
Chapter 2
Physics, Topology, Logic and Computation:
A Rosetta Stone

J. Baez and M. Stay

Abstract In physics, Feynman diagrams are used to reason about quantum pro-
cesses. In the 1980s, it became clear that underlying these diagrams is a powerful
analogy between quantum physics and topology. Namely, a linear operator behaves
very much like a “cobordism”: a manifold representing spacetime, going between
two manifolds representing space. This led to a burst of work on topological quan-
tum field theory and “quantum topology”. But this was just the beginning: similar
diagrams can be used to reason about logic, where they represent proofs, and com-
putation, where they represent programs. With the rise of interest in quantum cryp-
tography and quantum computation, it became clear that there is extensive network
of analogies between physics, topology, logic and computation. In this expository
paper, we make some of these analogies precise using the concept of “closed sym-
metric monoidal category”. We assume no prior knowledge of category theory, proof
theory or computer science.

2.1 Introduction

Category theory is a very general formalism, but there is a certain special way that
physicists use categories which turns out to have close analogues in topology, logic
and computation. A category has objects and morphisms, which represent things
and ways to go between things. In physics, the objects are often physical systems,
and the morphisms are processes turning a state of one physical system into a state
of another system—perhaps the same one. In quantum physics we often formalize
this by taking Hilbert spaces as objects, and linear operators as morphisms.
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Sometime around 1949, Feynman [63] realized that in quantum field theory it is
useful to draw linear operators as diagrams:

This lets us reason with them pictorially. We can warp a picture without changing
the operator it stands for: all that matters is the topology, not the geometry. In the
1970s, Penrose realized that generalizations of Feynman diagrams arise throughout
quantum theory, and might even lead to revisions in our understanding of spacetime
[84–87]. In the 1980s, it became clear that underlying these diagrams is a powerful
analogy between quantum physics and topology! Namely, a linear operator behaves
very much like a “cobordism”—that is, an n-dimensional manifold going between
manifolds of one dimension less:

String theory exploits this analogy by replacing the Feynman diagrams of ordinary
quantum field theory with 2-dimensional cobordisms, which represent the world-
sheets traced out by strings with the passage of time. The analogy between operators
and cobordisms is also important in loop quantum gravity and—most of all—the
more purely mathematical discipline of “topological quantum field theory”.

Meanwhile, quite separately, logicians had begun using categories where the
objects represent propositions and the morphisms represent proofs. The idea is that
a proof is a process going from one proposition (the hypothesis) to another (the
conclusion). Later, computer scientists started using categories where the objects
represent data types and the morphisms represent programs. They also started using
“flow charts” to describe programs. Abstractly, these are very much like Feynman
diagrams!

The logicians and computer scientists were never very far from each other.
Indeed, the “Curry–Howard correspondence” relating proofs to programs has been
well-known at least since the early 1970s, with roots stretching back earlier
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[36, 37, 56]. But, it is only in the 1990s that the logicians and computer scientists
bumped into the physicists and topologists. One reason is the rise of interest in
quantum cryptography and quantum computation [29]. With this, people began to
think of quantum processes as forms of information processing, and apply ideas
from computer science. It was then realized that the loose analogy between flow
charts and Feynman diagrams could be made more precise and powerful with the
aid of category theory [3].

By now there is an extensive network of interlocking analogies between physics,
topology, logic and computer science. They suggest that research in the area of com-
mon overlap is actually trying to build a new science: a general science of systems
and processes. Building this science will be very difficult. There are good reasons
for this, but also bad ones. One bad reason is that different fields use different ter-
minology and notation.

The original Rosetta Stone, created in 196 BC, contains versions of the same text
in three languages: demotic Egyptian, hieroglyphic script and classical Greek. Its
rediscovery by Napoleon’s soldiers let modern Egyptologists decipher the hiero-
glyphs. Eventually this led to a vast increase in our understanding of Egyptian
culture.

At present, the deductive systems in mathematical logic look like hieroglyphs
to most physicists. Similarly, quantum field theory is Greek to most computer sci-
entists, and so on. So, there is a need for a new Rosetta Stone to aid researchers
attempting to translate between fields. Table 2.1 shows our guess as to what this
Rosetta Stone might look like.

Table 2.1 The Rosetta Stone (pocket version)

Category theory Physics Topology Logic Computation

Object System Manifold Proposition Data type
Morphism Process Cobordism Proof Program

The rest of this paper expands on this table by comparing how categories are used
in physics, topology, logic, and computation. Unfortunately, these different fields
focus on slightly different kinds of categories. Though most physicists don’t know it,
quantum physics has long made use of “compact symmetric monoidal categories”.
Knot theory uses “compact braided monoidal categories”, which are slightly more
general. However, it became clear in the 1990s that these more general gadgets are
useful in physics too. Logic and computer science used to focus on “cartesian closed
categories”—where “cartesian” can be seen, roughly, as an antonym of “quantum”.
However, thanks to work on linear logic and quantum computation, some logicians
and computer scientists have dropped their insistence on cartesianness: now they
study more general sorts of “closed symmetric monoidal categories”.

In Sect. 2.2 we explain these concepts, how they illuminate the analogy between
physics and topology, and how to work with them using string diagrams. We assume
no prior knowledge of category theory, only a willingness to learn some. In Sect. 2.3
we explain how closed symmetric monoidal categories correspond to a small frag-
ment of ordinary propositional logic, which also happens to be a fragment of
Girard’s “linear logic” [47]. In Sect. 2.4 we explain how closed symmetric monoidal
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categories correspond to a simple model of computation. Each of these sections
starts with some background material. In Sect. 2.5, we conclude by presenting a
larger version of the Rosetta Stone.

Our treatment of all four subjects—physics, topology, logic and computation—is
bound to seem sketchy, narrowly focused and idiosyncratic to practitioners of these
subjects. Our excuse is that we wish to emphasize certain analogies while saying no
more than absolutely necessary. To make up for this, we include many references
for those who wish to dig deeper.

2.2 The Analogy Between Physics and Topology

2.2.1 Background

Currently our best theories of physics are general relativity and the Standard Model
of particle physics. The first describes gravity without taking quantum theory into
account; the second describes all the other forces taking quantum theory into
account, but ignores gravity. So, our world-view is deeply schizophrenic. The field
where physicists struggle to solve this problem is called quantum gravity, since it
is widely believed that the solution requires treating gravity in a way that takes
quantum theory into account.

Table 2.2 Analogy between physics and topology

Physics Topology

Hilbert space (n − 1)-Dimensional
(system) manifold (space)

Operator between Cobordism between
Hilbert spaces (n − 1)-dimensional
(process) manifolds (spacetime)

Composition of Composition of
operators cobordisms

Identity operator Identity cobordism

Nobody is sure how to do this, but there is a striking similarity between two of the
main approaches: string theory and loop quantum gravity. Both rely on the analogy
between physics and topology shown in Table 2.2. On the left we have a basic
ingredient of quantum theory: the category Hilb whose objects are Hilbert spaces,
used to describe physical systems, and whose morphisms are linear operators, used
to describe physical processes. On the right we have a basic structure in differential
topology: the category nCob. Here the objects are (n–1)-dimensional manifolds,
used to describe space, and whose morphisms are n-dimensional cobordisms, used
to describe spacetime.

As we shall see, Hilb and nCob share many structural features. Moreover, both
are very different from the more familiar category Set, whose objects are sets and
whose morphisms are functions. Elsewhere we have argued at great length that this
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is important for better understanding quantum gravity [11] and even the foundations
of quantum theory [12]. The idea is that if Hilb is more like nCob than Set, maybe
we should stop thinking of a quantum process as a function from one set of states
to another. Instead, maybe we should think of it as resembling a “spacetime” going
between spaces of dimension one less.

This idea sounds strange, but the simplest example is something very practical,
used by physicists every day: a Feynman diagram. This is a 1-dimensional graph
going between 0-dimensional collections of points, with edges and vertices labelled
in certain ways. Feynman diagrams are topological entities, but they describe lin-
ear operators. String theory uses 2-dimensional cobordisms equipped with extra
structure—string worldsheets—to do a similar job. Loop quantum gravity uses 2d
generalizations of Feynman diagrams called “spin foams” [10]. Topological quan-
tum field theory uses higher-dimensional cobordisms [14]. In each case, processes
are described by morphisms in a special sort of category: a “compact symmetric
monoidal category”.

In what follows, we shall not dwell on puzzles from quantum theory or quantum
gravity. Instead we take a different tack, simply explaining some basic concepts
from category theory and showing how Set, Hilb, nCob and categories of tangles
give examples. A recurring theme, however, is that Set is very different from the
other examples.

To help the reader safely navigate the sea of jargon, here is a chart of the concepts
we shall explain in this section:

categories

monoidal categories

braided
monoidal categories

closed
monoidal categories

symmetric
monoidal categories

closed braided
monoidal categories

compact
monoidal categories

cartesian categories closed symmetric
monoidal categories

compact braided
monoidal categories

cartesian
closed categories

compact symmetric
monoidal categories

The category Set is cartesian closed, while Hilb and nCob are compact symmetric
monoidal.
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2.2.2 Categories

Category theory was born around 1945, with Eilenberg and Mac Lane [40] defin-
ing “categories”, “functors” between categories, and “natural transformations”
between functors. By now there are many introductions to the subject [35, 78, 81],
including some available for free online [21, 50]. Nonetheless, we begin at the
beginning:

Definition 1 A category C consists of:

• a collection of objects, where if X is an object of C we write X ∈ C , and
• for every pair of objects (X, Y ), a set hom(X, Y ) of morphisms from X to Y . We

call this set hom(X, Y ) a homset. If f ∈ hom(X, Y ), then we write f : X → Y.

such that:

• for every object X there is an identity morphism 1X : X → X;
• morphisms are composable: given f : X → Y and g : Y → Z , there is a com-

posite morphism g f : X → Z; sometimes also written g ◦ f .
• an identity morphism is both a left and a right unit for composition: if f : X →

Y, then f 1X = f = 1Y f ; and
• composition is associative: (hg) f = h(g f ) whenever either side is well-defined.

Definition 2 We say a morphism f :X →Y is an isomorphism if it has an inverse—
that is, there exists another morphism g : Y→X such that g f = 1X and f g = 1Y .

A category is the simplest framework where we can talk about systems (objects)
and processes (morphisms). To visualize these, we can use “Feynman diagrams”
of a very primitive sort. In applications to linear algebra, these diagrams are often
called “spin networks”, but category theorists call them “string diagrams”, and that
is the term we will use. The term “string” here has little to do with string theory:
instead, the idea is that objects of our category label “strings” or “wires”:

X

and morphisms f : X → Y label “black boxes” with an input wire of type X and an
output wire of type Y :

f

X

Y
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We compose two morphisms by connecting the output of one black box to the input
of the next. So, the composite of f : X → Y and g : Y → Z looks like this:

f

g

X

Y

Z

Associativity of composition is then implicit:

f

g

h

X

Y

Z

W

is our notation for both h(g f ) and (hg) f . Similarly, if we draw the identity mor-
phism 1X : X → X as a piece of wire of type X :

X

then the left and right unit laws are also implicit.
There are countless examples of categories, but we will focus on four:

• Set: the category where objects are sets.
• Hilb: the category where objects are finite-dimensional Hilbert spaces.
• nCob: the category where morphisms are n-dimensional cobordisms.
• Tangk : the category where morphisms are k-codimensional tangles.
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As we shall see, all four are closed symmetric monoidal categories, at least when
k is big enough. However, the most familiar of the lot, namely Set, is the odd man
out: it is “cartesian”.

Traditionally, mathematics has been founded on the category Set, where the
objects are sets and the morphisms are functions. So, when we study systems
and processes in physics, it is tempting to specify a system by giving its set of
states, and a process by giving a function from states of one system to states of
another.

However, in quantum physics we do something subtly different: we use cate-
gories where objects are Hilbert spaces and morphisms are bounded linear oper-
ators. We specify a system by giving a Hilbert space, but this Hilbert space is not
really the set of states of the system: a state is actually a ray in Hilbert space. Simi-
larly, a bounded linear operator is not precisely a function from states of one system
to states of another.

In the day-to-day practice of quantum physics, what really matters is not sets
of states and functions between them, but Hilbert space and operators. One of the
virtues of category theory is that it frees us from the “Set-centric” view of traditional
mathematics and lets us view quantum physics on its own terms. As we shall see,
this sheds new light on the quandaries that have always plagued our understanding
of the quantum realm [12].

To avoid technical issues that would take us far afield, we will take Hilb to be
the category where objects are finite-dimensional Hilbert spaces and morphisms are
linear operators (automatically bounded in this case). Finite-dimensional Hilbert
spaces suffice for some purposes; infinite-dimensional ones are often important, but
treating them correctly would require some significant extensions of the ideas we
want to explain here.

In physics we also use categories where the objects represent choices of space,
and the morphisms represent choices of spacetime. The simplest is nCob, where the
objects are (n − 1)-dimensional manifolds, and the morphisms are n-dimensional
cobordisms. Glossing over some subtleties that a careful treatment would discuss
[90], a cobordism f : X → Y is an n-dimensional manifold whose boundary is the
disjoint union of the (n − 1)-dimensional manifolds X and Y . Here are a couple of
cobordisms in the case n = 2:

X

Y

f

Y

Z

g

We compose them by gluing the “output” of one to the “input” of the other. So, in
the above example g f : X → Z looks like this:
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X

Z

gf

Another kind of category important in physics has objects representing collec-
tions of particles, and morphisms representing their worldlines and interactions.
Feynman diagrams are the classic example, but in these diagrams the “edges” are
not taken literally as particle trajectories. An example with closer ties to topology is
Tangk .

Very roughly speaking, an object in Tangk is a collection of points in a
k-dimensional cube, while a morphism is a “tangle”: a collection of arcs and circles
smoothly embedded in a (k + 1)-dimensional cube, such that the circles lie in the
interior of the cube, while the arcs touch the boundary of the cube only at its top
and bottom, and only at their endpoints. A bit more precisely, tangles are “isotopy
classes” of such embedded arcs and circles: this equivalence relation means that
only the topology of the tangle matters, not its geometry. We compose tangles by
attaching one cube to another top to bottom.

More precise definitions can be found in many sources, at least for k = 2, which
gives tangles in a 3-dimensional cube [46, 64, 90, 99, 107, 111]. But since a picture
is worth a thousand words, here is a picture of a morphism in Tang2:

X

Y

f

Note that we can think of a morphism in Tangk as a 1-dimensional cobordism
embedded in a k-dimensional cube. This is why Tangk and nCob behave similarly
in some respects.

Here are two composable morphisms in Tang1:
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X Y

ZY

f g

and here is their composite:

X

Z

gf

Since only the tangle’s topology matters, we are free to squash this rectangle into a
square if we want, but we do not need to.

It is often useful to consider tangles that are decorated in various ways. For exam-
ple, in an “oriented” tangle, each arc and circle is equipped with an orientation. We
can indicate this by drawing a little arrow on each curve in the tangle. In applications
to physics, these curves represent worldlines of particles, and the arrows say whether
each particle is going forwards or backwards in time, following Feynman’s idea that
antiparticles are particles going backwards in time. We can also consider “framed”
tangles. Here each curve is replaced by a “ribbon”. In applications to physics, this
keeps track of how each particle twists. This is especially important for fermions,
where a 2π twist acts nontrivially. Mathematically, the best-behaved tangles are both
framed and oriented [14, 99], and these are what we should use to define Tangk . The
category nCob also has a framed oriented version. However, these details will barely
matter in what is to come.

