
Chapter 6
Dagger Categories and Formal Distributions

R. Blute and P. Panangaden

Abstract A nuclear ideal is an ideal contained in an ambient monoidal dagger
category which has all of the structure of a compact closed category, except that
it lacks identities. Intuitively, the identities are too “singular” to live in the ideal.
Typical examples include the ideal of Hilbert-Schmidt maps contained in the cate-
gory of Hilbert spaces, or the ideal of test functions contained in the category DRel
of tame distributions on Euclidean space.

In this paper, we construct a category of tame formal distributions with coef-
ficients in an associative algebra. We show that there is a formal analogue of the
nuclear ideal constructed in DRel, and hence there is a partial trace operation on the
category. By taking formal distributions with coefficients in the dual of a cocom-
mutative Hopf algebra, we obtain a categorical generalization of the Borcherds’
notion of elementary vertex group. Furthermore, when considering the algebra of
symmetric endomorphisms of an object in such a category, we obtain a vertex group
in Borcherds’ sense. The nuclear ideal structure induces a partial trace operator on
such vertex groups.

6.1 Introduction

The Abramsky-Coecke notion of abstract quantum mechanics [2] is a proposal
to abstract quantum theory away from the usual category of (possibly finite-
dimensional) Hilbert spaces and determine the underlying structures which should
be taken as primitive. Unlike more traditional quantum logic, which is based on lat-
tice theory, the Abramsky-Coecke approach is explicitly categorical in nature. The
authors argue that the minimal necessary structure for interpreting quantum theory
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is that of a (monoidal) dagger category, i.e. a category with a strict involution which
is the identity on objects.

They show that this framework provides a rich semantics for quantum computing
and quantum information theory. For example, the Born rule emerges naturally from
their axiomatization and one can express the correctness of various protocols, such
as teleportation [7], as the commutativity of certain diagrams.

In subsequent work [3], the authors provide a diagrammatic language which
simultaneously gives the free such category and provides a graphical language for
reasoning about quantum systems.

Since their initial papers, the subject of abstract quantum theory and dagger cat-
egories has become quite active, and has developed important results. We mention
in particular the work of Selinger [25]. Aside from developing another graphical
language, the author considers the construction of completely positive maps in a
general dagger category. CPMs are used, for example in the axiomatic description
of quantum operations as described in [10]. (We also note that we use Selinger’s
notation and terminology throughout.)

Also important is the work of Coecke and Pavlovic [11], where they show that
monoidal dagger categories even provide a framework for considering the existence
of classical objects in a quantum universe. This is the subject of enormous research
in quantum physics, see for example [15]. Furthermore, the description of classical
structure in this setting is extremely elegant. A classical object in such a category is
one with a compatible coalgebra structure. The comultiplication then models copy-
ing, and the counit models deleting, the two operations that define classical objects.
Thus traditional algebraic/categorical structures are brought into consideration. See
also [12] for further work in this direction.

Finally we mention Abramsky’s paper [5]. Aside from summarizing much of
the previous work discussed above, the author stresses the importance of abstract
scalars. In any monoidal category, the scalars are the endomorphisms of the ten-
sor unit. Traditionally, since quantum mechanics was carried out in the category
of Hilbert spaces, the scalars were the complex numbers, this being the base field.
But an abstract approach allows for considering other possibilities for scalars and
Abramsky emphasizes the importance of being able to consider dagger categories
with other choices for scalars. One of the interesting properties of the construction
in this paper is that we will consider formal distributions with coefficients in an
arbitrary commutative, associative algebra A, and the elements of A will act as our
scalars.

