorithm
on the image segmentation problem. We compare the time taken by our algorithm
with that needed by the algorithm proposed in [8].
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Fig. 3.9 Segmentation in videos using user seeds. The first image shows one frame of the
input video with user segmentation seeds (the black and white boxes). The image pixels
contained in these boxes are used to learn histograms modelling foreground and background
likelihoods. The second image shows the segmentation result obtained using these likelihoods
with the method of [7]. The result contains a certain portion of the background wrongly
marked as the foreground due to similarity in colour. This error in the segmentation can be
removed by the user by specifying a hard constraint. This involves marking a set of pixel
positions in the wrongly labelled region as background (shown as the checkered region in
the second image). This constraint is used for all the frames of the video sequence. The third
image is the final segmentation result.

Fig. 3.10 Segmentation results of the human lame walk video sequence.

In the interactive image segmentation experiments, we observed that dynamic
graph cuts resulted in a massive improvement in the running time. For the image
shown in Figure 3.7, the time taken by the static st-mincut algorithm to compute
the refined solution (from scratch) was 120 milliseconds. The dynamic algorithm
computed the same solution in 45 milliseconds, while the dynamic (optimized) al-
gorithm only required 25 milliseconds.

We now discuss the results of image segmentation in videos. The video se-
quences used in our tests had between one hundred to a thousand image frames.
For all the video sequences dynamically updating the residual graph produced a
decrease in the number of augmenting paths. Further, the dynamic algorithms (nor-
mal and optimized) were substantially faster than the static algorithm. The average
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Fig. 3.11 Running time and number of augmenting paths found by static and dynamic st-
mincut algorithms. Observe that as the first and second frames of the video sequence are the
same, the residual graph does not need to be updated, which results in no augmenting paths
found by the dynamic algorithms when segmenting frame 2. Further, the optimized dynamic
algorithm takes no time for computing the segmentation for the second image frame as the
CRFs corresponding to the first and second image frames are the same and thus no modifi-
cations were needed in the residual graph and search trees. However, the normal dynamic
algorithm takes a small amount of time since it recreates the search trees for every problem
instance from scratch.

running times per image frame for the static, dynamic and optimized-dynamic al-
gorithms for the human lame walk sequence8 of size 368x256 were 91.4, 66.0, and
33.6 milliseconds and for the grazing cow sequence of size 720x578 were 188.8,
151.3, and 78.0 milliseconds respectively. The time taken by the dynamic algorithm

8 Courtesy Derek Magee, University of Leeds.
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includes the time taken to recycle the search trees. The experiments were performed
on a Pentium 4 2.8 GHz machine.

The graphs in Figure 3.11 show the performance of the algorithms on the first
sixty frames of the human lame walk sequence. Observe that the number of aug-
menting paths found is lowest for the dynamic algorithm, followed by the dynamic
(optimized) and then the static algorithm. The use of more augmenting paths by
the dynamic (optimized) algorithm is due to the utilization of recycled search trees
which produce long augmenting paths.

3.6.4 Reusing Flow vs. Reusing Search Trees

In this Section, the relative contributions of reusing flow and search trees in improv-
ing the running time of the dynamic algorithm are discussed.

The procedure for constructing a search tree has linear time complexity and thus
should be quite fast. Further as seen in Figure 3.11 using a fresh search tree after
every graph update results in fewer augmenting paths. From these results it might
appear that recycling search trees would not yield a significant improvement in run-
ning time. However this is not the case in practice as seen in Figure 3.12. This is
because although the complexity of search tree construction is linear in the number
of edges in the graph, the time taken for tree construction is still substantial. This is
primarily due to the nature of graphs used in computer vision problems. The number
of nodes/edges in these graphs may be of the order of millions. For instance, when
segmenting an image of size 640×480, max-flow on a graph consisting of roughly
3×105 nodes and more than 2 million edges needs to be computed. The total time
taken for this operation is 90 milliseconds (msec) out of which almost 15 msec is
spent on constructing the search tree.

The time taken by the dynamic algorithm to compute the st-mincut decreases
with the decrease in the number of changes made to the graph. However, as the
time taken to construct the search tree is independent of the number of changes, it
remains constant. This results in a situation where if only a few changes to the graph
are made (as in the case of min-marginal computation [34]), the dominant part of
computation time is spent on constructing the search tree itself. By reusing search
trees we can get rid of this constant cost of creating a search tree and replace it with
a change dependent tree restoration cost.

The exact amount of speed-up contributed by reusing flow and search trees tech-
niques varies with the problem instance. For a typical interactive image segmenta-
tion example, the first st-mincut computation takes 120 msec out of which 30 msec
is spent on constructing the search tree. We need to recompute the st-mincut af-
ter further user interaction (which results in changes in the graphs). For the later
st-mincut computation, if we construct a new search tree then the time taken by
the algorithm is 45 msec (a speed up of roughly 3 times) out of which 30 msec is
used for tree creation and 15 msec is used for flow computation. However, if we
use reuse the search trees, then the algorithm takes only 25 msec (a speed up of 5
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Fig. 3.12 Behavior of the dynamic algorithm. The Figure illustrates how the time taken by the
dynamic algorithm (with/without tree recycling) changes with the number of modifications
made to the graph. The graph shows the fraction of time taken to compute the st-mincut in the
updated residual graph (with/without tree recycling) compared to that taken for computing
the st-mincut in the original graph using the algorithm of [8]. For this experiment, we used a
graph consisting of 1×105 nodes which were connected in a 8-neighbourhood. The dynamic
algorithm with tree recycling is referred as dynamic(op).

times) out of which 7 msec is used for recycling the tree and 18 msec is used for
flow computation.

Our results indicate that when a small number of changes are made to the graph
the recycled search tree works quite well in obtaining short augmenting paths. The
time taken for recycling search trees is also small compared to the time taken to
create a new search tree in a large graph. With increased change in the graph the
advantage in using the recycled search tree fades due to the additional number of
flow augmentations needed as a result of longer augmentation paths obtained from
the search tree.

3.7 Simultaneous Segmentation and Pose Estimation of
Humans

In this Section we present a novel algorithm for performing integrated segmentation
and 3D pose estimation of a human body from multiple views. Unlike other state of
the art methods which focus on either segmentation or pose estimation individually,
our approach tackles these two tasks together. Our method works by optimizing a
cost function based on a Conditional Random Field (CRF). This has the advantage
that all information in the image (edges, background and foreground appearances),
as well as the prior information on the shape and pose of the subject can be combined
and used in a Bayesian framework. Optimizing such a cost function would have been
computationally infeasible earlier. However, our recent research in dynamic graph
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cuts allows this to be done much more efficiently than before. We demonstrate the
efficacy of our approach on challenging motion sequences. Although we target the
human pose inference problem in this work, our method is completely generic and
can be used to segment and infer the pose of any rigid, deformable or articulated
object.

Human pose inference is an important problem in computer vision. It stands at
the crossroads of various important applications ranging from Human Computer
Interaction (HCI) to surveillance. The importance and complexity of this prob-
lem can be gauged by observing the number of papers which have tried to deal
with it [1, 18, 31, 57, 23, 58, 60, 68, 43, 15, 46, 51]. Most algorithms which perform
pose estimation require the segmentation of humans as an essential introductory
step [1, 31, 57]. This precondition limits the use of these techniques to scenarios
where good segmentations are made available by enforcing strict studio conditions
like blue-screening. Otherwise a preprocessing step must be performed in an attempt
to segment the human, such as [62]. These approaches however cannot obtain good
segmentations in challenging scenarios which have: complex foreground and back-
ground, multiple objects in the scene, and moving camera/background. Some pose
inference methods exist which do not need segmentations. These rely on features
such as chamfer distance [23], appearance [58], or edge and intensity [60]. How-
ever, none of these methods is able to efficiently utilize all the information present
in an image, and fail if the feature detector they are using fails. This is partly because
the feature detector is not coupled to the knowledge of the pose and nature of the
object to be segmented.

The question is then, how to simultaneously obtain the segmentation and human
pose using all available information contained in the images?

Some elements of the answer to this question have been described by Kumar et
al. [40]. Addressing the object segmentation problem, they report that “samples
from the Gibbs distribution defined by a Markov Random Field very rarely give rise
to realistic shapes”. As an illustration of this statement, Figure 3.13(b) shows the
segmentation result corresponding to the maximum a posteriori (MAP) solution of
the Conditional Random Field (CRF) incorporating information about the image
edges and appearances of the object and background. It can be clearly seen that this
result is nowhere close to the ground truth.

Shape Priors and Segmentation

In recent years, a number of papers have tried to couple MRFs or CRFs used for
modelling the image segmentation problem, with information about the nature and
shape of the object to be segmented [40, 26, 21, 78]. One of the earliest methods
for combining MRFs with a shape prior was proposed by Huang et al. [26]. They
incrementally found the MAP solution of an extended MRF9 integrated with a proba-
bilistic deformable model. They were able to obtain a refined estimate of the object

9 It is named an extended MRF due to the presence of an extra layer in the MRF to cope with
the shape prior.
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Fig. 3.13 Improving segmentation results by incorporating more information in the CRF.
(a) Original image. (b) The segmentation obtained corresponding to the MAP solution of
a CRF consisting of colour likelihood and contrast terms as described in [7]. We give the
exact formulation of this CRF in Section 3.6.1. (c) The result obtained when the likelihood
term of the CRF also takes into account the Gaussian Mixture Models (GMM) of individual
pixel intensities as described in Section 3.7.1. (d) Segmentation obtained after incorporating a
‘pose-specific’ shape prior in the CRF as explained in Section 3.7.1. The prior is represented
as the distance transform of a stickman which guarantees a human-like segmentation. (e) The
stickman model after optimization of its 3D pose (see Section 3.7.2). Observe how incorpo-
rating the individual pixel colour models in the CRF (c) gives a considerably better result
than the one obtained using the standard appearance and contrast based representation (b).
However the segmentation still misses the face of the subject. The incorporation of a stick-
man shape prior ensures a human-like segmentation (d) and provides simultaneously (after
optimization) the 3D pose of the subject (e).

contour by using belief propagation in the area surrounding the contour of this de-
formable model. This process was iterated till convergence.

The problem however was still far from being completely solved since objects
in the real world change their shapes constantly and hence it is difficult to ascertain
what would be a good choice for a prior on the shape. This complex and important
problem was addressed by the work of Kumar et al. [40]. They modelled the seg-
mentation problem by combining CRFs with layered pictorial structures (LPS) which
provided them with a realistic shape prior described by a set of latent shape parame-
ters. Their cost function was a weighted sum of the energy terms for different shape
parameters (samples). The weights of this energy function were obtained by using
the Expectation-Maximization (EM) algorithm. During this optimization procedure,
a graph cut had to be computed in order to obtain the segmentation score each time
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any parameter of the CRF was changed. This made their algorithm extremely com-
putationally expensive.

Although their approach produced good results, it had some shortcomings. It was
focused on obtaining good segmentations and did not provide the pose of the ob-
ject explicitly. Moreover, a lot of effort had to be spent to learn the exemplars for
different parts of the LPS model. Recently, Zhao and Davis [78] exploited the idea
of object-specific segmentation to improve object recognition and detection. Their
method worked by coupling the twin problems of object detection and segmenta-
tion in a single framework. They matched exemplars to objects in the image using
chamfer matching and thus like [40] also suffered from the problem of maintaining
a huge exemplar set for complex objects. We will describe how we overcome the
problem of maintaining a huge exemplar set by using a simple articulated stickman
model, which is not only efficiently renderable, but also provides a robust human-
like segmentation and accurate pose estimate. To make our algorithm computation-
ally efficient we use the dynamic graph cut algorithm.

Shape Priors in Level Sets

Prior knowledge about the shape to be segmented has also been used in level set
methods for obtaining an object segmentation. Like [40] these methods learn the
prior using a number of training shapes. Leventon et al. [45] performed principal
component analysis on these shapes to get an embedding function which was inte-
grated in the evolution equation of the level set. More recently, Cremers et al. [13]
have used kernel density estimation and intrinsic alignment to embed more complex
shape distributions. Compared to [40] and [78] these methods have a more compact
representation of the shape prior. However, they suffer from the disadvantage that
equations for level set evolution may lead to a local minima.

Human Pose Estimation

In the last few years, several techniques have been proposed for tackling the pose
inference problem. In particular, the works of Agarwal and Triggs [1] using rele-
vance vector machines and that of Shakhnarovich et al. [57] based on parameter
sensitive hashing induced a lot of interest and have been shown to give good re-
sults. Some methods for human pose estimation in monocular images use a tree-
structured model to capture the kinematic relations between parts such as the torso
and limbs [46, 18, 51]. They then use efficient inference algorithms to perform ex-
act inference in such models. In their recent work, Lan and Huttenlocher [43] show
how the tree-structured restriction can be overcome while not greatly increasing the
computational cost of estimation.

Overview of the Method

Our method does not require a feature extraction step but uses all the data in the
image. We formulate the problem in a Bayesian framework building on the object-
specific CRF [40] and provide an efficient method for its solution called POSECUT.
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We include a human pose-specific shape prior in the CRF used for image segmen-
tation, to obtain high quality segmentation results. We refer to this integrated model
as a pose-specific CRF. Unlike Kumar et al. [40], our approach does not require the
laborious process of learning exemplars. Instead we use a simple articulated stick-
man model, which together with an CRF is used as our shape prior. The experimental
results show that this model suffices to ensure human-like segmentations.

Given an image, the solution of the pose-specific CRF is used to measure the qual-
ity of a 3D body pose. This cost function is then optimized over all pose parameters
using dynamic graph cuts to provide both an object-like segmentation and the pose.
The astute reader will notice that although we focus on the human pose inference
problem, our method is in-fact general and can be used to segment and/or infer the
pose of any object. We believe that our methodology is completely novel and we are
not aware of any published methods which perform simultaneous segmentation and
pose estimation. To summarize, the novelties of our approach include:

• An efficient method for combined object segmentation and pose estimation
(POSECUT).

• Integration of a simple ‘stickman prior’ based on the skeleton of the object in a
CRF to obtain a pose-specific CRF which helps us in obtaining high quality object
pose estimate and segmentation results.

3.7.1 Pose Specific CRF for Image Segmentation

The CRF framework for image segmentation described in Section 3.6.1 uses likeli-
hood terms which are only based on the pixel colour. This term is quite weak and
thus does not always guarantee good results. In particular, it fails in cases where the
colour appearance models of the object and background are not discriminative as
seen in Figure 3.13(b). The problem becomes even more pronounced in the case of
humans where we have to deal with the various idiosyncracies of human clothing.

From the work of Boykov and Jolly [7] on interactive image segmentation we
made the following interesting observations:

• Simple user supplied shape cues used as rough priors for the object segmentation
problem produced excellent results.

• The exact shape of the object can be induced from the edge information embed-
ded in the image.

Taking these into consideration, we hypothesized that the accurate exemplars used
in [40] to generate shape priors were in-fact an overkill and could be replaced by
much simpler models. Motivated by these observations we decided against using a
sophisticated shape prior. We have used two simple models in our work which are
described below.

Stickman Model

We used a simple articulated stickman model for the full body human pose estima-
tion problem. The model is shown in Figure 3.13(e). It is used to generate a rough
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pose-specific shape prior on the segmentation. As can been seen from the segmen-
tation results in Figure 3.13(d), the stickman model helped us to obtain excellent
segmentation results. The model has 26 degrees of freedom consisting of param-
eters defining absolute position and orientation of the torso, and the various joint
angle values. There were no constraints or joint-limits incorporated in our model.

The Upper body Model

The second model was primarily designed for the problem of segmenting the human
speaker in video conference scenarios. The model can be seen in Figure 3.14. It
is parameterized by 6 parameters which encode the x and y location of the two
shoulders and the length and angle of the neck.

We now describe how the image segmentation problem can be modeled using
a pose-specific CRF. Our pose specific CRF is obtained by augmenting the conven-
tionally used CRF model for image segmentation (see Section 3.6.1) with potentials
based on the shape of the object to be segmented, and appearances of individual
pixels.

Modeling Pixel Intensities by Gaussian Mixture Models

The CRF defined in Section 3.6.1 performs poorly when segmenting images in which
the appearance models of the foreground and background are not highly discrimina-
tive. When working on video sequences, we can use a background model developed
using the Grimson-Stauffer [62] algorithm to improve our results. This algorithm
works by representing the colour distribution of each pixel position in the video as
a Gaussian Mixture Model (GMM). The likelihoods of a pixel for being background
or foreground obtained by this technique are integrated in our CRF. Figure 3.13(c)
shows the segmentation result obtained after incorporating this information in our
CRF formulation.

Fig. 3.14 The human upper body model. (a) The human upper body model parameterized
by 6 parameters encoding the x and y location of the two shoulders, the length of the neck,
and the angle of the neck with respect to the vertical. (b) The shape prior generated using the
model. Pixels more likely to belong to the foreground/background are green/red. (c) and (d)
The model rendered in two poses.
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Incorporating the Pose-specific Shape Prior

Though the results obtained from the above formulation look decent, they are not
perfect. Note that there is no prior on the segmentation to look human like. Intu-
itively, incorporating such a constraint in the CRF would improve the segmentation.
In our case, this prior should be pose-specific as it depends on what pose the object
(the human) is in. Kumar et. al. [40], in their work on interleaved object recognition
and segmentation, used the result of the recognition to develop a shape prior over
the segmentation. This prior was defined by a set of latent variables which favoured
segmentations of a specific pose of the object. They called this model the Object
Category Specific CRF, which had the following energy function:

Ψ3(x,ω) =∑
i
(φ(D|xi)+φ(xi|ω)+∑

j
(φ(D|xi,x j)+ψ(xi,x j))) (3.24)

with posterior p(x,ω |D) = 1
Z3

exp(−Ψ3(x,ω)). Here ω ∈ Rp is used to denote the
vector of the object pose parameters. The shape-prior term of the energy function for
a particular pose of the human is shown in Figure 3.15(e). This is a distance trans-
form generated from the stick-man model silhouette using the fast implementation
of Felzenszwalb and Huttenlocher [17].

The function φ(xi|ω) was chosen such that given an estimate of the location and
shape of the object, pixels falling near to that shape were more likely to be labelled
as ‘foreground’ and vice versa. It has the form: φ(xi|ω) =− log p(xi|ω). We follow
the formulation of [40] and define p(xi|ω) as

p(xi = figure|ω) = 1− p(xi = ground|ω) =
1

1 + exp(μ ∗ (d(i,ω)−dr))
, (3.25)

where d(i,ω) is the distance of a pixel i from the shape defined byω (being negative
if inside the shape). The parameter dr decides how ‘fat’ the shape should be, while
parameter μ determines the ratio of the magnitude of the penalty that points outside
the shape have to face, compared to the points inside the shape.

Inference in the CRF Using Graph Cuts

Recall from Section 3.1 that energy functions like the one defined in (3.24) can be
solved using graph cuts if they are sub-modular [38]. A function f : {0,1}n→ R is
submodular if and only if all its projections on 2 variables ( f p : {0,1}2→R) satisfy:

f p(0,0)+ f p(1,1)≤ f p(0,1)+ f p(1,0). (3.26)

For the pairwise potentials, this condition can be seen as implying that the energy
for two labels taking similar values should be less than the energy for them taking
different values. In our case, this is indeed the case and thus we can find the optimal
configuration x∗ = minxΨ3(x,ω) using a single graph cut. The labels of the latent
variable in this configuration give the segmentation solution.
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Fig. 3.15 Different terms of our pose specific CRF. (a) Original image. (b) The ratios of
the likelihoods of pixels being labelled foreground/background (φ(D|xi = ‘fg’)− φ(D|xi =
‘bg’)). These values are derived from the colour intensity histograms. (c) The segmentation
results obtained by using the GMM models of pixel intensities. (d) The stickman in the opti-
mal pose (see Sections 3.7.1 and 3.7.2). (e) The shape prior (distance transform) correspond-
ing to the optimal pose of the stickman. (f) The ratio of the likelihoods of being labelled
foreground/background using all the energy terms (colour histograms defining appearance
models, GMMs for individual pixel intensities, and the pose-specific shape prior (see Sec-
tions 3.6.1,3.7.1 and 3.7.1))Ψ3(xi = ‘fg’,ω)−Ψ3(xi = ‘bg’,ω). (g) The segmentation result
obtained from our algorithm which is the MAP solution of the energyΨ3 of the pose-specific
CRF.



82 P. Kohli and P.H.S. Torr

3.7.2 Formulating the Pose Inference Problem

Since the segmentation of an object depends on its estimated pose, we would like
to make sure that our shape prior reflects the actual pose of the object. This takes
us to our original problem of finding the pose of the human in an image. In order
to solve this, we start with an initial guess of the object pose and optimize it to find
the correct pose. When dealing with videos, a good starting point for this process
would be the pose of the object in the previous frame. However, more sophisticated
methods could be used based on object detection [63] at the expense of increasing
the computation time.

One of the key contributions of this work is to show how given an image of the
object, the pose inference problem can be formulated in terms of an optimization
problem over the CRF energy given in (3.24). Specifically, we solve the problem:

ωopt = argmin
ω,x
Ψ3(x,ω)). (3.27)

The minimization problem defined above contains both discrete (x ∈ {0,1}n) and
continuous (ω ∈ RP) valued variables and thus is a mixed integer programming
problem. The large number of variables involved in the energy functionΨ3(x,ω))
make it especially challenging to minimize. To solve the minimization problem
(3.27), we decompose it as: ωopt = argminωF(ω), where

F(ω) = min
x
Ψ3(x,ω)). (3.28)

For any value of ω , the function Ψ3(x,ω)) is submodular in x and thus can be
minimized in polynomial time by solving a single st-mincut problem to give the
value of F(ω).

Fig. 3.16 Inferring the optimal pose. a) The values of minxΨ3(x,ω) obtained by varying the
global translation and rotation of the shape prior in the x-axis. b) Original image. c) The pose
obtained corresponding to the global minimum of the energy.
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Fig. 3.17 Optimizing the pose parameters. (a) The values of minxΨ3(x,ω) obtained by vary-
ing the rotation and length parameters of the neck. (b) The image shows five runs of the
Powell minimization algorithm [49] which are started from different initial solutions.

We will now explain how we minimize F(ω) to get the optimal value of the
pose parameters. Figure 3.16 shows how the function F(ω) depends on parameters
encoding the rotation and translation of our stickman model in the x-axes. It can
be seen that the function surface is unimodal in a large neighbourhood of the op-
timal solution. Hence, given a good initialization of the pose ω , it can be reliably
optimized using any standard optimization algorithm like gradient descent. In our
experiments, we used the Powell minimization [49] algorithm for optimization.

Figure 3.17(a) shows how the function F(ω) changes with changes to the neck
angle and length parameters of the upper body model shown in Figure 3.14. Like
in the case of the 3D stickman model, the energy surface is well behaved near the
optimal pose parameters. Our experiments showed that the Powell minimization
algorithm is able to converge to almost the same point for different initializations
(see Figure 3.17(b)).

Failure Modes

It can be seen that the function F(ω) is not unimodal over the whole domain and
contains local minima. This multi-modality of F(ω) can cause a gradient descent
algorithm to get trapped and converge to a local minimum. In our experiments we
observed that these spurious minima lie quite far from the globally optimal solution.
We also observed that the pose of the human subject generally does not change
substantially from one frame to the next. This lead us to use the pose estimate from
the previous frame as an initialization for the current frame. This good initialization
for the pose estimate made sure that spurious minima do not effect our method.

The failure rate of our method can be further improved by using object detection
systems which provide a better initialization of the pose of the object. Scenarios
where the method still converges to a local minima can be detected and dealt with
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using the strategy discussed in Section 3.7.5 which was used in our recent work on
object detection and segmentation [52].

Resolving Ambiguity Using Multiple Views

The human pose inference problem in the context of monocular images suffers
from ambiguity. This is because of the one-many nature of the mapping that relates
a human shape as seen in an image and the corresponding human pose. In other
words, many possible poses can explain the same human shape. This ambiguity can
be resolved by using multiple views of the object (‘human’). Our framework has
the advantage that information from multiple views can be integrated into a single
optimization framework. Specifically, when dealing with multiple views we solve
the problem:

ωopt = argmin
ω

( ∑
Views

min
x

(Ψ3(x,ω)). (3.29)

The framework is illustrated in Figure 3.18.

Dynamic Energy Minimization Using Graph Cuts

As explained earlier global minima of energies like the one defined in (3.24) can be
found by graph cuts [38]. The time taken for computing a graph cut for a reasonably
sized CRF is of the order of seconds. This would make our optimization algorithm
extremely slow since we need to compute the global optimum of Ψ3(x,ω) with
respect to x multiple number times for different values of ω . The graph cut com-
putation can be made significantly faster by using the dynamic graph cut algorithm
proposed in Section 3.3. This algorithm works by using the solution of the previous

Fig. 3.18 Resolving ambiguity in pose using multiple views. The Figure shows how informa-
tion from different views of the human can be integrated in a single energy function, which
can be used to find the true pose of the human subject.
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graph cut computation for solving the new instance of the problem. We obtained a
speed-up in the range of 15-20 times by using the dynamic graph cut algorithm.

3.7.3 Experiments

We now discuss the results obtained by our method. We provide the segmentation
and pose estimation results individually.

Segmentation Results

As expected, the experimental results show that the segmentation results improve
considerably as we increase the amount of information in our CRF framework.
Figure 3.19 shows how integrating more information in the CRF improves the
segmentation results. Quantitative results for the segmentation problem are shown in
Table 3.1.

Fig. 3.19 Results showing the effect of incorporating a shape prior on the segmentation re-
sults. The first image is the original image to be segmented. The second, third and fourth
images show the segmentation results obtained using colour, colour + smoothness prior and
colour + smoothness + shape prior respectively.

Table 3.1 Quantitative segmentation results. The table shows the effect of adding more infor-
mation in the Bayesian framework on the quantitative segmentation accuracy. The accuracy
was computed over all the pixels in the image. The ground truth for the data used in this
experiment was generated by hand labelling the foreground and background regions in the
images.

Information Used Correct object pixels All correct pixels
Colour 45.73% 95.2%

Colour + GMM 82.48% 96.9%
Colour + GMM +Shape 97.43% 99.4%
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Fig. 3.20 Segmentation results using the 2D upper body model. The first row shows some
frames from the video sequence. The second row shows the initial values of the pose parame-
ters of the model and the resulting segmentations. The last row shows the final pose estimate
and segmentation obtained using our method.

In order to demonstrate the performance of our method, we compare our segmen-
tation results with those obtained using the method proposed in [62]. It can be seen
from the results in Figure 3.21 that the segmentations obtained using the method
of [62] are not accurate: They contain “speckles” and often segment the shadows of
the feet as foreground. This is expected as they use only a pixelwise term to differ-
entiate the background from the foreground and do not incorporate any spatial term
which could offer a better “smoothing”. In contrast, POSECUT which uses a pair-
wise potential term (as any standard graph cut approach) and a shape prior (which
guarantees a human-like segmentation), is able to provide accurate results.

Our experiments on segmenting humans using the 2D upper body model (Figure
3.14) also produced good results. For these experiments, video sequences from the
Microsoft Research bilayer video segmentation dataset [36] were used. The results
of our method are shown in Figure 3.20.

Segmentation and Pose Estimation

Figures 3.22 and 3.23 present the segmentations and the pose estimates obtained
using POSECUT. The first data set comprises of three views of human walking
circularly. The time needed for computation of the 3D pose estimate, on an Intel
Pentium 2GHz machine, when dealing with 644×484 images, is about 50 seconds
per view10. As shown in these Figures, the pose estimates match the original images
accurately. In Figures 3.22 and 3.23, it should be noted that the appearance models
of the foreground and background are quite similar: for instance, in Figure 3.23,
the clothes of the subject are black in colour and the floor in the background is

10 However, this could be speeded up by computing the parameters of the CRF in an FPGA

(Field programmable gate array).
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Fig. 3.21 Segmentation results obtained by Grimson-Stauffer [62] and POSECUT.

rather dark. The accuracy of the segmentation obtained in such challenging condi-
tions demonstrates the robustness of POSECUT. An interesting fact to observe in
Figure 3.22 about frame 95 is that the torso rotation of the stickman does not ex-
actly conform with the original pose of the object. However, the segmentation of
these frames is still accurate.

3.7.4 Shape Priors for Reconstruction

Obtaining a 3D reconstruction of an object from multiple images is a fundamental
problem in computer vision. Reflecting the importance of the problem a number of
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Fig. 3.22 Segmentation (middle) and pose estimation (bottom) results from POSECUT.

methods have been proposed for its solution. These range from methods such as
shape from silhouettes [65] and space carving [41] to image based methods [55].
However, the problem of obtaining accurate reconstructions from sparse multiple
views still remains far from being solved. The primary problem afflicting recon-
struction methods is the inherent ambiguity in the problem (as shown in Figure 3.24)
which arises from the many-one nature of the mapping that relates 3D objects and
their images.

Intuitively the ambiguity in the object reconstruction can be overcome by using
prior knowledge. Researchers have long understood this fact and weak priors such as
surface smoothness have been used in a number of methods [37,61,71]. Such priors
help in recovering from the errors caused by noisy data. Although they improve
results, they are weak and do not carry enough information to guarantee a unique
solution. Taking inspiration from the success of using strong prior knowledge for
image segmentation, we use 3D shape priors to overcome the ambiguity inherent in
the problem of 3D reconstruction from multiple views.

Our framework uses a volumetric scene representation and integrates conven-
tional reconstruction measures such as photoconsistency, surface smoothness and
visual hull membership with a strong object specific prior. Simple parametric mod-
els of objects are used as strong priors in our framework. Our method not only gives
an accurate object reconstruction, but also provides us the pose or state of the object
being reconstructed. This work previously appeared in [64].
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Fig. 3.23 Segmentation (middle row) and pose estimation (bottom row) results obtained us-
ing POSECUT. Observe that although the foreground and background appearances are simi-
lar, our algorithm is able to obtain good segmentations.

Experimental Results

The data set for our experiments consists of video sequences of four views of a
human subject walking in a circle. This data set was earlier used in [4]. It comes
with silhouettes of the human subject obtained using pixel wise background inten-
sity modelling. The positions and orientations of the 4 cameras with respect to the
object are shown in Figure 3.25(i).

The first step in our method is the computation of the visual hull. The procedure
starts with the quantization of the volume of interest as a grid of cubical voxels of
equal size. Once this is done, each voxel center is projected into the input images.
If any of the projections falls outside the silhouette, then the voxel is discarded. All
remaining voxels constitute the visual hull. Some visual hull results are shown in
Figure 3.25(ii). It can be observed that because of the skewed distribution of the
cameras, the visual hull is quite different from the true object reconstruction. Fur-
ther, as object segmentations are not accurate, it has large errors. The prominent de-
fects in the visual hull results include: (i) the presence of holes because of segmen-
tation errors in the object silhouettes (bottom row (b)), (ii) the presence of auxiliary
parts caused by shadows, (iii) the third-arm effect resulting from self-occlusion and
ambiguity in the reconstruction due to the small number of views (bottom row (a)).
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Fig. 3.24 Ambiguity in object reconstruction due to few views. The Figure shows how two
completely different objects can have the same visual hull. Further, if both objects have the
same colour, the photo hull and their projections on multiple viewpoints would also be the
same.

(i) (ii)

Fig. 3.25 i) Camera Positions and Reconstruction. The Figure shows the position and orien-
tations of the four cameras which were used to obtain the images which constituted the data-
set for our first experiment. We also see the reconstruction result generated by our method.
ii) 3D Object Reconstruction using Strong Object-Specific priors. The first and second rows
show the images and silhouettes used as the data. Two views of the visual hull generated
using the data are shown in the first two columns of the bottom row ((a) and (b)). The visual
hull is noisy and contains artifacts like the spurious third arm caused by the ambiguity in
the problem. We are able to overcome such problems by using strong prior knowledge. The
reconstructions obtained by our method are shown in column 3 and 4 ((c) and (d)).
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Fig. 3.26 Pose inference and 3D object reconstruction results. The data used in this experi-
ment is taken from [4]. It consists of 4 views of a human subject walking in a circular path.
Middle row: Reconstruction result. Bottom row: Pose estimate. Observe that we are able to
get excellent reconstruction and pose estimation results even when the visual hull contains
large errors (as seen in frame 60 and 74).

It can be seen that our reconstruction results do not suffer from these errors (bottom
row (c) and (d)). The final results of our method for a few frames of the human
walking sequence are shown in Figure 3.26.

3.7.5 Discussion

Localizing the object in the image and inferring its pose is a computationally ex-
pensive task. Once a rough estimate of the object pose is obtained, the segmentation
can be computed extremely efficiently using graph cuts [10]. In our work on real
time face detection and segmentation [52], we showed how an off the shelf face-
detector such as the one described in [70] can be coupled with a CRF to get accurate
segmentation and improved face detection results in real time.
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Fig. 3.27 Real time face segmentation using face detection. The first image in the first row
shows the original image. The second image shows the face detection results. The third im-
age shows the segmentation obtained using shape priors generated from the detection and
localization results.

The object (face) localization estimate (obtained from any generic face detector)
was incorporated in a discriminative CRF framework to obtain robust and accurate
face segmentation results as shown in Figure 3.27. The energy E(x∗) of any seg-
mentation solution x∗ is the negative log of the probability, and can be viewed as a
measure of how uncertain that solution is. The higher the energy of a segmentation,
the lower the probability that it is a good segmentation. Intuitively, if the face de-
tection is correct, the resulting segmentation obtained from our method should have
high probability and hence have low energy compared to that of false detections.
This characteristic of the energy of the segmentation solution can be used to prune
out false face detections thus improving the face detection accuracy. The procedure
is illustrated in Figure 3.28. A similar strategy was recently used in [50].

3.7.6 Summary and Future Work

This work sets out a novel method for performing simultaneous segmentation
and 3D pose estimation (POSECUT). The problem is formulated in a Bayesian

Fig. 3.28 Pruning false object detections. The Figure shows an image from the INRIA pedes-
trian data set. After running our algorithm, we obtain four face segmentations, one of which
(the one bounded by a black square) is a false detection. The energy-per-pixel values obtained
for the true detections were 74, 82 and 83 while that for the false detection was 87. As you
can see the energy of false detection is higher than that of the true detections, and can be used
to detect and remove it.
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framework which has the ability to utilize all information available (prior as well as
observed data) to obtain good results. We showed how a rough pose-specific shape
prior could be used to improve segmentation results significantly. We also gave a
new formulation of the pose inference problem as an energy minimization prob-
lem and showed how it could be efficiently solved using dynamic graph cuts. The
experiments demonstrate that our method is able to obtain excellent segmentation
and pose estimation results. This method was recently also used for the problem of
reconstructing objects from multiple views [64].

Searching over Pose Manifolds

It is well known that the set of all human poses constitutes a low-dimensional man-
ifold in the complete pose space [68, 58]. Most work in exploiting this fact for hu-
man pose inference has been limited to finding linear manifolds in pose spaces.
The last few years have seen the emergence of non-linear dimensionality reduc-
tion techniques for solving the pose inference problem [59]. Recently, Urtasun et
al. [68] showed how Scaled Gaussian Process Latent Variable Models (SGPLVM)
can be used to learn prior models of human pose for 3D people tracking. They
showed impressive pose inference results using monocular data. Optimizing over
a parametrization of this low dimensional space instead of the 26D pose vector
would intuitively improve both the accuracy and computation efficiency of our al-
gorithm. Thus the use of dimensionality reduction algorithms is an important area
to be investigated. The directions for future work also include using an appearance
model per limb, which being more discriminative could help provide more accurate
segmentations and pose estimates.

3.8 Measuring Uncertainty in Graph Cut Solutions

Over the years researchers have asked the question whether it might be possible to
compute a measure of uncertainty associated with the graph cut solutions. In this Sec-
tion we answer this particular question positively by showing how the min-marginals
associated with the label assignments of a random field can be efficiently computed
using a new algorithm based on dynamic graph cuts. The min-marginal energies ob-
tained by our proposed algorithm are exact, as opposed to the ones obtained from
other inference algorithms like loopy belief propagation and generalized belief prop-
agation. We also show how these min-marginals can be used to compute a confidence
measure for label assignments in the image segmentation problem.

Graph cuts based minimization algorithms do not provide an uncertainty mea-
sure associated with the solution they produce. This is a serious drawback since
researchers using these algorithms do not obtain any information regarding the prob-
ability of a particular latent variable assignment in a graph cut solution. Inference al-
gorithms like Loopy Belief Propagation (LBP) [48], Generalized Belief Propagation
(GBP) [77], and Tree-reweighted message passing (TRW) [35, 72] provide the user
with marginal or min-marginal energies associated with each latent variable. How-
ever, these algorithms are not guaranteed to find the optimal solution for graphs of
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arbitrary topology. Note that for tree-structured graphs, the simple max-product be-
lief propagation algorithm gives the exact max-marginal probabilities/min-marginal
energies11 for different label assignments in O(nl2) time where n is the number of
latent variables, and l is the number of labels a latent variable can take.

We address the problem of efficiently computing the min-marginals associated
with the label assignments of any latent variable in a MRF. Our method works on
all MRFs that can be solved exactly using graph cuts. First, we give the definition
of flow potentials (defined in Section 3.8.1) of a graph node. We show that the min-
marginals associated with the labellings of a binary random variable are related to
the flow-potentials of the node representing that variable in the graph constructed in
the energy minimization procedure. In fact the exact min-marginal energies can be
found by computing these flow-potentials. We then show how flow potential com-
putation is equivalent to minimizing projections of the original energy function12.

Minimizing a projection of an energy function is a computationally expensive op-
eration and requires a graph cut to be computed. In order to obtain the min-marginals
corresponding to all label assignments of all random variables, we need to compute a
graph cut O(nl) number of times. We present an algorithm based on dynamic graph
cuts [33] which solves these O(nl) graph cuts extremely quickly. Our experiments
show that the running time of this algorithm i.e., the time taken for it to compute the
min-marginals corresponding to all latent variable label assignments is of the same
order of magnitude as the time taken to solve a single st-mincut problem.

3.8.1 Preliminaries

As explained in Section 3.1, a pairwise MRF can be solved by minimizing a second
order energy function. The energy of the MAP configuration of the MRF can be
computed by solving the problem:

ψ(θ ) = min
x∈L

E(x|θ ). (3.30)

The MAP solution of the MRF will be referred to as the optimal solution.

Min-Marginal Energies

A min-marginal is a function that provides information about the minimum values
of the energy E under different constraints. Following the notation of [35], we define
the min-marginal energies ψv; j,ψuv;i j as:

11 We will explain the relation between max-marginal probabilities and min-marginal ener-
gies later in Section 3.8.1. To make our notation consistent with recent work in graph cuts,
we formulate the problem in terms of min-marginal energies (subsequently referred to as
simply min-marginals).

12 A projection of the function f (x1,x2, ...,xn) can be obtained by fixing the values of some of
the variables in the function f (.). For instance f1(x2, ...,xn) = f (0,x2, ...,xn) is a projection
of the function f (.).
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ψv; j(θ ) = min
x∈L,xv= j

E(x|θ ), and (3.31)

ψuv;i j(θ ) = min
x∈L,xu=i,xv= j

E(x|θ ).

In words, given an energy function E whose value depends on the variables
(x1, . . . ,xn), ψv; j(θ ) represents the minimum energy value obtained if we fix the
value of variable xv to j and minimize over all remaining variables. Similarly,
ψuv;i j(θ ) represents the value of the minimum energy in the case when the values
of variables xu and xv are fixed to i and j respectively.

Uncertainty in Label Assignments

Now we show how min-marginals can be used to compute a confidence measure
for a particular latent variable label assignment. Given the function p(x|D), which
specifies the probability of a configuration of the MRF, the max-marginal μv; j gives
us the value of the maximum probability over all possible configurations of the MRF

in which xv = j. Formally, it is defined as:

μv; j = max
x∈L;xv= j

p(x|D) (3.32)

Inference algorithms like max-product belief propagation produce the max-
marginals along with the MAP solution. These max-marginals can be used to obtain
a confidence measure σ for any latent variable labelling as:

σv; j =
maxx∈L,xv= j p(x|D)

∑k∈L maxx∈L,xv=k p(x|D)
=

μv; j

∑k∈L μv;k
(3.33)

where σv; j is the confidence for the latent variable xv taking label j. This is the ratio
of the max-marginal corresponding to the label assignment xv = j to the sum of the
max-marginals for all possible label assignments.

We now proceed to show how these max-marginals can be obtained from the
min-marginal energies computed by our algorithm. Recall from equation (3.3) that
the energy and probability of a labelling are related as:

E(x) =− log p(x|D)− const (3.34)

Substituting the value of p(x|D) from equation (3.34) in equation (3.32), we get

μv; j = max
x∈L;xv= j

(exp (−E(x|θ)− const)) (3.35)

=
1
Z

exp (− min
x∈X ;xv= j

E(x|θ )), (3.36)

where Z is the partition function. Combining this with equation (3.31a), we get

μv; j =
1
Z

exp (−ψv; j(θ )). (3.37)



96 P. Kohli and P.H.S. Torr

As an example consider a binary label object-background image segmentation prob-
lem, where there are two possible labels i.e., object (‘ob’) and background (‘bg’).
The confidence measure σv;ob associated with the pixel v being labelled as object
can be computed as:

σv;ob =
μv;ob

μv;ob + μv;bg
=

1
Z exp (−ψv;ob(θ ))

1
Z exp (−ψv;ob(θ ))+ 1

Z exp (−ψv;bg(θ ))
, (3.38)

or σv;ob =
exp (−ψv;ob(θ ))

exp (−ψv;ob(θ ))+ exp (−ψv;bg(θ ))
(3.39)

Note that the Z’s cancel and thus we can compute the confidence measure from the
min-marginal energies alone without knowledge of the partition function.

Flow Potentials in Graphs

Given a directed weighted graph G(V,E,C) with non-negative edge weights and
flows f flowing through the edges E , we define the source/sink flow potential of a
graph node v ∈V as the maximum amount of net flow that can be pumped into/from
it without invalidating any edge capacity (3.6) or mass balance constraint (3.7) with
the exception of the mass balance constraint of the node v itself. Formally, we can
define the source flow potential of node v as:

f s
v = max

f
∑

i∈N(v)
fiv− fvi

Subject to:
0≤ fi j ≤ ci j ∀(i, j) ∈ E, and (3.40)

∑
i∈ N( j)\{s,t}

( f ji− fi j) = fs j− f jt ∀ j ∈V\{s, t,v} (3.41)

where maxf represents the maximization over the set of all edge flows

f = { fi j, ∀(i, j) ∈ E}. (3.42)

Similarly, the sink flow potential f t
v of a graph node v is defined as:

f t
v = max

f
∑

i∈N(v)
fvi− fiv (3.43)

subject to constraints (3.40) and (3.41).
The computation of a flow potential of a node is not a trivial process and in

essence requires a graph cut to be computed as explained in figure 3.30. The flow
potentials of a particular graph node are shown in figure 3.29. Note that in a residual
graph G( fmax) where fmax is the maximum flow, all nodes on the sink side of the
st-mincut are disconnected from the source and thus have the source flow potential
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Fig. 3.29 Flow potentials of graph nodes. The figure shows a directed graph having seven
nodes, two of which are the terminal nodes, the source s and the sink t. The number associated
with each directed edge in this graph is a capacity which tells us the maximum amount of flow
that can be passed through it in the direction of the arrow. The flow potentials for node 4 in
this graph when no flow is passing through any of the edges are f s

4 = 2 and f t
4 = 11.

equal to zero. Similarly, all nodes belonging to the source have the sink flow poten-
tial equal to zero. We will later show that the flow-potentials we have just defined are
intimately linked to the min-marginal energies of latent variable label assignments.

3.8.2 Computing Min-Marginals Using Graph Cuts

We now explain the procedure for the computation of min-marginal energies using
graph cuts. The total flow ftotal flowing from the source s to the sink t in a graph
can be found by computing the difference between the total amount of flow coming
in to a terminal node and that going out as:

ftotal = ∑
i∈N(s)

( fsi− fis) = ∑
i∈N(t)

( fit − fti). (3.44)

The cost of the st-mincut in an energy representing graph is equal to the energy of
the optimal configuration. From the Ford-Fulkerson theorem, this is also equal to
the maximum amount of flow fmax that can be transferred from the source to the
sink. Hence, from the minimum energy (3.30) and total flow equation (3.44) for a
graph in which maxflow has been achieved i.e. ftotal = fmax, we obtain:

ψ(θ ) = min
x∈L

E(x|θ ) = fmax = ∑
i∈N(s)

( fsi− fis). (3.45)

Note that flow cannot be pushed into the source i.e. fis = 0,∀i ∈ V , thus ψ(θ ) =
∑i∈N(s) fsi. The MAP configuration x∗ of a MRF is the one having the least energy
and is defined as x∗ = argminx∈L E(x|θ ).
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Fig. 3.30 Computing min-marginals using graph cuts. In (a) we see the graph representing
the original energy function. This is used to compute the minimum value of the energy ψ(θ )
which is equal to the max-flow fmax = 8. The residual graph obtained after the computation
of max-flow is shown in (b). In (c) we show how the flow-potential f s

5 can be computed in
the residual graph by adding an infinite capacity edge between it and the sink and computing
the max-flow again. The addition of this new edge constrains node 5 to belong to sink side of
the st-cut. A max-flow computation in the graph (c) yields f s

5 = 4. This from theorem 1, we
obtain the min-marginal ψ5;c = 8+4 = 12, where T(c) = source(s). The dotted arrows in (b)
and (c) correspond to edges in the residual graph whose residual capacities are due to flow
passing through the edges in their opposite direction.

Let a be the label for random variable xv under the MAP solution and b be any
label other than a. Then in the case of xv = a, the min-marginal energy ψv;x∗v (θ ) is
equal to the minimum energy i.e.

E(x|θ ) = ψ(θ ) (3.46)

Thus it can be seen that the maximum flow equals the min-marginals for the case
when the latent variables take their respective MAP labels.

The min-marginal energy ψv;b(θ ) corresponding to the non-optimal label b can
be computed by finding the minimum value of the energy function projection E

′

obtained by constraining the value of xv to b as:

ψv;b(θ ) = min
x∈Ln,xv=b

E(x|θ ) (3.47)

or, ψv;b(θ ) = min
(x−xv)∈Ln−1

E(x1, ..,xv−1,b,xv+1..xn|θ ). (3.48)

In the next sub-section, we will show that this constraint can be enforced in the
original graph construction used for minimizing E(x|θ ) by modifying certain edge
weights ensuring that the latent variable xv takes the label b. The exact modifications
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needed in the graph for the binary label case are given first, while those required in
the graph for the multi-label case are discussed later.

3.8.3 Min-Marginals and Flow Potentials

We now show how in the case of binary variables, flow-potentials in the residual
graph G( fmax) are related to the min-marginal energy values. Again, a and b are
used to represent the MAP and non-MAP label respectively.

Theorem 3.1. The min-marginal energies of a binary latent variable xv are equal to
the sum of the max-flow and the source/sink flow potentials of the node representing
it in the residual graph G( fmax) corresponding to the max-flow solution i.e.

ψv; j(θ ) = min
x∈L,xv= j

E(x|θ ) = ψ(θ )+ f T ( j)
v = fmax + f T( j)

v (3.49)

where T ( j) is the terminal corresponding to the label j, and fmax is the value of the
maximum flow in the graph G representing the energy function E(x|θ ).

Proof. The proof is trivial for the case where the latent variable takes the optimal
label. We already know that the value of the min-marginal ψv;a(θ ) is equal to the
lowest energy ψ(θ ). Further, the flow potential of the node for the terminal corre-
sponding to the label assignment is zero since the node is disconnected from the
terminal T (a) by the minimum cut13.

We already know from (3.48) that the min-marginal ψv;b(θ ) corresponding to the
non-optimal label b can be computed by finding the minimum value of the function
E under the constraint xv = b. This constraint can be enforced in our original graph
(used for minimizing E(x|θ )) by adding an edge with infinite weight between the
graph node and the terminal corresponding to the label a, and then computing the
st-mincut on this updated graph14. In Section 3.8.5 we shall explain how to solve the
new st-mincut problem efficiently using the dynamic graph cut algorithm proposed
in the previous Section.

It can be easily seen that the additional amount of flow that would now flow from

the source to the sink is equal to the flow potential f T (b)
v of the node. Thus the value

of the max-flow now becomes equal to ψ(θ )+ f T (b)
v where T (b) is the terminal

corresponding to the label b. The whole process is shown graphically in figure 3.30.
We have shown how minimizing an energy function with constraints on the value

of a latent variable, is equivalent to computing the flow potentials of a node in the

13 The amount of flow that can be transferred from the node to the terminal T (a) in the
residual graph is zero since otherwise it would contradict our assumption that the max-
flow solution has been achieved.

14 Adding an infinite weight edge between the node and the terminal T (a) is equivalent to
putting a hard constraint on the variable xv to have the label b. Observe that the addition
of an infinite weight edge can be realized by using an edge whose weight is more than the
sum of all other edges incident on the node. This condition would make sure that the edge
is not saturated during the max-flow computation.
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Fig. 3.31 Graph construction for projections of energy functions involving multiple labels.
The first graph G shows the graph construction proposed by Ishikawa [27] for minimizing
energy functions representing MRFs involving latent variables which can take more than 2
labels. All the label sets L, v ∈ V consist of 4 labels namely l1, l2, l3 and l4. The MAP con-
figuration of the MRF induced by the st-mincut is found by observing which data edges are
cut (data edges are depicted as black arrows). Four of them are in the cut here (as seen in
graph G), representing the assignments x1 = l2, x2 = l3, x3 = l3, and x4 = l4. The graph G′
representing the projection E ′ = E(x1,x2,x3, l2) can be obtained by inserting infinite capac-
ity edges from the source and the sink to the tail and head node respectively of the edge
representing the label l2 for latent variable x4.

residual graph G( fmax). Note that a similar procedure can be used to compute the
min-marginal ψuv;i j(θ ) by taking the projection and enforcing hard constraints on
pairs of latent variables.

3.8.4 Extension to Multiple Labels

Graph cuts can also be used to exactly optimize convex energy functions which in-
volve variables taking multiple labels [27, 56]. Graphs representing the projections
of such energy functions can be obtained by incorporating hard constraints in a
fashion analogous to the one used for binary variables. In the graph construction for
multiple labels proposed by Ishikawa [27], the label of a discrete latent variable is
found by observing which data edge is cut. The value of a variable can be con-
strained or ‘fixed’ in this graph construction by making sure that the data edge
corresponding to the particular label is cut. This can be realized by adding edges
of infinite capacity from the source and the sink to the tail and head node of the
edge respectively as shown in figure 3.31. The cost of the st-mincut in this mod-
ified graph will give the exact value of min-marginal energy associated with that
particular labelling. It should be noted here that the method of Ishikawa [27] ap-
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Table 3.2 Algorithm for computing min-marginal energies using dynamic graph cuts.

1. Construct graph G for minimizing the MRF energy E.
2. Compute the maximum s-t flow in the graph. This induces the residual

graph Gr consisting of unsaturated edges.

3. For computing each min-marginal, perform the following operations:

a. Obtain the energy projection E ′ corresponding to the latent variable
assignment.

b. Construct the graph G′ to minimize E ′.
c. Use dynamic graph cut updates as given in [33] to make Gr consis-

tent with G′, thus obtaining the new graph G
′
r.

d. Compute the min-marginal by minimizing E ′ using the dynamic
(optimized) st-mincut algorithm on G

′
r.

plies to a restricted class of energy functions. These do not include energies with
non-convex priors (such at the Potts model) which are used in many computer vi-
sion applications. Measuring uncertainty in solutions of such energies is thus still
an open problem.

3.8.5 Minimizing Energy Function Projections Using Dynamic
Graph Cuts

Having shown how min-marginals can be computed using graph cuts, we now ex-
plain how this can be done efficiently. As explained in the proof of Theorem 1,
we can compute min-marginals by minimizing projections of the energy function.
However, it might be thought that such a process is extremely computationally ex-
pensive as a graph cut has to be computed for every min-marginal computation.
However, when modifying the graph in order to minimize the projection E

′
of the

energy function, only a few edge weights have to be changed15 as seen in figure 3.30,
where only one infinite capacity edge had to inserted in the graph. We have shown
earlier how the st-mincut can be recomputed rapidly for such minimal changes in
the problem by using dynamic graph cuts. Our proposed algorithm for min-marginal
computation is given in Table 3.2.

3.8.6 Computational Complexity and Experimental Evaluation

We now discuss the computational complexity of our algorithm, and report the time
taken by it to compute min-marginals in MRFs of different sizes. In step (3.4) of the
algorithm given in Table 3.2, the amount of flow computed is equal to the difference
in the min-marginal ψv; j(θ ) of the particular label assignment and the minimum

15 The exact number of edge weights that have to be changed is of the order of the number
of variables whose value is being fixed for obtaining the projection.
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energy ψ(θ ). Let Q be the set of all label assignments whose corresponding min-
marginals have to be computed. Then the number of augmenting paths to be found
during the whole algorithm is bounded from above by:

U = ψ(θ )+ ∑
q∈Q

(ψq(θ )−ψ(θ )). (3.50)

For the case of binary random variables, assuming that we want to compute all latent
variable min-marginals i.e.

Q= {(u; i) : u ∈V, i ∈ L},and (3.51)

qmax = max
q∈Q

(ψq(θ )−ψ(θ )), (3.52)

the complexity of the above algorithm becomes O((ψ(θ )+ nqmax)T (n,m)), where
T (n,m) is the complexity of finding an augmenting path in the graph with n nodes
and m edges and pushing flow through it. Although the worst case complexity
T (n,m) of the augmentation operation is O(m), we observe experimentally that
using the dual search tree algorithm of [8], we can get a much better amortized
time performance. The average time taken by our algorithm for computing the min-
marginals in random MRFs of different sizes is given in table 3.3.

Table 3.3 Time taken for min-marginal computation. For a sequence of randomly generated
MRFs of a particular size and neighbourhood system, a pair of times (in seconds) is given
in each cell of the table. On the left is the average time taken to compute the MAP solution
using a single graph cut while on the right is the average time taken to compute the min-
marginals corresponding to all latent variable label assignments. The dynamic algorithm with
tree-recycling was used for this experiment. All experiments were performed on an Intel
Pentium 2GHz machine.