It is difficult to do much with categories without discussing the maps between
them. A map between categories is called a ‘functor’:

Definition 3 A functor F : C → D from a category C to a category D is a map
sending:

• any object X ∈ C to an object F(X) ∈ D,
• any morphism f : X → Y in C to a morphism F( f ) : F(X) → F(Y ) in D,

in such a way that:



2 Physics, Topology, Logic and Computation 105

• F preserves identities: for any object X ∈ C , F(1X ) = 1F(X);
• F preserves composition: for any pair of morphisms f : X → Y , g : Y → Z in

C , F(g f ) = F(g)F( f ).

In the sections to come, we will see that functors and natural transformations
are useful for putting extra structure on categories. Here is a rather different use
for functors: we can think of a functor F : C → D as giving a picture, or “repre-
sentation”, of C in D. The idea is that F can map objects and morphisms of some
‘abstract’ category C to objects and morphisms of a more “concrete” category D.

For example, consider an abstract group G. This is the same as a category with
one object and with all morphisms invertible. The object is uninteresting, so we
can just call it •, but the morphisms are the elements of G, and we compose them
by multiplying them. From this perspective, a representation of G on a finite-
dimensional Hilbert space is the same as a functor F : G → Hilb. Similarly, an
action of G on a set is the same as a functor F : G → Set. Both notions are ways
of making an abstract group more concrete.

Ever since Lawvere’s 1963 thesis on functorial semantics [75], the idea of func-
tors as representations has become pervasive. However, the terminology varies from
field to field. Following Lawvere, logicians often call the category C a “theory”, and
call the functor F : C → D a “model” of this theory. Other mathematicians might
call F an “algebra” of the theory. In this work, the default choice of D is usually the
category Set.

In physics, it is the functor F : C → D that is called the “theory”. Here the
default choice of D is either the category we are calling Hilb or a similar category
of infinite-dimensional Hilbert spaces. For example, both “conformal field theories”
[95] and topological quantum field theories [8, 9] can be seen as functors of this
sort.

If we think of functors as models, natural transformations are maps between
models:

Definition 4 Given two functors F, F ′ : C → D, a natural transformation
α : F ⇒ F ′ assigns to every object X in C a morphism αX : F(X) → F ′(X)

such that for any morphism f : X → Y in C, the equation αY F( f ) = F ′( f ) αX

holds in D. In other words, this square commutes:

F(X) F(Y)

F′(X) F′(Y)
F′(f)

F(f)

αX αY

(Going across and then down equals going down and then across.)



106 J. Baez and M. Stay

Definition 5 A natural isomorphism between functors F, F ′ : C → D is a natural
transformation α : F ⇒ F ′ such that αX is an isomorphism for every X ∈ C .

For example, suppose F, F ′ : G → Hilb are functors where G is a group, thought
of as a category with one object, say •. Then, as already mentioned, F and F ′ are
secretly just representations of G on the Hilbert spaces F(•) and F ′(•). A natural
transformation α : F ⇒ F ′ is then the same as an intertwining operator from one
representation to another: that is, a linear operator

A : F(•) → F ′(•)

satisfying

AF(g) = F ′(g)A

for all group elements g.

2.2.3 Monoidal Categories

In physics, it is often useful to think of two systems sitting side by side as forming a
single system. In topology, the disjoint union of two manifolds is again a manifold
in its own right. In logic, the conjunction of two statement is again a statement.
In programming we can combine two data types into a single “product type”. The
concept of “monoidal category” unifies all these examples in a single framework.

A monoidal category C has a functor ⊗: C × C → C that takes two objects X
and Y and puts them together to give a new object X ⊗ Y . To make this precise, we
need the cartesian product of categories:

Definition 6 The cartesian product C × C ′ of categories C and C ′ is the category
where:

• an object is a pair (X, X ′) consisting of an object X ∈ C and an object X ′ ∈ C ′;
• a morphism from (X, X ′) to (Y, Y ′) is a pair ( f, f ′) consisting of a morphism

f : X → Y and a morphism f ′ : X ′ → Y ′;
• composition is done componentwise: (g, g′)( f, f ′) = (g f, g′ f ′);
• identity morphisms are defined componentwise: 1(X,X ′) = (1X , 1X ′).

Mac Lane [77] defined monoidal categories in 1963. The subtlety of the defi-
nition lies in the fact that (X ⊗ Y ) ⊗ Z and X ⊗ (Y ⊗ Z) are not usually equal.
Instead, we should specify an isomorphism between them, called the “associator”.
Similarly, while a monoidal category has a “unit object” I , it is not usually true that
I ⊗ X and X ⊗ I equal X . Instead, we should specify isomorphisms I ⊗ X ∼= X
and X ⊗ I ∼= X . To be manageable, all these isomorphisms must then satisfy certain
equations:

Definition 7 A monoidal category consists of:

• a category C,

• a tensor product functor ⊗: C × C → C,
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• a unit object I ∈ C ,
• a natural isomorphism called the associator, assigning to each triple of objects

X, Y, Z ∈ C an isomorphism

aX,Y,Z : (X ⊗ Y ) ⊗ Z
∼−→ X ⊗ (Y ⊗ Z),

• natural isomorphisms called the left and right unitors, assigning to each object
X ∈ C isomorphisms

lX : I ⊗ X
∼−→ X

rX : X ⊗ I
∼−→ X,

such that:

• for all X, Y ∈ C the triangle equation holds:

(X ⊗ I) ⊗ Y

X ⊗ Y

X ⊗ (I ⊗ Y)
aX,I,Y

rX ⊗ 1Y 1X ⊗ 1Y

• for all W, X, Y, Z ∈ C , the pentagon equation holds:

((W ⊗ X) ⊗ Y) ⊗ Z

(W ⊗ X) ⊗ (Y ⊗ Z)

(W ⊗ (X ⊗ Y)) ⊗ Z

W ⊗ ((X ⊗ Y) ⊗ Z)

W ⊗ (X ⊗ (Y ⊗ Z))

aW⊗X,Y,Z

1W⊗aX,Y,Z

aW,X,Y⊗Z

aW,X⊗Y,Z

aW,X,Y ⊗ 1Z

When we have a tensor product of four objects, there are five ways to paren-
thesize it, and at first glance the associator lets us build two isomorphisms from
W ⊗ (X ⊗ (Y ⊗ Z)) to ((W ⊗ X) ⊗ Y ) ⊗ Z . But, the pentagon equation says these
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isomorphisms are equal. When we have tensor products of even more objects there
are even more ways to parenthesize them, and even more isomorphisms between
them built from the associator. However, Mac Lane showed that the pentagon iden-
tity implies these isomorphisms are all the same. Similarly, if we also assume the
triangle equation, all isomorphisms with the same source and target built from the
associator, left and right unit laws are equal.

In a monoidal category we can do processes in “parallel” as well as in “series”.
Doing processes in series is just composition of morphisms, which works in any
category. But in a monoidal category we can also tensor morphisms f : X → Y and
f ′ : X ′ → Y ′ and obtain a “parallel process” f ⊗ f ′ : X ⊗ X ′ → Y ⊗ Y ′. We can
draw this in various ways:

f

X

Y

f

X

Y

X

Y

X

Y

X X

Y Y

f f⊗

⊗

⊗

f f⊗

More generally, we can draw any morphism

f : X1 ⊗ · · · ⊗ Xn → Y1 ⊗ · · · ⊗ Ym

as a black box with n input wires and m output wires:

f

X1 X2 X3

Y1 Y2

We draw the unit object I as a blank space. So, for example, we draw a morphism
f : I → X as follows:

f

X

By composing and tensoring morphisms, we can build up elaborate pictures resem-
bling Feynman diagrams:
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f

g

h

j

X1 X2 X3 X4

Y1 Y2 Y3
Y4

Z

The laws governing a monoidal category allow us to neglect associators and uni-
tors when drawing such pictures, without getting in trouble. The reason is that Mac
Lane’s Coherence Theorem says any monoidal category is “equivalent”, in a suitable
sense, to one where all associators and unitors are identity morphisms [77].

We can also deform the picture in a wide variety of ways without changing the
morphism it describes. For example, the above morphism equals this one:

X1 X2 X3 X4

Y1 Y2 Y3
Y4

f

g

h

j

Z

Everyone who uses string diagrams for calculations in monoidal categories starts
by worrying about the rules of the game: precisely how can we deform these pic-
tures without changing the morphisms they describe? Instead of stating the rules
precisely—which gets a bit technical—we urge you to explore for yourself what is
allowed and what is not. For example, show that we can slide black boxes up and
down like this:

X1 X2

Y1 Y2

X1 X2

Y1 Y2

X1 X2

Y1 Y2

f

g
= f g =

f

g
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For a formal treatment of the rules governing string diagrams, try the original papers
by Joyal and Street [59, 60] and the book by Yetter [111].

Now let us turn to examples. Here it is crucial to realize that the same category
can often be equipped with different tensor products, resulting in different monoidal
categories:

• There is a way to make Set into a monoidal category where X ⊗Y is the cartesian
product X × Y and the unit object is any one-element set. Note that this tensor
product is not strictly associative, since (x, (y, z)) 
= ((x, y), z), but there’s a
natural isomorphism (X × Y ) × Z ∼= X × (Y × Z), and this is our associator.
Similar considerations give the left and right unitors. In this monoidal category,
the tensor product of f : X → Y and f ′ : X ′ → Y ′ is the function

f × f ′ : X × X ′ → Y × Y ′
(x, x ′) �→ ( f (x), f ′(x ′)).

There is also a way to make Set into a monoidal category where X ⊗ Y is the
disjoint union of X and Y , which we shall denote by X + Y . Here the unit object
is the empty set. Again, as indeed with all these examples, the associative law
and left/right unit laws hold only up to natural isomorphism. In this monoidal
category, the tensor product of f : X → Y and f ′ : X ′ → Y ′ is the function

f + f ′ : X + X ′ → Y + Y ′

x �→
{

f (x) if x ∈ X ,
f ′(x) if x ∈ X ′.

However, in what follows, when we speak of Set as a monoidal category, we
always use the cartesian product!

• There is a way to make Hilb into a monoidal category with the usual tensor
product of Hilbert spaces: C

n ⊗ C
m ∼= C

nm . In this case the unit object I can be
taken to be a 1-dimensional Hilbert space, for example C.
There is also a way to make Hilb into a monoidal category where the tensor
product is the direct sum: C

n ⊕ C
m ∼= C

n+m . In this case the unit object is the
zero-dimensional Hilbert space, {0}.
However, in what follows, when we speak of Hilb as a monoidal category, we
always use the usual tensor product!

• The tensor product of objects and morphisms in nCob is given by disjoint union.
For example, the tensor product of these two morphisms:

X

Y

f

X′

Y ′

f ′
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is this:

X′

Y ′

X

Y

⊗

⊗

f ′f ⊗

• The category Tangk is monoidal when k ≥ 1, where the the tensor product is
given by disjoint union. For example, given these two tangles:

X

Y

f f

X′

Y ′

their tensor product looks like this:

X X′⊗

Y Y′⊗

f f ′⊗

The example of Set with its cartesian product is different from our other three
main examples, because the cartesian product of sets X × X ′ comes equipped with
functions called “projections” to the sets X and X ′:

X �p
X × X ′ p′

� X ′

Our other main examples lack this feature—though Hilb made into a monoidal cat-
egory using ⊕ has projections. Also, every set has a unique function to the one-
element set:

!X : X → I.
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Again, our other main examples lack this feature, though Hilb made into a monoidal
category using ⊕ has it. A fascinating feature of quantum mechanics is that we make
Hilb into a monoidal category using ⊗ instead of ⊕, even though the latter approach
would lead to a category more like Set.

We can isolate the special features of the cartesian product of sets and its projec-
tions, obtaining a definition that applies to any category:

Definition 8 Given objects X and X ′ in some category, we say an object X × X ′
equipped with morphisms

X �p
X × X ′ p′

� X ′

is a cartesian product (or simply product) of X and X ′ if for any object Q and
morphisms

Q

X X′

f ′f

there exists a unique morphism g : Q → X × X ′ making the following diagram
commute:

X′
p′X′

f ′

Q

X X

f
g

p

(That is, f = pg and f ′ = p′g.) We say a category has binary products if every
pair of objects has a product.

The product may not exist, and it may not be unique, but when it exists it is unique up
to a canonical isomorphism. This justifies our speaking of “the” product of objects
X and Y when it exists, and denoting it as X × Y .

The definition of cartesian product, while absolutely fundamental, is a bit scary
at first sight. To illustrate its power, let us do something with it: combine two mor-
phisms f : X → Y and f ′ : X ′ → Y ′ into a single morphism

f × f ′ : X × X ′ → Y × Y ′.

The definition of cartesian product says how to build a morphism of this sort out of
a pair of morphisms: namely, morphisms from X × X ′ to Y and Y ′. If we take these
to be f p and f ′ p′, we obtain f × f ′:
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X × X

Y Y × Y Y

f p f p

p

f × f

p

Next, let us isolate the special features of the one-element set:

Definition 9 An object 1 in a category C is terminal if for any object Q ∈ C there
exists a unique morphism from Q to 1, which we denote as !Q : Q → 1.

Again, a terminal object may not exist and may not be unique, but it is unique up
to a canonical isomorphism. This is why we can speak of ‘the’ terminal object of a
category, and denote it by a specific symbol, 1.

We have introduced the concept of binary products. One can also talk about n-
ary products for other values of n, but a category with binary products has n-ary
products for all n ≥ 1, since we can construct these as iterated binary products. The
case n = 1 is trivial, since the product of one object is just that object itself (up
to canonical isomorphism). The remaining case is n = 0. The zero-ary product of
objects, if it exists, is just the terminal object. So, we make the following definition:

Definition 10 A category has finite products if it has binary products and a terminal
object.

A category with finite products can always be made into a monoidal category by
choosing a specific product X × Y to be the tensor product X ⊗ Y , and choosing a
specific terminal object to be the unit object. It takes a bit of work to show this! A
monoidal category of this form is called cartesian.

In a cartesian category, we can “duplicate and delete information”. In general,
the definition of cartesian products gives a way to take two morphisms f1 : Q → X
and f2 : Q → Y and combine them into a single morphism from Q to X × Y . If we
take Q = X = Y and take f1 and f2 to be the identity, we obtain the diagonal or
duplication morphism:

ΔX : X → X × X.

In the category Set one can check that this maps any element x ∈ X to the pair
(x, x). In general, we can draw the diagonal as follows:

Δ

X

X X



114 J. Baez and M. Stay

Similarly, we call the unique map to the terminal object

!X : X → 1

the deletion morphism, and draw it as follows:

!

X

Note that we draw the unit object as an empty space.
A fundamental fact about cartesian categories is that duplicating something and

then deleting either copy is the same as doing nothing at all! In string diagrams, this
says:

!

Δ

X

X
X

=

X

=

!

Δ

X

X
X

We leave the proof as an exercise for the reader.
Many of the puzzling features of quantum theory come from the noncartesian-

ness of the usual tensor product in Hilb. For example, in a cartesian category, every
morphism

g

X X′

is actually of the form

X′

f

X

f
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In the case of Set, this says that every point of the set X × X ′ comes from a point of
X and a point of X ′. In physics, this would say that every state g of the combined
system X ⊗ X ′ is built by combining states of the systems X and X ′. Bell’s theorem
[20] says that is not true in quantum theory. The reason is that quantum theory uses
the noncartesian monoidal category Hilb!

Also, in quantum theory we cannot freely duplicate or delete information. Woot-
ters and Zurek [110] proved a precise theorem to this effect, focused on duplication:
the “no-cloning theorem”. One can also prove a “no-deletion theorem”. Again, these
results rely on the noncartesian tensor product in Hilb.