Monoidal dagger categories were considered by Abramsky, Blute and Panan-
gaden [1] under the guise of tensored ∗-categories, (using teminology of Doplicher
and Roberts [13]). We were interested in various extensions and elaborations of the
category Rel of sets and binary relations. In particular, we were interested in devel-
oping a category whose objects are “continuously varying relations”. So objects
would be open subsets of Euclidean space, and morphisms would be continuous
functions α : X × Y → C (where C is the field of complex numbers.) Similarly, we
wished to replace the usual relational composition:

a(R;S)c if and only if ∃b such that aRb and bSc
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with the following “continuous analogue”:

(α;β)(x, z) =
∫

Y
α(x, y)β(y, z)dy

This idea led to the construction of the category DRel described below, and in [1].
Basically the objects of this category are open subsets of Euclidean space, and
morphisms are certain well-behaved distributions. Distributions were introduced
by Schwartz [24] to capture in a mathematically rigorous fashion the Dirac delta
“function”, which satisfied the relation

(α; δ)(x, y′) =
∫

Y
α(x, y)δ(y, y′)dy = α(x, y′)

and its symmetric variant. In fact, no such function exists [6], though physicists
made frequent use of such a δ. As a recent example, quantum fields are today fre-
quently modelled as operator-valued distributions in the Wightman axiomatization
[18]. Schwartz axiomatizes the above δ as a generalized function or function with
singularities. The distributions described in [1] are well-behaved in the sense that,
when viewed as generalized functions, they have only mild singularities.

In this paper, we introduce a “formal” analogue of the DRel construction. Formal
distributions, i.e. formal power series in both x and x−1, have played a fundamen-
tal role in algebraic and axiomatic approaches to quantum field theory. See, for
example, [18, 22]. Indeed, they are the basis for the axiomatization of the notion of
vertex algebra [18] and the notion of locality [18, 20], both of which figure in the
present work. In this paper, we consider formal distributions with coefficients in a
commutative algebra. We show that there is a formal notion of tameness inspired by
the construction of DRel.

Previous work on formal distributions has focused on algebras of distributions.
See for example the works [18, 19]. However, in this paper, we wish to build a
category of such distributions. In keeping with the passage from untyped to typed
λ-calculus, we obtain a category by considering typed distributions. Atomic types
are first assigned to the variables, and then a type for the distribution is inferred from
these atomic types. One thus obtains a monoidal category, which we call ARel. We
will see that the resulting category is a monoidal dagger category.

We also demonstrate that this category has a nuclear ideal, in the sense of [1]. In
that paper, the authors observed that one of the key aspects of the category of sets
and relations, the most elementary example of a monoidal dagger category, is that
one has “transfer of variables” i.e. one can use the closed structure and the invo-
lution to move variables from “input” to “output”. The category of Hilbert spaces
does not allow such transfer of variables arbitrarily. Instead, one has a large class of
morphisms which can be transposed in this fashion. These are the Hilbert-Schmidt
maps. The notion of nuclear ideal captures the idea of “partially defined transpose”.
This idea was suggested by the definition of a nuclear morphism between Banach
spaces, due to Grothendieck [16], and subsequent work of Higgs and Rowe [17].
Higgs and Rowe axiomatized the notion of nuclearity for a symmetric monoidal
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closed category, and is appropriate for the analysis of nuclearity for Banach spaces.
The concept of nuclearity in analysis can be viewed as describing when one can
think of linear maps as matrices. In the case of a compact closed dagger category
such as Rel, all morphisms are nuclear, while in the category of Hilbert spaces, the
nuclear morphisms are precisely the Hilbert-Schmidt maps [21].

In the category DRel discussed above, the Schwartz kernel theorem provides an
inclusion of the space of test functions into the space of tame distributions, and such
distributions form a nuclear ideal. Thus, another way of viewing the axioms of the
definition of nuclear ideal is as an axiomitization of categories of (possibly) singular
functions, containing a class of nonsingular functions. We show here that a formal
analogue of this construction holds in our category ARel of formal distributions.

Another goal of this paper is to relate the notions arising in this paper and the
vertex groups of Borcherds [9, 26]. Both can be viewed as axiomatizing the notion
of singular map. In the former case, we have a category of singular maps, containing
an ideal of nonsingular maps. In Borcherds’ work, singular maps are viewed as an
algebra over an algebra of nonsingular maps defined on some “group”, (in fact,
a Hopf algebra.). We show that when one considers the category of tame formal
distributions with coefficients in the dual of a cocommutative Hopf algebra, one
obtains examples of vertex categories, i.e. “many-object vertex groups”.