MRF size 105 2×105 4×105 8×105

4-neighbourhood 0.18, 0.70 0.46, 1.34 0.92, 3.156 2.17, 8.21
8-neighbourhood 0.40, 1.53 1.39, 3.59 2.42, 8.50 5.12, 15.61

3.8.7 Applications of Min-Marginals

Min-marginal energies have been used for a number of different purposes. How-
ever, prior to our work, the use of min-marginals in computer vision was severely
restricted. This was primarily due to the fact that they were computationally ex-
pensive to compute for MRFs having a large number of latent variables. Our new
algorithm is able to handle large MRFs which opens up possibilities for many new
applications. For instance, in the experiments shown in figure 3.32, the time taken
for computing all min-marginals for a MRF consisting of 2×105 binary latent vari-
ables was 1.2 seconds. This is roughly four times the time taken for computing the
MAP solution of the same MRF by solving a single st-mincut problem.
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Fig. 3.32 Image segmentation with max-marginal probabilities. The first image is a frame of
the movie Run Lola Run. The second shows the binary foreground-background segmentation
where the aim was to segment out the human. The third and fourth images shows the confi-
dence values obtained by our algorithm for assigning pixels to be foreground and background
respectively. In the image, the max-marginal probability is represented in terms of decreas-
ing intensity of the pixel. Our algorithm took 1.2 seconds for computing the max-marginal
probabilities for each latent variable label assignment. The time taken to compute the MAP

solution was 0.3 seconds.

Min-Marginals as a Confidence Measure

We had shown in Section 3.8.1 how min-marginals can be used to compute a con-
fidence measure for any latent variable assignment in a MRF. Figure 3.32 shows
the confidence values obtained for the MRF used for modeling the two label (fore-
ground and background) image-segmentation problem as defined in [7]. Ideally we
would like the confidence map to be black and white showing extremely ‘low’ or
‘high’ confidence for a particular label assignment. However, as can be seen from
the result, the confidence map contains regions of different shades of grey. Such con-
fidence maps can be used for many vision applications. For instance, they could be
used in interactive image segmentation to direct user interaction at regions which
have high uncertainty. They can also be applied in coarse-to-fine techniques for
efficient computation of low level vision problems. Here confidence maps could be
used to isolate variables which have low confidence in the optimal label assignment.
These variables can be solved at higher resolution to get a better solution.

Computing the M most Probable Configurations

One of the most important uses of min-marginals has been to find the M most prob-
able configurations (or labellings) for latent variables in a Bayesian network [76].
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Dawid [14] showed how min-marginals on junction trees can be computed. This
method was later used by [47] to find the M most probable configurations of a prob-
abilistic graphical network. The method of [14] is guaranteed to run in polynomial
time for tree-structured networks. However, for arbitrary graphs, its worst case com-
plexity is exponential in the number of the nodes in the graphical model. By using
our method, the M most probable solutions of some graphical models with loops
can be computed in reasonable time.

We end this Section by giving a brief summary. We have addressed the long-
standing problem of computing the exact min-marginals for graphs with arbitrary
topology in polynomial time. We propose a novel algorithm based on dynamic
graph cuts [33] that computes the min-marginals extremely efficiently. Our algo-
rithm makes it feasible to compute exact min-marginals for MRFs with large number
of latent variables. This opens up many new applications for min-marginals which
were not feasible earlier.
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Chapter 4
Discriminative Graphical Models for
Context-Based Classification

Sanjiv Kumar

Abstract. Natural image data shows significant dependencies that should be mod-
eled appropriately to achieve good classification. Such dependencies are commonly
referred to as context in Vision. This chapter describes Conditional Random Fields
(CRFs) based discriminative models for incorporating context in a principled man-
ner. Unlike the traditional generative Markov Random Fields (MRFs), CRFs allow
the use of arbitrarily complex dependencies in the observed data along with data-
dependent interactions in labels. Fast and robust parameter learning techniques for
such models are described. The extensions of the standard binary CRFs to handle
problems with multiclass labels or hierarchical context are also discussed. Finally,
application of CRFs on contextual object detection, scene segmentation and texture
recognition tasks is demonstrated.

4.1 Contextual Dependencies in Images

One of the fundamental problems in computer vision is that of image understanding
or semantic scene interpretation i.e., to interpret the scene contained in an image as a
collection of meaningful entities. This may involve parsing information in the scene
at different levels. Here, we focus on the problem of classification or labeling of
various components in natural images, where a component may be an image pixel,
a region, an object or the entire image itself.

The problem of detecting and classifying regions and objects in images is a chal-
lenging task due to ambiguities in the appearance of the visual data. The use of
context can help alleviate this problem significantly. For example, as shown in Fig-
ure 4.1, just on the basis of appearance, it may be difficult to differentiate a sky patch
from a water patch but their relative spatial configuration with respect to other re-
gions removes this ambiguity. Similarly, a patch from a tree may appear locally very
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Fig. 4.1 Classification of image components is difficult due to ambiguities in their appear-
ance. In the left image, sky and water regions look similar while in the right image, tree and
building regions look similar. Context can help resolve these ambiguities.

similar to another patch from a building (Figure 4.1, right image). But if we look
at larger neighborhoods of the patch, it is easy to classify which patch is a building
patch.

It is well known that natural images are not a random collection of independent
pixels. The spatial arrangement of pixels (or blocks) in images is crucial to make
a meaningful image. It is important to use contextual information in the form of
spatial dependencies for robust analysis of images. Since these dependencies can
be short-range or long-range, one would like to have total freedom in modeling
data interactions without restricting oneself to small local neighborhoods. This idea
forms the core of the work described in this chapter. The spatial dependencies may
vary from being local to global and the challenge is how to maintain global spatial
consistency using models that only need to consider relatively local dependencies.

4.1.1 The Nature of Contextual Interactions

There are several types of contextual interactions one would like to model to achieve
robust classification in images. The simplest type of interaction is based on the no-
tion of spatial smoothness of labels in natural images. According to this, neighbor-
ing pixels tend to have similar labels (except at the discontinuities). For example,
if a pixel in left image in Figure 4.1 has label sky, there is a high probability that
the neighboring pixels also have the same label except at the boundaries. In fact,
the underlying smoothness of natural images forms the basis for recovering the true
image from its noisy version in image denoising applications. These type of interac-
tions are generally restricted to the pixel level. However, in addition to these, there
exist significant interactions among bigger regions in images. In the previous ex-
ample (Figure 4.1, left image), different semantic regions follow plausible spatial
configurations (e.g., sky tends to occur above water or vegetation).
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In addition to the interaction in labels, there are also complex interactions in the
observed data that might be required for classification purposes. Consider the task
of detecting structured textures (e.g., man-made structures such as buildings) in a
given image. The data belonging to this type of textures is highly dependent on its
neighbors. This is because, in man-made structures, the lines or edges at spatially
adjoining regions follow some underlying organization rules rather than being ran-
dom (see Figure 4.1, right image).

Now, considering the case of parts-based object detection, one would like to de-
tect different parts of an object to form a hypothesis about the presence of the whole
object. For example, in Figure 4.2 (a), we are interested in detecting a phone. Dif-
ferent parts of the phone such as handle, keypad and front panel are related to each
other through geometric and, possibly, photometric constraints. The phone can be
detected in the scene if we can find the locations of these parts. However, to reliably
detect these parts, we need to encode not only the appearance of each individual
part but also the spatial relationships among the parts. Thus, in this case, context is
applied using the mutual relationships of different parts.

Finally, the contextual interactions for object detection are not limited to the
parts of a single object. These may include interactions among various objects or
regions in the scene. For example, as shown in Figure 4.2 (b), the presence of a
monitor screen increases the probability of having a keyboard or mouse nearby. Ex-
ploiting such contextual information is crucial especially for detecting those objects

(a) (b) (c)

Fig. 4.2 Context is important for the detection of objects in their natural surroundings. (a)
Different parts of an object (phone) are related through geometric constraints that can help in
robust detection of individual parts. (b) Different objects (monitor, keyboard and mouse) in a
scene occur in restricted configurations which can help in detecting objects with impoverished
appearance (e.g., mouse). (c) Context from other regions (e.g., buildings and roads can be
helpful in detecting cars).
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that have impoverished appearances such as the mouse in this case. Similarly, the
presence of regions such as buildings and roads in a scene restricts the possible
locations a car can take in the image (Figure 4.2 (c)).

To summarize, context in images can be broadly divided into two categories.
First, local context e.g., local smoothness of pixel labels in images or interactions
among different parts of an object, and second, global context such as interaction
among bigger objects and regions in images. The challenge is how to model dif-
ferent types of context, which may include complex dependencies in the observed
image data as well as the labels, in a principled manner. Ideally, one would like to
find a computational model that can learn all relevant types of context automatically
in a single consistent framework using the training data. Discriminative graphical
models provide a solid platform to achieve that. Such models are by nature non-
causal and are typically represented by undirected graphs. Let us first briefly review
an undirected probabilistic graphical model commonly used in Computer Vision.

4.2 Markov Random Field (MRF)

Markov Random Fields (MRFs) are the most popular undirected graphical models
in vision, which allow one to incorporate local contextual constraints in labeling
problems in a principled manner. MRFs were made popular in vision by early work
of Geman and Geman [4], and Besag [1]. MRFs are generally used in a probabilistic
generative framework that models the joint probability of the observed data and
the corresponding labels. In other words, let y be the observed data from an input
image, where y = {yi}i∈S, yi is the data from the ith site, and S is the set of sites.
Let the corresponding labels at the image sites be given by x = {xi}i∈S. In the MRF
framework, the posterior over the labels given the data is expressed using the Bayes’
rule as,

P(x|y) ∝ p(x,y) = P(x)p(y|x)
where the prior over labels, P(x) is modeled as a MRF. For computational tractabil-
ity, the observation or likelihood model, p(y|x) is assumed to have a factorized
form, i.e., p(y|x) =∏i∈S p(yi|xi). However, this assumption is too restrictive for sev-
eral natural image analysis applications. For example, consider a class that contains
man-made structures (e.g., buildings). The data belonging to such a class is highly
dependent on its neighbors. This is because, in man-made structures, the lines or
edges at spatially adjoining sites follow some underlying organization rules rather
than being random. This is also true for a large number of texture classes that are
made of structured patterns.

Another thing to note is that the interaction among labels in MRFs is modeled
by the term P(x), which is seen as a prior in the Bayesian view. The main drawback
of this view is that the label interactions do not depend on the observed data y. This
prohibits one from modeling data-dependent interactions in labels that are neces-
sary for a variety of tasks. For example, while implementing local smoothness of
labels in image segmentation, it may be desirable to use observed data to modulate
the smoothness according to the image intensity gradients. Further, in parts based
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object detection, to model interactions among object parts, we need observed data
to enforce geometric (and possibly photometric) constraints. This is also the case
for modeling higher level interactions between objects or regions in an image. As
we will see later, discriminative graphical models allow interactions among labels
based on unrestricted use of observations as necessary. This step is crucial to de-
velop models that can incorporate interactions of different types within the same
framework.

In MRF formulation of binary classification problems, the label interaction field
P(x) is commonly assumed to be a homogeneous and isotropic Ising model (or Potts
model for multiclass labeling problems) with only pairwise nonzero potentials. If
the data likelihood p(y|x) is approximated by assuming that the observed data is
conditionally independent given the labels, the posterior distribution1 over labels
can be written as,

P(x|y)= 1
Zm

exp

(

∑
i∈S

log p(si(yi)|xi)+∑
i∈S
∑

j∈Ni

βmxix j

)

, (4.1)

where βm is the interaction parameter of the MRF, and si(yi) is a single-site feature
vector, which uses data only from a single site i, i.e., yi. Note that even though
only the label prior, P(x) was assumed to be a MRF, the assumption of conditional
independence of data implies that the posterior given in (4.1) is also a MRF. This
allows one to reap the benefits of readily available tools of inference over a MRF. If
the conditional independence assumption is not used, the posterior will usually not
be a MRF making the inference difficult.

Now, if we turn our attention again toward the original aim, we are interested
in classification of image sites. For classification purposes, we want to estimate the
posterior over labels given the observations, i.e., P(x|y). In a generative framework,
one expends efforts to model the joint distribution p(x,y), which involves implicit
modeling of the observations. In a discriminative framework, one models the distri-
bution P(x|y) directly. A major advantage of doing this is that the true underlying
generative model may be quite complex even though the class posterior is simple.
This means that the generative approach may spend a lot of resources on modeling
the generative models which are not particularly relevant to the task of inferring the
class labels. Moreover, learning the class density models may become even harder
when the training data is limited. The discriminative approach saves one from mak-
ing simplistic assumptions about the data. This view forms the core theme of the
model discussed in the following Sections.

4.3 Conditional Random Field (CRF)

Conditional Random Fields (CRFs) were originally proposed by Lafferty et al.
[15] in the context of segmentation and labeling of 1-D text sequences. CRFs are
discriminative models that directly model the conditional distribution over labels

1 With a slight abuse of notation, we will use the term ’MRF model’ to indicate this posterior.
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i.e., P(x|y) as a Markov Random Field. This approach allows one to capture arbi-
trary dependencies between the observations without resorting to any model approx-
imations. In this chapter, we will follow the generalized version of CRFs proposed
by Kumar and Hebert [11] and [12]. They first introduced the extension of original
1-D CRFs to 2-D graphs over images. Their version also allows the use of arbitrary
discriminative classifiers to model different types of interactions in labels and data,
leading to more flexible and powerful generalization of CRFs.

We first restate the definition of CRFs as given by Lafferty et al. [15]. Let the
observed data from an input image be given by y = {yi}i∈S where yi is the data
from ith site and yi ∈ ℜc. The corresponding labels at the image sites are given by
x = {xi}i∈S. First let us focus on binary classification problem, i.e. xi ∈ {−1,1}.
Section 4.5.1 will describe its extension to multiclass labeling problem. The ran-
dom variables x and y are jointly distributed, but in a discriminative framework, a
conditional model P(x|y) is constructed from the observations and labels, and the
marginal p(y) is not modeled explicitly.

Definition 4.1. CRF: Let G = (S,E) be a graph such that x is indexed by the vertices
of G. Then (x,y) is said to be a conditional random field if, when conditioned on
y, the random variables xi obey the Markov property with respect to the graph:
P(xi|y,xS−{i}) = P(xi|y,xNi), where S−{i} is the set of all the nodes in the graph
except the node i, Ni is the set of neighbors of the node i in G, and xΩ represents
the set of labels at the nodes in set Ω .

Thus, a CRF is a random field globally conditioned on the observations y. The con-
dition of positivity requiring P(x|y) > 0, ∀ x has been assumed implicitly. Using
the Hammersley-Clifford theorem [6] and assuming only up to pairwise clique po-
tentials to be nonzero, the conditional distribution over all the labels x given the
observations y in a CRF can be written as,

P(x|y)= 1
Z

exp

(

∑
i∈S

Ai(xi,y)+∑
i∈S
∑

j∈Ni

Ii j(xi,x j,y)

)

, (4.2)

where Z is a normalizing constant known as the partition function, and -Ai and -Ii j

are the unary and pairwise potentials respectively. With a slight abuse of notation,
we will call Ai the association potential and Ii j the interaction potential.

There are two main differences between the conditional model given in Equation
(4.2) and the traditional MRF framework given in Equation (4.1). First, in the condi-
tional fields, the association potential at any site is a function of all the observations
y while in MRFs (with the assumption of conditional independence of the data), the
association potential is a function of data only at that site, i.e., yi. Second, the inter-
action potential for each pair of nodes in MRFs is a function of only labels, while
in the conditional models it is a function of labels as well as all the observations
y. As will be shown later, these differences play a crucial role in modeling arbi-
trary interactions in both observed data and labels in natural images in a principled
manner.

In this discussion, we assume the random field given in Equation (4.2) to be ho-
mogeneous, i.e., the functional forms of Ai and Ii j are independent of the location i.
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Fig. 4.3 An illustration
of a typical CRF for an
example task of man-made
structure detection in natural
images. The aim is to label
each site i.e., each 16× 16
image block whether it is a
man-made structure or not.
The top layer represents the
labels on all the image sites.
Note that each site i can
potentially use features from
the whole image y unlike the
traditional MRFs.

In addition, we also assume the field to be isotropic implying that the label interac-
tions are non-directional. In other words, Ii j is independent of the relative locations
of sites i and j. Thus, subsequently we will drop the subscripts and simply use the
notation A and I to denote the two potentials. In fact, the assumption of isotropy can
be easily relaxed at the cost of a few additional parameters. Thus, we will consider
models of the following form:

P(x|y)= 1
Z

exp

(

∑
i∈S

A(xi,y)+∑
i∈S
∑

j∈Ni

I(xi,x j,y)

)

. (4.3)

Due to this form of CRFs, it is possible to treat different applications from low-
level image denoising to high-level contextual object detection seamlessly in a sin-
gle framework. Figure 4.3 illustrates a typical CRF for an example image analysis
task of man-made structure detection. Suppose, we are given an input image y shown
in the bottom layer and we are interested in labeling each image site (in this case
a 16× 16 image block) whether it contains a man-made structure or not. The top
layer represents the labels x on all the image sites. Note that each site i can poten-
tially use features from the whole image y unlike the traditional MRFs. In addition,
CRFs allow to use image data to model interactions between two neighboring sites
i and j. The following sections describe how the unary and the pairwise potentials
are designed in CRFs.

4.3.1 Association Potential

In the CRF framework, the association potential, A(xi,y), can be seen as a measure
of how likely a site i will take label xi given image y, ignoring the effects of other
sites in the image (Figure 4.4). Suppose, f (.) is a function that maps an arbitrary
patch in an image to a feature vector such that f : Yp → ℜl . Here Yp is the set of
all possible patches in all possible images. Let ωi(y) be an arbitrary patch in the
neighborhood of site i in image y from which we want to extract a feature vector
f (ωi(y)). Note that the neighborhood used for the patch ωi(y) need not be the same
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Fig. 4.4 Given a feature
vector f i(y) at site i, the as-
sociation potential in CRFs
can be seen as a measure of
how likely the site i will take
label xi, ignoring the effects
of other sites in the image.
Note that the feature vector
f i(y) can be constructed
by pooling arbitrarily com-
plex dependencies in the
observed data y.

as the label neighborhood Ni. Indeed, ωi(y) can potentially be the whole image
itself. For clarity, let us denote the feature vector f (ωi(y)) at each site i by f i(y). The
subscript i indicates the difference just in the feature vectors at different sites, not
in the functional form of f (.). Then, A(xi,y) is modeled using a local discriminative
model that outputs the association of the site i with class xi as,

A(xi,y) = logP′(xi| f i(y)), (4.4)

where P′(xi| f i(y)) is the local class conditional at site i. This form allows one to
use an arbitrary domain-specific probabilistic discriminative classifier for a given
task. This can be seen as a parallel to the traditional MRF models where one can
use arbitrary local generative classifier to model the unary potential. One possible
choice of P′(.) is Generalized Linear Models (GLM), which are used extensively
in statistics to model the class posteriors [18]. Logistic function is a commonly
used link in GLMs although other choices such as probit link exist. Using a logistic
function, the local class conditional can be written as,

P′(xi=1| f i(y))=
1

1+e−(w0+wT
1 f i(y))

=σ(w0+wT
1 f i(y)), (4.5)

where w = {w0,w1} are the model parameters. This form of P′(.) will yield a linear
decision boundary in the feature space spanned by vectors f i(y). To extend the lo-
gistic model to induce a nonlinear decision boundary, a transformed feature vector
at each site i can be defined as hi(y) = [1,φ1( f i(y)), . . . ,φR( f i(y))]T where φk(.) are
arbitrary nonlinear functions. These functions can be seen as explicit kernel map-
ping of the original feature vector into a high dimensional space. The first element of
the transformed vector is kept as 1 to accommodate the bias parameter w0. Further,
since xi ∈ {−1,1}, the probability in Equation (4.5) can be compactly expressed as,

P′(xi|y) = σ(xiw
T hi(y)). (4.6)
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Finally, for this choice of P′(.), the association potential can be written as,

A(xi,y) = log(σ(xiw
T hi(y))) (4.7)

This transformation ensures that the CRF is equivalent to a logistic classifier if the
interaction potential in Equation (4.3) is set to zero. Besides GLMs, discriminative
classifiers based on SVM, Neural Network and Boosting have been successfully
used in modeling association potential in the literature. Note that in Equation (4.7),
the transformed feature vector at each site i i.e., hi(y) is a function of the whole set
of observations y. This allows one to pool arbitrarily complex dependencies in the
observed data for the purpose of classification. On the contrary, the assumption of
conditional independence of the data in the traditional MRF framework allows one
to use data only from a particular site, i.e., yi, to design the log-density, which acts
as the association potential as shown in Equation (4.1).

4.3.2 Interaction Potential

In the CRF framework, the interaction potential can be seen as a measure of how
the labels at neighboring sites i and j interact given the observed image y (Fig-
ure 4.5). To model the interaction potential, I(.), we first analyze a form com-
monly used in the MRF framework. For the isotropic, homogeneous Ising model,
the interaction potential is given as I(.) = βxix j, which penalizes every dissimilar
pair of labels by the cost β [8]. This form of interaction favors piecewise constant
smoothing of the labels without considering the discontinuities in the observed data
explicitly. Geman and Geman extended the Ising model to a line-process model
which allows discontinuities in labels through piecewise continuous smoothing [4].

Fig. 4.5 Given feature vec-
tors ψ i(y) and ψ j(y) at two
neighboring sites i and j
respectively, the interaction
potential can be seen as a
measure of how the labels at
sites i and j influence each
other. Note that such inter-
action in labels is dependent
on the observed image data
y, unlike the traditional
generative MRFs.
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However, such discontinuity adaptive models also do not use the observed data to
model the discontinuities.

In contrast, in the CRF formulation, the interaction potential is a function of all
the observations y. Suppose, ψ(.) is a function that maps an arbitrary patch in an
image to a feature vector such that ψ : Yp → ℜγ . Let Ωi(y) be an arbitrary patch
in the neighborhood of site i in image y from which we want to extract a feature
vector ψ(Ωi(y)). Note that the neighborhood used for the patch Ωi(y) need not be
the same as the label neighborhoodNi. For clarity, let us denote the feature vector
ψ(Ωi(y)) at each site i by ψ i(y). Similarly, we define a feature vector ψ j(y) for
site j. Again, to emphasize, the subscripts i and j indicate the difference just in
the feature vectors at different sites, not in the functional form of ψ(.). Given the
features at two different sites, we want to learn a pairwise discriminative model
P′′(xi =x j|ψ i(y),ψ j(y)) . Note that by choosing the function ψ i to be different from
f i, used in Equation (4.5), information different from f i can be used to model the
relations between pairs of sites.

For a pair of sites (i, j), let μ i j(ψ i(y),ψ j(y)) be a new feature vector such that
μ i j :ℜγ ×ℜγ → ℜq. Denoting this feature vector as μ i j(y) for simplification, the
interaction potential is modeled as,

I(xi,x j,y) = xix jv
Tμ i j(y), (4.8)

where v are the model parameters. Note that the first component of μ i j(y) is fixed
to be 1 to accommodate the bias parameter. There are two interesting properties of
the interaction potential given in Equation (4.8). First, if the association potential at
each site and the interaction potentials for all the pairwise cliques except the pair
(i, j) are set to zero in Equation (4.3), the CRF acts as a logistic classifier which
yields the probability of the site pair to have the same labels given the observed
data. Of course, one can generalize the form in Equation (4.8) as,

I(xi,x j,y) = logP′′(xi,x j|ψ i(y),ψ j(y)), (4.9)

similar to the association potential defined in Section 4.3.1 and can use arbitrary
pairwise discriminative classifier to define this term. The second property of the in-
teraction potential form given in Equation (4.8) is that it generalizes the Ising model.
The original Ising form is recovered if all the components of vector v other than the
bias parameter are set to zero in Equation (4.8). A geometric interpretation of in-
teraction potential is that it partitions the space induced by the relational features
μ i j(y) between the pairs that have the same labels and the ones that have different
labels. Hence Equation (4.8) acts as a data-dependent discontinuity adaptive model
that will moderate smoothing when the data from the two sites is ’different’. The
data-dependent smoothing can especially be useful to absorb the errors in model-
ing the association potential. Anisotropy can be easily included in the CRF model
by parameterizing the interaction potentials of different directional pairwise cliques
with different sets of parameters v.



4 Discriminative Graphical Models for Context-Based Classification 119

4.4 Parameter Learning and Inference

One of the crucial requirements to make the CRF-based models applicable to a vari-
ety of real-world tasks is accurate and efficient parameter learning in these models.
Here, we focus on maximum likelihood based supervised learning of CRFs.

For 1-D sequential CRFs proposed by Lafferty et al. [15], exact maximum like-
lihood parameter learning is feasible because the induced graph does not contain
loops. However, when a graph contains loops, it is generally infeasible to exactly
maximize the likelihood with respect to the parameters. Therefore, a critical issue
in applying CRFs to image-based applications is the design of effective parameter
learning techniques that can operate on arbitrary graphs.

4.4.1 Maximum Likelihood Parameter Learning

Let θ be the set of unknown CRF parameters where θ = {w,v}. Given M i.i.d.
labeled training images, the maximum likelihood estimates of the parameters are
given by maximizing the log-likelihood l(θ ) = ∑M

m=1 logP(xm|ym,θ ), i.e.,

θ̂=argmax
θ

M

∑
m=1

{

∑
i∈Sm

logσ(xm
i wT hi(ym))+∑

i∈Sm
∑

j∈Ni

xm
i xm

j vTμ i j(y
m)−logZm

}

,

(4.10)
where the partition function for the mth image is,

Zm =∑
x

exp

{

∑
i∈Sm

logσ(xiw
T hi(ym))+∑

i∈Sm
∑

j∈Ni

xix jv
Tμ i j(y

m)

}

.

Note that Zm is a function of the parameters θ and the observed data ym. For learning
the parameters using gradient ascent, the derivatives of the log-likelihood are

∂ l(θ )
∂w

=
1
2∑m ∑i∈Sm

(xm
i −〈xi〉θ ;ym)hi(ym), (4.11)

∂ l(θ )
∂v

=∑
m
∑

i∈Sm
∑

j∈Ni

(xm
i xm

j −
〈
xix j

〉
θ ;ym)μ i j(y

m). (4.12)

Here 〈·〉θ ;ym denotes expectation with P(x|ym,θ ). Ignoring μi j(ym), gradient ascent
with Equation (4.12) resembles the problem of learning in Boltzmann machines.

For arbitrary graphs with loops, the expectations in Equation (4.11) and Equation
(4.12) cannot be computed exactly due to the combinatorial size of the label space.
Sampling procedures such as Markov Chain Monte Carlo (MCMC) can be used
to approximate the true expectations. Unfortunately, MCMC techniques have two
main problems: a long ‘burn-in’ period (which makes them slow) and high variance
in estimates. Although several techniques have been suggested to approximate the
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expectations, let us focus on two popular methods (see [10] for other choices and a
detailed comparison).

4.4.1.1 Pseudo-Marginal Approximation (PMA)

It is easy to see that if we had true marginal distributions Pi(xi|y,θ ) at each site i, and
Pi j(xi,x j|y,θ ) at each pair of sites i and j ∈Ni, we could compute exact expectations
as:

〈xi〉θ ;y =∑
xi

xiPi(xi|y,θ ) and
〈
xix j

〉
θ ;y = ∑

xi ,x j

xix jPi j(xi,x j|y,θ ).

Since computing exact marginal distributions is in general infeasible, a standard
approach is to replace the actual marginals by pseudo-marginals. For instance, one
can use loopy Belief Propagation (BP) to get these pseudo-marginals. It has been
shown in practice that for many applications loopy BP provides good estimates of
the marginals.

4.4.1.2 Saddle Point Approximation (SPA)

In Saddle Point Approximation (SPA), one makes a discrete approximation of the
expectations by directly using best estimates of labels at a given setting of param-
eters. This is equivalent to approximating the partition function (Z) such that the
summation over all the label configurations x in Z is replaced by the largest term in
the sum, which occurs at the most probable label configuration. In other words, if

x̂ = argmax
x

P(x|y,θ ),

then according to SPA,

Z ≈ exp

{

∑
i∈S

logσ(x̂iw
T hi(y))+∑

i∈S
∑

j∈Ni

x̂ix̂ jv
Tμ i j(y)

}

.

This leads to a very simple approximation to the expectation, i.e., 〈xi〉θ ;y ≈ x̂i. If we

further assume mean-field type decoupling, i.e.,
〈
xix j

〉
θ ;y = 〈xi〉θ ;y

〈
x j
〉
θ ;y, it also

follows that
〈
xix j

〉
θ ;y ≈ x̂ix̂ j. Readers familiar with perceptron learning rules can

readily see that with such an approximation, the updates in Equation (4.11) are very
similar to perceptron updates.

However, this discrete approximation raises a critical question: Will the gradient
ascent of the likelihood with such gradients converge? It has been shown empirically
that while the approximate gradient ascent is not strictly convergent in general, it is
weakly convergent in that it oscillates within a set of good parameters, or converges
to a good parameter with isolated large deviations. In fact one can show that this
weak-convergence behavior is tied to the empirical error of the model [10]. To pick a
good parameter setting, one can use any of the popular heuristics used for perceptron
learning with inseparable data. For instance, one can let the algorithm run up to
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some fixed number of iterations and pick the parameter setting that minimizes the
empirical error. Even though lack of strict convergence can be seen as a drawback of
SPA, the main advantage of these methods is very fast learning of parameters with
performance similar to or better than pseudo-marginal methods.

4.4.2 Inference

Given a new test image y, the problem of inference is to find the optimal labels x over
the image sites, where optimality is defined with respect to a given cost function.
Maximum A Posteriori (MAP) solution is a widely used estimate that is optimal
with respect to the zero-one cost function defined as,

C(x,x∗) = 1− δ (x− x∗), (4.13)

where x∗ is the true label configuration, and δ (x−x∗) is 1 if x = x∗, and 0 otherwise.
The MAP solution is defined as,

x̂ = argmax
x

P(x|y,θ ).

For binary classifications, the MAP estimate can be computed exactly for an
undirected graph using the max-flow/min-cut type of algorithms if the probability
distribution meets certain conditions [5]. While using the Ising MRF model, exact
MAP solution can be computed if βm ≥ 0. For the CRF model, since max-flow
algorithms do not allow negative interaction between the sites, the data-dependent
smoothing for each clique is set to be vTμ i j(y) = max{0,vTμ i j(y)}, yielding an
approximate MAP solution.

An alternative to the MAP solution is the Maximum Posterior Marginal (MPM)
solution which is optimal for the sitewise zero-one cost function defined as,

C(x,x∗) =∑
i∈S

(1− δ (xi− x∗i )), (4.14)

where x∗i is the true label at the ith site. The MPM solution at each site is defined as,

x̂i = argmax
xi

Pi(xi|y,θ ), where Pi(xi|y,θ ) = ∑
x−xi

P(x|y,θ ),

and x− xi denotes all the node variables except for node i. The MPM computation
requires marginalization over a large number of variables which is generally NP-
hard. However, as discussed before, one can use loopy BP to obtain an estimate of
the MPM solution.

4.5 Extensions

A large number of extensions of the basic binary CRFs have been proposed in the
literature. In the following sections, we discuss two key extensions: Multiclass CRFs
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to deal with multiclass labeling problems, and Hierarchical CRFs to incorporate
hierarchical context in the model.

4.5.1 Multiclass CRF

There are several applications in computer vision that require the nodes in the graph
to take multiple class labels. For example, in semantic scene segmentation task, one
may want to assign each pixel into one of many classes such as sky, water, grass,
etc. In the case of image denoising applied to a 256 gray-level image, each pixel
may take up to 256 labels. In the part-based paradigm of object detection, usually
there are more than two characteristic parts that make the full object, and the goal is
to label each generic part in the scene as a specific part of the object or background.

The extension of binary CRFs to the multiclass case is relatively straightforward.
The only difference in multiclass CRF formulation is that the labels at the image
sites are given by x = {xi}i∈S, where xi ∈ {1, . . . ,C} and C is the number of classes.
To illustrate various terms in the model, we will take the example of parts-based
object detection, in which, each image site is a part and the first (C− 1) labels

correspond to specific object parts and the Cth label corresponds to the background
class.

Following the arguments given in Section 4.3.1 and the form of the association
potential for binary CRFs (Equation (4.7)), the association potential can be easily
generalized to the multiclass case as,

A(xi,y) =
C

∑
k=1

δ (xi = k) logP′(xi = k|y), (4.15)

where δ (xi = k) is 1 if xi = k and 0 otherwise. Let hi(y) be a (possibly kernelized)
feature vector at each site i. Note that, in the case of object detection, the vector
hi(y) encodes the appearance based features of the ith part. To model P′(xi = k|y),
one can simply use the multiclass version of the logistic function described for the
binary CRFs in Section 4.3.1. This leads to the softmax function in the multiclass
case where,

P′(xi = k|y) =

⎧
⎪⎪⎨

⎪⎪⎩

exp(wT
k hi(y))

1+∑C−1
l=1 exp(wT

l hi(y))
if k < C

1
1+∑C−1

l=1 exp(wT
l hi(y))

if k = C.

(4.16)

Here, wk are the model parameters for k = 1 . . .C− 1. For a C class classification
problem, one needs only C−1 independent hyperplanes, which may lie in a high di-
mensional (kernel-projected) space inducing a non-linear decision boundary in the
original feature space. In the application of object detection, the association poten-
tial discriminatively models the individual appearance of each part in the image.

The interaction potential in CRFs predicts how the labels at two sites interact
given the observations. Generalizing the interaction potential given for binary CRFs,
interaction potential for multiclass CRFs can be written as,
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I(xi,x j,y) =
C

∑
k=1

C

∑
l=1

vT
klμ i j(y)δ (xi = k)δ (x j = l). (4.17)

Here, μ i j(y) is the pairwise relational vector for a site pair (i, j), and vkl are the
model parameters. Note that in the case of object detection, the vector μi j(y) en-
codes the pairwise features required for forcing geometric and possibly photometric
consistency in the pair of parts. For undirected graphs, the site pairs are unordered
sets implying that vkl = vlk for k, l = 1 . . .C. The from of interaction potential given
in Equation (4.17) is a generalization of the Potts model used commonly in com-
puter vision problems such as image segmentation and restoration. The standard
Potts model can be recovered from Equation (4.17) if vkl = 0 when k �= l, and all
the elements of the vector vkl are set to zero except the bias term. A more specific
but popular form of Potts model is achieved if the bias terms for all the vectors
vkk ∀ k are also fixed to be the same. Similar to the interaction potential of the bi-
nary CRF, multiclass interaction potential can be seen as a pairwise discriminative
model which partitions the pairwise relational feature space (induced by the features
μi j(y)) in C(C + 1)/2 regions.

It is important to note that, to enforce the geometric consistency relationship
between parts, the interaction between part labels has to use observed data (e.g. the
location of patches). Since, the pairwise potential I is a function of observed data in
CRFs, these fields provide a principled way to represent relations between parts in
a random-field framework.

Let θ be the set of CRF parameters where θ =
{{wk}k=1,...,C−1,{vkl}k,l=1,...,C

}
.

To learn θ via maximum likelihood, similar to the binary CRFs, one can write the
gradient of log-likelihood as,

∂ l(θ )
∂wk

=∑
m
∑

i∈Sm

(
δ (xm

i =k)−〈δ (xi =k)〉
)

hi(ym), (4.18)

∂ l(θ )
∂vkl

=∑
m
∑

i∈Sm
∑

j∈Ni

(
δ (xm

i =k)δ (xm
j = l)−〈δ (xi =k)δ (x j = l)

〉)
μ i j(y

m), (4.19)

where 〈.〉 denotes expectation with respect to the distribution P(x|ym,θ ) and m in-
dexes over the training images. Generally the expectations in Equation (4.18) and
Equation (4.19) cannot be computed exactly even for moderate-size problems. Simi-
lar to the previous discussion in Section 4.4, these expectations can be approximated
by either pseudo-marginals or Saddle Point Approximation with multiclass exten-
sions of min-cuts [3]. Similarly, for inference, one can get the labels either using
approximate MAP obtained by multiclass min-cut or using approximate MPM via
loopy BP.

4.5.2 Hierarchical CRF

So far, we have discussed spatial interactions in natural images at pixel, block or
patch level for binary or multiclass classification problems. However, in natural
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Fig. 4.6 A simple illustra-
tion of a two-layer hierar-
chical field for contextual
classification. Squares and
circles represent sites at
the two layers. Only one
node along with its neigh-
bors is shown for each layer
for clarity. Layer 1 mod-
els short-range interactions
while layer 2 models long
range dependencies in im-
ages. The true labels x are
obtained from the top layer
by a simple replication map-
ping Γ (.).

Labels x

y

(Layer 1)

(Layer 2)

(2)

Observed Image 

x

Labels x(1)

Γ(.)
True Labels

images, there are different levels of context one would like to use to improve clas-
sification accuracy. For instance, for pixelwise image labeling problem, the local
smoothness of pixel labels provides local context. On the other hand, there exists a
higher level global context since image regions follow probable configurations. For
example, sky tends to occur above water or vegetation. Similarly, for the problem
of parts-based object detection, local context is the geometric relationship among
parts of an object while the relative spatial configurations of different objects (e.g.,
monitor, keyboard and mouse) provides the global context. Here we present a high-
level discussion on how one can use hierarchy of CRFs to improve classification in
images. For a detailed discussion on this topic, see [13].

A simple two-layer hierarchical model is shown in Figure 4.6, in which each
layer is modeled as a separate CRF. The first layer models short range interactions
among the sites such as label smoothing for pixelwise labeling, or geometric con-
sistency among parts of an object. The second layer models the long range interac-
tions between groups of sites corresponding to different coherent regions or objects.
Thus, this layer can take into account interactions between different objects (moni-
tor/keyboard) or regions (sky/water).

The two layers of the hierarchy are coupled with directed links. A node in layer
1 may represent a single pixel or a patch while a node in layer 2 represents a larger
homogeneous region or a whole object. Each node in the two layers is connected
to its neighbors through undirected links. In addition, each node in layer 2 is also
connected to multiple nodes in layer 1 through directed links. The use of directed
links between the two layers, instead of the undirected ones, avoids the intractability
of dealing with a large partition function. Each layer being a CRF, any node in layer
1 can potentially use arbitrary features from the whole image. The top layer uses the
output of layer 1 as input through the directed links.

Given the observed data y = {yi}i∈S in an image, we are interested in finding
the labels, x = {xi}i∈S, where xi ∈ L and |L| is the number of classes. For image
labeling, a site is a pixel and a class may be sky, grass, etc., while for contextual
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object detection, a site is a patch and a class may refer to objects (e.g., keyboard
or mouse). The set of sites in layer 1 is S(1) such that S(1) = S, while that in layer
2 is denoted by S(2). The nodes in layer 2 induce a partition over the set S(1) such
that a subset of nodes in layer 1 correspond to one node in layer 2. Formally, a

partition h is defined as h : S(1)→ S(2) such that, if S(1)
r is a subset of nodes in layer

1 corresponding to node r ∈ S(2), then S(1) =
⋃

r
S(1)

r and S(1)
r ∩ S(1)

s = φ ∀ r,s ∈
S(2). Let the space of all partitions be denoted as H. This partition should not be
confused with an image partition, since it is defined over the sites in S(1), which
may not correspond to the image pixels (e.g., in object detection, where sites are
random image patches). Let the labels on the sites in the two layers be given by

x(1) = {x(1)
i }i∈S(1) and x(2) = {x(2)

r }r∈S(2) , where x(1)
i ∈L(1) and x(2)

r ∈ L(2), where
L(2) = L. The nodes in layer 1 may take pseudo-labels that are different from the
final desired labels. For instance, in object detection, a node at layer 1 may be
labeled as ’a certain part’ of an object rather than the object itself. In fact, the labels
at this layer can be seen as noisy versions of the true desired labels.

Given an image y, we are interested in obtaining the discriminative distribution
P(x|y) over the true labels. Let us define a space of valid partitions, Hv, such that

∀ h ∈ Hv, xi = x(2)
r ∀ i ∈ S(1)

r , where r = h(i). This implies that multiple nodes
in layer 1 form a hypothesis about a single homogeneous region or an object in
layer 2. Further, we define a replication mapping, Γ (.) , which takes any value

(discrete or continuous) on node r and assigns it to all the nodes in S(1)
r . Thus, given

a partition h ∈ Hv, and the corresponding labels x(2), the labels x can be obtained
simply by replication. This implies, P(x|y)≡ P(x(2)|h,y) if h∈Hv . However, given
an observed image y, the constraint h ∈Hv is too restrictive. Instead, one can define
a distribution, P(h|y), that prefers partitions in Hv over all possible partitions, and,

P(x|y)∼= ∑
h∈H

P(x(2)|h,y)P(h|y)

= ∑
h∈H
∑
x(1)

P(x(2)|h,x(1))P(h|x(1))P(x(1)|y), (4.20)

where both P(x(1)|y) and P(x(2)|h,x(1)) are modeled as CRFs. In Equation (4.20),
computing the sum over all the possible configurations of x(1) is a NP-hard problem.
One naive way to reduce the complexity is to do inference in layer 1 until equilib-
rium is reached and then use this configuration x̂(1) as input to the next layer, i.e.,
P(x(1)|y) = δ (x(1)− x̂(1)). However, by doing this, one loses the power of modeling
the uncertainty associated with the labels in layer 1, which was included explic-
itly in Equation (4.20) through P(x(1)|y). Here, we discuss a simple variant, where
along with the equilibrium configuration, one also propagates the uncertainty asso-
ciated with it to the next layer. The sitewise maximum marginal configuration are

used as x̂(1). Let the marginals at each site i be bi(x
(1)
i ) = ∑x(1)−x

(1)
i

P(x(1)|y), and

b(x(1)) = {bi(x
(1)
i )}i∈S(1) . The belief set, b(x(1)) is propagated as an input to the next
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layer. Since the configuration x̂(1) can be obtained directly from b(x(1)) by taking its
sitewise maximum configuration, we omit explicit conditioning on x̂(1). Thus,

P(x|y)≈ ∑
h∈H

P(x(2)|h,b(x(1)))P(h|b(x(1))). (4.21)

Note that both terms in the summation implicitly include the transition probabilities

P(x(2)
r |x̂(1)

i ). For the first term, these are absorbed in the unary potential of the CRF
in layer 2.

The model describing layer 1 is a simple multiclass CRF and different potentials
are designed as discussed before in Section 4.5.1. The CRF formulation for layer
2 can be obtained in the same way except that the observations for this layer are
b(x(1)), the set of sites is S(2), and the label set is L(2). The only difference lies in the
form of the unary potential. Each node r ∈ S(2) in this layer receives beliefs as input

from the nodes contained in set S(1)
r from the layer below. Taking into consideration

the transition probabilities on the directed links between node r and all the nodes in

S(1)
r , the unary potential can be written as,

A(2)(x(2)
r ,b(x(1))) = ∑

k∈L(2)

{
δ (x(2)

r = k)

(
logP′(x(2)

r = k|b(x(1)))+
1

|S(1)
r |
∑

i∈S(1)
r

logP(x(2)
r = k|x̂(1)

i )
)}

. (4.22)

Here, the first term in parentheses on the right hand side involves local classifier
P′(.), which is again modeled as a softmax function. It takes features as input, which
are constructed using the beliefs b(x(1)) at layer 1. The second term arises due to the
directed connections between each node r ∈ S(2) in layer 2 to all the nodes in the set

S(1)
r in layer 1. The effect of this term can be understood by switching the first term

off along with the interaction potential. This will lead to the intuitive reasoning of
assigning node r that label which maximizes the joint transition probability (com-

puted by assuming each site in S(1)
r to be independent) given a label configuration

x̂(1) at layer 1. The term, |S(1)
r | acts as a normalizer that takes into account the dif-

ferent cardinalities of sets S(1)
r . In the interaction potential for this layer, the features

μ i j(.) are designed such that they capture relative configurations of two regions or
objects.

The distribution P(h|b(x(1))) indicates goodness of a partition in layer 2. Here,
we just mention that one can design this function according to the application do-
main. One can find more details on possible choices in [13]. The set of parameters
Θ , to be learned in the hierarchical model, includes the parameters of the CRFs at

layer 1 and layer 2, and the transition probability matrices P(x(2)
r |x̂(1)

i ). The CRF pa-
rameters for each layer are the parameters of the unary and pairwise potentials i.e.,

θ (α) =
{

w(α)
k ,v(α)

kl

}α=1,2

∀k,l
. The parameters in the joint model are learned sequen-

tially using loopy BP. The procedure is a simple extension of learning in multiclass
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CRFs discussed before. Similarly, inference in this model is carried out using a com-
bination of loopy BP and sampling of partitions. We refer the reader to [13] for more
details on learning and inference.

4.6 Applications

In this Section, we discuss a few real-world applications of different types of CRFs.
The application of binary CRFs is considered on man-made structure detection,
while the performance of multiclass and hierarchical CRFs is tested on image clas-
sification and contextual object detection tasks.

4.6.1 Man-Made Structure Detection

Detecting man-made structures in natural scenes is difficult because there are sig-
nificant within class variations in the appearance of data from the structured class.
Similarly, the data from the nonstructured class is virtually unconstrained, and there
is a large overlap between these two classes. The training and the test set used in this
study contained 108 and 129 images respectively from the Corel image database.
Each image is divided into nonoverlapping 16×16 pixels blocks. Each block forms
a site in the graph. The whole training set contained 36,269 blocks from the non-
structured class, and 3,004 blocks from the structured class.

To generate the features, the intensity gradients contained within a window in the
image are combined to yield a histogram over gradient orientations. Each histogram
count is weighted by the gradient magnitude at that pixel and smoothed using kernel
smoothing. Heaved central-shift moments are computed to capture the the average
spikeness of the smoothed histogram as an indicator of the structuredness of the
patch. The orientation based feature is obtained by passing the absolute difference
between the locations of the two highest peaks of the histogram through sinusoidal
nonlinearity. The absolute location of the highest peak is also used.

For each image, two different type of feature vectors at each site are computed.
First a single-site feature vector at the site i, si(yi) is computed using the histogram
from the data yi at that site. Obviously, this vector does not take into account the
influence of the data in the neighborhood of that site. The vector si(yi) is composed
of the first three moments and the two orientation based features described above.
Next, a multiscale feature vector at the site i, f i(y) is computed which explicitly
takes into account the dependencies in the data contained in the neighboring sites. It
should be noted that the neighborhood for the data interaction need not be the same
as for the label interaction. To compute f i(y), smoothed histograms are obtained at
three different scales, where each scale is defined as a varying window size around
the site i. The number of scales is chosen to be 3, with the scales changing in regular
octaves. The lowest scale is fixed at 16×16 pixels (i.e., the size of a single site), and
the highest scale at 64×64 pixels. The moment and orientation based features are
obtained at each scale similar to si(yi). In addition, two interscale features are also
obtained using the highest peaks from the histograms at consecutive scales. To avoid
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(a) Input image (b) Logistic

(c) MRF (d) CRF

Fig. 4.7 Structure detection results on a test example for different methods. For similar de-
tection rates, CRF reduces the false positives considerably.

redundancy in the moments based features, only two moment features are used from
each scale yielding a 14 dimensional feature vector.

To make the unary classifier in the CRF more powerful, a transformed feature
vector hi(y) is computed at each site i by using an explicit quadratic kernel. The
quadratic mapping gives a 119 dimensional vector at each site. The features ψ i are
chosen to be the same as f i. Further, the pairwise data vector μ i j(y) is obtained
by concatenating ψ i(y) and ψ j(y). The parameters of the CRF model were learned
using the maximum likelihood framework as described before.

4.6.1.1 Qualitative Evaluation

For an input test image given in Figure 4.7 (a), the structure detection results from
three methods are shown in Figure 4.7. The blocks identified as structured have
been shown enclosed within an artificial boundary. It can be noted that for simi-
lar detection rates, the number of false positives have significantly reduced for the
CRF based detection. Locally, different branches may yield features similar to those
from the man-made structures. The logistic classifier does not enforce smoothness
in labels, which led to increased isolated false positives. However, the MRF solu-
tion with Ising model simply smooths the labels without taking observations into
account resulting in a smoothed false positive region around the tree branches.
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(a) MRF (b) CRF

Fig. 4.8 Detection of a building in poor illumination conditions in a test image. CRFs can
improve the detection rate while simultaneously reducing the false positive rate.

The performance of MRF and CRF is compared on another test example requir-
ing detection of a building in poor illumination conditions (Figure 4.8). CRFs give
higher detection rate while reducing the false positive rate by enforcing interactions
among the labels as well as the data from multiple scales.

4.6.1.2 Quantitative Evaluation

To carry out the quantitative evaluations, the detection rates and the number of false
positives per image for each technique are compared. To avoid the confusion due
to different effects in the CRF model, the first set of experiments is conducted us-
ing the single-site features for all the three methods. Thus, no neighborhood data
interaction is used for both the logistic classifier and the CRF, i.e., f i(y)= si(y).
The comparative results for the three methods are given in Table 4.1 next to ’MRF’,
’Logistic−’ and ’CRF−’. For comparison purposes, the false positive rate of the lo-
gistic classifier is fixed to be the same as the CRF in all the experiments. It can be
noted that for similar false positives, the detection rates of the traditional MRF and
the CRF are higher than the logistic classifier due to the label interaction. However,
the higher detection rate of the CRF in comparison to the MRF indicates the gain
due to the use of discriminative models in the association and interaction potentials.
In the next experiment, to take advantage of the power of the CRF framework, data
interaction was allowed for both the logistic classifier as well as the CRF (’Logistic’
and ’CRF’ in Table 4.1). The CRF detection rate increases substantially and the false
positives decrease further indicating the importance of allowing the data interaction
in addition to the label interaction.

4.6.2 Image Classification and Contextual Object Detection

The experiments in this Section demonstrate the capability of hierarchical CRFs.
The first set of experiments is based on the ‘Beach’ dataset from [14], which con-
tains a collection of consumer photographs. The goal was to assign to each image
pixel one of 6 class labels: {sky, water, sand, skin, grass, other}. This dataset is
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Table 4.1 Detection Rates (DR) and False Positives (FP) for the test set containing 129 im-
ages (49,536 sites). FP for logistic classifier were kept to be the same as for CRF for DR
comparison. Superscript ′−′ indicates no neighborhood data interaction was used.

MRF Logistic− CRF− Logistic CRF

DR (%) 58.35 47.50 61.79 60.80 72.54
FP (per image) 2.44 2.28 2.28 1.76 1.76

particularly challenging due to wide within-class variance in the appearance of the
data due to drastic illumination conditions. Another characteristic of this dataset
which makes it difficult is that, for most of the images, a significant area belongs
to none of the semantic classes (i.e., falls under the other category). Traditionally it
has been hard to model this category because any pixel in this category can virtually
have unconstrained appearance.

The layer 1 of hierarchical CRF implements smoothness of pixel labels as the
local context. Hence, the sites in layer 1 are image pixels, and three HSV color
features and two texture features (based on second moment matrix) give a 5 dimen-
sional unary feature vector. Use of quadratic kernel yielded a 21 dimensional feature
vector hi(y). To implement label smoothing, the pairwise feature vector μ i j(y) is set
to 1, resulting in the Potts model.

The layer 2 encodes interactions among different regions given the beliefs at layer
1 and a partition. Each region of the partition is a site in layer 2. For this dataset, the
number of sites at layer 2 varied from 13 to 49 for different images. Each node in
this layer is connected to every other node. The computations over these complete
graphs are still efficient because of the small number of nodes in the graph. The
unary feature vector for each node r consists of normalized product of beliefs from

all the sites i in S(1)
r and the normalized centroid location of the region r. This gives

an 8 dimensional feature vector. Further, quadratic transforms are used to obtain a 44
dim vector. The pairwise features between regions are chosen to be binary indicator
attributes: a region is above, beside or enclosed within another region.

A few example results from the test set are shown in Figure 4.9. The softmax
classifier (second column) does not perform well because it classifies each pixel
independently without considering interactions in the labels. For example, there is
substantial confusion between sand and skin regions or water and sky regions. In
addition, the labels are not smooth giving the resulting classification a dithered ap-
pearance. The smoothness of labels can be achieved (third column) by implementing
smoothing interaction potential in layer 1 of the hierarchical CRF. However, the er-
rors in the larger regions are not eliminated. But, when the full hierarchical model
is applied where the second layer enforces the spatial configuration of the regions,
most of the errors are eliminated. Note that there are several images that contain
pixels which do not belong to any of the semantic classes (e.g., clothing, chairs,
boat etc). Such regions are also classified well by the hierarchical CRF. The last row
in Figure4.9 shows that the average accuracy on the test set increases to 74% using
the full hierarchical model in comparison to 62.3% from the softmax classifier.
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Input image Softmax classifier Layer 1 output Final result
Accuracy on test set 62.3% 63.8% 74.0%
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Fig. 4.9 Pixelwise classification results on the Beach dataset using hierarchical CRFs. ’Layer
1 output’ shows the result of implementing label interactions through layer 1 only. Label
smoothing is achieved but many large regions are labeled wrong in this output. ’Final result’
shows the final classification using both the layers in the hierarchical model which eliminates
most of the errors.

The second set of experiments aims to detect objects i.e., monitor, keyboard and
mouse in an office scene. The dataset contained 164 low-resolution images of size
less than 100×100 pixels each [21]. The main challenge in the dataset is the detec-
tion of the keyboard and the mouse, which spanned only a few pixels in the images.
For these experiments, the hierarchical CRF enforces interactions among the three
objects, resulting in a significant reduction in false alarms.

For each object, at first a base detector is trained using gentle-boost. Since the
size of the mouse in the input images is very small (on average about 8×5 pixels),
the boosting based detector could not be trained for the mouse. Instead, a simple
template matching based detector is learned. A patch at a location, where the output
of any of the three detectors is higher than a threshold, represents a site in S(1). The
set of sites S(2) in layer 2 is the same as in layer 1, indicating the trivial partition. The
label set for the sites in S(1) and S(2) is {monitor, keyboard, mouse, background}.
Since layer 1 uses the output of a standard object detector, interactions among sites
take place only at layer 2.
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Input image Monitor (NC) Keyboard (NC) Mouse (NC)

Monitor (WC) Keyboard (WC) Mouse (WC)

Fig. 4.10 Detection results for monitor, keyboard and mouse using context based on spatial
configuration of objects. NC - No Context, WC - With Context. Monitor detection was good
with the base detector itself due to less appearance ambiguity. Note the impoverished appear-
ances of the keyboard and the mouse. Green and red indicate true detections and false alarms
respectively.
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Fig. 4.11 The ROC curves for the detection of keyboard (left) and mouse (right). Relatively
high false alarm rates for the mouse were due to very small size of mouse (about 8×5 pixels)
in the input images.

The unary features at layer 2 consist of the score from each detector yielding a
3 dimensional feature vector. The difference of coordinates of the patch centers re-
sulted in a 2 dimensional pairwise feature vector. Each node is connected to every
other node in this layer. Figure 4.10 shows a typical result from the test set. It is clear
that the false alarms are reduced considerably in comparison to the base detector.
The use of context did not change the results for the monitor, since the base detec-
tor itself was able to give good performance. This is reasonable because one hopes
the context to be more useful when the local appearance of an object is more am-
biguous. The ROC curves for the keyboard and the mouse detection are compared
with the corresponding base detectors in Figure 4.11. For the mouse detection, even
though the hierarchical CRF was able to reduce the false positives significantly, the
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number of false alarms per image is still high. This is understandable because the
size of mouse is very small in all the images. One can hope for context to improve
detection only if there exists at least ’bare-minimum’ appearance based evidence for
that object in images.