2.2.4 Braided Monoidal Categories

In physics, there is often a process that lets us “switch” two systems by moving
them around each other. In topology, there is a tangle that describes the process of
switching two points:

In logic, we can switch the order of two statements in a conjunction: the statement
“X and Y ” is isomorphic to “Y and X”. In computation, there is a simple program
that switches the order of two pieces of data. A monoidal category in which we can
do this sort of thing is called “braided”:

Definition 11 A braided monoidal category consists of:

• a monoidal category C ,
• a natural isomorphism called the braiding that assigns to every pair of objects

X, Y ∈ C an isomorphism

bX,Y : X ⊗ Y → Y ⊗ X,

such that the hexagon equations hold:
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X (Y Z ) (X Y ) Z (Y X ) Z

(Y Z ) X Y (Z X ) Y (X Z)

(X Y ) Z X (Y Z ) X (Z Y )

Z (X Y ) (Z X ) Y (X Z ) Y

aX,Y,Z

aX,Y,Z

bX,Y ⊗ 1Z

bX,Y⊗Z

bX⊗Y,Z

1Y ⊗ bX,Z

1X ⊗ bY,Z

bX,Z ⊗ 1Y

⊗

⊗⊗

⊗

⊗ ⊗ ⊗ ⊗⊗⊗

⊗ ⊗ ⊗⊗⊗

⊗ ⊗⊗⊗

⊗ ⊗ ⊗⊗⊗
−1

aX,Z,Y
−1

aY,Z,X

aY,X,Z

aZ,X,Y

−1

The first hexagon equation says that switching the object X past Y ⊗ Z all at once
is the same as switching it past Y and then past Z (with some associators thrown in
to move the parentheses). The second one is similar: it says switching X ⊗ Y past
Z all at once is the same as doing it in two steps.

In string diagrams, we draw the braiding bX,Y : X ⊗ Y → Y ⊗ X like this:

X Y

We draw its inverse b−1
X,Y like this:

YX

This is a nice notation, because it makes the equations saying that bX,Y and b−1
X,Y

are inverses “topologically true”:

X

X

Y

Y

= X Y =

Y

Y

X

X
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Here are the hexagon equations as string diagrams:

X

X

Y Z

Y Z

=

X Y Z

Y XZ

Z

Z

=

Y ZX

YXZ

⊗

⊗

X Y⊗

X Y⊗

For practice, we urge you to prove the following equations:

f g

X Y

Y′ X′ Y′ X′

=

g f

X Y

ZX Y

XYZ

=

Y ZX

XYZ
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If you get stuck, here are some hints. The first equation follows from the naturality
of the braiding. The second is called the Yang–Baxter equation and follows from
a combination of naturality and the hexagon equations [61, 62].

Next, here are some examples. There can be many different ways to give a
monoidal category a braiding, or none. However, most of our favorite examples
come with well-known “standard” braidings:

• Any cartesian category automatically becomes braided, and in Set with its carte-
sian product, this standard braiding is given by:

bX,Y : X × Y → Y × X
(x, y) �→ (y, x).

• In Hilb with its usual tensor product, the standard braiding is given by:

bX,Y : X ⊗ Y → Y ⊗ X
x ⊗ y �→ y ⊗ x .

• The monoidal category nCob has a standard braiding where bX,Y is diffeomor-
phic to the disjoint union of cylinders X × [0, 1] and Y × [0, 1]. For 2Cob this
braiding looks as follows when X and Y are circles:

X Y

bX,Y

⊗

Y X⊗

• The monoidal category Tangk has a standard braiding when k ≥ 2. For k = 2
this looks as follows when X and Y are each a single point:

bX,Y

X Y⊗

Y X⊗
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The example of Tangk illustrates an important pattern. Tang0 is just a category,
because in 0-dimensional space we can only do processes in “series”: that is, com-
pose morphisms. Tang1 is a monoidal category, because in 1-dimensional space we
can also do processes in “parallel”: that is, tensor morphisms. Tang2 is a braided
monoidal category, because in 2-dimensional space there is room to move one
object around another. Next we shall see what happens when space has 3 or more
dimensions!

2.2.5 Symmetric Monoidal Categories

Sometimes switching two objects and switching them again is the same as doing
nothing at all. Indeed, this situation is very familiar. So, the first braided monoidal
categories to be discovered were “symmetric” ones [77]:

Definition 12 A symmetric monoidal category is a braided monoidal category
where the braiding satisfies bX,Y = b−1

Y,X .

So, in a symmetric monoidal category,

X Y

YX

= X Y

or equivalently:

X Y YX

Any cartesian category automatically becomes a symmetric monoidal category,
so Set is symmetric. It is also easy to check that Hilb, nCob are symmetric monoidal
categories. So is Tangk for k ≥ 3.

Interestingly, Tangk “stabilizes” at k = 3: increasing the value of k beyond this
value merely gives a category equivalent to Tang3. The reason is that we can already
untie all knots in 4-dimensional space; adding extra dimensions has no real effect.
In fact, Tangk for k ≥ 3 is equivalent to 1Cob. This is part of a conjectured larger
pattern called the “Periodic Table” of n-categories [14]. A piece of this is shown in
Table 2.3.

An n-category has not only morphisms going between objects, but 2-morphisms
going between morphisms, 3-morphisms going between 2-morphisms and so on up
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Table 2.3 The periodic table: conjectured descriptions of (n + k)-categories with only one
j-morphism for j < k

n = 0 n = 1 n = 2

k = 0 Sets Categories 2-Categories
k = 1 Monoids Monoidal Monoidal

categories 2-categories
k = 2 Commutative Braided Braided

monoids monoidal monoidal
categories 2-categories

k = 3 ‘’ Symmetric Sylleptic
monoidal monoidal
categories 2-categories

k = 4 ‘’ ‘’ Symmetric
monoidal
2-categories

k = 5 ‘’ ‘’ ‘’
k = 6 ‘’ ‘’ ‘’

to n-morphisms. In topology we can use n-categories to describe tangled higher-
dimensional surfaces [15], and in physics we can use them to describe not just
particles but also strings and higher-dimensional membranes [14, 16]. The Rosetta
Stone we are describing concerns only the n = 1 column of the Periodic Table. So,
it is probably just a fragment of a larger, still buried n-categorical Rosetta Stone.

2.2.6 Closed Categories

In quantum mechanics, one can encode a linear operator f : X → Y into a quantum
state using a technique called “gate teleportation” [51]. In topology, there is a way
to take any tangle f : X → Y and bend the input back around to make it part of
the output. In logic, we can take a proof that goes from some assumption X to some
conclusion Y and turn it into a proof that goes from no assumptions to the conclusion
“X implies Y ”. In computer science, we can take any program that takes input of
type X and produces output of type Y , and think of it as a piece of data of a new
type: a “function type”. The underlying concept that unifies all these examples is
the concept of a ‘closed category’.

Given objects X and Y in any category C , there is a set of morphisms from X
to Y , denoted hom(X, Y ). In a closed category there is also an object of morphisms
from X to Y , which we denote by X � Y . (Many other notations are also used.) In
this situation we speak of an “internal hom”, since the object X � Y lives inside
C , instead of “outside”, in the category of sets.

Closed categories were introduced in 1966, by Eilenberg and Kelly [41]. While
these authors were able to define a closed structure for any category, it turns out that
the internal hom is most easily understood for monoidal categories. The reason is
that when our category has a tensor product, it is closed precisely when morphisms
from X ⊗ Y to Z are in natural one-to-one correspondence with morphisms from Y
to X � Z . In other words, it is closed when we have a natural isomorphism
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hom(X ⊗ Y, Z) ∼= hom(Y, X � Z)

f �→ f̃

For example, in the category Set, if we take X ⊗Y to be the cartesian product X ×Y ,
then X � Z is just the set of functions from X to Z , and we have a one-to-one
correspondence between

• functions f that eat elements of X × Y and spit out elements of Z

and

• functions f̃ that eat elements of Y and spit out functions from X to Z .

This correspondence goes as follows:

f̃ (x)(y) = f (x, y).

Before considering other examples, we should make the definition of “closed
monoidal category” completely precise. For this we must note that for any category
C , there is a functor

hom : Cop × C → Set.

Definition 13 The opposite category Cop of a category C has the same objects as
C , but a morphism f : x → y in Cop is a morphism f : y → x in C , and the
composite g f in Cop is the composite f g in C .

Definition 14 For any category C , the hom functor

hom : Cop × C → Set

sends any object (X, Y ) ∈ Cop × C to the set hom(X, Y ), and sends any morphism
( f, g) ∈ Cop × C to the function

hom( f, g) : hom(X, Y ) → hom(X ′, Y ′)
h �→ gh f

when f : X ′ → X and g : Y → Y ′ are morphisms in C .

Definition 15 A monoidal category C is left closed if there is an internal hom
functor

� : Cop × C → C

together with a natural isomorphism c called currying that assigns to any objects
X, Y, Z ∈ C a bijection

cX,Y,Z : hom(X ⊗ Y, Z)
∼−→ hom(X, Y � Z)
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It is right closed if there is an internal hom functor as above and a natural isomor-
phism

cX,Y,Z : hom(X ⊗ Y, Z)
∼−→ hom(Y, X � Z).

The term “currying” is mainly used in computer science, after the work of Curry
[36, 37]. In the rest of this section we only consider right closed monoidal cate-
gories. Luckily, there is no real difference between left and right closed for a braided
monoidal category, as the braiding gives an isomorphism X ⊗ Y ∼= Y ⊗ X .

All our examples of monoidal categories are closed, but we shall see that, yet
again, Set is different from the rest:

• The cartesian category Set is closed, where X � Y is just the set of functions
from X to Y . In Set or any other cartesian closed category, the internal hom
X � Y is usually denoted Y X . To minimize the number of different notations
and emphasize analogies between different contexts, we shall not do this: we
shall always use X � Y . To treat Set as left closed, we define the curried version
of f : X × Y → Z as above:

f̃ (x)(y) = f (x, y).

To treat it as right closed, we instead define it by

f̃ (y)(x) = f (x, y).

This looks a bit awkward, but it will be nice for string diagrams.
• The symmetric monoidal category Hilb with its usual tensor product is closed,

where X � Y is the set of linear operators from X to Y , made into a Hilbert
space in a standard way. In this case we have an isomorphism

X � Y ∼= X∗ ⊗ Y

where X∗ is the dual of the Hilbert space X , that is, the set of linear operators
f : X → C, made into a Hilbert space in the usual way.

• The monoidal category Tangk (k ≥ 1) is closed. As with Hilb, we have

X � Y ∼= X∗ ⊗ Y

where X∗ is the orientation-reversed version of X .
• The symmetric monoidal category nCob is also closed; again

X � Y ∼= X∗ ⊗ Y

where X∗ is the (n − 1)-manifold X with its orientation reversed.

Except for Set, all these examples are actually “compact”. This basically means
that X � Y is isomorphic to X∗ ⊗ Y , where X∗ is some object called the “dual”
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of X . But to make this precise, we need to define the ‘dual’ of an object in an arbi-
trary monoidal category.

To do this, let us generalize from the case of Hilb. As already mentioned, each
object X ∈ Hilb has a dual X∗ consisting of all linear operators f : X → I , where
the unit object I is just C. There is thus a linear operator

eX : X ⊗ X∗ → I
x ⊗ f �→ f (x)

called the counit of X . Furthermore, the space of all linear operators from X to
Y ∈ Hilb can be identified with X∗ ⊗ Y . So, there is also a linear operator called the
unit of X :

iX : I → X∗ ⊗ X
c �→ c 1X

sending any complex number c to the corresponding multiple of the identity
operator.

The significance of the unit and counit become clearer if we borrow some ideas
from Feynman. In physics, if X is the Hilbert space of internal states of some parti-
cle, X∗ is the Hilbert space for the corresponding antiparticle. Feynman realized that
it is enlightening to think of antiparticles as particles going backwards in time. So,
we draw a wire labelled by X∗ as a wire labelled by X , but with an arrow pointing
‘backwards in time’: that is, up instead of down:

X* = X

(Here we should admit that most physicists use the opposite convention, where time
marches up the page. Since we read from top to bottom, we prefer to let time run
down the page.)

If we draw X∗ as X going backwards in time, we can draw the unit as a cap:

X X

and the counit as a cup:

X X

In Feynman diagrams, these describe the creation and annihilation of virtual
particle-antiparticle pairs!



124 J. Baez and M. Stay

It then turns out that the unit and counit satisfy two equations, the zig-zag
equations:

X

X

X

X

X

X

Verifying these is a fun exercise in linear algebra, which we leave to the reader. If we
write these equations as commutative diagrams, we need to include some associators
and unitors, and they become a bit intimidating:

X I X (X ∗ X ) (X X∗) X

X I X

I X∗ (X∗ X ) X∗ X∗ (X X∗)

X∗ X∗ I

eX⊗1X 

1X∗⊗eX 

1X⊗iX 

iX⊗1X 

rX

aX,X∗,X
−1

rX∗

lX

lX

aX∗,X,X∗

⊗

⊗ ⊗ ⊗ ⊗

⊗

⊗

⊗ ⊗ ⊗⊗

⊗

But, they really just say that zig-zags in string diagrams can be straightened out.
This is particularly vivid in examples like Tangk and nCob. For example, in

2Cob, taking X to be the circle, the unit looks like this:

iX

I

X∗ X⊗
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while the counit looks like this:

eX

X X∗

I

⊗

In this case, the zig-zag identities say we can straighten a wiggly piece of pipe.
Now we are ready for some definitions:

Definition 16 Given objects X∗ and X in a monoidal category, we call X∗ a right
dual of X , and X a left dual of X∗, if there are morphisms

iX : I → X∗ ⊗ X

and

eX : X ⊗ X∗ → I,

called the unit and counit respectively, satisfying the zig-zag equations.

One can show that the left or right dual of an object is unique up to canonical
isomorphism. So, we usually speak of “the” right or left dual of an object, when
it exists.

Definition 17 A monoidal category C is compact if every object X ∈ C has both a
left dual and a right dual.

Often the term “autonomous” is used instead of “compact” here. Many authors
reserve the term “compact” for the case where C is symmetric or at least braided;
then left duals are the same as right duals, and things simplify [46]. To add to the
confusion, compact symmetric monoidal categories are often called simply “com-
pact closed categories”.

A partial explanation for the last piece of terminology is that any compact
monoidal category is automatically closed! For this, we define the internal hom on
objects by

X � Y = X∗ ⊗ Y.

We must then show that the ∗ operation extends naturally to a functor ∗: C →
C , so that � is actually a functor. Finally, we must check that there is a natural
isomorphism

hom(X ⊗ Y, Z) ∼= hom(Y, X∗ ⊗ Z)
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In terms of string diagrams, this isomorphism takes any morphism

f

X Y

Z

and bends back the input wire labelled X to make it an output:

f

X

Y

Z

Now, in a compact monoidal category, we have:

X Z = X Z

But in general, closed monoidal categories don’t allow arrows pointing up! So for
these, drawing the internal hom is more of a challenge. We can use the same style of
notation as long as we add a decoration—a clasp—that binds two strings together:

X Z := X Z

Only when our closed monoidal category happens to be compact can we eliminate
the clasp.

Suppose we are working in a closed monoidal category. Since we draw a mor-
phism f : X ⊗ Y → Z like this:

f

X Y

Z
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we can draw its curried version f̃ : Y → X � Z by bending down the input wire
labelled X to make it part of the output:

f

X

Y

Z

Note that where we bent back the wire labelled X , a cap like this appeared:

X X

Closed monoidal categories don’t really have a cap unless they are compact. So, we
drew a bubble enclosing f and the cap, to keep us from doing any illegal manipu-
lations. In the compact case, both the bubble and the clasp are unnecessary, so we
can draw f̃ like this:

f

X

Y

Z

An important special case of currying gives the name of a morphism f : X → Y ,

�f � : I → X � Y.

This is obtained by currying the morphism

f rx : I ⊗ X → Y.