The notion of (monoidal) dagger category has appeared in a number of guises.
They appeared as tensored ∗-categories in the work of Doplicher and Roberts
[13, 14]. Their work involved considering categories of unitary representations of
compact groups, one of the most significant examples of a monoidal dagger cate-
gory. They considered such categories intheir analysis of superselection sectors, and
proved a fundamental represnetation theorem. Any compact closed monoidal dag-
ger category with certain normed structure (making it a C∗-category), is equivalent
tothe category of representations of a compact group. Given the use of monoidal
dagger categories and formal distributions in several axiomatizations of quantum
field theory, it is our hope that the structures in this paper will be of use in extending
the Abramsky-Coecke framework to include QFT.

6.2 Dagger Categories and Nuclear Ideals

We here review the crucial definitions of monoidal dagger category and nuclear
ideal. See [2, 25, 1] for more details, such as the appropriate coherence conditions.

Definition 6.2.1 A category C is a †-category if it is equipped with a functor
(−)† : Cop → C, which is strictly involutive and the identity on objects. We will
also assume our †-categories are equipped with a conjugate functor ( ) : C → C. A
†-category is †-monoidal if it is symmetric monoidal, ( f ⊗ g)† = f † ⊗ g†, and the

conjugate functor has natural isomorphisms A ∼= A, A ⊗ B ∼= A ⊗ B, and I ∼= I .
(We will generally take these to be equalities.) These must satisfy evident equations,
see [25].
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Definition 6.2.2 Let C be a monoidal †-category. A nuclear ideal for C consists of
the following structure:

• For all objects A, B ∈ C, a subset N (A, B) ⊆ Hom(A, B). We will refer to
the union of these subsets as N (C) or N . We will refer to the elements of N
as nuclear maps. The class N must be closed under composition with arbitrary
C-morphisms, closed under ⊗, closed under ( )†, and the conjugate functor.

• A bijection θ : N (A, B) → Hom(I, A⊗ B). The bijection θ must be natural and
preserve the †-monoidal structure in an evident sense, see [1].

Examples

• The category Rel of sets and relations is a monoidal dagger category for which
the entire category forms a nuclear ideal. Indeed any compact monoidal dagger
category has this property.

• The category Hilb of Hilbert spaces and bounded linear maps maps is a well-
known monoidal dagger category , which, in fact, led to the axiomatization [13].
Then the Hilbert-Schmidt maps form a nuclear ideal [1]. (This is one of the only
examples where the conjugate functor is not merely the identity. Here it is the
conjugate Hilbert space.)

• The category DRel of tame distributions on Euclidean space is a monoidal dagger
category. The ideal of test functions (viewed as distributions) is a nuclear ideal.
See [1] or the next section.

• We will define a subcategory of Rel called the category of locally finite relations.
Let R : A → B be a binary relation and a ∈ A. Then let Ra = {b ∈ B|a Rb}.
Define Rb similarly for b ∈ B. Then we say that a relation is locally finite if, for
all a ∈ A, b ∈ B, Ra, Rb are finite sets. Then it is straightforward to verify that
we have a monoidal dagger category which is no longer compact closed. It is also
easy to verify that the finite relations form a nuclear ideal.

6.3 Distributions as Relations

In this section, we review the construction of the category of tame distributions,
denoted DRel [1]. We assume familiarity with basic notions from distribution the-
ory. Suitable references are [24, 27, 6].

The idea was to build a category where composition is given by the formula:

ϕ(x, y);ψ(y, z) =
∫

ϕ(x, y)ψ(y, z)dy.

The intuition that guided our original work was that integration should generalize
the existential quantification that appears in the definition of relational composition.
The proper framework for constructing such a category is the theory of distributions.
Recall that if Ω denotes a nonempty open subset of Rn , then DΩ denotes the smooth
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(complex-valued) functions of compact support on Ω . We will refer to the elements
of DΩ as test functions. DΩ is given the structure of a topological vector space.
This structure is described for example in [6, 27]. Then we define a distribution
on Ω to be a continuous, linear (complex-valued) functional on DΩ . Let D′(Ω)

denote the space of all distributions on Ω , equipped with the topology of pointwise
convergence. We have a canonical inclusion

ι : DX ↪→ D′(X)

given as follows:

φ(x) �→ [ψ(x) ∈ DX �→
∫

φ(x)ψ(x)dx]

There is a canonical inclusion of DX ⊗ DY into DX × Y given by:

ϕ ⊗ ψ �→ [(x, y) �→ ϕ(x)ψ(y)]

Proposition 6.3.1 The space DX ⊗ DY is sequentially dense in DX × Y .