4.7 Related Work and Further Readings

In this chapter, we gave a succinct review of basic types of CRFs used in computer
vision. One can find a more in-depth discussion on modeling, parameter learning
and inference in these CRFs in [9]. It also contains extensive details on the experi-
mental procedures including feature extraction and speed comparisons.

CRFs were introduced in computer vision by Kumar and Hebert [11] [12] ex-
tending the 1D-CRFs from Lafferty et al. [15]. Since then, a number of techniques
have been proposed in vision that further modified CRFs for various applications.
Different types of local classifiers such as neural network [7], boosted stumps [21]
and probit function [19] have been used to model clique potentials. A Hidden CRF
model was introduced in [20] to handle latent variables. Learning in CRFs was ex-
tended to a semi-supervised paradigm by [17]. As a final note, we would like to
mention that taking a non-probabilistic view, energy based models have been used in
vision. These models have expressive power similar to CRFs [2] [16]. However, ef-
fective parameter learning is perhaps the biggest challenge in such non-probabilistic
models.
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Chapter 5
From the Subspace Methods to the Mutual
Subspace Method

Ken-ichi Maeda

Abstract. The Subspace Method [25, 21] is a classic method of pattern recogni-
tion, and has been applied to various tasks. The Mutual Subspace Method [19] is an
extension of the Subspace Methods, in which canonical angles (principal angles)
between two subspaces are used to define similarity between two patterns (or two
sets of patterns). The method is applied to face recognition and character recogni-
tion in Toshiba Corporation. The Karhunen-Loève eigenvalue method or Principal
Component Analysis (PCA) [8, 13, 17] is a well-known approach to form a sub-
space that approximates a distribution of patterns, and it was introduced as a tool of
pattern recognition [10, 24]. The extension from the Subspace Methods to the Mu-
tual Subspace Method corresponds to the difference between PCA and Canonical
Correlation Analysis (CCA) [9]1. In this chapter, the Mutual Subspace Method, its
mathematical foundations and its applications are described.

5.1 Introduction

Similarity definition is the most important factor for pattern recognition since no two
objects are identical in the real worlds. Similarity can be defined in various ways,
but here we take one based on the so-called pattern matching. The easiest example
is template matching, e.g., as shown in an optical character reader (OCR) patent by
Tauschek [22] (see Figure 5.1).

A more mathematical interpretation of such a simple matching is as follows: An
image is a set of light intensity, f (x,y), where (x,y) is a position. Sometimes we
write f (rrr), where rrr = xiii + y jjj. We can appropriately quantise each position and
divide whole area into I meshes. Thus an image is represented with a vector,

Ken-ichi Maeda
Corporate Research & Development Center, Toshiba Corporation, Japan
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1 A text book by Bishop [1] is recommended to learn about the difference between PCA and
CCA, as well as to learn about more general statistical background of pattern recognition.
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Fig. 5.1 An example of template matching: Tauschek’s OCR patent (US Patent 2,026,329).

fff = ( f1, f2, · · · , fi, · · · , fI)t , (5.1)

where fi is the intensity of the i-th mesh (see Figure 5.2). We call this “vector rep-
resentation of image pattern (or just pattern).”

There exist no two objects that are identical in the real world, (i.e., some mesh
values should be different between any two patterns). Thereby a set of patterns
which belong to the same class are distributed in a certain area.

If the illumination becomes a-times brighter, each mesh value of a pattern be-
comes a-times larger. Thus the area has a shape of cone, as shown in Figure 5.3.
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Fig. 5.2 Vector representa-
tion of image pattern: each
mesh value is light intensity
of the position.

f1 f2

fI

Fig. 5.3 Cone shape pattern
distribution in a class.

On one hand, the simplest way to define a similarity between two patterns is to
use the distance between the two vectors that represent the patterns, as

ddd = fff −ggg . (5.2)

However, if the distance is used, it directly reflects the change of illumination; if the
illumination becomes a-times brighter, the distance is also a-times longer.

On the other hand, another way to define a similarity is to use the angle between
the two vectors, as



138 K.-i. Maeda

Fig. 5.4 Comparison of
similarity definitions: dis-
tance or angle.

fff

ggg

a fff

aggg

fff −ggg

a( fff −ggg)

θ

cos2 θ =
( fff , ggg)2

(‖ fff‖2 ‖ggg‖2)
. (5.3)

We call this “the simple similarity between fff and ggg.” A merit of using the angle is
that it is unchanged under the illumination change. See Figure 5.4 for comparison
of these definitions.

However such a simple matching method has a problem caused by change in
shape or position even though the amount of change is small. Even a single bit shift
as shown in Figure 5.5 may make a serious change in similarity; the inner product
of these two patterns is 0!

We have to introduce a more powerful matching method in order to solve the
problem. The Subspace Methods and the Mutual Subspace Method were invented
in order to define similarities which were more stable against pattern variations and
more discriminative against similar classes.

-1 -1 -1 -1

+1 +1 +1 +1

+1 +1 +1 +1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

+1 +1 +1 +1

+1 +1 +1 +1

Fig. 5.5 An example of problem with simple matching: A single bit shift makes the inner
product value 0.
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5.2 The Subspace Methods

5.2.1 A Brief History of the Subspace Methods

A solution to the problem with template matching is to use the Subspace Methods2.
The Subspace Methods are a kind of the pattern matching method, where a more
sophisticated matching than that in template matching is employed, i.e., the dictio-
nary or the reference pattern is represented with not a single pattern but a subspace.
Karhunen-Loève expansion (K-L expansion), which is employed to make the sub-
space, was independently introduced by Iijima [10] and Watanabe [24] in pattern
recognition at almost the same time3. The name of “the Subspace Method” was
given by Watanabe et al. [25].

Iijima’s method was originally called “the Multiple Similarity Method [11, 12],”
and corresponding Watanabe’s method was called “CLAFIC [25].” They are slightly
different, but the process are almost the same:

• use a subspace as a dictionary of each class,
• collect a set of known patterns of each class and perform K-L expansion to make

the dictionary4 and
• calculate measures for all classes to classify an unknown pattern.

It is interesting that the K-L method itself was also independently invented by
Karhunen [13] and Loève [17] for the research of stochastic process at almost the
same time. A discrete form was proposed as Principal Component Analysis (PCA)
by Hotelling [8] earlier than them.

The K-L method is occasionally employed also in order to reduce dimensionality;
which is called “K-L transformation.” Watanabe’s corresponding method is called
“SELFIC [24].” Almost the same method was revived by Turk and Pentland [23] for
face recognition.

The Subspace Methods of pattern recognition have been investigated also by
many researchers, such as Fu and Yu [5], Kittler and Young [15] and Kohonen [16].
There are a number of variations in the Subspace Methods, such as “MOSS,” “the
Learning Subspace Method,” “the Orthogonal Subspace Methods,” etc. For further
detail, refer to Oja’s text book. For those interested in history, refer to Grenander’s
book [7].

5.2.2 Basic Idea

As discussed before, no two patterns are identical in the real world. The question is
what should be the representative of a class, or the reference pattern: We call it “a
dictionary of the class.” The simplest idea is to assign the mean vector as the dic-
tionary. An alternative is to use all sample vectors. The former is too simple and the

2 A good text book [21] is unfortunately out of print, but it may be found in a library.
3 Iijima called it “Mode Function Expansion [10].”
4 Iijima et al. [11] also showed another way to make a subspace using derivation.
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Fig. 5.6 Pattern distribution
approximation by a sub-
space.

latter requires a large memory to store all vectors. Viewing the pattern distribution
in a class shown in Figure 5.3, we find the cut plane is an ellipse. The ratio of the
major axes and the minor axes of the ellipse is usually large.

If the pattern distribution has such a large ratio of ellipse shape, the distribution
can be approximated by a plane (i.e., a subspace). An example of the approxima-
tion is shown in Figure 5.6. Instead of calculating the angle between an unknown
input pattern and all known sample patterns, we can define a similarity as the an-
gle between the unknown pattern and the subspace, as shown in Figure 5.7 and
Equation (5.5).

S(l)
MS[ fff ] def= cos2 θ (5.4)

=
M

∑
m=1

( fff , ϕϕϕm)2

‖ fff‖2 . (5.5)

where fff is an unknown input pattern and {ϕϕϕ(l)
m }M

m=1 are an orthonormal basis of a
subspace for class ‘l.’ We call this “the multiple similarity of fff for class ‘l.’ ”

The angle between an unknown input pattern and a dictionary subspace is the
angle between the unknown pattern and the nearest vector in the subspace. Thereby
a subspace dictionary is equivalent to preparing infinite number of sample patterns.

5.2.3 Subspace Construction

Now the problem is how to make the subspace, more practically how to find the
orthonormal basis of the subspace. We follow Iijima’s idea [10] for this purpose.



5 From the Subspace Methods to the Mutual Subspace Method 141

Fig. 5.7 Similarity defini-
tion by the angle between a
pattern and a subspace.

θ

fff

ϕϕϕ1

ϕϕϕ2

( fff , ϕϕϕ2)

( fff , ϕϕϕ1)

Fig. 5.8 Cut plane of the
pattern distribution of class
‘l.’

ϕϕϕ(l)
1

ϕϕϕ(l)
2

fff α

Figure 5.8 shows the cut plane of the pattern distribution of class ‘l.’ We may
think the figure shows an orthogonal projection of the pattern distribution to the
complementary subspace that is orthogonal to the standard pattern. The problem is

interpreted as how to find {ϕϕϕ(l)
m }M

m=1.

Let { fffα} and {w(l)
α } be a set of sample patterns and their probability of existence

in a class ‘l,’ respectively. Then the mean value of the simple similarities between a
pattern fff and the sample patterns fff α is

S(l)[ fff ] =∑
α

w(l)
α

( fff , fff α)2

‖ fff‖2‖ fff α‖2 (5.6)

=
M

∑
m=1

λ (l)
m ( fff , ϕϕϕ(l)

m )2

‖ fff‖2 . (5.7)

where {λ (l)
m }M

m=1 and {ϕϕϕ(l)
m }M

m=1 are eigenvalues and eigenvectors of the following
K(l), respectively.

K(l) =∑
α

w(l)
α

< fff α , fff α >

‖ fff α‖2 (5.8)

=
M

∑
m=1

λ (l)
m < ϕϕϕ(l)

m , ϕϕϕ(l)
m > . (5.9)

where < •, •> denotes dyad or Neumann-Schatten product.
Now the problem is to find the ϕϕϕ that maximises S(l)[ϕϕϕ ]. The ϕϕϕ should satisfy

δS(l) = 0. Let pppα be fff α/‖ fffα‖. Then Equation (5.6) is



142 K.-i. Maeda

S(l)[ϕϕϕ] =∑
α

w(l)
α

(ϕϕϕ , pppα)2

‖ϕϕϕ‖2 . (5.10)

Calculating variation of Equation (5.10),

‖ϕϕϕ‖2δS(l) + 2S(l)(ϕϕϕ , δϕϕϕ) = 2∑
α

w(l)
α (ϕϕϕ , pppα)(pppα , δϕϕϕ) (5.11)

= 2(K(l)ϕϕϕ , δϕϕϕ) . (5.12)

Since local maxima should satisfy δS(l) = 0,

(S(l)ϕϕϕ , δϕϕϕ) = (K(l)ϕϕϕ , δϕϕϕ) , (5.13)

for any δϕϕϕ . Thus we have an eigenvalue problem,

S(l)ϕϕϕ = K(l)ϕϕϕ , (5.14)

which is known as the Karhunen-Loève eigenvalue method or PCA.

5.3 The Mutual Subspace Method

5.3.1 Basic Idea

The reference patterns are represented with subspaces in the Subspace Methods.
Thinking about the difference between the simple similarity and the multiple sim-
ilarity, it is dissymmetric to replace just one of two vectors by a subspace. What
about representing both the input and reference patterns with subspaces?

The use of subspaces in the Subspace Methods improved the stability of similarity
against the changes of pattern positions or shapes. If both the input and reference
patterns are represented with the subspaces, we may expect more stability against
the changes.

Before extending the definition of similarity from the angle between a vector and
a subspace to that between two subspaces, we should define what the angle between
two subspaces is. Given the subspaces, U and V , the angle between these is defined
as the minimum angle between vectors uuu and vvv, where uuu ∈U and vvv ∈ V , according
to Dixmier [4]. See Figure 5.9 for a more concrete image. Let θ be the angle. Then

cos2 θ def= sup
uuu∈U,vvv∈V
‖uuu‖�=0,‖vvv‖�=0

|(uuu, vvv)|2
‖uuu‖2‖vvv‖2 . (5.15)

We use this value also as the definition of similarity. For actual calculation of the
similarity, we apply the following theorem.
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Fig. 5.9 Angle between
two subspaces: Compare to
angle between a vector and
a subspace shown in Fig. 5.7

θ1 = 0

θ2

U

V

uuu

vvv

Fig. 5.10 How to calculate
the angle between two sub-
spaces: The length of QPQxxx
is cos2 θ times the length of
Qxxx.

U

V
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θ

Q

PQ

Qxxx

PQxxx
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Theorem 1
Let U and V be two subspaces and P and Q be orthogonal projection operators onto
U and V , respectively. Then the angle between U and V is calculated as the maxi-
mum eigenvalue of PQP or QPQ [19,2,3]. Let μ and ν be the maximum eigenvalues
of PQP and QPQ, i.e.,

PQPxxx = μxxx , (5.16)

and
QPQxxx = νxxx , (5.17)

respectively. Then

cos2 θ = ‖QP‖2 (5.18)

= ‖PQ‖2 (5.19)

= μ (5.20)

= ν , (5.21)

where the norm of an operator A is defined as

‖A‖ def= sup
‖zzz‖�=0

‖Azzz‖
‖zzz‖ . (5.22)

(see Figure 5.10 for intuitive understanding).
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According to this theorem, we may use the eigenvalue, μ or ν , as the similarity instead
of the angle, cos2 θ . However, as the eigenvalue calculation of PQP or QPQ is costly
due to the large size of the matrices, we practically translate the eigenvalue problem
into that of a smaller matrix X whose eigenvalues are identical to PQP or QPQ,

X zzz = λ zzz , (5.23)

X =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

x11 . . . x1 j . . . x1n
...

...
...

xi1 . . . xi j . . . xin
...

...
...

xm1 . . . xm j . . . xmn

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

, (5.24)

where

xi j =
M

∑
m=1

(ψψψ i, ϕϕϕm)(ϕϕϕm, ψψψ j) , (5.25)

or

xi j =
N

∑
n=1

(ϕϕϕ i, ψψψn)(ψψψn, ϕϕϕ j) , (5.26)

where {ϕϕϕm}M
m=1 are a set of basis of U whose dimension is M, and {ψψψn}N

n=1 are of
V whose dimension is N.

5.3.2 Application to Chinese Character Recognition

The Mutual Subspace Method was originally developed for Chinese Character
(Kanji) recognition, in particular hand-printed Kanji recognition. Examples of hand-
printing are shown in Figure 5.11.

The problems of hand-printed Kanji recognition are:

• many classes (more than 1,000, maybe 200,000),
• hand-printing variations (such as shown in Figure 5.11) and
• existence of similar classes (such as shown in Figure 5.11).

The existence of many classed makes it difficult to collect the enough number of
sample patterns for making the dictionaries using the K-L method5. The Mutual
Subspace Method was mainly a solution to this problem; we expected a more robust
similarity against the variations without collecting so many patterns.

The next step is to make input subspace. If we assume that the major variations
of patterns are only position shift in x and y directions and that the amount of shift is
small, we can approximate the variations using derivations in x and y directions. We

5 We empirically know that the number of required training patterns is the cube of the sub-
space dimension. If we make 1,000 10-dimensional subspaces, we need 1,000,000 patterns
for training.
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Fig. 5.11 Examples of hand-printed Kanji: 3 different classes that mean ‘know,’ ‘weave’ and
‘fiber.’

can make a 3-dimensional subspace using original and the differentiated patterns in
x and y directions6. Thus we can make a subspace without the K-L method. We call
it “the differential method of dictionary.”

It is a good point to think of a blurring filter. The blurring filter is effective to
make matching easier because it reduces high frequency noises. The most com-
mon blurring filter is made with the Gaussian function. Let G(rrr, σ) be a Gaussian
function,

G(rrr, σ) =
1

2πσ2 exp(−‖rrr‖
2

2σ2 ) , (5.27)

and f (rrr) be a pattern. Then the blurring process is as follows,

f (rrri, σ) =
∫

G(rrri− rrr, σ) f (rrr) drrr . (5.28)

However, since there are mutually similar classes as discussed above, simple blur-
ring may cause degradation of the recognition accuracy. In order to intensify small
differences among the mutually similar classes, Maeda et al. [18] introduced order
m derivation in x direction and order n in y direction,

6 We need the Gram-Schmidt procedure in order to make the orthonormal basis of the sub-
space.
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∂m+n

∂xm ∂yn f (rrr, σ) =
∫ ∂m+n

∂xm ∂yn G(rrr− rrr′, σ) f (rrr′) drrr′ (5.29)

=
√

m!n!

(−√2)m+n
fmn(rrr, σ) , (5.30)

where

fmn(rrr, σ)

=
∫

1
√

m!n!(
σ√

2
)m+n

G(rrr− rrr′, σ) Hm(
x− x′

σ
) Hn(

y− y′

σ
) f (rrr′) drrr′ . (5.31)

Hm is the Hermite Polynomial of order m. – Isn’t this process the same as the differ-
ential method of dictionary?

The integral kernel of Equation (5.31) is the Gaussian weighted Hermite Poly-
nomials. We call this “the Gauss-Hermite Kernel.” The 1-dimensional shapes are
shown in Figure 5.12.

Fig. 5.12 1-dimensional shapes of the Gauss-Hermite Kernel: The shapes resemble the Ga-
bor Functions.

Since Hermite Polynomials are mutually orthogonal with a Gaussian weight, we
can have a set of orthonormal basis of a subspace which represents an input pattern7.

The experimental results on hand-printed Kanji recognition, just with 500
patterns for each class shown in Figure 5.11, using the simple similarity (SS), the
Subspace Method (SM) and the Mutual Subspace Method (MSM) showed the effec-
tiveness of the proposed method (see Table 5.1).

7 In most cases, we also need the Gram-Schmidt procedure since we usually define the inner
product with no weight.
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Table 5.1 Hand-printed Kanji recognition result for the three mutually similar classes: 500
patterns each.

Method SS SM MSM
Recognition Rate 75.9 % 80.2 % 82.0 %

In SS and MSM only the mean pattern of a class was used to make the dictionary
of the class whereas all patterns were used in SM. In MSM the x and y derivatives
of the mean pattern are also used to construct a subspace instead of K-L expansion.
Even though only the mean pattern was used in the MSM, its recognition rate was
the best.

5.3.3 Application to Face Recognition

Face recognition is an easy-to-use authentication method. A problem of this method
is its relatively low accuracy in comparison with other biometric methods, such as
finger print recognition, iris recognition and vein recognition. However it still has
several advantages over others, such as remote sensing, unrealisedness and many
objects at a time.

Difficulties in face recognition are mainly caused by

• change of face directions,
• non-rigid objects,
• aging of objects and
• change of illuminations.

The first two items make relatively short-term variation whereas the last two are
long-term.

We focus on the first two problems and show a way to overcome them: The most
important point is how to define a similarity that is robust against the variation of
input pattern. The input patterns vary according to a probabilistic distribution caused
by change of face directions and facial expressions. If we use the moving picture,
or an image sequence, as the input instead of a single photograph, we can make
a subspace, which approximates the distribution. Thus we can apply the Mutual
Subspace Method, with which we may expect a more stable similarity against the
changes of facial directions and facial expressions. Figure 5.13 shows the conceptual
scheme of the Mutual Subspace Method applied to face recognition.

We made experiments with 100 persons using the Subspace Method and the Mu-
tual Subspace Method. The experimental results are shown in the ROC curves in
Figure 5.14. The x-axis is the false acceptance rate (FAR) and the y-axis is the false
rejection rate (FRR). The equal error rate (EER) of the Mutual Subspace Method
was reduced to 1/4 of that of the Subspace Method.
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Fig. 5.13 Conceptual scheme of the Mutual Subspace Method applied to face recognition:
The similarity is defined as cos2 θ ′, where θ ′ is the canonical angle of two subspaces, instead
of cos2 θ , where θ is the angle between two single images.

Fig. 5.14 Experimental
results of face recognition
using the Subspace Method
and the Mutual Subspace
Method: FAR-FRR ROC
curves. EER was reduced to
1/4.

5.3.4 Application to 3-D Face Recognition

Another problem of face recognition is potential deception using photograph. The
Mutual Subspace Method discussed above uses only the smallest canonical angle to
define a similarity. Since there is no remarkable difference between a frontal face
and a photograph of the same face, their vectors are almost identical; which means
even if moving pictures are used, the smallest canonical angle between photograph
input and face dictionary of the same person is almost 0. Figures 5.15 and 5.16 show
the picture sequences of a moving face and a moving photograph, respectively. The
leftmost of the face picture sequence is the frontal face, which is almost the same as
that of the photograph.

A more mathematical discussion is as follows: Let U and V be the subspaces
representing a face and its photograph as shown in Figure 5.9. Then the both frontal
patterns are on the line of the intersection of the two subspaces, so the angle between
them are almost 0. However, in this case, there is another angle, θ2. We expect that
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Fig. 5.15 Picture sequence
of a moving face.

Fig. 5.16 Picture sequence
of a moving photograph.

the angle reflects the difference between face, which is a 3-dimensional (3-D) object,
and its photograph, which is 2-dimensional (2-D).

Maeda et al. [19] proposed to use the third smallest angle. Table 5.2 shows the
result of a pilot study, in which only the similarities defined with the smallest and the
third smallest canonical angles were measured and the reference pattern was made
only for the person, P0.

Table 5.2 Similarity using the smallest and the 3rd smallest canonical angles (modified from
Maeda et al. [19]).

Smallest CA 3rd smallest CA
Person ID Face Photo Face Photo

P0 0.989 0.977 0.937 0.204
P1 0.702 0.591 0.256 0.165
P2 0.707 0.619 0.520 0.237
P3 0.786 0.741 0.488 0.123
P4 0.701 0.665 0.457 0.075
P5 0.643 0.626 0.459 0.124
P6 0.730 0.612 0.227 0.055
P7 0.554 0.678 0.334 0.238
P8 0.750 0.732 0.557 0.246
P9 0.716 0.600 0.545 0.154

P10 0.772 0.648 0.435 0.075

According to the result, the similarity using the smallest canonical angle does not
have capability to differentiate face and its photograph because the similarity value
for the photograph is 0.977 where as that for the face is 0.989; the difference is quite
small. However the similarity values using the third smallest canonical angle have
enough difference for this purpose; 0.204 and 0.937, respectively.

Now the problem is to determine the angle or angles that is the best for differenti-
ating a face and its photograph with enough authentication accuracy. We first should
find the dimension of the subspace that approximates an input pattern distribution.
Assuming that a face is a rigid object and that we employ some appropriate position
and size normalisation, the major variations of the input are caused by face rotation.

Figures 5.17 and 5.18 show rotations of a face and a face photograph. Among
these rotations, we focus on Ωx and Ωy because Ωz is not useful for differentiating
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Fig. 5.17 Rotation of a face. Ωy

Ωx
Ωz

Fig. 5.18 Rotation of a face
photograph.

Ωy

Ωx Ωz

a face and a photograph. Consequently we may suppose that the dimension of the
subspace is 3; frontal face, its vertical rotation and horizontal rotation.8

Figure 5.19 shows the shape of the manifold (depicted by ♦ and +), on which
rotated face vectors exist, and the approximation with a 3-D pyramid, which leads
to a 3-D subspace. For intuitive understanding, Figure 5.20 shows the case we con-
sider only vertical rotation. In this case the approximation is a 2-D subspace, and it
appears more like a subsapce. Now that we understand the variation distribution of
the face input is approximated with a 3-dimensional subspace, we still wonder if the
third smallest angle is the best; what about using the second or the fourth smallest,
what about using the angles in combination instead of the single angle on its own?
Maeda et al. [20] made experiments to find the difference between the second and
the third smallest angles, using convex curved photographs (see Figure 5.21).

A convex curved photograph appears more like the actual face than a flat pho-
tograph, and it is an easy means if it works for deception. Also the mean and the
product of the similarities made with up to the third smallest angle and the product
of the similarities were used in the experiments.

Figures 5.22, 5.23, 5.24 and 5.25 show the FRR and FAR curves using the sim-
ilarities defined as the cos2 of the smallest, the second smallest, the third smallest
and the fourth smallest angles on their own. Figures 5.26 and 5.27 show the results

8 We also assume the amount of rotation is small, so that the linear approximation can be
applied.
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Fig. 5.19 The manifold of vertical and horizontal face rotation and its approximation with a
3-D pyramid.

Fig. 5.20 The approximation with a 2-D subspace considering only vertical rotation.

using the mean of the similarities up to the third and the product of the similarities
up to the third.

We can confirm that the smallest canonical angle is not effective to differentiate
a face and its photograph since the Self FRR and Self Photograph FAR curves cross
(see Figure 5.22). Also the Self FRR and Self Convex FAR curves cross. The fourth
smallest canonical angle is not effective to identify a face since the Self Face FRR
and Others Face FAR curves cross (see Figure 5.25). As a result, we should use the
second and/or the third smallest canonical angle, at least.
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Fig. 5.21 Rotation of a
convex curved photograph.

Ωy

Ωx Ωz

Fig. 5.22 FRR and FAR
using the smallest canonical
angle.

Fig. 5.23 FRR and FAR us-
ing the 2nd smallest canoni-
cal angle.
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Fig. 5.24 FRR and FAR us-
ing the 3rd smallest canoni-
cal angle.

Fig. 5.25 FRR and FAR us-
ing the 4th smallest canoni-
cal angle.

Fig. 5.26 FRR and FAR
using the mean of the simi-
larities.
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Fig. 5.27 FRR and FAR
using the product of the
similarities.

Comparing Figures 5.23 and 5.24, the second smallest canonical angle is better at
differentiating a person and others whereas the third is better at differentiating a face
and its photograph, in particular for convex curved photograph; there is a trade-off
between authentication and anti-deception.

The best one among all of the results is the product of the similarities up to the
third canonical angle since the gap between the Self FRR and FARs are the widest
among all (see Figure 5.27).

5.4 Conclusion

We have discussed a series of pattern matching methods that are based on subspaces.
The methods have a long history started with mathematics and physics; the origins
were 1930s and 1940s. Even after the Subspace Methods were introduced to pattern
recognition, more than 40 years have already passed. Since the basic ideas were
quite reasonable, the methods have survived for such a long time and have evolved
against increasing difficulties in pattern recognition tasks. The Mutual Subspace
Method is one of such evolutions.

We had to introduce some new mechanisms to overcome the difficulties in more
complex recognition objects. For instance, we introduced a new feature extrac-
tion based on the Gauss-Hermite Kernel for hand-printed Kanji recognition, and
we introduced multiple canonical angles for 3-D face recognition. By virtue of the
newly introduced mechanisms, the subspace based matching methods have effec-
tively worked and have achieved their aims. However, through the evolution, sev-
eral basic concepts are common, such as assuming cone shape distributions, using
subspaces and using angles for similarity definitions, etc.

We started this chapter with quickly following the history and viewed the
evolution from the original Subspace Method to the Mutual Subspace Method. The
evolution has not yet reached the final stage, and hopefully will continue. There
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already exist further extensions of the Mutual Subspace Method, such as the Con-
strained Mutual Subspace Method [6] and Tensor Canonical Correlation [14]. We
expect further evolution for more difficult applications in the future.
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Chapter 6
What, Where and Who? Telling the Story of an
Image by Activity Classification, Scene
Recognition and Object Categorization

Li Fei-Fei and Li-Jia Li

Abstract. We live in a richly visual world. More than one third of the entire human
brain is involved in visual processing and understanding. Psychologists have shown
that the human visual system is particularly efficient and effective in perceiving
high-level meanings in cluttered real-world scenes, such as objects, scene classes,
activities and the stories in the images. In this chapter, we discuss a generative model
approach for classifying complex human activities (such as croquet game, snow-
boarding, etc.) given a single static image. We observe that object recognition in the
scene as well as scene environment classification of the image facilitate each other
in the overall activity recognition task. We formulate this observation in a graphical
model representation where activity classification is achieved by combining infor-
mation from both the object recognition and the scene classification pathways. For
evaluating the robustness of our algorithm, we have assembled a challenging dataset
consisting real-world images of eight different sport events, most of them collected
from the Internet. Experimental results show that our hierarchical model performs
better than existing methods.

6.1 Introduction and Motivation

One of the most remarkable feats of the human visual system is how rapidly, ac-
curately and comprehensively it can recognize and understand the complex visual
world. The various types of tasks related to understanding what we see in the visual
world is called “visual recognition”. When presented with a real-world image, such
as the top image of Fig.6.1, what do you see? It is a colorful image. On the top of
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Fig. 6.1 Telling the what, where and who story. Given an event (rowing) image such as the
one on the left, our system can automatically interpret what is the event, where does this
happen and who (or what kind of objects) are in the image. The result is represented in the
figure on the right. A red name tag over the image represents the event category. The scene
category label is given in the white tag below the image. A set of name tags are attached to
the estimated centers of the objects to indicate their categorical labels. As an example, from
the right image, we can tell from the name tags that this is a rowing sport event held on a lake
(scene). In this event, there are rowing boat, athletes, water and trees (objects).

the picture is mostly green color while the lower half is dominated by light blue, red
and darker colors. There are salient edges in the foreground of the pictures, rows of
round shapes paint a vivid visual picture in our mind. The different attributes of the
images we describe, such as colors, edges, shapes, and textures, have been impor-
tant research topics in the computer vision field. Recognizing these components of
an image provide very important and useful information in a large number of prac-
tical applications. But this is not the level we communicate on and remember the
visual world. It is also not the kind of description we would provide to a blind per-
son. For most of us, this picture can be interpreted as a rich amount of semantically
meaningful information. Now imagine the same scene, but this time I will describe
it as a rowing event taking place on a lake. The water is clean and blue. Lush green
trees stand along the shore of the lake in the background. A team of women ath-
letes in red vests is training on a rowboat, accelerating to the right. I hope this time
your mental imagery is much more vivid and meaningful than the first time. This is
also the most natural way for most of us to interpret and describe our visual world.
This kind of semantic interpretation of the visual world is called high-level visual
recognition, part of the larger field known as vision. Vision is one of the most fun-
damental and important functionalities of an intelligence system. Humans rely on
vision to survive, socialize and perform most of their daily tasks.

Recently, a psychophysics study has shown that in a single glance of an image,
humans can not only recognize or categorize many of the individual objects in the
scene, tell apart the different environments of the scene, but also perceive complex
activities and social interactions [1]. In computer vision, a lot of progress has been
made in object recognition and classification in recent years (see [2] for a review).
A number of algorithms have also provided effective models for scene environment
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categorization [3, 4, 5, 6]. But little has been done in event recognition in static
images. In this work, we define an event to be a semantically meaningful human
activity, taking place within a selected environment and containing a number of
necessary objects. We present a first attempt to mimic the human ability of recog-
nizing an event and its encompassing objects and scenes. Fig.6.1 best illustrates the
goal of this work. We would like to achieve event categorization by as much se-
mantic level image interpretation as possible. This is somewhat like what a school
child does when learning to write a descriptive sentence of the event. It is taught
that one should pay attention to the 5 W’s: who, where, what, when and how. In our
system, we try to answer 3 of the 5 W’s: what (the event label), where (the scene
environment label) and who (a list of the object categories).

Similar to object and scene recognition, event classification is both an intrigu-
ing scientific question as well as a highly useful engineering application. From the
scientific point of view, much needs to be done to understand how such complex
and high level visual information can be represented in efficient yet accurate way.
In this work, we propose to decompose an event into its scene environment and the
objects within the scene. We assume that the scene and the objects are independent
of each other given an event. But both of their presences influence the probability
of recognizing the event. We made a further simplification for classifying the ob-
jects in an event. Our algorithm ignores the positional and interactive relationships
among the objects in an image. In other words, when athletes and mountains are
observed, the event of rock climbing is inferred, in spite of whether the athlete is
actually on the rock performing the climbing. Much needs to be done in both hu-
man visual experiments as well as computational models to verify the validity and
effectiveness of such assumptions. From an engineering point of view, event classi-
fication is a useful task for a number of applications. It is part of the ongoing effort
of providing effective tools to retrieve and search semantically meaningful visual
data. Such algorithms are at the core of the large scale search engines and digital
library organizational tools. Event classification is also particularly useful for auto-
matic annotation of images, as well as descriptive interpretation of the visual world
for visually-impaired patients.

6.2 Overall Approach

Our model integrates scene and object level image interpretation in order to achieve
the final event classification. Let’s use the sport game polo as an example. In the
foreground, a picture of the polo game usually consists of distinctive objects such
as horses and players (in polo uniforms). The setting of the polo field is normally a
grassland. Following this intuition, we model an event as a combination of scene and
a group of representative objects. The goal of our approach is not only to classify the
images into different event categories, but also to give meaningful, semantic labels
to the scene and object components of the images.
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6.3 Literature Review

While our approach is an integrative one, our algorithm is built upon several es-
tablished ideas in scene and object recognition. To the first order of approximation,
an event category can be viewed as a scene category. Intuitively, a snowy moun-
tain slope can predict well an event of skiing or snow-boarding. A number of pre-
vious works have offered ways of recognizing scene categories [4, 5, 6]. Most of
these algorithms learn global statistics of the scene categories through either fre-
quency distributions or local patch distributions. In the scene part of our model, we
adopt a similar algorithm as Fei-Fei et al. [6]. In addition to the scene environment,
event recognition relies heavily on foreground objects such as players and ball for
a soccer game. Object categorization is one of the most widely researched areas re-
cently. One could grossly divide the literature into those that use generative models
(e.g., [7, 8, 9]) and those that use discriminative models or methods (e.g., [10, 11]).
Given our goal is to perform event categorization by integrating scene and object
recognition components, it is natural for us to use a generative approach. Our ob-
ject model is adapted from the bag of words models that have recently shown much
robustness in object categorization [12, 13, 14]. As [15] points out, other than scene
and object level information, general layout of the image also contributes to our
complex yet robust perception of a real-world image. Much can be included here
for general layout information, from a rough sketch of the different regions of the
image to a detailed 3D location and shape of each pixels of the image. We choose to
demonstrate the usefulness of the layout/geometry information by using a simple es-
timation of 3 geometry cues: sky at infinity distance, vertical structure of the scene,
and ground plane of the scene [16]. It is important to point out here that while each
of these three different types of information is highly useful for event recognition
(scene level, object level, layout level), our experiments show that we only achieve
the most satisfying results by integrating all of them (Sec.6.7).

Several previous works have taken on a more holistic approach in scene inter-
pretation [17, 18, 19, 20]. In all these works, global scene level information is
incorporated in the model for improving better object recognition or detection.
Mathematically, our approach is closest in spirit with Sudderth et al [19]. We both
learn a generative model to label the images. And at the object level, both of our
models are based on the bag of words approach. Our model, however, differs fun-
damentally from the previous works by providing a set of integrative and hierarchi-
cal labels of an image, performing the what(event), where(scene) and who(object)
recognition of an entire scene.

6.4 The Integrative Model

Given an image of an event, our algorithm aims to not only classify the type of event,
but also to provide meaningful, semantic labels to the scene and object components
of the images.



6 What, Where and Who? Telling the Story of an Image 161

To incorporate all these different levels of information, we choose a generative
model to represent our image. Fig.6.2 illustrates the graphical model representation.
We first define the variables of the model, and then show how an image of a par-
ticular event category can be generated based on this model. For each image of an
event, our fundamental building blocks are densely sampled local image patches
(sampling grid size is 10×10). In recent years, interest point detectors have demon-
strated much success in object level recognition (e.g., [21,22,23]). But for a holistic
scene interpretation task, we would like to assign semantic level labels to as many
pixels as possible on the image. It has been observed that tasks such as scene classi-
fication benefit more from a dense uniform sampling of the image than using interest
point detectors [5, 6]. Each of these local image patches then goes on to serve both
the scene recognition part of the model, as well as the object recognition part. For
scene recognition, we denote each patch by X in Fig.6.2. X only encodes here ap-
pearance based information of the patch (e.g., a SIFT descriptor [21]). For the object
recognition part, two types of information are obtained for each patch. We denote
the appearance information by A, and the layout/geometry related information by
G. A is similar to X in expression. G in theory, however, could be a very rich set
of descriptions of the geometric or layout properties of the patch, such as 3D lo-
cation in space, shape, and so on. For scenes subtending a reasonably large space
(such as these event scenes), such geometric constraint should help recognition. In
Sec.6.6, we discuss the usage of three simple geometry/layout cues: verticalness,
sky at infinity and the ground-plane.1

We now go over the graphical model (Fig.6.2) and show how we generate an
event picture. Note that each node in Fig.6.2 represents a random variable of the
graphical model. An open node is a latent (or unobserved) variable whereas a dark-
ened node is observed during training. The lighter gray nodes (event, scene and ob-
ject labels) are only observed during training whereas the darker gray nodes (image
patches) are observed in both training and testing.

1. An event category is represented by the discrete random variable E . We assume
a fixed uniform prior distribution of E , hence omitting showing the prior distri-
bution in Fig.6.2. We select E ∼ p(E). The images are indexed from 1 to I and
one E is generated for each of them.

2. Given the event class, we generate the scene image of this event. There are in
theory S classes of scenes for the whole event dataset. For each event image, we
assume only one scene class can be drawn.

1 The theoretically minded machine learning readers might notice that the observed variables
X , A and G occupy the same physical space on the image. This might cause the problem
of “double counting”. We recognize this potential confound. But in practice, since our es-
timations are all taken placed on the same “double counted” space in both learning and
testing, we do not observe a problem. One could also argue that even though these fea-
tures occupy the same physical locations, they come from different “image feature space”.
Therefore this problem does not apply. It is, however, a curious theoretical point to explore
further.
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Fig. 6.2 Graphical model
of our approach. E, S, and
O represent the event, scene
and object labels respec-
tively. X is the observed
appearance patch for scene.
A and G are the observed
appearance and geome-
try/layout properties for the
object patch. The rest of the
nodes are parameters of the
model. For details, please
refer to Sec.6.4
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• A scene category is first chosen according to S ∼ p(S|E,ψ). S is a discrete
variable denoting the class label of the scene. ψ is the multinomial parameter
that governs the distribution of S given E . ψ is a matrix of size E×S, whereas
η is an S dimensional vector acting as a Dirichlet prior for ψ .

• Given S, we generate the mixing parameters ω that governs the distribution
of scene patch topics ω ∼ p(ω |S,ρ). Elements of ω sum to 1 as it is the
multinomial parameter of the latent topics t. ρ is the Dirichlet prior of ω , a
matrix of size S×T , where T is the total number of the latent topics.

• A patch in the scene image is denoted by X . To generate each of the M patches
– Choose the latent topic t ∼ Mult(ω). t is a discrete variable indicating

which latent topic this patch will come from.
– Choose patch X ∼ p(X |t,θ ), where θ is a matrix of size T ×VS. VS is

the total number of vocabularies in the scene codebook for X . θ is the
multinomial parameter for discrete variable X , whereas β is the Dirichlet
prior for θ .

3. Similar to the scene image, we also generate an object image. Unlike the scene,
there could be more than one objects in an image. We use K to denote the number
of objects in a given image. There is a total of O classes of objects for the whole
dataset. The following generative process is repeated for each of the K objects in
an image.

• An object category is first chosen according to O∼ p(O|E,π). O is a discrete
variable denoting the class label of the object. A multinomial parameter π
governs the distribution of O given E . π is a matrix of size E×O, whereas ς
is a O dimensional vector acting as a Dirichlet prior for π .

• Given O, we are ready to generate each of the N patches A,G in the kth object
of the object image



6 What, Where and Who? Telling the Story of an Image 163

– Choose the latent topic z ∼Mult(λ |O). z is a discrete variable indicating
which latent topic this patch will come from, whereas λ is the multinomial
parameter for z, a matrix of size O× Z. K is the total number of objects
appear in one image, and Z is the total number of latent topics. ξ is the
Dirichlet prior for λ .

– Choose patch A,G∼ p(A,G|t,ϕ), where ϕ is a matrix of size Z×VO. VO is
the total number of vocabularies in the codebook for A,G. ϕ is the multino-
mial parameter for discrete variable A,G, whereas α is the Dirichelet prior
for ϕ . Note that we explicitly denote the patch variable as A,G to empha-
size on the fact it includes both appearance and geometry/layout property
information.

Putting everything together in the graphical model, we arrive at the following
joint distribution for the image patches, the event, scene, object labels and the latent
topics associated with these labels.

p(E,S,O,X,A,G, t,z,ω |ρ ,ϕ ,λ ,ψ ,π ,θ ) =

p(E) · p(S|E,ψ)p(ω |S,ρ)
M

∏
m=1

p(Xm|tm,θ )p(tm|w)

·
K

∏
k=1

p(Ok|E,π)
N

∏
n=1

p(An,Gn|zn,ϕ)p(zn|λ ,Ok) (6.1)

where O,X,A,G, t,z represent the generated objects, appearance representation of
patches in the scene part, appearance and geometry properties of patches in the
object part, topics in the scene part, and topics in the object part respectively. Each
component of Eq.6.1 can be broken into

p(S|E,ψ) = Mult(S|E,ψ) (6.2)

p(ω |S,ρ) = Dir(ω |ρ j·),S = j (6.3)

p(tm|ω) = Mult(tm|ω) (6.4)

p(Xm|t,θ ) = p(Xm|θ j·), tm = j (6.5)

p(O|E,π) = Mult(O|E,π) (6.6)

p(zn|λ ,O) = Mult(zn|λ ,O) (6.7)

p(An,Gn|z,ϕ) = p(An,Gn|ϕ j·),zn = j (6.8)

where “·” in the equations represents components in the row of the corresponding
matrix.

6.4.1 Labeling an Unknown Image

Given an unknown event image with unknown scene and object labels, our goal
is: 1) to classify it as one of the event classes (what); 2) to recognize the scene
environment class (where); and 3) to recognize the object classes in the image (who).
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We realize this by calculating the maximum likelihood at the event level, the scene
level and the object level of the graphical model (Fig.6.2).

At the object level, the likelihood of the image given the object class is

p(I|O) =
N

∏
n=1
∑

j
P(An,Gn|z j,O)P(z j|O) (6.9)

The most possible objects appear in the image are based on the maximum likelihood
of the image given the object classes, which is O = argmaxO p(I|O). Each object
is labeled by showing the most possible patches given the object, represented as
O = argmaxO p(A,G|O).

At the scene level, the likelihood of the image given the scene class is:

p(I|S,ρ ,θ ) =
∫

p(ω |ρ ,S)(
M

∏
m=1
∑
tm

p(tm|ω) · p(Xm|tm,θ ))dω (6.10)

Similarly, the decision of the scene class label can be made based on the max-
imum likelihood estimation of the image given the scene classes, which is S =
argmaxS p(I|S,ρ ,θ ). However, due to the coupling of θ and ω , the maximum
likelihood estimation is not tractable computationally [24]. Here, we use the vari-
ational method based on Variational Message Passing [25] provided in [6] for an
approximation.

Finally, the image likelihood for a given event class is estimated based on the
object and scene level likelihoods:

p(I|E)∝∑
j

P(I|O j)P(O j|E)P(I|S)P(S|E) (6.11)

The most likely event label is then given according to E = argmaxE p(I|E).

6.5 Learning the Model

The goal of learning is to update the parameters {ψ ,ρ ,π ,λ ,θ ,β} in the hierarchical
model (Fig.6.2). Given the event E , the scene and object images are assumed inde-
pendent of each other. We can therefore learn the scene-related and object-related
parameters separately.

We use Variational Message Passing method to update parameters {ψ ,ρ ,θ}.
Detailed explanation and update equations can be found in [6]. For the object branch
of the model, we learn the parameters {π ,λ ,β} via Gibbs sampling [26] of the
latent topics. In such a way, the topic sampling and model learning are conducted
iteratively. In each round of the Gibbs sampling procedure, the object topic will be
sampled based on p(zi|z\i,A,G,O), where z\i denotes all topic assignment except
the current one. Given the Dirichlet hyperparameters ξ and α , the distribution of
topic given object p(z|O) and the distribution of appearance and geometry words
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given topic p(A,G|z) can be derived by using the standard Dirichlet integral
formulas:

p(z = i|z\i,O = j) =
ci j + ξ

Σici j + ξ ×H
(6.12)

p((A,G) = k|z\i,z = i) =
nki +ϕ

Σknki +ϕ×VO
(6.13)

where ci j is the total number of patches assigned to object j and object topic i,
while nki is the number of patch k assigned to object topic i. H is the number of
object topics, which is set to some known, constant value. VO is the object codebook
size. A patch is a combination of appearance (A) and geometry (G) features. By
combining Eq.6.12 and 6.13, we can derive the posterior of topic assignment as

p(zi|z\i,A,G,O) = p(z = i|z\i,O)×
p((A,G) = k|z\i,z = i) (6.14)

Current topic will be sampled from this distribution.

6.6 System Implementation

Our goal is to extract as much information as possible out of the event images,
most of which are cluttered, filled with objects of variable sizes and multiple cate-
gories. At the feature level, we use a grid sampling technique similar to [6]. In our

Fig. 6.3 Our dataset contains 8 sports event classes: rowing (250 images), badminton (200
images), polo (182 images), bocce (137 images), snowboarding (190 images), croquet (236
images), sailing (190 images), and rock climbing (194 images). In this figure, each triplet
is randomly selected from our dataset. Our examples here demonstrate the complexity and
diversity of this highly challenging dataset.
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experiments, the grid size is 10×10. A patch of size 12×12 is extracted from each
of the grid centers. A 128-dim SIFT vector is used to represent each patch [21]. The
poses of the objects from the same object class change significantly in these events.
Thus, we use rotation invariant SIFT vector to better capture the visual similarity
within each object class. A codebook is necessary in order to represent an image
as a sequence of appearance words. We build a codebook of 300 visual words by
applying K-means for the 200000 SIFT vectors extracted from 30 randomly cho-
sen training images per event class. To represent the geometry/layout information,
each pixel in an image is given a geometry label using the codes provided by [18].
In this approach, only three simple geometry/layout properties are used. They are:
ground plane, vertical structure and sky at infinity. Each patch is assign a geometry
membership by the major vote of the pixels within.

6.7 Experiments and Results

6.7.1 Dataset

As the first attempt to tackle the problem of static event recognition, we have no ex-
isting dataset to use and compare with. Instead we have compiled a new dataset
containing 8 sports event categories collected from the Internet: bocce, croquet,
polo, rowing, snowboarding, badminton, sailing, and rock climbing. The number
of images in each category varies from 137 (bocce) to 250 (rowing). As shown in
Fig. 6.3, this event dataset is a very challenging one. Here we highlight some of the
difficulties.

• The background of each image is highly cluttered and diverse;
• Object classes are diverse;
• Within the same category, sizes of instances from the same object are very dif-

ferent;
• The pose of the objects can be very different in each image;
• Number of instances of the same object category change diversely even within

the same event category;
• Some of the foreground objects are too small to be detected.

We have also obtained a thorough groundtruth annotation for every image in the
dataset (in collaboration with Lotus Hill Research Institute [27]). This annotation
provides information for: event class, background scene class(es), most discernable
object classes, and detailed segmentation of each objects.

6.7.2 Experimental Setup

We set out to learn to classify these 8 events as well as labeling the semantic contents
(scene and objects) of these images. For each event class, 70 randomly selected im-
ages are used for training and 60 are used for testing. We do not have any previous
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Fig. 6.4 Confusion table for
the 8-class event recogni-
tion experiment. The aver-
age performance is 73.4%.
Random chance would be
12.5%.

work to compare to. But we test our algorithm and the effectiveness of each compo-
nents of the model. Specifically, we compare the performance of our full integrative
model with the following baselines.

• A scene only model. We use the LDA model of [6] to do event classification
based on scene categorization only. We “turn off” the influence of the object
part by setting the likelihood of O in Eq.6.11 to a uniform distribution. This is
effectively a standard “bag of words” model for event classification.

• An object only model. In this model we learn and recognize an event class based
on the distribution of foreground objects estimated in Eq.6.9. No geometry/layout

Fig. 6.5 Performance com-
parison between the full
model and the three con-
trol models (defined in
Sec.6.7.2). The x-axis de-
notes the name of the model
used in each experiment.
The ‘full model’ is our pro-
posed integrative model
(see Fig.6.2). The y-axis
represents the average 8-
class discrimination rate,
which is the average score
of the diagonal entries of
the confusion table of each
model.
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Fig. 6.6 (This figure is best viewed in color and with PDF magnification.) Image interpre-
tation via event, scene, and object recognition. Each row shows results of an event class.
Column 1 shows the event class label. Column 2 shows the object classes recognized by
the system. Masks with different colors indicate different object classes. The name of each
object class appears at the estimated centroid of the object. Column 3 is the scene class label
assigned to this image by our system. Finally Column 4 shows the sorted object distribution
given the event. Names on the x-axis represents the object class, the order of which varies
across the categories. y-axis represents the distribution.
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information is included. We “turn off” the influence of the scene part by setting
the likelihood of S in Eq.6.11 to a uniform distribution.

• A object + geometry model. Similar to the object-only model, here we include
the feature representations of both appearance (A) and geometry/layout (G).

Except for the LDA model, training is supervised by having the object identities
labeled. We use exactly the same training and testing images in all of these different
model conditions.

6.7.3 Results

We report an overall 8-class event discrimination of 73.4% by using the full inte-
grative model. Fig.6.4 shows the confusion table results of this experiment. In the
confusion table, the rows represent the models for each event category while the
columns represent the ground truth categories of events. It is interesting to observe
that the system tends to confuse bocce and croquet, where the images tend to share
similar foreground objects. On the other hand, polo is also more easily confused
with bocce and croquet because all of these events often take places in grassland
type of environments. These two facts agree with our intuition that an event im-
age could be represented as a combination of the foreground objects and the scene
environment.

In the control experiment with different model conditions, our integrative model
consistently outperforms the other three models (see Fig.6.5). A curious observation
is that the object + geometry model performs worse than the object only model. We
believe that this is largely due to the simplicity of the geometry/layout properties.
While these properties help to differentiate sky, ground from vertical structures, they
also introduce noise. As an example, water and snow are always incorrectly classi-
fied as sky or ground by the geometry labeling process, which deteriorates the re-
sult of object classification. However, the scene recognition alleviates the confusion
among water, snow, sky and ground by encoding explicitly their different appear-
ance properties. Thus, when the scene pathway is added to the integrated model, the
overall results become much better.

Finally, we present more details of our image interpretation results in Fig.6.6. At
the beginning of this chapter, we set out to build an algorithm that can tell a what,
where and who story of the sport event pictures. We show here how each of these
W’s is answered by our algorithm. Note all the labels provided in this figure are
automatically generated by the algorithm, no human annotations are involved.

6.8 Conclusion

Semantic interpretation of the visual world is an indispensable functionality of the
future generations of artificial intelligence system. This project aims to contribute
to both the scientific questions of image modeling and the technological advance-
ment of visual intelligence. One of the most important applications is personal
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assistance to visually-impaired or blind people. Currently, other than specific do-
main applications such as texts and faces, little technology is available to assist them
to interpret and analyze the visual environment in a comprehensive and meaningful
way. Semantic understanding of images could serve to advance the state of the art
assistance in this domain. It will also improve real-word applications that require
advanced visual recognition tools. One example is the increasing need for sophisti-
cated and meaningful sorting and searching tools for large image datasets, such as
personal photo collections and images on the internet. Our model is, of course, just
the first attempt for such an ambitious goal.
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Chapter 7
Semantic Texton Forests

Matthew Johnson and Jamie Shotton

Abstract. The semantic texton forest is an efficient and powerful low-level feature
which can be effectively employed in the semantic segmentation of images. As
ensembles of decision trees that act directly on image pixels, semantic texton forests
do not need the expensive computation of filter-bank responses or local descriptors.
They are extremely fast to both train and test, especially compared with k-means
clustering and nearest-neighbor assignment of feature descriptors. The nodes in the
trees provide (i) an implicit hierarchical clustering into semantic textons, and (ii)
an explicit local classification estimate. The bag of semantic textons combines a
histogram of semantic textons over an image region with a region prior category
distribution. The bag of semantic textons can be used by an SVM classifier to infer
an image-level prior over categories, allowing the segmentation to emphasize those
categories that the SVM believes to be present. We will examine the segmentation
performance of semantic texton forests on two datasets including the VOC 2007
segmentation challenge.

7.1 Introduction

In this chapter we examine semantic texton forests, and evaluate their use for image
categorization and semantic segmentation. Semantic texton forests (STFs) demon-
strate that one can build powerful texton codebooks without computing expen-
sive filter-banks or descriptors, and without performing costly k-means clustering
and nearest-neighbor assignment. They are randomized decision forests that use
only simple pixel comparisons on local image patches, performing both an implicit
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hierarchical clustering into semantic textons and an explicit local classification of
the patch category. STFs provide advantages over other algorithms in both quantita-
tive performance and execution speed.

We will look at two applications of STFs: image categorization (inferring the ob-
ject categories present in an image) and semantic segmentation (dividing the image
into coherent regions and simultaneously categorizing each region). The tool that
will be used for both of these is the bag of semantic textons. This is computed over
a given image region, and extends the bag of words model [6] by combining a hi-
erarchical histogram of the semantic textons with a prior category distribution. By
considering the image as a whole, a highly discriminative descriptor for categoriza-
tion can be obtained. For segmentation, a bag of semantic textons can be computed
for many local rectangular regions and then a second randomized decision forest
can be built which achieves efficient and accurate segmentation by drawing on ap-
pearance and semantic context.

The segmentation algorithm depends on image information that even with semi-
local context can often be ambiguous. The global statistics of the image, however,
can be more discriminative and may be sufficient to accurately estimate the image
categorization. It is therefore useful to use categorization as an image-level prior to
improve segmentation by emphasizing the categories most likely to be present.

7.2 Related Work

Textons [17, 35] and visual words [32] have proven powerful discrete image repre-
sentations for categorization and segmentation [6,30,39,40]. We will treat the terms
texton and visual word synonymously. Filter-bank responses (derivatives of Gaus-
sians, wavelets, etc.) or invariant descriptors (e.g., SIFT [16]) are computed across
a training set, either at sparse interest points [19] or more densely; recent results
in [22] suggest that densely sampling visual words improves categorization perfor-
mance. The collection of descriptors are then clustered to produce a codebook of
visual words, typically with the simple but effective k-means, followed by nearest-
neighbor assignment. Unfortunately, this three-stage process is extremely slow and
often the most time consuming part of the whole algorithm, even with optimizations
such as k-d trees, the triangle inequality [7], or hierarchical clusters [21, 29].