In string diagrams, we draw �f � as follows:

f

X
Y
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In the category Set, the unit object is the one-element set, 1. So, a morphism from
this object to a set Q picks out a point of Q. In particular, the name �f � : 1 → X �
Y picks out the element of X � Y corresponding to the function f : X → Y . More
generally, in any cartesian closed category the unit object is the terminal object 1,
and a morphism from 1 to an object Q is called a point of Q. So, even in this case,
we can say the name of a morphism f : X → Y is a point of X � Y .

Something similar works for Hilb, though this example is compact rather than
cartesian. In Hilb, the unit object I is just C. So, a nonzero morphism from I to any
Hilbert space Q picks out a nonzero vector in Q, which we can normalize to obtain
a state in Q: that is, a unit vector. In particular, the name of a nonzero morphism
f : X → Y gives a state of X∗ ⊗ Y . This method of encoding operators as states is
the basis of “gate teleportation” [51].

Currying is a bijection, so we can also uncurry:

c−1
X,Y,Z : hom(Y, X � Z)

∼−→ hom(X ⊗ Y, Z)

g �→ g˜.

Since we draw a morphism g : Y → X � Z like this:

g

X

Y

Z

we draw its “uncurried” version g˜: X ⊗ Y → Z by bending the output X up to
become an input:

gX

Y

Z

Again, we must put a bubble around the “cup” formed when we bend down the wire
labelled Y , unless we are in a compact monoidal category.

A good example of uncurrying is the evaluation morphism:

evX,Y : X ⊗ (X � Y ) → Y.
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This is obtained by uncurrying the identity

1X�Y : (X � Y ) → (X � Y ).

In Set, evX,Y takes any function from X to Y and evaluates it at any element of X
to give an element of Y . In terms of string diagrams, the evaluation morphism looks
like this:

ev

X

X

Y

Y

=

X
X

Y

Y

In any closed monoidal category, we can recover a morphism from its name using
evaluation. More precisely, this diagram commutes:

X I X

X (X Y ) Y

1X⊗ f

r−1

f

evX,Y

⊗

⊗

Or, in terms of string diagrams:

f

X
X

Y

Y

= f

X

Y

We leave the proof of this as an exercise. In general, one must use the naturality of
currying. In the special case of a compact monoidal category, there is a nice picture
proof! Simply pop the bubbles and remove the clasp:
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f

X
X

Y

Y

= f

X

Y

The result then follows from one of the zig-zag identities.
In our rapid introduction to string diagrams, we have not had time to illustrate

how these diagrams become a powerful tool for solving concrete problems. So, here
are some starting points for further study:

• Representations of Lie groups play a fundamental role in quantum physics, espe-
cially gauge field theory. Every Lie group has a compact symmetric monoidal
category of finite-dimensional representations. In his book Group Theory, Cvi-
tanovic [38] develops detailed string diagram descriptions of these representation
categories for the classical Lie groups SU(n), SO(n), SU(n) and also the more
exotic “exceptional” Lie groups. His book also illustrates how this technology
can be used to simplify difficult calculations in gauge field theory.

• Quantum groups are a generalization of groups which show up in 2d and
3d physics. The big difference is that a quantum group has compact braided
monoidal category of finite-dimensional representations. Kauffman’s Knots and
Physics [65] is an excellent introduction to how quantum groups show up in
knot theory and physics; it is packed with string diagrams. For more details on
quantum groups and braided monoidal categories, see the book by Kassel [64].

• Kauffman and Lins [66] have written a beautiful string diagram treatment of the
category of representations of the simplest quantum group, SUq(2). They also
use it to construct some famous 3-manifold invariants associated to 3d and 4d
topological quantum field theories: the Witten–Reshetikhin–Turaev, Turaev–Viro
and Crane–Yetter invariants. In this example, string diagrams are often called
“q-deformed spin networks” [101]. For generalizations to other quantum groups,
see the more advanced texts by Turaev [107] and by Bakalov and Kirillov [17].
The key ingredient is a special class of compact braided monoidal categories
called “modular tensor categories”.

• Kock [70] has written a nice introduction to 2d topological quantum field theories
which uses diagrammatic methods to work with 2Cob.

• Abramsky, Coecke and collaborators [2–4, 31, 33, 34] have developed string dia-
grams as a tool for understanding quantum computation. The easiest introduction
is Coecke’s “Kindergarten quantum mechanics” [32].
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2.2.7 Dagger Categories

Our discussion would be sadly incomplete without an important admission: nothing
we have done so far with Hilbert spaces used the inner product! So, we have not yet
touched on the essence of quantum theory.

Everything we have said about Hilb applies equally well to Vect: the category of
finite-dimensional vector spaces and linear operators. Both Hilb and Vect are com-
pact symmetric monoidal categories. In fact, these compact symmetric monoidal
categories are “equivalent” in a certain precise sense [78].

So, what makes Hilb different? In terms of category theory, the special thing is
that we can take the Hilbert space adjoint of any linear operator f : X → Y between
finite-dimensional Hilbert spaces, getting an operator f † : Y → X . This ability to
‘reverse’ morphisms makes Hilb into a ‘dagger category’:

Definition 18 A dagger category is a category C such that for any morphism
f : X → Y in C there is a specified morphism f † : Y → X such that

(g f )† = f †g†

for every pair of composable morphisms f and g, and

( f †)† = f

for every morphism f .

Equivalently, a dagger category is one equipped with a functor † : C → Cop that is
the identity on objects and satisfies ( f †)† = f for every morphism.

In fact, all our favorite examples of categories can be made into dagger cate-
gories, except for Set:

• There is no way to make Set into a dagger category, since there is a function from
the empty set to the 1-element set, but none the other way around.

• The category Hilb becomes a dagger category as follows. Given any morphism
f : X → Y in Hilb, there is a morphism f † : Y → X , the Hilbert space adjoint
of f , defined by

〈 f †ψ, φ〉 = 〈ψ, f φ〉

for all φ ∈ X , ψ ∈ Y .
• For any k, the category Tangk becomes a dagger category where we obtain

f † : Y → X by reflecting f : X → Y in the vertical direction, and then switching
the direction of the little arrows denoting the orientations of arcs and circles.

• For any n, the category nCob becomes a dagger category where we obtain
f † : Y → X by switching the input and output of f : X → Y , and then switching
the orientation of each connected component of f . Again, a picture speaks a
thousand words:
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X

Y

f

Y

X

f †

In applications to physics, this dagger operation amounts to “switching the future
and the past”.

In all the dagger categories above, the dagger structure interacts in a nice way
with the monoidal structure and also, when it exists, the braiding. One can write a
list of axioms characterizing how this works [2, 3, 97]. So, it seems that the ability to
“reverse” morphisms is another way in which categories of a quantum flavor differ
from the category of sets and functions. This has important implications for the
foundations of quantum theory [12] and also for topological quantum field theory
[14], where dagger categories seem to be part of larger story involving “n-categories
with duals” [15]. However, this story is still poorly understood—there is much more
work to be done.

2.3 Logic

2.3.1 Background

Symmetric monoidal closed categories show up not only in physics and topology,
but also in logic. We would like to explain how. To set the stage, it seems worthwhile
to sketch a few ideas from twentieth-century logic.

Modern logicians study many systems of reasoning beside ordinary classical
logic. Of course, even classical logic comes in various degrees of strength. First
there is the “propositional calculus”, which allows us to reason with abstract propo-
sitions X, Y, Z , . . . and these logical connectives:

and ∧
or ∨

implies ⇒
not ¬
true �
false ⊥

Then there is the “predicate calculus”, which also allows variables like x, y, z, . . . ,
predicates like P(x) and Q(x, y, z), and the symbols “for all” (∀) and “there exists”
(∃), which allow us to quantify over variables. There are also higher-order systems
that allow us to quantify over predicates, and so on. To keep things simple, we
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mainly confine ourselves to the propositional calculus in what follows. But even
here, there are many alternatives to the “classical” version!

The most-studied of these alternative systems are weaker than classical logic:
they make it harder or even impossible to prove things we normally take for granted.
One reason is that some logicians deny that certain familiar principles are actually
valid. But there are also subtler reasons. One is that studying systems with rules
of lesser strength allows for a fine-grained study of precisely which methods of
reasoning are needed to prove which results. Another reason—the one that concerns
us most here—is that dropping familiar rules and then adding them back in one at
at time sheds light on the connection between logic and category theory.

For example, around 1907 Brouwer [53] began advocating “intuitionism”. As
part of this, he raised doubts about the law of excluded middle, which amounts to a
rule saying that from ¬¬X we can deduce X . One problem with this principle is that
proofs using it are not “constructive”. For example, we may prove by contradiction
that some equation has a solution, but still have no clue how to construct the solution.
For Brouwer, this meant the principle was invalid.

Anyone who feels the law of excluded middle is invalid is duty-bound to study
intuitionistic logic. But, there is another reason for studying this system. Namely:
we do not really lose anything by dropping the law of excluded middle! Instead,
we gain a fine-grained distinction: the distinction between a direct proof of X and
a proof by contradiction, which yields merely ¬¬X . If we do not care about this
distinction we are free to ignore it, but there is no harm in having it around.

In the 1930’s, this idea was made precise by Gödel [49] and Gentzen [104]. They
showed that we can embed classical logic in intuitionistic logic. In fact, they found
a map sending any formula X of the propositional calculus to a new formula X◦,
such that X is provable classically if and only if X◦ is provable intuitionistically.
(More impressively, this map also works for the predicate calculus.)

Later, yet another reason for being interested in intuitionistic logic became appar-
ent: its connection to category theory. In its very simplest form, this connection
works as follows. Suppose we have a set of propositions X, Y, Z , . . . obeying the
laws of the intuitionistic propositional calculus. We can create a category C where
these propositions are objects and there is at most one morphism from any object X
to any object Y : a single morphism when X implies Y , and none otherwise!

A category with at most one morphism from any object to any other is called
a preorder. In the propositional calculus, we often treat two propositions as equal
when they both imply each other. If we do this, we get a special sort of preorder: one
where isomorphic objects are automatically equal. This special sort of preorder is
called a partially ordered set, or poset for short. Posets abound in logic, precisely
because they offer a simple framework for understanding implication.

If we start from a set of propositions obeying the intuitionistic propositional cal-
culus, the resulting category C is better than a mere poset. It is also cartesian, with
X ∧Y as the product of X and Y , and � as the terminal object! To see this, note that
any proposition Q has a unique morphism to X ∧Y whenever it has morphisms to X
and to Y . This is simply a fancy way of saying that Q implies X ∧Y when it implies
X and implies Y . It is also easy to see that � is terminal: anything implies the truth.
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Even better, the category C is cartesian closed, with X ⇒ Y as the internal hom.
The reason is that

X ∧ Y implies Z iff Y implies X ⇒ Z .

This automatically yields the basic property of the internal hom:

hom(X ⊗ Y, Z) ∼= hom(Y, X � Z).

Indeed, if the reader is puzzled by the difference between “X implies Y ” and X ⇒
Y , we can now explain this more clearly: the former involves the homset hom(X, Y )

(which has one element when X implies Y and none otherwise), while the latter is
the internal hom, an object in C .

So, C is a cartesian closed poset. But, it also has one more nice property, thanks to
the presence of ∨ and ⊥ We have seen that ∧ and � make the category C cartesian;
∨ and ⊥ satisfy exactly analogous rules, but with the implications turned around, so
they make Cop cartesian.

And that is all! In particular, negation gives nothing more, since we can define
¬X to be X ⇒ ⊥, and all its intuitionistically valid properties then follow. So,
the kind of category we get from the intuitionistic propositional calculus by tak-
ing propositions as objects and implications as morphisms is precisely a Heyting
algebra: a cartesian closed poset C such that Cop is also cartesian.

Heyting, a student of Brouwer, introduced Heyting algebras in intuitionistic logic
before categories were even invented. So, he used very different language to define
them. But, the category-theoretic approach to Heyting algebras illustrates the con-
nection between cartesian closed categories and logic. It also gives more evidence
that dropping the law of excluded middle is an interesting thing to try.

Since we have explained the basics of cartesian closed categories, but not said
what happens when the opposite of such a category is also cartesian, in the sections
to come we will take a drastic step and limit our discussion of logic even further.
We will neglect ∨ and ⊥, and concentrate only on the fragment of the propositional
calculus involving ∧, � and ⇒.

Even here, it turns out, there are interesting things to say—and interesting ways
to modify the usual rules. This will be the main subject of the sections to come. But
to set the stage, we need to say a bit about proof theory.

Proof theory is the branch of mathematical logic that treats proofs as mathe-
matical entities worthy of study in their own right. It lets us dig deeper into the
propositional calculus by studying not merely whether or not some assumption X
implies some conclusion Y , but the whole set of proofs leading from X to Y . This
amounts to studying not just posets (or preorders), but categories that allow many
morphisms from one object to another.

In Hilbert’s approach to proof, there were many axioms and just one rule to
deduce new theorems: modus ponens, which says that from X and “X implies Y ”
we can deduce Y . Most of modern proof theory focuses on another approach, the
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“sequent calculus”, due to Gentzen [104]. In this approach there are few axioms but
many inference rules.

An excellent introduction to the sequent calculus is the book Proofs and Types
by Girard, Lafont and Taylor, freely available online [48]. Here we shall content
ourselves with some sketchy remarks. A “sequent” is something like this:

X1, . . . , Xm � Y1, . . . , Yn

where Xi and Yi are propositions. We read this sequent as saying that all the propo-
sitions Xi , taken together, can be used to prove at least one of the propositions Yi .
This strange-sounding convention gives the sequent calculus a nice symmetry, as we
shall soon see.

In the sequent calculus, an “inference rule” is something that produces new
sequents from old. For example, here is the left weakening rule:

X1, . . . , Xm � Y1, . . . , Yn

X1, . . . , Xm, A � Y1, . . . , Yn

This says that from the sequent above the line we can get the sequent below the
line: we can throw in the extra assumption A without harm. Thanks to the strange-
sounding convention we mentioned, this rule has a mirror-image version called
right weakening:

X1, . . . , Xm � Y1, . . . , Yn

X1, . . . , Xm � Y1, . . . , Yn, A

In fact, Gentzen’s whole setup has this mirror symmetry! For example, his rule
called left contraction:

X1, . . . , Xm, A, A � Y1, . . . , Yn

X1, . . . , Xm, A � Y1, . . . , Yn

has a mirror partner called right contraction:

X1, . . . , Xm � Y1, . . . , Yn, A, A
X1, . . . , Xm � Y1, . . . , Yn, A

Similarly, this rule for “and”

X1, . . . , Xm, A � Y1, . . . , Yn

X1, . . . , Xm, A ∧ B � Y1, . . . , Yn

has a mirror partner for “or”:

X1, . . . , Xm � Y1, . . . , Yn, A
X1, . . . , Xm � Y1, . . . , Yn, A ∨ B
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Logicians now realize that this mirror symmetry can be understood in terms of the
duality between a category and its opposite.

Gentzen used sequents to write inference rules for the classical propositional
calculus, and also the classical predicate calculus. Now, in these forms of logic we
have

X1, . . . , Xm � Y1, . . . , Yn

if and only if we have

X1 ∧ · · · ∧ Xm � Y1 ∨ · · · ∨ Yn .

So, why did Gentzen use sequents with a list of propositions on each side of the �
symbol, instead just a single proposition? The reason is that this let him use only
inference rules having the “subformula property”. This says that every proposition
in the sequent above the line appears as part of some proposition in the sequent
below the line. So, a proof built from such inference rules becomes a “tree” where
all the propositions further up the tree are subformulas of those below.

This idea has powerful consequences. For example, in 1936 Gentzen was able
prove the consistency of Peano’s axioms of arithmetic! His proof essentially used
induction on trees (Readers familiar with Gödel’s second incompleteness theorem
should be reassured that this sort of induction cannot itself be carried out in Peano
arithmetic.)