The construction of DRel makes essential use of the Schwartz kernel theorem, which
gives conditions under which maps from DX to D′(Y ) can be realized as distribu-
tions on X × Y . We need the following notations to state the theorem. If f is a
distribution on X × Y and φ ∈ DX then f∗(φ) will be the function from DY to
the base field given by ψ ∈ DY �→ f (φ ⊗ ψ) and f ∗(ψ) is given by the evident
“transpose” formula. W The Schwartz kernel theorem states:

Theorem 6.3.2 Let X and Y be two open subsets of Rn and Rm.

1. Let f be a distribution on X ×Y . For all functions φ ∈ DX the linear map f∗(φ)

is a distribution on Y . Furthermore, the map φ �→ f∗(φ) from DX to D′(Y ) is
continuous.

2. Let f∗ be a continuous linear map from DX to D′(Y ). Then there exists a unique
distribution on X × Y such that for φ ∈ DX and ψ ∈ DY the following holds:

f (φ ⊗ ψ) = f∗(φ)(ψ)

Evidently, by symmetry, the same result applies for f ∗.

Definition 6.3.3 A tame distribution on X × Y is a distribution f on X × Y such
that each of f ∗ and f∗ factor continuously through the appropriate ι, where ι is the
inclusion of the space of test functions into the space of distributions. Explicitly,
there exist continuous linear maps

fL : DX → DY

fR : DY → DX
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such that for every φ ∈ DX and ψ ∈ DY , we have:

f∗(φ)(ψ) = f ∗(ψ)(φ) = f (φ ⊗ ψ) =
∫

fL(φ)ψdy =
∫

φ fR(ψ)dx

Intuitively, tame distributions are allowed to be mildly singular, in that composing
with a test function “tames” the singularity.

6.3.1 Examples

• Let X be an open subset of Rn . The trace distribution on X × X is given by
T r(η) = ∫

η(x, x)dx where η(x, x ′) ∈ DX × X . From this definition it follows
that T r∗(φ)(ψ) = T r∗(ψ)(φ) = T r(φ ⊗ψ) = ∫

φ(x)ψ(x)dx . Thus we clearly
have T rL(φ) = T rR(φ) = φ, which shows that δ is tame. This tame distribution
will act as the identity in our category.

• Suppose that T is a regular distribution on X × Y with a test function β(x, y) as
its kernel, that is to say:

T (α(x, y)) =
∫

X×Y
β(x, y)α(x, y)

Then T is tame with its associated functions being given by:

TL(φ) =
∫

X
β(x, y)φ(x)

TR(ψ) =
∫

Y
β(x, y)ψ(y)

We write T X, Y for the tame distributions on X × Y .

Given tame distributions we can define the following operation which will serve as
composition. Suppose that f ∈ T X, Y , g ∈ T Y, Z . We define f ; g ∈ T X, Z as
follows. Given that f is tame, we have a continuous function fL : DX → DY .
Applying the first part of the Schwartz kernel theorem to g, we obtain a morphism
g∗ : DY → D′(Z). Composition gives a continuous map DX → D′(Z). By the
second part of the kernel theorem, we obtain a distribution on X × Z .

Definition 6.3.4 The category DRel has as objects open subsets on Rn , and, as mor-
phisms, tame distributions. Composition is as described above.

Theorem 6.3.5 DRel is a monoidal dagger category.

The tensor product is given as follows. Given objects X and Y we define X ⊗ Y
as the cartesian product space X × Y . Given morphisms in DRel f : X → Y and
g : X ′ → Y ′ we can define f ⊗ g : X ⊗ X ′ → Y ⊗ Y ′ as follows. We first define
f ⊗ g as a distribution on

DX ⊗ DX ′ ⊗ DY ⊗ DY ′
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by the formula

( f ⊗ g)(φ(x) ⊗ φ′(x ′) ⊗ ψ(y) ⊗ ψ ′(y′)) = f (φ ⊗ ψ)g(φ′ ⊗ ψ ′) .