The recent work of Moosmann et al [20] proposed a more efficient alternative, in
which training examples are recursively divided using a randomized decision forest
[1, 10] and where the splits in the decision trees are comparisons of a descriptor
dimension to a threshold. Semantic texton forests extend [20] in three ways: (i) the
model is learned directly from the image pixels, bypassing the expensive step of
computing image descriptors; (ii) while [20] use the learned decision forest only
for clustering, here it is used as a classifier, which enables the algorithm to use
semantic context for image segmentation; and (iii) in addition to the leaf nodes
used in [20], split nodes as hierarchical clusters are included. A related method,
the pyramid match kernel [11], exploits a hierarchy in descriptor space, though it
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requires the computation of feature descriptors and is only applicable to kernel based
classifiers.

The pixel-based features used are similar to those in [15], but the forests are
trained to recognize object categories, not match particular feature points.

Other work has also looked at alternatives to k-means. Recent work [34] quan-
tizes feature space into a hyper-grid, but requires descriptor computation and can
result in very large visual word codebooks. Winder & Brown [38] learned the pa-
rameters of generic image descriptors for 3D matching , though did not address vi-
sual word clustering. Jurie & Triggs [13] proposed building codebooks using mean
shift, but did not incorporate semantic information in the codebook generation.

7.3 Randomized Decision Forests

The randomized decision forest is a fast and accurate classifier [1, 10] that is an
ensemble of decision trees. Decision trees are a construct used extensively in data
mining [5] and machine learning [4], and consist of a hierarchy of questions, as
illustrated in Figure 7.1. A tree is traversed, starting at the root, by repeatedly asking
questions and branching to the relevant child node until a leaf node is reached. At
the leaf, the stored decision is output. In this chapter, decision trees are used to
categorize individual image pixels, and so the questions, or “split tests”, at each
node are based on image information. The specific tests used in this work are shown
in Figure 7.2.

A randomized decision forest combines the output of many different decision
trees, each of which has a different structure and split tests. The term “randomized”
refers to the training algorithm in two ways. Firstly, each tree is trained on a random
subset of the data following the method outlined in Section 7.3.1.1. Secondly, when
building the tree, several candidate split tests are chosen at random from a large

Fig. 7.1 Example Decision Tree. This is an example decision tree for determining what to
do about breakfast. At each node a simple split test is performed, and the result of that test is
used to determine which child to choose. This process is repeated until a leaf node is reached,
with each leaf encoding a particular decision to be made that is based upon all of the tests
performed to reach that node.
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Label Test Domain
1 A[z0]
2 log(A[z0])
3 A[z0]+B[z1]
4 A[z0]−B[z1]
5 |A[z0]−B[z1]|
6 A[z0] log(B[z1])
7 A[z0]×B[z1]
8 A[z0]/B[z1]

Fig. 7.2 Pixel Comparison Split Tests. The split tests in a semantic texton forest consist of
pixel combinations within a square neighborhood centered on the pixel to be categorized of
size w×w. z0 and z1 are channels in the image, e.g., R, G and B in RGB images. It is not
necessary that z0 = z1.

pool of potential features, and the test that optimally splits the data (under some op-
timization criterion) is taken. These two forms of randomization help generalization
by ensuring that no two trees in the forest can overfit to the whole training set.

Let us formalize notation. For the forests described in this chapter, the goal is
to determine the category c of a pixel p, given the context around that pixel. We
assume a labeled training set, such as that in Figure 7.4. Each forest contains trees
with with nodes n, and leaf nodes l. Associated with each node is a learned category
distribution P(c|n). An example semantic texton tree can be seen in Figure 7.3, in
which a tree has been trained on sheep and grass images and can effectively segment
an image according to these two semantic categories.

When a new pixel is to be classified, the whole forest achieves an accurate and
robust classification by averaging the class distributions over the leaf nodes L(p) =
(l1, . . . , lT ) reached by the pixel p for all T trees:

P(c|L(p)) =
T

∑
t=1

P(c|lt)P(t) . (7.1)

An example of the overall structure of the forest can be seen in Figure 7.5.
Existing work has shown the power of decision forests as either classifiers

[3, 15, 18] or a fast means of clustering descriptors [20]. In this chapter we will
examine an extended model in which the forest is used both for classification and
for a hierarchical clustering.

7.3.1 Training the Forest

Each tree in the forest is build separately on a subset of the training images. We
describe below how each tree is built greedily, and the parameter settings that will



7 Semantic Texton Forests 177

Fig. 7.3 Sample Semantic Texton Tree. This is an actual semantic texton tree, trained on 23
images of grass and sheep as described in Section 7.3.1.1. The split tests are shown at each
split node as the image patch (w = 7). The two triangles indicate the offset pixel location
(relative to the center of the grid) and their colors indicate the image color channel used
for this split test. The leaf nodes are represented by 8 patches sampled from the training
pixels which reached those nodes and the distribution P(x|c) for that leaf node where green
represents grass and blue represents sheep. The input image is an unseen test image, with the
resulting semantic segmentation shown below.
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Fig. 7.4 Training Data. A tree is trained on ground-truth labeled images like these above from
the MSRC dataset [30], in which each pixel is labelled with an object category (indicated by
colors).

Fig. 7.5 Semantic Texton Forest Structure. The forest is made up of T binary trees. Each split
node n in a tree (blue circles) has a test associated with it, and based upon the result of that
test one or the other child is chosen. When a leaf node l in a tree t is reached (green circles),
the P(c|lt) distribution for that leaf is used as a soft category decision for the test pixel. In this
figure, a sample decision path for each tree is denoted by a series of yellow circles. The final
decision is a combination of P(c|lt) for all t ∈ T .

affect this. We also discuss how to learn invariances to rotation, scale and other
fundamental image transformations.

7.3.1.1 Building a Tree

The training data consists of a set P of pixels sampled from training images at every
4th pixel, and ignoring pixels marked as background. This sub-sampling decreases
the time required for tree construction. To ensure good estimates of the tree class
distributions, all pixels are used later to “fill” the tree after construction as described
below in Section 7.3.1.3.

Each tree is constructed by recursively partitioning P into two subsets Ple f t and
Pright based upon a split test. Ple f t is used to create the left subtree and Pright is used
for the right, repeating the process until a stopping condition is met. The split test
used to partition P is chosen in the same manner as [15]: by searching over a set of
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possible tests and choosing that which maximizes the expected gain in information
about the node categories. The information gain is calculated as

ΔE =−|Ple f t |
|P| E(Ple f t)− |Pright |

|P| E(Pright) , (7.2)

where E(I) is the Shannon entropy of the classes in the set of examples P.

7.3.1.2 Parameters

Training a randomized decision forest involves several parameters, including:

Type of Split Tests. The types of split tests used can play a significant role in tree
training and performance, with different tests acting in a complimentary manner.

Number of Trees. The number of trees in the forest is a tradeoff between accuracy
and speed.

Information Channels. The number and type of information channels in the image
and how they are processed can have a large impact on which tests should be
chosen and on model generalization. In the case of color images, this takes the
form of the encoding method chosen for the color at each pixel.

Maximum Tree Depth. Deeper trees are more powerful classifiers, but more prone
to overfitting.

Value of Window Size. The size of the window around each pixel w can effect
whether the tree learns local image characteristics or contextual information.
Larger windows provide more discriminative features but ones that are less likely
to generalize.

The choice of these parameters depends heavily on the nature of the dataset, and
should be optimized against a validation set. Smaller datasets will tend to need many
shallower trees, whereas larger datasets make generalization easier and so fewer
deeper trees may work well. We discuss below the results of several experiments
designed to discover the best parameters for the task of pixel-level category infer-
ence. The cost of performing a full exploration of the parameter space is prohibitive,
and so our exploration varies one parameter while holding the others constant.

Of particular interest are the types of split tests made available to the training
algorithm. The pixel tests listed in Figure 7.2 are those used in the experiments
below, where A[z0] and B[z1] are the values of pixels within a patch of size w×w
centered on the training pixel. The channels z0 and z1 do not have to be the same.
While some test types have a basis in image structure (the difference and absolute
difference of pixels is invariant to a global intensity shift, and signifies edges in the
image), others are just possible discriminative combinations of pixels. In addition
to these pixel tests, we evaluate two rectangle-based tests: the Haar-like features
of [37] and the rectangle sum features of [30].

7.3.1.3 Supervision

Labeled image data is used to train a semantic texton forest, consisting pairs (p,c)
of pixels and category labels. In the case of full supervision each pixel is given a
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training label as shown in Figure 7.4. During training, the distribution P(c|n) is
computed as a normalized histogram of the training tuples which reached a particu-
lar node n:

P(c|n) =
Hn[c]
∑c Hn[c]

, (7.3)

where Hn[c] is the number of pixels of class c that passed through a node n during
training. The process of computing this histogram at each node will be referred to as
“filling” the forest. Filling is performed using all of the pixels in the training data, by
passing each pixel down a tree and incrementing the relevant histogram bin Hn[c].
If desired, a small Dirichlet prior corresponding to a extra constant count added to
all classes can be used to smooth the distributions.

In the case of partial supervision, we do not have pixel labels, but rather the set
of categories present somewhere in the image. In other words, we have just the dis-
tribution P(c|x) where x is an observed topic for the image. In this circumstance, the
topic can be thought of as an underlying meaning generating the categories in the
image, for example a “forest” topic is more likely to produce “tree” pixels, whereas
a “city” topic would be more likely to produce “building” pixels. As we have no
data about P(p|c), it is modeled as a uniform distribution. Thus, to create train-
ing points to use in a partially supervised forest we first sample a category using
P(c|x) and then sample a pixel using P(p|c). The forest is subsequently trained on
these points, and the result has a fairly low pixel accuracy (though still greater than
random chance).

7.3.1.4 Learning Invariances

Although using raw pixels as features is much faster than first computing descriptors
or filter-bank responses, one risks losing their inherent invariances. Thus, as the
distribution P(c|n) is estimated with the training images these images are augmented
with copies that are artificially transformed geometrically and photometrically as
done by Lepetit in [15]. This allows the forest to learn the right degree of invariance
required for a particular problem. In these experiments the transformations used
were rotation, scaling, and left-right flipping as geometric transformations, as well
as affine photometric transformations.

7.3.2 Experiments

In the following experiments, accuracy was measured as the mean percentage of
pixels labeled correctly over all categories. A confusion matrix M was computed
for each image over pixels p ∈ PR, where PR is the set of test pixels. Thus, the
individual cells of M are computed as

M[i, j] = |{p : p ∈ PR,G(p) = ci,argmaxcP(c|Lp) = c j
} |, (7.4)

using the image ground-truth G. For these experiments the mean category accuracy
μ is reported, calculated as
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μ =
1
Z

Z

∑
i=1
αi (7.5)

where Z is the number of categories and

αi =
M[i, i]
∑ j M[i, j]

. (7.6)

A second metric is the overall accuracy α , calculated as

α = ∑i M[i, i]
∑i∑ j M[i, j]

. (7.7)

The mean category accuracy μ ensures a fair balance across categories which po-
tentially have very different numbers of pixels in the data. The overall accuracy α ,
on the other hand, tells us what proportion of the image the system can reliably seg-
ment. Both are important to get a sense of accuracy of the system, e.g., a high α
and low μ indicates overfitting to a particular category which is disproportionately
represented in the dataset.

The control training scenario was set as the following parameters:

Parameter Value
Number of Trees 5
Maximum Depth 10

Type of Split Tests A, A + B, A log(B), |A−B|
w 10

Color Channels CIELab
Data % Per Tree 25

In each experiment, a single training parameter was changed while keeping all
others constant to see the effect it had on test performance. Experiments were per-
formed on the MSRC21 dataset [30]. In each experiment, ten trees were trained on
a subset of the data and then filled with all of the data points as described in Section
7.3.1.4. Ten forests of five trees (with the exception of the number of trees experi-
ment) were then created from permutations of these ten trees. The reported values
are the mean α and μ of 10 segmentation trials run with those forests over the test
data after being trained on the training and validation data with the specified param-
eters. Error bars indicating the standard error are omitted due to the remarkably low
error on the values making them indiscernible. It is quite possibly due to the fact that
the different forests being used for each trial are 5 trees chosen from the same set of
10, but even so it is intriguing to note that 10 different trees trained independently
on different subsets of the data but with the same parameters achieved very close to
the same accuracy on the test data.

In Figure 7.6, one can see the effect different combinations of feature tests has on
segmentation performance. In each of the five trials a different random order of five
feature tests was chosen, shown below in Table 7.2, and in each step an additional
feature was added for the tree to use, accompanied by an increase in the feature pool
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Table 7.1 Test Proportions for MSRC21 Dataset. A semantic texton forest was trained on
the MSRC21 dataset, making all of the tests in the table available to it during training. The
counts for each test were recorded over the entire forest to get a sense of which tests were
most useful for categorization. As can be seen, the rectangle-based features performed best
and were chosen at a much higher rate than the others. Note that the Haar features are a
superset of the additive and subtractive pixel features.

Counts %
Rectangle 670930 39.89%

Haar 316368 18.81%
A 179816 10.69%

A+B 118638 7.05%
A×B 107146 6.37%
|A−B| 105794 6.29%

A log(B) 92274 5.49%
A−B 45968 2.73%
A/B 44954 2.67%
Total 1681888

size. One trial was done with every test and a pool size of 1000 (the rightmost bar
on the graph) showing the practical limit on accuracy. Every additional test made
available to the algorithm will usually improve performance, but there are certain
groups of tests which work together better than others. So it is that performance
can actually drop, sometimes dramatically, when a new test is added that elsewhere
when added improved performance. The ideal mixture of tests depends to a certain
extent on the data, and these experiments should only be considered in so far as
they show the rate at which adding different feature tests improves performance.
One good method of finding out which tests work best for a dataset is to train one
forest with a large pool size and every available test. As each tree will choose tests
based purely on information gain, this will give a very good indicator of which tests
work best for the dataset, and a subset can be chosen either for quicker training or to
optimize tree performance depending on the situation at hand. As an example, Table
7.1 gives the proportions of tests for the forest which had every test available to it,
showing that for the evaluation dataset rectangle features like the rectangle sum [30]
and Haar-like features [37] perform very well.

In Figure 7.7 the effect of the number of trees in the forest can be seen. It is clear
that there are diminishing returns as forest size increases. In order to investigate
the effects of different methods of representing color on performance forests were
trained on grayscale, RGB, CIELab, and HSV images, the results of which can be
seen in Figure 7.8. CIELab clearly results in the best performance, most likely due
to its useful features (e.g., meaningful perceptual distances, device independence)
for computer vision as described in [12]. The effect of different tree depths is shown
in Figure 7.9. The values chosen for this trial were dependent on the dataset size, as
the amount of data needed to fill a tree increases exponentially with tree depth, but
it can be seen that as the number of nodes in the tree increases so does its classifi-
cation ability, which is to be expected due to the way in which the trees are trained
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Table 7.2 Test Domain Experimental Setup. The size of the feature pool and the number of
different feature domains those features could be drawn from increases from right to left, with
25 total trials being performed. Results are shown in Figure 7.6.

Trial 1 2 3 4 5
1 A A×B A−B Haar |A−B|
2 |A−B| A−B A/B A log(A)
3 A/B A−B log(A) A×B A
4 log(A) Rectangle A−B |A−B| A+B
5 A×B A A+B A log(B) A/B

Pool Size 100 200 300 400 500

(i.e. nodes will stop splitting if there is no expected information gain). Finally, the
effect of the w parameter (the size of the window test pixels can be chosen from)
can be seen in Figure 7.10. The effect here of a steady increase in average accuracy
coupled with an increase and then decline in overall accuracy is very interesting.
This is likely due to the fact that the easier categories which take up many of the
pixels in the dataset (e.g., grass and sky) do not require the context of nearby pixels
to be classified, but the smaller and more complex categories can take advantage of
nearby information to aid in classification that is only possible when the window of
possible pixels is significantly increased.

7.4 Image Categorization

The bag of words histogram has been extensively used in recent years for object
categorization in computer vision [32, 6, 9, 25, 31, 28, 40]. As an alternative to the
typical method for creating these histograms (using interest points, descriptors and
a vector quantized patch dictionary) once can use the localized bag of semantic tex-
tons (BoST), illustrated in Figure 7.11. This extends the bag of words representation
with low-level semantic information, as follows.

Given for each pixel p the leaf nodes L(p) = (l1, . . . , lT ) and inferred class distri-
bution P(c|L(p)), one can compute over image region r:

1. A non-normalized histogram Hr(n) that concatenates the occurrences of tree
nodes n across the different trees [20], and

2. A conditional distribution over the region given by the average class distribution
P(c|r) = ∑p∈r P(c|Lp)P(p).

Experiments were performed with tree histograms (unlike the leaf histograms
of [20]) where both leaf nodes l and split nodes n are included in the histogram,
such that

Hr(n) = ∑
n′∈child(n)

Hr(n′) . (7.8)

This histogram therefore uses the hierarchy of clusters implicit in each tree. Each
P(c|L(p)) is already averaged across trees, and hence there is a single region prior
P(c|r) for the whole forest.
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Fig. 7.6 Effect of Different Test Domains. The values shown are the mean over ten trials of
the mean category accuracy (μ). The computation for μ is described in Section 7.3.2. This
graph tracks the effect of increasing the test domains on accuracy, with the overall trend being
that the larger the domain of tests the more accurate the system becomes, though there is
quite a lot of variation with some compositional changes, particularly in set 3. For reference,
a system trained with all possible tests and a pool size of 1000 is shown as the rightmost bar.
The meanings of the numbers in the graph are explained in Table 7.2.

7.4.1 Tree Histograms and Pyramid Matching

Consider first the BoST histogram computed for just one tree in the STF. The kernel
function (based on [11]) is then

K(P,Q) =
1√
Z

K̃(P,Q) , (7.9)

where Z is a normalization term for images of different sizes computed as

Z = K̃(P,P)K̃(Q,Q) , (7.10)

and K̃ is the actual matching function, computed over levels of the tree as

K̃(P,Q) =
D

∑
d=1

1
2D−d+1 (Id−Id+1) , (7.11)

using the histogram intersection I [33]

Id =∑
j

min(Pd [ j],Qd [ j]) , (7.12)
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Fig. 7.7 Effect of Increasing the Number of Trees. The values shown are the mean over
ten trials of the overall per-pixel accuracy (α) and the mean category accuracy (μ). The
computations for α and μ are described in Section 7.3.2. We see here a clear logarithmic
growth in performance with forest size, with the elbow of the graph occurring at 5 for this
dataset.

Fig. 7.8 Effect of Different Channels. The values shown are the mean over ten trials of the
overall per-pixel accuracy (α) and the mean category accuracy (μ). The computations for α
and μ are described in Section 7.3.2. There is a slight but consistent advantage to be gained
by using orthogonal color spaces over RGB, and the addition of color gives a significant
improvement over grayscale, as is to be expected.
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Fig. 7.9 Effect of Maximum Depth. The values shown are the mean over ten trials of the
overall per-pixel accuracy (α) and the mean category accuracy (μ). The computations for α
and μ are described in Section 7.3.2. We see here that tree depth results in a linear growth
in accuracy, particularly for class average accuracy. While the discriminative power of the
forest increases with maximum depth, so does the possibility of overfitting to the data. This
can be avoided by only training on subsets of the data, but one is faced with the problem of
having enough data to fill the tree so as to model the correct uncertainty (as the amount of
data required increases exponentially with each additional level)

where D is the depth of the tree, P and Q are BoSTs, and Pd and Qd are the portions
of the histograms at depth d, with j indexing over all nodes at depth d. There are no
nodes at depth D+ 1, hence ID+1 = 0. If the tree is not full depth, missing nodes j
are simply assigned Pd[ j] = Qd [ j] = 0.

7.4.2 Categorization Results

In this experiment, a forest was trained using the following parameters, selected
based on the results of the experiments in Section 7.3.2:

Parameter Value
Number of Trees 5
Maximum Depth 10

Feature Tests A, A+B, A log(B), |A−B|, Rectangle, A−B
Pool Size 600

w 10
Channels CIELab

Data % 25
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Fig. 7.10 Effect of w. The values shown are the mean over ten trials of the overall per-
pixel accuracy (α) and the mean category accuracy (μ). The computations for α and μ are
described in Section 7.3.2. We see here a general trend by which as the parameter w increases
class average accuracy increases, but overall accuracy declines. Further experiments beyond
the value of 55 were inconclusive due to the effect of less data being available to the training
process, but seem to support this trend.

Fig. 7.11 Bags of semantic textons. Within a region r of image I we generate the semantic
texton histogram and region prior. The histogram incorporates the implicit hierarchy of clus-
ters in the STF, containing both STF leaf nodes (green) and split nodes (blue). The depth d
of the nodes in the STF is shown. The STFs need not be to full depth, and empty bins in the
histogram are not shown as the histogram is stored sparsely. The region prior is computed as
the average of the individual leaf node category distributions P(c|l).

The experiments were performed on Oliva and Torralba’s scene recognition
dataset from [23], in order compare the performance of SVM classifiers trained
using semantic texton forests and a standard bag of words method (using Lowe’s
SIFT detector and descriptor [16], a vector quantized dictionary and a radial ba-
sis function-based kernel). As can be seen in Figure 7.12, semantic texton forests
achieve better performance than the naive bag of words technique. What is worth
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Fig. 7.12 Scene Categorization Results. The values shown are image accuracy per category.
An SVM was trained using BoSTs, and its performance was compared against an SVM trained
using a standard bags-of-words model using Oliva and Torralba’s scene recognition dataset
from [23]. As can be seen, the technique is on par, if not slightly better in some cases, than
the bag of words based algorithm.

mentioning is that STFs are able to combine many different cues in the image aside
from interest points, yet are able to compute the BoST for an image very efficiently.
Due to the complexity of the process (O(n logn)) it is feasible for this system to
perform categorization at frame rate, which would be difficult to achieve for many
bag of words models.

7.5 Semantic Segmentation

The idea of the semantic segmentation of an image is built on a model of image
generation which is based on dividing the real-valued and continuous visual sig-
nal of an image into cells, or a regular rectangular sample grid, each of which is
sufficiently explained by an underlying label. To perform a semantic segmentation
of an image is to infer the semantic label for every cell. For example, look at the
image in Figure 7.13. Using simple semantic labels, the pixels in the image have
been explained, each one generated by some unknown model for the category label.
If such a segmentation can be achieved, then the image can be catalogued for im-
age search, used for navigation, or any number of other tasks which require basic
semantic understanding of arbitrary scenes.
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Fig. 7.13 Semantic Segmentation. A semantic segmentation of an image is one which groups
the pixels together by common semantic meaning. Shown is one such segmentation of an
image, using as pixel labels the objects in the scene.

7.6 Soft Classification of Pixels

Our formulation of semantic segmentation centers on the cell model, presented
graphically in Figure 7.14 (graphical models are a common method of visualiz-
ing joint distributions over several random variables, see [2]). In this model, for
every image there is a random variable X whose value represents the subject matter,
or broad image-level category, of the image (e.g., the forest, an office, the moon).
The likelihood of the various image-level categories are governed by some learned
parameter χ . This topic generates cell labels ci for each grid cell i. These are gen-
eral semantic categories, that is categories of object or entity (e.g., trees, computers,
rocks). The conditional probability of a semantic category given the image-level
category is governed by the learned parameter γ . Finally, we have the appearance
of a cell (e.g., a pixel patch, a descriptor, a histogram) which is generated by the

Fig. 7.14 Cell-based Image Generation Model. This figure is a graphical representation of the
model [2]. For each image a particular topic is chosen, represented by the random variable x.
These can be thought of as scenes (e.g., the forest, an office, the moon). For a particular topic,
we generate I cells on a grid, where each cell has a semantic category c that generates the
appearance a. To perform a semantic segmentation, we infer the semantic category for each
grid cell.
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(a) (b)

(c) (d)

Fig. 7.15 Cell Segmentation. (a) is the original image. (b) is the image with pixel-level maxi-
mum a posteriori (MAP) labeling. In (c), the distributions are subsampled from (b) by 8, and
in (d) the image in (b) has been subsampled by 16. As grid square size increases, detail is lost
but the overall accuracy of the segmentation increases.

cell category using some process which adds in some noise (indicated by σ ), e.g., a
normal distribution over intensity values.

Naturally, a normal distribution over intensity values is not a sufficient generative
patch model. While a general patch model may be out of reach in the near future, the
promising jigsaw model [14] and other emerging techniques utilizing deep inference
are showing great promise towards achieving this enviable goal. In the meantime,
however, the best results have been obtained via discriminative methods. Since the
appearance is observed, we can infer the category label from the appearance (es-
sentially, reverse the arrow between c and A) and infer c by marginalizing over the
topics and incorporating a discriminative model for P(c|A). Previously we discussed
semantic texton forests and their ability to estimate a distribution over a set of labels
for arbitrary pixel regions in a discriminative manner. Now we will discuss how they
can be used to infer P(c|A) at the level of an image grid cell.

We have already established that we can infer P(c|A) for cells at the level of a
pixel with a semantic texton forest:

P(c|Ap) = P(c|L(p)) ∝
T

∑
t=1

P(c|lt)P(t) . (7.13)
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As the size of a cell increases, we are faced with the problem of agglomerating the
information held in individual pixels to regions. We can calculate this as

P(c|Ar) = P(c|r)∝∑
p

P(c|L(p))P(p|r) , (7.14)

which leaves the conditional distribution P(p|r) to be modeled. There are two prac-
tical choices for this. The first is a bivariate normal distribution with diagonal co-
variance and centered on the cell, and the second is

P(p|r) =
{ 1
|Pr | p ∈ Pr

0 otherwise
(7.15)

where Pr is the set of pixels in a region. We use the latter method here due to the
easy of computation, but the former likely results in a better estimate. Figure 7.15
depicts both the pixel- and cell-level maximum a posteriori labelings for an image.

So far, we have discussed the conditional distribution P(c|A), but we have yet to
touch on P(c|X) or P(X). In the following section, we will discuss how it is possible
to again use semantic texton forests to infer the parameter χ from the image data.

7.7 Image-Level Semantic Constraints

The inference of P(X) is essentially the task of image categorization. The task of
categorizing an image consists of determining those categories (e.g., forest images,
office images, moon images) to which an image belongs. There has been much re-
search performed on this problem, with the most successful of previous approaches
using global image information [24], bags of words [9] or textons [39]. The STF
categorization algorithm can be extended to exploit not just the hierarchy of seman-
tic textons but also the node prior distributions P(c|n). A non-linear support vector
machine (SVM) is still used, which depends on a kernel function K that defines the
similarity measure between images. To take advantage of the hierarchy in the STF,
we adapt the innovative pyramid match kernel [11] to act on a pair of BoST his-
tograms computed across the whole image, computed in the same way as described
in Section 7.4.

The kernel over all trees in the STF is calculated as K = ∑t κtKt with mixture
weights κt . Similarly to [40], κt = 1

T results in the best categorization results. This
method is very effective, but can be improved by using the learned distributions
P(c|n) in the STF. If P(c|n) is large for class c and node n, then a large count of
node n is a strong indicator that class c is present in the image. If P(c|n) is small,
less information is gained since the likely presence of other categories only helps
as context. For example, if the target of a search is grass in an image, the count
of nodes likely to be grass is more important than those likely to be motorbike.
Following this intuition, a 1-vs-others SVM kernel Kc is built per category, in which
the count for node n in the BoST histogram is weighted by the value P(c|n). This
helps balance the categories, by selectively down-weighting those that cover large
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image areas (e.g., grass, water) and thus have inappropriately strong influence on
the pyramid match, masking the signal of smaller classes (e.g., cat, bird).

In these experiments, the improvement that the pyramid match kernel on the hier-
archy of semantic textons gives over a radial basis function on histograms of just leaf
nodes is demonstrated. An improvement using the per-category kernels Kc instead
of a global kernel K is also shown.

7.7.1 Categorization Results

The mean average precisions (AP) in Table 7.3 compare the modified pyramid match
kernel (PMK) to a radial basis function (RBF) kernel, and compare the global kernel
K to the per-category kernels Kc. In the baseline results with the RBF kernel, only
the leaf nodes of the STF are used, separately per tree, using term frequency/inverse
document frequency to normalize the histogram. The PMK results use the entire
BoST which for the per-category kernels Kc are weighted by the prior node distribu-
tions P(c|n). Note that the mean AP is a much harder metric and gives lower num-
bers than recall precision or AuC; the best result in the table shows very accurate
categorization. As can be seen in Table 7.3, the pyramid match kernel considerably
improves on the RBF kernel. By training a per-category kernel, a small but notice-
able improvement is obtained. Due to its performance, the PMK with per-category
kernels to train the SVM is used as χ .

Table 7.3 Image categorization results. (Mean AP).

Global kernel K Per-category kernel Kc

RBF .499 .525
PMK .763 .783

7.7.2 The Image Level Prior

To relate this system of image categorization back to the cell model for semantic
segmentation, the task the SVM is performing is to infer the value of X for an image.
In essence, instead of χ being a global prior distribution over topics, it is this system,
and depends on the BoST computed for a particular image in order to compute P(X).
We can think of P(X) as being related to χ thus:

P(X) = χ(BoSTd)[x] (7.16)

where χ is the SVM classifier.
Moreover, since X and c in the scenario just presented have the same domain, γ

is not a learned distribution but instead a binary function:

γ[t,c] =
{

1 if x = c
0 otherwise

(7.17)
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Fig. 7.16 MSRC Categorization Results Shown here are the precision recall curves for all of
the categories in the MSRC21 dataset.

Thus, whereas one would usually marginalize over X when computing P(ci) in the
following manner (substituting lower case letters for observed variables):

P(ci) = P(ci|ai)∑
X

P(X)P(ci|X)∏
j �=i
∑
c j

P(c j|X)P(c j|a j) (7.18)

this equation is derived instead :

P(ci) = P(ci|ai)P(ci|x)P(x)∏
j �=i
∑
c j

P(c j|x)P(c j|a j) (7.19)



194 M. Johnson and J. Shotton

which, given the binary nature of P(c|T ) = λ [t,c] and that in this situation t ≡ c,
collapses further to:

P(ci) = P(ci|ai)P(ci)∏
j �=i

P(c j|a j) (7.20)

where P(ci) is the result of the SVM classifier and P(c|A) is computed using the STF
as described above. Furthermore, the effect of the right-hand product is estimated
by a power α on P(c) in the results presented in this chapter. Since this is no longer
inference per se, the result of this process is referred to as an “image level prior”,
or ILP. While these optimizations result in a system which is very efficient, they are
made at the cost of a more powerful and expressive model.

7.8 Compositional Constraints

To demonstrate the power of the BoSTs as features for segmentation, they are inte-
grated into the TextonBoost algorithm [30]. The goal is to segment an image into
coherent regions and simultaneously infer the class label of each region. In [30], a
boosting algorithm selected features based on localized counts of textons to model
patterns of texture, layout and context. The context modeled in [30] was “textural”,
for example: sheep often stand on something green. We adapt the rectangle count
features of [30] to act on both the semantic texton histograms and the BoST region
priors. The addition of region priors allows us to model context based on seman-
tics [26], not just texture. Continuing the example, this new model can capture the
notion that sheep often stand on grass.

The segmentation algorithm works as follows. For speed, a second randomized
decision forest is used in place of boosting. This segmentation forest is trained to act
at image cells i, using bags and priors computed using Equation 7.15 for P(p|r =
i). At test time, the segmentation forest is applied at each pixel p densely or, for
more speed, on a grid. The most likely class in the averaged category distribution
gives the final segmentation for each cell. The split tests compute either the count
Hr+i(n = n′) of semantic texton n′, or the probability P(c | r + i) of class c, within
rectangle r translated relative to cell i. By translating rectangle r relative to the cell
i being classified, and by allowing r to be a large distance away from i (up to half
the image size), such features can exploit texture, layout and context information.
This extension to their features exploits semantic context by using the region prior
probabilities P(c|r + i) inferred by the semantic textons.

7.9 Experiments

Before presenting in-depth results for segmentation, let us look briefly at the STFs
themselves. In Figure 7.17, we visualize the inferred leaf nodes L = (l1, . . . , lT )
for each pixel i and the most likely category ci = argmaxci P(ci|L). Observe that
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Fig. 7.17 Textonizations. Shown here are a large selection of textonizations performed by a
semantic texton forest. The first column shows the image, the middle five are textonizations
from the five trees in the forest, followed by the ground truth image and the combined tex-
tonization of the forest. In the textonizations, a separate color is given to each texton index to
give a sense of leaf-membership for a pixel.

the textons in each tree capture different aspects of the underlying texture and that
even at such a low level the distribution P(c|L) contains significant semantic in-
formation. Table 7.4 gives a naı̈ve segmentation baseline on the MSRC dataset by
comparing ci to the ground truth.

Clearly, this segmentation is poor, especially when trained in a weakly supervised
manner, since only very local appearance and no context is used. Even so, the signal
is remarkably strong for such simple features (random chance is under 5%). Below
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Table 7.4 Naı̈ve Segmentation Baseline on MSRC21. Using the parameters chosen as a result
of the experiments in Section 7.3.2 we are able to obtain a solid baseline for segmentation.

Global Average
supervised 48.7% 41.5%
weakly supervised 17.7% 27.8%

is shown how using semantic textons as features in higher level classifiers greatly
improves these numbers, even with weakly supervised or unsupervised STFs.

Except where otherwise stated, STFs were used with the following parameters,
hand-optimized on the MSRC validation set: distance w = 31, T = 5 trees, maxi-
mum depth D = 10, 500 feature tests and 5 threshold tests per split, and 1

4 of the
data per tree, resulting in approximately 500 leaves per tree. Training the STF on the
MSRC dataset took only 15 minutes. The tests used were A+B, A−B, |A−B|, and
A, a combination motivated by the experiments in Section 7.3.2 and performance
requirements.

7.9.1 MSRC21 Dataset

We first examine the influence of different aspects of our system on segmentation
accuracy. Segmentation forests were trained using (a) the histogram Hr(l) of just
leaf nodes l, (b) the histogram Hr(n) of all tree nodes n, (c) just the region priors
P(c|r), (d) the full model using all nodes and region priors, (e) the full model trained
without random transformations, (f) all nodes using an unsupervised STF (no region
priors are available), and (g) all nodes using a weakly-supervised STF (only image
labels). The category average accuracies are given in Table 7.5 with and without the
image-level prior.

There are several conclusions to draw. (1) In all cases the ILP improves results.
(2) The hierarchy of clusters in the STF gives a noticeable improvement. (3) The
region priors alone perform remarkably well. Comparing to the segmentation result
using only the STF leaf distributions (34.5%) this shows the power of the localized
BoSTs that exploit semantic context. (4) Each aspect of the BoST adds to the model.
While, without the ILP, score (b) is slightly better than the full model (d), adding

Table 7.5 Comparative segmentation results on MSRC.

Without ILP With ILP

(a) only leaves 61.3% 64.1%
(b) all nodes 63.5% 65.5%
(c) only region priors 62.1% 66.1%
(d) full model 63.4% 66.9%
(e) no transformations 60.4% 64.4%
(f) unsupervised STF 59.5% 64.2%
(g) weakly supervised STF 61.6% 64.6%
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[30] [36] Ours Ours + ILP

building 62 52 41 49
grass 98 87 84 88
tree 86 68 75 79
cow 58 73 89 97

sheep 50 84 93 97
sky 83 94 79 78

airplane 60 88 86 82
water 53 73 47 54
face 74 70 87 87
car 63 68 65 74

bicycle 75 74 72 72
flower 63 89 61 74
sign 35 33 36 36
bird 19 19 26 24
book 92 78 91 93
chair 15 34 50 51
road 86 89 70 78
cat 54 46 72 75
dog 19 49 31 35

body 62 54 61 66
boat 7 31 14 18

Overall 71 - 68 72
Average 58 64 63 67

Fig. 7.18 MSRC21 segmentation results. Left: Segmentations on test images using semantic
texton forests. Note how the good but somewhat noisy segmentations are cleaned up using our
image-level prior (ILP) that emphasizes the categories likely to be present. (Note that neither
a Markov nor conditional random field are used, which could clean up the segmentations to
precisely follow image edges [30]). Right: Segmentation accuracies (percent) over the whole
dataset, without and with the ILP. Highly efficient semantic textons achieve a significant
improvement on previous work.

in the ILP shows how the region priors and textons work together.1 (5) Random
transformations of the training images improve performance by adding invariance.

1 This effect may be due to segmentation forest (b) being over-confident: looking at the 5
most likely classes inferred for each pixel, (b) achieves 87.6% while (d) achieves a better
88.0%.
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Fig. 7.19 Further MSRC segmentation results.

(6) Performance increases with more supervision, but even unsupervised STFs allow
good segmentations.

Given this insight, the algorithm is compared against [30] and [36]. The same
train/test split is used as in [30] (though not [36]). The results are summarized in
Figure 7.18, with further segmentation results in Figure 7.19. Across the whole chal-
lenging dataset, using the full model with ILP achieved a class average performance
of 66.9%, a significant improvement on both the 57.7% of [30] and the 64% of [36].
The global accuracy also improves slightly on [30]. The image-level prior improves
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Brookes Ours Ours + ILP TKK Ours + DLP

building 78 33 20 23 22
aeroplane 6 46 66 19 77

bicycle 0 5 6 21 45
bird 0 14 15 5 45
boat 0 11 6 16 19

bottle 0 14 15 3 14
bus 9 34 32 1 45
car 5 8 19 78 48
cat 10 6 7 1 29

chair 1 3 7 3 26
cow 2 10 13 1 20
table 11 39 44 23 59
dog 0 40 31 69 45

horse 6 28 44 44 54
motorbike 6 23 27 42 63

person 29 32 39 0 37
plant 2 19 35 65 40
sheep 2 19 12 30 42
sofa 0 8 7 35 10
train 11 24 39 89 68

tv / monitor 1 9 23 71 72
Average 9 20 24 30 42

Fig. 7.20 VOC 2007 segmentation results. Above: Test images with ground truth and our
inferred segmentations using the ILP (not the DLP). This dataset is extremely challenging
and the resulting segmentations are thus slightly noisier. Below: Segmentation accuracies
(percent) over the whole dataset. The left three results compare the method to the Brookes
segmentation entry [8], and show that it is over twice as accurate. The two results on the
right compare the best automatic segmentation-by-detection entry (see text) [8] with the STF

algorithm using the TKK results as a detection-level prior (DLP). The algorithm improves the
accuracy of segmentation-by-detection by over 10%.

performance for all but three classes, but even without it, results are still highly
competitive with other methods. The use of balanced training has resulted in more
consistent performance across classes, and significant improvements for certain dif-
ficult classes: cow, sheep, bird, chair, and cat. A Markov or conditional random field
is not used here, which would likely further improve our performance [30].

These results used the learned and extremely fast STFs, without needing any slow
hand-designed filter-banks or descriptors. Extracting the semantic textons at every
pixel takes an average of only 275 milliseconds per image, categorization takes 190
ms, and evaluating the segmentation forest only 140 ms. For comparison [30] took
over 6 seconds per test image, and [36] took an average of over 2 seconds per image
for feature extraction and between 0.3 to 2 seconds for estimating the segmentation.
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This algorithm is well over 5 times faster and improves quantitative results. A real-
time implementation of the STFs can be achieved on a standard PC, as the complex-
ity is just O(T D) per pixel.

The following parameter settings were used: T = 50 trees of depth D = 14, with
training examples taken every 10 pixels in a random 50% of the training images, and
using 1000 random feature tests and 20 random threshold tests at each split node.
The ILP smoothing term α = 0.5. To add invariance, the training set was augmented:
the original plus 3 copies with random transformations of rotation up to 6◦, scaling
up to 1.2x, left-right flipping, and affine intensity changes up to 1.2I+0.05. Training
took under 2 hours for the segmentation forest. The resulting forest used a total of
24805 node features and 107311 region prior features.

7.9.2 VOC 2007 Segmentation Dataset

The VOC object recognition challenge added a segmentation task to the competi-
tion in 2007 [8]. This dataset contains 21 extremely challenging categories includ-
ing background. A STF, a segmentation forest, and an ILP were trained on this data,
using the “trainval” split and keeping parameters as for MSRC. The results in Fig-
ure 7.20 compare with [8]. This algorithm performs over twice as well as the only
segmentation entry (Brookes), and the addition of the ILP further improves perfor-
mance by 4%. The actual winner of the segmentation challenge, the TKK algorithm,
used segmentation-by-detection that fills in the detected object bounding boxes by
category. To see if our algorithm could use a detection-level prior DLP (identical
to the ILP but using the detected bounding boxes and varying with image position)
the TKK entry output was used as the DLP. The STF algorithm gave a large 12%
improvement over the TKK segmentation-by-detection, highlighting the power of
STFs as features for segmentation.

7.10 Discussion

We have examined semantic texton forests and their applications to image catego-
rization and semantic segmentation. They act as efficient texton codebooks, which
do not depend on local descriptors or expensive k-means clustering, and when su-
pervised during training can infer a distribution over categories at each pixel. We
examined how the training parameters affect performance, and how a hierarchical
matching kernel can be used in a non-linear SVM classifier to achieve image cat-
egorization. Also, we saw how bags of semantic textons enabled state-of-the-art
performance on challenging datasets for semantic segmentation, and how the use
of an inferred image-level prior significantly improves segmentation results. The
substantial gains of the method over traditional texton-based methods are training
and testing efficiency and improved quantitative performance.

While semantic texton forests are quite powerful, there is much work left to be
done. One limitation of the system is the large dimensionality of the bag of semantic
textons. This necessitates a trade-off between the memory usage of the semantic
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texton integral images and the training time if they are computed at runtime. While
using just the region priors can be more memory efficient, this comes at some cost
in pixel accuracy. Another weakness, mentioned previously, is the lack of a model
of the inter-pixel relationships (like the conditional Markov random field from [30])
which incorporates an understanding of local structure in the image when arriving
at a segmentation.

Perhaps the greatest limitation of this technique, however, is the fact that it is a
discriminative learning algorithm and thus requires a fully-supervised training sce-
nario. As the data required must be labeled on a per-pixel basis with a preset number
of categories, this is a large barrier to the general use of semantic texton forests for
image understanding. However, as the genesis of a generative patch model nears, it
is possible that a hybridized version of the technique could be used in partially su-
pervised and unsupervised cases. Perhaps most encouraging are the vast quantities
of training data being created through projects like LabelMe [27], in which humans
provide semantic segmentations of images of all kinds with arbitrary categories.
While difficult to work with, such data could be exploited by discriminative learn-
ing algorithms like the semantic texton forest to understand a wider range of object
categories.
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3. Bosch, A., Zisermann, A., Muñoz, X.: Image classification using random forests and
ferns. In: Proceedings of the International Conference on Computer Vision (2007)

4. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
5. Breiman, L., Friedman, J., Olshen, R.: Classification and Regression Trees. Wadsworth,

Belmont (1984)
6. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with

bags of keypoints. In: Proceedings of the International Workshop on Statistical Learning
in Computer Vision, ECCV (2004)

7. Elkan, C.: Using the triangle inequality to accelerate k-means. In: Proceedings of the
International Conference on Machine Learning, pp. 147–153 (2003)

8. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL
VOC Challenge (2007),
http://www.pascal-network.org/challenges/VOC/voc2007/
workshop/index.html

9. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene cate-
gories. In: Proceedings of the International Conference on Computer Vision and Pattern
Recognition (2005)

10. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learn-
ing 36(1), 3–42 (2006)

11. Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification with
sets of image features. In: Proceedings of the International Conference on Computer
Vision (2005)

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html


202 M. Johnson and J. Shotton

12. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, New Jersey (1989)
13. Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: Proceedings

of the International Conference on Computer Vision, pp. 604–610 (2005)
14. Lasserre, J., Kannan, A., Winn, J.: Hybrid learning of large jigsaws. In: Proceedings of

the International Conference on Computer Vision and Pattern Recognition, Minneapolis
(2007)

15. Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recognition. In:
Proceedings of the International Conference on Computer Vision and Pattern Recogni-
tion, pp. 775–781 (2005)

16. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Jour-
nal of Computer Vision 60(2), 91–110 (2004)

17. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image seg-
mentation. International Journal of Computer Vision 43(1), 7–27 (2001)

18. Marée, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust image
classification. In: Proceedings of the International Conference on Computer Vision and
Pattern Recognition, pp. 34–40 (2005)

19. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Interna-
tional Journal of Computer Vision 60(1), 63–86 (2004)

20. Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using random-
ized clustering forests. In: Proceedings of the International Conference on Neural Infor-
mation Processing Systems (2006)

21. Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proceedings
of the International Conference on Computer Vision and Pattern Recognition (2006)

22. Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classifi-
cation. In: Proceedings of the International Conference on Computer Vision (2006)

23. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the
spatial envelope. International Journal of Computer Vision 42(3), 145–175 (2001)

24. Oliva, A., Torralba, A.: Building the gist of a scene: The role of global image features in
recognition. Visual Perception, Progress in Brain Research 155(1), 23–26 (2006)

25. Quelhas, P., Monay, F., Odobez, J.M., Gatica, D., Tuytelaars, T.: Modeling scenes with
local descriptors and latent aspects. In: Proceedings of the International Conference on
Computer Vision (2005)

26. Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., Belongie, S.: Objects in
context. In: Proceedings of the International Conference on Computer Vision (2007)

27. Russell, B., Torralba, A., Murphy, K., Freeman, W.T.: Labelme: a database and web-
based tool for image annotation. Journal of Computer Vision 77(1-3), 157–173 (2008)

28. Russell, B.C., Efros, A.A., Sivic, J., Freeman, W.T., Zisserman, A.: Using multiple seg-
mentations to discover objects and their extent in image collections. In: Proceedings of
the International Conference on Computer Vision and Pattern Recognition (2006)

29. Schindler, G., Brown, M., Szeliski, R.: City-scale location recognition. In: Proceedings
of the International Conference on Computer Vision and Pattern Recognition, Minneapo-
lis (2007)

30. Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost for image understanding:
Multi-class object recognition and segmentation by jointly modeling texture, layout, and
context. International Journal of Computer Vision 81(1) (2009)

31. Sivic, J., Russel, B., Efros, A., Zisserman, A., Freeman, W.: Discovering objects and their
localization in images. In: Proceedings of the International Conference on Computer
Vision, Beijing, China, pp. 370–377 (2005)

32. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in
videos. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp.
1470–1477 (2003)



7 Semantic Texton Forests 203

33. Swain, M., Ballard, D.: Color indexing. Int. J. Computer Vision 7, 11–32 (1991)
34. Tuytelaars, T., Schmid, C.: Vector quantizing feature space with a regular lattice. In:

Proceedings of the International Conference on Computer Vision (2007)
35. Varma, M., Zisserman, A.: A statistical approach to texture classification from single

images. International Journal of Computer Vision 62(1-2), 61–81 (2005)
36. Verbeek, J., Triggs, B.: Region classification with markov field aspect models. In: Pro-

ceedings of the International Conference on Computer Vision and Pattern Recognition
(2007)

37. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features.
In: Proceedings of the International Conference on Computer Vision and Pattern Recog-
nition, pp. 511–518 (2001)

38. Winder, S., Brown, M.: Learning local image descriptors. In: Proceedings of the Interna-
tional Conference on Computer Vision and Pattern Recognition (2007)

39. Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal visual dic-
tionary. In: Proceedings of the International Conference on Computer Vision, Beijing,
China, pp. 1800–1807 (2005)

40. Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for clas-
sificaiton of texture and object categories: A comprehensive study. International Journal
of Computer Vision 73(2), 213–238 (2007)



Chapter 8
Multi-view Object Categorization and Pose
Estimation

Silvio Savarese and Li Fei-Fei

Abstract. Object and scene categorization has been a central topic of computer vi-
sion research in recent years. The problem is a highly challenging one. A single
object may show tremendous variability in appearance and structure under vari-
ous photometric and geometric conditions. In addition, members of the same class
may differ from each other due to various degrees of intra-class variability. Re-
cently, researchers have proposed new models towards the goal of: i) finding a suit-
able representation that can efficiently capture the intrinsic three-dimensional and
multi-view nature of object categories; ii) taking advantage of this representation to
help the recognition and categorization task. In this Chapter we will review recent
approaches aimed at tackling this challenging problem and focus on the work by
Savarese & Fei-Fei [54, 55]. In [54, 55] multi-view object models are obtained by
linking together diagnostic parts of the objects from different viewing point. Instead
of recovering a full 3D geometry, parts are connected through their mutual homo-
graphic transformation. The resulting model is a compact summarization of both
the appearance and geometry information of the object class. We show that such a
model can be learnt via minimal supervision compared to competitive techniques.
The model can be used to detect objects under arbitrary and/or unseen poses by
means of a two-step algorithm. This algorithm, inspired by works in single object
view synthesis (e.g., Seitz & Dyer [57]), has the ability to synthesize object ap-
pearance and shape properties at recognition time, and in turn estimate the object
pose that best matches the observations. We conclude this Chapter by presenting ex-
periments on detection, recognition and pose estimation results with respect to two
datasets in [54,55] as well as to PASCAL Visual Object Classes (VOC) dataset [15].
Experiments indicate that representation and algorithms presented in [54,55] can be
successfully employed in a number of generic object recognition tasks.
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car:
azimuth = 200 deg; zenith = 30 deg.

stapler:
azimuth = 75 deg; zenith = 50 deg.

mouse: 
azimuth = 60 deg; zenith = 70 deg.

Fig. 8.1 Categorize an Object Given An Unseen View. azimuth: [front,right,back,left]=
[0,90,180,270]o ; zenith: [low, med., high]= [0,45,90]o

8.1 Introduction

The ability to interpret a scene, recognize the objects within, estimate their location
and pose is crucial for a robust, intelligent visual recognition system. In robotic ma-
nipulation, a robotic arm may need to detect and grasps objects in the scene such
as a cup or book; in autonomous navigation, an unmanned vehicle may need to
recognize and interpret the behavior of pedestrians and other vehicles in the envi-
ronment. Critically, accurate pose recovery is not only important if one wants to
interact with the objects in the environment (if a robotic arms wishes to grasp a
mug, the system must estimate mug’s pose with high degree of accuracy); it is also
a key ingredient that enables the visual system to perform higher level tasks such
activity or action recognition. Despite recent successful efforts in the vision com-
munity toward the goal of designing systems for object recognition, a number of
challenges still remain: not only does one need to cope with traditional nuisances
in object categorization problems (objects appearance variability due to intra-class
changes, occlusions and lighting conditions), but also to handle view-point variabil-
ity and propose representations that capture the intrinsic multi-view nature of object
categories.

In this Chapter we describe a recent recognition paradigm for discovering ob-
ject semantics under arbitrary viewing conditions as well as recovering the basic
geometrical attributes of object categories and their relationships with the observer.
Figure 8.1 illustrates more precisely the problem we would like to solve. Given an
image containing some object(s), we would like to learn object category models that
allow us to: i) detect and categorize the object as a car (or a stapler, or a computer
mouse), and ii) estimate the pose (or view point) of the car. Here by ‘pose’, we refer
to the 3D information of the object that is defined by the viewing angle and scale of
the object (i.e., a particular point on the viewing sphere represented in Figure 8.2).

Most of the recent advances in object categorization have focused on modeling
the appearance and shape variability of objects viewed from a limited number of
poses [66,19,18,35,17,23], or a mixture of poses [56,67,48,72]. In these methods,
different poses of the same object category result in completely independent models,
wherein neither features nor parts are shared across views. These methods typically
ignore the problem of recovering the object pose altogether. We refer to such models
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Fig. 8.2 Left: An object pose is represented by a pair of azimuth and zenith angles. Right:
Some of the unseen poses tested during our recognition experiments (Figure 8.12).

as single-view 2D models. At the opposite end of the spectrum, several works have
addressed the issue of single object recognition by modeling different degree of 3D
information [40,50,6,20]. Since these methods achieve recognition by matching lo-
cal features under rigid geometrical transformations, they are successful in recover-
ing the object pose, but they are difficult to extend to handle object classes. We refer
to such models as single instance 3D models. Similar limitations are suffered by
representations based on aspect graphs [31, 32, 59, 58, 13, 47, 5, 12, 10]. A small but
growing number of recent studies have begun to address the problem of object clas-
sification in a true multi-view setting [63,33,27,70,9,54,55,37,49,71,2,16,61,60,
43]. Since in these methods object elements (features, parts, contours) are connected
across views so as to form an unique and coherent model for the object category
(e.g., Figure 8.4), we refer to such models as multi-view models. These techniques
bridge the gap between single view 2D models and single instance 3D object mod-
els. In this book Chapter we will focus on the framework introduced by [54, 55],
which represents one of the first attempts to model the multi-view nature of 3D ob-
ject categories. In particular we will discuss some of the critical contributions of
such multi-view model [54, 55]:

• A part-based 3D model of an object class is proposed by encoding both the ap-
pearance and 3D geometric shape information (see Figure 8.3). Stable parts of
objects from one class are linked together to capture both the appearance and
shape properties of the object class. This model produces a compact yet power
representation of an object class, differing from most of the previous works which
store various image exemplars or model exemplars of different viewing angles.

• Toward the goal of learning the multi-view model of an object class, the algo-
rithm demands less supervision in the learning process compared to previous
works (i.e., [63]). The method is designed to handle either segmented or un-
segmented objects in training. Most importantly, the method does not require
view point labels or to have training images sorted in any particular order. A
key assumption, however, is that multiple views of the same object instance are
assumed to be available.
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Fig. 8.3 Schematic illustration of the 3D object category model. (a) We illustrate our model
by using a hypothetical 3D object category. Three instances of the hypothetical objects are
shown here as sample training images. The colored regions of each instance are “canonical
parts” of the objects that will be put together to form the final model. These “canonical parts”
are made of patches usually provided by feature detectors (see also Figure 8.4). When parts
across different instances share the same color code, it indicates that the model has learnt the
correspondences among these regions based on the appearance and geometric consistency.
(b) The final model of the 3D object category can be viewed as a connected graph of the
object canonical parts (colored regions, Pi), canonical part relations (H), and the encoded
variabilities of the appearances and geometric structure (visualized by the dashed ellipses
surrounding each part). (c) A more intuitive visualization of the model puts together the
canonical parts in a 3D graph based of the learned geometric relations (H). This figure is best
viewed under color.

• The algorithm has the ability to represent and synthesize views of object classes
that are not present in training. The view-synthesis approach is inspired by pre-
vious research on view morphing and image synthesis from multiple views. The
main contribution of [54, 55] is that the synthesis takes place at the categorical
level as opposed to the single object level (as previously explored).

• Given a novel testing image containing an object class, not only does the algo-
rithm classifies the object, but it also infers the pose and scale and localizes the
object in the image. Furthermore, the algorithm takes advantage of our view-
synthesis machinery for recognizing objects seen under arbitrary views. As op-
posed to [9] where training views are augmented by using synthetic data, we
synthesize the views at recognition time.