The most famous rule lacking the subformula property is the ‘cut rule’:

X1, . . . , Xm � Y1, . . . , Yk, A Xm+1, . . . , Xn, A � Yk+1, . . . , Y�

X1, . . . , Xn � Y1, . . . , Y�

From the two sequents on top, the cut rule gives us the sequent below. Note that the
intermediate step A does not appear in the sequent below. It is “cut out”. So, the cut
rule lacks the subformula property. But, one of Gentzen’s great achievements was
to show that any proof in the classical propositional (or even predicate) calculus
that can be done with the cut rule can also be done without it. This is called ‘cut
elimination’.

Gentzen also wrote down inference rules suitable for the intuitionistic proposi-
tional and predicate calculi. These rules lack the mirror symmetry of the classical
case. But in the 1980s, this symmetry was restored by Girard’s invention of “linear
logic” [47].

Linear logic lets us keep track of how many times we use a given premise to
reach a given conclusion. To accomplish this, Girard introduced some new logical
connectives! For starters, he introduced ‘linear’ connectives called ⊗ and �, and
a logical constant called I . These act a bit like ∧, ⇒ and �. However, they satisfy
rules corresponding to a symmetric monoidal category instead of a cartesian closed
category. In particular, from X we can prove neither X ⊗ X nor I . So, we cannot
freely “duplicate” and “delete” propositions using these new connectives. This is



2 Physics, Topology, Logic and Computation 137

reflected in the fact that linear logic drops Gentzen’s contraction and weakening
rules.

By itself, this might seem unbearably restrictive. However, Girard also kept the
connectives ∧, ⇒ and � in his system, still satisfying the usual rules. And, he
introduced an operation called the “exponential”, !, which takes a proposition X and
turns it into an “arbitrary stock of copies of X”. So, for example, from !X we can
prove 1, and X , and X ⊗ X , and X ⊗ X ⊗ X , and so on.

Full-fledged linear logic has even more connectives than we have described here.
It seems baroque and peculiar at first glance. It also comes in both classical and
intuitionistic versions! But, just as classical logic can be embedded in intuitionistic
logic, intuitionistic logic can be embedded in intuitionistic linear logic [47]. So, we
do not lose any deductive power. Instead, we gain the ability to make even more
fine-grained distinctions.

In what follows, we discuss the fragment of intuitionistic linear logic involving
only ⊗,� and I . This is called “multiplicative intuititionistic linear logic” [52,
91]. It turns out to be the system of logic suitable for closed symmetric monoidal
categories—nothing more or less.

2.3.2 Proofs as Morphisms

In Sect. 2.2 we described categories with various amounts of extra structure, starting
from categories pure and simple, and working our way up to monoidal categories,
braided monoidal categories, symmetric monoidal categories, and so on. Our treat-
ment only scratched the surface of an enormously rich taxonomy. In fact, each kind
of category with extra structure corresponds to a system of logic with its own infer-
ence rules!

To see this, we will think of propositions as objects in some category, and proofs
as giving morphisms. Suppose X and Y are propositions. Then, we can think of a
proof starting from the assumption X and leading to the conclusion Y as giving a
morphism f : X → Y . (In Sect. 2.3.3 we shall see that a morphism is actually an
equivalence class of proofs—but for now let us gloss over this issue.)

Let us write X � Y when, starting from the assumption X , there is a proof
leading to the conclusion Y . An inference rule is a way to get new proofs from old.
For example, in almost every system of logic, if there is a proof leading from X to
Y , and a proof leading from Y to Z , then there is a proof leading from X to Z . We
write this inference rule as follows:

X � Y Y � Z
X � Z

We can call this cut rule, since it lets us “cut out” the intermediate step Y . It is a spe-
cial case of Gentzen’s cut rule, mentioned in the previous section. It should remind
us of composition of morphisms in a category: if we have a morphism f : X → Y
and a morphism g : Y → Z , we get a morphism g f : X → Z .
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Also, in almost every system of logic there is a proof leading from X to X . We can
write this as an inference rule that starts with nothing and concludes the existence
of a proof of X from X :

X � X

This rule should remind us of how every object in category has an identity mor-
phism: for any object X , we automatically get a morphism 1X : X → X . Indeed,
this rule is sometimes called the identity rule.

If we pursue this line of thought, we can take the definition of a closed symmetric
monoidal category and extract a collection of inference rules. Each rule is a way to
get new morphisms from old in a closed symmetric monoidal category. There are
various superficially different but ultimately equivalent ways to list these rules. Here
is one:

X � X (i)
X � Y Y � Z

X � Z
(◦)

W � X Y � Z
W ⊗ Y � X ⊗ Z

(⊗)
W � (X ⊗ Y ) ⊗ Z

W � X ⊗ (Y ⊗ Z)
(a)

X � I ⊗ Y

X � Y
(l)

X � Y ⊗ I

X � Y
(r)

W � X ⊗ Y

W � Y ⊗ X
(b)

X ⊗ Y � Z

Y � X � Z
(c)

Double lines mean that the inverse rule also holds. We have given each rule a name,
written to the right in parentheses. As already explained, rules (i) and (◦) come from
the presence of identity morphisms and composition in any category. Rules (⊗),
(a), (l), and (r) come from tensoring, the associator, and the left and right unitors
in a monoidal category. Rule (b) comes from the braiding in a braided monoidal
category, and rule (c) comes from currying in a closed monoidal category.

Now for the big question: what does all this mean in terms of logic? These rules
describe a small fragment of the propositional calculus. To see this, we should read
the connective ⊗ as “and”, the connective � as “implies”, and the proposition I as
“true”.

In this interpretation, rule (c) says we can turn a proof leading from the assump-
tion “Y and X” to the conclusion Z into a proof leading from X to “Y implies Z”.
It also says we can do the reverse. This is true in classical, intuitionistic and linear
logic, and so are all the other rules. Rules (a) and (b) say that “and” is associative
and commutative. Rule (l) says that any proof leading from the assumption X to the
conclusion “true and Y ” can be converted to a proof leading from X to Y , and vice
versa. Rule (r) is similar.

What do we do with these rules? We use them to build “deductions”. Here is an
easy example:
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(i)
X � Y � X � Y

(c−1)
X ⊗ (X � Y ) � Y

First we use the identity rule, and then the inverse of the currying rule. At the end,
we obtain

X ⊗ (X � Y ) � Y.

This should remind us of the evaluation morphisms we have in a closed monoidal
category:

evX,Y : X ⊗ (X � Y ) → Y.

In terms of logic, the point is that we can prove Y from X and “X implies Y ”. This
fact comes in handy so often that we may wish to abbreviate the above deduction as
an extra inference rule—a rule derived from our basic list:

(ev)
X ⊗ (X � Y ) � Y

This rule is called modus ponens.
In general, a deduction is a tree built from inference rules. Branches arise when

we use the (◦) or (⊗) rules. Here is an example:

(i)
(A ⊗ B) ⊗ C � (A ⊗ B) ⊗ C

(a)
(A ⊗ B) ⊗ C � A ⊗ (B ⊗ C) A ⊗ (B ⊗ C) � D

(◦)
(A ⊗ B) ⊗ C � D

Again we can abbreviate this deduction as a derived rule. In fact, this rule is
reversible:

A ⊗ (B ⊗ C) � D
(α)

(A ⊗ B) ⊗ C � D

For a more substantial example, suppose we want to show

(X � Y ) ⊗ (Y � Z) � X � Z .

The deduction leading to this will not even fit on the page unless we use our abbre-
viations:

(ev)
X ⊗ (X � Y ) � Y

(i)
Y � Z � Y � Z

(⊗)
(X ⊗ (X � Y )) ⊗ (Y � Z) � Y ⊗ (Y � Z)

(ev)
Y ⊗ (Y � Z) � Z

(X ⊗ (X � Y )) ⊗ (Y � Z) � Z
(α−1)

X ⊗ ((X � Y ) ⊗ (Y � Z)) � Z
(c)

(X � Y ) ⊗ (Y � Z) � X � Z
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Since each of the rules used in this deduction came from a way to get new mor-
phisms from old in a closed monoidal category (we never used the braiding), it
follows that in every such category we have internal composition morphisms:

•X,Y,Z : (X � Y ) ⊗ (Y � Z) → X � Z .

These play the same role for the internal hom that ordinary composition

◦: hom(X, Y ) × hom(Y, Z) → hom(X, Z)

plays for the ordinary hom.
We can go ahead making further deductions in this system of logic, but the really

interesting thing is what it omits. For starters, it omits the connective “or” and the
proposition “false”. It also omits two inference rules we normally take for granted—
namely, contraction:

X � Y
(Δ)

X � Y ⊗ Y

and weakening:

X � Y
(!)

X � I

which are closely related to duplication and deletion in a cartesian category. Omit-
ting these rules is a distinctive feature of linear logic [47]. The word “linear” should
remind us of the category Hilb. As noted in Sect. 2.2.3, this category with its usual
tensor product is noncartesian, so it does not permit duplication and deletion. But,
what does omitting these rules mean in terms of logic?

Ordinary logic deals with propositions, so we have been thinking of the above
system of logic in the same way. Linear logic deals not just with propositions, but
also other resources—for example, physical things! Unlike propositions in ordinary
logic, we typically can’t duplicate or delete these other resources. In classical logic,
if we know that a proposition X is true, we can use X as many or as few times as
we like when trying to prove some proposition Y . But if we have a cup of milk, we
can’t use it to make cake and then use it again to make butter. Nor can we make it
disappear without a trace: even if we pour it down the drain, it must go somewhere.

In fact, these ideas are familiar in chemistry. Consider the following resources:

H2 = one molecule of hydrogen
O2 = one molecule of oxygen

H2 O = one molecule of water

We can burn hydrogen, combining one molecule of oxygen with two of hydrogen to
obtain two molecules of water. A category theorist might describe this reaction as a
morphism:
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f : O2 ⊗ (H2 ⊗ H2) → H2 O ⊗ H2 O.

A linear logician might write:

O2 ⊗ (H2 ⊗ H2) � H2 O ⊗ H2 O

to indicate the existence of such a morphism. But, we cannot duplicate or delete
molecules, so for example

H2 
�H2 ⊗ H2

and

H2 
�I

where I is the unit for the tensor product: not iodine, but “no molecules at all”.
In short, ordinary chemical reactions are morphisms in a symmetric monoidal

category where objects are collections of molecules. As chemists normally conceive
of it, this category is not closed. So, it obeys an even more limited system of logic
than the one we have been discussing, a system lacking the connective �. To get
a closed category—in fact a compact one—we need to remember one of the great
discoveries of twentieth-century physics: antimatter. This lets us define Y � Z to
be “anti-Y and Z”:

Y � Z = Y ∗ ⊗ Z .

Then the currying rule holds:

Y ⊗ X � Z

X � Y ∗ ⊗ Z

Most chemists don’t think about antimatter very often—but particle physicists do.
They don’t use the notation of linear logic or category theory, but they know per-
fectly well that since a neutrino and a neutron can collide and turn into a proton and
an electron:

ν ⊗ n � p ⊗ e,

then a neutron can turn into a antineutrino together with a proton and an electron:

n � ν∗ ⊗ (p ⊗ e).

This is an instance of the currying rule, rule (c).
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2.3.3 Logical Theories from Categories

We have sketched how different systems of logic naturally arise from different types
of categories. To illustrate this idea, we introduced a system of logic with inference
rules coming from ways to get new morphisms from old in a closed symmetric
monoidal category. One could substitute many other types of categories here, and
get other systems of logic.

To tighten the connection between proof theory and category theory, we shall
now describe a recipe to get a logical theory from any closed symmetric monoidal
category. For this, we shall now use X � Y to denote the set of proofs—or actually,
equivalence classes of proofs—leading from the assumption X to the conclusion Y .
This is a change of viewpoint. Previously we would write X � Y when this set of
proofs was nonempty; otherwise we would write X 
 �Y . The advantage of treating
X � Y as a set is that this set is precisely what a category theorist would call
hom(X, Y ): a homset in a category.

If we let X � Y stand for a homset, an inference rule becomes a function from a
product of homsets to a single homset. For example, the cut rule

X � Y Y � Z
(◦)

X � Z

becomes another way of talking about the composition function

◦X,Y,Z : hom(X, Y ) × hom(Y, Z) → hom(X, Z),

while the identity rule

(i)
X � X

becomes another way of talking about the function

iX : 1 → hom(X, X)

that sends the single element of the set 1 to the identity morphism of X . (Note: the
set 1 is a zero-fold product of homsets.)

Next, if we let inference rules be certain functions from products of homsets to
homsets, deductions become more complicated functions of the same sort built from
these basic ones. For example, this deduction:

(i)
X ⊗ I � X ⊗ I

(r)
X ⊗ I � X

(i)
Y � Y

(⊗)
(X ⊗ I ) ⊗ Y � X ⊗ Y
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specifies a function from 1 to hom((X⊗I )⊗Y, X⊗Y ), built from the basic functions
indicated by the labels at each step. This deduction:

(i)
(X ⊗ I ) ⊗ Y � (X ⊗ I ) ⊗ Y

(a)
(X ⊗ I ) ⊗ Y � X ⊗ (I ⊗ Y )

(i)
I ⊗ Y � I ⊗ Y

(r)
I ⊗ Y � Y

(i)
X � X

(⊗)
X ⊗ (I ⊗ Y ) � X ⊗ Y

(◦)
(X ⊗ I ) ⊗ Y � X ⊗ Y

gives another function from 1 to hom((X ⊗ I ) ⊗ Y, X ⊗ Y ).
If we think of deductions as giving functions this way, the question arises when

two such functions are equal. In the example just mentioned, the triangle equation
in the definition of monoidal category (Definition 7):

X Y

aX,I,Y

rX⊗1Y 1X⊗lY

X ⊗ (I ⊗ Y )(X ⊗ I ) ⊗ Y

⊗

says these two functions are equal. Indeed, the triangle equation is precisely the
statement that these two functions agree! (We leave this as an exercise for the
reader.)

So: even though two deductions may look quite different, they may give the same
function from a product of homsets to a homset if we demand that these are homsets
in a closed symmetric monoidal category. This is why we think of X � Y as a
set of equivalence classes of proofs, rather than proofs: it is forced on us by our
desire to use category theory. We could get around this by using a 2-category with
proofs as morphisms and “equivalences between proofs” as 2-morphisms [93, 94].
This would lead us further to the right in the Periodic Table (Table 2.3). But let
us restrain ourselves and make some definitions formalizing what we have done
so far.

From now on we shall call the objects X, Y, . . . “propositions”, even though
we have seen they may represent more general resources. Also, purely for the sake
of brevity, we use the term “proof” to mean “equivalence class of proofs”. The
equivalence relation must be coarse enough to make the equations in the following
definitions hold:

Definition 19 A closed monoidal theory consists of the following:

• A collection of propositions. The collection must contain a proposition I , and if
X and Y are propositions, then so are X ⊗ Y and X � Y .

• For every pair of propositions X, Y, a set X � Y of proofs leading from X to Y .
If f ∈ X � Y, then we write f : X → Y .

• Certain functions, written as inference rules:
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X � X (i)
X � Y Y � Z

X � Z
(◦)

W � X Y � Z
W ⊗ Y � X ⊗ Z

(⊗)
W � (X ⊗ Y ) ⊗ Z

W � X ⊗ (Y ⊗ Z)
(a)

X � I ⊗ Y

X � Y
(l)

X � Y ⊗ I

X � Y
(r)

X ⊗ Y � Z

Y � X � Z
(c)

A double line means that the function is invertible. So, for example, for each
triple X, Y, Z we have a function

◦X,Y,Z : (X � Y ) × (Y � Z) → (X � Z)

and a bijection

cX,Y,Z : (X ⊗ Y � Z) → (Y � X � Z).