It is routine to verify that this is tame. We extend f ⊗ g to all of

DX × X ′ × Y × Y ′

as above. The one-point space, written I = {∗}, is the unit for the tensor (with
measure μ({∗}) = 1).

Finally the ∗-structure is the identity on objects. On morphisms, the only thing that
changes is the role of fL and fR . The conjugate functor is taken to be the identity.

Theorem 6.3.6 The sets N (Y, Z) form a nuclear ideal for DRel.

One can also show:

Theorem 6.3.7 The canonical nuclear ideal in DRel is traced.

There is a more succinct description of the trace operator in DRel. Since h = g f is
nuclear, it has a kernel, α(x, x ′). Recall from Theorem 6.3.6 that the formula for α

is given by:

α(x, x ′) = fR(βg(y, x ′)) =
∫

Y
β f (x, y)βg(y, x ′)

Hence we may conclude that:

trA(h) =
∫

X
α(x, x)

6.4 Categories of Formal Distributions

We now review the basic theory of formal distributions. Much of this theory was
developped by Kac. Suitable references are [18, 19]. In the following, A will always
denote a commutative, associative, unital algebra over some field k.

An expression of the form α(z) = Σn∈Zαnzn , where Z is the set of integers,
αn ∈ A and z is a variable, is called a formal distribution with coefficients in A.
Similarly, one can speak of formal distributions in several variables. The set of
formal distributions in a fixed set of variables forms an infinite dimensional vector
space, denoted A[[z, z−1, w,w−1, . . .]].

The space of distributions has a great deal of structure, much of which is analo-
gous to Schwartz’s original theory of distributions. The key to defining such struc-
ture is the residue operation, defined by Resz(α(z)) = α−1 ∈ A, i.e. the residue
of α is the coefficient of z−1. Similarly, if α(z, w) ∈ A[[z, z−1, w,w−1]], we can
define Resz(α(z, w)) ∈ A[[w,w−1]].
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We now observe that the space of Laurent polynomials A[z, z−1] can be viewed
as the test functions for these formal distributions, with the evaluation A[[z, z−1]]×
A[z, z−1] → A being defined by

< α(z), f (z) >= Resz f (z)α(z)

There is a formal analogue of the injection DY → D′(Y ) which is given simply
by the inclusion A[y, y−1] ⊆ A[[y, y−1]], and similarly in the multivariable case.
There is a corresponding version of the Shwartz kernel theorem as well.

The formal Dirac delta is given by the distribution:

δ(z, w) = z−1
∑
n∈Z

( z

w

)n

We have the fundamental property that for all f (z) ∈ A[z, z−1]

< δ(z, w), f (z) >= f (w)

Note that, in this equation, we are multiplying two distributions. In general, this
cannot be done even formally, due to the possibility of infinite coefficients. We must
have a notion of “tameness” to perform such multiplications. We will see that the
Dirac delta is indeed tame.

One can also reiterate the process of taking residues. If α is a distribution, and
x1, x2, . . . , xn are among its variables, then we define

Resx1,x2,...,xn α = Resx1(Resx2(. . . Resxn α)) . . .)

One can readily check that this is well-defined and independent of the order in which
the residues are taken.

We also note that the space of formal distributions allows formal differentiation,
i.e. we have operators:

∂ = ∂z : A[[z, z−1, w,w−1, . . .]] → A[[z, z−1, w,w−1, . . .]]

and that these satisfy equations analogous to those for differentiation of distribu-
tions, e.g.

Resz∂α(z)β(z) = −Reszα(z)∂β(z)

This is a formal analogue of integration by parts. Consult [18] for these and other
results, such as the representation of distributions in terms of derivatives of deltas.
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6.4.1 Tameness for Formal Distributions

We will now define a category which will be the formal analogue of DRel, and this
category will have much of the same structure. We assume throughout the remainder
of this section that A is a fixed associative unital algebra over a field k.