• Extensive experimental validation is provided. Competitive categorization, local-
ization and pose estimation performances are observed with respect to the dataset
in [63] as well as the challenging 3D object datasets introduced in [54, 55].
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8.2 Literature Review

Interest in solving the 3D/multi-view object recognition as well as pose estimation
problem starts with a number of seminal work [3,24,39,41,46,51,65] in the 80s and
early 90s, which form the foundation of modern object recognition. Beginning from
the late 90s, researchers start proposing a new generation of techniques for solving
single object recognition using single instance 3D models. In [38, 42, 44], objects
are represented by highly discriminative and local invariant features related by lo-
cal geometric constrains. Methods by [50, 6, 20] follow the idea of enforcing global
geometric constraints and/or achieve 3D affine or Euclidean object reconstruction
from multiple (often) unregistered views for recognizing single objects in cluttered
scenes. These methods are successful thanks to their ability to identify strong ge-
ometrical constraints and highly discriminative features. However, such constraints
are not adequate in object categorization problems in which shape and appearance
variability of each object class must be accounted for. Another large body of lit-
erature on object recognition introduces the concept of Aspect Graph (AG). AGs
represent 3D objects as a set of topologically distinct views based on visibility con-
straints. Starting from seminal works of [31,32], different AG representations are in-
troduced during the 80s and 90s [59,58,13,47,5,14] until recent extensions [12,10].
Similarly to single instance 3D models, AG methods lack of generalization power
in representing object categories, and have shown limited success in modeling intra-
class variability. Also, most of AGs poorly handle nuisances such as occlusions and
background clutter. A natural step forward to the categorization problem is offered
by 3D object category classification methods such as [52,28,26,22,30,62,36]. These
methods focus on classifying objects that are expressed as collections of 3D points,
3D meshes or 3D synthetic cad models. Often 3D shape databases are used [1].
Due to their limited ability to coherently integrate real-world object albedo infor-
mation with the underlying 3D structure, these methods are hardly used to identify
real world objects in cluttered scenes from still images or videos. A recent survey
summarizes relevant literature [62]. Partially to accommodate intra-class variability,
researchers have proposed to leverage on the large literature on single 2D view ob-
ject categorization and represent 3D object categories as a mixture of 2D single view
object category models [56,67,7,64,4]. In mixture models, single view object mod-
els are completely independent, wherein neither features or parts are linked across
views. An exception is the work by [64] where an efficient multi-class boosting pro-
cedure is introduced to limit the computational overload. The consequence is that
mixture models fail to form a coherent and compact multi-view representation of
an object category. Methods based on mixture models are costly to train and prone
to false alarm, if several views need to be encoded. Finally, only few methods [67]
have attempted to solve the pose estimation problem as we will discuss later in more
details.

Recently, a new class of methods have tried to bridge the gap between single
view 2D models and single instance 3D object models, and have begun to address
the problem of object classification in a true multi-view setting (multi-view mod-
els). In these methods, object elements (features, parts, contours) are connected
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across views so as to form an unique and coherent model for the object category
(e.g., Figure 8.4). Pioneering multi-view techniques are introduced in the specific
domain of face detection [48, 72]. Methods in [63, 33] extend single view models
into the multi-view setting by linking relevant features across views. Alternative
techniques [27, 70, 37, 69] represent an object category by using synthetic or recon-
structed 3D models on top of which the typical distribution of appearance element
is learned. Authors in [9] build an object representation upon a 3D skeleton model
of predefined parts from 2D images. Very recent examples of multi-view represen-
tations are [61,60,49,71,2,16]. The work by [54,55] proposes a new representation
where object categories are modeled as a collection of view point invariant parts
connected by relative view point transformations. [54, 55] stand among the pio-
neering contributions on multi-view representation and are among the first methods
that have addressed the issue of view point estimation for generic object categories.
In the remainder of this book Chapter we discuss in details the representation in-
troduced in [54, 55]. In Section 8.3.2 we explain the multi-view model based on
canonical parts and linkage structure. Then we describe how to learn such multi-
view model in Section 8.4. In Section 8.5 we present the machinery for synthesiz-
ing novel views in the viewing sphere. In Section 8.6 we demonstrate how a novel
instance of an object category is recognized, localized and its pose inferred. Finally,
we show experimental results in Section 8.7.

8.3 The Part-Based Multi-view Model

8.3.1 Overview

In [54, 55] models of an object category are obtained by linking together diagnostic
parts (also called canonical parts) of the objects from different viewing points. As
previous research has demonstrated, a part-based representation [34] is more stable
for capturing appearance variability of object categories across instances and views.
Canonical parts are discriminative and view invariant representations of local planar
regions attached to the object physical surface. Such parts are modeled by distri-
butions of vector quantized features [11]. Instead of expressing part relationships
by recovering the full 3D geometry of the object, [50, 6, 20], canonical parts are
connected through their mutual homographic transformations and positions. The re-
sulting model is a compact summarization of both the appearance and geometrical
information of the object categories across views (rather than being just a collection
of single view models). Effectively, the linkage structure can be interpreted as the
generalization to the multi-view case of single 2D constellation or pictorial structure
models [68, 19, 18]) where parts or features are connected by a mere 2D transla-
tional relationship. [54, 55]’s framework requires less supervision than competing
techniques ( [63, 33, 27, 70, 37, 69]) (where often pose labels are required). Simi-
larly to other constellation methods, [54, 55]’s model enables a recognition system
that is robust to occlusions and background clutter. Finally, and most importantly,
by introducing the view morphing constraints, [55] has demonstrated the ability to
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pi

(a) (b) (c)

Fig. 8.4 Canonical parts and linkage structure. (a): A car within the viewing sphere. As
the observer moves on the viewing sphere the same part produces different appearances.
The location on the viewing sphere where the part is viewed the most frontally gives rise
to a canonical part. The appearance of such canonical part is highlighted in green. (b): Col-
ored markers indicate locations of other canonical parts. (c): Canonical parts are connected
together in a linkage structure (see also Figure 8.3). The linkage indicates the relative posi-
tion and change of pose of a canonical part given the other (if they are both visible at the
same time). This change of location and pose is represented by a translation vector and a
homographic transformation respectively. The homographic transformation between canon-
ical parts is illustrated by showing that some canonical parts are slanted with respected to
others. A collection of canonical parts that share the same view defines a canonical view (for
instance, see the canonical parts enclosed in the dashed rectangle.

predict appearance and location of parts that are not necessarily canonical. This is
useful for recognizing objects observed from arbitrary viewing conditions (that is,
from views that are not seen in learning) and critical for improving the false alarm
rate (a consequence of single view object representations). [54,55]’s framework for
recognizing poses of generic object categories is among the earliest attempts of this
kind (along with [48, 72, 67]).

8.3.2 Canonical Parts and Linkage Structure

In this Section we describe in details the concept of canonical parts and linkage
structures. The central ideas are summarized in Figure 8.3 and Figure 8.4. They
offer a schematic view of the core components of the model through a hypothetical
3D object category.

The appearance information is captured in the diagnostic parts of the objects in
one class, denoted as Pi. Each “part” is a region of an object that tends to appear
consistently throughout different instances of the same category (shown in colored
patches in Figure 8.3(a)). It is a collection of a number of smaller image patches
usually provided by the feature detectors, constraint by some geometric consistency.
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Readers familiar with the current object recognition literature are reminded that our
“part” is not a single detected region such as Harris corner or DoG detection, but
rather a larger structure that contains many detected local regions. Given Pi, our
model also encodes the appearance variations observed in training in the form of
distributions of descriptors. In our model, we call such diagnostic parts canonical
parts as they are representative of parts viewed in their most frontal position. For
example, the canonical part representation of the car rear bumper is the one that is
viewed the most frontally (Figure8.3(b) and 8.4(a)).

Given an assortment of canonical parts (e.g., the colored patches in Figure
8.4(b)), a linkage structure connects each pair of canonical parts {Pj,Pi} if they
can be both visible at the same time (Figure 8.3(b) and 8.4(c)). The linkage cap-
tures the relative position (represented by the 2× 1 vector ti j) and change of pose
of a canonical part given the other (represented by a 2×2 homographic transforma-
tion Ai j). If the two canonical parts share the same pose, then the linkage is simply
the translation vector ti j (since Ai j = I). For example, given that part Pi (left rear
light) is canonical, the pose (and appearance) of all connected canonical parts must
change according to the transformation imposed byAi j for j = 1 · · ·N, j �= i, where
N is the total number of parts connected to Pi. This transformation is depicted in
Figure 8.4(c) by showing a slanted version of each canonical part.

We define a canonical view V as the collection of canonical parts that share the
same view V (Figure 8.4(c)). Thus, each pair of canonical parts {Pi,Pj} within V
is connected by Ai j = I and a translation vector ti j. We can interpret a canonical
view V as a subset of the overall linkage structure of the object category. Notice
that by construction a canonical view may coincide with one of the object category
poses used in learning. However, not all the poses used in learning will be associ-
ated to a canonical view V . The reason is that a canonical view is a collection of
canonical parts and each canonical part summarizes the appearance variability of an
object category part under different poses. The relationship of parts within the same
canonical view is what previous literature have extensively used for representing
2D object categories from single 2D views (e.g., the constellation models [68, 19]).
The linkage structure can be interpreted as its generalization to the multi-view case.
Similarly to other methods based on constellations of features or parts, the linkage
structure of canonical parts is robust to occlusions and background clutter.

8.4 Building the Model

We detail here the algorithm for building a 3D object class model from a set of train-
ing images. We assume that each training image contains one instance of the target
object class. We do not, however, have information about the instance membership
or pose of the object. The task of learning is to start with this set of raw images,
extract features to form parts, obtain a set of canonical parts and finally form the
object class model by connecting these canonical parts across views.
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Fig. 8.5 Detected features using the scaled invariant saliency detector [29]. All interest points
are indicated by blue dots. The boxed regions in each image denote the learnt parts for this
pair. When two parts across images share the same color (i.e., red boxes), they are connected
by the algorithm. This figure should be viewed in color.

8.4.1 Extract Features

Local image patches are the basic building blocks of an object image. The algo-
rithm, however, works independently of any particular choice of feature detectors or
descriptors [44,38]). In practice, we choose the Saliency detector [29] and the SIFT
descriptor [38] to characterize local features. An image i therefore contains hundreds
of detected patches, each represented as fi = (ai,xi), where ai is the appearance of
the patch, described by a 128-dimension SIFT vector, and xi is the location of the
feature on the 2D image. Figure 8.5 shows two examples of cellphone images and
their detected patches.

8.4.2 Form Parts

The 3D object category model is represented in a hierarchical way. Local image
features are first grouped into larger regions (called “parts”). A selected subset of
these parts (according to appearance and geometric consistency) are then linked
together as a full 3D model. This choice stems from the observation that larger
regions of objects often carry more discriminative information in appearance and
are more stable in their geometric relationships with other parts of the object [34].

The goal of this step is to group local image features into “parts” that are consis-
tent in appearance and geometry across images. A global geometrical constraint is
obtained by imposing that feature match candidates (belonging to different views)
are related by the fundamental matrix F . A local geometrical constraint is enforced
by imposing that features belonging to a neighborhood are related by homographic
transformationH induced by F [25]. We use a scheme based on RANSAC [21] to
enforce such constraints while the optimal F andH are estimated. Below is a brief
sketch of the algorithm.

1. Obtain a set of M candidate features based on appearance similarity measured by
d(ai−aj) across 2 training images.

2. Run RANSAC algorithm on M to obtain a new (and smaller) set of matches
MF ∈M based on xiFxj = 0, where F denotes the fundamental matrix.
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3. Further refine the matches using RANSAC to obtain a set of MH matches such
that xi−Hx j = 0, where MH ∈MF ∈M.

Step 2 and Step 3 can be iterated until the residual error computed on the inliers
stops decreasing. Step 3 returns a pair of local neighborhood regions across the 2

training images in which all features fi ∈M(i, j)
H satisfy a vicinity constraint. We call

them a matched “part”. We follow this procedure for every pair of training images.
Figure 8.5 shows example parts indicated by boxes on these two cellphone images.
Note that there is no presumed shape or size of these parts.

Implementation Details. On average parts contain 50− 200 features, sufficient to
effectively represent the local structure of the object from a particular view. We
obtain on average 700−1000 matched parts within a training set of 48 images. We
use a mask to remove spurious matches coming from the background. This is not
a requirement for the algorithm to work. [6] shows that spurious matches can be
effectively removed by enforcing global constraints across all the views. Finally,
even if matched parts can be obtained from pairs of images belonging to different
instances of a given category, we have noticed that the algorithm in 8.4.2 mostly
produces matched parts from images belonging to the same object instance. This is
due to the inherent lack of flexibility of RANSAC to handle intra-class variability.
In fact, this is an advantage because it guarantees robustness and stability in the part
matching process. Actual matching of corresponding parts belonging to different
object instances is achieved in the optimization process detailed in 8.4.4.

8.4.2.1 Representing Canonical Parts

Each canonical part is represented by a distribution of feature descriptors along with
their x,y location within the part. Specifically, we describe a canonical part P by a
convex quadrangle B (e.g., the bounding box) enclosing the set of features. The
appearance of this part is then characterized by a bag of codewords model [11] -
that is, a normalized histogram h of vector quantized descriptors contained in B. A
standard K-means algorithm can be used for extracting the codewords. B is a 2×4
vector encoding the b = [x,y]T coordinates of the four corners of the quadrangle,
i.e., B =

[
b1 . . . b4

]
; h is a M× 1 vector, where M is the size of the vocabulary

of the vector quantized descriptors. Given a linked pair of canonical parts {Pi,Pj}
and their corresponding {Bi,B j}, relative position of the parts {Pi,Pj} is defined by
ti j = ci−c j, where the centroid ci = 1

4 ∑k bk; the relative change of pose is defined by
Ai j which encodes the homographic transformation acting on the coordinates of Bi.
This simplification is crucial for allowing more flexibility in handling the synthesis
of novel non- canonical views at the categorical level.

8.4.3 Find Canonical Parts Candidates

Our goal is to represent the final object category with “canonical parts” and their
mutual geometric relations. To do so, we need to first propose a set of canonical part
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Fig. 8.6 Illustration of linked parts for proposing one canonical part of the cellphone model
using directed graph. The boxes indicate parts associated with this canonical part. The blue
dots indicate detected local features within the parts. The yellow box is the proposed canoni-
cal part by summarizing all factors of compression (indicated by the numerical value adjacent
to each arrow) given all the connected paths.

candidates based on a view-point criteria. What we have from the training images
is a large set of “parts” that are paired across different images, each part consisting
of a number of local features. Many of these parts linked across different images
correspond to one actual part of the object (e.g., LCD screen of a cellphone). Fig-
ure 8.6 is a illustration of the connected parts estimated from Step 8.4.2. The most
possible front view of an actual object part defines a canonical part candidate. This
will be by definition the canonical pose attached to the canonical part candidate. A
canonical part candidate can be computed from the set of linked parts as follows.

Between every connected pair of parts, we associate them with a factor of com-
pression cost Ki j . Ki j is a function of Ai j in the homographic relationship Hi j be-
tween these two parts.Hi j is provided by the algorithm in section 8.4.2. Specifically,

Ki j =
(
λ i j

1 λ
i j
2 −1

)
, where λ i j

1,2 are the two singular values ofAi j.Ki j is greater than

0 when Pi is a less compressed version than Pj under affine transformation. Using
the sign of Ki j, we assign the direction between two parts. The full set of parts and
their directed connections weighted by Ki j form a weighted directed graph (Fig-
ure 8.6). It is easy to show that the path associated to highest value of the total factor
of compression cost

(
∑(i, j)∈pathKi j

)
gives rise to a canonical part candidate for it

can be identified as the part P attached to the terminal node of such maximum cost
path. The intuition here is that the maximum cost path is the one that leads to the
part with smallest compression, thus the canonical one. The maximum cost path can
be found with a simple greedy algorithm.

Implementation Details. The graph structure is on average composed of 10− 15
parts but can go as low as 2, if a part is shared by only two views. For that reason,
the greedy algorithm finds the optimal solution very quickly. Special care, however,
needs to be taken if the graph contains loops. This may occur when the orientation of
a part is estimated with low accuracy from the previous step. Typically the number
of canonical part candidates is one third of the initial set of part candidates.
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Fig. 8.7 Illustration of the canonical parts and their geometric relations for three views of
the same object. The yellow box indicates the canonical part of interest that is viewed given
its canonical pose (i.e., most frontal view by definition). The examples of canonical regions
extracted from these three views are shown in the box on the right. The dashed cyan boxes
indicate parts that do not share the same pose with the yellow canonical part. The cyan parts
have a canonical counter part in a different pose. In this example we use the symbol ”c” to
differentiate a canonical part from its ”non-canonical” counterpart. For instance, there exists
a linkage structure between canonical parts Pc

1 and Pc
2 . The H12 denotes the transformation

to observe Pc
2 when Pc

1 is viewed in its canonical position (thus, generating cyan P2). In the
right most pose, two canonical parts Pc

3 and Pc
4 share the same canonical pose. In this case,

the transformation H34 is just a translation because Pc
3 and Pc

4 are canonical at the same time.

8.4.4 Create the Model

Section 8.4.3 has proposed a number of canonical part candidates from the train-
ing images. So far, we have only utilized local appearance or pair-wise geometry
information to find correspondences between parts and find the canonical part can-
didates. Now we are ready to take all these candidates to obtain a canonical part at
the categorical level. This allows propose a 3D object category model by finding a
globally consistent and optimal combination of canonical parts.

We use the same notation (Pi) to indicate a canonical part of a given category. The
context can help differentiate the categorical case from the single instance case. As
anticipated in Section 8.3.2, given two different canonical part Pi and Pj, there are
two ways that they are placed with respect to each other onto the 3D object model.
In the first case, when Pi is viewed frontally, Pj is also viewed frontally (Figure 8.7,
right panel). In this case the homographic linkage between these two canonical parts

isHi j =
[

I ti j

0 1

]
, where I is the identity matrix. In the second case, Pi and Pj are not

viewed frontally simultaneously. They are, therefore, related by a full homographic

Hi j =
[Ai j ti j

0 1

]
.Hi j denotes the transformation to observe Pj when Pi is viewed in

its most front view position. Parts P1 when P2 in Figure 8.7 have this type of linkage.
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Ai j captures both the 2D relationship (e.g., position) between canonical parts as well
as a soft 3D relationship which provided by the affinity transformationAi j between
parts. Canonical parts that are not connected correspond to sides of the object that
can never be seen at the same time. As introduced in Section 8.3.2, we define a
canonical view V as the collection of canonical parts that share the same view V
(Figure 8.4(c)). Thus, each pair of canonical parts {Pi,Pj} within V is connected by
Ai j = I and a translation vector ti j.

Given the pool of candidate canonical parts from all the instances of a given cat-
egory, we wish to calculate the set of canonical parts at the categorical level. This
can be done by matching corresponding candidate canonical parts across all the in-
stances. This correspondence problem can be solved by means of an optimization
process that jointly minimizes the appearance difference between matching candi-
dates and their corresponding linkage structureAi j.

The 1st row of Figure 8.14 (2nd and 3rd columns) shows an illustration of the
learnt cellphone model. The model obtained thus far provides a compact represen-
tation of object parts from all the views.

Implementation Details. The optimization is carried out by exploiting similarity of
appearance and the estimated linkage structure between canonical part candidates
belonging to different object instances. The appearance similarity is computed as
a chi-square distance between the histograms representing the canonical region ap-
pearances. Similarity of linkage structure is computed by comparing Ai j for every
pairs of canonical parts candidates Pi,Pj. Notice that this optimization step greatly
benefits from the fact that parts-to-be-matched are canonical. This means that all
the parts are already normalized in term of their viewing angle and scale. Further-
more, the number of canonical part candidates is a small subset the initial number of
parts. All this greatly simplifies the matching process which could have been hardly
feasible otherwise.

8.5 View Synthesis

8.5.1 Representing an Unseen View

The critical question is: how can we represent (synthesize) a novel non-canonical
view from the set of canonical views contained in the linkage structure? As we will
show in Section 8.6, this ability becomes crucial if we want to recognize an object
category seen under an arbitrary pose. The approach is inspired by previous research
on view morphing and image synthesis from multiple views. We show that it is
possible to use a similar machinery for synthesizing appearance, pose and position
of canonical parts from two or more canonical views. Notice that the output of this
representation (synthesis) is a novel view of the object category, not just a novel
view of a single object instance, whereas all previous morphing techniques are used
for synthesizing novel views of single objects.
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Fig. 8.8 View Synthesis. Left: If the views are in a neighborhood on the viewing sphere,
the cameras can be approximated as being parallel, enabling a linear interpolation scheme.
Middle: 2-view synthesis: A pair of linked parts {Ps

i ,Ps
j} ∈ V s is synthesized from the pair

Pn
i ∈V n, and Pm

j ∈V m if and only if Pn
i and Pm

j are linked by the homographic transformation
Ai j �= I. Right: 3-view synthesis can take place anywhere within the triangular area defined
by the 3 views.

8.5.1.1 View Morphing

Given two views of a 3D object it is possible to synthesize a novel view by us-
ing view-interpolating techniques without reconstructing the 3D object shape. It has
been shown that a simple linear image interpolation (or appearance-morphing) be-
tween views do not convey correct 3D rigid shape transformation, unless the views
are parallel (that is, the camera moves parallel to the image planes) [8]. Moreover,
Seitz & Dyer [57] have shown that if the camera projection matrices are known,
then a geometrical-morphing technique can be used to synthesize a new view even
without having parallel views. However, estimating the camera projection matrices
for the object category may be very difficult in practice. We notice that under the
assumption of having the views in a neighborhood on the viewing sphere, the cam-
eras can be approximated as being parallel, enabling a simple linear interpolation
scheme (Figure8.8). Next we show that by combining appearance and geometrical
morphing it is possible to synthesize a novel view (meant as a collection of parts
along with their linkage) from two or more canonical views.

8.5.1.2 Two-View Synthesis

We start by the simpler case of synthesizing from two canonical views V n and V m.
A synthesized view V s can be expressed as a collection of linked parts morphed
from the corresponding canonical parts belonging to V n and V m. Specifically, a pair
of linked parts {Ps

i ,P
s
j} ∈ V s can be synthesized from the pair {Pn

i ∈V n,Pm
j ∈V m}

if and only if Pn
i and Pm

j are linked by the homographic transformation Ai j �= I
(Figure8.8). If we represent {Ps

i ,P
s
j} by the quadrangles {Bs

i ,B
s
j} and the histograms

{hs
i ,h

s
j} respectively, a new view is expressed by:

Bs
i = (1− s)Bn

i + sAi jB
n
i ; Bs

j = sBm
j +(1− s)A jiBm

j ; (8.1)

hs
i = (1− s)hn

i + shm
i ; hs

j = shn
j +(1− s)hm

j ; (8.2)



8 Multi-view Object Categorization and Pose Estimation 219

The relative position between {Ps
i ,P

s
j} is represented as the difference ts

i j of the
centroids of Bs

i and Bs
j. ts

i j may be synthesized as follows:

ts
i j = (1− s)tn

i j + stm
i j (8.3)

In summary, Equation 8.1 and 8.3 regulate the synthesis of the linkage structure
between the pair {Ps

i ,P
s
j}; whereas Equation 8.2 regulate the synthesis of their ap-

pearance components. By synthesizing parts for all possible values of i and j we
can obtain a set of linked parts which give rise to a new view V s between the two
canonical views V n and V m. Since all canonical parts in V n and V m (and their link-
age structures) are represented at the categorical level, this property is inherited to
the new parts {Ps

i ,P
s
j}, thus to V s.

8.5.1.3 Three-View Synthesis

One limitation of the interpolation scheme described in Section 8.5.1.2 is that a new
view can be synthesized only if it belongs to the linear camera trajectory from one
view to the other. By using a bi-linear interpolation we can extend this to a novel
view from 3 canonical views. The synthesis can take place anywhere within the tri-
angular area defined by the 3 views (Figure8.8) and is regulated by two interpolating
parameters s and t. Similarly to the 2-view case, 3-view synthesis can be carried out
if and only if there exist 3 canonical parts Pn

i ∈V n, Pm
j ∈V m, and Pq

k ∈V q which are
pairwise linked by the homographic transformationsAi j �= I, Aik �= I and A jk �= I.
The relevant quantities can be synthesized as follows:

Bst
i = [ (s−1)I sI ]

(
Bn

i AikBn
i

Ai jBn
i AikAi jBn

i

)[
(1− t)I

t I

]
(8.4)

hst
i = [ (s−1)I sI ]

(
hn

i hq
i

hm
i hp

i

)[
(1− t)I

t I

]
(8.5)

tst
i j = [ (s−1)I sI ]

(
tn
i j tq

ik
tm
i j tm

i j + tq
ik− tn

i j

)[
(1− t)I

t I

]
(8.6)

Analogous equations can be written for the remaining indexes.

8.6 Recognizing Object Class in Unseen Views

Section 8.5.1 has outlined all the critical ingredients of the model for representing
and synthesizing new views. We discuss here an algorithm for recognizing pose
and categorical membership of a query object seen under arbitrary view point. We
consider a two-step recognition procedure. Similarly to the training procedure, we
first extract image features and use these to propose candidate canonical parts. This
provides the input for the first step of the algorithm whose output is a short list of
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Algorithm step 1

1. I ← list of parts extracted from test image
2. for each model C
3. for each canonical view V ∈C
4. [R(n),V ∗(n)]←MatchView(V,C, I); % return similarity R
5. n ++;
6. L← KMinIndex(R) % return shortlist L

MatchView(V,C, I)
1. for each canonical part P ∈V
2. M(p)←MatchKPart (P, I)); % return K best matches
3. p ++;
4. for each canonical part P̄ ∈C linked to V
5. M̄(q)←MatchKPart (P̄, I); % return K best matches
6. q ++;
7. [M∗,M̄∗]← Optimize(V,M,M̄);
8. V ∗ ← GenerateTestView(M∗,M̄∗, I);
9. R← Distance(V,V ∗);
10. Return R, V ∗;

Fig. 8.9 Pseudocode of the step 1 algorithm. MatchView(V,C, I) returns the similarity score
between V and I. KminIndex() returns pointers to the the K smallest values of the input
list. MatchKPart (P, I) returns the best K candidate matches between P and I. A match is
computed by taking into account the appearance similarity Sa between two parts. Sa is com-
puted as the distance between the histograms of vector quantized features contained in the
corresponding part’s quadrangles B. Optimize(V,M,M̄) optimizes over all the matches and
returns the best set of matches M∗,M̄∗ from the candidate matches in M,M̄. The selection
is carried out by jointly minimizing the overall appearance similarity Sa (computed over
the candidate matches) and the geometrical similarity Sg (computed over pairs of candidate
matches). Sg is computed by measuring the distance between the relative positions ti j , t̄i j.
GenerateTestView(M∗,M̄∗, I) returns a linkage structure of parts (B, appearances h and rel-
ative positions t) given M∗,M̄∗. This gives rise to the estimated matched view V ∗ in the test
image. Distance(Vi,Vj) returns an estimate of the overall combined appearance and geomet-
rical similarity Sa +Sg between the linkage structures associated to Vi,Vj . Sa is computed as
in MatchKPart over all the parts. Sg is computed as the geometric distortion between the two
corresponding linkage structures.

the K best model views across all views and all categories. The second step refines
the error scores of the short list by using the view-synthesis scheme.

8.6.1 Extract Features and Get Part Candidates

We follow the same procedure as in learning to find local interest points by us-
ing the Saliency detector [29]. Each detected patch is then characterized by a 128-
dimension SIFT vector [38]. Given an object model, say the “cellphone” model,
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Algorithm step 2

1. for each canonical view V ∈ L
2. V ∗ ← L(l)
3. V ′ ← FindClosestView(V,C);
4. V ′′ ← FindSecondClosestView(V,C);
5. for each 2-view synthesis parameter s
6. V s ← 2-ViewSynthesis(V,V ′,s);
7. R(s)← Distance(V s,V ∗);
8. for each 3-view synthesis parameters s and t
9. V s,t ← 3-ViewSynthesis(V,V ′,V ′′,s,t);
10. R(s,t)← Distance(V s,t ,V ∗);
11. L(l)←Min(R);
12. l ++;
13. [CwVw]←MinIndex(L);

Fig. 8.10 Pseudocode of the step 2 algorithm. FindClosestView(V,C)
(FindSecondClosestView(V,C)) returns the closest (second closest) canonical pose on
the viewing sphere. 2-ViewSynthesis(V,V ′,s) returns a synthesized view between the two
views V,V ′ based on the interpolating parameters s. 3-ViewSynthesis(V,V ′,s,t) is the
equivalent function for three view synthesis. Cw and Vw are the winning categories and poses
respectively.

we first find a list of canonical part candidates by the following procedure. For each
canonical part of the model, we greedily search through the test image by a scanning
window across pixel locations, scales and orientations. Canonical parts and test parts
are matched by comparing the distributions of features belonging to the relevant re-
gions. The most probably N firings (typically 5) are retained as the N candidates for
a canonical part Pi. This provides hypotheses of canonical parts consistent with a
certain canonical view of an object model.

8.6.2 Recognition Procedure: First Step

In the first step (Figure 8.9), we want to match the query image with the best ob-
ject class model and pose. Given hypotheses of canonical parts consistent with a
certain canonical view of an object model, we infer the appearance, pose and posi-
tion of other parts that are not seen in their canonical view (MatchView function).
This information is encoded in the object class linkage structure. An optimization
process finds the best combination of hypothesis over appearance and geometrical
similarity (Optimize). The optimization process is very similar to the one introduced
in learning when different constellations of canonical parts are matched. The output
is a similarity score as well as a set of matched parts and their linkage structure
(the estimated matched view V ∗) in the test image. The operation is repeated for all
possible canonical views and for all object class models. Finally, we create a short
list of the N best canonical views across all the model categories ranked according
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to their similarity (error) scores. Each canonical view is associated to its own class
model label. The complexity of step-1 is O(N2NvNc), where N is the total number
of canonical parts (typically, 200− 500); Nv = number of views per model; Nc =
number of models.

8.6.3 Recognition Procedure: Second Step

In the second step (Figure 8.10), we use the view synthesis scheme (Section 8.5.1)
to select the final winning category and pose from the short list. The idea is to
consider a canonical view from the short list, pick up the nearest (or two nearest)
canonical pose(s) on the corresponding model viewing sphere (FindClosestView and
FindSecondClosestView), and synthesize the intermediate views according to the 2-
view-synthesis (or 3-view-synthesis) procedure for a number of values of s (s, t)
(2-ViewSynthesis and 3-ViewSynthesis). For each synthesized view, the similarity
score is recomputed and the minimum value is retained. We repeat this procedure
for each canonical view in the short list. The canonical view associated with the
lowest score gives the winning pose and class label. The complexity of step-2 is just
O(NlNs), where Nl is the size of the short list and Ns is the number of interpolating
steps (typically, 5−20).

8.7 Experiments and Results

In this section we show that the multi-view model introduced so far is able to
successfully detect object categories and estimate objects pose. Furthermore, we
demonstrate that the view synthesis machinery does improve detection and pose es-
timation accuracy when compared to the model that does not take advantage of the
synthesis abilities. We collect our results in three set of experiments as described
below.

8.7.1 Experiment I: Comparison with Thomas et al. [63]

We first conduct experiments on two known 3D object class datasets: the motorbikes
and sport shoes used by Thomas et al. [63], provided by PASCAL Visual Object
Classes (VOC) Challenge [15]. For fair comparison, we use the same testing images
in both these classes as in [63]. Specifically, 179 images from the ‘motorbikes-test2’
set and 101 images from the sport shoes testing set are used. The models are learnt
by using the provided image set of 16 motorbike instances and 16 shoe instances
(each instance has 12-16 poses). We evaluate the categorization and localization
performance by using precision-recall curves, under exactly the same conditions as
stated by [63]. Figure 8.11 illustrates our results. In both the motorbike and shoe
classes, the proposed algorithm significantly outperforms [63].
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Fig. 8.11 Localization experiment compared with [63]. The precision-recall curves are gen-
erated under the PASCAL VOC protocol. Example detections are shown for both the motor-
bike and shoe datasets.
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Fig. 8.12 Left: Performances of the model with (red) and without (blue) view synthesis as a
function of the number of views used in training. Note that the performances shown here are
testing performances, obtained by an average over all 24 testing poses. Middle: Confusion
table results obtained by the model without view synthesis for 8 object classes on a sample
of 8 unseen views only (dataset [54]). Right: Confusion table results obtained by the model
with view synthesis under the same conditions.

8.7.2 Experiment II: Detection and Pose Estimation Results on
the Dataset in [54]

Next, we compare the performances of multi-view model algorithm with and with-
out view-synthesis capabilities. The comparison is performed on the dataset pre-
sented in [54]. This dataset comprises images of 8 different object categories (car,
stapler, iron, shoe, monitor, computer mouse, head, bicycle, toaster and cellphone),
each containing 10 different instances. Each of these are photographed under a range
of poses, described by a pair of azimuth and zenith angles (i.e., the angular coordi-
nates of the observer on the viewing sphere, Figure 8.2) and distance (or scale). The
total number of angular poses in this dataset is 24: 8 azimuth angles and 3 zenith
angles. Each pose coordinate is kept identical across instances and categories. Thus,
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Fig. 8.13 Left: Confusion table results obtained by the model without view synthesis for
8 object classes (dataset [55]). Middle: Confusion table results obtained by the model with
view synthesis under the same conditions. Right: Performance improvement achieved by the
model with view synthesis for each category.

the number and type of poses in the test set are the same as in the training set. To
learn each category, we randomly select 7 object instances to build the model, and 3
novel object instances. The farthermost scale is not considered in the current results.
Figure 8.14 is a summary of learnt models for 8 object categories. The 3rd column
of Figure 8.14 visualizes the learnt model of each object category. We show in this
panel a single object instance from the training images. Each dashed box indicate a
particular view of the object instance. A subset of the learnt canonical parts is pre-
sented for each view. Across from different views, the canonical parts relationships
are denoted by the arrows. Note that for clarity, we only visualize a small num-
ber of canonical parts as well as their H. To illustrate the appearance variability,
we show in the 4th column different examples of a given canonical part. For each
object model, 3 or 4 canonical parts are shown, indicated by the boxes. For each
canonical part (i.e., within each box), we show a number of examples that belong
to the same part. Note that these parts not only share a similar appearance, but also
similar locations with respect to the object. The 1st column of Figure 8.14 presents
two correctly identified sample testing images. The red bounding box on each im-
age indicates the best combination of canonical parts (i.e., that of the smallest error
function), whereas the thin green boxes inside the red box correspond to the canon-
ical parts of detected on the object. Using the pose estimation scheme, we are able
to predict which pose this particular instance of the model comes from. Finally we
present the binary detection result in ROC curves in the 2nd column.

To assess the ability of the view-synthesis algorithm to improve detection and
pose estimation in presence of views that have not been seen in training, we tested
the algorithm using a reduced set of poses in training. The reduced set is obtained by
randomly removing poses from the original training set. This was done by making
sure that no more than one view is removed from any quadruplet of adjacent poses
in the viewing sphere1. The number of poses used in testing is kept constant (to be
more specific, all 24 views are used in this case). This means some of the views in

1 We have found experimentally that this condition is required to guarantee there are suffi-
cient views for successfully constructing the linkage structure for each class.
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Fig. 8.14 Summary of the learnt 3D object category models, sample test images and binary
detection results (ROC). Details of the figure is explained in Section8.7.2.
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Fig. 8.15 Estimated pose for each object that was correctly classified by the algorithm. Each
row shows two test examples (the colored images in column 3 and column 6) from the same
object category. For each test image, we report the estimated location of the object (red bound-
ing box) and the estimated view-synthesis parameter s. s gives an estimate of the pose as it
describes the interpolating factor between the two closest model (canonical) views selected
by the recognition algorithm. For visualization purposes we illustrate these model views by
showing the corresponding training images (columns 1-2 and 4-5). Images belong to the
dataset in [55].
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testing have not been presented during training. Figure 8.12 illustrates the perfor-
mances of the two models (with and without view-synthesis) as a function of the
number of views used in training. The plots shows that method which uses the two-
step algorithm systematically outperforms the one that does only uses the first step.
However, notice that the added accuracy becomes negligible as the number of views
in training approaches 24. In other words, when no views are missing in training, the
performance of two methods become similar. For a baseline comparison with a pure
bag-of-world model the reader can refer to [54]. Figure 8.12(middle, right) compare
the confusion table results obtained by the models with and without view-synthesis
for 8 object classes on a sample of 8 unseen views only.

8.7.3 Experiment III: Detection and Pose Estimation Results on
the Dataset in [55]

In this experiment we test the algorithm on a more challenging dataset [55]. While
in [54] view points in testing and training are very similar, the dataset in [55] com-
prises objects portrayed under generic uncontrolled view points. Specifically, in [55]
7 (out of 8) classes of images (cellphone, bike, iron, shoe, stapler, mouse, toaster) are
collected from the Internet (mostly Google and Flickr) by using an automatic image
crawler. The initial images are then filtered to remove outliers by a paid undergrad-
uate with no knowledge of the work so as to obtain a set of 60 images for each
category. The 8th class (i.e., car) is from the LabelMe dataset [53]. A sample of the
dataset is available at [55]. As in the previous experiment, we compare the perfor-
mances of the algorithm with or without view-synthesis. Results by both models are
reported in Figure 8.13. Again, the method that uses the two-step algorithm achieves
better overall results. Figure 8.13 (right panel) shows the performance comparison
broken down by each category. Notice that for some categories such as cellphone or
bikes, the increment is less significant. All the experiments presented in this section
use the 2-view synthesis scheme. The 3-view scheme, along with the introduction
of a more sophisticated probabilistic model, has been recently employed in [61,60].
Figure 8.15 illustrates a range of pose estimation results on the new dataset. See
Figure 8.15 caption for details.

8.8 Conclusion

Recognizing objects in 3D space is an important problem in computer vision. Many
works recently have been devoted to this problem. But beyond the possibility of
semantic labeling of objects seen under specific views, it is often crucial to recog-
nize the pose of the objects in the 3D space, along with their categorical identity.
In this Chapter we have introduced a new recognition paradigm for tackling these
challenging problems which consists of linking together diagnostic parts or features
of the object from different viewing points. We focused on recent work by [54, 55]
and presented the details of the multi-view part-based model in [54, 55], relevant
learning and recognition algorithms, as well as practical implementation details. We
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have shown that such as a model can be learnt via minimal supervision and used to
detect objects under arbitrary and/or unseen poses by means of a two-step algorithm.
Experimental validation aimed at demonstrating the ability of the algorithm to rec-
ognize objects and estimate their pose have produced promising results. A number
of open issues remain. The presented algorithms still require large number of views
in training in order to generalize. More analysis needs to be done to make this as
minimal as possible. Further research is also needed to explore to what degree the
inherent nuisances in category-level recognition (lighting variability, occlusions and
background clutter) affect the view synthesis formulation. Finally, new solutions are
required for incorporating the ability to model non-rigid objects.
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Chapter 9
A Vision-Based Remote Control

Björn Stenger, Thomas Woodley, and Roberto Cipolla

Abstract. This Chapter presents a vision-based system for touch-free interaction
with a display at a distance. A single camera is fixed on top of the screen and is
pointing towards the user. An attention mechanism allows the user to start the in-
teraction and control a screen pointer by moving their hand in a fist pose directed
at the camera. On-screen items can be chosen by a selection mechanism. Current
sample applications include browsing video collections as well as viewing a gallery
of 3D objects, which the user can rotate with their hand motion. We have included
an up-to-date review of hand tracking methods, and comment on the merits and
shortcomings of previous approaches. The proposed tracker uses multiple cues, ap-
pearance, color, and motion, for robustness. As the space of possible observation
models is generally too large for exhaustive online search, we select models that
are suitable for the particular tracking task at hand. During a training stage, various
off-the-shelf trackers are evaluated. From this data different methods of fusing them
online are investigated, including parallel and cascaded tracker evaluation. For the
case of fist tracking, combining a small number of observers in a cascade results in
an efficient algorithm that is used in our gesture interface. The system has been on
public display at conferences where over a hundred users have engaged with it.

9.1 Introduction

This Chapter presents a vision-based gesture interface using a single camera on top
of a display, allowing touch-free input at a distance. Figure 9.1 shows photos from
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Fig. 9.1 Showcase of the proposed gesture interface. Left: a single camera on top of the
display is directed towards the user, who is able to control a screen cursor with his fist. Videos
can be selected by hovering over a button. Right: The playback of a video can be stopped with
an open hand gesture.

Fig. 9.2 Appearance variation of hand regions. Shown are cropped hand regions from test
sequences. Motion blur, changing pose and other skin colored objects make tracking chal-
lenging.

a showcase presented during the Internationale Funk Ausstellung IFA 2008 exhibi-
tion in Berlin. Such a gesture system may have several uses in practice: to remotely
control a TV or other appliances, or browsing public information terminals in mu-
seums or shop windows. There are many factors that make hand tracking from a
single view difficult in practice. Hands can exhibit a wide range of appearances, for
example due to changes in pose and in scene lighting. Furthermore, the variability of
shapes, poses, and color between different people is high. At a standard frame rates
of 30 frames per second there may also be significant motion blur. Figure 9.2 illus-
trates this variability, showing examples of cropped hand regions, taken from image
sequences of four different people. The system should also use minimal computa-
tional resources because any lag in interactive applications is very noticeable.

In addition to fast and robust tracking, a method for automatic initialization is
required to find the hand at the beginning of the interaction and after tracking fail-
ure. Loss of track occurs regularly, for example every time the hand is outside the
camera’s view. The proposed system thus integrates an off-line trained detector
to initialize and also to update the tracker in order to avoid drift. Building a gen-
eral, robust hand detector is still a challenging problem, and we restrict ourselves
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to detecting a particular pose, in this case a fist pose. When viewed from the front,
the visual appearance of a fist is characteristic and a robust detector has been
trained for it.

In the following Section we provide an overview of prior work on hand track-
ing and object tracking in general. Section 9.3 explains the design of the tracking
algorithm and presents experimental results on test data. The full system and its
components are described in Section 9.4.

9.2 Prior Work

A large number of vision-based gesture interfaces have been proposed in the scien-
tific literature and some systems have already been commercialized. This Section
provides an overview of hand tracking methods in image sequences. It also summa-
rizes developments in the area of general object tracking as some of these methods
are used in Section 9.3.

9.2.1 Hand Tracking for Human Computer Interfaces

Reviews on hand tracking have been published by Pavlović et al. [62], Wu and
Huang [86,88]. These papers contain a good taxonomy of early work on hand track-
ing and gesture interfaces. More recently, Erol et al. [24] published a review of full
3D hand tracking. Generally, there are a number of factors to consider when design-
ing or describing a hand tracking system.

1. The number of state parameters. Methods differ by the number of parameters
they estimate. This may range from the case where only the 2D location of a hand
in an image is obtained to the case where the full articulated pose in 3D is esti-
mated. In some cases a dynamic model is used, whose parameters are included
in the estimation process.

2. The estimation method and features used. At the heart of each system is the
algorithm which estimates the state parameters from the observed image data.
Some methods employ an explicit geometric model and use a model-fitting ap-
proach, while others take the approach of learning from training data. Hybrid
approaches exist too, which generate training data from a geometric model.
Methods also differ in the types of features they use, which can be based on
color, shape, or motion of the hand.

3. The set-up and capture system. There exist a wide range of set-ups, differing in
the number and position of cameras, for example. Systems that use two or more
cameras may compute a depth map or a visual hull as the input to the recognition
system. Furthermore, active systems such as structured light or time-of-flight
systems are becoming more common and allow depth estimation that is often
more robust than passive two-view stereo. Other important parameters are the
camera’s resolution, light sensitivity and frame-rate. Clearly the camera position
also makes a difference: whether it is facing top-down towards a desktop, whether
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it is facing towards a user in front of an uncontrolled background, or whether it
is mounted on a mobile robot platform.

These factors should be kept in mind whenever analyzing a gesture interface system,
as the underlying assumptions differ in each case. In the following we introduce
some hand tracking systems that have been prominent in the literature.

One of the first systems for markerless hand tracking was that of Cipolla and
Hollinghurst [15, 16], who used a B-spline active contour as a 2D shape model to
track a pointing hand from two uncalibrated views. In each view an affine trans-
formation of the contour was estimated, and using a ground plane constraint the
indicated target position could be found. The system required a simple background,
but it could operate in real-time. Freeman and Weissman [26] introduced a single-
camera system for television remote control by tracking an open hand. It used an
image subwindow as a template for both detection and tracking. Matching was
performed using local edge orientation in order to be robust to some illumina-
tion changes. In their EigenTracking work, Black and Jepson [10] proposed an
eigenspace representation of a set of hand images. Using a coarse-to-fine match-
ing strategy, both the affine transformation as well as the closest of four gestures
were estimated. Isard and Blake [40] modeled the hand shape with a B-spline. The
tracker combined color blob tracking with contour tracking in a particle filter frame-
work. Later, MacCormick and Isard [52] presented a drawing system based on a
this tracker together with independent sampling of the finger parameters. Tosas [76]
recently presented a similar color-based contour tracker in a number of demo appli-
cations, such as a ‘virtual turntable’. Wu and Huang [87] applied a learning based
method, combining labeled and unlabeled data with the EM algorithm and using
neural network classification to distinguish 14 hand postures in different views. The
classification rate was 92% using features obtained by Principal Component Anal-
ysis of the hand images. Triesch and von der Malsburg [78] built a hand gesture
interface for robot control. Elastic 2D graph matching was employed to match tem-
plates of twelve different hand gestures to an image. Combined Gabor and color
features made the system relatively stable to clutter, achieving a recognition rate of
93% in front of simple background and 86% for cluttered backgrounds. Bretzner et
al. [11] used multi-scale blob detection of color features in order to detect an open
hand pose with possibly some of the fingers extended, corresponding to different
input commands. A simple 2D shape model was used for tracking with a particle
filter. The method required a skin color prior, which was obtained by manually la-
beling 30 frames. The system tracked at 10 fps and was also demonstrated in a TV
remote control application. Lockton and Fitzgibbon [50] built a real-time system
that could recognize 46 different hand poses, including finger spellings in American
Sign Language. Extracting hand silhouettes in each frame using color, their method
was based on efficient template matching. Accurate registration was facilitated by a
wrist band and led to a very high recognition rate. Krahnstoever et al. [47] presented
a multi-modal vision and speech interface to interact with a large display. The hand
tracking component was based on finding location hypotheses in each frame and
matching them over a time-window with the Viterbi algorithm. A spatial prior was
used to associate blobs to hand and face. An interface based on tracking multiple
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skin colored regions was proposed by Argyros and Lourakis in [1]. The skin color
model was obtained by manually labeling skin regions, but the color model was
adapted during tracking. The tracker was used in a stereo-system in order to real-
ize a 3D mouse application [2]. Extensions of cascaded detection using AdaBoost
were proposed in [46, 60]. Whereas Kölsch and Turk [46] showed robust detec-
tion of specific hand poses, Ong and Bowden [60] trained a classifier hierarchy for
multi-pose detection. Kölsch and Turk [45] further presented a multi-cue tracker
that combined color and a number of local features under ‘flocking’ constraints.
The color model was automatically initialized from hand detection. The system by
Robertson et al. [67] used a trained detector followed by optical flow tracking and
was employed in a ‘virtual mouse’ application. Ike et al. [37] presented a real-time
system for gesture control that could detect three different hand poses independently
in each frame. Due to the high computation requirement it was implemented on a
multi-core processor.

To summarize, a large number of hand trackers for gesture recognition have been
proposed in the literature. We have re-implemented some of these for evaluation.

One class of applications, which this Chapter does not discuss in detail are virtual
desktop applications [42,58,70,83]. Originally, in most of these systems the camera
and possibly a projector are mounted above, facing down towards the tabletop and a
user is able to interact with real and projected virtual objects. Similarly, by placing
the camera below a transparent tabletop a multi-touch interface can efficiently be
implemented, such as in Microsoft Surface [53].

In addition to gesture-based control, a further target application of hand track-
ing is automatic sign language recognition. The pioneering recognition system by
Starner et al. [69] modeled a hand by a skin-colored ellipse that was tracked in image
sequences. A hidden Markov model was then used to recognize a 40 word vocabu-
lary based on the shape and motion trajectory, obtaining a recognition rate of 98%.
Much progress has been made recently, see [61] for a general survey, and [12, 20]
for state-of-the-art results.

For some applications, such as motion capture for animation or biomechan-
ical analysis, it is desirable to fully capture the hand motion in 3D. Currently
these methods use either colored gloves, markers on the hand, or data gloves with
built-in sensors. However, there has been progress in markerless 3D hand track-
ing [3, 28, 35, 66, 68, 72]. A common approach to full 3D hand tracking is to use
a geometric hand model. The model is usually created manually, but can also be
obtained by reconstruction methods. Models that have been used for tracking are
based on planar patches [89, 90], deformable polygon meshes [35] or generalized
cylinders [21,66]. The underlying kinematic structure is based on the biomechanics
of the hand. Each finger can be modeled as a kinematic chain with four degrees
of freedom (DOF) attached to the palm, and the thumb may be modeled similarly
with either four or five DOF. Together with rigid body motion of the hand, there are
27 DOF to be estimated. Working in such a high dimensional space is particularly
difficult because feature points that can be tracked reliably are sparse: the texture on
hands is typically weak and self-occlusion occurs frequently. However, the anatom-
ical design places certain constraints on the hand motion. These constraints have
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been exploited in different ways to reduce the search space. One type of constraint
are the joint angle limits, defining the range of motion. Another very significant
constraint is the correlation of joint movement. Angles of the same finger, as well
as of different fingers, are not completely independent. These constraints can be en-
forced in different ways, either by parameter coupling or by working in a space of
reduced dimension, e.g., one found by PCA [35,89]. To summarize, while headway
has been made on the problem of full 3D tracking, the task remains challenging. It
has been shown to work in principle, but is often constrained to slow hand motion
or controlled scenes. The problem is generally ill-posed using a single camera, be-
cause in some poses finger motion can be unobservable due to self-occlusion. The
use of additional hardware, such as multiple cameras [13, 32], colored gloves [82]
or depth-cameras [34], can therefore help significantly.

9.2.2 Commercial Gesture Interface Systems

A number of commercial systems for gesture recognition have already been made
available and more are likely to follow.

Game console makers have shown interest in gesture recognition, while propos-
ing different solutions. While Sony has been working with a passive vision sys-
tem [25, 64], Nintendo is using a wireless controller with accelerometer and optical
sensing technology [56] and Microsoft has shown technology based on active illu-
mination [65]. One of the first widely known vision systems was the EyeToy camera
in 2003 [25] that could be connected to the Play Station 2 game console and its suc-
cessor in 2007, the PlayStation Eye for the PS3 [64]. Here the camera is placed on
top of the screen, facing the user who can interact with menus and games using ges-
tures. In gaming, it is clearly important to avoid any lag that can interfere with game
play. Another key requirement is to handle dark or changing lighting conditions in
living rooms. Until now, the algorithms used for gesture recognition used in EyeToy
games have been fairly basic yet sufficiently robust. Two examples are optical flow
estimation and frame differencing in order to find regions of object motion.

Oblong Industries, co-founded by John Underkoffler, commercialized g-speak,
an interface using gloves and markers [57]. Underkoffler was also a scientific adviser
for the 2002 science fiction movie Minority Report which featured a similar gesture
interface for video navigation.

In order to overcome many of the robustness issues, active systems such as time-
of-flight cameras, have been used for gesture recognition, e.g., [14]. These systems
directly output a depth map, considerably simplifying feature extraction and seg-
mentation. Companies such as GestureTek have commercialized a number of gesture
recognition systems using time-of-flight cameras, for example systems for public
exhibitions [27].

In 2008 the Toshiba Qosmio laptop first shipped with hand gesture control soft-
ware that worked with the built-in webcam [77]. The gesture system works by inte-
grating global hand detection [38,54] with local tracking. Users are able to control a
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screen pointer with their hand and select objects by moving their thumb. The work
presented this Chapter mainly builds on this system.

9.2.3 Visual Tracking of a Single Object

In the following we take a more general view and consider the task of robustly track-
ing a single object in image sequences. This has been studied extensively in the com-
puter vision literature [9,19,33,36,39,75,79,85]. The task can be stated as follows:
Given an initial state of the object in the first frame, estimate the state of the object
in the subsequent frame, then do this sequentially on each frame of the sequence.
The state of the object contains the parameters of the geometric transformation that
we are interested in. This can be, for example, the target’s x-y-position in the image
or the full three-dimensional pose. Some methods also estimate the shape or articu-
lation parameters of a target object. Tracking methods also differ in the image cues
they employ to measure the similarity from frame to frame. These can be raw or
normalized image pixels, edge contours, color histograms, outputs of oriented fil-
ters, or any other features computed from the object region. In order to successfully
track the object in the next frame, the underlying assumption is that the features
are still sufficiently characteristic for the object (generative approaches), or make
it appear different from the background (discriminative approaches). The chance of
finding discriminative features is clearly increased when combining multiple cues.
Numerous papers on multi-cue tracking have demonstrated the concept of differ-
ent cues complementing each other and overcoming the failure cases of individual
cues [6,9,23,31,48,55]. A typical example is a hand being tracked while it moves in
front of the face. The hand may still be tracked based on shape while color features
become less reliable. The most common approach to multi-cue tracking is to eval-
uate several observers in parallel and subsequently combine their output, by either
switching between them [6] or by probabilistically merging them [23, 48, 55, 63]. A
key issue when merging tracking results is how to obtain a good confidence measure
for each cue. This is a tricky question since the performance of one cue may only
be assessed by using a different cue or different representation of the target object.
One answer is the discriminability between foreground object and background re-
gion. This is the basis of recent work on discriminative tracking [5, 17, 29], where
tracking is formulated as a classification task. Collins et al. proposed a method for
online feature selection which selects the most discriminative features from a pool
of color-based features [18]. The ability to discriminate was evaluated as either the
two-class variance ratio or the difference of the top two likelihood peaks. Avidan
introduced ensemble tracking, where multiple (3-5) weak classifiers were combined
via AdaBoost [5]. At each frame a new weak classifier was learned and the ensem-
ble was updated by replacing the least reliable classifiers in each time step. Grabner
and Bischof applied online boosting to feature selection [29]. Features from a larger
pool of 250 weak classifiers were evaluated and and a set of 50 selectors chose those
that were combined into a strong classifier.
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In practice, an issue with online adaptation is the adaptability vs. drift trade-off:
Allowing the tracker to adapt to rapid changes of the object’s appearance bears the
risk of incorrectly adapting to the background. Ideally an object model is available
that includes all possible variations. Such a model could then be used as an ‘anchor’
for the tracker. Obtaining such a model is challenging and different representations
have been used, including the color distribution [6], a representation learned from a
short initial sequence [30] or an off-line trained detector [4, 45, 84]. Detectors have
been included into tracking systems, for example, by running them in tandem [45,
84] or by closely integrating them with the tracker’s estimation procedure [4,49,59].
Indeed, a viable tracking solution is to use a detect-and-connect strategy, shown for
example in [44]. In many cases this approach is not yet sufficiently fast for real-time
tracking and the detectors lack sufficient flexibility, but this is a promising avenue
for future research.