• Certain equations that must be obeyed by the inference rules. The inference rules
(◦) and (i) must obey equations describing associativity and the left and right
unit laws. Rule (⊗) must obey an equation saying it is a functor. Rules (a), (l),
(r), and (c) must obey equations saying they are natural transformations. Rules
(a), (l), (r) and (⊗) must also obey the triangle and pentagon equations.

Definition 20 A closed braided monoidal theory is a closed monoidal theory with
this additional inference rule:

W � X ⊗ Y

W � Y ⊗ X
(b)

We demand that this rule give a natural transformation satisfying the hexagon equa-
tions.

Definition 21 A closed symmetric monoidal theory is a closed braided monoidal
theory where the rule (b) is its own inverse.

These are just the usual definitions of various kinds of closed category—
monoidal, braided monoidal and symmetric monoidal—written in a new style. This
new style lets us build such categories from logical systems. To do this, we take the
objects to be propositions and the morphisms to be equivalence classes of proofs,
where the equivalence relation is generated by the equations listed in the definitions
above.

However, the full advantages of this style only appear when we dig deeper into
proof theory, and generalize the expressions we have been considering:

X � Y
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to “sequents” like this:

X1, . . . , Xn � Y.

Loosely, we can think of such a sequent as meaning

X1 ⊗ · · · ⊗ Xn � Y.

The advantage of sequents is that they let us use inference rules that—except for the
cut rule and the identity rule—have the “subformula property” mentioned near the
end of Sect. 2.3.1.

Formulated in terms of these inference rules, the logic of closed symmetric
monoidal categories goes by the name of “multiplicative intuitionistic linear logic”,
or MILL for short [52, 91]. There is a “cut elimination” theorem for MILL, which
says that with a suitable choice of other inference rules, the cut rule becomes redun-
dant: any proof that can be done with it can be done without it. This is remark-
able, since the cut rule corresponds to composition of morphisms in a category. One
consequence is that in the free symmetric monoidal closed category on any set of
objects, the set of morphisms between any two objects is finite. There is also a
decision procedure to tell when two morphisms are equal. For details, see Trimble’s
thesis [105] and the papers by Jay [58] and Soloviev [100]. Also see Kelly and Mac
Lane’s coherence theorem for closed symmetric monoidal categories [67], and the
related theorem for compact symmetric monoidal categories [68].

MILL is just one of many closely related systems of logic. Most include extra
features, but some subtract features. Here are just a few examples:

• Algebraic theories. In his famous thesis, Lawvere [75] defined an algebraic the-
ory to be a cartesian category where every object is an n-fold cartesian power
X × · · · × X (n ≥ 0) of a specific object X . He showed how such categories
regarded as logical theories of a simple sort—the sort that had previously been
studied in “universal algebra” [26]. This work initiated the categorical approach
to logic which we have been sketching here. Crole’s book [35] gives a gentle
introduction to algebraic theories as well as some richer logical systems. More
generally, we can think of any cartesian category as a generalized algebraic
theory.

• Intuitionistic linear logic (ILL). ILL supplements MILL with the operations
familiar from intuitionistic logic, as well as an operation ! turning any proposition
(or resource) X into an “indefinite stock of copies of X”. Again there is a nice
category-theoretic interpretation. Bierman’s thesis [24] gives a good overview,
including a proof of cut elimination for ILL and a proof of the result, originally
due to Girard, that intuitionistic logic can be be embedded in ILL.

• Linear logic (LL). For full-fledged linear logic, the online review article by Di
Cosmo and Miller [39] is a good place to start. For more, try the original paper
by Girard [47] and the book by Troelstra [106]. Blute and Scott’s review article
[25] serves as a Rosetta Stone for linear logic and category theory, and so do the
lectures notes by Schalk [91].
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• Intuitionistic Logic (IL). Lambek and Scott’s classic book [73] is still an excel-
lent introduction to intuitionistic logic and cartesian closed categories. The
online review article by Moschovakis [83] contains many suggestions for further
reading.

To conclude, let us say precisely what an “inference rule” amounts to in the setup
we have described. We have said it gives a function from a product of homsets to
a homset. While true, this is not the last word on the subject. After all, instead of
treating the propositions appearing in an inference rule as fixed, we can treat them
as variable. Then an inference rule is really a “schema” for getting new proofs from
old. How do we formalize this idea?

First we must realize that X � Y is not just a set: it is a set depending in a
functorial way on X and Y . As noted in Definition 14, there is a functor, the “hom
functor”

hom : Cop × C → Set,

sending (X, Y ) to the homset hom(X, Y ) = X � Y . To look like logicians, let us
write this functor as �.

Viewed in this light, most of our inference rules are natural transformations. For
example, rule (a) is a natural transformation between two functors from Cop × C3

to Set, namely the functors

(W, X, Y, Z) �→ W � (X ⊗ Y ) ⊗ Z

and

(W, X, Y, Z) �→ W � X ⊗ (Y ⊗ Z).

This natural transformation turns any proof

f : W → (X ⊗ Y ) ⊗ Z

into the proof

aX,Y,Z f : W → X ⊗ (Y ⊗ Z).

The fact that this transformation is natural means that it changes in a systematic
way as we vary W, X, Y and Z . The commuting square in the definition of natural
transformation, Definition 4, makes this precise.

Rules (l), (r), (b) and (c) give natural transformations in a very similar way. The
(⊗) rule gives a natural transformation between two functors from Cop×C×Cop×C
to Set, namely

(W, X, Y, Z) �→ (W � X) × (Y � Z)

and

(W, X, Y, Z) �→ W ⊗ Y � X ⊗ Z .
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This natural transformation sends any element ( f, g) ∈ hom(W, X) × hom(Y, Z)

to f ⊗ g.
The identity and cut rules are different: they do not give natural transformations,

because the top line of these rules has a different number of variables than the bot-
tom line! Rule (i) says that for each X ∈ C there is a function

iX : 1 → X � X

picking out the identity morphism 1X . What would it mean for this to be natural in
X? Rule (◦) says that for each triple X, Y, Z ∈ C there is a function

◦: (X � Y ) × (Y � Z) → X � Z .

What would it mean for this to be natural in X, Y and Z? The answer to both ques-
tions involves a generalization of natural transformations called “dinatural” trans-
formations [77].

As noted in Definition 4, a natural transformation α : F ⇒ G between two func-
tors F, G : C → D makes certain squares in D commute. If in fact C = Cop

1 × C2,

then we actually obtain commuting cubes in D. Namely, the natural transformation
α assigns to each object (X1, X2) a morphism αX1,X2 such that for any morphism
( f1 : Y1 → X1, f2 : X2 → Y2) in C , this cube commutes:

G(Y1, X2) G(Y1, Y2)

F(Y1, X2) F(Y1,Y2)

G(X1, X2) G(X1, Y2)

F(X1, X2) F(X1, Y2)

G(f1, 1Y2)

F(f1, 1X2)

F(1Y1,  f2)

αY1, X2
G(f1, 1X2)

F(f
1
, 1Y2

)

αY1
, Y2

G(1X1,  f2)

G(1Y1,  f2)

F(1X1,  f2)

αX1, X2 αX1, Y2

If C1 = C2, we can choose a single object X and a single morphism f : X → Y
and use it in both slots. As shown in Fig. 2.1, there are then two paths from one
corner of the cube to the antipodal corner that only involve α for repeated arguments:
that is, αX,X and αY,Y , but not αX,Y or αY,X . These paths give a commuting hexagon.
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G(Y, X) G(Y, Y)

F(Y, X) F(Y, Y)

G(X,  X) G(X, Y)

F(X, X) F(X, Y)

G(f, 1Y)

F(f, 1X)

F(1Y,  f)

αY,Y

G(1X,  f)

αX, X

Fig. 2.1 A natural transformation between functors F, G : Cop × C → D gives a commuting cube
in D for any morphism f : X → Y , and there are two paths around the cube that only involve α

for repeated arguments

This motivates the following:

Definition 22 A dinatural transformation α : F ⇒ G between functors
F, G : Cop × C → D assigns to every object X in C a morphism αX : F(X, X) →
G(X, X) in D such that for every morphism f : X → Y in C , the hexagon in
Fig. 2.1 commutes.

In the case of the identity rule, this commuting hexagon follows from the fact that
the identity morphism is a left and right unit for composition: see Fig. 2.2. For the
cut rule, this commuting hexagon says that composition is associative: see Fig. 2.3.

Y Y

1Y

1
•

1
•

X X
1X

X Y
f 1X = 1Y f

1
•

11

11

iY

iX

–◦f

f◦–

◦ ◦

Fig. 2.2 Dinaturality of the (i) rule, where f : X → Y . Here • ∈ 1 denotes the one element of the
one-element set
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X Z

h ◦ ( f ◦ g)

(X W ) × (Y Z )
(g, h)

(X Y ) × (Y Z )
( f ◦ g, h)

X Z

(h ◦ f ) ◦ g

X Z

(h ◦ f ) ◦ g = h ◦ ( f ◦ g)

(X W ) × (W Z )
(g, h ◦ f )

(1X  W,−◦f )

(f◦−,1Y  Z)

◦

◦

1X  Z

1X  Z

Fig. 2.3 Dinaturality of the cut rule, where f : W → Y, g : X → W, h : Y → Z

So, in general, the sort of logical theory we are discussing involves:

• A category C of propositions and proofs.
• A functor �: Cop ×C → Set sending any pair of propositions to the set of proofs

leading from one to the other.
• A set of dinatural transformations describing inference rules.

2.4 Computation

2.4.1 Background

In the 1930s, while Turing was developing what are now called “Turing machines”
as a model for computation, Church and his student Kleene were developing a dif-
ferent model, called the “lambda calculus” [30, 69]. While a Turing machine can be
seen as an idealized, simplified model of computer hardware, the lambda calculus
is more like a simple model of software.

By now the are many careful treatments of the lambda calculus in the literature,
from Barendregt’s magisterial tome [18] to the classic category-theoretic treatment
of Lambek and Scott [73], to Hindley and Seldin’s user-friendly introduction [55]
and Selinger’s elegant free online notes [96]. So, we shall content ourselves with a
quick sketch.

Poetically speaking, the lambda calculus describes a universe where everything
is a program and everything is data: programs are data. More prosaically, everything
is a “λ-term”, or “term” for short. These are defined inductively:
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• Variables: there is a countable set of “variables” x, y, z, . . . which are all terms.
• Application: if f and t are terms, we can “apply” f to t and obtain a term f (t).
• Lambda-abstraction: if x is a variable and t is a term, there is a term (λx .t).

Let us explain the meaning of application and lambda-abstraction. Application
is simple. Since “programs are data”, we can think of any term either as a program
or a piece of data. Since we can apply programs to data and get new data, we can
apply any term f to any other term t and get a new term f (t).

Lambda-abstraction is more interesting. We think of (λx .t) as the program that,
given x as input, returns t as output. For example, consider

(λx .x(x)).

This program takes any program x as input and returns x(x) as output. In other
words, it applies any program to itself. So, we have

(λx .x(x))(s) = s(s)

for any term s.
More generally, if we apply (λx .t) to any term s, we should get back t , but with

s substituted for each free occurrence of the variable x . This fact is codified in a rule
called beta reduction:

(λx .t)(s) = t[s/x]
where t[s/x] is the term we get by taking t and substituting s for each free occur-
rence of x . But beware: this rule is not an equation in the usual mathematical sense.
Instead, it is a “rewrite rule”: given the term on the left, we are allowed to rewrite it
and get the term on the right. Starting with a term and repeatedly applying rewrite
rules is how we take a program and let it run!

There are two other rewrite rules in the lambda calculus. If x is a variable and t
is a term, the term

(λx .t (x))

stands for the program that, given x as input, returns t (x) as output. But this is just
a fancy way of talking about the program t . So, the lambda calculus has a rewrite
rule called eta reduction, saying

(λx .t (x)) = t.

The third rewrite rule is alpha conversion. This allows us to replace a bound
variable in a term by another variable. For example:

(λx .x(x)) = (λy.y(y))

since x is “bound” in the left-hand expression by its appearance in “λx”. In other
words, x is just a dummy variable; its name is irrelevant, so we can replace it
with y. On the other hand,
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(λx .y(x)) 
= (λx .z(x)).

We cannot replace the variable y by the variable z here, since this variable is “free”,
not bound. Some care must be taken to make the notions of free and bound variables
precise, but we shall gloss over this issue, referring the reader to the references above
for details.

The lambda calculus is a very simple formalism. Amazingly, starting from just
this, Church and Kleene were able to build up Boolean logic, the natural numbers,
the usual operations of arithmetic, and so on. For example, they defined “Church
numerals” as follows:

0 = (λ f.(λx .x))

1 = (λ f.(λx . f (x)))

2 = (λ f.(λx . f ( f (x))))

3 = (λ f.(λx . f ( f ( f (x)))))

and so on. Note that f is a variable above. Thus, the Church numeral n is the pro-
gram that “takes any program to the nth power”: if you give it any program f as
input, it returns the program that applies f n times to whatever input x it receives.

To get a feeling for how we can define arithmetic operations on Church numerals,
consider

λg.3(2(g)).

This program takes any program g, squares it, and then cubes the result. So, it raises
g to the sixth power. This suggests that

λg.3(2(g)) = 6.

Indeed this is true. If we treat the definitions of Church numerals as reversible
rewrite rules, then we can start with the left side of the above equation and grind
away using rewrite rules until we reach the right side:

(λg.3(2(g)) = (λg.3((λ f.(λx . f ( f (x)))))(g)) def. of 2
= (λg.3(λx .g(g(x)))) beta
= (λg.(λ f.(λx . f ( f ( f (x)))))(λx .g(g(x)))) def. of 3
= (λg.(λx .(λx .g(g(x)))((λx .g(g(x)))((λx .g(g(x)))(x))))) beta
= (λg.(λx .(λx .g(g(x)))((λg.g(g(x)))(g(g(x)))))) beta
= (λg.(λx .(λx .g(g(x)))(g(g(g(g(x))))))) beta
= (λg.(λx .g(g(g(g(g(g(x)))))))) beta
= 6 def. of 6

If this calculation seems mind-numbing, that is precisely the point: it resembles the
inner workings of a computer. We see here how the lambda calculus can serve as a
programming language, with each step of computation corresponding to a rewrite
rule.
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Of course, we got the answer 6 because 3 × 2 = 6. Generalizing from this
example, we can define a program called “times” that multiplies Church numerals:

times = (λa.(λb.(λx .a(b(x))))).

For example,

times(3)(2) = 6.

The enterprising reader can dream up similar programs for the other basic operations
of arithmetic. With more cleverness, Church and Kleene were able to write terms
corresponding to more complicated functions. They eventually came to believe that
all computable functions f : N → N can be defined in the lambda calculus.

Meanwhile, Gödel was developing another approach to computability, the theory
of “recursive functions”. Around 1936, Kleene proved that the functions definable in
the lambda calculus were the same as Gödel’s recursive functions. In 1937 Turing
described his “Turing machines”, and used these to give yet another definition of
computable functions. This definition was later shown to agree with the other two.
Thanks to this and other evidence, it is now widely accepted that the lambda calculus
can define any function that can be computed by any systematic method. We say it
is “Turing complete”.

After this burst of theoretical work, it took a few decades for programmable com-
puters to actually be built. It took even longer for computer scientists to profit from
Church and Kleene’s insights. This began around 1958, when McCarthy invented
the programming language Lisp, based on the lambda calculus [80]. In 1965, an
influential paper by Landin [74] pointed out a powerful analogy between the lambda
calculus and the language ALGOL. These developments led to a renewed interest
in the lambda calculus which continues to this day. By now, a number of com-
puter languages are explicitly based on ideas from the lambda calculus. The most
famous of these include Lisp, ML and Haskell. These languages, called “functional
programming languages”, are beloved by theoretical computer scientists for their
conceptual clarity. In fact, for many years, everyone majoring in computer science
at MIT has been required to take an introductory course that involves programming
in Scheme, a dialect of Lisp. The cover of the textbook for this course [1] even has
a big λ on the cover!