We assume the existence of an infinite set of atomic types. These will be type
variables denoted A1, A2, B, . . . . Then the set of all types consists of all words of
the form A1 ⊗ A2 . . .⊗ An . We refer to n as the length of the word. We also assume
the existence of a unique word of length 0, denoted I . I is the tensor unit, and acts as
the identity in the monoid of words. (Thus we will be working in a strict monoidal
category). We also assume that we have an infinite stock of variables for each atomic
type. These will be denoted x : A, but we will generally not write the type, if there
is no danger of confusion.

Now we can talk about typed distributions. A formal distribution of type
A1 ⊗ A2 . . . ⊗ Am is an element of A[[x1, x−1

1 , . . . , xm, x−1
m ]], where xi is of

type Ai . We say that a formal distribution α(x1, x2, . . . , xm, y1, y2, . . . , yn) of
type A1 ⊗ A2 . . . Am ⊗ B1 ⊗ . . . Bn is tame with respect to the type splitting
A1 ⊗ A2 . . . Am ||B1 ⊗ . . . Bn if, for all f ∈ A[x1, x−1

1 , . . . , xm, x−1
m ],

Resx1,x2,...,xm ( f α) ∈ A
[

y1, y−1
1 , . . . , yn, y−1

n

]

and dually for all g ∈ A[y1, y−1
1 , . . . , yn, y−1

n ].
In other words, a tame distribution takes Laurent polynomials to Laurent poly-

nomials. This is the obvious analogue of the notion of tameness used in [1], given
that in the formal setting we are using Laurent polynomials as test functions.

Remark 6.4.1 We note that we consider two distributions (of the same type) equiv-
alent if they are identical up to α-conversion, i.e. up to change of variable name
(within the same type).

We are now ready to define the category ARel.

Definition 6.4.2 The category ARel is defined as follows. Objects are types. A mor-
phism
α : A1 ⊗ A2 ⊗ . . . ⊗ An → B1 ⊗ B2 . . . Bm is (the equivalence class of) a dis-
tribution of type A1 ⊗ A2 ⊗ . . . ⊗ An ⊗ B1 ⊗ B2 . . . Bm which is tame with respect
to the type splitting A1 ⊗ A2 ⊗ . . . ⊗ An||B1 ⊗ B2 . . . Bm Composition is defined
as follows. Suppose that α : A1 ⊗ A2 ⊗ . . . ⊗ An → B1 ⊗ B2 . . . Bm and that
β : B1 ⊗ B2 ⊗ . . . ⊗ Bm → C1 ⊗ C2 . . . ⊗ C p. Then we have

βα(x1, x2, . . . , xn, y1, . . . , yp) =
Resz1,z2,...,zm [α(x1, . . . , xn, z1, . . . , zm)β(z1, . . . , zm, y1, . . . , yp)]

Note that one must always be careful to use distinct variables in the two distributions
being composed.
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The identity is defined as:

id : A1 ⊗ A2 ⊗ . . . ⊗ An → A1 ⊗ A2 ⊗ . . . ⊗ An = �n
i=1δAi

Also note that we set Hom(I, I ) = A, and more generally Hom(I, A) is the space
of Laurent polynomials on A. The justification for this is as in [1].

Theorem 6.4.3 ARel is a category.

Proof There are a number of things to check here, most are more or less straight-
forward. One must check that δ is tame, and that the product of δ’s does indeed
act as identity. One must check that the composite of two tame distributions is
again tame, and finally associativity of composition follows from the observation
that αReszβ = Reszαβ, when z is not among α’s variables. �
Theorem 6.4.4 ARel is a monoidal †–category.

Proof The tensor on objects is obvious. On morphisms, the tensor is given by mul-
tiplication. Again, when multiplying two distributions together, one must always
make sure that the two distributions use distinct variables. The conjugate functor
is taken to be the identity, and the †-functor reverses the order of variables. The
necessary equations are straightforward to verify. �

Finally, we may state the following result which is also straightforward.

Theorem 6.4.5 The Laurent polynomials form a nuclear ideal for ARel.

Proof The bijection θ : N (A, B) → Hom(I, A ⊗ B) is the obvious injection of the
test functions into the corresponding space of distributions. The necessary equations
are all evident. �

6.4.2 Locality for Formal Distributions

We now review one of the crucial topics in formal distribution theory, the notion of
locality of a formal distribution. This notion has been emphasized heavily by Kac
[18–20]. These are a fundamental class of distributions which were inspired by the
notion of locality in quantum field theory.