Existing algorithms that integrate multiple cues choose their component ob-
servers in a heuristic manner beforehand [6,9,49]. In the following we are proposing
a method to make this choice in a more principled way.

9.3 Tracking with Multiple Observers

We now address the question of how to design a tracker using multiple observation
models. The observation models are components from different stand-alone tracking
algorithms such as single template matching, optical flow and online classification.
The idea is to learn which of these are suitable components and how they should be
arranged for efficient evaluation. We collect a set of training sequences and ground-
truth label them by hand. On these sequences we evaluate error distributions for
different observers. The ground truth labels allow us to evaluate combinations of
observers on a test set. The term ‘observer’ in this Chapter refers to an observation
model, and can be seen as a component of a tracker, the other component being
the dynamical model. However, in the evaluation we only rely on the observations
within a search window around the previous estimate, thus both terms may be used
interchangeably here. We consider the particular tracking scenario of tracking a fist
using a static camera. However, the method is general and can be applied to other
settings [73].

9.3.1 Observation Models

The goal is to find, for a given tracking scenario, the best observer or combination
of observers. Our approach is to first evaluate each observer individually and from
these values measure the performance of combinations of observers. The observers
we consider are those used previously in tracking algorithms, see Table 9.1. They
can be classified into four types: single template matching, motion consensus of
local features [6, 45, 51], histogram-based region matching [19] and online classi-
fication [17, 29, 49]. Note that the individual observers are not restricted to using a
single cue.
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Table 9.1 Observers in the evaluation. A diverse range of observers are tested in the experi-
ments. They can be grouped into four types: single template matching, local feature matching,
histogram-based region matching, and online classifiers. Between them they use a variety of
cues, including image intensity, color and motion features. Some observers maintain a fixed
representation while others are updated over time.

Method Observation Estimate Confidence value

NCC Normalized cross correlation max correlation correlation score
SAD Sum of absolute differences min distance distance score

BOF Block-based optical flow of 3 × 3 tem-
plates

mean motion mean NCC score

KLT [51] Kanade-Lucas-Tomasi sparse optical
flow using 50 features

centroid of good features fraction of good features

FF [45] Flocks of features: Tracking 50 local
features with high color probability and
‘flocking’ constraints

centroid of good features fraction of good features

RT [6] Randomized templates: NCC track of
eight subwindows, with motion consen-
sus and resampling

centroid of good features fraction of good features

MS [19] Mean shift: Color histogram-based mean
shift tracking with background weight-
ing

min histogram distance histogram distance

C [71] Color probability map, blob detection scale space maximum probability score
M [71] Motion probability map, blob detection scale space maximum probability score
CM [47] Color and motion probability map scale space maximum probability score

OBD [29] Online boosted detector: Classifier
boosted from pool of rectangle features
updated online

max classifier output classifier margin

LDA [49] LDA classifier computed from five rect-
angle features in the previous frame (Ob-
server 1 in [49])

max classifier output classifier margin

BLDA [49] Boosted LDA classifier using 50 LDA
classifiers from a pool of 150, trained
on the previous five frames (Observer 2
in [49])

max classifier output classifier margin

OFS [17] Online feature selection of 3 out of 49
color-based features based on fg/bg vari-
ance ratio

centroid of top features mean variance ratio of se-
lected features

Single Template Matching. The first two observers use normalized cross correla-
tion (NCC), and sum of absolute differences (SAD), respectively. Given the sub-
window of the most recent detection, the matching score in the search window is
computed exhaustively. We also performed initial experiments using correlation of
local orientations, used by Freeman and Weissman [26]. We found that the tracker
works when the hand moves slowly, but edge features tend to be unstable when
motion blur occurs.

Local Feature Matching. The first local feature method is block-based optical flow
(BOF), where the object region is divided into a regular 3× 3 grid of subwindows
which are matched independently in the next frame using NCC. The second method
computes sparse optical flow on salient features, using the Kanade-Lucas-Tomasi
(KLT) tracker with a set of 50 features [8, 45]. The third method is the ‘flocks of
features’ tracker by Kölsch and Turk [46]. It combines motion cues with a learned
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object color distribution. KLT features are used to compute motion which has to
satisfy the following constraints constraints: (1) all features maintain a minimum
distance from each other, and (2) no feature is further from the current median than
a maximum distance. The name of the method comes from the similarity to the
motion pattern of flocks of birds. A further constraint is that the features need to
be located in regions of high object color probability. Features that do not satisfy
all three constraints are pruned and replaced with new ones. Finally, we have re-
implemented the randomized template method of [6]. A set of eight templates that
are randomly located and sized within the object region is tracked using NCC.

Region Matching. The first method in this category is color based mean shift [19],
where the best match is found by minimizing the distance of the color distribution
to the target. We use an RGB histogram representation, where each color channel is
divided into 16 bins. In addition we use the background color weighting scheme that
was proposed as an extension in [19]. The next method is based on pixel-wise color
probabilities as proposed by Jones and Rehg for skin color detection [43]. Color
distributions of the object and the surrounding background region are obtained dur-
ing initialization and the probability for each pixel belonging to the foreground is
computed. We then run a box filter over this probability image that finds blobs,
i.e., regions of high object probability surrounded by regions of low object proba-
bility [71]. This is quite similar to the hand tracker by Bretzner et al. [11] where
scale-space extrema in color feature space are found. The third method uses the
motion cue in a similar way. It computes the pixel-wise probability of motion in a
region. The distributions for moving regions and background are obtained off-line
from a hand labeled sequence of frame difference images. Note that in general this
cue is typically present near the object’s boundary, but not necessarily inside the ob-
ject for homogeneous surfaces. The final method combines both color and motion
cues. The function combines three terms as a weighted sum as in [47]. The functions
are smoothed spatially by Gaussians with a variance depending on the size of the
previously detected hand. The pixel-wise probability density function of observing
a hand at image location y is defined as

p(hand|y) ∝ wc p(y|col) + wm p(y|mot) + (1−wc−wm) p(y|col) p(y|mot), (9.1)

where wc and wm are weights that are determined through experiments on a valida-
tion set (in our case wc = wm = 0.1).

Online Classification. The first method in this category is a re-implementation of
online boosting as proposed by Grabner and Bischof [29]. A classifier is learned
online by selecting a set of rectangle features (weak classifiers) from a pre-selected
pool of 250 features. Assuming that the object location is known at frame t, the clas-
sifier is evaluated in the neighborhood of the previous location to create a confidence
map. The new object location is moved to its maximum and, using the new labels
for object and background, new training examples are sampled from the image to
update the classifier. The second online method uses linear discriminant analysis
(LDA), based on five rectangle features. The third method is Boosted LDA and
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Fig. 9.3 Observer evaluation. At each frame t of a test sequence an observer Ok outputs
its position estimate x̂k

t and confidence value ck
t . The position error ek

t relative to the ground
truth is calculated during successful tracking (represented by green cells). Loss of track occurs
when the error exceeds a threshold τ (switch to red). Tracking is re-initialized from an off-line
trained detector (blue). Precision and robustness metrics are calculated from the test results.

combines 50 classifiers from a pool of 150 using AdaBoost. These two methods
have been proposed by Li et al. [49] who used these as observation models in a
particle filter trained over different time periods. While the LDA classifier is trained
only on the previous frame, the Boosted LDA classifier is trained on the previous five
frames. Finally, we have implemented the online feature selection (OFS) scheme by
Collins et al. [18], where discriminative color features are found using the variance
ratio criterion.

We train a detector to initialize and re-initialize each tracker. The detector was
trained off-line using AdaBoost for feature selection [54, 81] from a dataset of ap-
proximately 5000 positive and negative examples. The version that we use [54] uses
feature co-occurrence to increase the performance over the baseline method.

9.3.2 Evaluating Single Observers

The evaluation of observers proceeds as follows. Given an image sequence It , t =
1, ...,T , at every time step t each observer Ok,k = 1, ...,K computes an estimate of
the target location x̂k

t as well as the distance to the labeled ground truth location xgt
t

as error ek
t = d(x̂k

t ,x
gt
t ). The estimate x̂t = (x,y,s) contains the center location x,y

and scale estimate s. The error is computed as the the scale-normalized distance be-
tween the centers. Observers that do not estimate the scale s, obtain this value from
the most recent detection and it remains constant during tracking. Every observer
also outputs a confidence value ck

t at each frame, which is computed depending on
the type of observer, see the right column of Table 9.1. Loss of track occurs when
the location error ek

t is above a threshold value τ < 1. In this case the tracker outputs
τ as error and is re-initialized at the next successful detection. The detections are
pre-computed by running the off-line detector over all sequences. In summary, the
measurements for the individual observers Ok on a training sequence are given by

Zk = {x̂k
t ,e

k
t ,c

k
t }, t = 1, ...,T . (9.2)

This allows the evaluation of single observers on the complete sequence, not just on
the first successfully tracked segment. Loss of track can occur at any time during the
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Fig. 9.4 Example of precision vs. robustness of trackers. The plot shows the tracking error
of two stand-alone trackers with different observation models: maximum correlation (NCC),
and randomized template tracking (RT). In this example, NCC is more accurate but fails early
on, while RT is able to track over a longer period with less precision.

sequence when an observer’s particular assumptions, e.g., slow motion or small pose
change, do not hold. The number of tracked frames when running the tracker only
once is dependent on when this event occurs: if it is near the beginning of a sequence
the measured robustness is worse than when it is near the end. The performance of
an observer is estimated as the expected error over all frames,

E[ek] =
1
T ∑t

ek
t , k = 1, ...,K. (9.3)

However, this function does not allow the comparison of observers when track is
lost, because the error is meaningless in this case. In practice we are therefore inter-
ested in both the tracking error while the tracker is following the target as well as the
probability of losing track. This motivates the distinction into two performance cri-
teria, precision and robustness. Precision is related to the expected error only during
successful tracking by

1−E[ek|ek < τ]. (9.4)

The robustness is the probability of successful tracking as

E[ek
t < τ|ek

t−1 < τ]. (9.5)

See Figure 9.3 for a schematic of the evaluation on one sequence.
It is interesting to look at the relationship between precision and robustness. Ob-

servers with a fixed spatial model tend to be more precise than observers where the
spatial arrangement is more flexible, see for example Figure 9.4, which shows track-
ing without re-initialization using single template matching (NCC) and local feature
matching (RT) on one sequence. In this example NCC is more precise than RT, but
the tracker loses lock earlier. Note that similar ideas have recently been explored
in the visual object classification literature, where a representation’s invariance vs.
discriminative power trade-off was explored [80].
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Fig. 9.5 Expected error as function of confidence. This data is obtained from training se-
quences and allows the direct comparison of observers given their confidence values. Shown
here are the results for observers NCC (normalized cross-correlation) and RT (randomized
templates).

In order to evaluate each observer individually in a tracking algorithm, we use a
threshold value of τ = 1 on the tracking error (in Equations 9.4 and 9.5) to determine
loss of track. When this value is exceeded, the tracker is re-initialized at the next
detection. The value of τ = 1 corresponds to the case where track has clearly been
lost. Other threshold values could be used, where a smaller value enforces higher
precision and lower robustness, and vice versa. Precision and robustness are then
computed by taking expectations over all frames of the test sequences.

9.3.3 Evaluating Multiple Observers

This Section deals with the question of how to evaluate the performance that can be
achieved by combining multiple observers. Ideally, we would like to select the ob-
server Ok with the lowest error ek

t at each time step. This information is not available
at test stage, so instead the observer’s confidence value ck

t is used. Confidence val-
ues have often been used to compare the results of multiple observers and combine
them [6,9,48]. However, most observers have a relatively simple object representa-
tion and thus the confidence value itself cannot be expected to be perfectly reliable.
For example, an observer may have a high confidence value at an incorrect location
if there is an object close-by that is similar to the target in the observer’s feature
space. The observer confidence values cannot be compared directly in our case, so
they are simply regarded as features computed by each observer. In order to make
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(a) (b)

Fig. 9.6 Evaluation schemes. (a) In the parallel evaluation, the output from the observer with
the lowest expected error is chosen. (b) In the cascaded evaluation, the next observer is only
evaluated if the expected error is above a threshold. An off-line trained detector is used to
re-initialize. The binary tests in this schematic represent threshold tests on the expected error.

them comparable we estimate the distributions p(ek|ck) from the training data, i.e.,
the error distribution of observer Ok given its confidence value. To use the finite data
set we discretize the range of the ck values and compute p(ek|ck) in each partition.
For the evaluation we represent it by the mean of each distribution, E[ek|ck]. Thus
the estimated error for an observer Ok at time t is êk

t = E
[
ek|ck

t

]
. Figure 9.5 shows

two of these functions for the normalized cross-correlation (NCC) and randomized
templates (RT) observers. For example, if both observers return a confidence value
of 0.9, the expected error of NCC is lower than that of RT.

We distinguish two different approaches of combining observers: parallel and se-
quential, respectively. In parallel evaluation, the estimates of multiple observers are
available at each time step and the output of the most reliable observer is selected.
Note that alternative fusion methods could be used, for example weighting the ob-
server estimates. In sequential (or cascaded) evaluation observers are evaluated in
sequence: If the first observer returns a high confidence, then no other observer is
evaluated. Otherwise, the evaluation continues with the next observer. The advan-
tage of sequential observation is that on average significantly less computation is
required. However, the order of evaluation as well as the thresholds on the expected
error are critical for good performance.

9.3.4 Parallel Evaluation

The parallel evaluation scheme selects the observer with the lowest expected error
given its confidence value at each time step, i.e., k∗t =argmink êk

t , see Figure 9.6(a).
If this error is above a certain threshold, then the tracker is re-initialized at the next
successful detection.

The running of tests consisting of all possible combinations of all trackers on all
test sequences would be very time consuming. We therefore run all the observers
individually on the test sequences and record the results on all frames. These are
then used in the combination tests as the result from each component observer. In
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Fig. 9.7 Fist data set. The evaluation is performed on a data set of 12 sequences of 500 frames
each, (top) six used for training and (bottom) six for testing. The sequences are taken with
a static camera on a display showing people moving their hand in front of the screen. The
dataset contains motion blur, skin-colored objects in the background, and occasionally other
people in the scene.

order to confirm the validity of such a set-up, we subsequently perform tests using
the complete tracking framework for a few combinations of observers.

9.3.5 Cascaded Evaluation

Although the combined estimate is generally expected to be better than individ-
ual estimates, the main disadvantage is the increased execution time. In cascaded
evaluation observers are evaluated in sequence, starting with the first observer, and
continuing with the next observer only if the expected error is above a threshold
value, see Figure 9.6(b). If no observer returns a sufficiently low expected error, the
algorithm attempts to jump to the top of the cascade using local detection. In the
evaluation, as in the parallel case, the output of the individual observers is used to
estimate the performance of different combinations of observers as well as threshold
values for switching observers.

9.3.6 Dynamic Model Discussion

A dynamic model is an integral component in every tracking algorithm as it can
enable tracking through short periods of occlusion or weight the observations ac-
cording to the most likely target motion. However, for the evaluation we aim to
be independent of the dynamics, which are difficult to model in the case of rapid
hand motion. Instead we sample the observation space densely at each pixel loca-
tion in a neighborhood around the previous estimate and rely only on the observa-
tions without prediction, corresponding to a maximum likelihood location estimate.
This methodology is consistent with the observation made in the particle filtering
literature that the performance largely depends on the proposal distribution [22]. If
good motion models are available, these should certainly be integrated in the final
system [41]. The final tracking algorithm used in the gesture interface does employ
prediction based on a constant velocity model for defining the search region and an
auto-regressive filter for temporal smoothing.
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Fig. 9.8 Evaluation of individual observers. This plot shows precision and robustness values
on the test data. NCC is the most precise observer, the color-motion observer (CM) is the
most robust.

9.3.7 Experimental Results

We evaluate the method on a hand dataset containing 12 sequences (10 with rapid
motion, 2 with slower motion) of 500 frames each of size 320×240, recorded at
30 fps. The sequences are taken indoors with a static camera on top of a screen
showing different people pointing their fist towards the camera in order to control a
screen pointer. Frames of the dataset are shown in Figure 9.7. Half of the sequences
are used to learn the expected errors E[ek|ck] for each observer Ok, the other half is
used for performance evaluation.

9.3.8 Individual Observers

The precision and robustness measurements on the unseen test data are shown in
Figure 9.8. A number of observations can be made. First, single template match-
ing has high precision, with NCC being the most precise, and SAD the third
most precise. Observers that include color also score highly, including the color
probability (C), color-motion probability (CM), mean shift (MS) and flocks of
features (FF) observers. Among the online classifiers, the online boosting (OB) ob-
server shows the highest precision. Observers using local features generally perform
slightly worse, with KLT and LDA observers ranking lower in terms of accuracy.
In terms of robustness, the color-motion (CM) observer comes out on top, followed
by the flocks of feature (FF) observer. Color based observers (MS, C) as well as
single template observers (SAD, NCC) also perform well. Color and motion prob-
ability individually show similar robustness. The regular block-based optical flow
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Fig. 9.9 Evaluation of observer combinations. These plots show the precision and robustness
measured on the test data. (top) pairs, (bottom) triplets, (left) parallel evaluation, (right) cas-
caded evaluation. Only a small subset of data points near the right upper corner with both
high robustness and precision are shown in these graphs.

algorithm showed to be more robust than the KLT tracker, but both had difficulties
handling rapid hand motion. The LDA observer shows significantly less robustness.

The performance of the off-line trained detector is not included in the evaluation.
According to our definition of robustness it does not perform well because every
missed detection is counted as loss of track. The percentage of correct detections
on the test set is 48.4%, but it varies significantly across the sequences. On some
sequences there are fewer detections due to blur and pose changes.

9.3.9 Observer Combinations

Parallel Evaluation. We evaluate all pairs of observers using a threshold value of
τ = 1 on the expected error, resulting in a total of 91 combinations. Subsets of the
results are shown in the top left of Figure 9.9. The graphs only show combinations
that are near the right upper corner of high robustness and high precision. The com-
bination of NCC with one of the color-based observers CM, C and MS shows good
performance. In the videos the hand occasionally moves rapidly, resulting in sig-
nificant motion blur. These cases tend to be failure modes for intensity or gradient
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Fig. 9.10 Comparison with real tracking results. These plots show the precision and robust-
ness measured for selected combinations of observers. It compares the results by theoretical
combination (as in Fig. 9.9) and real tracking results obtained for selected combinations of
observers, shown here with gray background. The left plot show the results on pairs and the
right plot on triplets. The agreement is reasonable, although there is inherently some variation
between the results.

based methods. On the other hand, the color distribution is less affected by mo-
tion blur. The robustness of these color-based observers is increased by most of the
other observers that help to bridge the frames where the color cue is unreliable. The
analysis also shows how observers using different cues complement each other. For
example, the NCC-C combination has robustness-precision values of (0.997, 0.892),
better than either NCC (0.992, 0.869) or C (0.991, 0.839) alone.

The evaluation of the 364 combinations of triplets shows a further improvement
in performance, see the bottom left of Figure 9.9. Most noticeably, the best perfor-
mance is achieved with combinations that include the NCC observer together with a
color-based observer, C or CM. A local feature based observer such as LDA, KLT, or
RT, can help too. Note, however, that the performance relative to the pairwise eval-
uation does not always change significantly. For example, by adding LDA to the
NCC-C combination, the precision only increases slightly and robustness remains
unchanged. Sometimes the precision can even decrease while robustness increases,
such as in the case of NCC-C-FF. This means that on some occasions the additional
observer helps to bridge gaps, but its estimate is otherwise not used.

Cascaded evaluation. We compared all ordered combinations of pairs at five dif-
ferent threshold levels (0.1, 0.2, 0.3, 0.4, 1.0) resulting in a total of 912 evaluations.
Subsets of the results are shown in the top right plot in Figure 9.9. Most of the
results with the highest precision employ NCC at the beginning of the cascade.
High robustness is achieved when at least one of the observers uses the color cue,
such as C or CM. The combination of NCC and CM (NCC-CM-3, i.e., a threshold
value of 0.3) that was proposed in [74] performs well in terms of precision, only
slightly slightly worse compared to evaluating the same observers in parallel. Some
combinations show higher precision, e.g., NCC-MS-3, however, this comes at the
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Fig. 9.11 Hand tracking results using NCC and color-motion (CM) observers. Shown are re-
sults of individual observers, a detector and parallel and cascaded evaluation. Colors indicate
which estimate is used. In this sequence the hand is tracked successfully by both pair-wise
schemes with a lower error than with either of the observers.

cost of lower robustness. It is also interesting to note that the performance of LDA
in combination with other observers shows significantly improved robustness, e.g.,
LDA-CM-4, compared to its individual result.

We also evaluated all triplets of observers at five different threshold levels, a total
of 4468 combinations. Subsets of the results are shown in the bottom right plot in
Figure 9.9. As a general observation, the results are further improved. Successful
combinations frequently include different types of observers, typically a single tem-
plate, a color-based observer and either motion or local features. If one component
is reliable over a long time period, the overall performance changes only little.

The results also suggest that in many cases arranging the observers in the order
of their individual precision leads to good performance. Combinations that include
NCC as first or second component perform consistently high. One idea is therefore
to estimate using the most precise observer at each time step. If the expected error
falls below the threshold, the next observer acts as a fallback method. Note that in
some cases the cascaded tracker may have switched to an observer that is less precise
during a difficult part of the sequence. It is therefore worth checking regularly if it
is possible to jump to the top of the cascade again via local detection in order to
increase tracking precision.
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Fig. 9.12 Hand tracking using NCC-CM-M observers in parallel. The NCC observer (blue) is
used initially. During motion blur the tracker switches to the CM observer (red). For a couple
of frames the M observer (purple) is used, while the light is turned off, before switching back
to CM.

Fig. 9.13 Hand tracking using NCC-CM-FF observers in a cascade. The NCC observer (blue)
is used initially, switching to the CM observer (red) during motion blur.

9.3.10 Tracker Evaluation on Selected Combinations

Given that the above analysis of observer combinations is based on the analysis of
individual observers, an obvious question is how this result varies when the full
combination is tested in a tracking framework. The two set-ups are not expected to
give identical results because in the combined case the observer estimates are de-
pendent on each other. Testing all combinations of observers becomes prohibitively
expensive, thus we use the results on independent observations as a method to select
promising combinations to evaluate. Figure 9.10 shows results on pairs and triplets
using cascaded evaluation. On all examples the precision in the real tracking result
is slightly smaller than to the results obtained with the simplified analysis, while the
robustness values are very similar.

Figures 9.11 shows example results of two different observers individually, their
pairwise combination, as well as the detector output. It can be seen that NCC is more
precise, but in the end loses track due to fast motion. CM is less precise, but tracks
the complete sequence successfully. The detector only fires in one frame in this
example. Both pairwise schemes work well. In some cases the parallel and cascaded
evaluation select different estimates, as in the second column of the figures.

Figures 9.12 and 9.13 show example frames from two test sequences using dif-
ferent observer triplets. Figure 9.12 shows results of the combination NCC-CM-M,
evaluated in parallel. The NCC observer is used initially, but during fast motion the
tracker switches to the CM observer. For a short while the motion (M) observer is
used while the light is turned off. Figure 9.13 shows another case where the tracker
switches from NCC to CM during fast motion.

The switching behavior of the NCC-CM tracker is illustrated in Figure 9.14, the
same sequence as in Figure 9.12. During this sequence the light is turned off and
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Fig. 9.14 Switching trackers over time. This figure shows the tracker’s switching be-
havior, colors in the plot indicate the component at each frame (blue=NCC, red=CM,
green=detector). The hand velocity in pixels is shown in the second plot. During this se-
quence the light was turned off and on as can be seen in the mean brightness plot (third from
top). Example frames where transitions occur are shown below (first and third pair from NCC
to CM due to motion blur, middle pair from CM to NCC via local detection).

on, as shown in the mean brightness plot in Figure 9.12. As the light is switched off,
the template used by NCC is no longer suitable and the tracker switches to the CM
observer.

When examining the performance during slow object motion, it becomes clear
that in these cases the NCC tracker has a very low error, while the color based track-
ers can be distracted by other skin-colored objects such as the arms. See Figure 9.15
for a comparison on two sequences with slow hand motion. In the comparison, lo-
cal orientation correlation (LOC) matching [26] is included, which shows the same
precision as NCC, but slightly lower robustness on this data set.

9.4 Gesture Interface System

This Section describes the components and the operation of the proposed gesture
interface.

9.4.1 Visual Attention Mechanism

One goal of this work is being able to set up the system in an arbitrary environment,
such as a living room or a public space, where multiple people may be within the
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Fig. 9.15 Results on two sequences with slow target motion. During slow hand motion the
NCC and LOC observers which both use single templates are the most precise, however, LOC
showed lower robustness.

camera’s view. For some periods there may be no interaction at all, until one person
initiates the interaction in order to achieve a specific task. Initially, our system finds
faces using a boosted detector [54]. Once a face is detected, the user is prompted to
hold up their fist within a rectangular input area below their face, see Figure 9.16(a).
This also works for multiple users in the scene as the input areas are ordered ac-
cording to scale of the face detections, giving priority to users who are closer to the
camera. When a fist is detected, an interaction area is defined, within which the fist
is tracked. The area is placed at the detected fist location and is scaled proportional
to the detected size, meaning that the range of hand motion is largely independent of
the distance to the camera. In tracking mode the user is then able to browse content
shown on the display.

9.4.2 Tracking Mechanism

We take the results from the experiments in Section 9.3, which showed that an NCC-
CM cascade gives good performance and use this as our fist tracker. The interface
consists of a grid of windows, one of which shows the camera output. The ‘active’
region of fist tracking is shown as an overlay on the camera output window, see
Figure 9.16(b). This window has the same aspect ratio as the overall screen, so the
tracking result can be scaled up to give a cursor position on the screen, indicated
with an arrow icon. The user can move their fist out of the interaction area at any
time. In this case the tracker will fall back to global detection mode and re-calibrate
the active tracking region to around the location of a newly detected fist.

Figure 9.17 shows the system with two users in the field of view. The system only
allows interaction of one user at a time. Priority is given using a simple first-come-
first-serve policy. The figure shows one user taking control first and as he drops his
hand, the other user’s fist is detected.

In order to ensure continuous tracking, two additional mechanisms are included
in the system. The first is an additional local detection step if the NCC confidence
value is too low. Instead of directly switching to CM, the tracker first attempts to re-
detect and continue tracking with NCC. If local detection fails, it switches to CM.
Secondly, there is a maximum number of frames that CM is used before detection
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(a) (b)

(c) (d)

Fig. 9.16 Gesture interface showcase. (a) During the attention phase, a face detector is run
continuously and, as soon as a person looks towards the screen, a welcome message is dis-
played. (b) If the person holds up their fist within the shown rectangle placed below the
detected face, tracking begins and the user can move a screen pointer. Shown here is the
language selection screen. (c) Video content can be selected by hovering over the buttons
that appear when the arrow is over the corresponding thumbnail image. (d) In the 3D model
viewer application, the user can rotate a 3D model with their hand motion.

is triggered. Tracking with CM allows some variation in hand pose, but may also
result in locking on to other skin colored objects. Correct tracking is verified with
the detector, and if a fist a found, the system returns to the top of the cascade.

We use a Point Grey Flea2 camera, connected via a IEEE 1394b cable, to capture
images of resolution 320×240 pixels at 30 fps. The system has been implemented
and tested on different platforms, including (i) a desktop with an eight-core Intel
Xeon E5345, 2.33 GHz with 2GB RAM, (ii) a laptop with a dual-core Intel CPU
T2600, 2.16 GHz with 1GB RAM. (iii) a laptop with a dual-core Intel Core 2 Duo
T9800, 2.93 GHz with 3GB RAM. The system runs in real-time on these platforms
and on the Core 2 Duo laptop it uses 30-50% of CPU cycles in tracking mode.

9.4.3 Selection Mechanisms

In order to activate a screen icon, we need to define a selection mechanism equiva-
lent to a mouse click. Solutions that have previously been proposed include chang-
ing hand pose, finger or thumb extension, and simply hovering over an icon for a
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Fig. 9.17 Interaction example with two users. This figure shows the system’s behavior when
two users are using the interface in turn. (a) Two faces are detected, both users are prompted
to show a fist. (b) User on right raises hand, defining new interaction region, shown as a
rectangle. (c) User on left shows fist, but user on right stays in control. (d) User on right
lowers fist out of camera’s view, fist of user on left is detected. (e) Both users lower their
hands, no fist detection. (f) When fist is shown closer to the camera, the interaction region
becomes larger. (g) User on right lowers fist, control switches. (h) User on right takes over
again, this time with his other hand. (i) User on left raises fist, user on right shows both fists,
control stays with current hand.

short time period [11,26,37,45,52,67]. We have implemented these by training sep-
arate detectors, see Figure 9.18, (a) an open hand detector, (b) a ‘thumb up’ detector,
and (c) hovering over an icon for a short period of time (0.5 seconds). Additionally,
we propose the following method: (d) detecting a quick left-right shake gesture. The
shake gesture is detected by recording the hand motion over a sliding time window
of 20 frames and classifying this vector. In experiments linear discriminant analysis
(LDA) and k-nearest neighbor classifiers were tested, but more reliable results were
obtained by computing the distance to the closest positive training example (among
a small set of 75 examples) and thresholding this value. The activation mechanism
can be set according to the user’s preference, however, selection by hovering has
been used as default setting during exhibitions.

A video can be played by selecting the button that appears when the cursor is over
the corresponding thumbnail image, see Figure 9.16(c). Another sample application
is a 3D model viewer, shown in Figure 9.16(d), where the user can rotate a displayed
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(a) (b) (c) (d)

Fig. 9.18 Different gestures for selection. (a) Open hand pose, (b) thumb up pose, (c) hover-
ing for a short time period, and (d) a shake gesture.

3D model with their hand motion. A video showing the system in operation can be
viewed at http://www.youtube.com/watch?v=RL9MpXhWCrQ&fmt=18.

9.5 Summary and Conclusion

This Chapter has addressed the task of selecting component observers for particular
tracking scenarios. To this end, a set of 14 observers has been evaluated on test
sequences. A framework was proposed that evaluates the robustness and precision
of observers, allowing the user to choose a profile suitable for a given application.
The measurements of individual components were used to exhaustively evaluate
combinations of components. We have shown results on observer pairs and triplets
only, but the analysis can be applied to larger numbers of components.

The observers that were used in this paper have been used in stand-alone trackers.
Some of these trackers themselves employ online feature selection. Here, instead
of switching between relatively simple features from a pool [5, 18, 29], we pro-
pose switching online between observers that may use different cues and estimation
schemes. Our evaluation framework allows combining arbitrary components that
output an estimate and a confidence value. Direct comparison is possible because
we estimate the observers’ error distribution given their confidence.

In our experiments, cascaded evaluation gives similar performance to parallel
evaluation at much higher efficiency. One suggested strategy is to use the most pre-
cise tracker if possible and use more robust ones as a fallback mechanism, with an
off-line trained detector for re-initialization. This architecture allows for long term
operation, which is required in many applications.

The proposed gesture interface works by tracking a pointing fist with a sin-
gle camera facing the user. Our proposed system includes an attention mechanism
that allows one user at a time to be in control. Note that face recognition could
be employed for customizing the interface, as done in a previous version of our
system [74]. For tracking the hand, we propose a multi-cue method that switches
trackers over time and is updated continually by an off-line trained detector. Cur-
rent sample applications include browsing videos as well as viewing a gallery of
3D models of sculptures. The system allows the user to view the 3D model from
different directions by rotating it by hand. This can also be seen as a step towards
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manipulation of virtual objects, which is still an active research area [7]. The sys-
tem has been successfully used by over hundred people at conferences and public
exhibitions.
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M., Galata, A., Kisacanin, B. (eds.) ECCV 2006 Workshop on HCI. LNCS, vol. 3979,
pp. 40–51. Springer, Heidelberg (2006)

3. Athitsos, V., Alon, J., Sclaroff, S., Kollios, G.: Boostmap: A method for efficient approx-
imate similarity rankings. Boston University Computer Science Technical Report No.
2003-023 (2003)

4. Avidan, S.: Support vector tracking. IEEE Transaction Pattern on Analysis and Machine
Intelligence 26(8), 1064–1072 (2004)

5. Avidan, S.: Ensemble tracking. IEEE Transaction Pattern on Analysis and Machine In-
telligence 29(2), 261–271 (2007)
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Chapter 10
Multi-view Multi-object Detection and Tracking

Murtaza Taj and Andrea Cavallaro

Abstract. Multi-view trackers combine data from different camera views to estimate
the temporal evolution of objects across a monitored area. Data to be combined can
be represented by object features (such as position, color and silhouette) or by ob-
ject trajectories in each view. In this Chapter, we classify and survey state-of-the art
multi-view tracking algorithms and discuss their applications and algorithmic lim-
itations. Moreover, we present a multi-view track-before-detect approach that con-
sistently detects and recognizes multiple simultaneous objects in a common view,
based on motion models. This approach estimates the temporal evolution of ob-
jects from noisy data, given their motion model, without an explicit object detection
stage.

10.1 Introduction

Object detection and tracking is a fundamental task in various video-based appli-
cations such as security, sport analysis and tele-collaboration. Because occlusions
and limited field of view make detection and tracking a challenging task, multiple
video cameras can be used to increase the observability of objects, thus facilitating
their consistent identification over time. Multi-camera tracking aims to establish the
spatio-temporal correspondence of the same object across multiple views.

The modeling of the multi-view tracking problem depends on the management
policy, the network type and the coverage of the network. The management policy
of a network can be centralized [1], distributed [2] or hybrid [3]. The network can
be composed of passive cameras [1], active cameras [4], or a combination of both.
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Fig. 10.1 Overview of multi-view tracking approaches.

As for the coverage of the network, the cameras can have partially overlapping [5]
(multi-view) or non-overlapping [6] fields of view. This Chapter will focus mainly
on tracking algorithms for partially-overlapping passive camera networks working
with a centralized management policy, although some algorithms could be extended
to work in a distributed fashion or with active cameras.

Algorithms for target tracking in multi-view camera networks can be grouped
based on the modalities for tracking and information fusion and can be categorized
into three main classes, namely track-first, fuse-first and manifold-based. The cate-
gorical overview of these approaches is shown in Figure 10.1. Track-first approaches
perform tracking in each camera view and then project and link the resulting infor-
mation on other views. Fuse-first approaches project detection information from
each view to a common view and then apply tracking. Track-first approaches are in
general more complex computationally but require a lower data transfer load. Track-
first and fuse-first classes will be discussed in details in the rest of the Chapter.

Manifold-based approaches can be used when camera calibration information is
not available, cannot be computed efficiently, or the assumption that the world is
planar is not applicable. In this category, multi-camera tracking can be performed
by projecting features on a manifold through Locally Linear Embedding [7]. The
approach uses Caratheodory-Fejer (CF) interpolation theory, which is robust against
model uncertainty and occlusion, to identify the dynamic evolution of the data on
the manifolds. This method assumes that multiple views are highly overlapping and
uses rule-based multi-target tracking with multiple hypotheses. The approach relies
heavily on the training that uses segmented foreground objects.

The Chapter is organized as follows. The problem of multi-camera tracking is
formulated in Section 10.2. Section 10.3 discusses the calibration and data fusion
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between multiple views using plane-to-plane homography. Track-first approaches
are discussed in Section 10.4 that covers methods using independent trackers and
collaborative trackers. Fuse-first approaches are described in Section 10.5 that cov-
ers detection-based tracking as well as simultaneous detection and tracking. Finally,
in Section 10.6 we draw the conclusions.

10.2 Problem Formulation

Let a wide area be monitored by a set C = {C1, · · · ,Cc, · · · ,CN} of N cameras. Let
xc,i

k be the state of the ith object in camera Cc and let xπ ,i
k be the state of the ith object

on the common view plane π .
The state xc,i

k can be defined based on a set of features, such as the position and
the velocity components of the target in the image plane, the width and the height
of the bounding box (or the axes of the ellipse) defining the area of the target, and a
representation of the appearance (such as the color histogram) of the target [8].

As mentioned in Section 10.1, the multi-camera tracking problem can be catego-
rized into two classes, namely track-first or fuse-first.

• Track-first approaches can be divided into four steps:

1. Target localization in each view. This step extracts the localization informa-
tion or measurement Zc

k = {zc
m|m = 1, · · · ,k} in each view.

2. Target state estimation, xc,i
k , in each view, given the set of measurements Zc

k

up to time k and the state xc,i
k−1 at previous time k−1.

3. State estimates projection to a common view (from individual views). This
step projects the tracks from the image views to a common view π , using the
projection matrix Hc,π , which performs a mapping from camera Cc to π :

xπ ,i
1:k = Hc,πxc,i

1:k, (10.1)

where xπ ,i
1:k is the projection of track xc,i

1:k from camera Cc. Note that π can
be the camera view selected as reference view [9, 10] or a hypothetical top
view [11, 12, 13, 14].

4. Correspondence resolution between projections from multiple views. This
step establishes the link between all the tracks xπ ,i

1:k, projected from different
views, belonging to the same object. The fused tracks can be reprojected to
the individual views for improving track estimates.

• Fuse-first approaches can be divided into three steps:

1. Target localization in each view. This step extracts the localization informa-
tion or measurement Zc

k = {zc
m|m = 1, · · · ,k} in each view.

2. Projection of localization features from each view to a common view. This
step projects the localization information or measurement to π :

Zπ ,c
k (u,v) = Hc,πZc

k(x,y); (10.2)
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and fuses them:

Zπk (u,v) = ζ ({Zπ ,c
k (x,y)}c={1,··· ,N}), (10.3)

where ζ is a function that fuses the measurements from multiple cameras.
3. State estimation in the common view. This step estimates the state xπ ,i

k of
each object in Zπk . The state can be estimated using traditional detection and
tracking schemes or via simultaneous detection and tracking.

10.3 Calibration and Fusion

To fuse the data from multiple views, track-first and fuse-first approaches assume
the availability of camera calibration information. Homographic transformation ma-
trices are generally used to this end. Homographies can be computed manually [15]
or automatically [16] by identifying corresponding points between views.

The automatic selection of corresponding points (auto-calibration) may be ob-
tained through trajectory correspondence, field-of-view lines or feature-point cor-
respondence. Trajectory correspondence can be achieved with a least mean square
search on trajectory points from multiple views [10] or by using features such as po-
sition, velocity, size and color [17]. Automatically recovered field-of-view lines use
the correspondence between objects in multiple views when they enter or exit the
scene (i.e., when they appear on field-of-view lines in overlapping views). Both
trajectory-based and field-of-view-lines-based approaches rely heavily on detec-
tion and tracking performance and assume that reliable tracks are available from
each camera. Auto-calibration can also be performed using feature-point correspon-
dence, for example using SIFT features followed by RANSAC to reject outliers [16].
The limitation of this approach is the assumption that the ground plane in each view
is sufficiently textured in order to facilitate a reliable point correspondence.

The calibration information can then be used to map information from one view
to another, using single or multi-level homography.

10.3.1 Single-Level Homography

Different features, such as points or segmentation masks, can be projected on the
common view. In case of point projection (e.g., feet location [5, 18] or blob cen-
troid [19]) a binary signal identifies the points (Figure 10.2), thus making this ap-
proach very sensitive to detection errors in a view. Although the error can be reduced
with a Gaussian Kernel on the common view [20], these approaches are not appli-
cable in crowded scenes, as feet or centroid locations may not be visible or may be
misleading due to occlusions. In crowded scenarios a preferred solution is to track
head locations that can be obtained by projecting the whole information represented
by the change segmentation mask. In this case, Zπk (u,v) can be obtained by comput-
ing the variance at each pixel [21] as
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Fig. 10.2 Projection of the detections from multiple views to the top view.

Zπk (u,v) =
1

σ2({Zπ ,c
k (u,v)}c={1,··· ,N})

, (10.4)

where

Zπ ,c
k (u,v) =

{
Hc,πZc

k(x,y) i f Z̄c
k(x,y) = 1

0 otherwise
. (10.5)

Z̄c
k(x,y) is the foreground binary mask value at (x,y) in Cc that is projected to (u,v)

in Zπ ,c
k , a single channel image.

Similarly, instead of the actual pixel values [22, 23], the binary mask values can
be projected:

Zπk (u,v) =
N

∑
c=1

Zπ ,c
k (u,v), (10.6)

where

Zπ ,c
k (u,v) =

{
1 i f Z̄c

k (x,y) = 1

0 otherwise
. (10.7)
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As the aforementioned approaches use a foreground binary mask, they perform prior
thresholding on the image plane and may therefore ignore low-contrasted or small
targets.

An alternative approach is to project the motion estimation likelihood without
any thresholding. In this case, one can compute on the common view the product of
the likelihood values from each camera [16]:

Zπk (u,v) =
N

∏
c=1

Zπ ,c
k (u,v), (10.8)

where Zπ ,c
k (u,v) is the projected likelihood value. The drawback of this approach

is that, instead of just the foreground pixels, the entire likelihood image from each
view has to be projected for each time k on the common view, thus increasing the
computational load.

Finally, as target points or features from more than one view can be projected on
the same pixel position on the common view, each point (u,v) in Zπk (u,v) has to be
normalized with respect to the number of overlapping cameras in that region.

10.3.2 Multi-Level Homography

To increase the amount of discriminative information in the projection, one can com-
pute the homography from multiple planes that are parallel to the ground plane [24].
Such homographies can be obtained by moving along the vertical vanishing points
and then estimating projection planes that are parallel to the planar top view [16].

Let Hc jπ j be the homographic matrix that projects points from c j, the jth plane
in the camera Cc, to the jth common-view plane π j as

Z
π j
k (u,v) = Hc jπ j Z

c j
k (x,y). (10.9)

The projections on multiple planes can either be treated separately to obtain the
information about the object shape [16] or can be combined as mentioned for the
single-level homography by concatenating the feature vectors from each parallel
plane [22]. Figure 10.3 shows an illustration of the projection of the localization in-
formation from a camera view to multiple planes on the common view. The common
view can be generated through the fusion of the pixel values from three homography
planes, one at the feet level, one at the head level and one between these two planes.
The fusion of the pixel values can be performed using Equation 10.4 that creates a
variance map.

The signal intensity at each position is proportional to the number of foreground
pixels being projected onto that position. In a multi-level homography, pixels repre-
senting different portions of an object (e.g., a person) in the image view along the
vertical-axis (e.g., feet, legs, torso, neck and head) are projected around the same
position on the common view, thus increasing the signal intensity.

The signal strength depends upon the number of cameras observing that region,
as points contributed from multiple cameras are projected on the same location on
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Fig. 10.3 Detections projected from one view to multiple parallel planes.

(a) (b)

Fig. 10.4 Example of parallax error. (a) Top view with 3 targets. (b) 3 high-intensity regions
on the top view generated by the projections of the targets together with several other high-
intensity regions due to phantoms.

the common view. This compensates for possible miss-detections in some camera
views. However, when an object is projected on the plane, pixels not belonging to
that plane are also projected there, thus creating a shadow of the object along that
plane. These projected shadows (from multiple objects) can overlap with each other
and create false signal intensities. These noise components, referred to as paral-
lax errors [22] or phantoms [25] (Figure 10.4), have to be filtered by the tracking
algorithm, as discussed in the next sections.

10.4 Track-First Approaches

Track-first multi-view tracking can be performed either independently in each view
or collaboratively across views. In collaborative tracking, estimated tracks in the
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Video Detection Tracking

Video Detection Tracking

Video Detection Tracking

Fusion tracksTracking

Fig. 10.5 Generic block diagram of track-first multi-view tracking algorithms. Solid line:
independent tracking. Solid and dotted line: collaborative tracking.

Fig. 10.6 Illustration of the track-first approach.

image view and in the common view can be used to assist each other and to improve
track estimates in one view (Figure 10.5). Both independent and collaborative algo-
rithms first track objects in each camera view and then project the tracks onto the
common view for fusion (Figure 10.6). The problem to be solved here is the fusion
of the multiple tracks belonging to the same target.
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10.4.1 Independent Tracking

Independent tracking computes the projection of single-view tracks to another cam-
era view [10] or to the hypothetical top view [11].

Kalman filter state estimates on the image plane can be used for single-target
tracking on the top view using a second Kalman filter based on covariance map-
ping [10]. For multi-target tracking, independent tracks from each view are pro-
jected on the common view or on the top view for fusion. The challenge is that
multiple corresponding tracks may not overlap with each other in time and space.
In fact, targets may be visible in one camera during a certain time interval and in
another camera during another interval. This problem can be solved by trajectory
association using multiple spatio-temporal features with an off-line processing that
allows recovering from failures due to occlusions and target merging [11].

A Gaussian Mixture PHD filter (GMPHD) can be used for on-line multi-target
tracking using independent trackers [13]. GMPHD can be applied on each view as
well as on the top view for track estimation, using features such as position, size
and color histograms. The 2D estimates of the target state from each view can be
projected onto the top view and used as observations for the GMPHD filter. Tracking
can be performed by assigning a label to each Gaussian component. Approaches
based on the PHD filter are computationally efficient as the complexity increases
only linearly with the number of targets.

As estimates in a view can be affected by partial occlusions, the drawback of in-
dependent tracking is that the tracking in one view does not help improving tracking
results in another view. An alternative solution is to perform collaborative tracking
by using track estimates from a view as measurement for other views, as discussed
in the next section.

10.4.2 Collaborative Tracking

In collaborative tracking, a set of measurements from a view are used to improve
tracking results in other views.

Objects can first be tracked using a particle filter in each view and then the par-
ticles can be projected onto the top view for fusion [12]. To compute the precise
location of the target on the top view, the principle axis1 of the target can be defined
in each view and then projected on the top view. The intersection of the projected
principle axes can be used as the target location. The closeness of the particle to the
principle axis is used as the likelihood criterion in the particle filter. To improve the
results on individual views using top-view tracking, the particles in each view can
be sampled from both camera-view particles and top-view particles [12].

Similarly, multiple independent regular particle filters (MIPFs) can be used to
track each target in a view. The posterior in each camera can be computed by using

1 The principle axis is the vertical line from the bottom (e.g., the feet of a person) to the top
(e.g., the head of a person) of a target.
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Table 10.1 Track-first multi-camera tracking algorithms. (Key: GMPHD = Gaussian Mixture
Probability Hypothesis Density; MT = Multi-target tracker; IT = Independent tracking; CT =
Collaborative tracking; M = Manual)

Ref. Features Tracker Calib. MT

IT

[10] 2D position, size, velocity Kalman filter M No
[9] 2D position, height and intensity Bayes tracker M No

[11] 2D position, size, velocity Graph matching M Yes
[13] position, size and color histogram GMPHD filter M Yes
[26] 2D position Template matching M Yes

CT
[12] 2D position, size Particle filter M No
[14] 5D state space using ellipses Particle filter M No

the measurements from all the cameras [14]. A summary of state-of-the-art track-
first approaches is shown in Table 10.1.

Track-first approaches involve multiple tracking steps and hence can be compu-
tationally expensive. To reduce the complexity, fuse-first approaches can be used
that defer the tracking step until when the information from each view is fused on a
common view.

10.5 Fuse-First Approaches

Although collaborative track-first approaches help improving trajectory estimation
in each camera view, they involve multiple tracking steps that can introduce sources
of estimation error. These multiple steps can be eliminated by tracking on the com-
mon view only, by accumulating on the common view the information from each
view (Figure 10.7).

Fuse-first multi-view tracking approaches are characterized by the features used
and by the strategy for the computation of the common view (Figure 10.8). The fea-
tures extracted can be the feet location of people [5], the silhouette centroid [19],
the change segmentation mask [22], the foreground pixels or the whole motion seg-
mentation likelihood [27].

Note that although fuse-first methods involve one tracking step only, they may
involve multiple detection steps: (i) in each camera view, before fusion and (ii) on
the common view, after fusion. Furthermore, as the fusion involves triangulation
of noisy information, this can result in a larger number of solutions (i.e., candidate
targets) than desired. To address this type of data and to reduce the overall complex-
ity of the tracker, simultaneous detection and tracking can be performed that does
not require a detection step (Figure 10.9). The various aspects of these multi-view
tracking techniques are discussed in this section. A summary of the state-of-the-art
of fuse-first multi-view tracking approaches is shown in Table 10.2.



10 Multi-view Multi-object Detection and Tracking 273

Fig. 10.7 Illustration of the fuse-first approach.

Fig. 10.8 Fuse-first multi-view tracking approaches: features and homography.

10.5.1 Detection-Based Tracking

Detection-based trackers first localize objects on the common view and then track
them. Target localization (detection) can be performed by thresholding [21, 23] or
by quantizing the top view into a grid such that each sub-area can only contain
one target. A dictionary of atoms modeling the presence of an object at a given
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Video Detection

Video Detection

Video Detection

Fusion TrackingDetection tracks

Fig. 10.9 Generic block diagram of fuse-first multi-view tracking algorithms. The switch
differentiates between detection-based trackers and simultaneous detection & tracking algo-
rithms that do not require the detection step after fusion.

Table 10.2 Fuse-first multi-view tracking algorithms (MT: Multi-target tracking; MHPT:
Multi-Hypothesis Probabilistic Tracker; M = Manual; A = Automatic)

Ref. Features Tracker Calib. MT
[28] color and motion Viterbi algorithm M Yes
[5] person vertical axis, ground position Particle filter M Yes

[20] feet position Kalman filter M Yes
[19] color histogram, bounding box, centroid MHPT M Yes
[21] head position Bayes tracker M Yes
[16] multiple planes occupancy map Minimum graph cut A Yes
[27] field of view lines not mentioned/any M NA
[22] foreground mask Particle filter M Yes
[29] foreground mask Rule-based M No
[23] foreground mask Graph cut M Yes
[30] 2D position Kalman filter M No

location in a view can then be used to identify if the position in the quantized top-
view grid contains a target [29]. When the top view is composed of projected points
representing target centroids or feet locations, all the non-zero values can be used as
candidate locations [30]. A ray can be drawn from the center of projection of each
camera through the centroid of foreground regions from that camera. The intersec-
tion of these rays can then be used as target location, which can be tracked using
Multi-hypothesis Probabilistic Tracker (MHPT) [19]. Similarly, the vertical axis of
the target across views can be mapped on the top-view plane and their intersection
point on the ground can be used as the feet location of the target on the top view [5]
(Fig 10.10). Contrary to [12], in [5] target feet locations (obtained through vertical
axis lines) are not tracked in each camera view but detected and tracked only once on
the common view. The detection step involves associating multiple projected points
to the same target by using a threshold on the inter-point distance. The top-view
feet locations can then be tracked using a single-view tracker such as particle fil-
ter. The thresholding on inter-point distance for associating multiple projected feet
locations belonging to the same target can be eliminated by using a Gaussian kernel
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Fig. 10.10 Illustration of the target vertical axis intersection on the top view.

for a single image pair [20]. This results in a common plane that is similar to the
one generated using foreground masks (Equation 10.4, Equation 10.6) or likelihood
maps (Equation 10.8).

When the common view is based on foreground masks, object segmentation can
also be performed by thresholding, thus resulting in a large number of points for
each target. These points need to be grouped to obtain the target location. The group-
ing can be performed using K-means, Mixture of Gaussians or Mean-shift [31, 32].
The mean of these clusters represents the target location, which can be tracked us-
ing single-view trackers such as multiple single target Kalman filter [20]. Color and
motion information can also be used in the common view with a generative model
to explicitly handle complex occlusions and interactions between objects [28]. The
tracking of each object can be performed using the Viterbi algorithm. A greedy ap-
proach that makes the locally optimal choice at each stage can be used to avoid
the combinatorial explosion of the computational cost due to joint posteriors. Un-
like approaches that perform state estimation using frame-to-frame correspondence
only, this method computes global optima of scores summed over several frames,
thus making it more robust to persistent and prolonged occlusions. However, this
approach can only process a batch of frames at a time and hence the results are
delayed.

To further improve the effectiveness of tracking in the fused domain, multi-level
homography can be used [24] (see Section 10.3.2). Head detection can be performed
by thresholding the variance map (Equation 10.4) and by employing floor-level ho-
mographic projections. Finally, the candidate head-top positions can be estimated
by clustering with double threshold hysteresis. Note that head tracking requires the
cameras to be mounted at a significant height so that the heads are fully visible.
The number of homography levels can be increased to further improve the localiza-
tion information [16], at an additional computational cost. The localization informa-
tion can also be improved by projecting the motion segmentation likelihood values
and obtaining the mask by taking the product of the values from multiple views
(Equation 10.8). The foreground likelihood probabilities from each plane of each
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view at each time can be projected onto the corresponding plane of the common-
view to obtain a 4D spatio-temporal occupancy map. The minimum graph cut
procedure can be applied with alpha-expansion to segment targets. Trajectory seg-
mentation can then be performed using graph cut. Although this approach shows
promising results, it is computationally very expensive as it requires obtaining a 4D
occupancy map before applying the minimum cut procedure.

To reduce the computational cost and to obtain an on-line solution, multiple ho-
mography planes can be collapsed on the ground plane [23]. Similar thresholding
and clustering can be performed to localize targets followed by graph matching to
obtain the tracks.

The thresholding step to localize targets is a bottleneck in most detection-based
trackers. Furthermore, due to parallax error (Figure 10.4), false peaks can be se-
lected as candidate target locations. These false peaks can be filtered using heuristics
on size and speed [25]. A better alternative is to perform tracking without applying
the detection step by using simultaneous detection and tracking via track-before-
detect.

10.5.2 Track-Before-Detect

Track-before-detect (TBD) is a Bayesian approach that extends the target state with
the signal intensity and evaluates each image segment against a certain dynamic
model. As the target intensity along with its dynamics follow a statistical model, this
approach allows us to track targets with lower signal strength, without applying an
additional detection step. The state estimation can then be performed using particle
filtering [22].

To avoid an explicit target localization step, in track-before-detect the entire input
signal is considered as a measurement. This measurement is a highly non-linear
function of the target state and can be solved either by discretization of the state [34]

(a) (b)

Fig. 10.11 Example of particle weights and positions. (a) Without multi-target update (one
target has very small weights and another one is missing); (b) with multi-target update. As
the weights for weak targets are very low, without the multi-target update strategy, lost tracks
are possible.
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(a)

(b) (c)

(d) (e)

Fig. 10.12 Multi-view tracking on the top view on frames 160 and 500 of ISSIA dataset.
(a) Original frames from each view. (b,d) Top view after fusion. (c,e) Tracks generated with
multi-target track-before-detect.

or by non-linear state estimation techniques (e.g., particle filtering [35]), which are
less computationally expensive.