We should admit that languages of a different sort—“imperative programming
languages”—are more popular among working programmers. Examples include
FORTRAN, BASIC, and C. In imperative programming, a program is a series of
instructions that tell the computer what to do. By constrast, in functional program-
ming, a program simply describes a function. To run the program, we apply it to
an input. So, as in the lambda calculus, “application” is a fundamental operation
in functional programming. If we combine application with lambda abstraction, we
obtain a language powerful enough to compute any computable function.

However, most functional programming languages are more regimented than the
original lambda calculus. As we have seen, in the lambda calculus as originally
developed by Church and Kleene, any term can be applied to any other. In real life,
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programming involves many kinds of data. For example, suppose we are writing a
program that involves days of the week. It would not make sense to write

times(3)(Tuesday)

because Tuesday is not a number. We might choose to represent Tuesday by a num-
ber in some program, but doubling that number doesn’t have a good interpretation:
is the first day of the week Sunday or Monday? Is the week indexed from zero or
one? These are arbitrary choices that affect the result. We could let the programmer
make the choices, but the resulting unstructured framework easily leads to mistakes.

It is better to treat data as coming in various “types”, such as integers, floating-
point numbers, alphanumeric strings, and so on. Thus, whenever we introduce a
variable in a program, we should make a “type declaration” saying what type it is.
For example, we might write:

Tuesday : day

This notation is used in Ada, Pascal and some other languages. Other notations are
also in widespread use. Then, our system should have a “type checker” (usually part
of the compiler) that complains if we try to apply a program to a piece of data of the
wrong type.

Mathematically, this idea is formalized by a more sophisticated version of the
lambda calculus: the “typed” lambda calculus, where every term has a type. This
idea is also fundamental to category theory, where every morphism is like a black
box with input and output wires of specified types:

f

X

Y

and it makes no sense to hook two black boxes together unless the output of the first
has the same type as the input of the next:

f

g

X

Y

Z
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Indeed, there is a deep relation between the typed lambda calculus and carte-
sian closed categories. This was discovered by Lambek in 1980 [72]. Quite roughly
speaking, a “typed lambda-theory” is a very simple functional programming lan-
guage with a specified collection of basic data types from which other more com-
plicated types can be built, and a specified collection of basic terms from which
more complicated terms can be built. The data types of this language are objects in
a cartesian closed category, while the programs—that is, terms—give morphisms!

Here we are being a bit sloppy. Recall from Sect. 2.3.3 that in logic we can build
closed monoidal categories where the morphisms are equivalence classes of proofs.
We need to take equivalence classes for the axioms of a closed monoidal category to
hold. Similarly, to get closed monoidal categories from computer science, we need
the morphisms to be equivalence classes of terms. Two terms count as equivalent if
they differ by rewrite rules such as beta reduction, eta reduction and alpha conver-
sion. As we have seen, these rewrites represent the steps whereby a program carries
out its computation. For example, in the original “untyped” lambda calculus, the
terms times(3)(2) and 6 differ by rewrite rules, but they give the same morphism.
So, when we construct a cartesian closed category from a typed lambda-theory, we
neglect the actual process of computation. To remedy this we should work with a
cartesian closed 2-category which has:

• types as objects,
• terms as morphisms,
• equivalence classes of rewrites as 2-morphisms.

For details, see the work of Seely [93, 94], Hilken [54], and Melliés [79]. Someday
this work will be part of the larger n-categorical Rosetta Stone mentioned at the end
of Sect. 2.2.5.

In any event, Lambek showed that every typed lambda-theory gives a cartesian
closed category—and conversely, every cartesian closed category gives a typed
lambda-theory. This discovery led to a rich line of research blending category theory
and computer science. There is no way we can summarize the resulting enormous
body of work, though it constitutes a crucial aspect of the Rosetta Stone. Two good
starting points for further reading are the textbook by Crole [35] and the online
review article by Scott [89].

In what follows, our goal is more limited. First, in Sect. 2.4.2, we explain how
every “typed lambda-theory” gives a cartesian closed category, and conversely. We
follow the treatment of Lambek and Scott [73], in a somewhat simplified form.
Then, in Sect. 2.4.3, we describe how every “linear type theory” gives a closed
symmetric monoidal category, and conversely.

The idea here is roughly that a “linear type theory” is a programming language
suitable for both classical and quantum computation. This language differs from the
typed lambda calculus in that it forbids duplication and deletion of data except when
expressly permitted. The reason is that while every object in a cartesian category
comes equipped with “duplication” and “deletion” morphisms:
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ΔX : X → X ⊗ X, !X : X → 1,

a symmetric monoidal category typically lacks these. As we saw in Sect. 2.2.3, a
great example is the category Hilb with its usual tensor product. So, a programming
language suitable for quantum computation should not assume we can duplicate all
types of data [29, 110].

Various versions of “quantum” or “linear” lambda calculus have already been
studied, for example by Benton, Bierman de Paiva and Hyland [22], Dorca and van
Tonder [108], and Selinger and Valiron [98]. Abramsky and Tzevelekos sketch a
version in their paper in this volume [6]. We instead explain the ‘linear type theories’
developed by Simon Ambler in his 1991 thesis [7].

2.4.2 The Typed Lambda Calculus

Like the original “untyped” lambda calculus explained above, the typed lambda
calculus uses terms to represent both programs and data. However, now every term
has a specific type. A program that inputs data of type X and outputs data of type Y
is said to be of type X � Y . So, we can only apply a term s to a term t of type X if
s is of type X � Y for some Y . In this case s(t) is a well-defined term of type Y .
We call X � Y a function type.

Whenever we introduce a variable, we must declare its type. We write t : X to
mean that t is a term of type X . So, in lambda abstraction, we no longer simply
write expressions like (λx . t). Instead, if x is a variable of type X , we write

(λx : X . t).

For example, here is a simple program that takes a program of type X � X and
“squares” it:

(λ f : X � X . (λx : X . f ( f (x)))).

In the original lambda calculus, all programs take a single piece of data as input.
In other words, they compute unary functions. This is no real limitation, since we
can handle functions that take more than one argument using a trick called “cur-
rying”, discussed in Sect. 2.2.6 This turns a function of several arguments into a
function that takes the first argument and returns a function of the remaining argu-
ments. We saw an example in the last section: the program “times”. For example,
times(3) is a program that multiplies by 3, so times(3)(2) = 6.

While making all programs compute unary functions is economical, it is not
very kind to the programmer. So, in the typed lambda calculus we also introduce
products: given types X and Y , there is a type X × Y called a product type. We
can think of a datum of type X × Y as a pair consisting of a datum of type X and
a datum of type Y . To make this intuition explicit, we insist that given terms s : X
and t : Y there is a term (s, t) : X × Y . We also insist that given a term u : X × Y
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there are terms p(u) : X and p′(u) : Y , which we think of as the first and second
components of the pair t . We also include rewrite rules saying:

(p(u), p′(u)) = u for all u : X × Y,

p(s, t) = s for all s : X and t :Y,

p′(s, t) = t for all s : X and t :Y.

Product types allow us to write programs that take more than one input. Even
more importantly, they let us deal with programs that produce more than one output.
For example, we might have a type called “integer”. Then we might want a program
that takes an integer and duplicates it:

duplicate : integer � (integer × integer)

Such a program is easy to write:

duplicate = (λx : integer . (x, x)).

Of course this a program we should not be allowed to write when duplicating infor-
mation is forbidden, but in this section our considerations are all “classical”, i.e.,
suited to cartesian closed categories.

The typed lambda calculus also has a special type called the “unit type”, which
we denote as 1. There is a single term of this type, which we denote as (). From
the viewpoint of category theory, the need for this type is clear: a category with
finite products must have not only binary products but also a terminal object (see
Definition 10). For example, in the category Set, the terminal object can be taken as
any one-element set, and () is the unique element of this set. It may be less clear why
this type is useful in programming. One reason is that it lets us think of a constant
of type X as a function of type 1 � X—that is, a “nullary” function, one that
takes no arguments. There are some other reasons, but they go beyond the scope of
this discussion. Suffice it to say that Haskell, Lisp and even widely used imperative
languages such as C, C++ and Java include the unit type.

Having introduced the main ingredients of the typed lambda calculus, let us give
a more formal treatment. As we shall see, a “typed lambda-theory” consists of types,
terms and rewrite rules. From a typed lambda-theory we can get a cartesian closed
category. The types will give objects, the terms will give morphisms, and the rewrite
rules will give equations between morphisms.

First, the types are given inductively as follows:

• Basic types: There is an arbitarily chosen set of types called basic types.
• Product types: Given types X and Y , there is a type X × Y .
• Function types: Given types X and Y , there is a type X � Y .
• Unit type: There is a type 1.

There may be unexpected equations between types: for example we may have a type
X satisfying X × X = X . However, we demand that:
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• If X = X ′ and Y = Y ′ then X × Y = X ′ × Y ′.
• If X = X ′ and Y = Y ′ then X � Y = X ′ � Y ′.

Next we define terms. Each term has a specific type, and if t is a term of type X
we write t : X . The rules for building terms are as follows:

• Basic terms: For each type X there is a set of basic terms of type X .
• Variables: For each type X there is a countably infinite collection of terms of

type X called variables of type X .
• Application: If f : X � Y and t : X then there is a term f (t) of type Y .
• Lambda abstraction: If x is a variable of type X and t : Y then there is a term

(λx : X . t) of type X � Y .
• Pairing: If s : X and t : Y then there is a term (s, t) of type X × Y .
• Projection: If t : X × X ′ then there is a term p(t) of X and a term p′(t) of

type X ′.
• Unit term: There is a term () of type 1.

Finally there are rewrite rules going between terms of the same type. Given
any fixed set of variables S, there will be rewrite rules between terms of the same
type, all of whose free variables lie in the set S. For our present purposes, we only
need these rewrite rules to decide when two terms determine the same morphism
in the cartesian closed category we shall build. So, what matters is not really the
rewrite rules themselves, but the equivalence relation they generate. We write this
equivalence relation as s ∼S t .

The relation ∼S can be any equivalence relation satisfying the following list
of rules. In what follows, t[s/x] denotes the result of taking a term t and replacing
every free occurence of the variable x by the term s. Also, when when we say ‘term’
without further qualification, we mean ‘term all of whose free variables lie in the
set S’.

• Type preservation: If t ∼S t ′ then t and t ′ must be terms of the same type, all
of whose free variables lie in the set S.

• Beta reduction: Suppose x is a variable of type X , s is a term of type X , and t is
any term. If no free occurrence of a variable in s becomes bound in t[s/x], then:

(λx : X . t)(s) ∼S t[s/x].

• Eta reduction: Suppose the variable x does not appear in the term f . Then:

(λx : X . f (x))∼S f.

• Alpha conversion: Suppose x and y are variables of type X , and no free occur-
rence of any variable in t becomes bound in t[x/y]. Then:

(λx : X . t) ∼S (λy : X . t[x/y]).
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• Application: Suppose t and t ′ are terms of type X with t ∼S t ′, and suppose that
f : X � Y . Then:

f (t) ∼S f (t ′).

• Lambda abstraction: Suppose t and t ′ are terms of type Y , all of whose free
variables lie in the set S ∪ {x}. Suppose that t ∼S∪{x} t ′. Then:

(λx : X . t) ∼S (λx : X . t ′)

• Pairing: If u is a term of type X × Y then:

(p(u), p′(u)) ∼S u.

• Projection: if s is a term of type X and t is a term of type Y then:

p(s, t) ∼S s
p′(s, t) ∼S t.

• Unit term: If t is a term of type 1 then:

t ∼S ().

Now we can describe Lambek’s classic result relating typed lambda-theories to
cartesian closed categories. From a typed lambda-theory we get a cartesian closed
category C for which:

• The objects of C are the types.
• The morphisms f : X → Y of C are equivalence classes of pairs (x, t) consisting

of a variable x : X and a term t : Y with no free variables except perhaps x . Here
(x, t) is equivalent to (x, t ′) if and only if:

t ∼{x} t ′[x/x ′].

• Given a morphism f : X → Y coming from a pair (x, t) and a morphism
g : Y → Z coming from a pair (y, u) as above, the composite g f : X → Y
comes from the pair (x, u[t/y]).

We can also reverse this process and get a typed lambda-theory from a cartesian
closed category. In fact, Lambek and Scott nicely explain how to construct a cat-
egory of category of cartesian closed categories and a category of typed-lambda
theories. They construct functors going back and forth between these categories
and show these functors are inverses up to natural isomorphism. We thus say these
categories are “equivalent” [73].
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2.4.3 Linear Type Theories

In his thesis [7], Ambler described how to generalize Lambek’s classic result from
cartesian closed categories to closed symmetric monoidal categories. To do this,
he replaced typed lambda-theories with “linear type theories”. A linear type theory
can be seen as a programming language suitable for both classical and quantum
computation. As we have seen, in a noncartesian category like Hilb, we cannot freely
duplicate or delete information. So linear type theories must prevent duplication or
deletion of data except when it is expressly allowed.

To achieve this, linear type theories must not allow us to write a program like
this:

(λx : X . (x, x)).

Even a program that “squares” another program, like this:

(λ f : X � X . (λx : X . f ( f (x)))),

is not allowed, since it “reuses” the variable f . On the other hand, a program that
composes two programs is allowed!

To impose these restrictions, linear type theories treat variables very differently
than the typed lambda calculus. In fact, in a linear type theory, any term will contain
a given variable at most once. But linear type theories depart even more dramati-
cally from the typed lambda calculus in another way. They make no use of lambda
abstraction! Instead, they use “combinators”.

The idea of a combinator is very old: in fact, it predates the lambda calculus.
Combinatory logic was born in a 1924 paper by Schönfinkel [92], and was redis-
covered and extensively developed by Curry [36, 37] starting in 1927. In retrospect,
we can see their work as a stripped-down version of the untyped lambda calculus
that completely avoids the use of variables. Starting from a basic stock of terms
called “combinators”, the only way to build new ones is application: we can apply
any term f to any term t and get a term f (t).

To build a Turing-complete programming language in such an impoverished
setup, we need a sufficient stock of combinators. Remarkably, it suffices to use
three. In fact it is possible to use just one cleverly chosen combinator—but this
tour de force is not particularly enlightening, so we shall describe a commonly used
set of three. The first, called I , acts like the identity, since it comes with the rewrite
rule:

I (a) = a

for every term a. The second, called K , gives a constant function K (a) for each
term a. In other words, it comes with a rewrite rule saying

K (a)(b) = a
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for every term b. The third, called S, is the tricky one. It takes three terms, applies
the first to the third, and applies the result to the second applied to the third:

S(a)(b)(c) = a(c)(b(c)).

Later it was seen that the combinator calculus can be embedded in the untyped
lambda calculus as follows:

I = (λx .x)

K = (λx .(λy.x))

S = (λx .(λy.(λz.x(z)(y(z))))).

The rewrite rules for these combinators then follow from rewrite rules in the
lambda calculus. More surprisingly, any function computable using the lambda
calculus can also be computed using just I, K and S! While we do not need
this fact to understand linear type theories, we cannot resist sketching the proof,
since it is a classic example of using combinators to avoid explicit use of lambda
abstraction.