Definition 6.4.6 A formal distribution α(x, y) is local if there exists a positive inte-
ger N such that (x − y)N α(x, y) = 0.

The formal Dirac delta is local, as (x − y)δ(x, y) = 0. Similarly, any derivative
of the delta is local. We here collect some basic identities on derivatives of delta
which are useful in proving such results.

Lemma 6.4.7 ([18], p. 16)

• δ(x, y) = δ(y, x)

• ∂
j
x δ(x, y) = (−∂y)

jδ(x, y)

• (x − y) j+1∂
j
x δ(x, y) = 0
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Now with the above formulas, one may characterize completely the local formal
distributions:

Theorem 6.4.8 (Kac [18], p.18) The local distributions are precisely those of the
form:

α(x, y) =
∑
j∈Z+

c j (y)∂
( j)
y δ(x, y)

where the above sum is finite and c j (y) = A[[y, y−1]]. The series c j (y) can be
calculated by the formula:

c j (y) = Resxα(x, y)(x − y) j

It is now straightforward to verify that the tame local distributions form a †-subcate-
gory. The only thing remaining to verify is the following:

Lemma 6.4.9 Suppose that α(x, y) and β(y, z) are tame local distributions. Then
Resy[α(x, y)β(y, z)] is local as well. (In particular, it is well-defined.)

Proof This follows from the above characterization of local distributions, and
repeated application of the “integration by parts” formula. �

Now we define a category Loc-ARel, whose objects are atomic formal types, and
morphisms are local distributions. Loc-ARel has an evident †-category structure.

6.4.3 Monoidal Structure for Loc-ARel

We now describe a tensor structure for the category Loc-ARel. This first requires
defining an n-ary version of locality:

Definition 6.4.10 We suppose that

α : A1 ⊗ A2 ⊗ . . . An → B1 ⊗ B2 ⊗ . . . Bn

is a tame distribution, and that the corresponding variables are x1, x2, . . . , xn ,
y1, y2, . . . , yn . Then we say that α is local if there is a permutation σ of the set
{1, 2, . . . , n} such that for all i ∈ {1, 2, . . . , n}, there exists a natural number Ni

such that:

(xi − yσ(i))
Ni α = 0

Lemma 6.4.11 Loc-ARel is a monoidal †-subcategory of ARel.

Note however that there is no longer a nuclear ideal. However a slight modifica-
tion of the notion of locality does yield a subcategory with a nuclear ideal. We say
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that a tame distribution α : A → B is stable if it is of the form α = α1 + α2, where
α1 is (tame) local, and α2 is a Laurent polynomial. Thus the stable distributions only
fail slightly to be local. It is straightforward to verify that we indeed have a category.

Lemma 6.4.12 Let α(x, y) and β(y, z) be stable distributions. Then

Resy[α(x, y)β(y, z)]

is as well.

Proof One simply notes that the composition of two tame local distributions is tame
and local, the composition of two nuclear morphisms is nuclear, and the compostion
of a tame local distribution and a nuclear distribution is nuclear. The result now
follows from the bilinearity of composition. �

So we define a category S-ARel whose objects are formal types and morphisms
are stable distributions. It is evidently a monoidal †-subcategory of ARel. S-ARel
is essentially the smallest extension of Loc-ARel for which there is a nuclear ideal.

Theorem 6.4.13 The Laurent polynomials form a nuclear ideal in S-ARel.

6.5 Vertex Groups and Categories

In this section, we review Borcherds’ notion of an elementary vertex group [9], and
then give a minor generalization of this notion, that being the notion of a vertex
category, i.e. a many-object vertex group. We demonstrate that the category ARel
of the previous section gives an example of a vertex category, whenever A is taken
to be the dual of a cocommutative Hopf algebra H . We show further that when
considering the algebra determined by the endomorphisms of an object of a vertex
category, one obtains a vertex group in the Borcherds sense. We first review some
basic facts about duals of Hopf algebras.

Before getting into the technical details of vertex groups, we recall some facts
about duals of Hopf algebras. See [23] for details.