In track-before-detect multi-view tracking, the common view can be based on
the foreground likelihood (Equation 10.8) or the binary mask (Equation 10.6, Equa-
tion 10.4). The single-target multi-view track-before-detect particle filter can be
modified for multiple targets by incorporating particle clustering [22]. The cluster
information allows normalizing weights per target/cluster, thus facilitating tracking
weak and new born targets.

Figure 10.11 shows a comparison between the evolution of particle weights
with and without the cluster-based update strategy. It can be seen that without the
multi-target update strategy (Figure 10.11(a)), a target is lost while another has a
very low weight that will cause that target to be lost in the subsequent frame.
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The particles can be clustered using K-means, Mixture of Gaussians or Mean-
shift (MS) [36]. If the total number of targets is not known, a nonparametric cluster-
ing technique that does not require prior knowledge of the number of clusters, such
as MS, can be used. MS climbs the gradient of a probability distribution to find the
nearest dominant mode or peak and does not impose constraints on the shape of the
clusters.

An example of tracking results obtained with the multi-target particle filter-
ing track-before-detect (MT-PF-TBD) on the ISSIA2 dataset is shown in Fig-
ure 10.12(c,e). The bandwidth chosen for MS is h = 5, which is appropriate for
clustering particles generated around a target that is affected by blurring; 3000 par-
ticles per target are used. It can be seen that most targets are tracked over the entire
scene, the exception being the goalkeeper on the left corner of the field. This target
is not tracked initially (Figure 10.12(c)) despite being represented with significant
information (Figure 10.12(b)) as he was static and hence not following the expected
motion model. The prediction resulted in moving all particles away from the target.
The corresponding track is generated when he starts moving during the attack on
the goal (Figure 10.12(d-e)).

10.6 Conclusions

This Chapter discussed and classified techniques for tracking in multiple cameras
with partially overlapping fields of view. The Chapter covers the two major groups of
multi-view tracking algorithms, namely track-first and fuse-first approaches. Track-
first approaches employ tracking in each view as well as on the common view. Track-
ers in each view can also collaborate with each other to improve the target estimates.
Contrary to track-first methods, fuse-first approaches defer tracking until the fusion
of target localization information on the common view. Tracking is then performed
only once on the common view using multiple single-target trackers or multi-target
trackers. Tracking on the common view can be based on detections (when targets
are first localized prior to tracking) or on simultaneous detection and tracking. In
this context, the Chapter has presented a track-before-detect multi-target particle fil-
ter tracker where only pixels following a certain dynamic model are tracked, without
any explicit detection mechanisms. This approach not only eliminates the detection
step after data fusion, but also helps reducing false positives due to noise.
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Chapter 11
Shape from Photographs: A Multi-view Stereo
Pipeline

Carlos Hernández and George Vogiatzis

Abstract. Acquiring 3D shape from images is a classic problem in Computer Vi-
sion occupying researchers for at least 20 years. Only recently however have these
ideas matured enough to provide highly accurate results. We present a complete al-
gorithm to reconstruct 3D objects from images using the stereo correspondence cue.
The technique can be described as a pipeline of four basic building blocks: camera
calibration, image segmentation, photo-consistency estimation from images, and
surface extraction from photo-consistency. In this Chapter we will put more empha-
sis on the latter two: namely how to extract geometric information from a set of
photographs without explicit camera visibility, and how to combine different geom-
etry estimates in an optimal way.

11.1 Introduction

Digital modeling of 3D scenes is becoming increasingly popular and necessary for
a wide range of applications such as cultural heritage preservation, online shopping
or computer games. Although active methods [34, 49] remain one of the most pop-
ular techniques of acquiring shape, the high cost of the equipment, complexity, and
difficulties to capture color are three big disadvantages. As opposed to active tech-
niques, photograph-based techniques provide an efficient and easy way to acquire
shape and color by simply capturing a sequence of photographs of the object.

The goal of any shape-from-photographs algorithm can be described as “given a
set of input photographs, how to estimate a 3D shape that would generate the same
photographs, assuming same material, viewpoints and lighting conditions”. This
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Fig. 11.1 Image formation model. The image of a 3D scene depends on its geometry, material
properties, lighting conditions and pose of the viewer.

definition highlights the main difficulty of the problem: photographs are obtained
as a result of complex interactions between the geometry of the scene, the materials
of the scene, the lighting conditions and the viewpoints (see Figure 11.1). Hence
recovering the geometry just from photographs is not only a challenging problem
but also, in the general case, an ill-posed problem. It is challenging because lighting
and material properties play a very important role in the image formation model.
The same geometry with a different material or different lighting conditions can
give extremely different photographs. It is also an ill-posed problem because, in the
general case, different combinations of geometry, lighting and material can produce
exactly the same photographs, making it impossible to recover a single scene geom-
etry. The main recipe to make the problem well-posed is to use priors on the types of
surface that one expects. Traditionally the most common type of prior is the smooth
surface prior. However when dealing with special classes of objects such as human
faces or man-made objects, more evolved priors have been successfully used (e.g.,
human faces [54], buildings [53] or planes [15]).

As for the importance of materials and lighting conditions, it has been addressed
by restricting the class of materials a particular algorithm is designed for. As a
result, no single method is able to correctly reconstruct a general scene with any
type of materials and lighting conditions, leading to a plethora of specific algo-
rithms designed for specific types of objects and using specific cues: silhouettes [1],
texture [50], transparency [44], defocus [14], shading [51] or correspondence, both
sparse [3] and dense [40]. Historically the most successful cues have been silhou-
ettes, correspondence, and shading. Silhouettes and correspondences are the most
robust of all due to their invariance to illumination changes. The shading cue needs
a more controlled illumination environment, but it can produce breathtaking results,
which makes it widely used too. An example of an algorithm [23] exploiting the
shading cue is shown in Figure 11.2. The algorithm is designed to find a 3D shape
that produces the same shading as the original object. Interestingly, if the estimated
3D shape is then used to manufacture a replica from a different material (in Figure
11.2 the original is porcelain, while the replica is plaster) we can appreciate how the
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Fig. 11.2 Shading comparison of a porcelain figurine and a manufactured replica obtained
using [23]. The original porcelain figurine is shown on the left, while a manufactured replica
using the 3D model obtained using [23] is shown on the right. The material of the replica
is plaster. See how the replica perfectly imitates the shading component, even though the
materials are different.

replica still shows the same shading pattern. This is the desired behavior, since the
algorithm is specifically designed to imitate the shading, not to produce identical
photographies.

Among the vast literature available on image-based modeling techniques, recent
work on multi-view stereo (MVS) reconstruction has become a growing area of in-
terest in recent years with many differing techniques achieving a high degree of
accuracy [40]. These techniques are mainly based on the correspondence cue and
focus on producing 3D models from a sequence of calibrated images of an object,
where the intrinsic parameters and pose of the camera are known. In addition to
providing a taxonomy of methods, [40] also provides a quantitative analysis of per-
formance both in terms of accuracy and completeness. If we take a look at the top
performers, they may be loosely divided into two groups. The first group makes
use of techniques such as correspondence estimation, local region growing and fil-
tering to build up a “cloud of patches” [17, 19, 35, 36] that can be optionally made
dense using meshing algorithms such as Poisson reconstruction [4] or signed dis-
tance functions [12]. The second group makes use of some form of global optimiza-
tion strategy on a volumetric representation to extract a surface [18, 20, 24, 47, 48].
Under this second paradigm, a 3D cost volume is computed, and then a 3D surface
is extracted using tools previously developed for the 3D segmentation problem such
as deformable models [20], level-sets [13,39] or graph-cuts [6,16,24,33,41,46,48].

The way volumetric methods usually exploit photo-consistency is by building
a 3D map of photo-consistency where each 3D location gives an estimate of how
photo-consistent would be the reconstructed surface at that location. The only re-
quirement to compute this photo-consistency 3D map is that camera visibility is
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Fig. 11.3 Occlusion problem. In order to compute shape using photo-consistency, the camera
visibility is required. At the same time, in order to compute the camera visibility, the shape is
required.

available. Unfortunately, the geometry of the scene, i.e., what we try to compute,
is required to know which cameras see a 3D location (see Figure 11.3). In order to
break this dependency between visibility and shape, multi-view stereo algorithms
have taken different approaches. A majority of methods use the notion of “current
surface” in order to jointly optimize for camera visibility and shape. The visibility
computed from the reconstructed surface at iteration i− 1 is then used to compute
photo-consistency at iteration i, improving the reconstruction gradually [13]. Some
methods use a proxy of the true surface to estimate visibility, such as the visual
hull [24, 48]. Finally, a third category of methods tries to compute a “visibility-
independent” photo-consistency where occlusion is treated as an additional source
of image noise [7, 18, 20].

In this Chapter we will give further insight into a two-stage MVS volumetric
approach: namely how to extract a 3D volume of photo-consistency from a set of
photographs without explicit camera visibility in Section 11.3, and how to extract
a surface from the photo-consistency volume in a globally optimal way in Sec-
tion 11.4. The pipeline described in this Chapter is currently a top performer in the
recent evaluation of multi-view stereo algorithms by Seitz et al [40].

11.2 Multi-view Stereo Pipeline: From Photographs to 3D
Models

There exists a vast literature on multi-view stereo algorithms. Even though many
of the methods share the same basic architecture, they differ mainly in what type
of scenes or computation time they are optimized to work with. All the multi-view
stereo methods use the correspondence cue, which is usually exploited in the form
of a photo-consistency metric such as Normalized Cross Correlation, Sum of Square
Differences, or Mutual Information. Starting from the photo-consistency metric, dif-
ferent algorithms focus on different target applications such as outdoor scenes [45],
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Fig. 11.4 3D multi-view stereo pipeline. Image calibration, photo-consistency 3D map from
a set of photographs (Section 11.3) and surface extraction from a photo-consistency 3D map
(Section 11.4).

building reconstruction [11, 37, 38], interior buildings [15] or object reconstruc-
tion [40]. In this Chapter we describe a volumetric multi-view stereo approach that
is optimized for general scene reconstruction, with a preference for watertight sur-
faces. The pipeline (see Figure 11.4) can be described as:

• photograph acquisition,
• camera calibration,
• computing 3D photo-consistency from a set of calibrated photographs,
• extracting a 3D surface from a 3D map of photo-consistency.

In the following Sections we focus on how to extract 3D photo-consistency from
a set of photographs (see Section 11.3) and how to use the 3D photo-consistency
to extract a 3D surface (see Section 11.4). We leave the discussion on image ac-
quisition, e.g., real-time vs photograph-based, and on camera calibration for future
discussion (see [43] for an state-of-the-art system to calibrate a set of photographs).

11.3 Computing Photo-Consistency from a Set of Calibrated
Photographs

Given a set of images and their corresponding camera poses, we would like to extract
a 3D map of photo-consistency that tell us how photo-consistent is a particular 3D
location for a given set of visible cameras. The main difficulty of this step is how
to produce a volumetric measure of photo-consistency without the knowledge of
the set of cameras that should be used to compute photo-consistency for every 3D
location.

This problem is addressed in the proposed 3D modeling pipeline by following
a similar approach to [20] where photo-consistency is made robust to occlusion.
This approach computes a 3D map of photo-consistency as an aggregation of depth-
maps from different view-points (see Figure 11.5). The creation of such a photo-
consistency 3D map is similar in spirit to the space carving approach proposed by
[32]. However, by computing it as an aggregation of depth-maps, two advantages
appear:
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• depth-map computation using dense stereo is a very successful and active re-
search topic. It is an ideal building block to use since improvements in the field
of dense stereo can be directly beneficial to the multi-view stereo problem.

• Computation time is no longer dependent on the resolution of the 3D volume, but
on the number of cameras. It is also highly parallelizable, since each depth-map
is independently computed and no iterated visibility computation is required.

By building a 3D map of photo-consistency, the 3D reconstruction problem can
now be seen as a 3D segmentation task, allowing us to use algorithms previously
developed for 3D segmentation. These algorithms include deformable surfaces [20],
Poisson reconstruction [17], signed distance functions [18], Delaunay [7] or MRFs
[22, 29, 47].

A comparison of the importance of this stage in the reconstruction pipeline is
shown in Figure 11.6. The occlusion-robust photo-consistency of [20] (Figure 11.6
middle) clearly outperforms [48] (Figure 11.6 left). However, since this method
exploit the redundancy between images to be robust against occlusion, it suffers with
sparse data sets (see the missing vertical wall in Figure 11.6 middle). An improved
version of the occlusion-robust photo-consistency has been proposed in [8] that is
capable of better dealing with sparse data sets (see the improvement in the vertical
wall in Figure 11.6 right). We adopt [8] in our multi-view stereo pipeline as the

Fig. 11.5 Computing a photo-consistency volume as aggregation of depth-maps. From left to
right, three different stages of merging individual depth-maps into a single photo-consistency
volume. Right shows the final photo-consistency volume.

Fig. 11.6 Noise reduction in photo-consistency. Left: a slice of the photo-consistency used
in [48] contains falsely photo-consistent regions (e.g., near the corners). Middle: occlusion ro-
bust photo-consistency proposed in [20] significantly suppresses noise and the correct surface
can be accurately localized. One side of the vertical wall is missing due to heavy occlusions.
Right: occlusion robust photo-consistency proposed in [8]. The vertical wall is correctly rep-
resented.
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building block to compute individual depth-maps. In the remaining of this Section
we describe this algorithm more in detail.

11.3.1 Normalized Cross Correlation for Depth-Map
Computation

Normalized Cross Correlation (NCC) may be used to define an error metric for
matching two windows in different images. Figure 11.7 provides an example of
using NCC and epipolar geometry to perform window based matching. If we fix a
pixel location in a reference image, for each possible depth away from that pixel
we get a corresponding pixel in the second image. By computing the NCC between
windows centered in those two pixels we can define a matching score as a function
of depth for the reference pixel. We refer to this function as the correlation curve
of the pixel. A typical correlation curve will exhibit a very sharp peak at the correct
depth, and possibly a number of secondary peaks in other depths.

In [20] a depth-map is generated for each input image using this matching tech-
nique for neighboring images. For each pixel a number of correlation curves are
computed (using a few of the neighboring viewpoints) and the depth that gives rise
to most peaks in those curves is selected as the depth for that pixel. See [20] or [47]
for details. This process results in an independent depth estimate for each pixel.
These depth estimates will unavoidably contain a significant percentage of outliers
which must be dealt with in the subsequent step of [20] which is the volumetric
fusion of multiple depth-maps. In data sets with a large number of images this is
is overcome by the redundancy in the depth-estimates. The same surface point is
expected to be covered by many different depth-maps, some of which will have the
right depth estimate. In sparse data-sets however, each surface point may be seen by
as few as two or three depth-maps. It is therefore crucial that outliers are minimized
in the depth-map generation stage.

Fig. 11.7 Normalized Cross-Correlation based window matching.
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In order to efficiently exploit NCC as a photo-consistency measure, we need to
focus on the two most significant failure modes of NCC matching which are (1)
the presence of repetitions in the texture and (2) complete matching failure due to
occlusion, distortion and lack of texture. These are now described in more detail.

11.3.1.1 Repeating Texture

In general, there is no guarantee that the appearance of a patch is unique across the
surface of the object. This results in correlation curve peaks at incorrect depths due
to repeated texture — ‘false’ matches (Figure 11.7). A larger window size is more
likely to uniquely match to the true surface, reducing the number of false matches.
However the associated peak will be broader and less well localized, reducing the
accuracy of the depth estimate. The absolute value of the NCC score at a peak re-
flects how well the two windows match. Thus one might expect the peak with the
maximum score to be the true peak. Unfortunately, the appearance of false matches
due to repeated texture may result in false peaks having similar or even greater scores
than the true surface peak (Figure 11.8 (a)). To identify the correct peak, we pro-
pose to apply a spatial consistency constraint across neighboring pixels in the depth-
map. The underlying assumption is that if a peak corresponds to the true surface,
the neighboring pixels should have peaks at a similar depth. The exception to this is
occlusion boundaries, which are however catered for under the next failure mode.

11.3.1.2 Matching Failure

The second failure mode is comprised of occlusion errors, distorted image windows
(due to slanted surfaces) and lack of texture. In all of these cases, the correlation curve
will not exhibit a peak at the true depth of the surface, resulting in only false peaks.
Furthermore no spatial consistency can be enforced between the pixel in question
and its neighbors. In this situation we would like to acknowledge that the depth at
this pixel is unknown and should therefore offer no vote for the surface location.

In order to achieve these two goals we propose an optimization strategy which
makes use of a discrete label Markov Random Field (MRF). The MRF allows each
pixel to choose a depth corresponding to one of the top NCC peaks which is spa-
tially consistent with neighboring pixels or select an unknown label to indicate that
no such peak occurs and there is no correct depth estimate. This process means that
the returned depth map should only contain accurate depths, estimated with a high
degree of certainty, and an unknown label for pixels which have no certain associ-
ated depth. Figure 11.8 illustrates the optimization for a 1D example of neighboring
pixels across an occlusion boundary.

11.3.2 Depth Map Estimation

The proposed algorithm estimates the depth for each pixel in the input images. It
proceeds in two stages: Initially we extract a set of possible depth values for each
pixel using NCC as a matching metric. We then solve a multi-label discrete MRF
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Fig. 11.8 Illustration of the MRF optimization applied to neighboring pixels. Existing
method return the maximum peak which results in outliers in the depth estimate. The MRF
optimization corrects an outlier to the true surface peak (a) and introduces an unknown label
at the occlusion boundary (b)

model which yields the depth assignment for every pixel. One of the key features
in this process is the inclusion of an unknown state in the MRF model. This state is
selected when there is insufficient evidence for the correct depth to be found.

11.3.2.1 Candidate Depths

The input to the algorithm is a set of calibrated images I and the output is a set of
corresponding depth-mapsD. In the following, we describe how to acquire a depth-
map for a reference image Iref ∈ I. Let N(Iref) denote a set of ‘neighboring’ images
to Iref.

As proposed in Section 11.3.1, we wish to obtain a hypothesis set of possible
depths for each pixel pi ∈ Iref. Taking each pixel in turn, we project the epipolar ray
into a second image In ∈ Iref and sample the NCC matching score over a depth range
ρi(z). We compute the score using a rectangular window centered at the projected
image co-ordinates. One of the advantages of the multiple depth hypotheses is the
ability to use a smaller matching window to provide a faster computation and im-
proved localization of the surface. Once we have obtained the sampled ray we store
the top K peaks ρ̂i(zi,k),k ∈ [1,K] with the greatest NCC score for each pixel. De-
pending on the number of images available, and the width of the camera baseline,
this process may be repeated for other neighboring images. We then continue to the
optimization stage with a set of the best K possible depths, and their corresponding
NCC scores, over all neighboring images of Iref.
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11.3.2.2 MRF Formulation

At this stage a set of candidate depths ρ̂i(zi,k),k ∈ [1,K], for each pixel pi in the
reference image Iref has been assigned and we wish to determine the correct depth
map label for each pixel. As described in Section 11.3.1, we also make use of an
unknown state to account for the failure modes of NCC matching.

We model the problem as a discrete MRF where each each pixel has a set of up
to (K + 1) labels. The first K labels, fewer if an insufficient number of peaks were
found during the matching stage, correspond to the peaks in the NCC function and
have associated depths zi,k ∈ Zi and scores ρ̂i(zi,k). The final state is the unknown
state U . If the optimization returns this state, the pixel is not assigned a depth in
the final depth map. For each pixel we therefore form an augmented label set z′i,k ∈
{Zi,U} to include the unknown state.

The optimization assigns a label k̄i ∈ {1 ...K,U)} to each pixel pi. The cost func-
tion to be minimized consists of unary potentials for each pixel and pairwise in-
teractions over first order cliques. The cost of a labeling k̄ = {k̄i} is expressed as

E
(
k̄
)

=∑
i

φ(k̄i)+∑
(i, j)
ψ(k̄i, k̄ j) (11.1)

where i denotes a pixel and (i, j) denote neighboring pixels.
The following Sections discuss the formulation of the unary potentials φ(·) and

pairwise interactions ψ(·, ·).

11.3.2.3 Unary Potentials

The unary labeling cost is derived from the NCC score of the peak. We wish to pe-
nalize peaks with a lower matching score since they are more likely to correspond
to an incorrect match due to occlusion or noise. The NCC process will always re-
turn a score in the range [−1,1]. As is common practice, [47], we take an inverse
exponential function to map this score to a positive cost.

The unary cost for the unknown state is set to a constant value φU. This term
serves two purposes. Firstly it acts as a cut-off threshold for peaks with poor NCC
scores which have no pairwise support (neighboring peaks of similar depth). This
mostly accounts for peaks which are weakly matched due to distortion or noise.
Secondly it acts as a truncation on the depth disparity cost of the pairwise term. By
assigning a low pairwise cost between peaks and the unknown state, the constant
unary cost will effectively act as a threshold on the depth disparity to handle the
case of an occlusion boundary. Thus the final unary term is given by

φ
(
ki = x

)
=

⎧
⎪⎪⎨

⎪⎪⎩

λ e−β ρ̂i(zi,x) x ∈ [1 ...K]

φU x = U
. (11.2)
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11.3.2.4 Pairwise Interactions

The pairwise labeling cost is derived from the disparity in depths of neighboring
peaks. As has been previously mentioned, this term is not intended to provide a
strong regularization of the depth map. Instead it is used to try and determine the
correct peak, corresponding to the true surface location, out of the returned peaks.
We observe that the correct peak may not have the maximum score. Therefore if
there is strong agreement on depth between neighboring peaks, we take this to be
the true location of the surface.

When dealing with the depth disparity term we are really considering surface ori-
entation; whether the surface normal is pointing towards or away from the camera.
Under a perspective projection camera model it is therefore necessary to correct for
the absolute depth of the peaks rather than simply taking the difference in depth.
We perform this correction by dividing by the average depth of the two peaks. The
resulting pairwise term is given by

ψ
(
ki = x,k j = y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

∣∣zi,x− z j,y
∣∣

(zi,x + z j,y)
x ∈ [1 ...K] y ∈ [1 ...K]

ψU x = U y ∈ [1 ...K]

ψU x ∈ [1 ...K] y = U

0 x = U y = U

. (11.3)

We set ψU to a small value to encourage regions with many pixels labeled as un-
known to coalesce. This acts as a further stage of noise reduction since it prevents
spurious peaks with high scores but no surrounding support from appearing in re-
gions of occlusion.

11.3.2.5 Optimization

To obtain the final depth map we need to determine the optimal labeling k̂ such that

E( k̂ ) = arg min
(k̄)
∑

i

φ(k̄i)+∑
(i, j)
ψ(k̄i, k̄ j) . (11.4)

Since in the general case this is an NP-hard problem we must use an approximate
minimization algorithm to achieve a solution. The most well-known techniques for
solving problems of this nature are based on graph-cuts and belief propagation. In-
stead, we use the recently developed sequential tree-reweighted message passing
algorithm, termed TRW-S, of [30]. This has been shown to outperform belief prop-
agation and graph-cuts in tests on stereo matching using a discrete number of dis-
parity levels. In addition to minimizing the energy, the algorithm estimates a lower
bound on the energy at each iteration which is useful in checking for convergence
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and evaluating the performance of the algorithm. We should note, however, that we
are by no means guaranteed that the lower bound is attainable.

11.3.3 Photo-Consistency 3D Map from a Set of Depth-Maps

In order to create a 3D volume of photo-consistency from a set of depth-maps D
we “uplift” every depth-map in D into 3D using the camera calibration data. The
photo-consistency of a 3D point x is defined as the sum of the confidences of all
its nearby depth-map points. That is, given all the uplifted depth-map 3D points
di and their corresponding confidence values si, the photo-consistency C(x) can be
define as

C(x) = ∑
i:|x−di|<ε

si, (11.5)

where ε is a pre-defined ball size. If the photo-consistency is to be discretize using
a volumetric grid, then ε is simply the size of a voxel.

11.4 Extracting a 3D Surface from a 3D Map of
Photo-Consistency

Given a 3D map of photo-consistency, we would like to extract a 3D surface. As
mentioned earlier, by building a 3D map of photo-consistency, the reconstruction
problem can now be solved using 3D segmentation techniques. Out of all the seg-
mentation algorithms available, MRF approaches are very widely spread due to its
global convergence properties. They also allow the fusion of different cues in an
elegant way (e.g., see [29]). One of the main criticisms of MRFs applied to 3D seg-
mentation is the discretization artifacts originating from its discrete nature. In order
to remove them, the surface is usually further refined using a continuous formulation
such as level-sets [13,39] or deformable models [20], allowing for a finer control of
the regularization than the one provided by MRFs. In the remaining of this Section
we describe the MRF framework for multi-view stereo first proposed by [47] and
further extended in [22]. We also describe the deformable model by [20] that we use
as a refinement step.

11.4.1 Multi-view Stereo Using Multi-resolution Graph-Cuts

In [5] and subsequently in [2] it was shown how graph-cuts can optimally partition
2D or 3D space into ‘foreground’ and ‘background’ regions under any cost func-
tional consisting of the following two terms:

• Labeling cost or unary term: for every point in space there is a cost for it being
labeled ‘foreground’ or ‘background’.

• Discontinuity cost or binary term: for every point in space, there is a cost for
it lying on the boundary between the two partitions.
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Mathematically, the cost functional described above can be seen as the sum of a
weighted surface area of the boundary surface and a weighted volume of the ‘fore-
ground’ region as follows:

E(S) =
∫

S
ρ(x)dA +

∫

V (S)
σ(x)dV (11.6)

where S is the boundary between ‘foreground’ and ‘background’, V (S) denotes the
‘foreground’ volume enclosed by S and ρ and σ are two scalar density fields. The
application described in [5] was the problem of 2D/3D segmentation. In that domain
ρ(x) is defined as a function of the image intensity gradient and σ(x) as a function
of the image intensity itself or local image statistics.

In the framework of the multi-view stereo problem, this model balances two com-
peting terms: the first one minimizes a surface integral of photo-consistency (binary
term) while the second one maximizes the volume of regions with a high evidence
of being foreground (unary term). In the literature, it is usually the binary term that
is data driven, while the unary term is just used as a basic prior, e.g., as a ballooning
term [9]. In this work, we use the photo-consistency 3D map computed in Section
11.3 as the binary term. As for the unary term, very little work has been done to
obtain an appropriate ballooning term. In most of the previous work on volumetric
multi-view stereo the ballooning term is a very simplistic inflationary force that is
constant in the entire volume, i.e., σ(x) = −λ . This simple model tries to recover
thin structures by maximizing the volume inside the final surface. However, as a side
effect, it also fills in concavities behaving as a regularization force and smoothing
fine details.

When silhouettes of the object are available, an additional silhouette cue can be
used [24, 48], which provides the constraint that all points inside the object volume
must project inside the silhouettes of the object. Hence the silhouette cue can pro-
vide some foreground/background information by giving a very high likelihood of
being outside the object to 3D points that project outside the silhouettes. However
this ballooning term is not enough if thin structures or big concavities are present,
in which case the method fails (see Figure 11.16 middle row). Very recently, a data
driven, foreground/background model based on the concept of photo-flux has been
introduced [6]. However, the approach requires approximate knowledge of the ob-
ject surface orientation which in many cases is not readily available.

Ideally, the ballooning term should be linked to the notion of visibility, where
points that are not visible from any camera are considered to be inside the object or
foreground, and points that are visible from at least one camera are considered to be
outside the object or background. An intuition of how to obtain such a ballooning
term is found in a classic paper on depth sensor fusion by Curless and Levoy [12].
In that paper the authors fuse a set of depth sensors using signed distance functions.
This fusion relies on the basic principle that the space between the sensor and the
depth map should be empty or background, and the space after the depth map should
be considered as foreground. In this Section we follow the approach by [22] where
this visibility principle is generalized and computed in a probabilistic version by
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Fig. 11.9 Different terms used in the graph-cut algorithm to reconstruct the Gormley sculp-
ture of Figure 11.16. Left: multi-resolution grid used in the graph-cut algorithm. Middle:
Discontinuity cost ρ(x) (or photo-consistency). Right: labeling cost σ(x) (or intelligent bal-
looning).

calculating the “evidence of visibility” from a given set of depth-maps. The “evi-
dence of visibility” is then used as an intelligent ballooning term.

The outline of the full system is as follows:

• create a set of depth-maps from the set of input calibrated photographs,
• compute the photo-consistency 3D map from the set of depth-maps,
• derive the discontinuity cost ρ(x) from the photo-consistency 3D map,
• derive the labeling cost σ(x) from the set of depth-maps, i.e., use a data-aware

ballooning term computed from the evidence of visibility and,
• extract the final surface as the global solution of the min-cut problem given ρ(x)

and σ(x).

A real example of discontinuity and labeling costs is shown in Figure11.9. Note they
have been computed on a multi-resolution grid.

The algorithm just described can also be used when the input is no longer a set of
photographs but a set of depth-maps obtained from other types of sensor, e.g., laser
scanner. In this case, the system just skips the first step, since the depth-maps are
already available, and computes ρ and σ directly from the set of depth-maps given
as input.

11.4.2 Discontinuity Cost from a Set of Depth-Maps

Once we have computed a depth-map for every input image, we can build the photo-
consistency 3D map (x) for every 3D location x as explained in Section 11.3.3. Since
the graph-cut algorithm minimizes the discontinuity cost, and we want to maximize
the photo-consistency, we invert the discontinuity map ρ(x) using the exponential:

ρ(x) = e−μC(x), (11.7)

where μ is a very stable rate-of-decay parameter that converts photo-consistency
scores into a normalized discontinuity cost in the range [0,1].
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As a way of improving the big memory requirements of graph-cut methods, we
propose to store the values of ρ(x) in an octree partition of 3D space. The size
of the octree voxel will depend on the photo-consistency value C(x). Voxels with a
non-zero photo-consistency value will have the finest resolution while the remaining
space where C(x) = 0 will be partitioned using bigger voxels, the voxel size being
directly linked with the distance to the closest non-empty voxel (see Figure 11.9 for
an example of such an octree partition).

11.4.3 Graph Structure

To obtain a discrete solution to Equation (11.6) 3D space is quantized into voxels
using an octree partition. The graph nodes consist of all voxels whose centers are
within a certain bounding box that is guaranteed to contain the object. For the re-
sults presented here these nodes were connected with a regular 6-neighborhood grid.
Bigger neighborhood systems can be used which provide a better approximation to
the continuous functional (11.6), at the expense of using more memory to store the
graph. Now assume two voxels centered at xi and xj are neighbors. Let the smaller
voxel be size h×h×h. Then the weight of the edge joining the two corresponding
nodes on the graph will be [5]

wi j =
4πh2

3
ρ
(

xi + xj

2

)
(11.8)

where ρ(x) is the matching cost function defined in (11.7). In addition to these
weights between neighboring voxels there is also the ballooning force edge con-
necting every voxel to the source node with a constant weight of wb = λh3. Finally,
the outer voxels that are part of the bounding box (or the voxels outside the visual
hull if that is available) are connected with the sink with edges of infinite weight.
The configuration of the graph is shown in Figure 11.10 (right).

It is worth pointing out that the graph structure described above can be thought
of as a simple binary MRF. Variables correspond to voxels and can be labeled as
being inside or outside the scene. The unitary clique potential is just 0 if the voxel
is outside and wb if it is inside the scene while the pairwise potential between two
neighbor voxels i and j is equal to wi j if the voxels have opposite labels and 0
otherwise. As a binary MRF with a sub-modular energy function [31] it can be
solved exactly in polynomial time using Graph-cuts.

11.4.4 Labeling Cost from a Set of Depth-Maps

In the same way as the computation of the discontinuity cost, the ballooning term
σ(x) can be computed exclusively from a set of depth-maps. We propose to use
the probabilistic evidence for visibility proposed by [22] and described in Section
11.4.5 as an intelligent ballooning term. To do so, all we need is to choose a noise
model for the sensor given a depth-map D and its confidence C(D). We propose
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Fig. 11.10 Surface geometry and flow graph construction. On the left: a 2D slice of space
showing the bounding volume and the optimal surface inside it that is obtained by computing
the minimum cut of a weighted graph. Note that complicated topologies such as holes or
disjoint volumes can be represented by the model and recovered after optimization. On the
right: the correspondence of voxels with nodes in the graph. Each voxel is connected to its
neighbors as well as to the source.

to use a simplistic yet powerful model of a Gaussian contaminated with a uniform
distribution, i.e., an inlier model plus an outlier model. The inlier model is assumed
to be a Gaussian distribution centered around the true depth. The standard deviation
is considered to be a constant value that only depends on the image resolution and
camera baseline. The outlier ratio varies according to the confidence on the depth
estimation C(D), and in this work is just proportional to it. The labeling cost σ(x) at
a given location is just the evidence of visibility. The details of this calculation are
laid out in the next Section.

11.4.5 Probabilistic Fusion of Depth Sensors

This Section considers the problem of probabilistically fusing depth maps obtained
from N depth sensors. We will be using the following notation: The sensor data is a
set of N depth maps D = D1, . . . ,DN . A 3D point x can therefore be projected to a
pixel of the depth map of the i-th sensor and the corresponding depth measurement
at that pixel is written as Di(x) while D∗i (x) denotes the true depth of the 3D scene.
The measurement Di(x) contains some noise which is modeled probabilistically by
a pdf conditional on the real surface depth

p(Di(x) |D∗i (x)) . (11.9)

The depth of the point x away from the sensor is di(x) (see Figure 11.11). If x is
located on the 3D scene surface then ∀i D∗i (x) = di(x). If for a particular sensor i we
have D∗i (x) > di(x) this means that the sensor can see beyond x or in other words
that x is visible from the sensor. We denote this event by Vi(x). When the opposite
event Vi(x) is true, as in Figure 11.11, then x is said to be occluded from the sensor.
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of sensor i
estimate

D (x)i
*

D (x)i

3D surface
x

sensor i

d (x)i

Fig. 11.11 Sensor depth notation. Sensor i measures the depth of the scene along the optic
ray from the sensor to 3D point x. The depth of point x from sensor i is di(x) while the correct
depth of the scene along that ray is D∗i (x) and the sensor measurement is Di(x).

To fuse these measurements we consider a predicate V (x) which is read as: ‘x is
visible from at least one sensor’. More formally the predicate is defined as follows:

V (x)≡ ∃i Vi(x) (11.10)

V (x) acts as a proxy for the predicate we should ideally be examining which is ‘x
is outside the volume of the 3D scene’. However the sensors cannot provide any
evidence beyond D∗i (x) along the optic ray, the rest of the points on that ray being
occluded. If there are locations that are occluded from all sensors, no algorithm
could produce any evidence for these locations being inside or outside the volume.
In that sense therefore, V (x) is the strongest predicate one could hope for in an
optical system. An intuitive assumption made throughout this Section is that the
probability of V (x) depends only on the depth measurements of sensors along optic
rays that go through x. This means that most of the inference Equations will be
referring to a single point x, in which case the x argument can be safely removed
from the predicates.

The set of assumptions which we denote by J consists of the following:

• The probability distributions of the true depths of the scene D∗1(x) · · ·D∗N(x) and
also of the measurements D1(x) · · ·DN(x) are independent given J (see Figure
11.12 for justification).

• The probability distribution of of a sensor measurement given the scene depths
and all other measurements only depends on the surface depth it is measuring:

p
(
Di |D∗1 · · ·D∗N D j �=iJ

)
= p(Di | D∗i J ) (11.11)

We are interested in computing the evidence function under this set of independence
assumptions [26] for the visibility of the point given all the sensor measurements:

e(V | D1 · · ·DNJ ) = log
p(V |D1 · · ·DNJ )
p
(
V |D1 · · ·DNJ

) . (11.12)
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sensor 1

sensor 2

x

Fig. 11.12 Visibility from sensors. In the example shown above the point is not visible from
sensor 2 while it is visible from sensor 1, i.e., we have V1V 2. In the absence a surface prior
that does not favor geometries such as the one shown above, one can safely assume that there
is no probabilistic dependence between visibility or invisibility from any two sensors.

From J and rules of probability one can derive:

p
(
V | D1 · · ·DNJ

)
=

N

∏
i=1

p
(
V i |DiJ

)
. (11.13)

and

p
(
V i | DiJ

)
=

∫ di
0 p(Di | D∗i J ) p(D∗i | J )dD∗i∫ ∞
0 p(Di |D∗i J ) p(D∗i | J )dD∗i

(11.14)

As mentioned, the distributions p(Di |D∗i J ) encode our knowledge about the mea-
surement model. Reasonable choices would be the Gaussian distribution or a Gaus-
sian contaminated by an outlier process. Both of these approaches are evaluated in
Section 11.5. Another interesting option would be multi-modal distributions. The
prior p(D∗i | J ) encodes some geometric knowledge about the depths in the scene.
In all the examples presented a bounding volume was given so we assumed a uni-
form distribution of D∗i inside that volume.

If we write πi = p
(
V i | DiJ

)
then the evidence for visibility is given by:

e(V |D1 · · ·DNJ ) = log
1−π1 . . .πN

π1 . . .πN
. (11.15)

In the following Section we point out an interesting connection between the proba-
bilistic visibility approach and one of the classic methods in the Computer Graphics
literature for merging range data.

11.4.5.1 Signed Distance Functions

In [12], Curless and Levoy compute signed distance functions from each depth-
map (positive towards the camera and negative inside the scene) whose weighted
average is then stored in a 3D scalar field. So if wi(x) represents the confidence of
depth measurement Di(x) in the i-th sensor, the 3D scalar field they compute is:
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F(x) =
N

∑
i=1

wi(x)(di(x)−Di(x)) (11.16)

The zero level of F(x) is then computed using marching cubes. While this method
provides quite accurate results it has a drawback: For a set of depth maps around a
closed object, distances from opposite sides interfere with each other. To avoid this
effect [12] actually clamps the distance on either side of a depth map. The distance
must be left un-clamped far enough behind the depth map so that all distance func-
tions contribute to the zero-level crossing, but not too far so as to compromise the
reconstruction of thin structures. This limitation is due to the fact that the method
implicitly assumes that the surface has low relief or that there are no self-occlusions.
This can be expressed in several ways but perhaps the most intuitive is that every
optic ray from every sensor intersects the surface only once. This means that if a
point x is visible from at least one sensor then it must be visible from all sensors
(see Figure 11.12). Using this assumption, an analysis similar to the one in the pre-
vious Section leads to some a surprising insight into the algorithm. More precisely,
if we set the prior probability for visibility to p(V ) = 0.5 and assume the logistic
distribution for sensor noise, i.e.,

p(Di,D
∗
i | I) ∝ sech

(
D∗i −Di

2wi

)2

(11.17)

then the probabilistic evidence for V given all the data exactly corresponds to the
right hand side of (11.16). In other words, the sum of signed distance functions
of [12] can be seen as an accumulation of probabilistic evidence for visibility of
points in space, given a set of noisy measurements of the depth of the 3D scene.
This further reinforces the usefulness of probabilistic evidence for visibility.

11.4.6 Deformable Models

In a similar way to the MRF framework in Section 11.4.1, the deformable model
framework [27] allows us to search for an optimal surface S∗ that is a minimizer of
some user defined energy function E . In general, this energy will be non-convex with
possible local optima. In our case, the optimization problem is posed as follows: find
the surface S∗ of R

3 that minimizes the energy E(S) defined as:

E(S) = Eext(S)+ Eint(S), (11.18)

where Eext(S) is the external energy term related to the photo-consistency 3D map
and Eint(S) is the internal energy term or regularization term, i.e., a smooth prior
on the types of surfaces that we expect. Minimizing Eq. (11.18) means finding a
surface S∗ such that satisfies the Euler Equation:

∇E(S∗) = ∇Eext(S∗)+∇Eint(S∗) = 0. (11.19)
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Equation (11.19) establishes the equilibrium condition for an optimal solution and
can also be seen as a force balance Equation:

Fext(S∗)+ Fint(S∗) = 0 (11.20)

with Fext(S) = ∇Eext(S) and Fint(S) = ∇Eint(S). A solution to Eq. (11.20) can be
found by introducing a time variable t for the surface S and solving the following
differential Equation:

∂S
∂ t

= Fext(S)+ Fint(S). (11.21)

The discrete version becomes:

Sk+1 = Sk +Δ t(Fext(Sk)+ Fint(Sk)). (11.22)

Once we have sketched the energies that will drive the process, we need to make a
choice for the representation of the surface S. This representation defines the way the
deformation of the surface is performed at each iteration. We choose the triangular
mesh because of its simplicity and well known properties, but other options such as
implicit surface representations can be used [25].

To completely define the deformation framework, we need an initial value of S,
i.e., an initial surface S0 that will evolve under the different forces until convergence.
S0 can range from the most basic initial shape such as a bounding box, to a better
one like the visual hull, or an even better one such as the provided by the MRF
framework in Section 11.4.1.

In the following we describe how to derive the external force from the photo-
consistency 3D map and the internal force on a triangular mesh.

11.4.6.1 External Force: Octree-Based Gradient Vector Flow

The external force is directly linked to the photo-consistency 3D map previously
described in Section 11.3. We want this force to drive the surface to high photo-
consistency locations. However the volume of photo-consistency C(x) itself cannot
be used as a force to drive the deformable model. A typical force would be the
gradient of C(x), i.e., Fext(x) = ∇C(x). The main objection is that it is a very local
force defined only in the vicinity of the object surface. A better solution is to use a
gradient vector flow (GVF) field derived from the photo-consistency in order drive
the deformable model.

The GVF field was introduced by [52] as a way to overcome a difficult problem
of traditional deformable models: the capture range of the data term. This problem
is caused by the local definition of the force, and the absence of an information
propagation mechanism. To eliminate this drawback, and for all the forces derived
from the gradient of a scalar field, they proposed to generate a vector field force
that propagates the gradient information. The GVF of a scalar field f (x,y,z) : R

3 �→
R is defined as the vector field F = [u(x,y,z),v(x,y,z),w(x,y,z)] : R

3 �→ R
3 that

minimizes the following energy functional EGVF :
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EGV F =
∫
μ ||∇F||2 + ||F−∇ f ||2||∇ f ||2, (11.23)

where μ is the weight of the regularization term and ∇F = [∇u,∇v,∇w]. The solu-
tion to this minimization problem has to satisfy the Euler Equation:

μ∇2F− (F−∇ f )||∇ f ||2 = 0, (11.24)

where ∇2F = [∇2u,∇2v,∇2w] and ∇2 is the Laplacian operator. A numerical solu-
tion can be found by introducing a time variable t and solving the following differ-
ential Equation:

∂F
∂ t

= μ∇2F− (F−∇ f )||∇ f ||2. (11.25)

The GVF can be seen as the original gradient smoothed by the action of a Laplacian
operator. This smoothing action allows eliminating strong variations of the gradient
and, at the same time, propagating it. The degree of smoothing/propagation is con-
trolled by μ . If μ is zero, the GVF will be the original gradient, if μ is very large,
the GVF will be a constant field whose components are the mean of the gradient
components. Applied to the deformable model problem, the external force Fext is
then found as the solution of the following differential Equation:

∂Fext

∂ t
= μ∇2Fext − (Fext −∇C)||∇C||2, (11.26)

with μ always fixed to 0.1.

11.4.6.2 Mesh Control

The goal of the internal force is to regularize the effect of the external forces. Fol-
lowing the formulation by [10], we define the internal energy Eint of a surface S as
the sum of two terms penalizing for changes in the first and second order deriva-
tives of the surface. A local minimum of the energy Eint(S) satisfies the associated
Euler-Lagrange Equation, which gives us the following form for the internal force:

Fint(S) == γ1ΔS + γ2Δ2S, (11.27)

where Δ is the Laplacian operator and Δ2 is the biharmonic operator. The discrete
version of the Laplacian operator Δ̃ on a triangle mesh can be easily implemented
using the umbrella operator, i.e., the operator that tries to move a given vertex v of
the mesh to the center of gravity of its 1-ring neighborhoodN1(v):

Δ̃v =

(

∑
i∈N1(v)

vi

m

)

−v, (11.28)

where vi are the neighbors of v and m is the total number of these neighbors (va-
lence). Concerning the discrete version of the biharmonic operator Δ̃2, its derivation
is less trivial:
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Δ̃2v =
1

1 +∑i∈N1(v)
1

mmi

Δ̃(Δ̃v), (11.29)

The total internal force on a mesh vertex v is defined as:

Fint(v) = γ1Δ̃v + γ2Δ̃2v. (11.30)

Since the texture force Fext can sometimes be orthogonal to the surface of the snake,
we do not use the force Fext itself but its projection FN

ext onto the surface normal n:

FN
ext(v) = (n� ·Fext(v))n. (11.31)

This avoids problems of coherence in the force of neighbor points and helps the
internal force to keep a well-shaped surface.

The evolution process (Eq. 11.22) at the kth iteration can then be written as the
evolution of all the points of the mesh vi:

vk+1
i = vk

i +Δ t(FN
ext(v

k
i )+ Fint(vk

i )), (11.32)

where Δ t is the time step and α is the weight of the regularization term relative to
the external term. Equation (11.32) is iterated until convergence of all the points
of the mesh is achieved. The time step Δ t has to be chosen as a compromise be-
tween the stability of the process and the convergence time. An additional step of
remeshing is done at the end of each iteration in order to maintain a minimum and a
maximum distance between neighbor points of the mesh. This is obtained by a con-
trolled decimation and refinement of the mesh. The decimation is based on the edge
collapse operator and the refinement is based on the

√
3-subdivision scheme [28].

11.5 Experiments

11.5.1 Depth Map Evaluation

In order to solve the depth-map computation algorithm described in Section 11.3, we
use the TRW-S implementation of Kolmogorov [30]. The proposed implementation,
running on a 3.0 GHz machine with an nVidia Quadro graphics card, can evaluate
900 NCC depth slices in 20 seconds for the temple sequence (image resolution
640× 480). The TRW-S optimization has a typical run time of 20 seconds for the
same images.

For all the experiments we used the following parameter values: β = 1, λ = 1,
φU = 0.04 and ψU = 0.002. We used an NCC window size of 5×5.

Figure 11.13 illustrates the improvement of the method described in Section
11.3.2 over the voting schemes of [20, 47]. Figure 11.13 (b) shows the depth that
would be determined by simply taking the NCC peak with the greatest score. The
new method, implemented here with K = 9 peaks, is able to select the peak corre-
sponding to true surface peak from the ranked candidate peaks and Figure 11.13 (d)
illustrates that a significant proportion of the true surface peaks are not the absolute
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11.13 Results of the depth map estimation algorithm. Two neighboring images are com-
bined with the reference image (a). If we simply took the NCC peak with the maximum score,
as in [20], we would obtain (b). The result of the algorithm used in Section 11.3.2 (c) shows
a significant reduction in noise. We have corrected noisy estimates of the surface and the
unknown state has also been used to clearly denote occlusion boundaries and remove poorly
matched regions. The number of the correct surface peak returned, ranked by NCC score,
is displayed in (d) where dark red indicates the peak with the greatest score. The rendered
depth-map is shown in (e) along with the neighboring depth-map (f) with (g) showing the
two superimposed. The final reconstruction (h) for the sparse temple sequence (16 images)
of [40]

maximum. We also observe that pixels are correctly labeled with the unknown state
along occlusion boundaries and along areas such as the back wall of the temple and
edges of the pillars where the surface normal is oriented away from the camera.
Looking at the rendering of this depth-map and its neighbor, Figure 11.13(e-g), we
can observe that very few erroneous depths are recovered and we observe that the
combination of the two depths maps align and complement each other rather than
attempting to fill in the holes on the individual depth-maps which would impact the
subsequent multi-view stereo global optimization.

Figure 11.14 shows the results on the ‘cones’ dataset which forms part of
the standard dense stereo evaluations images and consists of a single stereo pair
with the left image shown. The depth-map again shows a high degree of detail
on textured surfaces and we correctly identify occlusion boundaries with the un-
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(a) (b) (c)

Fig. 11.14 Single view stereo results for the ‘Cones’ data set. The left image of the stereo
pair is shown in (a) with the recovered depth-map in (b), rendered in (c)

known state. Further more the algorithm also correctly textures the failure modes
of NCC by returning the unknown state in texture-less regions where the matching
fails to accurately localize the surface.

11.5.2 Multi-view Stereo Evaluation

In order to evaluate the improvement of the depth-map estimation algorithm of Sec-
tion 11.3.2 for multi-view stereo we ran the algorithm on the standard evaluation
‘temple’ dataset. The following table provides the accuracy and completeness mea-
sures of [40] against the ground-truth data for the object. In terms of both accuracy
and completeness the results provide a significant improvement in both the sparse
ring and ring datasets. In particular we observe that the results for the sparse ring
offer greater accuracy than the other algorithms [40] running on the ring sequence
(3 times as many images) with the exception of [20].

Accuracy / Completeness
Full (312 images) Ring (47 images) SparseRing (16 images)

proposed method 0.41mm / 99.9% 0.48mm / 99.4% 0.53mm / 98.6%

11.5.3 Digitizing Works of Art

The proposed pipeline has been used to reconstruct a bronze statue located in the
British museum in London from holiday photographs. The photographs were taken
by a hand held camera during normal visiting hours (see Figure 11.15). This led
to the statue being photographed with cluttered and changing background. The
camera motion was automatically recovered using a structure-from-motion tech-
nique [55]. The bottom row of Figure 11.15 shows the intermediate results ob-
tained while reconstructing the statue. From left to right, we show a rendering of
the 3D map of photo-consistency (Section 11.3), the initial surface obtained using
graph-cuts (Section 11.4.1), the refined surface obtained with the deformable model
(Section 11.4.6), and the same surface textured mapped from the input photographs
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using [20]. Note how, even with a noisy photo-consistency 3D volume, the graph-
cut solution is able to extract a very detailed surface. However, this surface has
discretization artifacts due to the binary nature of the graph-cut solution. These arti-
facts are completely removed when the surface is refined using a deformable model.
A similar refinement step is also used in [17].

We present a second sequence of 72 images of a “crouching man” sculpture made
of plaster by the modern sculptor Antony Gormley (see Figure 11.16 top).

Fig. 11.15 Statue of a young man, Mimaut Collection. Bronze, Roman copy of the 1st cen-
tury BC after a Greek original. From Ziphteh, near Tell Atrib (ancient Athribis), Egypt. The
sequence was acquired with a hand held camera in the British museum with no special re-
quirements. Background is extremely cluttered. The object of interest is both in the center of
the photographs and in focus. Top and middle rows show a few samples of the original se-
quence. Last row shows from left to right, 3D map of photo-consistency described in Section
11.3, surface extracted using graph-cuts (Section 11.4.1), surface refined using a deformable
model (Section 11.4.6) and surface textured-map from the original photographs using [20].
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Fig. 11.16 Comparison of the improvement obtained with the visibility-driven ballooning
term. Plaster model of a crouching man by Antony Gormley, 2006. Top: some of the input
images. Middle: views of reconstructed model using the technique of [48] with a constant
ballooning term. No constant ballooning factor is able to reconstruct correctly the feet and
the concavities at the same time. Bottom: views of reconstructed model using the intelligent
ballooning proposed by [22] and shown in Figure11.17 right.

The image resolution is 5 Mpix and the camera motion was recovered by standard
structure from motion techniques [55] and further refined using a silhouette-based
technique [21]. The object exhibits significant self-occlusions, a large concavity in
the chest and two thin legs which make it a very challenging test to validate the
new ballooning term. The first step in the reconstruction process is to compute a set
of depth-maps from the input images. This process is by far the most expensive of
the whole pipeline in terms of computation time. A single depth-map takes between
90 and 120 seconds, the overall computation time being close to 2 hours. Once
the depth-maps are computed, a 3D octree grid can be built (see Figure 11.9 left)
together with the discontinuity cost and the labeling cost (see Figure 11.9 middle
and right respectively). Because of the octree grid, we are able to use up to 10 levels
of resolution to compute the graph-cut, i.e., the equivalent of a regular grid of 10243

voxels. We show in Figure 11.16 some of the images used in the reconstruction (top),
the result using an implementation of [48] (middle) and the reconstruction result of
the proposed method (bottom). We can appreciate how the constant ballooning term
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Fig. 11.17 Comparison of two different inlier/outlier ratios for the depth sensor noise model.
Left: 3D location of one slice of the volume of “evidence of visibility”. Middle: the sensor
model is a pure Gaussian without any outlier model. Outliers “drill” tunnels in the visibility
volume. Right: the sensor model takes into account an outlier model. The visibility volume
is more robust against outliers while the concavities are still distinguishable.

introduced in [48] is unable to reconstruct correctly the feet and the concavities at
the same time. In order to recover thin structures such as the feet, the ballooning term
needs to be stronger. But even before the feet are fully recovered, the concavities
start to over inflate.

Finally we show in Figure 11.17 the effect of having an outlier component in
the noise model of the depth sensor when computing the volume of evidence of
visibility. The absence of an outlier model that is able to cope with noisy depth
estimates appears in the volume of visibility as tunnels “drilled” by the outliers (see
Figure 11.17 center). Adding an outlier term clearly reduces the tunneling effect
while preserving the concavities (see Figure 11.17 right).

11.6 Discussion

We have described a formulation to multi-view stereo that splits the problem into a
well defined pipeline of 3 building blocks: camera calibration, computation of a 3D
volume of photo-consistency and extraction of a surface from the photo-consistency
volume. In this Chapter we have particularly focus on how to compute a 3D volume
of photo-consistency, and how to extract a 3D surface from the photo-consistency
volume. The main advantages of such an approach are its simplicity and room for
improvement, since it uses two very standard off-the-shelf algorithms such as dense
stereo and 3D segmentation algorithms. The main disadvantage is the rather simplis-
tic photo-consistency metric, which leads to poor performance in challenging condi-
tions such as sparse set of photographs or poorly textured surfaces. These problems
are partially mitigated by explicitly accounting for the failure modes of the window
matching technique in Section 11.3. However, a more thorough matching technique
using a local planarity assumption such as [17] would also greatly improve results
in challenging scenes. The framework we describe in this Chapter has been widely
adopted by a variety of multi-view stereo algorithms [7, 8, 18, 20, 24, 29, 38, 42, 47].
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This can be mainly justified by the simplicity of the approach, but also by the flex-
ibility that it offers, e.g., when trying to optimally fuse the photo-consistency cue
with apparent contours as proposed in [29].