Note that all the variables in the lambda calculus formulas for I, K , and S are
bound variables. More generally, in the lambda calculus we define a combinator to
be a term in which all variables are bound variables. Two combinators c and d are
extensionally equivalent if they give the same result on any input: that is, for any
term t , we can apply lambda calculus rewrite rules to c(t) and d(t) in a way that
leads to the same term. There is a process called “abstraction elimination” that takes
any combinator in the lambda calculus and produces an extensionally equivalent
one built from I, K , and S.

Abstraction elimination works by taking a term t = (λx .u) with a single lambda
abstraction and rewriting it into the form (λx . f (x)), where f has no instances of
lambda abstraction. Then we can apply eta reduction, which says (λx . f (x)) = f .
This lets us rewrite t as a term f that does not involve lambda abstraction. We shall
use the notation [[u]]x to mean “any term f satisfing f (x) = u”.

There are three cases to consider; each case justifies the definition of one combi-
nator:

1. t = (λx .x). We can rewrite this as t = (λx .I (x)), so t = [[x]]x = I .
2. t = (λx .u), where u does not depend on x . We can rewrite this as t = (λx .

K (u)(x)), so t = [[u]]x = K (u).

3. t = (λx .u(v)), where u and v may depend on x . We can rewrite this as t =
(λx .(([[u]]x x)([[v]]x x)) or t = (λx .S([[u]]x )([[v]]x )(x)), so t = S([[u]]x )

([[v]]x ).

We can eliminate all use of lambda abstraction from any term by repeatedly using
these three rules “from the inside out”. To see how this works, consider the lambda
term t = (λx .(λy.y)), which takes two inputs and returns the second. Using the
rules above we have:
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(λx .(λy.y)) = (λx .(λy.[[y]]y(y)))

= (λx .(λy.I (y)))

= (λx .I )
= (λx .[[I ]]x (x))

= (λx .K (I )(x)

= K (I ).

We can check that it works as desired: K (I )(x)(y) = I (y) = y.

Now let us return to our main theme: linear type theories. Of the three combi-
nators described above, only I is suitable for use in an arbitrary closed symmetric
monoidal category. The reason is that K deletes data, while S duplicates it. We can
see this directly from the rewrite rules they satisfy:

K (a)(b) = a
S(a)(b)(c) = a(c)(b(c)).

Every linear type theory has a set of “basic combinators”, which neither duplicate
nor delete data. Since linear type theories generalize typed lambda-theories, these
basic combinators are typed. Ambler writes them using notation resembling the
notation for morphisms in category theory.

For example, given two types X and Y in a linear type theory, there is a tensor
product type X ⊗ Y . This is analogous to a product type in the typed lambda
calculus. In particular, given a term s of type X and a term t of type Y , we can
combine them to form a term of type X ⊗ Y , which we now denote as (s ⊗ t). We
reparenthesize iterated tensor products using the following basic combinator:

assocX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z).

This combinator comes with the following rewrite rule:

assocX,Y,Z ((s ⊗ t) ⊗ u) = (s ⊗ (t ⊗ u))

for all terms s : X , t : Y and u : Z .
Of course, the basic combinator assocX,Y,Z is just a mildly disguised version

of the associator, familiar from category theory. Indeed, all the basic combinators
come from natural or dinatural transformations implicit in the definition of “closed
symmetric monoidal category”. In addition to these, any given linear type theory
also has combinators called “function symbols”. These come from the morphisms
particular to a given category. For example, suppose in some category the tensor
product X ⊗ X is actually the cartesian product. Then the corresponding linear type
theory should have a function symbol

ΔX : X → X ⊗ X

which lets us duplicate data of type X , together with function symbols
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p : X ⊗ X → X, p′ : X ⊗ X → X

that project onto the first and second factors. To make sure these work as desired,
we can include rewrite rules:

Δ(s) = (s ⊗ s)
p(s ⊗ t) = s
p′(s ⊗ t) = t.

So, while duplication and deletion of data is not a “built-in feature” of linear type
theories, we can include it when desired.

Using combinators, we could try to design a programming language suitable for
closed symmetric monoidal categories that completely avoid the use of variables.
Ambler follows a different path. He retains variables in his formalism, but they
play a very different—and much simpler—-role than they do in the lambda cal-
culus. Their only role is to help decide which terms should count as equivalent.
Furthermore, lambda abstraction plays no role in linear type theories, so the whole
issue of free versus bound variables does not arise! In a sense, all variables are free.
Moreover, every term contains any given variable at most once.

After these words of warning, we hope the reader is ready for a more formal
treatment of linear type theories. A linear type theory has types, combinators,
terms, and rewrite rules. The types will correspond to objects in a closed symmet-
ric monoidal category, while equivalence classes of combinators will correspond to
morphisms. Terms and rewrite rules are only used to define the equivalence relation.

First, the set of types is defined inductively as follows:

• Basic types: There is an arbitarily chosen set of types called basic types.
• Product types: Given types X and Y , there is a type (X ⊗ Y ).
• Function types: Given types X and Y , there is a type (X � Y ).
• Trivial type: There is a type I .

There may be equations between types, but we require that:

• If X = X ′ and Y = Y ′ then X ⊗ Y = X ′ ⊗ Y ′.
• If X = X ′ and Y = Y ′ then X � Y = X ′ � Y ′.

Second, a linear type theory has for each pair of types X and Y a set of com-
binators of the form f : X → Y . These are defined by the following inductive
rules:

• Given types X and Y there is an arbitrarily chosen set of combinators f : X → Y
called function symbols.

• Given types X, Y, and Z we have the following combinators, called basic com-
binators:

– idX : X → X
– assocX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z)

– unassocX,Y,Z : X ⊗ (Y ⊗ Z) → (X ⊗ Y ) ⊗ Z
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– braidX,Y : X ⊗ Y → Y ⊗ X
– leftX : I ⊗ X → X
– unleftX : X → I ⊗ X
– rightX : I ⊗ X → X
– unrightX : X → I ⊗ X
– evalX,Y : X ⊗ (X � Y ) → Y

• If f : X → Y and g : Y → Z are combinators, then (g ◦ f ) : X → Z is a com-
binator.

• If f : X → Y and g : X ′ → Y ′ are combinators, then ( f ⊗ g) : X ⊗ X ′ → Y ⊗ Y ′
is a combinator.

• If f : X ⊗ Y → Z is a combinator, then we can curry f to obtain a combinator
f̃ : Y → (X � Z).

It will generally cause no confusion if we leave out the subscripts on the basic com-
binators. For example, we may write simply “assoc” instead of assocX,Y,Z .

Third, a linear type theory has a set of terms of any given type. As usual, we write
t : X to say that t is a term of type X . Terms are defined inductively as follows:

• For each type X there is a countably infinite collection of variables of type X . If
x is a variable of type X then x : X .

• There is a term 1 with 1 : I .
• If s : X and t : Y, then there is a term (s ⊗ t) with (s ⊗ t) : X ⊗ Y , as long as no

variable appears in both s and t .
• If f : X → Y is a combinator and t : X then there is a term f (t) with f (t) : X .

Note that any given variable may appear at most once in a term.
Fourth and finally, a linear type theory has rewrite rules going between terms of

the same type. As in our treatment of the typed lambda calculus, we only care here
about the equivalence relation ∼ generated by these rewrite rules. This equivalence
relation must have all the properties listed below. In what follows, we say a term is
basic if it contains no combinators. Such a term is just an iterated tensor product of
distinct variables, such as

(z ⊗ ((x ⊗ y) ⊗ w)).

These are the properties that the equivalence relation ∼ must have:

• If t ∼ t ′ then t and t ′ must be terms of the same type, containing the same
variables.

• The equivalence relation is substitutive:

– Given terms s ∼ s′, a variable x of type X , and terms t ∼ t ′ of type X whose
variables appear in neither s nor s′, then s[t/x] ∼ s′[t ′/x].

– Given a basic term t with the same type as a variable x , if none of the variables
of t appear in the terms s or s′, and s[t/x] ∼ s′[t/x], then s ∼ s′.

• The equivalence relation is extensional: if f : X�Y , g :X�Y and eval(t ⊗ f ) =
eval(t ⊗ g) for all basic terms t : X , then f = g.
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• We have:

– id(s) ∼ s
– (g ◦ f )(s) ∼ g( f (s))
– ( f ⊗ g)(s ⊗ t) ∼ ( f (s) ⊗ g(t))
– assoc((s ⊗ t) ⊗ u) ∼ (s ⊗ (t ⊗ u))

– unassoc(s ⊗ (t ⊗ u)) ∼ ((s ⊗ t) ⊗ u)

– braid(s ⊗ t) ∼ (t ⊗ s)
– left(1 ⊗ s) ∼ s
– unleft(s) ∼ (1 ⊗ s)
– right(1 ⊗ s) ∼ s
– unright(s) ∼ (1 ⊗ s)
– eval(s ⊗ f̃ (t)) ∼ f (s ⊗ t)

Note that terms can have variables appearing anywhere within them. For exam-
ple, if x, y, z are variables of types X, Y and Z , and f : Y ⊗ Z → W is a function
symbol, then

braid(x ⊗ f (y ⊗ z))

is a term of type W ⊗ X . However, every term t is equivalent to a term of the form
cp(t)(vp(t)), where cp(t) is the combinator part of t and vp(t) is a basic term
called the variable part of t . For example, the above term is equivalent to

braid ◦ (id ⊗ ( f ◦ (id ⊗ id)))(x ⊗ (y ⊗ z)).

The combinator and variable parts can be computed inductively as follows:

• If x is a variable of type X , cp(x) = id : X → X .
• cp(1) = id : I → I .
• For any terms s and t , cp(s ⊗ t) = cp(s) ⊗ cp(t).
• For any term s : X and any combinator f : X → Y , cp( f (s)) = f ◦ cp(s).
• If x is a variable of type X , vp(x) = x .
• vp(1) = 1.
• For any terms s and t , vp(s ⊗ t) = vp(s) ⊗ vp(t).
• For any term s : X and any combinator f : X → Y , vp( f (s)) = vp(s).

Now, suppose that we have a linear type theory. Ambler’s first main result is this:
there is a symmetric monoidal category where objects are types and morphisms
are equivalence classes of combinators. The equivalence relation on combinators is
defined as follows: two combinators f, g : X → Y are equivalent if and only if

f (t) ∼ g(t)

for some basic term t of type X . In fact, Ambler shows that f (t) ∼ g(t) for some
basic term t : X if and only if f (t) ∼ g(t) for all such basic terms.

Ambler’s second main result describes how we can build a linear type theory
from any closed symmetric monoidal category, say C . Suppose C has composi-
tion �, tensor product •, internal hom�, and unit object ι. We let the basic types of
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our linear type theory be the objects of C . We take as equations between types those
generated by:

• ι = I
• A • B = A ⊗ B
• A � B = A � B

We let the function symbols be all the morphisms of C . We take as our equivalence
relation on terms the smallest allowed equivalence relation such that:

• 1A(x) ∼ A
• (g � f )(x) ∼ g( f (x))

• ( f • g)(x ⊗ y) ∼ ( f (x) ⊗ g(y))

• aA,B,C ((x ⊗ y) ⊗ z) ∼ (x ⊗ (y ⊗ z))
• bA,B(x ⊗ y) ∼ (y ⊗ x)

• lA(1 ⊗ x) ∼ x
• rA(x ⊗ 1) ∼ x
• evA,B(x ⊗ f̃ (y)) ∼ f (x ⊗ y)

Then we define

• id = 1
• assoc = a
• unassoc = a−1

• braid = b
• left = l
• unleft = l−1

• right = r
• unleft = r−1

• eval = ev
• g ◦ f = g � f

and we’re done!
Ambler also shows that this procedure is the “inverse” of his procedure for turn-

ing linear type theories into closed symmetric monoidal categories. More precisely,
he describes a category of closed symmetric monoidal categories (which is well-
known), and also a category of linear type theories. He constructs functors going
back and forth between these, based on the procedures we have sketched, and shows
that these functors are inverses up to natural isomorphism. So, these categories are
“equivalent”.

In this section we have focused on closed symmetric monoidal categories. What
about closed categories that are just braided monoidal, or merely monoidal? While
we have not checked the details, we suspect that programming languages suited to
these kinds of categories can be obtained from Ambler’s formalism by removing
various features. To get the braided monoidal case, the obvious guess is to remove
Ambler’s rewrite rule for the ‘braid’ combinator and add two rewrite rules corre-
sponding to the hexagon equations (see Sect. 2.2.4 for these). To get the monoidal
case, the obvious guess is to completely remove the combinator “braid” and all
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rewrite rules involving it. In fact, Jay [57] gave a language suitable for closed
monoidal categories in 1989; Ambler’s work is based on this.

2.5 Conclusions

In this paper we sketched how category theory can serve to clarify the analogies
between physics, topology, logic and computation. Each field has its own concept
of “thing” (object) and “process” (morphism)—and these things and processes are
organized into categories that share many common features. To keep our task man-
ageable, we focused on those features that are present in every closed symmetric
monoidal category. Table 2.4, an expanded version of the Rosetta Stone, shows some
of the analogies we found.

Table 2.4 The Rosetta Stone (larger version)

Category Theory Physics Topology Logic Computation

Object X Hilbert space X Manifold X Proposition X Data type X
Morphism

f : X → Y
Operator

f : X → Y
Cobordism

f : X → Y
Proof f : X → Y Program

f : X → Y
Tensor product of

objects: X ⊗ Y
Hilbert space of

joint system:
X ⊗ Y

Disjoint union of
manifolds:
X ⊗ Y

Conjunction of
propositions:
X ⊗ Y

Product of data
types: X ⊗ Y

Tensor product of
morphisms:
f ⊗ g

Parallel processes:
f ⊗ g

Disjoint union of
cobordisms:
f ⊗ g

Proofs carried out
in parallel:
f ⊗ g

Programs
executing in
parallel: f ⊗ g

Internal hom:
X � Y

Hilbert space of
“anti-X and Y ”:
X∗ ⊗ Y

Disjoint union of
orientation-
reversed X and
Y : X∗ ⊗ Y

Conditional
proposition:
X � Y

Function type:
X � Y

However, we only scratched the surface! There is much more to say about cate-
gories equipped with extra structure, and how we can use them to strengthen the ties
between physics, topology, logic and computation—not to mention what happens
when we go from categories to n-categories. But the real fun starts when we exploit
these analogies to come up with new ideas and surprising connections. Here is an
example.

In the late 1980s, Witten [109] realized that string theory was deeply connected
to a 3d topological quantum field theory and thus the theory of knots and tangles
[71]. This led to a huge explosion of work, which was ultimately distilled into a
beautiful body of results focused on a certain class of compact braided monoidal
categories called “modular tensor categories” [17, 107].

All this might seem of purely theoretical interest, were it not for the fact that
superconducting thin films in magnetic fields seem to display an effect—the “frac-
tional quantum Hall effect”—that can be nicely modelled with the help of such
categories [102, 103]. In a nutshell, the idea is that excitations of these films can act
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like particles, called ‘anyons’. When two anyons trade places, the result depends on
how they go about it:

So, collections of anyons are described by objects in a braided monoidal cat-
egory! The details depend on things like the strength of the magnetic field; the
range of possibilities can be worked out with the help of modular tensor categories
[82, 88].

So far this is all about physics and topology. Computation entered the game
around 2000, when Freedman, Kitaev, Larsen and Wang [43–45] showed that certain
systems of anyons could function as “universal quantum computers”. This means
that, in principle, arbitrary computations can be carried out by moving anyons
around. Doing this in practice will be far from easy. However, Microsoft has set
up a research unit called Project Q attempting to do just this. After all, a working
quantum computer could have huge practical consequences.

But regardless of whether topological quantum computation ever becomes prac-
tical, the implications are marvelous. A simple diagram like this:

can now be seen as a quantum process, a tangle, a computation—or an abstract
morphism in any braided monoidal category! This is just the sort of thing one would
hope for in a general science of systems and processes.
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