First recall that if H is a Hopf algebra, then H∗, the linear dual of H , is generally
not a Hopf algebra, unless H is finite-dimensional. However, we have:

Lemma 6.5.1 The dual of the comultiplication Δ : H → H ⊗H induces an algebra
structure on H∗, when composed with the canonical inclusion H∗ ⊗ H∗ → (H ⊗
H)∗. If H is cocommutative, then H∗ is a commutative algebra. Thus, if f, g ∈ H∗
and h ∈ H, then

( f g)(h) =
∑

h

f (h1)g(h2)

using the usual Sweedler notation, i.e.

Δ(h) =
∑

h

h1 ⊗ h2
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We will also make use of the fact that H∗ has a canonical structure as a two-sided
H -module via the formulas:

(h f )(h′) = f (h′h) ( f h)(h′) = f (hh′)

Remark 6.5.2 Finally we note that the existence of an involutive antipode gives a
second possible monoidal †-structure on ARel. If α(x, y) = ∑

αi j x i y j is a mor-
phism from A to B, then define

α =
∑

S∗(αi j )xi y j

and

α† =
∑

S∗(αi j )y j xi

In this section, we will always mean this monoidal †-structure.

The following definition is due to Borcherds [9]. It has been studied and elab-
orated on extensively by Snydal [26]. For examples, see either of these two refer-
ences.

Definition 6.5.3 Let H be a cocommutative Hopf algebra over a field k. A vertex
group on H consists of a k-vector space K , the ring of singular functions on H ,
with the following additional structure:

• K is an associative, unital algebra over the algebra H∗.
• K is a two-sided H -module. Further, the unit map η : H∗ → K is a map of

2-sided H -modules.
• The product map on K , μ : K ⊗ K → K is equivariant under the left and right

actions of H .
• There is a morphism SK : K → K such that SK ◦ η = η ◦ S∗.

We further require that SK be an antialgebra map, and that S2
K = id. If the algebra

K is also commutative, then we say that we have a commutative vertex group.

Borcherds and Snydal only consider the commutative case, but the present work
yields several natural noncommutative examples.

We now provide a categorical generalization of the previous definition by intro-
ducing the notion of a vertex category. This is the correct generalization in that a
one-object vertex category is indeed a vertex group.

Definition 6.5.4 Let H be a cocommutative Hopf algebra. An H -vertex category
consists of a †-category C such that:

• For all objects A, B in C, we have that Hom(A, B) is an H∗- module, a 2-sided
H -module, and composition is H∗-bilinear.

• Composition also satisfies the following H -invariance property: If f : A → B
and g : B → C , then we have (� and � denote the actions of H .)
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h � (g f ) = Σh(h1 � g)(h2 � f )

(g f ) � h = Σh(g � h1)( f � h2)

• We must also have the following antipode condition. First note that there is a
canonical morphism η : H∗ → Hom(A, A) which takes f ∈ H∗ to f � id. We
require that η be a map of H -modules and that the following diagram commutes.

H∗ η� Hom(A, A)

H∗

S∗

�
η� Hom(A, A)

( ) †

�

The following results are all straightforward. All actions are defined by acting on
coefficients.

Theorem 6.5.5

• A one-object vertex category is a vertex group, with SK being given by the dagger
operation on Homsets.

• When A is the dual of a cocommutative Hopf algebra, then ARel is a vertex
category.

• In any vertex category C, if C ∈ C, then Hom(C, C) is a vertex group.

6.6 Conclusion

The primary goal of the theory of formal distributions is to develop a more purely
algebraic version of the Schwartz theory of distributions. Then the issue becomes the
extent to which the original theory lifts to the algebraic setting. This is for example
one of the goals of the monograph [18]. One is particularly interested in the many
applications of distribution theory in quantum physics. In this paper, we have shown
that the structure of the category DRel lifts to this formal setting in a straightforward
way. Thus one is able to view these formal distributions as generalized relations, as
discussed in [1]. We hope to explore this idea in the future.

Along the same lines, we have introduced the notion of a vertex category or
multiobject vertex algebra. Connecting this idea with the original work of Borcherds
[9] and Snydal [26] is also work we intend to explore.
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