Appendix: Interpretation of Signed Distance Functions

Using the predicates we have already defined, the assumption of no self-occlusion
can be expressed by

V ↔∀i Vi. (11.33)

From (11.10) and (11.33) we see that if a point x is visible (invisible) from one
sensor it is visible (invisible) from all sensors, i.e., V1↔ ··· ↔VN ↔V . Let I stand
for the prior knowledge which includes the geometric description of the problem
and (11.33). Given (11.33) events D1 · · ·DN are independent under the knowledge
of V or V which means that using Bayes’ theorem we can write:

p(V |D1 · · ·DNI) =
p(V | I)∏N

i=1 p(Di |VI)
p(D1 · · ·DN | I) (11.34)

Obtaining the equivalent Equation for V and dividing with Equation (11.34) and
taking logs gives us:

e(V |D1 · · ·DNI) = e(V | I)+
N

∑
i=1

log
p(Di |VI)
p
(
Di |VI

) . (11.35)

By several applications of Bayes’ theorem we get:

e(V |D1 · · ·DNI) =
N

∑
i=1

log
αi

βi
− (N−1)e(V | I) . (11.36)

where αi =
∫ ∞

di
p(Di,D∗i | I)dD∗i and βi =

∫ di
0 p(Di,D∗i | I)dD∗i . We now set

e(V | I) = 0 and assume the noise model is given by the logistic function

p(Di,D
∗
i | I) ∝ sech

(
D∗i −Di

2wi

)2

. (11.37)

Using standard calculus one can obtain the following expression for the evidence

e(V |D1 · · ·DNI) =
N

∑
i=1

wi (di−Di) , (11.38)

equal to the average of the distance functions used in [12].
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Chapter 12
Practical 3D Reconstruction Based on
Photometric Stereo

George Vogiatzis and Carlos Hernández

Abstract. Photometric Stereo is a powerful image based 3D reconstruction tech-
nique that has recently been used to obtain very high quality reconstructions. How-
ever, in its classic form, Photometric Stereo suffers from two main limitations:
Firstly, one needs to obtain images of the 3D scene under multiple different il-
luminations. As a result the 3D scene needs to remain static during illumination
changes, which prohibits the reconstruction of deforming objects. Secondly, the im-
ages obtained must be from a single viewpoint. This leads to depth-map based 2.5
reconstructions, instead of full 3D surfaces. The aim of this Chapter is to show how
these limitations can be alleviated, leading to the derivation of two practical 3D ac-
quisition systems: The first one, based on the powerful Coloured Light Photometric
Stereo method can be used to reconstruct moving objects such as cloth or human
faces. The second, permits the complete 3D reconstruction of challenging objects
such as porcelain vases. In addition to algorithmic details, the Chapter pays atten-
tion to practical issues such as setup calibration, detection and correction of self and
cast shadows. We provide several evaluation experiments as well as reconstruction
results.

12.1 Introduction

Photometric stereo is a well established 3D reconstruction technique based on the
powerful shading cue. A sequence of images (typically three or more) of a 3D scene
are obtained from the same viewpoint and under varying illumination. From the
intensity variation in each pixel one can estimate the local orientation of the surface
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that projects onto that pixel. By integrating all these surface orientations, a very
detailed estimate of the surface geometry can be obtained. Photometric stereo can
also provide the surface reflectance properties as part of the same process.

The first reference for photometric stereo is [51]. In early papers (see [22]) the
surface reflectance model was constrained to be Lambertian, an assumption that
considerably simplifies calculations. Photometric stereo was subsequently relaxed
to non-Lambertian reflectance models (e.g., [30, 32, 34]) but the full potential of
the technique was only recently demonstrated with works such as [14, 29, 44] that
obtained reconstructions of spectacular accuracy. Furthermore, in recent work [33]
photometric stereo was shown to be able to significantly refine reconstruction results
obtained by 3D laser range scanners. However, the method in its classic formulation
suffers from some key limitations

• To obtain a reconstruction one must photograph the object in the same pose sev-
eral times under changing illumination. This makes it very difficult to reconstruct
a moving or deforming object during its motion.

• All photographs must be taken from a single view-point. This restricts recon-
structions to 2.5D depth-maps and precludes the full reconstruction in-the-round
of a closed 3D surface.

In this Chapter we describe two advances in the state-of-the-art of Photometric
stereo that alleviate these two limitations. Firstly we show how a coloured-light
photometric stereo variant can be used to obtain independent reconstructions of the
object with each photograph obtained. This makes it trivial to use the technique to
reconstruct deforming objects such as moving cloth or faces. Second, we describe an
elegant generalisation of photometric-stereo to multiple view-points. This method
can obtain very accurate closed-surface reconstructions of objects in-the-round such
as sculpture.

12.2 Photometric Stereo with Coloured Light

To motivate this work, consider the problem of obtaining a dynamic 3D model of a
deforming object such as cloth or a human face. This topic has received consider-
able attention in recent literature [38, 39, 41, 48, 49]. The complexity underlying the
simplest of cloth and facial motions motivates capturing geometry and motion data
from the real world.

Existing algorithms one might employ for capturing detailed 3D models of de-
forming objects include multiple view stereo [42], photometric stereo [20, 46], and
laser based methods [28]. However, most of these techniques require that the subject
stand still during the acquisition process, or move slowly [31].

This Section describes a practical technique for acquiring complex motion data
from real objects such as cloth or a face. The required setup consists of an or-
dinary video camera and three coloured light sources (see Figure 12.1). The key
observation is that in an environment where red, green, and blue light is emitted
from different directions, a Lambertian surface will reflect each of those colours



12 Practical 3D Reconstruction Based on Photometric Stereo 315

Fig. 12.1 Setup. A schematic representation of our multispectral setup.

simultaneously without any mixing of the frequencies [37]. The quantities of red,
green and blue light reflected are a linear function of the surface normal direction. A
colour camera can measure these quantities, from which an estimate of the surface
normal direction can be obtained. By applying this technique to a video sequence of
a deforming object, one can obtain a sequence of normal maps for that object which
are integrated to produce a sequence of depth-maps. In essence this technique can be
seen as a variant of classic three-source photometric stereo. We will now give a brief
overview of that technique and then explain how it is related to coloured photomet-
ric stereo. We will then explain in more detail some of the practical aspects of the
method including calibration, how it compares numerically to ordinary photometric
stereo, and how to cope with shadows.

12.2.1 Classic Three-Source Photometric Stereo

In classic three-source photometric stereo we are given three images of a scene,
taken from the same viewpoint, and illuminated by three distant light sources. The
light sources emit the same light frequency spectrum from three different non-
coplanar directions. We will assume an orthographic camera (with infinite focal
length) for simplicity, even though the extension to the more realistic projective
case is straightforward [43]. In the case of orthographic projection one can align the
world coordinate system so that the xy plane coincides with the image plane while
the z axis corresponds to the viewing direction. The surface in front of the camera
can then be parametrized as a height function z(x,y). If ∇z is the gradient of the
function wit respect to x and y, one can define the vector

n =
1

√
1 + |∇z|2

(
∇z
−1

)

that is locally normal to the surface at (x,y). We can also define a 2D projection
operator P [x] = (x1/x3, x2/x3) so that it follows that ∇z = P [n].
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Now for i = 1, . . . ,3 let ci(x,y) denote the pixel intensity of pixel (x,y) in the
i-th image. We assume that, in the i-th image, the surface point (x,y,z(x,y))� is
illuminated by a distant light source whose direction is denoted by the vector li
and whose spectral distribution is Ei (λ ). We also assume that the surface point
absorbs incoming light of various wavelengths according to the reflectance function
R(x,y,λ ). Finally, let the response of the camera sensor at each wavelength be given
by S (λ ) . Then the pixel intensity ci(x,y) is given by [37]

ci(x,y) =
(

l�i n
)∫

E (λ )R(x,y,λ )S (λ )dλ . (12.1)

The value of this integral is known as the surface albedo ρ so that (12.1) becomes a
simple dot product

ci = l�i ρn. (12.2)

Photometric stereo methods use the linear constraints of (12.2) to solve for ρn in
a least squares sense. From this they obtain the gradient of the height function
∇z =P [ρn] which is then integrated to produce the function z itself. In three-source
photometric stereo, when the point is not in shadow with respect to all three lights,
we measure three positive intensities ci, each of which gives a constraint on ρn.

If we write L =
[

l1 l2 l3
]�

and c =
[

c1 c2 c3
]�

then the system has exactly one
solution which is given by

ρn = L−1c. (12.3)

12.2.2 Multi-spectral Sources and Sensors

This Section provides the link between classic three source photometric stereo and
the multi-spectral/multi-sensor case. We follow the exposition of [25]. In colour
photometric stereo each of the three camera sensors (Red, Green and Blue) can be
seen as a linear combination of the three images of a classic photometric stereo
acquisition. To see this, consider the pixel intensity of pixel (x,y) for the i-th sensor,
given by

ci(x,y) =∑
j

(
l�j n

)∫
E j (λ )R(x,y,λ )Si (λ )dλ . (12.4)

Note that as opposed to Eq. (12.1) the sensor sensitivity Si and spectral distribution
E j are different per sensor and per light source respectively. To be able to determine
a unique mapping between RGB values and normal orientation we need to assume a
monochromatic surface. We therefore require that R(x,y,λ ) = ρ (x,y)α (λ ). Where
ρ (x,y) is the monochromatic albedo of the surface point and α (λ ) is the character-
istic chromaticity of the material. Let

vi j =
∫

E j (λ )α (λ )Si (λ )dλ

and
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v j =
(

v1 j v2 j v3 j
)�

.

Then the vector of the three sensor responses at a pixel is given by

c =
[

v1 v2 v3
][

l1 l2 l3
]�ρn.

Essentially each vector v j provides the response measured by the three sensors when
a unit of light from source j is received by the camera. If matrix

[
v1 v2 v3

]
is

known, then we can compute

ĉ =
[

v1 v2 v3
]−1 c.

The values of ĉ can be treated in exactly the same way as the three gray-scale images
of Section 12.2.1. The next Section describes a simple process for calibrating colour
photometric stereo.

12.2.3 Calibration

In [19] the authors propose a simple scheme for calibrating objects that can be flat-
tened and placed on a planar board. The system detects special patterns on the board,
from which it can estimate its orientation relative to the camera. By measuring the
RGB response corresponding to each orientation of the material they estimate the
entire matrix

M =
[

v1 v2 v3
][

l1 l2 l3
]�

that links the normals to RGB triplets. Here we propose a two-step process. Firstly,
we use a mirror sphere to estimate light directions l1, l2and l3. This is a standard
process which has been applied in a number of photometric stereo methods. Sec-
ondly, we capture three sequences of the object moving in front of the camera. In
each sequence, we switch on only one of the three lights at a time. In the absence
of noise and if the monochromatic assumption was satisfied, the RGB triplets we
acquired would be multiples of v j when light j was switched on. We therefore do a
least squares fit to the three sets of RGB to get the directions of v1, v2 and v3. To
get the relative lengths of the three vectors we can use the ratios of the lengths of
the RGB vectors. The length of v jis set to the maximum length in RGB space, of all
the triplets when light j was switched on.

12.2.4 Comparison with Photometric Stereo

To evaluate the accuracy of the per-frame depth-map estimation we reconstructed
a static object (a jacket) using classic photometric stereo with three images each
taken under different illumination. The same object was reconstructed using a sin-
gle image, captured under simultaneous illumination by three coloured lights, using
our technique. Figure 12.2 shows the two reconstructions side by side. The results
look very similar and the average distance between the two meshes is only 1.4% of
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(a) (b) (c) (d)

(e) (f)

Fig. 12.2 Comparison with photometric stereo. (a-c) show three grayscale images captured
by a digital camera, each taken under a different illumination, providing the input to a clas-
sic photometric stereo reconstruction [51] shown in (d). (e) shows a frame from a jacket
sequence, where the same object is illuminated simultaneously by three different coloured
lights. Our algorithm only uses one such frame to generate the surface mesh shown in (f).
Note that both algorithms give very similar results, but only the new one (bottom row) can be
applied to video since only one frame is required to obtain a reconstruction. As a quantitative
comparison, the average error between both reconstructions is only 1.4% of the bounding
box diagonal.

the bounding box diagonal. It is worth noting that even though photometric stereo
achieves comparable accuracy, it cannot be used on a non-static object whose shape
will change while the three different images are captured. Since our method only
uses one image, it is suitable for obtaining frame-by-frame reconstructions of a de-
forming object.

12.2.5 The Problem of Shadows

One of the most important challenges for all photometric reconstruction methods
is the frequent presence of shadows in an image. No matter how careful the ar-
rangement of the light sources, cast or self shadows are an almost unavoidable phe-
nomenon, especially in objects with complex geometries. This Section examines in
detail the phenomenon of shadows in photometric stereo with three light sources.

Shadows in photometric stereo have been the topic of a number of papers
[2, 6, 11]. Most papers assume we are given four or more images under four dif-
ferent illuminations. This over-determines the local surface orientation and albedo
(3 degrees of freedom) which implies that we can use the residual of some least
squares solution, to determine whether shadowing has occurred. However when we
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are only given three images, as in the case of colour photometric stereo there are no
spare constraints against which to test our hypothesis. Therefore the problem of de-
tecting shadows becomes more difficult. Furthermore, when a pixel is in shadow in
one of the three images most methods simply discard it. Here we show how one can
use the remaining two image intensity measurements to estimate the surface geom-
etry inside the shadow region. Using an argument based purely on counting degrees
of freedom and Equations, this is theoretically possible since we need to estimate 2
DOF per pixel (depth and albedo) and we have two independent measurements per
pixel. The solution is based on enforcing (1) integrability of the gradient field, as
well as (2) smoothness in the recovered shape.

Consider a three-source photometric stereo setup where one point is in shadow,
say in the 3-rd image. This implies that the image measurement of c3 cannot be used
as a constraint. Since each equation (12.2) describes a 3D plane, the intersection of
the two remaining constraints is a 3D line given by

(c2l1− c1l2)�n = 0, (12.5)

or equivalently
P [(c2l1− c1l2)]�∇z = 1. (12.6)

This Equation was derived by [50] and used for stereo matching in a two-view pho-
tometric stereo setup, and subsequently used by [12] to perform uncalibrated pho-
tometric stereo and by [7] in their proof of non-existence of a general illumination
invariant. Here we show how this Equation can be used in a least squares framework
to perform three-source photometric stereo in the presence of shadows.

12.2.5.1 Integrating in the Shadowed Regions

According to the image constraints and assuming no noise in the data, we can have
one of the following three cases:

1. The surface point is in shadow in two or more images. In this case there is no
constraint in ∇z from the images.

2. The surface point is not in shadow in any of the three images. In this case ∇z
coincides with P [L−1c

]
.

3. The surface point is in shadow in exactly one image, say the 3rd. In this case ∇z
must lie on the line P [(c2l1− c1l2)]�∇z = 1. We call this line the shadow line of
the shaded pixel.

Now in the presence of noise in the data c, cases 2 and 3 above do not hold exactly as
P [L−1c

]
and P [(c2l1− c1l2)] are corrupted. The estimation of the unknown height

function z becomes a least squares problem with two different data terms, one for
pixels under shadow and another one for pixels seen in all three images.

Under noise in the image data c, the 2D point P [L−1c
]

and 2D line P [(c2l1−
c1l2)] are not perfectly consistent with the model. For non-shadowed pixels, the
difference between model and data can be measured by the point-to-point square
difference term
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E = |∇z−P [L−1c
] |2. (12.7)

In the case of the shadowed pixels we have a point-to-line square difference term

E(3) = (P [(c2l1− c1l2)]�∇z−1)2. (12.8)

Assume we are given a labelling of pixels into all the possible types of shadow. Let
S contain all non-shadowed pixels while Si contains pixels shaded in the i-th image.
Our cost function becomes

∑
j∈S
E j + ∑

j∈S1

E(1)
j + ∑

j∈S2

E(2)
j + ∑

j∈S3

E(3)
j

which is a set of quadratic terms in ∇z and thus z. Finding the minimum of this
quantity is a simple unconstrained linear least squares problem that can be solved
using a sparse linear solver such as UMFPACK [9].

Figure 12.3 shows this idea applied in practise on synthetic data. It provides
evidence that in its present form the problem is ill-conditioned, especially in larger
shadowed regions (see Figure 12.3c). The following Section sheds more light on
this and describes our proposed remedy (see figures 12.3d and 12.3e).

12.2.5.2 Regularisation in the Shadow Regions

The linear least squares optimisation framework described in Section 12.2.1 when
executed in practise shows signs of ill-posedness in the presence of noise. This is
demonstrated in the synthetic case of figure 12.3 where three images of a sphere
have been generated. Three shadow regions corresponding to each of the three lights
have been introduced. Even though the overall shape of the object is accurately cap-
tured, some characteristic ‘scratch’ artifacts are observed. These are caused by the
point-to-line distances which do not introduce enough constraints in the cost func-
tion. The point∇z can move significantly in a direction parallel to the corresponding
shadow line only to gain a slight decrease in the overall cost. This results in vio-
lent perturbations in the resulting height function that manifest themselves as deep
scratches that follow the 2D flow P [(c2l1− c1l2)].

If we push the analysis even further and have one of the images completely shad-
owed, we then fall back to the two-source photometric stereo setup shown in Figure
12.4. When only two images are available without shadow (see Figure 12.4 top),
after factoring out the albedo (12.5) we can only determine the depth gradient along
specific directions for each pixel P [(c2l1− c1l2)]. If we look at these directions as
a vector field, then depth can be computed independently along each streamline
or “characteristic curve” (see Figure 12.4b). In other words, there is no constraint
between the depth of two characteristic curves and one pixel can only belong to
a single characteristic curve. After integrating every characteristic curve indepen-
dently (see Figure 12.4c), we obtain a possible reconstruction that is different from
the original true shape, but that perfectly agrees with the given constraints. In order
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to choose one among the possible solutions, some type of regularisation is needed
(see Figure 12.4d and 12.4e).

Regularisation can be seen as a prior on the type of solutions we expect. In order
to better understand what types of prior might be relevant, let us restate the problem
assumptions. We have a three source photometric stereo setup with varying albedo,
and one of the lights is occluded, i.e., we locally have a two source photometric
stereo setup with varying albedo. From the theory we know that in the photometric
stereo setup, the albedo and the geometry are coupled, and if there is not enough
data available, both are indistinguishable. This coupling exactly indicates what two
types of priors one might use: either a shape smoothness prior favouring smooth
shapes or an albedo smoothness prior favouring smooth albedo. The exact type of
prior used should depend on the type of data captured. A good regularising criterion
must satisfy two main requirements:

• The scheme must be consistent with the linear least squares framework. No non-
linear constraints can be enforced.

• It must suppress noise while preserving as much of the data as possible.

In the following we describe two different regularisation schemes that favour
smooth shapes while preserving the data as much as possible. Their main differ-
ence is that one favours shapes with a smooth shading under the occluded light,
while the second one favours smooth shapes. The second scheme can be used in a
two-source photometric stereo setup as it is independent of the occluded third light
(see Figure 12.4).

Shading Regularisation

In this approach we want to impose regularisation on the collected shading intensi-
ties, thereby ”inpainting” [4] the shadowed regions in order to recover the intensi-
ties we would collect had the light not been occluded and the albedo been constant.
From Equation (12.3) we can parametrize the shadow line as a function of the miss-
ing shading μ

∇z = P
⎡

⎣L−1

⎛

⎝
c1

c2

0

⎞

⎠+ μρL−1

⎛

⎝
0
0
1

⎞

⎠

⎤

⎦ (12.9)

This parameter represents the value l�3 n would have, had the point not been in
shadow in the 3-rd image. In order to simplify the notation of (12.9) we define
matrix M = L−1 where vector mi is the ith column of matrix M, giving

∇z = P [c1m1 + c2m2 + μρm3] (12.10)

We observe that, because c1 and c2 already encode the albedo ρ in, Equation (12.10)
is in fact independent of ρ due to the projection operator. We also note that ∇z is
not a linear function of μ meaning that we cannot directly regularise the missing
shading μ in a linear least squares framework. However, we can perform a change
of variables and introduce a new variable w per shaded pixel
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w(μ) =
e�3 (c1m1 + c2m2)

e�3 (c1m1 + c2m2)+ μρe�3 m3
, (12.11)

with e3 = (0,0,1)�. The new variable w still specifies a location along the shadow
line of that pixel so Equation (12.10) simply becomes

∇z = wP [c1m1 + c2m2]+ (1−w)P [m3] (12.12)

The term is now quadratic with respect to ∇z and w, allowing us to regularise the
solution in a meaningful way by using first order |∇w| and second order |∇2w|
regularisation terms on w. The point-to-line distance of (12.8) can now be replaced
with the following point-to-point distance

E (3) = |∇z−wP [c1m1 + c2m2]− (1−w)P [m3]|2+
α|∇w|2 +β |∇2w|2, (12.13)

where α and β are regularisation weights. As w is a proxy for μ , this corresponds to
introducing smoothness in the product l�3 n. We can therefore eliminate the scratch
artifacts while letting n have variability in the directions perpendicular to l3.

Shape Regularisation

The most common way of regularising shape is using first-order and second-order
regularisation terms. In the context of a height field, this is achieved by minimis-
ing the norm of the gradient of the height field |∇z| or minimising the Laplacian
of the height field |∇2z|. The latter is known to have good noise reduction prop-
erties and to produce smooth well behaved surfaces with low curvature. However,
both the gradient and the Laplacian are isotropic so they tend to indiscriminately
smooth along all possible directions. See [1] for a good discussion of anisotropic
alternatives to Laplacian filtering in the context of gradient field integration. In the
context of our problem, there is an efficient way of achieving anisotropic versions of
both the first-order and the second-order regularisation terms. From Equation (12.6),
we observe that the shape is totally unconstrained along perpendicular directions to
P [(c2l1− c1l2)]. The directions P [(c2l1− c1l2)] define characteristic curves, visu-
ally showing the constraint induced by the two lights (see Figure 12.4b). Therefore
a good way of regularising the shape is along perpendicular directions u to the char-
acteristic curves, i.e., u�P [(c2l1− c1l2)] = 0. The point-to-line distance term (12.8)
is therefore extended with anisotropic first and second order regularisation terms

E(3) = (P [(c2l1− c1l2)]�∇z−1)2

+α|u�∇z|2 +β |u�H(z)u|2, (12.14)

α and β being the regularisation weights and H(z) the Hessian matrix.
Throughout all of the previous discussion we have assumed knowledge of la-

belling of pixels according to shadows. The next Section discusses how we propose
to segment shadow regions in the image.
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(a)

(b) (c)

(d) (e)

Fig. 12.3 Regularization schemes. This is an experiment on a synthetic sphere designed to
validate the proposed regularisation constraints. (a) shows the input images where the black
rectangles correspond to occluded regions.This object is illuminated from three directions
and the three white regions are occluded in the corresponding images. Middle row shows the
photometric stereo solution without shadows (b) and the effect of optimising the surface with
no regularisation at all,i.e., just using integrability (c). Note the characteristic ‘scratch’ arti-
facts. (d) shows the resulting surface after adding a shading regularisation term with optimal
values α = 6.1,β = 0. (e) shows the resulting surface after adding a shape regularisation term
with optimal values α = 0.08,β = 0.46. See Section 12.2.5.2 for a description of the algo-
rithms. The artifacts have been suppressed while the data has been preserved unsmoothed.
Note how both regularisation schemes give almost identical results.
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(a)

(b) (c)

(d) (e)

Fig. 12.4 Two-source varying albedo photometric stereo setup. In this experiment we show a
two-source photometric stereo with varying albedo. (a) shows the two input images. (b) shows
the characteristic curves obtained by plotting seeds following the 2D flow P [(c2l1−c1l2)]. (c)
shows one possible reconstruction of the characteristic curves. Note how each characteristic
curve is reconstructed independently as there is no constraint “across” the curves. Bottom
row shows how a successful reconstruction can be achieved when using the proposed shape
regularisation scheme with first order regularisation α = 0.1,β = 0 (d) and second order
regularisation α = 0,β = 0.5 (e).
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(a) (b) (c) (d)

Fig. 12.5 Shadow segmentation. This experiment shows the result of our shadow region seg-
mentation. From left to right, the three input images (a), (b), (c) and the mask with the result-
ing shadow labels (d).

12.2.5.3 Segmenting Shadowed Regions

It is known [2] that in photometric stereo with four or more images one can detect
shadows by computing the scaled normal that satisfies the constraints in a least
squares sense. If the residual of this least squares calculation is high, this implies
that the pixel is either in a shadow or in a highlight. With three images however
this becomes impossible as the three constraints can always be satisfied exactly,
leaving a residual of zero. Recently, [6] proposed a graph-cut based scheme for
labelling shadows in photometric stereo with four or more images. Based on the
constraint residual, they compute a cost for assigning a particular shadow label to
each pixel. This cost is then regularised in an MRF framework where neighbouring
pixels are encouraged to have similar shadow labels. We would like to use a similar
framework but we must supply a different cost for assigning a shadow label. The
basic characteristic of a shadow region is that pixel intensities inside it are dark.
However this can also occur because of dark surface albedo. To remove the albedo
factor we propose to divide pixel intensities with the magnitude of the intensity
vector c. Our cost for deciding that a pixel is occluded in the i-th image is ci/‖c‖.
This still leaves the possibility that we mistakenly classify a pixel whose normal is
nearly perpendicular to the i-th illumination direction li. However in that case the
pixel is close to being in a self shadow so the risk from misclassifying it is small.
The cost for assigning a pixel to the non-shadowed set is given by

1√
3
−min

i

ci

‖c‖ .

We regularise these costs in an MRF framework under a Potts model pairwise
cost [15]. This assigns a fixed penalty for two neighboring pixels being given dif-
ferent shadow labels. The MRF is optimised using the Tree Reweighted message
passing algorithm [24]. Figure 12.5 shows an example of applying our shadow
region segmentation to a real image.
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12.2.6 Facial Capture Experiments

We have performed a first experiment with video data of a white-painted face illumi-
nated by three coloured lights in a similar way as in [19]. The setup is calibrated as
described in Section 12.2.3. Figure 12.5 shows the three input images obtained from
a single colour frame. The automatic shadow segmentation results in Figure 12.5d
demonstrate the accuracy of the shadow detection algorithm in Section 12.2.5.3.
Figure 12.6 shows three different frames of the video sequence without taking the

Fig. 12.6 Face sequence. Three different frames out of a 1000 frame face video sequence.
The left column shows the reconstruction when shadows are ignored. Middle and right
columns show the corresponding reconstructions after detecting and compensating for the
shadow regions using the shading regularisation scheme (middle) and shape regularisation
scheme (right). Note the improvement in the regions around the nose reconstruction where
strong cast shadows appear (see arrows). Note also how the shape regularisation scheme fails
to reconstruct some boundary regions (see circles). This behaviour is further explained in
Figure 12.7.
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shadows into account (left) and after detecting and adding the shading constraints
(middle) and the shape constraints (right). We can appreciate how the nose recon-
struction is dramatically improved when correctly processing the shadows (see ar-
rows), even though only two lights are visible in the shadowed regions. We also note
that the shape regularisation scheme fails in some boundary regions (see circles in
right column) leading to an incorrect reconstruction of the side of the face. This is
caused by the Laplacian regularisation term. The term suffers from an ambiguity of
two possible solutions, concave or convex, both solutions having similar energy and
the data term being unable to disambiguate them.

Figure 12.7 shows a more detailed analysis of the bottom face in figure 12.6.
The solution of the shape regularisation scheme agrees with the constraints (Figure
12.7 left) even though it picks the incorrect “concave” solution instead of the con-
vex solution. This is confirmed by looking at the shade rendering of the face under
the occluded light (see Figure 12.7 middle and right). The shading regularisation
scheme shows a smooth surface (Figure 12.7 middle) while the shape regularisation
scheme (Figure 12.7 right) shows a clear artifact. This is expected since the shading
regularisation does exactly that, it finds the surface that minimises the variation of
the shading when rendering the shape with the occluded light. The extra knowledge
of the missing light is exactly what the shape regularisation scheme is missing in
order to make the right decision and choose the convex solution.

A second facial performance capture using [19] is shown in figure 12.8. This
time the face is not painted, which implies an assumption of constant albedo chro-
maticity. In order to cope with shadows, the shading regularisation scheme is used.
We observe that, despite the constant albedo deviations, e.g., the lips, the system
successfully captures fine details such as skin wrinkles.

Fig. 12.7 Failure case of the shape regularisation scheme. The figures correspond to the
bottom face in Figure12.6. Left shows characteristic curves describing the light occlusion on
the right-side of the face. Middle and right show the rendering of the shape under the occluded
light using the shading regularisation scheme (middle) and the shape regularisation scheme
(right). The failure of the shape regularisation scheme is clearly visible at the top right of the
image.
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Fig. 12.8 Face sequence. Acquisition of 3D facial expressions using [19] and the shadow
processing technique described in this paper. The shadows are processed with the shading
regularisation scheme. The full video sequence has more than a 1000 frames reconstructed.

12.2.7 Related Work

The animation and capture of deformations is being explored in many fields, so
we provide a general explanation of their relevance in the context of the proposed
technique.

Texture Cues

White and Forsyth [48, 49] and Scholz et al [41] have presented work on using
texture cues to perform the specific task of cloth capture. Their methods are based
on printing a special pattern on a piece of cloth and capturing video sequences of
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that cloth in motion. The estimation of the cloth geometry is based on the observed
deformations of the known pattern as well as texture cues extracted from the video
sequence. The techniques produce results of very good quality but are ultimately
limited by the requirement of printing a special pattern on the cloth which may not
be practical for a variety of situations. In the present work, we avoid this requirement
while producing detailed results.

Pilet et al [38] and Salzmann et al [39] proposed a slightly more flexible approach
where one uses the pattern already printed in a piece of cloth, by presenting it to the
system in a flattened state. Using sparse feature matching the pattern can be detected
in each frame of a video sequence. Due to the fact that detection occurs separately in
each frame, the method is quite robust to occlusions. However the presented results
dealt only with minor non-rigid deformations.

Photometric Stereo

Photometric stereo [51] is one of the most successful techniques for surface recon-
struction from images. It works by observing how changing illumination alters the
image intensity of points throughout the object surface. These changes reveal the
local surface orientations. This field of local surface orientations can then be inte-
grated into a 3D shape. State of the art photometric-stereo allows uncalibrated light
estimation [29, 46] as well as multiple unknown albedos [14, 21]. As mentioned
previously, the main difficulty with applying photometric stereo to deforming ob-
jects lies in the requirement of changing the light source direction for each captured
frame, while the object remains still. This is quite impractical when reconstructing
the 3D geometry of a moving object. We have shown how multispectral lighting al-
lows one to essentially capture three images (each with a different light direction)
in a single snapshot, thus making per-frame photometric reconstruction possible.

Coloured and Structured Lights

The earliest related works are also the most relevant to the method presented in this
Chapter. The first reference to multispectral light for photometric stereo dates back
20 years to the work of Petrov [37]. Ten years later, Kontsevich et al [25] actually
demonstrated an algorithm for calibrating unknown color light sources and at the
same time computing the surface normals of an object in the scene. They verified
the theory on synthetic data and an image of a real egg. We use a simplified approach
for calibration and the same orientation-from-colour cue to eventually convert video
of un-textured cloth into a single surface with complex changing deformations.

More recently, the parameters needed to simulate realistic cloth dynamics were
measured in video by projecting explicitly structured horizontal light stripes onto
material samples under static and dynamic conditions [5]. This system measured
the edges and silhouette mismatches present in real vs. simulated sequences. Many
researchers have utilised structured lighting, and Gu et al [16] even used colour, al-
though their method is mostly for storing and manipulating acquired surface models
of shading and geometry. Weise et al [47] is the current state-of-the-art for structured
light and has some advantages in terms of absolute 3D depth, but at the expense of
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both spatial and temporal sampling, e.g., 17 Hz compared to our 60 Hz (or faster,
limited only by the camera used). Zhang et al [53] is a nice complete system also
with structured lighting that applies to face models and videos. Sand et aldispensed
with special lighting but leveraged motion capture and automatic silhouettes to de-
form a human body template [40]. Our technique, on the other hand, expects no
prior models of the cloth being reconstructed.

Shadows in Photometric Stereo

One way of characterising photometric stereo methods is based on the number of
different lights required and how they cope with highlights or shadows.

A minimum of 3 lights is required to perform photometric stereo with no ex-
tra assumptions [51], and only 2 lights with the additional assumption of constant
albedo [35]. Whenever more lights are available, the light visibility problem be-
comes a labelling problem where each point on the surface has to be assigned to the
correct set of lights in order to successfully reconstruct the surface.

For objects with constant albedo, [11] used a Rank-2 constraint to detect surfaces
illuminated by only 2 lights. In the case of general albedo, every point on the surface
has to be visible in at least 3 images. A 4-light photometric stereo setup was pro-
posed in [34], where light occlusion was detected by checking the consistency of all
the possible triplets of lights. The work by [52] was able to detect light occlusions
in a 4-light setup and simply treat them as outliers. In [2] a similar algorithm to [34]
is presented using a 4-light coloured photometric stereo approach.

In the recent work by [6], an iterative MRF formulation is proposed for detecting
light occlusion and exploiting it as a surface integration constraint. However, the
algorithm also requires a minimum of 4 lights and is targeted for setups with a large
number of lights.

12.3 Multi-view Photometric Stereo

The motivation for the method presented in this Section is digital archiving of 3D
objects, a key area of interest in cultural heritage preservation. While laser range
scanning is one of the most popular techniques, it has a number of drawbacks,
namely the need for specialised, expensive hardware and also the requirement of
exclusive access to an object for significant periods of time. Also, for a large class
of shiny objects such as porcelain or glazed ceramics, 3D scanning with lasers is
challenging [27]. Recovering 3D shape from photographic images is an efficient,
cost effective way to generate accurate 3D scans of objects.

Several solutions have been proposed for this long studied problem. When the
object is well textured its shape can be obtained by densely matching pixel locations
across multiple images and triangulating (see previous Chapter or [42] for a recent
review), however the results typically exhibit high frequency noise.

For non textured objects photometric stereo is a well established alternative
that can provide very detailed reconstructions. One of the biggest drawbacks
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Fig. 12.9 Our acquisition setup. The object is rotated on a turntable in front of a camera
and a point light-source. A sequence of images are captured while the light-source changes
position between consecutive frames. No knowledge of the camera or light-source positions
is assumed.

of photometric stereo methods is the fact that they can only provide single-
viewpoint, 2.5D depth-map reconstructions.

In this Section we describe an elegant and practical method for acquiring a com-
plete and accurate 3D model from a number of images taken around the object,
captured under changing light conditions (see Figure 12.9). The changing (but oth-
erwise unknown) illumination conditions uncover the fine geometric detail of the
object surface which is obtained by a generalised photometric stereo scheme.

The object’s reflectance is assumed to follow Lambert’s law, i.e., points on the
surface keep their appearance constant irrespective of viewpoint. The method can
however tolerate isolated specular highlights, typically observed in glazed surfaces
such as porcelain. We also assume that a single, distant light-source illuminates
the object and that it can be changed arbitrarily between image captures. Finally, it
is assumed that the object can be segmented from the background and silhouettes
extracted automatically.

12.3.1 Related Work

The method presented here draws inspiration from the recent work of [29] where
the authors explore the possibility of using photometric stereo with images from
multiple views, when correspondence between views is not initially known. Picking
an arbitrary viewpoint as a reference image, a depth-map with respect to that view
serves as the source of approximate correspondences between frames. This depth-
map is initialised from a Delaunay triangulation of sparse 3D features located on
the surface. Using this depth-map, their algorithm performs a photometric stereo
computation obtaining normal directions for each depth-map location. When these
normals are integrated, the resulting depth-map is closer to the true surface than



332 G. Vogiatzis and C. Hernández

the original. The paper presents high quality reconstructions and gives a theoretical
argument justifying the convergence of the scheme. The method however relies on
the existence of distinct features on the object surface which are tracked to obtain
camera motion and initialise the depth-map. In the class of textureless objects we
are considering, it may be impossible to locate such surface features and indeed our
method has no such requirement. Also the surface representation is still depth-map
based and consequently the models produced are 2.5D.

A similar approach of extending photometric stereo to multiple views and more
complex BRDFs was presented in [36] with the limitation of almost planar 2.5D
reconstructed surfaces. Our method is based on the same fundamental principle of
bootstrapping photometric stereo with approximate correspondences, but we use
a general volumetric framework which allows complete 3D reconstructions from
multiple views.

Quite related to this idea is the work of [3] and [33] where photometric stereo in-
formation is combined with 3D range scan data. In [3] the photometric information
is simply used as a normal map texture for visualisation purposes. In [33], a very
good initial approximation to the object surface is obtained using range scanning
technology, which however is shown to suffer from high-frequency noise. By apply-
ing a fully calibrated 2.5D photometric stereo technique, normal maps are estimated
which are then integrated to produce an improved, almost noiseless surface geom-
etry. Our acquisition technique is different from [33] in the following respects: (1)
we only use standard photographic images and simple light sources, (2) our method
is fully uncalibrated- all necessary information is extracted from the object’s con-
tours and (3) we completely avoid the time consuming and error prone process of
merging 2.5D range scans.

The use of the silhouette cue is inspired by the work of [45] where a scheme
for the recovery of illumination information, surface reflectance and geometry is
described. The algorithm described makes use of frontier points, a geometrical fea-
ture of the object obtained by the silhouettes. Frontier points are points of the visual
hull where two contour generators intersect and hence are guaranteed to be on the
object surface. Furthermore the local surface orientation is known at these points,
which makes them suitable for various photometric computations such as extrac-
tion of reflectance and illumination information. Our method generalises the idea
by examining a much richer superset of frontier points which is the set of contour
generator points. We overcome the difficulty of localising contour generators by a
robust random sampling strategy. The price we pay is that a considerably simpler
reflectance model must be used.

Although solving a different type of problem, the work of [23] is also highly re-
lated mainly because the class of objects addressed is similar to ours. While the en-
ergy term defined and optimised in their paper bears strong similarity to ours, their
reconstruction setup keeps the lights fixed with respect to the object so in fact an
entirely different problem is solved and hence a performance comparison between
the two techniques is difficult. However the results presented in [23] at first glance
seem to be lacking in detail especially in concavities, while our technique consid-
erably improves on the visual hull. Finally, there is a growing volume of work on
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using specularities for calibrating photometric stereo (see [10] for a detailed litera-
ture survey). This is an example of a different cue used for performing uncalibrated
photometric stereo on objects of the same class as the one considered here. However
methods proposed have so far only been concerned with the fixed view case.

12.3.2 Algorithm

The method presented here reconstructs the complete geometry of 3D objects by
exploiting the powerful silhouette and shading cues. We modify classic photomet-
ric stereo and cast it in a multi-view framework where the camera is allowed to
circumnavigate the object and illumination is allowed to vary. Firstly, the object’s
silhouettes are used to recover camera motion using the technique presented in [18],
and via a novel robust estimation scheme they allow us to accurately estimate the
light directions and intensities in every image.

Secondly, the object surface, which is parametrised by a mesh and initialised
from the visual hull, is evolved until its predicted appearance matches the captured
images. The advantages of our approach are the following:

• It is fully uncalibrated: no light or camera pose calibration object needs to be
present in the scene. Both camera pose and illumination are estimated from the
object’s silhouettes.

• The full 3D geometry of a complex, textureless multi-albedo object is accurately
recovered, something not previously possible by any other method.

• It is practical and efficient as evidenced by our simple acquisition setup.

12.3.2.1 Robust Estimation of Light-Sources from the Visual Hull

For an image of a lambertian object with varying albedo, under a single distant light
source, and assuming no self-occlusion, each surface point projects to a point of
intensity given by:

c = lTρn, (12.15)

where l is a 3D vector directed towards the light-source and scaled by the light-
source intensity, n is the surface unit normal at the object location and ρ is the
albedo at that location. Equation (12.15) provides a single constraint on the three
coordinates of the product ρ l. Then, given three points x1,x2,x3 with an unknown
but equal albedo ρ , their normals (non co-planar) n1,n2,n3, and the correspond-
ing three image intensities i1, i2, i3, we can construct three such Equations that can
uniquely determine ρ l as

ρ l = [n1 n2 n3]
−1

⎡

⎣
c1

c2

c3

⎤

⎦ . (12.16)
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Fig. 12.10 The visual hull for light estimation. The figure shows a 2D example of an object
which is photographed from two viewpoints. The visual hull (gray quadrilateral) is the largest
volume that projects inside the silhouettes of the object. While the surface of the visual hull is
generally quite far from the true object surface, there is a set of points where the two surfaces
are tangent and moreover, share the same local orientation (these points are denoted here
with the four dots and arrows). In the full 3D case, three points with their surface normals,
are enough to fix an illumination hypothesis, against which all other points can be tested for
agreement. This suggests a robust random sampling scheme, described in the main text, via
which the correct illumination can be obtained.

For multiple images, these same three points can provide the light directions and
intensities in each image up to a global unknown scale factor ρ . The problem is
then how to obtain three such points.

Our approach is to use the powerful silhouette cue. The observation on which this
is based is the following: when the images have been calibrated for camera motion,
the object’s silhouettes allow the construction of the visual hull [26], which is de-
fined as the maximal volume that projects inside the silhouettes (see Figure 12.10).
A fundamental property of the visual hull is that its surface coincides with the real
surface of the object along a set of 3D curves, one for each silhouette, known as
contour generators [8]. Furthermore, for all points on those curves, the surface ori-
entation of the visual hull surface is equal to the orientation of the object surface.
Therefore if we could detect points on the visual hull that belong to contour gener-
ators and have equal albedo, we could use their surface normal directions and pro-
jected intensities to estimate lighting. Unfortunately contour generator points with
equal albedo cannot be directly identified within the set of all points of the visual
hull. Light estimation however can be viewed as robust model fitting where the in-
liers are the contour generator points of some constant albedo and the outliers are the
rest of the visual hull points. The albedo of the inliers will be the dominant albedo,
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Fig. 12.11 Shape of illumination consensus. For different illumination configurations we
have plotted the consensus as a function of light direction. For each direction consensus
has been maximised with respect to light intensity. Red values denote big consensus. The
shape of the maxima of this cost function as well as the lack of local optima implies a stable
optimisation problem. Top: 6 different illuminations of a single albedo object. Bottom: 4
different illuminations of a multi-albedo object. Although the presence of multiple albedos
degrades the quality of the light estimation (the peak is broader), it is still a clear single
optimum.

i.e., the colour of the majority of the contour generator points. One can expect that
the outliers do not generate consensus in favour of any particular illumination model
while the inliers do so in favour of the correct model. This observation motivates us
to use a robust RANSAC scheme [13] to separate inliers from outliers and estimate
illumination direction and intensity. The scheme can be summarised as follows:

1. Pick three points on the visual hull and from their image intensities and normals
estimate an illumination hypothesis for ρ l.

2. Every point on the visual hull xm will now vote for this hypothesis if its predicted
image intensity is within a given threshold τ of the observed image intensity cm,
i.e., ∣

∣ρ lT ·nm− cm
∣
∣< τ, (12.17)

where τ allows for quantisation errors, image noise, etc.
3. Repeat 1 and 2 a set number of times always keeping the illumination hypothesis

with the largest number of votes.
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The shape of the actual function being optimised by the RANSAC scheme de-
scribed above was explored graphically for a porcelain object in Figure 12.11. The
number of points voting for a light direction (maximised with respect to light inten-
sity) was plotted as a 2D function of latitude and longitude of the light direction.
These graphical representations, obtained for six different illuminations, show the
lack of local optima and the presence of clearly defined maxima.

This simple method can also be extended in the case where the illumination is
kept fixed with respect to the camera for K frames. This corresponds to K illumi-
nation vectors R1l, . . . ,RK l where Rk are 3×3 rotation matrices that rotate the fixed
illumination vector l with respect to the object. In that case a point on the visual hull
xm with normal nm will vote for l if it is visible in the k-th image where its intensity
is cm,k and ∣

∣ρ(Rkl)T ·nm− cm,k

∣
∣< τ. (12.18)

A point is allowed to vote more than once if it is visible in more than one image.
Even though in theory the single image case suffices for independently recovering

illumination in each image, in our acquisition setup light can be kept fixed over
more than one frame. This allows us to use the extended scheme in order to further
improve our estimates. A performance comparison between the single view and
the multiple view case is provided through simulations with synthetic data in the
experiments Section.

An interesting and very useful byproduct of the robust RANSAC scheme is that
any deviations from our assumptions of a Lambertian surface of uniform albedo
are rejected as outliers. This provides the light estimation algorithm with a degree
of tolerance to sources of error such as highlights or local albedo variations. The
next Section describes the second part of the algorithm which uses the estimated
illumination directions and intensities to recover the object surface.

12.3.2.2 Fusing Multiple Views

Having estimated the distant light-source directions and intensities for each image
our goal is to find a closed 3D surface that is photometrically consistent with the im-
ages and the estimated illumination, i.e., its predicted appearance by the lambertian
model and the estimated illumination matches the images captured. To achieve this
we use an optimisation approach where a cost function penalising the discrepancy
between images and predicted appearance is minimised.

Our algorithm optimises a surface S that is represented as a mesh with vertices
x1, . . . ,xM, triangular faces f = 1, . . . ,F and corresponding albedo ρ1, . . . ,ρF . We
denote by nf and A f the mesh normal and the surface area at face f . Also let c f ,k be
the intensity of face f on image k and let the set V f be the set of images (subset of
{1, . . . ,K}) from which face f is visible. The light direction and light intensity of
the k-th image will be denoted by lk.

We use a scheme similar to the ones used in [23,46] where the authors introduce
a decoupling between the mesh normals n1 . . .nF, and the direction vectors used
in the Lambertian model Equation. We call these new direction vectors v1 . . .vF
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photometric normals, and they are independent of the mesh normals. The minimi-
sation cost is then composed of two terms, where the first term Ev links the photo-
metric normals to the observed image intensities:

Ev
(
v1,...,F,ρ1,...,F ;x1,...,M

)
=

F

∑
f=1
∑

k∈V f

(
lkTρ f vf− c f ,k

)2
, (12.19)

and the second term Em brings the mesh normals close to the photometric normals
through the following Equation:

Em
(
x1,...,M;v1,...,F

)
=

F

∑
f=1

‖nf−vf‖2 A f . (12.20)

This decoupled energy function is optimised by iterating the following two steps:

1. Photometric normal optimisation. The vertex locations are kept fixed while
Ev is optimised with respect to the photometric normals and albedos. This is
achieved by solving the following independent minimisation problems for each
face f :

vf,ρ f = argmin
v,ρ ∑

k∈V f

(
lk

Tρv− c f ,k
)2

s.t. ||v||= 1. (12.21)

2. Vertex optimisation. The photometric normals are kept fixed while Em is opti-
mised with respect to the vertex locations using gradient descent.

These two steps are interleaved until convergence which takes about 20 steps for
the sequences we experimented with. Typically each integration phase takes about
100 gradient descent iterations. Note that for the first step described above, i.e.,
evolving the mesh until the surface normals converge to some set of target orien-
tations, a variety of solutions is possible. A slightly different solution to the same
geometric optimisation problem has recently been proposed in [33], where the tar-
get orientations are assigned to each vertex, rather than each face as we do here.
That formulation lends itself to a closed-form solution with respect to the position
of a single vertex. An iteration of these local vertex displacements yields the desired
convergence. As both formulations offer similar performance, the choice between
them should be made depending on whether the target orientations are given on a
per vertex or per facet basis.

The visibility map V f is a set of images in which we can measure the intensity
of face f . It excludes images in which face f is occluded using the current surface
estimate as the occluding volume as well as images where face f lies in shadow.
Shadows are detected by a simple thresholding mechanism, i.e., face f is assumed
to be in shadow in image k if c f ,k < τshadow where τshadow is a sufficiently low
intensity threshold. Due to the inclusion of a significant number of viewpoints in
V f , (normally at least 4) the system is quite robust to the choice of τshadow. For all
the experiments presented here, the value τshadow = 5 was used (for intensities in the
range 0-255). As for the highlights, we also define a threshold τhighlight such as a face
f is assumed to be on a highlight in image k if c f ,k > τhighlight . In order to compute
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Capture images of object.
Extract silhouettes.
Recover camera motion and compute visual hull.
Estimate light directions and intensities in every image (Section 3.2.1).
Initialise a mesh with vertices x1 . . .xM and faces f = 1 . . .F to the object’s visual hull.
while mesh-not-converged do

Optimise Ev with respect to v1 . . .vF (19).
Optimise Em with respect to x1 . . .xM (20).

end while

Fig. 12.12 The multi-view reconstruction algorithm.

τhighlight need to distinguish between single albedo objects and multi-albedo objects.
Single albedo objects are easily handled since the light calibration step gives us the
light intensity. Hence, under the Lambertian assumption, no point on the surface
can produce an intensity higher than the light intensity, i.e., τhighlight = ||ρ l||. In the
multi-albedo case ρ can also vary, and it is likely that the albedo picked by the robust
light estimation algorithm is not the brightest one present on the object. As a result,
we prefer to use a global threshold to segment the highlights on the images. It is
worth noting that this approach works for the porcelain objects because highlights
are very strong and localised, so just a simple sensor saturation test is enough to find
them, i.e., τhighlight = 254.

12.3.3 Experiments

The setup used to acquire the 3D model of the object is quite simple (see Figure
12.9). It consists of a turntable, onto which the object is mounted, a 60W halogen
lamp and a digital camera. The object rotates on the turntable and 36 images (i.e.,
a constant angle step of 10 degrees) of the object are captured by the camera while
the position of the lamp is changed. In our experiments we have used three dif-
ferent light positions which means that the position of the lamp was changed after
twelve, and again after twenty-four frames. The distant light source assumptions are
satisfied if an object of 15cm extent is placed 3-4m away from the light.

The algorithm was tested on five challenging shiny objects, two porcelain fig-
urines shown in Figure 12.13, two fine relief Chinese Qing-dynasty porcelain vases
shown in Figure 12.14, and one textured Jade Buddha figurine in Figure 12.15.
Thirty-six 3456×2304 images of each of the objects were captured under three dif-
ferent illuminations. The object silhouettes were extracted by intensity threshold-
ing and were used to estimate camera motion and construct the visual hull (second
row of Figure 12.13). The visual hull was processed by the robust light estima-
tion scheme of Section 12.3.2.1 to recover the distance light-source directions and
intensities in each image. The photometric stereo scheme of Section 12.3.2.2 was
then applied. The results in Figure 12.14 show reconstructions of porcelain vases
with very fine relief. The reconstructed relief (especially for the vase on the right)
is less than a millimetre while their height is approximately 15-20 cm. Figure 12.15
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(a) Input images.

(b) Visual hull reconstruction.

(c) Our results.

(d) Close up views of porcelains.

(e) Close up views of reconstructed models.

Fig. 12.13 Reconstructing porcelain figurines. Two porcelain figurines reconstructed from a
sequence of 36 images each (some of the input images are shown in (a)). The object moves
in front of the camera and illumination (a 60W halogen lamp) changes direction twice during
the image capture process. (b) shows the results of a visual hull reconstruction while (c)
shows the results of our algorithm. (d) and (e) show detailed views of the figurines and the
reconstructed models respectively.
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Fig. 12.14 Reconstructing Chinese Qing-dynasty porcelain vases.Top: sample of input im-
ages. Bottom: proposed method. The resulting surface captures all the fine details present in
the images, even in the presence of strong highlights.

shows a detailed reconstruction of a Buddha figurine made of polished Jade. This
object is actually textured, which implies classic stereo algorithms could be applied.
Using the camera motion information and the captured images, a state-of-the-art
multi-view stereo algorithm [17] was executed. The results are shown in the second
row of Figure 12.15. It is evident that, while the low frequency component of the
geometry of the figurine is correctly recovered, the high frequency detail obtained
by [17] is noisy. The reconstructed model appears bumpy even though the actual
object is quite smooth. Our results do not exhibit surface noise while capturing very
fine details such as surface cracks.

To quantitatively analyse the performance of the multi-view photometric stereo
scheme presented here with ground truth, an experiment on a synthetic scene was
performed (Figure 12.16). A 3D model of a sculpture (digitised via a different tech-
nique) was rendered from 36 viewpoints with uniform albedo and using the Lam-
bertian reflectance model. The 36 frames were split into three sets of 12 and within
each set the single distant illumination source was held constant. Silhouettes were
extracted from the images and the visual hull was constructed. This was then used
to estimate the illumination direction and intensity as described in Section 12.3.2.1.
In 1000 runs of the illumination estimation method for the synthetic scene, the mean
light direction estimate was 0.75 degrees away from the true direction with a stan-
dard deviation of 0.41 degrees. The model obtained by our algorithm was compared
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Fig. 12.15 Reconstructing coloured jade. Left: Two input images. Middle: model obtained
by multi-view stereo method from [17]. Right: proposed method. The resulting surface is
filtered from noise while new high frequency geometry is revealed (note the reconstructed
surface cracks in the middle of the figurine’s back).

to the ground truth surface by measuring the distance of each point on our model
from the closest point in the ground truth model. This distance was found to be
about 0.5mm when the length of the biggest diagonal of the bounding box volume
was defined to be 1m. Even though this result was obtained from perfect noiseless
images it is quite significant since it implies that any loss of accuracy can only be
attributed to the violations of our assumptions rather than the optimisation meth-
ods themselves. Many traditional multi-view stereo methods would not be able to
achieve this due to the strong regularisation that must be imposed on the surface.
By contrast our method requires no regularisation when faced with perfect noiseless
images.

Finally, we investigated the effect of the number of frames during which
illumination is held constant with respect to the camera frame. Our algorithm can in
theory obtain the illumination direction and intensity in every image independently.
However keeping the lighting fixed over two or more frames, and supplying that
knowledge to the algorithm can significantly improve estimates. The next experi-
ment was designed to test this improvement by performing a light estimation over
K images where the light has been kept fixed with respect to the camera. The results
are plotted in Figure 12.16 right and show the improvement of the accuracy of the
recovered lighting directions as K increases from 1 to 12. The metric used was the
angle between the ground truth light direction and the estimated light direction
over 1000 runs of the robust estimation scheme. For K = 1 the algorithm achieves
a mean error of 1.57 degrees with a standard deviation of 0.88 while for K = 12 it
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Fig. 12.16 Synthetic evaluation. Left: the accuracy of the algorithm was evaluated using
an image sequence synthetically generated from a 3D computer model of a sculpture. This
allowed us to compare the quality of the reconstructed model against the original 3D model
as well as measure the accuracy of the light estimation. The figure shows the reconstruction
results obtained, below the images of the synthetic object. The mean distance of all points of
the reconstructed model from the ground truth was found to be about 0.5mm if the bounding
volume’s diagonal is 1m. Right: The figure shows the effect of varying the length of the
frame subsequences that have constant light. The angle between the recovered light direction
and ground truth has been measured for 1000 runs of the RANSAC scheme for each number
of frames under constant lighting. With just a single frame per illumination the algorithm
achieves a mean error of 1.57 degrees with a standard deviation of 0.88 degrees. With 12
frames sharing the same illumination the mean error drops to 0.75 degrees with a standard
deviation of 0.41 degrees.

achieves 0.75 degrees with a standard deviation of 0.41 degrees. The decision for
selecting a value for K should be a consideration of the tradeoff between practicality
and maximising the total number of different illuminations in the sequence which is
M/K where M is the total number of frames.
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